WorldWideScience

Sample records for release cell surface

  1. Enhanced cell disruption strategy in the release of recombinant hepatitis B surface antigen from Pichia pastoris using response surface methodology

    Science.gov (United States)

    2012-01-01

    Background Cell disruption strategies by high pressure homogenizer for the release of recombinant Hepatitis B surface antigen (HBsAg) from Pichia pastoris expression cells were optimized using response surface methodology (RSM) based on the central composite design (CCD). The factors studied include number of passes, biomass concentration and pulse pressure. Polynomial models were used to correlate the above mentioned factors to project the cell disruption capability and specific protein release of HBsAg from P. pastoris cells. Results The proposed cell disruption strategy consisted of a number of passes set at 20 times, biomass concentration of 7.70 g/L of dry cell weight (DCW) and pulse pressure at 1,029 bar. The optimized cell disruption strategy was shown to increase cell disruption efficiency by 2-fold and 4-fold for specific protein release of HBsAg when compared to glass bead method yielding 75.68% cell disruption rate (CDR) and HBsAg concentration of 29.20 mg/L respectively. Conclusions The model equation generated from RSM on cell disruption of P. pastoris was found adequate to determine the significant factors and its interactions among the process variables and the optimum conditions in releasing HBsAg when validated against a glass bead cell disruption method. The findings from the study can open up a promising strategy for better recovery of HBsAg recombinant protein during downstream processing. PMID:23039947

  2. Border cell release

    DEFF Research Database (Denmark)

    Mravec, Jozef

    2017-01-01

    Plant border cells are specialised cells derived from the root cap with roles in the biomechanics of root growth and in forming a barrier against pathogens. The mechanism of highly localised cell separation which is essential for their release to the environment is little understood. Here I present...... in situ analysis of Brachypodium distachyon, a model organism for grasses which possess type II primary cell walls poor in pectin content. Results suggest similarity in spatial dynamics of pectic homogalacturonan during dicot and monocot border cell release. Integration of observations from different...... species leads to the hypothesis that this process most likely does not involve degradation of cell wall material but rather employs unique cell wall structural and compositional means enabling both the rigidity of the root cap as well as detachability of given cells on its surface....

  3. Involvement of hydroxyl radicals in the release by ionizing radiation of a cell surface nuclease from Micorcoccus radiodurans

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.

    1975-01-01

    The ionizing radiation-induced release of a surface exonuclease from Micrococcus radiodurans is to a large extent inhibited by the removal of water. Irradiation of a cell suspension saturated with O 2 (an effective aqueous electron and hydrogen atom scavenger) allows the same release as irradiation in the presence of N 2 . Ethanol (a good hydroxyl radical scavenger) protects the enzyme from release. These data suggest that hydroxyl radicals produced by the radiolysis of water are important releasing agents. Hydroxyl radicals produced by the ultraviolet decomposition of H 2 O 2 were effective in releasing the enzyme

  4. Dual-responsive surfaces modified with phenylboronic acid-containing polymer brush to reversibly capture and release cancer cells.

    Science.gov (United States)

    Liu, Hongliang; Li, Yingying; Sun, Kang; Fan, Junbing; Zhang, Pengchao; Meng, Jingxin; Wang, Shutao; Jiang, Lei

    2013-05-22

    Artificial stimuli-responsive surfaces that can mimic the dynamic function of living systems have attracted much attention. However, there exist few artificial systems capable of responding to dual- or multistimulation as the natural system does. Herein, we synthesize a pH and glucose dual-responsive surface by grafting poly(acrylamidophenylboronic acid) (polyAAPBA) brush from aligned silicon nanowire (SiNW) array. The as-prepared surface can reversibly capture and release targeted cancer cells by precisely controlling pH and glucose concentration, exhibiting dual-responsive AND logic. In the presence of 70 mM glucose, the surface is pH responsive, which can vary from a cell-adhesive state to a cell-repulsive state by changing the pH from 6.8 to 7.8. While keeping the pH at 7.8, the surface becomes glucose responsive--capturing cells in the absence of glucose and releasing cells by adding 70 mM glucose. Through simultaneously changing the pH and glucose concentration from pH 6.8/0 mM glucose to pH 7.8/70 mM glucose, the surface is dual responsive with the capability to switch between cell capture and release for at least 5 cycles. The cell capture and release process on this dual-responsive surface is noninvasive with cell viability higher than 95%. Moreover, topographical interaction between the aligned SiNW array and cell protrusions greatly amplifies the responsiveness and accelerates the response rate of the dual-responsive surface between cell capture and release. The responsive mechanism of the dual-responsive surface is systematically studied using a quartz crystal microbalance, which shows that the competitive binding between polyAAPBA/sialic acid and polyAAPBA/glucose contributes to the dual response. Such dual-responsive surface can significantly impact biomedical and biological applications including cell-based diagnostics, in vivo drug delivery, etc.

  5. Origin of cell surface proteins released from Micrococcus radiodurans by ionizing radiation

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.

    1975-01-01

    The exposure of Micrococcus radiodurans to sublethal doses of ionizing radiation causes the release of certain proteins into the surrounding medium. As estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, these proteins range from approximately 20,000 to 125,000 daltons. At least some of the proteins, including an exonuclease, have a surface location and appear to originate from the lipid-rich midwall layer. The exonuclease has two functionally distinct locations, one with its active site available to external substrate and a second with the active site masked from the exterior. Ionizing radiation releases both the masked and unmasked activity into the surrounding medium

  6. Monitoring of anatabine release by methyl jasmonate elicited BY-2 cells using surface-enhanced Raman scattering.

    Science.gov (United States)

    De Bleye, C; Dumont, E; Dispas, A; Hubert, C; Sacré, P-Y; Netchacovitch, L; De Muyt, B; Kevers, C; Dommes, J; Hubert, Ph; Ziemons, E

    2016-11-01

    A new application of surface-enhanced Raman scattering (SERS) in the field of plant material analysis is proposed in this study. The aim was to monitor the release of anatabine by methyl jasmonate (MeJa) elicited Bright Yellow-2 (BY-2) cells. Gold nanoparticles (AuNps) were used as SERS substrate. The first step was to study the SERS activity of anatabine in a complex matrix comprising the culture medium and BY-2 cells. The second step was the calibration. This one was successfully performed directly in the culture medium in order to take into account the matrix effect, by spiking the medium with different concentrations of anatabine, leading to solutions ranging from 250 to 5000µgL(-1). A univariate analysis was performed, the intensity of a band situated at 1028cm(-1), related to anatabine, was plotted against the anatabine concentration. A linear relationship was observed with a R(2) of 0.9951. During the monitoring study, after the MeJa elicitation, samples were collected from the culture medium containing BY-2 cells at 0, 24h, 48h, 72h and 96h and were analysed using SERS. Finally, the amount of anatabine released in the culture medium was determined using the response function, reaching a plateau after 72h of 82µg of anatabine released/g of fresh weight (FW) MeJa elicited BY-2 cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Periodontal ligament stem/progenitor cells with protein-releasing scaffolds for cementum formation and integration on dentin surface.

    Science.gov (United States)

    Cho, Hankyu; Tarafder, Solaiman; Fogge, Michael; Kao, Kristy; Lee, Chang H

    2016-11-01

    Purpose/Aim: Cementogenesis is a critical step in periodontal tissue regeneration given the essential role of cementum in anchoring teeth to the alveolar bone. This study is designed to achieve integrated cementum formation on the root surfaces of human teeth using growth factor-releasing scaffolds with periodontal ligament stem/progenitor cells (PDLSCs). Human PDLSCs were sorted by CD146 expression, and characterized using CFU-F assay and induced multi-lineage differentiation. Polycaprolactone scaffolds were fabricated using 3D printing, embedded with poly(lactic-co-glycolic acids) (PLGA) microspheres encapsulating connective tissue growth factor (CTGF), bone morphogenetic protein-2 (BMP-2), or bone morphogenetic protein-7 (BMP-7). After removing cementum on human tooth roots, PDLSC-seeded scaffolds were placed on the exposed dentin surface. After 6-week culture with cementogenic/osteogenic medium, cementum formation and integration were evaluated by histomorphometric analysis, immunofluorescence, and qRT-PCR. Periodontal ligament (PDL) cells sorted by CD146 and single-cell clones show a superior clonogenecity and multipotency as compared with heterogeneous populations. After 6 weeks, all the growth factor-delivered groups showed resurfacing of dentin with a newly formed cementum-like layer as compared with control. BMP-2 and BMP-7 showed de novo formation of tissue layers significantly thicker than all the other groups, whereas CTGF and BMP-7 resulted in significantly improved integration on the dentin surface. The de novo mineralized tissue layer seen in BMP-7-treated samples expressed cementum matrix protein 1 (CEMP1). Consistently, BMP-7 showed a significant increase in CEMP1 mRNA expression. Our findings represent important progress in stem cell-based cementum regeneration as an essential part of periodontium regeneration.

  8. Cell-surface engineering by a conjugation-and-release approach based on the formation and cleavage of oxime linkages upon mild electrochemical oxidation and reduction.

    Science.gov (United States)

    Pulsipher, Abigail; Dutta, Debjit; Luo, Wei; Yousaf, Muhammad N

    2014-09-01

    We report a strategy to rewire cell surfaces for the dynamic control of ligand composition on cell membranes and the modulation of cell-cell interactions to generate three-dimensional (3D) tissue structures applied to stem-cell differentiation, cell-surface tailoring, and tissue engineering. We tailored cell surfaces with bioorthogonal chemical groups on the basis of a liposome-fusion and -delivery method to create dynamic, electroactive, and switchable cell-tissue assemblies through chemistry involving chemoselective conjugation and release. Each step to modify the cell surface: activation, conjugation, release, and regeneration, can be monitored and modulated by noninvasive, label-free analytical techniques. We demonstrate the utility of this methodology by the conjugation and release of small molecules to and from cell surfaces and by the generation of 3D coculture spheroids and multilayered cell tissues that can be programmed to undergo assembly and disassembly on demand. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Controlled lecithin release from a hierarchical architecture on blood-contacting surface to reduce hemolysis of stored red blood cells.

    Science.gov (United States)

    Shi, Qiang; Fan, Qunfu; Ye, Wei; Hou, Jianwen; Wong, Shing-Chung; Xu, Xiaodong; Yin, Jinghua

    2014-06-25

    Hemolysis of red blood cells (RBCs) caused by implant devices in vivo and nonpolyvinyl chloride containers for RBC preservation in vitro has recently gained much attention. To develop blood-contacting biomaterials with long-term antihemolysis capability, we present a facile method to construct a hydrophilic, 3D hierarchical architecture on the surface of styrene-b-(ethylene-co-butylene)-b-styrene elastomer (SEBS) with poly(ethylene oxide) (PEO)/lecithin nano/microfibers. The strategy is based on electrospinning of PEO/lecithin fibers onto the surface of poly [poly(ethylene glycol) methyl ether methacrylate] [P(PEGMEMA)]-modified SEBS, which renders SEBS suitable for RBC storage in vitro. We demonstrate that the constructed 3D architecture is composed of hydrophilic micro- and nanofibers, which transforms to hydrogel networks immediately in blood; the controlled release of lecithin is achieved by gradual dissolution of PEO/lecithin hydrogels, and the interaction of lecithin with RBCs maintains the membrane flexibility and normal RBC shape. Thus, the blood-contacting surface reduces both mechanical and oxidative damage to RBC membranes, resulting in low hemolysis of preserved RBCs. This work not only paves new way to fabricate high hemocompatible biomaterials for RBC storage in vitro, but provides basic principles to design and develop antihemolysis biomaterials for implantation in vivo.

  10. Visualization of Content Release from Cell Surface-Attached Single HIV-1 Particles Carrying an Extra-Viral Fluorescent pH-Sensor.

    Science.gov (United States)

    Sood, Chetan; Marin, Mariana; Mason, Caleb S; Melikyan, Gregory B

    2016-01-01

    HIV-1 fusion leading to productive entry has long been thought to occur at the plasma membrane. However, our previous single virus imaging data imply that, after Env engagement of CD4 and coreceptors at the cell surface, the virus enters into and fuses with intracellular compartments. We were unable to reliably detect viral fusion at the plasma membrane. Here, we implement a novel virus labeling strategy that biases towards detection of virus fusion that occurs in a pH-neutral environment-at the plasma membrane or, possibly, in early pH-neutral vesicles. Virus particles are co-labeled with an intra-viral content marker, which is released upon fusion, and an extra-viral pH sensor consisting of ecliptic pHluorin fused to the transmembrane domain of ICAM-1. This sensor fully quenches upon virus trafficking to a mildly acidic compartment, thus precluding subsequent detection of viral content release. As an interesting secondary observation, the incorporation of the pH-sensor revealed that HIV-1 particles occasionally shuttle between neutral and acidic compartments in target cells expressing CD4, suggesting a small fraction of viral particles is recycled to the plasma membrane and re-internalized. By imaging viruses bound to living cells, we found that HIV-1 content release in neutral-pH environment was a rare event (~0.4% particles). Surprisingly, viral content release was not significantly reduced by fusion inhibitors, implying that content release was due to spontaneous formation of viral membrane defects occurring at the cell surface. We did not measure a significant occurrence of HIV-1 fusion at neutral pH above this defect-mediated background loss of content, suggesting that the pH sensor may destabilize the membrane of the HIV-1 pseudovirus and, thus, preclude reliable detection of single virus fusion events at neutral pH.

  11. Visualization of Content Release from Cell Surface-Attached Single HIV-1 Particles Carrying an Extra-Viral Fluorescent pH-Sensor.

    Directory of Open Access Journals (Sweden)

    Chetan Sood

    Full Text Available HIV-1 fusion leading to productive entry has long been thought to occur at the plasma membrane. However, our previous single virus imaging data imply that, after Env engagement of CD4 and coreceptors at the cell surface, the virus enters into and fuses with intracellular compartments. We were unable to reliably detect viral fusion at the plasma membrane. Here, we implement a novel virus labeling strategy that biases towards detection of virus fusion that occurs in a pH-neutral environment-at the plasma membrane or, possibly, in early pH-neutral vesicles. Virus particles are co-labeled with an intra-viral content marker, which is released upon fusion, and an extra-viral pH sensor consisting of ecliptic pHluorin fused to the transmembrane domain of ICAM-1. This sensor fully quenches upon virus trafficking to a mildly acidic compartment, thus precluding subsequent detection of viral content release. As an interesting secondary observation, the incorporation of the pH-sensor revealed that HIV-1 particles occasionally shuttle between neutral and acidic compartments in target cells expressing CD4, suggesting a small fraction of viral particles is recycled to the plasma membrane and re-internalized. By imaging viruses bound to living cells, we found that HIV-1 content release in neutral-pH environment was a rare event (~0.4% particles. Surprisingly, viral content release was not significantly reduced by fusion inhibitors, implying that content release was due to spontaneous formation of viral membrane defects occurring at the cell surface. We did not measure a significant occurrence of HIV-1 fusion at neutral pH above this defect-mediated background loss of content, suggesting that the pH sensor may destabilize the membrane of the HIV-1 pseudovirus and, thus, preclude reliable detection of single virus fusion events at neutral pH.

  12. NK cell-released exosomes

    Science.gov (United States)

    Fais, Stefano

    2013-01-01

    We have recently reported that human natural killer (NK) cells release exosomes that express both NK-cell markers and cytotoxic molecules. Similar results were obtained with circulating exosomes from human healthy donors. Both NK-cell derived and circulating exosomes exerted a full functional activity and killed both tumor and activated immune cells. These findings indicate that NK-cell derived exosomes might constitute a new promising therapeutic tool. PMID:23482694

  13. Matrix metalloproteinase 9 (MMP-9) mediated release of MMP-9 resistant stromal cell-derived factor 1α (SDF-1α) from surface modified polymer films.

    Science.gov (United States)

    Steinhagen, Max; Hoffmeister, Peter-Georg; Nordsieck, Karoline; Hötzel, Rudi; Baumann, Lars; Hacker, Michael C; Schulz-Siegmund, Michaela; Beck-Sickinger, Annette G

    2014-04-23

    Preparation of smart materials by coatings of established surfaces with biomolecules will lead to the next generation of functionalized biomaterials. Rejection of implants is still a major problem in medical applications but masking the implant material with protein coatings is a promising approach. These layers not only disguise the material but also equip it with a certain biological function. The anti-inflammatory chemokine stromal cell-derived factor 1α (SDF-1α) is well suited to take over this function, because it efficiently attracts stem cells and promotes their differentiation and proliferation. At least the initial stem cell homing requires the formation of a concentration gradient. Thus, a reliable and robust release mechanism of SDF-1α from the material is essential. Several proteases, most notably matrix metalloproteinases, are upregulated during inflammation, which, in principle, can be exploited for a tightly controlled release of SDF-1α. Herein, we present the covalent immobilization of M-[S4V]-SDF-1α on novel biodegradable polymer films, which consist of heterobifunctional poly(ethylene glycol) and oligolactide-based functionalized macromers. A peptidic linker with a trimeric matrix metalloproteinase 9 (MMP-9) cleavage site (MCS) was used as connection and the linkage between the three components was achieved by combination of expressed protein ligation and Cu(I) catalyzed azide/alkyne cycloaddition. The MCS was used for MMP-9 mediated release of M-[S4V]-SDF-1α from the biomaterial and the released SDF-1α derivative was biologically active and induced strong cell migration, which demonstrates the great potential of this system.

  14. Release of Streptomyces albus propagules from contaminated surfaces

    International Nuclear Information System (INIS)

    Gorny, R.L.; Mainelis, Gediminas; Grinshpun, Sergey A.; Willeke, Klaus; Dutkiewicz, Jacek; Reponen, Tiina

    2003-01-01

    The release of Streptomyces albus propagules from contaminated agar an ceiling tile surfaces was studied under controlled environmental condition in a newly developed aerosolization chamber. The experiments revealed tha both spores and cell fragments can be simultaneously released from the colonized surface by relatively gentle air currents of 0.3 m s -1 . A 100x increase of the air velocity can result in a 50-fold increase in the number of released propagules. The aerosolization rate depends strongly on the typ and roughness of the contaminated surface. Up to 90% of available actinomycete propagules can become airborne during the first 10 min of th release process. Application of vibration to the surface did not reveal an influence on the aerosolization process of S. albus propagules under th tested conditions. This study has shown that propagules in the fine particle size range can be released in large amounts from contaminated surfaces Measurement of the number of S. albus fragments in the vicinity of contaminated area, as an alternative to conventional air or surface sampling appears to be a promising approach for quantitative exposure assessment

  15. Identification and validation of multiple cell surface markers of clinical-grade adipose-derived mesenchymal stromal cells as novel release criteria for good manufacturing practice-compliant production.

    Science.gov (United States)

    Camilleri, Emily T; Gustafson, Michael P; Dudakovic, Amel; Riester, Scott M; Garces, Catalina Galeano; Paradise, Christopher R; Takai, Hideki; Karperien, Marcel; Cool, Simon; Sampen, Hee-Jeong Im; Larson, A Noelle; Qu, Wenchun; Smith, Jay; Dietz, Allan B; van Wijnen, Andre J

    2016-08-11

    Clinical translation of mesenchymal stromal cells (MSCs) necessitates basic characterization of the cell product since variability in biological source and processing of MSCs may impact therapeutic outcomes. Although expression of classical cell surface markers (e.g., CD90, CD73, CD105, and CD44) is used to define MSCs, identification of functionally relevant cell surface markers would provide more robust release criteria and options for quality control. In addition, cell surface expression may distinguish between MSCs from different sources, including bone marrow-derived MSCs and clinical-grade adipose-derived MSCs (AMSCs) grown in human platelet lysate (hPL). In this work we utilized quantitative PCR, flow cytometry, and RNA-sequencing to characterize AMSCs grown in hPL and validated non-classical markers in 15 clinical-grade donors. We characterized the surface marker transcriptome of AMSCs, validated the expression of classical markers, and identified nine non-classical markers (i.e., CD36, CD163, CD271, CD200, CD273, CD274, CD146, CD248, and CD140B) that may potentially discriminate AMSCs from other cell types. More importantly, these markers exhibit variability in cell surface expression among different cell isolates from a diverse cohort of donors, including freshly prepared, previously frozen, or proliferative state AMSCs and may be informative when manufacturing cells. Our study establishes that clinical-grade AMSCs expanded in hPL represent a homogeneous cell culture population according to classical markers,. Additionally, we validated new biomarkers for further AMSC characterization that may provide novel information guiding the development of new release criteria. Use of Autologous Bone Marrow Aspirate Concentrate in Painful Knee Osteoarthritis (BMAC): Clinicaltrials.gov NCT01931007 . Registered August 26, 2013. MSC for Occlusive Disease of the Kidney: Clinicaltrials.gov NCT01840540 . Registered April 23, 2013. Mesenchymal Stem Cell Therapy in Multiple

  16. Glycoprotein on cell surfaces

    International Nuclear Information System (INIS)

    Muramatsu, T.

    1975-01-01

    There are conjugated polysaccharides in cell membranes and outside of animal cells, and they play important role in the control of cell behavior. In this paper, the studies on the glycoprotein on cell surfaces are reported. It was found that the glycoprotein on cell surfaces have both N-glycoside type and O-glycoside type saccharic chains. Therefore it can be concluded that the basic structure of the saccharic chains in the glycoprotein on cell surfaces is similar to that of blood serum and body fluid. The main glycoprotein in the membranes of red blood corpuscles has been studied most in detail, and it also has both types of saccharic chains. The glycoprotein in liver cell membranes was found to have only the saccharic chains of acid type and to be in different pattern from that in endoplasmic reticula and nuclear membranes, which also has the saccharic chains of neutral type. The structure of the saccharic chains of H-2 antigen, i.e. the peculiar glycoprotein on the surfaces of lymph system cells, has been studied, and it is similar to the saccharic chains of glycoprotein in blood serum. The saccharic chain structures of H-2 antigen and TL antigen are different. TL, H-2 (D), Lna and H-2 (K) are the glycoprotein on cell surfaces, and are independent molecules. The analysis of the saccharic chain patterns on cell surfaces was carried out, and it was shown that the acid type saccharic chains were similar to those of ordinary glycoprotein, because the enzyme of pneumococci hydrolyzed most of the acid type saccharic chains. The change of the saccharic chain patterns of glycoprotein on cell surfaces owing to canceration and multiplication is complex matter. (Kako, I.)

  17. Tumor cell surface proteins

    International Nuclear Information System (INIS)

    Kennel, S.J.; Braslawsky, G.R.; Flynn, K.; Foote, L.J.; Friedman, E.; Hotchkiss, J.A.; Huang, A.H.L.; Lankford, P.K.

    1982-01-01

    Cell surface proteins mediate interaction between cells and their environment. Unique tumor cell surface proteins are being identified and quantified in several tumor systems to address the following questions: (i) how do tumor-specific proteins arise during cell transformation; (ii) can these proteins be used as markers of tumor cell distribution in vivo; (iii) can cytotoxic drugs be targeted specifically to tumor cells using antibody; and (iv) can solid state radioimmunoassay of these proteins provide a means to quantify transformation frequencies. A tumor surface protein of 180,000 M/sub r/ (TSP-180) has been identified on cells of several lung carcinomas of BALB/c mice. TSP-180 was not detected on normal lung tissue, embryonic tissue, or other epithelial or sarcoma tumors, but it was found on lung carcinomas of other strains of mice. Considerable amino acid sequence homology exists among TSP-180's from several cell sources, indicating that TSP-180 synthesis is directed by normal cellular genes although it is not expressed in normal cells. The regulation of synthesis of TSP-180 and its relationship to normal cell surface proteins are being studied. Monoclonal antibodies (MoAb) to TSP-180 have been developed. The antibodies have been used in immunoaffinity chromatography to isolate TSP-180 from tumor cell sources. This purified tumor antigen was used to immunize rats. Antibody produced by these animals reacted at different sites (epitopes) on the TSP-180 molecule than did the original MoAb. These sera and MoAb from these animals are being used to identify normal cell components related to the TSP-180 molecule

  18. Mechanisms of renin release from juxtaglomerular cells

    DEFF Research Database (Denmark)

    Skøtt, O; Salomonsson, Max; Sellerup Persson, Anja

    1991-01-01

    In microdissected, nonperfused afferent arterioles changes in intravascular pressure did not affect renin secretion. On the contrary, renin release from isolated afferent arterioles perfused in a free-flow system has been reported to be sensitive to simultaneous changes in luminal pressure and fl....... Hence local blood flow may be involved in the baroreceptor control of renin release. If flow is sensed, the sensor is likely to be located near the endothelial cell layer, where ion channels have been shown to be influenced by variations in shear stress....

  19. Identification and validation of multiple cell surface markers of clinical-grade adipose-derived mesenchymal stromal cells as novel release criteria for good manufacturing practice-compliant production

    NARCIS (Netherlands)

    Camilleri, Emily T.; Gustafson, Michael P.; Dudakovic, Amel; Riester, Scott M.; Garces, Catalina Galeano; Paradise, Christopher R.; Takai, Hideki; Karperien, Marcel; Cool, Simon; Sampen, Hee Jeong Im; Larson, A. Noelle; Qu, Wenchun; Smith, Jay; Dietz, Allan B.; van Wijnen, Andre J.

    2016-01-01

    Background: Clinical translation of mesenchymal stromal cells (MSCs) necessitates basic characterization of the cell product since variability in biological source and processing of MSCs may impact therapeutic outcomes. Although expression of classical cell surface markers (e.g., CD90, CD73, CD105,

  20. Conditions affecting the release of phosphorus from surface lake sediments.

    Science.gov (United States)

    Christophoridis, Christophoros; Fytianos, Konstantinos

    2006-01-01

    Laboratory studies were conducted to determine the effect of pH and redox conditions, as well as the effect of Fe, Mn, Ca, Al, and organic matter, on the release of ortho-phosphates in lake sediments taken from Lakes Koronia and Volvi (Northern Greece). Results were evaluated in combination with experiments to determine P fractionation in the sediment. The study revealed the major effect of redox potential and pH on the release of P from lake sediments. Both lakes showed increased release rates under reductive conditions and high pH values. The fractionation experiments revealed increased mobility of the reductive P fraction as well as of the NaOH-P fraction, indicating participation of both fractions in the overall release of sediment-bound P, depending on the prevailing environmental conditions. The results were assessed in combination with the release patterns of Fe, Mn, Ca, Al, and organic matter, enabling the identification of more specific processes of P release for each lake. The basic release patterns included the redox induced reductive dissolution of P-bearing metal oxides and the competitive exchange of phosphate anions with OH- at high pH values. The formation of an oxidized surface microlayer under oxic conditions acted as a protective film, preventing further P release from the sediments of Lake Volvi, while sediments from Lake Koronia exhibited a continuous and increased tendency to release P under various physicochemical conditions, acting as a constant source of internal P loading.

  1. Comparison of the Fouling Release Properties of Hydrophobic Fluorinated and Hydrophilic PEGylated Block Copolymer Surfaces

    International Nuclear Information System (INIS)

    Krishnan, S.; Wang, N.; Ober, C.; Finlay, J.; Callow, M.; Callow, J.; Hexemer, A.; Sohn, K.; Kramer, E.; Fischer, D.

    2006-01-01

    To understand the role of surface wettability in adhesion of cells, the attachment of two different marine algae was studied on hydrophobic and hydrophilic polymer surfaces. Adhesion of cells of the diatom Navicula and sporelings (young plants) of the green macroalga Ulva to an underwater surface is mainly by interactions between the surface and the adhesive exopolymers, which the cells secrete upon settlement and during subsequent colonization and growth. Two types of block copolymers, one with poly(ethylene glycol) side-chains and the other with liquid crystalline, fluorinated side-chains, were used to prepare the hydrophilic and hydrophobic surfaces, respectively. The formation of a liquid crystalline smectic phase in the latter inhibited molecular reorganization at the surface, which is generally an issue when a highly hydrophobic surface is in contact with water. The adhesion strength was assessed by the fraction of settled cells (Navicula) or biomass (Ulva) that detached from the surface in a water flow channel with a wall shear stress of 53 Pa. The two species exhibited opposite adhesion behavior on the same sets of surfaces. While Navicula cells released more easily from hydrophilic surfaces, Ulva sporelings showed higher removal from hydrophobic surfaces. This highlights the importance of differences in cell-surface interactions in determining the strength of adhesion of cells to substrates

  2. Fabrication of nonfouling, bactericidal, and bacteria corpse release multifunctional surface through surface-initiated RAFT polymerization.

    Science.gov (United States)

    Wang, Bailiang; Ye, Zi; Tang, Yihong; Han, Yuemei; Lin, Quankui; Liu, Huihua; Chen, Hao; Nan, Kaihui

    Infections after surgery or endophthalmitis are potentially blinding complications caused by bacterial adhesion and subsequent biofilm formation on the intraocular lens. Neither single-function anti-adhesion surface nor contacting killing surface can exhibit ideal antibacterial function. In this work, a novel (2-(dimethylamino)-ethyl methacrylate- co -2-methacryloyloxyethyl phosphorylcholine) (p (DMAEMA- co -MPC)) brush was synthesized by "grafting from" method through reversible-addition fragmentation chain transfer polymerization. 1-Bromoheptane was used to quaternize the p (DMAEMA- co -MPC) brush coating and to endow the surface with bactericidal function. The success of the surface functionalization was confirmed by atomic force microscopy, water contact angle, and spectroscopic ellipsometry. The quaternary ammonium salt units were employed as efficient disinfection that can eliminate bacteria through contact killing, whereas the 2-methacryloyloxyethyl phosphorylcholine units were introduced to suppress unwanted nonspecific adsorption. The functionalized poly(dimethyl siloxane) surfaces showed efficiency in reducing bovine serum albumin adsorption and in inhibiting bacteria adhesion and biofilm formation. The copolymer brushes also demonstrated excellent bactericidal function against gram-positive ( Staphylococcus aureus ) bacteria measured by bacteria live/dead staining and shake-flask culture methods. The surface biocompatibility was evaluated by morphology and activity measurement with human lens epithelial cells in vitro. The achievement of the p (DMAEMA + - co -MPC) copolymer brush coating with nonfouling, bactericidal, and bacteria corpse release properties can be used to modify intraocular lenses.

  3. Renal epithelial cells can release ATP by vesicular fusion

    Directory of Open Access Journals (Sweden)

    Randi G Bjaelde

    2013-09-01

    Full Text Available Renal epithelial cells have the ability to release nucleotides as paracrine factors. In the intercalated cells of the collecting duct, ATP is released by connexin30 (cx30, which is selectively expressed in this cell type. However, ATP is released by virtually all renal epithelia and the aim of the present study was to identify possible alternative nucleotide release pathways in a renal epithelial cell model. We used MDCK (type1 cells to screen for various potential ATP release pathways. In these cells, inhibition of the vesicular H+-ATPases (bafilomycin reduced both the spontaneous and hypotonically (80%-induced nucleotide release. Interference with vesicular fusion using N-ethylamide markedly reduced the spontaneous nucleotide release, as did interference with trafficking from the endoplasmic reticulum to the Golgi apparatus (brefeldin A1 and vesicular transport (nocodazole. These findings were substantiated using a siRNA directed against SNAP-23, which significantly reduced spontaneous ATP release. Inhibition of pannexin and connexins did not affect the spontaneous ATP release in this cell type, which consists of ∼90% principal cells. TIRF-microscopy of either fluorescently-labeled ATP (MANT-ATP or quinacrine-loaded vesicles, revealed that spontaneous release of single vesicles could be promoted by either hypoosmolality (50% or ionomycin. This vesicular release decreased the overall cellular fluorescence by 5.8% and 7.6% respectively. In summary, this study supports the notion that spontaneous and induced ATP release can occur via exocytosis in renal epithelial cells.

  4. Measuring histamine and cytokine release from basophils and mast cells

    DEFF Research Database (Denmark)

    Jensen, Bettina M; Falkencrone, Sidsel; Skov, Per S

    2014-01-01

    Basophils and mast cells are known for their capability to release both preformed and newly synthesized inflammatory mediators. In this chapter we describe how to stimulate and detect histamine released from basophils in whole blood, purified basophils, in vitro cultured mast cells, and in situ...... skin mast cells. We also give an example of an activation protocol for basophil and mast cell cytokine release and discuss approaches for cytokine detection....

  5. Self-Replenishing Vascularized Fouling-Release Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Howell, C; Vu, TL; Lin, JJ; Kolle, S; Juthani, N; Watson, E; Weaver, JC; Alvarenga, J; Aizenberg, J

    2014-08-13

    Inspired by the long-term effectiveness of living antifouling materials, we have developed a method for the self-replenishment of synthetic biofouling-release surfaces. These surfaces are created by either molding or directly embedding 3D vascular systems into polydimethylsiloxane (PDMS) and filling them with a silicone oil to generate a nontoxic oil-infused material. When replenished with silicone oil from an outside source, these materials are capable of self-lubrication and continuous renewal of the interfacial fouling-release layer. Under accelerated lubricant loss conditions, fully infused vascularized samples retained significantly more lubricant than equivalent nonvascularized controls. Tests of lubricant-infused PDMS in static cultures of the infectious bacteria Staphylococcus aureus and Escherichia coli as well as the green microalgae Botryococcus braunii, Chlamydomonas reinhardtii, Dunaliella sauna, and Nannochloropsis oculata showed a significant reduction in biofilm adhesion compared to PDMS and glass controls containing no lubricant. Further experiments on vascularized versus nonvascularized samples that had been subjected to accelerated lubricant evaporation conditions for up to 48 h showed significantly less biofilm adherence on the vascularized surfaces. These results demonstrate the ability of an embedded lubricant-filled vascular network to improve the longevity of fouling-release surfaces.

  6. Smart release of doxorubicin loaded on polyetheretherketone (PEEK) surface with 3D porous structure.

    Science.gov (United States)

    Ouyang, Liping; Sun, Zhenjie; Wang, Donghui; Qiao, Yuqin; Zhu, Hongqin; Ma, Xiaohan; Liu, Xuanyong

    2018-03-01

    It is important to fabricate an implant possessing environment sensitive drug delivery. In this work, the construction of 3D porous structure on polyetheretherketone (PEEK) surface and pH sensitive polymer, chitosan, was introduced. The smart release of doxorubicin can be realized on the 3D porous surface of PEEK loading chitosan. We give a feasible explanation for the effect of chitosan on smart drug release according to Henderson-Hasselbalch equation. Furthermore, the intracellular drug content of the cell cultured on the samples with highest chitosan is significantly higher at pH 4.0, whereas lower at pH 7.4 than other samples. The smart release of doxorubicin via modification with chitosan onto 3D porous PEEK surface paves the way for the application of PEEK in drug loading platform for recovering bone defect caused by malignant bone tumor. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Similarity scaling of surface-released smoke plumes

    DEFF Research Database (Denmark)

    Mikkelsen, T.; Ejsing Jørgensen, Hans; Nielsen, M.

    2002-01-01

    Concentration fluctuation data from surface-layer released smoke plumes have been investigated with the purpose of finding suitable scaling parameters for the corresponding two-particle, relative diffusion process. Dispersion properties have been measured at downwind ranges between 0.1 and 1 km...... from a continuous, neutrally buoyant ground level source. A combination of SF6 and chemical smoke (aerosols) was used as tracer. Instantaneous crosswind concentration profiles of high temporal (up to 55 Hz) and spatial resolution (down to 0.375 m) were obtained from aerosol-backscatter Lidar detection...... and duration statistics. The diffusion experiments were accompanied by detailed in-situ micrometeorological mean and turbulence measurements. In this paper, a new distance-neighbour function for surface-released smoke plumes is proposed, accompanied by experimental evidence in its support. The new distance...

  8. Fabrication of nonfouling, bactericidal, and bacteria corpse release multifunctional surface through surface-initiated RAFT polymerization

    Directory of Open Access Journals (Sweden)

    Wang B

    2016-12-01

    Full Text Available Bailiang Wang,1,2 Zi Ye,1 Yihong Tang,1 Yuemei Han,1 Quankui Lin,1,2 Huihua Liu,2 Hao Chen,1,2 Kaihui Nan1,2 1School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 2Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, People’s Republic of China Abstract: Infections after surgery or endophthalmitis are potentially blinding complications caused by bacterial adhesion and subsequent biofilm formation on the intraocular lens. Neither single-function anti-adhesion surface nor contacting killing surface can exhibit ideal antibacterial function. In this work, a novel (2-(dimethylamino-ethyl methacrylate-co-2-methacryloyloxyethyl phosphorylcholine (p (DMAEMA-co-MPC brush was synthesized by “grafting from” method through reversible–addition fragmentation chain transfer polymerization. 1-Bromoheptane was used to quaternize the p (DMAEMA-co-MPC brush coating and to endow the surface with bactericidal function. The success of the surface functionalization was confirmed by atomic force microscopy, water contact angle, and spectroscopic ellipsometry. The quaternary ammonium salt units were employed as efficient disinfection that can eliminate bacteria through contact killing, whereas the 2-methacryloyloxyethyl phosphorylcholine units were introduced to suppress unwanted nonspecific adsorption. The functionalized poly(dimethyl siloxane surfaces showed efficiency in reducing bovine serum albumin adsorption and in inhibiting bacteria adhesion and biofilm formation. The copolymer brushes also demonstrated excellent bactericidal function against gram-positive (Staphylococcus aureus bacteria measured by bacteria live/dead staining and shake-flask culture methods. The surface biocompatibility was evaluated by morphology and activity measurement with human lens epithelial cells in vitro. The achievement of the p (DMAEMA+-co-MPC copolymer brush coating with nonfouling, bactericidal, and

  9. The surface-forming energy release rate versus the local energy release rate

    OpenAIRE

    Xiao, Si; Wang, He-ling; Landis, Chad M; Hwang, Keh-Chih; Liu, Bin

    2016-01-01

    This paper identifies two ways to extract the energy (or power) flowing into a crack tip during propagation based on the power balance of areas enclosed by a stationary contour and a comoving contour. It is very interesting to find a contradiction that two corresponding energy release rates (ERRs), a surface-forming ERR and a local ERR, are different when stress singularity exists at a crack tip. Besides a rigorous mathematical interpretation, we deduce that the stress singularity leads to an...

  10. Biosynthesis and release of proteins by isolated pulmonary Clara cells

    International Nuclear Information System (INIS)

    Patton, S.E.; Gilmore, L.B.; Jetten, A.M.; Nettesheim, P.; Hook, G.E.

    1986-01-01

    The major proteins synthesized and released by Clara cells were identified and compared with those synthesized and released by mixed lung cells. Highly purified Clara cells (85.9 +/- 2.4%) and mixed lung cells (Clara cells 4%, Type II cells 33%, granulocytes 18%, macrophages 2.7%, ciliated cells 1.2%) were isolated from rabbit lungs, incubated with Ham's F12 medium in collagen/fibronectin-coated plastic culture dishes in the presence of 35 S-methionine for periods of 4 and 18 hrs. Radiolabelled proteins were isolated from the cells and from the culture medium, electrophoresed on polyacrylamide gels in the presence of SDS under reducing conditions, and then autoradiographed. After 4 and 18 hr of incubation of the Clara cells the major radiolabelled cell-associated proteins were those with molecular weights of 6, 48, and 180 Kd. The major radiolabelled proteins released by Clara cells into the medium after 4 hrs of incubation had molecular weights of 6, 48, and 180 Kd, accounting for 42, 16, and 10%, respectively, of the total extracellular protein-associated radioactivity. After 18 hr of incubation the 6 and 48 Kd proteins represented 30 and 18% of the total released radioactivity, and the relative amount of the 180 Kd protein had decreased to 3%. With the mixed lung cells, the major proteins released into the medium had molecular weights of 6 and 48 Kd. Under nonreducing conditions the 6 Kd protein released by Clara cells had an apparent molecular weight of 12 Kd. Labelling isolated Clara cells with a mixture of 14 C-amino acids also identified this low molecular weight protein as the major secretory product of the Clara cell. The 6 Kd protein did not label when the cells were incubated with 14 C-glucosamine indicating that it was not a glycoprotein. Data demonstrate the release of several proteins from isolated Clara cells but the major protein had a M.W. of 6 Kd

  11. Optimization of sustained release aceclofenac microspheres using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, Rameshwar K.; Naik, Jitendra B., E-mail: jitunaik@gmail.com

    2015-03-01

    Polymeric microspheres containing aceclofenac were prepared by single emulsion (oil-in-water) solvent evaporation method using response surface methodology (RSM). Microspheres were prepared by changing formulation variables such as the amount of Eudragit® RS100 and the amount of polyvinyl alcohol (PVA) by statistical experimental design in order to enhance the encapsulation efficiency (E.E.) of the microspheres. The resultant microspheres were evaluated for their size, morphology, E.E., and in vitro drug release. The amount of Eudragit® RS100 and the amount of PVA were found to be significant factors respectively for determining the E.E. of the microspheres. A linear mathematical model equation fitted to the data was used to predict the E.E. in the optimal region. Optimized formulation of microspheres was prepared using optimal process variables setting in order to evaluate the optimization capability of the models generated according to IV-optimal design. The microspheres showed high E.E. (74.14 ± 0.015% to 85.34 ± 0.011%) and suitably sustained drug release (minimum; 40% to 60%; maximum) over a period of 12 h. The optimized microspheres formulation showed E.E. of 84.87 ± 0.005 with small error value (1.39). The low magnitudes of error and the significant value of R{sup 2} in the present investigation prove the high prognostic ability of the design. The absence of interactions between drug and polymers was confirmed by Fourier transform infrared (FTIR) spectroscopy. Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) revealed the dispersion of drug within microspheres formulation. The microspheres were found to be discrete, spherical with smooth surface. The results demonstrate that these microspheres could be promising delivery system to sustain the drug release and improve the E.E. thus prolong drug action and achieve the highest healing effect with minimal gastrointestinal side effects. - Highlights: • Aceclofenac microspheres

  12. Inhibition of microparticle release triggers endothelial cell apoptosis and detachment

    NARCIS (Netherlands)

    Abid Hussein, Mohammed N.; Böing, Anita N.; Sturk, Augueste; Hau, Chi M.; Nieuwland, Rienk

    2007-01-01

    Endothelial cell cultures contain caspase 3-containing microparticles (EMP), which are reported to form during or after cell detachment. We hypothesize that also adherent endothelial cells release EMP, thus protecting these cells from caspase 3 accumulation, detachment and apoptosis. Human umbilical

  13. Red blood cell dynamics: from cell deformation to ATP release.

    Science.gov (United States)

    Wan, Jiandi; Forsyth, Alison M; Stone, Howard A

    2011-10-01

    The mechanisms of red blood cell (RBC) deformation under both static and dynamic, i.e., flow, conditions have been studied extensively since the mid 1960s. Deformation-induced biochemical reactions and possible signaling in RBCs, however, were proposed only fifteen years ago. Therefore, the fundamental relationship between RBC deformation and cellular signaling dynamics i.e., mechanotransduction, remains incompletely understood. Quantitative understanding of the mechanotransductive pathways in RBCs requires integrative studies of physical models of RBC deformation and cellular biochemical reactions. In this article we review the physical models of RBC deformation, spanning from continuum membrane mechanics to cellular skeleton dynamics under both static and flow conditions, and elaborate the mechanistic links involved in deformation-induced ATP release. This journal is © The Royal Society of Chemistry 2011

  14. NK cell-released exosomes: Natural nanobullets against tumors.

    Science.gov (United States)

    Fais, Stefano

    2013-01-01

    We have recently reported that human natural killer (NK) cells release exosomes that express both NK-cell markers and cytotoxic molecules. Similar results were obtained with circulating exosomes from human healthy donors. Both NK-cell derived and circulating exosomes exerted a full functional activity and killed both tumor and activated immune cells. These findings indicate that NK-cell derived exosomes might constitute a new promising therapeutic tool.

  15. Exosomes released from breast cancer carcinomas stimulate cell movement.

    Directory of Open Access Journals (Sweden)

    Dinari A Harris

    Full Text Available For metastasis to occur cells must communicate with to their local environment to initiate growth and invasion. Exosomes have emerged as an important mediator of cell-to-cell signalling through the transfer of molecules such as mRNAs, microRNAs, and proteins between cells. Exosomes have been proposed to act as regulators of cancer progression. Here, we study the effect of exosomes on cell migration, an important step in metastasis. We performed cell migration assays, endocytosis assays, and exosome proteomic profiling on exosomes released from three breast cancer cell lines that model progressive stages of metastasis. Results from these experiments suggest: (1 exosomes promote cell migration and (2 the signal is stronger from exosomes isolated from cells with higher metastatic potentials; (3 exosomes are endocytosed at the same rate regardless of the cell type; (4 exosomes released from cells show differential enrichment of proteins with unique protein signatures of both identity and abundance. We conclude that breast cancer cells of increasing metastatic potential secrete exosomes with distinct protein signatures that proportionally increase cell movement and suggest that released exosomes could play an active role in metastasis.

  16. Modulation of vesicular catecholamine release from rat PC12 cells

    NARCIS (Netherlands)

    Westerink, R.H.S.

    2002-01-01

    Intercellular communication is of vital importance for the nervous system, since the nervous system is the main coordinating system in animals. Nerve cell communication is initiated by the release of chemical messengers, neurotransmitters, from the presynaptic nerve cell. The neurotransmitters, such

  17. ATP release, generation and hydrolysis in exocrine pancreatic duct cells

    DEFF Research Database (Denmark)

    Kowal, Justyna Magdalena; Yegutkin, G.G.; Novak, Ivana

    2015-01-01

    Extracellular adenosine triphosphate (ATP) regulates pancreatic duct function via P2Y and P2X receptors. It is well known that ATP is released from upstream pancreatic acinar cells. The ATP homeostasis in pancreatic ducts, which secrete bicarbonate-rich fluid, has not yet been examined. First, ou...... may be important in pancreas physiology and potentially in pancreas pathophysiology....... aim was to reveal whether pancreatic duct cells release ATP locally and whether they enzymatically modify extracellular nucleotides/sides. Second, we wished to explore which physiological and pathophysiological factors may be important in these processes. Using a human pancreatic duct cell line, Capan...

  18. Effect of methylmercury on histamine release from rat mast cells

    Energy Technology Data Exchange (ETDEWEB)

    Graevskaya, Elizabeth E.; Rubin, Andrew B. [Moscow State University, Biological Faculty, Department of Biophysics, 119899, Vorobjovy Gory, Moscow (Russian Federation); Yasutake, Akira; Aramaki, Ryoji [National Institute for Minamata Disease, 4058-18 Hama, Minamata, Kumamoto 867-0008 (Japan)

    2003-01-01

    Methylmercury chloride (MeHgCl) is well known as a significant environmental hazard, particularly as a modulator of the immune system. As it is acknowledged that the critical effector cells in the host response participating in various biological responses are mast cells, we tried to define the possible contribution of mast cells in the development of methylmercury-evoked effects. We investigated the effects of methylmercury on the rat mast cell degranulation induced by non-immunological stimuli (the selective liberator of histamine, compound 48/80, and calcium ionophore A23187) both in vivo and in vitro. Using the cells prepared from methylmercury-intoxicated rats through a 5-day treatment of MeHgCl (10 mg/kg/day), we observed the suppression of calcium ionophore A23187- and 48/80-induced histamine release, which was enhanced with time after treatment. Similar suppression was observed in the ionophore-stimulated release, when cells were prepared from rat with a single treatment of MeHgCl (20 mg/kg). It should be noted that when cells from the control rat were pre-incubated with methylmercury in vitro at a 10{sup -8} M concentration for 10 min, A23187 and compound 48/80-stimulated histamine release was significantly enhanced. However, when the pre-incubation period was prolonged to 30 min, the release was suppressed. An increase in the methylmercury concentration to 10{sup -6} M also suppressed the histamine release. These results show that methylmercury treatment can modify mast cell function depending on concentration and time, and might provide an insight into the role of mast cells in the development of methylmercury-stimulated effects. (orig.)

  19. Metabolic behavior of cell surface biotinylated proteins

    International Nuclear Information System (INIS)

    Hare, J.F.; Lee, E.

    1989-01-01

    The turnover of proteins on the surface of cultured mammalian cells was measured by a new approach. Reactive free amino or sulfhydryl groups on surface-accessible proteins were derivatized with biotinyl reagents and the proteins solubilized from culture dishes with detergent. Solubilized, biotinylated proteins were then adsorbed onto streptavidin-agarose, released with sodium dodecyl sulfate and mercaptoethanol, and separated on polyacrylamide gels. Biotin-epsilon-aminocaproic acid N-hydroxysuccinimide ester (BNHS) or N-biotinoyl-N'-(maleimidohexanoyl)hydrazine (BM) were the derivatizing agents. Only 10-12 bands were adsorbed onto streptavidin-agarose from undervatized cells or from derivatized cells treated with free avidin at 4 degrees C. Two-dimensional isoelectric focusing-sodium dodecyl sulfate gel electrophoresis resolved greater than 100 BNHS-derivatized proteins and greater than 40 BM-derivatized proteins. There appeared to be little overlap between the two groups of derivatized proteins. Short-term pulse-chase studies showed an accumulation of label into both groups of biotinylated proteins up until 1-2 h of chase and a rapid decrease over the next 1-5 h. Delayed appearance of labeled protein at the cell surface was attributed to transit time from site of synthesis. The unexpected and unexplained rapid disappearance of pulse-labeled proteins from the cell surface was invariant for all two-dimensionally resolved proteins and was sensitive to temperature reduction to 18 degrees C. Long-term pulse-chase experiments beginning 4-8 h after the initiation of chase showed the disappearance of derivatized proteins to be a simple first-order process having a half-life of 115 h in the case of BNHS-derivatized proteins and 30 h in the case of BM-derivatized proteins

  20. Electrically induced release of acetylcholine from denervated Schwann cells.

    Science.gov (United States)

    Dennis, M J; Miledi, R

    1974-03-01

    1. Focal electrical stimulation of Schwann cells at the end-plates of denervated frog muscles elicited slow depolarizations of up to 30 mV in the muscle fibres. This response is referred to as a Schwann-cell end-plate potential (Schwann-e.p.p.).2. Repeated stimulation sometimes evoked further Schwann-e.p.p.s, but they were never sustained for more than 30 pulses. Successive e.p.p.s varied in amplitude and time course independently of the stimulus.3. The Schwann-e.p.p.s were reversibly blocked by curare, suggesting that they result from a release of acetylcholine (ACh) by the Schwann cells.4. ACh release by electrical stimulation did not seem to occur in quantal form and was not dependent on the presence of calcium ions in the external medium; nor was it blocked by tetrodotoxin.5. Stimulation which caused release of ACh also resulted in extensive morphological disruption of the Schwann cells, as seen with both light and electron microscopy.6. It is concluded that electrical stimulation of denervated Schwann cells causes break-down of the cell membrane and releases ACh, presumably in molecular form.

  1. Release of endothelial cell lipoprotein lipase by plasma lipoproteins and free fatty acids

    International Nuclear Information System (INIS)

    Saxena, U.; Witte, L.D.; Goldberg, I.J.

    1989-01-01

    Lipoprotein lipase (LPL) bound to the lumenal surface of vascular endothelial cells is responsible for the hydrolysis of triglycerides in plasma lipoproteins. Studies were performed to investigate whether human plasma lipoproteins and/or free fatty acids would release LPL which was bound to endothelial cells. Purified bovine milk LPL was incubated with cultured porcine aortic endothelial cells resulting in the association of enzyme activity with the cells. When the cells were then incubated with media containing chylomicrons or very low density lipoproteins (VLDL), a concentration-dependent decrease in the cell-associated LPL enzymatic activity was observed. In contrast, incubation with media containing low density lipoproteins or high density lipoproteins produced a much smaller decrease in the cell-associated enzymatic activity. The addition of increasing molar ratios of oleic acid:bovine serum albumin to the media also reduced enzyme activity associated with the endothelial cells. To determine whether the decrease in LPL activity was due to release of the enzyme from the cells or inactivation of the enzyme, studies were performed utilizing radioiodinated bovine LPL. Radiolabeled LPL protein was released from endothelial cells by chylomicrons, VLDL, and by free fatty acids (i.e. oleic acid bound to bovine serum albumin). The release of radiolabeled LPL by VLDL correlated with the generation of free fatty acids from the hydrolysis of VLDL triglyceride by LPL bound to the cells. Inhibition of LPL enzymatic activity by use of a specific monoclonal antibody, reduced the extent of release of 125 I-LPL from the endothelial cells by the added VLDL. These results demonstrated that LPL enzymatic activity and protein were removed from endothelial cells by triglyceride-rich lipoproteins (chylomicrons and VLDL) and oleic acid

  2. Molecular weight-dependent degradation and drug release of surface-eroding poly(ethylene carbonate).

    Science.gov (United States)

    Bohr, Adam; Wang, Yingya; Harmankaya, Necati; Water, Jorrit J; Baldursdottír, Stefania; Almdal, Kristoffer; Beck-Broichsitter, Moritz

    2017-06-01

    Poly(ethylene carbonate) (PEC) is a unique biomaterial showing significant potential for controlled drug delivery applications. The current study investigated the impact of the molecular weight on the biological performance of drug-loaded PEC films. Following the preparation and thorough physicochemical characterization of diverse PEC (molecular weights: 85, 110, 133, 174 and 196kDa), the degradation and drug release behavior of rifampicin- and bovine serum albumin-loaded PEC films was investigated in vitro (in the presence and absence of cholesterol esterase), in cell culture (RAW264.7 macrophages) and in vivo (subcutaneous implantation in rats). All investigated samples degraded by means of surface erosion (mass loss, but constant molecular weight), which was accompanied by a predictable, erosion-controlled drug release pattern. Accordingly, the obtained in vitro degradation half-lives correlated well with the observed in vitro half-times of drug delivery (R 2 =0.96). Here, the PEC of the highest molecular weight resulted in the fastest degradation/drug release. When incubated with macrophages or implanted in animals, the degradation rate of PEC films superimposed the results of in vitro incubations with cholesterol esterase. Interestingly, SEM analysis indicated a distinct surface erosion process for enzyme-, macrophage- and in vivo-treated polymer films in a molecular weight-dependent manner. Overall, the molecular weight of surface-eroding PEC was identified as an essential parameter to control the spatial and temporal on-demand degradation and drug release from the employed delivery system. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Real time imaging of live cell ATP leaking or release events by chemiluminescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yun [Iowa State Univ., Ames, IA (United States)

    2008-12-18

    mainly used a fluorescence method; CL detection is limited because of the difficulty to introduce enough D-luciferin molecules. Since dehydration could easily cause proper size holes in bacterial cell membranes and facilitate D-luciferin diffusion, we used this method and recorded CL from individual cells each hour after induction. The CL light intensity from each individual cell was integrated and gene expression levels of two strain types were compared. Based on our calculation, the overall sensitivity of our system is already approaching the single enzyme level. The median enzyme number inside a single bacterium from the higher expression strain after 2 hours induction was quantified to be about 550 molecules. Finally we imaged ATP release from astrocyte cells. Upon mechanical stimulation, astrocyte cells respond by increasing intracellular Ca 2+ level and releasing ATP to extracellular spaces as signaling molecules. The ATP release imaged by direct CL imaging using free firefly luciferase and D-luciferin outside cells reflects the transient release as well as rapid ATP diffusion. Therefore ATP release detection at the cell surface is critical to study the ATP release mechanism and signaling propagation pathway. We realized this cell surface localized ATP release imaging detection by immobilizing firefly luciferase to streptavidin beads that attached to the cell surface via streptavidin-biotin interactions. Both intracellular Ca2+ propagation wave and extracellular ATP propagation wave at the cell surface were recorded with fluorescence and CL respectively. The results imply that at close distances from the stimulation center (<120 μm) extracellular ATP pathway is faster, while at long distances (>120 μm) intracellular Ca2+ signaling through gap junctions seems more effective.

  4. Surface modified zeolite-based granulates for the sustained release of diclofenac sodium.

    Science.gov (United States)

    Serri, Carla; de Gennaro, Bruno; Quagliariello, Vincenzo; Iaffaioli, Rosario Vincenzo; De Rosa, Giuseppe; Catalanotti, Lilia; Biondi, Marco; Mayol, Laura

    2017-03-01

    In this study, a granulate for the oral controlled delivery of diclofenac sodium (DS), an anionic sparingly soluble nonsteroidal anti-inflammatory drug, has been realized by wet granulation, using a surface modified natural zeolite (SMNZ) as an excipient. The surface modification of the zeolite has been achieved by means of a cationic surfactant, so as to allow the loading of DS through ionic interaction and bestow a control over the drug release mechanism. The granules possessed a satisfactory dosage uniformity, a flowability suitable for an oral dosage form manufacturing, along with a sustained drug release up to 9h, driven by both ion exchange and transport kinetics. Furthermore, the obtained granulate did not elicit a significant cytotoxicity and could also induce a prolonged anti-inflammatory effect on RAW264.7 cells. Taking also into account that natural zeolites are generally abundant and economic, SMNZ can be considered as an attracting alternative excipient for the production of granules with sustained release features. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Apoptosis may determine the release of skeletal alkaline phosphatase activity from human osteoblast-line cells.

    Science.gov (United States)

    Farley, J R; Stilt-Coffing, B

    2001-01-01

    Although quantitative measurement of skeletal alkaline phosphatase (sALP) activity in serum can provide an index of the rate of bone formation, the metabolic process that determines the release of sALP - from the surface of osteoblasts, into circulation-is unknown. The current studies were intended to examine the hypothesis that the release of sALP from human osteoblasts is a consequence of apoptotic cell death. We measured the release of sALP activity from human osteosarcoma (SaOS-2) cells and normal human bone cells, under basal conditions and in response to agents that increased apoptosis (TNF-a, okadiac acid) and agents that inhibit apoptosis (IGF-I, calpain, and caspase inhibitors). Apoptosis was determined by the presence of nucleosomes (histone-associated DNA) in the cytoplasm of the cells by using a commercial kit. The results of these studies showed that TNF-a and okadiac acid caused dose- and time-dependent increases in apoptosis in the SaOS-2 cells (r = 0.78 for doses of TNF-a and r = 0.93 for doses of okadiac acid, P sALP activity (e.g., r = 0.89 for TNF-a and r = 0.75 for okadiac acid, P sALP activity (P sALP activity (P sALP release. The associations between apoptosis and sALP release were not unique to osteosarcoma (i.e., SaOS-2) cells, but also seen with osteoblast-line cells derived from normal human bone. Together, these data demonstrate that the release of sALP activity from human osteoblast-line cells in vitro is associated with, and may be a consequence of, apoptotic cell death. These findings are consistent with the general hypothesis that the appearance of sALP activity in serum may reflect the turnover of osteoblast-line cells.

  6. A smart core-sheath nanofiber that captures and releases red blood cells from the blood

    Science.gov (United States)

    Shi, Q.; Hou, J.; Zhao, C.; Xin, Z.; Jin, J.; Li, C.; Wong, S.-C.; Yin, J.

    2016-01-01

    A smart core-sheath nanofiber for non-adherent cell capture and release is demonstrated. The nanofibers are fabricated by single-spinneret electrospinning of poly(N-isopropylacrylamide) (PNIPAAm), polycaprolactone (PCL) and nattokinase (NK) solution blends. The self-assembly of PNIPAAm and PCL blends during the electrospinning generates the core-sheath PCL/PNIPAAm nanofibers with PNIPAAm as the sheath. The PNIPAAm-based core-sheath nanofibers are switchable between hydrophobicity and hydrophilicity with temperature change and enhance stability in the blood. When the nanofibers come in contact with blood, the NK is released from the nanofibers to resist platelet adhesion on the nanofiber surface, facilitating the direct capture and isolation of red blood cells (RBCs) from the blood above phase-transition temperature of PNIPAAm. Meanwhile, the captured RBCs are readily released from the nanofibers with temperature stimuli in an undamaged manner. The release efficiency of up to 100% is obtained while maintaining cellular integrity and function. This work presents promising nanofibers to effectively capture non-adherent cells and release for subsequent molecular analysis and diagnosis of single cells.A smart core-sheath nanofiber for non-adherent cell capture and release is demonstrated. The nanofibers are fabricated by single-spinneret electrospinning of poly(N-isopropylacrylamide) (PNIPAAm), polycaprolactone (PCL) and nattokinase (NK) solution blends. The self-assembly of PNIPAAm and PCL blends during the electrospinning generates the core-sheath PCL/PNIPAAm nanofibers with PNIPAAm as the sheath. The PNIPAAm-based core-sheath nanofibers are switchable between hydrophobicity and hydrophilicity with temperature change and enhance stability in the blood. When the nanofibers come in contact with blood, the NK is released from the nanofibers to resist platelet adhesion on the nanofiber surface, facilitating the direct capture and isolation of red blood cells (RBCs) from

  7. Surface ligand controls silver ion release of nanosilver and its antibacterial activity against Escherichia coli

    Directory of Open Access Journals (Sweden)

    Long Y

    2017-04-01

    Full Text Available Yan-Min Long,1,2 Li-Gang Hu,1,3 Xue-Ting Yan,1,3 Xing-Chen Zhao,1,3 Qun-Fang Zhou,1,3 Yong Cai,2,4 Gui-Bin Jiang1,3 1State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Beijing, China; 2Institute of Environment and Health, Jianghan University, Wuhan, Hubei, China; 3College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; 4Department of Chemistry and Biochemistry, Southeast Environmental Research Center, Florida International University, Miami, FL, USA Abstract: Understanding the mechanism of nanosilver-dependent antibacterial activity against microorganisms helps optimize the design and usage of the related nanomaterials. In this study, we prepared four kinds of 10 nm-sized silver nanoparticles (AgNPs with dictated surface chemistry by capping different ligands, including citrate, mercaptopropionic acid, mercaptohexanoic acid, and mercaptopropionic sulfonic acid. Their surface-dependent chemistry and antibacterial activities were investigated. Owing to the weak bond to surface Ag, short carbon chain, and low silver ion attraction, citrate-coated AgNPs caused the highest silver ion release and the strongest antibacterial activity against Escherichia coli, when compared to the other tested AgNPs. The study on the underlying antibacterial mechanisms indicated that cellular membrane uptake of Ag, NAD+/NADH ratio increase, and intracellular reactive oxygen species (ROS generation were significantly induced in both AgNP and silver ion exposure groups. The released silver ions from AgNPs inside cells through a Trojan-horse-type mechanism were suggested to interact with respiratory chain proteins on the membrane, interrupt intracellular O2 reduction, and induce ROS production. The further oxidative damages of lipid peroxidation and membrane breakdown caused the lethal effect on E. coli. Altogether, this study demonstrated that AgNPs exerted

  8. Bubble Jet agent release cartridge for chemical single cell stimulation.

    Science.gov (United States)

    Wangler, N; Welsche, M; Blazek, M; Blessing, M; Vervliet-Scheebaum, M; Reski, R; Müller, C; Reinecke, H; Steigert, J; Roth, G; Zengerle, R; Paust, N

    2013-02-01

    We present a new method for the distinct specific chemical stimulation of single cells and small cell clusters within their natural environment. By single-drop release of chemical agents with droplets in size of typical cell diameters (d agent release cartridge with integrated fluidic structures and integrated agent reservoirs are shown, tested, and compared in this publication. The single channel setup features a fluidic structure fabricated by anisotropic etching of silicon. To allow for simultaneous release of different agents even though maintaining the same device size, the second type comprises a double channel fluidic structure, fabricated by photolithographic patterning of TMMF. Dispensed droplet volumes are V = 15 pl and V = 10 pl for the silicon and the TMMF based setups, respectively. Utilizing the agent release cartridges, the application in biological assays was demonstrated by hormone-stimulated premature bud formation in Physcomitrella patens and the individual staining of one single L 929 cell within a confluent grown cell culture.

  9. Hypoxic enhancement of exosome release by breast cancer cells

    International Nuclear Information System (INIS)

    King, Hamish W; Michael, Michael Z; Gleadle, Jonathan M

    2012-01-01

    Exosomes are nanovesicles secreted by tumour cells which have roles in paracrine signalling during tumour progression, including tumour-stromal interactions, activation of proliferative pathways and bestowing immunosuppression. Hypoxia is an important feature of solid tumours which promotes tumour progression, angiogenesis and metastasis, potentially through exosome-mediated signalling. Breast cancer cell lines were cultured under either moderate (1% O 2 ) or severe (0.1% O 2 ) hypoxia. Exosomes were isolated from conditioned media and quantitated by nanoparticle tracking analysis (NTA) and immunoblotting for the exosomal protein CD63 in order to assess the impact of hypoxia on exosome release. Hypoxic exosome fractions were assayed for miR-210 by real-time reverse transcription polymerase chain reaction and normalised to exogenous and endogenous control genes. Statistical significance was determined using the Student T test with a P value of < 0.05 considered significant. Exposure of three different breast cancer cell lines to moderate (1% O 2 ) and severe (0.1% O 2 ) hypoxia resulted in significant increases in the number of exosomes present in the conditioned media as determined by NTA and CD63 immunoblotting. Activation of hypoxic signalling by dimethyloxalylglycine, a hypoxia-inducible factor (HIF) hydroxylase inhibitor, resulted in significant increase in exosome release. Transfection of cells with HIF-1α siRNA prior to hypoxic exposure prevented the enhancement of exosome release by hypoxia. The hypoxically regulated miR-210 was identified to be present at elevated levels in hypoxic exosome fractions. These data provide evidence that hypoxia promotes the release of exosomes by breast cancer cells, and that this hypoxic response may be mediated by HIF-1α. Given an emerging role for tumour cell-derived exosomes in tumour progression, this has significant implications for understanding the hypoxic tumour phenotype, whereby hypoxic cancer cells may release

  10. Carbon black nanoparticles induce type II epithelial cells to release chemotaxins for alveolar macrophages

    Directory of Open Access Journals (Sweden)

    Donaldson Ken

    2005-12-01

    Full Text Available Abstract Background Alveolar macrophages are a key cell in dealing with particles deposited in the lungs and in determining the subsequent response to that particle exposure. Nanoparticles are considered a potential threat to the lungs and the mechanism of pulmonary response to nanoparticles is currently under intense scrutiny. The type II alveolar epithelial cell has previously been shown to release chemoattractants which can recruit alveolar macrophages to sites of particle deposition. The aim of this study was to assess the responses of a type II epithelial cell line (L-2 to both fine and nanoparticle exposure in terms of secretion of chemotactic substances capable of inducing macrophage migration. Results Exposure of type II cells to carbon black nanoparticles resulted in significant release of macrophage chemoattractant compared to the negative control and to other dusts tested (fine carbon black and TiO2 and nanoparticle TiO2 as measured by macrophage migration towards type II cell conditioned medium. SDS-PAGE analysis of the conditioned medium from particle treated type II cells revealed that a higher number of protein bands were present in the conditioned medium obtained from type II cells treated with nanoparticle carbon black compared to other dusts tested. Size-fractionation of the chemotaxin-rich supernatant determined that the chemoattractants released from the epithelial cells were between 5 and 30 kDa in size. Conclusion The highly toxic nature and reactive surface chemistry of the carbon black nanoparticles has very likely induced the type II cell line to release pro-inflammatory mediators that can potentially induce migration of macrophages. This could aid in the rapid recruitment of inflammatory cells to sites of particle deposition and the subsequent removal of the particles by phagocytic cells such as macrophages and neutrophils. Future studies in this area could focus on the exact identity of the substance(s released by the

  11. Dexamethasone-induced haptoglobin release by calf liver parenchymal cells.

    Science.gov (United States)

    Higuchi, H; Katoh, N; Miyamoto, T; Uchida, E; Yuasa, A; Takahashi, K

    1994-08-01

    Parenchymal cells were isolated from the liver of male calves, and monolayer cultures formed were treated with glucocorticoids to examine whether haptoglobin, appearance of which is associated with hepatic lipidosis (fatty liver) in cattle, is induced by steroid hormones. Without addition of dexamethasone, only trace amounts of haptoglobin were detected in culture medium. With addition of dexamethasone (10(-12) to 10(-4) M), considerable amounts of haptoglobin were released into the medium. Maximal release was observed at concentrations of 10(-8) to 10(-6) M dexamethasone. Haptoglobin release was similarly induced by cortisol, although the effect was less potent than that of dexamethasone. Actinomycin D (a known protein synthesis inhibitor) dose-dependently reduced amounts of haptoglobin released in response to 10(-8) M dexamethasone. Dexamethasone also induced annexin I, which is known to be synthesized in response to glucocorticoids. Dexamethasone treatment resulted in reduced protein kinase C activity in the cell cytosol, which has been shown to be an early event in dexamethasone-treated cells. Other than glucocorticoids, estradiol induced haptoglobin release, whereas progesterone was less effective. The association of haptoglobin with hepatic lipidosis can be reasonably explained by the fact that haptoglobin production by the liver is induced by glucocorticoids and estradiol, and these steroid hormones are triggers for development of hepatic lipidosis in cattle.

  12. Cyclosporine Induces Endothelial Cell Release of Complement-Activating Microparticles

    Science.gov (United States)

    Renner, Brandon; Klawitter, Jelena; Goldberg, Ryan; McCullough, James W.; Ferreira, Viviana P.; Cooper, James E.; Christians, Uwe

    2013-01-01

    Defective control of the alternative pathway of complement is an important risk factor for several renal diseases, including atypical hemolytic uremic syndrome. Infections, drugs, pregnancy, and hemodynamic insults can trigger episodes of atypical hemolytic uremic syndrome in susceptible patients. Although the mechanisms linking these clinical events with disease flares are unknown, recent work has revealed that each of these clinical conditions causes cells to release microparticles. We hypothesized that microparticles released from injured endothelial cells promote intrarenal complement activation. Calcineurin inhibitors cause vascular and renal injury and can trigger hemolytic uremic syndrome. Here, we show that endothelial cells exposed to cyclosporine in vitro and in vivo release microparticles that activate the alternative pathway of complement. Cyclosporine-induced microparticles caused injury to bystander endothelial cells and are associated with complement-mediated injury of the kidneys and vasculature in cyclosporine-treated mice. Cyclosporine-induced microparticles did not bind factor H, an alternative pathway regulatory protein present in plasma, explaining their complement-activating phenotype. Finally, we found that in renal transplant patients, the number of endothelial microparticles in plasma increases 2 weeks after starting tacrolimus, and treatment with tacrolimus associated with increased C3 deposition on endothelial microparticles in the plasma of some patients. These results suggest that injury-associated release of endothelial microparticles is an important mechanism by which systemic insults trigger intravascular complement activation and complement-dependent renal diseases. PMID:24092930

  13. Characterization of Microvesicles Released from Human Red Blood Cells

    Directory of Open Access Journals (Sweden)

    Duc Bach Nguyen

    2016-03-01

    Full Text Available Background/Aims: Extracellular vesicles (EVs are spherical fragments of cell membrane released from various cell types under physiological as well as pathological conditions. Based on their size and origin, EVs are classified as exosome, microvesicles (MVs and apoptotic bodies. Recently, the release of MVs from human red blood cells (RBCs under different conditions has been reported. MVs are released by outward budding and fission of the plasma membrane. However, the outward budding process itself, the release of MVs and the physical properties of these MVs have not been well investigated. The aim of this study is to investigate the formation process, isolation and characterization of MVs released from RBCs under conditions of stimulating Ca2+ uptake and activation of protein kinase C. Methods: Experiments were performed based on single cell fluorescence imaging, fluorescence activated cell sorter/flow cytometer (FACS, scanning electron microscopy (SEM, atomic force microscopy (AFM and dynamic light scattering (DLS. The released MVs were collected by differential centrifugation and characterized in both their size and zeta potential. Results: Treatment of RBCs with 4-bromo-A23187 (positive control, lysophosphatidic acid (LPA, or phorbol-12 myristate-13 acetate (PMA in the presence of 2 mM extracellular Ca2+ led to an alteration of cell volume and cell morphology. In stimulated RBCs, exposure of phosphatidylserine (PS and formation of MVs were observed by using annexin V-FITC. The shedding of MVs was also observed in the case of PMA treatment in the absence of Ca2+, especially under the transmitted bright field illumination. By using SEM, AFM and DLS the morphology and size of stimulated RBCs, MVs were characterized. The sizes of the two populations of MVs were 205.8 ± 51.4 nm and 125.6 ± 31.4 nm, respectively. Adhesion of stimulated RBCs and MVs was observed. The zeta potential of MVs was determined in the range from - 40 mV to - 10 m

  14. PNIPAAM modified mesoporous hydroxyapatite for sustained osteogenic drug release and promoting cell attachment

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tao [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); Tan, Lei [Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); Cheng, Ning; Yan, Qi; Zhang, Yu-Feng [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); Liu, Chuan-Jun, E-mail: cjliu@whu.edu.cn [Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); Shi, Bin, E-mail: shibin_dentist@126.com [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China)

    2016-05-01

    This work presented a sustained release system of simvastatin (SIM) based on the mesoporous hydroxyapatite (MHA) capped with poly(N-isopropylacrylamide) (PNIPAAM). The MHA was prepared by using cetyltrimethylammonium bromide (CTAB) as a template and the modified PNIPAAM layer on the surface of MHA was fabricated through surface-initiated atom transfer radical polymerization (SI-ATRP). The SIM loaded MHA-PNIPAAM showed a sustained release of SIM at 37 °C over 16 days. The bone marrow mesenchymal stem cell (BMSC) proliferation was assessed by cell counting kit-8 (CCK-8) assay, and the osteogenic differentiation was evaluated by alkaline phosphatase (ALP) activity and Alizarin Red staining. The release profile showed that the release of SIM from MHA-SIM-PNIPAAM lasted 16 days and the cumulative amount of released SIM was almost seven-fold than MHA-SIM. Besides, SIM loaded MHA-PNIPAAM exhibited better performance on cell proliferation, ALP activity, and calcium deposition than pure MHA due to the sustained release of SIM. The quantity of ALP in MHA-SIM-PNIPAAM group was more than two fold than pure MHA group at 7 days. Compared to pure MHA, better BMSC attachment on PNIPAAM modified MHA was observed using fluorescent microscopy, indicating the better biocompatibility of MHA-PNIPAAM. - Highlights: • PNIPAAM modified mesoporous hydroxyapatite (MHA) was fabricated by SI-ATRP. • SIM loaded MHA-PNIPAAM continually released SIM in effect concentration for 16 days. • MHA-SIM-PNIPAAM behaved well on cell proliferation, ALP activity and calcium deposition.

