Sample records for relay-assisted ofdma cellular

  1. Optimization Framework and Graph-Based Approach for Relay-Assisted Bidirectional OFDMA Cellular Networks

    Liu, Yuan; Li, Bin; Shen, Hui


    This paper considers a relay-assisted bidirectional cellular network where the base station (BS) communicates with each mobile station (MS) using OFDMA for both uplink and downlink. The goal is to improve the overall system performance by exploring the full potential of the network in various dimensions including user, subcarrier, relay, and bidirectional traffic. In this work, we first introduce a novel three-time-slot time-division duplexing (TDD) transmission protocol. This protocol unifies direct transmission, one-way relaying and network-coded two-way relaying between the BS and each MS. Using the proposed three-time-slot TDD protocol, we then propose an optimization framework for resource allocation to achieve the following gains: cooperative diversity (via relay selection), network coding gain (via bidirectional transmission mode selection), and multiuser diversity (via subcarrier assignment). We formulate the problem as a combinatorial optimization problem, which is NP-complete. To make it more tracta...

  2. Decentralized Fair Scheduling in Two-Hop Relay-Assisted Cognitive OFDMA Systems

    Wang, Rui; Cui, Ying


    In this paper, we consider a two-hop relay-assisted cognitive downlink OFDMA system (named as secondary system) dynamically accessing a spectrum licensed to a primary network, thereby improving the efficiency of spectrum usage. A cluster-based relay-assisted architecture is proposed for the secondary system, where relay stations are employed for minimizing the interference to the users in the primary network and achieving fairness for cell-edge users. Based on this architecture, an asymptotically optimal solution is derived for jointly controlling data rates, transmission power, and subchannel allocation to optimize the average weighted sum goodput where the proportional fair scheduling (PFS) is included as a special case. This solution supports decentralized implementation, requires small communication overhead, and is robust against imperfect channel state information at the transmitter (CSIT) and sensing measurement. The proposed solution achieves significant throughput gains and better user-fairness compa...

  3. TDMA Achieves the Optimal Diversity Gain in Relay-Assisted Cellular Networks

    Bi, Suzhi; Zhang,


    In multi-access wireless networks, transmission scheduling is a key component that determines the efficiency and fairness of wireless spectrum allocation. At one extreme, greedy opportunistic scheduling that allocates airtime to the user with the largest instantaneous channel gain achieves the optimal spectrum efficiency and transmission reliability but the poorest user-level fairness. At the other extreme, fixed TDMA scheduling achieves the fairest airtime allocation but the lowest spectrum efficiency and transmission reliability. To balance the two competing objectives, extensive research efforts have been spent on designing opportunistic scheduling schemes that reach certain tradeoff points between the two extremes. In this paper and in contrast to the conventional wisdom, we find that in relay-assisted cellular networks, fixed TDMA achieves the same optimal diversity gain as greedy opportunistic scheduling. In addition, by incorporating very limited opportunism, a simple relaxed-TDMA scheme asymptotically...

  4. Energy-efficient power control for OFDMA cellular networks

    Sboui, Lokman


    In this paper, we study the energy efficiency (EE) of orthogonal frequency-division multiple access (OFDMA) cellular networks. Our objective is to present a power allocation scheme that maximizes the EE of downlink communications. We propose a novel explicit expression of the optimal power allocation to each subcarrier. We also present the power control when the transmit power is limited by power budget constraint or/and minimal rate constraint and we highlight the occurrence of some transmission outage events depending on the constraints\\' parameters. In the numerical results, we show that our proposed power control improves the EE especially at high power budget regime and low minimal rate regime. In addition, we show that having a higher number of subcarriers enhances the OFDMA EE.

  5. Analytical Evaluation of Fractional Frequency Reuse for OFDMA Cellular Networks

    Novlan, Thomas David; Ghosh, Arunabha; Andrews, Jeffrey G


    Fractional frequency reuse (FFR) is an interference management technique well-suited to OFDMA-based cellular networks wherein the cells are partitioned into spatial regions with different frequency reuse factors. To date, FFR techniques have been typically been evaluated through system-level simulations using a hexagonal grid for the base station locations. This paper instead focuses on analytically evaluating the two main types of FFR deployments - Strict FFR and Soft Frequency Reuse (SFR) - using a Poisson point process to model the base station locations. The results are compared with the standard grid model and an actual urban deployment. Under reasonable special cases for modern cellular networks, our results reduce to simple closed-form expressions, which provide insight into system design guidelines and the relative merits of Strict FFR, SFR, universal reuse, and fixed frequency reuse. We observe that FFR provides an increase in the sum-rate as well as the well-known benefit of improved coverage for ce...

  6. Bilayer Beams and Relay Sharing based OFDMA Cellular Architecture

    Yanxiong Pan


    Full Text Available Over the past decade, researchers have been putting a lot of energy on co-channel interference suppression in the forthcoming fourth generation (4G wireless networks. Existing approaches to interference suppression are mainly based on signal processing, cooperative communication or coordination techniques. Though good performance has been attained already, a more complex receiver is needed, and there is still room for improvement through other ways.Considering spatial frequency reuse, which provides an easier way to cope with the co-channel interference, this paper proposed a bilayer beams and relay sharing based (BBRS OFDMA cellular architecture and corresponding frequency planning scheme. The main features of the novel architecture are as follows. Firstly, the base station (BS uses two beams, one composed of six wide beams providing coverage to mobile stations (MSs that access to the BS, and the other composed of six narrow beams communicating with fixed relay stations (FRSs. Secondly, in the corresponding frequency planning scheme, soft frequency reuse is considered on all FRSs further. System-level simulation results demonstrate that better coverage performance is obtained and the mean data rate of MSs near the cell edge is improved significantly. The BBRS cellular architecture provides a practical method to interference suppression in 4G networks since a better tradeoff between performance and complexity is achieved.




    Full Text Available High peak-to-average power ratio (PAPR reduction is one of the major challenges in orthogonal frequency division multiple access (OFDMA systems since last decades. High PAPR increases the complexity of analogue-to-digital (A/D and digital-to-analogue (D/A convertors and also reduces the efficiency of RF high-power-amplifier (HPA. In this paper, we present a new Discrete- Hartley transform (DHT precoding based interleaved-OFDMA uplink system for PAPR reduction in the upcoming 4G cellular networks. Extensive computer simulations have been performed to analyze the PAPR of the proposed system with root-raised-cosine (RRC pulse shaping. We also compare simulation results of the proposed system with the conventional interleaved-OFDMA uplink systems and the Walsh-Hadamard transform (WHT precoding based interleaved-OFDMA uplink systems. It is concluded from the computer simulations that the proposed system has low PAPR as compared to the conventional interleaved-OFDMA uplink systems and the WHT precoded interleaved-OFDMA uplink systems.

  8. Nearly Optimal Resource Allocation for Downlink OFDMA in 2-D Cellular Networks

    Ksairi, Nassar; Ciblat, Philippe


    In this paper, we propose a resource allocation algorithm for the downlink of sectorized two-dimensional (2-D) OFDMA cellular networks assuming statistical Channel State Information (CSI) and fractional frequency reuse. The proposed algorithm can be implemented in a distributed fashion without the need to any central controlling units. Its performance is analyzed assuming fast fading Rayleigh channels and Gaussian distributed multicell interference. We show that the transmit power of this simple algorithm tends, as the number of users grows to infinity, to the same limit as the minimal power required to satisfy all users' rate requirements i.e., the proposed resource allocation algorithm is asymptotically optimal. As a byproduct of this asymptotic analysis, we characterize a relevant value of the reuse factor that only depends on an average state of the network.

  9. Joint Mode Selection and Resource Allocation for Cellular Controlled Short-Range Communication in OFDMA Networks

    Deng, Hui; Tao, Xiaoming; Ge, Ning; Lu, Jianhua

    This letter studies cellular controlled short-range communication in OFDMA networks. The network needs to decide when to allow direct communication between a closely located device-to-device (D2D) pair instead of conveying data from one device to the other via the base station and when not to, in addition to subchannel and power allocation. Our goal is to maximize the total network throughput while guaranteeing the rate requirements of all users. For that purpose, we formulate an optimization problem subject to subchannel and power constraints. A scheme which combines a joint mode selection and subchannel allocation algorithm based on equal power allocation with a power reallocation scheme is proposed. Simulation results show that our proposed scheme can improve the network throughput and outage probability compared with other schemes.

  10. The Performance of Relay-Enhanced Cellular OFDMA-TDD Network for Mobile Broadband Wireless Services

    Kyungmi Park


    Full Text Available A multihop relay (MR and repeater are useful means for improving system throughput and coverage in a cellular mobile packet access system, as the carrier-to-interference ratio can be improved when deploying them in a heavily shadowed region. In this paper, we report on our investigation of bandwidth efficiency and the associated service outage performance for different relay scenarios, using system level simulation for a cellular Orthogonal Frequency Division Multiple Access-Time Division Duplexing (OFDMA-TDD system. We have demonstrated that network throughput gain by typical optical repeaters, which have a simple amplify-and-forwarding capability in a full-duplexing mode, could be minimal in open space subject to cochannel interference from all repeaters in the neighboring cells. This is true, even though they are generally useful for warranting the outage performance with a multiple order of combining gain, especially in the destructive area, for example, basements or indoors with heavy wall attenuation, that naturally shields interference. Meanwhile, we show that multihop relays increase the average system capacity (almost doubling the system throughput by fully reusing the frequency in every relay station, while improving the per-user data rate in the cell edges or improving the outage performance in the heavily shadowed areas.

  11. Scaling Laws and Design Principles for Multi-Cellular Wireless OFDMA Systems

    Aggarwal, Rohit; Schniter, Philip


    In this paper, we consider the downlink of large-scale multi-cellular OFDMA-based networks and study performance bounds of the system as a function of the number of users $K$, the number of base-stations $B$, and the number of resource-blocks $N$. Here, a resource block is a collection of subcarriers such that all such collections, that are disjoint have associated independently fading channels. We derive novel upper and lower bounds on the sum-utility for a general spatial geometry of base stations, a truncated path loss model, and a variety of fading models (Rayleigh, Nakagami-$m$, Weibull, and LogNormal). We also establish the associated scaling laws and show that, in the special case of fixed number of resource blocks, a grid-based network of base stations, and Rayleigh-fading channels, the sum information capacity of the system scales as $\\Theta(B \\log\\log K/B)$ for extended networks, and as $O(B \\log\\log K)$ and $\\Omega(\\log \\log K)$ for dense networks. Interpreting these results, we develop some design...

  12. Impact of Channel Partitioning and Relay Placement on Resource Allocation in OFDMA Cellular Networks

    Sultan F. Meko


    Full Text Available Tremendous growth in the demand for wireless applications such as streaming audio/videos, Skype and video games require high data rate irrespective of user’s location in the cellular network. However, the Quality of Service (QoS of users degrades at the cell boundary. Relay enhanced multi-hop cellular network is one of the cost effective solution to improve the performance of cell edge users. Optimal deployment of Fixed Relay Nodes (FRNs is essential to satisfy the QoS requirement of edge users. We propose new schemes for channel partitioning and FRN placement in cellular networks. Path-loss, Signal to Interference and Noise Ratio (SINR experienced by users, and effects of shadowing have been considered. The analysis gives more emphasis on the cell-edge users (worst case scenario. The results show that these schemes achieve higher system performance in terms of spectral efficiency and also increase the user data rate at the cell edge.

  13. Generalized instantly decodable network coding for relay-assisted networks

    Elmahdy, Adel M.


    In this paper, we investigate the problem of minimizing the frame completion delay for Instantly Decodable Network Coding (IDNC) in relay-assisted wireless multicast networks. We first propose a packet recovery algorithm in the single relay topology which employs generalized IDNC instead of strict IDNC previously proposed in the literature for the same relay-assisted topology. This use of generalized IDNC is supported by showing that it is a super-set of the strict IDNC scheme, and thus can generate coding combinations that are at least as efficient as strict IDNC in reducing the average completion delay. We then extend our study to the multiple relay topology and propose a joint generalized IDNC and relay selection algorithm. This proposed algorithm benefits from the reception diversity of the multiple relays to further reduce the average completion delay in the network. Simulation results show that our proposed solutions achieve much better performance compared to previous solutions in the literature. © 2013 IEEE.

  14. Resource Allocation for OFDMA Two-Hope Cooperative Cellular Networks: Considering QoS and Fairness Constraints

    Hamed Bani Zaman


    Full Text Available Joint bit allocation, relay selection and subcarrier assignment are critical for achieving full benefits of OFDM-based cooperative relay networks. In this paper, first such a problem is studied in a dual hop OFDMA cooperative network consisting in multi source nodes, multiple decode-and-forward (DF relays and a single destination node. The aim is to minimize overall transmission power under the bit-error-rate (BER and data rate constraints. However, the optimal solution to the optimization problem is computationally complex to obtain and may be unfair. Assuming knowledge of the instantaneous channel gains for all links in the entire network, an iterative three-step resource allocation algorithm with low complexity is proposed. It performs the privileged user selection based on fairness criterion first, and then allocates subcarrier-relay with the given constraints. Finally, power and bit are assigned to the selected subcarriers based on the water-filling algorithm. In order to guarantee the fairness of users, several fairness criteria are also proposed to provide attractive trade-offs between network performance (i.e. overall transmission power, average network lifetime and average outage probability and fairness to all users. Numerical studies are conducted to evaluate the performance of the proposed algorithm in two practical scenarios. Simulation results show that the proposed allocation algorithm achieves an efficient trade-off between network performance and fairness among users.

  15. Protocols for Relay-Assisted Free-Space Optical Systems

    Chatzidiamantis, Nestor D; Kriezis, Emmanouil E; Karagiannidis, George K; Schober, Robert


    We investigate transmission protocols for relay-assisted free-space optical (FSO) systems, when multiple parallel relays are employed and there is no direct link between the source and the destination. As alternatives to all-active FSO relaying, where all the available relays transmit concurrently, we propose schemes that select only a single relay to participate in the communication between the source and the destination in each transmission slot. This selection is based on the channel state information (CSI) obtained either from all or from some of the FSO links. Thus, the need for synchronizing the relays' transmissions is avoided and the slowly varying nature of the atmospheric channel is exploited. For both relay selection and all-active relaying, novel closed-form expressions for their outage performance are derived, assuming the versatile Gamma-Gamma channel model. Furthermore, based on the derived analytical results, the problem of allocating the optical power resources to the FSO links is addressed, ...

  16. Green Resource Allocation for Multiple OFDMA Based Networks:A Survey

    A. S. Khan; J. Abdullah; H. Lenando; J. M. Nazim


    Abstract-Orthogonal frequency division multiple access (OFDMA) is a popular and widely accepted multiple access technique to provide high data rate services in a mobile environment in the area of wireless communications. OFDMA can provide better flexibility in allocating the radio spectra by utilizing subcarrier allocations, scheduling, and energy control to obtain multi-dimension diversity gains. Due to its resource allocation flexibility, OFDMA has been widely used as a green air interface technology for the emerging broadband wireless access networks. This paper extensively addresses the integration of green OFDMA to the future air interface technologies, for instance: two-tier cellular, multi radio access technologies (RATs), FemtoCell, and relay networks. The main focus of the paper is to review and analyze the current OFDMA techniques to address the green resource allocation in multiuser diversity, where the critical constraints are the computational complexity, energy efficiency, and the sub-channel assignment. The future trend of OFDMA based networks will aim to maximize the energy efficiency of the exclusive channel assignment through a joint sub-channel and power allocation to accommodate high data traffic networks specially the relay based 5G cellular networks.

  17. Joint Power and Resource Allocation for Block-Fading Relay-Assisted Broadcast Channels

    Shaqfeh, Mohammad


    We provide the solution for optimizing the power and resource allocation over block-fading relay-assisted broadcast channels in order to maximize the long term average achievable rates region of the users. The problem formulation assumes regenerative (repetition coding) decode-and-forward (DF) relaying strategy, long-term average total transmitted power constraint, orthogonal multiplexing of the users messages within the channel blocks, possibility to use a direct transmission (DT) mode from the base station to the user terminal directly or a relaying (DF) transmission mode, and partial channel state information. We show that our optimization problem can be transformed into an equivalent "no-relaying" broadcast channel optimization problem with each actual user substituted by two virtual users having different channel qualities and multiplexing weights. The proposed power and resource allocation strategies are expressed in closed-form that can be applied practically in centralized relay-assisted wireless netw...

  18. Power allocation scheme for multicell interference coordination in OFDMA systems

    Zhiwei LI; Chunyan FENG; Tiankui ZHANG; Jieying ZHENG


    To coordinate inter-cell interference,a multicell adaptive power allocation scheme is proposed for down-link orthogonal frequency division multiple access (OFDMA) cellular systems.This scheme uses the difference of the signal to interference plus noise ratio (SINR) between the co-subchannels of adjacent cells to balance SINR for coordinating the transmit power in the co-subchannels.The scheme can improve edge user performance,reduce interference between the co-subchannels of adjacent cells and improve radio resource utility.Simulation results show that the scheme can balance system performance and ensure system throughput.

  19. Relay Assisted F/TDMA Ad Hoc Networks: Node Classification, Power Allocation and Relaying Strategies

    Serbetli, Semih


    This paper considers the design of relay assisted F/TDMA ad hoc networks with multiple relay nodes each of which assists the transmission of a predefined subset of source nodes to their respective destinations. Considering the sum capacity as the performance metric, we solve the problem of optimally allocating the total power of each relay node between the transmissions it is assisting. We consider four different relay transmission strategies, namely regenerative decode-and-forward (RDF), nonregenerative decode-and-forward (NDF), amplify-and-forward (AF) and compress-and-forward (CF). We first obtain the optimum power allocation policies for the relay nodes that employ a uniform relaying strategy for all nodes. We show that the optimum power allocation for the RDF and NDF cases are modified water-filling solutions. We observe that for a given relay transmit power, NDF always outperforms RDF whereas CF always provides higher sum capacity than AF. When CF and NDF are compared, it is observed that either of CF o...

  20. On the throughput of a relay-assisted cognitive radio MIMO channel with space alignment

    Sboui, Lokman


    We study the achievable rate of a multiple antenna relay-assisted cognitive radio system where a secondary user (SU) aims to communicate instantaneously with the primary user (PU). A special linear precoding scheme is proposed to enable the SU to take advantage of the primary eigenmodes. The used eigenmodes are subject to an interference constraint fixed beforehand by the primary transmitter. Due to the absence of a direct link, both users exploit an amplify-and-forward relay to accomplish their transmissions to a common receiver. After decoding the PU signal, the receiver employs a successive interference cancellation (SIC) to estimate the secondary message. We derive the optimal power allocation that maximizes the achievable rate of the SU respecting interference, peak and relay power constraints. Furthermore, we analyze the SIC detection accuracy on the PU throughput. Numerical results highlight the cognitive rate gain achieved by our proposed scheme without harming the primary rate. In addition, we show that the relay has an important role in increasing or decreasing PU and SU rates especially when varying its power and/or its amplifying gain. © 2014 IFIP.

  1. Radio resource allocation in OFDMA multi-cell networks

    Detti, Paolo; Abrardo, Andrea


    In this paper, the problem of allocating users to radio resources (i.e., subcarriers) in the downlink of an OFDMA cellular network is addressed. We consider a multi-cellular environment with a realistic interference model and a margin adaptive approach, i.e., we aim at minimizing total transmission power while maintaining a certain given rate for each user. The computational complexity issues of the resulting model is discussed and proving that the problem is NP-hard in the strong sense. Heuristic approaches, based on network flow models, that finds optima under suitable conditions, or "reasonably good" solutions in the general case are presented. Computational experiences show that, in a comparison with a commercial state-of-the-art optimization solver, the proposed algorithms are effective in terms of solution quality and CPU times.

  2. A generic interference model for uplink OFDMA networks with fractional frequency reuse

    Tabassum, Hina


    Fractional frequency reuse (FFR) has emerged as a viable solution to coordinate and mitigate cochannel interference (CCI) in orthogonal frequency-division multiple-access (OFDMA)-based wireless cellular networks. The incurred CCI in cellular networks with FFR is highly uncertain and varies as a function of various design parameters that include the user scheduling schemes, the transmit power distribution among multiple allocated subcarriers, the partitioning of the cellular region into cell-edge and cell-center zones, the allocation of spectrum within each zone, and the channel reuse factors. To this end, this paper derives a generic analytical model for uplink CCI in multicarrier OFDMA networks with FFR. The derived expressions capture several network design parameters and are applicable to any composite fading-channel models. The accuracy of the derivations is verified via Monte Carlo simulations. Moreover, their usefulness is demonstrated by obtaining closed-form expressions for the Rayleigh fading-channel model and by evaluating important network performance metrics such as ergodic capacity. Numerical results provide useful system design guidelines and highlight the trade-offs associated with the deployment of FFR schemes in OFDMA-based networks. © 2013 IEEE.

  3. Exploiting Interference Alignment in Multi-Cell Cooperative OFDMA Resource Allocation

    Da, Bin


    This paper studies interference alignment (IA) based multi-cell cooperative resource allocation for the downlink OFDMA with universal frequency reuse. Unlike the traditional scheme that treats subcarriers as separate dimensions for resource allocation, the IA technique is utilized to enable frequency-domain precoding over parallel subcarriers. In this paper, the joint optimization of frequency-domain precoding via IA, subcarrier user selection and power allocation is investigated for a cooperative three-cell OFDMA system to maximize the downlink throughput. Numerical results for a simplified symmetric channel setup reveal that the IA-based scheme achieves notable throughput gains over the traditional scheme only when the inter-cell interference link has a comparable strength as the direct link, and the receiver SNR is sufficiently large. Motivated by this observation, a practical hybrid scheme is proposed for cellular systems with heterogenous channel conditions, where the total spectrum is divided into two s...

  4. Synchronization for the uplink of OFDMA-based System

    Nguyen, Huan Cong


    he Orthogonal Frequency Division Multiple Access (OFDMA) has recently emerged as one of the prime multiple access schemes for the future broadband wireless networks. In OFDMA, available subcarriers are grouped into subchannels, which are assigned to different users operating simultaneously. Prese...

  5. Performance analysis of relay-assisted all-optical FSO networks over strong atmospheric turbulence channels with pointing errors

    Yang, Liang


    In this study, we consider a relay-assisted free-space optical communication scheme over strong atmospheric turbulence channels with misalignment-induced pointing errors. The links from the source to the destination are assumed to be all-optical links. Assuming a variable gain relay with amplify-and-forward protocol, the electrical signal at the source is forwarded to the destination with the help of this relay through all-optical links. More specifically, we first present a cumulative density function (CDF) analysis for the end-to-end signal-to-noise ratio. Based on this CDF, the outage probability, bit-error rate, and average capacity of our proposed system are derived. Results show that the system diversity order is related to the minimum value of the channel parameters.

  6. Timing and frequency offset estimation in the uplink OFDMA

    Nguyen, Huan Cong; Carvalho, Elisabeth De; Prasad, Ramjee


    Based on Orthogonal Frequency Division Multiplexing (OFDM), Orthogonal Frequency Division Multiple Access (OFDMA) has emerged as one of the prime multiple access schemes for broadband wireless networks, e.g. the IEEE 802.16 wireless MAN standard. While OFDMA is relatively simple to implement...... in the downlink, it is more challenging in the uplink as users must be aligned in time and frequency to maintain the orthogonality of the subcarriers. This paper proposes a novel method to estimate jointly timing and frequency offset for multi-user in the uplink OFDMA. The scheme is compatible with the ranging...

  7. A new access scheme in OFDMA systems

    GU Xue-lin; YAN Wei; TIAN Hui; ZHANG Ping


    This article presents a dynamic random access scheme for orthogonal frequency division multiple access (OFDMA) systems. The key features of the proposed scheme are:it is a combination of both the distributed and the centralized schemes, it can accommodate several delay sensitivity classes,and it can adjust the number of random access channels in a media access control (MAC) frame and the access probability according to the outcome of Mobile Terminals access attempts in previous MAC frames. For floating populated packet-based networks, the proposed scheme possibly leads to high average user satisfaction.

  8. Packet scheduling for OFDMA based relay networks


    The combination of relay networks with orthogonal frequency division multiple access (OFDMA) has been proposed as a promising solution for the next generation wireless system. Considering different traffic classes and user quality of service (QoS), three efficient scheduling algorithms are introduced in such networks. The round-robin (RR) algorithm in relay networks serves as a performance benchmark. Numerical results show that the proposed algorithms achieve significant improvement on system throughput and decrease system packet loss rate, compared with the RR and absence of relaying system (traditional network). Furthermore, comparisons have been carried out among the three proposed algorithms.

  9. A novel dynamic wavelength bandwidth allocation scheme over OFDMA PONs

    Yan, Bo; Guo, Wei; Jin, Yaohui; Hu, Weisheng


    With rapid growth of Internet applications, supporting differentiated service and enlarging system capacity have been new tasks for next generation access system. In recent years, research in OFDMA Passive Optical Networks (PON) has experienced extraordinary development as for its large capacity and flexibility in scheduling. Although much work has been done to solve hardware layer obstacles for OFDMA PON, scheduling algorithm on OFDMA PON system is still under primary discussion. In order to support QoS service on OFDMA PON system, a novel dynamic wavelength bandwidth allocation (DWBA) algorithm is proposed in this paper. Per-stream QoS service is supported in this algorithm. Through simulation, we proved our bandwidth allocation algorithm performs better in bandwidth utilization and differentiate service support.

  10. Loading Schemes for Downlink OFDMA Systems

    KONG Jian; LIU Fang; WANG Wen-bo; LIU Yuan-an


    In this paper we study the subcarrier and bit allocation strategies for downlink OFDMA system. Our optimization objective is to find optimum subcarrier and bit assignment minimizing the total transmitted power with the constraints on BER and data rate for all users. We divide this problem into three steps: resource allocation, subcarrier assignment and single-user power and bit allocation. For the first two steps we propose new algorithms. Various loading schemes constitute by combining these algorithms as well as algorithms proposed in Ref . [ 6 ]. Simulation results demonstrate that our proposed suboptimal loading scheme can achieve performance closer to the near optimal algorithm in Ref . [ 8 ] with much lower complexity than schemes in Ref .[6].

  11. Receiver based PAPR reduction in OFDMA

    Ali, Anum Z.


    High peak-to-average power ratio is one of the major drawbacks of orthogonal frequency division multiplexing (OFDM). Clipping is the simplest peak reduction scheme, however, it requires clipping mitigation at the receiver. Recently compressed sensing has been used for clipping mitigation (by exploiting the sparse nature of clipping signal). However, clipping estimation in multi-user scenario (i.e., OFDMA) is not straightforward as clipping distortions overlap in frequency domain and one cannot distinguish between distortions from different users. In this work, a collaborative clipping removal strategy is proposed based on joint estimation of the clipping distortions from all users. Further, an effective data aided channel estimation strategy for clipped OFDM is also outlined. Simulation results are presented to justify the effectiveness of the proposed schemes. © 2014 IEEE.

  12. Self-Optimized OFDMA via Multiple Stackelberg Leader Equilibrium

    Ren, Jie; Hou, Jianjun


    The challenge of self-optimization for orthogonal frequency-division multiple-access (OFDMA) interference channels is that users inherently compete harmfully and simultaneous water-filling (WF) would lead to a Pareto-inefficient equilibrium. To overcome this, we first introduce the role of environmental interference derivative in the WF optimization of the interactive OFDMA game and then study the environmental interference derivative properties of Stackelberg equilibrium (SE). Such properties provide important insights to devise free OFDMA games for achieving various SEs, realizable by simultaneous WF regulated by specifically chosen operational interference derivatives. We also present a definition of all-Stackelberg-leader equilibrium (ASE) where users are all foresighted to each other, albeit each with only local channel state information (CSI), and can thus most effectively reconcile their competition to maximize the user rates. We show that under certain environmental conditions, the free games are both...

  13. Synchronization for the uplink of OFDMA-based System

    Nguyen, Huan Cong


    are designed for single-user system, and therefore are not able to correct multiple CFOs in the uplink. The aim of this thesis is to provide practical solutions  for the synchronization issues occurring in the uplink of the OFDMA-based broadband wireless systems.  Several data-aided CFO estimation algorithms...

  14. A generalized carrier frequency offset estimator for uplink OFDMA

    Nguyen, Huan Cong; De Carvalho, Elisabeth; Prasad, Ramjee

    This paper proposes a generalized carrier frequency offset (CFO) estimator for the uplink of orthogonal frequency division multiple access (OFDMA) wireless systems. Using the maximum likelihood criterion, the estimator estimates CFOs using the phase shift between two observation windows at distance...

  15. Downlink resource allocation in beyond 3G OFDMA cellular systems

    Jorgušeski, L.; Prasad, R.


    Orthogonal Frequency Division Multiplex (OFDM) based wireless communication is becoming a standard for providing broadband wireless services. OFDM is already deployed in various WLAN systems such as 802.11 a/g/e and in the mobile WiMAX systems (802.16e). The OFDM physical layer is also considered by

  16. Mitigation of timing offset effect in IM/DD based OFDMA-PON uplink multiple access.

    Jung, Sun-Young; Jung, Sang-Min; Park, Hyoung-Joon; Han, Sang-Kook


    In orthogonal frequency division multiple access based passive optical network (OFDMA-PON) uplink, synchronization between optical network units (ONUs) is very important to maintain orthogonality. The synchronization among uplink signals is considered as one of the main challenges in OFDMA-PON due to optical path difference. In this paper, the performance degradation according to timing offset between ONUs is experimentally analyzed. And we propose and demonstrate timing offset effect reduction in asynchronous multiple access by using CP extension and filter bank based multicarrier (FBMC) system in intensity modulation/direct detection (IM/DD) based OFDMA-PON uplink transmission.

  17. Performance evaluation of the fixed relay in OFDMA systems

    Gao Peng; Wu Xiaoyan; Meng Dexiang; Chen Yanming; Tu Guofang


    Performance of fixed relays in orthogonal frequency division multiple access (OFDMA) systems, especially the coverage and capacity performance at the cell edge, is evaluated in this paper.Two methods, theoretical analysis and calculation and Monte Carlo simulation, are used for the evaluations.By theoretical analysis and calculation, frequency efficiency equation of a relay is introduced and numerical results are calculated.Monte Carlo simulation results also verify that the calculation method is reasonable.The evaluation shows that a relay can increase system performance to a certain level if it is designed appropriately, otherwise it will be harmful for the system performance, even to reduce it.

  18. Multiuser Radio Resource Allocation for Multiservice Transmission in OFDMA-Based Cooperative Relay Networks

    Zhang Xing


    Full Text Available Abstract The problem of multiservice transmission in OFDMA-based cooperative relay networks is studied comprehensively. We propose a framework to adaptively allocate power, subcarriers, and data rate in OFDMA system to maximize spectral efficiency under the constraints of satisfying multiuser multiservices' QoS requirements. Specifically, first we concentrate on the single-user scenario which considers multiservice transmission in point-to-point cooperative relay network. Based on the analysis of single-user scenario, we extend the multiservice transmission to multiuser point-to-multipoint scenario. Next, based on the framework, we propose several suboptimal radio resource allocation algorithms for multiservice transmissions in OFDMA-based cooperative relay networks to further reduce the computational complexity. Simulation results show that the proposed algorithms yield much higher spectral efficiency and much lower outage probability, which are flexible and efficient for the OFDMA-based cooperative relay system.

  19. Analytical Evaluation of the Performance of Proportional Fair Scheduling in OFDMA-Based Wireless Systems

    Mohamed H. Ahmed


    Full Text Available This paper provides an analytical evaluation of the performance of proportional fair (PF scheduling in Orthogonal Frequency-Division Multiple Access (OFDMA wireless systems. OFDMA represents a promising multiple access scheme for transmission over wireless channels, as it combines the orthogonal frequency division multiplexing (OFDM modulation and subcarrier allocation. On the other hand, the PF scheduling is an efficient resource allocation scheme with good fairness characteristics. Consequently, OFDMA with PF scheduling represents an attractive solution to deliver high data rate services to multiple users simultaneously with a high degree of fairness. We investigate a two-dimensional (time slot and frequency subcarrier PF scheduling algorithm for OFDMA systems and evaluate its performance analytically and by simulations. We derive approximate closed-form expressions for the average throughput, throughput fairness index, and packet delay. Computer simulations are used for verification. The analytical results agree well with the results from simulations, which show the good accuracy of the analytical expressions.

  20. Efficient Design of OFDMA-Based Programmable Wireless Radios

    A. H. Tewfik


    Full Text Available With the increasing demand for efficient spectrum management, programmable wireless radios can potentially play a key role in shaping our future spectrum use. In this paper, we consider the design of low-power programmable wireless radios based on orthogonal frequency division multiple access (OFDMA. To meet the demands of higher data rate communications, we split OFDMA symbols carrying multiuser data across several noncontiguous bands of available spectrum. To relax power consumption in analog-to-digital and digital-to-analog converters, we use a programmable narrowband RF front end comprising of programmable synthesizers and fixed low-pass filters. To perform digital baseband signal processing in an energy efficient manner, we propose efficient designs for the fast Fourier transform (FFT and inverse FFT (IFFT modules. Our designs of the FFT/IFFT modules reduce power consumption and chip area, and are capable of handling the dynamic nature of spectrum in programmable radios. To recover data that falls within the transition band of the filters, we propose a combiner similar to maximal ratio combiner. We also present the complete design of programmable wireless radios in accordance with the IEEE 802.22 (draft standard.

  1. Efficient Design of OFDMA-Based Programmable Wireless Radios

    Shah SFA


    Full Text Available With the increasing demand for efficient spectrum management, programmable wireless radios can potentially play a key role in shaping our future spectrum use. In this paper, we consider the design of low-power programmable wireless radios based on orthogonal frequency division multiple access (OFDMA. To meet the demands of higher data rate communications, we split OFDMA symbols carrying multiuser data across several noncontiguous bands of available spectrum. To relax power consumption in analog-to-digital and digital-to-analog converters, we use a programmable narrowband RF front end comprising of programmable synthesizers and fixed low-pass filters. To perform digital baseband signal processing in an energy efficient manner, we propose efficient designs for the fast Fourier transform (FFT and inverse FFT (IFFT modules. Our designs of the FFT/IFFT modules reduce power consumption and chip area, and are capable of handling the dynamic nature of spectrum in programmable radios. To recover data that falls within the transition band of the filters, we propose a combiner similar to maximal ratio combiner. We also present the complete design of programmable wireless radios in accordance with the IEEE 802.22 (draft standard.

  2. Flexible proportional-rate scheduling for OFDMA system

    Leith, Alex


    In this paper, we study the sum-rate maximization algorithms for downlink and uplink orthogonal frequency division multiple access (OFDMA) systems under proportional-rate constraint (PRC) and minimum-rate constraint. We develop a low-complexity weighted channel signal-to-noise ratio (w-SNR)-based ranking scheme for user selection on each subchannel in OFDMA combined with waterfilling (WF) power allocation. Both offline and online optimization algorithms are developed to optimize the SNR weight vector to maximize the sum rate while satisfying several constraints, such as PRC. The offline weight optimization technique relies on the analytical throughput results developed in this paper, and the online weight adaptation method tracks the user rates and meets the PRC using a subgradient search. Furthermore, we introduce a novel SNR operating region test to enhance the multiuser diversity gain and the sum rate. The proposed schemes have a low complexity, which is linear to the numbers of users and subchannels. Simulation results verify the accuracy of the developed analytical rates and fairness formulas, and show that the proposed w-SNR schemes can achieve higher sum rates than several benchmark schemes that provide the PRC with either short-term or long-term fairness. © 2013 IEEE. © 2013 ESO.

  3. Power margin improvement for OFDMA-PON using hierarchical modulation.

    Cao, Pan; Hu, Xiaofeng; Zhuang, Zhiming; Zhang, Liang; Chang, Qingjiang; Yang, Qi; Hu, Rong; Su, Yikai


    We propose and experimentally demonstrate a hierarchical modulation scheme to improve power margin for orthogonal frequency division multiple access-passive optical networks (OFDMA-PONs). In a PON system, under the same launched optical power, optical network units (ONUs) have different power margins due to unequal distribution fiber lengths. The power margin of the PON system is determined by the ONU with the lowest power margin. In our proposed scheme, ONUs with long and short distribution fibers are grouped together, and downstream signals for the paired ONUs are mapped onto the same OFDM subcarriers using hierarchical modulation. In a pair of ONUs, part of the power margin of the ONU with short distribution fiber is re-allocated to the ONU with long distribution fiber. Therefore, the power margin of the ONU with the longest distribution fiber can be increased, leading to the power margin improvement of the PON system. Experimental results show that the hierarchical modulation scheme improves the power margin by 2.7 dB for an OFDMA-PON system, which can be used to support more users or extend transmission distance.

  4. An iterative interference cancellation based frequency offset estimation method for OFDMA uplink systems

    Zhou En; Wang Wenbo


    In this paper, Moose scheme is used for frequency offset estimation in OFDMA uplink systems due to that the signals from different users can be easily distinguished in frequency domain. However, differential multiple access interference (MAI) will deteriorate the frequency offset estimation performances,especially in interleaved OFDMA system. Analysis and simulation results manifest that frequency offset estimation by Moose scheme in block OFDMA system is more robust than that in interleaved OFDMA system. And an iterative interference cancellation method has been proposed to suppress the differential MAI interference for interleaved OFDMA system, in which Moose scheme is the special case of the number of iteration is equal to one. Simulation results demonstrate that the proposed method can improve the performance with the increase of the number of iterations. In consideration of the performance and complexity,the proposed method with two iterations is selected. And the full comparison results of the proposed iterative method with two iterations and that with one iteration (conventional Moose scheme) are given in the paper, which sufficiently demonstrate that the performance gain can be obtained by the interference cancellation operation in interleaved OFDMA system.

  5. A novel resource optimization scheme for multi-cell OFDMA relay network

    Ning DU; Fa-sheng LIU


    In cellular networks, users communicate with each other through their respective base stations (BSs). Conventionally, users are assumed to be in different cells. BSs serve as decode-and-forward (DF) relay nodes to users. In addition to this type of conventional user, we recognize that there are scenarios users who want to communicate with each other are located in the same cell. This gives rise to the scenario of intra-cell communication. In this case, a BS can behave as a two-way relay to achieve information exchange instead of using conventional DF relay. We consider a multi-cell orthogonal frequency division multiple access (OFDMA) network that comprises these two types of users. We are interested in resource allocation between them. Specifi cally, we jointly optimize subcarrier assignment, subcarrier pairing, and power allocation to maximize the weighted sum rate. We consider the resource allocation problem at BSs when the end users’ power is fi xed. We solve the problem approximately through Lagrange dual decomposition. Simulation results show that the proposed schemes outperform other existing schemes.

  6. Integrated Fractional Load and Packet Scheduling for OFDMA Systems

    Monghal, Guillaume Damien; Kumar, S.; Pedersen, Klaus I.


    This paper study the performance of an orthogonal frequency division multiple access (OFDMA) system under fractional load based in long term evolution (LTE) downlink. Fractional load is defined by a situation where only a fraction of the bandwidth is used for transmission due to lack of traffic....... This type of situation should result in a global increase of signal to interference and noise ratio (SINR) conditions in the network. We propose different methods integrating the transmission pattern selection to the packet scheduling functionality of the enode-B depending only on the channel quality...... indicator (CQI) reports from the user equipments. Fractional load handling is operated without inter eNode-B coordination. We conclude that the system can operate under fractional load conditions if the CQI is calculated with wideband interference. Further gain can be obtained if the CQI is calculated...

  7. Self-Organizing OFDMA System for Broadband Communication

    Roy, Aloke (Inventor); Anandappan, Thanga (Inventor); Malve, Sharath Babu (Inventor)


    Systems and methods for a self-organizing OFDMA system for broadband communication are provided. In certain embodiments a communication node for a self organizing network comprises a communication interface configured to transmit data to and receive data from a plurality of nodes; and a processing unit configured to execute computer readable instructions. Further, computer readable instructions direct the processing unit to identify a sub-region within a cell, wherein the communication node is located in the sub-region; and transmit at least one data frame, wherein the data from the communication node is transmitted at a particular time and frequency as defined within the at least one data frame, where the time and frequency are associated with the sub-region.

  8. Heuristic based data scheduling algorithm for OFDMA wireless network


    A system model based on joint layer mechanism is formulated for optimal data scheduling over fixed point-to-point links in OFDMA ad-hoc wireless networks.A distributed scheduling algorithm (DSA) for system model optimization is proposed that combines the randomly chosen subcarrier according to the channel condition of local subcarriers with link power control to limit interference caused by the reuse of subcarrier among links.For the global fairness improvement of algorithms,a global power control scheduling algorithm (GPCSA) based on the proposed DSA is presented and dynamically allocates global power according to difference between average carrier-noise-ratio of selected local links and system link protection ratio.Simulation results demonstrate that the proposed algorithms achieve better efficiency and fairness compared with other existing algorithms.

  9. Suboptimal Rate Adaptive Resource Allocation for Downlink OFDMA Systems

    Sanam Sadr


    Full Text Available This paper aims to study the performance of low complexity adaptive resource allocation in the downlink of OFDMA systems with fixed or variable rate requirements (with fairness consideration. Two suboptimal resource allocation algorithms are proposed using the simplifying assumption of transmit power over the entire bandwidth. The objective of the first algorithm is to maximize the total throughput while maintaining rate proportionality among the users. The proposed suboptimal algorithm prioritizes the user with the highest sensitivity to the subcarrier allocation, and the variance over the subchannel gains is used to define the sensitivity of each user. The second algorithm concerns rate adaptive resource allocation in multiuser systems with fixed rate constraints. We propose a suboptimal joint subchannel and power allocation algorithm which prioritizes the users with the highest required data rates. The main feature of this algorithm is its low complexity while achieving the rate requirements.

  10. Carrier Frequency Offset Compensation for an Interleaved OFDMA Uplink

    FAN Da; CAO Zhigang


    This paper reports an investigation of the carrier frequency offset (CFO) compensation in the up-link of the orthogonal frequency division multiple access (OFDMA) system with interleaved subcarrier as-signment. The presence of CFOs between the transmitters and the uplink receiver will destroy the orthogo-nality among the different subcarriers, resulting in inter-carrier interference and multiuser interference. This paper proposes a pseudoinverse CFO compensation method based on the signal structure. The proposed method can compensate the CFOs of all users simultaneously and isolate the signals from all users at the same time. Compared with the existing CFO compensation methods, the new method provides a consider-able signal-to-noise ratio gain on the bit error rate performance and has a relatively low implementation complexity.

  11. Location-based resource allocation for OFDMA cognitive radio systems

    Nam, Haewoon


    In cognitive radio systems, in order for the secondary users to opportunistically share the spectrum without interfering the primary users, an accurate spectrum measurement and a precise estimation of the interference at the primary users are necessary but are challenging tasks. Since it is impractical in cognitive radio systems to assume that the channel state information of the interference link is available at the cognitive transmitter, the interference at the primary users is hard to be estimated accurately. This paper introduces a resource allocation algorithm for OFDMA-based cognitive radio systems, which utilizes location information of the primary and secondary users instead of the channel state information of the interference link. Simulation results show that it is indeed effective to incorporate location information into resource allocation so that a near-optimal capacity is achieved.

  12. Investigation of Frequency-Domain Link Adaptation for a 5-MHz OFDMA/HSDPA system

    Pokhariyal, Akhilesh; Kolding, Troels E.; Frederiksen, Frank


    In this paper, we investigate frequency domain link adaptation (FDLA), e.g. utilizing the frequency selectivity of the channel in an OFDMA system. To make the study specific and based on realistic parameters, we re-use the specifications from a recent 3GPP 5-MHz OFDMA study item. The link...... find that optimum waterfilling power distribution only provides a marginal gain over a simpler on/off equal power distribution algorithm per sub-carrier pool when signaling imperfections are taken into account....


    Fan Da; Cao Zhigang


    This paper investigates Carrier Frequency Offset (CFO), estimation in the uplink of the Orthogonal Frequency-Division Multiple Access (OFDMA) systems with the interleaved subcarrier assignment. CFOs between the transmitters and the uplink receiver will destroy orthogonality among different subcarriers, hence resulting in inter-carrier interference and multiuser interference. A two-stage frequency offset estimation algorithm based on subspace processing is proposed. The main advantage of the proposed method is that it can obtain the CFOs of all users simultaneously using only one OFDMA block. Compared with the previously known methods, it not only has a relatively low implementation complexity but is also suitable for random subchannel assignment.

  14. Multi-user interference cancellation schemes for carrier frequency offset compensation in uplink OFDMA

    Nguyen, Huan Cong; De Carvalho, Elisabeth; Prasad, Ramjee


    the system performance severely. In this paper, novel time-domain multi-user interference cancellation schemes for OFDMA uplink are proposed. They employ an architecture with multiple and numerical evaluations show that the proposed schemes achieve a significant performance gain compared to the conventional...... receiver and a reference frequency-domain multi-user interference cancellation scheme. In a particular scenario, a maximum CFO of up to 40% of the subcarrier spacing can be tolerated, and the CFO-free performance is maintained in the OFDMA uplink. The proposed schemes outperform the multi-user interference...

  15. Uplink User Signal Separation for OFDMA-Based Cognitive Radios

    Guvenc Ismail


    Full Text Available Spectrum awareness of orthogonal frequency division multiple access- (OFDMA- based cognitive radios (CRs can be improved by enabling them to separate the primary user signals in the uplink (UL. Assuming availability of information about the basic parameters of the primary system as well as time synchronization to the first arriving user signal, two algorithms are proposed in this paper. The first one targets estimating the size of the frequency allocation block of the primary system. The performance of this algorithm is compared with the results of a Gaussian approximation-based approach that aims to determine the probability of correct block size estimation theoretically. The second one is a semiblind user separation algorithm, which estimates the carrier frequency offsets and time delays of each block by exploiting the cross-correlations over pilot subcarriers. A two-dimensional clustering method is then employed to group the estimates, where each group belongs to a different user. It is shown that the proposed algorithms can improve the spectrum opportunity detection of cognitive radios. Feasibility of the algorithms is proved through practical simulations.

  16. Weighted-SNR-based fair scheduling for uplink OFDMA

    Ma, Yao


    In this paper, we study the sum rate maximization algorithms with long-term proportional rate fairness (PRF) for uplink orthogonal frequency division multiple access (OFDMA) systems. In contrast to the rate-maximization schemes which used short-term PRF in the literature, we propose to use a selective multiuser diversity (SMuD) scheme to achieve a long-term PRF and improved sum rate performance. This scheme implements weighted channel signal-to-noise ratio (w-SNR)-based ranking for user selection on each subchannel, and then uses either water-filling (WF) or equal power allocation (EPA) along the assigned channels of each user. Both offline and online methods to find the optimal SNR weight factors are designed to achieve the target proportional rates for different users. The offline optimization technique requires to know the channel distribution information (CDI) at the scheduler. The online method uses the weight adaption combined with individual user rate tracking, which avoids the need to know the CDI. Analytical throughput metrics for the proposed w-SNR scheme with WF and EPA over Rayleigh channels are derived, and verified by simulations. Simulation results show that the proposed w-SNR PRF scheme can achieve significantly higher sum rates than the frequency diversity-based short-term and long-term fairness schemes. Besides the improved performance, the proposed schemes have a low complexity which is linear to numbers of users and subchannels.

  17. Downlink Radio Resource Management for QoS Provisioning in OFDMA Systems

    Monghal, Guillaume Damien

    Orthogonal Frequency Division Multiple Access (OFDMA) is the preferred technology for future downlink mobile broadband access systems as the 3rd Generation Partnership Project Long Term Evolution (LTE) in downlink, where the diversification of the proposed services (Voice Over Internet Protocol...

  18. Low-Bandwidth Channel Quality Indication for OFDMA Frequency Domain Packet Scheduling

    Kolding, Troels E.; Frederiksen, Frank; Pokhariyal, Akhilesh


     In this paper, we study methods for lowering the bandwidth needed for the UE to transmit channel quality indication (CQI) for time and frequency domain scheduling (FDPS) in OFDMA. We consider smart compression methods, such as threshold based indication, to only include scheduler...

  19. Rate Adaptive Based Resource Allocation with Proportional Fairness Constraints in OFDMA Systems.

    Yin, Zhendong; Zhuang, Shufeng; Wu, Zhilu; Ma, Bo


    Orthogonal frequency division multiple access (OFDMA), which is widely used in the wireless sensor networks, allows different users to obtain different subcarriers according to their subchannel gains. Therefore, how to assign subcarriers and power to different users to achieve a high system sum rate is an important research area in OFDMA systems. In this paper, the focus of study is on the rate adaptive (RA) based resource allocation with proportional fairness constraints. Since the resource allocation is a NP-hard and non-convex optimization problem, a new efficient resource allocation algorithm ACO-SPA is proposed, which combines ant colony optimization (ACO) and suboptimal power allocation (SPA). To reduce the computational complexity, the optimization problem of resource allocation in OFDMA systems is separated into two steps. For the first one, the ant colony optimization algorithm is performed to solve the subcarrier allocation. Then, the suboptimal power allocation algorithm is developed with strict proportional fairness, and the algorithm is based on the principle that the sums of power and the reciprocal of channel-to-noise ratio for each user in different subchannels are equal. To support it, plenty of simulation results are presented. In contrast with root-finding and linear methods, the proposed method provides better performance in solving the proportional resource allocation problem in OFDMA systems.

  20. QoS-Guaranteed Admission Control for OFDMA-based Systems

    Ramkumar, Venkata; Anggorojati, Bayu; Lucian, Stefan P. Andrei;


    , the satisfaction index (SI) and priority is calculated for every user, which is used as key input for the scheduler. Further, the resource allocation in time and frequency for Orthogonal Frequency Division Multiplexing (OFDMA) systems is also discussed based on user satisfaction and number of slots required...

  1. Experimental demonstration of a scalable transmitter frontend technique in IMDD-OFDMA-PON upstream scheme

    Ju, Cheng; Liu, Na; Wang, Dongdong; Zhang, Zhiguo; Chen, Xue


    Scalable transmitter frontend scheme is proposed to reduce the sampling rate of digital-to-analog converter (DAC) and the complexity of digital signal processing (DSP) in intensity modulation and direct detection (IMDD) OFDMA-PON upstream scenarios. The hardware cost of each ONU is substantially decreased. The feasibility of the proposed scheme is experimentally demonstrated.

  2. Opportunistic Scheduling and Beamforming for MIMO-OFDMA Downlink Systems with Reduced Feedback

    Pun, Man-On; Poor, H Vincent


    Opportunistic scheduling and beamforming schemes with reduced feedback are proposed for MIMO-OFDMA downlink systems. Unlike the conventional beamforming schemes in which beamforming is implemented solely by the base station (BS) in a per-subcarrier fashion, the proposed schemes take advantages of a novel channel decomposition technique to perform beamforming jointly by the BS and the mobile terminal (MT). The resulting beamforming schemes allow the BS to employ only {\\em one} beamforming matrix (BFM) to form beams for {\\em all} subcarriers while each MT completes the beamforming task for each subcarrier locally. Consequently, for a MIMO-OFDMA system with $Q$ subcarriers, the proposed opportunistic scheduling and beamforming schemes require only one BFM index and $Q$ supportable throughputs to be returned from each MT to the BS, in contrast to $Q$ BFM indices and $Q$ supportable throughputs required by the conventional schemes. The advantage of the proposed schemes becomes more evident when a further feedback ...

  3. Distributed Synchronization Technique for OFDMA-Based Wireless Mesh Networks Using a Bio-Inspired Algorithm.

    Kim, Mi Jeong; Maeng, Sung Joon; Cho, Yong Soo


    In this paper, a distributed synchronization technique based on a bio-inspired algorithm is proposed for an orthogonal frequency division multiple access (OFDMA)-based wireless mesh network (WMN) with a time difference of arrival. The proposed time- and frequency-synchronization technique uses only the signals received from the neighbor nodes, by considering the effect of the propagation delay between the nodes. It achieves a fast synchronization with a relatively low computational complexity because it is operated in a distributed manner, not requiring any feedback channel for the compensation of the propagation delays. In addition, a self-organization scheme that can be effectively used to construct 1-hop neighbor nodes is proposed for an OFDMA-based WMN with a large number of nodes. The performance of the proposed technique is evaluated with regard to the convergence property and synchronization success probability using a computer simulation.

  4. Distributed Synchronization Technique for OFDMA-Based Wireless Mesh Networks Using a Bio-Inspired Algorithm

    Mi Jeong Kim


    Full Text Available In this paper, a distributed synchronization technique based on a bio-inspired algorithm is proposed for an orthogonal frequency division multiple access (OFDMA-based wireless mesh network (WMN with a time difference of arrival. The proposed time- and frequency-synchronization technique uses only the signals received from the neighbor nodes, by considering the effect of the propagation delay between the nodes. It achieves a fast synchronization with a relatively low computational complexity because it is operated in a distributed manner, not requiring any feedback channel for the compensation of the propagation delays. In addition, a self-organization scheme that can be effectively used to construct 1-hop neighbor nodes is proposed for an OFDMA-based WMN with a large number of nodes. The performance of the proposed technique is evaluated with regard to the convergence property and synchronization success probability using a computer simulation.

  5. Primal Decomposition-Based Method for Weighted Sum-Rate Maximization in Downlink OFDMA Systems

    Weeraddana Chathuranga


    Full Text Available We consider the weighted sum-rate maximization problem in downlink Orthogonal Frequency Division Multiple Access (OFDMA systems. Motivated by the increasing popularity of OFDMA in future wireless technologies, a low complexity suboptimal resource allocation algorithm is obtained for joint optimization of multiuser subcarrier assignment and power allocation. The algorithm is based on an approximated primal decomposition-based method, which is inspired from exact primal decomposition techniques. The original nonconvex optimization problem is divided into two subproblems which can be solved independently. Numerical results are provided to compare the performance of the proposed algorithm to Lagrange relaxation based suboptimal methods as well as to optimal exhaustive search-based method. Despite its reduced computational complexity, the proposed algorithm provides close-to-optimal performance.

  6. Distributed Synchronization Technique for OFDMA-Based Wireless Mesh Networks Using a Bio-Inspired Algorithm

    Mi Jeong Kim; Sung Joon Maeng; Yong Soo Cho


    In this paper, a distributed synchronization technique based on a bio-inspired algorithm is proposed for an orthogonal frequency division multiple access (OFDMA)-based wireless mesh network (WMN) with a time difference of arrival. The proposed time- and frequency-synchronization technique uses only the signals received from the neighbor nodes, by considering the effect of the propagation delay between the nodes. It achieves a fast synchronization with a relatively low computational complexity...

  7. Joint subcarrier channel and time slots allocation algorithm in OFDMA passive optical networks

    Bi, Meihua; Xiao, Shilin; Wang, Li


    This paper investigates upstream resource allocation problem in Orthogonal Frequency Division Multiplexing Access Passive Optical Networks (OFDMA-PON). One assignment problem with subcarrier channel utilization and Total Grant Time (TGT) is analyzed and formulated. The Shortest Request First Scheduling (SRF) algorithm and Greedy Scheduling Algorithm (GSA) are demonstrated and evaluated through simulations. The results show that the proposed algorithms achieve less TGT and higher channel utilization compared with traditional sequence scheme.

  8. Efficient Control Channel Resource Allocation for VoIP in OFDMA-Based Packet Radio Networks

    Fan Yong


    Full Text Available We propose an efficient control channel resource allocation approach to enhance the performance of voice-over-IP (VoIP in orthogonal frequency division multiple access- (OFDMA- based next generation mobile communication systems. As the long-term evolution (LTE of universal terrestrial radio access network (UTRAN, evolved UTRAN (E-UTRAN is the first OFDMA-based packet radio network and thus selected in this paper as an application example. Our proposed physical downlink control channel (PDCCH resource allocation approach for E-UTRAN is composed of bidirectional power control, inner loop link adaptation (ILLA, and outer loop link adaptation (OLLA algorithms. Its effectiveness is validated through large-scale radio system level simulations, and simulation results confirm that VoIP capacity with dynamic scheduling can be further enhanced with this PDCCH resource allocation approach. Moreover, the VoIP performance requirements for international mobile telecommunications-advanced (IMT-Advanced radio interface technologies can be met with dynamic scheduling together with proposed PDCCH resource allocation. Besides E-UTRAN, this approach can be introduced to other OFDMA-based mobile communication systems for VoIP performance enhancement as well.

  9. Peak-to-average power ratio reduction in interleaved OFDMA systems

    Al-Shuhail, Shamael


    Orthogonal frequency division multiple access (OFDMA) systems suffer from several impairments, and communication system engineers use powerful signal processing tools to combat these impairments and to keep up with the capacity/rate demands. One of these impairments is high peak-to-average power ratio (PAPR) and clipping is the simplest peak reduction scheme. However, in general, when multiple users are subjected to clipping, frequency domain clipping distortions spread over the spectrum of all users. This results in compromised performance and hence clipping distortions need to be mitigated at the receiver. Mitigating these distortions in multiuser case is not simple and requires complex clipping mitigation procedures at the receiver. However, it was observed that interleaved OFDMA presents a special structure that results in only self-inflicted clipping distortions (i.e., the distortions of a particular user do not interfere with other users). In this work, we prove analytically that distortions do not spread over multiple users (while utilizing interleaved carrier assignment in OFDMA) and construct a compressed sensing system that utilizes the sparsity of the clipping distortions and recovers it on each user. We provide numerical results that validate our analysis and show promising performance for the proposed clipping recovery scheme.

  10. Throughput Gain Using Threshold-Based Multiuser Scheduling in WiMAX OFDMA

    Sulyman AhmedIyanda


    Full Text Available This paper presents the analysis of the throughput enhancement possible using threshold-based multiuser scheduling in WiMAX OFDMA. We consider a point-to-multipoint (PMP WiMAX network where base station (BS schedules downlink packets for simultaneous transmissions to multiple users using the WiMAX OFDMA system. WiMAX OFDMA standard specifies several subcarrier permutation options, such as the partial usage of subcarriers (PUSC, full usage of subcarrier (FUSC, and the band adaptive modulation and coding (band-AMC among others, for mapping the physical subcarriers into logical subchannels assigned to users by the BS schedulers. In this paper, we propose the use of threshold testing prior to the process of subchannel assignment to users by the BS scheduler, as a means of throughput enhancement. In the proposed threshold-based multiuser scheduling scheme, the BS scheduler selects at any time instant users whose channel gains in the available subchannels equal or exceed a predetermined energy threshold. Thus, only users who can maximize BS throughput on the available subchannels are assigned data transmission opportunities which enhance the BS data rate, albeit at the expense of fairness to users. We quantify the throughput enhancement of the proposed system and illustrate its benefits by numerical simulations.

  11. Development of Efficient Resource Allocation Algorithm in Chunk Based OFDMA System

    Yadav Mukesh Kumar


    Full Text Available The emerging demand for diverse data applications in next generation wireless networks entails both high data rate wireless connections and intelligent multiuser scheduling designs. The orthogonal frequency division multiple access based system is capable of delivering high speed data rate and can operate in a multipath environment. OFDMA based system dividing an entire channel into many orthogonal narrow band subcarriers. Due to this, it is useful to eliminate inter symbol interferences which is a limit of total available data rates. In this paper, investigation about resource allocation problem for the chunk based Orthogonal Frequency Division Multiple Access (OFDMA wireless multicast systems is done. In this paper, it is expected that the Base Station (BS has multiple antennas in a Distributed Antenna System (DAS. The allocation unit is a group of contiguous subcarriers (chunk in conventional OFDMA systems. The aim of this investigation is to develop an efficient resource allocation algorithm to maximize the total throughput and minimize the average outage probability over a chunk with respect to average Bit Error Rate (BER and total available power.

  12. Staged optimization algorithms based MAC dynamic bandwidth allocation for OFDMA-PON

    Liu, Yafan; Qian, Chen; Cao, Bingyao; Dun, Han; Shi, Yan; Zou, Junni; Lin, Rujian; Wang, Min


    Orthogonal frequency division multiple access passive optical network (OFDMA-PON) has being considered as a promising solution for next generation PONs due to its high spectral efficiency and flexible bandwidth allocation scheme. In order to take full advantage of these merits of OFDMA-PON, a high-efficiency medium access control (MAC) dynamic bandwidth allocation (DBA) scheme is needed. In this paper, we propose two DBA algorithms which can act on two different stages of a resource allocation process. To achieve higher bandwidth utilization and ensure the equity of ONUs, we propose a DBA algorithm based on frame structure for the stage of physical layer mapping. Targeting the global quality of service (QoS) of OFDMA-PON, we propose a full-range DBA algorithm with service level agreement (SLA) and class of service (CoS) for the stage of bandwidth allocation arbitration. The performance of the proposed MAC DBA scheme containing these two algorithms is evaluated using numerical simulations. Simulations of a 15 Gbps network with 1024 sub-carriers and 32 ONUs demonstrate the maximum network throughput of 14.87 Gbps and the maximum packet delay of 1.45 ms for the highest priority CoS under high load condition.

  13. Analysis of Channel-aware Multichannel ALOHA in OFDMA Wireless Networks

    Zhang Yumei; Sheng Yu


    Orthogonal frequency division multiple access (OFDMA) systems provide multiple channels that can be accessed via random access schemes. In this paper a channel-aware multichannel random access, based on local channel state information (CSI), was investigated and a multichannel slotted ALOHA scheme was proposed accordingly. Also an analytical investigation of total system throughput and the queue state evolution of generic node in the network were present by assuming the channel has been modeled by means of a two state Markov chain. Through the theoretical model and simulation results, we confirm that the proposed algorithm has the advantage of high throughput and low access delay.

  14. Adaptive radio resource allocation for multiple traffic OFDMA broadband wireless access system

    LU Yan-hui; LUO Tao; YIN Chang-chuan; YUE Guang-xin


    In this article, an adaptive radio resource allocation algorithm applied to multiple traffic orthogonal frequency division multiple access (OFDMA) system is proposed, which distributes subcarriers and bits among users according to their different quality of service requirements and traffic type. By classifying and prioritizing the users based on their traffic characteristic and ensuring resource for higher priority users, the new scheme decreases tremendously the outage probability of the users requiting a real-time transmission without impact on the spectrum efficiency of system, as well as the outage probability of data users is not increased compared with the radio resource allocation methods published.

  15. Subcarrier and power allocation algorithm based on inter-cell interference mitigation for OFDMA system

    ZOU Ting; DENG Gang; WANG Ying; ZHANG Ping


    This article proposes a dynamic subcarrier and power allocation algorithm for multicell orthogonal frequency division multiple access (OFDMA) downlink system, based on inter-cell interference (ICI) mitigation. Different from other ICI mitigation schemes, which pay little attention to power allocation in the system, the proposed algorithm assigns channels to each user, based on proportional-fair (PF) scheduling and ICI coordination, whereas allocating power is based on link gain distribution and the loading bit based on adaptive modulation and coding (AMC) in base transceiver station (BTS). Simulation results show that the algorithm yields better performance for data services under fast fading.

  16. Fairness based resource allocation for multiuser MISO-OFDMA systems with beamforming

    SUN Kai; WANG Ying; CHEN Zi-xiong; ZHANG Ping


    Resource allocation problem in multiuser multiple input single output-orthogonal frequency division multiple access (MISO-OFDMA) systems with downlink beamforming for frequency selective fading channels is studied. The article aims at maximizing system throughput with the constraints of total power and bit error rate (BER) while supporting fairness among users. The downlink proportional fairness (PF) scheduling problem is reformulated as a maximization of the sum of logarithmic user data rate. From necessary conditions on optimality obtained analytically by Karush-Kuhn-Tucker (KKT) condition, an efficient user selection and resource allocation algorithm is proposed. The computer simulations reveal that the proposed algorithm achieves tradeoff between system throughput and fairness among users.

  17. Spectrally Efficient OFDMA Lattice Structure via Toroidal Waveforms on the Time-Frequency Plane

    Sultan Aldirmaz


    Full Text Available We investigate the performance of frequency division multiplexed (FDM signals, where multiple orthogonal Hermite-Gaussian carriers are used to increase the bandwidth efficiency. Multiple Hermite-Gaussian functions are modulated by a data set as a multicarrier modulation scheme in a single time-frequency region constituting toroidal waveform in a rectangular OFDMA system. The proposed work outperforms in the sense of bandwidth efficiency compared to the transmission scheme where only single Gaussian pulses are used as the transmission base. We investigate theoretical and simulation results of the proposed methods.

  18. Priority-based Resource Allocation for RT and NRT Traffics in OFDMA Systems

    Wang, Hua


    In this paper, we address the problem of adaptive radio resource allocation and QoS provisioning for real-time (RT) and non-real-time (NRT) services in OFDMA systems. The proposed algorithm tightly couples the subchannel allocation and packet scheduling together through an integrated cross......-layer approach in which each packet is assigned a priority value by taking both the instantaneous channel condition and the QoS requirements into account. An efficient suboptimal algorithm with low computational complexity is proposed to solve the linear optimization problem. Simulation results show...

  19. Hierarchical Downlink Resource Management Framework for OFDMA based WiMAX Systems

    Wang, Hua; Iversen, Villy Bæk


    resource management framework for OFDMA based WiMAX systems. Our framework consists of a dynamic resource allocation (DRA) module and a connection admission control (CAC) module. DRA emphasizes on how to share the limited radio resources in term of subchannels and time slots among WiMAX subscribers...... belonging to different service classes with the objective of increasing the spectral efficiency while satisfying the diverse QoS requirements in each service class. CAC highlights how to limit the number of ongoing connections preventing the system capacity from being overused. Through system...

  20. Resource Allocation with Subcarrier Pairing in OFDMA Two-Way Relay Networks

    Zhang, Hao; Tao, Meixia


    This study considers an orthogonal frequency-division multiple-access (OFDMA)-based multi-user two-way relay network where multiple mobile stations (MSs) communicate with a common base station (BS) via multiple relay stations (RSs). We study the joint optimization problem of subcarrier-pairing based relay-power allocation, relay selection, and subcarrier assignment. The problem is formulated as a mixed integer programming problem. By using the dual method, we propose an efficient algorithm to solve the problem in an asymptotically optimal manner. Simulation results show that the proposed method can improve system performance significantly over the conventional methods.

  1. Minimum cost maximum flow algorithm for upstream bandwidth allocation in OFDMA passive optical networks

    Wu, Yating; Kuang, Bin; Wang, Tao; Zhang, Qianwu; Wang, Min


    This paper presents a minimum cost maximum flow (MCMF) based upstream bandwidth allocation algorithm, which supports differentiated QoS for orthogonal frequency division multiple access passive optical networks (OFDMA-PONs). We define a utility function as the metric to characterize the satisfaction degree of an ONU on the obtained bandwidth. The bandwidth allocation problem is then formulated as maximizing the sum of the weighted total utility functions of all ONUs. By constructing a flow network graph, we obtain the optimized bandwidth allocation using the MCMF algorithm. Simulation results show that the proposed scheme improves the performance in terms of mean packet delay, packet loss ratio and throughput.

  2. An Efficient Subcarrier and Power Allocation Algorithm for Dual-Service Provisioning in OFDMA Based WiBro Systems

    Anas, Mohmmad; Kim, Kanghee; Ahn, Jee Hwan;


    This paper investigates the problem of resource allocation for quality of service (QoS) support in Orthogonal Frequency Division Multiple Access (OFDMA) based WiBro systems. We identify the key QoS parameters as data rate and bit error rate (BER), which are used to determine the individual traffi...

  3. Multi-User Interference Cancellation Scheme(s) for Muliple Carrier Frequency Offset Compensation in Uplink OFDMA

    Nguyen, Huan Cong; Carvalho, Elisabeth De; Prasad, Ramjee


    We consider the uplink of an Orthogonal Frequency Division Multiple Access (OFDMA)-based system, where each Mobile Station (MS) experiences a different Carrier Frequency Offset (CFO). Uncorrected CFO destroy the orthogonality among subcarriers, which could cause severe Inter-Carrier Interference...

  4. On the Frequency-Selective Scheduling Gain in SDMA-OFDMA Systems

    Zubow, Anatolij


    Orthogonal Frequency Division Multiple Access (OFDMA) is a multi-user version of the Orthogonal Frequency Division Multiplexing (OFDM) transmission technique, which divides a wideband channel into a number of orthogonal narrowband subchannels, called subcarriers. An OFDMA system takes advantage of both frequency diversity (FD) gain and frequency-selective scheduling (FSS) gain. A FD gain is achieved by allocating a user the subcarriers distributed over the entire frequency band whereas a FSS gain is achieved by allocating a user adjacent subcarriers located within a subband of a small bandwidth having the most favorable channel conditions among other subbands in the entire frequency band. Multi-User Multiple Input Multiple Output (MU-MIMO) is a promising technology to increase spectral efficiency. A well-known MU-MIMO mode is Space-Division Multiple Access (SDMA) which can be used in the downlink direction to allow a group of spatially separable users to share the same time/frequency resources. In this paper,...

  5. Sum rate maximization in the uplink of multi-cell OFDMA networks

    Tabassum, Hina


    Resource allocation in orthogonal frequency division multiple access (OFDMA) networks plays an imperative role to guarantee the system performance. However, most of the known resource allocation schemes are focused on maximizing the local throughput of each cell, while ignoring the significant effect of inter-cell interference. This paper investigates the problem of resource allocation (i.e., subcarriers and powers) in the uplink of a multi-cell OFDMA network. The problem has a non-convex combinatorial structure and is known to be NP hard. Firstly, we investigate the upper and lower bounds to the average network throughput due to the inherent complexity of implementing the optimal solution. Later, a centralized sub-optimal resource allocation scheme is developed. We further develop less complex centralized and distributed schemes that are well-suited for practical scenarios. The computational complexity of all schemes has been analyzed and the performance is compared through numerical simulations. Simulation results demonstrate that the distributed scheme achieves comparable performance to the centralized resource allocation scheme in various scenarios. © 2011 IEEE.

  6. Design and Performance Evaluation of a Distributed OFDMA-Based MAC Protocol for MANETs

    Jaesung Park


    Full Text Available In this paper, we propose a distributed MAC protocol for OFDMA-based wireless mobile ad hoc multihop networks, in which the resource reservation and data transmission procedures are operated in a distributed manner. A frame format is designed considering the characteristics of OFDMA that each node can transmit or receive data to or from multiple nodes simultaneously. Under this frame structure, we propose a distributed resource management method including network state estimation and resource reservation processes. We categorize five types of logical errors according to their root causes and show that two of the logical errors are inevitable while three of them are avoided under the proposed distributed MAC protocol. In addition, we provide a systematic method to determine the advertisement period of each node by presenting a clear relation between the accuracy of estimated network states and the signaling overhead. We evaluate the performance of the proposed protocol in respect of the reservation success rate and the success rate of data transmission. Since our method focuses on avoiding logical errors, it could be easily placed on top of the other resource allocation methods focusing on the physical layer issues of the resource management problem and interworked with them.

  7. Inter-cell interference mitigation in multi-cellular visible light communications.

    Jung, Sun-Young; Kwon, Do-Hoon; Yang, Se-Hoon; Han, Sang-Kook


    Inter-cell interference hinders multi-cellular optical wireless communication to support various applications. We proposed and experimentally demonstrated a multicarrier-based cell partitioning scheme, combined with frequency reuse, which could be effective in optical communications although it is inefficient in RF wireless communications. For multicarrier-based cell partitioning, Orthogonal frequency division multiplexing-based multiple access (OFDMA) was employed to accommodate multi-cellular optical wireless communications without a large guard band between adjacent cells and without additional RF components. Moreover, we employed filter bank-based multicarrier (FBMC) to mitigate inter-cell interference generated in OFDMA-based cell partitioning due to asynchronous signals originated from RF path difference. By using FBMC-based cell partitioning, inter-cell interference could be effectively mitigated as well as capacity and spectral efficiency were improved about 1.5 times compared to those of OFDMA. Because no cyclic prefix (CP) is required in FBMC, the improvement factor could be increased if there is a large RF path difference between lighting cells. Moreover, it could be a stronger solution when many neighboring cells exist causing large interference. The proposed multicarrier-based cell partitioning combined with FBMC will effectively support visible light communication (VLC)-based localization-based services (LBS) and indoor positioning system by transparently providing trilateration-based positioning method.

  8. Multiuser Scheduling on the Downlink of an LTE Cellular System

    Raymond Kwan


    Full Text Available The challenge of scheduling user transmissions on the downlink of a long-term evolution (LTE cellular communication system is addressed. In particular, a novel optimalmultiuser scheduler is proposed. Numerical results show that the system performance improves with increasing correlation among OFDMA subcarriers. It is found that only a limited amount of feedback information is needed to achieve relatively good performance. A suboptimal reduced-complexity scheduler is also proposed and shown to provide good performance. The suboptimal scheme is especially attractive when the number of users is large, in which case the complexity of the optimal scheme is high.

  9. Generalized location-based resource allocation for OFDMA cognitive radio systems

    Ben Ghorbel, Mahdi


    Cognitive radio is one of the hot topics for emerging and future wireless communication. Cognitive users can share channels with primary users under the condition of non interference. In order to compute this interference, the cognitive system usually use the channel state information of the primary user which is often impractical to obtain. However, using location information, we can estimate this interference by pathloss computation. In this paper, we introduce a low-complexity resource allocation algorithm for orthogonal frequency division multiple access (OFDMA) based cognitive radio systems, which uses relative location information between primary and secondary users to estimate the interference. This algorithm considers interference with multiple primary users having different thresholds. The simulation results show the efficiency of the proposed algorithm by comparing it with an optimal exhaustive search method. © 2010 IEEE.

  10. Error-rate performance analysis of cooperative OFDMA system with decode-and-forward relaying

    Fareed, Muhammad Mehboob


    In this paper, we investigate the performance of a cooperative orthogonal frequency-division multiple-access (OFDMA) system with decode-and-forward (DaF) relaying. Specifically, we derive a closed-form approximate symbol-error-rate expression and analyze the achievable diversity orders. Depending on the relay location, a diversity order up to (LSkD + 1) + σ M m = 1 min(LSkRm + 1, LR mD + 1) is available, where M is the number of relays, and LS kD + 1, LSkRm + 1, and LRmD + 1 are the lengths of channel impulse responses of source-to-destination, source-to- mth relay, and mth relay-to-destination links, respectively. Monte Carlo simulation results are also presented to confirm the analytical findings. © 2013 IEEE.

  11. Link adaptation algorithm for distributed coded transmissions in cooperative OFDMA systems

    Varga, Mihaly; Badiu, Mihai Alin; Bota, Vasile


    This paper proposes a link adaptation algorithm for cooperative transmissions in the down-link connection of an OFDMA-based wireless system. The algorithm aims at maximizing the spectral efficiency of a relay-aided communication link, while satisfying the block error rate constraints at both...... the relay and the destination nodes. The optimal solution would be to perform an exhaustive search over a high-dimensional space determined by all possible combinations of modulations, code rates and information block lengths on the individual channels of the cooperative link; clearly, such an approach has...... an intractable complexity. Our solution is to use a link performance prediction method and a trellis diagram representation such that the resulting algorithm outputs the link configuration that conveys as many information bits as possible and also fulfilling the block error rate constraints. The proposed link...

  12. SAGE based iterative receiver for joint synchronization and channel estimation in uplink MIMO-OFDMA systems

    JIANG Zheng; QIN Xiao-fang; ZHANG Xin; CHANG Yong-yu


    A new Turbo iterative receiver structure is proposed for the uplink multiple-input multiple-output orthogonal frequency division multiple access (MIMO-OFDMA) systems. The space-alternating generalized expectation-maximization (SAGE) algorithm is naturally embedded in the framework of iterative receiver to perform synchronization and detection using the Turbo detector outputs. In each iteration, the expectation step intends to remove the multiple access interference (MAI) caused by other asynchronous users, and the maximization step is utilized to estimate the required parameters (i.e., timing offset, carrier frequency offset, channel state information, etc.) sequentially for each user. Simulation results show that the proposed algorithm can approach the performance of ideal receiver closely, while the processing complexity is rather lower than the conventional detectors.

  13. Cooperative Spectrum Sensing Using Eigenvalue Fusion for OFDMA and Other Wideband Signals

    Dayan A. Guimarães


    Full Text Available In this paper, we propose a new approach for the detection of OFDMA and other wideband signals in the context of centralized cooperative spectrum sensing for cognitive radio (CR applications. The approach is based on the eigenvalues of the received signal covariance matrix whose samples are in the frequency domain. Soft combining of the eigenvalues at the fusion center is the main novelty. This combining strategy is applied to variants of four test statistics for binary hypothesis test, namely: the eigenvalue-based generalized likelihood ratio test (GLRT, the maximum-minimum eigenvalue detection (MMED, the maximum eigenvalue detection (MED and the energy detection (ED. It is shown that the eigenvalue fusion can outperform schemes based on decision fusion and sample fusion. A tradeoff is also established between complexity and volume of data sent to the fusion center in all combining strategies.

  14. Mechanism Design for Base Station Association and Resource Allocation in Downlink OFDMA Network

    Hong, Mingyi


    We consider a resource management problem in a multi-cell downlink OFDMA network, whereby the goal is to find the optimal per base station resource allocation and user-base station assignment. The users are assumed to be strategic/selfish who have private information on downlink channel states and noise levels. To induce truthfulness among the users as well as to enhance the spectrum efficiency, the resource management strategy needs to be both incentive compatible and efficient. However, due to the mixed (discrete and continuous) nature of resource management in this context, the implementation of any incentive compatible mechanism that maximizes the system throughput is NP-hard. We consider the dominant strategy implementation of an approximately optimal resource management scheme via a computationally tractable mechanism. The proposed mechanism is decentralized and dynamic. More importantly, it ensures the truthfulness of the users and it implements a resource allocation solution that yields at least 1/2 o...

  15. Cross layer scheduling for real-time traffic in multiuser MIMO-OFDMA systems

    SUN Qiao-yun; TIAN Hui; DONG Kun; ZHANG Ping


    A novel cross layer scheduling algorithm is proposed for real-time (RT) traffic in multiuser downlink multiple-input multiple-output orthogonal frequency division multiple access (MIMO-OFDMA) wireless systems. The algorithm dynamically allocates resources in space, time and frequency domain based on channel state information (CSI), users' quality of service (QoS) requirements and queue state information (QSI). To provide higher data rate and spectrum efficiency, adaptive modulation and coding (AMC) is employed. The proposed algorithm can improve cell throughput and increase the number of users that can be supported while guaranteeing users' QoS requirements and fairness among all users. Simulation results indicate that the proposed algorithm can achieve superior performance.

  16. Physical secure enhancement in optical OFDMA-PON based on two-dimensional scrambling.

    Zhang, Lijia; Xin, Xiangjun; Liu, Bo; Yin, Xiaoli


    This paper proposes a novel physical-enhanced chaotic secure strategy for optical OFDMA-PON based on two-dimensional (2-D) scrambling. In order to enhance the physical security, a multi-layer chaotic mapping is proposed to generate the scrambling vectors. It can enhance the chaotic characteristic of Logistic mapping and increase the key space. Furthermore, the 2-D scrambling jointly utilizing frequency subcarriers and time-slots can improve the system resistance to eavesdropper. The feasibility of 15.6 Gb/s 2-D encrypted 64QAM-OFDM downstream signal has been successfully demonstrated in the experiment. The robustness of the proposed method shows its prospect in future OFDM access network.

  17. Distributive Stochastic Learning for Delay-Optimal OFDMA Power and Subband Allocation

    Cui, Ying


    In this paper, we consider the distributive queue-aware power and subband allocation design for a delay-optimal OFDMA uplink system with one base station, $K$ users and $N_F$ independent subbands. Each mobile has an uplink queue with heterogeneous packet arrivals and delay requirements. We model the problem as an infinite horizon average reward Markov Decision Problem (MDP) where the control actions are functions of the instantaneous Channel State Information (CSI) as well as the joint Queue State Information (QSI). To address the distributive requirement and the issue of exponential memory requirement and computational complexity, we approximate the subband allocation Q-factor by the sum of the per-user subband allocation Q-factor and derive a distributive online stochastic learning algorithm to estimate the per-user Q-factor and the Lagrange multipliers (LM) simultaneously and determine the control actions using an auction mechanism. We show that under the proposed auction mechanism, the distributive online...

  18. Power and Subcarrier Allocation for Physical-Layer Security in OFDMA-based Broadband Wireless Networks

    Wang, Xiaowei; Mo, Jianhua; Xu, Youyun


    Providing physical-layer security for mobile users in future broadband wireless networks is of both theoretical and practical importance. In this paper, we formulate an analytical framework for resource allocation in a downlink OFDMA-based broadband network with coexistence of secure users (SU) and normal users (NU). The SU's require secure data transmission at the physical layer while the NU's are served with conventional best-effort data traffic. The problem is formulated as joint power and subcarrier allocation with the objective of maximizing average aggregate information rate of all NU's while maintaining an average secrecy rate for each individual SU under a total transmit power constraint for the base station. We solve this problem in an asymptotically optimal manner using dual decomposition. Our analysis shows that an SU becomes a candidate competing for a subcarrier only if its channel gain on this subcarrier is the largest among all and exceeds the second largest by a certain threshold. Furthermore,...

  19. An Efficient Subcarrier and Power Allocation Algorithm for Dual-Service Provisioning in OFDMA Based WiBro Systems

    Anas, Mohmmad; Kim, Kanghee; Ahn, Jee Hwan


    This paper investigates the problem of resource allocation for quality of service (QoS) support in Orthogonal Frequency Division Multiple Access (OFDMA) based WiBro systems. We identify the key QoS parameters as data rate and bit error rate (BER), which are used to determine the individual traffic...... BE users in assigning subcarrier and allocating power. We present the simulation results of the proposed algorithms applied to frequency selective Rayleigh fading channel with additive white Gaussian noise (AWGN) and OFDMA....... demands. We propose a resource allocation algorithm to provide dual-service, Guaranteed Performance (GP) and Best Effort (BE) differentiated on the basis of required QoS. Subcarrier assignment and power allocation are carried out sequentially to reduce the complexity, and GP users are given priority over...

  20. Cognitive Aware Interference Mitigation Scheme for OFDMA Femtocells

    Alqerm, Ismail


    Femto-cells deployment in today’s cellular networks came into practice to fulfill the increasing demand for data services. It also extends the coverage in the indoor areas. However, interference to other femto and macro-cells users remains an unresolved challenge. In this paper, we propose an interference mitigation scheme to control the cross-tier interference caused by femto-cells to the macro users and the co-tier interference among femtocells. Cognitive radio spectrum sensing capability is utilized to determine the non-occupied channels or the ones that cause minimal interference to the macro users. An awareness based channel allocation scheme is developed with the assistance of the graph-coloring algorithm to assign channels to the femto-cells base stations with power optimization, minimal interference, maximum throughput, and maximum spectrum efficiency. In addition, the scheme exploits negotiation capability to match traffic load and QoS with the channel, and to maintain efficient utilization of the available channels.

  1. On the spectral-energy efficiency and rate fairness tradeoff in relay-aided cooperative OFDMA systems

    Song, Zhengyu; Ni, Qiang; Navaie, Keivan; Hou, S.; Wu, S.


    In resource constrained wireless systems, achieving higher spectral efficiency (SE) and energy efficiency (EE), and greater rate fairness are conflicting objectives. Here a general framework is presented to analyze the tradeoff among these three performance metrics in cooperative OFDMA systems with decode-and-forward (DF) relaying, where subcarrier pairing and allocation, relay selection, choice of transmission strategy, and power allocation are jointly considered. In our analytical framework...

  2. Transmit Power Minimization and Base Station Planning for High-Speed Trains with Multiple Moving Relays in OFDMA Systems

    Ghazzai, Hakim


    High-speed railway system equipped with moving relay stations placed on the middle of the ceiling of each train wagon is investigated. The users inside the train are served in two hops via the orthogonal frequency-division multiple access (OFDMA) technology. In this work, we first focus on minimizing the total downlink power consumption of the base station (BS) and the moving relays while respecting specific quality of service (QoS) constraints. We first derive the optimal resource allocation solution in terms of OFDMA subcarriers and power allocation using the dual decomposition method. Then, we propose an efficient algorithm based on the Hungarian method in order to find a suboptimal but low complexity solution. Moreover, we propose an OFDMA planning solution for high-speed train by finding the maximal inter-BS distance given the required user data rates in order to perform seamless handover. Our simulation results illustrate the performance of the proposed resource allocation schemes in the case of the 3GPP Long Term Evolution-Advanced (LTE-A) and compare them with previously developed algorithms as well as with the direct transmission scenario. Our results also highlight the significant planning gain obtained thanks to the use of multiple relays instead of the conventional single relay scenario.

  3. Optical beat interference noise reduction by using out-of-band RF clipping tone signal in remotely fed OFDMA-PON link.

    Jung, Sang-Min; Yang, Seung-Min; Mun, Kyung-Hak; Han, Sang-Kook


    A novel technique for mitigating the optical beat interference (OBI) noise in an optical orthogonal frequency division multiple access passive optical network (OFDMA-PON) uplink transmission is presented. By using an out of signal band RF clipping tone to the optical seed carrier, the OBI noise has been reduced and the resulting throughput and spectral efficiency has been improved. As an experimental verification, we demonstrate that the spectral efficiency of 23 km and 50 km have been doubled in the OFDMA-PON uplink transmission.

  4. The Urge to Merge: When Cellular Service Providers Pool Capacity

    Hua, Sha; Panwar, Shivendra


    As cellular networks are turning into a platform for ubiquitous data access, cellular operators are facing a severe data capacity crisis due to the exponential growth of traffic generated by mobile users. In this work, we investigate the benefits of sharing infrastructure and spectrum among two cellular operators. Specifically, we provide a multi-cell analytical model using stochastic geometry to identify the performance gain under different sharing strategies, which gives tractable and accurate results. To validate the performance using a realistic setting, we conduct extensive simulations for a multi-cell OFDMA system using real base station locations. Both analytical and simulation results show that even a simple cooperation strategy between two similar operators, where they share spectrum and base stations, roughly quadruples capacity as compared to the capacity of a single operator. This is equivalent to doubling the capacity per customer, providing a strong incentive for operators to cooperate, if not a...

  5. Clustering and OFDMA-based MAC protocol (COMAC for vehicular ad hoc networks

    Abdel Hafeez Khalid


    Full Text Available Abstract The IEEE community is working on the wireless access in vehicular environments as a main technology for vehicular ad hoc networks. The medium access control (MAC protocol of this system known as IEEE 802.11p is based on the distributed coordination function (DCF of the IEEE 802.11 and enhanced DCF of the IEEE 802.11e that have low performance especially in high-density networks with nodes of high mobility. In this paper, we propose a novel MAC protocol where nodes dynamically organize themselves into clusters. Cluster heads are elected based on their stability on the road with minimal overhead since all clustering information is embedded in control channel's safety messages. The proposed MAC protocol is adaptable to drivers' behavior on the road and has learning mechanism for predicting the future speed and position of all cluster members using the fuzzy logic inference system. By using OFDMA, each cluster will use a set of subcarriers that are different from the neighboring clusters to eliminate the hidden terminal problem. Increasing the system reliability, reducing the time delay for vehicular safety applications and efficiently clustering vehicles in highly dynamic and dense networks in a distributed manner are the main contributions of our proposed MAC protocol.

  6. Delay-Optimal Power and Subcarrier Allocation for OFDMA Systems via Stochastic Approximation

    Lau, Vincent K N


    In this paper, we consider delay-optimal power and subcarrier allocation design for OFDMA systems with $N_F$ subcarriers, $K$ mobiles and one base station. There are $K$ queues at the base station for the downlink traffic to the $K$ mobiles with heterogeneous packet arrivals and delay requirements. We shall model the problem as a $K$-dimensional infinite horizon average reward Markov Decision Problem (MDP) where the control actions are assumed to be a function of the instantaneous Channel State Information (CSI) as well as the joint Queue State Information (QSI). This problem is challenging because it corresponds to a stochastic Network Utility Maximization (NUM) problem where general solution is still unknown. We propose an {\\em online stochastic value iteration} solution using {\\em stochastic approximation}. The proposed power control algorithm, which is a function of both the CSI and the QSI, takes the form of multi-level water-filling. We prove that under two mild conditions in Theorem 1 (One is the steps...

  7. A Utility-Based Scheduling Scheme for MIMO-OFDMA Downlink Systems

    Zhuang Liu; Xi Li; Hong Ji


    In this paper, a utility-based feedback delay-aware and buffer status-aware ( FABA ) scheduling scheme is proposed for downlink multiuser multiple-input multiple-output orthogonal frequency-division multiple-access ( MIMO-OFDMA ) systems. The FABA scheme allocates subcarriers to multiusers with an objective of not only maximizing the total system capacity but reducing the system packet loss rate as well. We design a utility function which consists of a feedback estimate module, a proportional fairness module and a buffer monitoring module. The feedback estimate module is used to improve the system throughput by utilizing the Automatic Repeat-reQuest ( ARQ) feedback information to combat the fast time-varying fading condition. The proportional fairness module can guarantee the scheduling fairness among users, and the buffer monitoring module can utilize the transmitting buffer status information to avoid high packet loss rate of the system caused by the system congestion. The FABA scheme then formulates the scheduling problem into a problem of overall system utility maximization. We solve the problem by using a heuristic algorithm with low computational complexity. The simulation results show that the proposed FABA scheme outperforms the existing algorithms in terms of the system throughput and the packet loss rate and can also guarantee the fairness demand among users.

  8. ONU discovery using multiple subchannels for seamless service support in long-reach OFDMA-PON.

    Bang, Hakjeon; Doo, Kyeong-Hwan; Lee, Jonghyun; Lee, Sangsoo


    In a passive optical network (PON), discovery is a process that detects and registers newly connected optical network units (ONUs). A long-reach PON requires a longer discovery window, e.g., at least 1 ms for 100 km, due to the increased round-trip time between an optical line terminal (OLT) and an ONU. The longer discovery window consumes more network resources and issues longer service-interruption time. From this motivation, for a long-reach orthogonal frequency-division multiple access (OFDMA)-PON, we propose a discovery method using multiple subchannels, where each subchannel consists of one or several subcarrier(s). Compared to discovery using a single channel, the proposed discovery method can increase the number of successfully detected ONUs at the same resources (i.e., for a discovery window) and ensure seamless service support to already registered ONUs, by assigning some subchannels for discovery and the remainder for data transmission. We analyze the discovery efficiency (i.e., the number of successfully detected ONUs in the discovery process) based on a probability and optimize the discovery window size by numerical simulations.

  9. A cross-layer resource allocation scheme for spatial multiplexing-based MIMO-OFDMA systems

    Al-Shatri Hussein


    Full Text Available Abstract We investigate the resource allocation problem for the downlink of a multiple-input multiple-output orthogonal frequency division multiple access (MIMO-OFDMA system. The sum rate maximization itself cannot cope with fairness among users. Hence, we address this problem in the context of the utility-based resource allocation presented in earlier papers. This resource allocation method allows to enhance the efficiency and guarantee fairness among users by exploiting multiuser diversity, frequency diversity, as well as time diversity. In this paper, we treat the overall utility as the quality of service indicator and design utility functions with respect to the average transmission rate in order to simultaneously provide two services, real-time and best-effort. Since the optimal solutions are extremely computationally complex to obtain, we propose a suboptimal joint subchannel and power control algorithm that converges very fast and simplifies the MIMO resource allocation problem into a single-input single-output resource allocation problem. Simulation results indicate that using the proposed method achieves near-optimum solutions, and the available resources are distributed more fairly among users.

  10. An adaptive OFDMA-based MAC protocol for underwater acoustic wireless sensor networks.

    Khalil, Issa M; Gadallah, Yasser; Hayajneh, Mohammad; Khreishah, Abdallah


    Underwater acoustic wireless sensor networks (UAWSNs) have many applications across various civilian and military domains. However, they suffer from the limited available bandwidth of acoustic signals and harsh underwater conditions. In this work, we present an Orthogonal Frequency Division Multiple Access (OFDMA)-based Media Access Control (MAC) protocol that is configurable to suit the operating requirements of the underwater sensor network. The protocol has three modes of operation, namely random, equal opportunity and energy-conscious modes of operation. Our MAC design approach exploits the multi-path characteristics of a fading acoustic channel to convert it into parallel independent acoustic sub-channels that undergo flat fading. Communication between node pairs within the network is done using subsets of these sub-channels, depending on the configurations of the active mode of operation. Thus, the available limited bandwidth gets fully utilized while completely avoiding interference. We derive the mathematical model for optimal power loading and subcarrier selection, which is used as basis for all modes of operation of the protocol. We also conduct many simulation experiments to evaluate and compare our protocol with other Code Division Multiple Access (CDMA)-based MAC protocols.

  11. An Adaptive OFDMA-Based MAC Protocol for Underwater Acoustic Wireless Sensor Networks

    Issa M. Khalil


    Full Text Available Underwater acoustic wireless sensor networks (UAWSNs have many applications across various civilian and military domains. However, they suffer from the limited available bandwidth of acoustic signals and harsh underwater conditions. In this work, we present an Orthogonal Frequency Division Multiple Access (OFDMA-based Media Access Control (MAC protocol that is configurable to suit the operating requirements of the underwater sensor network. The protocol has three modes of operation, namely random, equal opportunity and energy-conscious modes of operation. Our MAC design approach exploits the multi-path characteristics of a fading acoustic channel to convert it into parallel independent acoustic sub-channels that undergo flat fading. Communication between node pairs within the network is done using subsets of these sub-channels, depending on the configurations of the active mode of operation. Thus, the available limited bandwidth gets fully utilized while completely avoiding interference. We derive the mathematical model for optimal power loading and subcarrier selection, which is used as basis for all modes of operation of the protocol. We also conduct many simulation experiments to evaluate and compare our protocol with other Code Division Multiple Access (CDMA-based MAC protocols.

  12. Fairness-Aware Energy-Efficient Resource Allocation for AF Co-Operative OFDMA Networks

    Bedeer, Ebrahim


    In this paper, we adopt an energy-efficiency (EE) metric, named worst-EE, that is suitable for EE fairness optimization in the uplink transmission of amplify-and-forward (AF) cooperative orthogonal frequency division multiple access (OFDMA) networks. More specifically, we assign subcarriers and allocate powers for mobile and relay stations in order to maximize the worst-EE, i.e., to maximize the EE of the mobile station (MS) with the lowest EE value, subject to MSs transmit power, relay station (RS) transmit power, and MSs quality-of-service (QoS) constraints. The formulated primal max-min optimization problem is nonconvex fractional mixed integer nonlinear program, i.e., NP-hard to solve. We provide a novel optimization framework that studies the structure of the primal problem and prove that the dual min-max optimization problem attains the same optimal solution of the primal problem. Additionally, we propose a modified Dinkelbach algorithm, named dual Dinkelbach, to achieve the optimal solution of the dual problem in a polynomial time complexity. We further exploit the structure of the obtained optimal solution and develop a low complexity suboptimal heuristic. Numerical results show the effectiveness of the proposed algorithm to improve the network performance in terms of fairness between MSs, worst-EE, and average network transmission rate when compared to traditional schemes that maximize the EE of the whole network. Presented results also show that the suboptimal heuristic balances the achieved performance and the computational complexity.

  13. A coalition formation game for transmitter cooperation in OFDMA uplink communications

    Chelli, Ali


    The SC-FDMA (single-carrier frequency division multiple access) is the access scheme that has been adopted by 3GPP (3rd generation partnership project) for the LTE (long term evolution) uplink. The SC-FDMA is an attractive alternative to OFDMA (orthogonal frequency-division multiple access) especially on the uplink owing to its low peak-to-average power ratio. This fact increases the power efficiency and reduces the cost of the power amplifiers at the mobile terminals. The use of SC-FDMA on the uplink implies that for highly loaded cells the base station allocates a single subcarrier to each user. This results in the limitation of the achievable rate on the uplink. In this work, we propose a coalition game between mobile terminals that allows them to improve their performance by sharing their subcarriers without creating any interference to each other. The proposed scheme allows a fair use of the subcarriers and leads to a significant capacity gain for each user. The cooperation between the nodes is modelled using coalitional game theory. In this game, each coalition tries to maximize its utility in terms of rate. In the absence of cooperation cost, it can be shown that the grand coalition is sum-rate optimal and stable, i.e., the mobile terminals have no incentive to leave the grand coalition.

  14. An Adaptive OFDMA-Based MAC Protocol for Underwater Acoustic Wireless Sensor Networks

    Khalil, Issa M.; Gadallah, Yasser; Hayajneh, Mohammad; Khreishah, Abdallah


    Underwater acoustic wireless sensor networks (UAWSNs) have many applications across various civilian and military domains. However, they suffer from the limited available bandwidth of acoustic signals and harsh underwater conditions. In this work, we present an Orthogonal Frequency Division Multiple Access (OFDMA)-based Media Access Control (MAC) protocol that is configurable to suit the operating requirements of the underwater sensor network. The protocol has three modes of operation, namely random, equal opportunity and energy-conscious modes of operation. Our MAC design approach exploits the multi-path characteristics of a fading acoustic channel to convert it into parallel independent acoustic sub-channels that undergo flat fading. Communication between node pairs within the network is done using subsets of these sub-channels, depending on the configurations of the active mode of operation. Thus, the available limited bandwidth gets fully utilized while completely avoiding interference. We derive the mathematical model for optimal power loading and subcarrier selection, which is used as basis for all modes of operation of the protocol. We also conduct many simulation experiments to evaluate and compare our protocol with other Code Division Multiple Access (CDMA)-based MAC protocols. PMID:23012517


    Yao Yuanyuan; Lu Yanhui; Yang Shouyi


    Call Admission Control (CAC) is one of the key traffic management mechanisms that must be deployed in order to meet the strict requirements for dependability imposed on the services provided by modern wireless networks.In this paper,we develop an executable top-down hierarchical Colored Petri Net (CPN) model for multi-traffic CAC in Orthogonal Frequency Division Multiple Access (OFDMA) system.By theoretic analysis and CPN simulation,it is demonstrated that the CPN model is isomorphic to Markov Chain (MC) assuming that each data stream follows Poisson distribution and the corresponding arrival time interval is an exponential random variable,and it breaks through MC's explicit limitation,which includes MC's memoryless property and proneness to state space explosion in evaluating CAC process.Moreover,we present four CAC schemes based on CPN model taking into account call-level and packet-level Quality of Service (QoS).The simulation results show that CPN offers significant advantages over MC in modeling CAC strategies and evaluating their performance with less computational complexity in addition to its flexibility and adaptability to different scenarios.

  16. Linearly Time-Varying Channel Estimation and Symbol Detection for OFDMA Uplink Using Superimposed Training

    Zhang Han


    Full Text Available We address the problem of superimposed trainings- (STs- based linearly time-varying (LTV channel estimation and symbol detection for orthogonal frequency-division multiplexing access (OFDMA systems at the uplink receiver. The LTV channel coefficients are modeled by truncated discrete Fourier bases (DFBs. By judiciously designing the superimposed pilot symbols, we estimate the LTV channel transfer functions over the whole frequency band by using a weighted average procedure, thereby providing validity for adaptive resource allocation. We also present a performance analysis of the channel estimation approach to derive a closed-form expression for the channel estimation variances. In addition, an iterative symbol detector is presented to mitigate the superimposed training effects on information sequence recovery. By the iterative mitigation procedure, the demodulator achieves a considerable gain in signal-interference ratio and exhibits a nearly indistinguishable symbol error rate (SER performance from that of frequency-division multiplexed trainings. Compared to existing frequency-division multiplexed training schemes, the proposed algorithm does not entail any additional bandwidth while with the advantage for system adaptive resource allocation.

  17. Proportional Fair Resource Allocation for Uplink OFDMA Network Using Priority-Ranked Bargaining Model

    Zeng, Lingkang; Hu, Yupei; Xie, Gang; Zhao, Yi; Shen, Junyang; Liu, Yuan'an; Gao, Jin-Chun

    In this paper, we focus on the adaptive resource allocation issue for uplink OFDMA systems. The resources are allocated according to a proportional fairness criterion, which can strike an alterable balance between fairness and efficiency. Optimization theory is used to analyze the multi-constraint resource allocation problem and some heuristic characteristics about the optimal solution are obtained. To deal with the cohesiveness of the necessary conditions, we resort to bargaining theory that has been deeply investigated in game theory. Firstly, we summarize some assumptions about bargaining theory and show their similarities with the resource allocation process. Then we propose a priority-ranked bargaining model, whose primary contribution is applying the economic thought to the resource allocation process. A priority-ranked bargaining algorithm (PRBA) is subsequently proposed to permit the base station to auction the subcarriers one by one according to the users' current priority. By adjusting the predefined rate ratio flexibly, PRBA can achieve different degrees of fairness among the users' capacity. Simulation results show that PRBA can achieve similar performance of the max-min scheme and the NBS scheme in the case of appropriate predefined rate ratio.

  18. Throughput Maximization under Rate Requirements for the OFDMA Downlink Channel with Limited Feedback

    Stephen Kaminski


    Full Text Available The purpose of this paper is to show the potential of UMTS long-term evolution using OFDM modulation by adopting a combined perspective on feedback channel design and resource allocation for OFDMA multiuser downlink channel. First, we provide an efficient feedback scheme that we call mobility-dependent successive refinement that enormously reduces the necessary feedback capacity demand. The main idea is not to report the complete frequency response all at once but in subsequent parts. Subsequent parts will be further refined in this process. After a predefined number of time slots, outdated parts are updated depending on the reported mobility class of the users. It is shown that this scheme requires very low feedback capacity and works even within the strict feedback capacity requirements of standard HSDPA. Then, by using this feedback scheme, we present a scheduling strategy which solves a weighted sum rate maximization problem for given rate requirements. This is a discrete optimization problem with nondifferentiable nonconvex objective due to the discrete properties of practical systems. In order to efficiently solve this problem, we present an algorithm which is motivated by a weight matching strategy stemming from a Lagrangian approach. We evaluate this algorithm and show that it outperforms a standard algorithm which is based on the well-known Hungarian algorithm both in achieved throughput, delay, and computational complexity.

  19. Throughput Maximization under Rate Requirements for the OFDMA Downlink Channel with Limited Feedback

    Bakker Hajo-Erich


    Full Text Available Abstract The purpose of this paper is to show the potential of UMTS long-term evolution using OFDM modulation by adopting a combined perspective on feedback channel design and resource allocation for OFDMA multiuser downlink channel. First, we provide an efficient feedback scheme that we call mobility-dependent successive refinement that enormously reduces the necessary feedback capacity demand. The main idea is not to report the complete frequency response all at once but in subsequent parts. Subsequent parts will be further refined in this process. After a predefined number of time slots, outdated parts are updated depending on the reported mobility class of the users. It is shown that this scheme requires very low feedback capacity and works even within the strict feedback capacity requirements of standard HSDPA. Then, by using this feedback scheme, we present a scheduling strategy which solves a weighted sum rate maximization problem for given rate requirements. This is a discrete optimization problem with nondifferentiable nonconvex objective due to the discrete properties of practical systems. In order to efficiently solve this problem, we present an algorithm which is motivated by a weight matching strategy stemming from a Lagrangian approach. We evaluate this algorithm and show that it outperforms a standard algorithm which is based on the well-known Hungarian algorithm both in achieved throughput, delay, and computational complexity.

  20. Secure Collision-Free Frequency Hopping for OFDMA-Based Wireless Networks

    Leonard Lightfoot


    Full Text Available This paper considers highly efficient antijamming system design using secure dynamic spectrum access control. First, we propose a collision-free frequency hopping (CFFH system based on the OFDMA framework and an innovative secure subcarrier assignment scheme. The CFFH system is designed to ensure that each user hops to a new set of subcarriers in a pseudorandom manner at the beginning of each hopping period, and different users always transmit on nonoverlapping sets of subcarriers. The CFFH scheme can effectively mitigate the jamming interference, including both random jamming and follower jamming. Moreover, it has the same high spectral efficiency as that of the OFDM system and can relax the complex frequency synchronization problem suffered by conventional FH. Second, we enhance the antijamming property of CFFH by incorporating the space-time coding (STC scheme. The enhanced system is referred to as STC-CFFH. Our analysis indicates that the combination of space-time coding and CFFH is particularly powerful in eliminating channel interference and hostile jamming interference, especially random jamming. Simulation examples are provided to illustrate the performance of the proposed schemes. The proposed scheme provides a promising solution for secure and efficient spectrum sharing among different users and services in cognitive networks.

  1. Optimal 4G OFDMA Dynamic Subcarrier and Power Auction-based Allocation towards H.264 Scalable Video Transmission

    G. Chandra Sekhar


    Full Text Available In this paper, authors presented a price maximization scheme for optimal orthogonal frequency division for multiple access (OFDMA subcarrier allocation for wireless video unicast/multicast scenarios. They formulate a pricing based video utility function for H.264 based wireless scalable video streaming, thereby achieving a trade-off between price and QoS fairness. These parametric models for scalable video rate and quality characterization are derived from the standard JSVM reference codec for the SVC extension of the H.264/AVC, and hence are directly applicable in practical wireless scenarios. With the aid of these models, they proposed auction based framework for revenue maximization of the transmitted video streams in the unicast and multicast 4G scenario. A closed form expression is derived for the optimal scalable video quantization step-size subject to the constraints of the unicast/multicast users in 4G wireless systems. This yields the optimal OFDMA subcarrier allocation for multi-user scalable video multiplexing. The proposed scheme is cognizant of the user modulation and code rate, and is hence amenable to adaptive modulation and coding (AMC feature of 4G wireless networks. Further, they also consider a framework for optimal power allocation based on a novel revenue maximization scheme in OFDMA based wireless broadband 4G systems employing auction bidding models. This is formulated as a constrained convex optimization problem towards sum video utility maximization. We observe that as the demand for a video stream increases in broadcast/multicast scenarios, higher power is allocated to the corresponding video stream leading to a gain in the overall revenue/utility. We simulate a standard WiMAX based 4G video transmission scenario to validate the performance of the proposed optimal 4G scalable video resource allocation schemes. Simulations illustrate that the proposed optimal bandwidth and power allocation schemes result in a significant

  2. Adaptive antenna system for OFDMA WiMAX radio-over-fiber links using a directly modulated R-SOA and optical filtering

    Presi, Marco; Prince, Kamau; Chiuchiarelli, Andrea;


    We implement an adaptive beam steering system based on a directly-modulated unseeded reflective SOA. this system allows the distribution of 2.4 GHz 64-QAM OFDMA signals with 2048-subcarriers (72 Mb/s) satisfying the IEEE 802.16e specifications...