  15. Quantal release of ATP from clusters of PC12 cells.

    Science.gov (United States)

    Fabbro, Alessandra; Skorinkin, Andrei; Grandolfo, Micaela; Nistri, Andrea; Giniatullin, Rashid

    2004-10-15

    Although ATP is important for intercellular communication, little is known about the mechanism of endogenous ATP release due to a dearth of suitable models. Using PC12 cells known to express the P2X2 subtype of ATP receptors and to store ATP with catecholamines inside dense-core vesicles, we found that clusters of PC12 cells cultured for 3-7 days generated small transient inward currents (STICs) after an inward current elicited by exogenous ATP. The amplitude of STICs in individual cells correlated with the peak amplitude of ATP-induced currents. STICs appeared as asynchronous responses (approximately 20 pA average amplitude) for 1-20 s and were investigated with a combination of patch clamping, Ca2+ imaging, biochemistry and electron microscopy. Comparable STICs were produced by focal KCl pulses and were dependent on extracellular Ca2+. STICs were abolished by the P2X antagonist PPADS and potentiated by Zn2+, suggesting they were mediated by P2X2 receptor activation. The highest probability of observing STICs was after the peak of intracellular Ca2+ increase caused by KCl. Biochemical measurements indicated that KCl application induced a significant release of ATP from PC12 cells. Electron microscopy studies showed narrow clefts without 'synaptic-like' densities between clustered cells. Our data suggest that STICs were caused by quantal release of endogenous ATP by depolarized PC12 cells in close juxtaposition to the recorded cell. Thus, STICs may be a new experimental model to characterize the physiology of vesicular release of ATP and to study the kinetics and pharmacology of P2X2 receptor-mediated quantal currents.

  16. Counterion release from a discretely charged surface in an electrolyte: Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Hernández-Contreras, M

    2015-01-01

    Monte Carlo simulations allowed us to determine the amount of released electric charges from a discretely charged surface in 1:1 aqueous electrolyte solution as a function of surface charge density. Within the restricted primitive model and for a fixed concentration of 0.1 M bulk electrolyte in solution, there is an increase in the number of released counterions per unit surface area as the strength of the surface charge is enhanced. A similar behaviour of the number of released counterions was also found through the use of mean field and liquid theory methods

  17. Estradiol coupling to human monocyte nitric oxide release is dependent on intracellular calcium transients: evidence for an estrogen surface receptor.

    Science.gov (United States)

    Stefano, G B; Prevot, V; Beauvillain, J C; Fimiani, C; Welters, I; Cadet, P; Breton, C; Pestel, J; Salzet, M; Bilfinger, T V

    1999-10-01

    We tested the hypothesis that estrogen acutely stimulates constitutive NO synthase (cNOS) activity in human peripheral monocytes by acting on an estrogen surface receptor. NO release was measured in real time with an amperometric probe. 17beta-estradiol exposure to monocytes stimulated NO release within seconds in a concentration-dependent manner, whereas 17alpha-estradiol had no effect. 17beta-estradiol conjugated to BSA (E2-BSA) also stimulated NO release, suggesting mediation by a membrane surface receptor. Tamoxifen, an estrogen receptor inhibitor, antagonized the action of both 17beta-estradiol and E2-BSA, whereas ICI 182,780, a selective inhibitor of the nuclear estrogen receptor, had no effect. We further showed, using a dual emission microfluorometry in a calcium-free medium, that the 17beta-estradiol-stimulated release of monocyte NO was dependent on the initial stimulation of intracellular calcium transients in a tamoxifen-sensitive process. Leeching out the intracellular calcium stores abolished the effect of 17beta-estradiol on NO release. RT-PCR analysis of RNA obtained from the cells revealed a strong estrogen receptor-alpha amplification signal and a weak beta signal. Taken together, a physiological dose of estrogen acutely stimulates NO release from human monocytes via the activation of an estrogen surface receptor that is coupled to increases in intracellular calcium.

  18. The release of elements from dental casting alloy into cell-culture medium and artificial saliva.

    Science.gov (United States)

    Can, Gülşen; Akpınar, Gül; Aydın, Ahmet

    2007-04-01

    The biocompatibility of dental casting alloys is a critical issue because these alloys are in long-term intimate contact with oral tissues. Since the biocompatibility of alloys is not completely known; the release of elements from the alloys has been studied. The aim of this study was to compare the elemental release from dental casting alloy during exposure to artificial saliva and cell-culture medium. Twenty specimens made from Ni-Cr alloy were provided in the form of 5 mm diameter discs, 2 mm in thickness with a 7 mm stem attached to one face to facilitate handling. Ten of twenty samples were polished separately using a conventional technique. The remaining ten samples were left sandblasted with 50 mum Al(2)0(3). Ten samples (5 polished, 5 sandblasted) were separately placed into cell-culture wells with Dulbecco's Modified Eagle's Medium. The other ten samples were placed separately into cell-culture wells with artificial saliva. The samples were subjected in contact with these medium for 30 days. These medium were collected every 7 days. The cell-culture medium and artificial saliva without alloy samples were subjected to elemental analyses as a control. At the end of the exposure time, Atomic Absorption Spectrometry (AAS) was used to determine the release of elements from the alloys into all collected medium. Statistical analyses were assessed with two-way ANOVA. In general, the elemental release occurred with in all medium. The elemental releases of sandblasted alloys were higher than polished alloys. Artificial saliva was found to cause more release from the samples. In both media, Ni released from polished and sandblasted alloys were higher than Cr and Mo. The results suggest that the release of elements from the alloys might have correlated with the environments and the surface of dental alloy.

  19. Acrolein stimulates eicosanoid release from bovine airway epithelial cells

    International Nuclear Information System (INIS)

    Doupnik, C.A.; Leikauf, G.D.

    1990-01-01

    Injury to the airway mucosa after exposure to environmental irritants is associated with pulmonary inflammation and bronchial hyperresponsiveness. To better understand the relationships between mediator release and airway epithelial cell injury during irritant exposures, we studied the effects of acrolein, a low-molecular-weight aldehyde found in cigarette smoke, on arachidonic acid metabolism in cultured bovine tracheal epithelial cells. Confluent airway epithelial cell monolayers, prelabeled with [3H]arachidonic acid, released significant levels of 3H activity when exposed (20 min) to 100 microM acrolein. [3H]arachidonic acid products were resolved using reverse-phase high-performance liquid chromatography. Under control conditions the released 3H activity coeluted predominantly with the cyclooxygenase product, prostaglandin (PG) E2. After exposure to acrolein, significant peaks in 3H activity coeluted with the lipoxygenase products 12-hydroxyeicosatetraenoic acid (HETE) and 15-HETE, as well as with PGE2, PGF2 alpha, and 6-keto-PGF1 alpha. Dose-response relationships for acrolein-induced release of immunoreactive PGF2 alpha and PGE2 from unlabeled epithelial monolayers demonstrated 30 microM acrolein as the threshold dose, with 100 microM acrolein inducing nearly a fivefold increase in both PGF2 alpha and PGE2. Cellular viability after exposure to 100 microM acrolein, determined by released lactate dehydrogenase activity, was not affected until exposure periods were greater than or equal to 2 h. These results implicate the airway epithelial cell as a possible source of eicosanoids after exposure to acrolein

  20. Calcein AM release-based cytotoxic cell assay for fish leucocytes.

    Science.gov (United States)

    Iwanowicz, Luke R; Densmore, Christine L; Ottinger, Christopher A

    2004-02-01

    A non-specific cytotoxic cell assay for fish is presented that is based on the release of the activated fluorochrome calcein AM from lysed carp epithelioma papulosum cyprini (EPC) cells. To establish the suitability of treating EPC cells with calcein AM the uptake and spontaneous release of the calcein AM by the EPC cells was evaluated. Incubation of 5 microM calcein AM in culture medium with 1x10(5)EPC cells well(-1)for a minimum of 3 h provided sufficient labelling. Spontaneous release of fluorescence from the labelled EPC cells during 10 h of post labelling incubation ranged from 30 to 39% of the total observed fluorescence. Cytotoxic activity of trout leucocytes was evaluated at three leucocyte to target cell ratios (10:1, 2:1 and 1:1) following incubation (4, 6, 8, and 10 h) with calcein AM-labelled EPC cells at 15 degrees C. In some instances, the monoclonal antibody specific for the NCC surface receptor NCCRP-1 (MAb5C.6) was included in the cultures. The activity of NCC cells was significantly inhibited in the presence of 0.25 microg well(-1)of MAb5C.6 relative to no antibody (Pcell activity of approximately 18% was observed following 8 h of incubation at the 2:1 and 1:1 leucocyte to target cell ratios. Percent cytotoxic cell activity using calcein AM was similar to values reported for rainbow trout leucocytes using the 51Cr-release assay.

  1. Capture, isolation and release of cancer cells with aptamer-functionalized glass bead array.

    Science.gov (United States)

    Wan, Yuan; Liu, Yaling; Allen, Peter B; Asghar, Waseem; Mahmood, M Arif Iftakher; Tan, Jifu; Duhon, Holli; Kim, Young-tae; Ellington, Andrew D; Iqbal, Samir M

    2012-11-21

    Early detection and isolation of circulating tumor cells (CTC) can enable better prognosis for cancer patients. A Hele-Shaw device with aptamer functionalized glass beads is designed, modeled, and fabricated to efficiently isolate cancer cells from a cellular mixture. The glass beads are functionalized with anti-epidermal growth factor receptor (EGFR) aptamer and sit in ordered array of pits in polydimethylsiloxane (PDMS) channel. A PDMS encapsulation is then used to cover the channel and to flow through cell solution. The beads capture cancer cells from flowing solution depicting high selectivity. The cell-bound glass beads are then re-suspended from the device surface followed by the release of 92% cells from glass beads using combination of soft shaking and anti-sense RNA. This approach ensures that the cells remain in native state and undisturbed during capture, isolation and elution for post-analysis. The use of highly selective anti-EGFR aptamer with the glass beads in an array and subsequent release of cells with antisense molecules provide multiple levels of binding and release opportunities that can help in defining new classes of CTC enumeration devices.

  2. Release of Crude Oil from Silica and Calcium Carbonate Surfaces

    DEFF Research Database (Denmark)

    Liu, Xiaoyan; Yan, Wei; Stenby, Erling Halfdan

    2016-01-01

    Adsorption and desorption of a North Sea crude oil to silica and calcium carbonate surfaces were studied by a quartz crystal microbalance, while the bare surfaces and adsorbed oil layers were characterized by atomic force microscopy and contact angle measurements. Water contact angles were measured...

  3. Induction of Microglial Activation by Mediators Released from Mast Cells

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    2016-04-01

    Full Text Available Background/Aims: Microglia are the resident immune cells in the brain and play a pivotal role in immune surveillance in the central nervous system (CNS. Brain mast cells are activated in CNS disorders and induce the release of several mediators. Thus, brain mast cells, rather than microglia, are the “first responders” due to injury. However, the functional aspects of mast cell-microglia interactions remain uninvestigated. Methods: Conditioned medium from activated HMC-1 cells induces microglial activation similar to co-culture of microglia with HMC-1 cells. Primary cultured microglia were examined by flow cytometry analysis and confocal microscopy. TNF- alpha and IL-6 were measured with commercial ELISA kits. Cell signalling was analysed by Western blotting. Results: In the present study, we found that the conditioned medium from activated HMC-1 cells stimulated microglial activation and the subsequent production of the pro-inflammatory factors TNF-α and IL-6. Co-culture of microglia and HMC-1 cells with corticotropin-releasing hormone (CRH for 24, 48 and 72 hours increased TNF-α and IL-6 production. Antagonists of histamine receptor 1 (H1R, H4R, proteinase-activated receptor 2 (PAR2 or Toll-like receptor 4 (TLR4 reduced HMC-1-induced pro-inflammatory factor production and MAPK and PI3K/AKT pathway activation. Conclusions: These results imply that activated mast cells trigger microglial activation. Interactions between mast cells and microglia could constitute a new and unique therapeutic target for CNS inflammation-related diseases.

  4. Release from the Crabtree effect by hypoxic cell radiosensitizers

    International Nuclear Information System (INIS)

    Mustea, I.; Bara, A.

    1979-01-01

    The Crabtree effect can be observed when the 0 2 consumption of tumour cells or of mammalian cells grown in culture is measured in physiological medium containing glucose. The effect of 2 hypoxic cell radiosensitizers, misonidazole and NDPP, on the 0 2 consumption of Ehrlich ascites tumour cells was compared in media with and without glucose. A stimulatory effect on 0 2 consumption was found for 5-20 mM misonidazole as well as for 0.5mM NDPP, both in media containing 10 -2 M glucose. Thus glucose induced a Crabtree effect in Ehrlich tumour cells, expressed as 38-45% inhibition of 0 2 consumption relative to that in the same medium without glucose. The stimulatory effect of misonidazole and NDPP on 0 2 utilization in medium with glucose undoubtedly appeared as a release from the Crabtree effect. (author)

  5. Doped Overoxidized Polypyrrole Microelectrodes as Sensors for the Detection of Dopamine Released from Cell Populations

    DEFF Research Database (Denmark)

    Sasso, Luigi; Heiskanen, Arto; Diazzi, Francesco

    2013-01-01

    A surface modification of interdigitated gold microelectrodes (IDEs) with a doped polypyrrole (PPy) film for detection of dopamine released from populations of differentiated PC12 cells is presented. A thin PPy layer was potentiostatically electropolymerized from an 10 aqueous pyrrole solution onto...... electrode surfaces. The conducting polymer film was doped during electropolymerization by introducing counter ions in the monomer solution. Several counter ions were tested and the resulting electrode modifications were characterized electrochemically to find the optimal dopant that increases sensitivity...... to amperometrically detect dopamine released by populations of cells upon triggering cellular exocytosis with an elevated K+ concentration. A comparison between the generated current on bare gold electrodes and gold electrodes modified with overoxidized doped PPy illustrates the clear advantage of the modification...

  6. Enhancement of nitric oxide release and hemocompatibility by surface chirality of D-tartaric acid grafting

    Science.gov (United States)

    Han, Honghong; Wang, Ke; Fan, Yonghong; Pan, Xiaxin; Huang, Nan; Weng, Yajun

    2017-12-01

    Nitric Oxide (NO) generation from endogenous NO-donors catalyzed by diselenide modified biomaterials has been reported. Here we reported surface chirality by L-tartaric acid and D-tartaric acid grafting on the outermost showed a significant impact on diselenide modified biomaterials, which modulated protein adsorption, NO release and anti-platelet adhesion properties. D-tartaric acid grafted surface showed more blood protein adsorption than that of L-surfaces by QCM analysis, however, ELISA analysis disclosed less fibrinogen denatured on the D surfaces. Due to the surface ratio of selenium decreasing, NO release catalyzed by L-tartaric acid grafting on the outermost significantly decreased in comparison to that of only selenocystamine immobilized surfaces. While NO release catalyzed by D-tartaric acid grafting on the outermost didn't decrease and was similar with that of selenocystamine immobilized surfaces. Surface chirality combined with NO release had synergetic effects on platelet adhesion, and it showed the lowest number of platelets adhered on the D-tartaric acid grafted surfaces. Thus surface chirality from D-tartaric acid grafting enhanced hemocompatibility of the surface in this study. Our work provides new insights into engineering novel blood contacting biomaterials by taking into account surface chirality.

  7. Anaphylatoxin C3a induced mediator release from mast cells

    International Nuclear Information System (INIS)

    Herrscher, R.; Hugli, T.E.; Sullivan, T.J.

    1986-01-01

    The authors investigated the biochemical and functional consequences of the binding of highly purified human C3a to isolated rat serosal mast cells. C3a caused a dose-dependent (1-30 μM), noncytotoxic release of up to 64% (+/- 7 SEM) of the mast cell histamine content. C3a (10μM) increased 45 Ca ++ uptake 8.2- fold (+/- 2.2 SEM) above unstimulated control values within 10 minutes. Arachidonyl-diacylglycerol and arachidonyl-monoacylglycerol levels increased significantly within 2 minutes after C3a (10 μM) stimulation. Turnover of phosphatidylinositol, phosphatidic acid, and phosphatidylcholine were increased within 15 minutes. In contrast to antigen, C3a stimulation (10 μM) was not enhanced by exogenous phosphatidylserine, and was not inhibited by ethanol (100 μmM). C3a suppressed arachidonic acid (AA) release to 38% (+/- 9 SEM) below baseline, and did not cause PGD 2 formation. C3a and the desarginine form of C3a caused identical responses in all experiments. These studies indicate that C3a stimulation activates mast cell preformed mediator release in a manner very similar to antigen-IgE stimulation, but C3a suppresses free AA levels and does not stimulate PGD 2 synthesis

  8. Cells behaviors and genotoxicity on topological surface

    International Nuclear Information System (INIS)

    Yang, N.; Yang, M.K.; Bi, S.X.; Chen, L.; Zhu, Z.Y.; Gao, Y.T.; Du, Z.

    2013-01-01

    To investigate different cells behaviors and genotoxicity, which were driven by specific microenvironments, three patterned surfaces (pillars, wide grooves and narrow grooves) and one smooth surface were prepared by template-based technique. Vinculin is a membrane-cytoskeletal protein in focal adhesion plaques and associates with cell–cell and cell–matrix junctions, which can promote cell adhesion and spreading. The immunofluorescence staining of vinculin revealed that the narrow grooves patterned substrate was favorable for L929 cell adhesion. For cell multiplication, the narrow grooves surface was fitted for the proliferation of L929, L02 and MSC cells, the pillars surface was only in favor of L929 cells to proliferate during 7 days of cell cultivation. Cell genetic toxicity was evaluated by cellular micronuclei test (MNT). The results indicated that topological surfaces were more suitable for L929 cells to proliferate and maintain the stability of genome. On the contrary, the narrow grooves surface induced higher micronuclei ratio of L02 and MSC cells than other surfaces. With the comprehensive results of cell multiplication and MNT, it was concluded that the wide grooves surface was best fitted for L02 cells to proliferate and have less DNA damages, and the smooth surface was optimum for the research of MSC cells in vitro. - Highlights: • Different cells behaviors on microstructure surfaces were discussed in this paper. • The expression of cell protein of Vinculin was studied in this research. • Cellular micronuclei test was applied to evaluate cells' genotoxicity. • Cell genotoxicity was first studied in the research field of topological surfaces

  9. Marrow stem cell release in the autorepopulation assay

    Energy Technology Data Exchange (ETDEWEB)

    Maloney, M A; Patt, H M [California Univ., San Francisco (USA). Lab. of Radiobiology

    1978-01-01

    The early migration of stem cells from shielded marrow to an irradiated spleen has been re-evaluated, and the findings have been compared with the results of earlier studies. The composite data reveal a constant rate during the first 24 h after irradiation, with a slope of 1.6 cells per h and an intercept of 2.4. The positive intercept is interpreted to signify an immediate brief perturbation of CFU/sub s/ release. The low concentration of CFU/sub s/ in the bloodstream, despite their continuous migration from the shielded marrow, is indicative of a rapid, and probably greatly increased, blood turnover. Despite the constancy of stem cell seeding, it is not yet possible to determine whether the rate of stem cell release is different in shielded marrow than in normal marrow. The resolution of this question requires more precise information about spleen seeding efficiency in the autorepopulation assay and about the normal turnover rate of stem cells in the bloodstream.

  10. Surface roughness, porosity and wettability of gentamicin-loaded bone cements and their antibiotic release

    NARCIS (Netherlands)

    van de Belt, H; Neut, D; Uges, DRA; Schenk, W; van Horn, [No Value; van der Mei, HC; Busscher, HJ

    2000-01-01

    In this study, the release of gentamicin as a function of time was measured for six different gentamicin-loaded bone cements and related with the surface roughness, porosity and wettability of the cements. Initial release rates varied little between the six bone cements (CMW1, CMW3, CMW Endurance,

  11. Surface radiological free release program for the Battelle Columbus Laboratory Decommissioning Project

    International Nuclear Information System (INIS)

    Horton, C.N.

    1995-01-01

    This paper was prepared for the Second Residual Radioactivity and Recycling Criteria Workshop and discusses decommissioning and decontamination activities at the Battelle Columbus Laboratories Decommissioning Project (BCLDP). The BCLDP is a joint effort between the Department of Energy (DOE) and Battelle Columbus Operations to decontaminate fifteen Battelle-owned buildings contaminated with DOE radioactive materials. The privately owned buildings located across the street from The Ohio State University campus became contaminated with natural uranium and thorium during nuclear research activities. BCLDP waste management is supported by an extensive radiological free-release program. Miscellaneous materials and building surfaces have been free-released from the BCLDP. The free-release program has substantially reduced radioactive waste volumes and supported waste minimization. Free release for unrestricted use has challenged regulators and NRC licensees since the development of early surface-release criteria. This paper discusses the surface radiological free-release program incorporated by the BCLDP and the historical development of the surface radiological free-release criteria. Concerns regarding radiological free-release criteria are also presented. (author)

  12. On the Ni-Ion release rate from surfaces of binary NiTi shape memory alloys

    Science.gov (United States)

    Ševčíková, Jana; Bártková, Denisa; Goldbergová, Monika; Kuběnová, Monika; Čermák, Jiří; Frenzel, Jan; Weiser, Adam; Dlouhý, Antonín

    2018-01-01

    The study is focused on Ni-ion release rates from NiTi surfaces exposed in the cell culture media and human vascular endothelial cell (HUVEC) culture environments. The NiTi surface layers situated in the depth of 70 μm below a NiTi oxide scale are affected by interactions between the NiTi alloys and the bio-environments. The finding was proved with use of inductively coupled plasma mass spectrometry and electron microscopy experiments. As the exclusive factor controlling the Ni-ion release rates was not only thicknesses of the oxide scale, but also the passivation depth, which was two-fold larger. Our experimental data strongly suggested that some other factors, in addition to the Ni concentration in the oxide scale, admittedly hydrogen soaking deep below the oxide scale, must be taken into account in order to rationalize the concentrations of Ni-ions released into the bio-environments. The suggested role of hydrogen as the surface passivation agent is also in line with the fact that the Ni-ion release rates considerably decrease in NiTi samples that were annealed in controlled hydrogen atmospheres prior to bio-environmental exposures.

  13. Dopamine receptors on adrenal chromaffin cells modulate calcium uptake and catecholamine release

    Energy Technology Data Exchange (ETDEWEB)

    Bigornia, L; Suozzo, M; Ryan, K A; Napp, D; Schneider, A S

    1988-10-01

    The presence of dopamine-containing cells in sympathetic ganglia, i.e., small, intensely fluorescent cells, has been known for some time. However, the role of dopamine as a peripheral neurotransmitter and its mechanism of action are not well understood. Previous studies have demonstrated the presence of D2 dopamine receptors on the surface of bovine adrenal chromaffin cells using radioligand binding methods and dopamine receptor inhibition of catecholamine release from perfused adrenal glands. In the present study, we provide evidence confirming a role of dopamine receptors as inhibitory modulators of adrenal catecholamine release from bovine chromaffin cell cultures and further show that the mechanism of modulation involves inhibition of stimulated calcium uptake. Apomorphine gave a dose-dependent inhibition (IC50 = 1 microM) of 45Ca2+ uptake stimulated by either nicotine (10 microM) or membrane depolarization with an elevated K+ level (60 mM). This inhibition was reversed by a series of specific (including stereospecific) dopamine receptor antagonists: haloperidol, spiperone, sulpiride, and (+)-butaclamol, but not (-)-butaclamol. In addition, the calcium channel agonist Bay K 8644 was used to stimulate uptake of 45Ca2+ into chromaffin cells, and this uptake was also inhibited by the dopamine receptor agonist apomorphine. The combined results suggest that dopamine receptors on adrenal chromaffin cells alter Ca2+ channel conductance, which, in turn, modulates catecholamine release.

  14. Bubbling cell death: A hot air balloon released from the nucleus in the cold.

    Science.gov (United States)

    Chang, Nan-Shan

    2016-06-01

    Cell death emanating from the nucleus is largely unknown. In our recent study, we determined that when temperature is lowered in the surrounding environment, apoptosis stops and bubbling cell death (BCD) occurs. The study concerns the severity of frostbite. When exposed to severe cold and strong ultraviolet (UV) irradiation, people may suffer serious damages to the skin and internal organs. This ultimately leads to limb amputations, organ failure, and death. BCD is defined as "formation of a single bubble from the nucleus per cell and release of this swelling bubble from the cell surface to extracellular space that causes cell death." When cells are subjected to UV irradiation and/or brief cold shock (4℃ for 5 min) and then incubated at room temperature or 4℃ for time-lapse microscopy, each cell releases an enlarging nuclear gas bubble containing nitric oxide. Certain cells may simultaneously eject hundreds or thousands of exosome-like particles. Unlike apoptosis, no phosphatidylserine flip-over, mitochondrial apoptosis, damage to Golgi complex, and chromosomal DNA fragmentation are shown in BCD. When the temperature is increased back at 37℃, bubble formation stops and apoptosis restarts. Mechanistically, proapoptotic WW domain-containing oxidoreductase and p53 block the protective TNF receptor adaptor factor 2 that allows nitric oxide synthase 2 to synthesize nitric oxide and bubble formation. In this mini-review, updated knowledge in cell death and the proposed molecular mechanism for BCD are provided. © 2016 by the Society for Experimental Biology and Medicine.

  15. A stent for co-delivering paclitaxel and nitric oxide from abluminal and luminal surfaces: Preparation, surface characterization, and in vitro drug release studies

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, Annemarie; Mani, Gopinath, E-mail: Gopinath.Mani@usd.edu

    2013-08-15

    Most drug-eluting stents currently available are coated with anti-proliferative drugs on both abluminal (toward blood vessel wall) and luminal (toward lumen) surfaces to prevent neointimal hyperplasia. While the abluminal delivery of anti-proliferative drugs is useful for controlling neointimal hyperplasia, the luminal delivery of such drugs impairs or prevents endothelialization which causes late stent thrombosis. This research is focused on developing a bidirectional dual drug-eluting stent to co-deliver an anti-proliferative agent (paclitaxel – PAT) and an endothelial cell promoting agent (nitric oxide – NO) from abluminal and luminal surfaces of the stent, respectively. Phosphonoacetic acid, a polymer-free drug delivery platform, was initially coated on the stents. Then, the PAT and NO donor drugs were co-coated on the abluminal and luminal stent surfaces, respectively. The co-coating of drugs was collectively confirmed by the surface characterization techniques such as Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), 3D optical surface profilometry, and contact angle goniometry. SEM showed that the integrity of the co-coating of drugs was maintained without delamination or cracks formation occurring during the stent expansion experiments. In vitro drug release studies showed that the PAT was released from the abluminal stent surfaces in a biphasic manner, which is an initial burst followed by a slow and sustained release. The NO was burst released from the luminal stent surfaces. Thus, this study demonstrated the co-delivery of PAT and NO from abluminal and luminal stent surfaces, respectively. The stent developed in this study has potential applications in inhibiting neointimal hyperplasia as well as encouraging luminal endothelialization to prevent late stent thrombosis.

  16. A stent for co-delivering paclitaxel and nitric oxide from abluminal and luminal surfaces: Preparation, surface characterization, and in vitro drug release studies

    International Nuclear Information System (INIS)

    Gallo, Annemarie; Mani, Gopinath

    2013-01-01

    Most drug-eluting stents currently available are coated with anti-proliferative drugs on both abluminal (toward blood vessel wall) and luminal (toward lumen) surfaces to prevent neointimal hyperplasia. While the abluminal delivery of anti-proliferative drugs is useful for controlling neointimal hyperplasia, the luminal delivery of such drugs impairs or prevents endothelialization which causes late stent thrombosis. This research is focused on developing a bidirectional dual drug-eluting stent to co-deliver an anti-proliferative agent (paclitaxel – PAT) and an endothelial cell promoting agent (nitric oxide – NO) from abluminal and luminal surfaces of the stent, respectively. Phosphonoacetic acid, a polymer-free drug delivery platform, was initially coated on the stents. Then, the PAT and NO donor drugs were co-coated on the abluminal and luminal stent surfaces, respectively. The co-coating of drugs was collectively confirmed by the surface characterization techniques such as Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), 3D optical surface profilometry, and contact angle goniometry. SEM showed that the integrity of the co-coating of drugs was maintained without delamination or cracks formation occurring during the stent expansion experiments. In vitro drug release studies showed that the PAT was released from the abluminal stent surfaces in a biphasic manner, which is an initial burst followed by a slow and sustained release. The NO was burst released from the luminal stent surfaces. Thus, this study demonstrated the co-delivery of PAT and NO from abluminal and luminal stent surfaces, respectively. The stent developed in this study has potential applications in inhibiting neointimal hyperplasia as well as encouraging luminal endothelialization to prevent late stent thrombosis.

  17. Surface code—biophysical signals for apoptotic cell clearance

    International Nuclear Information System (INIS)

    Biermann, Mona; Maueröder, Christian; Brauner, Jan M; Chaurio, Ricardo; Herrmann, Martin; Muñoz, Luis E; Janko, Christina

    2013-01-01

    Apoptotic cell death and the clearance of dying cells play an important and physiological role in embryonic development and normal tissue turnover. In contrast to necrosis, apoptosis proceeds in an anti-inflammatory manner. It is orchestrated by the timed release and/or exposure of so-called ‘find-me’, ‘eat me’ and ‘tolerate me’ signals. Mononuclear phagocytes are attracted by various ‘find-me’ signals, including proteins, nucleotides, and phospholipids released by the dying cell, whereas the involvement of granulocytes is prevented via ‘stay away’ signals. The exposure of anionic phospholipids like phosphatidylserine (PS) by apoptotic cells on the outer leaflet of the plasma membrane is one of the main ‘eat me’ signals. PS is recognized by a number of innate receptors as well as by soluble bridging molecules on the surface of phagocytes. Importantly, phagocytes are able to discriminate between viable and apoptotic cells both exposing PS. Due to cytoskeleton remodeling PS has a higher lateral mobility on the surfaces of apoptotic cells thereby promoting receptor clustering on the phagocyte. PS not only plays an important role in the engulfment process, but also acts as ‘tolerate me’ signal inducing the release of anti-inflammatory cytokines by phagocytes. An efficient and fast clearance of apoptotic cells is required to prevent secondary necrosis and leakage of intracellular danger signals into the surrounding tissue. Failure or prolongation of the clearance process leads to the release of intracellular antigens into the periphery provoking inflammation and development of systemic inflammatory autoimmune disease like systemic lupus erythematosus. Here we review the current findings concerning apoptosis-inducing pathways, important players of apoptotic cell recognition and clearance as well as the role of membrane remodeling in the engulfment of apoptotic cells by phagocytes. (paper)

  18. Effect of surface water on tritium release behavior from Li4SiO4

    International Nuclear Information System (INIS)

    Hanada, T.; Fukada, S.; Nishikawa, M.; Suematsu, K.; Yamashita, N.; Kanazawa, T.

    2010-01-01

    The tritium release model to represent the release behavior of bred tritium from solid breeder materials has been developed by the blanket group of Kyushu University. It has been found that water is released to the purge gas from solid breeder materials and that this water affects the tritium release behavior. In this study, the amount of surface water released from Li 4 SiO 4 is quantified by the experiment. In addition, the tritium release behavior from Li 4 SiO 4 are estimated based on the tritium release model using parameters obtained in our studies under conditions of commercial reactor operation and ITER test blanket module operation. The effect of the surface water on tritium release behavior is discussed from the obtained results. Moreover, the tritium inventory of Li 4 SiO 4 is discussed based on calculation under the unsteady state condition. Further, the effects of grain size and temperature on distribution of tritium inventory under the steady state condition are evaluated, and the optimal grain size is discussed from the view point of tritium release from Li 4 SiO 4 .

  19. Antibacterial Behavior of Additively Manufactured Porous Titanium with Nanotubular Surfaces Releasing Silver Ions.

    Science.gov (United States)

    Amin Yavari, S; Loozen, L; Paganelli, F L; Bakhshandeh, S; Lietaert, K; Groot, J A; Fluit, A C; Boel, C H E; Alblas, J; Vogely, H C; Weinans, H; Zadpoor, A A

    2016-07-13

    Additive manufacturing (3D printing) has enabled fabrication of geometrically complex and fully interconnected porous biomaterials with huge surface areas that could be used for biofunctionalization to achieve multifunctional biomaterials. Covering the huge surface area of such porous titanium with nanotubes has been already shown to result in improved bone regeneration performance and implant fixation. In this study, we loaded TiO2 nanotubes with silver antimicrobial agents to equip them with an additional biofunctionality, i.e., antimicrobial behavior. An optimized anodizing protocol was used to create nanotubes on the entire surface area of direct metal printed porous titanium scaffolds. The nanotubes were then loaded by soaking them in three different concentrations (i.e., 0.02, 0.1, and 0.5 M) of AgNO3 solution. The antimicrobial behavior and cell viability of the developed biomaterials were assessed. As far as the early time points (i.e., up to 1 day) are concerned, the biomaterials were found to be extremely effective in preventing biofilm formation and decreasing the number of planktonic bacteria particularly for the middle and high concentrations of silver ions. Interestingly, nanotubes not loaded with antimicrobial agents also showed significantly smaller numbers of adherent bacteria at day 1, which may be attributed to the bactericidal effect of high aspect ratio nanotopographies. The specimens with the highest concentrations of antimicrobial agents adversely affected cell viability at day 1, but this effect is expected to decrease or disappear in the following days as the rate of release of silver ions was observed to markedly decrease within the next few days. The antimicrobial effects of the biomaterials, particularly the ones with the middle and high concentrations of antimicrobial agents, continued until 2 weeks. The potency of the developed biomaterials in decreasing the number of planktonic bacteria and hindering the formation of biofilms make

  20. Effect of micropatterning induced surface hydrophobicity on drug release from electrospun cellulose acetate nanofibers

    Science.gov (United States)

    Adepu, Shivakalyani; Gaydhane, Mrunalini K.; Kakunuri, Manohar; Sharma, Chandra S.; Khandelwal, Mudrika; Eichhorn, Stephen J.

    2017-12-01

    Sustained release and prevention of burst release for low half-life drugs like Diclofenac sodium is crucial to prevent drug related toxicity. Electrospun nanofibers have emerged recently as potential carrier materials for controlled and sustained drug release. Here, we present a facile method to prevent burst release by tuning the surface wettability through template assisted micropatterning of drug loaded electrospun cellulose acetate (CA) nanofibers. A known amount of drug (Diclofenac sodium) was first mixed with CA and then electrospun in the form of a nanofabric. This as-spun network was hydrophilic in nature. However, when electrospinning was carried out through non-conducting templates, viz nylon meshes with 50 and 100 μm size openings, two kinds of hydrophobic micro-patterned CA nanofabrics were produced. In vitro transdermal testing of our nanofibrous mats was carried out; these tests were able to show that it would be possible to create a patch for transdermal drug release. Further, our results show that with optimized micro-patterned dimensions, a zero order sustained drug release of up to 12 h may be achieved for the transdermal system when compared to non-patterned samples. This patterning caused a change in the surface wettability, to a hydrophobic surface, resulting in a controlled diffusion of the hydrophilic drug. Patterning assisted in controlling the initial burst release, which is a significant finding especially for low half-life drugs.

  1. Regulation of thrombomodulin expression and release in human aortic endothelial cells by cyclic strain.

    Directory of Open Access Journals (Sweden)

    Fiona A Martin

    Full Text Available Thrombomodulin (TM, an integral membrane glycoprotein expressed on the lumenal surface of vascular endothelial cells, promotes anti-coagulant and anti-inflammatory properties. Release of functional TM from the endothelium surface into plasma has also been reported. Much is still unknown however about how endothelial TM is regulated by physiologic hemodynamic forces (and particularly cyclic strain intrinsic to endothelial-mediated vascular homeostasis.This study employed human aortic endothelial cells (HAECs to investigate the effects of equibiaxial cyclic strain (7.5%, 60 cycles/min, 24 hrs, and to a lesser extent, laminar shear stress (10 dynes/cm2, 24 hrs, on TM expression and release. Time-, dose- and frequency-dependency studies were performed.Our initial studies demonstrated that cyclic strain strongly downregulated TM expression in a p38- and receptor tyrosine kinase-dependent manner. This was in contrast to the upregulatory effect of shear stress. Moreover, both forces significantly upregulated TM release over a 48 hr period. With continuing focus on the cyclic strain-induced TM release, we noted both dose (0-7.5% and frequency (0.5-2.0 Hz dependency, with no attenuation of strain-induced TM release observed following inhibition of MAP kinases (p38, ERK-1/2, receptor tyrosine kinase, or eNOS. The concerted impact of cyclic strain and inflammatory mediators on TM release from HAECs was also investigated. In this respect, both TNFα (100 ng/ml and ox-LDL (10-50 µg/ml appeared to potentiate strain-induced TM release. Finally, inhibition of neither MMPs (GM6001 nor rhomboids (3,4-dichloroisocoumarin had any effect on strain-induced TM release. However, significantly elevated levels (2.1 fold of TM were observed in isolated microparticle fractions following 7.5% strain for 24 hrs.A preliminary in vitro investigation into the effects of cyclic strain on TM in HAECs is presented. Physiologic cyclic strain was observed to downregulate TM

  2. Gonadotropin-Releasing Hormone Regulates Expression of the DNA Damage Repair Gene, Fanconi anemia A, in Pituitary Gonadotroph Cells1

    OpenAIRE

    Larder, Rachel; Chang, Lynda; Clinton, Michael; Brown, Pamela

    2004-01-01

    Gonadal function is critically dependant on regulated secretion of the gonadotropin hormones from anterior pituitary gonadotroph cells. Gonadotropin biosynthesis and release is triggered by the binding of hypothalamic GnRH to GnRH receptor expressed on the gonadotroph cell surface. The repertoire of regulatory molecules involved in this process are still being defined. We used the mouse LβT2 gonadotroph cell line, which expresses both gonadotropin hormones, as a model to investigate GnRH regu...

  3. Understanding long-term silver release from surface modified porous titanium implants.

    Science.gov (United States)

    Shivaram, Anish; Bose, Susmita; Bandyopadhyay, Amit

    2017-08-01

    Prevention of orthopedic device related infection (ODRI) using antibiotics has met with limited amount of success and is still a big concern during post-surgery. As an alternative, use of silver as an antibiotic treatment to prevent surgical infections is being used due to the well-established antimicrobial properties of silver. However, in most cases silver is used in particulate form with wound dressings or with short-term devices such as catheters but not with load-bearing implants. We hypothesize that strongly adherent silver to load-bearing implants can offer longer term solution to infection in vivo. Keeping that in mind, the focus of this study was to understand the long term release study of silver ions for a period of minimum 6months from silver coated surface modified porous titanium implants. Implants were fabricated using a LENS™ system, a powder based additive manufacturing technique, with at least 25% volume porosity, with and without TiO 2 nanotubes in phosphate buffer saline (pH 7.4) to see if the total release of silver ions is within the toxic limit for human cells. Considering the fact that infection sites may reduce the local pH, silver release was also studied in acetate buffer (pH 5.0) for a period of 4weeks. Along with that, the osseointegrative properties as well as cytotoxicity of porous titanium implants were assessed in vivo for a period of 12weeks using a rat distal femur model. In vivo results indicate that porous titanium implants with silver coating show comparable, if not better, biocompatibility and bonding at the bone-implant interface negating any concerns related to toxicity related to silver to normal cells. The current research is based on our recently patented technology, however focused on understanding longer-term silver release to mitigate infection related problems in load-bearing implants that can even arise several months after the surgery. Prevention of orthopedic device related infection using antibiotics has met

  4. Isopleths of surface air concentration and surface air kerma rate due to a radioactive cloud released from a stack (3)

    International Nuclear Information System (INIS)

    Tachibana, Haruo; Kikuchi, Masamitsu; Sekita, Tsutomu; Yamaguchi, Takenori

    2004-06-01

    This report is a revised edition of 'Isopleths of Surface Air Concentration and Surface Air Absorbed Dose Rate due to a Radioactive Cloud Released from a Stack(II) '(JAERI-M 90-206) and based on the revised Nuclear Safety Guidelines reflected the ICRP1990 Recommendation. Characteristics of this report are the use of Air Karma Rate (Gy/h) instead of Air Absorbed Dose Rate (Gy/h), and the record of isopleths of surface air concentration and surface air karma rate on CD-ROM. These recorded data on CD-ROM can be printed out on paper and/or pasted on digital map by personal computer. (author)

  5. Proinflammatory effect in whole blood by free soluble bacterial components released from planktonic and biofilm cells

    Directory of Open Access Journals (Sweden)

    Thay Bernard

    2008-11-01

    Full Text Available Abstract Background Aggregatibacter actinomycetemcomitans is an oral bacterium associated with aggressive forms of periodontitis. Increasing evidence points to a link between periodontitis and cardiovascular diseases, however, the underlying mechanisms are poorly understood. This study investigated the pathogenic potential of free-soluble surface material, released from live planktonic and biofilm A. actinomycetemcomitans cells. Results By employing an ex vivo insert model (filter pore size 20 nm we demonstrated that the A. actinomycetemcomitans strain D7S and its derivatives, in both planktonic and in biofilm life-form, released free-soluble surface material independent of outer membrane vesicles. This material clearly enhanced the production of several proinflammatory cytokines (IL-1β, TNF-α, IL-6, IL-8, MIP-1β in human whole blood, as evidenced by using a cytokine antibody array and dissociation-enhanced-lanthanide-fluorescent-immunoassay. In agreement with this, quantitative real-time PCR indicated a concomitant increase in transcription of each of these cytokine genes. Experiments in which the LPS activity was blocked with polymyxin B showed that the stimulatory effect was only partly LPS-dependent, suggesting the involvement of additional free-soluble factors. Consistent with this, MALDI-TOF-MS and immunoblotting revealed release of GroEL-like protein in free-soluble form. Conversely, the immunomodulatory toxins, cytolethal distending toxin and leukotoxin, and peptidoglycan-associated lipoprotein, appeared to be less important, as evidenced by studying strain D7S cdt/ltx double, and pal single mutants. In addition to A. actinomycetemcomitans a non-oral species, Escherichia coli strain IHE3034, tested in the same ex vivo model also released free-soluble surface material with proinflammatory activity. Conclusion A. actinomycetemcomitans, grown in biofilm and planktonic form, releases free-soluble surface material independent of outer

  6. Proinflammatory effect in whole blood by free soluble bacterial components released from planktonic and biofilm cells.

    Science.gov (United States)

    Oscarsson, Jan; Karched, Maribasappa; Thay, Bernard; Chen, Casey; Asikainen, Sirkka

    2008-11-27

    Aggregatibacter actinomycetemcomitans is an oral bacterium associated with aggressive forms of periodontitis. Increasing evidence points to a link between periodontitis and cardiovascular diseases, however, the underlying mechanisms are poorly understood. This study investigated the pathogenic potential of free-soluble surface material, released from live planktonic and biofilm A. actinomycetemcomitans cells. By employing an ex vivo insert model (filter pore size 20 nm) we demonstrated that the A. actinomycetemcomitans strain D7S and its derivatives, in both planktonic and in biofilm life-form, released free-soluble surface material independent of outer membrane vesicles. This material clearly enhanced the production of several proinflammatory cytokines (IL-1 beta, TNF-alpha, IL-6, IL-8, MIP-1 beta) in human whole blood, as evidenced by using a cytokine antibody array and dissociation-enhanced-lanthanide-fluorescent-immunoassay. In agreement with this, quantitative real-time PCR indicated a concomitant increase in transcription of each of these cytokine genes. Experiments in which the LPS activity was blocked with polymyxin B showed that the stimulatory effect was only partly LPS-dependent, suggesting the involvement of additional free-soluble factors. Consistent with this, MALDI-TOF-MS and immunoblotting revealed release of GroEL-like protein in free-soluble form. Conversely, the immunomodulatory toxins, cytolethal distending toxin and leukotoxin, and peptidoglycan-associated lipoprotein, appeared to be less important, as evidenced by studying strain D7S cdt/ltx double, and pal single mutants. In addition to A. actinomycetemcomitans a non-oral species, Escherichia coli strain IHE3034, tested in the same ex vivo model also released free-soluble surface material with proinflammatory activity. A. actinomycetemcomitans, grown in biofilm and planktonic form, releases free-soluble surface material independent of outer membrane vesicles, which induces proinflammatory

  7. Mast Cell Proteases 6 and 7 Stimulate Angiogenesis by Inducing Endothelial Cells to Release Angiogenic Factors.

    Directory of Open Access Journals (Sweden)

    Devandir Antonio de Souza Junior

    Full Text Available Mast cell proteases are thought to be involved with tumor progression and neo-vascularization. However, their exact role is still unclear. The present study was undertaken to further elucidate the function of specific subtypes of recombinant mouse mast cell proteases (rmMCP-6 and 7 in neo-vascularization. SVEC4-10 cells were cultured on Geltrex® with either rmMCP-6 or 7 and tube formation was analyzed by fluorescence microscopy and scanning electron microscopy. Additionally, the capacity of these proteases to induce the release of angiogenic factors and pro and anti-angiogenic proteins was analyzed. Both rmMCP-6 and 7 were able to stimulate tube formation. Scanning electron microscopy showed that incubation with the proteases induced SVEC4-10 cells to invade the gel matrix. However, the expression and activity of metalloproteases were not altered by incubation with the mast cell proteases. Furthermore, rmMCP-6 and rmMCP-7 were able to induce the differential release of angiogenic factors from the SVEC4-10 cells. rmMCP-7 was more efficient in stimulating tube formation and release of angiogenic factors than rmMCP-6. These results suggest that the subtypes of proteases released by mast cells may influence endothelial cells during in vivo neo-vascularization.

  8. Surface-Engineered Nanocontainers Based on Molecular Self-Assembly and Their Release of Methenamine

    Directory of Open Access Journals (Sweden)

    Minghui Zhang

    2018-02-01

    Full Text Available The mixing of polymers and nanoparticles is opening pathways for engineering flexible composites that exhibit advantageous functional properties. To fabricate controllable assembling nanocomposites for efficiently encapsulating methenamine and releasing them on demand, we functionalized the surface of natural halloysite nanotubes (HNTs selectively with polymerizable gemini surfactant which has peculiar aggregation behavior, aiming at endowing the nanomaterials with self-assembly and stimulative responsiveness characteristics. The micromorphology, grafted components and functional groups were identified using transmission electron microscopy (TEM, thermogravimetric analysis (TGA, Fourier transform infrared (FTIR spectroscopy, and X-ray photoelectron spectroscopy (XPS. The created nanocomposites presented various characteristics of methenamine release with differences in the surface composition. It is particularly worth mentioning that the controlled release was more efficient with the increase of geminized monomer proportion, which is reasonably attributed to the fact that the amphiphilic geminized moieties with positive charge and obvious hydrophobic interactions interact with the outer and inner surface in different ways through fabricating polymeric shell as release stoppers at nanotube ends and forming polymer brush into the nanotube lumen for guest immobilization. Meanwhile, the nanocomposites present temperature and salinity responsive characteristics for the release of methenamine. The combination of HNTs with conjugated functional polymers will open pathways for engineering flexible composites which are promising for application in controlled release fields.

  9. Vertical dispersion from surface and elevated releases: An investigation of a Non-Gaussian plume model

    International Nuclear Information System (INIS)

    Brown, M.J.; Arya, S.P.; Snyder, W.H.

    1993-01-01

    The vertical diffusion of a passive tracer released from surface and elevated sources in a neutrally stratified boundary layer has been studied by comparing field and laboratory experiments with a non-Gaussian K-theory model that assumes power-law profiles for the mean velocity and vertical eddy diffusivity. Several important differences between model predictions and experimental data were discovered: (1) the model overestimated ground-level concentrations from surface and elevated releases at distances beyond the peak concentration; (2) the model overpredicted vertical mixing near elevated sources, especially in the upward direction; (3) the model-predicted exponent α in the exponential vertical concentration profile for a surface release [bar C(z)∝ exp(-z α )] was smaller than the experimentally measured exponent. Model closure assumptions and experimental short-comings are discussed in relation to their probable effect on model predictions and experimental measurements. 42 refs., 13 figs., 3 tabs

  10. Radioimmunoassay to quantitatively measure cell surface immunoglobulins

    International Nuclear Information System (INIS)

    Krishman, E.C.; Jewell, W.R.

    1975-01-01

    A radioimmunoassay techniques developed to quantitatively measure the presence of immunoglobulins on the surface of cells, is described. The amount of immunoglobulins found on different tumor cells varied from 200 to 1140 ng/10 6 cells. Determination of immunoglobulins on the peripheral lymphocytes obtained from different cancer patients varied between 340 to 1040 ng/10 6 cells. Cultured tumor cells, on the other hand, were found to contain negligible quantities of human IgG [pt

  11. Pea Border Cell Maturation and Release Involve Complex Cell Wall Structural Dynamics.

    Science.gov (United States)

    Mravec, Jozef; Guo, Xiaoyuan; Hansen, Aleksander Riise; Schückel, Julia; Kračun, Stjepan Krešimir; Mikkelsen, Maria Dalgaard; Mouille, Grégory; Johansen, Ida Elisabeth; Ulvskov, Peter; Domozych, David S; Willats, William George Tycho

    2017-06-01

    The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases, though, plant cells are programmed to detach, and root cap-derived border cells are examples of this. Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we undertook a systematic, detailed analysis of pea ( Pisum sativum ) root tip cell walls. Our study included immunocarbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy, quantitative reverse transcription-PCR of cell wall biosynthetic genes, analysis of hydrolytic activities, transmission electron microscopy, and immunolocalization of cell wall components. Using this integrated glycobiology approach, we identified multiple novel modes of cell wall structural and compositional rearrangement during root cap growth and the release of border cells. Our findings provide a new level of detail about border cell maturation and enable us to develop a model of the separation process. We propose that loss of adhesion by the dissolution of homogalacturonan in the middle lamellae is augmented by an active biophysical process of cell curvature driven by the polarized distribution of xyloglucan and extensin epitopes. © 2017 American Society of Plant Biologists. All Rights Reserved.

  12. Pea Border Cell Maturation and Release Involve Complex Cell Wall Structural Dynamics1[OPEN

    Science.gov (United States)

    2017-01-01

    The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases, though, plant cells are programmed to detach, and root cap-derived border cells are examples of this. Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we undertook a systematic, detailed analysis of pea (Pisum sativum) root tip cell walls. Our study included immunocarbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy, quantitative reverse transcription-PCR of cell wall biosynthetic genes, analysis of hydrolytic activities, transmission electron microscopy, and immunolocalization of cell wall components. Using this integrated glycobiology approach, we identified multiple novel modes of cell wall structural and compositional rearrangement during root cap growth and the release of border cells. Our findings provide a new level of detail about border cell maturation and enable us to develop a model of the separation process. We propose that loss of adhesion by the dissolution of homogalacturonan in the middle lamellae is augmented by an active biophysical process of cell curvature driven by the polarized distribution of xyloglucan and extensin epitopes. PMID:28400496

  13. Inosine Released from Dying or Dead Cells Stimulates Cell Proliferation via Adenosine Receptors

    Directory of Open Access Journals (Sweden)

    Yi Zhao

    2017-04-01

    Full Text Available IntroductionMany antitumor therapies induce apoptotic cell death in order to cause tumor regression. Paradoxically, apoptotic cells are also known to promote wound healing, cell proliferation, and tumor cell repopulation in multicellular organisms. We aimed to characterize the nature of the regenerative signals concentrated in the micromilieu of dead and dying cells.MethodsCultures of viable melanoma B16F10 cells, mouse fibroblasts, and primary human fibroblast-like synoviocytes (FLS in the presence of dead and dying cells, their supernatants (SNs, or purified agonists and antagonists were used to evaluate the stimulation of proliferation. Viable cell quantification was performed by either flow cytometry of harvested cells or by crystal violet staining of adherent cells. High-performance liquid chromatography and liquid chromatography coupled with mass spectrometry of cell SNs were deployed to identify the nature of growth-promoting factors. Coimplantation of living cells in the presence of SNs collected from dead and dying cells and specific agonists was used to evaluate tumor growth in vivo.ResultsThe stimulation of proliferation of few surviving cells by bystander dead cells was confirmed for melanoma cells, mouse fibroblasts, and primary FLS. We found that small soluble molecules present in the protein-free fraction of SNs of dead and dying cells were responsible for the promotion of proliferation. The nucleoside inosine released by dead and dying cells acting via adenosine receptors was identified as putative inducer of proliferation of surviving tumor cells after irradiation and heat treatment.ConclusionInosine released by dead and dying cells mediates tumor cell proliferation via purinergic receptors. Therapeutic strategies surmounting this pathway may help to reduce the rate of recurrence after radio- and chemotherapy.

  14. Induction of histamine release in vitro from rat peritoneal mast cells by extracts of grain dust.

    Science.gov (United States)

    Warren, C P; Holford-Strevens, V

    1986-01-01

    The ability of extracts of grain dust and wheat to induce histamine release from rat peritoneal cells was investigated. Some grain dusts, with a high endotoxin content, were found to produce cytotoxic histamine release. Extract of wheat dust, with a low endotoxin release, produced noncytotoxic histamine release from peritoneal cells but not from purified mast cells. This reaction was dependent on the presence of phosphatidyl serine. The agent did not appear to be a lectin because histamine release was not enhanced by passive sensitization of mast cells with IgE. The activity occurred only over a narrow range of concentrations of the extract of wheat. The cause was unclear. PMID:2423321

  15. Bacterial inhibiting surfaces caused by the effects of silver release and/or electrical field

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Hilbert, Lisbeth Rischel; Schroll, Casper

    2008-01-01

    In this study, silver-palladium surfaces and silver-bearing stainless steels were designed and investigated focusing on electrochemical principles to form inhibiting effects on planktonic and/or biofilm bacteria in water systems. Silver-resistant Escherichia coli and silver-sensitive E. coli were...... silver ions release can occur from their Surfaces. For silver-bearing stainless steels, the inhibiting effect can only be explained by high local silver ions release. and can be limited or deactivated dependent on the specific environment. (c) 2008 Elsevier Ltd. All rights reserved....

  16. Correlation between Ni base alloys surface conditioning and cation release mitigation in primary coolant

    Energy Technology Data Exchange (ETDEWEB)

    Clauzel, M.; Guillodo, M.; Foucault, M. [AREVA NP SAS, Technical Centre, Le Creusot (France); Engler, N.; Chahma, F.; Brun, C. [AREVA NP SAS, Chemistry and Radiochemistry Group, Paris La Defense (France)

    2010-07-01

    The mastering of the reactor coolant system radioactive contamination is a real stake of performance for operating plants and new builds. The reduction of activated corrosion products deposited on RCS surfaces allows minimizing the global dose integrated by workers which supports the ALARA approach. Moreover, the contamination mastering limits the volumic activities in the primary coolant and thus optimizes the reactor shutdown duration and environment releases. The main contamination sources on PWR are due to Co-60 and Co-58 nuclides which come respectively Co-59 and Ni-58, naturally present in alloys used in the RCS. Co is naturally present as an impurity in alloys or as the main component of hardfacing materials (Stellites™). Ni is released mainly by SG tubes which represent the most important surface of the RCS. PWR steam generators (SG), due to the huge wetted surface are the main source of corrosion products release in the primary coolant circuit. As corrosion products may be transported throughout the whole circuit, activated in the core, and redeposited all over circuit surfaces, resulting in an increase of activity buildup, it is of primary importance to gain a better understanding of phenomenon leading to corrosion product release from SG tubes before setting up mitigation measures. Previous studies have shown that SG tubing made of the same material had different release rates. To find the origin of these discrepancies, investigations have been performed on tubes at the as-received state and after exposure to a nominal primary chemistry in titanium recirculating loop. These investigations highlighted the existence of a correlation between the inner surface metallurgical properties and the release of corrosion products in primary coolant. Oxide films formed in nominal primary chemistry are always protective, their morphology and their composition depending strongly on the geometrical, metallurgical and physico-chemical state of the surface on which they

  17. Mechanical Regulation in Cell Division and in Neurotransmitter Release

    Science.gov (United States)

    Thiyagarajan, Sathish

    During their lifecycle, cells must produce forces which play important roles in several subcellular processes. Force-producing components are organized into macromolecular assemblies of proteins that are often dynamic, and are constructed or disassembled in response to various signals. The forces themselves may directly be involved in subcellular mechanics, or they may influence mechanosensing proteins either within or outside these structures. These proteins play different roles: they may ensure the stability of the force-producing structure, or they may send signals to a coupled process. The generation and sensing of subcellular forces is an active research topic, and this thesis focusses on the roles of these forces in two key areas: cell division and neurotransmitter release. The first part of the thesis deals with the effect of force on cell wall growth regulation during division in the fission yeast Schizosaccharomyces pombe, a cigar-shaped, unicellular organism. During cytokinesis, the last stage of cell division in which the cell physically divides into two, a tense cytokinetic ring anchored to the cellular membrane assembles and constricts, accompanied by the inward centripetal growth of new cell wall, called septum, in the wake of the inward-moving membrane. The contour of the septum hole maintains its circularity as it reduces in size--an indication of regulated growth. To characterize the cell wall growth process, we performed image analysis on contours of the leading edge of the septum obtained via fluorescence microscopy in the labs of our collaborators. We quantified the deviations from circularity using the edge roughness. The roughness was spatially correlated, suggestive of regulated growth. We hypothesized that the cell wall growers are mechanosensitive and respond to the force exerted by the ring. A mathematical model based on this hypothesis then showed that this leads to corrections of roughness in a curvature-dependent fashion. Thus, one of

  18. Cell behaviour on chemically microstructured surfaces

    International Nuclear Information System (INIS)

    Magnani, Agnese; Priamo, Alfredo; Pasqui, Daniela; Barbucci, Rolando

    2003-01-01

    Micropatterned surfaces with different chemical topographies were synthesised in order to investigate the influence of surface chemistry and topography on cell behaviour. The microstructured materials were synthesised by photoimmobilising natural Hyaluronan (Hyal) and its sulphated derivative (HyalS), both adequately functionalised with a photorective moiety, on glass substrates. Four different grating patterns (10, 25, 50 and 100 μm) were used to pattern the hyaluronan. The micropatterned samples were analysed by Secondary Ions Mass Spectrometry, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy to investigate the chemistry and the topography of the surfaces. The spectroscopic and microscopic analysis of the microstructured surfaces revealed that the photoimmobilisation process was successful, demonstrating that the photomask patterns were well reproduced on the sample surface. The influence of chemical topographies on the cell behaviour was then analysed. Human and 3T3 fibroblasts, bovine aortic and human (HGTFN line) endothelial cells were used and their behaviour on the micropatterned surfaces was analysed in terms of adhesion, proliferation, locomotion and orientation. Both chemical and topographical controls were found to be important for cell guidance. By decreasing the stripe dimensions, a more fusiform shape of cell was observed. At the same time, the cell locomotion and orientation parallel to the structure increased. However, differences in cell behaviour were detected according to both cell type and micropattern dimensions

  19. A nucleation theory of cell surface capping

    International Nuclear Information System (INIS)

    Coutsias, E.A.; Wester, M.J.; Perelson, A.S.

    1997-01-01

    We propose a new theory of cell surface capping based on the principles of nucleation. When antibody interacts with cell surface molecules, the molecules initially form small aggregates called patches that later coalesce into a large aggregate called a cap. While a cap can form by patches being pulled together by action of the cell''s cytoskeleton, in the case of some molecules, disruption of the cytoskeleton does not prevent cap formation. Diffusion of large aggregates on a cell surface is slow, and thus we propose that a cap can form solely through the diffusion of small aggregates containing just one or a few cell surface molecules. Here we consider the extreme case in which single molecules are mobile, but aggregates of all larger sizes are immobile. We show that a set of patches in equilibrium with a open-quotes seaclose quotes of free cell surface molecules can undergo a nucleation-type phase transition in which the largest patch will bind free cell surface molecules, deplete the concentration of such molecules in the open-quotes seaclose quotes and thus cause the other patches to shrink in size. We therefore show that a cap can form without patches having to move, collide with each other, and aggregate

  20. Pea border cell maturation and release involve complex cell wall structural dynamics

    DEFF Research Database (Denmark)

    Mravec, Jozef; Guo, Xiaoyuan; Hansen, Aleksander Riise

    2017-01-01

    The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases though, plant cells are programmed to detach and root cap-derived border cells are examples of this....... Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we...... undertook a systematic, detailed analysis of pea (Pisum sativum) root tip cell walls. Our study included immuno-carbohydrate microarray profiling, monosaccharide composition determination, Fourier-transformed infrared microspectroscopy (FT-IR), quantitative RT-PCR of cell wall biosynthetic genes, analysis...

  1. Regulation of serotonin release from enterochromaffin cells of rat cecum mucosa

    International Nuclear Information System (INIS)

    Simon, C.; Ternaux, J.P.

    1990-01-01

    The release of endogenous serotonin or previously taken up tritiated serotonin from isolated strips of rat cecum mucosa containing enterochromaffin cells was studied in vitro. Release of tritiated serotonin was increased by potassium depolarization and was decreased by tetrodotoxin, veratridine and the absence of calcium. Endogenous serotonin was released at a lower rate than tritiated serotonin; endogenous serotonin release was stimulated by potassium depolarization but was unaffected by tetrodotoxin, veratridine or the absence of calcium. Carbachol, norepinephrine, clonidine and isoproterenol decreased release of tritiated serotonin but had less or reverse effect on release of endogenous serotonin. The results suggest two different serotoninergic pools within the enterochromaffin cell population

  2. A method of surface area measurement of fuel materials by fission gas release at low temperature

    International Nuclear Information System (INIS)

    Kaimal, K.N.G.; Naik, M.C.; Paul, A.R.; Venkateswarlu, K.S.

    1989-01-01

    The present report deals with the development of a method for surface area measurement of nuclear fuel as well as fissile doped materials by fission gas release study at low temperature. The method is based on the evaluation of knock-out release rate of fission 133 Xe from irradiated fuel after sufficient cooling to decay the short lived activity. The report also describes the fabrication of an ampoule breaker unit for such study. Knock-out release rate of 133 Xe has been studied from UO 2 powders having varying surface area 'S' ranging from 270 cm 2 /gm to 4100 cm 2 /gm at two fissioning rates 10 12 f/cm 3 . sec. and 3.2x10 10 f/cm.sec. A relation between K and A has been established and discussed in this report. (author). 6 refs

  3. The influence of form release agent application to the quality of concrete surfaces

    International Nuclear Information System (INIS)

    Klovas, A; Daukšys, M

    2013-01-01

    The main aim of this article was to obtain concrete surface quality changes by the usage of different form release agent application. Secondly, to determine blemishes of concrete surfaces and divide them according to combined method provided by two documents and by using computer program: CIB Report No. 24 T olerances on blemishes of concrete , GOST 13015.0–83 and I mageJ . Two different concrete compositions were made: BA1 (low fluidity, vibration is needed) and BA8 (high fluidity, vibration is not needed). Three castings with each formwork were conducted. Water emulsion based form release agent was used. Different applications (normal and excessive) of form release agent were used on the formwork

  4. Enrichment of Nanodiamond Surfaces with Carboxyl Groups for Doxorubicin Loading and Release

    Science.gov (United States)

    Astuti, Y.; Saputra, F. D.; Wuning, S.; Arnelli; Bhaduri, G.

    2017-02-01

    In their pristine state, nanodiamond crystals produced via detonation techniques containing several functional groups present on the surface including amine, amide, alcohol, carbonyl, and carboxyl. These functional groups facilitate nanodiamond to interact drugs so as to nanodiamond is potential for medical application such as drug delivery. Even though research on t he use of nanodiamond for this application has been conducted widely, research on the effect of enrichment of nanodiamond surface with carboxyl functional groups for drug loading and release has not been explored extensively. Therefore, in this paper, the effect of carboxyl-terminated nanodiamond (ND-COOH) on drug loading and release will be presented. The enrichment of nanodiamond with carboxyl groups was undertaken by treating nanodiamond with sulphuric acid and nitric acid. The results show that the doxorubicin (DOX) loading and release efficiencies of ND pristine are higher than that of ND-COOH.

  5. Eddy covariance observations of surface leakage during shallow subsurface CO2 releases

    Science.gov (United States)

    Lewicki, Jennifer L.; Hilley, George E.; Fischer, Marc L.; Pan, Lehua; Oldenburg, Curtis M.; Dobeck, Laura; Spangler, Lee

    2009-06-01

    We tested the ability of eddy covariance (EC) to detect, locate, and quantify surface CO2 flux leakage signals within a background ecosystem. For 10 days starting on 9 July 2007, and for 7 days starting on 3 August 2007, 0.1 (Release 1) and 0.3 (Release 2) t CO2 d-1, respectively, were released from a horizontal well ˜100 m in length and ˜2.5 m in depth located in an agricultural field in Bozeman, Montana. An EC station measured net CO2 flux (Fc) from 8 June 2006 to 4 September 2006 (mean and standard deviation = -12.4 and 28.1 g m-2 d-1, respectively) and from 28 May 2007 to 4 September 2007 (mean and standard deviation = -12.0 and 28.1 g m-2 d-1, respectively). The Release 2 leakage signal was visible in the Fc time series, whereas the Release 1 signal was difficult to detect within variability of ecosystem fluxes. To improve detection ability, we calculated residual fluxes (Fcr) by subtracting fluxes corresponding to a model for net ecosystem exchange from Fc. Fcr had reduced variability and lacked the negative bias seen in corresponding Fc distributions. Plotting the upper 90th percentile Fcr versus time enhanced the Release 2 leakage signal. However, values measured during Release 1 fell within the variability assumed to be related to unmodeled natural processes. Fcr measurements and corresponding footprint functions were inverted using a least squares approach to infer the spatial distribution of surface CO2 fluxes during Release 2. When combined with flux source area evaluation, inversion results roughly located the CO2 leak, while resolution was insufficient to quantify leakage rate.

  6. Effects of modified surfaces produced at plasma-facing surface on hydrogen release behavior in the LHD

    Directory of Open Access Journals (Sweden)

    Y. Nobuta

    2017-08-01

    Full Text Available In the present study, an additional deuterium (D ion irradiation was performed against long-term samples mounted on the helical coil can and in the outer private region in the LHD during the 17th experimental campaign. Based on the release behavior of the D and hydrogen (H retained during the experimental campaign, the difference of release behavior at the top surface and in bulk of modified surfaces is discussed. Almost all samples on the helical coil can were erosion-dominant and some samples were covered with boron or carbon, while a very thick carbon films were formed in the outer private region. In the erosion-dominant area, the D desorbed at much lower temperatures compared to that of H retained during the LHD plasma operation. For the samples covered with boron, the D tended to desorb at lower temperatures compared to H. For the carbon deposition samples, the D desorbed at much higher temperatures compared to no deposition and boron-covered samples, which was very similar to that of H. The D retention capabilities at the top surface of carbon and boron films were 2–3 times higher than no deposition area. The results indicate that the retention and release behavior at the top surface of the modified layer can be different from that of bulk substrate material.

  7. Fluoride release and surface roughness of a new glass ionomer cement: glass carbomer

    Directory of Open Access Journals (Sweden)

    Célia Maria Condeixa de França LOPES

    2018-02-01

    Full Text Available Abstract Objective This study analyzed the fluoride release/recharge and surface roughness of glass carbomer compared to other encapsulated glass ionomer cements (GICs. Material and method The GICs tested were Glass Fill® (GC-GCP Dental, Riva Self Cure® (RS-SDI, Riva Light Cure® (RL-SDI, Equia Fil® (EF-GC Europe. The composite resin Luna® (LU-SDI was used as control. Five samples of each material were prepared and kept in a humidifier for 24 hours (37 °C, 100% relative humidity. Fluoride release was measured in two times: before (T1: days 1, 2, 7, 14 and after topical application of fluoride (T2: days 15, 16, 21 and 28. The surface roughness was also measured in both times (T1: days 1 and 14; T2: days 15 and 28. All samples were submitted to a single topical application of acidulated fluoride phosphate (Fluor Care - FGM. Two-way ANOVA with repeated measures and Tukey's post-test (p <0.05 were used in the statistical analysis. Result Equia Fil presented the highest fluoride release in both evaluation periods, with a higher release in T1 (p <0.05. The other materials tested, including glass carbomer presented similar release in both periods (T1 and T2. Regarding surface roughness, no significant differences were observed in the interaction between the material × time factors (T1 and T2 (p=0.966. Conclusion The GICs tested presented fluoride release and recharge ability and showed no surface roughness increase by topical application of fluoride.

  8. Nanostructuring of Solar Cell Surfaces

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    Solar energy is by far the most abundant renewable energy source available, but the levelized cost of solar energy is still not competitive with that of fossil fuels. Therefore there is a need to improve the power conversion effciency of solar cells without adding to the production cost. The main...... objective of this PhD thesis is to develop nanostructured silicon (Si) solar cells with higher power conversion efficiency using only scalable and cost-efficient production methods. The nanostructures, known as 'black silicon', are fabricated by single-step, maskless reactive ion etching and used as front...... texturing of different Si solar cells. Theoretically the nanostructure topology may be described as a graded refractive index in a mean-field approximation between air and Si. The optical properties of the developed black Si were simulated and experimentally measured. Total AM1.5G-weighted average...