  3. Adaptive antenna system for OFDMA WiMAX radio-over-fiber links using a directly modulated R-SOA and optical filtering

    Presi, Marco; Prince, Kamau; Chiuchiarelli, Andrea


    We implement an adaptive beam steering system based on a directly-modulated unseeded reflective SOA. this system allows the distribution of 2.4 GHz 64-QAM OFDMA signals with 2048-subcarriers (72 Mb/s) satisfying the IEEE 802.16e specifications...

  4. Contiguous Frequency-Time Resource Allocation and Scheduling for Wireless OFDMA Systems with QoS Support

    Bader F


    Full Text Available The orthogonal frequency division multiple access (OFDMA scheme has been selected as a potential candidate for many emerging broadband wireless access standards. In this paper, a new joint scheduling and resource allocation scheme is proposed for the OFDMA systems using contiguous subcarrier permutation. The proposed resource allocation algorithm provides contiguous sets of frequency-time resource units following a rectangular shape yielding a reduction on the required burst signalling. The joint scheduling and resource allocation process is divided into two phases: the QoS requirements fulfilment and the input buffers emptying status. For each phase, a specific prioritization function is defined in order to obtain a trade-off between the fairness and the spectral efficiency maximization. The new prioritization scheme provides a reduction of 50% of the 99th percentile from the delivered packets delay in case of non real-time services, and 30% of the packet loss rate in case of real-time services compared to the proportional fair scheduling function. On the other hand, it is also demonstrated that using the rectangular data packing algorithm, the number of required bursts per frame can be reduced up to a few tenths without compromising the performance.

  5. Cross-layer design for radio resource allocation based on priority scheduling in OFDMA wireless access network

    Chen Yen-Wen


    Full Text Available Abstract The orthogonal frequency-division multiple access (OFDMA system has the advantages of flexible subcarrier allocation and adaptive modulation with respect to channel conditions. However, transmission overhead is required in each frame to broadcast the arrangement of radio resources to all mobile stations within the coverage of the same base station. This overhead greatly affects the utilization of valuable radio resources. In this paper, a cross layer scheme is proposed to reduce the number of traffic bursts at the downlink of an OFDMA wireless access network so that the overhead of the media access protocol (MAP field can be minimized. The proposed scheme considers the priorities and the channel conditions of quality of service (QoS traffic streams to arrange for them to be sent with minimum bursts in a heuristic manner. In addition, the trade-off between the degradation of the modulation level and the reduction of traffic bursts is investigated. Simulation results show that the proposed scheme can effectively reduce the traffic bursts and, therefore, increase resource utilization.

  6. Optimal 4G OFDMA Dynamic Subcarrier and Power Auction-based Allocation towards H.264 Scalable Video Transmission

    G. Chandra Sekhar


    Full Text Available In this paper, authors presented a price maximization scheme for optimal orthogonal frequency division for multiple access (OFDMA subcarrier allocation for wireless video unicast/multicast scenarios. They formulate a pricing based video utility function for H.264 based wireless scalable video streaming, thereby achieving a trade-off between price and QoS fairness. These parametric models for scalable video rate and quality characterization arederived from the standard JSVM reference codec for the SVC extension of the H.264/AVC, and hence are directly applicable in practical wireless scenarios. With the aid of these models, they proposed auction based framework for revenue maximization of the transmitted video streams in the unicast and multicast 4G scenario. A closedform expression is derived for the optimal scalable video quantization step-size subject to the constraints of theunicast/multicast users in 4G wireless systems. This yields the optimal OFDMA subcarrier allocation for multi-userscalable video multiplexing. The proposed scheme is cognizant of the user modulation and code rate, and is henceamenable to adaptive modulation and coding (AMC feature of 4G wireless networks. Further, they also consider aframework for optimal power allocation based on a novel revenue maximization scheme in OFDMA based wireless broadband 4G systems employing auction bidding models. This is formulated as a constrained convex optimization problem towards sum video utility maximization. We observe that as the demand for a video stream increases inbroadcast/multicast scenarios, higher power is allocated to the corresponding video stream leading to a gain in the overall revenue/utility. We simulate a standard WiMAX based 4G video transmission scenario to validate the performance of the proposed optimal 4G scalable video resource allocation schemes. Simulations illustrate that the proposed optimal band width and power allocation schemes result in a significant

  7. A New Swap-Based Frequency-Domain Packet Scheduling Algorithm in OFDMA System with Data Queue Size Constraints

    Lin Shao


    Full Text Available This paper aims at the frequency-domain packet scheduling (FDPS problem in orthogonal frequency division multiple access (OFDMA system. Under users’ data queue size constraints, a new swap-based FDPS algorithm is proposed to achieve further improvement in system throughput. In this algorithm, the swap of physical resource blocks (PRBs between different users is introduced to give a comprehensive view of the overall scheduling process. Moreover, the proposed algorithm optimizes the choosing method of swap candidates and always tries to select the user who can maximize the throughput improvement. Simulation results demonstrate that this new algorithm can improve the system throughput significantly as well as reduce the resource waste effectively.

  8. An effective sampling clock synchronization method for continuous- and burst-mode transmission in OFDMA-PONs

    Cai, Yufeng; Zhang, Qianwu; Chen, Rongrong; Kuang, Caixia; Zhang, Zhen; Li, Yingchun; Chen, Jian


    A sampling frequency offset (SFO) estimation and compensation method based on frequency domain correlation of long training symbols for orthogonal frequency division multiple access passive optical network (OFDMA-PON) is experimentally demonstrated, which shows excellent performances in transmissions of continuous- and burst-mode. For continuous-mode transmission under a certain SFO, the proposed scheme can perform effectively in a wide received optical power (RoP) range from -8 dBm to -2 dBm and has high estimation veracity and a large applicable range as large as 100 ppm at a certain RoP. Similar behavior is also demonstrated under burst-mode transmission with tiny performance degradation caused by the fact that the algorithm needs time to reach a stable status of synchronization.

  9. Resource Allocation for OFDMA-Based Cognitive Radio Networks with Application to H.264 Scalable Video Transmission

    Coon JustinP


    Full Text Available Resource allocation schemes for orthogonal frequency division multiple access- (OFDMA- based cognitive radio (CR networks that impose minimum and maximum rate constraints are considered. To demonstrate the practical application of such systems, we consider the transmission of scalable video sequences. An integer programming (IP formulation of the problem is presented, which provides the optimal solution when solved using common discrete programming methods. Due to the computational complexity involved in such an approach and its unsuitability for dynamic cognitive radio environments, we propose to use the method of lift-and-project to obtain a stronger formulation for the resource allocation problem such that the integrality gap between the integer program and its linear relaxation is reduced. A simple branching operation is then performed that eliminates any noninteger values at the output of the linear program solvers. Simulation results demonstrate that this simple technique results in solutions very close to the optimum.

  10. Relay Selection and Subcarrier-Pair Based Energy-Efficient Resource Allocation for Multirelay Cooperative OFDMA Networks

    Wanming Hao


    Full Text Available Energy-efficient resource allocation is investigated for a relay-based multiuser cooperation orthogonal frequency division multiple access (OFDMA uplink system with amplify-and-forward (AF protocol for all relays. The objective is to maximize the total energy efficiency (EE of the uplink system with consideration of some practical limitations, such as the individual power constraint for the users and relays and the quality of service (QoS for every user. We formulate an energy-efficient resource allocation problem that seeks joint optimization of subcarrier pairing, relay selection, subcarrier assignment, and power allocation. Unlike previous optimization throughput models, we transform the considered EE problem in fractional form into an equivalent optimal problem in subtractive form, which is solved by using dual decomposition and subgradient methods. To reduce computation costs, we propose two low-complexity suboptimal schemes. Numerical studies are conducted to evaluate the EE of the proposed algorithms.

  11. 基于公平性和 QoS 保障的 OFDMA-WLAN 系统资源分配%Resource allocation based on fairness and QoS provisioning for OFDMA-WLAN system

    鲍楠; 夏玮玮; 沈连丰


    为了满足 OFDMA-WLAN 系统下行通信中多用户的不同业务需求,提出一种基于公平性和 QoS 服务保障的资源分配算法。不同的 QoS 要求被转换成不同的速率要求来计算 QoS 满意等级;优化目标被修改为公平性驱动的优化函数以提供公平性保障;复杂的资源分配问题被划分为信道分配和功率分配问题,并通过二分图匹配和注水法得到分配结果。与其他算法相比,所提出的算法牺牲了较少的数据速率换取更高的公平性和 QoS 满意度。仿真结果表明所提算法具有保障 QoS 和公平性的能力,且在 QoS、公平性和速率之间权衡折中时表现更好。%To satisfy different service requirements of multiple users in the orthogo nal frequency division multiple access wireless local area network OFDMA-WLAN system downlink transmission a resource allocation algorithm based on fairness and quality of service QoS provisioning is proposed. Different QoS requirements are converted into different rate requirements to calculate the QoSs atisfaction level.The optimization object is revised as a fairness-driven resource optimization function to provide fairness. The complex resource allocation problem is divided into channel allocation and power assignment sub-problems. The sub-problems are solved by the bipartite graph matching and water-filling based method.Compared with other algorithms the proposed algorithm sacrifices less data rate for higher fairnes and QoS satisfaction.The sim ulation results show that the proposed algorithm is capableo fp rovi ding QoS and fairness and performs better in a tradeoff among QoS fairness and data rate.

  12. 1.92 Tb/s coherent DWDM-OFDMA-PON with no high-speed ONU-side electronics over 100 km SSMF and 1:64 passive split.

    Cvijetic, Neda; Huang, Ming-Fang; Ip, Ezra; Shao, Yin; Huang, Yue-Kai; Cvijetic, Milorad; Wang, Ting


    Record 1.92-Tb/s (40λ × 48 Gb/s/λ) coherent DWDM-OFDMA-PON without high-speed ONU-side ADCs/DACs/DSP/RF clock sources is demonstrated over 100 km straight SSMF with a 1:64 passive split. Novel optical-domain OFDMA sub-band selection, coherent detection, and simple RF components are exploited. As the first experimental verification of a next-generation optical platform capable of delivering 1 Gb/s to 1000(+) users over 100 km, the new architecture is promising for future optical access/metro systems. © 2011 Optical Society of America

  13. Cross-Layer Resource Scheduling for Video Traffic in the Downlink of OFDMA-Based Wireless 4G Networks

    Wong WilliamK


    Full Text Available Designing scheduling algorithms at the medium access control (MAC layer relies on a variety of parameters including quality of service (QoS requirements, resource allocation mechanisms, and link qualities from the corresponding layers. In this paper, we present an efficient cross-layer scheduling scheme, namely, Adaptive Token Bank Fair Queuing (ATBFQ algorithm, which is designed for packet scheduling and resource allocation in the downlink of OFDMA-based wireless 4G networks. This algorithm focuses on the mechanisms of efficiency and fairness in multiuser frequency-selective fading environments. We propose an adaptive method for ATBFQ parameter selection which integrates packet scheduling with resource mapping. The performance of the proposed scheme is compared to that of the round-robin (RR and the score-based (SB schedulers. It is observed from simulation results that the proposed scheme with adaptive parameter selection provides enhanced performance in terms of queuing delay, packet dropping rate, and cell-edge user performance, while the total sector throughput remains comparable. We further analyze and compare achieved fairness of the schemes in terms of different fairness indices available in literature.

  14. Cross-Layer Resource Scheduling for Video Traffic in the Downlink of OFDMA-Based Wireless 4G Networks


    Full Text Available Designing scheduling algorithms at the medium access control (MAC layer relies on a variety of parameters including quality of service (QoS requirements, resource allocation mechanisms, and link qualities from the corresponding layers. In this paper, we present an efficient cross-layer scheduling scheme, namely, Adaptive Token Bank Fair Queuing (ATBFQ algorithm, which is designed for packet scheduling and resource allocation in the downlink of OFDMA-based wireless 4G networks. This algorithm focuses on the mechanisms of efficiency and fairness in multiuser frequency-selective fading environments. We propose an adaptive method for ATBFQ parameter selection which integrates packet scheduling with resource mapping. The performance of the proposed scheme is compared to that of the round-robin (RR and the score-based (SB schedulers. It is observed from simulation results that the proposed scheme with adaptive parameter selection provides enhanced performance in terms of queuing delay, packet dropping rate, and cell-edge user performance, while the total sector throughput remains comparable. We further analyze and compare achieved fairness of the schemes in terms of different fairness indices available in literature.

  15. A Dual-based Method for Resource Allocation in OFDMA-SDMA Systems with Minimum Rate Constraints

    Perea-Vega, Diego; Frigon, Jean-François


    We consider multi-antenna base stations using orthogonal frequency-division multiple access (OFDMA) and space division multiple access (SDMA) techniques to serve single antenna users, where some of those users have minimum rate requirements and must be served in the current time slot (real time users), while others do not have strict timing constraints (non real time users) and are served on a best effort basis. The resource allocation problem is to find the user assignment to subcarriers and the transmit beamforming vectors that maximize a linear utility function of the user rates subject to power and minimum rate constraints. The exact optimal solution to this problem can not be reasonably obtained for practical parameters values of the communication system. We thus derive a dual problem formulation whose optimal solution provides an upper bound to all feasible solutions and can be used to benchmark the performance of any heuristic method used to solve this problem. We also derive from this dual optimal sol...

  16. Outage analysis for underlay relay-assisted cognitive networks

    Tourki, Kamel


    Cooperative relay technology was recently introduced into cognitive radio networks in order to enhance network capacity, scalability, and reliability of end-to-end communication. In this paper, we investigate an underlay cognitive network where the quality of service of the secondary link is maintained by triggering an opportunistic regenerative relaying once it falls under an unacceptable level. We first provide the exact cumulative density function (CDF) of received signal-to-noise (SNR) over each hop with co-located relays. Then, the CDFs are used to determine very accurate closed-form expression for the outage probability for a transmission rate R. We validate our analysis by showing that simulation results coincide with our analytical results in Rayleigh fading channels. © 2012 IEEE.

  17. Resource allocation for relay assisted cognitive radio networks

    Zafar, Ammar


    In this paper, we present two optimal resource allocation schemes that maximize throughput and symbol correct rate (SCR). The throughput and SCR are derived. The derived throughput and SCR are optimized with respect to the sensing time, the source transmission power and the relay transmission power. Numerical results show that the optimal sensing time is dependent on the primary user\\'s signal-to-noise-ratio (SNR). They also show that SCR increases with increase in the number of relays. © 2012 IEEE.


    Meng Qingmin; You Xiaohu; John Boyer


    We investigate an adaptive cooperative protocol in a Two-Hop-Relay (THR) wireless system that combines the following: (1) adaptive relaying based on repetition coding; (2) single or two transmit antennas and one receive antenna configurations for all nodes, each using high order constellation; (3) Bit-Interleaved Coded Modulation (BICM). We focus on a simple decoded relaying (i.e. no error correcting at a relay node)and simple signal quality thresholds for relaying. Then the impact of the two simple thresholds on the system performance is studied. Our results suggest that compared with the traditional scheme for direct transmission,the proposed scheme can increase average throughput in high spectral efficiency region with low implementation-cost at the relay.

  19. Analysis methods to reduce PAPR of SC-FDMA and OFDMA system%减小SC-FDMA与OFDMA系统PAPR的方法分析

    林志阳; 王兆晖; 丁洁; 任佳; 张春元; 易家傅


    In order to reduce the high peak average power ratio(PAPR)of the SC⁃FDMA system,the DFT spread spec⁃trum technology is adopted in this paper to perform comparison and simulation analysis for PAPR performances of single carrier frequency division multiple access (SC⁃FDMA) and orthogonal frequency division multiple access (OFDMA) uplink systems. The results show that DFT spread spectrum method adopted in this paper can effectively reduce PAPR of the SC⁃FDMA system, and is superior to the OFDMA system.%为了有效减小SC⁃FDMA系统的高峰值平均功率比(PAPR),采用DFT扩频技术对单载波频分多址(SC⁃FDMA)和正交频分多址(OFDMA)上行系统的PAPR性能进行比较与仿真分析。结果表明,这里采用DFT扩频方法能有效减小SC⁃FDMA系统PAPR,且明显优于OFDMA系统。

  20. Multi-User Scheduling in the 3GPP LTE Cellular Uplink

    Prasad, Narayan; Zhu, Hao; Rangarajan, Sampath


    We consider resource allocation in the 3GPP Long Term Evolution (LTE) cellular uplink. The key features of the 3GPP LTE uplink (UL) are that it is based on a modified form of the orthogonal frequency division multiplexing based multiple acess (OFDMA), which enables localized channel dependent frequency selective scheduling, and that it allows for multi-user (MU) scheduling wherein multiple users can be assigned the same time-frequency resource. Furthermore, the LTE UL allows for transmit antenna selection together with the possibility to employ advanced receivers at the base-station. While these features promise significant spectral efficiency gains, several practical constraints are also imposed in order to maintain a low signaling overhead and mitigate inter-cell interference. In this paper, we show that the resulting resource allocation problem is APX-hard and then propose a {\\em local ratio test (LRT)} based constant-factor polynomial-time approximation algorithm. The proposed LRT based MU scheduling algo...

  1. Cellular automata

    Codd, E F


    Cellular Automata presents the fundamental principles of homogeneous cellular systems. This book discusses the possibility of biochemical computers with self-reproducing capability.Organized into eight chapters, this book begins with an overview of some theorems dealing with conditions under which universal computation and construction can be exhibited in cellular spaces. This text then presents a design for a machine embedded in a cellular space or a machine that can compute all computable functions and construct a replica of itself in any accessible and sufficiently large region of t

  2. Analysis of Quality of Service Performances of Connection Admission Control Mechanisms in OFDMA IEEE 802.16 Network using BMAP Queuing

    Bouchti, Abdelali El; Kafhali, Said El


    In this paper, we consider a single-cell IEEE 802.16 environment in which the base station allocates subchannels to the subscriber stations in its coverage area. The subchannels allocated to a subscriber station are shared by multiple connections at that subscriber station. To ensure the Quality of Service (QoS) performances, two Connection Admission Control (CAC) mechanisms, namely, threshold-based and queue-aware CAC mechanisms are considered at a subscriber station. A queuing analytical framework for these admission control mechanisms is presented considering Orthogonal Frequency Division Multiple Access (OFDMA) based transmission at the physical layer. Then, based on the queuing model, both the connection-level and the packet-level performances are studied and compared with their analogues in the case without CAC. The connection arrival is modeled by a Poisson process and the packet arrival for a connection by Batch Markov Arrival Process (BMAP). We determine analytically and numerically different QoS per...

  3. Cellular Telephone



    Cellular phones, used in automobiles, airliners, and passenger trains, are basically low-power radiotelephones. Calls go through radio transmitters that are located within small geographical units called cells. Because each cell’s signals are too weak to interfere with those of other cells operating on the same fre-

  4. An OFDMA Power Allocation Algorithm Considering Integer Bit Rate and Fairness for Cognitive Radio Networks%考虑整数比特率及公平性的认知无线电OFDMA功率分配算法

    郝万明; 杨守义


    For orthogonal frequency division multiple access( OFDMA)-based cognitive radio systems, the transmission rate of every cognitive user must be an integer in practice, and the single cognitive user is on-ly considered in previous rate rounding algorithm. According to this situation, a new rate rounding algo-rithm is proposed in this paper, and it is modified based on the previous algorithm. Every subcarrier rate is adjusted once at most, which ensures the fairness at the rate rounding between cognitive users, and the to-tal bit rate is also improved. The simulation result shows that the fairness among cognitive users is im-proved effectively by the proposed algorithm.%在基于正交频分多址( OFDMA)的认知无线电系统中,每个认知用户在实际中都是以整数比特进行传输,而以往的速率取整算法只考虑了单认知用户。针对这种情况,提出了一种新的速率取整算法,该算法在原有算法的基础上进行了改进,让每个子载波最多参与一次速率的调整,从而使其在应用于多认知用户时保证了速率取整时的公平性,同时总的传输比特率比原算法有了一定的提高。仿真结果表明,所提算法有效提高了各认知用户在速率取整时的公平性。

  5. Energy-efficient downlink resource management in self-organized OFDMA-based two-tier femtocell networks

    Shahid, Adnan; Aslam, Saleem; Kim, Hyung Seok; Lee, Kyung-Geun


    Femtocell is a novel technology that is used for escalating indoor coverage as well as the capacity of traditional cellular networks. However, interference is the limiting factor for performance improvement due to co-channel deployment between macrocells and femtocells. The traditional network planning is not feasible because of the random deployment of femtocells. Therefore, self-organization approaches are the key to having successful deployment of femtocells. This study presents the joint resource block (RB) and power allocation task for the two-tier femtocell network in a self-organizing manner, with the concern to minimizing the impact of interference and maximizing the energy efficiency. In this study, we analyze the performance of the system in terms of the energy efficiency, which is composed of both the transmission and circuit power. Most of the previous studies investigate the performance regarding the throughput requirement of the two-tier femtocell network while the energy efficiency aspect is largely ignored. Here, the joint allocation task is modeled as a non-cooperative game which is demonstrated to exhibit pure and unique Nash equilibrium. In order to reduce the complexity of the proposed non-cooperative game, the joint RB and power allocation task is divided into two subproblems: an RB allocation and a particle swarm optimization-based power allocation. The analysis of the proposed game is carried out in terms of not only energy efficiency but also throughput. With practical 3rd Generation Partnership Project (3GPP) Long-Term Evolution (LTE) parameters, the simulation results illustrate the superior performance of the proposed game as compared to the traditional methods. Also, the comparison is carried out with the joint allocation scheme which only considers the throughput as the objective function. The results illustrate that significant performance improvement is achieved in terms of energy efficiency with slight loss in the throughput. The

  6. Flat Cellular (UMTS) Networks

    Bosch, H.G.P.; Samuel, L.G.; Mullender, S.J.; Polakos, P.; Rittenhouse, G.


    Traditionally, cellular systems have been built in a hierarchical manner: many specialized cellular access network elements that collectively form a hierarchical cellular system. When 2G and later 3G systems were designed there was a good reason to make system hierarchical: from a cost-perspective i

  7. Relay-Assisted Primary and Secondary Transmissions in Cognitive Radio Networks

    Shafie, Ahmed El


    We assume a set of cognitive relay nodes that assists both primary and secondary transmissions in a time-slotted cognitive radio networks. To regulate the channel access of the various nodes in the network, we propose an overlapped spectrum sensing strategy for channel sensing, where the secondary source node senses the channel from the beginning of the time slot and the cognitive relay nodes sense the channel for double the sensing time used by the secondary source node to detect the activities of both the primary and secondary source nodes. Hence, the secondary source node has an intrinsic priority over the relay nodes. The relay nodes help both the primary user and the secondary user to deliver their unsuccessfully decoded packets at their destinations. In a given time slot, the scheduled relay node for data transmission starts its transmission when both the primary and secondary users are sensed to be inactive (i.e. have no data to transmit). We propose two optimization-based formulations with quality-of-service (QoS) constraints involving average queueing delay and average service rate requirements. We investigate both cases of perfect and imperfect spectrum sensing. To further enhance the users\\' QoS requirements, we propose three packet decoding strategies at the relay nodes and compare their performance. We derive an upper bound on the secondary queue average service rate to determine which decoding strategy can achieve that bound. Our numerical results show the benefits of relaying and its ability to enhance the performance of both the primary and secondary users. Moreover, the performance of the proposed schemes is close to the derived upper bound.

  8. Relay-assisted Network Coding Multicast in the Presence of Neighbours

    Khamfroush, Hana; Roetter, Daniel Enrique Lucani; Pahlevani, Peyman


    We study the problem of minimizing the cost of packet transmission from a source to two receivers with the help of a relay and using network coding in wireless mesh networks consisting of many active neighbours sharing the same channel. The cost minimization problem is modeled as a Markov Decisio...

  9. Relay-assisted Network Coding Multicast in the Presence of Neighbours

    Khamfroush, Hana; Roetter, Daniel Enrique Lucani; Pahlevani, Peyman;


    We study the problem of minimizing the cost of packet transmission from a source to two receivers with the help of a relay and using network coding in wireless mesh networks consisting of many active neighbours sharing the same channel. The cost minimization problem is modeled as a Markov Decision...... Process (MDP) and analysed under different network conditions. Two simple heuristics are proposed to estimate the appropriate time for activating the relay to provide close-to-optimal performance. Our numerical results show that a judicious network coding enabled relay can bring up to 2.9x gains...

  10. 基站协作OFDMA系统中面向混合业务的资源分配%Resource Allocation for Heterogeneous Services in OFDMA Systems with Base Station Cooperation

    贾亦真; 陶晓明; 陆建华


    基站协作是多小区OFDMA系统中抑制共信道干扰、提高系统容量的有效手段.如何分配无线资源以实现资源与业务最佳匹配是基站协作OFDMA系统中的关键问题.现有的研究大多面向单一业务.该文研究了尽力而为(BE)与有速率约束(RC)两类典型业务共存情况下的子载波与功率分配问题,提出了一种两阶段的启发式算法.算法的第1阶段仅为RC用户分配资源,通过引入子载波价值矩阵,最小化满足RC用户速率约束所需的子载波数;第2阶段将剩余子载波分配给BE用户以最大化他们的和速率.仿真结果表明,所提算法在系统中断概率及BE用户和速率两项指标上均优于已有方法.%Base Station Cooperation (BSC) is considered as a promising way for Co-Channel Interference (CCI) mitigation and system capacity improvement in multicell OFDMA systems. How to allocate radio resource optimally to guarantee the quality of services is a key problem in OFDMA systems with BSC Previous research mostly focuses on the case of homogenous service. This paper studies subcarrier and power allocation problem in such a system where users with Best Effort (BE) service and those with Rate-Constrained (RC) service coexist. A two-stage heuristic algorithm is proposed. In the first stage, the algorithm allocates resource to only RC users, trying to minimize the number of subcarriers needed to satisfy their rate requirements with the help of value matrix of subcarriers. In the second stage, the remaining subcarriers are assigned optimally to BE users to maximize then-sum rate. Simulation results show that the proposed algorithm outperforms the counterparts in both system outage probability and BE users' sum rate.

  11. Energy-efficient resource allocation algorithm for massive MIMO OFDMA downlink system%大规模MIMO OFDMA下行系统能效资源分配算法

    胡莹; 冀保峰; 黄永明; 俞菲; 杨绿溪



  12. Reversible quantum cellular automata

    Schumacher, B


    We define quantum cellular automata as infinite quantum lattice systems with discrete time dynamics, such that the time step commutes with lattice translations and has strictly finite propagation speed. In contrast to earlier definitions this allows us to give an explicit characterization of all local rules generating such automata. The same local rules also generate the global time step for automata with periodic boundary conditions. Our main structure theorem asserts that any quantum cellular automaton is structurally reversible, i.e., that it can be obtained by applying two blockwise unitary operations in a generalized Margolus partitioning scheme. This implies that, in contrast to the classical case, the inverse of a nearest neighbor quantum cellular automaton is again a nearest neighbor automaton. We present several construction methods for quantum cellular automata, based on unitaries commuting with their translates, on the quantization of (arbitrary) reversible classical cellular automata, on quantum c...

  13. Heterogeneous cellular networks

    Hu, Rose Qingyang


    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  14. Modeling cellular systems

    Matthäus, Franziska; Pahle, Jürgen


    This contributed volume comprises research articles and reviews on topics connected to the mathematical modeling of cellular systems. These contributions cover signaling pathways, stochastic effects, cell motility and mechanics, pattern formation processes, as well as multi-scale approaches. All authors attended the workshop on "Modeling Cellular Systems" which took place in Heidelberg in October 2014. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.

  15. Epigenetics and Cellular Metabolism

    Wenyi Xu; Fengzhong Wang; Zhongsheng Yu; Fengjiao Xin


    Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc.) is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the proce...

  16. Nanostructured cellular networks.

    Moriarty, P; Taylor, M D R; Brust, M


    Au nanocrystals spin-coated onto silicon from toluene form cellular networks. A quantitative statistical crystallography analysis shows that intercellular correlations drive the networks far from statistical equilibrium. Spin-coating from hexane does not produce cellular structure, yet a strong correlation is retained in the positions of nanocrystal aggregates. Mechanisms based on Marangoni convection alone cannot account for the variety of patterns observed, and we argue that spinodal decomposition plays an important role in foam formation.

  17. A Cluster-based Resource Allocation in a Two-tier OFDMA Femtocell Networks%OFDMA毫微微小区双层网络中基于分组的资源分配

    张海波; 穆立雄; 陈善学; 彭焦阳


    Femtocell is a promising technology to enhance indoor coverage and system capacity. However, the co-tier and cross-tier interference impair greatly the network performance for spectrum-sharing OFDMA femtocell networks. To mitigate the co-tier/cross-tier interference, a cluster-based resource allocation algorithm is proposed. The proposed algorithm consists of two parts: In the first part, an improved Hungarian algorithm is first adopted to assign sub-channels to the Macro Users Equipments (MUEs). Then the averagely assigned power is reallocated in linear water-filling fashion in order to ensure the transmission of MUEs. In the other part, Simulated Annealing algorithm is first used to cluster femtocells into disjoint groups. Then under the condition of avoiding causing interference to MUEs, femtocells perform sub-channel and power allocation according to the rate requirements of Femtocell User Equipments (FUEs) to maximize spectrum efficiency. Simulation results show that the proposed algorithm not only guarantees the data rate requirements of users, but also improves the spectrum efficiency.%毫微微小区(Femtocell)网络能够增强室内覆盖,提高系统容量,但是在频谱共享的正交频分多址(OFDMA)毫微微小区网络中,毫微微小区之间的同层干扰以及毫微微小区与宏小区(Macrocell)之间的跨层干扰严重限制了系统的性能。针对这两种干扰,该文提出一种基于分组的资源分配算法。该算法包括两部分:一部分是宏基站先利用改进的匈牙利算法为宏小区用户分配信道,再用注水算法分配功率,保证宏小区用户的正常传输;另一部分是在避免干扰宏小区用户的基础上,先采用模拟退火算法对毫微微小区进行分组,再进行信道和功率分配,满足毫微微小区用户的数据速率需求,最大化频谱效率。仿真结果表明,该算法有效地抑制了这两种干扰,既能保证用户的数据速率需求

  18. Architected Cellular Materials

    Schaedler, Tobias A.; Carter, William B.


    Additive manufacturing enables fabrication of materials with intricate cellular architecture, whereby progress in 3D printing techniques is increasing the possible configurations of voids and solids ad infinitum. Examples are microlattices with graded porosity and truss structures optimized for specific loading conditions. The cellular architecture determines the mechanical properties and density of these materials and can influence a wide range of other properties, e.g., acoustic, thermal, and biological properties. By combining optimized cellular architectures with high-performance metals and ceramics, several lightweight materials that exhibit strength and stiffness previously unachievable at low densities were recently demonstrated. This review introduces the field of architected materials; summarizes the most common fabrication methods, with an emphasis on additive manufacturing; and discusses recent progress in the development of architected materials. The review also discusses important applications, including lightweight structures, energy absorption, metamaterials, thermal management, and bioscaffolds.

  19. Epigenetics and Cellular Metabolism

    Xu, Wenyi; Wang, Fengzhong; Yu, Zhongsheng; Xin, Fengjiao


    Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc.) is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well. PMID:27695375

  20. Cellular structural biology.

    Ito, Yutaka; Selenko, Philipp


    While we appreciate the complexity of the intracellular environment as a general property of every living organism, we collectively lack the appropriate tools to analyze protein structures in a cellular context. In-cell NMR spectroscopy represents a novel biophysical tool to investigate the conformational and functional characteristics of biomolecules at the atomic level inside live cells. Here, we review recent in-cell NMR developments and provide an outlook towards future applications in prokaryotic and eukaryotic cells. We hope to thereby emphasize the usefulness of in-cell NMR techniques for cellular studies of complex biological processes and for structural analyses in native environments. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Cellular blue naevus

    Mittal R


    Full Text Available A 31-year-old man had asymptomatic, stationary, 1.5X2 cm, shiny, smooth, dark blue nodule on dorsum of right hand since 12-14 years. In addition he had developed extensive eruption of yellow to orange papulonodular lesions on extensors of limbs and buttocks since one and half months. Investigations confirmed that yellow papules were xanthomatosis and he had associated diabetes mellitus and hyperlipidaemia. Biopsy of blue nodule confirmed the clinical diagnosis of cellular blue naevus. Cellular blue naevus is rare and its association with xanthomatosis and diabetes mellitus were interesting features of above patients which is being reported for its rarity.

  2. Engineering Cellular Metabolism

    Nielsen, Jens; Keasling, Jay


    of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation....

  3. Electromagnetic cellular interactions.

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan


    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Cellular rehabilitation of photobiomodulation

    Liu, Timon Cheng-Yi; Yuan, Jian-Qin; Wang, Yan-Fang; Xu, Xiao-Yang; Liu, Song-Hao


    Homeostasis is a term that refers to constancy in a system. A cell in homeostasis normally functions. There are two kinds of processes in the internal environment and external environment of a cell, the pathogenic processes (PP) which disrupts the old homeostasis (OH), and the sanogenetic processes (SP) which restores OH or establishes a new homeostasis (NH). Photobiomodualtion (PBM), the cell-specific effects of low intensity monochromatic light or low intensity laser irradiation (LIL) on biological systems, is a kind of modulation on PP or SP so that there is no PBM on a cell in homeostasis. There are two kinds of pathways mediating PBM, the membrane endogenetic chromophores mediating pathways which often act through reactive oxygen species, and membrane proteins mediating pathways which often enhance cellular SP so that it might be called cellular rehabilitation. The cellular rehabilitation of PBM will be discussed in this paper. It is concluded that PBM might modulate the disruption of cellular homeostasis induced by pathogenic factors such as toxin until OH has been restored or NH has been established, but can not change homeostatic processes from one to another one.

  5. Cellular Response to Irradiation

    LIU Bo; YAN Shi-Wei


    To explore the nonlinear activities of the cellular signaling system composed of one transcriptional arm and one protein-interaction arm, we use an irradiation-response module to study the dynamics of stochastic interactions.It is shown that the oscillatory behavior could be described in a unified way when the radiation-derived signal and noise are incorporated.

  6. Molecular and Cellular Signaling

    Beckerman, Martin


    A small number of signaling pathways, no more than a dozen or so, form a control layer that is responsible for all signaling in and between cells of the human body. The signaling proteins belonging to the control layer determine what kinds of cells are made during development and how they function during adult life. Malfunctions in the proteins belonging to the control layer are responsible for a host of human diseases ranging from neurological disorders to cancers. Most drugs target components in the control layer, and difficulties in drug design are intimately related to the architecture of the control layer. Molecular and Cellular Signaling provides an introduction to molecular and cellular signaling in biological systems with an emphasis on the underlying physical principles. The text is aimed at upper-level undergraduates, graduate students and individuals in medicine and pharmacology interested in broadening their understanding of how cells regulate and coordinate their core activities and how diseases ...

  7. Environment Aware Cellular Networks

    Ghazzai, Hakim


    The unprecedented rise of mobile user demand over the years have led to an enormous growth of the energy consumption of wireless networks as well as the greenhouse gas emissions which are estimated currently to be around 70 million tons per year. This significant growth of energy consumption impels network companies to pay huge bills which represent around half of their operating expenditures. Therefore, many service providers, including mobile operators, are looking for new and modern green solutions to help reduce their expenses as well as the level of their CO2 emissions. Base stations are the most power greedy element in cellular networks: they drain around 80% of the total network energy consumption even during low traffic periods. Thus, there is a growing need to develop more energy-efficient techniques to enhance the green performance of future 4G/5G cellular networks. Due to the problem of traffic load fluctuations in cellular networks during different periods of the day and between different areas (shopping or business districts and residential areas), the base station sleeping strategy has been one of the main popular research topics in green communications. In this presentation, we present several practical green techniques that provide significant gains for mobile operators. Indeed, combined with the base station sleeping strategy, these techniques achieve not only a minimization of the fossil fuel consumption but also an enhancement of mobile operator profits. We start with an optimized cell planning method that considers varying spatial and temporal user densities. We then use the optimal transport theory in order to define the cell boundaries such that the network total transmit power is reduced. Afterwards, we exploit the features of the modern electrical grid, the smart grid, as a new tool of power management for cellular networks and we optimize the energy procurement from multiple energy retailers characterized by different prices and pollutant

  8. Cellular communication through light.

    Daniel Fels

    Full Text Available Information transfer is a fundamental of life. A few studies have reported that cells use photons (from an endogenous source as information carriers. This study finds that cells can have an influence on other cells even when separated with a glass barrier, thereby disabling molecule diffusion through the cell-containing medium. As there is still very little known about the potential of photons for intercellular communication this study is designed to test for non-molecule-based triggering of two fundamental properties of life: cell division and energy uptake. The study was performed with a cellular organism, the ciliate Paramecium caudatum. Mutual exposure of cell populations occurred under conditions of darkness and separation with cuvettes (vials allowing photon but not molecule transfer. The cell populations were separated either with glass allowing photon transmission from 340 nm to longer waves, or quartz being transmittable from 150 nm, i.e. from UV-light to longer waves. Even through glass, the cells affected cell division and energy uptake in neighboring cell populations. Depending on the cuvette material and the number of cells involved, these effects were positive or negative. Also, while paired populations with lower growth rates grew uncorrelated, growth of the better growing populations was correlated. As there were significant differences when separating the populations with glass or quartz, it is suggested that the cell populations use two (or more frequencies for cellular information transfer, which influences at least energy uptake, cell division rate and growth correlation. Altogether the study strongly supports a cellular communication system, which is different from a molecule-receptor-based system and hints that photon-triggering is a fine tuning principle in cell chemistry.

  9. Failover in cellular automata

    Kumar, Shailesh


    A cellular automata (CA) configuration is constructed that exhibits emergent failover. The configuration is based on standard Game of Life rules. Gliders and glider-guns form the core messaging structure in the configuration. The blinker is represented as the basic computational unit, and it is shown how it can be recreated in case of a failure. Stateless failover using primary-backup mechanism is demonstrated. The details of the CA components used in the configuration and its working are described, and a simulation of the complete configuration is also presented.

  10. Review of cellular mechanotransduction

    Wang, Ning


    Living cells and tissues experience physical forces and chemical stimuli in the human body. The process of converting mechanical forces into biochemical activities and gene expression is mechanochemical transduction or mechanotransduction. Significant advances have been made in understanding mechanotransduction at the cellular and molecular levels over the last two decades. However, major challenges remain in elucidating how a living cell integrates signals from mechanotransduction with chemical signals to regulate gene expression and to generate coherent biological responses in living tissues in physiological conditions and diseases.

  11. Cellular automata: structures

    Ollinger, Nicolas


    Jury : François Blanchard (Rapporteur), Marianne Delorme (Directeur), Jarkko Kari (Président), Jacques Mazoyer (Directeur), Dominique Perrin, Géraud Sénizergues (Rapporteur); Cellular automata provide a uniform framework to study an important problem of "complex systems" theory: how and why do system with a easily understandable -- local -- microscopic behavior can generate a more complicated -- global -- macroscopic behavior? Since its introduction in the 40s, a lot of work has been done to ...

  12. [Senescence and cellular immortality].

    Trentesaux, C; Riou, J-F


    Senescence was originally described from the observation of the limited ability of normal cells to grow in culture, and may be generated by telomere erosion, accumulation of DNA damages, oxidative stress and modulation of oncogenes or tumor suppressor genes. Senescence corresponds to a cellular response aiming to control tumor progression by limiting cell proliferation and thus constitutes an anticancer barrier. Senescence is observed in pre-malignant tumor stages and disappears from malignant tumors. Agents used in standard chemotherapy also have the potential to induce senescence, which may partly explain their therapeutic activities. It is possible to restore senescence in tumors using targeted therapies that triggers telomere dysfunction or reactivates suppressor genes functions, which are essential for the onset of senescence.

  13. Engineering Cellular Metabolism.

    Nielsen, Jens; Keasling, Jay D


    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds, and pharmaceuticals. However, making cells into efficient factories is challenging because cells have evolved robust metabolic networks with hard-wired, tightly regulated lines of communication between molecular pathways that resist efforts to divert resources. Here, we will review the current status and challenges of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation.

  14. Cellular image classification

    Xu, Xiang; Lin, Feng


    This book introduces new techniques for cellular image feature extraction, pattern recognition and classification. The authors use the antinuclear antibodies (ANAs) in patient serum as the subjects and the Indirect Immunofluorescence (IIF) technique as the imaging protocol to illustrate the applications of the described methods. Throughout the book, the authors provide evaluations for the proposed methods on two publicly available human epithelial (HEp-2) cell datasets: ICPR2012 dataset from the ICPR'12 HEp-2 cell classification contest and ICIP2013 training dataset from the ICIP'13 Competition on cells classification by fluorescent image analysis. First, the reading of imaging results is significantly influenced by one’s qualification and reading systems, causing high intra- and inter-laboratory variance. The authors present a low-order LP21 fiber mode for optical single cell manipulation and imaging staining patterns of HEp-2 cells. A focused four-lobed mode distribution is stable and effective in optical...

  15. Multiuser Cellular Network

    Bao, Yi; Chen, Ming


    Modern radio communication is faced with a problem about how to distribute restricted frequency to users in a certain space. Since our task is to minimize the number of repeaters, a natural idea is enlarging coverage area. However, coverage has restrictions. First, service area has to be divided economically as repeater's coverage is limited. In this paper, our fundamental method is to adopt seamless cellular network division. Second, underlying physics content in frequency distribution problem is interference between two close frequencies. Consequently, we choose a proper frequency width of 0.1MHz and a relevantly reliable setting to apply one frequency several times. We make a few general assumptions to simplify real situation. For instance, immobile users yield to homogenous distribution; repeaters can receive and transmit information in any given frequency in duplex operation; coverage is mainly decided by antenna height. Two models are built up to solve 1000 users and 10000 users situations respectively....

  16. Cellular bioluminescence imaging.

    Welsh, David K; Noguchi, Takako


    Bioluminescence imaging of live cells has recently been recognized as an important alternative to fluorescence imaging. Fluorescent probes are much brighter than bioluminescent probes (luciferase enzymes) and, therefore, provide much better spatial and temporal resolution and much better contrast for delineating cell structure. However, with bioluminescence imaging there is virtually no background or toxicity. As a result, bioluminescence can be superior to fluorescence for detecting and quantifying molecules and their interactions in living cells, particularly in long-term studies. Structurally diverse luciferases from beetle and marine species have been used for a wide variety of applications, including tracking cells in vivo, detecting protein-protein interactions, measuring levels of calcium and other signaling molecules, detecting protease activity, and reporting circadian clock gene expression. Such applications can be optimized by the use of brighter and variously colored luciferases, brighter microscope optics, and ultrasensitive, low-noise cameras. This article presents a review of how bioluminescence differs from fluorescence, its applications to cellular imaging, and available probes, optics, and detectors. It also gives practical suggestions for optimal bioluminescence imaging of single cells.

  17. Cellular neurothekeoma with melanocytosis.

    Wu, Ren-Chin; Hsieh, Yi-Yueh; Chang, Yi-Chin; Kuo, Tseng-Tong


    Cellular neurothekeoma (CNT) is a benign dermal tumor mainly affecting the head and neck and the upper extremities. It is characterized histologically by interconnecting fascicles of plump spindle or epithelioid cells with ample cytoplasm infiltrating in the reticular dermis. The histogenesis of CNT has been controversial, although it is generally regarded as an immature counterpart of classic/myxoid neurothekeoma, a tumor with nerve sheath differentiation. Two rare cases of CNT containing melanin-laden cells were described. Immunohistochemical study with NKI/C3, vimentin, epithelial membrane antigen, smooth muscle antigen, CD34, factor XIIIa, collagen type IV, S100 protein and HMB-45 was performed. Both cases showed typical growth pattern of CNT with interconnecting fascicles of epithelioid cells infiltrating in collagenous stroma. One of the nodules contained areas exhibiting atypical cytological features. Melanin-laden epithelioid or dendritic cells were diffusely scattered throughout one nodule, and focally present in the peripheral portion of the other nodule. Both nodules were strongly immunoreactive to NKI/C3 and vimentin, but negative to all the other markers employed. CNT harboring melanin-laden cells may pose diagnostic problems because of their close resemblance to nevomelanocytic lesions and other dermal mesenchymal tumors. These peculiar cases may also provide further clues to the histogenesis of CNT.

  18. 解码转发中继网络基于OFDMA的低复杂度资源分配%Low Complexity Resource Allocation in OFDMA-Based Decode-and-Forward Relaying Networks

    唐伦; 蒋广健; 陈前斌


    This paper addresses joint subcarrier pairing, dynamic subcarrier allocation and power allocation which satisfies user expected rate in OFDMA-based decode-and-forward relaying networks for which users have different expected rate. A mathematical model for minimizing difference between the achievable and expected rates is established. Three algorithms are proposed. First, a joint subcarrier pairing and dynamic subcarrier allocation algorithm (ERDSA) with average power allocation is used. Second, if the system resource is insufficient, a joint subcarrier pairing and dynamic subcarrier allocation algorithm (EERDSA) with proportionate reduction of user expected rate can be used. When the system power is evenly allocated, the data rates of the first and the second hops are mismatched. In this case, a joint subcarrier pairing, dynamic subcarrier allocation and power allocation algorithm (DJSPA) is used. Analyses show that ERDSA, EERDSA and DJSPA have low complexity, linearly proportional to the number of subcarriers. Simulation shows that the proposed schemes can satisfy user expected rate and reduce power consumption.%该文研究满足用户速率需求的子载波配对、动态子载波分配和功率分配的联合优化,建立了使传输速率与用户期望速率之差最小化的优化数学模型.首先提出平均功率分配下基于用户期望速率的子载波配对和动态子载波分配算法(dynamic subcarrier allocation based on expected rate,ERDSA).为了保证用户的公平性,提出在系统资源不足时按比例减小接入用户期望速率的子载波配对和动态子载波分配算法(enhanced dynamic subcarrier allocation based on expected rate,EERDSA).由于平均功率分配时,第1跳子载波与第2跳子载波的速率存在不完美匹配的问题,进而提出联合子载波配对、动态子载波分配和功率分配算法(dynamic joint subcarrier and power allocation,DJSPA).分析表明3种算法的复杂度仅与子载波数呈

  19. Free fall and cellular automata

    Pablo Arrighi


    Full Text Available Three reasonable hypotheses lead to the thesis that physical phenomena can be described and simulated with cellular automata. In this work, we attempt to describe the motion of a particle upon which a constant force is applied, with a cellular automaton, in Newtonian physics, in Special Relativity, and in General Relativity. The results are very different for these three theories.

  20. About Strongly Universal Cellular Automata

    Maurice Margenstern


    Full Text Available In this paper, we construct a strongly universal cellular automaton on the line with 11 states and the standard neighbourhood. We embed this construction into several tilings of the hyperbolic plane and of the hyperbolic 3D space giving rise to strongly universal cellular automata with 10 states.

  1. Reactive Programming of Cellular Automata

    Boussinot, Frédéric


    Implementation of cellular automata using reactive programming gives a way to code cell behaviors in an abstract and modular way. Multiprocessing also becomes possible. The paper describes the implementation of cellular automata with the reactive programming language LOFT, a thread-based extension of C. Self replicating loops considered in artificial life are coded to show the interest of the approach.

  2. Joint Bandwidth and Power Allocation for MIMO Two-Way Relays-Assisted Overlay Cognitive Radio Systems

    Alsharoa, Ahmad


    This paper studies the achievable cognitive sum rate of an overlay cognitive radio (CR) system assisted with multiple antennas two-way relays in which primary users (PUs) cooperate with cognitive users (CUs) for mutual benefits. In this context, the problem of both bandwidth and power allocation is investigated. We propose that the CUs are allowed to allocate a part of the PUs spectrum to perform their cognitive transmission. In return, acting as amplify-and-forward two-way relays, they are exploited to support PUs to reach their target data rates over the remaining bandwidth. Power expressions for optimal transmit power allocated per PU and CU antenna are derived under primary quality-of-service constraint in addition to bandwidth and power budget constraints. More specifically, CUs act as relays for the PUs transmission and gain some spectrum as long as they respect these constraints. After deriving the optimal transmit powers, we employ a strong optimization tool based on swarm intelligence to optimize the full and complex relay amplification gain matrices in addition to the bandwidths released to primary and cognitive transmission. Furthermore, three different utility functions are considered in our optimization problems depending on the level of fairness among CUs.

  3. MIMO Communication for Cellular Networks

    Huang, Howard; Venkatesan, Sivarama


    As the theoretical foundations of multiple-antenna techniques evolve and as these multiple-input multiple-output (MIMO) techniques become essential for providing high data rates in wireless systems, there is a growing need to understand the performance limits of MIMO in practical networks. To address this need, MIMO Communication for Cellular Networks presents a systematic description of MIMO technology classes and a framework for MIMO system design that takes into account the essential physical-layer features of practical cellular networks. In contrast to works that focus on the theoretical performance of abstract MIMO channels, MIMO Communication for Cellular Networks emphasizes the practical performance of realistic MIMO systems. A unified set of system simulation results highlights relative performance gains of different MIMO techniques and provides insights into how best to use multiple antennas in cellular networks under various conditions. MIMO Communication for Cellular Networks describes single-user,...

  4. Cellular automata analysis and applications

    Hadeler, Karl-Peter


    This book focuses on a coherent representation of the main approaches to analyze the dynamics of cellular automata. Cellular automata are an inevitable tool in mathematical modeling. In contrast to classical modeling approaches as partial differential equations, cellular automata are straightforward to simulate but hard to analyze. In this book we present a review of approaches and theories that allow the reader to understand the behavior of cellular automata beyond simulations. The first part consists of an introduction of cellular automata on Cayley graphs, and their characterization via the fundamental Cutis-Hedlund-Lyndon theorems in the context of different topological concepts (Cantor, Besicovitch and Weyl topology). The second part focuses on classification results: What classification follows from topological concepts (Hurley classification), Lyapunov stability (Gilman classification), and the theory of formal languages and grammars (Kůrka classification). These classifications suggest to cluster cel...

  5. Cellular systems biology profiling applied to cellular models of disease.

    Giuliano, Kenneth A; Premkumar, Daniel R; Strock, Christopher J; Johnston, Patricia; Taylor, Lansing


    Building cellular models of disease based on the approach of Cellular Systems Biology (CSB) has the potential to improve the process of creating drugs as part of the continuum from early drug discovery through drug development and clinical trials and diagnostics. This paper focuses on the application of CSB to early drug discovery. We discuss the integration of protein-protein interaction biosensors with other multiplexed, functional biomarkers as an example in using CSB to optimize the identification of quality lead series compounds.

  6. A Course in Cellular Bioengineering.

    Lauffenburger, Douglas A.


    Gives an overview of a course in chemical engineering entitled "Cellular Bioengineering," dealing with how chemical engineering principles can be applied to molecular cell biology. Topics used are listed and some key references are discussed. Listed are 85 references. (YP)

  7. Novel Materials for Cellular Nanosensors

    Sasso, Luigi

    The monitoring of cellular behavior is useful for the advancement of biomedical diagnostics, drug development and the understanding of a cell as the main unit of the human body. Micro- and nanotechnology allow for the creation of functional devices that enhance the study of cellular dynamics...... by providing platforms that offer biocompatible surfaces for the cell culturing in lab-on-chip devices integrated with optimized nanosensors with high specificities and sensitivities towards cellular analytes. In this project, novel materials were investigated with a focus on providing suitable surface...... modifications for electrochemical nanosensors for the detection of analytes released from cells. Two type of materials were investigated, each pertaining to the two different aspects of such devices: peptide nanostructures were studied for the creation of cellular sensing substrates that mimic in vivo surfaces...