  9. MEMS-based dynamic cell-to-cell culture platforms using electrochemical surface modifications

    International Nuclear Information System (INIS)

    Chang, Jiyoung; Lin, Liwei; Yoon, Sang-Hee; Mofrad, Mohammad R K

    2011-01-01

    MEMS-based biological platforms with the capability of both spatial placements and time releases of living cells for cell-to-cell culture experiments have been designed and demonstrated utilizing electrochemical surface modification effects. The spatial placement is accomplished by electrochemical surface modification of substrate surfaces to be either adhesive or non-adhesive for living cells. The time control is achieved by the electrical activation of the selective indium tin oxide co-culture electrode to allow the migration of living cells onto the electrode to start the cell-to-cell culture studies. Prototype devices have a three-electrode design with an electrode size of 50 × 50 µm 2 and the separation gaps of 2 µm between them. An electrical voltage of −1.5 V has been used to activate the electrodes independently and sequentially to demonstrate the dynamic cell-to-cell culture experiments of NIH 3T3 fibroblast and Madin Darby canine kidney cells. As such, this MEMS platform could be a basic yet versatile tool to characterize transient cell-to-cell interactions

  10. Functional dynamics of cell surface membrane proteins.

    Science.gov (United States)

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Metal release behavior of surface oxidized stainless steels into flowing high temperature pure water

    International Nuclear Information System (INIS)

    Fujiwara, Kazuo; Tomari, Haruo; Nakayama, Takenori; Shimogori, Kazutoshi; Ishigure, Kenkichi; Matsuura, Chihiro; Fujita, Norihiko; Ono, Shoichi.

    1987-01-01

    In order to clarify the effect of oxidation treatment of Type 304 SS on the inhibition of metal release into high temperature pure water, metal release rate of individual alloying element into flowing deionized water containing 50 ppb dissolved oxygen was measured as the function of exposure time on representative specimens oxidized in air and steam. The behavior of metal release was also discussed in relation to the structure of surface films. Among the alloying elements the amount of Fe ion, Cr ion and Fe crud in high temperature pure water tended to saturate with the exposure time and that of Ni ion and Co ion tended to increase monotonously with the exposure time for all specimens tested. And the treatment of steam-oxidation was the most effective to decrease the metal release of alloying elements and the treatment by air-oxidation also decreased the metal release. These tendencies were confirmed to correlate well with the structure of the surface films as it was in the results in the static autoclave test. (author)

  12. Tritium loading in ITER plasma-facing surfaces and its release under accident conditions

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Pawelko, R.J.

    1996-01-01

    Plasma-facing surfaces of the International Thermonuclear Experimental Reactor (ITER) will take up tritium from the plasma. These surfaces will probably consist of matures of Be, C, and possibly W together with other impurities. Recent experimental results have suggested mechanisms, not previously considered in analyses, by which tritium and other hydrogen isotopes are retained in Be. This warrants revised modeling and estimation of the amount of tritium that will be deposited in ITER beryllium plasma-facing surfaces and the rates at which it can be released under postulated accident scenarios. In this paper we describe improvements in modeling and experiments planned at the Idaho National Engineering Laboratory (INEL) to investigate the tritium uptake and thermal release behavior for mixed plasma- facing materials. TMAP4 calculations were made using recent data to estimate first-wall tritium inventories in ITER. 16 refs., 1 fig

  13. Pancreatic hormones are expressed on the surfaces of human and rat islet cells through exocytotic sites

    DEFF Research Database (Denmark)

    Larsson, L I; Hutton, J C; Madsen, O D

    1989-01-01

    . Electron microscopy reveals the labeling to occur at sites of exocytotic granule release, involving the surfaces of extruded granule cores. The surfaces of islet cells were labeled both by polyclonal and monoclonal antibodies, excluding that receptor-interacting, anti-idiotypic hormone antibodies were...... for these results. It is concluded that the staining reflects interactions between the appropriate antibodies and exocytotic sites of hormone release....

  14. Molecular weight-dependent degradation and drug release of surface-eroding poly(ethylene carbonate)

    DEFF Research Database (Denmark)

    Bohr, Adam; Wang, Yingya; Harmankaya, Necati

    2017-01-01

    .7 macrophages) and in vivo (subcutaneous implantation in rats). All investigated samples degraded by means of surface erosion (mass loss, but constant molecular weight), which was accompanied by a predictable, erosion-controlled drug release pattern. Accordingly, the obtained in vitro degradation half......Poly(ethylene carbonate) (PEC) is a unique biomaterial showing significant potential for controlled drug delivery applications. The current study investigated the impact of the molecular weight on the biological performance of drug-loaded PEC films. Following the preparation and thorough...... to control the spatial and temporal on-demand degradation and drug release from the employed delivery system....

  15. Probes for anionic cell surface detection

    Science.gov (United States)

    Smith, Bradley D.

    2013-03-05

    Embodiments of the present invention are generally directed to compositions comprising a class of molecular probes for detecting the presence of anionic cell surfaces. Embodiments include compositions that are enriched for these compositions and preparations, particularly preparations suitable for use as laboratory/clinical reagents and diagnostic indicators, either alone or as part of a kit. An embodiment of the invention provides for a highly selective agent useful in the discernment and identification of dead or dying cells, such as apoptotic cells, in a relatively calcium-free environment. An embodiment of the invention provides a selective agent for the identification of bacteria in a mixed population of bacterial cells and nonbacterial cells.

  16. Bacteria-induced histamine release from human bronchoalveolar cells and blood leukocytes

    DEFF Research Database (Denmark)

    Clementsen, P; Milman, N; Struve-Christensen, E

    1991-01-01

    23187 resulted in histamine release. S. aureus-induced histamine release from basophils was examined in leukocyte suspensions obtained from the same individuals, and in all experiments release was found. The dose-response curves were similar to those obtained with BAL cells. The bacteria...

  17. Enhancement of cell-cell contact by a nonmitogenic lectin increases blastogenic response and IL-2 release by mitogen-stimulated mouse thymocytes.

    Science.gov (United States)

    Favero, J; Marti, J; Dornand, J; Bonnafous, J C; Mani, J C

    1986-03-01

    We have examined the influence of peanut agglutinin (PNA), a lectin which agglutinates but does not stimulate mouse thymocytes, on the responsiveness of these cells to concanavalin A (Con A) or galactose oxidase stimulation. Binding low amounts of PNA on unseparated mouse thymocytes pretreated with neuraminidase highly enhances the mitogenic response and the level of interleukin 2 release in the culture medium upon Con A stimulation. We have shown that PNA present on the cell surface acts as a crosslinking agent which favors intercellular binding between accessory cells (macrophages) and thymocytes, leading through this enhanced cooperation by cell-cell contact to an enhanced blastogenic response.

  18. Cell Adhesion on Surface-Functionalized Magnesium.

    Science.gov (United States)

    Wagener, Victoria; Schilling, Achim; Mainka, Astrid; Hennig, Diana; Gerum, Richard; Kelch, Marie-Luise; Keim, Simon; Fabry, Ben; Virtanen, Sannakaisa

    2016-05-18

    The biocompatibility of commercially pure magnesium-based (cp Mg) biodegradable implants is compromised of strong hydrogen evolution and surface alkalization due to high initial corrosion rates of cp Mg in the physiological environment. To mitigate this problem, the addition of corrosion-retarding alloying elements or coating of implant surfaces has been suggested. In the following work, we explored the effect of organic coatings on long-term cell growth. cp Mg was coated with aminopropyltriehtoxysilane + vitamin C (AV), carbonyldiimidazole (CDI), or stearic acid (SA). All three coatings have been previously suggested to reduce initial corrosion and to enhance protein adsorption and hence cell adhesion on magnesium surfaces. Endothelial cells (DH1+/+) and osteosarcoma cells (MG63) were cultured on coated samples for up to 20 days. To quantify Mg corrosion, electrochemical impedance spectroscopy (EIS) was measured after 1, 3, and 5 days of cell culture. We also investigated the speed of initial cell spreading after seeding using fluorescently labeled fibroblasts (NIH/3T3). Hydrogen evolution after contact with cell culture medium was markedly decreased on AV- and SA-coated Mg compared to uncoated Mg. These coatings also showed improved cell adhesion and spreading after 24 h of culture comparable to tissue-treated plastic surfaces. On AV-coated cp Mg, a confluent layer of endothelial cells formed after 5 days and remained intact for up to 20 days. Together, these data demonstrate that surface coating with AV is a viable strategy for improving long-term biocompatibility of cp Mg-based implants. EIS measurements confirmed that the presence of a confluent cell layer increased the corrosion resistance.

  19. Micromagnetic Cancer Cell Immobilization and Release for Real-Time Single Cell Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, Devina; Rad, Armin Tahmasbi [Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269 (United States); Nieh, Mu-Ping [Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269 (United States); Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269 (United States); Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States); Claffey, Kevin P. [Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030 (United States); Hoshino, Kazunori, E-mail: hoshino@engr.uconn.edu [Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269 (United States)

    2017-04-01

    Understanding the interaction of live cells with macromolecules is crucial for designing efficient therapies. Considering the functional heterogeneity found in cancer cells, real-time single cell analysis is necessary to characterize responses. In this study, we have designed and fabricated a microfluidic channel with patterned micromagnets which can temporarily immobilize the cells during analysis and release them after measurements. The microchannel is composed of plain coverslip top and bottom panels to facilitate easy microscopic observation and undisturbed application of analytes to the cells. Cells labeled with functionalized magnetic beads were immobilized in the device with an efficiency of 90.8±3.6%. Since the micromagnets are made of soft magnetic material (Ni), they released cells when external magnetic field was turned off from the channel. This allows the reuse of the channel for a new sample. As a model drug analysis, the immobilized breast cancer cells (MCF7) were exposed to fluorescent lipid nanoparticles and association and dissociation were measured through fluorescence analysis. Two concentrations of nanoparticles, 0.06 µg/ml and 0.08 µg/ml were tested and time lapse images were recorded and analyzed. The microfluidic device was able to provide a microenvironment for sample analysis, making it an efficient platform for real-time analysis.

  20. Acetylcholine release by human colon cancer cells mediates autocrine stimulation of cell proliferation.

    Science.gov (United States)

    Cheng, Kunrong; Samimi, Roxana; Xie, Guofeng; Shant, Jasleen; Drachenberg, Cinthia; Wade, Mark; Davis, Richard J; Nomikos, George; Raufman, Jean-Pierre

    2008-09-01

    Most colon cancers overexpress M3 muscarinic receptors (M3R), and post-M3R signaling stimulates human colon cancer cell proliferation. Acetylcholine (ACh), a muscarinic receptor ligand traditionally regarded as a neurotransmitter, may be produced by nonneuronal cells. We hypothesized that ACh release by human colon cancer cells results in autocrine stimulation of proliferation. H508 human colon cancer cells, which have robust M3R expression, were used to examine effects of muscarinic receptor antagonists, acetylcholinesterase inhibitors, and choline transport inhibitors on cell proliferation. A nonselective muscarinic receptor antagonist (atropine), a selective M3R antagonist (p-fluorohexahydro-sila-difenidol hydrochloride), and a choline transport inhibitor (hemicholinum-3) all inhibited unstimulated H508 colon cancer cell proliferation by approximately 40% (P<0.005). In contrast, two acetylcholinesterase inhibitors (eserine-hemisulfate and bis-9-amino-1,2,3,4-tetrahydroacridine) increased proliferation by 2.5- and 2-fold, respectively (P<0.005). By using quantitative real-time PCR, expression of choline acetyltransferase (ChAT), a critical enzyme for ACh synthesis, was identified in H508, WiDr, and Caco-2 colon cancer cells. By using high-performance liquid chromatography-electrochemical detection, released ACh was detected in H508 and Caco-2 cell culture media. Immunohistochemistry in surgical specimens revealed weak or no cytoplasmic staining for ChAT in normal colon enterocytes (n=25) whereas half of colon cancer specimens (n=24) exhibited moderate to strong staining (P<0.005). We conclude that ACh is an autocrine growth factor in colon cancer. Mechanisms that regulate colon epithelial cell production and release of ACh warrant further investigation.

  1. Influence of Surface Chemistry on the Release of an Antibacterial Drug from Nanostructured Porous Silicon.

    Science.gov (United States)

    Wang, Mengjia; Hartman, Philip S; Loni, Armando; Canham, Leigh T; Bodiford, Nelli; Coffer, Jeffery L

    2015-06-09

    Nanostructured mesoporous silicon possesses important properties advantageous to drug loading and delivery. For controlled release of the antibacterial drug triclosan, and its associated activity versus Staphylococcus aureus, previous studies investigated the influence of porosity of the silicon matrix. In this work, we focus on the complementary issue of the influence of surface chemistry on such properties, with particular regard to drug loading and release kinetics that can be ideally adjusted by surface modification. Comparison between drug release from as-anodized, hydride-terminated hydrophobic porous silicon and the oxidized hydrophilic counterpart is complicated due to the rapid bioresorption of the former; hence, a hydrophobic interface with long-term biostability is desired, such as can be provided by a relatively long chain octyl moiety. To minimize possible thermal degradation of the surfaces or drug activity during loading of molten drug species, a solution loading method has been investigated. Such studies demonstrate that the ability of porous silicon to act as an effective carrier for sustained delivery of antibacterial agents can be sensitively altered by surface functionalization.

  2. Growth factor delivery: How surface interactions modulate release in vitro and in vivo

    Science.gov (United States)

    King, William J.; Krebsbach, Paul H.

    2013-01-01

    Biomaterial scaffolds have been extensively used to deliver growth factors to induce new bone formation. The pharmacokinetics of growth factor delivery has been a critical regulator of their clinical success. This review will focus on the surface interactions that control the non-covalent incorporation of growth factors into scaffolds and the mechanisms that control growth factor release from clinically relevant biomaterials. We will focus on the delivery of recombinant human bone morphogenetic protein-2 from materials currently used in the clinical practice, but also suggest how general mechanisms that control growth factor incorporation and release delineated with this growth factor could extend to other systems. A better understanding of the changing mechanisms that control growth factor release during the different stages of preclinical development could instruct the development of future scaffolds for currently untreatable injuries and diseases. PMID:22433783

  3. Goblet Cell Hyperplasia Requires High Bicarbonate Transport To Support Mucin Release.

    Science.gov (United States)

    Gorrieri, Giulia; Scudieri, Paolo; Caci, Emanuela; Schiavon, Marco; Tomati, Valeria; Sirci, Francesco; Napolitano, Francesco; Carrella, Diego; Gianotti, Ambra; Musante, Ilaria; Favia, Maria; Casavola, Valeria; Guerra, Lorenzo; Rea, Federico; Ravazzolo, Roberto; Di Bernardo, Diego; Galietta, Luis J V

    2016-10-27

    Goblet cell hyperplasia, a feature of asthma and other respiratory diseases, is driven by the Th-2 cytokines IL-4 and IL-13. In human bronchial epithelial cells, we find that IL-4 induces the expression of many genes coding for ion channels and transporters, including TMEM16A, SLC26A4, SLC12A2, and ATP12A. At the functional level, we find that IL-4 enhances calcium- and cAMP-activated chloride/bicarbonate secretion, resulting in high bicarbonate concentration and alkaline pH in the fluid covering the apical surface of epithelia. Importantly, mucin release, elicited by purinergic stimulation, requires the presence of bicarbonate in the basolateral solution and is defective in cells derived from cystic fibrosis patients. In conclusion, our results suggest that Th-2 cytokines induce a profound change in expression and function in multiple ion channels and transporters that results in enhanced bicarbonate transport ability. This change is required as an important mechanism to favor release and clearance of mucus.

  4. N-Acetylcysteine Amide Protects Against Oxidative Stress–Induced Microparticle Release From Human Retinal Pigment Epithelial Cells

    Science.gov (United States)

    Carver, Kyle A.; Yang, Dongli

    2016-01-01

    Purpose Oxidative stress is a major factor involved in retinal pigment epithelium (RPE) apoptosis that underlies AMD. Drusen, extracellular lipid- and protein-containing deposits, are strongly associated with the development of AMD. Cell-derived microparticles (MPs) are small membrane-bound vesicles shed from cells. The purpose of this study was to determine if oxidative stress drives MP release from RPE cells, to assess whether these MPs carry membrane complement regulatory proteins (mCRPs: CD46, CD55, and CD59), and to evaluate the effects of a thiol antioxidant on oxidative stress–induced MP release. Methods Retinal pigment epithelium cells isolated from human donor eyes were cultured and treated with hydrogen peroxide (H2O2) to induce oxidative stress. Isolated MPs were fixed for transmission electron microscopy or processed for component analysis by flow cytometry, Western blot analysis, and confocal microscopy. Results Transmission electron microscopy showed that MPs ranged in diameter from 100 to 1000 nm. H2O2 treatment led to time- and dose-dependent elevations in MPs with externalized phosphatidylserine and phosphatidylethanolamine, known markers of MPs. These increases were strongly correlated to RPE apoptosis. Oxidative stress significantly increased the release of mCRP-positive MPs, which were prevented by a thiol antioxidant, N-acetylcysteine amide (NACA). Conclusions This is the first evidence that oxidative stress induces cultured human RPE cells to release MPs that carry mCRPs on their surface. The levels of released MPs are strongly correlated with RPE apoptosis. N-acetylcysteine amide prevents oxidative stress–induced effects. Our findings indicate that oxidative stress reduces mCRPs on the RPE surface through releasing MPs. PMID:26842754

  5. Isopleths of surface concentration and surface exposure rate due to a radioactive cloud released from a stack

    International Nuclear Information System (INIS)

    Kobayashi, Hideo; Yabuta, Hajimu; Katagiri, Hiroshi; Obata, Kazuichi; Kokubu, Morinobu

    1982-03-01

    Various calculations are made to estimate the distributions of concentration and γ-exposure rate due to a radioactive cloud released from a point source to the atmosphere. In this report, the isopleths of concentration and γ-exposure rate which were calculated are given in graphs to enable rapid prediction of the influence of released radioactive material in the emergency situation. Recently there are facilities which are equipped with a system to display the calculation results on CRT; but such practice is rather rare. By placing the calculated isopleths of reduction scale 1/25000 or 1/50000 on the usual map, any facilities without the CRT system can readily estimate the influence of an accidental release. The graphs of isopleths are given with the release height (11 values of 0 to 200 m at about 20 m intervals) and the atmospheric stability (6 classes) as parameters. Calculations of γ-exposure rates were made using the computer code GAMPUL developed by T. Hayashi and T. Shiraishi. In the calculation of radioactive concentrations and γ-exposure rates, the vertical diffusion depths, σsub(z), exceeding 1000 m are taken to be 1000 m according to the Meteorological Guide for the Safety Analysis of Power Reactor (J.AEC). The comparison between with and without this limitation in σsub(z) is made in the case of downwind axial surface distributions. (author)

  6. Surface acoustic wave actuated cell sorting (SAWACS).

    Science.gov (United States)

    Franke, T; Braunmüller, S; Schmid, L; Wixforth, A; Weitz, D A

    2010-03-21

    We describe a novel microfluidic cell sorter which operates in continuous flow at high sorting rates. The device is based on a surface acoustic wave cell-sorting scheme and combines many advantages of fluorescence activated cell sorting (FACS) and fluorescence activated droplet sorting (FADS) in microfluidic channels. It is fully integrated on a PDMS device, and allows fast electronic control of cell diversion. We direct cells by acoustic streaming excited by a surface acoustic wave which deflects the fluid independently of the contrast in material properties of deflected objects and the continuous phase; thus the device underlying principle works without additional enhancement of the sorting by prior labelling of the cells with responsive markers such as magnetic or polarizable beads. Single cells are sorted directly from bulk media at rates as fast as several kHz without prior encapsulation into liquid droplet compartments as in traditional FACS. We have successfully directed HaCaT cells (human keratinocytes), fibroblasts from mice and MV3 melanoma cells. The low shear forces of this sorting method ensure that cells survive after sorting.

  7. Dependence of anaphylactic histamine release from rat mast cells on cellular energy metabolism

    DEFF Research Database (Denmark)

    Johansen, Torben

    1981-01-01

    The relation between anaphylactic histamine release and the adenosine triphosphate (ATP) content of the mast cells was studied. The cells were incubated with glycolytic (2-deoxyglucose) and respiratory inhibitors (antimycin A and oligomycin) in order to decrease the ATP content of the cells prior...... to initiation of the release process by the antigen-antibody reaction. The secretory capacity of mast cells was less related to the cellular level of ATP at the time of activation of the release process by the antigen-antibody reaction than to the rate of cellular energy supply. Furthermore, mast cells were...... pretreated with 2-deoxyglucose. The release of histamine from these cells was reduced when respiratory inhibitors were added to the cell suspension 5 to 20 sec after exposure of the cells to antigen. This may indicate that the secretory process requires energy, and it seems necessary that energy should...

  8. Biomolecular strategies for cell surface engineering

    Science.gov (United States)

    Wilson, John Tanner

    Islet transplantation has emerged as a promising cell-based therapy for the treatment of diabetes, but its clinical efficacy remains limited by deleterious host responses that underlie islet destruction. In this dissertation, we describe the assembly of ultrathin conformal coatings that confer molecular-level control over the composition and biophysicochemical properties of the islet surface with implications for improving islet engraftment. Significantly, this work provides novel biomolecular strategies for cell surface engineering with broad biomedical and biotechnological applications in cell-based therapeutics and beyond. Encapsulation of cells and tissue offers a rational approach for attenuating deleterious host responses towards transplanted cells, but a need exists to develop cell encapsulation strategies that minimize transplant volume. Towards this end, we endeavored to generate nanothin films of diverse architecture with tunable properties on the extracellular surface of individual pancreatic islets through a process of layer-by-layer (LbL) self assembly. We first describe the formation of poly(ethylene glycol) (PEG)-rich conformal coatings on islets via LbL self assembly of poly(L-lysine)-g-PEG(biotin) and streptavidin. Multilayer thin films conformed to the geometrically and chemically heterogeneous islet surface, and could be assembled without loss of islet viability or function. Significantly, coated islets performed comparably to untreated controls in a murine model of allogenic intraportal islet transplantation, and, to our knowledge, this is the first study to report in vivo survival and function of nanoencapsulated cells or cell aggregates. Based on these findings, we next postulated that structurally similar PLL-g-PEG copolymers comprised of shorter PEG grafts might be used to initiate and propagate the assembly of polyelectrolyte multilayer (PEM) films on pancreatic islets, while simultaneously preserving islet viability. Through control of PLL

  9. Dopamine-induced programmed cell death is associated with cytochrome c release and caspase-3 activation in snail salivary gland cells.

    Science.gov (United States)

    Pirger, Zsolt; Rácz, Boglárka; Kiss, Tibor

    2009-02-01

    PCD (programmed cell death) is a common mechanism to remove unwanted and excessive cells from organisms. In several exocrine cell types, PCD mode of release of secretory products has been reported. The molecular mechanism of the release, however, is largely unknown. Our aim was to study the molecular mechanism of saliva release from cystic cells, the specific cell type of snail SGs (salivary glands). SG cells in active feeding animals revealed multiple morphological changes characteristic of PCD. Nerve stimulation and DA (dopamine) increased the number of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling)-positive cells both in inactive and feeding animals. The DA-induced PCD was prevented by TEA (tetraethylammonium chloride) and eticlopride, emphasizing the role of K channels and D2 receptors in the PCD of cystic cells. DA enhanced cyto-c (cytochrome c) translocation into the cytosol and methyl-beta-cyclodextrin prevented it, suggesting apoptosome formation and ceramide involvement in the PCD linking of the surface DA receptor to mitochondria. Western blot analysis revealed that the release of cyto-c was under the control of Bcl-2 and Bad. DA also increased the active caspase-3 in gland cells while D2 receptor antagonists and TEA attenuated it. Our results provide evidence for a type of transmitter-mediated pathway that regulates the PCD of secretory cells in a mitochondrial-caspase-dependent manner. The activation of specific molecules, such as K channels, DA receptors, cyto-c, ceramide, Bcl-2 proteins and caspase-3, but not caspase-8, was demonstrated in cells involved in the DA-induced PCD, suggesting that PCD is a physiological method for the release of saliva from SG cells.

  10. Surface cell immobilization within perfluoroalkoxy microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Stojkovič, Gorazd; Krivec, Matic [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia); Vesel, Alenka [Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Marinšek, Marjan [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia); Žnidaršič-Plazl, Polona, E-mail: polona.znidarsic@fkkt.uni-lj.si [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia)

    2014-11-30

    Graphical abstract: - Highlights: • A very efficient approach for immobilization of cells into microreactors is presented. • It is applicable to various materials, including PFA and cyclic olefin (co)polymers. • It was used to immobilize different prokaryotic and eukaryotic microbes. • Cells were immobilized on the surface in high density and showed good stability. • Mechanisms of APTES interactions with target materials are proposed. - Abstract: Perfluoroalkoxy (PFA) is one of the most promising materials for the fabrication of cheap, solvent resistant and reusable microfluidic chips, which have been recently recognized as effective tools for biocatalytic process development. The application of biocatalysts significantly depends on efficient immobilization of enzymes or cells within the reactor enabling long-term biocatalyst use. Functionalization of PFA microchannels by 3-aminopropyltriethoxysilane (ATPES) and glutaraldehyde was used for rapid preparation of microbioreactors with surface-immobilized cells. X-ray photoelectron spectroscopy and scanning electron microscopy were used to accurately monitor individual treatment steps and to select conditions for cell immobilization. The optimized protocol for Saccharomyces cerevisiae immobilization on PFA microchannel walls comprised ethanol surface pretreatment, 4 h contacting with 10% APTES aqueous solution, 10 min treatment with 1% glutaraldehyde and 20 min contacting with cells in deionized water. The same protocol enabled also immobilization of Escherichia coli, Pseudomonas putida and Bacillus subtilis cells on PFA surface in high densities. Furthermore, the developed procedure has been proved to be very efficient also for surface immobilization of tested cells on other materials that are used for microreactor fabrication, including glass, polystyrene, poly (methyl methacrylate), polycarbonate, and two olefin-based polymers, namely Zeonor{sup ®} and Topas{sup ®}.

  11. Risk assessment based on current release standards for radioactive surface contamination

    International Nuclear Information System (INIS)

    Chen, S.Y.

    1993-09-01

    Standards for uncontrolled releases of radioactive surface contamination have been in existence in the United States for about two decades. Such standards have been issued by various agencies, including the US Department of Energy. This paper reviews the technical basis of published standards, identifies areas in need of revision, provides risk interpretations based on current technical knowledge and the regulatory environment, and offers suggestions for improvements

  12. Complexity of the influence of gangliosides on histamine release from human basophils and rat mast cells

    DEFF Research Database (Denmark)

    Jensen, C; Svendsen, U G; Thastrup, Ole

    1987-01-01

    The influence of exogenous addition of gangliosides on histamine release from human basophils and rat mast cells was examined in vitro. Gangliosides dose-dependently inhibited histamine release, and this inhibition was dependent on the ganglioside sialic acid content, since GT1b, having 3 sialic...... was reflected in the sensitivity of the cells to extracellular calcium, since inhibition of the release could be counteracted by increasing the extracellular concentration of calcium....

  13. Tritium surface loading due to contamination of rainwater from atmospheric release at NAPS

    International Nuclear Information System (INIS)

    Sharma, L.N.; Dube, B.; Varakhedkar, V.K.

    2001-01-01

    Annual tritium (HTO) surface loading has been measured and calculated for the year 1998-99 within 0.8 km distance from 145m high stack of Narora Atomic Power Station (NAPS) at eight locations in different directions. The technique for measured values consists of the summation of product of tritium concentration (Bq/l) in daily rainfall samples and daily rainfall (mm) whereas that for calculated values having the use of prevailing meteorological conditions and average tritium release rate during a year. The ratios of measured and calculated values of tritium surface loading during the years 1998-99 are found to be in the range of 0.18 to 6.97. Tritium surface loading studies at NAPS reveal that a fraction 1.7E-03 of total annual tritium released through stack gets deposited on the surface due to washout / rainout of plume within 0.8 km radial distance from stack. The range of deposition velocity, V w (m.s - 1 ) i.e the ratio of annual tritium surface loading W(Bq.m - 2 . s - 1 ) and annual mean tritium concentration in air, χo(Bq.m - 3) at three locations for the years 1998-99 is found to be 5.59E-04 to 5.99E-03 ms - 1 . The average value for wet deposition velocity V bar w for NAPS site is estimated as 2.92E-03 m.s - 1. (author)

  14. The effects of membrane cholesterol and simvastatin on red blood cell deformability and ATP release.

    Science.gov (United States)

    Forsyth, Alison M; Braunmüller, Susanne; Wan, Jiandi; Franke, Thomas; Stone, Howard A

    2012-05-01

    It is known that deformation of red blood cells (RBCs) is linked to ATP release from the cells. Further, membrane cholesterol has been shown to alter properties of the cell membrane such as fluidity and bending stiffness. Membrane cholesterol content is increased in some cardiovascular diseases, for example, in individuals with acute coronary syndromes and chronic stable angina, and therefore, because of the potential clinical relevance, we investigated the influence of altered RBC membrane cholesterol levels on ATP release. Because of the correlation between statins and reduced membrane cholesterol in vivo, we also investigated the effects of simvastatin on RBC deformation and ATP release. We found that reducing membrane cholesterol increases cell deformability and ATP release. We also found that simvastatin increases deformability by acting directly on the membrane in the absence of the liver, and that ATP release was increased for cells with enriched cholesterol after treatment with simvastatin. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Cancer Patient T Cells Genetically Targeted to Prostate-Specific Membrane Antigen Specifically Lyse Prostate Cancer Cells and Release Cytokines in Response to Prostate-Specific Membrane Antigen

    Directory of Open Access Journals (Sweden)

    Michael C. Gong

    1999-06-01

    Full Text Available The expression of immunoglobulin-based artificial receptors in normal T lymphocytes provides a means to target lymphocytes to cell surface antigens independently of major histocompatibility complex restriction. Such artificial receptors have been previously shown to confer antigen-specific tumoricidal properties in murine T cells. We constructed a novel ζ chain fusion receptor specific for prostate-specific membrane antigen (PSMA termed Pz-1. PSMA is a cell-surface glycoprotein expressed on prostate cancer cells and the neovascular endothelium of multiple carcinomas. We show that primary T cells harvested from five of five patients with different stages of prostate cancer and transduced with the Pz-1 receptor readily lyse prostate cancer cells. Having established a culture system using fibroblasts that express PSMA, we next show that T cells expressing the Pz-1 receptor release cytokines in response to cell-bound PSMA. Furthermore, we show that the cytokine release is greatly augmented by B7.1-mediated costimulation. Thus, our findings support the feasibility of adoptive cell therapy by using genetically engineered T cells in prostate cancer patients and suggest that both CD4+ and CD8+ T lymphocyte functions can be synergistically targeted against tumor cells.

  16. Method for isolation and molecular characterization of extracellular microvesicles released from brain endothelial cells

    Directory of Open Access Journals (Sweden)

    Haqqani Arsalan S

    2013-01-01

    Full Text Available Abstract Background In addition to possessing intracellular vesicles, eukaryotic cells also produce extracellular microvesicles, ranging from 50 to 1000 nm in diameter that are released or shed into the microenvironment under physiological and pathological conditions. These membranous extracellular organelles include both exosomes (originating from internal vesicles of endosomes and ectosomes (originating from direct budding/shedding of plasma membranes. Extracellular microvesicles contain cell-specific collections of proteins, glycoproteins, lipids, nucleic acids and other molecules. These vesicles play important roles in intercellular communication by acting as carrier for essential cell-specific information to target cells. Endothelial cells in the brain form the blood–brain barrier, a specialized interface between the blood and the brain that tightly controls traffic of nutrients and macromolecules between two compartments and interacts closely with other cells forming the neurovascular unit. Therefore, brain endothelial cell extracellular microvesicles could potentially play important roles in ‘externalizing’ brain-specific biomarkers into the blood stream during pathological conditions, in transcytosis of blood-borne molecules into the brain, and in cell-cell communication within the neurovascular unit. Methods To study cell-specific molecular make-up and functions of brain endothelial cell exosomes, methods for isolation of extracellular microvesicles using mass spectrometry-compatible protocols and the characterization of their signature profiles using mass spectrometry -based proteomics were developed. Results A total of 1179 proteins were identified in the isolated extracellular microvesicles from brain endothelial cells. The microvesicles were validated by identification of almost 60 known markers, including Alix, TSG101 and the tetraspanin proteins CD81 and CD9. The surface proteins on isolated microvesicles could potentially

  17. [Cell surface peroxidase--generator of superoxide anion in wheat root cells under wound stress].

    Science.gov (United States)

    Chasov, A V; Gordon, L Kh; Kolesnikov, O P; Minibaeva, F V

    2002-01-01

    Development of wound stress in excised wheat roots is known to be accompanied with an increase in reactive oxygen species (ROS) production, fall of membrane potential, release of K+ from cells, alkalization of extracellular solution, changes in respiration and metabolism of structural lipids. Dynamics of superoxide release correlates with changes in other physiological parameters, indicating the cross-reaction of these processes. Activity of peroxidase in extracellular solution after a 1 h incubation and removal of roots was shown to be stimulated by the range of organic acids, detergents, metals, and to be inhibited by cyanide. Superoxide production was sensitive to the addition of Mn2+ and H2O2. Increase in superoxide production correlates with the enhancement of peroxidase activity at the application of organic acids and detergents. The results obtained indicate that cell surface peroxidase is one of the main generators of superoxide in wounded wheat root cells. Different ways of stimulation of the ROS producing activity in root cells is supposed. By controlling superoxide and hydrogen peroxide formation, the cell surface peroxidase can control the adaptation processes in stressed plant cells.

  18. The effect of tartrazine on histamine release from rat peritoneal mast cells.

    Science.gov (United States)

    Safford, R J; Goodwin, B F

    1984-01-01

    The release of histamine from purified rat peritoneal mast cells induced by specific antigen (egg albumin), compound 48/80 and calcium ionophore A23187 was modified by tartrazine. Histamine release induced by 48/80 and antigen was inhibited by the presence of 10(-5) to 10(-2)M tartrazine. The inhibitory effect on egg albumin induced histamine release was maximal when the tartrazine was added simultaneously with egg albumin, and was reduced by increased preincubation of the cells with tartrazine. Tartrazine had a small inhibitory effect on ionophore induced release at high concentrations, but augmented histamine release at tartrazine concentrations of 10(-3) and 10(-4)M. Augmentation of ionophore induced release was maximal at between 0-5 min preincubation of the cells with tartrazine.

  19. Amphiphilic cationic peptides mediate cell adhesion to plastic surfaces.

    Science.gov (United States)

    Rideout, D C; Lambert, M; Kendall, D A; Moe, G R; Osterman, D G; Tao, H P; Weinstein, I B; Kaiser, E T

    1985-09-01

    Four amphiphilic peptides, each with net charges of +2 or more at neutrality and molecular weights under 4 kilodaltons, were found to mediate the adhesion of normal rat kidney fibroblasts to polystyrene surfaces. Two of these peptides, a model for calcitonin (peptide 1, MCT) and melittin (peptide 2, MEL), form amphiphilic alpha-helical structures at aqueous/nonpolar interfaces. The other two, a luteinizing hormone-releasing hormone model (peptide 3, LHM) and a platelet factor model (peptide 4, MPF) form beta-strand structures in amphiphilic environments. Although it contains only 10 residues, LHM mediated adhesion to surfaces coated with solutions containing as little as 10 pmoles/ml of peptide. All four of these peptides were capable of forming monolayers at air-buffer interfaces with collapse pressures greater than 20 dynes/cm. None of these four peptides contains the tetrapeptide sequence Arg-Gly-Asp-Ser, which has been associated with fibronectin-mediated cell adhesion. Ten polypeptides that also lacked the sequence Arg-Gly-Asp-Ser but were nonamphiphilic and/or had net charges less than +2 at neutrality were all incapable of mediating cell adhesion (Pierschbacher and Ruoslahti, 1984). The morphologies of NRK cells spread on polystyrene coated with peptide LHM resemble the morphologies on fibronectin-coated surfaces, whereas cells spread on surfaces coated with MCT or MEL exhibit strikingly different morphologies. The adhesiveness of MCT, MEL, LHM, and MPF implies that many amphiphilic cationic peptides could prove useful as well defined adhesive substrata for cell culture and for studies of the mechanism of cell adhesion.

  20. Interaction of KSHV with Host Cell Surface Receptors and Cell Entry

    Directory of Open Access Journals (Sweden)

    Mohanan Valiya Veettil

    2014-10-01

    Full Text Available Virus entry is a complex process characterized by a sequence of events. Since the discovery of KSHV in 1994, tremendous progress has been made in our understanding of KSHV entry into its in vitro target cells. KSHV entry is a complex multistep process involving viral envelope glycoproteins and several cell surface molecules that is utilized by KSHV for its attachment and entry. KSHV has a broad cell tropism and the attachment and receptor engagement on target cells have an important role in determining the cell type-specific mode of entry. KSHV utilizes heparan sulfate, integrins and EphrinA2 molecules as receptors which results in the activation of host cell pre-existing signal pathways that facilitate the subsequent cascade of events resulting in the rapid entry of virus particles, trafficking towards the nucleus followed by viral and host gene expression. KSHV enters human fibroblast cells by dynamin dependant clathrin mediated endocytosis and by dynamin independent macropinocytosis in dermal endothelial cells. Once internalized into endosomes, fusion of the viral envelope with the endosomal membranes in an acidification dependent manner results in the release of capsids which subsequently reaches the nuclear pore vicinity leading to the delivery of viral DNA into the nucleus. In this review, we discuss the principal mechanisms that enable KSHV to interact with the host cell surface receptors as well as the mechanisms that are required to modulate cell signaling machinery for a successful entry.

  1. Endothelial cell labeling with indium-111-oxine as a marker of cell attachment to bioprosthetic surfaces

    International Nuclear Information System (INIS)

    Sharefkin, J.B.; Lather, C.; Smith, M.; Rich, N.M.

    1983-01-01

    Canine vascular endothelium labeled with indium-111-oxine was used as a marker of cell attachment to vascular prosthetic surfaces with complex textures. Primarily cultured and freshly harvested endothelial cells both took up the label rapidly. An average of 72% of a 32 micro Ci labeling dose was taken up by 1.5 X 10(6) cells in 10 min in serum-free medium. Over 95% of freshly labeled cells were viable by trypan blue tests and only 5% of the label was released after 1 h incubations at 37 degrees C. Labeled and unlabeled cells had similar rates of attachment to plastic dishes. Scanning electron microscopic studies showed that labeled cells retained their ability to spread on tissue culture dishes even at low (1%) serum levels. Labeled endothelial cells seeded onto Dacron or expanded polytetrafluoroethylene vascular prostheses by methods used in current surgical models could be identified by autoradiography of microscopic sections of the prostheses, and the efficiency of cell attachment to the prosthesis could be measured by gamma counting. Indium-111 labeling affords a simple and rapid way to measure initial cell attachment to, and distribution on, vascular prosthetic materials. The method could also allow measurement of early cell loss from a flow surface in vivo by using external gamma imaging

  2. Staphylococcus aureus extracellular adherence protein triggers TNFα release, promoting attachment to endothelial cells via protein A.

    Directory of Open Access Journals (Sweden)

    Andrew M Edwards

    Full Text Available Staphylococcus aureus is a leading cause of bacteraemia, which frequently results in complications such as infective endocarditis, osteomyelitis and exit from the bloodstream to cause metastatic abscesses. Interaction with endothelial cells is critical to these complications and several bacterial proteins have been shown to be involved. The S. aureus extracellular adhesion protein (Eap has many functions, it binds several host glyco-proteins and has both pro- and anti-inflammatory activity. Unfortunately its role in vivo has not been robustly tested to date, due to difficulties in complementing its activity in mutant strains. We previously found Eap to have pro-inflammatory activity, and here show that purified native Eap triggered TNFα release in whole human blood in a dose-dependent manner. This level of TNFα increased adhesion of S. aureus to endothelial cells 4-fold via a mechanism involving protein A on the bacterial surface and gC1qR/p33 on the endothelial cell surface. The contribution this and other Eap activities play in disease severity during bacteraemia was tested by constructing an isogenic set of strains in which the eap gene was inactivated and complemented by inserting an intact copy elsewhere on the bacterial chromosome. Using a murine bacteraemia model we found that Eap expressing strains cause a more severe infection, demonstrating its role in invasive disease.

  3. "Effect of nano-filled surface coating agent on fluoride release from conventional glass ionomer cement: An in vitro trial"

    OpenAIRE

    S Tiwari; B Nandlal

    2013-01-01

    Context: To overcome the drawbacks of glass ionomer cement of sensitivity to initial desiccation and moisture contamination the use of surface coating agent is recommended. The search in this area led to invent of use of nanofillers in surface coating agent, but its effect on fluoride release is not clear. Aim: The aim of this study is to evaluate and compare the fluoride release from conventional glass ionomer cement with and without surface coating agent. Settings and Design: This in vitro ...

  4. Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors

    International Nuclear Information System (INIS)

    Yan Ying; Cai Kaiyong; Yang Weihu; Liu Peng

    2013-01-01

    To reduce Ni ion release and improve biocompatibility of NiTi alloy, the cathodic plasma electrolytic deposition (CPED) technique was used to fabricate ceramic coating onto a NiTi alloy surface. The formation of a coating with a rough and micro-textured surface was confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. An inductively coupled plasma mass spectrometry test showed that the formed coating significantly reduced the release of Ni ions from the NiTi alloy in simulated body fluid. The influence of CPED treated NiTi substrates on the biological behaviors of osteoblasts, including cell adhesion, cell viability, and osteogenic differentiation function (alkaline phosphatase), was investigated in vitro. Immunofluorescence staining of nuclei revealed that the CPED treated NiTi alloy was favorable for cell growth. Osteoblasts on CPED modified NiTi alloy showed greater cell viability than those for the native NiTi substrate after 4 and 7 days cultures. More importantly, osteoblasts cultured onto a modified NiTi sample displayed significantly higher differentiation levels of alkaline phosphatase. The results suggested that surface functionalization of NiTi alloy with ceramic coating via the CPED technique was beneficial for cell proliferation and differentiation. The approach presented here is useful for NiTi implants to enhance bone osteointegration and reduce Ni ion release in vitro

  5. Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors

    Science.gov (United States)

    Yan, Ying; Cai, Kaiyong; Yang, Weihu; Liu, Peng

    2013-07-01

    To reduce Ni ion release and improve biocompatibility of NiTi alloy, the cathodic plasma electrolytic deposition (CPED) technique was used to fabricate ceramic coating onto a NiTi alloy surface. The formation of a coating with a rough and micro-textured surface was confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. An inductively coupled plasma mass spectrometry test showed that the formed coating significantly reduced the release of Ni ions from the NiTi alloy in simulated body fluid. The influence of CPED treated NiTi substrates on the biological behaviors of osteoblasts, including cell adhesion, cell viability, and osteogenic differentiation function (alkaline phosphatase), was investigated in vitro. Immunofluorescence staining of nuclei revealed that the CPED treated NiTi alloy was favorable for cell growth. Osteoblasts on CPED modified NiTi alloy showed greater cell viability than those for the native NiTi substrate after 4 and 7 days cultures. More importantly, osteoblasts cultured onto a modified NiTi sample displayed significantly higher differentiation levels of alkaline phosphatase. The results suggested that surface functionalization of NiTi alloy with ceramic coating via the CPED technique was beneficial for cell proliferation and differentiation. The approach presented here is useful for NiTi implants to enhance bone osseointegration and reduce Ni ion release in vitro.

  6. Modified n-HA/PA66 scaffolds with chitosan coating for bone tissue engineering: cell stimulation and drug release.

    Science.gov (United States)

    Zou, Qin; Li, Junfeng; Niu, Lulu; Zuo, Yi; Li, Jidong; Li, Yubao

    2017-09-01

    The dipping-drying procedure and cross-linking method were used to make drug-loaded chitosan (CS) coating on nano-hydroxyapatite/polyamide66 (nHA/PA66) composite porous scaffold, endowing the scaffold controlled drug release functionality. The prefabricated scaffold was immersed into an aqueous drug/CS solution in a vacuum condition and then crosslinked by vanillin. The structure, porosity, composition, compressive strength, swelling ratio, drug release and cytocompatibility of the pristine and coating scaffolds were investigated. After coating, the scaffold porosity and pore interconnection were slightly decreased. Cytocompatibility performance was observed through an in vitro experiment based on cell attachment and the MTT assay by MG63 cells which revealed positive cell viability and increasing proliferation over the 11-day period in vitro. The drug could effectively release from the coated scaffold in a controlled fashion and the release rate was sustained for a long period and highly dependent on coating swelling, suggesting the possibility of a controlled drug release. Our results demonstrate that the scaffold with drug-loaded crosslinked CS coating can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to be a promising high performance biomaterial in bone tissue engineering.

  7. PEG-PE/clay composite carriers for doxorubicin: Effect of composite structure on release, cell interaction and cytotoxicity.

    Science.gov (United States)

    Kohay, Hagay; Sarisozen, Can; Sawant, Rupa; Jhaveri, Aditi; Torchilin, Vladimir P; Mishael, Yael G

    2017-06-01

    A novel drug delivery system for doxorubicin (DOX), based on organic-inorganic composites was developed. DOX was incorporated in micelles (M-DOX) of polyethylene glycol-phosphatidylethanolamine (PEG-PE) which in turn were adsorbed by the clay, montmorillonite (MMT). The nano-structures of the PEG-PE/MMT composites of LOW and HIGH polymer loadings were characterized by XRD, TGA, FTIR, size (DLS) and zeta measurements. These measurements suggest that for the LOW composite a single layer of polymer intercalates in the clay platelets and the polymer only partially covers the external surface, while for the HIGH composite two layers of polymer intercalate and a bilayer may form on the external surface. These nanostructures have a direct effect on formulation stability and on the rate of DOX release. The release rate was reversely correlated with the degree of DOX interaction with the clay and followed the sequence: M-DOX>HIGH formulation>LOW formulation>DOX/MMT. Despite the slower release from the HIGH formulation, its cytotoxicity effect on sensitive cells was as high as the "free" DOX. Surprisingly, the LOW formulation, with the slowest release, demonstrated the highest cytotoxicity in the case of Adriamycin (ADR) resistant cells. Confocal microscopy images and association tests provided an insight into the contribution of formulation-cell interactions vs. the contribution of DOX release rate. Internalization of the formulations was suggested as a mechanism that increases DOX efficiency, particularly in the ADR resistant cell line. The employment of organic-inorganic hybrid materials as drug delivery systems, has not reached its full potential, however, its functionality as an efficient tunable release system was demonstrated. DOX PEG-PE/clay formulations were design as an efficient drug delivery system. The main aim was to develop PEG-PE/clay formulations of different structures based on various PEG-PE/clay ratios in order to achieve tunable release rates, to control

  8. Surface-wave generation by underground nuclear explosions releasing tectonic strain

    International Nuclear Information System (INIS)

    Patton, H.J.

    1980-01-01

    Seismic surface-wave generation by underground nuclear explosions releasing tectonic strain is studied through a series of synthetic radiation-pattern calculations based on the earthquake-trigger model. From amplitude and phase radiation patterns for 20-s Rayleigh waves, inferences are made about effects on surface-wave magnitude, M/sub s/, and waveform character. The focus of this study is a comparison between two mechanisms of tectonic strain release: strike-slip motion on vertical faults and thrust motion on 45 0 dipping faults. The results of our calculations show that Rayleigh-wave amplitudes of the dip-slip model at F values between 0.75 and 1.5 are significantly lower than amplitudes of the strike-slip model or of the explosion source alone. This effect translates into M/sub s/ values about 0.5 units lower than M/sub s/ of the explosion alone. Waveform polarity reversals occur in two of four azimuthal quadrants for the strike-slip model and in all azimuths of the dip-slip-thrust model for F values above about 3. A cursory examination of waveforms from presumed explosions in eastern Kazakhstan suggests that releases of tectonic strain are accompanying the detonation of many of these explosions. Qualitatively, the observations seem to favor the dip-slip-thrust model, which, in the case of a few explosions, must have F values above 3

  9. New insights into the nanometer-scaled cell-surface interspace by cell-sensor measurements

    International Nuclear Information System (INIS)

    Lehmann, Mirko; Baumann, Werner

    2005-01-01

    The culture of adherent cells on solid surfaces is an established in vitro method, and the adhesion process of a cell is considered as an important trigger for many cellular processes (e.g., polarity and tumor genesis). However, not all of the eliciting biochemical or biophysical reactions are yet understood. Interestingly, there are not much experimental data about the impact that the interspace between an adherent cell and the (solid) substrate has on the cell's behavior. This interspace is mainly built by the basolateral side of epithelial cells and the substrate. This paper gives some new results of non-invasive and non-optical measurements in the interspace. The measurements were made with silicon cell-sensor hybrids. Measurements of acidification, adhesion, and respiration are analyzed in view of the situation in the interspace. The results show that, in general, the release of an ion or molecule on the basolateral side can have much more influence on the biophysical situation than a release of an ion or molecule on the apical side. In particular, the apical acidification (i.e., amount of extruded protons) of, e.g., epithelial tumor cells is several orders of magnitude higher than the basolateral acidification. These experimental results are a simple consequence of the fact that the basolateral volume of the interspace is several orders of magnitudes smaller than the apical volume. These results have the following consequences for the cell adhesion:a)static situation: if a cell is already adhered to a solid substrate, the basolateral and apical release and uptake of molecules have to be considered in a very differentiated way; b)dynamic situation: if the cell is adhering to the substrate, the then built basolateral side changes in a much stronger way than the apical side. This effect is here discussed as a possible eliciting and general mechanism for essential intracellular changes

  10. Lysophosphatidylcholine Induces Taurine Release from HeLa Cells

    DEFF Research Database (Denmark)

    Lambert, Ian H.; Falktoft, Birgitte

    2000-01-01

    Cell volume regulation, Membrane permeabilization, Vitamin E, Tyrosine phosphorylation, Lysophospholipids......Cell volume regulation, Membrane permeabilization, Vitamin E, Tyrosine phosphorylation, Lysophospholipids...

  11. Residence time of contaminants released in surface coal mines -- a wind-tunnel study

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, R.S. [Environmental Protection Agency, Research Triangle Park, NC (United States)

    1994-12-31

    Surface coal mining operations (blasting, shoveling, loading, trucking, etc.) are sources of airborne particles. The 1990 Clean Air Act Amendments direct the EPA to analyze the accuracy of the Industrial Source Complex model and the AP-42 emission factors, and to make revisions as may be necessary to eliminate any significant over-prediction of air concentration of fugitive particles from surface coal mines. A wind-tunnel study was performed at the US EPA`s Fluid Modeling Facility to investigate dispersion from surface coal mines in support of the dispersion modeling activities. Described here is the portion of the study directed at determining the residence time that material released near the floor of a mine will stay within the mine.

  12. Regulation of ACh release from guinea pig bladder urothelial cells: potential role in bladder filling sensations.

    Science.gov (United States)

    McLatchie, L M; Young, J S; Fry, C H

    2014-07-01

    The aim of this study was to quantify and characterize the mechanism of non-neuronal ACh release from bladder urothelial cells and to determine if urothelial cells could be a site of action of anti-muscarinic drugs. A novel technique was developed whereby ACh could be measured from freshly isolated guinea pig urothelial cells in suspension following mechanical stimulation. Various agents were used to manipulate possible ACh release pathways in turn and to study the effects of muscarinic receptor activation and inhibition on urothelial ATP release. Minimal mechanical stimulus achieved full ACh release, indicating a small dynamic range and possible all-or-none signal. ACh release involved a mechanism dependent on the anion channel CFTR and intracellular calcium concentration, but was independent of extracellular calcium, vesicular trafficking, connexins or pannexins, organic cation transporters and was not affected by botulinum-A toxin. Stimulating ACh receptors increased ATP production and antagonizing them reduced ATP release, suggesting a link between ACh and ATP release. These results suggest that release of non-neuronal ACh from the urothelium is large enough and well located to act as a modulator of ATP release. It is hypothesized that this pathway may contribute to the actions of anti-muscarinic drugs in reducing the symptoms of lower urinary tract syndromes. Additionally the involvement of CFTR in ACh release suggests an exciting new direction for the treatment of these conditions. © 2014 The British Pharmacological Society.

  13. IgE by itself affects mature rat mast cell preformed and de novo-synthesized mediator release and amplifies mast cell migratory response.

    Directory of Open Access Journals (Sweden)

    Aleksandra Słodka

    Full Text Available BACKGROUND: Immunoglobulin E (IgE binds to high affinity receptor FcεRI numerously expressed on mast cells. Recent findings have revealed that IgE by itself may regulate various aspects of mast cell biology, however, detailed data is still limited. METHODOLOGY/FINDINGS: Here, we have examined the influence of IgE alone, used at different concentrations, on mast cell activity and releasability. For the study we have employed in vivo differentiated mature tissue mast cells isolated from rat peritoneal cavity. Mast cells were exposed to IgE alone and then the release of preformed and de novo-synthesized mediators, surface FcεRI expression and mast cell migratory response were assessed. IgE by itself was found to up-regulate FcεRI expression and activate mast cells to degranulation, as well as de novo synthesis and release of cysteinyl leukotrienes and TNF. We have provided evidence that IgE alone also amplified spontaneous and CCL5- or TNF-induced migration of mast cells. Importantly, IgE was effective only at concentrations ≥ 3 µg/mL. A molecular basis investigation using an array of specific inhibitors showed that Src kinases, PLC/PLA2, MAP kinases (ERK and p38 and PI3K were entirely or partially involved in IgE-induced mast cell response. Furthermore, IgE alone stimulated the phosphorylation of MAP kinases and PI3K in rat mast cells. CONCLUSION: Our results clearly demonstrated that IgE by itself, at higher concentrations, influences mast cell activity and releasability. As there are different conditions when the IgE level is raised it might be supposed that in vivo IgE is one of the important factors modulating mast cell biology within tissues.

  14. Inhibition of histamine and eicosanoid release from dispersed human lung cells in vitro by quinotolast.

    Science.gov (United States)

    Okayama, Y; Hiroi, J; Lau, L C; Church, M K

    1995-12-01

    We have examined the effects of a new anti-allergic drug, quinotolast [sodium 5-(4-oxo-1-phenoxy-4H-quinolizine-3-carboxamido) yetrazolate monohydrate], in inhibiting the release of histamine and the generation of leukotriene (LT) C4 and prostaglandin (PG) D2 from dispersed human lung cells and compared this with those of its active metabolite in the rat, hydroxy quinotolast, and reference drugs, tranilast and sodium cromoglycate (SCG). Quinotolast in the concentration range of 1-100 micrograms/ml inhibited histamine and LTC4 release in a concentration-dependent manner. The inhibitory effect of quinotolast on histamine release from dispersed lung cells was largely independent of the preincubation period, no tachyphylaxis being observed. Hydroxy quinotolast and tranilast showed a weak inhibition of histamine release only when the drugs were added to the cells simultaneously with anti-IgE challenge. Quinotolast, 100 micrograms/ml, and SCG, 1 mM, significantly inhibited PGD2 and LTC4 release. Quinotolast inhibited PGD2 release by 100% and LTC4 release by 54%, whereas SCG inhibited PDG2 release by 33% and LTC4 release by 100%. No cross-tachyphylaxis between quinotolast and SCG was observed. The results demonstrated that quinotolast showed a significant inhibition of inflammatory mediators from human dispersed lung cells, suggesting that quinotolast is a good candidate for a clinical anti-allergic drug.

  15. ATP Release from Human Airway Epithelial Cells Exposed to Staphylococcus aureus Alpha-Toxin

    Directory of Open Access Journals (Sweden)

    Romina Baaske

    2016-12-01

    Full Text Available Airway epithelial cells reduce cytosolic ATP content in response to treatment with S. aureus alpha-toxin (hemolysin A, Hla. This study was undertaken to investigate whether this is due to attenuated ATP generation or to release of ATP from the cytosol and extracellular ATP degradation by ecto-enzymes. Exposure of cells to rHla did result in mitochondrial calcium uptake and a moderate decline in mitochondrial membrane potential, indicating that ATP regeneration may have been attenuated. In addition, ATP may have left the cells through transmembrane pores formed by the toxin or through endogenous release channels (e.g., pannexins activated by cellular stress imposed on the cells by toxin exposure. Exposure of cells to an alpha-toxin mutant (H35L, which attaches to the host cell membrane but does not form transmembrane pores, did not induce ATP release from the cells. The Hla-mediated ATP-release was completely blocked by IB201, a cyclodextrin-inhibitor of the alpha-toxin pore, but was not at all affected by inhibitors of pannexin channels. These results indicate that, while exposure of cells to rHla may somewhat reduce ATP production and cellular ATP content, a portion of the remaining ATP is released to the extracellular space and degraded by ecto-enzymes. The release of ATP from the cells may occur directly through the transmembrane pores formed by alpha-toxin.

  16. Formulation development and optimization of sustained release matrix tablet of Itopride HCl by response surface methodology and its evaluation of release kinetics.

    Science.gov (United States)

    Bose, Anirbandeep; Wong, Tin Wui; Singh, Navjot

    2013-04-01

    The objective of this present investigation was to develop and formulate sustained release (SR) matrix tablets of Itopride HCl, by using different polymer combinations and fillers, to optimize by Central Composite Design response surface methodology for different drug release variables and to evaluate drug release pattern of the optimized product. Sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: hydroxy propyl methyl cellulose (HPMC) and polyvinyl pyrolidine (pvp) and lactose as fillers. Study of pre-compression and post-compression parameters facilitated the screening of a formulation with best characteristics that underwent here optimization study by response surface methodology (Central Composite Design). The optimized tablet was further subjected to scanning electron microscopy to reveal its release pattern. The in vitro study revealed that combining of HPMC K100M (24.65 MG) with pvp(20 mg)and use of LACTOSE as filler sustained the action more than 12 h. The developed sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet.

  17. [3H]Serotonin release: an improved method to measure mast cell degranulation

    International Nuclear Information System (INIS)

    Mazingue, C.; Dessaint, J.-P.; Capron, A.

    1978-01-01

    A method based on the release of tritium-labelled serotonin by activated mast cells in rodents is described. Mast cells incorporate labelled serotonin selectively and released the label after activation by non-specific stimulators (compound 48/80, polymyxin B sulphate, ATP, bovine chymotrypsin and L-α-lysophosphatidylcholine) or anaphylactic antibody and the corresponding antigen. These two types of activation were investigated in comparison with the toluidine blue microscopic rat mast cell degranulation test, and a methodological study of the release of [ 3 H] serotonin is described. The measurement of labelled serotonin release provides a simple and quick assay of mast cell degranulation compared to the time required for the classical rat mast cell degranulation technique and achieves a greater sensitivity. (Auth.)

  18. Ultraviolet radiation stimulates the release of arachidonic acid from mammalian cells in culture

    International Nuclear Information System (INIS)

    De Leo, V.A.; Hanson, D.; Weinstein, I.B.; Harber, L.C.

    1985-01-01

    C3H 10T1/2 cells in culture were prelabelled with [ 3 H]arachidonic acid and exposed to UVB radiation. Almost immediately after irradiation cells released labelled arachidonate metabolites into media in a dose dependent manner. This release was inhibited by removing calcium ions from the system and by the addition of dexamethasone and parabromophenacyl bromide to the system. This suggests that the UVB stimulated release of arachidonic acid from membrane phospholipids is, in part, mediated by a phospholipase A 2 enzyme system. Thin layer chromatographic examination of media extracts revealed a dose dependent UVB stimulation of prostaglandin production by cultured cells. (author)

  19. Screening models for releases of radionuclides to atmosphere, surface water, and ground -- Work sheets

    International Nuclear Information System (INIS)

    1996-01-01

    Three levels of screening for the atmospheric transport pathways and two levels for surface water are presented. The ground has only one screening level. Level 1 is the simplest approach and incorporates a high degree of conservatism. The estimate of the effective dose for this level assumes a concentration based upon the radionuclide concentration at the point of emission to the environment, i.e., at the stack for atmospheric emissions, at the end of the effluent pipe for liquid effluent releases, and at a well because of the buried radioactive material. Levels 2 and 3 are presented for atmospheric releases, and Level 2 for surface water releases only and are more detailed and correspondingly less conservative. Level 2 screening accounts for dispersion in the atmosphere and in surface waters and combines all recognized pathways into the screening factor. For the atmospheric pathway, Level 3 screening includes more definitive pathways analysis. Should the user be found in compliance on the basis of Level 1 screening, no further calculations are required. If the user fails Level 1, the user proceeds to the next level and checks for compliance. This process is repeated until the user passes screening (is in compliance) or no further screening levels exist. If the user fails the final level, professional assistance should be obtained in environmental radiological assessment. Work sheets are designed to lead the user through screening in a step-by-step manner until compliance is demonstrated or it is determined that more sophisticated methods or expertise are needed. Flow diagrams are provided as a guide to identify key steps in the screening process

  20. Surface CO2 leakage during the first shallow subsurface CO2 release experiment

    OpenAIRE

    Lewicki, J.L.; Oldenburg, C.; Dobeck, L.; Spangler, L.

    2008-01-01

    A new field facility was used to study CO2 migration processes and test techniques to detect and quantify potential CO2 leakage from geologic storage sites. For 10 days starting 9 July 2007, and for seven days starting 5 August 2007, 0.1 and 0.3 t CO2 d-1, respectively, were released from a ~;100-m long, sub-water table (~;2.5-m depth) horizontal well. The spatio-temporal evolution of leakage was mapped through repeated grid measurements of soil CO2 flux (FCO2). The surface leakage onset...

  1. Direct releases to the surface and associated complementary cumulative distribution functions in the 1996 performance assessment for the Waste Isolation Pilot Plant: direct brine release

    International Nuclear Information System (INIS)

    Stoelzel, D.M.; O'Brien, D.G.; Garner, J.W.; Helton, J.C.; Johnson, J.D.; Smith, L.N.

    2000-01-01

    The following topics related to the treatment of direct brine releases to the surface environment in the 1996 performance assessment for the Waste Isolation Pilot Plant (WIPP) are presented: (i) mathematical description of models; (ii) uncertainty and sensitivity analysis results arising from subjective (i.e. epistemic) uncertainty for individual releases; (iii) construction of complementary cumulative distribution functions (CCDFs) arising from stochastic (i.e. aleatory) uncertainty; and (iv) uncertainty and sensitivity analysis results for CCDFs. The presented analyses indicate that direct brine releases do not constitute a serious threat to the effectiveness of the WIPP as a disposal facility for transuranic waste. Even when the effects of uncertain analysis inputs are taken into account, the CCDFs for direct brine releases fall substantially to the left of the boundary line specified in the US Environmental Protection Agency's standard for the geologic disposal of radioactive waste (40 CFR 191, 40 CFR 194)

  2. Single cell amperometry reveals curcuminoids modulate the release of neurotransmitters during exocytosis from PC12 cells

    Science.gov (United States)

    Li, Xianchan; Mohammadi, Amir Saeid; Ewing, Andrew G.

    2016-01-01

    We used single cell amperometry to examine whether curcumin and bisdemethoxycurcumin (BDMC), substances that are suggested to affect learning and memory, can modulate monoamine release from PC12 cells. Our results indicate both curcumin and BDMC need long-term treatment (72 h in this study) to influence exocytosis effectively. By analyzing the parameters calculated from single exocytosis events, it can be concluded that curcumin and BDMC affect exocytosis through different mechanisms. Curcumin accelerates the event dynamics with no significant change of the monoamine amount released from single exocytotic events, whereas BDMC attenuates the amount from single exocytotic event with no significant change of the event dynamics. This comparison of the effect of curcumin and BDMC on exocytosis at the single cell level brings insight into their different mechanisms, which might lead to different biological actions. The effect of curcumin and BDMC on the opening and closing of the exocytotic fusion pore were also investigated. These results might be helpful for understanding the improvement of learning and memory and the anti-depression properties of curcuminoids. PMID:28579928

  3. Mast Cells Synthesize, Store, and Release Nerve Growth Factor

    Science.gov (United States)

    Leon, A.; Buriani, A.; dal Toso, R.; Fabris, M.; Romanello, S.; Aloe, L.; Levi-Montalcini, R.

    1994-04-01

    Mast cells and nerve growth factor (NGF) have both been reported to be involved in neuroimmune interactions and tissue inflammation. In many peripheral tissues, mast cells interact with the innervating fibers. Changes in the behaviors of both of these elements occur after tissue injury/inflammation. As such conditions are typically associated with rapid mast cell activation and NGF accumulation in inflammatory exudates, we hypothesized that mast cells may be capable of producing NGF. Here we report that (i) NGF mRNA is expressed in adult rat peritoneal mast cells; (ii) anti-NGF antibodies clearly stain vesicular compartments of purified mast cells and mast cells in histological sections of adult rodent mesenchymal tissues; and (iii) medium conditioned by peritoneal mast cells contains biologically active NGF. Mast cells thus represent a newly recognized source of NGF. The known actions of NGF on peripheral nerve fibers and immune cells suggest that mast cell-derived NGF may control adaptive/reactive responses of the nervous and immune systems toward noxious tissue perturbations. Conversely, alterations in normal mast cell behaviors may provoke maladaptive neuroimmune tissue responses whose consequences could have profound implications in inflammatory disease states, including those of an autoimmune nature.

  4. Improvement of the model for surface process of tritium release from lithium oxide

    International Nuclear Information System (INIS)

    Yamaki, Daiju; Iwamoto, Akira; Jitsukawa, Shiro

    2000-01-01

    Among the various tritium transport processes in lithium ceramics, the importance and the detailed mechanism of surface reactions remain to be elucidated. The dynamic adsorption and desorption model for tritium desorption from lithium ceramics, especially Li 2 O was constructed. From the experimental results, it was considered that both H 2 and H 2 O are dissociatively adsorbed on Li 2 O and generate OH - on the surface. In the first model developed in 1994, it was assumed that either the dissociative adsorption of H 2 or H 2 O on Li 2 O generates two OH - on the surface. However, recent calculation results show that the generation of one OH - and one H - is more stable than that of two OH - s by the dissociative adsorption of H 2 . Therefore, assumption of H 2 adsorption and desorption in the first model is improved and the tritium release behavior from Li 2 O surface is evaluated again by using the improved model. The tritium residence time on the Li 2 O surface is calculated using the improved model, and the results are compared with the experimental results. The calculation results using the improved model agree well with the experimental results than those using the first model

  5. Silicon Impurity Release and Surface Transformation of TiO2 Anatase and Rutile Nanoparticles in Water Environments

    Science.gov (United States)

    Surface transformation can affect the stability, reactivity, and toxicity of titanium dioxide (TiO2) nanoparticles (NPs) when released to water environments. Herein, we investigated the release kinetics of Si impurity frequently introduced during NP synthesis and the resulting ef...

  6. Development of a cell-based bioassay for phospholipase A2-triggered liposomal drug release

    DEFF Research Database (Denmark)

    Arouri, Ahmad; Trojnar, Jakub; Schmidt, Steffen

    2015-01-01

    models, the pattern of sPLA2-assisted drug release is unknown due to the lack of a suitable bio-relevant model. We report here on the development of a novel bioluminescence living-cell-based luciferase assay for the monitoring of sPLA2-triggered release of luciferin from liposomes. To this end, we...

  7. Cell-swelling-induced taurine release from isolated perfused rat liver

    NARCIS (Netherlands)

    Brand, H. S.; Meijer, A. J.; Gustafson, L. A.; Jörning, G. G.; Leegwater, A. C.; Maas, M. A.; Chamuleau, R. A.

    1994-01-01

    Astrocytes and lymphocytes are able to release significant amounts of taurine during periods of hypotonicity to reduce the increase in cell volume. To investigate this mechanism in the liver, we studied the release of free amino acids from isolated perfused rat liver during hypotonicity. The

  8. Toluene-induced, Ca2+-dependent vesicular catecholamine release in rat PC12 cells

    NARCIS (Netherlands)

    Westerink, R.H.S.|info:eu-repo/dai/nl/239425952; Vijverberg, H.P.M.|info:eu-repo/dai/nl/068856474

    2002-01-01

    Acute effects of toluene on vesicular catecholamine release from intact PC12 phaeochromocytoma cells have been investigated using carbon fiber microelectrode amperometry. The frequency of vesicles released is low under basal conditions and is enhanced by depolarization. Toluene causes an increase in

  9. Effect of soft drinks on the release of calcium from enamel surfaces.

    Science.gov (United States)

    Rirattanapong, Praphasri; Vongsavan, Kadkao; Surarit, Rudee

    2013-09-01

    Continuous consumption of soft drinks is the main cause of potential oral health problems, including dental caries and erosion. The purpose of this study was to compare the effect of three different types of soft drinks on the release of calcium from the enamel surface of teeth. Forty bovine teeth were selected for the experiment. They were divided into four groups (n=10/group): Group 1 (Coke), Group 2 (Pepsi), Group 3 (Sprite), and Group 4 (distilled water, the control). The pH of each beverage was measured using a pH meter. The release of calcium ions was measured using an atomic absorption spectrophotometer at baseline, 15, 30, and 60 minutes. The results were assessed by analysis of variance and then by the Tukey test (pPepsi, and Sprite showed no significant mean differences in the calcium released, but there was a significant mean difference of these soft drinks with distilled water at 60 minutes. We concluded that prolonged exposure to soft drinks could lead to significant enamel loss.

  10. Surfacing behavior and gas release of the physostome sprat (Sprattus sprattus) in ice-free and ice-covered waters

    KAUST Repository

    Solberg, Ingrid; Kaartvedt, Stein

    2013-01-01

    Upward-facing echosounders that provided continuous, long-term measurements were applied to address the surfacing behavior and gas release of the physostome sprat (Sprattus sprattus) throughout an entire winter in a 150-m-deep Norwegian fjord

  11. Cell surface glycopeptides from human intestinal epithelial cell lines derived from normal colon and colon adenocarcinomas

    International Nuclear Information System (INIS)

    Youakim, A.; Herscovics, A.