  8. Energy Landscape of Cellular Networks

    Wang, Jin


    Cellular Networks are in general quite robust and perform their biological functions against the environmental perturbations. Progresses have been made from experimental global screenings, topological and engineering studies. However, there are so far few studies of why the network should be robust and perform biological functions from global physical perspectives. In this work, we will explore the global properties of the network from physical perspectives. The aim of this work is to develop a conceptual framework and quantitative physical methods to study the global nature of the cellular network. The main conclusion of this presentation is that we uncovered the underlying energy landscape for several small cellular networks such as MAPK signal transduction network and gene regulatory networks, from the experimentally measured or inferred inherent chemical reaction rates. The underlying dynamics of these networks can show bi-stable as well as oscillatory behavior. The global shapes of the energy landscapes of the underlying cellular networks we have studied are robust against perturbations of the kinetic rates and environmental disturbances through noise. We derived a quantitative criterion for robustness of the network function from the underlying landscape. It provides a natural explanation of the robustness and stability of the network for performing biological functions. We believe the robust landscape is a global universal property for cellular networks. We believe the robust landscape is a quantitative realization of Darwinian principle of natural selection at the cellular network level. It may provide a novel algorithm for optimizing the network connections, which is crucial for the cellular network design and synthetic biology. Our approach is general and can be applied to other cellular networks.

  9. Mathematical Modeling of Cellular Metabolism.

    Berndt, Nikolaus; Holzhütter, Hermann-Georg


    Cellular metabolism basically consists of the conversion of chemical compounds taken up from the extracellular environment into energy (conserved in energy-rich bonds of organic phosphates) and a wide array of organic molecules serving as catalysts (enzymes), information carriers (nucleic acids), and building blocks for cellular structures such as membranes or ribosomes. Metabolic modeling aims at the construction of mathematical representations of the cellular metabolism that can be used to calculate the concentration of cellular molecules and the rates of their mutual chemical interconversion in response to varying external conditions as, for example, hormonal stimuli or supply of essential nutrients. Based on such calculations, it is possible to quantify complex cellular functions as cellular growth, detoxification of drugs and xenobiotic compounds or synthesis of exported molecules. Depending on the specific questions to metabolism addressed, the methodological expertise of the researcher, and available experimental information, different conceptual frameworks have been established, allowing the usage of computational methods to condense experimental information from various layers of organization into (self-) consistent models. Here, we briefly outline the main conceptual frameworks that are currently exploited in metabolism research.

  10. Location-Based Resource Allocation for OFDMA

    Ghorbel, Mahdi


    Cognitive radio is one of the hot topics for emerging and future wireless communication. It has been proposed as a suitable solution for the spectrum scarcity caused by the increase in frequency demand. The concept is based on allowing unlicensed users, called cognitive or secondary users, to share the unoccupied frequency bands with their owners, called the primary users, under constraints on the interference they cause to them. In order to estimate this interference, the cognitive system usually uses the channel state information to the primary user, which is often impractical to obtain. However, we propose to use location information, which is easier to obtain, to estimate this interference. The purpose of this work is to propose a subchannel and power allocation method which maximizes the secondary users\\' total capacity under the constraints of limited budget power and total interference to the primary under certain threshold. We model the problem as a constrained optimization problem for both downlink and uplink cases. Then, we propose low-complexity resource allocation schemes based on the waterfilling algorithm. The simulation results show the efficiency of the proposed method with comparison to the exhaustive search algorithm.

  11. Hierarchical Cellular Structures in High-Capacity Cellular Communication Systems

    Jain, R K; Agrawal, N K


    In the prevailing cellular environment, it is important to provide the resources for the fluctuating traffic demand exactly in the place and at the time where and when they are needed. In this paper, we explored the ability of hierarchical cellular structures with inter layer reuse to increase the capacity of mobile communication network by applying total frequency hopping (T-FH) and adaptive frequency allocation (AFA) as a strategy to reuse the macro and micro cell resources without frequency planning in indoor pico cells [11]. The practical aspects for designing macro- micro cellular overlays in the existing big urban areas are also explained [4]. Femto cells are inducted in macro / micro / pico cells hierarchical structure to achieve the required QoS cost effectively.

  12. Prognosis of Different Cellular Generations

    Preetish Ranjan


    Full Text Available Technological advancement in mobile telephony from 1G to 3G, 4G and 5G has a very axiomatic fact that made an entire world a global village. The cellular system employs a different design approach and technology that most commercial radio and television system use. In the cellular system, the service area is divided into cells and a transmitter is designed to serve an individual cell. The system seeks to make efficient use of available channels by using low-power transmitters to allow frequency reuse at a smaller distance. Maximizing the number of times each channel can be reused in a given geographical area is the key to an efficient cellular system design. During the past three decades, the world has seen significant changes in telecommunications industry. There have been some remarkable aspects to the rapid growth in wireless communications, as seen by the large expansion in mobile systems. This paper focuses on “Past, Present & Future of Cellular Telephony” and some light has been thrown upon the technologies of the cellular systems, namely 1G, 2G, 2.5G, 3G and future generations like 4G and 5G systems as well.

  13. Continuum representations of cellular solids

    Neilsen, M.K.


    Cellular materials consist of interconnected struts or plates which form cells. The struts or plates are constructed from a variety of metals, polymers, ceramics and wood products. Cellular materials are often used in impact limiters for shipping containers to protect the contents from accidental impact events. These materials exhibit a variety of complex behavior when subjected to crushing loads. This research focuses on the development of continuum representations of cellular solids that can be used in the finite element analysis of shipping container accidents. A significant portion of this work is the development of a new methodology to relate localized deformations to appropriate constitutive descriptions. This methodology provides the insight needed to select constitutive descriptions for cellular solids that capture the localized deformations that are observed experimentally. Constitutive relations are developed for two different cellular materials, aluminum honeycomb and polyurethane foam. These constitutive relations are based on plasticity and continuum damage theories. Plasticity is used to describe the permanent deformation exhibited by both aluminum honeycomb and polyurethane foam. Continuum damage is needed to capture the change in elastic parameters due to cracking of the polyurethane cell wall materials. The new constitutive description of polyurethane foam is implemented in both static and dynamic finite element codes, and analytical and numerical predictions are compared with available experimental data.

  14. Classifying cellular automata using grossone

    D'Alotto, Louis


    This paper proposes an application of the Infinite Unit Axiom and grossone, introduced by Yaroslav Sergeyev (see [7] - [12]), to the development and classification of one and two-dimensional cellular automata. By the application of grossone, new and more precise nonarchimedean metrics on the space of definition for one and two-dimensional cellular automata are established. These new metrics allow us to do computations with infinitesimals. Hence configurations in the domain space of cellular automata can be infinitesimally close (but not equal). That is, they can agree at infinitely many places. Using the new metrics, open disks are defined and the number of points in each disk computed. The forward dynamics of a cellular automaton map are also studied by defined sets. It is also shown that using the Infinite Unit Axiom, the number of configurations that follow a given configuration, under the forward iterations of cellular automaton maps, can now be computed and hence a classification scheme developed based on this computation.

  15. Cellular models for Parkinson's disease.

    Falkenburger, Björn H; Saridaki, Theodora; Dinter, Elisabeth


    Developing new therapeutic strategies for Parkinson's disease requires cellular models. Current models reproduce the two most salient changes found in the brains of patients with Parkinson's disease: The degeneration of dopaminergic neurons and the existence of protein aggregates consisting mainly of α-synuclein. Cultured cells offer many advantages over studying Parkinson's disease directly in patients or in animal models. At the same time, the choice of a specific cellular model entails the requirement to focus on one aspect of the disease while ignoring others. This article is intended for researchers planning to use cellular models for their studies. It describes for commonly used cell types the aspects of Parkinson's disease they model along with technical advantages and disadvantages. It might also be helpful for researchers from other fields consulting literature on cellular models of Parkinson's disease. Important models for the study of dopaminergic neuron degeneration include Lund human mesencephalic cells and primary neurons, and a case is made for the use of non-dopaminergic cells to model pathogenesis of non-motor symptoms of Parkinson's disease. With regard to α-synuclein aggregates, this article describes strategies to induce and measure aggregates with a focus on fluorescent techniques. Cellular models reproduce the two most salient changes of Parkinson's disease, the degeneration of dopaminergic neurons and the existence of α-synuclein aggregates. This article is intended for researchers planning to use cellular models for their studies. It describes for commonly used cell types and treatments the aspects of Parkinson's disease they model along with technical advantages and disadvantages. Furthermore, this article describes strategies to induce and measure aggregates with a focus on fluorescent techniques. This article is part of a special issue on Parkinson disease.

  16. Cellular uptake of metallated cobalamins

    Tran, Mai Thanh Quynh; Stürup, Stefan; Lambert, Ian Henry


    Cellular uptake of vitamin B12-cisplatin conjugates was estimated via detection of their metal constituents (Co, Pt, and Re) by inductively coupled plasma mass spectrometry (ICP-MS). Vitamin B12 (cyano-cob(iii)alamin) and aquo-cob(iii)alamin [Cbl-OH2](+), which differ in the β-axial ligands (CN......(-) and H2O, respectively), were included as control samples. The results indicated that B12 derivatives delivered cisplatin to both cellular cytosol and nuclei with an efficiency of one third compared to the uptake of free cisplatin cis-[Pt(II)Cl2(NH3)2]. In addition, uptake of charged B12 derivatives...

  17. Cellular basis of Alzheimer's disease.

    Bali, Jitin; Halima, Saoussen Ben; Felmy, Boas; Goodger, Zoe; Zurbriggen, Sebastian; Rajendran, Lawrence


    Alzheimer's disease (AD) is the most common form of neurodegenerative disease. A characteristic feature of the disease is the presence of amyloid-β (Aβ) which either in its soluble oligomeric form or in the plaque-associated form is causally linked to neurodegeneration. Aβ peptide is liberated from the membrane-spanning -amyloid precursor protein by sequential proteolytic processing employing β- and γ-secretases. All these proteins involved in the production of Aβ peptide are membrane associated and hence, membrane trafficking and cellular compartmentalization play important roles. In this review, we summarize the key cellular events that lead to the progression of AD.

  18. Redox control of cellular signalling

    Putker, M.


    Reactive oxygen species (ROS) are natural by-products of cellular energy production. Consequently, mammalian cells encounter them on a daily basis. Increased ROS levels are associated with the onset of cancer and accelerated ageing, and historically, ROS are therefore considered harmful molecules.

  19. On Cellular MIMO Channel Capacity

    Adachi, Koichi; Adachi, Fumiyuki; Nakagawa, Masao

    To increase the transmission rate without bandwidth expansion, the multiple-input multiple-output (MIMO) technique has recently been attracting much attention. The MIMO channel capacity in a cellular system is affected by the interference from neighboring co-channel cells. In this paper, we introduce the cellular channel capacity and evaluate its outage capacity, taking into account the frequency-reuse factor, path loss exponent, standard deviation of shadowing loss, and transmission power of a base station (BS). Furthermore, we compare the cellular MIMO downlink channel capacity with those of other multi-antenna transmission techniques such as single-input multiple-output (SIMO) and space-time block coded multiple-input single-output (STBC-MISO). We show that the optimum frequency-reuse factor F that maximizes 10%-outage capacity is 3 and both 50%- and 90%-outage capacities is 1 irrespective of the type of multi-antenna transmission technique, where q%-outage capacity is defined as the channel capacity that gives an outage probability of q%. We also show that the cellular MIMO channel capacity is always higher than those of SIMO and STBC-MISO.

  20. Cellular uptake of metallated cobalamins

    Tran, MQT; Stürup, Stefan; Lambert, Ian H.;


    Cellular uptake of vitamin B12-cisplatin conjugates was estimated via detection of their metal constituents (Co, Pt, and Re) by inductively coupled plasma mass spectrometry (ICP-MS). Vitamin B12 (cyano-cob(iii)alamin) and aquo-cob(iii)alamin [Cbl-OH2](+), which differ in the β-axial ligands (CN(-...

  1. Peroxisome Metabolism and Cellular Aging

    Titorenko, Vladimir I.; Terlecky, Stanley R.


    The essential role of peroxisomes in fatty acid oxidation, anaplerotic metabolism, and hydrogen peroxide turnover is well established. Recent findings suggest these and other related biochemical processes governed by the organelle may also play a critical role in regulating cellular aging. The goal of this review is to summarize and integrate into a model, the evidence that peroxisome metabolism actually helps define the replicative and chronological age of a eukaryotic cell. In this model, peroxisomal reactive oxygen species (ROS) are seen as altering organelle biogenesis and function, and eliciting changes in the dynamic communication networks that exist between peroxisomes and other cellular compartments. At low levels, peroxisomal ROS activate an anti-aging program in the cell; at concentrations beyond a specific threshold, a pro-aging course is triggered. PMID:21083858

  2. Cellular proliferation and hypusine synthesis.

    Torrelio, B M; Paz, M A; Gallop, P M


    Hypusine (N(-)-(4-amino-2-hydroxybutyl) lysine), a spermidine-dependent post-translational protein modification, is synthesized by various mammalian cells in culture. Experiments described in this paper demonstrated a relationship between rates of cellular growth and the synthesis of hypusine. Cells that divide at fast rates have a high rate of hypusine synthesis. In kinetic experiments, a positive relationship is evident between the rates of protein, DNA and hypusine synthesis. Cells seeded at high density, growing non-exponentially, synthesized less hypusine than logarithmically growing cells seeded at low density. Slowing the growth rate of cells by modification of the external milieu also results in a decreased rate of hypusine synthesis. These results provide additional evidence of the association of hypusine with cell proliferation in cultured cell lines and suggest a possible role for this unusual post-translational modification in the complex macromolecular events leading to cellular growth.

  3. Identification of Nonstationary Cellular Automata



    The principal feature of nonstationary cellular automata(NCA) is that a local transitiol rule of each cell is changed at each time step depending on neighborhood configuration at previous time step.The identification problem for NCA is extraction of local transition rules and the establishment of mechanism for changing these rules using sequence of NCA configurations.We present serial and parallel algorithms for identification of NCA.


    Popescu, O.; Sumanovski, L. T.; I. Checiu; Elisabeta Popescu; G. N. Misevic


    Cellular interactions involve many types of cell surface molecules and operate via homophilic and/or heterophilic protein-protein and protein-carbohydrate binding. Our investigations in different model-systems (marine invertebrates and mammals) have provided direct evidence that a novel class of primordial proteoglycans, named by us gliconectins, can mediate cell adhesion via a new alternative molecular mechanism of polyvalent carbohydrate-carbohydrate binding. Biochemical characterization of...

  5. Stochastic Nature in Cellular Processes

    刘波; 刘圣君; 王祺; 晏世伟; 耿轶钊; SAKATA Fumihiko; GAO Xing-Fa


    The importance of stochasticity in cellular processes is increasingly recognized in both theoretical and experimental studies. General features of stochasticity in gene regulation and expression are briefly reviewed in this article, which include the main experimental phenomena, classification, quantization and regulation of noises. The correlation and transmission of noise in cascade networks are analyzed further and the stochastic simulation methods that can capture effects of intrinsic and extrinsic noise are described.

  6. Glycosylation regulates prestin cellular activity.

    Rajagopalan, Lavanya; Organ-Darling, Louise E; Liu, Haiying; Davidson, Amy L; Raphael, Robert M; Brownell, William E; Pereira, Fred A


    Glycosylation is a common post-translational modification of proteins and is implicated in a variety of cellular functions including protein folding, degradation, sorting and trafficking, and membrane protein recycling. The membrane protein prestin is an essential component of the membrane-based motor driving electromotility changes (electromotility) in the outer hair cell (OHC), a central process in auditory transduction. Prestin was earlier identified to possess two N-glycosylation sites (N163, N166) that, when mutated, marginally affect prestin nonlinear capacitance (NLC) function in cultured cells. Here, we show that the double mutant prestin(NN163/166AA) is not glycosylated and shows the expected NLC properties in the untreated and cholesterol-depleted HEK 293 cell model. In addition, unlike WT prestin that readily forms oligomers, prestin(NN163/166AA) is enriched as monomers and more mobile in the plasma membrane, suggesting that oligomerization of prestin is dependent on glycosylation but is not essential for the generation of NLC in HEK 293 cells. However, in the presence of increased membrane cholesterol, unlike the hyperpolarizing shift in NLC seen with WT prestin, cells expressing prestin(NN163/166AA) exhibit a linear capacitance function. In an attempt to explain this finding, we discovered that both WT prestin and prestin(NN163/166AA) participate in cholesterol-dependent cellular trafficking. In contrast to WT prestin, prestin(NN163/166AA) shows a significant cholesterol-dependent decrease in cell-surface expression, which may explain the loss of NLC function. Based on our observations, we conclude that glycosylation regulates self-association and cellular trafficking of prestin(NN163/166AA). These observations are the first to implicate a regulatory role for cellular trafficking and sorting in prestin function. We speculate that the cholesterol regulation of prestin occurs through localization to and internalization from membrane microdomains by

  7. Cellular fiber–reinforced concrete

    Isachenko S.; Kodzoev M.


    Methods disperse reinforcement of concrete matrix using polypropylene, glass, basalt and metal fibers allows to make the construction of complex configuration, solve the problem of frost products. Dispersed reinforcement reduces the overall weight of the structures. The fiber replaces the secondary reinforcement, reducing the volume of use of structural steel reinforcement. Cellular Fiber concretes are characterized by high-performance properties, especially increased bending strength and...

  8. Progress of cellular dedifferentiation research

    LIU Hu-xian; HU Da-hai; JIA Chi-yu; FU Xiao-bing


    Differentiation, the stepwise specialization of cells, and transdifferentiation, the apparent switching of one cell type into another, capture much of the stem cell spotlight. But dedifferentiation, the developmental reversal of a cell before it reinvents itself, is an important process too. In multicellular organisms, cellular dedifferentiation is the major process underlying totipotency, regeneration and formation of new stem cell lineages. In humans,dedifferentiation is often associated with carcinogenesis.The study of cellular dedifferentiation in animals,particularly early events related to cell fate-switch and determination, is limited by the lack of a suitable,convenient experimental system. The classic example of dedifferentiation is limb and tail regeneration in urodele amphibians, such as salamanders. Recently, several investigators have shown that certain mammalian cell types can be induced to dedifferentiate to progenitor cells when stimulated with the appropriate signals or materials. These discoveries open the possibility that researchers might enhance the endogenous regenerative capacity of mammals by inducing cellular dedifferentiation in vivo.

  9. The insect cellular immune response

    Michael R. Strand


    The innate immune system of insects is divided into humoral defenses that include the production of soluble effector molecules and cellular defenses like phagocytosis and encapsulation that are mediated by hemocytes. This review summarizes current understanding of the cellular immune response. Insects produce several terminally differentiated types of hemocytes that are distinguished by morphology, molecular and antigenic markers, and function. The differentiated hemocytes that circulate in larval or nymphal stage insects arise from two sources: progenitor cells produced during embryogenesis and mesodermally derived hematopoietic organs. Regulation of hematopoiesis and hemocyte differentiation also involves several different signaling pathways. Phagocytosis and encapsulation require that hemocytes first recognize a given target as foreign followed by activation of downstream signaling and effector responses. A number of humoral and cellular receptors have been identified that recognize different microbes and multicellular parasites. In turn, activation of these receptors stimulates a number of signaling pathways that regulate different hemocyte functions. Recent studies also identify hemocytes as important sources of a number of humoral effector molecules required for killing different foreign invaders.

  10. [Cellular phones and public health].

    Leventhal, Alex; Karsenty, Eric; Sadetzki, Siegal


    The increased use of mobile cellular phone by the public is associated with a wave of contradictory reports about the possible health effects, due to the exposure of the users to electromagnetic non-ionizing radiation. This article reviews the state of the art of the present knowledge concerning the biological and medical effects of exposure to cellular phones, with an emphasis on its possible carcinogenic effect. Health conditions, which have been ascribed to the use of mobile phones mainly include some types of cancer and changes of brain activity. However, the balance of evidence from available studies has not yet supported these claims. Following the recommendation of special international expert committees, the IARC (International Association for Research on Cancer) is conducting a multi-center study to determine the possible effect of cellular phone use on brain and salivary gland tumors. Israel is one of the participants of this study. The only established health effect associated with the use of such technology is an increased risk for road accidents, unrelated to the amount of radiation emitted by phone. The challenge posed by this new technology to health authorities all over the world has lead to the definition of a new principle, the so-called "prudent avoidance", used as guidelines for the definition of an adequate public health policy. The public policy in Israel has used the prudent avoidance principles, while awaiting the results of the multi-national epidemiological studies.

  11. Cellular communications a comprehensive and practical guide

    Tripathi, Nishith


    Even as newer cellular technologies and standards emerge, many of the fundamental principles and the components of the cellular network remain the same. Presenting a simple yet comprehensive view of cellular communications technologies, Cellular Communications provides an end-to-end perspective of cellular operations, ranging from physical layer details to call set-up and from the radio network to the core network. This self-contained source forpractitioners and students represents a comprehensive survey of the fundamentals of cellular communications and the landscape of commercially deployed

  12. Game of Life Cellular Automata

    Adamatzky, Andrew


    In the late 1960s, British mathematician John Conway invented a virtual mathematical machine that operates on a two-dimensional array of square cell. Each cell takes two states, live and dead. The cells' states are updated simultaneously and in discrete time. A dead cell comes to life if it has exactly three live neighbours. A live cell remains alive if two or three of its neighbours are alive, otherwise the cell dies. Conway's Game of Life became the most programmed solitary game and the most known cellular automaton. The book brings together results of forty years of study into computational

  13. Repaglinide at a cellular level

    Krogsgaard Thomsen, M; Bokvist, K; Høy, M


    To investigate the hormonal and cellular selectivity of the prandial glucose regulators, we have undertaken a series of experiments, in which we characterised the effects of repaglinide and nateglinide on ATP-sensitive potassium ion (KATP) channel activity, membrane potential and exocytosis in rat...... pancreatic alpha-cells and somatotrophs. We found a pharmacological dissociation between the actions on KATP channels and exocytosis and suggest that compounds that, unlike repaglinide, have direct stimulatory effects on exocytosis in somatotrophs and alpha- and beta-cells, such as sulphonylureas...... and nateglinide, may have a clinically undesirable general stimulatory effect on cells within the endocrine system....

  14. ING proteins in cellular senescence.

    Menéndez, Camino; Abad, María; Gómez-Cabello, Daniel; Moreno, Alberto; Palmero, Ignacio


    Cellular senescence is an effective anti-tumor barrier that acts by restraining the uncontrolled proliferation of cells carrying potentially oncogenic alterations. ING proteins are putative tumor suppressor proteins functionally linked to the p53 pathway and to chromatin regulation. ING proteins exert their tumor-protective action through different types of responses. Here, we review the evidence on the participation of ING proteins, mainly ING1 and ING2, in the implementation of the senescent response. The currently available data support an important role of ING proteins as regulators of senescence, in connection with the p53 pathway and chromatin organization.

  15. Cellular automata a parallel model

    Mazoyer, J


    Cellular automata can be viewed both as computational models and modelling systems of real processes. This volume emphasises the first aspect. In articles written by leading researchers, sophisticated massive parallel algorithms (firing squad, life, Fischer's primes recognition) are treated. Their computational power and the specific complexity classes they determine are surveyed, while some recent results in relation to chaos from a new dynamic systems point of view are also presented. Audience: This book will be of interest to specialists of theoretical computer science and the parallelism challenge.

  16. Cellular immune responses to HIV

    McMichael, Andrew J.; Rowland-Jones, Sarah L.


    The cellular immune response to the human immunodeficiency virus, mediated by T lymphocytes, seems strong but fails to control the infection completely. In most virus infections, T cells either eliminate the virus or suppress it indefinitely as a harmless, persisting infection. But the human immunodeficiency virus undermines this control by infecting key immune cells, thereby impairing the response of both the infected CD4+ T cells and the uninfected CD8+ T cells. The failure of the latter to function efficiently facilitates the escape of virus from immune control and the collapse of the whole immune system.


    Şen ÇAKIR


    Full Text Available Cellular Automata (CA are simple mathematical systems which provide models for a variety of physical processes. They show how minute changes and simple rules lead to enormous changes in the behaviour of a system. They can also be used as computer graphics tools to produce a rich reservoir of interesting figures. In recent years, CA have attracked the attention of many scientists. Today, CA are used in many fields from ecology to image processing. In this paper, it is shown that a large number of complex and interesting patterns can be created with relatively simple CA rules.

  18. 5G Ultra-Dense Cellular Networks

    Ge, Xiaohu; Tu, Song; Mao, Guoqiang; Wang, Cheng-xiang; Han, Tao


    Traditional ultra-dense wireless networks are recommended as a complement for cellular networks and are deployed in partial areas, such as hotspot and indoor scenarios. Based on the massive multiple-input multi-output (MIMO) antennas and the millimeter wavecommunication technologies, the 5G ultra-dense cellular network is proposed to deploy in overall cellular scenarios. Moreover, a distribution network architecture is presented for 5G ultra-dense cellular networks. Furthermore, the backhaul ...

  19. Cellular functions of the microprocessor.

    Macias, Sara; Cordiner, Ross A; Cáceres, Javier F


    The microprocessor is a complex comprising the RNase III enzyme Drosha and the double-stranded RNA-binding protein DGCR8 (DiGeorge syndrome critical region 8 gene) that catalyses the nuclear step of miRNA (microRNA) biogenesis. DGCR8 recognizes the RNA substrate, whereas Drosha functions as an endonuclease. Recent global analyses of microprocessor and Dicer proteins have suggested novel functions for these components independent of their role in miRNA biogenesis. A HITS-CLIP (high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation) experiment designed to identify novel substrates of the microprocessor revealed that this complex binds and regulates a large variety of cellular RNAs. The microprocessor-mediated cleavage of several classes of RNAs not only regulates transcript levels, but also modulates alternative splicing events, independently of miRNA function. Importantly, DGCR8 can also associate with other nucleases, suggesting the existence of alternative DGCR8 complexes that may regulate the fate of a subset of cellular RNAs. The aim of the present review is to provide an overview of the diverse functional roles of the microprocessor.

  20. Melanoma screening with cellular phones.

    Cesare Massone

    Full Text Available BACKGROUND: Mobile teledermatology has recently been shown to be suitable for teledermatology despite limitations in image definition in preliminary studies. The unique aspect of mobile teledermatology is that this system represents a filtering or triage system, allowing a sensitive approach for the management of patients with emergent skin diseases. METHODOLOGY/PRINCIPAL FINDINGS: In this study we investigated the feasibility of teleconsultation using a new generation of cellular phones in pigmented skin lesions. 18 patients were selected consecutively in the Pigmented Skin Lesions Clinic of the Department of Dermatology, Medical University of Graz, Graz (Austria. Clinical and dermoscopic images were acquired using a Sony Ericsson with a built-in two-megapixel camera. Two teleconsultants reviewed the images on a specific web application ( where images had been uploaded in JPEG format. Compared to the face-to-face diagnoses, the two teleconsultants obtained a score of correct telediagnoses of 89% and of 91.5% reporting the clinical and dermoscopic images, respectively. CONCLUSIONS/SIGNIFICANCE: The present work is the first study performing mobile teledermoscopy using cellular phones. Mobile teledermatology has the potential to become an easy applicable tool for everyone and a new approach for enhanced self-monitoring for skin cancer screening in the spirit of the eHealth program of the European Commission Information for Society and Media.

  1. Melanoma screening with cellular phones.

    Massone, Cesare; Hofmann-Wellenhof, Rainer; Ahlgrimm-Siess, Verena; Gabler, Gerald; Ebner, Christoph; Soyer, H Peter


    Mobile teledermatology has recently been shown to be suitable for teledermatology despite limitations in image definition in preliminary studies. The unique aspect of mobile teledermatology is that this system represents a filtering or triage system, allowing a sensitive approach for the management of patients with emergent skin diseases. In this study we investigated the feasibility of teleconsultation using a new generation of cellular phones in pigmented skin lesions. 18 patients were selected consecutively in the Pigmented Skin Lesions Clinic of the Department of Dermatology, Medical University of Graz, Graz (Austria). Clinical and dermoscopic images were acquired using a Sony Ericsson with a built-in two-megapixel camera. Two teleconsultants reviewed the images on a specific web application ( where images had been uploaded in JPEG format. Compared to the face-to-face diagnoses, the two teleconsultants obtained a score of correct telediagnoses of 89% and of 91.5% reporting the clinical and dermoscopic images, respectively. The present work is the first study performing mobile teledermoscopy using cellular phones. Mobile teledermatology has the potential to become an easy applicable tool for everyone and a new approach for enhanced self-monitoring for skin cancer screening in the spirit of the eHealth program of the European Commission Information for Society and Media.

  2. Cellular automata modelling of SEIRS

    Liu Quan-Xing; Jin Zhen


    In this paper the SEIRS epidemic spread is analysed, and a two-dimensional probability cellular automata model for SEIRS is presented. Each cellular automation cell represents a part of the population that may be found in one of five states of individuals: susceptible, exposed (or latency), infected, immunized (or recovered) and death. Here studied are the effects of two cases on the epidemic spread. i.e. the effects of non-segregation and segregation on the latency and the infected of population. The conclusion is reached that the epidemic will persist in the case of non-segregation but it will decrease in the case of segregation. The proposed model can serve as a basis for the development of algorithms to simulate real epidemics based on real data. Last we find the density series of the exposed and the infected will fluctuate near a positive equilibrium point, when the constant for the immunized is less than its corresponding constant τ0. Our theoretical results are verified by numerical simulations.

  3. Sensing Phosphatidylserine in Cellular Membranes

    Jason G. Kay


    Full Text Available Phosphatidylserine, a phospholipid with a negatively charged head-group, is an important constituent of eukaryotic cellular membranes. On the plasma membrane, rather than being evenly distributed, phosphatidylserine is found preferentially in the inner leaflet. Disruption of this asymmetry, leading to the appearance of phosphatidylserine on the surface of the cell, is known to play a central role in both apoptosis and blood clotting. Despite its importance, comparatively little is known about phosphatidylserine in cells: its precise subcellular localization, transmembrane topology and intracellular dynamics are poorly characterized. The recent development of new, genetically-encoded probes able to detect phosphatidylserine within live cells, however, is leading to a more in-depth understanding of the biology of this phospholipid. This review aims to give an overview of the current methods for phosphatidylserine detection within cells, and some of the recent realizations derived from their use.

  4. Discrete geodesics and cellular automata

    Arrighi, Pablo


    This paper proposes a dynamical notion of discrete geodesics, understood as straightest trajectories in discretized curved spacetime. The notion is generic, as it is formulated in terms of a general deviation function, but readily specializes to metric spaces such as discretized pseudo-riemannian manifolds. It is effective: an algorithm for computing these geodesics naturally follows, which allows numerical validation---as shown by computing the perihelion shift of a Mercury-like planet. It is consistent, in the continuum limit, with the standard notion of timelike geodesics in a pseudo-riemannian manifold. Whether the algorithm fits within the framework of cellular automata is discussed at length. KEYWORDS: Discrete connection, parallel transport, general relativity, Regge calculus.

  5. Cellular compartmentalization of secondary metabolism

    H. Corby eKistler


    Full Text Available Fungal secondary metabolism is often considered apart from the essential housekeeping functions of the cell. However, there are clear links between fundamental cellular metabolism and the biochemical pathways leading to secondary metabolite synthesis. Besides utilizing key biochemical precursors shared with the most essential processes of the cell (e.g. amino acids, acetyl CoA, NADPH, enzymes for secondary metabolite synthesis are compartmentalized at conserved subcellular sites that position pathway enzymes to use these common biochemical precursors. Co-compartmentalization of secondary metabolism pathway enzymes also may function to channel precursors, promote pathway efficiency and sequester pathway intermediates and products from the rest of the cell. In this review we discuss the compartmentalization of three well-studied fungal secondary metabolite biosynthetic pathways for penicillin G, aflatoxin and deoxynivalenol, and summarize evidence used to infer subcellular localization. We also discuss how these metabolites potentially are trafficked within the cell and may be exported.

  6. Molecular, cellular, and tissue engineering

    Bronzino, Joseph D


    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering. Molecular, Cellular, and Tissue Engineering, the fourth volume of the handbook, presents material from respected scientists with diverse backgrounds in molecular biology, transport phenomena, physiological modeling, tissue engineering, stem cells, drug delivery systems, artificial organs, and personalized medicine. More than three dozen specific topics are examined, including DNA vaccines, biomimetic systems, cardiovascular dynamics, biomaterial scaffolds, cell mechanobiology, synthetic biomaterials, pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, nanobiomaterials for tissue engineering, biomedical imaging of engineered tissues, gene therapy, noninvasive targeted protein and peptide drug deliver...

  7. Thermomechanical characterisation of cellular rubber

    Seibert, H.; Scheffer, T.; Diebels, S.


    This contribution discusses an experimental possibility to characterise a cellular rubber in terms of the influence of multiaxiality, rate dependency under environmental temperature and its behaviour under hydrostatic pressure. In this context, a mixed open and closed cell rubber based on an ethylene propylene diene monomer is investigated exemplarily. The present article intends to give a general idea of the characterisation method and the considerable effects of this special type of material. The main focus lies on the experimental procedure and the used testing devices in combination with the analysis methods such as true three-dimensional digital image correlation. The structural compressibility is taken into account by an approach for a material model using the Theory of Porous Media with additional temperature dependence.


    Barron, E. S. Guzman; Nelson, Leonard; Ardao, Maria Isabel


    Oxidizing agents of sulfhydryl groups such as iodosobenzoate, alkylating agents such as iodoacetamide, and mercaptide-forming agents such as cadmium chloride, mercuric chloride, p-chloromercuribenzoate, sodium arsenite, and p-carboxyphenylarsine oxide, added in small concentrations to a suspension of sea urchin sperm produced an increase in respiration. When the concentration was increased there was an inhibition. These effects are explained by postulating the presence in the cells of two kinds of sulfhydryl groups: soluble sulfhydryl groups, which regulate cellular respiration, and fixed sulfhydryl groups, present in the protein moiety of enzymes. Small concentrations of sulfhydryl reagents combine only with the first, thus producing an increase in respiration; when the concentration is increased, the fixed sulfhydryl groups are also attacked and inhibition of respiration is the consequence. Other inhibitors of cell respiration, such as cyanide and urethanes, which do not combine with —SH groups, did not stimulate respiration in small concentration. PMID:18891144

  9. Fundamental Limits to Cellular Sensing

    ten Wolde, Pieter Rein; Becker, Nils B.; Ouldridge, Thomas E.; Mugler, Andrew


    In recent years experiments have demonstrated that living cells can measure low chemical concentrations with high precision, and much progress has been made in understanding what sets the fundamental limit to the precision of chemical sensing. Chemical concentration measurements start with the binding of ligand molecules to receptor proteins, which is an inherently noisy process, especially at low concentrations. The signaling networks that transmit the information on the ligand concentration from the receptors into the cell have to filter this receptor input noise as much as possible. These networks, however, are also intrinsically stochastic in nature, which means that they will also add noise to the transmitted signal. In this review, we will first discuss how the diffusive transport and binding of ligand to the receptor sets the receptor correlation time, which is the timescale over which fluctuations in the state of the receptor, arising from the stochastic receptor-ligand binding, decay. We then describe how downstream signaling pathways integrate these receptor-state fluctuations, and how the number of receptors, the receptor correlation time, and the effective integration time set by the downstream network, together impose a fundamental limit on the precision of sensing. We then discuss how cells can remove the receptor input noise while simultaneously suppressing the intrinsic noise in the signaling network. We describe why this mechanism of time integration requires three classes (groups) of resources—receptors and their integration time, readout molecules, energy—and how each resource class sets a fundamental sensing limit. We also briefly discuss the scheme of maximum-likelihood estimation, the role of receptor cooperativity, and how cellular copy protocols differ from canonical copy protocols typically considered in the computational literature, explaining why cellular sensing systems can never reach the Landauer limit on the optimal trade

  10. Cellular phones: are they detrimental?

    Salama, Osama E; Abou El Naga, Randa M


    The issue of possible health effects of cellular phones is very much alive in the public's mind where the rapid increase in the number of the users of cell phones in the last decade has increased the exposure of people to the electromagnetic fields (EMFs). Health consequences of long term use of mobile phones are not known in detail but available data indicates the development of non specific annoying symptoms on acute exposure to mobile phone radiations. In an attempt to determine the prevalence of such cell phones associated health manifestations and the factors affecting their occurrence, a cross sectional study was conducted in five randomly selected faculties of Alexandria University. Where, 300 individuals including teaching staff, students and literate employee were equally allocated and randomly selected among the five faculties. Data about mobile phone's users and their medical history, their pattern of mobile usage and the possible deleterious health manifestations associated with cellular phone use was collected. The results revealed 68% prevalence of mobile phone usage, nearly three quarters of them (72.5%) were complainers of the health manifestations. They suffered from headache (43%), earache (38.3%), sense of fatigue (31.6%), sleep disturbance (29.5%), concentration difficulty (28.5%) and face burning sensation (19.2%). Both univariate and multivariate analysis were consistent in their findings. Symptomatic users were found to have significantly higher frequency of calls/day, longer call duration and longer total duration of mobile phone usage/day than non symptomatic users. For headache both call duration and frequency of calls/day were the significant predicting factors for its occurrence (chi2 = 18.208, p = 0.0001). For earache, in addition to call duration, the longer period of owning the mobile phone were significant predictors (chi2 = 16.996, p = 0.0002). Sense of fatigue was significantly affected by both call duration and age of the user

  11. Intrinsic Simulations between Stochastic Cellular Automata

    Pablo Arrighi


    Full Text Available The paper proposes a simple formalism for dealing with deterministic, non-deterministic and stochastic cellular automata in a unifying and composable manner. Armed with this formalism, we extend the notion of intrinsic simulation between deterministic cellular automata, to the non-deterministic and stochastic settings. We then provide explicit tools to prove or disprove the existence of such a simulation between two stochastic cellular automata, even though the intrinsic simulation relation is shown to be undecidable in dimension two and higher. The key result behind this is the caracterization of equality of stochastic global maps by the existence of a coupling between the random sources. We then prove that there is a universal non-deterministic cellular automaton, but no universal stochastic cellular automaton. Yet we provide stochastic cellular automata achieving optimal partial universality.

  12. Autophagy and mitophagy in cellular damage control

    Jianhua Zhang


    Full Text Available Autophagy and mitophagy are important cellular processes that are responsible for breaking down cellular contents, preserving energy and safeguarding against accumulation of damaged and aggregated biomolecules. This graphic review gives a broad summary of autophagy and discusses examples where autophagy is important in controlling protein degradation. In addition we highlight how autophagy and mitophagy are involved in the cellular responses to reactive species and mitochondrial dysfunction. The key signaling pathways for mitophagy are described in the context of bioenergetic dysfunction.

  13. Cellular Mechanisms of Transcranial Direct Current Stimulation


    effects of any number of cellular processes , where the endogenous state is such that it can only be modulated in one direction. Conclusions and...activated synaptic processes and provided a cellular substrate for these changes. This proposal therefore provided a detailed cellular-level...which are involved in synaptic processing , might additionally contribute to the effects of DCS (Purpura and McMurtry, 1965a, b; Bikson et al., 2004


    Zhisong JIANG


    Limit language complexity of cellular automata which is first posed by S. Wolfram has become a new branch of cellular automata. In this paper, we obtain two interesting relationships between elementary cellular automata of rules 126, 146(182) and 18, and prove that if the limit language of rule 18 is not regular, nor are the limit languages of rules 126 and 146(182).

  15. Efficiency of cellular information processing

    Barato, Andre C; Seifert, Udo


    We show that a rate of conditional Shannon entropy reduction, characterizing the learning of an internal process about an external process, is bounded by the thermodynamic entropy production. This approach allows for the definition of an informational efficiency that can be used to study cellular information processing. We analyze three models of increasing complexity inspired by the E. coli sensory network, where the external process is an external ligand concentration jumping between two values. We start with a simple model for which ATP must be consumed so that a protein inside the cell can learn about the external concentration. With a second model for a single receptor we show that the rate at which the receptor learns about the external environment can be nonzero even without any dissipation inside the cell since chemical work done by the external process compensates for this learning rate. The third model is more complete, also containing adaptation. For this model we show inter alia that a bacterium i...

  16. The origins of cellular life.

    Schrum, Jason P; Zhu, Ting F; Szostak, Jack W


    Understanding the origin of cellular life on Earth requires the discovery of plausible pathways for the transition from complex prebiotic chemistry to simple biology, defined as the emergence of chemical assemblies capable of Darwinian evolution. We have proposed that a simple primitive cell, or protocell, would consist of two key components: a protocell membrane that defines a spatially localized compartment, and an informational polymer that allows for the replication and inheritance of functional information. Recent studies of vesicles composed of fatty-acid membranes have shed considerable light on pathways for protocell growth and division, as well as means by which protocells could take up nutrients from their environment. Additional work with genetic polymers has provided insight into the potential for chemical genome replication and compatibility with membrane encapsulation. The integration of a dynamic fatty-acid compartment with robust, generalized genetic polymer replication would yield a laboratory model of a protocell with the potential for classical Darwinian biological evolution, and may help to evaluate potential pathways for the emergence of life on the early Earth. Here we discuss efforts to devise such an integrated protocell model.

  17. Cellular Senescence: A Translational Perspective

    James L. Kirkland


    Full Text Available Cellular senescence entails essentially irreversible replicative arrest, apoptosis resistance, and frequently acquisition of a pro-inflammatory, tissue-destructive senescence-associated secretory phenotype (SASP. Senescent cells accumulate in various tissues with aging and at sites of pathogenesis in many chronic diseases and conditions. The SASP can contribute to senescence-related inflammation, metabolic dysregulation, stem cell dysfunction, aging phenotypes, chronic diseases, geriatric syndromes, and loss of resilience. Delaying senescent cell accumulation or reducing senescent cell burden is associated with delay, prevention, or alleviation of multiple senescence-associated conditions. We used a hypothesis-driven approach to discover pro-survival Senescent Cell Anti-apoptotic Pathways (SCAPs and, based on these SCAPs, the first senolytic agents, drugs that cause senescent cells to become susceptible to their own pro-apoptotic microenvironment. Several senolytic agents, which appear to alleviate multiple senescence-related phenotypes in pre-clinical models, are beginning the process of being translated into clinical interventions that could be transformative.

  18. The cellular toxicity of aluminium.

    Exley, C; Birchall, J D


    Aluminium is a serious environmental toxicant and is inimical to biota. Omnipresent, it is linked with a number of disorders in man including Alzheimer's disease, Parkinson's dementia and osteomalacia. Evidence supporting aluminium as an aetiological agent in such disorders is not conclusive and suffers principally from a lack of consensus with respect to aluminium's toxic mode of action. Obligatory to the elucidation of toxic mechanisms is an understanding of the biological availability of aluminium. This describes the fate of and response to aluminium in any biological system and is thus an important influence of the toxicity of aluminium. A general theme in much aluminium toxicity is an accelerated cell death. Herein mechanisms are described to account for cell death from both acute and chronic aluminium challenges. Aluminium associations with both extracellular surfaces and intracellular ligands are implicated. The cellular response to aluminium is found to be biphasic having both stimulatory and inhibitory components. In either case the disruption of second messenger systems is observed and GTPase cycles are potential target sites. Specific ligands for aluminium at these sites are unknown though are likely to be proteins upon which oxygen-based functional groups are orientated to give exceptionally strong binding with the free aluminium ion.

  19. Optimized Cellular Core for Rotorcraft Project

    National Aeronautics and Space Administration — Patz Materials and Technologies proposes to develop a unique structural cellular core material to improve mechanical performance, reduce platform weight and lower...

  20. Integration of mobile satellite and cellular systems

    Drucker, Elliott H.; Estabrook, Polly; Pinck, Deborah; Ekroot, Laura


    By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established. Users equipped for both cellular and satellite service can take advantage of a number of features made possible by such integration, including seamless handoff and universal roaming. To provide maximum benefit at lowest posible cost, the means by which these systems are integrated must be carefully considered. Mobile satellite hub stations must be configured to efficiently interface with cellular Mobile Telephone Switching Offices (MTSO's), and cost effective mobile units that provide both cellular and satellite capability must be developed.

  1. Pulsed feedback defers cellular differentiation.

    Joe H Levine


    Full Text Available Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable "polyphasic" positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a "timer" that operates over timescales much longer than a cell cycle.

  2. Immune cellular response to HPV: current concepts

    Maria Alice Guimarães Gonçalves

    Full Text Available Although cellular immunity is essential for the elimination of human papillomavirus (HPV, the mechanisms involved are still poorly understood. We summarize the main mechanisms involved in cellular immune response to infections caused by HPV. Immunotherapies for HPV-related cancers require the disruption of T-cell response control mechanisms, associated with the stimulation of the Th1 cytokine response.

  3. LMS filters for cellular CDMA overlay


    This paper extends and complements previous research we have performed on the performance of nonadaptive narrowband suppression filters when used in cellular CDMA overlay situations. In this paper, an adaptive LMS filter is applied to cellular CDMA overlay situations in order to reject narrowband interference.

  4. From Cnn Dynamics to Cellular Wave Computers

    Roska, Tamas


    Embedded in a historical overview, the development of the Cellular Wave Computing paradigm is presented, starting from the standard CNN dynamics. The theoretical aspects, the physical implementation, the innovation process, as well as the biological relevance are discussed in details. Finally, the latest developments, the physical versus virtual cellular machines, as well as some open questions are presented.

  5. Recent development of cellular manufacturing systems

    P K Arora; A Haleem; M K Singh


    Cellular manufacturing system has been proved a vital approach for batch and job shop production systems. Group technology has been an essential tool for developing a cellular manufacturing system. The paper aims to discuss various cell formation techniques and highlights the significant research work done in past over the years and attempts to points out the gap in research.

  6. Cellular encoding for interactive evolutionary robotics

    Gruau, F.C.; Quatramaran, K.


    This work reports experiments in interactive evolutionary robotics. The goal is to evolve an Artificial Neural Network (ANN) to control the locomotion of an 8-legged robot. The ANNs are encoded using a cellular developmental process called cellular encoding. In a previous work similar experiments ha

  7. The mammary cellular hierarchy and breast cancer.

    Oakes, Samantha R; Gallego-Ortega, David; Ormandy, Christopher J


    Advances in the study of hematopoietic cell maturation have paved the way to a deeper understanding the stem and progenitor cellular hierarchy in the mammary gland. The mammary epithelium, unlike the hematopoietic cellular hierarchy, sits in a complex niche where communication between epithelial cells and signals from the systemic hormonal milieu, as well as from extra-cellular matrix, influence cell fate decisions and contribute to tissue homeostasis. We review the discovery, definition and regulation of the mammary cellular hierarchy and we describe the development of the concepts that have guided our investigations. We outline recent advances in in vivo lineage tracing that is now challenging many of our assumptions regarding the behavior of mammary stem cells, and we show how understanding these cellular lineages has altered our view of breast cancer.

  8. Interworking of wireless lans and cellular networks

    Song, Wei


    The next-generation of wireless communications are envisioned to be supported by heterogeneous networks by using various wireless access technologies. The popular cellular networks and wireless local area networks (WLANs) present perfectly complementary characteristics in terms of service capacity, mobility support, and quality-of-service (QoS) provisioning. The cellular/WLAN interworking is an effective way to promote the evolution of wireless networks. Interworking of Wireless LANs and Cellular Networks focuses on three aspects, namely access selection, call admission control and load sharing to investigate heterogeneous interworking for cellular/WLAN integrated networks. It not only reveals important observations but also offers useful tools for performance evaluation. The unique traffic and network characteristics are exploited to enhance interworking effectiveness. Theoretical analysis and simulation validation demonstrate benefits of cellular/WLAN interworking in real networks. Last but not the least,...

  9. The Universe as a Cellular System

    Aragón-Calvo, Miguel A


    Cellular systems are observed everywhere in nature, from crystal domains in metals, soap froth and cucumber cells to the network of cosmological voids. Surprisingly, despite their disparate scale and origin all cellular systems follow certain scaling laws relating their geometry, topology and dynamics. Using a cosmological N-body simulation we found that the Cosmic Web, the largest known cellular system, follows the same scaling relations seen elsewhere in nature. Our results extend the validity of scaling relations in cellular systems by over 30 orders of magnitude in scale with respect to previous studies. The dynamics of cellular systems can be used to interpret local observations such as the local velocity anomaly as the result of a collapsing void in our cosmic backyard. Moreover, scaling relations depend on the curvature of space, providing an independent measure of geometry.

  10. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence.

    Bernadotte, Alexandra; Mikhelson, Victor M; Spivak, Irina M


    The cellular senescence definition comes to the fact of cells irreversible proliferation disability. Besides the cell cycle arrest, senescent cells go through some morphological, biochemical, and functional changes which are the signs of cellular senescence. The senescent cells (including replicative senescence and stress-induced premature senescence) of all the tissues look alike. They are metabolically active and possess the set of characteristics in vitro and in vivo, which are known as biomarkers of aging and cellular senescence. Among biomarkers of cellular senescence telomere shortening is a rather elegant frequently used biomarker. Validity of telomere shortening as a marker for cellular senescence is based on theoretical and experimental data.




    Full Text Available Cellular interactions involve many types of cell surface molecules and operate via homophilic and/or heterophilic protein-protein and protein-carbohydrate binding. Our investigations in different model-systems (marine invertebrates and mammals have provided direct evidence that a novel class of primordial proteoglycans, named by us gliconectins, can mediate cell adhesion via a new alternative molecular mechanism of polyvalent carbohydrate-carbohydrate binding. Biochemical characterization of isolated and purified glyconectins revealed the presence of specific carbohydrate structures, acidic glycans, different from classical glycosaminoglycans. Such acidic glycans of high molecular weight containing fucose, glucuronic or galacturonic acids, and sulfate groups, originally found in sponges and sea urchin embryos, may represent a new class of carbohydrate carcino-embryonal antigens in mice and humans. Such interactions between biological macromolecules are usually investigated by kinetic binding studies, calorimetric methods, X-ray diffraction, nuclear magnetic resonance, and other spectroscopic analyses. However, these methods do not supply a direct estimation of the intermolecular binding forces that are fundamental for the function of the ligand-receptor association. Recently, we have introduced atomic force microscopy to quantify the binding strength between cell adhesion proteoglycans. Measurement of binding forces intrinsic to cell adhesion proteoglycans is necessary to assess their contribution to the maintenance of the anatomical integrity of multicellular organisms. As a model, we selected the glyconectin 1, a cell adhesion proteoglycan isolated from the marine sponge Microciona prolifera. This glyconectin mediates in vivo cell recognition and aggregation via homophilic, species-specific, polyvalent, and calcium ion-dependent carbohydrate-carbohydrate interactions. Under physiological conditions, an adhesive force of up to 400 piconewtons

  12. Cellular Factors Required for Lassa Virus Budding

    Urata, Shuzo; Noda, Takeshi; Kawaoka, Yoshihiro; Yokosawa, Hideyoshi; Yasuda, Jiro


    It is known that Lassa virus Z protein is sufficient for the release of virus-like particles (VLPs) and that it has two L domains, PTAP and PPPY, in its C terminus. However, little is known about the cellular factor for Lassa virus budding. We examined which cellular factors are used in Lassa virus Z budding. We demonstrated that Lassa Z protein efficiently produces VLPs and uses cellular factors, Vps4A, Vps4B, and Tsg101, in budding, suggesting that Lassa virus budding uses the multivesicula...

  13. Cryptographic primitives based on cellular transformations

    B.V. Izotov


    Full Text Available Design of cryptographic primitives based on the concept of cellular automata (CA is likely to be a promising trend in cryptography. In this paper, the improved method performing data transformations by using invertible cyclic CAs (CCA is considered. Besides, the cellular operations (CO as a novel CAs application in the block ciphers are introduced. Proposed CCAs and COs, integrated under the name of cellular transformations (CT, suit well to be used in cryptographic algorithms oriented to fast software and cheap hardware implementation.

  14. Cellular Cell Bifurcation of Cylindrical Detonations

    HAN Gui-Lai; JIANG Zong-Lin; WANG Chun; ZHANG Fan


    Cellular cell pattern evolution of cylindrically-diverging detonations is numerically simulated successfully by solving two-dimensional Euler equations implemented with an improved two-step chemical kinetic model. From the simulation, three cell bifurcation modes are observed during the evolution and referred to as concave front focusing, kinked and wrinkled wave front instability, and self-merging of cellular cells. Numerical research demonstrates that the wave front expansion resulted from detonation front diverging plays a major role in the cellular cell bifurcation, which can disturb the nonlinearly self-sustained mechanism of detonations and finally lead to cell bifurcations.

  15. Optimal Band Allocation for Cognitive Cellular Networks

    Liu, Tingting


    FCC new regulation for cognitive use of the TV white space spectrum provides a new means for improving traditional cellular network performance. But it also introduces a number of technical challenges. This letter studies one of the challenges, that is, given the significant differences in the propagation property and the transmit power limitations between the cellular band and the TV white space, how to jointly utilize both bands such that the benefit from the TV white space for improving cellular network performance is maximized. Both analytical and simulation results are provided.

  16. On-Chip Detection of Cellular Activity

    Almog, R.; Daniel, R.; Vernick, S.; Ron, A.; Ben-Yoav, H.; Shacham-Diamand, Y.

    The use of on-chip cellular activity monitoring for biological/chemical sensing is promising for environmental, medical and pharmaceutical applications. The miniaturization revolution in microelectronics is harnessed to provide on-chip detection of cellular activity, opening new horizons for miniature, fast, low cost and portable screening and monitoring devices. In this chapter we survey different on-chip cellular activity detection technologies based on electrochemical, bio-impedance and optical detection. Both prokaryotic and eukaryotic cell-on-chip technologies are mentioned and reviewed.

  17. Imaging in cellular and tissue engineering

    Yu, Hanry


    Details on specific imaging modalities for different cellular and tissue engineering applications are scattered throughout articles and chapters in the literature. Gathering this information into a single reference, Imaging in Cellular and Tissue Engineering presents both the fundamentals and state of the art in imaging methods, approaches, and applications in regenerative medicine. The book underscores the broadening scope of imaging applications in cellular and tissue engineering. It covers a wide range of optical and biological applications, including the repair or replacement of whole tiss

  18. A Matrix Construction of Cellular Algebras

    Dajing Xiang


    In this paper, we give a concrete method to construct cellular algebras from matrix algebras by specifying certain fixed matrices for the data of inflations. In particular,orthogonal matrices can be chosen for such data.

  19. Densities and entropies in cellular automata

    Guillon, Pierre


    Following work by Hochman and Meyerovitch on multidimensional SFT, we give computability-theoretic characterizations of the real numbers that can appear as the topological entropies of one-dimensional and two-dimensional cellular automata.

  20. Probing Cellular Dynamics with Mesoscopic Simulations

    Shillcock, Julian C.


    Cellular processes span a huge range of length and time scales from the molecular to the near-macroscopic. Understanding how effects on one scale influence, and are themselves influenced by, those on lower and higher scales is a critical issue for the construction of models in Systems Biology....... Advances in computing hardware and software now allow explicit simulation of some aspects of cellular dynamics close to the molecular scale. Vesicle fusion is one example of such a process. Experiments, however, typically probe cellular behavior from the molecular scale up to microns. Standard particle...... soon be coupled to Mass Action models allowing the parameters in such models to be continuously tuned according to the finer resolution simulation. This will help realize the goal of a computational cellular simulation that is able to capture the dynamics of membrane-associated processes...

  1. Cellular chain formation in Escherichia coli biofilms

    Vejborg, Rebecca Munk; Klemm, Per


    In this study we report on a novel structural phenotype in Escherichia coli biofilms: cellular chain formation. Biofilm chaining in E. coli K-12 was found to occur primarily by clonal expansion, but was not due to filamentous growth. Rather, chain formation was the result of intercellular......; type I fimbriae expression significantly reduced cellular chain formation, presumably by steric hindrance. Cellular chain formation did not appear to be specific to E coli K-12. Although many urinary tract infection (UTI) isolates were found to form rather homogeneous, flat biofilms, three isolates......, including the prototypic asymptomatic bacteriuria strain, 83972, formed highly elaborate cellular chains during biofilm growth in human urine. Combined, these results illustrate the diversity of biofilm architectures that can be observed even within a single microbial species....

  2. Optimized Cellular Core for Rotorcraft Project

    National Aeronautics and Space Administration — Patz Materials and Technologies has developed, produced and tested, as part of the Phase-I SBIR, a new form of composite cellular core material, named Interply Core,...

  3. Mapping crime scenes and cellular telephone usage

    Schmitz, Peter MU


    Full Text Available This paper describes a method that uses a desktop geographical information system (GIS) to plot cellular telephone conversations made when crimes are committed, such as hijackings, hostage taking, kidnapping, rape and murder. The maps produced...

  4. Cellular Defect May Be Linked to Parkinson's

    ... 160862.html Cellular Defect May Be Linked to Parkinson's: Study Abnormality might apply to all forms of ... that may be common to all forms of Parkinson's disease. The defect plays a major role in ...

  5. Integration of Mobil Satellite and Cellular Systems

    Drucker, E. H.; Estabrook, P.; Pinck, D.; Ekroot, L.


    By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established.

  6. Cellular Automaton Modeling of Pattern Formation

    Boerlijst, M.C.


    Book review Andreas Deutsch and Sabine Dormann, Cellular Automaton Modeling of Biological Pattern Formation, Characterization, Applications, and Analysis, Birkhäuser (2005) ISBN 0-8176-4281-1 331pp..

  7. Sponging of Cellular Proteins by Viral RNAs

    Charley, Phillida A.; Wilusz, Jeffrey


    Viral RNAs accumulate to high levels during infection and interact with a variety of cellular factors including miRNAs and RNA-binding proteins. Although many of these interactions exist to directly modulate replication, translation and decay of viral transcripts, evidence is emerging that abundant viral RNAs may in certain cases serve as a sponge to sequester host non coding RNAs and proteins. By effectively reducing the ability of cellular RNA binding proteins to regulate host cell gene exp...

  8. On the Behavior Characteristics of Cellular Automata

    CHEN Jin-cai; ZHANG Jiang-ling; FENG Dan


    In this paper, the inherent relationships between the running regulations and behavior characteristics of cellular automata are presented; an imprecise taxonomy of such systems is put forward; the three extreme cases of stable systems are discussed; and the illogicalness of evolutional strategies of cellular automata is analyzed. The result is suitable for the emulation and prediction of behavior of discrete dynamics systems; especially it can be taken as an important analysis means of dynamic performance of complex networks.

  9. Polymersomes containing quantum dots for cellular imaging

    Camblin M


    Full Text Available Marine Camblin,1 Pascal Detampel,1 Helene Kettiger,1 Dalin Wu,2 Vimalkumar Balasubramanian,1,* Jörg Huwyler1,*1Division of Pharmaceutical Technology, 2Department of Chemistry, University of Basel, Basel, Switzerland*These authors contributed equally to this workAbstract: Quantum dots (QDs are highly fluorescent and stable probes for cellular and molecular imaging. However, poor intracellular delivery, stability, and toxicity of QDs in biological compartments hamper their use in cellular imaging. To overcome these limitations, we developed a simple and effective method to load QDs into polymersomes (Ps made of poly(dimethylsiloxane-poly(2-methyloxazoline (PDMS-PMOXA diblock copolymers without compromising the characteristics of the QDs. These Ps showed no cellular toxicity and QDs were successfully incorporated into the aqueous compartment of the Ps as confirmed by transmission electron microscopy, fluorescence spectroscopy, and fluorescence correlation spectroscopy. Ps containing QDs showed colloidal stability over a period of 6 weeks if stored in phosphate-buffered saline (PBS at physiological pH (7.4. Efficient intracellular delivery of Ps containing QDs was achieved in human liver carcinoma cells (HepG2 and was visualized by confocal laser scanning microscopy (CLSM. Ps containing QDs showed a time- and concentration-dependent uptake in HepG2 cells and exhibited better intracellular stability than liposomes. Our results suggest that Ps containing QDs can be used as nanoprobes for cellular imaging.Keywords: quantum dots, polymersomes, cellular imaging, cellular uptake

  10. Optimization of Inter Cellular Movement of Parts in Cellular Manufacturing System Using Genetic Algorithm

    Siva Prasad Darla


    Full Text Available In the modern manufacturing environment, Cellular Manufacturing Systems (CMS have gained greater importance in job shop or batch-type production to gain economic advantage similar to those of mass production. Successful implementation of CMS highly depends on the determination of part families; machine cells and minimizing inter cellular movement. This study considers machine component grouping problems namely inter-cellular movement and cell load variation by developing a mathematical model and optimizing the solution using Genetic Algorithm to arrive at a cell formation to minimize the inter-cellular movement and cell load variation. The results are presented with a numerical example.

  11. Characterizing heterogeneous cellular responses to perturbations.

    Slack, Michael D; Martinez, Elisabeth D; Wu, Lani F; Altschuler, Steven J


    Cellular populations have been widely observed to respond heterogeneously to perturbation. However, interpreting the observed heterogeneity is an extremely challenging problem because of the complexity of possible cellular phenotypes, the large dimension of potential perturbations, and the lack of methods for separating meaningful biological information from noise. Here, we develop an image-based approach to characterize cellular phenotypes based on patterns of signaling marker colocalization. Heterogeneous cellular populations are characterized as mixtures of phenotypically distinct subpopulations, and responses to perturbations are summarized succinctly as probabilistic redistributions of these mixtures. We apply our method to characterize the heterogeneous responses of cancer cells to a panel of drugs. We find that cells treated with drugs of (dis-)similar mechanism exhibit (dis-)similar patterns of heterogeneity. Despite the observed phenotypic diversity of cells observed within our data, low-complexity models of heterogeneity were sufficient to distinguish most classes of drug mechanism. Our approach offers a computational framework for assessing the complexity of cellular heterogeneity, investigating the degree to which perturbations induce redistributions of a limited, but nontrivial, repertoire of underlying states and revealing functional significance contained within distinct patterns of heterogeneous responses.

  12. Complexity, dynamic cellular network, and tumorigenesis.

    Waliszewski, P


    A holistic approach to tumorigenesis is proposed. The main element of the model is the existence of dynamic cellular network. This network comprises a molecular and an energetistic structure of a cell connected through the multidirectional flow of information. The interactions within dynamic cellular network are complex, stochastic, nonlinear, and also involve quantum effects. From this non-reductionist perspective, neither tumorigenesis can be limited to the genetic aspect, nor the initial event must be of molecular nature, nor mutations and epigenetic factors are mutually exclusive, nor a link between cause and effect can be established. Due to complexity, an unstable stationary state of dynamic cellular network rather than a group of unrelated genes determines the phenotype of normal and transformed cells. This implies relativity of tumor suppressor genes and oncogenes. A bifurcation point is defined as an unstable state of dynamic cellular network leading to the other phenotype-stationary state. In particular, the bifurcation point may be determined by a change of expression of a single gene. Then, the gene is called bifurcation point gene. The unstable stationary state facilitates the chaotic dynamics. This may result in a fractal dimension of both normal and tumor tissues. The co-existence of chaotic dynamics and complexity is the essence of cellular processes and shapes differentiation, morphogenesis, and tumorigenesis. In consequence, tumorigenesis is a complex, unpredictable process driven by the interplay between self-organisation and selection.

  13. Shape Memory Alloy-Based Periodic Cellular Structures Project

    National Aeronautics and Space Administration — This SBIR Phase I effort will develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular structures...

  14. Cellular Signaling in Health and Disease

    Beckerman, Martin


    In today’s world, three great classes of non-infectious diseases – the metabolic syndromes (such as type 2 diabetes and atherosclerosis), the cancers, and the neurodegenerative disorders – have risen to the fore. These diseases, all associated with increasing age of an individual, have proven to be remarkably complex and difficult to treat. This is because, in large measure, when the cellular signaling pathways responsible for maintaining homeostasis and health of the body become dysregulated, they generate equally stable disease states. As a result the body may respond positively to a drug, but only for a while and then revert back to the disease state. Cellular Signaling in Health and Disease summarizes our current understanding of these regulatory networks in the healthy and diseased states, showing which molecular components might be prime targets for drug interventions. This is accomplished by presenting models that explain in mechanistic, molecular detail how a particular part of the cellular sign...

  15. Infrared image enhancement using Cellular Automata

    Qi, Wei; Han, Jing; Zhang, Yi; Bai, Lian-fa


    Image enhancement is a crucial technique for infrared images. The clear image details are important for improving the quality of infrared images in computer vision. In this paper, we propose a new enhancement method based on two priors via Cellular Automata. First, we directly learn the gradient distribution prior from the images via Cellular Automata. Second, considering the importance of image details, we propose a new gradient distribution error to encode the structure information via Cellular Automata. Finally, an iterative method is applied to remap the original image based on two priors, further improving the quality of enhanced image. Our method is simple in implementation, easy to understand, extensible to accommodate other vision tasks, and produces more accurate results. Experiments show that the proposed method performs better than other methods using qualitative and quantitative measures.

  16. Spin Echo Studies on Cellular Water

    Chang, D C; Nichols, B L; Rorschach, H E


    Previous studies indicated that the physical state of cellular water could be significantly different from pure liquid water. To experimentally investigate this possibility, we conducted a series of spin-echo NMR measurements on water protons in rat skeletal muscle. Our result indicated that the spin-lattice relaxation time and the spin-spin relaxation time of cellular water protons are both significantly shorter than that of pure water (by 4.3-fold and 34-fold, respectively). Furthermore, the spin diffusion coefficient of water proton is almost 1/2 of that of pure water. These data suggest that cellular water is in a more ordered state in comparison to pure water.

  17. Cellular biosensing: chemical and genetic approaches.

    Haruyama, Tetsuya


    Biosensors have been developed to determine the concentration of specific compounds in situ. They are already widely employed as a practical technology in the clinical and healthcare fields. Recently, another concept of biosensing has been receiving attention: biosensing for the evaluation of molecular potency. The development of this novel concept has been supported by the development of related technologies, as such as molecular design, molecular biology (genetic engineering) and cellular/tissular engineering. This review is addresses this new concept of biosensing and its application to the evaluation of the potency of chemicals in biological systems, in the field of cellular/tissular engineering. Cellular biosensing may provide information on both pharmaceutical and chemical safety, and on drug efficacy in vitro as a screening tool.

  18. Crack Propagation in Bamboo's Hierarchical Cellular Structure

    Habibi, Meisam K.; Lu, Yang


    Bamboo, as a natural hierarchical cellular material, exhibits remarkable mechanical properties including excellent flexibility and fracture toughness. As far as bamboo as a functionally graded bio-composite is concerned, the interactions of different constituents (bamboo fibers; parenchyma cells; and vessels.) alongside their corresponding interfacial areas with a developed crack should be of high significance. Here, by using multi-scale mechanical characterizations coupled with advanced environmental electron microscopy (ESEM), we unambiguously show that fibers' interfacial areas along with parenchyma cells' boundaries were preferred routes for crack growth in both radial and longitudinal directions. Irrespective of the honeycomb structure of fibers along with cellular configuration of parenchyma ground, the hollow vessels within bamboo culm affected the crack propagation too, by crack deflection or crack-tip energy dissipation. It is expected that the tortuous crack propagation mode exhibited in the present study could be applicable to other cellular natural materials as well.

  19. Comparative cellular biogerontology: primer and prospectus.

    Miller, Richard A; Williams, Joseph B; Kiklevich, J Veronika; Austad, Steve; Harper, James M


    Most prior work on the biological basis of aging has focused on describing differences between young and old individuals but provided only limited insight into the mechanisms controlling the rate of aging. Natural selection has produced a goldmine of experimental material, in the form of species of differing aging rate, whose longevity can vary by 10-fold or more within mammalian orders, but these resources remain largely unexplored at the cellular level. In this review article we focus on one approach to comparative biogerontology: the strategy of evaluating the properties of cultured cells from organisms of varying lifespan and aging rate. In addition, we discuss problems associated with the analysis and interpretations of interspecific variation of cellular trait data among species with disparate longevity. Given the impressive array of 'natural experiments' in aging rate, overcoming the technical and conceptual obstacles confronting research in comparative cellular gerontology will be well worth the effort. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Mesoporous silica nanoparticles inhibit cellular respiration.

    Tao, Zhimin; Morrow, Matthew P; Asefa, Tewodros; Sharma, Krishna K; Duncan, Cole; Anan, Abhishek; Penefsky, Harvey S; Goodisman, Jerry; Souid, Abdul-Kader


    We studied the effect of two types of mesoporous silica nanoparticles, MCM-41 and SBA-15, on mitochondrial O 2 consumption (respiration) in HL-60 (myeloid) cells, Jurkat (lymphoid) cells, and isolated mitochondria. SBA-15 inhibited cellular respiration at 25-500 microg/mL; the inhibition was concentration-dependent and time-dependent. The cellular ATP profile paralleled that of respiration. MCM-41 had no noticeable effect on respiration rate. In cells depleted of metabolic fuels, 50 microg/mL SBA-15 delayed the onset of glucose-supported respiration by 12 min and 200 microg/mL SBA-15 by 34 min; MCM-41 also delayed the onset of glucose-supported respiration. Neither SBA-15 nor MCM-41 affected cellular glutathione. Both nanoparticles inhibited respiration of isolated mitochondria and submitochondrial particles.

  1. Software-Defined Cellular Mobile Network Solutions

    Jiandong Li; Peng Liu; Hongyan Li


    The emergency relating to software-defined networking (SDN), especially in terms of the prototype associated with OpenFlow, pro-vides new possibilities for innovating on network design. Researchers have started to extend SDN to cellular networks. Such new programmable architecture is beneficial to the evolution of mobile networks and allows operators to provide better services. The typical cellular network comprises radio access network (RAN) and core network (CN); hence, the technique roadmap diverges in two ways. In this paper, we investigate SoftRAN, the latest SDN solution for RAN, and SoftCell and MobileFlow, the latest solu-tions for CN. We also define a series of control functions for CROWD. Unlike in the other literature, we emphasize only software-defined cellular network solutions and specifications in order to provide possible research directions.

  2. Online isolation of defects in cellular nanocomputers

    Teijiro Isokawa; Shin'ya Kowada; Ferdinand Peper; Naotake Kamiura; Nobuyuki Matsui


    Unreliability will be a major issue for computers built from components at nanometer scales.Thus,it's to be expected that such computers will need a high degree of defect-tolerance to overcome components' defects which have arisen during the process of manufacturing.This paper presents a novel approach to defect-tolerance that is especially geared towards nanocomputers based on asynchronous cellular automata.According to this approach,defective cells are detected and isolated by small configurations that move around randomly in cellular space.These configurations,called random flies,will attach to configurations that are static,which is typical for configurations that contain defective cells.On the other hand,dynamic configurations,like those that conduct computations,will not be isolated from the rest of the cellular space by the random flies,and will be able to continue their operations unaffectedly.

  3. Asymptotic Behavior of Excitable Cellular Automata

    Durrett, R; Durrett, Richard; Griffeath, David


    Abstract: We study two families of excitable cellular automata known as the Greenberg-Hastings Model (GHM) and the Cyclic Cellular Automaton (CCA). Each family consists of local deterministic oscillating lattice dynamics, with parallel discrete-time updating, parametrized by the range of interaction, the "shape" of its neighbor set, threshold value for contact updating, and number of possible states per site. GHM and CCA are mathematically tractable prototypes for the spatially distributed periodic wave activity of so-called excitable media observed in diverse disciplines of experimental science. Earlier work by Fisch, Gravner, and Griffeath studied the ergodic behavior of these excitable cellular automata on Z^2, and identified two distinct (but closely-related) elaborate phase portraits as the parameters vary. In particular, they noted the emergence of asymptotic phase diagrams (and Euclidean dynamics) in a well-defined threshold-range scaling limit. In this study we present several rigorous results and som...

  4. Cellularity of certain quantum endomorphism algebras

    Andersen, Henning Haahr; Lehrer, G. I.; Zhang, R.

    Let $\\tA=\\Z[q^{\\pm \\frac{1}{2}}][([d]!)\\inv]$ and let $\\Delta_{\\tA}(d)$ be an integral form of the Weyl module of highest weight $d \\in \\N$ of the quantised enveloping algebra $\\U_{\\tA}$ of $\\fsl_2$. We exhibit for all positive integers $r$ an explicit cellular structure for $\\End...... of endomorphism algebras, and another which relates the multiplicities of indecomposable summands to the dimensions of simple modules for an endomorphism algebra. Our cellularity result then allows us to prove that knowledge of the dimensions of the simple modules of the specialised cellular algebra above...... is equivalent to knowledge of the weight multiplicities of the tilting modules for $\\U_{\\zeta}(\\fsl_2)$. In the final section we independently determine the weight multiplicities of indecomposable tilting modules for $U_\\zeta(\\fsl_2)$ and the decomposition numbers of the endomorphism algebras. We indicate how...

  5. Alleviate Cellular Congestion Through Opportunistic Trough Filling

    Yichuan Wang


    Full Text Available The demand for cellular data service has been skyrocketing since the debut of data-intensive smart phones and touchpads. However, not all data are created equal. Many popular applications on mobile devices, such as email synchronization and social network updates, are delay tolerant. In addition, cellular load varies significantly in both large and small time scales. To alleviate network congestion and improve network performance, we present a set of opportunistic trough filling schemes that leverage the time-variation of network congestion and delay-tolerance of certain traffic in this paper. We consider average delay, deadline, and clearance time as the performance metrics. Simulation results show promising performance improvement over the standard schemes. The work shed lights on addressing the pressing issue of cellular overload.

  6. Performance comparison of virtual cellular manufacturing with functional and cellular layouts in DRC settings

    Suresh, N.; Slomp, J.


    This study investigates the performance of virtual cellular manufacturing (VCM) systems, comparing them with functional layouts (FL) and traditional, physical cellular layout (CL), in a dual-resource-constrained (DRC) system context. VCM systems employ logical cells, retaining the process layouts of

  7. Virtual networks in the cellular domain

    Söderström, Gustav


     Data connectivity between cellular devices can be achieved in different ways. It is possible to enable full IPconnectivity in the cellular networks. However this connectivity is combined with a lot of issues such as security problems and the IPv4 address space being depleted. As a result of this many operators use Network Address Translation in their packet data networks, preventing users in different networks from being able to contact each other. Even if a transition to IPv6 takes place an...

  8. Cellular-based sea level gauge

    Desai, R.G.P.; Joseph, A.

    , and cellular modem are mounted on the top portion of this structure. The pressure sensor and the logger are continuously powered on, and their electrical current consumption is 30 and 15 mA respectively. The cellular modem consumes 15 mA and 250 mA during... of reportage, data size, recurring costs and so forth. Broadband technology has been identified as one that can be used optimally for real-time reporting of data because of its inherent advantages such as a continuous two-way connection that allows high...

  9. External insulation with cellular plastic materials

    Sørensen, Lars Schiøtt; Nielsen, Anker


    External thermal insulation composite systems (ETICS) can be used as extra insulation of existing buildings. The system can be made of cellular plastic materials or mineral wool. There is a European Technical guideline, ETAG 004, that describe the tests that shall be conducted on such systems....... This paper gives a comparison of systems with mineral wool and cellular plastic, based on experience from practice and literature. It is important to look at the details in the system and at long time stability of the properties such as thermal insulation, moisture and fire. Investigation of fire properties...... insulation....

  10. Cellular telephone use and cancer risk


    -up of a large nationwide cohort of 420,095 persons whose first cellular telephone subscription was between 1982 and 1995 and who were followed through 2002 for cancer incidence. Standardized incidence ratios (SIRs) were calculated by dividing the number of observed cancer cases in the cohort by the number....... The risk for smoking-related cancers was decreased among men (SIR = 0.88, 95% CI = 0.86 to 0.91) but increased among women (SIR = 1.11, 95% CI = 1.02 to 1.21). Additional data on income and smoking prevalence, primarily among men, indicated that cellular telephone users who started subscriptions in the mid...

  11. Advanced 3D Printers for Cellular Solids


    SECURITY CLASSIFICATION OF: Final Report for DURIP grant W911NF-14-1-0416 This DURIP grant has allowed for the purchase of three 3D printers ...06-2016 1-Aug-2014 31-Dec-2015 Final Report: Advanced 3D printers for Cellular Solids The views, opinions and/or findings contained in this report are...Papers published in non peer-reviewed journals: Final Report: Advanced 3D printers for Cellular Solids Report Title Final Report for DURIP grant W911NF

  12. Refining cellular automata with routing constraints

    Millo, Jean-Vivien; De Simone, Robert


    A cellular automaton (CA) is an infinite array of cells, each containing the same automaton. The dynamics of a CA is distributed over the cells where each computes its next state as a function of the previous states of its neighborhood. Thus, the transmission of such states between neighbors is considered as feasible directly, in no time. When considering the implementation of a cellular automaton on a many-cores System-on-Chip (SoC), this state transmission is no longer abstract and instanta...

  13. Cellular basis of Alzheimer′s disease

    Bali Jitin


    Full Text Available Alzheimer′s disease (AD is the most common form of neurodegenerative disease. A characteristic feature of the disease is the presence of amyloid-β (Aβ which either in its soluble oligomeric form or in the plaque-associated form is causally linked to neurodegeneration. Aβ peptide is liberated from the membrane-spanning -amyloid precursor protein by sequential proteolytic processing employing β- and γ-secretases. All these proteins involved in the production of Aβ peptide are membrane associated and hence, membrane trafficking and cellular compartmentalization play important roles. In this review, we summarize the key cellular events that lead to the progression of AD.

  14. Cellular basis of Alzheimer’s disease

    Bali, Jitin; Halima, Saoussen Ben; Felmy, Boas; Goodger, Zoe; Zurbriggen, Sebastian; Rajendran, Lawrence


    Alzheimer’s disease (AD) is the most common form of neurodegenerative disease. A characteristic feature of the disease is the presence of amyloid-β (Aβ) which either in its soluble oligomeric form or in the plaque-associated form is causally linked to neurodegeneration. Aβ peptide is liberated from the membrane-spanning -amyloid precursor protein by sequential proteolytic processing employing β- and γ-secretases. All these proteins involved in the production of Aβ peptide are membrane associated and hence, membrane trafficking and cellular compartmentalization play important roles. In this review, we summarize the key cellular events that lead to the progression of AD. PMID:21369424

  15. The cellular decision between apoptosis and autophagy

    Yong-Jun Fan; Wei-Xing Zong


    Apoptosis and autophagy are important molecular processes that maintain organismal and cellular homeostasis,respectively.While apoptosis fulfills its role through dismantling damaged or unwanted cells,autophagy maintains cellular homeostasis through recycling selective intracellular organelles and molecules.Yet in some conditions,autophagy can lead to cell death.Apoptosis and autophagy can be stimulated by the same stresses.Emerging evidence indicates an interplay between the core proteins in both pathways,which underlies the molecular mechanism of the crosstalk between apoptosis and autophagy.This review summarizes recent literature on molecules that regulate both the apoptotic and autophagic processes.

  16. Toxicology and cellular effect of manufactured nanomaterials

    Chen, Fanqing


    The increasing use of nanotechnology in consumer products and medical applications underlies the importance of understanding its potential toxic effects to people and the environment. Herein are described methods and assays to predict and evaluate the cellular effects of nanomaterial exposure. Exposing cells to nanomaterials at cytotoxic doses induces cell cycle arrest and increases apoptosis/necrosis, activates genes involved in cellular transport, metabolism, cell cycle regulation, and stress response. Certain nanomaterials induce genes indicative of a strong immune and inflammatory response within skin fibroblasts. Furthermore, the described multiwall carbon nanoonions (MWCNOs) can be used as a therapeutic in the treatment of cancer due to its cytotoxicity.

  17. Glass transitions in the cellular Potts model

    Chiang, M.; Marenduzzo, D.


    We study the dynamical transition between a fluid-like and a solid-like phase in a confluent cell monolayer, by using the cellular Potts model and computer simulations. We map out the phase diagram as a function of interfacial tension and of cell motility. While in the fluid phase there is normal diffusion, in the solid phase we observe sub-diffusion, very slow relaxation, and ageing, thereby strongly suggesting that this phase is glassy. Our results complement previous theoretical work within the vertex model and show that the cellular Potts model can account for the experimentally observed glassy dynamics of some biological tissues.

  18. Green Cellular - Optimizing the Cellular Network for Minimal Emission from Mobile Stations

    Ezri, Doron


    Wireless systems, which include cellular phones, have become an essential part of the modern life. However the mounting evidence that cellular radiation might adversely affect the health of its users, leads to a growing concern among authorities and the general public. Radiating antennas in the proximity of the user, such as antennas of mobile phones are of special interest for this matter. In this paper we suggest a new architecture for wireless networks, aiming at minimal emission from mobile stations, without any additional radiation sources. The new architecture, dubbed Green Cellular, abandons the classical transceiver base station design and suggests the augmentation of transceiver base stations with receive only devices. These devices, dubbed Green Antennas, are not aiming at coverage extension but rather at minimizing the emission from mobile stations. We discuss the implications of the Green Cellular architecture on 3G and 4G cellular technologies. We conclude by showing that employing the Green Cell...

  19. A Quantum Relativistic Prisoner's Dilemma Cellular Automaton

    Alonso-Sanz, Ramón; Carvalho, Márcio; Situ, Haozhen


    The effect of variable entangling on the dynamics of a spatial quantum relativistic formulation of the iterated prisoner's dilemma game is studied in this work. The game is played in the cellular automata manner, i.e., with local and synchronous interaction. The game is assessed in fair and unfair contests.

  20. Corneal cellular proliferation and wound healing

    Gan, Lisha


    Background. Cellular proliferation plays an important role in both physiological and pathological processes. Epithelial hyperplasia in the epithelium, excessive scar formation in retrocorneal membrane formation and neovascularization are examples of excessive proliferation of cornea cells. Lack of proliferative ability causes corneal degeneration. The degree of proliferative and metabolic activity will directly influence corneal transparency and very evidently refractive res...

  1. Cellular basis of memory for addiction.

    Nestler, Eric J


    DESPITE THE IMPORTANCE OF NUMEROUS PSYCHOSOCIAL FACTORS, AT ITS CORE, DRUG ADDICTION INVOLVES A BIOLOGICAL PROCESS: the ability of repeated exposure to a drug of abuse to induce changes in a vulnerable brain that drive the compulsive seeking and taking of drugs, and loss of control over drug use, that define a state of addiction. Here, we review the types of molecular and cellular adaptations that occur in specific brain regions to mediate addiction-associated behavioral abnormalities. These include alterations in gene expression achieved in part via epigenetic mechanisms, plasticity in the neurophysiological functioning of neurons and synapses, and associated plasticity in neuronal and synaptic morphology mediated in part by altered neurotrophic factor signaling. Each of these types of drug-induced modifications can be viewed as a form of "cellular or molecular memory." Moreover, it is striking that most addiction-related forms of plasticity are very similar to the types of plasticity that have been associated with more classic forms of "behavioral memory," perhaps reflecting the finite repertoire of adaptive mechanisms available to neurons when faced with environmental challenges. Finally, addiction-related molecular and cellular adaptations involve most of the same brain regions that mediate more classic forms of memory, consistent with the view that abnormal memories are important drivers of addiction syndromes. The goal of these studies which aim to explicate the molecular and cellular basis of drug addiction is to eventually develop biologically based diagnostic tests, as well as more effective treatments for addiction disorders.

  2. Cellular Plasticity in Prostate Cancer Bone Metastasis

    Dima Y. Jadaan


    Full Text Available Purpose. Experimental data suggest that tumour cells can reversibly transition between epithelial and mesenchymal states (EMT and MET, a phenomenon known as cellular plasticity. The aim of this review was to appraise the clinical evidence for the role of cellular plasticity in prostate cancer (PC bone metastasis. Methods. An electronic search was performed using PubMed for studies that have examined the differential expression of epithelial, mesenchymal, and stem cell markers in human PC bone metastasis tissues. Results. The review included nineteen studies. More than 60% of the studies used ≤20 bone metastasis samples, and there were several sources of heterogeneity between studies. Overall, most stem cell markers analysed, except for CXCR4, were positively expressed in bone metastasis tissues, while the expression of EMT and MET markers was heterogeneous between and within samples. Several EMT and stemness markers that are involved in osteomimicry, such as Notch, Met receptor, and Wnt/β pathway, were highly expressed in bone metastases. Conclusions. Clinical findings support the role of cellular plasticity in PC bone metastasis and suggest that epithelial and mesenchymal states cannot be taken in isolation when targeting PC bone metastasis. The paper also highlights several challenges in the clinical detection of cellular plasticity.

  3. Cellular grafts in management of leucoderma

    Mysore Venkataram


    Full Text Available Cellular grafting methods constitute important advances in the surgical management of leucoderma. Different methods such as noncultured epidermal suspensions, melanocyte cultures, and melanocyte-keratinocyte cultures have all been shown to be effective. This article reviews these methods.

  4. Recursive definition of global cellular-automata mappings

    Feldberg, Rasmus; Knudsen, Carsten; Rasmussen, Steen


    A method for a recursive definition of global cellular-automata mappings is presented. The method is based on a graphical representation of global cellular-automata mappings. For a given cellular-automaton rule the recursive algorithm defines the change of the global cellular-automaton mapping as...

  5. Quantitative proteomics reveals cellular targets of celastrol.

    Jakob Hansen

    Full Text Available Celastrol, a natural substance isolated from plant extracts used in traditional Chinese medicine, has been extensively investigated as a possible drug for treatment of cancer, autoimmune diseases, and protein misfolding disorders. Although studies focusing on celastrol's effects in specific cellular pathways have revealed a considerable number of targets in a diverse array of in vitro models there is an essential need for investigations that can provide a global view of its effects. To assess cellular effects of celastrol and to identify target proteins as biomarkers for monitoring treatment regimes, we performed large-scale quantitative proteomics in cultured human lymphoblastoid cells, a cell type that can be readily prepared from human blood samples. Celastrol substantially modified the proteome composition and 158 of the close to 1800 proteins with robust quantitation showed at least a 1.5 fold change in protein levels. Up-regulated proteins play key roles in cytoprotection with a prominent group involved in quality control and processing of proteins traversing the endoplasmic reticulum. Increased levels of proteins essential for the cellular protection against oxidative stress including heme oxygenase 1, several peroxiredoxins and thioredoxins as well as proteins involved in the control of iron homeostasis were also observed. Specific analysis of the mitochondrial proteome strongly indicated that the mitochondrial association of certain antioxidant defense and apoptosis-regulating proteins increased in cells exposed to celastrol. Analysis of selected mRNA transcripts showed that celastrol activated several different stress response pathways and dose response studies furthermore showed that continuous exposure to sub-micromolar concentrations of celastrol is associated with reduced cellular viability and proliferation. The extensive catalog of regulated proteins presented here identifies numerous cellular effects of celastrol and constitutes

  6. Cellular circadian clocks in mood disorders.

    McCarthy, Michael J; Welsh, David K


    Bipolar disorder (BD) and major depressive disorder (MDD) are heritable neuropsychiatric disorders associated with disrupted circadian rhythms. The hypothesis that circadian clock dysfunction plays a causal role in these disorders has endured for decades but has been difficult to test and remains controversial. In the meantime, the discovery of clock genes and cellular clocks has revolutionized our understanding of circadian timing. Cellular circadian clocks are located in the suprachiasmatic nucleus (SCN), the brain's primary circadian pacemaker, but also throughout the brain and peripheral tissues. In BD and MDD patients, defects have been found in SCN-dependent rhythms of body temperature and melatonin release. However, these are imperfect and indirect indicators of SCN function. Moreover, the SCN may not be particularly relevant to mood regulation, whereas the lateral habenula, ventral tegmentum, and hippocampus, which also contain cellular clocks, have established roles in this regard. Dysfunction in these non-SCN clocks could contribute directly to the pathophysiology of BD/MDD. We hypothesize that circadian clock dysfunction in non-SCN clocks is a trait marker of mood disorders, encoded by pathological genetic variants. Because network features of the SCN render it uniquely resistant to perturbation, previous studies of SCN outputs in mood disorders patients may have failed to detect genetic defects affecting non-SCN clocks, which include not only mood-regulating neurons in the brain but also peripheral cells accessible in human subjects. Therefore, reporters of rhythmic clock gene expression in cells from patients or mouse models could provide a direct assay of the molecular gears of the clock, in cellular clocks that are likely to be more representative than the SCN of mood-regulating neurons in patients. This approach, informed by the new insights and tools of modern chronobiology, will allow a more definitive test of the role of cellular circadian clocks




    Cellular automata provide a fascinating class of dynamical systems based on very simple rules of evolution yet capable of displaying highly complex behavior. These include simplified models for many phenomena seen in nature. Among other things, they provide insight into self-organized criticality, wherein dissipative systems naturally drive themselves to a critical state with important phenomena occurring over a wide range of length and the scales. This article begins with an overview of self-organized criticality. This is followed by a discussion of a few examples of simple cellular automaton systems, some of which may exhibit critical behavior. Finally, some of the fascinating exact mathematical properties of the Bak-Tang-Wiesenfeld sand-pile model [1] are discussed.

  8. Cellular and molecular biology of neuronal dystonin.

    Ferrier, Andrew; Boyer, Justin G; Kothary, Rashmi


    Neuronal dystonin isoforms are giant cytoskeletal cross-linking proteins capable of interacting with actin and microtubule networks, protein complexes, membrane-bound organelles and cellular membranes. In the neuromuscular system, dystonin proteins are involved in maintaining cytoarchitecture integrity and have more recently been ascribed roles in other cellular processes such as organelle structure and intracellular transport. Loss of dystonin expression in mice results in a profound sensory ataxia termed dystonia musculorum (dt), which is attributed to the degeneration of sensory nerves. This chapter provides a comprehensive overview of the dystonin gene, the structure of encoded proteins, biological functions of neuronal dystonin isoforms, and known roles of dystonin in dt pathogenesis and human disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Cellular and Molecular Basis of Cerebellar Development

    Salvador eMartinez


    Full Text Available Historically, the molecular and cellular mechanisms of cerebellar development were investigated through structural descriptions and studying spontaneous mutations in animal models and humans. Advances in experimental embryology, genetic engineering and neuroimaging techniques render today the possibility to approach the analysis of molecular mechanisms underlying histogenesis and morphogenesis of the cerebellum by experimental designs. Several genes and molecules were identified to be involved in the cerebellar plate regionalization, specification and differentiation of cerebellar neurons, as well as the establishment of cellular migratory routes and the subsequent neuronal connectivity. Indeed, pattern formation of the cerebellum requires the adequate orchestration of both key morphogenetic signals, arising from distinct brain regions, and local expression of specific transcription factors. Thus, the present review wants to revisit and discuss these morphogenetic and molecular mechanisms taking place during cerebellar development in order to understand causal processes regulating cerebellar cytoarchitecture, its highly topographically ordered circuitry and its role in brain function.

  10. Cellular Dynamics Revealed by Digital Holographic Microscopy☆

    Marquet, P.


    Digital holographic microscopy (DHM) is a new optical method that provides, without the use of any contrast agent, real-time, three-dimensional images of transparent living cells, with an axial sensitivity of a few tens of nanometers. They result from the hologram numerical reconstruction process, which permits a sub wavelength calculation of the phase shift, produced on the transmitted wave front, by the optically probed cells, namely the quantitative phase signal (QPS). Specifically, in addition to measurements of cellular surface morphometry and intracellular refractive index (RI), various biophysical cellular parameters including dry mass, absolute volume, membrane fluctuations at the nanoscale and biomechanical properties, transmembrane water permeability as swell as current, can be derived from the QPS. This article presents how quantitative phase DHM (QP-DHM) can explored cell dynamics at the nanoscale with a special attention to both the study of neuronal dynamics and the optical resolution of local neuronal network.

  11. Mobile Node Localization in Cellular Networks

    Yasir Malik


    Full Text Available Location information is the major component in location based applications. This information is used in different safety and service oriented applications to provide users with services according to their Geolocation. There are many approaches to locate mobile nodes in indoor and outdoor environments. In thispaper, we are interested in outdoor localization particularly in cellular networks of mobile nodes andpresented a localization method based on cell and user location information. Our localization method is based on hello message delay (sending and receiving time and coordinate information of Base Transceiver Station (BTSs. To validate our method across cellular network, we implemented and simulated our method in two scenarios i.e. maintaining database of base stations in centralize and distributed system. Simulation results show the effectiveness of our approach and its implementation applicability in telecommunication systems.

  12. A Modified Sensitive Driving Cellular Automaton Model

    GE Hong-Xia; DAI Shi-Qiang; DONG Li-Yun; LEI Li


    A modified cellular automaton model for traffic flow on highway is proposed with a novel concept about the variable security gap. The concept is first introduced into the original Nagel-Schreckenberg model, which is called the non-sensitive driving cellular automaton model. And then it is incorporated with a sensitive driving NaSch model,in which the randomization brake is arranged before the deterministic deceleration. A parameter related to the variable security gap is determined through simulation. Comparison of the simulation results indicates that the variable security gap has different influence on the two models. The fundamental diagram obtained by simulation with the modified sensitive driving NaSch model shows that the maximumflow are in good agreement with the observed data, indicating that the presented model is more reasonable and realistic.

  13. Designing beauty the art of cellular automata

    Martínez, Genaro


    This fascinating, colourful book offers in-depth insights and first-hand working experiences in the production of art works, using simple computational models with rich morphological behaviour, at the edge of mathematics, computer science, physics and biology. It organically combines ground breaking scientific discoveries in the theory of computation and complex systems with artistic representations of the research results. In this appealing book mathematicians, computer scientists, physicists, and engineers brought together marvelous and esoteric patterns generated by cellular automata, which are arrays of simple machines with complex behavior. Configurations produced by cellular automata uncover mechanics of dynamic patterns formation, their propagation and interaction in natural systems: heart pacemaker, bacterial membrane proteins, chemical rectors, water permeation in soil, compressed gas, cell division, population dynamics, reaction-diffusion media and self-organisation. The book inspires artists to tak...

  14. Prodrug Approach for Increasing Cellular Glutathione Levels

    Ivana Cacciatore


    Full Text Available Reduced glutathione (GSH is the most abundant non-protein thiol in mammalian cells and the preferred substrate for several enzymes in xenobiotic metabolism and antioxidant defense. It plays an important role in many cellular processes, such as cell differentiation, proliferation and apoptosis. GSH deficiency has been observed in aging and in a wide range of pathologies, including neurodegenerative disorders and cystic fibrosis (CF, as well as in several viral infections. Use of GSH as a therapeutic agent is limited because of its unfavorable biochemical and pharmacokinetic properties. Several reports have provided evidence for the use of GSH prodrugs able to replenish intracellular GSH levels. This review discusses different strategies for increasing GSH levels by supplying reversible bioconjugates able to cross the cellular membrane more easily than GSH and to provide a source of thiols for GSH synthesis.

  15. Molecular kinesis in cellular function and plasticity.

    Tiedge, H; Bloom, F E; Richter, D


    Intracellular transport and localization of cellular components are essential for the functional organization and plasticity of eukaryotic cells. Although the elucidation of protein transport mechanisms has made impressive progress in recent years, intracellular transport of RNA remains less well understood. The National Academy of Sciences Colloquium on Molecular Kinesis in Cellular Function and Plasticity therefore was devised as an interdisciplinary platform for participants to discuss intracellular molecular transport from a variety of different perspectives. Topics covered at the meeting included RNA metabolism and transport, mechanisms of protein synthesis and localization, the formation of complex interactive protein ensembles, and the relevance of such mechanisms for activity-dependent regulation and synaptic plasticity in neurons. It was the overall objective of the colloquium to generate momentum and cohesion for the emerging research field of molecular kinesis.

  16. Guiding cellular activity with polarized light.

    Constant, Colin; Bergano, Andrea; Sugaya, Kiminobu; Dogariu, Aristide


    Actin, cytoskeleton protein forming microfilaments, play a crucial role in cellular motility. Here we show that exposure to very low levels of polarized light guide their orientation in-vivo within the live cell. Using a simple model to describe the role of actin-filament orientation in directional cellular motion, we demonstrate that the actin polymerization/depolymerization mechanism develops primarily along this direction and, under certain conditions, can lead to guidance of the cell movement. Our results also show a dose dependent increase in actin activity in direct correspondence to the level of laser irradiance. We found that total expression of Tau protein, which stabilize microtubules, was decreased by the irradiance, indicating that exposure to the light may change the activity of kinase, leading to increased cell activity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. WD40 proteins propel cellular networks.

    Stirnimann, Christian U; Petsalaki, Evangelia; Russell, Robert B; Müller, Christoph W


    Recent findings indicate that WD40 domains play central roles in biological processes by acting as hubs in cellular networks; however, they have been studied less intensely than other common domains, such as the kinase, PDZ or SH3 domains. As suggested by various interactome studies, they are among the most promiscuous interactors. Structural studies suggest that this property stems from their ability, as scaffolds, to interact with diverse proteins, peptides or nucleic acids using multiple surfaces or modes of interaction. A general scaffolding role is supported by the fact that no WD40 domain has been found with intrinsic enzymatic activity despite often being part of large molecular machines. We discuss the WD40 domain distributions in protein networks and structures of WD40-containing assemblies to demonstrate their versatility in mediating critical cellular functions.

  18. Intravital microscopy: new insights into cellular interactions.

    Gavins, Felicity N E


    Inflammation is the body's way of combating invading pathogens or noxious stimuli. Under normal conditions, the complex host response of rubor, dolor, calor, tumor, and functio laesa is essential for survival and the return to homeostasis. However, unregulated inflammation is all too often observed in diseases such as rheumatoid arthritis, stroke, and cancer. The host inflammatory response is governed by a number of tightly regulated processes that enable cellular trafficking to occur at the sites of damage to ultimately ensure the resolution of inflammation. Intravital microscopy (IVM) provides quantitative, qualitative, and dynamic insights into cell biology and these cellular interactions. This review highlights the pros and cons of this specialized technique and how it has evolved to help understand the physiology and pathophysiology of inflammatory events in a number of different disease states, leading to a number of potential therapeutic targets for drug discovery. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Quantum features of natural cellular automata

    Elze, Hans-Thomas


    Cellular automata can show well known features of quantum mechanics, such as a linear rule according to which they evolve and which resembles a discretized version of the Schroedinger equation. This includes corresponding conservation laws. The class of "natural" Hamiltonian cellular automata is based exclusively on integer-valued variables and couplings and their dynamics derives from an Action Principle. They can be mapped reversibly to continuum models by applying Sampling Theory. Thus, "deformed" quantum mechanical models with a finite discreteness scale $l$ are obtained, which for $l\\rightarrow 0$ reproduce familiar continuum results. We have recently demonstrated that such automata can form "multipartite" systems consistently with the tensor product structures of nonrelativistic many-body quantum mechanics, while interacting and maintaining the linear evolution. Consequently, the Superposition Principle fully applies for such primitive discrete deterministic automata and their composites and can produce...

  20. Cellular senescence and the aging brain.

    Chinta, Shankar J; Woods, Georgia; Rane, Anand; Demaria, Marco; Campisi, Judith; Andersen, Julie K


    Cellular senescence is a potent anti-cancer mechanism that arrests the proliferation of mitotically competent cells to prevent malignant transformation. Senescent cells accumulate with age in a variety of human and mouse tissues where they express a complex 'senescence-associated secretory phenotype' (SASP). The SASP includes many pro-inflammatory cytokines, chemokines, growth factors and proteases that have the potential to cause or exacerbate age-related pathology, both degenerative and hyperplastic. While cellular senescence in peripheral tissues has recently been linked to a number of age-related pathologies, its involvement in brain aging is just beginning to be explored. Recent data generated by several laboratories suggest that both aging and age-related neurodegenerative diseases are accompanied by an increase in SASP-expressing senescent cells of non-neuronal origin in the brain. Moreover, this increase correlates with neurodegeneration. Senescent cells in the brain could therefore constitute novel therapeutic targets for treating age-related neuropathologies.

  1. Astrobiological Complexity with Probabilistic Cellular Automata

    Vukotić, B


    Search for extraterrestrial life and intelligence constitutes one of the major endeavors in science, but has yet been quantitatively modeled only rarely and in a cursory and superficial fashion. We argue that probabilistic cellular automata (PCA) represent the best quantitative framework for modeling astrobiological history of the Milky Way and its Galactic Habitable Zone. The relevant astrobiological parameters are to be modeled as the elements of the input probability matrix for the PCA kernel. With the underlying simplicity of the cellular automata constructs, this approach enables a quick analysis of large and ambiguous input parameters' space. We perform a simple clustering analysis of typical astrobiological histories and discuss the relevant boundary conditions of practical importance for planning and guiding actual empirical astrobiological and SETI projects. In addition to showing how the present framework is adaptable to more complex situations and updated observational databases from current and ne...

  2. Quantum features of natural cellular automata

    Elze, Hans-Thomas


    Cellular automata can show well known features of quantum mechanics, such as a linear rule according to which they evolve and which resembles a discretized version of the Schrödinger equation. This includes corresponding conservation laws. The class of “natural” Hamiltonian cellular automata is based exclusively on integer-valued variables and couplings and their dynamics derives from an Action Principle. They can be mapped reversibly to continuum models by applying Sampling Theory. Thus, “deformed” quantum mechanical models with a finite discreteness scale l are obtained, which for l → 0 reproduce familiar continuum results. We have recently demonstrated that such automata can form “multipartite” systems consistently with the tensor product structures of nonrelativistic many-body quantum mechanics, while interacting and maintaining the linear evolution. Consequently, the Superposition Principle fully applies for such primitive discrete deterministic automata and their composites and can produce the essential quantum effects of interference and entanglement.

  3. Mobile node localization in cellular networks

    Malik, Yasir; Abdulrazak, Bessam; Tariq, Usman; 10.5121/ijwmn.2011.3607


    Location information is the major component in location based applications. This information is used in different safety and service oriented applications to provide users with services according to their Geolocation. There are many approaches to locate mobile nodes in indoor and outdoor environments. In this paper, we are interested in outdoor localization particularly in cellular networks of mobile nodes and presented a localization method based on cell and user location information. Our localization method is based on hello message delay (sending and receiving time) and coordinate information of Base Transceiver Station (BTSs). To validate our method across cellular network, we implemented and simulated our method in two scenarios i.e. maintaining database of base stations in centralize and distributed system. Simulation results show the effectiveness of our approach and its implementation applicability in telecommunication systems.

  4. Cellular automata in image processing and geometry

    Adamatzky, Andrew; Sun, Xianfang


    The book presents findings, views and ideas on what exact problems of image processing, pattern recognition and generation can be efficiently solved by cellular automata architectures. This volume provides a convenient collection in this area, in which publications are otherwise widely scattered throughout the literature. The topics covered include image compression and resizing; skeletonization, erosion and dilation; convex hull computation, edge detection and segmentation; forgery detection and content based retrieval; and pattern generation. The book advances the theory of image processing, pattern recognition and generation as well as the design of efficient algorithms and hardware for parallel image processing and analysis. It is aimed at computer scientists, software programmers, electronic engineers, mathematicians and physicists, and at everyone who studies or develops cellular automaton algorithms and tools for image processing and analysis, or develops novel architectures and implementations of mass...

  5. A cellular glass substrate solar concentrator

    Bedard, R.; Bell, D.


    The design of a second generation point focusing solar concentration is discussed. The design is based on reflective gores fabricated of thin glass mirror bonded continuously to a contoured substrate of cellular glass. The concentrator aperture and structural stiffness was optimized for minimum concentrator cost given the performance requirement of delivering 56 kWth to a 22 cm diameter receiver aperture with a direct normal insolation of 845 watts sq m and an operating wind of 50 kmph. The reflective panel, support structure, drives, foundation and instrumentation and control subsystem designs, optimized for minimum cost, are summarized. The use of cellular glass as a reflective panel substrate material is shown to offer significant weight and cost advantages compared to existing technology materials.

  6. Overlaid Cellular and Mobile Ad Hoc Networks

    Huang, Kaibin; Chen, Bin; Yang, Xia; Lau, Vincent K N


    In cellular systems using frequency division duplex, growing Internet services cause unbalance of uplink and downlink traffic, resulting in poor uplink spectrum utilization. Addressing this issue, this paper considers overlaying an ad hoc network onto a cellular uplink network for improving spectrum utilization and spatial reuse efficiency. Transmission capacities of the overlaid networks are analyzed, which are defined as the maximum densities of the ad hoc nodes and mobile users under an outage constraint. Using tools from stochastic geometry, the capacity tradeoff curves for the overlaid networks are shown to be linear. Deploying overlaid networks based on frequency separation is proved to achieve higher network capacities than that based on spatial separation. Furthermore, spatial diversity is shown to enhance network capacities.