    1985-01-01

    The cell surface glycopeptides from an epithelial cell line (CCL 239) derived from normal human colon were compared with those from three cell lines (HCT-8R, HCT-15, and CaCo-2) derived independently from human colonic adenocarcinomas. Cells were incubated with D-[2- 3 H]mannose or L-[5,6- 3 H]fucose for 24 h and treated with trypsin to release cell surface components which were then digested exhaustively with Pronase and fractionated on Bio-Gel P-6 before and after treatment with endo-beta-N-acetylglucosaminidase H. The most noticeable difference between the labeled glycopeptides from the tumor and CCL 239 cells was the presence in the former of an endo-beta-N-acetylglucosaminidase H-resistant high molecular weight glycopeptide fraction which was eluted in the void volume of Bio-Gel P-6. This fraction was obtained with both labeled mannose and fucose as precursors. However, acid hydrolysis of this fraction obtained after incubation with [2- 3 H]mannose revealed that as much as 60-90% of the radioactivity was recovered as fucose. Analysis of the total glycopeptides (cell surface and cell pellet) obtained after incubation with [2- 3 H]mannose showed that from 40-45% of the radioactivity in the tumor cells and less than 10% of the radioactivity in the CCL 239 cells was recovered as fucose. After incubation of the HCT-8R cells with D-[1,6- 3 H]glucosamine and L-[1- 14 C]fucose, strong acid hydrolysis of the labeled glycopeptide fraction excluded from Bio-Gel P-6 produced 3 H-labeled N-acetylglucosamine and N-acetylgalactosamine

  12. Glucose-mediated control of ghrelin release from primary cultures of gastric mucosal cells

    Science.gov (United States)

    Sakata, Ichiro; Park, Won-Mee; Walker, Angela K.; Piper, Paul K.; Chuang, Jen-Chieh; Osborne-Lawrence, Sherri

    2012-01-01

    The peptide hormone ghrelin is released from a distinct group of gastrointestinal cells in response to caloric restriction, whereas its levels fall after eating. The mechanisms by which ghrelin secretion is regulated remain largely unknown. Here, we have used primary cultures of mouse gastric mucosal cells to investigate ghrelin secretion, with an emphasis on the role of glucose. Ghrelin secretion from these cells upon exposure to different d-glucose concentrations, the glucose antimetabolite 2-deoxy-d-glucose, and other potential secretagogues was assessed. The expression profile of proteins involved in glucose transport, metabolism, and utilization within highly enriched pools of mouse ghrelin cells and within cultured ghrelinoma cells was also determined. Ghrelin release negatively correlated with d-glucose concentration. Insulin blocked ghrelin release, but only in a low d-glucose environment. 2-Deoxy-d-glucose prevented the inhibitory effect of high d-glucose exposure on ghrelin release. mRNAs encoding several facilitative glucose transporters, hexokinases, the ATP-sensitive potassium channel subunit Kir6.2, and sulfonylurea type 1 receptor were expressed highly within ghrelin cells, although neither tolbutamide nor diazoxide exerted direct effects on ghrelin secretion. These findings suggest that direct exposure of ghrelin cells to low ambient d-glucose stimulates ghrelin release, whereas high d-glucose and glucose metabolism within ghrelin cells block ghrelin release. Also, low d-glucose sensitizes ghrelin cells to insulin. Various glucose transporters, channels, and enzymes that mediate glucose responsiveness in other cell types may contribute to the ghrelin cell machinery involved in regulating ghrelin secretion under these different glucose environments, although their exact roles in ghrelin release remain uncertain. PMID:22414807

  13. Carbon nanopipettes characterize calcium release pathways in breast cancer cells

    International Nuclear Information System (INIS)

    Schrlau, Michael G; Brailoiu, Eugen; Dun, Nae J; Patel, Sandip; Gogotsi, Yury; Bau, Haim H

    2008-01-01

    Carbon-based nanoprobes are attractive for minimally invasive cell interrogation but their application in cell physiology has thus far been limited. We have developed carbon nanopipettes (CNPs) with nanoscopic tips and used them to inject calcium-mobilizing messengers into cells without compromising cell viability. We identify pathways sensitive to cyclic adenosine diphosphate ribose (cADPr) and nicotinic acid adenine dinucleotide phosphate (NAADP) in breast carcinoma cells. Our findings demonstrate the superior utility of CNPs for intracellular delivery of impermeant molecules and, more generally, for cell physiology studies. The CNPs do not appear to cause any lasting damage to cells. Their advantages over commonly used glass pipettes include smaller size, breakage and clogging resistance, and potential for multifunctionality such as in concurrent injection and electrical measurements

  14. Carbon nanopipettes characterize calcium release pathways in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Schrlau, Michael G [Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104 (United States); Brailoiu, Eugen; Dun, Nae J [Department of Pharmacology, Temple University, Philadelphia, PA 19104 (United States); Patel, Sandip [Department of Physiology, University College London, London WC1E 6BT (United Kingdom); Gogotsi, Yury [Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104 (United States); Bau, Haim H [Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 229 Towne Building, 220 S. 33rd Street, Philadelphia, PA 19104 (United States)], E-mail: mschrlau@seas.upenn.edu, E-mail: ebrailou@temple.edu, E-mail: patel.s@ucl.ac.uk, E-mail: yg36@drexel.edu, E-mail: ndun@temple.edu, E-mail: bau@seas.upenn.edu

    2008-08-13

    Carbon-based nanoprobes are attractive for minimally invasive cell interrogation but their application in cell physiology has thus far been limited. We have developed carbon nanopipettes (CNPs) with nanoscopic tips and used them to inject calcium-mobilizing messengers into cells without compromising cell viability. We identify pathways sensitive to cyclic adenosine diphosphate ribose (cADPr) and nicotinic acid adenine dinucleotide phosphate (NAADP) in breast carcinoma cells. Our findings demonstrate the superior utility of CNPs for intracellular delivery of impermeant molecules and, more generally, for cell physiology studies. The CNPs do not appear to cause any lasting damage to cells. Their advantages over commonly used glass pipettes include smaller size, breakage and clogging resistance, and potential for multifunctionality such as in concurrent injection and electrical measurements.

  15. Synthesis and release of fatty acids by human trophoblast cells in culture

    International Nuclear Information System (INIS)

    Coleman, R.A.; Haynes, E.B.

    1987-01-01

    In order to determine whether placental cells can synthesize and release fatty acids, trophoblast cells from term human placentas were established in monolayer culture. The cells continued to secrete placental lactogen and progesterone and maintained specific activities of critical enzymes of triacylglycerol and phosphatidylcholine biosynthesis for 24 to 72 hr in culture. Fatty acid was rapidly synthesized from [ 14 C]acetate and released by the cells. Palmitoleic, palmitic, and oleic acids were the major fatty acids synthesized from [ 14 C]acetate and released. Small amounts of lauric, myristic, and stearic acids were also identified. [ 14 C]acetate was also incorporated into cellular triacylglycerol, phospholipid, and cholesterol, but radiolabeled free fatty acid did not accumulate intracellularly. In a pulse-chase experiment, cellular glycerolipids were labeled with [1- 14 C]oleate; trophoblast cells then released 14 C-labeled fatty acid into the media as the cellular content of labeled phospholipid and triacylglycerol decreased without intracellular accumulation of free fatty acid. Twenty percent of the 14 C-label lost from cellular glycerolipid could not be recovered as a chloroform-extractable product, suggesting that some of the hydrolyzed fatty acid had been oxidized. These data indicate that cultured placenta trophoblast cells can release fatty acids that have either been synthesized de novo or that have been hydrolyzed from cellular glycerolipids. Trophoblast cells in monolayer culture should provide an excellent model for molecular studies of placental fatty acid metabolism and release

  16. ENDOGENOUS PYROGEN RELEASE FROM RABBIT BLOOD CELLS INCUBATED IN VITRO WITH PARAINFLUENZA VIRUS.

    Science.gov (United States)

    ATKINS, E; CRONIN, M; ISACSON, P

    1964-12-11

    Rabbit blood cells incubated in vitro with purified parainfluenza-5 virus (DA strain) released a rapidly acting pyrogen. Spleen and lymph node cells were inactive. The pyrogen resembled in behavior a pyrogen extracted from granulocytic exudates. Similar cells in the blood are believed to be activated by virus in vivo to produce the circulating endogenous pyrogen that mediates virus-induced fever.

  17. "Effect of nano-filled surface coating agent on fluoride release from conventional glass ionomer cement: an in vitro trial".

    Science.gov (United States)

    Tiwari, S; Nandlal, B

    2013-01-01

    To overcome the drawbacks of glass ionomer cement of sensitivity to initial desiccation and moisture contamination the use of surface coating agent is recommended. The search in this area led to invent of use of nanofillers in surface coating agent, but its effect on fluoride release is not clear. The aim of this study is to evaluate and compare the fluoride release from conventional glass ionomer cement with and without surface coating agent. This in vitro study comprised of total 80 samples (40 samples of each with and without surface coating). Specimens were prepared, G coat plus was applied and light cured. Fluoride release of the sample was measured every 24 h for 7 days and weekly from 7th to 21 st day using Sension4 pH/ISE/MV Meter. Descriptive Statistics, Repeated Measure ANOVA, Paired Sample t-test, Independent Sample t-test, Scheffe post hoc test. Mean values clearly reveal a significant decrease in the fluoride release from day 1 to day 21 for both groups. Non-coated group released significantly more fluoride than surface coated group (Pagent will reduce the amount of fluoride released into oral environment as compared to non-coated group and at the same time releasing fluoride into surrounding cavity walls to create zones of inhibition into the cavity floor to help internal remineralization.

  18. An efficient delivery of DAMPs on the cell surface by the unconventional secretion pathway

    International Nuclear Information System (INIS)

    Zhu, Haiyan; Wang, Lan; Ruan, Yuanyuan; Zhou, Lei; Zhang, Dongmei; Min, Zhihui; Xie, Jianhui; Yu, Min; Gu, Jianxin

    2011-01-01

    Research highlights: → Hsp60 transported to cell surface through the classical secretory pathway was modified with N-glycosylation. → HSAPB-N18 could efficiently deliver Hsp60 to the cell surface via the unconventional secretory pathway. → Cell surface Hsp60 delivered by HASPB-N18 has a proper conformation. → HASPB-N18 is an efficient delivery signal for other DAMP molecules such as Hsp70 and HMGB1. -- Abstract: Damage-associated molecular patterns (DAMPs) are signals released from dying cells evoking the immune system response in several inflammatory disorders. In normal situations, many of DAMPs are nuclear or cytosolic proteins with defined intracellular function, but they could be found on the cell surface following tissue injury. The biological function of the translocated DAMPs is still not well known and an efficient delivery of these molecules on the cell surface is required to clarify their biological effects. In this study, we demonstrated that an unclassical secretory signal peptide, N-terminal 18 amino acids of HASPB (HASPB-N18), could efficiently deliver Hsp60, Hsp70, and HMGB1 on the cell surface. Furthermore, the delivery of these molecules on the cell surface by HASPB-N18 is not limited to a special cell line because several cell lines could use this delivery signal to deliver these molecules on the cell surface. Moreover, we demonstrated that Hsp60 on the cell surface delivered by HASPB-N18 could be recognized by a soluble form of LOX-1, which implies that DAMPs on the cell surface delivered by HASPB-N18 have a proper conformation during transport. Therefore, delivery of DAMPs by HASPB-N18 is a reliable model to further understand the biological significance of DAMPs on the cell surface.

  19. Conductive Polymer Microelectrodes for on-chip measurement of transmitter release from living cells

    DEFF Research Database (Denmark)

    Larsen, Simon Tylsgaard; Matteucci, Marco; Taboryski, Rafael J.

    2012-01-01

    driven cell trapping inside closed chip devices. Conductive polymer microelectrodes were used to measure transmitter release using electrochemical methods such as cyclic voltammetry and constant potential amperometry. By measuring the oxidation current at a cyclic voltammogram, the concentration...

  20. Simulating Exposure Concentrations of Engineered Nanomaterials in Surface Water Systems: Release of WASP8

    Science.gov (United States)

    Knightes, C. D.; Bouchard, D.; Zepp, R. G.; Henderson, W. M.; Han, Y.; Hsieh, H. S.; Avant, B. K.; Acrey, B.; Spear, J.

    2017-12-01

    The unique properties of engineered nanomaterials led to their increased production and potential release into the environment. Currently available environmental fate models developed for traditional contaminants are limited in their ability to simulate nanomaterials' environmental behavior. This is due to an incomplete understanding and representation of the processes governing nanomaterial distribution in the environment and by scarce empirical data quantifying the interaction of nanomaterials with environmental surfaces. The well-known Water Quality Analysis Simulation Program (WASP) was updated to incorporate nanomaterial-specific processes, specifically hetero-aggregation with particulate matter. In parallel with this effort, laboratory studies were used to quantify parameter values parameters necessary for governing processes in surface waters. This presentation will discuss the recent developments in the new architecture for WASP8 and the newly constructed Advanced Toxicant Module. The module includes advanced algorithms for increased numbers of state variables: chemicals, solids, dissolved organic matter, pathogens, temperature, and salinity. This presentation will focus specifically on the incorporation of nanomaterials, with the applications of the fate and transport of hypothetical releases of Multi-Walled Carbon Nanotubes (MWCNT) and Graphene Oxide (GO) into the headwaters of a southeastern US coastal plains river. While this presentation focuses on nanomaterials, the advanced toxicant module can also simulate metals and organic contaminants.

  1. Surface modified natural zeolite as a carrier for sustained diclofenac release: A preliminary feasibility study.

    Science.gov (United States)

    de Gennaro, Bruno; Catalanotti, Lilia; Cappelletti, Piergiulio; Langella, Alessio; Mercurio, Mariano; Serri, Carla; Biondi, Marco; Mayol, Laura

    2015-06-01

    In view of zeolite potentiality as a carrier for sustained drug release, a clinoptilolite-rich rock from California (CLI_CA) was superficially modified with cetylpyridinium chloride and loaded with diclofenac sodium (DS). The obtained surface modified natural zeolites (SMNZ) were characterized by confocal scanning laser microscopy (CLSM), powder X-ray diffraction (XRPD) and laser light scattering (LS). Their flowability properties, drug adsorption and in vitro release kinetics in simulated intestinal fluid (SIF) were also investigated. CLI_CA is a Na- and K-rich clinoptilolite with a cationic exchange ability that fits well with its zeolite content (clinoptilolite=80 wt%); the external cationic exchange capacity is independent of the cationic surfactant used. LS and CLSM analyses have shown a wide distribution of volume diameters of SMNZ particles that, along with their irregular shape, make them cohesive with scarce flow properties. CLSM observation has revealed the localization of different molecules in/on SMNZ by virtue of their chemical nature. In particular, cationic and polar probes prevalently localize in SMNZ bulk, whereas anionic probes preferentially arrange themselves on SMNZ surface and the loading of a nonpolar molecule in/on SMNZ is discouraged. The adsorption rate of DS onto SMNZ was shown by different kinetic models highlighting the fact that DS adsorption is a pseudo-second order reaction and that the diffusion through the boundary layer is the rate-controlling step of the process. DS release in an ionic medium, such as SIF, can be sustained for about 5h through a mechanism prevalently governed by anionic exchange with a rapid final phase. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. In vitro atrazine-exposure inhibits human natural killer cell lytic granule release

    International Nuclear Information System (INIS)

    Rowe, Alexander M.; Brundage, Kathleen M.; Barnett, John B.

    2007-01-01

    The herbicide atrazine is a known immunotoxicant and an inhibitor of human natural killer (NK) cell lytic function. The precise changes in NK cell lytic function following atrazine exposure have not been fully elucidated. The current study identifies the point at which atrazine exerts its affect on the stepwise process of human NK cell-mediated lyses of the K562 target cell line. Using intracellular staining of human peripheral blood lymphocytes, it was determined that a 24-h in vitro exposure to atrazine did not decrease the level of NK cell lytic proteins granzyme A, granzyme B or perforin. Thus, it was hypothesized that atrazine exposure was inhibiting the ability of the NK cells to bind to the target cell and subsequently inhibit the release of lytic protein from the NK cell. To test this hypothesis, flow cytometry and fluorescent microscopy were employed to analyze NK cell-target cell co-cultures following atrazine exposure. These assays demonstrated no significant decrease in the level of target cell binding. However, the levels of NK intracellular lytic protein retained and the amount of lytic protein released were assessed following a 4-h incubation with K562 target cells. The relative level of intracellular lytic protein was 25-50% higher, and the amount of lytic protein released was 55-65% less in atrazine-treated cells than vehicle-treated cells following incubation with the target cells. These results indicate that ATR exposure inhibits the ability of NK cells to lyse target cells by blocking lytic granule release without affecting the ability of the NK cell to form stable conjugates with target cells

  3. In vitro study of vancomycin release and osteoblast-like cell growth on structured calcium phosphate-collagen

    International Nuclear Information System (INIS)

    Pon-On, Weeraphat; Charoenphandhu, Narattaphol; Teerapornpuntakit, Jarinthorn; Thongbunchoo, Jirawan; Krishnamra, Nateetip; Tang, I-Ming

    2013-01-01

    A drug delivery vehicle consisting of spherical calcium phosphate-collagen particles covered by flower-like (SFCaPCol) blossoms composed of nanorod building blocks and their cellular response is studied. The spherical structure was achieved by a combination of sonication and freeze-drying. The SFCaPCol blossoms have a high surface area of approximately 280 m 2 g −1 . The blossom-like formation having a high surface area allows a drug loading efficiency of 77.82%. The release profile for one drug, vancomycin (VCM), shows long term sustained release in simulated body fluid (SBF), in a phosphate buffer saline (PBS, pH 7.4) solution and in culture media over 2 weeks with a cumulative release ∼ 53%, 75% and 50%, respectively, over the first 7 days. The biocompatibility of the VCM-loaded SFCaPCol scaffold was determined by in vitro cell adhesion and proliferation tests of rat osteoblast-like UMR-106 cells. MTT tests indicated that UMR-106 cells were viable after exposure to the VCM loaded SFCaPCol, meaning that the scaffold (the flower-like blossoms) did not impair the cell's viability. The density of cells on the substrate was seen to increase with increasing cultured time. - Graphical abstract: A spherical calcium phosphate-collagen with flower-like blossoms consisting of nanorod building blocks (SFCaPCol) particles was achieved by a combination of sonication and freeze-drying. In vitro drug release profile and the biocompatibility of the VCM-loaded SFCaPCol composite cell adhesion and proliferation in rat osteoblast-like UMR-106 cells were determined for biomaterial applications. Highlights: ► SFCaPCol and VCM-loaded SFCaPCol composite were synthesized by a combination of ultra sonication and freeze-drying. ► VCM drug-loaded SFCaPCol composite was used as substrate for the growth of rat osteoblast-like UMR-106 cells. ► Controlled release of VCM from the composite is critically medium dependent. ► The VCM-loaded SFCaPCol composite is also bioactive by in

  4. Surfacing behavior and gas release of the physostome sprat (Sprattus sprattus) in ice-free and ice-covered waters

    KAUST Repository

    Solberg, Ingrid

    2013-10-04

    Upward-facing echosounders that provided continuous, long-term measurements were applied to address the surfacing behavior and gas release of the physostome sprat (Sprattus sprattus) throughout an entire winter in a 150-m-deep Norwegian fjord. During ice-free conditions, the sprat surfaced and released gas bubbles at night with an estimated surfacing rate of 3.5 times per fish day-1. The vertical swimming speeds during surfacing were considerably higher (~10 times) than during diel vertical migrations, especially when returning from the surface, and particularly when the fjord was not ice covered. The sprat released gas a few hours after surfacing, suggesting that the sprat gulped atmospheric air during its excursions to the surface. While the surface activity increased after the fjord became ice covered, the records of gas release decreased sharply. The under-ice fish then displayed a behavior interpreted as "searching for the surface" by repeatedly ascending toward the ice, apparently with limited success of filling the swim bladder. This interpretation was supported by lower acoustic target strength in ice-covered waters. The frequent surfacing behavior demonstrated in this study indicates that gulping of atmospheric air is an important element in the life of sprat. While at least part of the population endured overwintering in the ice-covered habitat, ice covering may constrain those physostome fishes that lack a gas-generating gland in ways that remain to be established. 2013 The Author(s).

  5. Enterococcus faecium biofilm formation: identification of major autolysin AtlAEfm, associated Acm surface localization, and AtlAEfm-independent extracellular DNA Release.

    Science.gov (United States)

    Paganelli, Fernanda L; Willems, Rob J L; Jansen, Pamela; Hendrickx, Antoni; Zhang, Xinglin; Bonten, Marc J M; Leavis, Helen L

    2013-04-16

    Enterococcus faecium is an important multidrug-resistant nosocomial pathogen causing biofilm-mediated infections in patients with medical devices. Insight into E. faecium biofilm pathogenesis is pivotal for the development of new strategies to prevent and treat these infections. In several bacteria, a major autolysin is essential for extracellular DNA (eDNA) release in the biofilm matrix, contributing to biofilm attachment and stability. In this study, we identified and functionally characterized the major autolysin of E. faecium E1162 by a bioinformatic genome screen followed by insertional gene disruption of six putative autolysin genes. Insertional inactivation of locus tag EfmE1162_2692 resulted in resistance to lysis, reduced eDNA release, deficient cell attachment, decreased biofilm, decreased cell wall hydrolysis, and significant chaining compared to that of the wild type. Therefore, locus tag EfmE1162_2692 was considered the major autolysin in E. faecium and renamed atlAEfm. In addition, AtlAEfm was implicated in cell surface exposure of Acm, a virulence factor in E. faecium, and thereby facilitates binding to collagen types I and IV. This is a novel feature of enterococcal autolysins not described previously. Furthermore, we identified (and localized) autolysin-independent DNA release in E. faecium that contributes to cell-cell interactions in the atlAEfm mutant and is important for cell separation. In conclusion, AtlAEfm is the major autolysin in E. faecium and contributes to biofilm stability and Acm localization, making AtlAEfm a promising target for treatment of E. faecium biofilm-mediated infections. IMPORTANCE Nosocomial infections caused by Enterococcus faecium have rapidly increased, and treatment options have become more limited. This is due not only to increasing resistance to antibiotics but also to biofilm-associated infections. DNA is released in biofilm matrix via cell lysis, caused by autolysin, and acts as a matrix stabilizer. In this study

  6. Tritium surface loading due to contamination of rainwater from atmospheric release at NAPS (2011)

    International Nuclear Information System (INIS)

    Gautam, Y.P.; Sharma, Saivajay; Rao, K.S.; Singh, Bhikam; Kumar, Avinash; Ravi, P.M.

    2012-01-01

    Annual tritium (HTO) surface loading has been measured and calculated for the year 2011 within 0.8 km distance from 145 m high stack of Narora Atomic Power Station (NAPS) at eight locations in different directions. The technique for measured values consists of the summation of product of tritium concentration (Bq/l) in daily rainfall samples and daily rainfall (mm). Tritium surface loading studies at NAPS reveal that a fraction 1.01E-03 of total annual tritium released through stack gets deposited on the surface due to washout/rainout of plume within 0.8 km radial distance from stack. The range of deposition velocity, Vw (m.s -1 ) i.e., the ratio of annual tritium surface loading W (Bq. m -2 .s -1 ) and annual mean tritium concentration in air, c 0 (Bq.m -3 ) at three locations for the years 2011 is found to be 6.12E-04 to 2.89E-03. The average value for wet deposition velocity V w for NAPS site is estimated as 3.17E-03 m.s -1 . (author)

  7. Supercooling release of micro-size water droplets on microporous surfaces with cooling

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chun Wan; Kang, Chae Dong [Chonbuk National University, Jeonju (Korea, Republic of)

    2012-06-15

    The gas diffusion layer (GDL) of polymer electrolyte membrane fuel cells plays a key role in controlling moisture in these cells. When the GDL is exposed to a cold environment, the water droplets or water nets in the GDL freeze. This work observed the supercooling and freezing behaviors of water droplets under low temperature. A GDL made of carbon fiber was coated with a waterproof material with 0%, 40%, and 60% PTFE (polytetrafluoroethylene) contents. The cooling process was investigated according to temperature, and the water droplets on the GDL were supercooled and frozen. Delay in the supercooling release was correlated with the size of water droplets on the GDL and the coating rate of the layer. Moreover, the supercooling degree of the droplets decreased as the number of freeze thaw cycles in the GDL increased.

  8. Inflammatory stress of pancreatic beta cells drives release of extracellular heat-shock protein 90α.

    Science.gov (United States)

    Ocaña, Gail J; Pérez, Liliana; Guindon, Lynette; Deffit, Sarah N; Evans-Molina, Carmella; Thurmond, Debbie C; Blum, Janice S

    2017-06-01

    A major obstacle in predicting and preventing the development of autoimmune type 1 diabetes (T1D) in at-risk individuals is the lack of well-established early biomarkers indicative of ongoing beta cell stress during the pre-clinical phase of disease. Recently, serum levels of the α cytoplasmic isoform of heat-shock protein 90 (hsp90) were shown to be elevated in individuals with new-onset T1D. We therefore hypothesized that hsp90α could be released from beta cells in response to cellular stress and inflammation associated with the earliest stages of T1D. Here, human beta cell lines and cadaveric islets released hsp90α in response to stress induced by treatment with a combination of pro-inflammatory cytokines including interleukin-1β, tumour necrosis factor-α and interferon-γ. Mechanistically, hsp90α release was found to be driven by cytokine-induced endoplasmic reticulum stress mediated by c-Jun N-terminal kinase (JNK), a pathway that can eventually lead to beta cell apoptosis. Cytokine-induced beta cell hsp90α release and JNK activation were significantly reduced by pre-treating cells with the endoplasmic reticulum stress-mitigating chemical chaperone tauroursodeoxycholic acid. The hsp90α release by cells may therefore be a sensitive indicator of stress during inflammation and a useful tool in assessing therapeutic mitigation of cytokine-induced cell damage linked to autoimmunity. © 2017 John Wiley & Sons Ltd.

  9. Drug-releasing nano-engineered titanium implants: therapeutic efficacy in 3D cell culture model, controlled release and stability

    Energy Technology Data Exchange (ETDEWEB)

    Gulati, Karan [School of Chemical Engineering, The University of Adelaide, SA 5005 (Australia); Kogawa, Masakazu; Prideaux, Matthew; Findlay, David M. [Discipline of Orthopaedics and Trauma, The University of Adelaide, SA 5005 (Australia); Atkins, Gerald J., E-mail: gerald.atkins@adelaide.edu.au [Discipline of Orthopaedics and Trauma, The University of Adelaide, SA 5005 (Australia); Losic, Dusan, E-mail: dusan.losic@adelaide.edu.au [School of Chemical Engineering, The University of Adelaide, SA 5005 (Australia)

    2016-12-01

    There is an ongoing demand for new approaches for treating localized bone pathologies. Here we propose a new strategy for treatment of such conditions, via local delivery of hormones/drugs to the trauma site using drug releasing nano-engineered implants. The proposed implants were prepared in the form of small Ti wires/needles with a nano-engineered oxide layer composed of array of titania nanotubes (TNTs). TNTs implants were inserted into a 3D collagen gel matrix containing human osteoblast-like, and the results confirmed cell migration onto the implants and their attachment and spread. To investigate therapeutic efficacy, TNTs/Ti wires loaded with parathyroid hormone (PTH), an approved anabolic therapeutic for the treatment of severe bone fractures, were inserted into 3D gels containing osteoblast-like cells. Gene expression studies revealed a suppression of SOST (sclerostin) and an increase in RANKL (receptor activator of nuclear factor kappa-B ligand) mRNA expression, confirming the release of PTH from TNTs at concentrations sufficient to alter cell function. The performance of the TNTs wire implants using an example of a drug needed at relatively higher concentrations, the anti-inflammatory drug indomethacin, is also demonstrated. Finally, the mechanical stability of the prepared implants was tested by their insertion into bovine trabecular bone cores ex vivo followed by retrieval, which confirmed the robustness of the TNT structures. This study provides proof of principle for the suitability of the TNT/Ti wire implants for localized bone therapy, which can be customized to cater for specific therapeutic requirements. - Highlights: • Ti wire with titania nanotubes (TNTs) are proposed as ‘in-bone’ therapeutic implants. • 3D cell culture model is used to confirm therapeutic efficacy of drug releasing implants. Osteoblasts migrated and firmly attached to the TNTs and the micro-scale cracks. • Tailorable drug loading from few nanograms to several hundred

  10. Osmotically sensitive renin release from permeabilized juxtaglomerular cells

    DEFF Research Database (Denmark)

    Jensen, B L; Skøtt, O

    1993-01-01

    Renin secretion from juxtaglomerular (JG) cells is sensitive to external osmolality in a way that has been suggested to depend either on cellular volume or on effects on secretory granules. To distinguish between these possibilities, a technique for permeabilization of JG cell membranes was devel...

  11. PARTICULATE MATTER (PM) INHIBITS NEUROTROPHIN RELEASE FROM A549 CELLS

    Science.gov (United States)

    Several investigations have linked PM exposure to the exacerbation of allergic lung diseases. Many PM effects are mediated by cells within the lung including the airway epithelium, eosinophils, and lymphocytes. These cells also produce neurotophins such as NGF and/or express neur...

  12. Design of poly(vinylidene fluoride)-g-p(hydroxyethyl methacrylate-co-N-isopropylacrylamide) membrane via surface modification for enhanced fouling resistance and release property

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Guili [Nanyang Environment and Water Research Institute, Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141 (Singapore); Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141 (Singapore); School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 (Singapore); Chen, Wei Ning, E-mail: WNChen@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 (Singapore)

    2017-03-15

    Highlights: • PVDF modified membranes were designed by grafting PNIPAAm, PHEMA and their copolymer. • Fouling resistance and release property of membrane were both improved after modification. • Bacterial attachment and detachment were investigated to evaluate fouling release property. • Improvement of the antifouling property was justified by surface property analysis. • The copolymer modified membrane exhibited higher performance to release foulant. - Abstract: Thermo-sensitive polymer poly(N-isopropylacrylamide) (PNIPAAm), hydrophilic polymer poly(hydroxyethyl methacrylate) (PHEMA) and copolymer p(hydroxyethyl methacrylate-co-N-isopropylacrylamide) [P(HEMA-co-NIPAAm)] were synthesized onto poly(vinylidene fluoride) (PVDF) membrane via atom transfer radical polymerization (ATRP) in order to improve not only fouling resistance but also fouling release property. The physicochemical properties of membranes including hydrophilicity, morphology and roughness were examined by contact angle analyzer, scanning electron microscopy (SEM), and atomic force microscopy (AFM), respectively. The antifouling property of membranes was improved remarkably after surface modification according to protein and bacterial adhesion testing, and filtration experiment. Minimum protein adsorption and bacterial adhesion were both obtained on PVDF-g-P(HEMA-co-NIPAAm) membrane, with reduction by 44% and 71% respectively compared to the pristine membrane. The minimum bacterial cells after detachment at 25 °C were observed on the PVDF-g-P(HEMA-co-NIPAAm) membrane with the detachment rate of 77%, indicating high fouling release property. The filtration testing indicated that the copolymer modified membrane exhibited high resistance to protein fouling and the foulant on the surface was released and removed easily by washing, suggesting high fouling release and easy-cleaning capacity. This study provides useful insight in the combined “fouling resistance” and “fouling release

  13. Design of poly(vinylidene fluoride)-g-p(hydroxyethyl methacrylate-co-N-isopropylacrylamide) membrane via surface modification for enhanced fouling resistance and release property

    International Nuclear Information System (INIS)

    Zhao, Guili; Chen, Wei Ning

    2017-01-01

    Highlights: • PVDF modified membranes were designed by grafting PNIPAAm, PHEMA and their copolymer. • Fouling resistance and release property of membrane were both improved after modification. • Bacterial attachment and detachment were investigated to evaluate fouling release property. • Improvement of the antifouling property was justified by surface property analysis. • The copolymer modified membrane exhibited higher performance to release foulant. - Abstract: Thermo-sensitive polymer poly(N-isopropylacrylamide) (PNIPAAm), hydrophilic polymer poly(hydroxyethyl methacrylate) (PHEMA) and copolymer p(hydroxyethyl methacrylate-co-N-isopropylacrylamide) [P(HEMA-co-NIPAAm)] were synthesized onto poly(vinylidene fluoride) (PVDF) membrane via atom transfer radical polymerization (ATRP) in order to improve not only fouling resistance but also fouling release property. The physicochemical properties of membranes including hydrophilicity, morphology and roughness were examined by contact angle analyzer, scanning electron microscopy (SEM), and atomic force microscopy (AFM), respectively. The antifouling property of membranes was improved remarkably after surface modification according to protein and bacterial adhesion testing, and filtration experiment. Minimum protein adsorption and bacterial adhesion were both obtained on PVDF-g-P(HEMA-co-NIPAAm) membrane, with reduction by 44% and 71% respectively compared to the pristine membrane. The minimum bacterial cells after detachment at 25 °C were observed on the PVDF-g-P(HEMA-co-NIPAAm) membrane with the detachment rate of 77%, indicating high fouling release property. The filtration testing indicated that the copolymer modified membrane exhibited high resistance to protein fouling and the foulant on the surface was released and removed easily by washing, suggesting high fouling release and easy-cleaning capacity. This study provides useful insight in the combined “fouling resistance” and “fouling release

  14. Surface chemistry and size influence the release of model therapeutic nanoparticles from poly(ethylene glycol) hydrogels

    International Nuclear Information System (INIS)

    Hume, Stephanie L.; Jeerage, Kavita M.

    2013-01-01

    Nanoparticles have emerged as promising therapeutic and diagnostic tools, due to their unique physicochemical properties. The specific core and surface chemistries, as well as nanoparticle size, play critical roles in particle transport and interaction with biological tissue. Localized delivery of therapeutics from hydrogels is well established, but these systems generally release molecules with hydrodynamic radii less than ∼5 nm. Here, model nanoparticles with biologically relevant surface chemistries and diameters between 10 and 35 nm are analyzed for their release from well-characterized hydrogels. Functionalized gold nanoparticles or quantum dots were encapsulated in three-dimensional poly(ethylene glycol) hydrogels with varying mesh size. Nanoparticle size, surface chemistry, and hydrogel mesh size all influenced the release of particles from the hydrogel matrix. Size influenced nanoparticle release as expected, with larger particles releasing at a slower rate. However, citrate-stabilized gold nanoparticles were not released from hydrogels. Negatively charged carboxyl or positively charged amine-functionalized quantum dots were released from hydrogels at slower rates than neutrally charged PEGylated nanoparticles of similar size. Transmission electron microscopy images of gold nanoparticles embedded within hydrogel sections demonstrated uniform particle distribution and negligible aggregation, independent of surface chemistry. The nanoparticle-hydrogel interactions observed in this work will aid in the development of localized nanoparticle delivery systems.

  15. Dynamics of shear-induced ATP release from red blood cells.

    Science.gov (United States)

    Wan, Jiandi; Ristenpart, William D; Stone, Howard A

    2008-10-28

    Adenosine triphosphate (ATP) is a regulatory molecule for many cell functions, both for intracellular and, perhaps less well known, extracellular functions. An important example of the latter involves red blood cells (RBCs), which help regulate blood pressure by releasing ATP as a vasodilatory signaling molecule in response to the increased shear stress inside arterial constrictions. Although shear-induced ATP release has been observed widely and is believed to be triggered by deformation of the cell membrane, the underlying mechanosensing mechanism inside RBCs is still controversial. Here, we use an in vitro microfluidic approach to investigate the dynamics of shear-induced ATP release from human RBCs with millisecond resolution. We demonstrate that there is a sizable delay time between the onset of increased shear stress and the release of ATP. This response time decreases with shear stress, but surprisingly does not depend significantly on membrane rigidity. Furthermore, we show that even though the RBCs deform significantly in short constrictions (duration of increased stress <3 ms), no measurable ATP is released. This critical timescale is commensurate with a characteristic membrane relaxation time determined from observations of the cell deformation by using high-speed video. Taken together our results suggest a model wherein the retraction of the spectrin-actin cytoskeleton network triggers the mechanosensitive ATP release and a shear-dependent membrane viscosity controls the rate of release.

  16. PC-3 prostate carcinoma cells release signal substances that influence the migratory activity of cells in the tumor's microenvironment

    Directory of Open Access Journals (Sweden)

    Zänker Kurt S

    2010-07-01

    Full Text Available Abstract Background Tumor cells interact with the cells of the microenvironment not only by cell-cell-contacts but also by the release of signal substances. These substances are known to induce tumor vascularization, especially under hypoxic conditions, but are also supposed to provoke other processes such as tumor innervation and inflammatory conditions. Inflammation is mediated by two organ systems, the neuroendocrine system and the immune system. Therefore, we investigated the influence of substances released by PC-3 human prostate carcinoma cells on SH-SY5Y neuroblastoma cells as well as neutrophil granulocytes and cytotoxic T lymphocytes, especially with regard to their migratory activity. Results PC-3 cells express several cytokines and growth factors including vascular endothelial growth factors, fibroblast growth factors, interleukins and neurotrophic factors. SH-SY5Y cells are impaired in their migratory activity by PC-3 cell culture supernatant, but orientate chemotactically towards the source. Neutrophil granulocytes increase their locomotory activity only in response to cell culture supernantant of hypoxic but not of normoxic PC-3 cells. In contrast, cytotoxic T lymphocytes do not change their migratory activity in response to either culture supernatant, but increase their cytotoxicity, whereas supernatant of normoxic PC-3 cells leads to a stronger increase than that of hypoxic PC-3 cells. Conclusions PC-3 cells release several signal substances that influence the behavior of the cells in the tumor's microenvironment, whereas no clear pattern towards proinflammatory or immunosuppressive conditions can be seen.

  17. [Shikimic acid inhibits the degranulation and histamine release in RBL-2H3 cells].

    Science.gov (United States)

    Chen, Xianyong; Zheng, Qianqian; Liu, Wei; Yu, Lingling; Wang, Jinling; Li, Shigang

    2017-05-01

    Objective To study the effects of shikimic acid on the proliferation of rat RBL-2H3 cells and the degranulation of the cells induced by C48/80 and its mechanism. Methods MTT assay was performed to measure the proliferation of RBL-2H3 cells treated with 3, 10, 30 μg/mL shikimic acid. Toluidine blue staining was used to observe the degranulation of RBL-2H3 cells. The release of β-hexosaminidase from RBL-2H3 cells treated with 0, 12.5, 25, 50, 80, 100 μg/mL C48/80 was determined by substrate assay. ELISA was used to detect the histamine content in the supernatant of each treated group. Results Shikimic acid at 3, 10, 300 μg/mL had no obvious inhibitory effect on the proliferation of RBL-2H3 cells. There was a dose-effect relationship between the degranulation of RBL-2H3 cells and C48/80 concentration. Shikimic acid inhibited the degranulation of RBL-2H3 cells compared with the positive control group, the β-hexosaminidase release rate and histamine release were significantly reduced in RBL-2H3 cells treated with shikimic acid and C48/80. Conclusion Shikimic acid can inhibit the degranulation of RBL-2H3 cells and reduce histamine release.

  18. Simultaneous measurement of the surface temperature and the release of atomic sodium from a burning black liquor droplet

    Energy Technology Data Exchange (ETDEWEB)

    Saw, Woei L.; Nathan, Graham J. [Centre for Energy Technology, The University of Adelaide, SA 5006 (Australia); School of Mechanical Engineering, The University of Adelaide (Australia); Ashman, Peter J.; Alwahabi, Zeyad T. [Centre for Energy Technology, The University of Adelaide, SA 5006 (Australia); School of Chemical Engineering, The University of Adelaide (Australia); Hupa, Mikko [Process Chemistry Centre, Aabo Akademi, Biskopsgatan 8 FI-20500 Aabo (Finland)

    2010-04-15

    Simultaneous measurement of the concentration of released atomic sodium, swelling, surface and internal temperature of a burning black liquor droplet under a fuel lean and rich condition has been demonstrated. Two-dimensional two-colour optical pyrometry was employed to determine the distribution of surface temperature and swelling of a burning black liquor droplet while planar laser-induced fluorescence (PLIF) was used to assess the temporal release of atomic sodium. The key findings of these studies are: (i) the concentration of atomic sodium released during the drying and devolatilisation stages was found to be correlated with the external surface area; and (ii) the insignificant presence of atomic sodium during the char consumption stage shows that sodium release is suppressed by the lower temperature and by the high CO{sub 2} content in and around the particle. (author)

  19. Evidence for evoked release of adenosine and glutamate from cultured cerebellar granule cells

    International Nuclear Information System (INIS)

    Schousboe, A.; Frandsen, A.; Drejer, J.

    1989-01-01

    Evoked release of [ 3 H]-D-aspartate which labels the neurotransmitter glutamate pool in cultured cerebellar granule cells was compared with evoked release of adenosine from similar cultures. It was found that both adenosine and [3H]-D-aspartate could be released from the neurons in a calcium dependent manner after depolarization of the cells with either 10-100 microM glutamate or 50 mM KCl. Cultures of cerebellar granule cells treated with 50 microM kainate to eliminate GABAergic neurons behaved in the same way. This together with the observation that cultured astrocytes did not exhibit a calcium dependent, potassium stimulated adenosine release strongly suggest that cerebellar granule cells release adenosine in a neurotransmitter-like fashion together with glutamate which is the classical neurotransmitter of these neurons. Studies of the metabolism of adenosine showed that in the granule cells adenosine is rapidly metabolized to ATP, ADP, and AMP, but in spite of this, adenosine was found to be released preferential to ATP

  20. Microfluidic synthesis of microfibers for magnetic-responsive controlled drug release and cell culture.

    Directory of Open Access Journals (Sweden)

    Yung-Sheng Lin

    Full Text Available This study demonstrated the fabrication of alginate microfibers using a modular microfluidic system for magnetic-responsive controlled drug release and cell culture. A novel two-dimensional fluid-focusing technique with multi-inlets and junctions was used to spatiotemporally control the continuous laminar flow of alginate solutions. The diameter of the manufactured microfibers, which ranged from 211 µm to 364 µm, could be well controlled by changing the flow rate of the continuous phase. While the model drug, diclofenac, was encapsulated into microfibers, the drug release profile exhibited the characteristic of a proper and steady release. Furthermore, the diclofenac release kinetics from the magnetic iron oxide-loaded microfibers could be controlled externally, allowing for a rapid drug release by applying a magnetic force. In addition, the successful culture of glioblastoma multiforme cells in the microfibers demonstrated a good structural integrity and environment to grow cells that could be applied in drug screening for targeting cancer cells. The proposed microfluidic system has the advantages of ease of fabrication, simplicity, and a fast and low-cost process that is capable of generating functional microfibers with the potential for biomedical applications, such as drug controlled release and cell culture.

  1. Platelet-rich plasma stimulated by pulse electric fields: Platelet activation, procoagulant markers, growth factor release and cell proliferation.

    Science.gov (United States)

    Frelinger, A L; Torres, A S; Caiafa, A; Morton, C A; Berny-Lang, M A; Gerrits, A J; Carmichael, S L; Neculaes, V B; Michelson, A D

    2016-01-01

    Therapeutic use of activated platelet-rich plasma (PRP) has been explored for wound healing, hemostasis and antimicrobial wound applications. Pulse electric field (PEF) stimulation may provide more consistent platelet activation and avoid complications associated with the addition of bovine thrombin, the current state of the art ex vivo activator of therapeutic PRP. The aim of this study was to compare the ability of PEF, bovine thrombin and thrombin receptor activating peptide (TRAP) to activate human PRP, release growth factors and induce cell proliferation in vitro. Human PRP was prepared in the Harvest SmartPreP2 System and treated with vehicle, PEF, bovine thrombin, TRAP or Triton X-100. Platelet activation and procoagulant markers and microparticle generation were measured by flow cytometry. Released growth factors were measured by ELISA. The releasates were tested for their ability to stimulate proliferation of human epithelial cells in culture. PEF produced more platelet-derived microparticles, P-selectin-positive particles and procoagulant annexin V-positive particles than bovine thrombin or TRAP. These differences were associated with higher levels of released epidermal growth factor after PEF than after bovine thrombin or TRAP but similar levels of platelet-derived, vascular-endothelial, and basic fibroblast growth factors, and platelet factor 4. Supernatant from PEF-treated platelets significantly increased cell proliferation compared to plasma. In conclusion, PEF treatment of fresh PRP results in generation of microparticles, exposure of prothrombotic platelet surfaces, differential release of growth factors compared to bovine thrombin and TRAP and significant cell proliferation. These results, together with PEF's inherent advantages, suggest that PEF may be a superior alternative to bovine thrombin activation of PRP for therapeutic applications.

  2. Folliculostellate Cells Are Required for Laminin Release from Gonadotrophs in Rat Anterior Pituitary

    International Nuclear Information System (INIS)

    Tsukada, Takehiro; Fujiwara, Ken; Horiguchi, Kotaro; Azuma, Morio; Ramadhani, Dini; Tofrizal, Alimuddin; Batchuluun, Khongorzul; Maliza, Rita; Syaidah, Rahimi; Kikuchi, Motoshi; Yashiro, Takashi

    2014-01-01

    The anterior pituitary gland is organized tissue comprising hormone-producing cells and folliculostellate (FS) cells. FS cells interconnect to form a meshwork, and their cytoplasmic processes are anchored by a basement membrane containing laminin. Recently, we developed a three-dimensional (3D) cell culture that reproduces this FS cell architecture. In this study of the novel function of FS cells, we used transgenic rats that express green fluorescent protein in FS cells for the 3D culture. Anterior pituitary cells were cultured with different proportions of FS cells (0%, 5%, 10%, and 20%). Anterior pituitary cells containing 5–20% FS cells formed round/oval cell aggregates, whereas amorphous cell aggregates were formed in the absence of FS cells. Interestingly, immunohistochemistry showed laminin-immunopositive cells instead of extracellular laminin deposition in FS cell-deficient cell aggregates. Double-immunostaining revealed that these laminin-immunopositive cells were gonadotrophs. Laminin mRNA expression did not differ in relation to the presence or absence of FS cells. When anterior pituitary cells with no FS cells were cultured with FS cell-conditioned medium, the proportion of laminin-immunopositive cells was lower than in control. These results suggest that a humoral factor from FS cells is required for laminin release from gonadotrophs

  3. Histamine and TNF-α release by rat peritoneal mast cells stimulated with Trichomonas vaginalis

    Directory of Open Access Journals (Sweden)

    Im S.J.

    2011-02-01

    Full Text Available Mast cells have been reported to be predominant in the vaginal smears of patients infected with T. vaginalis. In this study, we investigated whether T. vaginalis could induce mast cells to migrate and to produce TNF-α and histamine. Rat peritoneal mast cells (RPMC, a primary mast cell, were used for the study. T. vaginalis induced an increase in chemotactic migration of the mast cells toward excretory and secretory product (ESP of T. vaginalis, and the mast cells activated with T. vaginalis showed an increased release of histamine and TNF-α. Therefore, mast cells may be involved in the inflammatory response caused by T. vaginalis.

  4. Nattokinase-promoted tissue plasminogen activator release from human cells.

    Science.gov (United States)

    Yatagai, Chieko; Maruyama, Masugi; Kawahara, Tomoko; Sumi, Hiroyuki

    2008-01-01

    When heated to a temperature of 70 degrees C or higher, the strong fibrinolytic activity of nattokinase in a solution was deactivated. Similar results were observed in the case of using Suc-Ala-Ala-Pro-Phe-pNA and H-D-Val-Leu-Lys-pNA, which are synthetic substrates of nattokinase. In the current study, tests were conducted on the indirect fibrinolytic effects of the substances containing nattokinase that had been deactivated through heating at 121 degrees C for 15 min. Bacillus subtilis natto culture solutions made from three types of bacteria strain were heat-treated and deactivated, and it was found that these culture solutions had the ability to generate tissue plasminogen activators (tPA) from vascular endothelial cells and HeLa cells at certain concentration levels. For example, it was found that the addition of heat-treated culture solution of the Naruse strain (undiluted solution) raises the tPA activity of HeLa cells to about 20 times that of the control. Under the same conditions, tPA activity was raised to a level about 5 times higher for human vascular endothelial cells (HUVEC), and to a level about 24 times higher for nattokinase sold on the market. No change in cell count was observed for HeLa cells and HUVEC in the culture solution at these concentrations, and the level of activity was found to vary with concentration. Copyright 2009 S. Karger AG, Basel.

  5. Glucose metabolism determines resistance of cancer cells to bioenergetic crisis after cytochrome-c release

    OpenAIRE

    Huber, Heinrich J.; Dussmann, Heiko; Kilbride, Sean M.; Rehm, Markus; Prehn, Jochen H. M.

    2011-01-01

    How can cells cope with a bioenergetic crisis? In particular, how can cancer cells survive the bioenergetic consequences of cyt-c release that are often induced by chemotherapeutic agents, and that lead to depolarisation of the mitochondrial membrane potential ΔΨm, result in loss of ionic homeostasis and induce cell death? Is there an inherent population heterogeneity that can lead to a non-synchronous response to above cell death stimuli, thereby aggravating treatment and contributing to cli...

  6. Cardiac regeneration by pharmacologically active microcarriers releasing growth factors and/or transporting adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Monia Savi

    2014-01-01

    Full Text Available We tested the hypothesis that cardiac regeneration through local delivery of adipose-derived stem cells (ASCs, activation of resident cardiac stem cells via growth factors (GFs [hepatocyte growth factor (HGF and insulin-like growth factor 1 (IGF-1:GFs] or both, are improved by pharmacologically active microcarriers (PAMs interacting with cells/molecules conveyed on their surface. Rats with one-month old myocardial infarction were treated with ASCs, ASCs+PAMs, GF-releasing PAMs, ASCs+GF-releasing PAMs or vehicle. Two weeks later, hemodynamic function and inducibility of ventricular arrhythmias (VAs were assessed. Eventually, the hearts were subjected to anatomical and immunohistochemical analyses. A significant ASCs engraftment and the largest improvement in cardiac mechanics occurred in ASC+GF-releasing PAM rats which by contrast were more vulnerable to VAs. Thus, PAMs may improve cell/GF-based cardiac regeneration although caution should be paid on the electrophysiological impact of their physical interaction with the myocardium.

  7. Spontaneous, local diastolic subsarcolemmal calcium releases in single, isolated guinea-pig sinoatrial nodal cells.

    Science.gov (United States)

    Sirenko, Syevda G; Yang, Dongmei; Maltseva, Larissa A; Kim, Mary S; Lakatta, Edward G; Maltsev, Victor A

    2017-01-01

    Uptake and release calcium from the sarcoplasmic reticulum (SR) (dubbed "calcium clock"), in the form of spontaneous, rhythmic, local diastolic calcium releases (LCRs), together with voltage-sensitive ion channels (membrane clock) form a coupled system that regulates the action potential (AP) firing rate. LCRs activate Sodium/Calcium exchanger (NCX) that accelerates diastolic depolarization and thus participating in regulation of the time at which the next AP will occur. Previous studies in rabbit SA node cells (SANC) demonstrated that the basal AP cycle length (APCL) is tightly coupled to the basal LCR period (time from the prior AP-induced Ca2+ transient to the diastolic LCR occurrence), and that this coupling is further modulated by autonomic receptor stimulation. Although spontaneous LCRs during diastolic depolarization have been reported in SANC of various species (rabbit, cat, mouse, toad), prior studies have failed to detect LCRs in spontaneously beating SANC of guinea-pig, a species that has been traditionally used in studies of cardiac pacemaker cell function. We performed a detailed investigation of whether guinea-pig SANC generate LCRs and whether they play a similar key role in regulation of the AP firing rate. We used two different approaches, 2D high-speed camera and classical line-scan confocal imaging. Positioning the scan-line beneath sarcolemma, parallel to the long axis of the cell, we found that rhythmically beating guinea-pig SANC do, indeed, generate spontaneous, diastolic LCRs beneath the surface membrane. The average key LCR characteristics measured in confocal images in guinea-pig SANC were comparable to rabbit SANC, both in the basal state and in the presence of β-adrenergic receptor stimulation. Moreover, the relationship between the LCR period and APCL was subtended by the same linear function. Thus, LCRs in guinea-pig SANC contribute to the diastolic depolarization and APCL regulation. Our findings indicate that coupled-clock system

  8. Surface PEGylation of mesoporous silica materials via surface-initiated chain transfer free radical polymerization: Characterization and controlled drug release.

    Science.gov (United States)

    Huang, Long; Liu, Meiying; Mao, Liucheng; Huang, Qiang; Huang, Hongye; Wan, Qing; Tian, Jianwen; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-12-01

    As a new type of mesoporous silica materials with large pore diameter (pore size between 2 and 50nm) and high specific surface areas, SBA-15 has been widely explored for different applications especially in the biomedical fields. The surface modification of SBA-15 with functional polymers has demonstrated to be an effective way for improving its properties and performance. In this work, we reported the preparation of PEGylated SBA-15 polymer composites through surface-initiated chain transfer free radical polymerization for the first time. The thiol group was first introduced on SBA-15 via co-condensation with γ-mercaptopropyltrimethoxysilane (MPTS), that were utilized to initiate the chain transfer free radical polymerization using poly(ethylene glycol) methyl ether methacrylate (PEGMA) and itaconic acid (IA) as the monomers. The successful modification of SBA-15 with poly(PEGMA-co-IA) copolymers was evidenced by a series of characterization techniques, including 1 H NMR, FT-IR, TGA and XPS. The final SBA-15-SH- poly(PEGMA-co-IA) composites display well water dispersity and high loading capability towards cisplatin (CDDP) owing to the introduction of hydrophilic PEGMA and carboxyl groups. Furthermore, the CDDP could be released from SBA-15-SH-poly(PEGMA-co-IA)-CDDP complexes in a pH dependent behavior, suggesting the potential controlled drug delivery of SBA-15-SH-poly(PEGMA-co-IA). More importantly, the strategy should be also useful for fabrication of many other functional materials for biomedical applications owing to the advantages of SBA-15 and well monomer adoptability of chain transfer free radical polymerization. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Acetylcholine induces GABA release onto rod bipolar cells through heteromeric nicotinic receptors expressed in A17 amacrine cells.

    Science.gov (United States)

    Elgueta, Claudio; Vielma, Alex H; Palacios, Adrian G; Schmachtenberg, Oliver

    2015-01-01

    Acetylcholine (ACh) is a major retinal neurotransmitter that modulates visual processing through a large repertoire of cholinergic receptors expressed on different retinal cell types. ACh is released from starburst amacrine cells (SACs) under scotopic conditions, but its effects on cells of the rod pathway have not been investigated. Using whole-cell patch clamp recordings in slices of rat retina, we found that ACh application triggers GABA release onto rod bipolar (RB) cells. GABA was released from A17 amacrine cells and activated postsynaptic GABAA and GABAC receptors in RB cells. The sensitivity of ACh-induced currents to nicotinic ACh receptor (nAChR) antagonists (TMPH ~ mecamylamine > erysodine > DhβE > MLA) together with the differential potency of specific agonists to mimic ACh responses (cytisine > RJR2403 ~ choline), suggest that A17 cells express heteromeric nAChRs containing the β4 subunit. Activation of nAChRs induced GABA release after Ca(2+) accumulation in A17 cell dendrites and varicosities mediated by L-type voltage-gated calcium channels (VGCCs) and intracellular Ca(2+) stores. Inhibition of acetylcholinesterase depolarized A17 cells and increased spontaneous inhibitory postsynaptic currents in RB cells, indicating that endogenous ACh enhances GABAergic inhibition of RB cells. Moreover, injection of neostigmine or cytisine reduced the b-wave of the scotopic flash electroretinogram (ERG), suggesting that cholinergic modulation of GABA release controls RB cell activity in vivo. These results describe a novel regulatory mechanism of RB cell inhibition and complement our understanding of the neuromodulatory control of retinal signal processing.

  10. Chlorhexidine controlled-release profile after EDTA root surface etching: an in vivo study.

    Science.gov (United States)

    Gamal, Ahmed Y; Kumper, Radi M; Sadek, Hesham S; El Destawy, Mahmoud T

    2011-05-01

    The main objective of the present study was to quantify chlorhexidine (CHX) release after the use of CHX-EDTA root surface treatment as a local-delivery antimicrobial vehicle. Twenty non-smoking patients clinically diagnosed as having moderate-to-severe chronic periodontitis were selected to participate in this study. After cause-related therapy, one site in every patient received defect overfill with CHX gel 2% (20 sites). In addition, twenty contralateral sites received defect fill of CHX gel after 3 minutes of 24% EDTA gel root surface etching (20 sites). Gingival crevicular fluid samples were collected at 1, 3, 7, and 14 days post-therapy. The CHX-EDTA group showed statistically significantly higher levels of CHX than those of the control group at 1, 3, and 7 days. At 14 days, the CHX-EDTA group showed 0.8 mg/mL values. The use of CHX-EDTA root surface treatment as a local-delivery antimicrobial improves CHX substantivity.

  11. Necroptotic cells release find-me signal and are engulfed without proinflammatory cytokine production.

    Science.gov (United States)

    Wang, Qiang; Ju, Xiaoli; Zhou, Yang; Chen, Keping

    2015-11-01

    Necroptosis is a form of caspase-independent programmed cell death which is mediated by the RIP1-RIP3 complex. Although phagocytosis of apoptotic cells has been extensively investigated, how necroptotic cells are engulfed has remained elusive. Here, we investigated how necroptotic cells attracted and were engulfed by macrophages. We found that necroptotic cells induced the migration of THP-1 cells in a transwell migration assay. Further analysis showed that ATP released from necroptotic cells acted as a find-me signal that induced the migration of THP-1 cells. We also found that Annexin V blocked phagocytosis of necroptotic cells by macrophages. Furthermore, necroptotic cells were shown to be silently cleared by macrophages without any proinflammatory cytokine production. These data uncover an evolutionarily conserved mechanism of the find-me signal in different types of cell death and immunological consequences between apoptotic and necroptotic cells during phagocytosis.

  12. Effects of Surface Structure and Chemical Composition of Binary Ti Alloys on Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Ok-Sung Han

    2016-07-01

    Full Text Available Binary Ti alloys containing Fe, Mo, V and Zr were micro-arc oxidized and hydrothermally treated to obtain micro- and nano-porous layers. This study aimed to investigate cell differentiation on micro and micro/nanoporous oxide layers of Ti alloys. The properties of the porous layer formed on Ti alloys were characterized by X-ray diffraction pattern, microstructural and elemental analyses and inductively coupled plasma mass spectrometry (ICP-MS method. The MTT assay, total protein production and alkaline phosphatase (ALPase activity were evaluated using human osteoblast-like cells (MG-63. Microporous structures of micro-arc oxidized Ti alloys were changed to micro/nanoporous surfaces after hydrothermal treatment. Micro/nanoporous surfaces consisted of acicular TiO2 nanoparticles and micron-sized hydroxyapatite particles. From ICP and MTT tests, the Mo and V ions released from porous oxide layers were positive for cell viability, while the released Fe ions were negative for cell viability. Although the micro/nanoporous surfaces led to a lower total protein content than the polished and microporous Ti surfaces after cell incubation for 7 days, they caused higher ALPase activities after 7 days and 14 days of incubation except for V-containing microporous surfaces. The micro/nanoporous surfaces of Ti alloys were more efficient in inducing MG-63 cell differentiation.

  13. Multiscale approach to link red blood cell dynamics, shear viscosity, and ATP release.

    Science.gov (United States)

    Forsyth, Alison M; Wan, Jiandi; Owrutsky, Philip D; Abkarian, Manouk; Stone, Howard A

    2011-07-05

    RBCs are known to release ATP, which acts as a signaling molecule to cause dilation of blood vessels. A reduction in the release of ATP from RBCs has been linked to diseases such as type II diabetes and cystic fibrosis. Furthermore, reduced deformation of RBCs has been correlated with myocardial infarction and coronary heart disease. Because ATP release has been linked to cell deformation, we undertook a multiscale approach to understand the links between single RBC dynamics, ATP release, and macroscopic viscosity all at physiological shear rates. Our experimental approach included microfluidics, ATP measurements using a bioluminescent reaction, and rheology. Using microfluidics technology with high-speed imaging, we visualize the deformation and dynamics of single cells, which are known to undergo motions such as tumbling, swinging, tanktreading, and deformation. We report that shear thinning is not due to cellular deformation as previously believed, but rather it is due to the tumbling-to-tanktreading transition. In addition, our results indicate that ATP release is constant at shear stresses below a threshold (3 Pa), whereas above the threshold ATP release is increased and accompanied by large cellular deformations. Finally, performing experiments with well-known inhibitors, we show that the Pannexin 1 hemichannel is the main avenue for ATP release both above and below the threshold, whereas, the cystic fibrosis transmembrane conductance regulator only contributes to deformation-dependent ATP release above the stress threshold.

  14. Enhanced taurine release in cell-damaging conditions in the developing and ageing mouse hippocampus.

    Science.gov (United States)

    Saransaari, P; Oja, S S

    1997-08-01

    Taurine has been shown to be essential for neuronal development and survival in the central nervous system. The release of preloaded [3H]taurine was studied in hippocampal slices from seven-day-, three-month- and 18-22-month-old mice in cell-damaging conditions. The slices were superfused in hypoxic, hypoglycemic and ischemic conditions and exposed to free radicals and oxidative stress. The release of taurine was greatly enhanced in the above conditions in all age groups, except in oxidative stress. The release was large in ischemia, particularly in the hippocampus of aged mice. Potassium stimulation was still able to release taurine in cell-damaging conditions in immature mice, whereas in adult and aged animals the release was so substantial that this additional stimulus failed to work. Taurine release was partially Ca2+-dependent in all cases. The massive release of the inhibitory amino acid taurine in ischemic conditions could act neuroprotectively, counteracting in several ways the effects of simultaneous release of excitatory amino acids. This protection could be of great importance in developing brain tissue, while also having an effect in aged brains.

  15. Response surface methodology for autolysis parameters optimization of shrimp head and amino acids released during autolysis.

    Science.gov (United States)

    Cao, Wenhong; Zhang, Chaohua; Hong, Pengzhi; Ji, Hongwu

    2008-07-01

    Protein hydrolysates were prepared from the head waste of Penaens vannamei, a China seawater major shrimp by autolysis method. Autolysis conditions (viz., temperature, pH and substrate concentration) for preparing protein hydrolysates from the head waste proteins were optimized by response surface methodology (RSM) using a central composite design. Model equation was proposed with regard to the effect of temperature, pH and substrate concentration. Substrate concentration at 23% (w/v), pH at 7.85 and temperature at 50°C were found to be the optimal conditions to obtain a higher degree of hydrolysis close to 45%. The autolysis reaction was nearly finished in the initial 3h. The amino acid compositions of the autolysis hydrolysates prepared using the optimized conditions in different time revealed that the hydrolysates can be used as a functional food ingredient or flavor enhancer. Endogenous enzymes in the shrimp heads had a strong autolysis capacity (AC) for releasing threonine, serine, valine, isoleucine, tyrosine, histidine and tryptophan. Endogenous enzymes had a relatively lower AC for releasing cystine and glycine. Copyright © 2008. Published by Elsevier Ltd.

  16. Sustained release biodegradable solid lipid microparticles: Formulation, evaluation and statistical optimization by response surface methodology

    Directory of Open Access Journals (Sweden)

    Hanif Muhammad

    2017-12-01

    Full Text Available For preparing nebivolol loaded solid lipid microparticles (SLMs by the solvent evaporation microencapsulation process from carnauba wax and glyceryl monostearate, central composite design was used to study the impact of independent variables on yield (Y1, entrapment efficiency (Y2 and drug release (Y3. SLMs having a 10-40 μm size range, with good rheological behavior and spherical smooth surfaces, were produced. Fourier transform infrared spectroscopy, differential scanning calorimetry and X-ray diffractometry pointed to compatibility between formulation components and the zeta-potential study confirmed better stability due to the presence of negative charge (-20 to -40 mV. The obtained outcomes for Y1 (29-86 %, Y2 (45-83 % and Y3 (49-86 % were analyzed by polynomial equations and the suggested quadratic model were validated. Nebivolol release from SLMs at pH 1.2 and 6.8 was significantly (p 0.85 value (Korsmeyer- Peppas suggested slow erosion along with diffusion. The optimized SLMs have the potential to improve nebivolol oral bioavailability.

  17. Sustained release biodegradable solid lipid microparticles: Formulation, evaluation and statistical optimization by response surface methodology.

    Science.gov (United States)

    Hanif, Muhammad; Khan, Hafeez Ullah; Afzal, Samina; Mahmood, Asif; Maheen, Safirah; Afzal, Khurram; Iqbal, Nabila; Andleeb, Mehwish; Abbas, Nazar

    2017-12-20

    For preparing nebivolol loaded solid lipid microparticles (SLMs) by the solvent evaporation microencapsulation process from carnauba wax and glyceryl monostearate, central composite design was used to study the impact of independent variables on yield (Y1), entrapment efficiency (Y2) and drug release (Y3). SLMs having a 10-40 μm size range, with good rheological behavior and spherical smooth surfaces, were produced. Fourier transform infrared spectroscopy, differential scanning calorimetry and X-ray diffractometry pointed to compatibility between formulation components and the zeta-potential study confirmed better stability due to the presence of negative charge (-20 to -40 mV). The obtained outcomes for Y1 (29-86 %), Y2 (45-83 %) and Y3 (49-86 %) were analyzed by polynomial equations and the suggested quadratic model were validated. Nebivolol release from SLMs at pH 1.2 and 6.8 was significantly (p 0.85 value (Korsmeyer- Peppas) suggested slow erosion along with diffusion. The optimized SLMs have the potential to improve nebivolol oral bioavailability.

  18. Application of fuel cells in surface ships

    Energy Technology Data Exchange (ETDEWEB)

    Bourne, C.; Nietsch, T.; Griffiths, D.; Morley, J.

    2001-07-01

    This report presents the findings of a DTI supported project entitled: ''Applications of fuel cells in surface ships''. It gives a brief market analysis describing the general requirements of different vessel types and an overview of the different heat engine technologies currently used for propulsion and power generation in ships. The appendices contain a more detailed description of the different vessel types, their general requirements and a description of current prime mover technologies used. This analysis is followed by a summary of the major fuel cell development programmes and activities ongoing in different countries that have a direct or potential relevance to a marine application of the technology. (author)

  19. Modulation of the effect of acetylcholine on insulin release by the membrane potential of B cells

    International Nuclear Information System (INIS)

    Hermans, M.P.; Schmeer, W.; Henquin, J.C.

    1987-01-01

    Mouse islets were used to test the hypothesis that the B cell membrane must be depolarized for acetylcholine to increase insulin release. The resting membrane potential of B cells (at 3 mM glucose) was slightly decreased (5 mV) by acetylcholine, but no electrical activity appeared. This depolarization was accompanied by a Ca-independent acceleration of 86 Rb and 45 Ca efflux but no insulin release. When the B cell membrane was depolarized by a stimulatory concentration of glucose (10 mM), acetylcholine potentiated electrical activity, accelerated 86 Rb and 45 Ca efflux, and increased insulin release. This latter effect, but not the acceleration of 45 Ca efflux, was totally dependent on extracellular Ca. If glucose-induced depolarization of the B cell membrane was prevented by diazoxide, acetylcholine lost all effects but those produced at low glucose. In contrast, when the B cell membrane was depolarized by leucine or tolbutamide (at 3 mM glucose), acetylcholine triggered a further depolarization with appearance of electrical activity, accelerated 86 Rb and 45 Ca efflux, and stimulated insulin release. Acetylcholine produced similar effects (except for electrical activity) in the presence of high K or arginine which, unlike the above test agents, depolarize the B cell membrane by a mechanism other than a decrease in K+ permeability. Omission of extracellular Ca abolished the releasing effect of acetylcholine under all conditions but only partially decreased the stimulation of 45 Ca efflux. The results show thus that acetylcholine stimulation of insulin release does not result from mobilization of cellular Ca but requires that the B cell membrane be sufficiently depolarized to reach the threshold potential where Ca channels are activated. This may explain why acetylcholine alone does not initiate release but becomes active in the presence of a variety of agents

  20. Histamine release from gut mast cells from patients with inflammatory bowel diseases

    DEFF Research Database (Denmark)

    Nolte, Hendrik; Spjeldnæs, Nikolaj; Kruse, Aksel

    1990-01-01

    Inflammatory mediators from intestinal mast cells may serve as initiators of acute and delayed inflammation. Mast cell histamine release was measured in 19 patients with inflammatory bowel diseases using gut mast cells from enzymatically dispersed endoscopic forceps biopsy specimens...... of macroscopically inflamed and normal tissue. Mast cells and corresponding basophils were challenged with anti-IgE, anti-IgG, subclass anti-IgG4, and formyl-methionyl-leucyl-phenylalanine (FMLP) and results were compared with those from nine patient control subjects. The mast cell count in patients with ulcerative...... colitis was increased compared with that in control subjects and patients with Crohn's disease, and the mast cell count obtained from inflamed tissue was greater than that of normal tissue. The study also shows the heterogeneity of the responsiveness of the histamine releasing cells to various...

  1. Thrombotic Role of Blood and Endothelial Cells in Uremia through Phosphatidylserine Exposure and Microparticle Release.

    Directory of Open Access Journals (Sweden)

    Chunyan Gao

    Full Text Available The mechanisms contributing to an increased risk of thrombosis in uremia are complex and require clarification. There is scant morphological evidence of membrane-dependent binding of factor Xa (FXa and factor Va (FVa on endothelial cells (EC in vitro. Our objectives were to confirm that exposed phosphatidylserine (PS on microparticle (MP, EC, and peripheral blood cell (PBC has a prothrombotic role in uremic patients and to provide visible and morphological evidence of PS-dependent prothrombinase assembly in vitro. We found that uremic patients had more circulating MP (derived from PBC and EC than controls. Additionally, patients had more exposed PS on their MPs and PBCs, especially in the hemodialysis group. In vitro, EC exposed more PS in uremic toxins or serum. Moreover, reconstitution experiments showed that at the early stages, PS exposure was partially reversible. Using confocal microscopy, we observed that PS-rich membranes of EC and MP provided binding sites for FVa and FXa. Further, exposure of PS in uremia resulted in increased generation of FXa, thrombin, and fibrin and significantly shortened coagulation time. Lactadherin, a protein that blocks PS, reduced 80% of procoagulant activity on PBC, EC, and MP. Our results suggest that PBC and EC in uremic milieu are easily injured or activated, which exposes PS and causes a release of MP, providing abundant procoagulant membrane surfaces and thus facilitating thrombus formation. Blocking PS binding sites could become a new therapeutic target for preventing thrombosis.

  2. Inhibition of basophil histamine release by gangliosides. Further studies on the significance of cell membrane sialic acid in the histamine release process

    DEFF Research Database (Denmark)

    Jensen, C; Norn, S; Thastrup, Ole

    1987-01-01

    with the glucolipid mixture increased the sialic acid content of the cells, and this increase was attributed to an insertion of gangliosides into the cell membrane. The inhibition of histamine release was abolished by increasing the calcium concentration, which substantiates our previous findings that cell membrane......Histamine release from human basophils was inhibited by preincubation of the cells with a glucolipid mixture containing sialic acid-containing gangliosides. This was true for histamine release induced by anti-IgE, Concanavalin A and the calcium ionophore A23187, whereas the release induced by S....... aureus Wood 46 was not affected. It was demonstrated that the inhibitory capacity of the glucolipid mixture could be attributed to the content of gangliosides, since no inhibition was obtained with cerebrosides or with gangliosides from which sialic acid was removed. Preincubation of the cells...

  3. Human interleukin for DA cells or leukemia inhibitory factor is released by Vero cells in human embryo coculture.

    Science.gov (United States)

    Papaxanthos-Roche, A; Taupin, J L; Mayer, G; Daniel, J Y; Moreau, J F

    1994-09-01

    In the light of the newly discovered implications of human interleukin for DA cells and leukemia inhibitory factor in embryology, we searched for the presence of this soluble cytokine in the supernatant of Vero cell coculture systems. Using a bioassay as well as a specific ELISA, we demonstrated that Vero cells are able to release large quantities of human interleukin for DA cells and leukemia inhibitory factor in the embryo-growing medium of such cocultures.

  4. Nanolayer surface passivation schemes for silicon solar cells

    NARCIS (Netherlands)

    Dingemans, G.

    2011-01-01

    This thesis is concerned with nanolayer surface passivation schemes and corresponding deposition processes, for envisaged applications in crystalline silicon solar cells. Surface passivation, i.e. the reduction of electronic recombination processes at semiconductor surfaces, is essential for

  5. Multilamellar structures and filament bundles are found on the cell surface during bunyavirus egress.

    Directory of Open Access Journals (Sweden)

    Laura Sanz-Sánchez

    Full Text Available Inside cells, viruses build specialized compartments for replication and morphogenesis. We observed that virus release associates with specific structures found on the surface of mammalian cells. Cultured adherent cells were infected with a bunyavirus and processed for oriented sectioning and transmission electron microscopy. Imaging of cell basal regions showed sophisticated multilamellar structures (MLS and extracellular filament bundles with attached viruses. Correlative light and electron microscopy confirmed that both MLS and filaments proliferated during the maximum egress of new viruses. MLS dimensions and structure were reminiscent of those reported for the nanostructures on gecko fingertips, which are responsible for the extraordinary attachment capacity of these lizards. As infected cells with MLS were more resistant to detachment than control cells, we propose an adhesive function for these structures, which would compensate for the loss of adherence during release of new virus progeny.

  6. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells

    OpenAIRE

    Kim, Ji-Seok; Kim, Boa; Lee, Hojun; Thakkar, Sunny; Babbitt, Dianne M.; Eguchi, Satoru; Brown, Michael D.; Park, Joon-Young

    2015-01-01

    This study assesses effects of aerobic exercise training on the release of microparticles from endothelial cells and corroborates these findings using an in vitro experimental exercise stimulant, laminar shear stress. Furthermore, this study demonstrated that shear stress-induced mitochondrial biogenesis mediates these effects against endothelial cell activation and injury.

  7. Mechanism of palytoxin-induced [3H]norepinephrine release from a rat pheochromocytoma cell line

    International Nuclear Information System (INIS)

    Tatsumi, M.; Takahashi, M.; Ohizumi, Y.