  7. Sound attenuation characteristics of cellular metamaterials

    Varanasi, Satya Surya Srinivas

    The objectives of this work were to develop lightweight barrier and compact absorbing material systems for controlling low frequency noise (say below 2 kHz). The solutions explored fell into the broad category of segmented cellular materials in which local resonances are built-in attributes. The body of the work was divided into four parts. First, a cellular metamaterial concept for lightweight barrier materials was proposed, then, secondly, the concept was experimentally verified by testing application-scale designs in a diffuse sound field setup. In the remaining two parts of the work, the idea of shifting sound energy emporally and spatially was explored as a means of improving the performance of metamaterial-based barrier solutions and of compact sound absorbers, respectively. The high sound transmission loss (STL) metamaterials described to-date commonly require the introduction of relatively heavy resonating or constraining components which runs counter to the desire to create lightweight barrier solutions. It was proposed here that a cellular panel comprising a periodic arrangement of unit cells consisting of plates held in a grid-like frame, which itself is unsupported, can possess a high STL within a specified frequency range without an undue mass penalty. It was numerically demonstrated that such a cellular panel can yield enhanced STL if the unit cell mass is apportioned appropriately between the unit cell plate and the surrounding grid-like frame. The concept of planar cellular metamaterials was verified through diffuse field experiments on application-scale specimens by using intensity methods. Two cellular panel designs were tested and their behavior was compared with that of a reference limp panel. It was found that the predicted benefit of the cellular panels could be realized by increasing the mass contrast in the designs, and that the benefit was reduced with increasing diffuseness of the sound field. It was also found that the loss in performance

  8. Cognitive resource management for heterogeneous cellular networks

    Liu, Yongkang


    This Springer Brief focuses on cognitive resource management in heterogeneous cellular networks (Het Net) with small cell deployment for the LTE-Advanced system. It introduces the Het Net features, presents practical approaches using cognitive radio technology in accommodating small cell data relay and optimizing resource allocation and examines the effectiveness of resource management among small cells given limited coordination bandwidth and wireless channel uncertainty. The authors introduce different network characteristics of small cell, investigate the mesh of small cell access points in

  9. Light weight cellular structures based on aluminium

    Prakash, O. [Indian Inst. of Tech., Kanpur (India); Embury, J.D.; Sinclair, C. [McMaster Univ., Hamilton, ON (Canada); Sang, H. [Queen`s Univ., Kingston, ON (Canada); Silvetti, P. [Cordoba Univ. Nacional (Argentina). Facultad de Ciencias Exactas, Fisicas y Naturales


    An interesting form of lightweight material which has emerged in the past 2 decades is metallic foam. This paper deals with the basic concepts of making metallic foams and a detailed study of foams produced from Al-SiC. In addition, some aspects of cellular solids based on honeycomb structures are outlined including the concept of producing both two-phase foams and foams with composite walls.

  10. Cellular Automation of Galactic Habitable Zone

    Vukotic, Branislav


    We present a preliminary results of our Galactic Habitable Zone (GHZ) 2D probabilistic cellular automata models. The relevant time-scales (emergence of life, it's diversification and evolution influenced with the global risk function) are modeled as the probability matrix elements and are chosen in accordance with the Copernican principle to be well-represented by the data inferred from the Earth's fossil record. With Fermi's paradox as a main boundary condition the resulting histories of astrobiological landscape are discussed.

  11. Introduction to Tissular and Cellular Engineering



    Most human tissues do not regenerate spontaneously, which is why cellular therapies and tissular engineering are promising alternatives. The principle is simple: cells are sampled in a patient and introduced in the damaged tissue or in a tridimentional porous support and cultivated in a bioreactor in which the physico-chemical and mechanical parameters are controlled. Once the tissues (or the cells) are mature they may be implanted. In parallel, the development of biotherapies with stem cells is a field of ...

  12. Gravitational studies in cellular and developmental biology

    Spooner, B. S.


    The paucity of data on the role of gravity in cellular and developmental biology has been examined, and a hypothesis has been generated that unifies potential gravity sensitivity in both plant and animal systems. This hypothesis considers the macromolecular order and functional importance of the extracellular matrix compartment, the intracellular cytoskeleton compartment, and the connecting plasma membrane-signal transduction compartment of plant and animal systems as potentially sensitive to alterations in the unit gravity environment in which they evolved.

  13. Cellularity of certain quantum endomorphism algebras

    Andersen, Henning Haahr; Lehrer, Gus; Zhang, Ruibin


    structure are described in terms of certain Temperley–Lieb-like diagrams. We also prove general results that relate endomorphism algebras of specialisations to specialisations of the endomorphism algebras. When ζ is a root of unity of order bigger than d we consider the Uζ-module structure...... we independently recover the weight multiplicities of indecomposable tilting modules for Uζ(sl2) from the decomposition numbers of the endomorphism algebras, which are known through cellular theory....

  14. Developing a Resilient Green Cellular Network


    Baser Stations, Cell Sites, Cell Towers COs Telecom Central Office COW Cellular on Wheels DHS Department of Homeland Security FCC Federal...nations that encounter frequent power outages for potential solutions to off set such dependency. India , the second largest mobile phone, as noted in their National Telecom Policy-2012 (NTP).11 The policy posits how India can achieve its economic potential while providing socio

  15. Empirical multiscale networks of cellular regulation.

    Benjamin de Bivort


    Full Text Available Grouping genes by similarity of expression across multiple cellular conditions enables the identification of cellular modules. The known functions of genes enable the characterization of the aggregate biological functions of these modules. In this paper, we use a high-throughput approach to identify the effective mutual regulatory interactions between modules composed of mouse genes from the Alliance for Cell Signaling (AfCS murine B-lymphocyte database which tracks the response of approximately 15,000 genes following chemokine perturbation. This analysis reveals principles of cellular organization that we discuss along four conceptual axes. (1 Regulatory implications: the derived collection of influences between any two modules quantifies intuitive as well as unexpected regulatory interactions. (2 Behavior across scales: trends across global networks of varying resolution (composed of various numbers of modules reveal principles of assembly of high-level behaviors from smaller components. (3 Temporal behavior: tracking the mutual module influences over different time intervals provides features of regulation dynamics such as duration, persistence, and periodicity. (4 Gene Ontology correspondence: the association of modules to known biological roles of individual genes describes the organization of functions within coexpressed modules of various sizes. We present key specific results in each of these four areas, as well as derive general principles of cellular organization. At the coarsest scale, the entire transcriptional network contains five divisions: two divisions devoted to ATP production/biosynthesis and DNA replication that activate all other divisions, an "extracellular interaction" division that represses all other divisions, and two divisions (proliferation/differentiation and membrane infrastructure that activate and repress other divisions in specific ways consistent with cell cycle control.

  16. pna - assisted cellular migration on patterned surfaces


    ABSTRACT - The ability to control the cellular microenvironment, such as cell-substrate and cell-cell interactions at the micro- and nanoscale, is important for advances in several fields such as medicine and immunology, biochemistry, biomaterials, and tissue engineering. In order to undergo fundamental biological processes, most mammalian cells must adhere to the underlying extracellular matrix (ECM), eliciting cell adhesion and migration processes that are critical to embryogenesis, angioge...

  17. Imaging cellular and molecular biological functions

    Shorte, S.L. [Institut Pasteur, 75 - Paris (France). Plateforme d' Imagerie Dynamique PFID-Imagopole; Frischknecht, F. (eds.) [Heidelberg Univ. Medical School (Germany). Dept. of Parasitology


    'Imaging cellular and molecular biological function' provides a unique selection of essays by leading experts, aiming at scientist and student alike who are interested in all aspects of modern imaging, from its application and up-scaling to its development. Indeed the philosophy of this volume is to provide student, researcher, PI, professional or provost the means to enter this applications field with confidence, and to construct the means to answer their own specific questions. (orig.)

  18. Number-conserving cellular automaton rules

    Boccara, N; Boccara, Nino; Fuks, Henryk


    A necessary and sufficient condition for a one-dimensional q-state n-input cellular automaton rule to be number-conserving is established. Two different forms of simpler and more visual representations of these rules are given, and their flow diagrams are determined. Various examples are presented and applications to car traffic are indicated. Two nontrivial three-state three-input self-conjugate rules have been found. They can be used to model the dynamics of random walkers.

  19. Leiomyoma cellulare in postoperative material: clinical cases


    Introduction: Leiomyoma in one of the most common benign endometrial cancers. Location of the myoma in the cervix and the area of the broad ligament of the uterus is rare. Leiomyoma cellulare (LC) occurs in about 5.0% of leiomyoma cases. Aim of the research: To determine the occurrence of LC among 294 cases of myomas as well as myomas and uterine endometriosis, found in postoperative examinations. Material and methods: Patients were qualified for the surgery based on a gynaecolog...

  20. Cellular immune findings in Lyme disease.

    Sigal, L. H.; Moffat, C. M.; Steere, A. C.; Dwyer, J. M.


    From 1981 through 1983, we did the first testing of cellular immunity in Lyme disease. Active established Lyme disease was often associated with lymphopenia, less spontaneous suppressor cell activity than normal, and a heightened response of lymphocytes to phytohemagglutinin and Lyme spirochetal antigens. Thus, a major feature of the immune response during active disease seems to be a lessening of suppression, but it is not yet known whether this response plays a role in the pathophysiology of the disease. PMID:6240164

  1. Cellular responses to environmental DNA damage


    This volume contains the proceedings of the conference entitled Cellular Responses to Environmental DNA Damage held in Banff,Alberta December 1--6, 1991. The conference addresses various aspects of DNA repair in sessions titled DNA repair; Basic Mechanisms; Lesions; Systems; Inducible Responses; Mutagenesis; Human Population Response Heterogeneity; Intragenomic DNA Repair Heterogeneity; DNA Repair Gene Cloning; Aging; Human Genetic Disease; and Carcinogenesis. Individual papers are represented as abstracts of about one page in length.

  2. HDACi: cellular effects, opportunities for restorative dentistry.

    Duncan, H F


    Acetylation of histone and non-histone proteins alters gene expression and induces a host of cellular effects. The acetylation process is homeostatically balanced by two groups of cellular enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). HAT activity relaxes the structure of the human chromatin, rendering it transcriptionally active, thereby increasing gene expression. In contrast, HDAC activity leads to gene silencing. The enzymatic balance can be \\'tipped\\' by histone deacetylase inhibitors (HDACi), leading to an accumulation of acetylated proteins, which subsequently modify cellular processes including stem cell differentiation, cell cycle, apoptosis, gene expression, and angiogenesis. There is a variety of natural and synthetic HDACi available, and their pleiotropic effects have contributed to diverse clinical applications, not only in cancer but also in non-cancer areas, such as chronic inflammatory disease, bone engineering, and neurodegenerative disease. Indeed, it appears that HDACi-modulated effects may differ between \\'normal\\' and transformed cells, particularly with regard to reactive oxygen species accumulation, apoptosis, proliferation, and cell cycle arrest. The potential beneficial effects of HDACi for health, resulting from their ability to regulate global gene expression by epigenetic modification of DNA-associated proteins, also offer potential for application within restorative dentistry, where they may promote dental tissue regeneration following pulpal damage.

  3. Coordination of autophagy with other cellular activities

    Yan WANG; Zheng-hong QIN


    The cell biological phenomenon of autophagy has attracted increasing attention in recent years,partly as a consequence of the discovery of key components of its cellular machinery.Autophagy plays a crucial role in a myriad of cellular functions.Autophagy has its own regulatory mechanisms,but this process is not isolated.Autophagy is coordinated with other cellular activities to maintain cell homeostasis.Autophagy is critical for a range of human physiological processes.The multifunctional roles of autophagy are explained by its ability to interact with several key components of various cell pathways.In this review,we focus on the coordination between autophagy and other physiological processes,including the ubiquitin-proteasome system (UPS),energy homeostasis,aging,programmed cell death,the immune responses,microbial invasion and inflammation.The insights gained from investigating autophagic networks should increase our understanding of their roles in human diseases and their potential as targets for therapeutic intervention.

  4. Dynamic Channel Allocation in Sectored Cellular Systems


    It is known that dynamic channel assignment(DCA) strategy outperforms the fixed channel assignment(FCA) strategy in omni-directional antenna cellular systems. One of the most important methods used in DCA was channel borrowing. But with the emergence of cell sectorization and spatial division multiple access(SDMA) which are used to increase the capacity of cellular systems, the channel assignment faces a series of new problems. In this paper, a dynamic channel allocation scheme based on sectored cellular systems is proposed. By introducing intra-cell channel borrowing (borrowing channels from neighboring sectors) and inter-cell channel borrowing (borrowing channels from neighboring cells) methods, previous DCA strategies, including compact pattern based channel borrowing(CPCB) and greedy based dynamic channel assignment(GDCA) schemes proposed by the author, are improved significantly. The computer simulation shows that either intra-cell borrowing scheme or inter-cell borrowing scheme is efficient enough to uniform and non-uniform traffic service distributions.

  5. Literature Review on Dynamic Cellular Manufacturing System

    Nouri Houshyar, A.; Leman, Z.; Pakzad Moghadam, H.; Ariffin, M. K. A. M.; Ismail, N.; Iranmanesh, H.


    In previous decades, manufacturers faced a lot of challenges because of globalization and high competition in markets. These problems arise from shortening product life cycle, rapid variation in demand of products, and also rapid changes in manufcaturing technologies. Nowadays most manufacturing companies expend considerable attention for improving flexibility and responsiveness in order to overcome these kinds of problems and also meet customer's needs. By considering the trend toward the shorter product life cycle, the manufacturing environment is towards manufacturing a wide variety of parts in small batches [1]. One of the major techniques which are applied for improving manufacturing competitiveness is Cellular Manufacturing System (CMS). CMS is type of manufacturing system which tries to combine flexibility of job shop and also productivity of flow shop. In addition, Dynamic cellular manufacturing system which considers different time periods for the manufacturing system becomes an important topic and attracts a lot of attention to itself. Therefore, this paper made attempt to have a brief review on this issue and focused on all published paper on this subject. Although, this topic gains a lot of attention to itself during these years, none of previous researchers focused on reviewing the literature of that which can be helpful and useful for other researchers who intend to do the research on this topic. Therefore, this paper is the first study which has focused and reviewed the literature of dynamic cellular manufacturing system.

  6. [Cellular and molecular mechanisms of memory].

    Laroche, Serge


    A defining characteristic of the brain is its remarkable capacity to undergo activity-dependent functional and morphological remodelling via mechanisms of plasticity that form the basis of our capacity to encode and retain memories. Today, it is generally accepted that one key neurobiological mechanism underlying the formation of memories reside in activity-driven modifications of synaptic strength and structural remodelling of neural networks activated during learning. The discovery and detailed report of the phenomenon generally known as long-term potentiation, a long-lasting activity-dependent form of synaptic strengthening, opened a new chapter in the study of the neurobiological substrate of memory in the vertebrate brain, and this form of synaptic plasticity has now become the dominant model in the search for the cellular bases of learning and memory. To date, the key events in the cellular and molecular mechanisms underlying synaptic plasticity and memory formation are starting to be identified. They require the activation of specific receptors and of several molecular cascades to convert extracellular signals into persistent functional changes in neuronal connectivity. Accumulating evidence suggests that the rapid activation of neuronal gene programs is a key mechanism underlying the enduring modification of neural networks required for the laying down of memory. The recent developments in the search for the cellular and molecular mechanisms of memory storage are reviewed.

  7. Cellular Kinetics of Perivascular MSC Precursors

    William C. W. Chen


    Full Text Available Mesenchymal stem/stromal cells (MSCs and MSC-like multipotent stem/progenitor cells have been widely investigated for regenerative medicine and deemed promising in clinical applications. In order to further improve MSC-based stem cell therapeutics, it is important to understand the cellular kinetics and functional roles of MSCs in the dynamic regenerative processes. However, due to the heterogeneous nature of typical MSC cultures, their native identity and anatomical localization in the body have remained unclear, making it difficult to decipher the existence of distinct cell subsets within the MSC entity. Recent studies have shown that several blood-vessel-derived precursor cell populations, purified by flow cytometry from multiple human organs, give rise to bona fide MSCs, suggesting that the vasculature serves as a systemic reservoir of MSC-like stem/progenitor cells. Using individually purified MSC-like precursor cell subsets, we and other researchers have been able to investigate the differential phenotypes and regenerative capacities of these contributing cellular constituents in the MSC pool. In this review, we will discuss the identification and characterization of perivascular MSC precursors, including pericytes and adventitial cells, and focus on their cellular kinetics: cell adhesion, migration, engraftment, homing, and intercellular cross-talk during tissue repair and regeneration.

  8. A Real Space Cellular Automaton Laboratory

    Rozier, O.; Narteau, C.


    Investigations in geomorphology may benefit from computer modelling approaches that rely entirely on self-organization principles. In the vast majority of numerical models, instead, points in space are characterised by a variety of physical variables (e.g. sediment transport rate, velocity, temperature) recalculated over time according to some predetermined set of laws. However, there is not always a satisfactory theoretical framework from which we can quantify the overall dynamics of the system. For these reasons, we prefer to concentrate on interaction patterns using a basic cellular automaton modelling framework, the Real Space Cellular Automaton Laboratory (ReSCAL), a powerful and versatile generator of 3D stochastic models. The objective of this software suite released under a GNU license is to develop interdisciplinary research collaboration to investigate the dynamics of complex systems. The models in ReSCAL are essentially constructed from a small number of discrete states distributed on a cellular grid. An elementary cell is a real-space representation of the physical environment and pairs of nearest neighbour cells are called doublets. Each individual physical process is associated with a set of doublet transitions and characteristic transition rates. Using a modular approach, we can simulate and combine a wide range of physical, chemical and/or anthropological processes. Here, we present different ingredients of ReSCAL leading to applications in geomorphology: dune morphodynamics and landscape evolution. We also discuss how ReSCAL can be applied and developed across many disciplines in natural and human sciences.

  9. Cellular arsenic transport pathways in mammals.

    Roggenbeck, Barbara A; Banerjee, Mayukh; Leslie, Elaine M


    Natural contamination of drinking water with arsenic results in the exposure of millions of people world-wide to unacceptable levels of this metalloid. This is a serious global health problem because arsenic is a Group 1 (proven) human carcinogen and chronic exposure is known to cause skin, lung, and bladder tumors. Furthermore, arsenic exposure can result in a myriad of other adverse health effects including diseases of the cardiovascular, respiratory, neurological, reproductive, and endocrine systems. In addition to chronic environmental exposure to arsenic, arsenic trioxide is approved for the clinical treatment of acute promyelocytic leukemia, and is in clinical trials for other hematological malignancies as well as solid tumors. Considerable inter-individual variability in susceptibility to arsenic-induced disease and toxicity exists, and the reasons for such differences are incompletely understood. Transport pathways that influence the cellular uptake and export of arsenic contribute to regulating its cellular, tissue, and ultimately body levels. In the current review, membrane proteins (including phosphate transporters, aquaglyceroporin channels, solute carrier proteins, and ATP-binding cassette transporters) shown experimentally to contribute to the passage of inorganic, methylated, and/or glutathionylated arsenic species across cellular membranes are discussed. Furthermore, what is known about arsenic transporters in organs involved in absorption, distribution, and metabolism and how transport pathways contribute to arsenic elimination are described.

  10. Cellular membrane trafficking of mesoporous silica nanoparticles

    Fang, I-Ju [Iowa State Univ., Ames, IA (United States)


    This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine

  11. [Division of regulatory cellular systems (Lvov)].

    Kusen', S I


    Two departments of the A. V. Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine were founded in 1969 in Lviv. These were: the Department of Biochemistry of Cell Differentiation headed by Professor S. I. Kusen and Department of Regulation of Cellular Synthesis of Low Molecular Weight Compounds headed by Professor G. M. Shavlovsky. The Lviv Division of the A. V. Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine with Professor S. I. Kusen as its chief, was founded in 1974 on the basis of these departments and the Laboratory of Modelling of Regulatory Cellular Systems headed by Professor M. P. Derkach. The above mentioned laboratory which was not the structural unit obtained the status of Structural Laboratory of Cellular Biophysics in 1982 and was headed by O. A. Goida, Candidate of biological sciences. From 1983 the Laboratory of Correcting Therapy of Malignant Tumors and Hemoblastoses at the Institute of Molecular Biology and Genetics, Academy of Sciences of Ukraine (Chief--S. V. Ivasivka, Candidate of medical sciences) was included in the structure of the Division. That Laboratory was soon transformed into the Department of Carbohydrate Metabolism Regulation headed by Professor I. D. Holovatsky. In 1988 this Department was renamed into the Department of Glycoprotein Biochemistry and headed by M. D. Lutsik, Doctor of biological sciences. In 1982 one more Laboratory of Biochemical Genetics was founded at the Department of Regulation of Cellular Synthesis of Low Molecular Weight Compounds, in 1988 it was transformed into the Department of Biochemical Genetics (Chief--Professor A. A. Sibirny). In 1989 the Laboratory of Anion Transport was taken from A. V. Palladin Institute of Biochemistry, Academy of Sciences of Ukraine to Lviv Division of this Institute. This laboratory was headed by Professor M. M. Veliky. One more reorganization in the Division structure took place in 1994. The Department of

  12. Distinguishing between biochemical and cellular function: Are there peptide signatures for cellular function of proteins?

    Jain, Shruti; Bhattacharyya, Kausik; Bakshi, Rachit; Narang, Ankita; Brahmachari, Vani


    The genome annotation and identification of gene function depends on conserved biochemical activity. However, in the cell, proteins with the same biochemical function can participate in different cellular pathways and cannot complement one another. Similarly, two proteins of very different biochemical functions are put in the same class of cellular function; for example, the classification of a gene as an oncogene or a tumour suppressor gene is not related to its biochemical function, but is related to its cellular function. We have taken an approach to identify peptide signatures for cellular function in proteins with known biochemical function. ATPases as a test case, we classified ATPases (2360 proteins) and kinases (517 proteins) from the human genome into different cellular function categories such as transcriptional, replicative, and chromatin remodelling proteins. Using publicly available tool, MEME, we identify peptide signatures shared among the members of a given category but not between cellular functional categories; for example, no motif sharing is seen between chromatin remodelling and transporter ATPases, similarly between receptor Serine/Threonine Kinase and Receptor Tyrosine Kinase. There are motifs shared within each category with significant E value and high occurrence. This concept of signature for cellular function was applied to developmental regulators, the polycomb and trithorax proteins which led to the prediction of the role of INO80, a chromatin remodelling protein, in development. This has been experimentally validated earlier for its role in homeotic gene regulation and its interaction with regulatory complexes like the Polycomb and Trithorax complex. Proteins 2017; 85:682-693. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. A Heuristic Scheduling Scheme in Multiuser OFDMA Networks

    Sun, Zheng; Wang, Ruochen; Niu, Kai


    Conventional heterogeneous-traffic scheduling schemes utilize zero-delay constraint for real-time services, which aims to minimize the average packet delay among real-time users. However, in light or moderate load networks this strategy is unnecessary and leads to low data throughput for non-real-time users. In this paper, we propose a heuristic scheduling scheme to solve this problem. The scheme measures and assigns scheduling priorities to both real-time and non-real-time users, and schedules the radio resources for the two user classes simultaneously. Simulation results show that the proposed scheme efficiently handles the heterogeneous-traffic scheduling with diverse QoS requirements and alleviates the unfairness between real-time and non-real-time services under various traffic loads.

  14. Location-Based Resource Allocation for OFDMA Cognitive Radio Systems

    Ghorbel, Mahdi


    Cognitive radio is one of the hot topics for emerging and future wireless communication. It has been proposed as a suitable solution for the spectrum scarcity caused by the increase in frequency demand. The concept is based on allowing unlicensed users, called cognitive or secondary users, to share the unoccupied frequency bands with their owners, called the primary users, under constraints on the interference they cause to them. In order to estimate this interference, the cognitive system usually uses the channel state information to the primary user, which is often impractical to obtain. However, we propose to use location information, which is easier to obtain, to estimate this interference. The purpose of this work is to propose a subchannel and power allocation method which maximizes the secondary users\\' total capacity under the constraints of limited budget power and total interference to the primary under certain threshold. We model the problem as a constrained optimization problem for both downlink and uplink cases. Then, we propose low-complexity resource allocation schemes based on the waterfilling algorithm. The simulation results show the efficiency of the proposed method with comparison to the exhaustive search algorithm.

  15. Joint CFO and DOA estimation for multiuser OFDMA uplink

    Zhang, Weile; Yin, Qinye; Gao, Feifei


    In this article, we develop a new subspace-based multiuser joint carrier frequency offset (CFO) and direction-of-arrival (DOA) estimation scheme for orthogonal frequency division multiple access uplink transmissions. We leverage multi-antenna at the receiver and consider that the signals transmitted by each user arrive at the receiving antenna array from multiple DOAs after bouncing from both surrounding and far scatterers. The rank reduction approach is then exploited to estimate the multiple CFOs and DOAs. Specifically, for each user, after the CFO estimation from one-dimensional search, its multiple DOAs can be obtained simultaneously via polynomial rooting. The proposed method supports generalized subcarrier assignment scheme and fully loaded transmissions. Both performance analysis and numerical results are provided to corroborate the proposed studies.

  16. Secure physical layer using dynamic permutations in cognitive OFDMA systems

    Meucci, F.; Wardana, Satya Ardhy; Prasad, Neeli R.


    This paper proposes a novel lightweight mechanism for a secure Physical (PHY) layer in Cognitive Radio Network (CRN) using Orthogonal Frequency Division Multiplexing (OFDM). User's data symbols are mapped over the physical subcarriers with a permutation formula. The PHY layer is secured...... of the permutations are analyzed for several DSA patterns. Simulations are performed according to the parameters of the IEEE 802.16e system model. The securing mechanism proposed provides intrinsic PHY layer security and it can be easily implemented in the current IEEE 802.16 standard applying almost negligible...

  17. An OFDMA resource allocation algorithm based on coalitional games

    Bacci Giacomo


    Full Text Available Abstract This work investigates a fair adaptive resource management criterion (in terms of transmit powers and subchannel assignment for the uplink of an orthogonal frequency-division multiple access network, populated by mobile users with constraints in terms of target data rates. The inherent optimization problem is tackled with the analytical tools of coalitional game theory, and a practical algorithm based on Markov modeling is introduced. The proposed scheme allows the mobile devices to fulfill their rate demands exactly with a minimum utilization of network resources. Simulation results show that the average number of operations of the proposed iterative algorithm are much lower than K · N, where N and K are the number of allocated subcarriers and of mobile terminals.

  18. Cellular Particle Dynamics simulation of biomechanical relaxation processes of multi-cellular systems

    McCune, Matthew; Kosztin, Ioan


    Cellular Particle Dynamics (CPD) is a theoretical-computational-experimental framework for describing and predicting the time evolution of biomechanical relaxation processes of multi-cellular systems, such as fusion, sorting and compression. In CPD, cells are modeled as an ensemble of cellular particles (CPs) that interact via short range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through numerical integration of their equations of motion. Here we present CPD simulation results for the fusion of both spherical and cylindrical multi-cellular aggregates. First, we calibrate the relevant CPD model parameters for a given cell type by comparing the CPD simulation results for the fusion of two spherical aggregates to the corresponding experimental results. Next, CPD simulations are used to predict the time evolution of the fusion of cylindrical aggregates. The latter is relevant for the formation of tubular multi-cellular structures (i.e., primitive blood vessels) created by the novel bioprinting technology. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  19. Mapping of cellular iron using hyperspectral fluorescence imaging in a cellular model of Parkinson's disease

    Oh, Eung Seok; Heo, Chaejeong; Kim, Ji Seon; Lee, Young Hee; Kim, Jong Min


    Parkinson's disease (PD) is characterized by progressive dopaminergic cell loss in the substantianigra (SN) and elevated iron levels demonstrated by autopsy and with 7-Tesla magnetic resonance imaging. Direct visualization of iron with live imaging techniques has not yet been successful. The aim of this study is to visualize and quantify the distribution of cellular iron using an intrinsic iron hyperspectral fluorescence signal. The 1-methyl-4-phenylpyridinium (MPP+)-induced cellular model of PD was established in SHSY5Y cells. The cells were exposed to iron by treatment with ferric ammonium citrate (FAC, 100 μM) for up to 6 hours. The hyperspectral fluorescence imaging signal of iron was examined usinga high- resolution dark-field optical microscope system with signal absorption for the visible/ near infrared (VNIR) spectral range. The 6-hour group showed heavy cellular iron deposition compared with the small amount of iron accumulation in the 1-hour group. The cellular iron was dispersed in a small, particulate form, whereas extracellular iron was detected in an aggregated form. In addition, iron particles were found to be concentrated on the cell membrane/edge of shrunken cells. The cellular iron accumulation readily occurred in MPP+-induced cells, which is consistent with previous studies demonstrating elevated iron levels in the SN in PD. This direct iron imaging methodology could be applied to analyze the physiological role of iron in PD, and its application might be expanded to various neurological disorders involving other metals, such as copper, manganese or zinc.

  20. Cultural Diagnosis: An Empirical Investigation of Cellular Industry of Pakistan

    Qamar Ali; Manqoosh ur Rehman


    ... the Organizational Culture Assessment Instrument (OCAI). The results indicate that hierarchy culture is dominating in cellular industry, whereas the clan is found to be the most preferred cultural archetype in majority of cellular companies...

  1. Shape Memory Alloy-Based Periodic Cellular Structures Project

    National Aeronautics and Space Administration — This SBIR Phase II effort will continue to develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular...

  2. Scalable asynchronous execution of cellular automata

    Folino, Gianluigi; Giordano, Andrea; Mastroianni, Carlo


    The performance and scalability of cellular automata, when executed on parallel/distributed machines, are limited by the necessity of synchronizing all the nodes at each time step, i.e., a node can execute only after the execution of the previous step at all the other nodes. However, these synchronization requirements can be relaxed: a node can execute one step after synchronizing only with the adjacent nodes. In this fashion, different nodes can execute different time steps. This can be a notable advantageous in many novel and increasingly popular applications of cellular automata, such as smart city applications, simulation of natural phenomena, etc., in which the execution times can be different and variable, due to the heterogeneity of machines and/or data and/or executed functions. Indeed, a longer execution time at a node does not slow down the execution at all the other nodes but only at the neighboring nodes. This is particularly advantageous when the nodes that act as bottlenecks vary during the application execution. The goal of the paper is to analyze the benefits that can be achieved with the described asynchronous implementation of cellular automata, when compared to the classical all-to-all synchronization pattern. The performance and scalability have been evaluated through a Petri net model, as this model is very useful to represent the synchronization barrier among nodes. We examined the usual case in which the territory is partitioned into a number of regions, and the computation associated with a region is assigned to a computing node. We considered both the cases of mono-dimensional and two-dimensional partitioning. The results show that the advantage obtained through the asynchronous execution, when compared to the all-to-all synchronous approach is notable, and it can be as large as 90% in terms of speedup.

  3. Probing cellular behaviors through nanopatterned chitosan membranes

    Chung-Yao Yang, Chun-Yen Sung, Hung-Hsun Shuai, Chao-Min Cheng and J Andrew Yeh


    Full Text Available This paper describes a high-throughput method for developing physically modified chitosan membranes to probe the cellular behavior of MDCK epithelial cells and HIG-82 fibroblasts adhered onto these modified membranes. To prepare chitosan membranes with micro/nanoscaled features, we have demonstrated an easy-to-handle, facile approach that could be easily integrated with IC-based manufacturing processes with mass production potential. These physically modified chitosan membranes were observed by scanning electron microscopy to gain a better understanding of chitosan membrane surface morphology. After MDCK cells and HIG-82 fibroblasts were cultured on these modified chitosan membranes for various culture durations (i.e. 1, 2, 4, 12 and 24 h, they were investigated to decipher cellular behavior. We found that both cells preferred to adhere onto a flat surface rather than on a nanopatterned surface. However, most (> 80% of the MDCK cells showed rounded morphology and would suspend in the cultured medium instead of adhering onto the planar surface of negatively nanopatterned chitosan membranes. This means different cell types (e.g. fibroblasts versus epithelia showed distinct capabilities/preferences of adherence for materials of varying surface roughness. We also showed that chitosan membranes could be re-used at least nine times without significant contamination and would provide us consistency for probing cell–material interactions by permitting reuse of the same substrate. We believe these results would provide us better insight into cellular behavior, specifically, microscopic properties and characteristics of cells grown under unique, nanopatterned cell-interface conditions.

  4. Single spin measurement using cellular automata techniques

    Perez-Delgado, C A; Cory, D G; Mosca, M; Cappellaro, Paola; Cory, David G.; Mosca, Michele; Perez-Delgado, Carlos A.


    We propose an approach for single spin measurement. Our method uses techniques from the theory of quantum cellular automata to correlate a large amount of ancillary spins to the one to be measured. It has the distinct advantage of being efficient, and to a certain extent fault-tolerant. Under ideal conditions, it requires the application of only order of cube root of N steps (each requiring a constant number of rf pulses) to create a system of N correlated spins. It is also fairly robust against pulse errors, imperfect initial polarization of the ancilla spin system, and does not rely on entanglement. We study the scalability of our scheme through numerical simulation.

  5. Cellular automata modeling of pedestrian's crossing dynamics

    张晋; 王慧; 李平


    Cellular automata modeling techniques and the characteristics of mixed traffic flow were used to derive the 2-dimensional model presented here for simulation of pedestrian's crossing dynamics.A conception of "stop point" is introduced to deal with traffic obstacles and resolve conflicts among pedestrians or between pedestrians and the other vehicles on the crosswalk.The model can be easily extended,is very efficient for simulation of pedestrian's crossing dynamics,can be integrated into traffic simulation software,and has been proved feasible by simulation experiments.

  6. [Cellular immunity in human periapical granuloma].

    Terrié, B; Grégoire, G


    Numerous authors have produced different types of immunoglobulins in analyses of the human periapical granuloma. The present study examines the cellular immunity of the human periapical granuloma, and in particular the distribution of the lymphocyte sub-populations and the macrophage population. The technique used was that of cell surface marking, using monoclonal antibodies on frozen sections. The results reveal equal proportions of inductor T lymphocytes and suppressor T lymphocytes (whereas healthy tissue shows a ratio of 2/1), which explains the chronic nature of the lesion as far as the immune reaction is concerned. The presence of numerous macrophage cells shows that there are important local immune reactions.

  7. Microwave components for cellular portable radiotelephone

    Muraguchi, Masahiro; Aikawa, Masayoshi


    Mobile and personal communication systems are expected to represent a huge market for microwave components in the coming years. A number of components in silicon bipolar, silicon Bi-CMOS, GaAs MESFET, HBT and HEMT are now becoming available for system application. There are tradeoffs among the competing technologies with regard to performance, cost, reliability and time-to-market. This paper describes process selection and requirements of cost and r.f. performances to microwave semiconductor components for digital cellular and cordless telephones. Furthermore, new circuit techniques which were developed by NTT are presented.

  8. Cellular regulation of the dopamine transporter

    Eriksen, Jacob


    The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft and is a target for widely abused psychostimulants such as cocaine and amphetamine. Nonetheless, little is known about the cellular distribution and trafficking of natively expressed DAT. DAT and its trafficking...... in heterologous cells and in cultured DA neurons. DAT has been shown to be regulated by the dopamine D2 receptor (D2R), the primary target foranti-psychotics, through a direct interaction. D2R is among other places expressed as an autoreceptor in DA neurons. Transient over-expression of DAT with D2R in HEK293...

  9. Cellular automata models for synchronized traffic flow

    Jiang Rui


    This paper presents a new cellular automata model for describing synchronized traffic flow. The fundamental diagrams, the spacetime plots and the 1 min average data have been analysed in detail. It is shown that the model can describe the outflow from the jams, the light synchronized flow as well as heavy synchronized flow with average speed greater than approximately 24 km h sup - sup 1. As for the synchronized flow with speed lower than 24 km h sup - sup 1 , it is unstable and will evolve into the coexistence of jams, free flow and light synchronized flow. This is consistent with the empirical findings (Kerner B S 1998 Phys. Rev. Lett. 81 3797).

  10. Reversible Inhibition of Cellular Metabolism by Ribavirin

    Larsson, Alf; Stenberg, Kjell; Öberg, Bo


    The broad spectrum antiviral drug ribavirin (Virazole, 1-β-d-ribofuranosyl-1,2,4-triazole-3-carboxamide) inhibits cellular macromolecular synthesis as well as cell division in eucaryotic cells. The concentration and time dependence have been studied. One-hour treatment with 25 μM ribavirin or 18 h with 2 μM inhibited the deoxyribonucleic acid synthesis to 50%. Higher concentrations of ribavirin were required to obtain a similar inhibition of ribonucleic acid and protein synthesis. This effect on cell metabolism and cell division can be reversed by removing the drug from the cells. PMID:646339

  11. Cellular and physical mechanisms of branching morphogenesis

    Varner, Victor D.; Nelson, Celeste M.


    Branching morphogenesis is the developmental program that builds the ramified epithelial trees of various organs, including the airways of the lung, the collecting ducts of the kidney, and the ducts of the mammary and salivary glands. Even though the final geometries of epithelial trees are distinct, the molecular signaling pathways that control branching morphogenesis appear to be conserved across organs and species. However, despite this molecular homology, recent advances in cell lineage analysis and real-time imaging have uncovered surprising differences in the mechanisms that build these diverse tissues. Here, we review these studies and discuss the cellular and physical mechanisms that can contribute to branching morphogenesis. PMID:25005470

  12. Cellular automata modelling of hantarvirus infection

    Abdul Karim, Mohamad Faisal [School of Distance Education, Universiti Sains Malaysia, Minden 11800, Penang (Malaysia)], E-mail:; Md Ismail, Ahmad Izani [School of Mathematical Sciences, Universiti Sains Malaysia, Minden 11800, Penang (Malaysia)], E-mail:; Ching, Hoe Bee [School of Mathematical Sciences, Universiti Sains Malaysia, Minden 11800, Penang (Malaysia)], E-mail:


    Hantaviruses are a group of viruses which have been identified as being responsible for the outbreak of diseases such as the hantavirus pulmonary syndrome. In an effort to understand the characteristics and dynamics of hantavirus infection, mathematical models based on differential equations have been developed and widely studied. However, such models neglect the local characteristics of the spreading process and do not include variable susceptibility of individuals. In this paper, we develop an alternative approach based on cellular automata to analyze and study the spatiotemporal patterns of hantavirus infection.

  13. Enantioselective cellular uptake of chiral semiconductor nanocrystals

    Martynenko, I. V.; Kuznetsova, V. A.; Litvinov, I. K.; Orlova, A. O.; Maslov, V. G.; Fedorov, A. V.; Dubavik, A.; Purcell-Milton, F.; Gun'ko, Yu K.; Baranov, A. V.


    The influence of the chirality of semiconductor nanocrystals, CdSe/ZnS quantum dots (QDs) capped with L- and D-cysteine, on the efficiency of their uptake by living Ehrlich Ascite carcinoma cells is studied by spectral- and time-resolved fluorescence microspectroscopy. We report an evident enantioselective process where cellular uptake of the L-Cys QDs is almost twice as effective as that of the D-Cys QDs. This finding paves the way for the creation of novel approaches to control the biological properties and behavior of nanomaterials in living cells.

  14. Cellular trafficking of nicotinic acetylcholine receptors

    Paul A ST JOHN


    Nicotinic acetylcholine receptors (nAChRs) play critical roles throughout the body. Precise regulation of the cellular location and availability of nAChRs on neurons and target cells is critical to their proper function. Dynamic, post-translational regulation of nAChRs, particularly control of their movements among the different compartments of cells, is an important aspect of that regulation. A combination of new information and new techniques has the study of nAChR trafficking poised for new breakthroughs.

  15. The concept of self-organization in cellular architecture

    Misteli, Tom


    In vivo microscopy has recently revealed the dynamic nature of many cellular organelles. The dynamic properties of several cellular structures are consistent with a role for self-organization in their formation, maintenance, and function; therefore, self-organization might be a general principle in cellular organization. PMID:11604416

  16. A Computation in a Cellular Automaton Collider Rule 110

    Martinez, Genaro J; McIntosh, Harold V


    A cellular automaton collider is a finite state machine build of rings of one-dimensional cellular automata. We show how a computation can be performed on the collider by exploiting interactions between gliders (particles, localisations). The constructions proposed are based on universality of elementary cellular automaton rule 110, cyclic tag systems, supercolliders, and computing on rings.

  17. Typhoid fever as cellular microbiological model

    Andrade Dahir Ramos de


    Full Text Available The knowledge about typhoid fever pathogenesis is growing in the last years, mainly about the cellular and molecular phenomena that are responsible by clinical manifestations of this disease. In this article are discussed several recent discoveries, as follows: a Bacterial type III protein secretion system; b The five virulence genes of Salmonella spp. that encoding Sips (Salmonella invasion protein A, B, C, D and E, which are capable of induce apoptosis in macrophages; c The function of Toll R2 and Toll R4 receptors present in the macrophage surface (discovered in the Drosophila. The Toll family receptors are critical in the signalizing mediated by LPS in macrophages in association with LBP and CD14; d The lines of immune defense between intestinal lumen and internal organs; e The fundamental role of the endothelial cells in the inflammatory deviation from bloodstream into infected tissues by bacteria. In addition to above subjects, the authors comment the correlation between the clinical features of typhoid fever and the cellular and molecular phenomena of this disease, as well as the therapeutic consequences of this knowledge.

  18. A Mathematical Model for Cisplatin Cellular Pharmacodynamics

    Ardith W. El-Kareh


    Full Text Available A simple theoretical model for the cellular pharmacodynamics of cisplatin is presented. The model, which takes into account the kinetics of cisplatin uptake by cells and the intracellular binding of the drug, can be used to predict the dependence of survival (relative to controls on the time course of extracellular exposure. Cellular pharmacokinetic parameters are derived from uptake data for human ovarian and head and neck cancer cell lines. Survival relative to controls is assumed to depend on the peak concentration of DNA-bound intracellular platinum. Model predictions agree well with published data on cisplatin cytotoxicity for three different cancer cell lines, over a wide range of exposure times. In comparison with previously published mathematical models for anticancer drug pharmacodynamics, the present model provides a better fit to experimental data sets including long exposure times (∼100 hours. The model provides a possible explanation for the fact that cell kill correlates well with area under the extracellular concentration-time curve in some data sets, but not in others. The model may be useful for optimizing delivery schedules and for the dosing of cisplatin for cancer therapy.

  19. Mechanisms of cellular invasion by intracellular parasites.

    Walker, Dawn M; Oghumu, Steve; Gupta, Gaurav; McGwire, Bradford S; Drew, Mark E; Satoskar, Abhay R


    Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.

  20. Dynamics of active cellular response under stress

    de, Rumi; Zemel, Assaf; Safran, Samuel


    Forces exerted by and on adherent cells are important for many physiological processes such as wound healing and tissue formation. In addition, recent experiments have shown that stem cell differentiation is controlled, at least in part, by the elasticity of the surrounding matrix. Using a simple theoretical model that includes the forces due to both the mechanosensitive nature of cells and the elastic response of the matrix, we predict the dynamics of orientation of cells. The model predicts many features observed in measurements of cellular forces and orientation including the increase with time of the forces generated by cells in the absence of applied stress and the consequent decrease of the force in the presence of quasi-static stresses. We also explain the puzzling observation of parallel alignment of cells for static and quasi-static stresses and of nearly perpendicular alignment for dynamically varying stresses. In addition, we predict the response of the cellular orientation to a sinusoidally varying applied stress as a function of frequency. The dependence of the cell orientation angle on the Poisson ratio of the surrounding material can be used to distinguish systems in which cell activity is controlled by stress from those where cell activity is controlled by strain. Reference: Nature Physics, vol. 3, pp 655 (2007).

  1. Cellular receptors for plasminogen activators recent advances.

    Ellis, V


    The generation of the broad-specificity protease plasmin by the plasminogen activators urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) is implicated in a variety of pathophysiological processes, including vascular fibrin dissolution, extracellular matrix degradation and remodeling, and cell migration. A mechanism for the regulation of plasmin generation is through binding of the plasminogen activators to specific cellular receptors: uPA to the glycolipid-anchored membrane protein urokinase-type plasminogen activator receptor (uPAR) and tPA to a number of putative binding sites. The uPA-uPAR complex can interact with a variety of ligands, including plasminogen, vitronectin, and integrins, indicating a multifunctional role for uPAR, regulating not only efficient and spatially restricted plasmin generation but also having the potential to modulate cell adhesion and signal transduction. The cellular binding of tPA, although less well characterized, also has the capacity to regulate plasmin generation and to play a significant role in vessel-wall biology. (Trends Cardiovasc Med 1997;7:227-234). © 1997, Elsevier Science Inc.

  2. Rhabdomyosarcoma: Advances in Molecular and Cellular Biology

    Xin Sun


    Full Text Available Rhabdomyosarcoma (RMS is the most common soft tissue malignancy in childhood and adolescence. The two major histological subtypes of RMS are alveolar RMS, driven by the fusion protein PAX3-FKHR or PAX7-FKHR, and embryonic RMS, which is usually genetically heterogeneous. The prognosis of RMS has improved in the past several decades due to multidisciplinary care. However, in recent years, the treatment of patients with metastatic or refractory RMS has reached a plateau. Thus, to improve the survival rate of RMS patients and their overall well-being, further understanding of the molecular and cellular biology of RMS and identification of novel therapeutic targets are imperative. In this review, we describe the most recent discoveries in the molecular and cellular biology of RMS, including alterations in oncogenic pathways, miRNA (miR, in vivo models, stem cells, and important signal transduction cascades implicated in the development and progression of RMS. Furthermore, we discuss novel potential targeted therapies that may improve the current treatment of RMS.

  3. Information theory based approaches to cellular signaling.

    Waltermann, Christian; Klipp, Edda


    Cells interact with their environment and they have to react adequately to internal and external changes such changes in nutrient composition, physical properties like temperature or osmolarity and other stresses. More specifically, they must be able to evaluate whether the external change is significant or just in the range of noise. Based on multiple external parameters they have to compute an optimal response. Cellular signaling pathways are considered as the major means of information perception and transmission in cells. Here, we review different attempts to quantify information processing on the level of individual cells. We refer to Shannon entropy, mutual information, and informal measures of signaling pathway cross-talk and specificity. Information theory in systems biology has been successfully applied to identification of optimal pathway structures, mutual information and entropy as system response in sensitivity analysis, and quantification of input and output information. While the study of information transmission within the framework of information theory in technical systems is an advanced field with high impact in engineering and telecommunication, its application to biological objects and processes is still restricted to specific fields such as neuroscience, structural and molecular biology. However, in systems biology dealing with a holistic understanding of biochemical systems and cellular signaling only recently a number of examples for the application of information theory have emerged. This article is part of a Special Issue entitled Systems Biology of Microorganisms. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Cellular traditional Chinese medicine on photobiomodulation

    Liu, Timon Cheng-Yi; Cheng, Lei; Liu, Jiang; Wang, Shuang-Xi; Xu, Xiao-Yang; Deng, Xiao-Yuan; Liu, Song-Hao


    Although yin-yang is one of the basic models of traditional Chinese medicine (TCM) for TCM objects such as whole body, five zangs or six fus, they are widely used to discuss cellular processes in papers of famous journals such as Cell, Nature, or Science. In this paper, the concept of the degree of difficulty (DD) of a process was introduced to redefine yin and yang and extend the TCM yin-yang model to the DD yin-yang model so that we have the DD yin-yang inter-transformation, the DD yin-yang antagonism, the DD yin-yang interdependence and the DD yin ping yang mi, which and photobiomodulation (PBM) on cells are supported by each other. It was shown that healthy cells are in the DD yin ping yang mi so that there is no PBM, and there is PBM on non-healthy cells until the cells become healthy so that PBM can be called a cellular rehabilitation. The DD yin-yang inter-transformation holds for our biological information model of PBM. The DD yin-yang antagonism and the DD yin-yang interdependence also hold for a series of experimental studies such as the stimulation of DNA synthesis in HeLa cells after simultaneous irradiation with narrow-band red light and a wide-band cold light, or consecutive irradiation with blue and red light.

  5. Elements of the Cellular Metabolic Structure

    Ildefonso Martínez De La Fuente


    Full Text Available A large number of studies have shown the existence of metabolic covalent modifications in different molecular structures, able to store biochemical information that is not encoded by the DNA. Some of these covalent mark patterns can be transmitted across generations (epigenetic changes. Recently, the emergence of Hopfield-like attractor dynamics has been observed in the self-organized enzymatic networks, which have the capacity to store functional catalytic patterns that can be correctly recovered by the specific input stimuli. The Hopfield-like metabolic dynamics are stable and can be maintained as a long-term biochemical memory. In addition, specific molecular information can be transferred from the functional dynamics of the metabolic networks to the enzymatic activity involved in the covalent post-translational modulation so that determined functional memory can be embedded in multiple stable molecular marks. Both the metabolic dynamics governed by Hopfield-type attractors (functional processes and the enzymatic covalent modifications of determined molecules (structural dynamic processes seem to represent the two stages of the dynamical memory of cellular metabolism (metabolic memory. Epigenetic processes appear to be the structural manifestation of this cellular metabolic memory. Here, a new framework for molecular information storage in the cell is presented, which is characterized by two functionally and molecularly interrelated systems: a dynamic, flexible and adaptive system (metabolic memory and an essentially conservative system (genetic memory. The molecular information of both systems seems to coordinate the physiological development of the whole cell.

  6. Cellular and molecular approaches to memory storage.

    Laroche, S


    There has been nearly a century of interest in the idea that information is stored in the brain as changes in the efficacy of synaptic connections on neurons that are activated during learning. The discovery and detailed report of the phenomenon generally known as long-term potentiation opened a new chapter in the study of synaptic plasticity in the vertebrate brain, and this form of synaptic plasticity has now become the dominant model in the search for the cellular bases of learning and memory. To date, considerable progress has been made in understanding the cellular and molecular mechanisms underlying synaptic plasticity and in identifying the neural systems which express it. In parallel, the hypothesis that the mechanisms underlying synaptic plasticity are activated during learning and serve learning and memory has gained much empirical support. Accumulating evidence suggests that the rapid activation of the genetic machinery is a key mechanism underlying the enduring modification of neural networks required for the laying down of memory. These advances are reviewed below.


    Tomasz Garbacz


    Full Text Available In a study of cellular injection, molding process uses polyvinylchloride PVC. Polymers modified with introducing blowing agents into them in the Laboratory of the Department of Technologies and Materiase of Technical University of Kosice. For technological reasons, blowing agents have a form of granules. In the experiment, the content of the blowing agent (0–2,0 % by mass fed into the processed polymer was adopted as a variable factor. In the studies presented in the article, the chemical blowing agents occurring in the granulated form with a diameter of 1.2 to 1.4 mm were used. The view of the technological line for cellular injection molding and injection mold cavity with injection moldings are shown in Figure 1. The results of the determination of selected properties of injection molded parts for various polymeric materials, obtained with different content of blowing agents, are shown in Figures 4-7. Microscopic examination of cross-sectional structure of the moldings were obtained using the author's position image analysis of porous structure. Based on analysis of photographs taken (Figures 7, 8, 9 it was found that the coating containing 1.0% of blowing agents is a clearly visible solid outer layer and uniform distribution of pores and their sizes are similar.

  8. Regulation of Cellular Tension in Adherent Cells

    Oakes, Patrick


    Cells generate stress on their surrounding extracellular matrix (ECM) via myosin II motor generated forces which are transmitted through the actin cytoskeleton. The mechanisms in the cell which regulate the magnitude and spatial distribution of these stresses, however, remain unknown. Consistent with previous reports, we find that the total magnitude of traction force exerted on the ECM scales with cell size. Such scaling is observed across numerous cell types and reflects an inherent cellular tension determined by the level of myosin II activity. Surprisingly, while stiffness modulates the cellular spread area, we find this scaling relationship to be independent of ECM stiffness. To identify the biophysical mechanisms regulating the generation of tension, we utilize micro-patterning to isolate cell spread area from cell geometry and to spatially control the distribution of stress on the ECM. We find that traction stress magnitude is dependent on the local curvature of the cell. Changes in cell geometry result in a redistribution of local stresses, but little change in the total stress applied to the ECM. Finally, for a constant geometry, we find that both the total stress and the average stress exerted on the ECM increase with cell area. Together these data suggest that the cell can be modeled as a uniformly contracting mesh, where the magnitude of tension is regulated by the cell spread area, and the distribution of tension is regulated by local geometry.

  9. Diabetes mellitus: channeling care through cellular discovery.

    Maiese, Kenneth; Shang, Yan Chen; Chong, Zhao Zhong; Hou, Jinling


    Diabetes mellitus (DM) impacts a significant portion of the world's population and care for this disorder places an economic burden on the gross domestic product for any particular country. Furthermore, both Type 1 and Type 2 DM are becoming increasingly prevalent and there is increased incidence of impaired glucose tolerance in the young. The complications of DM are protean and can involve multiple systems throughout the body that are susceptible to the detrimental effects of oxidative stress and apoptotic cell injury. For these reasons, innovative strategies are necessary for the implementation of new treatments for DM that are generated through the further understanding of cellular pathways that govern the pathological consequences of DM. In particular, both the precursor for the coenzyme beta-nicotinamide adenine dinucleotide (NAD(+)), nicotinamide, and the growth factor erythropoietin offer novel platforms for drug discovery that involve cellular metabolic homeostasis and inflammatory cell control. Interestingly, these agents and their tightly associated pathways that consist of cell cycle regulation, protein kinase B, forkhead transcription factors, and Wnt signaling also function in a broader sense as biomarkers for disease onset and progression.