    1984-01-01

    Palytoxin, isolated from the zoanthid Palytoha species, is one of the most potent marine toxins. Palytoxin caused a release of [ 3 H]norepinephrine from clonal rat pheochromocytoma cells in a concentration-dependent manner. This releasing action of palytoxin was markedly inhibited or abolished by Co 2+ or Ca 2+ -free medium, but was not modified by tetrodotoxin. The release of [ 3 H]norepinephrine induced by a low concentration of palytoxin was abolished in sodium-free medium and increased as the external Na+ concentrations were increased, but the release induced by a high concentration was unaffected by varying the concentration of external Na + . The release of [ 3 H]norepinephrine induced by both concentrations of palytoxin increased with increasing Ca 2+ concentrations. Palytoxin caused a concentration-dependent increase in 22 Na and 45 Ca influxes into pheochromocytoma cells. The palytoxin-induced 45 Ca influx was markedly inhibited by Co 2+ , whereas the palytoxin-induced 22 Na influx was not affected by tetrodotoxin. These results suggest that in pheochromocytoma cells the [ 3 H]norepinephrine release induced by lower concentrations of palytoxin is primarily brought about by increasing tetrodotoxin-insensitive Na + permeability across the cell membrane, whereas that induced by higher concentrations is mainly caused by a direct increase in Ca 2+ influx into them

  8. Acute radiation effects on the content and release of plasminogen activator activity in cultured aortic endothelial cells

    International Nuclear Information System (INIS)

    Ts'ao, C.H.; Ward, W.F.

    1985-01-01

    Confluent monolayers from three lines of bovine aortic endothelial cells were exposed to a single dose of 10 Gy of 60 Co γ rays. Seventy-two hours later, the morphology of the irradiated and sham-irradiated monolayers was examined, and cellular DNA and protein contents were determined. In addition, the release of plasminogen activator (PA) activity into the culture media and PA activity in the cell lysates were assayed. DNA and protein contents in the irradiated monolayers were reduced to 43-50% and 72-95% of the control levels, respectively. These data indicate that radiation induced cell loss (detachment and/or lysis) from the monolayer, with hypertrophy of surviving (attached) cells to preserve the continuity of the monolayer surface. Total PA activity (lysate plus medium) in the irradiated dishes was reduced to 50-75% of the control level. However, when endothelial PA activity was expressed on the basis of DNA content, the irradiated monolayers from two of the three cell lines contained significantly more PA activity than did sham-irradiated monolayers. These data suggest that fibrinolytic defects observed in irradiated tissues in situ may be attributable at least in part to a radiation-induced inhibition of PA release by vascular endothelial cells

  9. Mycobacterium tuberculosis Cell Wall Fragments Released upon Bacterial Contact with the Human Lung Mucosa Alter the Neutrophil Response to Infection.

    Science.gov (United States)

    Scordo, Julia M; Arcos, Jesús; Kelley, Holden V; Diangelo, Lauren; Sasindran, Smitha J; Youngmin, Ellie; Wewers, Mark D; Wang, Shu-Hua; Balada-Llasat, Joan-Miquel; Torrelles, Jordi B

    2017-01-01

    In 2016, the World Health Organization reported that one person dies of tuberculosis (TB) every 21 s. A host environment that Mycobacterium tuberculosis ( M.tb ) finds during its route of infection is the lung mucosa bathing the alveolar space located in the deepest regions of the lungs. We published that human lung mucosa, or alveolar lining fluid (ALF), contains an array of hydrolytic enzymes that can significantly alter the M.tb surface during infection by cleaving off parts of its cell wall. This interaction results in two different outcomes: modifications on the M.tb cell wall surface and release of M.tb cell wall fragments into the environment. Typically, one of the first host immune cells at the site of M.tb infection is the neutrophil. Neutrophils can mount an extracellular and intracellular innate immune response to M.tb during infection. We hypothesized that exposure of neutrophils to ALF-induced M.tb released cell wall fragments would prime neutrophils to control M.tb infection better. Our results show that ALF fragments activate neutrophils leading to an increased production of inflammatory cytokines and oxidative radicals. However, neutrophil exposure to these fragments reduces production of chemoattractants (i.e., interleukin-8), and degranulation, with the subsequent reduction of myeloperoxidase release, and does not induce cytotoxicity. Unexpectedly, these ALF fragment-derived modulations in neutrophil activity do not further, either positively or negatively, contribute to the intracellular control of M.tb growth during infection. However, secreted products from neutrophils primed with ALF fragments are capable of regulating the activity of resting macrophages. These results indicate that ALF-induced M.tb fragments could further contribute to the control of M.tb growth and local killing by resident neutrophils by switching on the total oxidative response and limiting migration of neutrophils to the infection site.

  10. Silicon impurity release and surface transformation of TiO2 anatase and rutile nanoparticles in water environments

    International Nuclear Information System (INIS)

    Liu, Xuyang; Chen, Gexin; Erwin, Justin G.; Su, Chunming

    2014-01-01

    Surface transformation can affect the stability, reactivity, and toxicity of titanium dioxide (TiO 2 ) nanoparticles (NPs) in water environments. Herein, we investigated the release kinetics of Si impurity frequently introduced during NP synthesis and the resulting effect on TiO 2 NP transformation in aqueous solutions. The release of Si increased from 2 h to 19 d at three pHs with the order: pH 11.2 ≥ pH 2.4 > pH 8.2. The Si release process followed parabolic kinetics which is similar to diffusion controlled dissolution of minerals, and the release magnitude followed the order: 10 × 40 nm rutile > 50 nm anatase > 30 × 40 nm rutile. FTIR data indicated preferential dissolving of less polymerized Si species on NP surface. Surface potential and particle size of TiO 2 NPs remained almost constant during the 42-day monitoring, implying the unaffected stability and transport of these NPs by the incongruent dissolution of impurities. Highlights: • Si impurity may affect the colloid stability, reactivity, and toxicity of TiO 2 NPs. • Si impurity gradually released during 2 h – 19 d following a parabolic curve. • FTIR data indicated less polymerized Si species dissolved from TiO 2 NPs. • Surface potential and size of TiO 2 remained constant during impurity release. • NP production needs to consider ion release and environmental transformation. -- The incongruent dissolution of surface charge determining Si impurity did not significantly affect the surface potential and aggregation status of TiO 2 nanoparticles in aqueous solutions

  11. Doc2b synchronizes secretion from chromaffin cells by stimulating fast and inhibiting sustained release

    DEFF Research Database (Denmark)

    da Silva Pinheiro, Paulo César; de Wit, Heidi; Walter, Alexander M

    2013-01-01

    Synaptotagmin-1 and -7 constitute the main calcium sensors mediating SNARE-dependent exocytosis in mouse chromaffin cells, but the role of a closely related calcium-binding protein, Doc2b, remains enigmatic. We investigated its role in chromaffin cells using Doc2b knock-out mice and high temporal...... resolution measurements of exocytosis. We found that the calcium dependence of vesicle priming and release triggering remained unchanged, ruling out an obligatory role for Doc2b in those processes. However, in the absence of Doc2b, release was shifted from the readily releasable pool to the subsequent...... sustained component. Conversely, upon overexpression of Doc2b, the sustained component was largely inhibited whereas the readily releasable pool was augmented. Electron microscopy revealed an increase in the total number of vesicles upon Doc2b overexpression, ruling out vesicle depletion as the cause...

  12. Improved accuracy of cell surface shaving proteomics in Staphylococcus aureus using a false-positive control

    DEFF Research Database (Denmark)

    Solis, Nestor; Larsen, Martin Røssel; Cordwell, Stuart J

    2010-01-01

    Proteolytic treatment of intact bacterial cells is an ideal means for identifying surface-exposed peptide epitopes and has potential for the discovery of novel vaccine targets. Cell stability during such treatment, however, may become compromised and result in the release of intracellular proteins...... that complicate the final analysis. Staphylococcus aureus is a major human pathogen, causing community and hospital-acquired infections, and is a serious healthcare concern due to the increasing prevalence of multiple antibiotic resistances amongst clinical isolates. We employed a cell surface "shaving" technique...... to trypsin and three identified in the control. The use of a subtracted false-positive strategy improved enrichment of surface-exposed peptides in the trypsin data set to approximately 80% (124/155 peptides). Predominant surface proteins were those associated with methicillin resistance-surface protein SACOL...

  13. All polymer chip for amperometric studies of transmitter release from large groups of neuronal cells

    DEFF Research Database (Denmark)

    Larsen, Simon T.; Taboryski, Rafael

    2012-01-01

    We present an all polymer electrochemical chip for simple detection of transmitter release from large groups of cultured PC 12 cells. Conductive polymer PEDOT:tosylate microelectrodes were used together with constant potential amperometry to obtain easy-to-analyze oxidation signals from potassium......-induced release of transmitter molecules. The nature of the resulting current peaks is discussed, and the time for restoring transmitter reservoirs is studied. The relationship between released transmitters and potassium concentration was found to fit to a sigmoidal dose–response curve. Finally, we demonstrate...

  14. Protective role of allicin (diallyl thiosulfinate) on cell surface ...

    African Journals Online (AJOL)

    cell membranes. Glycoconjugates are released into the circulation through increased turnover, secretion, and/or shedding from ... present in medicinal plant possess protective effects [15]. ... The protein-bound hexose in plasma, erythrocyte.

  15. Role of hemolysis in red cell adenosine triphosphate release in simulated exercise conditions in vitro.

    Science.gov (United States)

    Mairbäurl, Heimo; Ruppe, Florian A; Bärtsch, Peter

    2013-10-01

    Specific adenosine triphosphate (ATP) release from red blood cells has been discussed as a possible mediator controlling microcirculation in states of decreased tissue oxygen. Because intravascular hemolysis might also contribute to plasma ATP, we tested in vitro which portion of ATP release is due to hemolysis in typical exercise-induced strains to the red blood cells (shear stress, deoxygenation, and lactic acidosis). Human erythrocytes were suspended in dextran-containing media (hematocrit 10%) and were exposed to shear stress in a rotating Couette viscometer at 37°C. Desaturation (oxygen saturation of hemoglobin ∼20%) was achieved by tonometry with N2 before shear stress exposure. Cells not exposed to shear stress were used as controls. Na lactate (15 mM), lactic acid (15 mM, pH 7.0), and HCl (pH 7.0) were added to simulate exercise-induced lactic acidosis. After incubation, extracellular hemoglobin was measured to quantify hemolysis. ATP was measured with the luciferase assay. Shear stress increased extracellular ATP in a stress-related and time-dependent manner. Hypoxia induced a ∼10-fold increase in extracellular ATP in nonsheared cells and shear stress-exposed cells. Lactic acid had no significant effect on ATP release and hemolysis. In normoxic cells, approximately 20%-50% of extracellular ATP was due to hemolysis. This proportion decreased to less than 10% in hypoxic cells. Our results indicate that when exposing red blood cells to typical strains they encounter when passing through capillaries of exercising skeletal muscle, ATP release from red blood cells is caused mainly by deoxygenation and shear stress, whereas lactic acidosis had only a minor effect. Hemolysis effects were decreased when hemoglobin was deoxygenated. Together, by specific release and hemolysis, extracellular ATP reaches values that have been shown to cause local vasodilatation.

  16. Electrical stimulation induces calcium-dependent release of NGF from cultured Schwann cells.

    Science.gov (United States)

    Huang, Jinghui; Ye, Zhengxu; Hu, Xueyu; Lu, Lei; Luo, Zhuojing

    2010-04-01

    Production of nerve growth factor (NGF) from Schwann cells (SCs) progressively declines in the distal stump, if axonal regeneration is staggered across the suture site after peripheral nerve injuries. This may be an important factor limiting the outcome of nerve injury repair. Thus far, extensive efforts are devoted to modulating NGF production in cultured SCs, but little has been achieved. In the present in vitro study, electrical stimulation (ES) was attempted to stimulate cultured SCs to release NGF. Our data showed that ES was capable of enhancing NGF release from cultured SCs. An electrical field (1 Hz, 5 V/cm) caused a 4.1-fold increase in NGF release from cultured SCs. The ES-induced NGF release is calcium dependent. Depletion of extracellular or/and intracellular calcium partially/ completely abolished the ES-induced NGF release. Further pharmacological interventions showed that ES induces calcium influx through T-type voltage-gated calcium channels and mobilizes calcium from 1, 4, 5-trisphosphate-sensitive stores and caffeine/ryanodine-sensitive stores, both of which contributed to the enhanced NGF release induced by ES. In addition, a calcium-triggered exocytosis mechanism was involved in the ES-induced NGF release from cultured SCs. These findings show the feasibility of using ES in stimulating SCs to release NGF, which holds great potential in promoting nerve regeneration by enhancing survival and outgrowth of damaged nerves, and is of great significance in nerve injury repair and neuronal tissue engineering.

  17. Bio-Orthogonal Mediated Nucleic Acid Transfection of Cells via Cell Surface Engineering.

    Science.gov (United States)

    O'Brien, Paul J; Elahipanah, Sina; Rogozhnikov, Dmitry; Yousaf, Muhammad N

    2017-05-24

    The efficient delivery of foreign nucleic acids (transfection) into cells is a critical tool for fundamental biomedical research and a pillar of several biotechnology industries. There are currently three main strategies for transfection including reagent, instrument, and viral based methods. Each technology has significantly advanced cell transfection; however, reagent based methods have captured the majority of the transfection market due to their relatively low cost and ease of use. This general method relies on the efficient packaging of a reagent with nucleic acids to form a stable complex that is subsequently associated and delivered to cells via nonspecific electrostatic targeting. Reagent transfection methods generally use various polyamine cationic type molecules to condense with negatively charged nucleic acids into a highly positively charged complex, which is subsequently delivered to negatively charged cells in culture for association, internalization, release, and expression. Although this appears to be a straightforward procedure, there are several major issues including toxicity, low efficiency, sorting of viable transfected from nontransfected cells, and limited scope of transfectable cell types. Herein, we report a new strategy (SnapFect) for nucleic acid transfection to cells that does not rely on electrostatic interactions but instead uses an integrated approach combining bio-orthogonal liposome fusion, click chemistry, and cell surface engineering. We show that a target cell population is rapidly and efficiently engineered to present a bio-orthogonal functional group on its cell surface through nanoparticle liposome delivery and fusion. A complementary bio-orthogonal nucleic acid complex is then formed and delivered to which chemoselective click chemistry induced transfection occurs to the primed cell. This new strategy requires minimal time, steps, and reagents and leads to superior transfection results for a broad range of cell types

  18. Upregulating Nonneuronal Cholinergic Activity Decreases TNF Release from Lipopolysaccharide-Stimulated RAW264.7 Cells

    Directory of Open Access Journals (Sweden)

    Yi Lv

    2014-01-01

    Full Text Available Nonneuronal cholinergic system plays a primary role in maintaining homeostasis. It has been proved that endogenous neuronal acetylcholine (ACh could play an anti-inflammatory role, and exogenous cholinergic agonists could weaken macrophages inflammatory response to lipopolysaccharide (LPS stimulation through activation of α7 subunit-containing nicotinic acetylcholine receptor (α7nAChR. We assumed that nonneuronal cholinergic system existing in macrophages could modulate inflammation through autocrine ACh and expressed α7nAChR on the cells. Therefore, we explored whether LPS continuous stimulation could upregulate the nonneuronal cholinergic activity in macrophages and whether increasing autocrine ACh could decrease TNF release from the macrophages. The results showed that, in RAW264.7 cells incubated with LPS for 20 hours, the secretion of ACh was significantly decreased at 4 h and then gradually increased, accompanied with the enhancement of α7nAChR expression level. The release of TNF was greatly increased from RAW264.7 cells at 4 h and 8 h exposure to LPS; however, it was suppressed at 20 h. Upregulating choline acetyltransferase (ChAT expression through ChAT gene transfection could enhance ACh secretion and reduce TNF release from the infected RAW264. 7cells. The results indicated that LPS stimulation could modulate the activity of nonneuronal cholinergic system of RAW264.7 cells. Enhancing autocrine ACh production could attenuate TNF release from RAW264.7 cells.

  19. Differential Cell Sensitivity between OTA and LPS upon Releasing TNF-α

    Directory of Open Access Journals (Sweden)

    Lauy Al-Anati

    2010-06-01

    Full Text Available The release of tumor necrosis factor α (TNF-α by ochratoxin A (OTA was studied in various macrophage and non-macrophage cell lines and compared with E. coli lipopolysaccharide (LPS as a standard TNF-α release agent. Cells were exposed either to 0, 2.5 or 12.5 µmol/L OTA, or to 0.1 µg/mL LPS, for up to 24 h. OTA at 2.5 µmol/L and LPS at 0.1 µg/mL were not toxic to the tested cells as indicated by viability markers. TNF-a was detected in the incubated cell medium of rat Kupffer cells, peritoneal rat macrophages, and the mouse monocyte macrophage cell line J774A.1: TNF-a concentrations were 1,000 pg/mL, 1,560 pg/mL, and 650 pg/mL, respectively, for 2.5 µmol/L OTA exposure and 3,000 pg/mL, 2,600 pg/mL, and 2,115 pg/mL, respectively, for LPS exposure. Rat liver sinusoidal endothelial cells, rat hepatocytes, human HepG2 cells, and mouse L929 cells lacked any cytokine response to OTA, but showed a significant release of TNF-a after LPS exposure, with the exception of HepG2 cells. In non-responsive cell lines, OTA lacked both any activation of NF-κB or the translocation of activated NF-κB to the cell nucleus, i.e., in mouse L929 cells. In J774A.1 cells, OTA mediated TNF-a release via the pRaf/MEK 1/2–NF-κB and p38-NF-κB pathways, whereas LPS used pRaf/MEK 1/2-NF-κB, but not p38-NF-κB pathways. In contrast, in L929 cells, LPS used other pathways to activate NF-κB. Our data indicate that only macrophages and macrophage derived cells respond to OTA and are considered as sources for TNF-a release upon OTA exposure.

  20. Acid stimulation (sour taste elicits GABA and serotonin release from mouse taste cells.

    Directory of Open Access Journals (Sweden)

    Yijen A Huang

    Full Text Available Several transmitter candidates including serotonin (5-HT, ATP, and norepinephrine (NE have been identified in taste buds. Recently, γ-aminobutyric acid (GABA as well as the associated synthetic enzymes and receptors have also been identified in taste cells. GABA reduces taste-evoked ATP secretion from Receptor cells and is considered to be an inhibitory transmitter in taste buds. However, to date, the identity of GABAergic taste cells and the specific stimulus for GABA release are not well understood. In the present study, we used genetically-engineered Chinese hamster ovary (CHO cells stably co-expressing GABA(B receptors and Gαqo5 proteins to measure GABA release from isolated taste buds. We recorded robust responses from GABA biosensors when they were positioned against taste buds isolated from mouse circumvallate papillae and the buds were depolarized with KCl or a stimulated with an acid (sour taste. In contrast, a mixture of sweet and bitter taste stimuli did not trigger GABA release. KCl- or acid-evoked GABA secretion from taste buds was Ca(2+-dependent; removing Ca(2+ from the bathing medium eliminated GABA secretion. Finally, we isolated individual taste cells to identify the origin of GABA secretion. GABA was released only from Presynaptic (Type III cells and not from Receptor (Type II cells. Previously, we reported that 5-HT released from Presynaptic cells inhibits taste-evoked ATP secretion. Combined with the recent findings that GABA depresses taste-evoked ATP secretion, the present results indicate that GABA and 5-HT are inhibitory transmitters in mouse taste buds and both likely play an important role in modulating taste responses.

  1. Growth inhibition and chemosensitization of exogenous nitric oxide released from NONOates in glioma cells in vitro.

    Science.gov (United States)

    Weyerbrock, Astrid; Baumer, Brunhilde; Papazoglou, Anna

    2009-01-01

    Exogenous nitric oxide (NO) from NO donors has cytotoxic, chemosensitizing, and radiosensitizing effects, and increases vascular permeability and blood flow in tumors. Yet little is known about whether these cytotoxic and chemosensitizing effects can be observed in glioma cells at doses that alter tumor physiological characteristics in vivo and whether these effects are tumor selective. The effect of NO released from proline NONOate, diethylamine NONOate, spermine NONOate, and sodium nitrite on cell proliferation, apoptosis, and chemosensitivity to carboplatin of cultured glioma cells was studied in C6, U87 glioma cells, human glioblastoma cells, and human astrocytes and fibroblasts. Although proline NONOate failed to induce cell death, the other NO donors induced growth arrest when present in high concentrations (10(-2) M) in all cell lines. Chemosensitization was observed after concomitant incubation with spermine NONOate and carboplatin in C6 and human glioblastoma cells. There is strong evidence that cell death occurs primarily by necrosis and to a lesser degree by apoptosis. The NO doses, which altered tumor physiology in vivo, were not cytotoxic, indicating that NO alters vascular permeability and cell viability in vivo by different mechanisms. The authors found that NO-generating agents at high concentrations are potent growth inhibitors and might also be useful as chemosensitizers in glioma cells. These data corroborate the theory that the use of NOgenerating agents may play a role in the multimodal treatment of malignant gliomas but that the NO release must be targeted more specifically to tumor cells to improve selectivity and efficacy.

  2. An ibuprofen-antagonized plasmin inhibitor released by human endothelial cells.

    Science.gov (United States)

    Rockwell, W B; Ehrlich, H P

    1991-02-01

    Serum-free culture medium harvested from endothelial cell monolayer cultures derived from human scars and dermis was examined for inhibition of fibrinolysis using a fibrin plate assay. Human cultured fibroblasts and smooth muscle cells did not produce any detectable inhibitory activity. The inhibitor is spontaneously released from the cultured endothelial cells over time. In the fibrin plate assay of plasmin-induced fibrinolysis, one nonsteroidal antiinflammatory (NSAI) drug, ibuprofen, was demonstrated to antagonize the inhibition of fibrinolysis. The antagonistic activity of ibuprofen appears unrelated to its NSAI drug activity because other NSAI drugs such as indomethacin and tolmetin have minimal antagonistic activity. Heating the cultured endothelial cells to 42 degrees C stimulates greater release of the inhibitor in a shorter period of time. This plasmin inhibitor, which is produced by endothelial cells, may contribute to postburn vascular occlusion, leading to secondary progressive necrosis in burn-traumatized patients.

  3. Genetic induction of the gastrin releasing peptide receptor on tumor cells for radiolabeled peptide binding

    International Nuclear Information System (INIS)

    Raben, David; Stackhouse, Murray; Buchsbaum, Donald J.; Mikheeva, Galeena; Khazaeli, M.B.; McLean, Stephanie; Kirkman, Richard; Krasnykh, Victor; Curiel, David T.

    1996-01-01

    Purpose/Objective: To improve upon existing radioimmunotherapy (RAIT) approaches, we have devised a strategy to genetically induce high levels of new membrane-associated receptors on human cancer cells targetable by radiolabeled peptides. In this context, we report successful adenoviral-mediated transduction of tumor cells to express the murine gastrin releasing peptide receptor (mGRPr) as demonstrated by 125 I-labeled bombesin binding. Materials and Methods: To demonstrate the feasibility of our strategy and to provide rapid proof of principle, we constructed a plasmid encoding the mGRPr gene. We cloned the mGRPr gene into the adenoviral shuttle vector pACMVpLpARS+ (F. Graham). We then utilized the methodology of adenovirus-polylysine-mediated transfection (AdpLmGRPr) to accomplish transient gene expression of mGRPr in two human cancer cell lines including A427 non-small cell lung cancer cells and HeLa cervical cancer cells. Murine GRPr expression was then measured by a live-cell binding assay using 125 I-labeled bombesin. In order to develop this strategy further, it was necessary to construct a vector that would be more efficient for in vivo transduction. In this regard, we constructed a recombinant adenoviral vector (AdCMVGRPr) encoding the mGRPr under the control of the CMV promoter based on in vivo homologous recombination methods. The recombinant shuttle vector containing mGRPr was co-transfected with the adenoviral rescue plasmid pJM17 into the E1A trans complementing cell line 293 allowing for derivation of replication-incompetent, recombinant adenoviral vector. Individual plaques were isolated and subjected to two further rounds of plaque purification. The identity of the virus was confirmed at each step by PCR employing primers for mGRPr. The absence of wild-type adenovirus was confirmed by PCR using primers to the adenoviral E1A gene. SKOV3.ip1 human ovarian cancer cells and MDA-MB-231 human breast cancer cells were transduced in vitro with AdCMVGRPr at

  4. Ultraviolet radiation-induced interleukin 6 release in HeLa cells is mediated via membrane events in a DNA damage-independent way.

    Science.gov (United States)

    Kulms, D; Pöppelmann, B; Schwarz, T

    2000-05-19

    Evidence exists that ultraviolet radiation (UV) affects molecular targets in the nucleus or at the cell membrane. UV-induced apoptosis was found to be mediated via DNA damage and activation of death receptors, suggesting that nuclear and membrane effects are not mutually exclusive. To determine whether participation of nuclear and membrane components is also essential for other UV responses, we studied the induction of interleukin-6 (IL-6) by UV. Exposing HeLa cells to UV at 4 degrees C, which inhibits activation of surface receptors, almost completely prevented IL-6 release. Enhanced repair of UV-mediated DNA damage by addition of the DNA repair enzyme photolyase did not affect UV-induced IL-6 production, suggesting that in this case membrane events predominant over nuclear effects. UV-induced IL-6 release is mediated via NFkappaB since the NFkappaB inhibitor MG132 or transfection of cells with a super-repressor form of the NFkappaB inhibitor IkappaB reduced IL-6 release. Transfection with a dominant negative mutant of the signaling protein TRAF-2 reduced IL-6 release upon exposure to UV, indicating that UV-induced IL-6 release is mediated by activation of the tumor necrosis factor receptor-1. These data demonstrate that UV can exert biological effects mainly by affecting cell surface receptors and that this is independent of its ability to induce nuclear DNA damage.

  5. Oleic acid stimulates glucagon-like peptide-1 release from enteroendocrine cells by modulating cell respiration and glycolysis.

    Science.gov (United States)

    Clara, Rosmarie; Langhans, Wolfgang; Mansouri, Abdelhak

    2016-03-01

    Glucagon-like peptide-1 (GLP-1) is a potent satiating and incretin hormone released by enteroendocrine L-cells in response to eating. Dietary fat, in particular monounsaturated fatty acids, such as oleic acid (OA), potently stimulates GLP-1 secretion from L-cells. It is, however, unclear whether the intracellular metabolic handling of OA is involved in this effect. First we determined the optimal medium for the bioenergetics measurements. Then we examined the effect of OA on the metabolism of the immortalized enteroendocrine GLUTag cell model and assessed GLP-1 release in parallel. We measured oxygen consumption rate and extracellular acidification rate in response to OA and to different metabolic inhibitors with the Seahorse extracellular flux analyzer. OA increased cellular respiration and potently stimulated GLP-1 release. The fatty acid oxidation inhibitor etomoxir did neither reduce OA-induced respiration nor affect the OA-induced GLP-1 release. In contrast, inhibition of the respiratory chain or of downstream steps of aerobic glycolysis reduced the OA-induced GLP-1 release, and an inhibition of the first step of glycolysis by addition of 2-deoxy-d-glucose even abolished it. These findings indicate that an indirect stimulation of glycolysis is crucial for the OA-induced release of GLP-1. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Redox regulation of mast cell histamine release in thioredoxin-1 (TRX) transgenic mice.

    Science.gov (United States)

    Son, Aoi; Nakamura, Hajime; Kondo, Norihiko; Matsuo, Yoshiyuki; Liu, Wenrui; Oka, Shin-ichi; Ishii, Yasuyuki; Yodoi, Junji

    2006-02-01

    Thioredoxin-1 (TRX) is a stress-inducible redox-regulatory protein with antioxidative and anti-inflammatory effects. Here we show that the release of histamine from mast cells elicited by cross-linking of high-affinity receptor for IgE (FcepsilonRI) was significantly suppressed in TRX transgenic (TRX-tg) mice compared to wild type (WT) mice. Intracellular reactive oxygen species (ROS) of mast cells stimulated by IgE and antigen was also reduced in TRX-tg mice compared to WT mice. Whereas there was no difference in the production of cytokines (IL-6 and TNF-alpha) from mast cells in response to 2,4-dinitrophenylated bovine serum albumin (DNP-BSA) stimulation in TRX-tg and WT mice. Immunological status of TRX-tg mice inclined to T helper (Th) 2 dominant in primary immune response, although there was no difference in the population of dendritic cells (DCs) and regulatory T cells. We conclude that the histamine release from mast cells in TRX-tg mice is suppressed by inhibition of ROS generation. As ROS are involved in mast cell activation and facilitate mediator release, TRX may be a key signaling molecule regulating the early events in the IgE signaling in mast cells and the allergic inflammation.

  7. Radiotherapy effect on the release of tumor micro-vesicles by glioblastoma cells

    International Nuclear Information System (INIS)

    Ding, Haixia

    2014-01-01

    Radiation therapy is a major therapeutic tool for glioblastoma (GBM). However, the post-radiation recurrence is almost inevitable, due to the emergence of a subpopulation of radioresistant cancer cells with greater proliferative, invasive, and pro-angiogenic capacities. The objective of this study was to investigate in vitro how irradiated cancer cells affect the function of untreated neighboring tumor cells and endothelial cells, focusing on signals exchange initiated by irradiation, such as soluble factors and tumor micro-vesicles (TMVs). Radiotherapy has slowed down the proliferation of GBM cells (T98G, U87) and induced mitotic death of 50-60%, without significant apoptosis. Through long-term monitoring of cell growth (xCELLigence) and wound-healing assay, we have confirmed that surviving GBM cells after irradiation release signals that can change the functions of endothelial cells HUVEC and non-irradiated tumor cells. In addition to the secretion of known soluble factors (VEGF, uPA), we were able to show using scanning electron microscopy and the Nanoparticle Tracking Analysis (NTA), the release of tumor micro-vesicles (TMVS), whose size was generally less than 500 nm. By NTA and flow cytometry, we have shown that the release of TMVs (exosome + 'shedding vesicles') can be significantly stimulated by irradiation in two lines, in a time-dependent manner. According to the proteomics analysis, soluble factors such as VEGF or IL-8, well known as pro-angiogenic factors, rather contribute to promote the survival or proliferation of HUVEC, while the released TMVs after irradiation, significantly altered the migration abilities of non-irradiated HUVEC and tumor cells. The pro-migratory properties of TMVs could thus contribute to glioblastoma recurrence after irradiation. (author) [fr

  8. The major surface glycoprotein of Pneumocystis carinii induces release and gene expression of interleukin-8 and tumor necrosis factor alpha in monocytes

    DEFF Research Database (Denmark)

    Benfield, T L; Lundgren, Bettina; Levine, S J

    1997-01-01

    Recent studies suggest that interleukin-8 (IL-8) and tumor necrosis factor alpha (TNF-alpha) may play a central role in host defense and pathogenesis during Pneumocystis carinii pneumonia. In order to investigate whether the major surface antigen (MSG) of human P. carinii is capable of eliciting...... the release of IL-8 and TNF-alpha, human monocytes were cultured in the presence of purified MSG. MSG-stimulated cells released significant amounts of IL-8 within 4 h, and at 20 h, cells stimulated with MSG released 45.5 +/- 9.3 ng of IL-8/ml versus 3.7 +/- 1.1 ng/ml for control cultures (P = 0.......01). In a similar fashion, MSG elicited release of TNF-alpha. Initial increases were also seen at 4 h, and at 20 h, TNF-alpha levels reached 6.4 +/- 1.1 ng/ml, compared to 0.08 +/- 0.01 ng/ml for control cultures (P alpha secretion was observed at 20 h...

  9. 64 kDa protein is a candidate for a thyrotropin-releasing hormone receptor in prolactin-producing rat pituitary tumor cells (GH4C1 cells)

    International Nuclear Information System (INIS)

    Wright, M.; Hogset, A.; Alestrom, P.; Gautvik, K.M.

    1988-01-01

    A thyrotropin-releasing hormone (TRH) binding protein of 64 kDa has been identified by covalently crosslinking [ 3 H]TRH to GH4C1 cells by ultraviolet illumination. The crosslinkage of [ 3 H]TRH is UV-dose dependent and is inhibited by an excess of unlabeled TRH. A 64 kDa protein is also detected on immunoblots using an antiserum raised against GH4C1 cell surface epitopes. In a closely related cell line (GH12C1) which does not bind [ 3 H]TRH, the 64 kDa protein cannot be demonstrated by [ 3 H]TRH crosslinking nor by immunoblotting. These findings indicate that the 64 kDa protein is a candidate for a TRH-receptor protein in GH4C1 cells

  10. Release of Liposomal Contents by Cell-Secreted Matrix Metalloproteinase-9

    Science.gov (United States)

    Banerjee, Jayati; Hanson, Andrea J.; Gadam, Bhushan; Elegbede, Adekunle I.; Tobwala, Shakila; Ganguly, Bratati; Wagh, Anil; Muhonen, Wallace W.; Law, Benedict; Shabb, John B.; Srivastava, D. K.; Mallik, Sanku

    2011-01-01

    Liposomes have been widely used as a drug delivery vehicle and currently, more than 10 liposomal formulations are approved by the Food and Drug Administration for clinical use. However, upon targeting, the release of the liposome-encapsulated contents is usually slow. We have recently demonstrated that contents from appropriately-formulated liposomes can be rapidly released by the cancer-associated enzyme matrix metalloproteinase-9 (MMP-9). Herein, we report our detailed studies to optimize the liposomal formulations. By properly selecting the lipopeptide, the major lipid component and their relative amounts, we demonstrate that the contents are rapidly released in the presence of cancer-associated levels of recombinant human MMP-9. We observed that the degree of lipid mismatch between the lipopepides and the major lipid component profoundly affects the release profiles from the liposomes. By utilizing the optimized liposomal formulations, we also demonstrate that cancer cells (HT-29) which secrete low levels of MMP-9 failed to release significant amount of the liposomal contents. Metastatic cancer cells (MCF7) secreting high levels of the enzyme rapidly release the encapsulated contents from the liposomes. PMID:19601658

  11. Stimulation of GPR30 increases release of EMMPRIN-containing microvesicles in human uterine epithelial cells.

    Science.gov (United States)

    Burnett, Lindsey A; Light, Mallory M; Mehrotra, Pavni; Nowak, Romana A

    2012-12-01

    Uterine remodeling is highly dependent on the glycosylated transmembrane protein extracellular matrix metalloproteinase (MMP) inducer (EMMPRIN). Previous studies indicate estradiol can increase EMMPRIN expression in uterine cells and promote subsequent induction of MMP production. The aim of this study was to investigate the role of G protein-coupled receptor 30 (GPR30) stimulation on EMMPRIN microvesicle release in the human uterine epithelial cell line hTERT-EEC (EECs). We examined EMMPRIN release by human EECs in response to GPR30 stimulation by microvesicle isolation, Western blot, and immunocytochemistry. We employed a pharmacological approach using the GPR30-selective agonist G1 and the antagonist G15 to determine the receptor specificity of this response. We demonstrated GPR30 expression in EECs and release of EMMPRIN in microvesicles in response to stimulation of GPR30. G1, estradiol, and cholera toxin stimulated EMMPRIN release in microvesicles as detected by Western blot and immunocytochemistry, indicating that stimulation of GPR30 can induce EMMPRIN microvesicle release. These data indicate that EMMPRIN release in microvesicles can be mediated by stimulation of GPR30 in human EECs, suggesting that inappropriate stimulation or expression of this receptor may be significant in uterine pathology.

  12. Methylmercury inhibits prolactin release in a cell line of pituitary origin

    Directory of Open Access Journals (Sweden)

    L.A.L. Maués

    2015-08-01

    Full Text Available Heavy metals, such as methylmercury, are key environmental pollutants that easily reach human beings by bioaccumulation through the food chain. Several reports have demonstrated that endocrine organs, and especially the pituitary gland, are potential targets for mercury accumulation; however, the effects on the regulation of hormonal release are unclear. It has been suggested that serum prolactin could represent a biomarker of heavy metal exposure. The aim of this study was to evaluate the effect of methylmercury on prolactin release and the role of the nitrergic system using prolactin secretory cells (the mammosomatotroph cell line, GH3B6. Exposure to methylmercury (0-100 μM was cytotoxic in a time- and concentration-dependent manner, with an LC50 higher than described for cells of neuronal origin, suggesting GH3B6 cells have a relative resistance. Methylmercury (at exposures as low as 1 μM for 2 h also decreased prolactin release. Interestingly, inhibition of nitric oxide synthase by N-nitro-L-arginine completely prevented the decrease in prolactin release without acute neurotoxic effects of methylmercury. These data indicate that the decrease in prolactin production occurs via activation of the nitrergic system and is an early effect of methylmercury in cells of pituitary origin.

  13. Release of an endogenous pyrogen in vitro from rabbit mononuclear cells.

    Science.gov (United States)

    Atkins, E; Bodel, P; Francis, L

    1967-08-01

    The capacity of rabbit mononuclear cells to release an endogenous pyrogen (EP) in vitro has been studied. After incubation with tuberculin, preparations of predominantly monocytic cells, derived from the respiratory passages of the lungs of rabbits sensitized with BCG, were activated to release EP. Pyrogen production occurred more slowly with lung monocytes than with blood leukocytes of similarly sensitized rabbits and 9 to 10 hr incubation in a fully supportive medium was required to produce clear-cut results. As previously reported with blood leukocytes, mononuclear cells from the lungs of normal animals were also activated by tuberculin but to a lesser degree than were those from specifically sensitized rabbits. Under a variety of conditions, mononuclear cells from either spleen or lymph nodes of the same sensitized rabbits failed to release detectable amounts of pyrogen when incubated with tuberculin in vitro but were activated in a majority of instances when phagocytosis of heat-killed staphylococci was used as the stimulus. Release of pyrogen from lung monocytes appears to be an active process that is both temperature-dependent and requires protein synthesis. Neither serum antibody nor complement appears to play a role in this process. Evidence is presented that the granulocyte is the main source of pyrogen evolved by blood leukocytes incubated in vitro with OT or heat-killed staphylococci, whereas the lung macrophage and/or monocyte is responsible for most of the pyrogen released from the lung cell preparations. From these studies, it is concluded that mononuclear cells can be activated in vitro by several microbial stimuli and must be considered an additional cellular source of EP. The clinical implications of these findings for the pathogenesis of fever in granulomatous diseases where the monocyte is the predominant cell are discussed.

  14. Catalytic Micromotors Moving Near Polyelectrolyte-Modified Substrates: The Roles of Surface Charges, Morphology, and Released Ions.

    Science.gov (United States)

    Wei, Mengshi; Zhou, Chao; Tang, Jinyao; Wang, Wei

    2018-01-24

    Synthetic microswimmers, or micromotors, are finding potential uses in a wide range of applications, most of which involve boundaries. However, subtle yet important effects beyond physical confinement on the motor dynamics remain less understood. In this letter, glass substrates were functionalized with positively and negatively charged polyelectrolytes, and the dynamics of micromotors moving close to the modified surfaces was examined. Using acoustic levitation and numerical simulation, we reveal how the speed of a chemically propelled micromotor slows down significantly near a polyelectrolyte-modified surface by the combined effects of surface charges, surface morphology, and ions released from the films.

  15. Classification of Anticipatory Signals for Grasp and Release from Surface Electromyography

    Science.gov (United States)

    Siu, Ho Chit; Shah, Julie A.; Stirling, Leia A.

    2016-01-01

    Surface electromyography (sEMG) is a technique for recording natural muscle activation signals, which can serve as control inputs for exoskeletons and prosthetic devices. Previous experiments have incorporated these signals using both classical and pattern-recognition control methods in order to actuate such devices. We used the results of an experiment incorporating grasp and release actions with object contact to develop an intent-recognition system based on Gaussian mixture models (GMM) and continuous-emission hidden Markov models (HMM) of sEMG data. We tested this system with data collected from 16 individuals using a forearm band with distributed sEMG sensors. The data contain trials with shifted band alignments to assess robustness to sensor placement. This study evaluated and found that pattern-recognition-based methods could classify transient anticipatory sEMG signals in the presence of shifted sensor placement and object contact. With the best-performing classifier, the effect of label lengths in the training data was also examined. A mean classification accuracy of 75.96% was achieved through a unigram HMM method with five mixture components. Classification accuracy on different sub-movements was found to be limited by the length of the shortest sub-movement, which means that shorter sub-movements within dynamic sequences require larger training sets to be classified correctly. This classification of user intent is a potential control mechanism for a dynamic grasping task involving user contact with external objects and noise. Further work is required to test its performance as part of an exoskeleton controller, which involves contact with actuated external surfaces. PMID:27792155

  16. The Contribution of Red Blood Cell Dynamics to Intrinsic Viscosity and Functional ATP Release

    Science.gov (United States)

    Forsyth, Alison; Abkarian, Manouk; Wan, Jiandi; Stone, Howard

    2010-11-01

    In shear flow, red blood cells (RBCs) exhibit a variety of behaviors such as rouleaux formation, tumbling, swinging, and tank-treading. The physiological consequences of these dynamic behaviors are not understood. In vivo, ATP is known to signal vasodilation; however, to our knowledge, no one has deciphered the relevance of RBC microrheology to the functional release of ATP. Previously, we correlated RBC deformation and ATP release in microfluidic constrictions (Wan et al., 2008). In this work, a cone-plate rheometer is used to shear a low hematocrit solution of RBCs at varying viscosity ratios (λ) between the inner cytoplasmic hemoglobin and the outer medium, to determine the intrinsic viscosity of the suspension. Further, using a luciferin-luciferase enzymatic reaction, we report the relative ATP release at varying shear rates. Results indicate that for λ = 1.6, 3.8 and 11.1, ATP release is constant up to 500 s-1, which suggests that the tumbling-tanktreading transition does not alter ATP release in pure shear. For lower viscosity ratios, λ = 1.6 and 3.8, at 500 s-1 a change in slope occurs in the intrinsic viscosity data and is marked by an increase in ATP release. Based on microfluidic observations, this simultaneous change in viscosity and ATP release occurs within the tank-treading regime.

  17. Blood banking-induced alteration of red blood cell oxygen release ability.

    Science.gov (United States)

    Li, Yaojin; Xiong, Yanlian; Wang, Ruofeng; Tang, Fuzhou; Wang, Xiang

    2016-05-01

    Current blood banking procedures may not fully preserve red blood cell (RBC) function during storage, contributing to the decrease of RBC oxygen release ability. This study was undertaken to evaluate the impact of routine cold storage on RBC oxygen release ability. RBC units were collected from healthy donors and each unit was split into two parts (whole blood and suspended RBC) to exclude possible donor variability. Oxygen dissociation measurements were performed on blood units stored at 4 °C during a 5-week period. 2,3-diphosphoglycerate levels and fluorescent micrographs of erythrocyte band 3 were also analysed. P50 and oxygen release capacity decreased rapidly during the first 3 weeks, and then did not change significantly. In contrast, the kinetic properties (PO2-t curve and T*50) of oxygen release changed slowly during the first 3 weeks of storage, but then decreased significantly in the last 2 weeks. 2,3-diphosphoglycerate decreased quickly during the first 3 weeks of storage to almost undetectable levels. Band 3 aggregated significantly during the last 2 weeks of storage. RBC oxygen release ability appears to be sensitive to routine cold storage. The thermodynamic characteristics of RBC oxygen release ability changed mainly in the first 3 weeks of storage, due to the decrease of 2,3-diphosphoglycerate, whereas the kinetic characteristics of RBC oxygen release ability decreased significantly at the end of storage, probably affected by alterations of band 3.

  18. Formulation and in vitro evaluation of mucoadhesive controlled release matrix tablets of flurbiprofen using response surface methodology

    Directory of Open Access Journals (Sweden)

    Ikrima Khalid

    2014-09-01

    Full Text Available The objective of the current study was to formulate mucoadhesive controlled release matrix tablets of flurbiprofen and to optimize its drug release profile and bioadhesion using response surface methodology. Tablets were prepared via a direct compression technique and evaluated for in vitro dissolution parameters and bioadhesive strength. A central composite design for two factors at five levels each was employed for the study. Carbopol 934 and sodium carboxymethylcellulose were taken as independent variables. Fourier transform infrared (FTIR spectroscopy studies were performed to observe the stability of the drug during direct compression and to check for a drug-polymer interaction. Various kinetic models were applied to evaluate drug release from the polymers. Contour and response surface plots were also drawn to portray the relationship between the independent and response variables. Mucoadhesive tablets of flurbiprofen exhibited non-Fickian drug release kinetics extending towards zero-order, with some formulations (F3, F8, and F9 reaching super case II transport, as the value of the release rate exponent (n varied between 0.584 and 1.104. Polynomial mathematical models, generated for various response variables, were found to be statistically significant (P<0.05. The study also helped to find the drug's optimum formulation with excellent bioadhesive strength. Suitable combinations of two polymers provided adequate release profile, while carbopol 934 produced more bioadhesion.

  19. Differentiation Affects the Release of Exosomes from Colon Cancer Cells and Their Ability to Modulate the Behavior of Recipient Cells.

    Science.gov (United States)

    Lucchetti, Donatella; Calapà, Federica; Palmieri, Valentina; Fanali, Caterina; Carbone, Federica; Papa, Alfredo; De Maria, Ruggero; De Spirito, Marco; Sgambato, Alessandro

    2017-07-01

    Exosomes are involved in intercellular communication. We previously reported that sodium butyrate-induced differentiation of HT29 colon cancer cells is associated with a reduced CD133 expression. Herein, we analyzed the role of exosomes in the differentiation of HT29 cells. Exosomes were prepared using ultracentrifugation. Gene expression levels were evaluated by real-time PCR. The cell proliferation rate was assessed by MTT assay and with the electric cell-substrate impedance sensing system, whereas cell motility was assessed using the scratch test and confocal microscopy. Sodium butyrate-induced differentiation of HT29 and Caco-2 cells increased the levels of released exosomes and their expression of CD133. Cell differentiation and the decrease of cellular CD133 expression levels were prevented by blocking multivesicular body maturation. Exosomes released by HT29 differentiating cells carried increased levels of miRNAs, induced an increased proliferation and motility of both colon cancer cells and normal fibroblasts, increased the colony-forming efficiency of cancer cells, and reduced the sodium butyrate-induced differentiation of HT29 cells. Such effects were associated with an increased phosphorylation level of both Src and extracellular signal regulated kinase proteins and with an increased expression of epithelial-to-mesenchymal transition-related genes. Release of exosomes is affected by differentiation of colon cancer cells; exosomes might be used by differentiating cells to get rid of components that are no longer necessary but might continue to exert their effects on recipient cells. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  20. Hydrocortisone selectively inhibits IgE-dependent arachidonic acid release from rat peritoneal mast cells

    International Nuclear Information System (INIS)

    Heiman, A.S.; Crews, F.T.

    1984-01-01

    Purified rat mst cells were used to study the effects of antiinflammatory steroids on the release of [1-14C]-arachidonic acid ([1-14C]AA) and metabolites. Mast cell were incubated overnight with glucocorticoids, [1-14C]AA incorporated into cellular phospholipids and the release of [1-14C]AA, and metabolites determined using a variety of secretagogues. Release of [1-14C]AA and metabolites by concanavalin A, the antigen ovalbumin and anti-immunoglobulin E antibody was markedly reduced by glucocorticoid treatment. Neither the total incorporation of [1-14C]AA nor the distribution into phospholipids was altered by hydrocortisone pretreatment. Glucocorticoid pretreatment did not alter [1-14C]AA release stimulated by somatostatin, compound 48/80, or the calcium ionophore, A23187. These data indicate that antiinflammatory steroids selectively inhibit immunoglobulin dependent release of arachidonic acid from rat mast cells. These findings question the role of lipomodulin and macrocortin as general phospholipase inhibitors and suggest that they may be restricted to immunoglobulin stimuli

  1. An AFM-based pit-measuring method for indirect measurements of cell-surface membrane vesicles

    International Nuclear Information System (INIS)

    Zhang, Xiaojun; Chen, Yuan; Chen, Yong

    2014-01-01

    Highlights: • Air drying induced the transformation of cell-surface membrane vesicles into pits. • An AFM-based pit-measuring method was developed to measure cell-surface vesicles. • Our method detected at least two populations of cell-surface membrane vesicles. - Abstract: Circulating membrane vesicles, which are shed from many cell types, have multiple functions and have been correlated with many diseases. Although circulating membrane vesicles have been extensively characterized, the status of cell-surface membrane vesicles prior to their release is less understood due to the lack of effective measurement methods. Recently, as a powerful, micro- or nano-scale imaging tool, atomic force microscopy (AFM) has been applied in measuring circulating membrane vesicles. However, it seems very difficult for AFM to directly image/identify and measure cell-bound membrane vesicles due to the similarity of surface morphology between membrane vesicles and cell surfaces. Therefore, until now no AFM studies on cell-surface membrane vesicles have been reported. In this study, we found that air drying can induce the transformation of most cell-surface membrane vesicles into pits that are more readily detectable by AFM. Based on this, we developed an AFM-based pit-measuring method and, for the first time, used AFM to indirectly measure cell-surface membrane vesicles on cultured endothelial cells. Using this approach, we observed and quantitatively measured at least two populations of cell-surface membrane vesicles, a nanoscale population (<500 nm in diameter peaking at ∼250 nm) and a microscale population (from 500 nm to ∼2 μm peaking at ∼0.8 μm), whereas confocal microscopy only detected the microscale population. The AFM-based pit-measuring method is potentially useful for studying cell-surface membrane vesicles and for investigating the mechanisms of membrane vesicle formation/release

  2. Nanovesicles released by Dictyostelium cells: a potential carrier for drug delivery.

    Science.gov (United States)

    Lavialle, Françoise; Deshayes, Sophie; Gonnet, Florence; Larquet, Eric; Kruglik, Sergei G; Boisset, Nicolas; Daniel, Régis; Alfsen, Annette; Tatischeff, Irène

    2009-10-01

    Nanovesicles released by Dictyostelium discoideum cells grown in the presence of the DNA-specific dye Hoechst 33342 have been previously shown to mediate the transfer of the dye into the nuclei of Hoechst-resistant cells. The present investigation extends this work by conducting experiments in the presence of hypericin, a fluorescent therapeutic photosensitizer assayed for antitumoral photodynamic therapy. Nanovesicles released by Dictyostelium cells exhibit an averaged diameter between 50 and 150 nm, as measured by transmission cryoelectron microscopy. A proteomic analysis reveals a predominance of actin and actin-related proteins. The detection of a lysosomal membrane protein (LIMP II) indicates that these vesicles are likely generated in the late endosomal compartment. The use of the hypericin-containing nanovesicles as nanodevices for in vitro drug delivery was investigated by fluorescence microscopy. The observed signal was almost exclusively located in the perinuclear area of two human cell lines, skin fibroblasts (HS68) and cervix carcinoma (HeLa) cells. Studies by confocal microscopy with specific markers of cell organelles, provided evidence that hypericin was accumulated in the Golgi apparatus. All these data shed a new light on in vitro drug delivery by using cell-released vesicles as carriers.

  3. Exogenous cytokines released by spleen and Peyer's patch cells removed from mice infected with Giardia muris.

    Science.gov (United States)

    Djamiatun, K; Faubert, G M

    1998-01-01

    The role that T and B lymphocytes play in the clearance of Giardia muris in the mouse model is well known, but the cytokines produced by CD4+ T cells in response to Giardia antigenic stimulation are unknown. In this study, we have determined how Giardia trophozoite antigenic crude extract and T cell mitogens can trigger the production of cytokines by Peyer's patch and spleen cells removed from infected animals. When Giardia trophozoite proteins were used to challenge the cells in vitro, IL-4, IL-5 and IFN-gamma were not detected in the culture supernatant. When the cells were challenged with Con-A, all three cytokines were released in vitro. However, the level of each cytokine released by the spleen or Peyer's patch cells varied with the latent, acute and elimination phases of the infection. The high levels of IL-4 and IL-5 released by Peyer's patch cells confirm the importance of IgA in the control of the infection. However, we propose that the relative success of G. muris in completing its life cycle in a primary infection might be due, in part, to the stimulation of a Th2-type response (IL-4, IL-5). A stronger Th1 response (IFN-gamma) may lead to a better control of the primary infection.

  4. IL-10 release by bovine epithelial cells cultured with Trichomonas vaginalis and Tritrichomonas foetus

    Directory of Open Access Journals (Sweden)

    Ricardo Chaves Vilela

    2013-02-01

    Full Text Available Trichomonas vaginalis and Tritrichomonas foetus are parasitic protists of the human and bovine urogenital tracts, respectively. Several studies have described the cytotoxic effects of trichomonads on urogenital tract epithelial cells. However, little is known about the host cell response against trichomonads. The aim of this study was to determine whether T. foetus and T. vaginalis stimulated the release of the cytokine interleukin (IL-10 from cultured bovine epithelial cells. To characterise the inflammatory response induced by these parasites, primary cultures of bovine oviduct epithelial cells were exposed to either T. vaginalis or T. foetus. Within 12 h after parasite challenge, supernatants were collected and cytokine production was analysed. Large amounts of IL-10 were detected in the supernatants of cultures that had been stimulated with T. foetus. Interestingly, T. vaginalis induced only a small increase in the release of IL-10 upon exposure to the same bovine cells. Thus, the inflammatory response of the host cell is species-specific. Only T. foetus and not T. vaginalis induced the release of IL-10 by bovine oviduct epithelial cells.

  5. Knockout Serum Replacement Promotes Cell Survival by Preventing BIM from Inducing Mitochondrial Cytochrome C Release.

    Directory of Open Access Journals (Sweden)

    Yuki Ishii

    Full Text Available Knockout serum replacement (KOSR is a nutrient supplement commonly used to replace serum for culturing stem cells. We show here that KOSR has pro-survival activity in chronic myelogenous leukemia (CML cells transformed by the BCR-ABL oncogene. Inhibitors of BCR-ABL tyrosine kinase kill CML cells by stimulating pro-apoptotic BIM and inhibiting anti-apoptotic BCL2, BCLxL and MCL1. We found that KOSR protects CML cells from killing by BCR-ABL inhibitors--imatinib, dasatinib and nilotinib. The protective effect of KOSR is reversible and not due to the selective outgrowth of drug-resistant clones. In KOSR-protected CML cells, imatinib still inhibited the BCR-ABL tyrosine kinase, reduced the phosphorylation of STAT, ERK and AKT, down-regulated BCL2, BCLxL, MCL1 and up-regulated BIM. However, these pro-apoptotic alterations failed to cause cytochrome c release from the mitochondria. With mitochondria isolated from KOSR-cultured CML cells, we showed that addition of recombinant BIM protein also failed to cause cytochrome c release. Besides the kinase inhibitors, KOSR could protect cells from menadione, an inducer of oxidative stress, but it did not protect cells from DNA damaging agents. Switching from serum to KOSR caused a transient increase in reactive oxygen species and AKT phosphorylation in CML cells that were protected by KOSR but not in those that were not protected by this nutrient supplement. Treatment of KOSR-cultured cells with the PH-domain inhibitor MK2206 blocked AKT phosphorylation, abrogated the formation of BIM-resistant mitochondria and stimulated cell death. These results show that KOSR has cell-context dependent pro-survival activity that is linked to AKT activation and the inhibition of BIM-induced cytochrome c release from the mitochondria.

  6. Basic Surface Properties of Mononuclear Cells from Didelphis marsupialis

    Directory of Open Access Journals (Sweden)

    Nacife Valéria Pereira

    1998-01-01

    Full Text Available The electrostatic surface charge and surface tension of mononuclear cells/monocytes obtained from young and adult marsupials (Didelphis marsupialis were investigated by using cationized ferritin and colloidal iron hydroxyde, whole cell electrophoresis, and measurements of contact angles. Anionic sites were found distributed throughout the entire investigated cell surfaces. The results revealed that the anionic character of the cells is given by electrostatic charges corresponding to -18.8 mV (cells from young animals and -29.3 mV (cells from adult animals. The surface electrostatic charge decreased from 10 to 65.2% after treatment of the cells with each one of trypsin, neuraminidase and phospholipase C. The hydrophobic nature of the mononuclear cell surfaces studied by using the contact angle method revealed that both young and adult cells possess cell surfaces of high hidrofilicity since the angles formed with drops of saline water were 42.5°and 40.8°, respectively. Treatment of the cells with trypsin or neuraminidase rendered their surfaces more hydrophobic, suggesting that sialic acid-containing glycoproteins are responsible for most of the hydrophilicity observed in the mononuclear cell surfaces from D. marsupialis.

  7. Ketoprofen-loaded Eudragit RSPO microspheres: an influence of sodium carbonate on in vitro drug release and surface topology.

    Science.gov (United States)

    Pandit, Sachin S; Hase, Dinesh P; Bankar, Manish M; Patil, Arun T; Gaikwad, Naresh J

    2009-05-01

    Eudragit RSPO microspheres containing ketoprofen as model drug, prepared by solvent evaporation technique using acetone-liquid paraffin (heavy) solvent system were examined. Depending upon polymer concentration in the internal phase, microspheres of particle mean diameter (122.8, 213.6 and 309.5 μm) were obtained. The influence of surface washing of microspheres with n-hexane, i.e. untreated microspheres (UM) on the drug content, drug release and surface topology of microspheres were compared to those of microspheres washed with sodium carbonate, i.e. treated microspheres (TM) in order to make the non-encapsulated surface drug soluble. The significant reduction in encapsulation efficiency (p < 0.001) and drug content (p < 0.001) after treatment, in combination with the small crystalline peaks observed during XRD testing and lack of melting endotherm observed in DSC testing, suggests that the washing process actually removes a significant amount of drug (p < 0.001) from the surface and encapsulated near to the surface of the microsphere polymer matrix. Scanning electron microscopy (SEM) examination revealed that the removal of surface drug did not affect the size of microspheres but the topology of treated smallest microspheres was modified. The ketoprofen release profiles were examined in phosphate buffer pH 7.4, using USPXXIII paddle type dissolution apparatus. In general both UM and TM result in biphasic release patterns, but the initial burst effect (first release phase) of TM was lower than that of UM. The second release phase did not change for the bigger size but increased for the smallest microspheres, probably owing to the modification of matrix porosity.

  8. CO2-Induced ATP-Dependent Release of Acetylcholine on the Ventral Surface of the Medulla Oblongata.

    Science.gov (United States)

    Huckstepp, Robert T R; Llaudet, Enrique; Gourine, Alexander V

    2016-01-01

    Complex mechanisms that detect changes in brainstem parenchymal PCO2/[H+] and trigger adaptive changes in lung ventilation are responsible for central respiratory CO2 chemosensitivity. Previous studies of chemosensory signalling pathways suggest that at the level of the ventral surface of the medulla oblongata (VMS), CO2-induced changes in ventilation are (at least in part) mediated by the release and actions of ATP and/or acetylcholine (ACh). Here we performed simultaneous real-time biosensor recordings of CO2-induced ATP and ACh release from the VMS in vivo and in vitro, to test the hypothesis that central respiratory CO2 chemosensory transduction involves simultaneous recruitment of purinergic and cholinergic signalling pathways. In anaesthetised and artificially ventilated rats, an increase in inspired CO2 triggered ACh release on the VMS with a peak amplitude of ~5 μM. Release of ACh was only detected after the onset of CO2-induced activation of the respiratory activity and was markedly reduced (by ~70%) by ATP receptor blockade. In horizontal slices of the VMS, CO2-induced release of ATP was reliably detected, whereas CO2 or bath application of ATP (100 μM) failed to trigger release of ACh. These results suggest that during hypercapnia locally produced ATP induces or potentiates the release of ACh (likely from the medullary projections of distal groups of cholinergic neurones), which may also contribute to the development and/or maintenance of the ventilatory response to CO2.

  9. Drug loading and release on tumor cells using silk fibroin–albumin nanoparticles as carriers

    International Nuclear Information System (INIS)

    Subia, B; Kundu, S C

    2013-01-01

    Polymeric and biodegradable nanoparticles are frequently used in drug delivery systems. In this study silk fibroin–albumin blended nanoparticles were prepared using the desolvation method without any surfactant. These nanoparticles are easily internalized by the cells, reside within perinuclear spaces and act as carriers for delivery of the model drug methotrexate. Methotrexate loaded nanoparticles have better encapsulation efficiency, drug loading ability and less toxicity. The in vitro release behavior of methotrexate from the nanoparticles suggests that about 85% of the drug gets released after 12 days. The encapsulation and loading of a drug would depend on factors such as size, charge and hydrophobicity, which affect drug release. MTT assay and conjugation of particles with FITC demonstrate that the silk fibroin–albumin nanoparticles do not affect the viability and biocompatibility of cells. This blended nanoparticle, therefore, could be a promising nanocarrier for the delivery of drugs and other bioactive molecules. (paper)

  10. Osteoblast cell response to surface-modified carbon nanotubes

    International Nuclear Information System (INIS)

    Zhang Faming; Weidmann, Arne; Nebe, J. Barbara; Burkel, Eberhard

    2012-01-01

    In order to investigate the interaction of cells with modified multi-walled carbon nanotubes (MWCNTs) for their potential biomedical applications, the MWCNTs were chemically modified with carboxylic acid groups (–COOH), polyvinyl alcohol (PVA) polymer and biomimetic apatite on their surfaces. Additionally, human osteoblast MG-63 cells were cultured in the presence of the surface-modified MWCNTs. The metabolic activities of osteoblastic cells, cell proliferation properties, as well as cell morphology were studied. The surface modification of MWCNTs with biomimetic apatite exhibited a significant increase in the cell viability of osteoblasts, up to 67.23%. In the proliferation phases, there were many more cells in the biomimetic apatite-modified MWCNT samples than in the MWCNTs–COOH. There were no obvious changes in cell morphology in osteoblastic MG-63 cells cultured in the presence of these chemically-modified MWCNTs. The surface modification of MWCNTs with apatite achieves an effective enhancement of their biocompatibility.

  11. Ionizing radiation damage in Micrococcus radiodurans cell wall: release of polysaccharide

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.

    1976-01-01

    Sublethal 60 Co γ-irradiation of the bacterium Micrococcus radiodurans in aqueous suspension results in a loss of up to 6 percent of its cellular dry weight and 30 percent of its wet weight. In the process some specific cell wall polysaccharides, including a polymer of glucose and N-acylated glucosamine, are released into the surrounding medium. These polysaccharides appear to originate from a hydrophobic site in the middle, lipid-rich, cell wall layer. The damage to this layer which results in the release of these and other polymers may be due to a disruption of this hydrophobic site. The polysaccharide containing glucose and N-acylated glucosamine exists as a high molecular weight polymer in unirradiated cells, but irradiation causes some degradation prior to release. In a free state this polysaccharide is considerably less sensitive to radiolytic degradation than in a bound state. Free radicals generated from surrounding water by ionizing radiation initiate the release, hydroxyl radicals being the most important species. Oxygen protects the cell wall against loss of the polysaccharides, apparently by a mechanism which does not depend on the ability of O 2 to scavenge hydrogen atoms and aqueous electrons

  12. Glucose metabolism determines resistance of cancer cells to bioenergetic crisis after cytochrome-c release.

    LENUS (Irish Health Repository)

    Huber, Heinrich J

    2011-03-01

    Many anticancer drugs activate caspases via the mitochondrial apoptosis pathway. Activation of this pathway triggers a concomitant bioenergetic crisis caused by the release of cytochrome-c (cyt-c). Cancer cells are able to evade these processes by altering metabolic and caspase activation pathways. In this study, we provide the first integrated system study of mitochondrial bioenergetics and apoptosis signalling and examine the role of mitochondrial cyt-c release in these events. In accordance with single-cell experiments, our model showed that loss of cyt-c decreased mitochondrial respiration by 95% and depolarised mitochondrial membrane potential ΔΨ(m) from -142 to -88 mV, with active caspase-3 potentiating this decrease. ATP synthase was reversed under such conditions, consuming ATP and stabilising ΔΨ(m). However, the direction and level of ATP synthase activity showed significant heterogeneity in individual cancer cells, which the model explained by variations in (i) accessible cyt-c after release and (ii) the cell\\'s glycolytic capacity. Our results provide a quantitative and mechanistic explanation for the protective role of enhanced glucose utilisation for cancer cells to avert the otherwise lethal bioenergetic crisis associated with apoptosis initiation.

  13. Omega 3 fatty acids increase spontaneous release of cytosolic components from tumor cells

    International Nuclear Information System (INIS)

    Jenski, L.J.; Sturdevant, L.K.; Ehringer, W.D.; Stillwell, W.

    1991-01-01

    Mice fed menhaden (fish) oil or coconut oil-rich diets were inoculated intraperitoneally with a rapidly growing leukemia, T27A. After one week, the tumor cells were harvested, and 51Cr was used to label intracellular molecules. Spontaneous release of 51Cr was used as a measure of plasma membrane permeability. Compared to cells from mice fed coconut oil (rich in saturated fatty acids), tumor cells from mice fed menhaden oil (rich in long chain polyunsaturated omega 3 fatty acids) showed an increased level of spontaneous 51Cr release, which was exacerbated by increased temperature and reduced by extracellular protein. At physiological salt concentrations, the released 51Cr was detected in particles of approximately 2700 daltons. Enhanced permeability correlated with the incorporation of dietary (fish oil) omega 3 polyunsaturated fatty acids docosahexaenoic and eicosapentaenoic acid into the tumor cells. The results demonstrate that omega 3 fatty acids are incorporated into cellular constituents of tumor cells and change properties associated with the plasma membrane. This result suggests that dietary manipulation may be used to enhance tumor cell permeability and contribute to tumor eradication

  14. Growth of fibroblasts and endothelial cells on wettability gradient surfaces

    NARCIS (Netherlands)

    Ruardy, TG; Moorlag, HE; Schakenraad, JM; VanderMei, HC; Busscher, HJ

    1997-01-01

    The growth, spreading, and shape of human skin fibroblasts (PK 84) and human umbilical cord endothelial cells on dichlorodimethylsilane (DDS) and dimethyloctadecylchlorosilane (DOGS) gradient surfaces were investigated in the presence of serum proteins. Gradient surfaces were prepared on glass using

  15. Microvillar cell surface as a natural defense system against xenobiotics: a new interpretation of multidrug resistance.

    Science.gov (United States)

    Lange, K; Gartzke, J

    2001-08-01

    The phenomenon of multidrug resistance (MDR) is reinterpreted on the basis of the recently proposed concept of microvillar signaling. According to this notion, substrate and ion fluxes across the surface of differentiated cells occur via transporters and ion channels that reside in membrane domains at the tips of microvilli (MV). The flux rates are regulated by the actin-based cytoskeletal core structure of MV, acting as a diffusion barrier between the microvillar tip compartment and the cytoplasm. The expression of this diffusion barrier system is a novel aspect of cell differentiation and represents a functional component of the natural defense system of epithelial cells against environmental hazardous ions and lipophilic compounds. Because of the specific organization of epithelial Ca(2+) signaling and the secretion, lipophilic compounds associated with the plasma membrane are transferred from the basal to the apical cell surface by a lipid flow mechanism. Drug release from the apical pole occurs by either direct secretion from the cell surface or metabolization by the microvillar cytochrome P-450 system and efflux of the metabolites and conjugation products through the large multifunctional anion channels localized in apical MV. The natural microvillar defense system also provides a mechanistic basis of acquired MDR in tumor cells. The microvillar surface organization is lost in rapidly growing cells such as tumor or embryonic cells but is restored during exposure of tumor cells to cytotoxins by induction of a prolonged G(0)/G(1) resting phase.

  16. Studies of cell biomechanics with surface micro-/nano-technology

    International Nuclear Information System (INIS)

    Wang Dong; Zhang Wei; Jiang Xingyu

    2011-01-01

    We report the recent progress in our studies of cell biology using micro-/nano-technology. Cells have a size of several to tens of microns, which makes them easily manipulated by micro-/nano-technology. The shape of the cell influences the alignment of the actin cytoskeleton, which bears the main forces of the cell, maintains the shape,and mediates a series of biochemical reactions. We invented a stretching device and studied the real-time actin filament dynamics under stretch. We found that one stretch cycle shortened the actin filaments and promoted their reassemble process. Cell migration is a complex mechanical process. We found that cell geometry determines the cell polarity and migration direction. We fabricated three-dimensional surfaces to mimic the topography in vivo, and further built a cell culture model by integrating the three-dimensional surface, microfluidics, cell patterning,and coculturing of multiple cell types. We also investigated the neuronal guidance by surface patterning. (authors)

  17. Efficient adhesion-based plasma membrane isolation for cell surface N-glycan analysis.

    Science.gov (United States)

    Mun, Ji-Young; Lee, Kyung Jin; Seo, Hoon; Sung, Min-Sun; Cho, Yee Sook; Lee, Seung-Goo; Kwon, Ohsuk; Oh, Doo-Byoung

    2013-08-06

    Glycans, which decorate cell surfaces, play crucial roles in various physiological events involving cell surface recognition. Despite the importance of surface glycans, most analyses have been performed using total cells or whole membranes rather than plasma membranes due to difficulties related to isolation. In the present study, we employed an adhesion-based method for plasma membrane isolation to analyze N-glycans on cell surfaces. Cells were attached to polylysine-coated glass plates and then ruptured by hypotonic pressure. After washing to remove intracellular organelles, only a plasma membrane fraction remained attached to the plates, as confirmed by fluorescence imaging using organelle-specific probes. The plate was directly treated with trypsin to digest and detach the glycoproteins from the plasma membrane. From the resulting glycopeptides, N-glycans were released and analyzed using MALDI-TOF mass spectrometry and HPLC. When N-glycan profiles obtained by this method were compared to those by other methods, the amount of high-mannose type glycans mainly contaminated from the endoplasmic reticulum was dramatically reduced, which enabled the efficient detection of complex type glycans present on the cell surface. Moreover, this method was successfully used to analyze the increase of high-mannose glycans on the surface as induced by a mannosidase inhibitor treatment.

  18. Closure Report for Corrective Action Unit 300: Surface Release Areas Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 300 is located in Areas 23, 25, and 26 of the Nevada Test Site, which is located approximately 65 miles northwest of Las Vegas, Nevada. CAU 300 is listed in the Federal Facility Agreement and Consent Order of 1996 as Surface Release Areas and is comprised of the following seven Corrective Action Sites (CASs), which are associated with the identified Building (Bldg): (sm b ullet) CAS 23-21-03, Bldg 750 Surface Discharge (sm b ullet) CAS 23-25-02, Bldg 750 Outfall (sm b ullet) CAS 23-25-03, Bldg 751 Outfall (sm b ullet) CAS 25-60-01, Bldg 3113A Outfall (sm b ullet) CAS 25-60-02, Bldg 3901 Outfall (sm b ullet) CAS 25-62-01, Bldg 3124 Contaminated Soil (sm b ullet) CAS 26-60-01, Bldg 2105 Outfall and Decon Pad The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 23-21-03, 23-25-02, and 23-25-03 is no further action. As a best management practice, approximately 48 feet of metal piping was removed from CAS 23-25-02 and disposed of as sanitary waste. The NDEP-approved corrective action alternative for CASs 25-60-01, 25-60-02, 25-62-01, and 26-60-01, is clean closure. Closure activities for these CASs included removing and disposing of soil impacted with total petroleum hydrocarbons-diesel range organics (TPH-DRO), polychlorinated biphenyls (PCBs), semivolatile organic compounds (SVOCs), and cesium (Cs)-137, concrete impacted with TPH-DRO, and associated piping impacted with TPH-DRO. CAU 300 was closed in accordance with the NDEP-approved CAU 300 Corrective Action Plan (CAP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006). The closure activities specified in the CAP were based on the recommendations presented in the CAU 300 Corrective Action Decision Document (NNSA/NSO, 2005). This Closure Report documents CAU 300 closure activities. During closure activities, approximately 40 cubic yards (yd3) of low-level waste consisting of TPH

  19. Closure Report for Corrective Action Unit 300: Surface Release Areas Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2007-07-01

    Corrective Action Unit (CAU) 300 is located in Areas 23, 25, and 26 of the Nevada Test Site, which is located approximately 65 miles northwest of Las Vegas, Nevada. CAU 300 is listed in the Federal Facility Agreement and Consent Order of 1996 as Surface Release Areas and is comprised of the following seven Corrective Action Sites (CASs), which are associated with the identified Building (Bldg): {sm_bullet} CAS 23-21-03, Bldg 750 Surface Discharge {sm_bullet} CAS 23-25-02, Bldg 750 Outfall {sm_bullet} CAS 23-25-03, Bldg 751 Outfall {sm_bullet} CAS 25-60-01, Bldg 3113A Outfall {sm_bullet} CAS 25-60-02, Bldg 3901 Outfall {sm_bullet} CAS 25-62-01, Bldg 3124 Contaminated Soil {sm_bullet} CAS 26-60-01, Bldg 2105 Outfall and Decon Pad The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 23-21-03, 23-25-02, and 23-25-03 is no further action. As a best management practice, approximately 48 feet of metal piping was removed from CAS 23-25-02 and disposed of as sanitary waste. The NDEP-approved corrective action alternative for CASs 25-60-01, 25-60-02, 25-62-01, and 26-60-01, is clean closure. Closure activities for these CASs included removing and disposing of soil impacted with total petroleum hydrocarbons-diesel range organics (TPH-DRO), polychlorinated biphenyls (PCBs), semivolatile organic compounds (SVOCs), and cesium (Cs)-137, concrete impacted with TPH-DRO, and associated piping impacted with TPH-DRO. CAU 300 was closed in accordance with the NDEP-approved CAU 300 Corrective Action Plan (CAP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006). The closure activities specified in the CAP were based on the recommendations presented in the CAU 300 Corrective Action Decision Document (NNSA/NSO, 2005). This Closure Report documents CAU 300 closure activities. During closure activities, approximately 40 cubic yards (yd3) of low-level waste consisting of TPH-DRO-, PCB

  20. Effect of ouabain, digoxin and digitoxigenin on potassium uptake and histamine release from rat peritoneal mast cells

    DEFF Research Database (Denmark)

    Knudsen, T; Ferjan, I; Johansen, Torben

    1993-01-01

    Rat peritoneal mast cells were used to study the effects of digitalis glycosides on potassium uptake and histamine release induced by compound 48/80, substance P and egg-albumin (immunological release). In the absence of calcium all glycosides inhibited potassium uptake. Ouabain and digoxin....... Hydrophilic digitalis glycosides seem to enhance histamine release secondary to an increase in intracellular sodium. Lipophilic glycosides have no effect on the release....

  1. CD28 Costimulation of T Helper 1 Cells Enhances Cytokine Release In Vivo

    Directory of Open Access Journals (Sweden)

    Daniela Langenhorst

    2018-05-01

    Full Text Available Compared to naive T cells, differentiated T cells are thought to be less dependent on CD28 costimulation for full activation. To revisit the role of CD28 costimulation in mouse T cell recall responses, we adoptively transferred in vitro generated OT-II T helper (Th 1 cells into C57BL/6 mice (Thy1.2+ and then either blocked CD28–ligand interactions with Fab fragments of the anti-CD28 monoclonal antibody (mAb E18 or deleted CD28 expression using inducible CD28 knock-out OT-II mice as T cell donors. After injection of ovalbumin protein in adjuvant into the recipient mice we observed that systemic interferon (IFNγ release strongly depended on CD28 costimulation of the Th1 cells, while secondary clonal expansion was not reduced in the absence of CD28 costimulation. For human memory CD4+ T cell responses we also noted that cytokine release was reduced upon inhibition of CD28 costimulation. Together, our data highlight the so far underestimated role of CD28 costimulation for the reactivation of fully differentiated CD4+ T cells.

  2. Sustained release of melatonin from TiO2 nanotubes for modulating osteogenic differentiation of mesenchymal stem cells in vitro.

    Science.gov (United States)

    Lai, Min; Jin, Ziyang; Tang, Qiang; Lu, Min

    2017-10-01

    To control the sustained release of melatonin and modulate the osteogenic differentiation of mesenchymal stem cells (MSCs), melatonin was firstly loaded onto TiO 2 nanotubes by direct dropping method, and then a multilayered film was coated by a spin-assisted layer-by-layer technique, which was composed of chitosan (Chi) and gelatin (Gel). Successful fabrication was characterized by field emission scanning electron microscopy, atomic force microscope, X-ray photoelectron spectroscopy and contact angle measurement, respectively. The efficient sustained release of melatonin was measured by UV-visible-spectrophotometer. After 2 days of culture, well-spread morphology was observed in MSCs grown on the Chi/Gel multilayer-coated melatonin-loaded TiO 2 nanotube substrates as compared to different groups. After 4, 7, 14 and 21 days of culture, the multilayered-coated melatonin-loaded TiO 2 nanotube substrates increased cell proliferation, increased alkaline phosphatase (ALP) and mineralization, increased expression of mRNA levels for runt-related transcription factor 2 (Runx2), ALP, osteopontin (OPN) and osteocalcin (OC), indicative of osteoblastic differentiation. These results demonstrated that Chi/Gel multilayer-coated melatonin-loaded TiO 2 nanotube substrates promoted cell adhesion, spreading, proliferation and differentiation and could provide an alternative fabrication method for titanium-based implants to enhance the osteointegration between bone tissues and implant surfaces.

  3. Cytotoxic effects of glass ionomer cements on human dental pulp stem cells correlate with fluoride release.

    Science.gov (United States)

    Kanjevac, Tatjana; Milovanovic, Marija; Volarevic, Vladislav; Lukic, Miodrag L; Arsenijevic, Nebojsa; Markovic, Dejan; Zdravkovic, Nebojsa; Tesic, Zivoslav; Lukic, Aleksandra

    2012-01-01

    Glass ionomer cements (GICs) are commonly used as restorative materials. Responses to GICs differ among cell types and it is therefore of importance to thoroughly investigate the influence of these restorative materials on pulp stem cells that are potential source for dental tissue regeneration. Eight biomaterials were tested: Fuji I, Fuji II, Fuji VIII, Fuji IX, Fuji Plus, Fuji Triage, Vitrebond and Composit. We compared their cytotoxic activity on human dental pulp stem cells (DPSC) and correlated this activity with the content of Fluoride, Aluminium and Strontium ions in their eluates. Elution samples of biomaterials were prepared in sterile tissue culture medium and the medium was tested for toxicity by an assay of cell survival/proliferation (MTT test) and apoptosis (Annexin V FITC Detection Kit). Concentrations of Fluoride, Aluminium and Strontium ions were tested by appropriate methods in the same eluates. Cell survival ranged between 79.62% (Fuji Triage) to 1.5% (Fuji Plus) and most dead DPSCs were in the stage of late apoptosis. Fluoride release correlated with cytotoxicity of GICs, while Aluminium and Strontium ions, present in significant amount in eluates of tested GICs did not. Fuji Plus, Vitrebond and Fuji VIII, which released fluoride in higher quantities than other GICs, were highly toxic to human DPSCs. Opposite, low levels of released fluoride correlated to low cytotoxic effect of Composit, Fuji I and Fuji Triage.

  4. Binary release of ascorbic acid and lecithin from core-shell nanofibers on blood-contacting surface for reducing long-term hemolysis of erythrocyte.

    Science.gov (United States)

    Shi, Qiang; Fan, Qunfu; Ye, Wei; Hou, Jianwen; Wong, Shing-Chung; Xu, Xiaodong; Yin, Jinghua

    2015-01-01

    There is an urgent need to develop blood-contacting biomaterials with long-term anti-hemolytic capability. To obtain such biomaterials, we coaxially electrospin [ascorbic acid (AA) and lecithin]/poly (ethylene oxide) (PEO) core-shell nanofibers onto the surface of styrene-b-(ethylene-co-butylene)-b-styrene elastomer (SEBS) that has been grafted with poly (ethylene glycol) (PEG) chains. Our strategy is based on that the grafted layers of PEG render the surface hydrophilic to reduce the mechanical injure to red blood cells (RBCs) while the AA and lecithin released from nanofibers on blood-contacting surface can actively interact with RBCs to decrease the oxidative damage to RBCs. We demonstrate that (AA and lecithin)/PEO core-shell structured nanofibers have been fabricated on the PEG grafted surface. The binary release of AA and lecithin in the distilled water is in a controlled manner and lasts for almost 5 days; during RBCs preservation, AA acts as an antioxidant and lecithin as a lipid supplier to the membrane of erythrocytes, resulting in low mechanical fragility and hemolysis of RBCs, as well as high deformability of stored RBCs. Our work thus makes a new approach to fabricate blood-contacting biomaterials with the capability of long-term anti-hemolysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Uptake and release of 99mTc-CPI in cultured myocardial cells

    International Nuclear Information System (INIS)

    Li Shengting; Xiao Yanling; Yu Qifu; Zhang Hongyuan; Tang Jingrong

    1991-01-01

    The uptake and release of 99m Tc-CPI were studied in cultured monolayer neonatal rat myocardial cells incubated under normal condition (37 deg C, pH 7.4). The plateau level of uptake (4291.6 cpm/mg cell protein) was reached at 41.4 min when incubated with 37 kBq 99m Tc-CPI. The 99m Tc-CPI release was composed of at least two components. The fast component had a half-time (t 1/2 ) of 3.3 min and the slow one 198.0 min. It was suggested by the authors that the uptake of 99m Tc-CPI by cultured myocardial cells might be related to passive diffusion

  6. Further studies on the structural requirements for mast cell degranulating (MCD) peptide-mediated histamine release.

    Science.gov (United States)

    Buku, A; Price, J A

    2001-12-01

    Mast cell degranulating (MCD) peptide was modified in its two disulfide bridges and in the two arginine residues in order to measure the ability of these analogs to induce histamine release from mast cells in vitro. Analogs prepared were [Ala(3,15)]MCD, [Ala(5,19)]MCD, [Orn(16)]MCD, and [Orn(7,16)]MCD. Their histamine-releasing activity was determined spectrofluorometrically with peritoneal mast cells. The monocyclic analogs in which the cysteine residues were replaced pairwise with alanine residues showed three-to ten-fold diminished histamine-releasing activity respectively, compared with the parent MCD peptide. Substantial increases in activity were observed where arginine residues were replaced by ornithines. The ornithine-mono substituted analog showed an almost six-fold increase and the ornithine-doubly substituted analog three-fold increase in histamine-releasing activity compared with the parent MCD peptide. The structural changes associated with these activities were followed by circular dichroism (CD) spectroscopy. Changes in the shape and ellipticity of the CD spectra reflected a role for the disulfide bonds and the two arginine residues in the overall conformation and biological activity of the molecule.

  7. Simultaneous measurement of hormone release and secretagogue binding by individual pituitary cells

    International Nuclear Information System (INIS)

    Smith, P.F.; Neill, J.D.

    1987-01-01

    The quantitative relationship between receptor binding and hormone secretion at the single-cell level was investigated in the present study by combining a reverse hemolytic plaque assay for measurement of luteinizing hormone (LH) secretion from individual pituitary cells with an autoradiographic assay of 125 I-labeled gonadontropin-releasing hormone (GnRH) agonist binding to the same cells. In the plaque assay, LH secretion induces complement-mediated lysis of the LH-antibody-coated erythrocytes around the gonadotropes, resulting in areas of lysis (plaques). LH release from individual gonadotropes was quantified by comparing radioimmunoassayable LH release to hemolytic area in similarly treated cohort groups of cells; plaque area was linearly related to the amount of LH secreted. Receptor autoradiography was performed using 125 I-labeled GnRH-A (a superagonist analog of GnRH) both as the ligand and as the stimulant for LH release in the plaque assay. The grains appeared to represent specific and high-affinity receptors for GnRH because (i) no pituitary cells other than gonadotropes bound the labeled ligand and (ii) grain development was progressively inhibited by coincubation with increasing doses of unlabeled GnRH-A. The authors conclude that GnRH receptor number for any individual gonadotrope is a weak determinant of the amount of LH it can secrete; nevertheless, full occupancy of all its GnRH receptors is required for any gonadotrope to reach its full LH-secretory capacity. Apparently the levels of other factors comprising the steps along the secretory pathway determine the secretory capacity of an individual cell

  8. Liver cancer cells: targeting and prolonged-release drug carriers consisting of mesoporous silica nanoparticles and alginate microspheres.

    Science.gov (United States)

    Liao, Yu-Te; Liu, Chia-Hung; Yu, Jiashing; Wu, Kevin C-W

    2014-01-01

    A new microsphere consisting of inorganic mesoporous silica nanoparticles (MSNs) and organic alginate (denoted as MSN@Alg) was successfully synthesized by air-dynamic atomization and applied to the intracellular drug delivery systems (DDS) of liver cancer cells with sustained release and specific targeting properties. MSN@Alg microspheres have the advantages of MSN and alginate, where MSN provides a large surface area for high drug loading and alginate provides excellent biocompatibility and COOH functionality for specific targeting. Rhodamine 6G was used as a model drug, and the sustained release behavior of the rhodamine 6G-loaded MSN@Alg microspheres can be prolonged up to 20 days. For targeting therapy, the anticancer drug doxorubicin was loaded into MSN@Alg microspheres, and the (lysine)4-tyrosine-arginine-glycine-aspartic acid (K4YRGD) peptide was functionalized onto the surface of MSN@Alg for targeting liver cancer cells, hepatocellular carcinoma (HepG2). The results of the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay and confocal laser scanning microscopy indicate that the MSN@Alg microspheres were successfully uptaken by HepG2 without apparent cytotoxicity. In addition, the intracellular drug delivery efficiency was greatly enhanced (ie, 3.5-fold) for the arginine-glycine-aspartic acid (RGD)-labeled, doxorubicin-loaded MSN@Alg drug delivery system compared with the non-RGD case. The synthesized MSN@Alg microspheres show great potential as drug vehicles with high biocompatibility, sustained release, and targeting features for future intracellular DDS.

  9. Growth hormone-releasing factor induces c-fos expression in cultured primary pituitary cells

    DEFF Research Database (Denmark)

    Billestrup, Nils; Mitchell, R L; Vale, W

    1987-01-01

    GH-releasing factor (GRF) and somatostatin regulates the secretion and biosynthesis of GH as well as the proliferation of GH-producing cells. In order to further characterize the mitogenic effect of GRF, we studied the expression of the proto-oncogene c-fos in primary pituitary cells. Maximal...... induction of c-fos mRNA was observed 20-60 min after stimulation with 5 nM GRF, returning to basal levels after 2 h. Somatostatin-14 (5 nM) partially inhibited the GRF induced c-fos expression. Forskolin and phorbol 12, 13 dibutyrate induced c-fos gene in cultured primary pituitary cells with similar...

  10. Phenolic excipients of insulin formulations induce cell death, pro-inflammatory signaling and MCP-1 release

    Directory of Open Access Journals (Sweden)

    Claudia Weber

    2015-01-01

    Insulin solutions displayed cytotoxic and pro-inflammatory potential caused by phenol or m-cresol. We speculate that during insulin pump therapy phenol and m-cresol might induce cell death and inflammatory reactions at the infusion site in vivo. Inflammation is perpetuated by release of MCP-1 by activated monocytic cells leading to enhanced recruitment of inflammatory cells. To minimize acute skin complications caused by phenol/m-cresol accumulation, a frequent change of infusion sets and rotation of the infusion site is recommended.

  11. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells

    DEFF Research Database (Denmark)

    Llorente, A.; Skotland, T.; Sylvanne, T.

    2013-01-01

    The molecular lipid composition of exosomes is largely unknown. In this study, sophisticated shotgun and targeted molecular lipidomic assays were performed for in-depth analysis of the lipidomes of the metastatic prostate cancer cell line, PC-3, and their released exosomes. This study, based...... in the quantification of approximately 280 molecular lipid species, provides the most extensive lipid analysis of cells and exosomes to date. Interestingly, major differences were found in the lipid composition of exosomes compared to parent cells. Exosomes show a remarkable enrichment of distinct lipids, demonstrating...... potentially be used as cancer biomarkers. (C) 2013 Elsevier B.V. All rights reserved....

  12. Effect of amiloride on arachidonic acid and histamine release from rat mast cells

    DEFF Research Database (Denmark)

    Linnebjerg, H.; Hansen, Harald S.; Jensen, B.

    1989-01-01

    The effect of a putative Na/H exchange inhibition on histamine and [C]arachidonic acid ([C]AA) release has been examined in rat peritoneal mast cells, using either addition of amiloride or removal of extracellular Na. The cells were stimulated by non-immunological agents, i.e. calcium ionophore A......23187, nerve growth factor (NGF), thapsigargin and compound 48/80. On the basis of the results obtained, a possible role for Na/H exchange in rat mast cell secretion is discussed....

  13. Cell behavior on microparticles with different surface morphology

    International Nuclear Information System (INIS)

    Huang Sha; Fu Xiaobing

    2010-01-01

    Microparticles can serve as substrates for cell amplification and deliver the cell aggregation to the site of the defect for tissue regeneration. To develop favorable microparticles for cell delivery application, we fabricated and evaluated three types of microparticles that differ in surface properties. The microparticles with varied surface morphology (smooth, pitted and multicavity) were created from chemically crosslinked gelatin particles that underwent various drying treatments. Three types of microparticles were characterized and assessed in terms of the cell behavior of human keratinocytes and fibroblasts seeded on them. The cells could attach, spread and proliferate on all types of microparticles but spread and populated more slowly on the microparticles with smooth surfaces than on those with pitted or multicavity surfaces. Microparticles with a multicavity surface demonstrated the highest cell attachment and growth rate. Furthermore, cells tested on microparticles with a multicavity surface exhibited better morphology and induced the earlier formation of extracellular-based cell-microparticle aggregation than those on microparticles with other surface morphology (smooth and pitted). Thus, microparticles with a multicavity surface show promise for attachment and proliferation of cells in tissue engineering.

  14. Mechanosensory Signaling in Enterochromaffin Cells and 5-HT Release: Potential Implications for Gut Inflammation

    Directory of Open Access Journals (Sweden)

    Andromeda Linan Rico

    2016-12-01

    Full Text Available Enterochromaffin cells (EC synthesize 95% of the body 5-HT and release 5-HT in response to mechanical or chemical stimulation. EC cell 5-HT has physiological effects on gut motility, secretion and visceral sensation. Abnormal regulation of 5-HT occurs in gastrointestinal disorders and Inflammatory Bowel Diseases (IBD where 5-HT may represent a key player in the pathogenesis of intestinal inflammation. The focus of this review is on mechanism(s involved in EC cell ‘mechanosensation’ and critical gaps in our knowledge for future research. Much of our knowledge and concepts are from a human BON cell model of EC, although more recent work has included other cell lines, native EC cells from mouse and human and intact mucosa. EC cells are ‘mechanosensors’ that respond to physical forces generated during peristaltic activity by translating the mechanical stimulus (MS into an intracellular biochemical response leading to 5-HT and ATP release. The emerging picture of mechanosensation includes Piezo 2 channels, caveolin-rich microdomains and tight regulation of 5-HT release by purines. The ‘purinergic hypothesis’ is that MS releases purines to act in an autocrine / paracrine manner to activate excitatory (P2Y1, P2Y4, P2Y6, A2A/A2B or inhibitory (P2Y12, A1, A3 receptors to regulate 5-HT release. MS activates a P2Y1/Gαq/PLC/IP3-IP3R/SERCA Ca2+signaling pathway, an A2A/A2B–Gs/AC/cAMP-PKA signaling pathway, an ATP-gated P2X3 channel, and an inhibitory P2Y12 -Gi/o/AC-cAMP pathway. In human IBD, P2X3 is down regulated and A2B is up regulated in EC cells, but the pathophysiological consequences of abnormal mechanosensory or purinergic 5-HT signaling remain unknown. EC cell mechanosensation remains poorly understood.

  15. Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells.

    Science.gov (United States)

    Kulikova, Veronika; Shabalin, Konstantin; Nerinovski, Kirill; Dölle, Christian; Niere, Marc; Yakimov, Alexander; Redpath, Philip; Khodorkovskiy, Mikhail; Migaud, Marie E; Ziegler, Mathias; Nikiforov, Andrey

    2015-11-06

    NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5'-nucleotidases (5'-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5'-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5'-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other's NAD supply by providing alternative precursors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Release of volatile organic compounds (VOCs from the lung cancer cell line CALU-1 in vitro

    Directory of Open Access Journals (Sweden)

    Schubert Jochen

    2008-11-01

    Full Text Available Abstract Background The aim of this work was to confirm the existence of volatile organic compounds (VOCs specifically released or consumed by lung cancer cells. Methods 50 million cells of the human non-small cell lung cancer (NSCLC cell line CALU-1 were incubated in a sealed fermenter for 4 h or over night (18 hours. Then air samples from the headspace of the culture vessel were collected and preconcentrated by adsorption on solid sorbents with subsequent thermodesorption and analysis by means of gas chromatography mass spectrometry (GC-MS. Identification of altogether 60 compounds in GCMS measurement was done not only by spectral library match, but also by determination of retention times established with calibration mixtures of the respective pure compounds. Results The results showed a significant increase in the concentrations of 2,3,3-trimethylpentane, 2,3,5-trimethylhexane, 2,4-dimethylheptane and 4-methyloctane in the headspace of CALU-1 cell culture as compared to medium controls after 18 h. Decreased concentrations after 18 h of incubation were found for acetaldehyde, 3-methylbutanal, butyl acetate, acetonitrile, acrolein, methacrolein, 2-methylpropanal, 2-butanone, 2-methoxy-2-methylpropane, 2-ethoxy-2-methylpropane, and hexanal. Conclusion Our findings demonstrate that certain volatile compounds can be cancer-cell derived and thus indicative of the presence of a tumor, whereas other compounds are not released but seem to be consumed by CALU-1 cells.

  17. Effects of chlorine and other water quality parameters on the release of silver nanoparticles from a ceramic surface.

    Science.gov (United States)

    Bielefeldt, Angela R; Stewart, Michael W; Mansfield, Elisabeth; Scott Summers, R; Ryan, Joseph N

    2013-08-01

    A quartz crystal microbalance was used to determine the effects of different water quality parameters on the detachment of silver nanoparticles from surfaces representative of ceramic pot filters (CPFs). Silver nanoparticles stabilized with casein were used in the experiments. The average hydrodynamic diameter of the nanoparticles ranged from 20 nm to 100 nm over a pH range of 6.5-10.5. The isoelectric point was about 3.5 and the zeta potential was -45 mV from pH 4.5 to 9.5. The silver nanoparticles were deposited onto silica surfaces and a quartz crystal microbalance was used to monitor silver release from the surface. At environmentally relevant ranges of pH (4.8-9.3), ionic strength (0 and 150 mol/m(3) NaNO3 or 150 mol/m(3) Ca(NO3)2), and turbidity (0 and 51.5 NTU kaolin clay), the rates of silver release were similar. A high concentration of sodium chloride and bacteria (Echerichia coli in 10% tryptic soy broth) caused rapid silver release. Water containing sodium hypochlorite removed 85% of the silver from the silica surface within 3 h. The results suggest that contact between CPFs and prechlorinated water or bleach CPF cleaning should be avoided. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Utilization of adenosine triphosphate in rat mast cells during histamine release induced by the ionophore A23187

    DEFF Research Database (Denmark)

    Johansen, Torben

    1979-01-01

    The role of endogenous adenosine triphosphate (ATP) in histamine release from rat mast cells induced by the ionophore A23187 in vitro has been studied. 2 The amount of histamine released by calcium from rat mast cells primed with the ionophore A23187 was dependent on the ATP content of the mast...... cells. 3 In aerobic experiments a drastic reduction in mast cell ATP content was found during the time when histamine release induced by A23187 takes place. 4 Anaerobic experiments were performed with metabolic inhibitors (antimycin A, oligomycin, and carbonyl cyanide p......-trifluorometroxyphenylnydrazone), which are known to block the energy-dependent calcium uptake by isolated mitochondria. The mast cell ATP content was reduced during A23187-induced histamine release under anaerobic conditions in the presence of glucose. This indicates an increased utilization of ATP during the release process. 5...

  19. Influence of MRI contrast media on histamine release from mast cells.

    Science.gov (United States)

    Kun, Tomasz; Jakubowski, Lucjusz

    2012-07-01

    Mast cells, owing to diversity of secreted mediators, play a crucial role in the regulation of inflammatory response. Together with basophils, mast cells constitute a central pathogenetic element of anaphylactic (IgE-dependent) and anaphylactoid (IgE-independent) reactions. In severe cases, generalized degranulation of mast cells may cause symptoms of anaphylactic shock. The influence of the classical, iodine-based contrast media on mastocyte degranulation has been fully described. Our objective was to determine the influence of the gadolinium-based MRI contrast media on histamine release from mast cells and to compare the activity of ionic and non-ionic preparations of contrast media. To determine the intensity of mast cell degranulation, we used an experimental model based on mastocytes isolated from rat peritoneal fluid. Purified suspensions of mast cells were incubated with various concentrations of Gd-DTPA and Gd-DTPA-BMA, and solutions of PEG 600 which served as a non-toxic osmotic stimulus. The intensity of mast cell activation was presented as mean percentage of histamine released from cells after incubation. The obtained results demonstrate that both ionic and non-ionic preparations of the MRI contrast media are able to induce mast cell degranulation in vitro. It was also proved that the non-ionic MRI contrast media stimulate mast cells markedly more weakly than ionic contrast media at identical concentration. The aforementioned results may suggest a more profitable safety profile of the non-ionic contrast preparations. We may also conclude that triggering of mast cell degranulation after incubation with the solutions of MRI contrast media results from non-specific osmotic stimulation and direct toxicity of free ionic residues.

  20. Influence of MRI contrast media on histamine release from mast cells

    International Nuclear Information System (INIS)

    Kun, Tomasz; Jakubowski, Lucjusz

    2012-01-01

    Mast cells, owing to diversity of secreted mediators, play a crucial role in the regulation of inflammatory response. Together with basophils, mast cells constitute a central pathogenetic element of anaphylactic (IgE-dependent) and anaphylactoid (IgE-independent) reactions. In severe cases, generalized degranulation of mast cells may cause symptoms of anaphylactic shock. The influence of the classical, iodine-based contrast media on mastocyte degranulation has been fully described. Our objective was to determine the influence of the gadolinium-based MRI contrast media on histamine release from mast cells and to compare the activity of ionic and non-ionic preparations of contrast media. To determine the intensity of mast cell degranulation, we used an experimental model based on mastocytes isolated from rat peritoneal fluid. Purified suspensions of mast cells were incubated with various concentrations of Gd-DTPA and Gd-DTPA-BMA, and solutions of PEG 600 which served as a non-toxic osmotic stimulus. The intensity of mast cell activation was presented as mean percentage of histamine released from cells after incubation. The obtained results demonstrate that both ionic and non-ionic preparations of the MRI contrast media are able to induce mast cell degranulation in vitro. It was also proved that the non-ionic MRI contrast media stimulate mast cells markedly more weakly than ionic contrast media at identical concentration. The aforementioned results may suggest a more profitable safety profile of the non-ionic contrast preparations. We may also conclude that triggering of mast cell degranulation after incubation with the solutions of MRI contrast media results from non-specific osmotic stimulation and direct toxicity of free ionic residues

  1. Cell-mediated immunity to herpes simplex in humans: lymphocyte cytotoxicity measured by 51Cr release from infected cells

    International Nuclear Information System (INIS)

    Russell, A.S.; Percy, J.S.; Kovithavongs, T.

    1975-01-01

    We assessed cell-mediated immunity to herpes simplex virus type 1 antigen in patients suffering from recurrent cold sores and in a series of healthy controls. Paradoxically, all those subject to recurrent herpetic infections had, without exception, evidence of cell-mediated immunity to herpes antigens. This was demonstrated by lymphocyte transformation and specific 51 Cr release from infected human amnion cells after incubation with peripheral blood mononuclear cells. Where performed, skin tests with herpes antigen were also positive. In addition, serum from these patients specifically sensitized herpes virus-infected cells to killing by nonimmune, control mononuclear cells. These tests were negative in the control patients except in a few cases, and it is suggested that these latter may be the asymptomatic herpes virus carriers previously recognized or that they may have experienced a genital infection. (U.S.)

  2. Falling Leaves Inspired ZnO Nanorods-Nanoslices Hierarchical Structure for Implant Surface Modification with Two Stage Releasing Features.

    Science.gov (United States)

    Liao, Hang; Miao, Xinxin; Ye, Jing; Wu, Tianlong; Deng, Zhongbo; Li, Chen; Jia, Jingyu; Cheng, Xigao; Wang, Xiaolei

    2017-04-19

    Inspired from falling leaves, ZnO nanorods-nanoslices hierarchical structure (NHS) was constructed to modify the surfaces of two widely used implant materials: titanium (Ti) and tantalum (Ta), respectively. By which means, two-stage release of antibacterial active substances were realized to address the clinical importance of long-term broad-spectrum antibacterial activity. At early stages (within 48 h), the NHS exhibited a rapid releasing to kill the bacteria around the implant immediately. At a second stage (over 2 weeks), the NHS exhibited a slow releasing to realize long-term inhibition. The excellent antibacterial activity of ZnO NHS was confirmed once again by animal test in vivo. According to the subsequent experiments, the ZnO NHS coating exhibited the great advantage of high efficiency, low toxicity, and long-term durability, which could be a feasible manner to prevent the abuse of antibiotics on implant-related surgery.

  3. Surface Passivation for Silicon Heterojunction Solar Cells

    NARCIS (Netherlands)

    Deligiannis, D.

    2017-01-01

    Silicon heterojunction solar cells (SHJ) are currently one of the most promising solar cell technologies in the world. The SHJ solar cell is based on a crystalline silicon (c-Si) wafer, passivated on both sides with a thin intrinsic hydrogenated amorphous silicon (a-Si:H) layer. Subsequently, p-type

  4. Adsorption of Amorphous Silica Nanoparticles onto Hydroxyapatite Surfaces Differentially Alters Surfaces Properties and Adhesion of Human Osteoblast Cells.

    Directory of Open Access Journals (Sweden)

    Priya Kalia

    Full Text Available Silicon (Si is suggested to be an important/essential nutrient for bone and connective tissue health. Silicon-substituted hydroxyapatite (Si-HA has silicate ions incorporated into its lattice structure and was developed to improve attachment to bone and increase new bone formation. Here we investigated the direct adsorption of silicate species onto an HA coated surface as a cost effective method of incorporating silicon on to HA surfaces for improved implant osseointegration, and determined changes in surface characteristics and osteoblast cell adhesion. Plasma-sprayed HA-coated stainless steel discs were incubated in silica dispersions of different concentrations (0-42 mM Si, at neutral pH for 12 h. Adsorbed Si was confirmed by XPS analysis and quantified by ICP-OES analysis following release from the HA surface. Changes in surface characteristics were determined by AFM and measurement of surface wettability. Osteoblast cell adhesion was determined by vinculin plaque staining. Maximum Si adsorption to the HA coated disc occurred after incubation in the 6 mM silica dispersion and decreased progressively with higher silica concentrations, while no adsorption was observed with dispersions below 6 mM Si. Comparison of the Si dispersions that produced the highest and lowest Si adsorption to the HA surface, by TEM-based analysis, revealed an abundance of small amorphous nanosilica species (NSP of ~1.5 nm in diameter in the 6 mM Si dispersion, with much fewer and larger NSP in the 42 mM Si dispersions. 29Si-NMR confirmed that the NSPs in the 6 mM silica dispersion were polymeric and similar in composition to the larger NSPs in the 42 mM Si dispersion, suggesting that the latter were aggregates of the former. Amorphous NSP adsorbed from the 6 mM dispersion on to a HA-coated disc surface increased the surface's water contact angle by 53°, whereas that adsorbed from the 42 mM dispersion decreased the contact angle by 18°, indicating increased and

  5. Investigation of back surface fields effect on bifacial solar cells

    Science.gov (United States)

    Sepeai, Suhaila; Sulaiman, M. Y.; Sopian, Kamaruzzaman; Zaidi, Saleem H.

    2012-11-01

    A bifacial solar cell, in contrast with a conventional monofacial solar cell, produces photo-generated current from both front and back sides. Bifacial solar cell is an attractive candidate for enhancing photovoltaic (PV) market competitiveness as well as supporting the current efforts to increase efficiency and lower material costs. This paper reports on the fabrication of bifacial solar cells using phosphorus-oxytrichloride (POCl3) emitter formation on p-type, nanotextured silicon (Si) wafer. Backside surface field was formed through Al-diffusion using conventional screen-printing process. Bifacial solar cells with a structure of n+pp+ with and without back surface field (BSF) were fabricated in which silicon nitride (SiN) anti reflection and passivation films were coated on both sides, followed by screen printing of Argentum (Ag) and Argentum/Aluminum (Ag/Al) on front and back contacts, respectively. Bifacial solar cells without BSF exhibited open circuit voltage (VOC) of 535 mV for front and 480 mV for back surface. With Al-alloyed BSF bifacial solar cells, the VOC improved to 580 mV for the front surface and 560 mV for the back surface. Simulation of bifacial solar cells using PC1D and AFORS software demonstrated good agreement with experimental results. Simulations showed that best bifacial solar cells are achieved through a combination of high lifetime wafer, low recombination back surface field, reduced contact resistance, and superior surface passivation.

  6. Oxygen sensitivity of potassium- and angiotensin II-stimulated aldosterone release by bovine adrenal cells.

    Science.gov (United States)

    Brickner, R C; Raff, H

    1991-04-01

    Angiotensin II (AII) and extracellular K+, acting through different intracellular mechanisms, stimulate aldosterone release in a synergistic fashion. We have previously shown that decreases in oxygen (O2) within the physiological range inhibit AII, cyclic AMP (cAMP) and ACTH-stimulated aldosterone release. The present experiment evaluated the effect of various concentrations of O2 on K+-stimulated aldosterone release in the presence and absence of AII. Dispersed bovine adrenal glomerulosa cells were incubated with different concentrations of K+ (0.9-5.4 mmol/l) without and with AII (10 nmol/l) under different concentrations of O2 (0, 5 or 50%); 21% O2 (pO2 = 19.9 +/- 0.5 kPa,n = 9) was used as reference control for comparison. In all cases, increases in K+ stimulated aldosterone release, an effect augmented by AII. Under 0% O2 (pO2 = 8.1 +/- 0.3 kPa, n = 3) and 5% O2 (pO2 = 12.8 +/- 0.5 kPa, n = 3), aldosterone release stimulated by K+ or K+/AII was significantly inhibited compared with that under 21% O2. Conversely, under 50% O2 (pO2 = 36.3 +/- 2.5 kPa, n = 3), aldosterone release stimulated by K+ or K+/AII was significantly augmented. Cortisol secretion was not significantly affected by 5% or 50% O2 but was significantly decreased under 0% O2. The effect of O2 on K+/AII stimulation of aldosterone release, as well as previous experiments with cAMP, progesterone and ACTH, suggest a final common post-receptor oxygen-sensitive component of the aldosterone synthetic pathway. It is suggested that one or more enzymes in the aldosterone synthetic pathway is/are exquisitely sensitive to small changes in O2 within the physiological range.

  7. The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering

    Science.gov (United States)

    Zhou, Hongzhi; Xu, Hockin H. K.

    2011-01-01

    Stem cell-encapsulating hydrogel microbeads of several hundred microns in size suitable for injection, that could quickly degrade to release the cells, are currently unavailable. The objectives of this study were to: (1) develop oxidized alginate-fibrin microbeads encapsulating human umbilical cord mesenchymal stem cells (hUCMSCs); (2) investigate microbead degradation, cell release, and osteogenic differentiation of the released cells for the first time. Three types of microbeads were fabricated to encapsulate hUCMSCs: (1) Alginate microbeads; (2) oxidized alginate microbeads; (3) oxidized alginate-fibrin microbeads. Microbeads with sizes of about 100–500 µm were fabricated with 1×106 hUCMSCs/mL of alginate. For the alginate group, there was little microbead degradation, with very few cells released at 21 d. For oxidized alginate, the microbeads started to slightly degrade at 14 d. In contrast, the oxidized alginate-fibrin microbeads started to degrade at 4 d and released the cells. At 7 d, the number of released cells greatly increased and showed a healthy polygonal morphology. At 21 d, the oxidized alginate-fibrin group had a live cell density that was 4-fold that of the oxidized alginate group, and 15-fold that of the alginate group. The released cells had osteodifferentiation, exhibiting highly elevated bone marker gene expressions of ALP, OC, collagen I, and Runx2. Alizarin staining confirmed the synthesis of bone minerals by hUCMSCs, with the mineral concentration at 21 d being 10-fold that at 7 d. In conclusion, fast-degradable alginate-fibrin microbeads with hUCMSC encapsulation were developed that could start to degrade and release the cells at 4 d. The released hUCMSCs had excellent proliferation, osteodifferentiation, and bone mineral synthesis. The alginate-fibrin microbeads are promising to deliver stem cells inside injectable scaffolds to promote tissue regeneration. PMID:21757229

  8. Insights into cytokine release syndrome and neurotoxicity after CD19-specific CAR-T cell therapy.

    Science.gov (United States)

    Gauthier, Jordan; Turtle, Cameron J

    2018-04-03

    T-cells engineered to express CD19-specific chimeric antigen receptors (CD19 CAR-T cells) can achieve high response rates in patients with refractory/relapsed (R/R) CD19+ hematologic malignancies. Nonetheless, the efficacy of CD19-specific CAR-T cell therapy can be offset by significant toxicities, such as cytokine release syndrome (CRS) and neurotoxicity. In this report of our presentation at the 2018 Second French International Symposium on CAR-T cells (CAR-T day), we describe the clinical presentations of CRS and neurotoxicity in a cohort of 133 adults treated with CD19 CAR-T cells at the Fred Hutchinson Cancer Research Center, and provide insights into the mechanisms contributing to these toxicities. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Stepwise-activable multifunctional peptide-guided prodrug micelles for cancerous cells intracellular drug release

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing, E-mail: zhangjing@zjut.edu.cn; Li, Mengfei [Zhejiang University of Technology, College of Materials Science and Engineering (China); Yuan, Zhefan [Zhejiang University, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering (China); Wu, Dan; Chen, Jia-da; Feng, Jie, E-mail: fengjie@zjut.edu.cn [Zhejiang University of Technology, College of Materials Science and Engineering (China)

    2016-10-15

    A novel type of stepwise-activable multifunctional peptide-guided prodrug micelles (MPPM) was fabricated for cancerous cells intracellular drug release. Deca-lysine sequence (K{sub 10}), a type of cell-penetrating peptide, was synthesized and terminated with azido-glycine. Then a new kind of molecule, alkyne modified doxorubicin (DOX) connecting through disulfide bond (DOX-SS-alkyne), was synthesized. After coupling via Cu-catalyzed azide–alkyne cycloaddition (CuAAC) click chemistry reaction, reduction-sensitive peptide-guided prodrug was obtained. Due to the amphiphilic property of the prodrug, it can assemble to form micelles. To prevent the nanocarriers from unspecific cellular uptake, the prodrug micelles were subsequently modified with 2,3-dimethyl maleic anhydride to obtain MPPM with a negatively charged outer shell. In vitro studies showed that MPPM could be shielded from cells under psychological environment. However, when arriving at mild acidic tumor site, the cell-penetrating capacity of MPPM would be activated by charge reversal of the micelles via hydrolysis of acid-labile β-carboxylic amides and regeneration of K{sub 10}, which enabled efficient internalization of MPPM by tumor cells as well as following glutathione- and protease-induced drug release inside the cancerous cells. Furthermore, since the guide peptide sequences can be accurately designed and synthesized, it can be easily changed for various functions, such as targeting peptide, apoptotic peptide, even aptamers, only need to be terminated with azido-glycine. This method can be used as a template for reduction-sensitive peptide-guided prodrug for cancer therapy.Graphical abstractA novel type of stepwise-activable multifunctional peptide-guided prodrug micelles (MPPM) was fabricated for selective drug delivery in cancerous cells. MPPM could be shielded from cells under psychological environment. However, when arriving at mild acidic tumor site, the cell-penetrating capacity of MPPM would

  10. Betulin induces cytochrome c release and apoptosis in colon cancer cells via NOXA.

    Science.gov (United States)

    Zhou, Zhiyuan; Zhu, Chenfang; Cai, Zhongfang; Zhao, Feng; He, Liu; Lou, Xiaolou; Qi, Xiaoliang

    2018-05-01

    Betulin is a common triterpene that can be readily obtained from various plants, particularly birch trees, in their natural environment. Specific tumor cells are sensitive to betulin, whereas healthy cells are not. Betulin was observed to stimulate programmed cell death of various cancer cell lines; however, the precise molecular mechanism of action of betulin remains unknown. The present study used colon cancer cells, in which mass apoptosis triggered by betulin was identified, and the apoptotic process was demonstrated to occur via the activation of caspase-3 and -9 pathways. In addition, release of cytochrome c was detected. Furthermore, the pro-apoptotic member of the Bcl-2 protein family, NOXA, was induced following treatment with betulin, and the downregulation of NOXA markedly suppressed the release of cytochrome c and apoptosis in colon cancer cells. Conversely, the overexpression of NOXA further enhanced betulin-induced apoptosis. The present study therefore offers novel insights into the mechanism of action of the natural compound betulin against tumors.

  11. Calreticulin Release at an Early Stage of Death Modulates the Clearance by Macrophages of Apoptotic Cells

    Science.gov (United States)

    Osman, Rim; Tacnet-Delorme, Pascale; Kleman, Jean-Philippe; Millet, Arnaud; Frachet, Philippe

    2017-01-01

    Calreticulin (CRT) is a well-known “eat-me” signal harbored by dying cells participating in their recognition by phagocytes. CRT is also recognized to deeply impact the immune response to altered self-cells. In this study, we focus on the role of the newly exposed CRT following cell death induction. We show that if CRT increases at the outer face of the plasma membrane and is well recognized by C1q even when phosphatidylserine is not yet detected, CRT is also released in the surrounding milieu and is able to interact with phagocytes. We observed that exogenous CRT is endocytosed by THP1 macrophages through macropinocytosis and that internalization is associated with a particular phenotype characterized by an increase of cell spreading and migration, an upregulation of CD14, an increase of interleukin-8 release, and a decrease of early apoptotic cell uptake. Importantly, CRT-induced pro-inflammatory phenotype was confirmed on human monocytes-derived macrophages by the overexpression of CD40 and CD274, and we found that monocyte-derived macrophages exposed to CRT display a peculiar polarization notably associated with a downregulation of the histocompatibility complex of class II molecules hampering its description through the classical M1/M2 dichotomy. Altogether our results highlight the role of soluble CRT with strong possible consequences on the macrophage-mediated immune response to dying cell. PMID:28878781

  12. Calreticulin Release at an Early Stage of Death Modulates the Clearance by Macrophages of Apoptotic Cells

    Directory of Open Access Journals (Sweden)

    Rim Osman

    2017-08-01

    Full Text Available Calreticulin (CRT is a well-known “eat-me” signal harbored by dying cells participating in their recognition by phagocytes. CRT is also recognized to deeply impact the immune response to altered self-cells. In this study, we focus on the role of the newly exposed CRT following cell death induction. We show that if CRT increases at the outer face of the plasma membrane and is well recognized by C1q even when phosphatidylserine is not yet detected, CRT is also released in the surrounding milieu and is able to interact with phagocytes. We observed that exogenous CRT is endocytosed by THP1 macrophages through macropinocytosis and that internalization is associated with a particular phenotype characterized by an increase of cell spreading and migration, an upregulation of CD14, an increase of interleukin-8 release, and a decrease of early apoptotic cell uptake. Importantly, CRT-induced pro-inflammatory phenotype was confirmed on human monocytes-derived macrophages by the overexpression of CD40 and CD274, and we found that monocyte-derived macrophages exposed to CRT display a peculiar polarization notably associated with a downregulation of the histocompatibility complex of class II molecules hampering its description through the classical M1/M2 dichotomy. Altogether our results highlight the role of soluble CRT with strong possible consequences on the macrophage-mediated immune response to dying cell.

  13. Flavonoids inhibit histamine release and expression of proinflammatory cytokines in mast cells.

    Science.gov (United States)

    Park, Hyo-Hyun; Lee, Soyoung; Son, Hee-Young; Park, Seung-Bin; Kim, Mi-Sun; Choi, Eun-Ju; Singh, Thoudam S K; Ha, Jeoung-Hee; Lee, Maan-Gee; Kim, Jung-Eun; Hyun, Myung Chul; Kwon, Taeg Kyu; Kim, Yeo Hyang; Kim, Sang-Hyun

    2008-10-01

    Mast cells participate in allergy and inflammation by secreting inflammatory mediators such as histamine and proinflammatory cytokines. Flavonoids are naturally occurring molecules with antioxidant, cytoprotective, and antiinflammatory actions. However, effect of flavonoids on the release of histamine and proinflammatory mediator, and their comparative mechanism of action in mast cells were not well defined. Here, we compared the effect of six flavonoids (astragalin, fisetin, kaempferol, myricetin, quercetin, and rutin) on the mast cell-mediated allergic inflammation. Fisetin, kaempferol, myricetin, quercetin, and rutin inhibited IgE or phorbol-12-myristate 13-acetate and calcium ionophore A23187 (PMACI)-mediated histamine release in RBL-2H3 cells. These five flavonoids also inhibited elevation of intracellular calcium. Gene expressions and secretion of proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-1beta, IL-6, and IL-8 were assessed in PMACI-stimulated human mast cells (HMC-1). Fisetin, quercetin, and rutin decreased gene expression and production of all the proinflammatory cytokines after PMACI stimulation. Myricetin attenuated TNF-alpha and IL-6 but not IL-1beta and IL-8. Fisetin, myricetin, and rutin suppressed activation of NF-kappaB indicated by inhibition of nuclear translocation of NF-kappaB, NF-kappaB/DNA binding, and NF-kappaB-dependent gene reporter assay. The pharmacological actions of these flavonoids suggest their potential activity for treatment of allergic inflammatory diseases through the down-regulation of mast cell activation.

  14. Surface-modified CMOS IC electrochemical sensor array targeting single chromaffin cells for highly parallel amperometry measurements.

    Science.gov (United States)

    Huang, Meng; Delacruz, Joannalyn B; Ruelas, John C; Rathore, Shailendra S; Lindau, Manfred

    2018-01-01

    Amperometry is a powerful method to record quantal release events from chromaffin cells and is widely used to assess how specific drugs modify quantal size, kinetics of release, and early fusion pore properties. Surface-modified CMOS-based electrochemical sensor arrays allow simultaneous recordings from multiple cells. A reliable, low-cost technique is presented here for efficient targeting of single cells specifically to the electrode sites. An SU-8 microwell structure is patterned on the chip surface to provide insulation for the circuitry as well as cell trapping at the electrode sites. A shifted electrode design is also incorporated to increase the flexibility of the dimension and shape of the microwells. The sensitivity of the electrodes is validated by a dopamine injection experiment. Microwells with dimensions slightly larger than the cells to be trapped ensure excellent single-cell targeting efficiency, increasing the reliability and efficiency for on-chip single-cell amperometry measurements. The surface-modified device was validated with parallel recordings of live chromaffin cells trapped in the microwells. Rapid amperometric spikes with no diffusional broadening were observed, indicating that the trapped and recorded cells were in very close contact with the electrodes. The live cell recording confirms in a single experiment that spike parameters vary significantly from cell to cell but the large number of cells recorded simultaneously provides the statistical significance.

  15. Cell surface hydrophobicity of dental plaque microorganisms in situ.

    OpenAIRE

    Rosenberg, M; Judes, H; Weiss, E

    1983-01-01

    The cell surface hydrophobicity of bacteria obtained directly from human tooth surfaces was assayed by measuring their adherence to liquid hydrocarbons. Fresh samples of supragingival dental plaque were washed and dispersed in buffer. Adherence of the plaque microorganisms to hexadecane, octane, and xylene was tested turbidimetrically and by direct microscopic observation. The results clearly show that the vast majority of bacteria comprising dental plaque exhibit pronounced cell surface hydr...

  16. A reliability study on influence of the geosphere thickness over the activity release from a near surface radioactive waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Lais Alencar de, E-mail: laguiar@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN-RJ), Rio de Janeiro, RJ (Brazil); Damaso, Vinicius Correa, E-mail: vcdamaso@gmail.com [Estado-Maior do Exercito (EME/EB), Brasilia, DF (Brazil)

    2013-07-01

    Infiltration of water into a waste disposal facility and into the waste region is the main factor inducing the release of radionuclides from a disposal facility. Since infiltrating water flow is dependent on the natural percolation at the site and the performance of engineered barriers, its prediction requires modelling of unsaturated water flow through intact or partially/completely failed components of engineered barriers and through the rock layer of the geosphere on which the repository is constructed. The engineered barriers include the cover systems, concrete vault, backfill, waste forms, and overpacks. This paper aims to carry out a performance study regarding a near surface repository in terms of reliability engineering. It is assumed that surface water infiltrates through the barriers reaching the matrix where radionuclides are contained, thus releasing them into the environment. The repository consists of a set of barriers which are considered saturated porous medium. As results, this paper presents the relation between the thickness of the geosphere layer and the radionuclide release rate in terms of activity. Such results represent a useful information for choosing the repository sites in order to keep the released activity in acceptable levels over time. (author)

  17. A reliability study on influence of the geosphere thickness over the activity release from a near surface radioactive waste repository

    International Nuclear Information System (INIS)

    Aguiar, Lais Alencar de; Damaso, Vinicius Correa

    2013-01-01

    Infiltration of water into a waste disposal facility and into the waste region is the main factor inducing the release of radionuclides from a disposal facility. Since infiltrating water flow is dependent on the natural percolation at the site and the performance of engineered barriers, its prediction requires modelling of unsaturated water flow through intact or partially/completely failed components of engineered barriers and through the rock layer of the geosphere on which the repository is constructed. The engineered barriers include the cover systems, concrete vault, backfill, waste forms, and overpacks. This paper aims to carry out a performance study regarding a near surface repository in terms of reliability engineering. It is assumed that surface water infiltrates through the barriers reaching the matrix where radionuclides are contained, thus releasing them into the environment. The repository consists of a set of barriers which are considered saturated porous medium. As results, this paper presents the relation between the thickness of the geosphere layer and the radionuclide release rate in terms of activity. Such results represent a useful information for choosing the repository sites in order to keep the released activity in acceptable levels over time. (author)

  18. Release of intracellular Calcium increase production of mitochondrial reactive oxygen species in renal distal epithelial cells

    DEFF Research Database (Denmark)

    Bjerregaard, Henning F.

    peroxide (H2O2) has traditionally been regarded as toxic by-products of aerobic metabolism. However, recent findings indicate that H2O2 act as a signalling molecule. The aim of the present study was to monitor, in real time, the rates of ROS generation in order to directly determine their production......Release of intracellular Calcium increase production of mitochondrial reactive oxygen species in renal distal epithelial cells. Henning F. Bjerregaard, Roskilde University, Department of Science, Systems and Models , 4000 Roskilde, Denmark. HFB@ RUC.DK Reactive oxygen species (ROS) like, hydrogen...... to G-protein stimulation of phospholipase C and release of inositol -3 phosphate. Cd (0.4 mM) treatment of A6 cells enhanced the ROS production after one minutes incubation. The production rate was constant for at least 10 to 20 min. Experiments showed that the Cd induced increase in ROS production...

  19. Multifunctional Polymer Nanoparticles for Dual Drug Release and Cancer Cell Targeting

    Directory of Open Access Journals (Sweden)

    Yu-Han Wen

    2017-06-01

    Full Text Available Multifunctional polymer nanoparticles have been developed for cancer treatment because they could be easily designed to target cancer cells and to enhance therapeutic efficacy according to cancer hallmarks. In this study, we synthesized a pH-sensitive polymer, poly(methacrylic acid-co-histidine/doxorubicin/biotin (HBD in which doxorubicin (DOX was conjugated by a hydrazone bond to encapsulate an immunotherapy drug, imiquimod (IMQ, to form dual cancer-targeting and dual drug-loaded nanoparticles. At low pH, polymeric nanoparticles could disrupt and simultaneously release DOX and IMQ. Our experimental results show that the nanoparticles exhibited pH-dependent drug release behavior and had an ability to target cancer cells via biotin and protonated histidine.

  20. JS-K, a nitric oxide-releasing prodrug, induces breast cancer cell death while sparing normal mammary epithelial cells.

    Science.gov (United States)

    McMurtry, Vanity; Saavedra, Joseph E; Nieves-Alicea, René; Simeone, Ann-Marie; Keefer, Larry K; Tari, Ana M

    2011-04-01

    Targeted therapy with reduced side effects is a major goal in cancer research. We investigated the effects of JS-K, a nitric oxide (NO) prodrug designed to release high levels of NO when suitably activated, on human breast cancer cell lines, on non-transformed human MCF-10A mammary cells, and on normal human mammary epithelial cells (HMECs). Cell viability assay, flow cytometry, electron microscopy, and Western blot analysis were used to study the effects of JS-K on breast cancer and on mammary epithelial cells. After a 3-day incubation, the IC50s of JS-K against the breast cancer cells ranged from 0.8 to 3 µM. However, JS-K decreased the viability of the MCF-10A cells by only 20% at 10-µM concentration, and HMECs were unaffected by 10 µM JS-K. Flow cytometry indicated that JS-K increased the percentages of breast cancer cells under-going apoptosis. Interestingly, flow cytometry indicated that JS-K increased acidic vesicle organelle formation in breast cancer cells, suggesting that JS-K induced autophagy in breast cancer cells. Electron microscopy confirmed that JS-K-treated breast cancer cells underwent autophagic cell death. Western blot analysis showed that JS-K induced the expression of microtubule light chain 3-II, another autophagy marker, in breast cancer cells. However, JS-K did not induce apoptosis or autophagy in normal human mammary epithelial cells. These data indicate that JS-K selectively induces programmed cell death in breast cancer cells while sparing normal mammary epithelial cells under the same conditions. The selective anti-tumor activity of JS-K warrants its further investigation in breast tumors.

  1. The role of surface charge in the desolvation process of gelatin: implications in nanoparticle synthesis and modulation of drug release

    Directory of Open Access Journals (Sweden)

    Ahsan SM

    2017-01-01

    Full Text Available Saad M Ahsan, Chintalagiri Mohan Rao Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, Telangana, India Abstract: The process of moving hydrophobic amino acids into the core of a protein by desolvation is important in protein folding. However, a rapid and forced desolvation can lead to precipitation of proteins. Desolvation of proteins under controlled conditions generates nanoparticles – homogeneous aggregates with a narrow size distribution. The protein nanoparticles, under physiological conditions, undergo surface erosion due to the action of proteases, releasing the entrapped drug/gene. The packing density of protein nanoparticles significantly influences the release kinetics. We have investigated the desolvation process of gelatin, exploring the role of pH and desolvating agent in nanoparticle synthesis. Our results show that the desolvation process, initiated by the addition of acetone, follows distinct pathways for gelatin incubated at different pH values and results in the generation of nanoparticles with varying matrix densities. The nanoparticles synthesized with varying matrix densities show variations in drug loading and protease-dependent extra- and intracellular drug release. These results will be useful in fine-tuning the synthesis of nanoparticles with desirable drug release profiles. Keywords: protein desolvation, nanoparticle assembly, gelatin nanoparticle synthesis, protease susceptibility, intracellular drug release

  2. Modified Titanium Surface-Mediated Effects on Human Bone Marrow Stromal Cell Response

    Directory of Open Access Journals (Sweden)

    Amol Chaudhari

    2013-11-01

    Full Text Available Surface modification of titanium implants is used to enhance osseointegration. The study objective was to evaluate five modified titanium surfaces in terms of cytocompatibility and pro-osteogenic/pro-angiogenic properties for human mesenchymal stromal cells: amorphous microporous silica (AMS, bone morphogenetic protein-2 immobilized on AMS (AMS + BMP, bio-active glass (BAG and two titanium coatings with different porosity (T1; T2. Four surfaces served as controls: uncoated Ti (Ti, Ti functionalized with BMP-2 (Ti + BMP, Ti surface with a thickened titanium oxide layer (TiO2 and a tissue culture polystyrene surface (TCPS. The proliferation of eGFP-fLuc (enhanced green fluorescence protein-firefly luciferase transfected cells was tracked non-invasively by fluorescence microscopy and bio-luminescence imaging. The implant surface-mediated effects on cell differentiation potential was tracked by determination of osteogenic and angiogenic parameters [alkaline phosphatase (ALP; osteocalcin (OC; osteoprotegerin (OPG; vascular endothelial growth factor-A (VEGF-A]. Unrestrained cell proliferation was observed on (unfunctionalized Ti and AMS surfaces, whereas BAG and porous titanium coatings T1 and T2 did not support cell proliferation. An important pro-osteogenic and pro-angiogenic potential of the AMS + BMP surface was observed. In contrast, coating the Ti surface with BMP did not affect the osteogenic differentiation of the progenitor cells. A significantly slower BMP-2 release from AMS compared to Ti supports these findings. In the unfunctionalized state, Ti was found to be superior to AMS in terms of OPG and VEGF-A production. AMS is suggested to be a promising implant coating material for bioactive agents delivery.

  3. Release of titanium ions from an implant surface and their effect on cytokine production related to alveolar bone resorption

    International Nuclear Information System (INIS)

    Wachi, Takanori; Shuto, Takahiro; Shinohara, Yoshinori; Matono, Yoshinari; Makihira, Seicho

    2015-01-01

    Although interest in peri-implant mucositis and peri-implantitis has recently been increasing, the mechanisms driving these diseases remain unknown. Here, the effects of titanium ions on the inflammation and bone resorption around an implant were investigated. First, the accumulated amount of Ti ions released into gingival and bone tissues from an implant exposed to sodium fluoride solution was measured using inductively coupled plasma mass spectrometry. Next, the cellular responses in gingival and bone tissues to Ti ions and/or Porphyromonas gingivalis-lipopolysaccharide (P. gingivalis-LPS) were assessed using a rat model. More Ti ions were detected in the gingival tissues around an implant after treatment with sodium fluoride (pH 4.2) than in its absence, which suggests that the fluoride corroded the implant surface under salivary buffering capacity. The injection of Ti ions (9 ppm) significantly increased the mRNA expression and protein accumulation of chemokine (C–C motif) ligand 2, as well as the ratio of receptor activator of nuclear factor-κB ligand to osteoprotegerin, in rat gingival tissues exposed to P. gingivalis-LPS in a synergistic manner. In addition, the enhanced localization of toll-like receptor 4, which is an LPS receptor, was observed in gingival epithelium loaded with Ti ions (9 ppm). These data suggest that Ti ions may be partly responsible for the infiltration of monocytes and osteoclast differentiation by increasing the sensitivity of gingival epithelial cells to microorganisms in the oral cavity. Therefore, Ti ions may be involved in the deteriorating effects of peri-implant mucositis, which can develop into peri-implantitis accompanied by alveolar bone resorption

  4. Pannexin 1 channels: new actors in the regulation of catecholamine release from adrenal chromaffin cells

    Directory of Open Access Journals (Sweden)

    Fanny eMomboisse

    2014-09-01

    Full Text Available Chromaffin cells of the adrenal gland medulla synthesize and store hormones and peptides, which are released into the blood circulation in response to stress. Among them, adrenaline is critical for the fight-or-flight response. This neurosecretory process is highly regulated and depends on cytosolic [Ca2+]. By forming channels at the plasma membrane, pannexin-1 (Panx1 is a protein involved in many physiological and pathological processes amplifying ATP release and/or Ca2+ signals. Here, we show that Panx1 is expressed in the adrenal gland where it plays a role by regulating the release of catecholamines. In fact, inhibitors of Panx1 channels, such as carbenoxolone (Cbx and probenecid, reduced the secretory activity induced with the nicotinic agonist 1,1-dimethyl-4-phenyl-piperazinium (DMPP, 50 µM in whole adrenal glands. A similar inhibitory effect was observed in single chromaffin cells using Cbx or 10Panx1 peptide, another Panx1 channel inhibitors. Given that the secretory response depends on cytosolic [Ca2+] and Panx1 channels are permeable to Ca2+, we studied the possible implication of Panx1 channels in the Ca2+ signaling occurring during the secretory process. In support of this possibility, Panx1 channel inhibitors significantly reduced the Ca2+ signals evoked by DMPP in single chromaffin cells. However, the Ca2+ signals induced by caffeine in the absence of extracellular Ca2+ was not affected by Panx1 channel inhibitors, suggesting that this mechanism does not involve Ca2+ release from the endoplasmic reticulum. Conversely, Panx1 inhibitors significantly blocked the DMPP-induce dye uptake, supporting the idea that Panx1 forms functional channels at the plasma membrane. These findings indicate that Panx1 channels participate in the control the Ca2+ signal that triggers the secretory response of adrenal chromaffin cells. This mechanism could have physiological implications during the response to stress.

  5. Influence of the initial surface condition on the release of nickel alloys in the primary circuit of PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Guinard, L.; Kerrec, O.; Noel, D.; Gardey, S.; Coulet, F.

    1997-01-01

    The effect of surface condition on corrosion and release and the mechanisms involved are investigated. The detrimental and beneficial effects of certain conditions or processes are identified: role of the last thermomechanical treatment, detrimental effect of cold-work, beneficial effect of electropolishing. The results can not be explained by mechanisms based only on solubility and mass transfer. Ionic migration through the inner barrier film is also probably involved. (K.A.). 32 refs.

  6. Influence of the initial surface condition on the release of nickel alloys in the primary circuit of PWRs

    International Nuclear Information System (INIS)

    Guinard, L.; Kerrec, O.; Noel, D.; Gardey, S.; Coulet, F.

    1997-01-01

    The effect of surface condition on corrosion and release and the mechanisms involved are investigated. The detrimental and beneficial effects of certain conditions or processes are identified: role of the last thermomechanical treatment, detrimental effect of cold-work, beneficial effect of electropolishing. The results can not be explained by mechanisms based only on solubility and mass transfer. Ionic migration through the inner barrier film is also probably involved. (K.A.)

  7. Release behavior and toxicity profiles towards A549 cell lines of ciprofloxacin from its layered zinc hydroxide intercalation compound.

    Science.gov (United States)

    Abdul Latip, Ahmad Faiz; Hussein, Mohd Zobir; Stanslas, Johnson; Wong, Charng Choon; Adnan, Rohana

    2013-01-01

    Layered hydroxides salts (LHS), a layered inorganic compound is gaining attention in a wide range of applications, particularly due to its unique anion exchange properties. In this work, layered zinc hydroxide nitrate (LZH), a family member of LHS was intercalated with anionic ciprofloxacin (CFX), a broad spectrum antibiotic via ion exchange in a mixture solution of water:ethanol. Powder x-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) confirmed the drug anions were successfully intercalated in the interlayer space of LZH. Specific surface area of the obtained compound was increased compared to that of the host due to the different pore textures between the two materials. CFX anions were slowly released over 80 hours in phosphate-buffered saline (PBS) solution due to strong interactions that occurred between the intercalated anions and the host lattices. The intercalation compound demonstrated enhanced antiproliferative effects towards A549 cancer cells compared to the toxicity of CFX alone. Strong host-guest interactions between the LZH lattice and the CFX anion give rise to a new intercalation compound that demonstrates sustained release mode and enhanced toxicity effects towards A549 cell lines. These findings should serve as foundations towards further developments of the brucite-like host material in drug delivery systems.

  8. Bone substitute material composition and morphology differentially modulate calcium and phosphate release through osteoclast-like cells.

    Science.gov (United States)

    Konermann, A; Staubwasser, M; Dirk, C; Keilig, L; Bourauel, C; Götz, W; Jäger, A; Reichert, C

    2014-04-01

    The aim of this study was to determine the material composition and cell-mediated remodelling of different calcium phosphate-based bone substitutes. Osteoclasts were cultivated on bone substitutes (Cerabone, Maxresorb, and NanoBone) for up to 5 days. Bafilomycin A1 addition served as the control. To determine cellular activity, the supernatant content of calcium and phosphate was measured by inductively coupled plasma optical emission spectrometry. Cells were visualized on the materials by scanning electron microscopy. Material composition and surface characteristics were assessed by energy-dispersive X-ray spectroscopy. Osteoclast-induced calcium and phosphate release was material-specific. Maxresorb exhibited the highest ion release to the medium (P = 0.034; calcium 40.25mg/l day 5, phosphate 102.08 mg/l day 5) and NanoBone the lowest (P = 0.021; calcium 8.43 mg/l day 5, phosphate 15.15 mg/l day 5); Cerabone was intermediate (P = 0.034; calcium 16.34 mg/l day 5, phosphate 30.6 mg/l day 5). All investigated materials showed unique resorption behaviours. The presented methodology provides a new perspective on the investigation of bone substitute biodegradation, maintaining the material-specific micro- and macrostructure. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  9. Cell Surface Proteome of Dental Pulp Stem Cells Identified by Label-Free Mass Spectrometry.

    Directory of Open Access Journals (Sweden)

    Christian Niehage

    Full Text Available Multipotent mesenchymal stromal cells (MSCs are promising tools for regenerative medicine. They can be isolated from different sources based on their plastic-adherence property. The identification of reliable cell surface markers thus becomes the Holy Grail for their prospective isolation. Here, we determine the cell surface proteomes of human dental pulp-derived MSCs isolated from single donors after culture expansion in low (2% or high (10% serum-containing media. Cell surface proteins were tagged on intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin, which allows their enrichment by streptavidin pull-down. For the proteomic analyses, we first compared label-free methods to analyze cell surface proteomes i.e. composition, enrichment and proteomic differences, and we developed a new mathematical model to determine cell surface protein enrichment using a combinatorial gene ontology query. Using this workflow, we identified 101 cluster of differentiation (CD markers and 286 non-CD cell surface proteins. Based on this proteome profiling, we identified 14 cell surface proteins, which varied consistently in abundance when cells were cultured under low or high serum conditions. Collectively, our analytical methods provide a basis for identifying the cell surface proteome of dental pulp stem cells isolated from single donors and its evolution during culture or differentiation. Our data provide a comprehensive cell surface proteome for the precise identification of dental pulp-derived MSC populations and their isolation for potential therapeutic intervention.

  10. Effects of blending of desalinated water with treated surface drinking water on copper and lead release.

    Science.gov (United States)

    Liu, Haizhou; Schonberger, Kenneth D; Korshin, Gregory V; Ferguson, John F; Meyerhofer, Paul; Desormeaux, Erik; Luckenbach, Heidi

    2010-07-01

    This study examined effects of desalinated water on the corrosion of and metal release from copper and lead-containing materials. A jar test protocol was employed to examine metal release from copper and lead-tin coupons exposed to water chemistries with varying blending ratios of desalinated water, alkalinities, pHs and orthophosphate levels. Increasing fractions of desalinated water in the blends resulted in non-monotonic changes of copper and lead release, with generally lower metal concentrations in the presence of desalinated water, especially when its contribution increased from 80% to 100%. SEM examination showed that the increased fractions of desalinated water were associated with pronounced changes of the morphology of the corrosion scales, likely due to the influence of natural organic matter. This hypothesis was corroborated by the existence of correlations between changes of the zeta-potential of representative minerals (malachite and hydrocerussite) and metal release. For practical applications, maintaining pH at 7.8 and adding 1 mg/L orthophosphate as PO(4) were concluded to be adequate to decrease copper and lead release. Lower alkalinity of desalinated water was beneficial for blends containing 50% or more desalinated water. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Thioredoxin reductase 1 upregulates MCP-1 release in human endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhen-Bo [Institute of Biophysics, Chinese Academy of Sciences, and Graduate School of the Chinese Academy of Sciences, Beijing (China); Shen, Xun, E-mail: shenxun@sun5.ibp.ac.cn [Institute of Biophysics, Chinese Academy of Sciences, and Graduate School of the Chinese Academy of Sciences, Beijing (China)

    2009-09-04

    To know if thioredoxin reductase 1 (TrxR1) plays a role in antioxidant defense mechanisms against atherosclerosis, effect of TrxR1 on expression/release of monocyte chemoattractant protein (MCP-1) was investigated in activated human endothelial-like EAhy926 cells. The MCP-1 release and expression, cellular generation of reactive oxygen species (ROS), nuclear translocation and DNA-binding activity of NF-{kappa}B subunit p65 were assayed in cells either overexpressing recombinant TrxR1 or having their endogenous TrxR1 knocked down. It was found that overexpression of TrxR1 enhanced, while knockdown of TrxR1 reduced MCP-1 release and expression. Upregulation of MCP-1 by TrxR1 was associated with increasing generation of intracellular ROS generation, enhanced nuclear translocation and DNA-binding activity of NF-{kappa}B. Assay using NF-{kappa}B reporter revealed that TrxR1 upregulated transcriptional activity of NF-{kappa}B. This study suggests that TrxR1 enhances ROS generation, NF-{kappa}B activity and subsequent MCP-1 expression in endothelial cells, and may promote rather than prevent vascular endothelium from forming atherosclerotic plaque.

  12. Cell surface of sea urchin micromeres and primary mesenchyme

    International Nuclear Information System (INIS)

    DeSimone, D.W.

    1985-01-01

    The cell surface and extracellular matrix (ECM) of the sea urchin embryo were studied during the early morphogenetic events involved in the differentiation of the micromere cell lineage. Sixteen-cell and early cleavage stage blastomeres were isolated and the protein composition of their cell surfaces examined by 125 I-labelling followed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Micromere-specific cell surface proteins are reported for Arbacia punctulata, Strongylocentrotus droebachiensis, and Strongylocentrotus purpuratus. Cell surface glycoproteins were characterized on the basis of lectin binding specificity with a novel lectin affinity transfer technique. Using this procedure, cell-type specific surface proteins, which are also lectin-binding specific, can be detected. In addition, fluorescein conjugated lectins were microinjected into the blastocoels of living S. drobachiensis and Lytechinus pictus embryos and the patterns of lectin bindings observed by fluorescence microscopy. The evidence presented in this thesis suggests that the differentiation of the primary mesenchyme cells is correlated with changes in the molecular composition of the cell-surface and the ECM

  13. Pheochromocytoma (PC12 Cell Response on Mechanobactericidal Titanium Surfaces

    Directory of Open Access Journals (Sweden)

    Jason V. Wandiyanto

    2018-04-01

    Full Text Available Titanium is a biocompatible material that is frequently used for making implantable medical devices. Nanoengineering of the surface is the common method for increasing material biocompatibility, and while the nanostructured materials are well-known to represent attractive substrata for eukaryotic cells, very little information has been documented about the interaction between mammalian cells and bactericidal nanostructured surfaces. In this study, we investigated the effect of bactericidal titanium nanostructures on PC12 cell attachment and differentiation—a cell line which has become a widely used in vitro model to study neuronal differentiation. The effects of the nanostructures on the cells were then compared to effects observed when the cells were placed in contact with non-structured titanium. It was found that bactericidal nanostructured surfaces enhanced the attachment of neuron-like cells. In addition, the PC12 cells were able to differentiate on nanostructured surfaces, while the cells on non-structured surfaces were not able to do so. These promising results demonstrate the potential application of bactericidal nanostructured surfaces in biomedical applications such as cochlear and neuronal implants.

  14. Touching Textured Surfaces: Cells in Somatosensory Cortex Respond Both to Finger Movement and to Surface Features

    Science.gov (United States)

    Darian-Smith, Ian; Sugitani, Michio; Heywood, John; Karita, Keishiro; Goodwin, Antony

    1982-11-01

    Single neurons in Brodmann's areas 3b and 1 of the macaque postcentral gyrus discharge when the monkey rubs the contralateral finger pads across a textured surface. Both the finger movement and the spatial pattern of the surface determine this discharge in each cell. The spatial features of the surface are represented unambiguously only in the responses of populations of these neurons, and not in the responses of the constituent cells.

  15. Calcium-independent phosphatidylinositol response in gonadotropin-releasing-hormone-stimulated pituitary cells.

    OpenAIRE

    Naor, Z; Molcho, J; Zakut, H; Yavin, E

    1985-01-01

    This paper describes the effect of gonadotropin-releasing hormone (GnRH, gonadoliberin) on phospholipid metabolism in cultured rat pituitary cells. The cells were incubated with [32P]Pi to label endogenous phospholipids (10-60 min) and then stimulated with GnRH for up to 60 min. Cellular phospholipids were separated by two-dimensional t.l.c. and the radioactivity was determined. Phosphatidylinositol (PI), a minor constituent of cellular phospholipids (7.7%), was the major labelled phospholipi...