  10. Tension and robustness in multitasking cellular networks.

    Jeffrey V Wong

    Full Text Available Cellular networks multitask by exhibiting distinct, context-dependent dynamics. However, network states (parameters that generate a particular dynamic are often sub-optimal for others, defining a source of "tension" between them. Though multitasking is pervasive, it is not clear where tension arises, what consequences it has, and how it is resolved. We developed a generic computational framework to examine the source and consequences of tension between pairs of dynamics exhibited by the well-studied RB-E2F switch regulating cell cycle entry. We found that tension arose from task-dependent shifts in parameters associated with network modules. Although parameter sets common to distinct dynamics did exist, tension reduced both their accessibility and resilience to perturbation, indicating a trade-off between "one-size-fits-all" solutions and robustness. With high tension, robustness can be preserved by dynamic shifting of modules, enabling the network to toggle between tasks, and by increasing network complexity, in this case by gene duplication. We propose that tension is a general constraint on the architecture and operation of multitasking biological networks. To this end, our work provides a framework to quantify the extent of tension between any network dynamics and how it affects network robustness. Such analysis would suggest new ways to interfere with network elements to elucidate the design principles of cellular networks.

  11. Cellular Auxin Homeostasis:Gatekeeping Is Housekeeping

    Michel Ruiz Rosquete; Elke Barbez; Jürgen Kleine-Vehn


    The phytohormone auxin is essential for plant development and contributes to nearly every aspect of the plant life cycle.The spatio-temporal distribution of auxin depends on a complex interplay between auxin metabolism and cell-to-cell auxin transport.Auxin metabolism and transport are both crucial for plant development;however,it largely remains to be seen how these processes are integrated to ensure defined cellular auxin levels or even gradients within tissues or organs.In this review,we provide a glance at very diverse topics of auxin biology,such as biosynthesis,conjugation,oxidation,and transport of auxin.This broad,but certainly superficial,overview highlights the mutual importance of auxin metabolism and transport.Moreover,it allows pinpointing how auxin metabolism and transport get integrated to jointly regulate cellular auxin homeostasis.Even though these processes have been so far only separately studied,we assume that the phytohormonal crosstalk integrates and coordinates auxin metabolism and transport.Besides the integrative power of the global hormone signaling,we additionally introduce the hypothetical concept considering auxin transport components as gatekeepers for auxin responses.

  12. Cellular contractility requires ubiquitin mediated proteolysis.

    Yuval Cinnamon

    Full Text Available BACKGROUND: Cellular contractility, essential for cell movement and proliferation, is regulated by microtubules, RhoA and actomyosin. The RhoA dependent kinase ROCK ensures the phosphorylation of the regulatory Myosin II Light Chain (MLC Ser19, thereby activating actomyosin contractions. Microtubules are upstream inhibitors of contractility and their depolymerization or depletion cause cells to contract by activating RhoA. How microtubule dynamics regulates RhoA remains, a major missing link in understanding contractility. PRINCIPAL FINDINGS: We observed that contractility is inhibited by microtubules not only, as previously reported, in adherent cells, but also in non-adhering interphase and mitotic cells. Strikingly we observed that contractility requires ubiquitin mediated proteolysis by a Cullin-RING ubiquitin ligase. Inhibition of proteolysis, ubiquitination and neddylation all led to complete cessation of contractility and considerably reduced MLC Ser19 phosphorylation. CONCLUSIONS: Our results imply that cells express a contractility inhibitor that is degraded by ubiquitin mediated proteolysis, either constitutively or in response to microtubule depolymerization. This degradation seems to depend on a Cullin-RING ubiquitin ligase and is required for cellular contractions.

  13. Engineering Cellular Photocomposite Materials Using Convective Assembly

    Orlin D. Velev


    Full Text Available Fabricating industrial-scale photoreactive composite materials containing living cells, requires a deposition strategy that unifies colloid science and cell biology. Convective assembly can rapidly deposit suspended particles, including whole cells and waterborne latex polymer particles into thin (<10 µm thick, organized films with engineered adhesion, composition, thickness, and particle packing. These highly ordered composites can stabilize the diverse functions of photosynthetic cells for use as biophotoabsorbers, as artificial leaves for hydrogen or oxygen evolution, carbon dioxide assimilation, and add self-cleaning capabilities for releasing or digesting surface contaminants. This paper reviews the non-biological convective assembly literature, with an emphasis on how the method can be modified to deposit living cells starting from a batch process to its current state as a continuous process capable of fabricating larger multi-layer biocomposite coatings from diverse particle suspensions. Further development of this method will help solve the challenges of engineering multi-layered cellular photocomposite materials with high reactivity, stability, and robustness by clarifying how process, substrate, and particle parameters affect coating microstructure. We also describe how these methods can be used to selectively immobilize photosynthetic cells to create biomimetic leaves and compare these biocomposite coatings to other cellular encapsulation systems.

  14. Piezoelectric nanoribbons for monitoring cellular deformations

    Nguyen, Thanh D.; Deshmukh, Nikhil; Nagarah, John M.; Kramer, Tal; Purohit, Prashant K.; Berry, Michael J.; McAlpine, Michael C.


    Methods for probing mechanical responses of mammalian cells to electrical excitations can improve our understanding of cellular physiology and function. The electrical response of neuronal cells to applied voltages has been studied in detail, but less is known about their mechanical response to electrical excitations. Studies using atomic force microscopes (AFMs) have shown that mammalian cells exhibit voltage-induced mechanical deflections at nanometre scales, but AFM measurements can be invasive and difficult to multiplex. Here we show that mechanical deformations of neuronal cells in response to electrical excitations can be measured using piezoelectric PbZrxTi1-xO3 (PZT) nanoribbons, and we find that cells deflect by 1 nm when 120 mV is applied to the cell membrane. The measured cellular forces agree with a theoretical model in which depolarization caused by an applied voltage induces a change in membrane tension, which results in the cell altering its radius so that the pressure remains constant across the membrane. We also transfer arrays of PZT nanoribbons onto a silicone elastomer and measure mechanical deformations on a cow lung that mimics respiration. The PZT nanoribbons offer a minimally invasive and scalable platform for electromechanical biosensing.

  15. Travel Mode Detection Exploiting Cellular Network Data

    Kalatian Arash


    Full Text Available There has been growing interest in exploiting cellular network data for transportation planning purposes in recent years. In this paper, we utilize these data for determining mode of travel in the city of Shiraz, Iran. Cellular data records -including location updates in 5minute time intervals- of 300,000 users from the city of Shiraz has been collected for 40 hours in three consecutive days in a cooperation with the major telecommunications service provider of the country. Depending on the density of mobile BTS’s in different zones of the city, the user location can be located within an average of 200 meters. Considering data filtering and smoothing, data preparation and converting them to comprehensible traces is a large portion of the work. A novel approach to identify stay locations is proposed and implemented in this paper. Origin-Destination matrices are then created based on trips detected, which shows acceptable consistency with current O-D matrices. Finally, Travel times for all trips of a user is estimated as the main attribute for clustering. Trips between same origin and destination zones are combined together in a group. Using K-means algorithm, records within each group are the portioned in two or three clusters, based on their travel speeds. Each cluster represents a certain mode of travel; walking, public transportation or driving a private car.

  16. Filovirus tropism: Cellular molecules for viral entry

    Ayato eTakada


    Full Text Available In human and nonhuman primates, filoviruses (Ebola and Marburg viruses cause severe hemorrhagic fever.Recently, other animals such as pigs and some species of fruit bats have also been shown to be susceptible to these viruses. While having a preference for some cell types such as hepatocytes, endothelial cells, dendritic cells, monocytes, and macrophages, filoviruses are known to be pantropic in infection of primates. The envelope glycoprotein (GP is responsible for both receptor binding and fusion of the virus envelope with the host cell membrane. It has been demonstrated that filovirus GP interacts with multiple molecules for entry into host cells, whereas none of the cellular molecules so far identified as a receptor/coreceptor fully explains filovirus tissue tropism and host range. Available data suggest that the mucin-like region (MLR on GP plays an important role in attachment to the preferred target cells, whose infection is likely involved in filovirus pathogenesis, whereas the MLR is not essential for the fundamental function of the GP in viral entry into cells in vitro. Further studies elucidating the mechanisms of cellular entry of filoviruses may shed light on the development of strategies for prophylaxis and treatment of Ebola and Marburg hemorrhagic fevers.


    Yousef Mehdipour


    Full Text Available Measuring customer satisfaction provides an indication of how successful the organization is at providing products and/or services to the marketplace. Customer satisfaction is a collective outcome of perception, evaluation, and psychological reactions to the consumption experience with a product or service. This researcharticle investigated the attitude of Idea cellular customers to Idea services. All the customers of Idea cellular in Hyderabad city (Andhra Pradesh constituted the population. The sample of the study is 2000 customers that randomly selected. A questionnaire was developed and validated through pilot testing and administered to thesample for the collection of data. The researcher personally visited respondents, thus 100% data were collected.The collected data were tabulated and analyzed by SPSS. Results showed that majority of the respondents of Idea prefer post-paid service than to pre paid and largest segment of respondents are of idea then comes Cell one, Airtel and Vodafone. this study showed that most of the respondents need improvement in service. Majority of respondents gave an excellent rate for “Idea Cellular” services.

  18. Alpha-synuclein is a cellular ferrireductase.

    Paul Davies

    Full Text Available α-synuclein (αS is a cellular protein mostly known for the association of its aggregated forms with a variety of diseases that include Parkinson's disease and Dementia with Lewy Bodies. While the role of αS in disease is well documented there is currently no agreement on the physiological function of the normal isoform of the protein. Here we provide strong evidence that αS is a cellular ferrireductase, responsible for reducing iron (III to bio available iron (II. The recombinant form of the protein has a V(Max of 2.72 nmols/min/mg and K(m 23 µM. This activity is also evident in lysates from neuronal cell lines overexpressing αS. This activity is dependent on copper bound to αS as a cofactor and NADH as an electron donor. Overexpression of α-synuclein by cells significantly increases the percentage of iron (II in cells. The common disease mutations associated with increased susceptibility to PD show no [corrected] differences in activity or iron (II levels. This discovery may well provide new therapeutic targets for PD and Lewy body dementias.

  19. Characteristics of cellular composition of periodontal pockets

    Hasiuk, Petro; Hasiuk, Nataliya; Kindiy, Dmytro; Ivanchyshyn, Victoriya; Kalashnikov, Dmytro; Zubchenko, Sergiy


    Purpose The development of inflammatory periodontal disease in young people is an urgent problem of today's periodontology, and requires a development of new methods that would give an opportunity not only to diagnose but also for prognosis of periodontitis course in a given patients contingent. Results Cellular structure of periodontal pockets is presented by hematogenous and epithelial cells. Our results are confirmed by previous studies, and show that the penetration of periodontal pathogens leads to formation in periodontal tissue of a highly active complex compounds—cytokines that are able to modify the activity of neutrophils and reduce their specific antibacterial properties. Cytokines not only adversely affect the periodontal tissues, but also cause further activation of cells that synthesized them, and inhibit tissue repair and process of resynthesis of connective tissue by fibroblasts. Conclusion Neutrophilic granulocytes present in each of the types of smear types, but their functional status and quantitative composition is different. The results of our cytological study confirmed the results of immunohistochemical studies, and show that in generalized periodontitis, an inflammatory cellular elements with disorganized epithelial cells and connective tissue of the gums and periodontium, and bacteria form specific types of infiltration in periodontal tissues. PMID:28180007

  20. Benchmark study between FIDAP and a cellular automata code

    Akau, R. L.; Stockman, H. W.

    A fluid flow benchmark exercise was conducted to compare results between a cellular automata code and FIDAP. Cellular automata codes are free from gridding constraints, and are generally used to model slow (Reynolds number approximately 1) flows around complex solid obstacles. However, the accuracy of cellular automata codes at higher Reynolds numbers, where inertial terms are significant, is not well-documented. In order to validate the cellular automata code, two fluids problems were investigated. For both problems, flow was assumed to be laminar, two-dimensional, isothermal, incompressible and periodic. Results showed that the cellular automata code simulated the overall behavior of the flow field.

  1. Oxidative stress action in cellular aging

    Monique Cristine de Oliveira


    Full Text Available Various theories try to explain the biological aging by changing the functions and structure of organic systems and cells. During lifetime, free radicals in the oxidative stress lead to lipid peroxidation of cellular membranes, homeostasis imbalance, chemical residues formation, gene mutations in DNA, dysfunction of certain organelles, and the arise of diseases due to cell death and/or injury. This review describes the action of oxidative stress in the cells aging process, emphasizing the factors such as cellular oxidative damage, its consequences and the main protective measures taken to prevent or delay this process. Tests with antioxidants: vitamins A, E and C, flavonoids, carotenoids and minerals, the practice of caloric restriction and physical exercise, seeking the beneficial effects on human health, increasing longevity, reducing the level of oxidative stress, slowing the cellular senescence and origin of certain diseases, are discussed.Diferentes teorias tentam explicar o envelhecimento biológico através da alteração das funções e estrutura dos sistemas orgânicos e células. Ao longo da vida, os radicais livres presentes no estresse oxidativo conduzem à peroxidação dos lipídios das membranas celulares, desequilíbrio da homeostase, formação de resíduos químicos, mutações gênicas no DNA, disfunção de certas organelas, bem como ao surgimento de doenças devido à lesão e/ou morte celular. Nesta revisão descreve-se a ação do estresse oxidativo no processo de envelhecimento das células, enfatizando fatores como os danos oxidativos celulares, suas conseqüências e as principais medidas protetoras adotadas para se prevenir ou retardar este processo. Testes com antioxidantes: vitaminas A, E e C, flavonóides, carotenóides e minerais; a prática de restrição calórica e exercícios físicos, que buscam efeitos benéficos sobre a saúde humana, aumentando a longevidade, reduzindo o nível de estresse oxidativo

  2. Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity

    Dalmasso, Giovanni; Marin Zapata, Paula Andrea; Brady, Nathan Ryan; Hamacher-Brady, Anne


    Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying

  3. Cellular antioxidant activity of common vegetables.

    Song, Wei; Derito, Christopher M; Liu, M Keshu; He, Xiangjiu; Dong, Mei; Liu, Rui Hai


    The measurement of antioxidant activity using biologically relevant assays is important to screen fruits, vegetables, natural products, and dietary supplements for potential health benefits. The cellular antioxidant activity (CAA) assay quantifies antioxidant activity using a cell culture model and was developed to meet the need for a more biologically representative method than the popular chemistry antioxidant capacity measures. The objective of the study was to determine the CAA, total phenolic contents, and oxygen radical absorbance capacity (ORAC) values of 27 vegetables commonly consumed in the United States. Beets, broccoli, and red pepper had the highest CAA values, whereas cucumber had the lowest. CAA values were significantly correlated to total phenolic content. Potatoes were found to be the largest contributors of vegetable phenolics and CAA to the American diet. Increased fruit and vegetable consumption is an effective strategy to increase antioxidant intake and decrease oxidative stress and may lead to reduced risk of developing chronic diseases, such as cancer and cardiovascular disease.

  4. Bioceramics for osteogenesis, molecular and cellular advances.

    Demirkiran, Hande


    The remarkable need for bone tissue replacement in clinical situations, its limited availability and some major drawbacks of autologous (from the patient) and allogeneic (from a donor) bone grafts are driving researchers to search for alternative approaches for bone repair. In order to develop an appropriate bone substitute, one should understand bone structure and properties and its growth, which will guide researchers to select the optimal conditions for tissue culture and implantation. It's well accepted that bioceramics are excellent candidates as bone replacement with osteogenesis, osteoinduction and osteoconduction capacity. Therefore, the molecular and cellular interactions that take place at the surface of bioceramics and their relevance in osteogenesis excites many researchers to delve deeper into this line of research.

  5. Anisotropic selection in cellular genetic algorithms

    Simoncini, David; Collard, Philippe; Clergue, Manuel


    In this paper we introduce a new selection scheme in cellular genetic algorithms (cGAs). Anisotropic Selection (AS) promotes diversity and allows accurate control of the selective pressure. First we compare this new scheme with the classical rectangular grid shapes solution according to the selective pressure: we can obtain the same takeover time with the two techniques although the spreading of the best individual is different. We then give experimental results that show to what extent AS promotes the emergence of niches that support low coupling and high cohesion. Finally, using a cGA with anisotropic selection on a Quadratic Assignment Problem we show the existence of an anisotropic optimal value for which the best average performance is observed. Further work will focus on the selective pressure self-adjustment ability provided by this new selection scheme.

  6. Commercialization of cellular immunotherapies for cancer.

    Walker, Anthony; Johnson, Robert


    Successful commercialization of a cell therapy requires more than proving safety and efficacy to the regulators. The inherent complexity of cellular products delivers particular manufacturing, logistical and reimbursement hurdles that threaten commercial viability for any therapy with a less than spectacular clinical profile that truly changes the standard of care. This is particularly acute for autologous cell therapies where patients receive bespoke treatments manufactured from a sample of their own cells and where economies of scale, which play an important role in containing the production costs for small molecule and antibody therapeutics, are highly limited. Nevertheless, the promise of 'game-changing' efficacy, as exemplified by very high levels of complete responses in refractory haematological malignancies, has attracted capital investments on a vast scale, and the attendant pace of technology development provides promising indicators for future clinical and commercial success.

  7. Stochasticity in plant cellular growth and patterning

    Heather M. Meyer


    Full Text Available Plants, along with other multicellular organisms, have evolved specialized regulatory mechanisms to achieve proper tissue growth and morphogenesis. During development, growing tissues generate specialized cell types and complex patterns necessary for establishing the function of the organ. Tissue growth is a tightly regulated process that yields highly reproducible outcomes. Nevertheless, the underlying cellular and molecular behaviors are often stochastic. Thus, how does stochasticity, together with strict genetic regulation, give rise to reproducible tissue development? This review draws examples from plants as well as other systems to explore stochasticity in plant cell division, growth, and patterning. We conclude that stochasticity is often needed to create small differences between identical cells, which are amplified and stabilized by genetic and mechanical feedback loops to begin cell differentiation. These first few differentiating cells initiate traditional patterning mechanisms to ensure regular development.

  8. Protein S-palmitoylation in cellular differentiation.

    Zhang, Mingzi M; Hang, Howard C


    Reversible protein S-palmitoylation confers spatiotemporal control of protein function by modulating protein stability, trafficking and activity, as well as protein-protein and membrane-protein associations. Enabled by technological advances, global studies revealed S-palmitoylation to be an important and pervasive posttranslational modification in eukaryotes with the potential to coordinate diverse biological processes as cells transition from one state to another. Here, we review the strategies and tools to analyze in vivo protein palmitoylation and interrogate the functions of the enzymes that put on and take off palmitate from proteins. We also highlight palmitoyl proteins and palmitoylation-related enzymes that are associated with cellular differentiation and/or tissue development in yeasts, protozoa, mammals, plants and other model eukaryotes. © 2017 The Author(s).

  9. Mathematical analysis of complex cellular activity

    Bertram, Richard; Teka, Wondimu; Vo, Theodore; Wechselberger, Martin; Kirk, Vivien; Sneyd, James


    This book contains two review articles on mathematical physiology that deal with closely related topics but were written and can be read independently. The first article reviews the basic theory of calcium oscillations (common to almost all cell types), including spatio-temporal behaviors such as waves. The second article uses, and expands on, much of this basic theory to show how the interaction of cytosolic calcium oscillators with membrane ion channels can result in highly complex patterns of electrical spiking. Through these examples one can see clearly how multiple oscillatory processes interact within a cell, and how mathematical methods can be used to understand such interactions better. The two reviews provide excellent examples of how mathematics and physiology can learn from each other, and work jointly towards a better understanding of complex cellular processes. Review 1: Richard Bertram, Joel Tabak, Wondimu Teka, Theodore Vo, Martin Wechselberger: Geometric Singular Perturbation Analysis of Burst...

  10. Optimal temporal patterns for dynamical cellular signaling

    Hasegawa, Yoshihiko


    Cells use temporal dynamical patterns to transmit information via signaling pathways. As optimality with respect to the environment plays a fundamental role in biological systems, organisms have evolved optimal ways to transmit information. Here, we use optimal control theory to obtain the dynamical signal patterns for the optimal transmission of information, in terms of efficiency (low energy) and reliability (low uncertainty). Adopting an activation-deactivation decoding network, we reproduce several dynamical patterns found in actual signals, such as steep, gradual, and overshooting dynamics. Notably, when minimizing the energy of the input signal, the optimal signals exhibit overshooting, which is a biphasic pattern with transient and steady phases; this pattern is prevalent in actual dynamical patterns. We also identify conditions in which these three patterns (steep, gradual, and overshooting) confer advantages. Our study shows that cellular signal transduction is governed by the principle of minimizing free energy dissipation and uncertainty; these constraints serve as selective pressures when designing dynamical signaling patterns.

  11. Cellular nanotechnology: making biological interfaces smarter.

    Mendes, Paula M


    Recently, there has been an outburst of research on engineered cell-material interfaces driven by nanotechnology and its tools and techniques. This tutorial review begins by providing a brief introduction to nanostructured materials, followed by an overview of the wealth of nanoscale fabrication and analysis tools available for their development. This background serves as the basis for a discussion of early breakthroughs and recent key developments in the endeavour to develop nanostructured materials as smart interfaces for fundamental cellular studies, tissue engineering and regenerative medicine. The review covers three major aspects of nanostructured interfaces - nanotopographical control, dynamic behaviour and intracellular manipulation and sensing - where efforts are continuously being made to further understand cell function and provide new ways to control cell behaviour. A critical reflection of the current status and future challenges are discussed as a conclusion to the review.

  12. Simulating Complex Systems by Cellular Automata

    Kroc, Jiri; Hoekstra, Alfons G


    Deeply rooted in fundamental research in Mathematics and Computer Science, Cellular Automata (CA) are recognized as an intuitive modeling paradigm for Complex Systems. Already very basic CA, with extremely simple micro dynamics such as the Game of Life, show an almost endless display of complex emergent behavior. Conversely, CA can also be designed to produce a desired emergent behavior, using either theoretical methodologies or evolutionary techniques. Meanwhile, beyond the original realm of applications - Physics, Computer Science, and Mathematics – CA have also become work horses in very different disciplines such as epidemiology, immunology, sociology, and finance. In this context of fast and impressive progress, spurred further by the enormous attraction these topics have on students, this book emerges as a welcome overview of the field for its practitioners, as well as a good starting point for detailed study on the graduate and post-graduate level. The book contains three parts, two major parts on th...

  13. Cellular Automata Models for Diffusion of Innovations

    Fuks, H; Fuks, Henryk; Boccara, Nino


    We propose a probabilistic cellular automata model for the spread of innovations, rumors, news, etc. in a social system. The local rule used in the model is outertotalistic, and the range of interaction can vary. When the range R of the rule increases, the takeover time for innovation increases and converges toward its mean-field value, which is almost inversely proportional to R when R is large. Exact solutions for R=1 and $R=\\infty$ (mean-field) are presented, as well as simulation results for other values of R. The average local density is found to converge to a certain stationary value, which allows us to obtain a semi-phenomenological solution valid in the vicinity of the fixed point n=1 (for large t).

  14. Determining Lineage Pathways from Cellular Barcoding Experiments

    Leïla Perié


    Full Text Available Cellular barcoding and other single-cell lineage-tracing strategies form experimental methodologies for analysis of in vivo cell fate that have been instrumental in several significant recent discoveries. Due to the highly nonlinear nature of proliferation and differentiation, interrogation of the resulting data for evaluation of potential lineage pathways requires a new quantitative framework complete with appropriate statistical tests. Here, we develop such a framework, illustrating its utility by analyzing data from barcoded multipotent cells of the blood system. This application demonstrates that the data require additional paths beyond those found in the classical model, which leads us to propose that hematopoietic differentiation follows a loss of potential mechanism and to suggest further experiments to test this deduction. Our quantitative framework can evaluate the compatibility of lineage trees with barcoded data from any proliferating and differentiating cell system.

  15. Cellular uptake and trafficking of antisense oligonucleotides.

    Crooke, Stanley T; Wang, Shiyu; Vickers, Timothy A; Shen, Wen; Liang, Xue-Hai


    Antisense oligonucleotides (ASOs) modified with phosphorothioate (PS) linkages and different 2' modifications can be used either as drugs (e.g., to treat homozygous familial hypercholesterolemia and spinal muscular atrophy) or as research tools to alter gene expression. PS-ASOs can enter cells without additional modification or formulation and can be designed to mediate sequence-specific cleavage of different types of RNA (including mRNA and non-coding RNA) targeted by endogenous RNase H1. Although PS-ASOs function in both the cytoplasm and nucleus, localization to different subcellular regions can affect their therapeutic potency. Cellular uptake and intracellular distribution of PS ASOs are mediated by protein interactions. The main proteins involved in these processes have been identified, and intracellular sites in which PS ASOs are active, or inactive, cataloged.

  16. Exactly solvable cellular automaton traffic jam model.

    Kearney, Michael J


    A detailed study is undertaken of the v{max}=1 limit of the cellular automaton traffic model proposed by Nagel and Paczuski [Phys. Rev. E 51, 2909 (1995)]. The model allows one to analyze the behavior of a traffic jam initiated in an otherwise freely flowing stream of traffic. By mapping onto a discrete-time queueing system, itself related to various problems encountered in lattice combinatorics, exact results are presented in relation to the jam lifetime, the maximum jam length, and the jam mass (the space-time cluster size or integrated vehicle waiting time), both in terms of the critical and the off-critical behavior. This sets existing scaling results in their natural context and also provides several other interesting results in addition.

  17. Computing by Temporal Order: Asynchronous Cellular Automata

    Michael Vielhaber


    Full Text Available Our concern is the behaviour of the elementary cellular automata with state set 0,1 over the cell set Z/nZ (one-dimensional finite wrap-around case, under all possible update rules (asynchronicity. Over the torus Z/nZ (n<= 11,we will see that the ECA with Wolfram rule 57 maps any v in F_2^n to any w in F_2^n, varying the update rule. We furthermore show that all even (element of the alternating group bijective functions on the set F_2^n = 0,...,2^n-1, can be computed by ECA57, by iterating it a sufficient number of times with varying update rules, at least for n <= 10. We characterize the non-bijective functions computable by asynchronous rules.

  18. Threshold effects and cellular recognition. Progress report

    Rando, R R


    In the first year we focused on developing the techniques required for the successful incorporation of synthetic glycolipids into cells. To these ends a new water-soluble spacer group (8-amino-3-6-dioxaoctanoic acid) was developed and incorporated into the cholesterol based synthetic glycolipids. These glycolipids could be incorporated into liposomes, rendering them susceptible to aggregation by the appropriate lectin. They also allowed us to define the minimal distance between the sugar moiety and membrane required for agglutination. Finally and most importantly, we were able to functionally incorporate these new glycolipids in cells and render them agglutinable with the appropriate lectins. Functional incorporation does not occur with glycolipids bearing hydropholic spacer groups. We are now in a position to begin using the new glycolipids to answer questions about the roles of cell surface sugars in cellular recognition, which is the subject of this renewal proposal.

  19. A cellular automata model for ant trails

    Sibel Gokce; Ozhan Kayacan


    In this study, the unidirectional ant traffic flow with U-turn in an ant trail was investigated using one-dimensional cellular automata model. It is known that ants communicate with each other by dropping a chemical, called pheromone, on the substrate. Apart from the studies in the literature, it was considered in the model that (i) ant colony consists of two kinds of ants, goodand poor-smelling ants, (ii) ants might make U-turn for some special reasons. For some values of densities of good- and poor-smelling ants, the flux and mean velocity of the colony were studied as a function of density and evaporation rate of pheromone.

  20. Knowledge discovery for geographical cellular automata

    LI Xia; Anthony Gar-On Yeh


    This paper proposes a new method for geographical simulation by applying data mining techniques to cellular automata. CA has strong capabilities in simulating complex systems. The core of CA is how to define transition rules. There are no good methods for defining these transition rules. They are usually defined by using heuristic methods and thus subject to uncertainties. Mathematical equations are used to represent transition rules implicitly and have limitations in capturing complex relationships. This paper demonstrates that the explicit transition rules of CA can be automatically reconstructed through the rule induction procedure of data mining. The proposed method can reduce the influences of individual knowledge and preferences in defining transition rules and generate more reliable simulation results. It can efficiently discover knowledge from a vast volume of spatial data.

  1. Partitioned quantum cellular automata are intrinsically universal

    Arrighi, Pablo


    There have been several non-axiomatic approaches taken to define Quantum Cellular Automata (QCA). Partitioned QCA (PQCA) are the most canonical of these non-axiomatic definitions. In this work we show that any QCA can be put into the form of a PQCA. Our construction reconciles all the non-axiomatic definitions of QCA, showing that they can all simulate one another, and hence that they are all equivalent to the axiomatic definition. This is achieved by defining generalised n-dimensional intrinsic simulation, which brings the computer science based concepts of simulation and universality closer to theoretical physics. The result is not only an important simplification of the QCA model, it also plays a key role in the identification of a minimal n-dimensional intrinsically universal QCA.

  2. Computational model of cellular metabolic dynamics

    Li, Yanjun; Solomon, Thomas; Haus, Jacob M


    : intracellular metabolite concentrations and patterns of glucose disposal. Model variations were simulated to investigate three alternative mechanisms to explain insulin enhancements: Model 1 (M.1), simple mass action; M.2, insulin-mediated activation of key metabolic enzymes (i.e., hexokinase, glycogen synthase......Identifying the mechanisms by which insulin regulates glucose metabolism in skeletal muscle is critical to understanding the etiology of insulin resistance and type 2 diabetes. Our knowledge of these mechanisms is limited by the difficulty of obtaining in vivo intracellular data. To quantitatively...... distinguish significant transport and metabolic mechanisms from limited experimental data, we developed a physiologically based, multiscale mathematical model of cellular metabolic dynamics in skeletal muscle. The model describes mass transport and metabolic processes including distinctive processes...

  3. Simulation of earthquakes with cellular automata

    P. G. Akishin


    Full Text Available The relation between cellular automata (CA models of earthquakes and the Burridge–Knopoff (BK model is studied. It is shown that the CA proposed by P. Bak and C. Tang,although they have rather realistic power spectra, do not correspond to the BK model. We present a modification of the CA which establishes the correspondence with the BK model.An analytical method of studying the evolution of the BK-like CA is proposed. By this method a functional quadratic in stress release, which can be regarded as an analog of the event energy, is constructed. The distribution of seismic events with respect to this “energy” shows rather realistic behavior, even in two dimensions. Special attention is paid to two-dimensional automata; the physical restrictions on compression and shear stiffnesses are imposed.

  4. Cellular senescence mediates fibrotic pulmonary disease

    Schafer, Marissa J.; White, Thomas A.; Iijima, Koji; Haak, Andrew J.; Ligresti, Giovanni; Atkinson, Elizabeth J.; Oberg, Ann L.; Birch, Jodie; Salmonowicz, Hanna; Zhu, Yi; Mazula, Daniel L.; Brooks, Robert W.; Fuhrmann-Stroissnigg, Heike; Pirtskhalava, Tamar; Prakash, Y. S.; Tchkonia, Tamara; Robbins, Paul D.; Aubry, Marie Christine; Passos, João F.; Kirkland, James L.; Tschumperlin, Daniel J.; Kita, Hirohito; LeBrasseur, Nathan K.


    Idiopathic pulmonary fibrosis (IPF) is a fatal disease characterized by interstitial remodelling, leading to compromised lung function. Cellular senescence markers are detectable within IPF lung tissue and senescent cell deletion rejuvenates pulmonary health in aged mice. Whether and how senescent cells regulate IPF or if their removal may be an efficacious intervention strategy is unknown. Here we demonstrate elevated abundance of senescence biomarkers in IPF lung, with p16 expression increasing with disease severity. We show that the secretome of senescent fibroblasts, which are selectively killed by a senolytic cocktail, dasatinib plus quercetin (DQ), is fibrogenic. Leveraging the bleomycin-injury IPF model, we demonstrate that early-intervention suicide-gene-mediated senescent cell ablation improves pulmonary function and physical health, although lung fibrosis is visibly unaltered. DQ treatment replicates benefits of transgenic clearance. Thus, our findings establish that fibrotic lung disease is mediated, in part, by senescent cells, which can be targeted to improve health and function. PMID:28230051

  5. Multipartite cellular automata and the superposition principle

    Elze, Hans-Thomas


    Cellular automata (CA) can show well known features of quantum mechanics (QM), such as a linear updating rule that resembles a discretized form of the Schrödinger equation together with its conservation laws. Surprisingly, a whole class of “natural” Hamiltonian CA, which are based entirely on integer-valued variables and couplings and derived from an action principle, can be mapped reversibly to continuum models with the help of sampling theory. This results in “deformed” quantum mechanical models with a finite discreteness scale l, which for l→0 reproduce the familiar continuum limit. Presently, we show, in particular, how such automata can form “multipartite” systems consistently with the tensor product structures of non-relativistic many-body QM, while maintaining the linearity of dynamics. Consequently, the superposition principle is fully operative already on the level of these primordial discrete deterministic automata, including the essential quantum effects of interference and entanglement.

  6. Cellular regulation of the dopamine transporter

    Eriksen, Jacob


    -membrane spanning protein Tac, thereby creating an extracellular antibody epitope. Upon expression in HEK293 cells this TacDAT fusion protein displayed functional properties similar to the wild type transporter. In an ELISA based internalization assay, TacDAT intracellular accumulation was increased by inhibitors......The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft and is a target for widely abused psychostimulants such as cocaine and amphetamine. Nonetheless, little is known about the cellular distribution and trafficking of natively expressed DAT. DAT and its trafficking...... to natively expressed transporter, DAT was visualized directly in cultured DA neurons using the fluorescent cocaine analog JHC 1-64. These data showed pronounced colocalization upon constitutive internalization with Lysotracker, a late endosomal/lysosomal marker; however only little cololization was observed...

  7. Inhibitors of the Cellular Trafficking of Ricin

    Daniel Gillet


    Full Text Available Throughout the last decade, efforts to identify and develop effective inhibitors of the ricin toxin have focused on targeting its N-glycosidase activity. Alternatively, molecules disrupting intracellular trafficking have been shown to block ricin toxicity. Several research teams have recently developed high-throughput phenotypic screens for small molecules acting on the intracellular targets required for entry of ricin into cells. These screens have identified inhibitory compounds that can protect cells, and sometimes even animals against ricin. We review these newly discovered cellular inhibitors of ricin intoxication, discuss the advantages and drawbacks of chemical-genetics approaches, and address the issues to be resolved so that the therapeutic development of these small-molecule compounds can progress.

  8. A view of early cellular evolution.

    Mikelsaar, R


    Some recent puzzling data on mitochondria put in question their place on the phylogenetic tree. A hypothesis, the archigenetic hypothesis, is presented, which generally agrees with Woese-Fox's concept of the common origin of eubacteria, archaebacteria, and eukaryotic hosts. However, for the first time, a case is made for the evolution of mitochondria from the ancient predecessors of pro- and eukaryotes (protobionts), not from eubacteria. Animal, fungal, and plant mitochondria are considered to be endosymbionts derived from independent free-living cells (mitobionts), which, having arisen at different developmental stages of protobionts, retained some of their ancient primitive features of the genetic code and the transcription-translation systems. The molecular-biological, bioenergetic, and paleontological aspects of this new concept of cellular evolution are discussed.

  9. Spatial Dynamics of Multilayer Cellular Neural Networks

    Wu, Shi-Liang; Hsu, Cheng-Hsiung


    The purpose of this work is to study the spatial dynamics of one-dimensional multilayer cellular neural networks. We first establish the existence of rightward and leftward spreading speeds of the model. Then we show that the spreading speeds coincide with the minimum wave speeds of the traveling wave fronts in the right and left directions. Moreover, we obtain the asymptotic behavior of the traveling wave fronts when the wave speeds are positive and greater than the spreading speeds. According to the asymptotic behavior and using various kinds of comparison theorems, some front-like entire solutions are constructed by combining the rightward and leftward traveling wave fronts with different speeds and a spatially homogeneous solution of the model. Finally, various qualitative features of such entire solutions are investigated.

  10. Complex cellular responses to reactive oxygen species.

    Temple, Mark D; Perrone, Gabriel G; Dawes, Ian W


    Genome-wide analyses of yeast provide insight into cellular responses to reactive oxygen species (ROS). Many deletion mutants are sensitive to at least one ROS, but no one oxidant is representative of 'oxidative stress' despite the widespread use of a single compound such as H(2)O(2). This has major implications for studies of pathological situations. Cells have a range of mechanisms for maintaining resistance that involves either induction or repression of many genes and extensive remodeling of the transcriptome. Cells have constitutive defense systems that are largely unique to each oxidant, but overlapping, inducible repair systems. The pattern of the transcriptional response to a particular ROS depends on its concentration, and 'classical' antioxidant systems that are induced by high concentrations of ROS can be repressed when cells adapt to low concentrations of ROS.

  11. Particles and Patterns in Cellular Automata

    Jen, E.; Das, R.; Beasley, C.E.


    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Our objective has been to develop tools for studying particle interactions in a class of dynamical systems characterized by discreteness, determinism, local interaction, and an inherently parallel form of evolution. These systems can be described by cellular automata (CA) and the behavior we studied has improved our understanding of the nature of patterns generated by CAs, their ability to perform global computations, and their relationship to continuous dynamical systems. We have also developed a rule-table mathematics that enables one to custom-design CA rule tables to generate patterns of specified types, or to perform specified computational tasks.

  12. Protein S-palmitoylation in cellular differentiation

    Zhang, Mingzi M.


    Reversible protein S-palmitoylation confers spatiotemporal control of protein function by modulating protein stability, trafficking and activity, as well as protein–protein and membrane–protein associations. Enabled by technological advances, global studies revealed S-palmitoylation to be an important and pervasive posttranslational modification in eukaryotes with the potential to coordinate diverse biological processes as cells transition from one state to another. Here, we review the strategies and tools to analyze in vivo protein palmitoylation and interrogate the functions of the enzymes that put on and take off palmitate from proteins. We also highlight palmitoyl proteins and palmitoylation-related enzymes that are associated with cellular differentiation and/or tissue development in yeasts, protozoa, mammals, plants and other model eukaryotes. PMID:28202682

  13. Cellular and Molecular Targets of Menthol Actions

    Murat Oz


    Full Text Available Menthol belongs to monoterpene class of a structurally diverse group of phytochemicals found in plant-derived essential oils. Menthol is widely used in pharmaceuticals, confectionary, oral hygiene products, pesticides, cosmetics, and as a flavoring agent. In addition, menthol is known to have antioxidant, anti-inflammatory, and analgesic effects. Recently, there has been renewed awareness in comprehending the biological and pharmacological effects of menthol. TRP channels have been demonstrated to mediate the cooling actions of menthol. There has been new evidence demonstrating that menthol can significantly influence the functional characteristics of a number of different kinds of ligand and voltage-gated ion channels, indicating that at least some of the biological and pharmacological effects of menthol can be mediated by alterations in cellular excitability. In this article, we examine the results of earlier studies on the actions of menthol with voltage and ligand-gated ion channels.

  14. Call Admission Control in Mobile Cellular Networks

    Ghosh, Sanchita


    Call Admission Control (CAC) and Dynamic Channel Assignments (DCA) are important decision-making problems in mobile cellular communication systems. Current research in mobile communication considers them as two independent problems, although the former greatly depends on the resulting free channels obtained as the outcome of the latter. This book provides a solution to the CAC problem, considering DCA as an integral part of decision-making for call admission. Further, current technical resources ignore movement issues of mobile stations and fluctuation in network load (incoming calls) in the control strategy used for call admission. In addition, the present techniques on call admission offers solution globally for the entire network, instead of considering the cells independently.      CAC here has been formulated by two alternative approaches. The first approach aimed at handling the uncertainty in the CAC problem by employing fuzzy comparators.  The second approach is concerned with formulation of CAC ...

  15. Microfluidic electroporation for cellular analysis and delivery.

    Geng, Tao; Lu, Chang


    Electroporation is a simple yet powerful technique for breaching the cell membrane barrier. The applications of electroporation can be generally divided into two categories: the release of intracellular proteins, nucleic acids and other metabolites for analysis and the delivery of exogenous reagents such as genes, drugs and nanoparticles with therapeutic purposes or for cellular manipulation. In this review, we go over the basic physics associated with cell electroporation and highlight recent technological advances on microfluidic platforms for conducting electroporation. Within the context of its working mechanism, we summarize the accumulated knowledge on how the parameters of electroporation affect its performance for various tasks. We discuss various strategies and designs for conducting electroporation at the microscale and then focus on analysis of intracellular contents and delivery of exogenous agents as two major applications of the technique. Finally, an outlook for future applications of microfluidic electroporation in increasingly diverse utilities is presented.

  16. Cellular and molecular aspects of Goodpasture syndrome.

    Alenzi, Faris Q; Salem, Mohamed L; Alenazi, Fawwaz A; Wyse, Richard K


    Goodpasture syndrome, a rare human autoimmune disorder, is characterized by the presence of pathogenic autoantibodies that react with the components of the glomerular basement membrane. The clinical condition of the Goodpasture syndrome is characterized by an acute necrotizing glomerulonephritis, often with accompanying pulmonary hemorrhage. Notably, the Goodpasture antigen has been localized to the noncollagenous domain of the alpha3 chain of type IV collagen. Additionally, human leukocyte antigen-DR2, and to a lesser extent human leukocyte antigen-DR4, have been identified as important restriction elements. The role of T cells in Goodpasture syndrome is indicated by the highly restricted specificity of the antibody response and the strong major histocompatibility complex class II association. In this review article, we briefly describe the latest views on the molecular and cellular themes of Goodpasture syndrome.

  17. Rethinking the regulation of cellular metabolism.

    Thompson, C B


    Most biologists working today have not considered the problem of how signal transduction events, which commit cells to energetically demanding processes such as growth and division, are connected to cellular metabolism. The primary reason for this is that we have believed for the last 30 or more years that the metabolism of cells is a homeostatic, self-regulating process that does not depend on any extracellular input. The traditional view is that a mammalian cell decides to take up nutrients whenever its bioenergetic and synthetic reserves are depleted. However, a considerable body of evidence now exists that challenges the notion that the nutrient uptake and metabolism of metazoan cells are cell-autonomous.

  18. Wireless traffic steering for green cellular networks

    Zhang, Shan; Zhou, Sheng; Niu, Zhisheng; Shen, Xuemin (Sherman)


    This book introduces wireless traffic steering as a paradigm to realize green communication in multi-tier heterogeneous cellular networks. By matching network resources and dynamic mobile traffic demand, traffic steering helps to reduce on-grid power consumption with on-demand services provided. This book reviews existing solutions from the perspectives of energy consumption reduction and renewable energy harvesting. Specifically, it explains how traffic steering can improve energy efficiency through intelligent traffic-resource matching. Several promising traffic steering approaches for dynamic network planning and renewable energy demand-supply balancing are discussed. This book presents an energy-aware traffic steering method for networks with energy harvesting, which optimizes the traffic allocated to each cell based on the renewable energy status. Renewable energy demand-supply balancing is a key factor in energy dynamics, aimed at enhancing renewable energy sustainability to reduce on-grid energy consum...

  19. Chua's Nonlinear Dynamics Perspective of Cellular Automata

    Pazienza, Giovanni E.


    Chua's `Nonlinear Dynamics Perspective of Cellular Automata' represents a genuine breakthrough in this area and it has had a major impact on the recent scientific literature. His results have been accurately described in a series of fourteen papers appeared over the course of eight years but there is no compendious introduction to his work. Therefore, here for the first time, we present Chua's main ideas as well as a few unpublished results that have not been included in his previous papers. This overview illustrates the essence of Chua's work by using a clear terminology and a consistent notation, and it is aimed at those who want to approach this subject through a concise but thorough exposition.

  20. Cellular scaling rules of insectivore brains

    Diana K Sarko


    Full Text Available Insectivores represent extremes in mammalian body size and brain size, retaining various “primitive” morphological characteristics, and some species of Insectivora are thought to share similarities with small-bodied ancestral eutherians. This raises the possibility that insectivore brains differ from other taxa, including rodents and primates, in cellular scaling properties. Here we examine the cellular scaling rules for insectivore brains and demonstrate that insectivore scaling rules overlap somewhat with those for rodents and primates such that the insectivore cortex shares scaling rules with rodents (increasing faster in size than in numbers of neurons, but the insectivore cerebellum shares scaling rules with primates (increasing isometrically. Brain structures pooled as “remaining areas” appear to scale similarly across all three mammalian orders with respect to numbers of neurons, and the numbers of non-neurons appear to scale similarly across all brain structures for all three orders. Therefore, common scaling rules exist, to different extents, between insectivore, rodent and primate brain regions, and it is hypothesized that insectivores represent the common aspects of each order. The olfactory bulbs of insectivores, however, offer a noteworthy exception in that neuronal density increases linearly with increasing structure mass. This implies that the average neuronal cell size decreases with increasing olfactory bulb mass in order to accommodate greater neuronal density, and represents the first documentation of a brain structure gaining neurons at a greater rate than mass. This might allow insectivore brains to concentrate more neurons within the olfactory bulbs without a prohibitively large and metabolically costly increase in structure mass.

  1. Cellular signaling by fibroblast growth factor receptors.

    Eswarakumar, V P; Lax, I; Schlessinger, J


    The 22 members of the fibroblast growth factor (FGF) family of growth factors mediate their cellular responses by binding to and activating the different isoforms encoded by the four receptor tyrosine kinases (RTKs) designated FGFR1, FGFR2, FGFR3 and FGFR4. Unlike other growth factors, FGFs act in concert with heparin or heparan sulfate proteoglycan (HSPG) to activate FGFRs and to induce the pleiotropic responses that lead to the variety of cellular responses induced by this large family of growth factors. A variety of human skeletal dysplasias have been linked to specific point mutations in FGFR1, FGFR2 and FGFR3 leading to severe impairment in cranial, digital and skeletal development. Gain of function mutations in FGFRs were also identified in a variety of human cancers such as myeloproliferative syndromes, lymphomas, prostate and breast cancers as well as other malignant diseases. The binding of FGF and HSPG to the extracellular ligand domain of FGFR induces receptor dimerization, activation and autophosphorylation of multiple tyrosine residues in the cytoplasmic domain of the receptor molecule. A variety of signaling proteins are phosphorylated in response to FGF stimulation including Shc, phospholipase-Cgamma, STAT1, Gab1 and FRS2alpha leading to stimulation of intracellular signaling pathways that control cell proliferation, cell differentiation, cell migration, cell survival and cell shape. The docking proteins FRS2alpha and FRS2beta are major mediators of the Ras/MAPK and PI-3 kinase/Akt signaling pathways as well as negative feedback mechanisms that fine-tune the signal that is initiated at the cell surface following FGFR stimulation.

  2. Statistical physical models of cellular motility

    Banigan, Edward J.

    Cellular motility is required for a wide range of biological behaviors and functions, and the topic poses a number of interesting physical questions. In this work, we construct and analyze models of various aspects of cellular motility using tools and ideas from statistical physics. We begin with a Brownian dynamics model for actin-polymerization-driven motility, which is responsible for cell crawling and "rocketing" motility of pathogens. Within this model, we explore the robustness of self-diffusiophoresis, which is a general mechanism of motility. Using this mechanism, an object such as a cell catalyzes a reaction that generates a steady-state concentration gradient that propels the object in a particular direction. We then apply these ideas to a model for depolymerization-driven motility during bacterial chromosome segregation. We find that depolymerization and protein-protein binding interactions alone are sufficient to robustly pull a chromosome, even against large loads. Next, we investigate how forces and kinetics interact during eukaryotic mitosis with a many-microtubule model. Microtubules exert forces on chromosomes, but since individual microtubules grow and shrink in a force-dependent way, these forces lead to bistable collective microtubule dynamics, which provides a mechanism for chromosome oscillations and microtubule-based tension sensing. Finally, we explore kinematic aspects of cell motility in the context of the immune system. We develop quantitative methods for analyzing cell migration statistics collected during imaging experiments. We find that during chronic infection in the brain, T cells run and pause stochastically, following the statistics of a generalized Levy walk. These statistics may contribute to immune function by mimicking an evolutionarily conserved efficient search strategy. Additionally, we find that naive T cells migrating in lymph nodes also obey non-Gaussian statistics. Altogether, our work demonstrates how physical

  3. Fluorescent Sensing of Fluoride in Cellular System

    Jiao, Yang; Zhu, Baocun; Chen, Jihua; Duan, Xiaohong


    Fluoride ions have the important roles in a lot of physiological activities related with biological and medical system, such as water fluoridation, caries treatment, and bone disease treatment. Great efforts have been made to develop new methods and strategies for F- detection in the past decades. Traditional methods for the detection of F- including ion chromatography, ion-selective electrodes, and spectroscopic techniques have the limitations in the biomedicine research. The fluorescent probes for F- are very promising that overcome some drawbacks of traditional fluoride detection methods. These probes exhibit high selectivity, high sensitivity as well as quick response to the detection of fluoride anions. The review commences with a brief description of photophysical mechanisms for fluorescent probes for fluoride, including photo induced electron transfer (PET), intramolecular charge transfer (ICT), fluorescence resonance energy transfer (FRET), and excited-state intramolecular proton transfer (ESIPT). Followed by a discussion about common dyes for fluorescent fluoride probes, such as anthracene, naphalimide, pyrene, BODIPY, fluorescein, rhodamine, resorufin, coumarin, cyanine, and near-infrared (NIR) dyes. We divide the fluorescent probes for fluoride in cellular application systems into nine groups, for example, type of hydrogen bonds, type of cleavage of Si-O bonds, type of Si-O bond cleavage and cylization reactions, etc. We also review the recent reported carriers in the delivery of fluorescent fluoride probes. Seventy-four typical fluorescent fluoride probes are listed and compared in detail, including quantum yield, reaction medium, excitation and emission wavelengths, linear detection range, selectivity for F-, mechanism, and analytical applications. Finally, we discuss the future challenges of the application of fluorescent fluoride probes in cellular system and in vivo. We wish that more and more excellent fluorescent fluoride probes will be developed

  4. Cellular bystander effects and radiation hormesis

    Loredana MARCU


    Full Text Available Bystander effects describe the effects of extracellular mediators from irradiated cells on neighbouring non-irradiated cells resulting in radiation-induced effects in unirradiated cells. Although the underlying mechanisms are largely unknown, it is widely recognised that two types of cellular communication (i.e. via gap junctions and/or release of molecular messengers into the extracellular environment play an essential role. Additionally, the effects can be significantly modulated by parameters such as cell type, cell-cycle stage and cell density. Some of the common bystander effects or biological end points which are evidenced after low-dose irradiation are: chromosomal instability, cell killing and delayed cell death, mutagenesis, micronucleus formation, gene and protein expression changes. Through these end points it is likely that bystander effects can be both detrimental and beneficial. By increasing mutation levels of cells bystander effects increase the likelihood of genetic defects and in turn cancer. On the other hand by removing damaged cells from the population and preventing the growth of cancer cells, bystander effects are beneficial.Radiation hormesis is a term used to relate the beneficial effects of small doses of radiation on living cells, whether plant, animal or human. Experiments on bacteria, plants and animals have demonstrated that several biological mechanisms are stimulated by low dose radiation, such as: protein synthesis, gene activation, detoxication of free radicals and stimulation of the immune system. These mechanisms were also observed in humans.The present review paper is a compilation of the most recent data on bystander effects and the possible implications of cellular response to radiation on cell growth and development.

  5. Controlling Cellular Endocytosis at the Nanoscale

    Battaglia, Giuseppe


    One of the most challenging aspects of drug delivery is the intra-cellular delivery of active agents. Several drugs and especially nucleic acids all need to be delivered within the cell interior to exert their therapeutic action. Small hydrophobic molecules can permeate cell membranes with relative ease, but hydrophilic molecules and especially large macromolecules such as proteins and nucleic acids require a vector to assist their transport across the cell membrane. This must be designed so as to ensure intracellular delivery without compromising cell viability. We have recently achieved this by using pH-sensitive poly(2-(methacryloyloxy)ethyl-phosphorylcholine)- co -poly(2-(diisopropylamino)ethyl methacrylate) (PMPC-PDPA) and poly(ethylene oxide)-co- poly(2-(diisopropylamino)ethyl methacrylate) (PEO-PDPA) diblock copolymers that self-assemble to form vesicles in aqueous solution. These vesicles combine a non-fouling PMPC or PEO block with a pH-sensitive PDPA block and have the ability to encapsulate both hydrophobic molecules within the vesicular membrane and hydrophilic molecules within their aqueous cores. The pH sensitive nature of the PDPA blocks make the diblock copolymers forming stable vesicles at physiological pH but that rapid dissociation of these vesicles occurs between pH 5 and pH 6 to form molecularly dissolved copolymer chains (unimers). We used these vesicles to encapsulate small and large macromolecules and these were successfully delivered intracellularly including nucleic acid, drugs, quantum dots, and antibodies. Dynamic light scattering, zeta potential measurements, and transmission electron microscopy were used to study and optimise the encapsulation processes. Confocal laser scanning microscopy, fluorescence flow cytometry and lysates analysis were used to quantify cellular uptake and to study the kinetics of this process in vitro and in vivo. We show the effective cytosolic delivery of nucleic acids, proteins, hydrophobic molecules

  6. 1,4-Naphthoquinones: From Oxidative Damage to Cellular and Inter-Cellular Signaling

    Lars-Oliver Klotz


    Full Text Available Naphthoquinones may cause oxidative stress in exposed cells and, therefore, affect redox signaling. Here, contributions of redox cycling and alkylating properties of quinones (both natural and synthetic, such as plumbagin, juglone, lawsone, menadione, methoxy-naphthoquinones, and others to cellular and inter-cellular signaling processes are discussed: (i naphthoquinone-induced Nrf2-dependent modulation of gene expression and its potentially beneficial outcome; (ii the modulation of receptor tyrosine kinases, such as the epidermal growth factor receptor by naphthoquinones, resulting in altered gap junctional intercellular communication. Generation of reactive oxygen species and modulation of redox signaling are properties of naphthoquinones that render them interesting leads for the development of novel compounds of potential use in various therapeutic settings.