  16. Surface-modified gold nanorods for specific cell targeting

    Science.gov (United States)

    Wang, Chan-Ung; Arai, Yoshie; Kim, Insun; Jang, Wonhee; Lee, Seonghyun; Hafner, Jason H.; Jeoung, Eunhee; Jung, Deokho; Kwon, Youngeun

    2012-05-01

    Gold nanoparticles (GNPs) have unique properties that make them highly attractive materials for developing functional reagents for various biomedical applications including photothermal therapy, targeted drug delivery, and molecular imaging. For in vivo applications, GNPs need to be prepared with very little or negligible cytotoxicitiy. Most GNPs are, however, prepared using growth-directing surfactants such as cetyl trimethylammonium bromide (CTAB), which are known to have considerable cytotoxicity. In this paper, we describe an approach to remove CTAB to a non-toxic concentration. We optimized the conditions for surface modification with methoxypolyethylene glycol thiol (mPEG), which replaced CTAB and formed a protective layer on the surface of gold nanorods (GNRs). The cytotoxicities of pristine and surface-modified GNRs were measured in primary human umbilical vein endothelial cells and human cell lines derived from hepatic carcinoma cells, embryonic kidney cells, and thyroid papillary carcinoma cells. Cytotoxicity assays revealed that treating cells with GNRs did not significantly affect cell viability except for thyroid papillary carcinoma cells. Thyroid cancer cells were more susceptible to residual CTAB, so CTAB had to be further removed by dialysis in order to use GNRs for thyroid cell targeting. PEGylated GNRs are further modified to present monoclonal antibodies that recognize a specific surface marker, Na-I symporter, for thyroid cells. Antibody-conjugated GNRs specifically targeted human thyroid cells in vitro.

  17. ATP Release from Chemotherapy-Treated Dying Leukemia Cells Elicits an Immune Suppressive Effect by Increasing Regulatory T Cells and Tolerogenic Dendritic Cells.

    Science.gov (United States)

    Lecciso, Mariangela; Ocadlikova, Darina; Sangaletti, Sabina; Trabanelli, Sara; De Marchi, Elena; Orioli, Elisa; Pegoraro, Anna; Portararo, Paola; Jandus, Camilla; Bontadini, Andrea; Redavid, Annarita; Salvestrini, Valentina; Romero, Pedro; Colombo, Mario P; Di Virgilio, Francesco; Cavo, Michele; Adinolfi, Elena; Curti, Antonio

    2017-01-01

    Chemotherapy-induced immunogenic cell death can favor dendritic cell (DC) cross-priming of tumor-associated antigens for T cell activation thanks to the release of damage-associated molecular patterns, including ATP. Here, we tested the hypothesis that in acute myeloid leukemia (AML), ATP release, along with its well-known immune stimulatory effect, may also contribute to the generation of an immune suppressive microenvironment. In a cohort of AML patients, undergoing combined daunorubicin and cytarabine chemotherapy, a population of T regulatory cells (Tregs) with suppressive phenotype, expressing the immune checkpoint programmed cell death protein 1 (PD-1), was significantly increased. Moving from these results, initial in vitro data showed that daunorubicin was more effective than cytarabine in modulating DC function toward Tregs induction and such difference was correlated with the higher capacity of daunorubicin to induce ATP release from treated AML cells. DCs cultured with daunorubicin-treated AML cells upregulated indoleamine 2,3-dioxygenase 1 (IDO1), which induced anti-leukemia Tregs. These data were confirmed in vivo as daunorubicin-treated mice show an increase in extracellular ATP levels with increased number of Tregs, expressing PD-1 and IDO1 + CD39 + DCs. Notably, daunorubicin failed to induce Tregs and tolerogenic DCs in mice lacking the ATP receptor P2X7. Our data indicate that ATP release from chemotherapy-treated dying cells contributes to create an immune suppressive microenvironment in AML.

  18. ATP Release from Chemotherapy-Treated Dying Leukemia Cells Elicits an Immune Suppressive Effect by Increasing Regulatory T Cells and Tolerogenic Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Mariangela Lecciso

    2017-12-01

    Full Text Available Chemotherapy-induced immunogenic cell death can favor dendritic cell (DC cross-priming of tumor-associated antigens for T cell activation thanks to the release of damage-associated molecular patterns, including ATP. Here, we tested the hypothesis that in acute myeloid leukemia (AML, ATP release, along with its well-known immune stimulatory effect, may also contribute to the generation of an immune suppressive microenvironment. In a cohort of AML patients, undergoing combined daunorubicin and cytarabine chemotherapy, a population of T regulatory cells (Tregs with suppressive phenotype, expressing the immune checkpoint programmed cell death protein 1 (PD-1, was significantly increased. Moving from these results, initial in vitro data showed that daunorubicin was more effective than cytarabine in modulating DC function toward Tregs induction and such difference was correlated with the higher capacity of daunorubicin to induce ATP release from treated AML cells. DCs cultured with daunorubicin-treated AML cells upregulated indoleamine 2,3-dioxygenase 1 (IDO1, which induced anti-leukemia Tregs. These data were confirmed in vivo as daunorubicin-treated mice show an increase in extracellular ATP levels with increased number of Tregs, expressing PD-1 and IDO1+CD39+ DCs. Notably, daunorubicin failed to induce Tregs and tolerogenic DCs in mice lacking the ATP receptor P2X7. Our data indicate that ATP release from chemotherapy-treated dying cells contributes to create an immune suppressive microenvironment in AML.

  19. Antibacterial Behavior of Additively Manufactured Porous Titanium with Nanotubular Surfaces Releasing Silver Ions

    NARCIS (Netherlands)

    Amin Yavari, S.; Loozen, L.; Paganelli, F. L.; Bakhshandeh, S.; Lietaert, K.; Groot, J. A.; Fluit, A. C.; Boel, C. H E; Alblas, J.; Vogely, H. C.; Weinans, H.; Zadpoor, A. A.

    2016-01-01

    Additive manufacturing (3D printing) has enabled fabrication of geometrically complex and fully interconnected porous biomaterials with huge surface areas that could be used for biofunctionalization to achieve multifunctional biomaterials. Covering the huge surface area of such porous titanium with

  20. Effects of blending of desalinated and conventionally treated surface water on iron corrosion and its release from corroding surfaces and pre-existing scales.

    Science.gov (United States)

    Liu, Haizhou; Schonberger, Kenneth D; Peng, Ching-Yu; Ferguson, John F; Desormeaux, Erik; Meyerhofer, Paul; Luckenbach, Heidi; Korshin, Gregory V

    2013-07-01

    This study examined effects of blending desalinated water with conventionally treated surface water on iron corrosion and release from corroding metal surfaces and pre-existing scales exposed to waters having varying fractions of desalinated water, alkalinities, pH values and orthophosphate levels. The presence of desalinated water resulted in markedly decreased 0.45 μm-filtered soluble iron concentrations. However, higher fractions of desalinated water in the blends were also associated with more fragile corroding surfaces, lower retention of iron oxidation products and release of larger iron particles in the bulk water. SEM, XRD and XANES data showed that in surface water, a dense layer of amorphous ferrihydrite phase predominated in the corrosion products. More crystalline surface phases developed in the presence of desalinated water. These solid phases transformed from goethite to lepidocrocite with increased fraction of desalinated water. These effects are likely to result from a combination of chemical parameters, notably variations of the concentrations of natural organic matter, calcium, chloride and sulfate when desalinated and conventionally treated waters are blended. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Electrically induced brain-derived neurotrophic factor release from Schwann cells.

    Science.gov (United States)

    Luo, Beier; Huang, Jinghui; Lu, Lei; Hu, Xueyu; Luo, Zhuojing; Li, Ming

    2014-07-01

    Regulating the production of brain-derived neurotrophic factor (BDNF) in Schwann cells (SCs) is critical for their application in traumatic nerve injury, neurodegenerative disorders, and demyelination disease in both central and peripheral nervous systems. The present study investigated the possibility of using electrical stimulation (ES) to activate SCs to release BDNF. We found that short-term ES was capable of promoting BDNF production from SCs, and the maximal BDNF release was achieved by ES at 6 V (3 Hz, 30 min). We further examined the involvement of intracellular calcium ions ([Ca2+]i) in the ES-induced BDNF production in SCs by pharmacological studies. We found that the ES-induced BDNF release required calcium influx through T-type voltage-gated calcium channel (VGCC) and calcium mobilization from internal calcium stores, including inositol triphosphate-sensitive stores and caffeine/ryanodine-sensitive stores. In addition, calcium-calmodulin dependent protein kinase IV (CaMK IV), mitogen-activated protein kinase (MAPK), and cAMP response element-binding protein (CREB) were found to play important roles in the ES-induced BDNF release from SCs. In conclusion, ES is capable of activating SCs to secrete BDNF, which requires the involvement of calcium influx through T-type VGCC and calcium mobilization from internal calcium stores. In addition, activation of CaMK IV, MAPK, and CREB were also involved in the ES-induced BDNF release. The findings indicate that ES can improve the neurotrophic ability in SCs and raise the possibility of developing electrically stimulated SCs as a source of cell therapy for nerve injury in both peripheral and central nervous systems. Copyright © 2014 Wiley Periodicals, Inc.

  2. Interactions between endothelial progenitor cells (EPC) and titanium implant surfaces.

    Science.gov (United States)

    Ziebart, Thomas; Schnell, Anne; Walter, Christian; Kämmerer, Peer W; Pabst, Andreas; Lehmann, Karl M; Ziebart, Johanna; Klein, Marc O; Al-Nawas, Bilal

    2013-01-01

    Endothelial cells play an important role in peri-implant angiogenesis during early bone formation. Therefore, interactions between endothelial progenitor cells (EPCs) and titanium dental implant surfaces are of crucial interest. The aim of our in vitro study was to investigate the reactions of EPCs in contact with different commercially available implant surfaces. EPCs from buffy coats were isolated by Ficoll density gradient separation. After cell differentiation, EPC were cultured for a period of 7 days on different titanium surfaces. The test surfaces varied in roughness and hydrophilicity: acid-etched (A), sand-blasted-blasted and acid-etched (SLA), hydrophilic A (modA), and hydrophilic SLA (modSLA). Plastic and fibronectin-coated plastic surfaces served as controls. Cell numbers and morphology were analyzed by confocal laser scanning microscopy. Secretion of vascular endothelial growth factor (VEGF)-A was measured by enzyme-linked immunosorbent assay and expressions of iNOS and eNOS were investigated by real-time polymerase chain reaction. Cell numbers were higher in the control groups compared to the cells of titanium surfaces. Initially, hydrophilic titanium surfaces (modA and modSLA) showed lower cell numbers than hydrophobic surfaces (A and SLA). After 7 days smoother surfaces (A and modA) showed increased cell numbers compared to rougher surfaces (SLA and modSLA). Cell morphology of A, modA, and control surfaces was characterized by a multitude of pseudopodia and planar cell soma architecture. SLA and modSLA promoted small and plump cell soma with little quantity of pseudopodia. The lowest VEGF level was measured on A, the highest on modSLA. The highest eNOS and iNOS expressions were found on modA surfaces. The results of this study demonstrate that biological behaviors of EPCs can be influenced by different surfaces. The modSLA surface promotes an undifferentiated phenotype of EPCs that has the ability to secrete growth factors in great quantities. In

  3. The intracellular uptake and protracted release of exogenous heparins by cultured endothelial cells

    International Nuclear Information System (INIS)

    Hiebert, L.M.; McDuffie, N.M.

    1989-01-01

    Heparins from bovine or porcine sources were fed in media for 48 hrs to cultured porcine aortic and human umbilical vein endothelial cells. Heparin was found in pericellular and cellular fractions after extraction by chemical methods and 125 I radiolabelled heparins were recovered when radiolabelled heparin was included in the feed. Even after washing and media changes heparin was detected in media and cell fractions up to 6 days post feeding. Metachromatic vacuoles within cells were demonstrated histologically up to 7 days post feeding after staining with toluidine blue. This is the first report of protracted internalization of exogenous heparin by cultured endothelial cells with concurrent prolonged release of the heparin to the media. This clearly demonstrates that the endothelium plays an important role in the distribution and metabolism of heparin

  4. Overexpression of pro-gastrin releasing peptide promotes the cell proliferation and progression in small cell lung cancer

    International Nuclear Information System (INIS)

    Gong, Zhiyun; Lu, Renquan; Xie, Suhong; Jiang, Minglei; Liu, Kai; Xiao, Ran; Shen, Jiabin; Wang, Yanchun; Guo, Lin

    2016-01-01

    Pro-gastrin releasing peptide (ProGRP) plays the role of oncogene in small cell lung cancer (SCLC). In this study, we aim to explore the biological function of ProGRP in SCLC cells and its potential mechanism. Expression of ProGRP in SCLC tissues and cell lines were detected by immunohistochemistry and western blot analysis, respectively. The transduced cell lines with ProGRP down-regulation were established using RNA interference technology. Cell viability, cologenic, apoptosis-associated assay and the biomarker levels determination for cell supernatant were performed in the transduced cells to elucidate the biological functions and mechanisms of ProGRP in SCLC cells. Our data showed that ProGRP protein was demonstrated a higher level in SCLC tissues and cells compared with the control, and its diagnostic efficiency was better than NSE, further, the higher levels of ProGRP were detected in the patients with extensive disease stage (P < 0.05), were also the unfavorable factor to the prognosis of SCLC patients. Additionally, the concentration of serum ProGRP is a useful biomarker in disease-monitoring of the patients with SCLC. Down-regulation of ProGRP significantly reduced SCLC cell growth, repressed colony formation, but increased cancer cell apoptosis. Additionally, repression of ProGRP also induced change in the cell cycle and output of NSE. Our data indicated that ProGRP serve as the useful biomarker in the management of SCLC and might be a potential therapeutic target. - Highlights: • ProGRP is overexpressed in the tissues and sera of the patients with SCLC. • Down-regulation of ProGRP inhibited cell proliferation. • Inhibition of ProGRP altered cell cycle distribution and triggers the apoptosis of lung cancer cells.

  5. Surfaceome and Proteosurfaceome in Parietal Monoderm Bacteria: Focus on Protein Cell-Surface Display

    Directory of Open Access Journals (Sweden)

    Mickaël Desvaux

    2018-02-01

    Full Text Available The cell envelope of parietal monoderm bacteria (archetypal Gram-positive bacteria is formed of a cytoplasmic membrane (CM and a cell wall (CW. While the CM is composed of phospholipids, the CW is composed at least of peptidoglycan (PG covalently linked to other biopolymers, such as teichoic acids, polysaccharides, and/or polyglutamate. Considering the CW is a porous structure with low selective permeability contrary to the CM, the bacterial cell surface hugs the molecular figure of the CW components as a well of the external side of the CM. While the surfaceome corresponds to the totality of the molecules found at the bacterial cell surface, the proteinaceous complement of the surfaceome is the proteosurfaceome. Once translocated across the CM, secreted proteins can either be released in the extracellular milieu or exposed at the cell surface by associating to the CM or the CW. Following the gene ontology (GO for cellular components, cell-surface proteins at the CM can either be integral (GO: 0031226, i.e., the integral membrane proteins, or anchored to the membrane (GO: 0046658, i.e., the lipoproteins. At the CW (GO: 0009275, cell-surface proteins can be covalently bound, i.e., the LPXTG-proteins, or bound through weak interactions to the PG or wall polysaccharides, i.e., the cell wall binding proteins. Besides monopolypeptides, some proteins can associate to each other to form supramolecular protein structures of high molecular weight, namely the S-layer, pili, flagella, and cellulosomes. After reviewing the cell envelope components and the different molecular mechanisms involved in protein attachment to the cell envelope, perspectives in investigating the proteosurfaceome in parietal monoderm bacteria are further discussed.

  6. Rab3A Inhibition of Ca2+ -Dependent Dopamine Release From PC12 Cells Involves Interaction With Synaptotagmin I.

    Science.gov (United States)

    Dai, Zhipan; Tang, Xia; Chen, Jia; Tang, Xiaochao; Wang, Xianchun

    2017-11-01

    Rab3 and synaptotagmin have been suggested to play important roles in the regulation of neurotransmitter release and, however, the molecular mechanism has not been completely clear. Here, we studied the effects of Rab3A and synaptotagmin I (Syt I) on dopamine release using PC12 cells as a model system. Rab3A was demonstrated to have effects on both Ca 2+ -independent and Ca 2+ -dependent dopamine releases from the PC12 cells. Application of Rab3A (up to 2500 nM) gradually decreased the amount of Ca 2+ -dependently released dopamine, indicating that Rab3A is a negative modulator that was further supported by the increase in dopamine release caused by Rab3A knockdown. Syt I knockdown weakened the Ca 2+ -dependent dopamine release, suggesting that Syt I plays a positive regulatory role in the cellular process. Treatment of the Syt I-knocked down PC12 cells with Rab3A further decreased Ca 2+ -dependent dopamine release and, however, the decrease magnitude was significantly reduced compared with that before Syt I knockdown, thus for the first time demonstrating that the inhibitory effect of Rab3A on Ca 2+ -dependent dopamine release involves the interaction with Syt I. This work has shed new light on the molecular mechanism for Rab3 and synaptotamin regulation of neurotransmitter release. J. Cell. Biochem. 118: 3696-3705, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. High resolution imaging of surface patterns of single bacterial cells

    International Nuclear Information System (INIS)

    Greif, Dominik; Wesner, Daniel; Regtmeier, Jan; Anselmetti, Dario

    2010-01-01

    We systematically studied the origin of surface patterns observed on single Sinorhizobium meliloti bacterial cells by comparing the complementary techniques atomic force microscopy (AFM) and scanning electron microscopy (SEM). Conditions ranged from living bacteria in liquid to fixed bacteria in high vacuum. Stepwise, we applied different sample modifications (fixation, drying, metal coating, etc.) and characterized the observed surface patterns. A detailed analysis revealed that the surface structure with wrinkled protrusions in SEM images were not generated de novo but most likely evolved from similar and naturally present structures on the surface of living bacteria. The influence of osmotic stress to the surface structure of living cells was evaluated and also the contribution of exopolysaccharide and lipopolysaccharide (LPS) by imaging two mutant strains of the bacterium under native conditions. AFM images of living bacteria in culture medium exhibited surface structures of the size of single proteins emphasizing the usefulness of AFM for high resolution cell imaging.

  8. Liver cancer cells: targeting and prolonged-release drug carriers consisting of mesoporous silica nanoparticles and alginate microspheres

    Directory of Open Access Journals (Sweden)

    Liao YT

    2014-06-01

    Full Text Available Yu-Te Liao,1 Chia-Hung Liu,2 Jiashing Yu,1 Kevin C-W Wu1,3 1Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; 2Department of Urology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; 3Division of Medical Engineering Research, National Health Research Institutes, Zhunan Township, Miaoli County, Taiwan Abstract: A new microsphere consisting of inorganic mesoporous silica nanoparticles (MSNs and organic alginate (denoted as MSN@Alg was successfully synthesized by air-dynamic atomization and applied to the intracellular drug delivery systems (DDS of liver cancer cells with sustained release and specific targeting properties. MSN@Alg microspheres have the advantages of MSN and alginate, where MSN provides a large surface area for high drug loading and alginate provides excellent biocompatibility and COOH functionality for specific targeting. Rhodamine 6G was used as a model drug, and the sustained release behavior of the rhodamine 6G-loaded MSN@Alg microspheres can be prolonged up to 20 days. For targeting therapy, the anticancer drug doxorubicin was loaded into MSN@Alg microspheres, and the (lysine4-tyrosine-arginine-glycine-aspartic acid (K4YRGD peptide was functionalized onto the surface of MSN@Alg for targeting liver cancer cells, hepatocellular carcinoma (HepG2. The results of the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT assay and confocal laser scanning microscopy indicate that the MSN@Alg microspheres were successfully uptaken by HepG2 without apparent cytotoxicity. In addition, the intracellular drug delivery efficiency was greatly enhanced (ie, 3.5-fold for the arginine-glycine-aspartic acid (RGD-labeled, doxorubicin-loaded MSN@Alg drug delivery system compared with the non-RGD case. The synthesized MSN@Alg microspheres show great potential as drug vehicles with high biocompatibility, sustained release, and targeting features for future intracellular DDS. Keywords

  9. Multijunction Solar Cell Technology for Mars Surface Applications

    Science.gov (United States)

    Stella, Paul M.; Mardesich, Nick; Ewell, Richard C.; Mueller, Robert L.; Endicter, Scott; Aiken, Daniel; Edmondson, Kenneth; Fetze, Chris

    2006-01-01

    Solar cells used for Mars surface applications have been commercial space qualified AM0 optimized devices. Due to the Martian atmosphere, these cells are not optimized for the Mars surface and as a result operate at a reduced efficiency. A multi-year program, MOST (Mars Optimized Solar Cell Technology), managed by JPL and funded by NASA Code S, was initiated in 2004, to develop tools to modify commercial AM0 cells for the Mars surface solar spectrum and to fabricate Mars optimized devices for verification. This effort required defining the surface incident spectrum, developing an appropriate laboratory solar simulator measurement capability, and to develop and test commercial cells modified for the Mars surface spectrum. This paper discusses the program, including results for the initial modified cells. Simulated Mars surface measurements of MER cells and Phoenix Lander cells (2007 launch) are provided to characterize the performance loss for those missions. In addition, the performance of the MER rover solar arrays is updated to reflect their more than two (2) year operation.

  10. Three-dimensional endothelial cell morphogenesis under controlled ion release from copper-doped phosphate glass.

    Science.gov (United States)

    Stähli, Christoph; James-Bhasin, Mark; Nazhat, Showan N

    2015-02-28

    Copper ions represent a promising angiogenic agent but are associated with cytotoxicity at elevated concentrations. Phosphate-based glasses (PGs) exhibit adjustable dissolution properties and allow for controlled ion release. This study examined the formation of capillary-like networks by SVEC4-10 endothelial cells (ECs) seeded in a three-dimensional (3D) type I collagen hydrogel matrix mixed with PG particles of the formulation 50P2O5-30CaO-(20-x)Na2O-xCuO (x=0 and 10 mol%). Copper and total phosphorus release decreased over time and was more sustained in the case of 10% CuO PG. Moreover, increasing the concentration of 10% CuO PG in collagen substantially delayed dissolution along with preferential release of copper. A 3D morphometric characterization method based on confocal laser scanning microscopy image stacks was developed in order to quantify EC network length, connectivity and branching. Network length was initially reduced in a concentration-dependent fashion by 10% CuO PG and, to a lesser extent, by 0% CuO PG, but reached values identical to the non-PG control by day 5 in culture. This reduction was attributed to a PG-mediated decrease in cell metabolic activity while cell proliferation as well as network connectivity and branching were independent of PG content. Gene expression of matrix metalloproteinases (MMP)-1 and -2 was up-regulated by PGs, indicating that MMPs did not play a critical role in network growth. The relationship between ion release and EC morphogenesis in 3D provided in this study is expected to contribute to an ultimately successful pro-angiogenic application of CuO-doped PGs. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Inhibition by salmeterol and cilomilast of fluticasone-enhanced IP-10 release in airway epithelial cells.

    Science.gov (United States)

    Reddy, P J; Aksoy, Mark O; Yang, Yi; Li, Xiu Xia; Ji, Rong; Kelsen, Steven G

    2008-02-01

    The CXC chemokines, IP-10/CXCL10 and IL-8/CXCL8, play a role in obstructive lung disease by attracting Th1/Tc1 lymphocytes and neutrophils, respectively. Inhaled corticosteroids (ICS) and long acting beta 2-agonists (LABA) are widely used. However, their effect(s) on the release of IP-10 and IL-8 by airway epithelial cells are poorly understood. This study examined the effects of fluticasone, salmeterol, and agents which raise intracellular cAMP (cilomilast and db-cAMP) on the expression of IP-10 and IL-8 protein and mRNA. Studies were performed in cultured human airway epithelial cells during cytokine-stimulated IP-10 and IL-8 release. Cytokine treatment (TNF-alpha, IL-1beta and IFN-gamma) increased IP-10 and IL-8 protein and mRNA levels. Fluticasone (0.1 nM to 1 microM) increased IP-10 but reduced IL-8 protein release without changing IP-10 mRNA levels assessed by real time RT-PCR. The combination of salmeterol (1 micro M) and cilomilast (1-10 mu M) reduced IP-10 but had no effect on IL-8 protein. Salmeterol alone (1 micro M) and db-cAMP alone (1 mM) antagonised the effects of fluticasone on IP-10 but not IL-8 protein. In human airway epithelial cells, inhibition by salmeterol of fluticasone-enhanced IP-10 release may be an important therapeutic effect of the LABA/ICS combination not present when the two drugs are used separately.

  12. Calcium-Induced calcium release during action potential firing in developing inner hair cells.

    Science.gov (United States)

    Iosub, Radu; Avitabile, Daniele; Grant, Lisa; Tsaneva-Atanasova, Krasimira; Kennedy, Helen J

    2015-03-10

    In the mature auditory system, inner hair cells (IHCs) convert sound-induced vibrations into electrical signals that are relayed to the central nervous system via auditory afferents. Before the cochlea can respond to normal sound levels, developing IHCs fire calcium-based action potentials that disappear close to the onset of hearing. Action potential firing triggers transmitter release from the immature IHC that in turn generates experience-independent firing in auditory neurons. These early signaling events are thought to be essential for the organization and development of the auditory system and hair cells. A critical component of the action potential is the rise in intracellular calcium that activates both small conductance potassium channels essential during membrane repolarization, and triggers transmitter release from the cell. Whether this calcium signal is generated by calcium influx or requires calcium-induced calcium release (CICR) is not yet known. IHCs can generate CICR, but to date its physiological role has remained unclear. Here, we used high and low concentrations of ryanodine to block or enhance CICR to determine whether calcium release from intracellular stores affected action potential waveform, interspike interval, or changes in membrane capacitance during development of mouse IHCs. Blocking CICR resulted in mixed action potential waveforms with both brief and prolonged oscillations in membrane potential and intracellular calcium. This mixed behavior is captured well by our mathematical model of IHC electrical activity. We perform two-parameter bifurcation analysis of the model that predicts the dependence of IHCs firing patterns on the level of activation of two parameters, the SK2 channels activation and CICR rate. Our data show that CICR forms an important component of the calcium signal that shapes action potentials and regulates firing patterns, but is not involved directly in triggering exocytosis. These data provide important insights

  13. Surface deformation during an action potential in pearled cells

    Science.gov (United States)

    Mussel, Matan; Fillafer, Christian; Ben-Porath, Gal; Schneider, Matthias F.

    2017-11-01

    Electric pulses in biological cells (action potentials) have been reported to be accompanied by a propagating cell-surface deformation with a nanoscale amplitude. Typically, this cell surface is covered by external layers of polymer material (extracellular matrix, cell wall material, etc.). It was recently demonstrated in excitable plant cells (Chara braunii) that the rigid external layer (cell wall) hinders the underlying deformation. When the cell membrane was separated from the cell wall by osmosis, a mechanical deformation, in the micrometer range, was observed upon excitation of the cell. The underlying mechanism of this mechanical pulse has, to date, remained elusive. Herein we report that Chara cells can undergo a pearling instability, and when the pearled fragments were excited even larger and more regular cell shape changes were observed (˜10 -100 μ m in amplitude). These transient cellular deformations were captured by a curvature model that is based on three parameters: surface tension, bending rigidity, and pressure difference across the surface. In this paper these parameters are extracted by curve-fitting to the experimental cellular shapes at rest and during excitation. This is a necessary step to identify the mechanical parameters that change during an action potential.

  14. Fibrinopeptides A and B release in the process of surface fibrin formation

    Czech Academy of Sciences Publication Activity Database

    Riedel, T.; Suttnar, J.; Brynda, Eduard; Houska, Milan; Medved, L.; Dyr, J. E.

    2011-01-01

    Roč. 117, č. 5 (2011), s. 1700-1706 ISSN 0006-4971 R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z40500505 Keywords : fibrinopeptide release * adsorbed fibrinogen * thrombin Subject RIV: CD - Macromolecular Chemistry Impact factor: 9.898, year: 2011

  15. Electrostatic behavior of the charge-regulated bacterial cell surface.

    Science.gov (United States)

    Hong, Yongsuk; Brown, Derick G

    2008-05-06

    The electrostatic behavior of the charge-regulated surfaces of Gram-negative Escherichia coli and Gram-positive Bacillus brevis was studied using numerical modeling in conjunction with potentiometric titration and electrophoretic mobility data as a function of solution pH and electrolyte composition. Assuming a polyelectrolytic polymeric bacterial cell surface, these experimental and numerical analyses were used to determine the effective site numbers of cell surface acid-base functional groups and Ca(2+) sorption coefficients. Using effective site concentrations determined from 1:1 electrolyte (NaCl) experimental data, the charge-regulation model was able to replicate the effects of 2:1 electrolyte (CaCl(2)), both alone and as a mixture with NaCl, on the measured zeta potential using a single Ca(2+) surface binding constant for each of the bacterial species. This knowledge is vital for understanding how cells respond to changes in solution pH and electrolyte composition as well as how they interact with other surfaces. The latter is especially important due to the widespread use of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory in the interpretation of bacterial adhesion. As surface charge and surface potential both vary on a charge-regulated surface, accurate modeling of bacterial interactions with surfaces ultimately requires use of an electrostatic model that accounts for the charge-regulated nature of the cell surface.

  16. Effect of pullulan nanoparticle surface charges on HSA complexation and drug release behavior of HSA-bound nanoparticles.

    Directory of Open Access Journals (Sweden)

    Xiaojun Tao

    Full Text Available Nanoparticle (NP compositions such as hydrophobicity and surface charge are vital to determine the presence and amount of human serum albumin (HSA binding. The HSA binding influences drug release, biocompatibility, biodistribution, and intercellular trafficking of nanoparticles (NPs. Here, we prepared 2 kinds of nanomaterials to investigate HSA binding and evaluated drug release of HSA-bound NPs. Polysaccharides (pullulan carboxyethylated to provide ionic derivatives were then conjugated to cholesterol groups to obtain cholesterol-modified carboxyethyl pullulan (CHCP. Cholesterol-modified pullulan (CHP conjugate was synthesized with a similar degree of substitution of cholesterol moiety to CHCP. CHCP formed self-aggregated NPs in aqueous solution with a spherical structure and zeta potential of -19.9 ± 0.23 mV, in contrast to -1.21 ± 0.12 mV of CHP NPs. NPs could quench albumin fluorescence intensity with maximum emission intensity gradually decreasing up to a plateau at 9 to 12 h. Binding constants were 1.12 × 10(5 M(-1 and 0.70 × 10(5 M(-1 to CHP and CHCP, respectively, as determined by Stern-Volmer analysis. The complexation between HSA and NPs was a gradual process driven by hydrophobic force and inhibited by NP surface charge and shell-core structure. HSA conformation was altered by NPs with reduction of α-helical content, depending on interaction time and particle surface charges. These NPs could represent a sustained release carrier for mitoxantrone in vitro, and the bound HSA assisted in enhancing sustained drug release.

  17. Radioimmunoassay for antibodies against surface membrane antigens using adhering cells

    Energy Technology Data Exchange (ETDEWEB)

    Tax, A; Manson, L A [Wistar Inst. of Anatomy and Biology, Philadelphia, Pa. (USA)

    1976-07-01

    A radioimmunoassay using cells adhering to plastic is described. In this assay, A-10 mammary carcinoma attached to the surface of plastic in microtiter plates were permitted to bind antibody and the bound antibody was detected with purified rabbit /sup 125/I-antimouse-Fab. The bound radioactive material was eluted with glycine-HCl buffer (pH 2.5), and the acid eluates were counted in a gamma counter. This assay can be used to detect cytolic or noncytolic antibody to cell surface antigens in studies with any tumor or normal cell that will adhere to a solid surface.

  18. Stem cell responses to plasma surface modified electrospun polyurethane scaffolds.

    Science.gov (United States)

    Zandén, Carl; Hellström Erkenstam, Nina; Padel, Thomas; Wittgenstein, Julia; Liu, Johan; Kuhn, H Georg

    2014-07-01

    The topographical effects from functional materials on stem cell behavior are currently of interest in tissue engineering and regenerative medicine. Here we investigate the influence of argon, oxygen, and hydrogen plasma surface modification of electrospun polyurethane fibers on human embryonic stem cell (hESC) and rat postnatal neural stem cell (NSC) responses. The plasma gases were found to induce three combinations of fiber surface functionalities and roughness textures. On randomly oriented fibers, plasma treatments lead to substantially increased hESC attachment and proliferation as compared to native fibers. Argon plasma was found to induce the most optimal combination of surface functionality and roughness for cell expansion. Contact guided migration of cells and alignment of cell processes were observed on aligned fibers. Neuronal differentiation around 5% was found for all samples and was not significantly affected by the induced variations of surface functional group distribution or individual fiber topography. In this study the influence of argon, oxygen, and hydrogen plasma surface modification of electrospun polyurethane fibers on human embryonic stem cell and rat postnatal neural stem cell (NSC) responses is studied with the goal of clarifying the potential effects of functional materials on stem cell behavior, a topic of substantial interest in tissue engineering and regenerative medicine. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Cell wall structure suitable for surface display of proteins in Saccharomyces cerevisiae.

    Science.gov (United States)

    Matsuoka, Hiroyuki; Hashimoto, Kazuya; Saijo, Aki; Takada, Yuki; Kondo, Akihiko; Ueda, Mitsuyoshi; Ooshima, Hiroshi; Tachibana, Taro; Azuma, Masayuki

    2014-02-01

    A display system for adding new protein functions to the cell surfaces of microorganisms has been developed, and applications of the system to various fields have been proposed. With the aim of constructing a cell surface environment suitable for protein display in Saccharomyces cerevisiae, the cell surface structures of cell wall mutants were investigated. Four cell wall mutant strains were selected by analyses using a GFP display system via a GPI anchor. β-Glucosidase and endoglucanase II were displayed on the cell surface in the four mutants, and their activities were evaluated. mnn2 deletion strain exhibited the highest activity for both the enzymes. In particular, endoglucanase II activity using carboxymethylcellulose as a substrate in the mutant strain was 1.9-fold higher than that of the wild-type strain. In addition, the activity of endoglucanase II released from the mnn2 deletion strain by Zymolyase 20T treatment was higher than that from the wild-type strain. The results of green fluorescent protein (GFP) and endoglucanase displays suggest that the amounts of enzyme displayed on the cell surface were increased by the mnn2 deletion. The enzyme activity of the mnn2 deletion strain was compared with that of the wild-type strain. The relative value (mnn2 deletion mutant/wild-type strain) of endoglucanase II activity using carboxymethylcellulose as a substrate was higher than that of β-glucosidase activity using p-nitrophenyl-β-glucopyranoside as a substrate, suggesting that the cell surface environment of the mnn2 deletion strain facilitates the binding of high-molecular-weight substrates to the active sites of the displayed enzymes. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Capture and release of cancer cells using electrospun etchable MnO2 nanofibers integrated in microchannels

    Science.gov (United States)

    Liu, Hui-qin; Yu, Xiao-lei; Cai, Bo; You, Su-jian; He, Zhao-bo; Huang, Qin-qin; Rao, Lang; Li, Sha-sha; Liu, Chang; Sun, Wei-wei; Liu, Wei; Guo, Shi-shang; Zhao, Xing-zhong

    2015-03-01

    This paper introduces a cancer cell capture/release microchip based on the self-sacrificed MnO2 nanofibers. Through electrospinning, lift-off and soft-lithography procedures, MnO2 nanofibers are tactfully fabricated in microchannels to implement enrichment and release of cancer cells in liquid samples. The MnO2 nanofiber net which mimics the extra cellular matrix can lead to high capture ability with the help of a cancer cell-specific antibody bio-conjugation. Subsequently, an effective and friendly release method is carried out by using low concentration of oxalic acid to dissolve the MnO2 nanofiber substrate while keeping high viability of those released cancer cells at the same time. It is conceivable that our microchip may have potentials in realizing biomedical analysis of circulating tumor cells for biological and clinical researches in oncology.

  1. P2X7 receptor activation induces cell death and microparticle release in murine erythroleukemia cells.

    NARCIS (Netherlands)

    Constantinescu, P.; Wang, B.; Kovacevic, K.; Jalilian, I.; Bosman, G.J.C.G.M.; Wiley, J.S.; Sluyter, R.

    2010-01-01

    Extracellular ATP induces cation fluxes in and impairs the growth of murine erythroleukemia (MEL) cells in a manner characteristic of the purinergic P2X7 receptor, however the presence of P2X7 in these cells is unknown. This study investigated whether MEL cells express functional P2X7. RT-PCR,

  2. Wnt interaction and extracellular release of prominin-1/CD133 in human malignant melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Rappa, Germana [Cancer Research Program, Roseman University of Health Sciences, 10530 Discovery Drive. Las Vegas, NV 89135 (United States); College of Pharmacy, Roseman University of Health Sciences, Henderson, NV 89104 (United States); Mercapide, Javier; Anzanello, Fabio [Cancer Research Program, Roseman University of Health Sciences, 10530 Discovery Drive. Las Vegas, NV 89135 (United States); Le, Thuc T. [Nevada Cancer Institute, Las Vegas, NV 89135 (United States); Johlfs, Mary G. [Cancer Research Program, Roseman University of Health Sciences, 10530 Discovery Drive. Las Vegas, NV 89135 (United States); Center for Diabetes and Obesity Prevention, Treatment, Research and Education, Roseman University of Health Sciences, Henderson, NV 89104 (United States); Fiscus, Ronald R. [Cancer Research Program, Roseman University of Health Sciences, 10530 Discovery Drive. Las Vegas, NV 89135 (United States); College of Pharmacy, Roseman University of Health Sciences, Henderson, NV 89104 (United States); Center for Diabetes and Obesity Prevention, Treatment, Research and Education, Roseman University of Health Sciences, Henderson, NV 89104 (United States); Wilsch-Bräuninger, Michaela [Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden (Germany); Corbeil, Denis [Tissue Engineering Laboratories (BIOTEC) and DFG Research Center and Cluster of Excellence for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Tatzberg 47–49, 01307 Dresden, Germany Technische Universitat Dresden, Dresden (Germany); Lorico, Aurelio, E-mail: alorico@roseman.edu [Cancer Research Program, Roseman University of Health Sciences, 10530 Discovery Drive. Las Vegas, NV 89135 (United States); College of Pharmacy, Roseman University of Health Sciences, Henderson, NV 89104 (United States)

    2013-04-01

    Prominin-1 (CD133) is the first identified gene of a novel class of pentaspan membrane glycoproteins. It is expressed by various epithelial and non-epithelial cells, and notably by stem and cancer stem cells. In non-cancerous cells such as neuro-epithelial and hematopoietic stem cells, prominin-1 is selectively concentrated in plasma membrane protrusions, and released into the extracellular milieu in association with small vesicles. Previously, we demonstrated that prominin-1 contributes to melanoma cells pro-metastatic properties and suggested that it may constitute a molecular target to prevent prominin-1-expressing melanomas from colonizing and growing in lymph nodes and distant organs. Here, we report that three distinct pools of prominin-1 co-exist in cultures of human FEMX-I metastatic melanoma. Morphologically, in addition to the plasma membrane localization, prominin-1 is found within the intracellular compartments, (e.g., Golgi apparatus) and in association with extracellular membrane vesicles. The latter prominin-1–positive structures appeared in three sizes (small, ≤40 nm; intermediates ∼40–80 nm, and large, >80 nm). Functionally, the down-regulation of prominin-1 in FEMX-I cells resulted in a significant reduction of number of lipid droplets as observed by coherent anti-Stokes Raman scattering image analysis and Oil red O staining, and surprisingly in a decrease in the nuclear localization of beta-catenin, a surrogate marker of Wnt activation. Moreover, the T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter activity was 2 to 4 times higher in parental than in prominin-1-knockdown cells. Collectively, our results point to Wnt signaling and/or release of prominin-1–containing membrane vesicles as mediators of the pro-metastatic activity of prominin-1 in FEMX-I melanoma. - Highlights: ► First report of release of prominin-1–containing microvesicles from cancer cells. ► Pro-metastatic role of prominin-1–containing microvesicles in

  3. Wnt interaction and extracellular release of prominin-1/CD133 in human malignant melanoma cells

    International Nuclear Information System (INIS)

    Rappa, Germana; Mercapide, Javier; Anzanello, Fabio; Le, Thuc T.; Johlfs, Mary G.; Fiscus, Ronald R.; Wilsch-Bräuninger, Michaela; Corbeil, Denis; Lorico, Aurelio

    2013-01-01

    Prominin-1 (CD133) is the first identified gene of a novel class of pentaspan membrane glycoproteins. It is expressed by various epithelial and non-epithelial cells, and notably by stem and cancer stem cells. In non-cancerous cells such as neuro-epithelial and hematopoietic stem cells, prominin-1 is selectively concentrated in plasma membrane protrusions, and released into the extracellular milieu in association with small vesicles. Previously, we demonstrated that prominin-1 contributes to melanoma cells pro-metastatic properties and suggested that it may constitute a molecular target to prevent prominin-1-expressing melanomas from colonizing and growing in lymph nodes and distant organs. Here, we report that three distinct pools of prominin-1 co-exist in cultures of human FEMX-I metastatic melanoma. Morphologically, in addition to the plasma membrane localization, prominin-1 is found within the intracellular compartments, (e.g., Golgi apparatus) and in association with extracellular membrane vesicles. The latter prominin-1–positive structures appeared in three sizes (small, ≤40 nm; intermediates ∼40–80 nm, and large, >80 nm). Functionally, the down-regulation of prominin-1 in FEMX-I cells resulted in a significant reduction of number of lipid droplets as observed by coherent anti-Stokes Raman scattering image analysis and Oil red O staining, and surprisingly in a decrease in the nuclear localization of beta-catenin, a surrogate marker of Wnt activation. Moreover, the T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter activity was 2 to 4 times higher in parental than in prominin-1-knockdown cells. Collectively, our results point to Wnt signaling and/or release of prominin-1–containing membrane vesicles as mediators of the pro-metastatic activity of prominin-1 in FEMX-I melanoma. - Highlights: ► First report of release of prominin-1–containing microvesicles from cancer cells. ► Pro-metastatic role of prominin-1–containing microvesicles in

  4. Control of cell proliferation by a porous chitosan scaffold with multiple releasing capabilities

    Science.gov (United States)

    Cai, Shu-Jyun; Li, Ching-Wen; Weihs, Daphne; Wang, Gou-Jen

    2017-01-01

    Abstract The aim of this study was to develop a porous chitosan scaffold with long-acting drug release as an artificial dressing to promote skin wound healing. The dressing was fabricated by pre-freezing at different temperatures (−20 and −80 °C) for different periods of time, followed by freeze-drying to form porous chitosan scaffolds with different pore sizes. The chitosan scaffolds were then used to investigate the effect of the controlled release of fibroblast growth factor-basic (bFGF) and transforming growth factor-β1 (TGFβ1) on mouse fibroblast cells (L929) and bovine carotid endothelial cells (BEC). The biocompatibility of the prepared chitosan scaffold was confirmed with WST-1 proliferation and viability assay, which demonstrated that the material is suitable for cell growth. The results of this study show that the pore sizes of the porous scaffolds prepared by freeze-drying can change depending on the pre-freezing temperature and time via the formation of ice crystals. In this study, the scaffolds with the largest pore size were found to be 153 ± 32 μm and scaffolds with the smallest pores to be 34 ± 9 μm. Through cell culture analysis, it was found that the concentration that increased proliferation of L929 cells for bFGF was 0.005 to 0.1 ng/mL, and the concentration for TGFβ1 was 0.005 to 1 ng/mL. The cell culture of the chitosan scaffold and growth factors shows that 3.75 ng of bFGF in scaffolds with pore sizes of 153 ± 32 μm can promote L929 cell proliferation, while 400 pg of TGFβ1 in scaffolds with pore size of 34 ± 9 μm can enhance the proliferation of L929 cells, but also inhibit BEC proliferation. It is proposed that the prepared chitosan scaffolds can form a multi-drug (bFGF and TGFβ1) release dressing that has the ability to control wound healing via regulating the proliferation of different cell types. PMID:29230255

  5. The oncolytic peptide LTX-315 induces cell death and DAMP release by mitochondria distortion in human melanoma cells

    Science.gov (United States)

    Eike, Liv-Marie; Yang, Nannan; Rekdal, Øystein; Sveinbjørnsson, Baldur

    2015-01-01

    Host defense peptides (HDPs) are naturally occurring molecules found in most species, in which they play a significant role in the first line defense against intruding pathogens, and several HDPs have been shown to possess anticancer activity. Structure-activity relationship studies on the HDP bovine lactoferricin revealed a de novo design of a nonamer peptide LTX-315, with oncolytic properties. In the present study, we investigated the oncolytic activity of LTX-315 in human melanoma cells (A375). LTX-315 induced a rapid plasma membrane disruption and cell death within 2 hours. At a low concentration, fluorescence-labeled LTX-315 was internalized and accumulated in cytoplasmic vacuoles in close proximity to the mitochondria. The mitochondrial membrane potential was shown to depolarize as a consequence of LTX-315 treatment and at ultrastructural level, the mitochondria morphology was significantly altered. Release of danger signals (DAMPs) such as ATP, Cytochrome C and HMGB1 into the cell supernatant of cultured cells was evident minutes after peptide treatment. The oncolytic effect of LTX-315 involving perturbation of both the cell membrane and the mitochondria with subsequent release of DAMPs may highlight the ability of LTX-315 to induce complete regression and long-term protective immune responses as previously reported in experimental animal models. PMID:26472184

  6. Robotic Patterning a Superhydrophobic Surface for Collective Cell Migration Screening.

    Science.gov (United States)

    Pang, Yonggang; Yang, Jing; Hui, Zhixin; Grottkau, Brian E

    2018-04-01

    Collective cell migration, in which cells migrate as a group, is fundamental in many biological and pathological processes. There is increasing interest in studying the collective cell migration in high throughput. Cell scratching, insertion blocker, and gel-dissolving techniques are some methodologies used previously. However, these methods have the drawbacks of cell damage, substrate surface alteration, limitation in medium exchange, and solvent interference. The superhydrophobic surface, on which the water contact angle is greater than 150 degrees, has been recently utilized to generate patterned arrays. Independent cell culture areas can be generated on a substrate that functions the same as a conventional multiple well plate. However, so far there has been no report on superhydrophobic patterning for the study of cell migration. In this study, we report on the successful development of a robotically patterned superhydrophobic array for studying collective cell migration in high throughput. The array was developed on a rectangular single-well cell culture plate consisting of hydrophilic flat microwells separated by the superhydrophobic surface. The manufacturing process is robotic and includes patterning discrete protective masks to the substrate using 3D printing, robotic spray coating of silica nanoparticles, robotic mask removal, robotic mini silicone blocker patterning, automatic cell seeding, and liquid handling. Compared with a standard 96-well plate, our system increases the throughput by 2.25-fold and generates a cell-free area in each well non-destructively. Our system also demonstrates higher efficiency than conventional way of liquid handling using microwell plates, and shorter processing time than manual operating in migration assays. The superhydrophobic surface had no negative impact on cell viability. Using our system, we studied the collective migration of human umbilical vein endothelial cells and cancer cells using assays of endpoint

  7. Quantitative estimation of hydrogen concentration on the Ni3Al specimens surface in the process of hydrogen release

    International Nuclear Information System (INIS)

    Katano, Gen; Sano, Shogo; Saito, Hideo; Mori, Minoru

    2000-01-01

    The method to calculate the hydrogen concentration in metal specimens is given by tritium counts with the liquid scintillation counter. As segments to measure, Ni 3 Al intermetallic compound crystals were used. Tritium was charged to crystals with the method of cathode charging. The charged tritium was transported by diffusion and released from specimen surface. The tritium releasing rate was calculated from the increasing rate of tritium activity. Then the concentration of hydrogen at the surface was calculated from tritium counts. The outcome showed that the hydrogen concentration decreases at specimens surface by elapsed time. Then, the behavior of tritium diffusion was affected by doped boron (up to 0.235 atom% B and 0.470 atom% B) in Ni 3 Al crystals. As the amount of boron increased, the tritium diffusion coefficient decreased. And the hydrogen concentration varied with the amount of boron. After passing enough time, the hydrogen concentration in crystals with boron was much larger than the one without boron. Since it is very likely that the hydrogen concentration is affected by the number of hydrogen sites in the crystal, it is obvious judging by these phenomena, that by doping boron, numbers of hydrogen trapping sites were created. As the hydrogen distribution becomes homogenous after passing enough time, it is possible to measure the hydrogen concentration in all the crystals from β-ray counts at specimens surface. (author)

  8. Surface displacements and energy release rates for constant stress drop slip zones in joined elastic quarter spaces

    Science.gov (United States)

    Rodgers, Michael J.; Wen, Shengmin; Keer, Leon M.

    2000-08-01

    A three-dimensional quasi-static model of faulting in an elastic half-space with a horizontal change of material properties (i.e., joined elastic quarter spaces) is considered. A boundary element method is used with a stress drop slip zone approach so that the fault surface relative displacements as well as the free surface displacements are approximated in elements over their respective domains. Stress intensity factors and free surface displacements are calculated for a variety of cases to show the phenomenological behavior of faulting in such a medium. These calculations showed that the behavior could be distinguished from a uniform half-space. Slip in a stiffer material increases, while slip in a softer material decreases the energy release rate and the free surface displacements. Also, the 1989 Kalapana earthquake was located on the basis of a series of forward searches using this method and leveling data. The located depth is 8 km, which is the closer to the seismically inferred depth than that determined from other models. Finally, the energy release rate, which can be used as a fracture criterion for fracture at this depth, is calculated to be 11.1×106 J m-2.

  9. Dual turn-on fluorescence signal-based controlled release system for real-time monitoring of drug release dynamics in living cells and tumor tissues.

    Science.gov (United States)

    Kong, Xiuqi; Dong, Baoli; Song, Xuezhen; Wang, Chao; Zhang, Nan; Lin, Weiying

    2018-01-01

    Controlled release systems with capabilities for direct and real-time monitoring of the release and dynamics of drugs in living systems are of great value for cancer chemotherapy. Herein, we describe a novel dual turn-on fluorescence signal-based controlled release system ( CDox ), in which the chemotherapy drug doxorubicin ( Dox ) and the fluorescent dye ( CH ) are conjugated by a hydrazone moiety, a pH-responsive cleavable linker. CDox itself shows nearly no fluorescence as the fluorescence of CH and Dox is essentially quenched by the C=N isomerization and N-N free rotation. However, when activated under acidic conditions, CDox could be hydrolyzed to afford Dox and CH , resulting in dual turn-on signals with emission peaks at 595 nm and 488 nm, respectively. Notably, CDox exhibits a desirable controlled release feature as the hydrolysis rate is limited by the steric hindrance effect from both the Dox and CH moieties. Cytotoxicity assays indicate that CDox shows much lower cytotoxicity relative to Dox , and displays higher cell inhibition rate to cancer than normal cells. With the aid of the dual turn-on fluorescence at different wavelengths, the drug release dynamics of CDox in living HepG2 and 4T-1 cells was monitored in double channels in a real-time fashion. Importantly, two-photon fluorescence imaging of CDox in living tumor tissues was also successfully performed by high-definition 3D imaging. We expect that the unique controlled release system illustrated herein could provide a powerful means to investigate modes of action of drugs, which is critical for development of much more robust and effective chemotherapy drugs.

  10. Lesion-induced increase in survival and migration of human neural progenitor cells releasing GDNF

    Science.gov (United States)

    Behrstock, Soshana; Ebert, Allison D.; Klein, Sandra; Schmitt, Melanie; Moore, Jeannette M.; Svendsen, Clive N.

    2009-01-01

    The use of human neural progenitor cells (hNPC) has been proposed to provide neuronal replacement or astrocytes delivering growth factors for brain disorders such as Parkinson’s and Huntington’s disease. Success in such studies likely requires migration from the site of transplantation and integration into host tissue in the face of ongoing damage. In the current study, hNPC modified to release glial cell line derived neurotrophic factor (hNPCGDNF) were transplanted into either intact or lesioned animals. GDNF release itself had no effect on the survival, migration or differentiation of the cells. The most robust migration and survival was found using a direct lesion of striatum (Huntington’s model) with indirect lesions of the dopamine system (Parkinson’s model) or intact animals showing successively less migration and survival. No lesion affected differentiation patterns. We conclude that the type of brain injury dictates migration and integration of hNPC which has important consequences when considering transplantation of these cells as a therapy for neurodegenerative diseases. PMID:19044202

  11. A Simple Hydrophilic Treatment of SU-8 Surfaces for Cell Culturing and Cell Patterning

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Stangegaard, Michael; Dufva, Hans Martin

    2005-01-01

    SU-8, an epoxy-based photoresist, widely used in constitution different mTAS systems, is incompatible with mammalian cell adhesion and culture in its native form. Here, we demonstrate a simple, cheap and robust two-step method to render a SU-8 surface hydrophilic and compatible with cell culture........ The contact angle of SU-8 surface was significantly reduced from 90° to 25° after the surface modification. The treated SU-8 surfaces provided a cell culture environment that was comparable with cell culture flask surface in terms of generation time and morphology....

  12. Nitric oxide-releasing nanoparticles: synthesis, characterization, and cytotoxicity to tumorigenic cells

    Energy Technology Data Exchange (ETDEWEB)

    Pelegrino, Milena T. [Universidade Federal de São Paulo, Exact and Earth Sciences Department (Brazil); Silva, Letícia C.; Watashi, Carolina M. [Universidade Federal do ABC, UFABC, Center of Natural and Human Sciences (Brazil); Haddad, Paula S. [Universidade Federal de São Paulo, Exact and Earth Sciences Department (Brazil); Rodrigues, Tiago; Seabra, Amedea B., E-mail: amedea.seabra@ufabc.edu.br [Universidade Federal do ABC, UFABC, Center of Natural and Human Sciences (Brazil)

    2017-02-15

    Nitric oxide (NO) is involved in several biological processes, including toxicity against tumor cells. The aim of this study was to synthesize, characterize, and evaluate the cytotoxicity of NO-releasing chitosan nanoparticles. A thiol-containing molecule, mercaptosuccinic acid (MSA), was encapsulated (encapsulation efficiency of 99%) in chitosan/sodium tripolyphosphate nanoparticles (CS NPs). The obtained nanoparticles showed an average hydrodynamic size of 108.40 ± 0.96 nm and polydispersity index of 0.26 ± 0.01. MSA-CS NPs were nitrosated leading to S-nitroso-MSA-CS NPs, which act as NO donor. The cytotoxicity of CS NPs, MSA-CS NPs, and S-nitroso-MSA-CS NPs were evaluated in several tumor cells, including human hepatocellular carcinoma (HepG2), mouse melanoma (B16F10), and human chronic myeloid leukemia (K562) cell lines and Lucena-1, a vincristine-resistant K562 cell line. Both CS NPs and MSA-CS NPs did not cause toxic effects in these cells, whereas S-nitroso-MSA-CS NPs caused potent cytotoxic effects in all the tested tumor cell lines. The half-maximal inhibitory concentration values of S-nitroso-MSA-CS NPs were 19.7, 10.5, 22.8, and 27.8 μg·mL{sup −1} for HepG2, B16F10, K562, and Lucena-1 cells, respectively. In contrast, S-nitroso-MSA-CS NPs exhibited lower cytotoxic to non-tumorigenic melanocytes (Melan-A) when compared with melanoma B16F10. Therefore, the results highlight the potential use of NO-releasing CS NPs in antitumor chemotherapy.

  13. A comparison of the cytotoxic activity of eosinophils and other cells by 51chromium release and time lapse microcinematography

    International Nuclear Information System (INIS)

    Sanderson, C.J.; Thomas, J.A.

    1978-01-01

    Antibody dependent cytotoxicity of chicken erythrocytes by purified rat eosinophils, neutrophils, macrophages and K cells has been compared by 51 Cr release and time lapse microcinematography. Techniques have been developed for purifying these effector cell types. Both eosinophils and neutrophils caused rapid release of 51 Cr from erythrocytes. Time lapse observations indicated that this was the result of phagocytosis. Eosinophils showed rapid membrane movement and repeatedly engulfed and regurgitated the erythrocytes. On the other hand, neutrophils became quiescent after phagocytosing erythrocytes, and remained quiescent until the remains of the cell were expelled. Neutrophils presumably have a mechanism for the release of soluble material, as 51 Cr was released rapidly. Macrophages showed a similar quiescence after phagocytosis, but in these cells there was apparently no rapid mechanism to expel material, as there was no significant 51 Cr release over 20 h. K cells appeared to damage chicken erythrocytes more slowly than they destroyed tumour cells. Mast cells caused antibody-independent cytotoxicity which can be attributed to the release of toxic materials. None of these effector cells produced the type of lysis seen with antibody and complement. (author)

  14. Enhanced surface sampler and process for collection and release of analytes

    Energy Technology Data Exchange (ETDEWEB)

    Addleman, Raymond S; Atkinson, David A; Bays, John T; Chouyyok, Wilaiwan; Cinson, Anthony D; Ewing, Robert G; Gerasimenko, Aleksandr A

    2015-02-03

    An enhanced swipe sampler and method of making are described. The swipe sampler is made of a fabric containing selected glass, metal oxide, and/or oxide-coated glass or metal fibers. Fibers are modified with silane ligands that are directly attached to the surface of the fibers to functionalize the sampling surface of the fabric. The swipe sampler collects various target analytes including explosives and other threat agents on the surface of the sampler.

  15. Surface etching technologies for monocrystalline silicon wafer solar cells

    Science.gov (United States)

    Tang, Muzhi

    With more than 200 GW of accumulated installations in 2015, photovoltaics (PV) has become an important green energy harvesting method. The PV market is dominated by solar cells made from crystalline silicon wafers. The engineering of the wafer surfaces is critical to the solar cell cost reduction and performance enhancement. Therefore, this thesis focuses on the development of surface etching technologies for monocrystalline silicon wafer solar cells. It aims to develop a more efficient alkaline texturing method and more effective surface cleaning processes. Firstly, a rapid, isopropanol alcohol free texturing method is successfully demonstrated to shorten the process time and reduce the consumption of chemicals. This method utilizes the special chemical properties of triethylamine, which can form Si-N bonds with wafer surface atoms. Secondly, a room-temperature anisotropic emitter etch-back process is developed to improve the n+ emitter passivation. Using this method, 19.0% efficient screen-printed aluminium back surface field solar cells are developed that show an efficiency gain of 0.15% (absolute) compared with conventionally made solar cells. Finally, state-of-the-art silicon surface passivation results are achieved using hydrogen plasma etching as a dry alternative to the classical hydrofluoric acid wet-chemical process. The effective native oxide removal and the hydrogenation of the silicon surface are shown to be the reasons for the excellent level of surface passivation achieved with this novel method.

  16. Olopatadine Inhibits Exocytosis in Rat Peritoneal Mast Cells by Counteracting Membrane Surface Deformation

    Directory of Open Access Journals (Sweden)

    Asuka Baba

    2015-01-01

    Full Text Available Backgroud/Aims: Besides its anti-allergic properties as a histamine receptor antagonist, olopatadine stabilizes mast cells by inhibiting the release of chemokines. Since olopatadine bears amphiphilic features and is preferentially partitioned into the lipid bilayers of the plasma membrane, it would induce some morphological changes in mast cells and thus affect the process of exocytosis. Methods: Employing the standard patch-clamp whole-cell recording technique, we examined the effects of olopatadine and other anti-allergic drugs on the membrane capacitance (Cm in rat peritoneal mast cells during exocytosis. Using confocal imaging of a water-soluble fluorescent dye, lucifer yellow, we also examined their effects on the deformation of the plasma membrane. Results: Low concentrations of olopatadine (1 or 10 µM did not significantly affect the GTP-γ-S-induced increase in the Cm. However, 100 µM and 1 mM olopatadine almost totally suppressed the increase in the Cm. Additionally, these doses completely washed out the trapping of the dye on the cell surface, indicating that olopatadine counteracted the membrane surface deformation induced by exocytosis. As shown by electron microscopy, olopatadine generated inward membrane bending in mast cells. Conclusion: This study provides electrophysiological evidence for the first time that olopatadine dose-dependently inhibits the process of exocytosis in rat peritoneal mast cells. Such mast cell stabilizing properties of olopatadine may be attributed to its counteracting effects on the plasma membrane deformation in degranulating mast cells.

  17. Evidence for autocrine and paracrine regulation of allergen-induced mast cell mediator release in the guinea pig airways.

    Science.gov (United States)

    Yu, Li; Liu, Qi; Canning, Brendan J

    2018-03-05

    Mast cells play an essential role in immediate type hypersensitivity reactions and in chronic allergic diseases of the airways, including asthma. Mast cell mediator release can be modulated by locally released autacoids and circulating hormones, but surprisingly little is known about the autocrine effects of mediators released upon mast cell activation. We thus set out to characterize the autocrine and paracrine effects of mast cell mediators on mast cell activation in the guinea pig airways. By direct measures of histamine, cysteinyl-leukotriene and thromboxane release and with studies of allergen-evoked contractions of airway smooth muscle, we describe a complex interplay amongst these autacoids. Notably, we observed an autocrine effect of the cysteinyl-leukotrienes acting through cysLT 1 receptors on mast cell leukotriene release. We confirmed the results of previous studies demonstrating a marked enhancement of mast cell mediator release following cyclooxygenase inhibition, but we have extended these results by showing that COX-2 derived eicosanoids inhibit cysteinyl-leukotriene release and yet are without effect on histamine release. Given the prominent role of COX-1 inhibition in aspirin-sensitive asthma, these data implicate preformed mediators stored in granules as the initial drivers of these adverse reactions. Finally, we describe the paracrine signaling cascade leading to thromboxane synthesis in the guinea pig airways following allergen challenge, which occurs indirectly, secondary to cysLT 1 receptor activation on structural cells and/ or leukocytes within the airway wall, and a COX-2 dependent synthesis of the eicosanoid. The results highlight the importance of cell-cell and autocrine interactions in regulating allergic responses in the airways. Copyright © 2017. Published by Elsevier B.V.

  18. Assessing the Nano-Dynamics of the Cell Surface

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Chil Man [Dept. of Physiology and Biophysics, State University of New York, Buffalo (United States); Park, Ik Keun [Mechanical Engineering, Seoul National University of Technology, Seoul (Korea, Republic of); Bulter, Peter J. [Dept. of Bioengineering, The Pennsylvania State University, University Park (United States)

    2012-06-15

    It is important to know the mechanism of cell membrane fluctuation because it can be readout for the nanomechanical interaction between cytoskeleton and plasma membrane. Traditional techniques, however, have drawbacks such as probe contact with the cell surface, complicate analysis, and limit spatial and temporal resolution. In this study, we developed a new system for non-contact measurement of nano-scale localized-cell surface dynamics using modified-scanning ion-conductance microscopy. With 2 nm resolution, we determined that endothelial cells have local membrane fluctuations of -20 nm, actin depolymerization causes increase in fluctuation amplitude, and ATP depletion abolishes all membrane fluctuations.

  19. Nitric oxide-releasing prodrug triggers cancer cell death through deregulation of cellular redox balance

    Directory of Open Access Journals (Sweden)

    Anna E. Maciag

    2013-01-01

    Full Text Available JS-K is a nitric oxide (NO-releasing prodrug of the O2-arylated diazeniumdiolate family that has demonstrated pronounced cytotoxicity and antitumor properties in a variety of cancer models both in vitro and in vivo. The current study of the metabolic actions of JS-K was undertaken to investigate mechanisms of its cytotoxicity. Consistent with model chemical reactions, the activating step in the metabolism of JS-K in the cell is the dearylation of the diazeniumdiolate by glutathione (GSH via a nucleophilic aromatic substitution reaction. The resulting product (CEP/NO anion spontaneously hydrolyzes, releasing two equivalents of NO. The GSH/GSSG redox couple is considered to be the major redox buffer of the cell, helping maintain a reducing environment under basal conditions. We have quantified the effects of JS-K on cellular GSH content, and show that JS-K markedly depletes GSH, due to JS-K's rapid uptake and cascading release of NO and reactive nitrogen species. The depletion of GSH results in alterations in the redox potential of the cellular environment, initiating MAPK stress signaling pathways, and inducing apoptosis. Microarray analysis confirmed signaling gene changes at the transcriptional level and revealed alteration in the expression of several genes crucial for maintenance of cellular redox homeostasis, as well as cell proliferation and survival, including MYC. Pre-treating cells with the known GSH precursor and nucleophilic reducing agent N-acetylcysteine prevented the signaling events that lead to apoptosis. These data indicate that multiplicative depletion of the reduced glutathione pool and deregulation of intracellular redox balance are important initial steps in the mechanism of JS-K's cytotoxic action.

  20. Nanoscale crystallinity modulates cell proliferation on plasma sprayed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Alan M. [School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH (United Kingdom); Paxton, Jennifer Z.; Hung, Yi-Pei; Hadley, Martin J.; Bowen, James; Williams, Richard L. [School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom); Grover, Liam M., E-mail: l.m.grover@bham.ac.uk [School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom)

    2015-03-01

    Calcium phosphate coatings have been applied to the surface of metallic prostheses to mediate hard and soft tissue attachment for more than 40 years. Most coatings are formed of high purity hydroxyapatite, and coating methods are often designed to produce highly crystalline surfaces. It is likely however, that coatings of lower crystallinity can facilitate more rapid tissue attachment since the surface will exhibit a higher specific surface area and will be considerably more reactive than a comparable highly crystalline surface. Here we test this hypothesis by growing a population of MC3T3 osteoblast-like cells on the surface of two types of hip prosthesis with similar composition, but with differing crystallinity. The surfaces with lower crystallinity facilitated more rapid cell attachment and increased proliferation rate, despite having a less heterogeneous surface topography. This work highlights that the influence of the crystallinity of HA at the nano-scale is dominant over macro-scale topography for cell adhesion and growth. Furthermore, crystallinity could be easily adjusted by without compromising coating purity. These findings could facilitate designing novel coated calcium phosphate surfaces that more rapidly bond tissue following implantation. - Highlights: • Crystallinity of HA at the nano-scale was dominant over macro-scale topography. • Lower crystallinity caused rapid cell attachment and proliferation rate. • Crystallinity could be easily adjusted by without compromising coating purity.

  1. Nanoscale crystallinity modulates cell proliferation on plasma sprayed surfaces

    International Nuclear Information System (INIS)

    Smith, Alan M.; Paxton, Jennifer Z.; Hung, Yi-Pei; Hadley, Martin J.; Bowen, James; Williams, Richard L.; Grover, Liam M.

    2015-01-01

    Calcium phosphate coatings have been applied to the surface of metallic prostheses to mediate hard and soft tissue attachment for more than 40 years. Most coatings are formed of high purity hydroxyapatite, and coating methods are often designed to produce highly crystalline surfaces. It is likely however, that coatings of lower crystallinity can facilitate more rapid tissue attachment since the surface will exhibit a higher specific surface area and will be considerably more reactive than a comparable highly crystalline surface. Here we test this hypothesis by growing a population of MC3T3 osteoblast-like cells on the surface of two types of hip prosthesis with similar composition, but with differing crystallinity. The surfaces with lower crystallinity facilitated more rapid cell attachment and increased proliferation rate, despite having a less heterogeneous surface topography. This work highlights that the influence of the crystallinity of HA at the nano-scale is dominant over macro-scale topography for cell adhesion and growth. Furthermore, crystallinity could be easily adjusted by without compromising coating purity. These findings could facilitate designing novel coated calcium phosphate surfaces that more rapidly bond tissue following implantation. - Highlights: • Crystallinity of HA at the nano-scale was dominant over macro-scale topography. • Lower crystallinity caused rapid cell attachment and proliferation rate. • Crystallinity could be easily adjusted by without compromising coating purity

  2. Organic Electrochemical Transistors for the Detection of Cell Surface Glycans.

    Science.gov (United States)

    Chen, Lizhen; Fu, Ying; Wang, Naixiang; Yang, Anneng; Li, Yuanzhe; Wu, Jie; Ju, Huangxian; Yan, Feng

    2018-05-23

    Cell surface glycans play critical roles in diverse biological processes, such as cell-cell communication, immunity, infection, development, and differentiation. Their expressions are closely related to cancer growth and metastasis. This work demonstrates an organic electrochemical transistor (OECT)-based biosensor for the detection of glycan expression on living cancer cells. Herein, mannose on human breast cancer cells (MCF-7) as the target glycan model, poly dimethyl diallyl ammonium chloride-multiwall carbon nanotubes (PDDA-MWCNTs) as the loading interface, concanavalin A (Con A) with active mannose binding sites, aptamer and horseradish peroxidase co-immobilized gold nanoparticles (HRP-aptamer-Au NPs) as specific nanoprobes are used to fabricate the OECT biosensor. In this strategy, PDDA-MWCNT interfaces can enhance the loading of Con A, and the target cells can be captured through Con A via active mannose binding sites. Thus, the expression of cell surface can be reflected by the amount of cells captured on the gate. Specific nanoprobes are introduced to the captured cells to produce an OECT signal because of the reduction of hydrogen peroxide catalyzed by HRP conjugated on Au nanoparticles, while the aptamer on nanoprobes can selectively recognize the MCF-7 cells. It is reasonable that more target cells are captured on the gate electrode, more HRP-nanoprobes are loaded thus a larger signal response. The device shows an obvious response to MCF-7 cells down to 10 cells/μL and can be used to selectively monitor the change of mannose expression on cell surfaces upon a treatment with the N-glycan inhibitor. The OECT-based biosensor is promising for the analysis of glycan expressions on the surfaces of different types of cells.

  3. Final technical report; Mercury Release from Organic matter (OM) and OM-Coated Mineral Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Aiken, George

    2014-10-02

    This document is the final technical report for a project designed to address fundamental processes controlling the release of mercury from flood plain soils associated with East Fork Poplar Creek, Tennessee near the U.S. Department of Energy Oak Ridge facility. The report summarizes the activities, findings, presentations, and publications resulting from an award to the U.S. Geological that were part of a larger overall effort including Kathy Nagy (University of Illinois, Chicago, Ill) and Joseph Ryan (University of Colorado, Boulder, CO). The specific charge for the U.S.G.S. portion of the study was to provide analytical support for the larger group effort (Nagy and Ryan), especially with regard to analyses of Hg and dissolved organic matter, and to provide information about the release of mercury from the floodplain soils.

  4. Differential effect of gamma-irradiated and heat-treated lymphocytes on T cell activation, and interleukin-2 and interleukin-3 release in the human mixed lymphocyte reaction

    International Nuclear Information System (INIS)

    Loertscher, R.; Abbud-Filho, M.; Leichtman, A.B.; Ythier, A.A.; Williams, J.M.; Carpenter, C.B.; Strom, T.B.

    1987-01-01

    Heat-inactivated (45 degrees C/1 hr) lymphocytes selectively activate suppressor T cells in the mixed lymphocyte reaction (MLR), while no significant proliferation and cytotoxic T lymphocyte activation can be detected. It is not well understood why hyperthermic treatment abolishes the stimulatory capacity of lymphocytes since HLA-DR molecules remain detectable immediately following heat exposure. In order to further characterize the requirements for Ts activation we studied the effects of hyperthermic treatment on cellular protein and DNA synthesis and cell surface protein expression in proliferating T and B cells; interleukin (IL)-1, IL-2, and IL-3 release following allogeneic stimulation with heat treated cells (HMLR); and IL-2 receptor expression as an indicator of T cell activation in the HMLR. Hyperthermic treatment reduced cellular protein synthesis as estimated by 14 C-leucine uptake to about 15%, and DNA synthesis ( 3 H-thymidine incorporation) to about 5% of untreated control cells. In contrast to y-irradiated cells, viability of heated cells rapidly declined within the first 24 hr. Hyperthermic treatment doubled binding of mouse immunoglobulin paralleled by an increased expression of IL-2 and transferrin receptors, while expression of HLA-DR and 4F2 proteins appeared unchanged. Stimulation with heated cells triggered the release of IL-1- and an IL-3-like bioactivity but did not induce IL-2 synthesis and/or release, thus explaining the lack of proliferation in the HMLR. Addition of exogenous IL-2 but not IL-1 restored HMLR proliferation. A comparison of allostimulation with y-irradiated and heat-treated cells revealed that significantly fewer T cells were induced to express IL-2 receptors at day 3 (14% vs. 8%, P less than 0.001) and at day 6 (42% vs. 21%, P less than 0.05) with heat-inactivated stimulators

  5. Comparison of mesenchymal stem cells released from poly(N-isopropylacrylamide) copolymer film and by trypsinization

    International Nuclear Information System (INIS)

    Yang Lei; Liu Tianqing; Song Kedong; Jiang Lili; Wu Shuang; Guo Wenhua; Cheng Fang; Lu, Jian R

    2012-01-01

    Temperature-responsive platforms containing poly(N-isopropylacrylamide) (PNIPAAm) have been developed as an effective substitute for enzymatic treatment to recover adherent cells, but it remains unclear whether this alternative harvesting method tends to support stem cells preserving them being primitive. This study mainly investigated the biological properties of mesenchymal stem cells derived from rat bone marrow and human adipose tissue (BM-MSCs and AT-MSCs) after being cultured on PNIPAAm copolymer films and recovered by temperature drop, and compared the cells harvested from glass coverslips with trypsinization as controls. The experimental results demonstrated that after three serial passages, the released MSCs from thermal liftoff showed no significant differences in cell morphology, immunophenotype and osteogenesis for BM-MSCs or adipogenesis for AT-MSCs, but had higher viability, stronger proliferation and higher adipogenic differentiation for BM-MSCs or higher osteogenic differentiation for AT-MSCs compared with the trypsinization group. Besides, more proteins remained around or within the cell membranes upon temperature drop. It is concluded that cell detachment with more extracellular matrix proteins facilitates the maintenance of membrane proteins, and accordingly preserves MSC properties related to viability, proliferation and differentiation to some extent. This indicates that the PNIPAAm copolymer films and their matching cooling treatment can be used as effective alternatives to the existing culture substrates and traditional enzymatic digestion for MSCs. (paper)

  6. Modulation of Mast Cell Toll-Like Receptor 3 Expression and Cytokines Release by Histamine

    Directory of Open Access Journals (Sweden)

    Guogang Xie

    2018-05-01

    Full Text Available Background/Aims: As a major inflammatory molecule released from mast cell activation, histamine has been reported to regulate TLRs expression and cytokine production in inflammatory cells present in the microenvironment. In this study, we determined the ability of histamine to modulate TLRs expression and cytokine production in mast cells. Methods: HMC-1 and P815 cells were exposed to various concentrations of histamine in the presence or absence of histamine antagonist for 2, 6 or 16 h. The effect of histamine on the expression of TLR3 protein and mRNA was analyzed by flow cytometry、 RT-PCR and immunofluorescent microscopy. Furthermore, we also examined the effect of histamine on the secretion of MCP-1 and IL-13 from mast cells by ELISA. Results: The amplification of TLR3 mRNA and protein expression in mast cells was observed after incubation with histamine, which was accompanied by increasing secretion of IL-13 and MCP-1 via H1 receptor. The signaling pathways of PI3K/ Akt and Erk1/2/MAPK contributed to these induction effects. Conclusion: These results demonstrate that histamine up-regulates the expression of TLR3 and secretion of IL-13 and MCP-1 in mast cells, thus identifying a new mechanism for the histamine inducing allergic response.

  7. Carrier population control and surface passivation in solar cells

    KAUST Repository

    Cuevas, Andres; Wan, Yimao; Yan, Di; Samundsett, Christian; Allen, Thomas; Zhang, Xinyu; Cui, Jie; Bullock, James

    2018-01-01

    Controlling the concentration of charge carriers near the surface is essential for solar cells. It permits to form regions with selective conductivity for either electrons or holes and it also helps to reduce the rate at which they recombine

  8. Cell surface engineering of industrial microorganisms for biorefining applications.

    Science.gov (United States)

    Tanaka, Tsutomu; Kondo, Akihiko

    2015-11-15

    In order to decrease carbon emissions and negative environmental impacts of various pollutants, biofuel/biochemical production should be promoted for replacing fossil-based industrial processes. Utilization of abundant lignocellulosic biomass as a feedstock has recently become an attractive option. In this review, we focus on recent efforts of cell surface display using industrial microorganisms such as Escherichia coli and yeast. Cell surface display is used primarily for endowing cellulolytic activity on the host cells, and enables direct fermentation to generate useful fuels and chemicals from lignocellulosic biomass. Cell surface display systems are systematically summarized, and the drawbacks/perspectives as well as successful application of surface display for industrial biotechnology are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. A self-assembled monolayer-assisted surface microfabrication and release technique

    NARCIS (Netherlands)

    Kim, B.J.; Liebau, M.; Huskens, Jurriaan; Reinhoudt, David; Brugger, J.P.

    2001-01-01

    This paper describes a method of thin film and MEMS processing which uses self-assembled monolayers as ultra-thin organic surface coating to enable a simple removal of microfabricated devices off the surface without wet chemical etching. A 1.5-nm thick self-assembled monolayer of

  10. Brefeldin A inhibits pestivirus release from infected cells, without affecting its assembly and infectivity

    International Nuclear Information System (INIS)

    Macovei, Alina; Zitzmann, Nicole; Lazar, Catalin; Dwek, Raymond A.; Branza-Nichita, Norica

    2006-01-01

    The enveloped bovine viral diarrhea virus (BVDV) is a member of the Pestivirus genus within the Flaviviridae family. While considerable information has been gathered on virus entry into the host cell, genome structure and protein function, little is known about pestivirus morphogenesis and release from cells. Here, we analyzed the intracellular localization, N-glycan processing and secretion of BVDV using brefeldin A (BFA), which blocks protein export from the endoplasmic reticulum (ER) and causes disruption of the Golgi complex with subsequent fusion of its cis and medial cisternae with the ER. BFA treatment of infected cells resulted in complete inhibition of BVDV secretion and increased co-localization of the envelope glycoproteins with the cis-Golgi marker GM 130. Processing of the N-linked glycans was affected by BFA, however, virus assembly was not perturbed and intracellular virions were fully infectious, suggesting that trafficking beyond the cis-Golgi is not a prerequisite for pestivirus infectivity

  11. Brefeldin A inhibits pestivirus release from infected cells, without affecting its assembly and infectivity.

    Science.gov (United States)

    Macovei, Alina; Zitzmann, Nicole; Lazar, Catalin; Dwek, Raymond A; Branza-Nichita, Norica

    2006-08-04

    The enveloped bovine viral diarrhea virus (BVDV) is a member of the Pestivirus genus within the Flaviviridae family. While considerable information has been gathered on virus entry into the host cell, genome structure and protein function, little is known about pestivirus morphogenesis and release from cells. Here, we analyzed the intracellular localization, N-glycan processing and secretion of BVDV using brefeldin A (BFA), which blocks protein export from the endoplasmic reticulum (ER) and causes disruption of the Golgi complex with subsequent fusion of its cis and medial cisternae with the ER. BFA treatment of infected cells resulted in complete inhibition of BVDV secretion and increased co-localization of the envelope glycoproteins with the cis-Golgi marker GM 130. Processing of the N-linked glycans was affected by BFA, however, virus assembly was not perturbed and intracellular virions were fully infectious, suggesting that trafficking beyond the cis-Golgi is not a prerequisite for pestivirus infectivity.

  12. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells.

    Science.gov (United States)

    Kim, Ji-Seok; Kim, Boa; Lee, Hojun; Thakkar, Sunny; Babbitt, Dianne M; Eguchi, Satoru; Brown, Michael D; Park, Joon-Young

    2015-08-01

    The concept of enhancing structural integrity of mitochondria has emerged as a novel therapeutic option for cardiovascular disease. Flow-induced increase in laminar shear stress is a potent physiological stimulant associated with exercise, which exerts atheroprotective effects in the vasculature. However, the effect of laminar shear stress on mitochondrial remodeling within the vascular endothelium and its related functional consequences remain largely unknown. Using in vitro and in vivo complementary studies, here, we report that aerobic exercise alleviates the release of endothelial microparticles in prehypertensive individuals and that these salutary effects are, in part, mediated by shear stress-induced mitochondrial biogenesis. Circulating levels of total (CD31(+)/CD42a(-)) and activated (CD62E(+)) microparticles released by endothelial cells were significantly decreased (∼40% for both) after a 6-mo supervised aerobic exercise training program in individuals with prehypertension. In cultured human endothelial cells, laminar shear stress reduced the release of endothelial microparticles, which was accompanied by an increase in mitochondrial biogenesis through a sirtuin 1 (SIRT1)-dependent mechanism. Resveratrol, a SIRT1 activator, treatment showed similar effects. SIRT1 knockdown using small-interfering RNA completely abolished the protective effect of shear stress. Disruption of mitochondrial integrity by either antimycin A or peroxisome proliferator-activated receptor-γ coactivator-1α small-interfering RNA significantly increased the number of total, and activated, released endothelial microparticles, and shear stress restored these back to basal levels. Collectively, these data demonstrate a critical role of endothelial mitochondrial integrity in preserving endothelial homeostasis. Moreover, prolonged laminar shear stress, which is systemically elevated during aerobic exercise in the vessel wall, mitigates endothelial dysfunction by promoting

  13. Intestinal and peritoneal mast cells differ in kinetics of quantal release

    Energy Technology Data Exchange (ETDEWEB)

    Balseiro-Gomez, Santiago, E-mail: sanbalgom@alum.us.es; Ramirez-Ponce, M. Pilar, E-mail: pponce@us.es; Acosta, Jorge, E-mail: jorgealo@us.es; Ales, Eva, E-mail: eales@us.es; Flores, Juan A., E-mail: jaflores@us.es

    2016-01-15

    5-hydroxytriptamine (5-HT, serotonin) storage and release in mast cell (MC) secretory granules (SG) are dependent on serglycin proteoglycans (PG). This notion is based on the studies of MC of the connective tissue subtype that predominantly contain PG of the heparin type, whereas intestinal mucosal MC, which contain predominantly chondroitin sulfate, have been poorly explored. In the present study, we addressed the possibility that PG contents may differently affect the storage and release of preformed mediators in these two MC subclasses and explain in part their different functional properties. Rat peritoneal (PMC) and intestinal mast cells (IMC) were isolated and purified using a percoll gradient, and the efflux of 5-HT from each SG was measured by amperometric detection. IMC exhibited a ∼34% reduction in the release of 5-HT compared with PMC because of a lower number of exocytotic events, rather than a lower secretion per single exocytotic event. Amperometric spikes from IMC exhibited a slower decay phase and increased half-width but a similar ascending phase and foot parameters, indicating that the fusion pore kinetics are comparable in both MC subclasses. We conclude that both PG subtypes are equally efficient systems, directly involved in serotonin accumulation, and play a crucial role in regulating the kinetics of exocytosis from SG, providing specific secretory properties for the two cellular subtypes. - Highlights: • We improved a method for isolating and purifying IMC. • There was a reduction in total serotonin release in IMC with respect to PMC. • This decrease was not due to less secretion per quantum but a lower number of exocytotic events. • There was also a deceleration of exocytosis in IMC with respect to PMC.

  14. Bi-functionalization of a calcium phosphate-coated titanium surface with slow-release simvastatin and metronidazole to provide antibacterial activities and pro-osteodifferentiation capabilities.

    Directory of Open Access Journals (Sweden)

    Yunsong Liu

    Full Text Available Coating the surface of titanium implants or other bone graft substitute materials with calcium phosphate (Ca-P crystals is an effective way to enhance the osteoconduction of the implants. Ca-P coating alone cannot confer pro-osteodifferentiation and antibacterial capabilities on implants; however, it can serve as a carrier for biological agents which could improve the performance of implants and bone substitutes. Here, we constructed a novel, bi-functional Ca-P coating with combined pro-osteodifferentiation and antibacterial capabilities. Different concentrations of metronidazole (MNZ and simvastatin (SIM were integrated into biomimetic Ca-P coatings on the surface of titanium disks. The biological effects of this bi-functional biomimetic coating on human bone marrow mesenchymal stem cells (hBMMSCs, human adipose derived stromal cells (hASCs, and Porphyromonas gingivalis were assessed in vitro. We observed that Ca-P coatings loaded with both SIM and MNZ display favorable release kinetics without affecting cell proliferation or attachment. In the inhibition zone test, we found that the bi-functional coating showed lasting antibacterial effects when incubated with Porphyromonas gingivalis for 2 and 4 days. Moreover, the osteodifferentiation of hBMMSCs and hASCs were increased when cultured on this bi-functional coating for 7 and 14 days. Both drugs were loaded onto the Ca-P coating at specific concentrations (10(-5 M SIM; 10(-2 M MNZ to achieve optimal release kinetics. Considering the safety, stability and low cost of SIM and MNZ, this novel bi-functional Ca-P coating technique represents a promising method to improve the performance of metal implants or other bone substitute materials, and can theoretically be easily translated to clinical applications.

  15. Electrochemical characterization of the bacterial cell surface

    NARCIS (Netherlands)

    Wal, van der A.

    1996-01-01


    Bacterial cells are ubiquitous in natural environments and also play important roles in domestic and industrial processes. They are found either suspended in the aqueous phase or attached to solid particles. The adhesion behaviour of bacteria is influenced by the physico-chemical

  16. Development and Application of a Flow Reactor Cell for Studies of Surface Chemistry

    Science.gov (United States)

    Algrim, L. B.; Pagonis, D.; Price, D.; Day, D. A.; De Gouw, J. A.; Jimenez, J. L.; Ziemann, P. J.

    2017-12-01

    We have designed, constructed, characterized, and employed a flow reactor cell that can be used to investigate the interaction of gaseous species such as volatile organic compounds (VOCs), oxidants, acids, and water vapor with authentic and model surfaces that are present in indoor and outdoor environments. The 3.9 L rectangular cell is made of FEP-coated aluminum and has one open face that can be sealed to the surface of interest. An internal plunger is raised (lowered) to expose (cover) the surface while various probe chemicals are added to the flow. To date we have exposed painted surfaces to O3, OH radicals (made from reaction of O3 with tetramethylethene and from photolysis of methyl nitrate/NO mixtures), and NO3 radicals (made from thermal decomposition N2O5) and analyzed the emitted oxidation products with a proton transfer reaction mass spectrometer (PTR-MS) and chemical ionization mass spectrometer (CIMS) equipped with an iodide reagent ion source. Further studies have included the reaction of oxidants with surfaces coated with organic films such as squalene and polyethylene glycol, as well as uptake of ketones and acids from the gas-phase to painted surfaces. The cell was also recently deployed at the University of Colorado-Boulder Art Museum during spring of 2017 to investigate the oxidation products released from the museum walls and floors. Results from all of these studies will be presented.

  17. Facile modification of gelatin-based microcarriers with multiporous surface and proliferative growth factors delivery to enhance cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Huang Sha [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Wang Yijuan [Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi' an 710062 (China); Deng, Tianzheng [Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Jin Fang [Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi' an, 710032 (China); Liu Shouxin [Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi' an 710062 (China); Zhang Yongjie [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Feng Feng [Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Jin Yan [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China)], E-mail: yanjin@fmmu.edu.cn

    2008-07-28

    The design of microcarriers plays an important role in the success of cell expansion. The present article provides a facile approach to modify the gelatin-based particles and investigates the feasibility of their acting as microcarriers for cell attachment and growth. Gelatin particles (150-320 {mu}m) were modified by cryogenic treatment and lyophilization to develop the surface with the features of multiporous morphology and were incorporated with proliferative growth factors (bFGF) by adsorption during the post-preparation, which enables them to serve as microcarriers for cells amplification, together with the advantages of larger cell-surface contact area and capability of promoting cell propagation. The microstructure and release assay of the modified microcarriers demonstrated that the pores on surface were uniform and bFGF was released in a controlled manner. Through in vitro fibroblast culture, these features resulted in a prominent increase in the cell attachment rate and cell growth rate relative to the conditions without modification. Although the scanning electron microscopy and optical microscopy analysis results indicated that cells attached, spread, and proliferated on all the microcarriers, cell growth clearly showed a significant correlation with the multiporous structure of microcarriers, in particular on bFGF combined ones. These results validate our previous assumption that the facile modification could improve cell growth on the gelatin-based microcarriers obviously and the novel microcarriers may be a promising candidate in tissue engineering.

  18. Facile modification of gelatin-based microcarriers with multiporous surface and proliferative growth factors delivery to enhance cell growth

    International Nuclear Information System (INIS)

    Huang Sha; Wang Yijuan; Deng, Tianzheng; Jin Fang; Liu Shouxin; Zhang Yongjie; Feng Feng; Jin Yan

    2008-01-01

    The design of microcarriers plays an important role in the success of cell expansion. The present article provides a facile approach to modify the gelatin-based particles and investigates the feasibility of their acting as microcarriers for cell attachment and growth. Gelatin particles (150-320 μm) were modified by cryogenic treatment and lyophilization to develop the surface with the features of multiporous morphology and were incorporated with proliferative growth factors (bFGF) by adsorption during the post-preparation, which enables them to serve as microcarriers for cells amplification, together with the advantages of larger cell-surface contact area and capability of promoting cell propagation. The microstructure and release assay of the modified microcarriers demonstrated that the pores on surface were uniform and bFGF was released in a controlled manner. Through in vitro fibroblast culture, these features resulted in a prominent increase in the cell attachment rate and cell growth rate relative to the conditions without modification. Although the scanning electron microscopy and optical microscopy analysis results indicated that cells attached, spread, and proliferated on all the microcarriers, cell growth clearly showed a significant correlation with the multiporous structure of microcarriers, in particular on bFGF combined ones. These results validate our previous assumption that the facile modification could improve cell growth on the gelatin-based microcarriers obviously and the novel microcarriers may be a promising candidate in tissue engineering

  19. Multi-scale cell/surface interaction on modified titanium aluminum vanadium surfaces

    Science.gov (United States)

    Chen, Jianbo

    This dissertation presents a series of experimental studies of the effects of multi-scale cell/surface interactions on modified Ti-6Al-4V surfaces. These include laser-grooved surfaces; porous structures and RGD-coated laser-grooved surfaces. A nano-second DPSS UV lasers with a Gaussian pulse energy profile was used to introduce the desired micro-groove geometries onto Ti-6Al-4V surfaces. This was done without inducing micro-cracks or significant changes in surface chemistry within the heat affected zones. The desired 8-12 mum groove depths and widths were achieved by the control of pulse frequency, scan speed, and the lens focal length that controls spot size. The interactions between human osteosarcoma (HOS) cells and laser-grooved Ti-6Al-4V surfaces were investigated after 48 hours of cell culture. The cell behavior, including cell spreading, alignment and adhesion, was elucidated using scanning electronic microscopy (SEM), immuno-fluorescence staining and enzymatic detachment. Contact guidance was shown to increase as grooved spacing decreased. For the range of micro-groove geometries studied, micro-grooves with groove spacings of 20 mum provided the best combination of cell orientation and adhesion. Short-term adhesion experiments (15 mins to 1 day) also revealed that there is a positive correlation between cell orientation and cell adhesion. Contact guidance on the micro-grooved surfaces is shown to be enhanced by nano- and micro-scale asperities that provide sites for the attachment of lamellopodia during cell locomotion and spreading. Contact guidance is also promoted by the geometrical confinement provided by laser grooves. An experimental study of initial cell spreading and ingrowth into Ti-6Al-4V porous structures was also carried out on porous structures with different pore sizes and geometries. A combination of SEM, the tetrazolium salt (MTT) colorimetric assay and enzymatic detachment were used to study cell spreading and adhesion. The extent of cell

  20. Functionalized silica nanoparticles as a carrier for Betamethasone Sodium Phosphate: Drug release study and statistical optimization of drug loading by response surface method.

    Science.gov (United States)

    Ghasemnejad, M; Ahmadi, E; Mohamadnia, Z; Doustgani, A; Hashemikia, S

    2015-11-01

    Mesoporous silica nanoparticles with a hexagonal structure (SBA-15) were synthesized and modified with (3-aminopropyl) triethoxysilane (APTES), and their performance as a carrier for drug delivery system was studied. Chemical structure and morphology of the synthesized and modified SBA-15 were characterized by SEM, BET, TEM, FT-IR and CHN technique. Betamethasone Sodium Phosphate (BSP) as a water soluble drug was loaded on the mesoporous silica particle for the first time. The response surface method was employed to obtain the optimum conditions for the drug/silica nanoparticle preparation, by using Design-Expert software. The effect of time, pH of preparative media, and drug/silica ratio on the drug loading efficiency was investigated by the software. The maximum loading (33.69%) was achieved under optimized condition (pH: 1.8, time: 3.54 (h) and drug/silica ratio: 1.7). The in vitro release behavior of drug loaded particles under various pH values was evaluated. Finally, the release kinetic of the drug was investigated using the Higuchi and Korsmeyer-Peppas models. Cell culture and cytotoxicity assays revealed the synthesized product doesn't have any cytotoxicity against human bladder cell line 5637. Accordingly, the produced drug-loaded nanostructures can be applied via different routes, such as implantation and topical or oral administration. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. 20(S-Protopanaxatriol inhibits release of inflammatory mediators in immunoglobulin E-mediated mast cell activation

    Directory of Open Access Journals (Sweden)

    Dae Yong Kim

    2015-07-01

    Conclusion: PPT reduces the release of inflammatory mediators via inhibiting multiple cellular signaling pathways comprising the Ca2+ influx, protein kinase C, and PLA2, which are propagated by Syk activation upon allergic stimulation of mast cells.

  2. Gonadotropin-Releasing Hormone Regulates Expression of the DNA Damage Repair Gene, Fanconi anemia A, in Pituitary Gonadotroph Cells1

    Science.gov (United States)

    Larder, Rachel; Chang, Lynda; Clinton, Michael; Brown, Pamela

    2007-01-01

    Gonadal function is critically dependant on regulated secretion of the gonadotropin hormones from anterior pituitary gonadotroph cells. Gonadotropin biosynthesis and release is triggered by the binding of hypothalamic GnRH to GnRH receptor expressed on the gonadotroph cell surface. The repertoire of regulatory molecules involved in this process are still being defined. We used the mouse LβT2 gonadotroph cell line, which expresses both gonadotropin hormones, as a model to investigate GnRH regulation of gene expression and differential display reverse transcription-polymerase chain reaction (RT-PCR) to identify and isolate hormonally induced changes. This approach identified Fanconi anemia a (Fanca), a gene implicated in DNA damage repair, as a differentially expressed transcript. Mutations in Fanca account for the majority of cases of Fanconi anemia (FA), a recessively inherited disease identified by congenital defects, bone marrow failure, infertility, and cancer susceptibility. We confirmed expression and hormonal regulation of Fanca mRNA by quantitative RT-PCR, which showed that GnRH induced a rapid, transient increase in Fanca mRNA. Fanca protein was also acutely upregulated after GnRH treatment of LβT2 cells. In addition, Fanca gene expression was confined to mature pituitary gonadotrophs and adult mouse pituitary and was not expressed in the immature αT3-1 gonadotroph cell line. Thus, this study extends the expression profile of Fanca into a highly specialized endocrine cell and demonstrates hormonal regulation of expression of the Fanca locus. We suggest that this regulatory mechanism may have a crucial role in the GnRH-response mechanism of mature gonadotrophs and perhaps the etiology of FA. PMID:15128600

  3. Gonadotropin-releasing hormone regulates expression of the DNA damage repair gene, Fanconi anemia A, in pituitary gonadotroph cells.

    Science.gov (United States)

    Larder, Rachel; Chang, Lynda; Clinton, Michael; Brown, Pamela

    2004-09-01

    Gonadal function is critically dependant on regulated secretion of the gonadotropin hormones from anterior pituitary gonadotroph cells. Gonadotropin biosynthesis and release is triggered by the binding of hypothalamic GnRH to GnRH receptor expressed on the gonadotroph cell surface. The repertoire of regulatory molecules involved in this process are still being defined. We used the mouse L beta T2 gonadotroph cell line, which expresses both gonadotropin hormones, as a model to investigate GnRH regulation of gene expression and differential display reverse transcription-polymerase chain reaction (RT-PCR) to identify and isolate hormonally induced changes. This approach identified Fanconi anemia a (Fanca), a gene implicated in DNA damage repair, as a differentially expressed transcript. Mutations in Fanca account for the majority of cases of Fanconi anemia (FA), a recessively inherited disease identified by congenital defects, bone marrow failure, infertility, and cancer susceptibility. We confirmed expression and hormonal regulation of Fanca mRNA by quantitative RT-PCR, which showed that GnRH induced a rapid, transient increase in Fanca mRNA. Fanca protein was also acutely upregulated after GnRH treatment of L beta T2 cells. In addition, Fanca gene expression was confined to mature pituitary gonadotrophs and adult mouse pituitary and was not expressed in the immature alpha T3-1 gonadotroph cell line. Thus, this study extends the expression profile of Fanca into a highly specialized endocrine cell and demonstrates hormonal regulation of expression of the Fanca locus. We suggest that this regulatory mechanism may have a crucial role in the GnRH-response mechanism of mature gonadotrophs and perhaps the etiology of FA.

  4. Fabrication of cell container arrays with overlaid surface topographies.

    NARCIS (Netherlands)

    Truckenmuller, R.; Giselbrecht, S.; Escalante-Marun, M.; Groenendijk, M.; Papenburg, B.; Rivron, N.; Unadkat, H.; Saile, V.; Subramaniam, V.; Berg, A. van den; Blitterswijk, C. Van; Wessling, M.; Boer, J. den; Stamatialis, D.

    2012-01-01

    This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a

  5. Fabrication of cell container arrays with overlaid surface topographies

    NARCIS (Netherlands)

    Truckenmüller, Roman; Giselbrecht, Stefan; Escalante-Marun, Maryana; Groenendijk, Max; Papenburg, Bernke; Rivron, Nicolas; Unadkat, Hemant; Saile, Volker; Subramaniam, Vinod; van den Berg, Albert; van Blitterswijk, Clemens; Wessling, Matthias; Boer, Jan de; Stamatialis, Dimitrios

    This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a

  6. Immunogold labels: cell-surface markers in atomic force microscopy

    NARCIS (Netherlands)

    Putman, Constant A.J.; Putman, C.A.J.; de Grooth, B.G.; Hansma, Paul K.; van Hulst, N.F.; Greve, Jan

    1993-01-01

    The feasibility of using immunogold labels as cell-surface markers in atomic force microscopy is shown in this paper. The atomic force microscope (AFM) was used to image the surface of immunogold-labeled human lymphocytes. The lymphocytes were isolated from whole blood and labeled by an indirect

  7. Melatonin releasing PLGA micro/nanoparticles and their effect on osteosarcoma cells.

    Science.gov (United States)

    Altındal, Damla Çetin; Gümüşderelioğlu, Menemşe

    2016-02-01

    Melatonin loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles and microparticles in the diameter of ∼200 nm and 3.5 μm, respectively, were prepared by emulsion-diffusion-evaporation method. Melatonin entrapment into the particles was significantly improved with the addition of 0.2% (w/v) melatonin into the aqueous phase and encapsulation efficiencies were found as 14 and 27% for nanoparticles and microparticles, respectively. At the end of 40 days, ∼70% of melatonin was released from both of particles, with high burst release. Both blank and melatonin loaded PLGA nanoparticles caused toxic effect on the MG-63 cells due to their uptake by the cells. However, when 0.05 mg microparticle that is carrying ∼1.7 μg melatonin was added to the cm(2) of culture, inhibitory effect of melatonin on the cells were obviously observed. The results would provide an expectation about the usage of melatonin as an adjunct to the routine chemotherapy of osteosarcoma by encapsulating it into a polymeric carrier system.

  8. Brain Endothelial Cells Control Fertility through Ovarian-Steroid–Dependent Release of Semaphorin 3A

    Science.gov (United States)

    Messina, Andrea; Casoni, Filippo; Vanacker, Charlotte; Langlet, Fanny; Hobo, Barbara; Cagnoni, Gabriella; Gallet, Sarah; Hanchate, Naresh Kumar; Mazur, Danièle; Taniguchi, Masahiko; Mazzone, Massimiliano; Verhaagen, Joost; Ciofi, Philippe; Bouret, Sébastien G.; Tamagnone, Luca; Prevot, Vincent

    2014-01-01

    Neuropilin-1 (Nrp1) guides the development of the nervous and vascular systems, but its role in the mature brain remains to be explored. Here we report that the expression of the 65 kDa isoform of Sema3A, the ligand of Nrp1, by adult vascular endothelial cells, is regulated during the ovarian cycle and promotes axonal sprouting in hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH), the neuropeptide controlling reproduction. Both the inhibition of Sema3A/Nrp1 signaling and the conditional deletion of Nrp1 in GnRH neurons counteract Sema3A-induced axonal sprouting. Furthermore, the localized intracerebral infusion of Nrp1- or Sema3A-neutralizing antibodies in vivo disrupts the ovarian cycle. Finally, the selective neutralization of endothelial-cell Sema3A signaling in adult Sema3a loxP/loxP mice by the intravenous injection of the recombinant TAT-Cre protein alters the amplitude of the preovulatory luteinizing hormone surge, likely by perturbing GnRH release into the hypothalamo-hypophyseal portal system. Our results identify a previously unknown function for 65 kDa Sema3A-Nrp1 signaling in the induction of axonal growth, and raise the possibility that endothelial cells actively participate in synaptic plasticity in specific functional domains of the adult central nervous system, thus controlling key physiological functions such as reproduction. PMID:24618750

  9. Brain endothelial cells control fertility through ovarian-steroid-dependent release of semaphorin 3A.

    Science.gov (United States)

    Giacobini, Paolo; Parkash, Jyoti; Campagne, Céline; Messina, Andrea; Casoni, Filippo; Vanacker, Charlotte; Langlet, Fanny; Hobo, Barbara; Cagnoni, Gabriella; Gallet, Sarah; Hanchate, Naresh Kumar; Mazur, Danièle; Taniguchi, Masahiko; Mazzone, Massimiliano; Verhaagen, Joost; Ciofi, Philippe; Bouret, Sébastien G; Tamagnone, Luca; Prevot, Vincent

    2014-03-01

    Neuropilin-1 (Nrp1) guides the development of the nervous and vascular systems, but its role in the mature brain remains to be explored. Here we report that the expression of the 65 kDa isoform of Sema3A, the ligand of Nrp1, by adult vascular endothelial cells, is regulated during the ovarian cycle and promotes axonal sprouting in hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH), the neuropeptide controlling reproduction. Both the inhibition of Sema3A/Nrp1 signaling and the conditional deletion of Nrp1 in GnRH neurons counteract Sema3A-induced axonal sprouting. Furthermore, the localized intracerebral infusion of Nrp1- or Sema3A-neutralizing antibodies in vivo disrupts the ovarian cycle. Finally, the selective neutralization of endothelial-cell Sema3A signaling in adult Sema3aloxP/loxP mice by the intravenous injection of the recombinant TAT-Cre protein alters the amplitude of the preovulatory luteinizing hormone surge, likely by perturbing GnRH release into the hypothalamo-hypophyseal portal system. Our results identify a previously unknown function for 65 kDa Sema3A-Nrp1 signaling in the induction of axonal growth, and raise the possibility that endothelial cells actively participate in synaptic plasticity in specific functional domains of the adult central nervous system, thus controlling key physiological functions such as reproduction.

  10. Brain endothelial cells control fertility through ovarian-steroid-dependent release of semaphorin 3A.

    Directory of Open Access Journals (Sweden)

    Paolo Giacobini

    2014-03-01

    Full Text Available Neuropilin-1 (Nrp1 guides the development of the nervous and vascular systems, but its role in the mature brain remains to be explored. Here we report that the expression of the 65 kDa isoform of Sema3A, the ligand of Nrp1, by adult vascular endothelial cells, is regulated during the ovarian cycle and promotes axonal sprouting in hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH, the neuropeptide controlling reproduction. Both the inhibition of Sema3A/Nrp1 signaling and the conditional deletion of Nrp1 in GnRH neurons counteract Sema3A-induced axonal sprouting. Furthermore, the localized intracerebral infusion of Nrp1- or Sema3A-neutralizing antibodies in vivo disrupts the ovarian cycle. Finally, the selective neutralization of endothelial-cell Sema3A signaling in adult Sema3aloxP/loxP mice by the intravenous injection of the recombinant TAT-Cre protein alters the amplitude of the preovulatory luteinizing hormone surge, likely by perturbing GnRH release into the hypothalamo-hypophyseal portal system. Our results identify a previously unknown function for 65 kDa Sema3A-Nrp1 signaling in the induction of axonal growth, and raise the possibility that endothelial cells actively participate in synaptic plasticity in specific functional domains of the adult central nervous system, thus controlling key physiological functions such as reproduction.

  11. Responses of fibroblasts and glial cells to nanostructured platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pennisi, C P; Sevcencu, C; Yoshida, K [Center for Sensory-Motor Interaction (SMI), Aalborg University, Aalborg (Denmark); Dolatshahi-Pirouz, A; Foss, M; Larsen, A Nylandsted; Besenbacher, F [Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus (Denmark); Hansen, J Lundsgaard [Department of Physics and Astronomy, Aarhus University, Aarhus (Denmark); Zachar, V, E-mail: cpennisi@hst.aau.d [Laboratory for Stem Cell Research, Aalborg University (Denmark)

    2009-09-23

    The chronic performance of implantable neural prostheses is affected by the growth of encapsulation tissue onto the stimulation electrodes. Encapsulation is associated with activation of connective tissue cells at the electrode's metallic contacts, usually made of platinum. Since surface nanotopography can modulate the cellular responses to materials, the aim of the present work was to evaluate the 'in vitro' responses of connective tissue cells to platinum strictly by modulating its surface nanoroughness. Using molecular beam epitaxy combined with sputtering, we produced platinum nanostructured substrates consisting of irregularly distributed nanopyramids and investigated their effect on the proliferation, cytoskeletal organization and cellular morphology of primary fibroblasts and transformed glial cells. Cells were cultured on these substrates and their responses to surface roughness were studied. After one day in culture, the fibroblasts were more elongated and their cytoskeleton less mature when cultured on rough substrates. This effect increased as the roughness of the surface increased and was associated with reduced cell proliferation throughout the observation period (4 days). Morphological changes also occurred in glial cells, but they were triggered by a different roughness scale and did not affect cellular proliferation. In conclusion, surface nanotopography modulates the responses of fibroblasts and glial cells to platinum, which may be an important factor in optimizing the tissue response to implanted neural electrodes.

  12. Amphipaths Differentially Modulate Membrane Surface Deformation in Rat Peritoneal Mast Cells During Exocytosis

    Directory of Open Access Journals (Sweden)

    Itsuro Kazama

    2013-04-01

    Full Text Available Background/Aims: Salicylate and chlorpromazine exert differential effects on the chemokine release from mast cells. Since these drugs are amphiphilic and preferentially partitioned into the lipid bilayers of the plasma membranes, they would induce some morphological changes in mast cells and thus affect the process of exocytosis. Methods: Employing the standard patch-clamp whole-cell recording technique, we examined the effects of salicylate and chlorpromazine on the membrane capacitance (Cm during exocytosis in rat peritoneal mast cells. Using confocal imaging of a water-soluble fluorescent dye, lucifer yellow, we also examined their effects on plasma membrane deformation of the cells. Results: Salicylate dramatically accelerated the GTP-γ-S-induced increase in the Cm immediately after its application, whereas chlorpromazine significantly suppressed the increase. Treatment with salicylate increased the trapping of the dye on the cell surface, while treatment with chlorpromazine completely washed it out, indicating that both drugs induced membrane surface deformation in mast cells. Conclusion: This study demonstrated for the first time that membrane amphipaths, such as salicylate and chlorpromazine, may oppositely modulate the process of exocytosis in mast cells, as detected by the changes in the Cm. The plasma membrane deformation induced by the drugs was thought to be responsible for their differential effects.

  13. A molecular smart surface for spatio-temporal studies of cell mobility.

    Science.gov (United States)

    Lee, Eun-ju; Luo, Wei; Chan, Eugene W L; Yousaf, Muhammad N

    2015-01-01

    Active migration in both healthy and malignant cells requires the integration of information derived from soluble signaling molecules with positional information gained from interactions with the extracellular matrix and with other cells. How a cell responds and moves involves complex signaling cascades that guide the directional functions of the cytoskeleton as well as the synthesis and release of proteases that facilitate movement through tissues. The biochemical events of the signaling cascades occur in a spatially and temporally coordinated manner then dynamically shape the cytoskeleton in specific subcellular regions. Therefore, cell migration and invasion involve a precise but constantly changing subcellular nano-architecture. A multidisciplinary effort that combines new surface chemistry and cell biological tools is required to understand the reorganization of cytoskeleton triggered by complex signaling during migration. Here we generate a class of model substrates that modulate the dynamic environment for a variety of cell adhesion and migration experiments. In particular, we use these dynamic substrates to probe in real-time how the interplay between the population of cells, the initial pattern geometry, ligand density, ligand affinity and integrin composition affects cell migration and growth. Whole genome microarray analysis indicates that several classes of genes ranging from signal transduction to cytoskeletal reorganization are differentially regulated depending on the nature of the surface conditions.

  14. Extracellular histones disarrange vasoactive mediators release through a COX-NOS interaction in human endothelial cells.

    Science.gov (United States)

    Pérez-Cremades, Daniel; Bueno-Betí, Carlos; García-Giménez, José Luis; Ibañez-Cabellos, José Santiago; Hermenegildo, Carlos; Pallardó, Federico V; Novella, Susana

    2017-08-01

    Extracellular histones are mediators of inflammation, tissue injury and organ dysfunction. Interactions between circulating histones and vascular endothelial cells are key events in histone-mediated pathologies. Our aim was to investigate the implication of extracellular histones in the production of the major vasoactive compounds released by human endothelial cells (HUVECs), prostanoids and nitric oxide (NO). HUVEC exposed to increasing concentrations of histones (0.001 to 100 μg/ml) for 4 hrs induced prostacyclin (PGI2) production in a dose-dependent manner and decreased thromboxane A2 (TXA2) release at 100 μg/ml. Extracellular histones raised cyclooxygenase-2 (COX-2) and prostacyclin synthase (PGIS) mRNA and protein expression, decreased COX-1 mRNA levels and did not change thromboxane A2 synthase (TXAS) expression. Moreover, extracellular histones decreased both, eNOS expression and NO production in HUVEC. The impaired NO production was related to COX-2 activity and superoxide production since was reversed after celecoxib (10 μmol/l) and tempol (100 μmol/l) treatments, respectively. In conclusion, our findings suggest that extracellular histones stimulate the release of endothelial-dependent mediators through an up-regulation in COX-2-PGIS-PGI2 pathway which involves a COX-2-dependent superoxide production that decreases the activity of eNOS and the NO production. These effects may contribute to the endothelial cell dysfunction observed in histone-mediated pathologies. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  15. Releasing dentate nucleus cells from Purkinje cell inhibition generates output from the cerebrocerebellum.

    Directory of Open Access Journals (Sweden)

    Takahiro Ishikawa

    Full Text Available The cerebellum generates its vast amount of output to the cerebral cortex through the dentate nucleus (DN that is essential for precise limb movements in primates. Nuclear cells in DN generate burst activity prior to limb movement, and inactivation of DN results in cerebellar ataxia. The question is how DN cells become active under intensive inhibitory drive from Purkinje cells (PCs. There are two excitatory inputs to DN, mossy fiber and climbing fiber collaterals, but neither of them appears to have sufficient strength for generation of burst activity in DN. Therefore, we can assume two possible mechanisms: post-inhibitory rebound excitation and disinhibition. If rebound excitation works, phasic excitation of PCs and a concomitant inhibition of DN cells should precede the excitation of DN cells. On the other hand, if disinhibition plays a primary role, phasic suppression of PCs and activation of DN cells should be observed at the same timing. To examine these two hypotheses, we compared the activity patterns of PCs in the cerebrocerebellum and DN cells during step-tracking wrist movements in three Japanese monkeys. As a result, we found that the majority of wrist-movement-related PCs were suppressed prior to movement onset and the majority of wrist-movement-related DN cells showed concurrent burst activity without prior suppression. In a minority of PCs and DN cells, movement-related increases and decreases in activity, respectively, developed later. These activity patterns suggest that the initial burst activity in DN cells is generated by reduced inhibition from PCs, i.e., by disinhibition. Our results indicate that suppression of PCs, which has been considered secondary to facilitation, plays the primary role in generating outputs from DN. Our findings provide a new perspective on the mechanisms used by PCs to influence limb motor control and on the plastic changes that underlie motor learning in the cerebrocerebellum.

  16. Innate Lymphoid Cells (ILCs) as Mediators of Inflammation, Release of Cytokines and Lytic Molecules.

    Science.gov (United States)

    Elemam, Noha Mousaad; Hannawi, Suad; Maghazachi, Azzam A

    2017-12-10

    Innate lymphoid cells (ILCs) are an emerging group of immune cells that provide the first line of defense against various pathogens as well as contributing to tissue repair and inflammation. ILCs have been classically divided into three subgroups based on their cytokine secretion and transcription factor profiles. ILC nomenclature is analogous to that of T helper cells. Group 1 ILCs composed of natural killer (NK) cells as well as IFN-γ secreting ILC1s. ILC2s have the capability to produce T H 2 cytokines while ILC3s and lymphoid tissue inducer (LTis) are subsets of cells that are able to secrete IL-17 and/or IL-22. A recent subset of ILC known as ILC4 was discovered, and the cells of this subset were designated as NK17/NK1 due to their release of IL-17 and IFN-γ. In this review, we sought to explain the subclasses of ILCs and their roles as mediators of lytic enzymes and inflammation.

  17. Innate Lymphoid Cells (ILCs as Mediators of Inflammation, Release of Cytokines and Lytic Molecules

    Directory of Open Access Journals (Sweden)

    Noha Mousaad Elemam

    2017-12-01

    Full Text Available Innate lymphoid cells (ILCs are an emerging group of immune cells that provide the first line of defense against various pathogens as well as contributing to tissue repair and inflammation. ILCs have been classically divided into three subgroups based on their cytokine secretion and transcription factor profiles. ILC nomenclature is analogous to that of T helper cells. Group 1 ILCs composed of natural killer (NK cells as well as IFN-γ secreting ILC1s. ILC2s have the capability to produce TH2 cytokines while ILC3s and lymphoid tissue inducer (LTis are subsets of cells that are able to secrete IL-17 and/or IL-22. A recent subset of ILC known as ILC4 was discovered, and the cells of this subset were designated as NK17/NK1 due to their release of IL-17 and IFN-γ. In this review, we sought to explain the subclasses of ILCs and their roles as mediators of lytic enzymes and inflammation.

  18. Ghrelin stimulates angiogenesis in human microvascular endothelial cells: Implications beyond GH release

    International Nuclear Information System (INIS)

    Li Aihua; Cheng Guangli; Zhu Genghui; Tarnawski, Andrzej S.

    2007-01-01

    Ghrelin, a peptide hormone isolated from the stomach, releases growth hormone and stimulates appetite. Ghrelin is also expressed in pancreas, kidneys, cardiovascular system and in endothelial cells. The precise role of ghrelin in endothelial cell functions remains unknown. We examined the expression of ghrelin and its receptor (GHSR1) mRNAs and proteins in human microvascular endothelial cells (HMVEC) and determined whether ghrelin affects in these cells proliferation, migration and in vitro angiogenesis; and whether MAPK/ERK2 signaling is important for the latter action. We found that ghrelin and GHSR1 are constitutively expressed in HMVEC. Treatment of HMVEC with exogenous ghrelin significantly increased in these cells proliferation, migration, in vitro angiogenesis and ERK2 phosphorylation. MEK/ERK2 inhibitor, PD 98059 abolished ghrelin-induced in vitro angiogenesis. This is First demonstration that ghrelin and its receptor are expressed in human microvascular endothelial cells and that ghrelin stimulates HMVEC proliferation, migration, and angiogenesis through activation of ERK2 signaling

  19. Cytokine Release and Focal Adhesion Proteins in Normal Thyroid Cells Cultured on the Random Positioning Machine

    Directory of Open Access Journals (Sweden)

    Elisabeth Warnke

    2017-08-01

    Full Text Available Background/Aims: Spaceflight impacts on the function of the thyroid gland in vivo. In vitro normal and malignant thyrocytes assemble in part to multicellular spheroids (MCS after exposure to the random positioning machine (RPM, while a number of cells remain adherent (AD. We aim to elucidate possible differences between AD and MCS cells compared to 1g-controls of normal human thyroid cells. Methods: Cells of the human follicular epithelial thyroid cell line Nthy-ori 3-1 were incubated for up to 72 h on the RPM. Afterwards, they were investigated by phase-contrast microscopy, quantitative real-time PCR and by determination of cytokines released in their supernatants. Results: A significant up-regulation of IL6, IL8 and CCL2 gene expression was found after a 4h RPM-exposure, when the whole population was still growing adherently. MCS and AD cells were detected after 24 h on the RPM. At this time, a significantly reduced gene expression in MCS compared to 1g-controls was visible for IL6, IL8, FN1, ITGB1, LAMA1, CCL2, and TLN1. After a 72 h RPM-exposure, IL-6, IL-8, and TIMP-1 secretion rates were increased significantly. Conclusion: Normal thyrocytes form MCS within 24 h. Cytokines seem to be involved in the initiation of MCS formation via focal adhesion proteins.

  20. A radiolabel-release microwell assay for proteolytic enzymes present in cell culture media

    International Nuclear Information System (INIS)

    Rucklidge, G.J.; Milne, G.

    1990-01-01

    A modified method for the measurement of proteolytic enzyme activity in cell culture-conditioned media has been developed. Using the release of 3H-labeled peptides from 3H-labeled gelatin the method is performed in microwell plates. The substrate is insolubilized and attached to the wells by glutaraldehyde treatment, thus eliminating the need for a precipitation step at the end of the assay. The assay is sensitive, reproducible, and convenient for small sample volumes. The effect of different protease inhibitors on activity can be assessed rapidly allowing an early characterization of the enzyme. It can also be adapted to microplate spectrophotometric analysis by staining residual substrate with Coomassie blue

  1. Lactoperoxidase catalyzed radioiodination of cell surface immunoglobulin: incorporated radioactivity may not reflect relative cell surface Ig density

    International Nuclear Information System (INIS)

    Wilder, R.L.; Yuen, C.C.; Mage, R.G.

    1979-01-01

    Rabbit and mouse splenic lymphocytes were radioiodinated by the lactoperoxidase technique, extracted with non-ionic detergent, immunoprecipitated with high titered rabbit anti-kappa antisera, and compared by SDS-PAGE. Mouse sIg peaks were reproducibly larger in size than rabbit sIg peaks (often greater than 10 times). Neither differences in incorporation of label into the rabbit cell surface, nor differences in average sIg density explain this result. Total TCA-precipitable radioactivity was similar in each species. Estimation of the relative amounts of sIg in the mouse and rabbit showed similar average sIg densities. Differences in detergent solubility, proteolytic lability, or antisera used also do not adequately account for this difference. Thus, these data indicate that radioactivity incorporated after lactoperoxidase catalyzed cell surface radioiodination may not reflect cell surface Ig density. Conclusions about cell surface density based upon relative incorporation of radioactivity should be confirmed by other approaches

  2. Bone Marrow Mesenchymal Stromal Cells Stimulate Skeletal Myoblast Proliferation through the Paracrine Release of VEGF

    Science.gov (United States)

    Chellini, Flaminia; Mazzanti, Benedetta; Nistri, Silvia; Nosi, Daniele; Saccardi, Riccardo; Quercioli, Franco; Zecchi-Orlandini, Sandra; Formigli, Lucia

    2012-01-01

    Mesenchymal stromal cells (MSCs) are the leading cell candidates in the field of regenerative medicine. These cells have also been successfully used to improve skeletal muscle repair/regeneration; however, the mechanisms responsible for their beneficial effects remain to be clarified. On this basis, in the present study, we evaluated in a co-culture system, the ability of bone-marrow MSCs to influence C2C12 myoblast behavior and analyzed the cross-talk between the two cell types at the cellular and molecular level. We found that myoblast proliferation was greatly enhanced in the co-culture as judged by time lapse videomicroscopy, cyclin A expression and EdU incorporation. Moreover, myoblasts immunomagnetically separated from MSCs after co-culture expressed higher mRNA and protein levels of Notch-1, a key determinant of myoblast activation and proliferation, as compared with the single culture. Notch-1 intracellular domain and nuclear localization of Hes-1, a Notch-1 target gene, were also increased in the co-culture. Interestingly, the myoblastic response was mainly dependent on the paracrine release of vascular endothelial growth factor (VEGF) by MSCs. Indeed, the addition of MSC-derived conditioned medium (CM) to C2C12 cells yielded similar results as those observed in the co-culture and increased the phosphorylation and expression levels of VEGFR. The treatment with the selective pharmacological VEGFR inhibitor, KRN633, resulted in a marked attenuation of the receptor activation and concomitantly inhibited the effects of MSC-CM on C2C12 cell growth and Notch-1 signaling. In conclusion, this study provides novel evidence for a role of MSCs in stimulating myoblast cell proliferation and suggests that the functional interaction between the two cell types may be exploited for the development of new and more efficient cell-based skeletal muscle repair strategies. PMID:22815682

  3. Quality Control Assays for Clinical-Grade Human Mesenchymal Stromal Cells: Methods for ATMP Release.

    Science.gov (United States)

    Radrizzani, Marina; Soncin, Sabrina; Lo Cicero, Viviana; Andriolo, Gabriella; Bolis, Sara; Turchetto, Lucia

    2016-01-01

    Mesenchymal stromal/stem cells (MSC) are promising candidates for the development of cell-based therapies for various diseases and are currently being evaluated in a number of clinical trials (Sharma et al., Transfusion 54:1418-1437, 2014; Ikebe and Suzuki, Biomed Res Int 2014:951512, 2014). MSC for therapeutic applications are classified as advanced therapy medicinal products (ATMP) (Regulation (EC) No 1394/2007 of the European Parliament and of the Council of 13 November 2007 on advanced therapy medicinal products and amending Directive 2001/83/EC and Regulation (EC) No 726/2004) and must be prepared according to good manufacturing practices ( http://ec.europa.eu/health/documents/eudralex/vol-4 ). They may be derived from different starting materials (mainly bone marrow (BM), adipose tissue, or cord blood) and applied as fresh or cryopreserved products, in the autologous as well as an allogeneic context (Sharma et al., Transfusion 54:1418-1437, 2014; Ikebe and Suzuki, Biomed Res Int 2014:951512, 2014; Sensebé and Bourin, Transplantation 87(9 Suppl):S49-S53, 2009). In any case, they require an approved and well-defined panel of assays in order to be released for clinical use.This chapter describes analytical methods implemented and performed in our cell factory as part of the release strategy for an ATMP consisting of frozen autologous BM-derived MSC. Such methods are designed to assess the safety (sterility, endotoxin, and mycoplasma assays) and identity/potency (cell count and viability, immunophenotype and clonogenic assay) of the final product. Some assays are also applied to the biological starting material (sterility) or carried out as in-process controls (sterility, cell count and viability, immunophenotype, clonogenic assay).The validation strategy for each analytical method is described in the accompanying Chapter 20 .

  4. Rotavirus infectious particles use lipid rafts during replication for transport to the cell surface in vitro and in vivo

    International Nuclear Information System (INIS)

    Cuadras, Mariela A.; Greenberg, Harry B.

    2003-01-01

    The pathway by which rotavirus is released from the cell is poorly understood but recent work has shown that, prior to cell lysis, rotavirus is released almost exclusively from the apical surface of the infected cell. By virtue of their unique biochemical and physical properties, viruses have exploited lipid rafts for host cell entry and/or assembly. Here we characterized the association of rhesus rotavirus (RRV) with lipid rafts during the rotavirus replication cycle. We found that newly synthesized infectious virus associates with rafts in vitro and in vivo. RRV proteins cosegregated with rafts on density gradients. Viral infectivity and genomic dsRNA also cosegregated with the raft fractions. Confocal microscopic analysis of raft and RRV virion proteins demonstrated colocalization within the cell. In addition, cholesterol depletion interfered with the association of RRV particles with rafts and reduced the release of infectious particles from the cell. Furthermore, murine rotavirus associates with lipid rafts in intestinal epithelial cells during a natural infection in vivo. Our results confirm the association of rotavirus infectious particles with rafts during replication in vitro and in vivo and strongly support the conclusion that this virus uses these microdomains for transport to the cell surface during replication

  5. Tissue reactions to bacteria-inoculated rat lead samples .2. Effect of local gentamicin release through surface-modified polyurethane tubing

    NARCIS (Netherlands)

    vanWachem, PB; vanLuyn, MJA; deWit, AW; Raatjes, D; Hendriks, M; Verhoeven, MLPM; Cahalan, PT

    A surface modification technique was developed to achieve controlled release of gentamicin from implanted polyurethane (PU) rat lead samples. PU tubing first was provided with an acrylic acid/acrylamide copolymer surface graft and then loaded with gentamicin. This surface modification technique

  6. Histamine release from rodent and human mast cells induced by protoporphyrin and ultraviolet light: studies of the mechanism of mast-cell activation in erythropoietic protoporphyria

    International Nuclear Information System (INIS)

    Glover, R.A.; Bailey, C.S.; Barrett, K.E.; Wasserman, S.I.; Gigli, I.

    1990-01-01

    We report that protoporphyrin (PP) and ultraviolet light (UVA) induces histamine release from rat peritoneal mast cells, mouse bone marrow mast cells and human cutaneous mast cells in a dose- and temperature-dependent manner. The mast-cell activation was associated with loss of membrane integrity and inhibited by the hydrogen peroxide scavenger, catalase. Histamine release was independent of extracellular calcium in the rodent mast cells, but was markedly reduced in the absence of calcium in human cells. These findings indicate that PP and UVA induce mast-cell-mediator release by a process that may involve hydrogen peroxide formation. There appear to be differences in response to PP and UVA between rodent and human mast cells. (author)

  7. Histamine release from rodent and human mast cells induced by protoporphyrin and ultraviolet light: studies of the mechanism of mast-cell activation in erythropoietic protoporphyria

    Energy Technology Data Exchange (ETDEWEB)

    Glover, R.A.; Bailey, C.S.; Barrett, K.E.; Wasserman, S.I.; Gigli, I. (California Univ., San Diego, CA (USA). Dept. of Medicine)

    1990-04-01

    We report that protoporphyrin (PP) and ultraviolet light (UVA) induces histamine release from rat peritoneal mast cells, mouse bone marrow mast cells and human cutaneous mast cells in a dose- and temperature-dependent manner. The mast-cell activation was associated with loss of membrane integrity and inhibited by the hydrogen peroxide scavenger, catalase. Histamine release was independent of extracellular calcium in the rodent mast cells, but was markedly reduced in the absence of calcium in human cells. These findings indicate that PP and UVA induce mast-cell-mediator release by a process that may involve hydrogen peroxide formation. There appear to be differences in response to PP and UVA between rodent and human mast cells. (author).

  8. Correlation between bulk- and surface chemistry of Cr-tanned leather and the release of Cr(III) and Cr(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Hedberg, Yolanda S., E-mail: yolanda@kth.se [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Division of Surface and Corrosion Science, SE-10044 Stockholm (Sweden); Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-17177 Stockholm (Sweden); Lidén, Carola, E-mail: carola.liden@ki.se [Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-17177 Stockholm (Sweden); Odnevall Wallinder, Inger, E-mail: ingero@kth.se [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Division of Surface and Corrosion Science, SE-10044 Stockholm (Sweden)

    2014-09-15

    Graphical abstract: - Highlights: • Released reducing/complexing leather-specific species can reduce released Cr(VI). • No co-released species enable the formation of Cr(VI) in solution. • The major Cr species released from leather in phosphate buffer was Cr(III) (>82%). • No Cr(VI) was released into artificial sweat. - Abstract: About 1–3% of the adult general population in Europe is allergic to chromium (Cr). The assessment of the potential release of Cr(III) and Cr(VI) from leather is hence important from a human health and environmental risk perspective. The Cr(VI) content in leather was recently restricted in the European Union. The aim of this study was to assess possible correlations between the bulk and surface chemistry of leather, released Cr(III) and Cr(VI), and capacities of co-released leather specific species to reduce and complex released Cr. Four differently tanned leathers were characterized by scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and the diphenylcarbazide colorimetric method. Their characteristics were compared with results on Cr(III) and Cr(VI) release into artificial sweat (ASW, pH < 6.5) and phosphate buffer (PB, pH 7.5–8.0), measured by means of spectrophotometry and atomic absorption spectroscopy. Co-released leather-specific species were shown to reduce Cr(VI), both in ASW and in PB. Their reduction capacities correlated with findings of the surface content of Cr and of released Cr. Leather samples without this capacity, and with less aromatic surface groups visible by ATR-FTIR, revealed Cr(VI) both at the surface and in solution (PB)

  9. Surface strategies for control of neuronal cell adhesion: A review

    Science.gov (United States)

    Roach, P.; Parker, T.; Gadegaard, N.; Alexander, M. R.

    2010-06-01

    Material engineering methods have been used for many years to develop biomedical devices for use within the body to augment, repair or replace damaged tissues ranging from contact lenses to heart valves. Here we review the findings gathered from the wide and varied surface analytical approaches applied to study the interaction between biology and man-made materials. The key material characteristics identified to be important for biological recognition are surface chemistry, topography and compliance. Model surfaces with controlled chemistry and topography have provided insight into biological response to various types of topographical features over a wide range of length scales from nano to micrometres, along with 3D matrices that have been used as scaffolds to support cells for tissue formation. The cellular response to surfaces with localised areas of patterned chemistry and to those presenting gradually changing chemistry are discussed. Where previous reviews have been structured around specific classes of surface modification, e.g. self-assembly, or have broadly examined the response of various cells to numerous surfaces, we aim in this article to focus in particular on the tissues involved in the nervous system whilst providing a broad overview of key issues from the field of cell and protein surface interactions with surfaces. The goal of repair and treatment of diseases related to the central and peripheral nervous systems rely on understanding the local interfacial environment and controlling responses at the cellular level. The role of the protein layer deposited from serum containing media onto man-made surfaces is discussed. We highlight the particular problems associated with the repair of the nervous system, and review how neuronal attachment and axon guidance can be accomplished using various surface cues when cultured with single and multiple cell types. We include a brief glossary of techniques discussed in the body of this article aimed at the

  10. Pantex Plant Cell 12-44-1 tritium release: Re-assessment of environmental doses for 1990 to 1992

    International Nuclear Information System (INIS)

    Snyder, S.F.; Hwang, S.T.

    1994-03-01

    A release of tritium gas occurred within Cell 12-44-1 at the Pantex Plant on May 17, 1989. The release was the result of a nuclear component containment failure. This document summarizes past assessments and characterization of the release. From 1990 to 1992, the average annual dose to the offsite maximally exposed individual (MEI), re-assessed using updated methods and data, ranged from 9E-6 to 2E-4 mrem/y. Doses at this level are well below the regulatory dose limit and support the discontinuation of the distinct calculation of the MEI doses from the cell's tritium releases in future Pantex Annual Site Environmental Reports. Additional information provides guidance for the evaluation of similar releases in the future. Improved Environmental Protection Department sampling plans and assessment goals will increase the value of the data collected during future incidents

  11. Influence of engineered surface on cell directionality and motility

    International Nuclear Information System (INIS)

    Tang, Qing Yuan; Pang, Stella W; Tong, Wing Yin; Shi, Peng; Lam, Yun Wah; Shi, Jue

    2014-01-01

    Control of cell migration is important in numerous key biological processes, and is implicated in pathological conditions such as cancer metastasis and inflammatory diseases. Many previous studies indicated that cell migration could be guided by micropatterns fabricated on cell culture surfaces. In this study, we designed a polydimethylsiloxane cell culture substrate with gratings punctuated by corners and ends, and studied its effects on the behavior of MC3T3-E1 osteoblast cells. MC3T3-E1 cells elongated and aligned with the gratings, and the migration paths of the cells appeared to be guided by the grating pattern. Interestingly, more than 88% of the cells cultured on these patterns were observed to reverse their migration directions at least once during the 16 h examination period. Most of the reversal events occurred at the corners and the ends of the pattern, suggesting these localized topographical features induce an abrupt loss in directional persistence. Moreover, the cell speed was observed to increase temporarily right after each directional reversal. Focal adhesion complexes were more well-established in cells on the angular gratings than on flat surfaces, but the formation of filipodia appeared to be imbalanced at the corners and the ends, possibly leading to the loss of directional persistence. This study describes the first engineered cell culture surface that consistently induces changes in the directional persistence of adherent cells. This will provide an experimental model for the study of this phenomenon and a valuable platform to control the cell motility and directionality, which can be used for cell screening and selection. (paper)

  12. Carrier population control and surface passivation in solar cells

    KAUST Repository

    Cuevas, Andres

    2018-05-02

    Controlling the concentration of charge carriers near the surface is essential for solar cells. It permits to form regions with selective conductivity for either electrons or holes and it also helps to reduce the rate at which they recombine. Chemical passivation of the surfaces is equally important, and it can be combined with population control to implement carrier-selective, passivating contacts for solar cells. This paper discusses different approaches to suppress surface recombination and to manipulate the concentration of carriers by means of doping, work function and charge. It also describes some of the many surface-passivating contacts that are being developed for silicon solar cells, restricted to experiments performed by the authors.

  13. Assessment of drug salt release from solutions, suspensions and in situ suspensions using a rotating dialysis cell

    DEFF Research Database (Denmark)

    Parshad, Henrik; Frydenvang, Karla; Liljefors, Tommy

    2003-01-01

    buffer is used as release media. Generally, the initial release of the drug salt from in situ suspensions occurred faster as compared to conventional suspensions, probably due to incomplete precipitation of the drug salt, and hence formation of supersaturated solutions where the rate of release......A rotating dialysis cell consisting of a small (10 ml) and a large compartment (1000 ml) was used to study the release of drug salt (bupivacaine 9-anthracene carboxylate) from (i). solutions, (ii). suspensions and (iii). in situ formed suspensions. Initial release experiments from suspensions...... indicated that the release of drug salt in deionized water was predominantly limited by the diffusion across the membrane whereas it is essentially dissolution rate controlled in 0.05 M phosphate buffer (pH 7.40). Thus, the in vitro model appears to have a potential in formulation screening when phosphate...

  14. Fluorinated Amphiphilic Polymers and Their Blends for Fouling-Release Applications: The Benefits of a Triblock Copolymer Surface

    KAUST Repository

    Sundaram, Harihara S.

    2011-09-28

    Surface active triblock copolymers (SABC) with mixed polyethylene glycol (PEG) and two different semifluorinated alcohol side chains, one longer than the other, were blended with a soft thermoplastic elastomer (TPE), polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS). The surface composition of these blends was probed by X-ray photoelectron spectroscopy (XPS) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The surface reconstruction of the coatings in water was monitored qualitatively by dynamic water contact angles in air as well as air bubble contact angle measurements in water. By blending the SABC with SEBS, we minimize the amount of the SABC used while achieving a surface that is not greatly different in composition from the pure SABC. The 15 wt % blends of the SABC with long fluoroalkyl side chains showed a composition close to that of the pure SABC while the SABC with shorter perfluoroakyl side chains did not. These differences in surface composition were reflected in the fouling-release performance of the blends for the algae, Ulva and Navicula. © 2011 American Chemical Society.

  15. Paracetamol (acetaminophen) attenuates in vitro mast cell and peripheral blood mononucleocyte cell histamine release induced by N-acetylcysteine.

    Science.gov (United States)

    Coulson, James; Thompson, John Paul

    2010-02-01

    The treatment of acute paracetamol (acetaminophen) poisoning with N-acetylcysteine (NAC) is frequently complicated by an anaphylactoid reaction to the antidote. The mechanism that underlies this reaction is unclear. We used the human mast cell line 1 (HMC-1) and human peripheral blood mononucleocytes (PBMCs) to investigate the effects of NAC and paracetamol on histamine secretion in vitro. HMC-1 and human PBMCs were incubated in the presence of increasing concentrations of NAC +/- paracetamol. Cell viability was determined by the Trypan Blue Assay, and histamine secretion was measured by ELISA. NAC was toxic to HMC-1 cells at 100 mg/mL and to PBMCs at 67 mg/mL. NAC increased HMC-1 and PBMC histamine secretion at concentrations of NAC from 20 to 50 mg/mL and 2.5 to 100 mg/mL, respectively. NAC-induced histamine secretion by both cell types was reduced by co-incubation with 2.5 mg/mL of paracetamol. Paracetamol (acetaminophen) is capable of modifying histamine secretion in vitro. This may explain the clinical observation of a lower incidence of adverse reactions to NAC in vivo when higher concentrations of paracetamol are present than when paracetamol concentrations are low. Paracetamol (acetaminophen) attenuates in vitro mast cell and PBMC cell histamine release induced by NAC.

  16. Cell-mediated cytotoxicity for melanome tumor cells: detection by a (3H)proline release assay

    International Nuclear Information System (INIS)

    Saal, J.G.; Rieber, E.P.; Riethmueller, G.

    1976-01-01

    An in vitro lymphocyte-mediated cytotoxicity assay using [ 3 H]proline-labelled target cells is described. The assay, modified from an original procedure of Bean et al., assesses the release of [ 3 H]proline by filtering the total culture fluid containing both trypsinised tumor cells and effector cells. Filtration is performed with a semiautomatic harvesting device using low suction pressure and large-diameter glass filters. Pretreatment of filters with whole serum diminishes adsorption of cell-free radioactive material considerably and thus increases the sensitivity of the assay. Nearly 100% of the radioactivity could be recovered with this harvesting device. The technique allowed the detection of cytolytic activities of lymphocytes after 6 h of incubation. Lymphocytes from patients with primary malignant melanoma showed a significantly higher cytolytic reactivity (p > 0.001) than normal donors' lymphocytes against three different melanoma cell lines. In a series of parallel experiments on 36 patients and 18 normal donors, this modification of the [ 3 ]proline test was compared with three different assays: the conventional microcytotoxicity test of Takasugi and Klein, the original [ 3 H]proline microcytotoxicity test of Bean et al., and the viability count of tumor cells. (Auth.)

  17. Surface modification of closed plastic bags for adherent cell cultivation

    Science.gov (United States)

    Lachmann, K.; Dohse, A.; Thomas, M.; Pohl, S.; Meyring, W.; Dittmar, K. E. J.; Lindenmeier, W.; Klages, C.-P.

    2011-07-01

    In modern medicine human mesenchymal stem cells are becoming increasingly important. However, a successful cultivation of this type of cells is only possible under very specific conditions. Of great importance, for instance, are the absence of contaminants such as foreign microbiological organisms, i.e., sterility, and the chemical functionalization of the ground on which the cells are grown. As cultivation of these cells makes high demands, a new procedure for cell cultivation has been developed in which closed plastic bags are used. For adherent cell growth chemical functional groups have to be introduced on the inner surface of the plastic bag. This can be achieved by a new, atmospheric-pressure plasma-based method presented in this paper. The method which was developed jointly by the Fraunhofer IST and the Helmholtz HZI can be implemented in automated equipment as is also shown in this contribution. Plasma process gases used include helium or helium-based gas mixtures (He + N2 + H2) and vapors of suitable film-forming agents or precursors such as APTMS, DACH, and TMOS in helium. The effect of plasma treatment is investigated by FTIR-ATR spectroscopy as well as surface tension determination based on contact angle measurements and XPS. Plasma treatment in nominally pure helium increases the surface tension of the polymer foil due to the presence of oxygen traces in the gas and oxygen diffusing through the gas-permeable foil, respectively, reacting with surface radical centers formed during contact with the discharge. Primary amino groups are obtained on the inner surface by treatment in mixtures with nitrogen and hydrogen albeit their amount is comparably small due to diffusion of oxygen through the gas-permeable bag, interfering with the plasma-amination process. Surface modifications introducing amino groups on the inner surface turned out to be most efficient in the promotion of cell growth.

  18. Development of Gonadotropin-Releasing Hormone-Secreting Neurons from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Carina Lund

    2016-08-01

    Full Text Available Gonadotropin-releasing hormone (GnRH neurons regulate human puberty and reproduction. Modeling their development and function in vitro would be of interest for both basic research and clinical translation. Here, we report a three-step protocol to differentiate human pluripotent stem cells (hPSCs into GnRH-secreting neurons. Firstly, hPSCs were differentiated to FOXG1, EMX2, and PAX6 expressing anterior neural progenitor cells (NPCs by dual SMAD inhibition. Secondly, NPCs were treated for 10 days with FGF8, which is a key ligand implicated in GnRH neuron ontogeny, and finally, the cells were matured with Notch inhibitor to bipolar TUJ1-positive neurons that robustly expressed GNRH1 and secreted GnRH decapeptide into the culture medium. The protocol was reproducible both in human embryonic stem cells and induced pluripotent stem cells, and thus provides a translational tool for investigating the mechanisms of human puberty and its disorders.

  19. Chronic Pain Treatment: The Influence of Tricyclic Antidepressants on Serotonin Release and Uptake in Mast Cells

    Directory of Open Access Journals (Sweden)

    Ilonka Ferjan

    2013-01-01

    Full Text Available The involvement of serotonin (5-HT in chronic pain mechanisms is established. 5-HT inhibits central painful stimuli, but recent data suggests that 5-HT could also enhance pain stimulus from the periphery, where mast cells play an important role. We aimed in our study to clarify the influence of selected tricyclic antidepressants (TCAs on mast cell function: secretion, uptake, and reuptake of 5-HT, that could interfere with 5-HT levels and in this way contribute to the generation of pain. As an experimental model, we used isolated rat peritoneal mast cells and incubated them with selected TCAs (clomipramine, amitriptyline, doxepin, and imipramine under different experimental conditions. 5-HT release, uptake, and reuptake were determined spectrofluorometrically. We showed that TCAs were able to inhibit 5-HT secretion from mast cells, as well as uptake of exogenous 5-HT and reuptake of secreted 5-HT back into mast cells. The effects of TCAs were concentration dependent; higher concentrations of TCAs inhibited the secretion of 5-HT induced by compound 48/80, whereas lower concentrations of TCAs inhibited 5-HT uptake. The most effective TCA was halogenated clomipramine. As TCAs are well introduced in chronic pain treatment, the insight into mechanisms of action is important for an understanding of their effect in various pain conditions.

  20. Ab initio Hartree-Fock study on surface desorption process in tritium release

    International Nuclear Information System (INIS)

    Taniguchi, M.; Tanaka, S.

    1998-01-01

    Dissociative adsorption of hydrogen on Li 2 O (110) surface has been investigated with ab initio Hartree-Fock quantum chemical calculation technique. Heat of adsorption and surface potential energy for H 2 dissociative adsorption were evaluated by calculating the total energy of the system. The calculated results on adsorption heat indicated that H 2 adsorption is endothermic. However, when an oxygen vacancy exists adjacent to the adsorption site, the heat of adsorption became less endothermic and the activation energy required to dissociate the H-H bonding was smaller than that for the terrace site. This is considered to be caused by the excess charge localized near the defect. (orig.)

  1. Quantum-kinetic modeling of electron release in low-energy surface collisions of atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Marbach, Johannes

    2012-09-20

    In this work we present a theoretical description of electron release in the collision of atomic and molecular projectiles with metallic and especially dielectric surfaces. The associated electron yield, the secondary electron emission coefficient, is an important input parameter for numerical simulations of dielectric barrier discharges and other bounded low-temperature gas discharges. The available reference data for emission coefficients is, however, very sparse and often uncertain, especially for molecular projectiles. With the present work we aim to contribute to the filling of these gaps by providing a flexible and easy-to-use model that allows for a convenient calculation of the emission coefficient and related quantities for a wide range of projectile-surface systems and the most dominant reaction channels.

  2. Quantum-kinetic modeling of electron release in low-energy surface collisions of atoms and molecules

    International Nuclear Information System (INIS)

    Marbach, Johannes

    2012-01-01

    In this work we present a theoretical description of electron release in the collision of atomic and molecular projectiles with metallic and especially dielectric surfaces. The associated electron yield, the secondary electron emission coefficient, is an important input parame