  7. Cellular basis of gravity resistance in plants

    Hoson, Takayuki; Matsumoto, Shouhei; Inui, Kenichi; Zhang, Yan; Soga, Kouichi; Wakabayashi, Kazuyuki; Hashimoto, Takashi

    Mechanical resistance to the gravitational force is a principal gravity response in plants distinct from gravitropism. In the final step of gravity resistance, plants increase the rigidity of their cell walls via modifications to the cell wall metabolism and apoplastic environment. We studied cellular events that are related to the cell wall changes under hypergravity conditions produced by centrifugation. Hypergravity induced reorientation of cortical microtubules from transverse to longitudinal directions in epidermal cells of stem organs. In Arabidopsis tubulin mutants, the percentage of cells with longitudinal microtubules was high even at 1 g, and it was further increased by hypergravity. Hypocotyls of tubulin mutants also showed either left-handed or right-handed helical growth at 1 g, and the degree of twisting phenotype was intensified under hypergravity conditions. The left-handed helical growth mutants had right-handed microtubule arrays, whereas the right-handed mutant had left-handed arrays. There was a close correlation between the alignment angle of epidermal cell files and the alignment of cortical microtubules. Gadolinium ions suppressed both the twisting phenotype and reorientation of microtubules in tubulin mutants. These results support the hypothesis that cortical microtubules play an es-sential role in maintenance of normal growth phenotype against the gravitational force, and suggest that mechanoreceptors are involved in modifications to morphology and orientation of microtubule arrays by hypergravity. Actin microfilaments, in addition to microtubules, may be involved in gravity resistance. The nucleus of epidermal cells of azuki bean epicotyls, which is present almost in the center of the cell at 1 g, was displaced to the cell bottom by increasing the magnitude of gravity. Cytochalasin D stimulated the sedimentation by hypergravity of the nu-cleus, suggesting that the positioning of the nucleus is regulated by actin microfilaments, which is

  8. Cellular immune responses towards regulatory cells.

    Larsen, Stine Kiær


    This thesis describes the results from two published papers identifying spontaneous cellular immune responses against the transcription factors Foxp3 and Foxo3. The tumor microenvironment is infiltrated by cells that hinder effective tumor immunity from developing. Two of these cell types, which have been linked to a bad prognosis for patients, are regulatory T cells (Treg) and tolerogenic dendritic cells (DC). Tregs inhibit effector T cells from attacking the tumor through various mechanisms, including secreted factors and cell-to-cell contact. Tregs express the transcription factor Foxp3, which is necessary for their development and suppressive activities. Tolerogenic DCs participate in creating an environment in the tumor where effector T cells become tolerant towards the tumor instead of attacking it. The transcription factor Foxo3 was recently described to be highly expressed by tolerogenic DCs and to programme their tolerogenic influence. This thesis describes for the first time the existence of spontaneous cellular immune responses against peptides derived from Foxp3 and Foxo3. We have detected the presence of cytotoxic T cells that recognise these peptides in an HLA-A2 restricted manner in cancer patients and for Foxp3 in healthy donors as well. In addition, we have demonstrated that the Foxp3- and Foxo3-specific CTLs recognize Foxp3- and Foxo3-expressing cancer cell lines and importantly, suppressive immune cells, namely Tregs and in vitro generated DCs. Cancer immunotherapy is recently emerging as an important treatment modality improving the survival of selected patients. The current progress is largely owing to targeting of the immune suppressive milieu that is dominating the tumor microenvironment. This is being done through immune checkpoint blockade with CTLA-4 and PD-1/PD-L1 antibodies and through lymphodepleting conditioning of patients and ex vivo activation of TILs in adoptive cell transfer. Several strategies are being explored for depletion of

  9. Cellular membrane collapse by atmospheric-pressure plasma jet

    Kim, Kangil; Jun Ahn, Hak; Lee, Jae-Hyeok; Kim, Jae-Ho; Sik Yang, Sang; Lee, Jong-Soo


    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

  10. Cellular membrane collapse by atmospheric-pressure plasma jet

    Kim, Kangil; Sik Yang, Sang, E-mail:, E-mail: [Department of Electrical and Computer Engineering, Ajou University, Suwon 443-749 (Korea, Republic of); Jun Ahn, Hak; Lee, Jong-Soo, E-mail:, E-mail: [Department of Biological Sciences, Ajou University, Suwon 443-749 (Korea, Republic of); Lee, Jae-Hyeok; Kim, Jae-Ho [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)


    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

  11. Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Hasan, Ziaul; Bhargava, Vijay K


    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogenous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative rela...

  12. Power Control in Multi-Layer Cellular Networks

    Davaslioglu, Kemal


    We investigate the possible performance gains of power control in multi-layer cellular systems where microcells and picocells are distributed within macrocells. Although multilayers in cellular networks help increase system capacity and coverage, and can reduce total energy consumption; they cause interference, reducing the performance of the network. Therefore, downlink transmit power levels of multi-layer hierarchical cellular networks need to be controlled in order to fully exploit their benefits. In this work, we present an analytical derivation to determine optimum power levels for two-layer cellular networks and generalize our solution to multi-layer cellular networks. We also simulate our results in a typical multi-layer network setup and observe significant power savings compared to single-layer cellular networks.

  13. Supporting performance and configuration management of GTE cellular networks

    Tan, Ming; Lafond, C.; Jakobson, G. [GTE Laboratories Inc., Waltham, MA (United States); Young, G. [GTE Mobilnet, Rosewell, GA (United States)


    GTE Laboratories, in cooperation with GTE Mobilnet, has developed and deployed PERFFEX (PERFormance Expert), an intelligent system for performance and configuration management of cellular networks. PERFEX assists cellular network performance and radio engineers in the analysis of large volumes of cellular network performance and configuration data. It helps them locate and determine the probable causes of performance problems, and provides intelligent suggestions about how to correct them. The system combines an expert cellular network performance tuning capability with a map-based graphical user interface, data visualization programs, and a set of special cellular engineering tools. PERFEX is in daily use at more than 25 GTE Mobile Switching Centers. Since the first deployment of the system in late 1993, PERFEX has become a major GTE cellular network performance optimization tool.

  14. Validation of self-reported cellular phone use

    Samkange-Zeeb, Florence; Berg, Gabriele; Blettner, Maria


    BACKGROUND: In recent years, concern has been raised over possible adverse health effects of cellular telephone use. In epidemiological studies of cancer risk associated with the use of cellular telephones, the validity of self-reported cellular phone use has been problematic. Up to now...... there is very little information published on this subject. METHODS: We conducted a study to validate the questionnaire used in an ongoing international case-control study on cellular phone use, the "Interphone study". Self-reported cellular phone use from 68 of 104 participants who took part in our study...... was compared with information derived from the network providers over a period of 3 months (taken as the gold standard). RESULTS: Using Spearman's rank correlation, the correlation between self-reported phone use and information from the network providers for cellular phone use in terms of the number of calls...

  15. Numerical investigation on evolution of cylindrical cellular detonation

    WANG Chun; JIANG Zong-lin; HU Zong-min; HAN Gui-lai


    Cylindrical cellular detonation is numerically investigated by solving twodimensional reactive Euler equations with a finite volume method on a two-dimensional self-adaptive unstructured mesh.The one-step reversible chemical reaction model is applied to simplify the control parameters of chemical reaction.Numerical results demonstrate the evolution of cellular cell splitting of cylindrical cellular detonation explored in experimentas.Split of cellular structures shows different features in the near-field and far-field from the initiation zone.Variation of the local curvature is a key factor in the behavior of cell split of cylindrical cellular detonation in propagation.Numerical results show that split of cellular structures comes from the self-organization of transverse waves corresponding to the development of small disturbances along the detonation front related to detonation instability.

  16. Iron Oxide Nanoparticles Stimulates Extra-Cellular Matrix Production in Cellular Spheroids

    Megan Casco


    Full Text Available Nanotechnologies have been integrated into drug delivery, and non-invasive imaging applications, into nanostructured scaffolds for the manipulation of cells. The objective of this work was to determine how the physico-chemical properties of magnetic nanoparticles (MNPs and their spatial distribution into cellular spheroids stimulated cells to produce an extracellular matrix (ECM. The MNP concentration (0.03 mg/mL, 0.1 mg/mL and 0.3 mg/mL, type (magnetoferritin, shape (nanorod—85 nm × 425 nm and incorporation method were studied to determine each of their effects on the specific stimulation of four ECM proteins (collagen I, collagen IV, elastin and fibronectin in primary rat aortic smooth muscle cell. Results demonstrated that as MNP concentration increased there was up to a 6.32-fold increase in collagen production over no MNP samples. Semi-quantitative Immunohistochemistry (IHC results demonstrated that MNP type had the greatest influence on elastin production with a 56.28% positive area stain compared to controls and MNP shape favored elastin stimulation with a 50.19% positive area stain. Finally, there are no adverse effects of MNPs on cellular contractile ability. This study provides insight on the stimulation of ECM production in cells and tissues, which is important because it plays a critical role in regulating cellular functions.

  17. Real-Time Bioluminescent Tracking of Cellular Population Dynamics

    Close, Dan; Xu, Tingling; Ripp, Steven; Sayler, Gary


    Cellular population dynamics are routinely monitored across many diverse fields for a variety of purposes. In general, these dynamics are assayed either through the direct counting of cellular aliquots followed by extrapolation to the total population size, or through the monitoring of signal intensity from any number of externally stimulated reporter proteins. While both viable methods, here we describe a novel technique that allows for the automated, non-destructive tracking of cellular pop...

  18. Real-Time Bioluminescent Tracking of Cellular Population Dynamics

    Close, Dan; Xu, Tingling; Ripp, Steven; Sayler, Gary


    Cellular population dynamics are routinely monitored across many diverse fields for a variety of purposes. In general, these dynamics are assayed either through the direct counting of cellular aliquots followed by extrapolation to the total population size, or through the monitoring of signal intensity from any number of externally stimulated reporter proteins. While both viable methods, here we describe a novel technique that allows for the automated, non-destructive tracking of cellular pop...

  19. Some Properties of Fractals Generated by Linear Cellular Automata



    Fractals and cellular automata are both significant areas of research in nonlinear analysis. This paper studies a class of fractals generated by cellular automata. The patterns produced by cellular automata give a special sequence of sets in Euclidean space. The corresponding limit set is shown to be a fractal and the dimension is independent of the choice of the finite initial seed. As opposed to previous works, the fractals here do not depend on the time parameter.

  20. Cell biology of the future: Nanometer-scale cellular cartography.

    Taraska, Justin W


    Understanding cellular structure is key to understanding cellular regulation. New developments in super-resolution fluorescence imaging, electron microscopy, and quantitative image analysis methods are now providing some of the first three-dimensional dynamic maps of biomolecules at the nanometer scale. These new maps--comprehensive nanometer-scale cellular cartographies--will reveal how the molecular organization of cells influences their diverse and changeable activities.

  1. Cellular effector mechanisms against Plasmodium liver stages.

    Frevert, Ute; Nardin, Elizabeth


    Advances in our understanding of the molecular and cell biology of the malaria parasite have led to new vaccine development efforts resulting in a pipeline of over 40 candidates undergoing clinical phase I-III trials. Vaccine-induced CD4+ and CD8+ T cells specific for pre-erythrocytic stage antigens have been found to express cytolytic and multi-cytokine effector functions that support a key role for these T cells within the hepatic environment. However, little is known of the cellular interactions that occur during the effector phase in which the intracellular hepatic stage of the parasite is targeted and destroyed. This review focuses on cell biological aspects of the interaction between malaria-specific effector cells and the various antigen-presenting cells that are known to exist within the liver, including hepatocytes, dendritic cells, Kupffer cells, stellate cells and sinusoidal endothelia. Considering the unique immune properties of the liver, it is conceivable that these different hepatic antigen-presenting cells fulfil distinct but complementary roles during the effector phase against Plasmodium liver stages.

  2. [Cellular structure of propionibacteria during their multiplication].

    Sobczak, E; Kocoń, J


    The aim of the present study was to determine the structure of bacterial cells from Propionibacterium genus as well as their structure during the cellular division. On the basis of the observations made in the electron transmission microscope, in uranyl-acetates-tained preparations of ultra-thin specimens of bacteria, it was stated that propionic bacteria appeared in a shape of short rods, possessing regular profiles of cell walls as opposed to Gram-negative bacteria with a very creased edge line. Besides, it was observed that division of cells had place by formation of septum, most probably preceded by the division of mezosome, which is a signal for creating the divisional wall. In the conducted studies, the following phenomena were started: presence of membraneous structure of mezosomes, which is linked with the chain of circular DNA in bacterial cell, appearance of numerous ribosomes in the regions of tangled threads of nucleic acids, and existence of other undefinite elements. Mezosome present in the cell of propionic bacteria is probably linked with the cell wall at least in two places and on the surface of external cell wall at the site of its linking; it causes the change in electronic density, demonstrated by the undefined holes or scars in cell wall. This finding gives the possibility of distinguishing this genus of Propionibacterium, in the respect of morphology, from other bacteria what, in the opinion of the authors, is a new achievement in the studies on the structure of propionic bacteria.

  3. Cellular and Molecular Biology of Airway Mucins

    Lillehoj, Erik P.; Kato, Kosuke; Lu, Wenju; Kim, Kwang C.


    Airway mucus constitutes a thin layer of airway surface liquid with component macromolecules that covers the luminal surface of the respiratory tract. The major function of mucus is to protect the lungs through mucociliary clearance of inhaled foreign particles and noxious chemicals. Mucus is comprised of water, ions, mucin glycoproteins, and a variety of other macromolecules, some of which possess anti-microbial, anti-protease, and anti-oxidant activities. Mucins comprise the major protein component of mucus and exist as secreted and cell-associated glycoproteins. Secreted, gel-forming mucins are mainly responsible for the viscoelastic property of mucus, which is crucial for effective mucociliary clearance. Cell-associated mucins shield the epithelial surface from pathogens through their extracellular domains and regulate intracellular signaling through their cytoplasmic regions. However, neither the exact structures of mucin glycoproteins, nor the manner through which their expression is regulated, are completely understood. This chapter reviews what is currently known about the cellular and molecular properties of airway mucins. PMID:23445810

  4. Noise Reduction Potential of Cellular Metals

    Björn Hinze


    Full Text Available Rising numbers of flights and aircrafts cause increasing aircraft noise, resulting in the development of various approaches to change this trend. One approach is the application of metallic liners in the hot gas path of aero-engines. At temperatures of up to 600 °C only metallic or ceramic structures can be used. Due to fatigue loading and the notch effect of the pores, mechanical properties of porous metals are superior to the ones of ceramic structures. Consequently, cellular metals like metallic foams, sintered metals, or sintered metal felts are most promising materials. However, acoustic absorption depends highly on pore morphology and porosity. Therefore, both parameters must be characterized precisely to analyze the correlation between morphology and noise reduction performance. The objective of this study is to analyze the relationship between pore morphology and acoustic absorption performance. The absorber materials are characterized using image processing based on two dimensional microscopy images. The sound absorption properties are measured using an impedance tube. Finally, the correlation of acoustic behavior, pore morphology, and porosity is outlined.

  5. Optimal flux patterns in cellular metabolic networks

    Almaas, E


    The availability of whole-cell level metabolic networks of high quality has made it possible to develop a predictive understanding of bacterial metabolism. Using the optimization framework of flux balance analysis, I investigate metabolic response and activity patterns to variations in the availability of nutrient and chemical factors such as oxygen and ammonia by simulating 30,000 random cellular environments. The distribution of reaction fluxes is heavy-tailed for the bacteria H. pylori and E. coli, and the eukaryote S. cerevisiae. While the majority of flux balance investigations have relied on implementations of the simplex method, it is necessary to use interior-point optimization algorithms to adequately characterize the full range of activity patterns on metabolic networks. The interior-point activity pattern is bimodal for E. coli and S. cerevisiae, suggesting that most metabolic reaction are either in frequent use or are rarely active. The trimodal activity pattern of H. pylori indicates that a group of its metabolic reactions (20%) are active in approximately half of the simulated environments. Constructing the high-flux backbone of the network for every environment, there is a clear trend that the more frequently a reaction is active, the more likely it is a part of the backbone. Finally, I briefly discuss the predicted activity patterns of the central-carbon metabolic pathways for the sample of random environments.

  6. Analytical Modeling of Uplink Cellular Networks

    Novlan, Thomas D; Andrews, Jeffrey G


    Cellular uplink analysis has typically been undertaken by either a simple approach that lumps all interference into a single deterministic or random parameter in a Wyner-type model, or via complex system level simulations that often do not provide insight into why various trends are observed. This paper proposes a novel middle way that is both accurate and also results in easy-to-evaluate integral expressions based on the Laplace transform of the interference. We assume mobiles and base stations are randomly placed in the network with each mobile pairing up to its closest base station. The model requires two important changes compared to related recent work on the downlink. First, dependence is introduced between the user and base station point processes to make sure each base station serves a single mobile in the given resource block. Second, per-mobile power control is included, which further couples the locations of the mobiles and their receiving base stations. Nevertheless, we succeed in deriving the cov...

  7. Cooperative Handover Management in Dense Cellular Networks

    Arshad, Rabe


    Network densification has always been an important factor to cope with the ever increasing capacity demand. Deploying more base stations (BSs) improves the spatial frequency utilization, which increases the network capacity. However, such improvement comes at the expense of shrinking the BSs\\' footprints, which increases the handover (HO) rate and may diminish the foreseen capacity gains. In this paper, we propose a cooperative HO management scheme to mitigate the HO effect on throughput gains achieved via cellular network densification. The proposed HO scheme relies on skipping HO to the nearest BS at some instances along the user\\'s trajectory while enabling cooperative BS service during HO execution at other instances. To this end, we develop a mathematical model, via stochastic geometry, to quantify the performance of the proposed HO scheme in terms of coverage probability and user throughput. The results show that the proposed cooperative HO scheme outperforms the always best connected based association at high mobility. Also, the value of BS cooperation along with handover skipping is quantified with respect to the HO skipping only that has recently appeared in the literature. Particularly, the proposed cooperative HO scheme shows throughput gains of 12% to 27% and 17% on average, when compared to the always best connected and HO skipping only schemes at user velocity ranging from 80 km/h to 160 Km/h, respectively.

  8. [Stress-induced cellular adaptive mutagenesis].

    Zhu, Linjiang; Li, Qi


    The adaptive mutations exist widely in the evolution of cells, such as antibiotic resistance mutations of pathogenic bacteria, adaptive evolution of industrial strains, and cancerization of human somatic cells. However, how these adaptive mutations are generated is still controversial. Based on the mutational analysis models under the nonlethal selection conditions, stress-induced cellular adaptive mutagenesis is proposed as a new evolutionary viewpoint. The hypothetic pathway of stress-induced mutagenesis involves several intracellular physiological responses, including DNA damages caused by accumulation of intracellular toxic chemicals, limitation of DNA MMR (mismatch repair) activity, upregulation of general stress response and activation of SOS response. These responses directly affect the accuracy of DNA replication from a high-fidelity manner to an error-prone one. The state changes of cell physiology significantly increase intracellular mutation rate and recombination activity. In addition, gene transcription under stress condition increases the instability of genome in response to DNA damage, resulting in transcription-associated DNA mutagenesis. In this review, we summarize these two molecular mechanisms of stress-induced mutagenesis and transcription-associated DNA mutagenesis to help better understand the mechanisms of adaptive mutagenesis.

  9. Cellular and molecular aspects of gastric cancer

    Malcolm G Smith; Georgina L Hold; Eiichi Tahara; Emad M El-Omar


    Gastric cancer remains a global killer with a shifting burden from the developed to the developing world.The cancer develops along a multistage process that is defined by distinct histological and pathophysiological phases. Several genetic and epigenetic alterations mediate the transition from one stage to another and these include mutations in oncogenes, tumour suppressor genes and cell cycle and mismatch repair genes. The most significant advance in the fight against gastric caner came with the recognition of the role of Helicobacter pylori (H pylori) as the most important acquired aetiological agent for this cancer. Recent work has focussed on elucidating the complex host/microbial interactions that underlie the neoplastic process. There is now considerable insight into the pathogenesis of this cancer and the prospect of preventing and eradicating the disease has become a reality. Perhaps more importantly, the study of H pylori-induced gastric carcinogenesis offers a paradigm for understanding more complex human cancers. In this review, we examine the molecular and cellular events that underlie H pyloriinduced gastric cancer.

  10. Cellular-level surgery using nano robots.

    Song, Bo; Yang, Ruiguo; Xi, Ning; Patterson, Kevin Charles; Qu, Chengeng; Lai, King Wai Chiu


    The atomic force microscope (AFM) is a popular instrument for studying the nano world. AFM is naturally suitable for imaging living samples and measuring mechanical properties. In this article, we propose a new concept of an AFM-based nano robot that can be applied for cellular-level surgery on living samples. The nano robot has multiple functions of imaging, manipulation, characterizing mechanical properties, and tracking. In addition, the technique of tip functionalization allows the nano robot the ability for precisely delivering a drug locally. Therefore, the nano robot can be used for conducting complicated nano surgery on living samples, such as cells and bacteria. Moreover, to provide a user-friendly interface, the software in this nano robot provides a "videolized" visual feedback for monitoring the dynamic changes on the sample surface. Both the operation of nano surgery and observation of the surgery results can be simultaneously achieved. This nano robot can be easily integrated with extra modules that have the potential applications of characterizing other properties of samples such as local conductance and capacitance.

  11. Endothelial Cellular Responses to Biodegradable Metal Zinc.

    Ma, Jun; Zhao, Nan; Zhu, Donghui

    Biodegradable zinc (Zn) metals, a new generation of biomaterials, have attracted much attention due to their excellent biodegradability, bioabsorbability, and adaptability to tissue regeneration. Compared with magnesium (Mg) and iron (Fe), Zn exhibits better corrosion and mechanical behaviors in orthopedic and stent applications. After implantation, Zn containing material will slowly degrade, and Zn ions (Zn(2+)) will be released to the surrounding tissue. For stent applications, the local Zn(2+)concentration near endothelial tissue/cells could be high. However, it is unclear how endothelia will respond to such high concentrations of Zn(2+), which is pivotal to vascular remodeling and regeneration. Here, we evaluated the short-term cellular behaviors of primary human coronary artery endothelial cells (HCECs) exposed to a concentration gradient (0-140 μM) of extracellular Zn(2+). Zn(2+) had an interesting biphasic effect on cell viability, proliferation, spreading, and migration. Generally, low concentrations of Zn(2+) promoted viability, proliferation, adhesion, and migration, while high concentrations of Zn(2+) had opposite effects. For gene expression profiles, the most affected functional genes were related to cell adhesion, cell injury, cell growth, angiogenesis, inflammation, vessel tone, and coagulation. These results provide helpful information and guidance for Zn-based alloy design as well as the controlled release of Zn(2+)in stent and other related medical applications.

  12. Optimal flux patterns in cellular metabolic networks

    Almaas, E


    The availability of whole-cell level metabolic networks of high quality has made it possible to develop a predictive understanding of bacterial metabolism. Using the optimization framework of flux balance analysis, I investigate metabolic response and activity patterns to variations in the availability of nutrient and chemical factors such as oxygen and ammonia by simulating 30,000 random cellular environments. The distribution of reaction fluxes is heavy-tailed for the bacteria H. pylori and E. coli, and the eukaryote S. cerevisiae. While the majority of flux balance investigations have relied on implementations of the simplex method, it is necessary to use interior-point optimization algorithms to adequately characterize the full range of activity patterns on metabolic networks. The interior-point activity pattern is bimodal for E. coli and S. cerevisiae, suggesting that most metabolic reaction are either in frequent use or are rarely active. The trimodal activity pattern of H. pylori indicates that a group of its metabolic reactions (20%) are active in approximately half of the simulated environments. Constructing the high-flux backbone of the network for every environment, there is a clear trend that the more frequently a reaction is active, the more likely it is a part of the backbone. Finally, I briefly discuss the predicted activity patterns of the central-carbon metabolic pathways for the sample of random environments.

  13. Thermal effects of radiation from cellular telephones

    Wainwright, Peter


    A finite element thermal model of the head has been developed to calculate temperature rises generated in the brain by radiation from cellular telephones and similar electromagnetic devices. A 1 mm resolution MRI dataset was segmented semiautomatically, assigning each volume element to one of ten tissue types. A finite element mesh was then generated using a fully automatic tetrahedral mesh generator developed at NRPB. There are two sources of heat in the model: firstly the natural metabolic heat production; and secondly the power absorbed from the electromagnetic field. The SAR was derived from a finite difference time domain model of the head, coupled to a model `mobile phone', namely a quarter-wavelength antenna mounted on a metal box. The steady-state temperature distribution was calculated using the standard Pennes `bioheat equation'. In the normal cerebral cortex the high blood perfusion rate serves to provide an efficient cooling mechanism. In the case of equipment generally available to the public, the maximum temperature rise found in the brain was about 0.1 °C. These results will help in the further development of criteria for exposure guidelines, and the technique developed may be used to assess temperature rises associated with SARs for different types of RF exposure.

  14. Urban sprawl modeling using cellular automata

    Shikhar Deep


    Full Text Available The population settlements in the fast-growing urban world need to be monitored in order to design a sustainable urban habitat. The remote sensing and GIS are considered as an effective monitoring and decision-support tool in urban planning. This study compiles the results of a study undertaken to measure the urban sprawl in Dehradun city, India through cellular automata CA-Markov model. CA-Markov model can effectively be used to study the urban dynamics in rapidly growing cities. Being an effective tool for encoding spatial structures, the information generated by it could be used to predict urban scenarios for sustainable growth. To achieve the goal, the temporal images of LISS IV were used to analyse the spatial pattern of land cover change in the area and the future growth was modeled by applying CA-Markov model. The results clearly suggest that major changes between the periods of 2004 and 2009 occurred in built up classes (about 27% followed by agriculture (17.7% and fallow land (10.2%. The projection as predicted using CA-Markov model suggested a value of kappa coefficient = 0.91 which indicates the validity of the model to predict future projections. Modeling suggested a clear trend of various land use classes’ transformation in the area of urban built up expansions. It is concluded that RS and GIS can be an effective decision support tool for policy makers to design sustainable urban habitats.

  15. Biophysical Tools to Study Cellular Mechanotransduction

    Ismaeel Muhamed


    Full Text Available The cell membrane is the interface that volumetrically isolates cellular components from the cell’s environment. Proteins embedded within and on the membrane have varied biological functions: reception of external biochemical signals, as membrane channels, amplification and regulation of chemical signals through secondary messenger molecules, controlled exocytosis, endocytosis, phagocytosis, organized recruitment and sequestration of cytosolic complex proteins, cell division processes, organization of the cytoskeleton and more. The membrane’s bioelectrical role is enabled by the physiologically controlled release and accumulation of electrochemical potential modulating molecules across the membrane through specialized ion channels (e.g., Na+, Ca2+, K+ channels. The membrane’s biomechanical functions include sensing external forces and/or the rigidity of the external environment through force transmission, specific conformational changes and/or signaling through mechanoreceptors (e.g., platelet endothelial cell adhesion molecule (PECAM, vascular endothelial (VE-cadherin, epithelial (E-cadherin, integrin embedded in the membrane. Certain mechanical stimulations through specific receptor complexes induce electrical and/or chemical impulses in cells and propagate across cells and tissues. These biomechanical sensory and biochemical responses have profound implications in normal physiology and disease. Here, we discuss the tools that facilitate the understanding of mechanosensitive adhesion receptors. This article is structured to provide a broad biochemical and mechanobiology background to introduce a freshman mechano-biologist to the field of mechanotransduction, with deeper study enabled by many of the references cited herein.

  16. Biological (molecular and cellular) markers of toxicity

    Shugart, L.R.


    The overall objective of this study is to evaluate the use of the small aquarium fish, Japanese Medaka (Oryzias latipes), as a predictor of potential genotoxicity following exposure to carcinogens. This will be accomplished by quantitatively investigating the early molecular events associated with genotoxicity of various tissues of Medaka subsequent to exposure of the organism to several known carcinogens, such as diethylnitrosamine (DEN) and benzo(a)pyrene (BaP). Because of the often long latent period between initial contact with certain chemical and physical agents in our environment and subsequent expression of deleterious health or ecological impact, the development of sensitive methods for detecting and estimating early exposure is needed so that necessary interventions can ensue. A promising biological endpoint for detecting early exposure to damaging chemicals is the interaction of these compounds with cellular macromolecules such as Deoxyribonucleic acids (DNA). This biological endpoint assumes significance because it can be one of the critical early events leading eventually to adverse effects (neoplasia) in the exposed organism.

  17. On the topological sensitivity of cellular automata

    Baetens, Jan M.; De Baets, Bernard


    Ever since the conceptualization of cellular automata (CA), much attention has been paid to the dynamical properties of these discrete dynamical systems, and, more in particular, to their sensitivity to the initial condition from which they are evolved. Yet, the sensitivity of CA to the topology upon which they are based has received only minor attention, such that a clear insight in this dependence is still lacking and, furthermore, a quantification of this so-called topological sensitivity has not yet been proposed. The lack of attention for this issue is rather surprising since CA are spatially explicit, which means that their dynamics is directly affected by their topology. To overcome these shortcomings, we propose topological Lyapunov exponents that measure the divergence of two close trajectories in phase space originating from a topological perturbation, and we relate them to a measure grasping the sensitivity of CA to their topology that relies on the concept of topological derivatives, which is introduced in this paper. The validity of the proposed methodology is illustrated for the 256 elementary CA and for a family of two-state irregular totalistic CA.

  18. Cellular Automata Model for Elastic Solid Material

    DONG Yin-Feng; ZHANG Guang-Cai; XU Ai-Guo; GAN Yan-Biao


    The Cellular Automaton (CA) modeling and simulation of solid dynamics is a long-standing difficult problem.In this paper we present a new two-dimensional CA model for solid dynamics.In this model the solid body is represented by a set of white and black particles alternatively positioned in the x-and y-directions.The force acting on each particle is represented by the linear summation of relative displacements of the nearest-neighboring particles.The key technique in this new model is the construction of eight coefficient matrices.Theoretical and numerical analyses show that the present model can be mathematically described by a conservative system.So,it works for elastic material.In the continuum limit the CA model recovers the well-known Navier equation.The coefficient matrices are related to the shear module and Poisson ratio of the material body.Compared with previous CA model for solid body,this model realizes the natural coupling of deformations in the x-and y-directions.Consequently,the wave phenomena related to the Poisson ratio effects are successfully recovered.This work advances significantly the CA modeling and simulation in the field of computational solid dynamics.

  19. Cellular recurrent deep network for image registration

    Alam, M.; Vidyaratne, L.; Iftekharuddin, Khan M.


    Image registration using Artificial Neural Network (ANN) remains a challenging learning task. Registration can be posed as a two-step problem: parameter estimation and actual alignment/transformation using the estimated parameters. To date ANN based image registration techniques only perform the parameter estimation, while affine equations are used to perform the actual transformation. In this paper, we propose a novel deep ANN based image rigid registration that combines parameter estimation and transformation as a simultaneous learning task. Our previous work shows that a complex universal approximator known as Cellular Simultaneous Recurrent Network (CSRN) can successfully approximate affine transformations with known transformation parameters. This study introduces a deep ANN that combines a feed forward network with a CSRN to perform full rigid registration. Layer wise training is used to pre-train feed forward network for parameter estimation and followed by a CSRN for image transformation respectively. The deep network is then fine-tuned to perform the final registration task. Our result shows that the proposed deep ANN architecture achieves comparable registration accuracy to that of image affine transformation using CSRN with known parameters. We also demonstrate the efficacy of our novel deep architecture by a performance comparison with a deep clustered MLP.

  20. Multistructural biomimetic substrates for controlled cellular differentiation

    Orza, Anamaria I.; Mihu, Carmen; Soritau, Olga; Diudea, Mircea; Florea, Adrian; Matei, Horea; Balici, Stefana; Mudalige, Thilak; Kanarpardy, Ganesh K.; Biris, Alexandru S.


    Multidimensional scaffolds are considered to be ideal candidates for regenerative medicine and tissue engineering based on their potential to provide an excellent microenvironment and direct the fate of the cultured cells. More recently, the use of stem cells in medicine has opened a new technological opportunity for controlled tissue formation. However, the mechanism through which the substrate directs the differentiation of stem cells is still rather unclear. Data concerning its specific surface chemistry, topology, and its signaling ability need to be further understood and analyzed. In our study, atomic force microscopy was used to study the stiffness, roughness, and topology of the collagen (Coll) and metallized collagen (MC) substrates, proposed as an excellent substrate for regenerative medicine. The importance of signaling molecules was studied by constructing a new hybrid signaling substrate that contains both collagen and laminin extracellular matrix (ECM) proteins. The cellular response—such as attachment capability, proliferation and cardiac and neuronal phenotype expression on the metallized and non-metallized hybrid substrates (collagen + laminin)—was studied using MTT viability assay and immunohistochemistry studies. Our findings indicate that such hybrid materials could play an important role in the regeneration of complex tissues.

  1. Cellular Senescence: Many Roads, One Final Destination

    Raya Saab


    Full Text Available Cellular senescence is a tumor-suppressor mechanism that has been shown to occur in response to multiple signals, including oncogenic stress, DNA damage, oxidative stress, telomere shortening, and other tumor-promoting insults. Over the past decade, much has been uncovered regarding the phenotype of this tumor-suppressor response and the underlying pathways necessary for its establishment. However, we have also learned that the intricate details of signaling pathways underlying senescence as a tumor-suppressor response are very much context dependent. In addition, cross-talk among pathways, and negative and positive feedback loops, all complicate our understanding of this process. This short review attempts to summarize what is known to date regarding senescence in tumor suppression, both in vitro and in vivo. Further insights into pathways necessary for senescence will hopefully identify appropriate targets for interventions to not only induce senescence as a treatment of cancerous lesions, but also to maintain this state in premalignant lesions in an effort to prevent progression to cancer.

  2. Extra cellular matrix features in human meninges.

    Montagnani, S; Castaldo, C; Di Meglio, F; Sciorio, S; Giordano-Lanza, G


    We collected human fetal and adult normal meninges to relate the age of the tissue with the presence of collagenous and non-collagenous components of Extra Cellular Matrix (ECM). Immunohistochemistry led us to observe some differences in the amount and in the distribution of these proteins between the two sets of specimens. In particular, laminin and tenascin seem to be expressed more intensely in fetal meninges when compared to adult ones. In order to investigate whether the morphofunctional characteristics of fetal meninges may be represented in pathological conditions we also studied meningeal specimens from human meningiomas. Our attention was particularly focused on the expression of those non-collagenous proteins involved in nervous cell migration and neuronal morphogenesis as laminin and tenascin, which were present in lesser amount in normal adult specimens. Microscopical evidences led us to hipothesize that these proteins which are synthesized in a good amount during the fetal development of meninges can be newly produced in tumors. On the contrary, the role of tenascin and laminin in adult meninges is probably only interesting for their biophysical characteristics.

  3. Wireless Fractal Ultra-Dense Cellular Networks.

    Hao, Yixue; Chen, Min; Hu, Long; Song, Jeungeun; Volk, Mojca; Humar, Iztok


    With the ever-growing number of mobile devices, there is an explosive expansion in mobile data services. This represents a challenge for the traditional cellular network architecture to cope with the massive wireless traffic generated by mobile media applications. To meet this challenge, research is currently focused on the introduction of a small cell base station (BS) due to its low transmit power consumption and flexibility of deployment. However, due to a complex deployment environment and low transmit power of small cell BSs, the coverage boundary of small cell BSs will not have a traditional regular shape. Therefore, in this paper, we discuss the coverage boundary of an ultra-dense small cell network and give its main features: aeolotropy of path loss fading and fractal coverage boundary. Simple performance analysis is given, including coverage probability and transmission rate, etc., based on stochastic geometry theory and fractal theory. Finally, we present an application scene and discuss challenges in the ultra-dense small cell network.

  4. Myoblast fusion: Experimental systems and cellular mechanisms.

    Schejter, Eyal D


    Fusion of myoblasts gives rise to the large, multi-nucleated muscle fibers that power and support organism motion and form. The mechanisms underlying this prominent form of cell-cell fusion have been investigated by a variety of experimental approaches, in several model systems. The purpose of this review is to describe and discuss recent progress in the field, as well as point out issues currently unresolved and worthy of further investigation. Following a description of several new experimental settings employed in the study of myoblast fusion, a series of topics relevant to the current understanding of the process are presented. These pertain to elements of three major cellular machineries- cell-adhesion, the actin-based cytoskeleton and membrane-associated elements- all of which play key roles in mediating myoblast fusion. Among the issues raised are the diversity of functions ascribed to different adhesion proteins (e.g. external cell apposition and internal recruitment of cytoskeleton regulators); functional significance of fusion-associated actin structures; and discussion of alternative mechanisms employing single or multiple fusion pore formation as the basis for muscle cell fusion.

  5. Gigahertz optoacoustic imaging for cellular imaging

    Rui, Min; Narashimhan, Sankar; Bost, Wolfgang; Stracke, Frank; Weiss, Eike; Lemor, Robert; Kolios, Michael C.


    Photoacoustic imaging exploits contrast mechanisms that depend on optical and thermomechanical properties of optical absorbers. The photoacoustic signal bandwidth is dictated by the absorber size and the laser pulse width. In this work we demonstrate that photoacoustic signals can be detected from micron and sub-micron particles. We anticipate applications to include cellular imaging with nanometer sized contrast agents such as gold nanoshells, nanorods, and nanocages. An existing acoustic microscopy system was used (the SASAM 1000, kibero GmbH). This platform is developed on an Olympus IX81 optical microscope with a rotating column that has an optical condenser for transmission optical microscopy and an acoustic module for the acoustic microscopy. The adapted optoacoustic module consists of a Qswitched Nd:YAG solid-state-laser (Teem Photonics, France) generating sub-nanosecond pulses. Scans were acquired of microparticles (1 μm black Toner particles) and cells. The confocal arrangement allowed high signal to noise ratio photoacoustic signals (>30 dB) to be detected at approximately 400 MHz. The particles of various sizes produced signals of different frequency content. In imaging mode, the full width half maximum (FWHM) was measured to be 3.6 μm for the 400 MHz transducer which is in general agreement theory for a 0.3 NA objective (4.3μm). Moreover, images are generated from single melanoma cells, generated by the endogenous contrast from the intracellular melanin.

  6. Bacterial Cellular Materials as Precursors of Chloroform

    Wang, J.; Ng, T.; Zhang, Q.; Chow, A. T.; Wong, P.


    The environmental sources of chloroform and other halocarbons have been intensively investigated because their effects of stratospheric ozone destruction and environmental toxicity. It has been demonstrated that microorganisms could facilitate the biotic generation of chloroform from natural organic matters in soil, but whether the cellular materials itself also serves as an important precursor due to photo-disinfection is poorly known. Herein, seven common pure bacterial cultures (Acinetobacter junii, Aeromonas hydrophila, Bacillus cereus, Bacillus substilis, Escherichia coli, Shigella sonnei, Staphylococcus sciuri) were chlorinated to evaluate the yields of chloroform, dibromochloromethane, dichlorobromomethane, and bromoform. The effects of bromide on these chemical productions and speciations were also investigated. Results showed that, on average, 5.64-36.42 μg-chloroform /mg-C were generated during the bacterial chlorination, in similar order of magnitude to that generated by humic acid (previously reported as 78 μg-chloroform/mg-C). However, unlike humic acid in water chlorination, chloroform concentration did not simply increase with the total organic carbon in water mixture. In the presence of bromide, the yield of brominated species responded linearly to the bromide concentration. This study provides useful information to understand the contributions of chloroform from photodisinfection processes in coastal environments.

  7. Robust Multi-Cellular Developmental Design

    Devert, Alexandre; Schoenauer, Marc


    This paper introduces a continuous model for Multi-cellular Developmental Design. The cells are fixed on a 2D grid and exchange "chemicals" with their neighbors during the growth process. The quantity of chemicals that a cell produces, as well as the differentiation value of the cell in the phenotype, are controlled by a Neural Network (the genotype) that takes as inputs the chemicals produced by the neighboring cells at the previous time step. In the proposed model, the number of iterations of the growth process is not pre-determined, but emerges during evolution: only organisms for which the growth process stabilizes give a phenotype (the stable state), others are declared nonviable. The optimization of the controller is done using the NEAT algorithm, that optimizes both the topology and the weights of the Neural Networks. Though each cell only receives local information from its neighbors, the experimental results of the proposed approach on the 'flags' problems (the phenotype must match a given 2D pattern...

  8. Molecular and cellular mechanisms of adipogenesis

    Aleksander Dmitrievich Egorov


    Full Text Available The main components of metabolic syndrome include insulin resistance, hypertriglyceridemia and arterial hypertension. Obesity is the cause of metabolic syndrome, mainly as a consequence of the endocrine function of adipose tissue. The volume of adipose tissue depends on the size of individual adipocytes and on their number. The number of adipocytes increases as a result of enhanced adipocyte differentiation. The transcriptional cascade that regulates this differentiation has been well studied. The major adipogenic transcription factor peroxisome proliferator-activated receptor gamma is a ligand-activated nuclear receptor with essential roles in adipogenesis. Its ligands are used to treat metabolic syndrome and type 2 diabetes mellitus. The present article describes the basic molecular and cellular mechanisms of adipogenesis and discusses the impact of insulin, glucocorticoids, cyclic adenosine monophosphate-activating agents, nuclear receptors and transcription factors on the process of adipogenesis. New regulatory regions of the genome that are capable of binding multiple transcription factors are described, and the most promising drug targets for the treatment of metabolic syndrome and obesity, including the homeodomain proteins Pbx1 and Prep1, are discussed.

  9. Conventional and novel processing methods for cellular ceramics

    Paolo Colombo


    Cellular ceramics are a class of highly porous materials that covers a wide range of structures, such as foams, honeycombs, interconnected rods, interconnected fibres, interconnected hollow spheres...

  10. Some Properties of topological pressure on cellular automata

    Chih-Hung Chang


    Full Text Available This paper investigates the ergodicity and the power rule of the topological pressure of a cellular automaton. If a cellular automaton is either leftmost or rightmost premutive (due to the terminology given by Hedlund [Math.~Syst.~Theor.~3, 320-375, 1969], then it is ergodic with respect to the uniform Bernoulli measure. More than that, the relation of topological pressure between the original cellular automaton and its power rule is expressed in a closed form. As an application, the topological pressure of a linear cellular automaton can be computed explicitly.

  11. Design, synthesis and cellular metabolism study of 4'-selenonucleosides.

    Yu, Jinha; Sahu, Pramod K; Kim, Gyudong; Qu, Shuhao; Choi, Yoojin; Song, Jayoung; Lee, Sang Kook; Noh, Minsoo; Park, Sunghyouk; Jeong, Lak Shin


    4'-seleno-homonucleosides were synthesized as next-generation nucleosides, and their cellular phosphorylation was studied to confirm the hypothesis that bulky selenium atom can sterically hinder the approach of cellular nucleoside kinase to the 5'-OH for phosphorylation. 4'-seleno-homonucleosides (n = 2), with one-carbon homologation, were synthesized through a tandem seleno-Michael addition-SN2 ring cyclization. LC-MS analysis demonstrated that they were phosphorylated by cellular nucleoside kinases, resulting in anticancer activity. The bulky selenium atom played a key role in deciding the phosphorylation by cellular nucleoside kinases. [Formula: see text].

  12. Movies of cellular and sub-cellular motion by digital holographic microscopy

    Yu Lingfeng


    Full Text Available Abstract Background Many biological specimens, such as living cells and their intracellular components, often exhibit very little amplitude contrast, making it difficult for conventional bright field microscopes to distinguish them from their surroundings. To overcome this problem phase contrast techniques such as Zernike, Normarsky and dark-field microscopies have been developed to improve specimen visibility without chemically or physically altering them by the process of staining. These techniques have proven to be invaluable tools for studying living cells and furthering scientific understanding of fundamental cellular processes such as mitosis. However a drawback of these techniques is that direct quantitative phase imaging is not possible. Quantitative phase imaging is important because it enables determination of either the refractive index or optical thickness variations from the measured optical path length with sub-wavelength accuracy. Digital holography is an emergent phase contrast technique that offers an excellent approach in obtaining both qualitative and quantitative phase information from the hologram. A CCD camera is used to record a hologram onto a computer and numerical methods are subsequently applied to reconstruct the hologram to enable direct access to both phase and amplitude information. Another attractive feature of digital holography is the ability to focus on multiple focal planes from a single hologram, emulating the focusing control of a conventional microscope. Methods A modified Mach-Zender off-axis setup in transmission is used to record and reconstruct a number of holographic amplitude and phase images of cellular and sub-cellular features. Results Both cellular and sub-cellular features are imaged with sub-micron, diffraction-limited resolution. Movies of holographic amplitude and phase images of living microbes and cells are created from a series of holograms and reconstructed with numerically adjustable

  13. Biodegradable Magnetic Particles for Cellular MRI

    Nkansah, Michael Kwasi

    Cell transplantation has the potential to treat numerous diseases and injuries. While magnetic particle-enabled, MRI-based cell tracking has proven useful for visualizing the location of cell transplants in vivo, current formulations of particles are either too weak to enable single cell detection or have non-degradable polymer matrices that preclude clinical translation. Furthermore, the off-label use of commercial agents like Feridex®, Bangs beads and ferumoxytol for cell tracking significantly stunts progress in the field, rendering it needlessly susceptible to market externalities. The recent phasing out of Feridex from the market, for example, heightens the need for a dedicated agent specifically designed for MRI-based cell tracking. To this end, we engineered clinically viable, biodegradable particles of iron oxide made using poly(lactide-co-glycolide) (PLGA) and demonstrated their utility in two MRI-based cell tracking paradigms in vivo. Both micro- and nanoparticles (2.1±1.1 μm and 105±37 nm in size) were highly magnetic (56.7-83.7 wt% magnetite), and possessed excellent relaxometry (r2* relaxivities as high as 614.1 s-1mM-1 and 659.1 s -1mM-1 at 4.7 T respectively). Magnetic PLGA micropartides enabled the in vivo monitoring of neural progenitor cell migration to the olfactory bulb in rat brains over 2 weeks at 11.7 T with ˜2-fold greater contrast-to-noise ratio and ˜4-fold better sensitivity at detecting migrated cells in the olfactory bulb than Bangs beads. Highly magnetic PLGA nanoparticles enabled MRI detection (at 11.7 T) of up to 10 rat mesenchymal cells transplanted into rat brain at 100-μm resolution. Highly magnetic PLGA particles were also shown to degrade by 80% in mice liver over 12 weeks in vivo. Moreover, no adverse effects were observed on cellular viability and function in vitro after labeling a wide range of cells. Magnetically labeled rat mesenchymal and neural stem cells retained their ability to differentiate into multiple

  14. Viscoelastic properties of cellular polypropylene ferroelectrets

    Gaal, Mate; Bovtun, Viktor; Stark, Wolfgang; Erhard, Anton; Yakymenko, Yuriy; Kreutzbruck, Marc


    Viscoelastic properties of cellular polypropylene ferroelectrets (PP FEs) were studied at low frequencies (0.3-33 Hz) by dynamic mechanical analysis and at high frequencies (250 kHz) by laser Doppler vibrometry. Relaxation behavior of the in-plane Young's modulus ( Y11 ' ˜ 1500 MPa at room temperature) was observed and attributed to the viscoelastic response of polypropylene matrix. The out-of-plane Young's modulus is very small ( Y33 ' ≈ 0.1 MPa) at low frequencies, frequency- and stress-dependent, evidencing nonlinear viscoelastic response of PP FEs. The high-frequency mechanical response of PP FEs is shown to be linear viscoelastic with Y33 ' ≈ 0.8 MPa. It is described by thickness vibration mode and modeled as a damped harmonic oscillator with one degree of freedom. Frequency dependence of Y33 * in the large dynamic strain regime is described by the broad Cole-Cole relaxation with a mean frequency in kHz range attributed to the dynamics of the air flow between partially closed air-filled voids in PP FEs. Switching-off the relaxation contribution causes dynamic crossover from the nonlinear viscoelastic regime at low frequencies to the linear viscoelastic regime at high frequencies. In the small strain regime, contribution of the air flow seems to be insignificant and the power-law response, attributed to the mechanics of polypropylene cell walls and closed air voids, dominates in a broad frequency range. Mechanical relaxation caused by the air flow mechanism takes place in the sound and ultrasound frequency range (10 Hz-1 MHz) and, therefore, should be taken into account in ultrasonic applications of the PP FEs deal with strong exciting or receiving signals.

  15. Cellular events and biomarkers of wound healing

    Shah Jumaat Mohd. Yussof


    Full Text Available Researchers have identified several of the cellular events associated with wound healing. Platelets, neutrophils, macrophages, and fibroblasts primarily contribute to the process. They release cytokines including interleukins (ILs and TNF-α, and growth factors, of which platelet-derived growth factor (PDGF is perhaps the most important. The cytokines and growth factors manipulate the inflammatory phase of healing. Cytokines are chemotactic for white cells and fibroblasts, while the growth factors initiate fibroblast and keratinocyte proliferation. Inflammation is followed by the proliferation of fibroblasts, which lay down the extracellular matrix. Simultaneously, various white cells and other connective tissue cells release both the matrix metalloproteinases (MMPs and the tissue inhibitors of these metalloproteinases (TIMPs. MMPs remove damaged structural proteins such as collagen, while the fibroblasts lay down fresh extracellular matrix proteins. Fluid collected from acute, healing wounds contains growth factors, and stimulates fibroblast proliferation, but fluid collected from chronic, nonhealing wounds does not. Fibroblasts from chronic wounds do not respond to chronic wound fluid, probably because the fibroblasts of these wounds have lost the receptors that respond to cytokines and growth factors. Nonhealing wounds contain high levels of IL1, IL6, and MMPs, and an abnormally high MMP/TIMP ratio. Clinical examination of wounds inconsistently predicts which wounds will heal when procedures like secondary closure are planned. Surgeons therefore hope that these chemicals can be used as biomarkers of wounds which have impaired ability to heal. There is also evidence that the application of growth factors like PDGF will help the healing of chronic, nonhealing wounds.

  16. Cysteinyl-Leukotriene Receptors and Cellular Signals

    G. Enrico Rovati


    Full Text Available Cysteinyl-leukotrienes (cysteinyl-LTs exert a range of proinflammatory effects, such as constriction of airways and vascular smooth muscle, increase of endothelial cell permeability leading to plasma exudation and edema, and enhanced mucus secretion. They have proved to be important mediators in asthma, allergic rhinitis, and other inflammatory conditions, including cardiovascular diseases, cancer, atopic dermatitis, and urticaria. The classification into subtypes of the cysteinyl-LT receptors (CysLTRs was based initially on binding and functional data, obtained using the natural agonists and a wide range of antagonists. CysLTRs have proved remarkably resistant to cloning. However, in 1999 and 2000, the CysLT1R and CysLT2R were successfully cloned and both shown to be members of the G-protein coupled receptors (GPCRs superfamily. Molecular cloning has confirmed most of the previous pharmacological characterization and identified distinct expression patterns only partially overlapping. Recombinant CysLTRs couple to the Gq/11 pathway that modulates inositol phospholipids hydrolysis and calcium mobilization, whereas in native systems, they often activate a pertussis toxin-insensitive Gi/o-protein, or are coupled promiscuously to both G-proteins. Interestingly, recent data provide evidence for the existence of an additional receptor subtype that seems to respond to both cysteinyl-LTs and uracil nucleosides, and of an intracellular pool of CysLTRs that may have roles different from those of plasma membrane receptors. Finally, a cross-talk between the cysteinyl-LT and the purine systems is being delineated. This review will summarize recent data derived from studies on the molecular and cellular pharmacology of CysLTRs.

  17. [Ageing free radicals and cellular stress].

    Barouki, Robert


    A number of theories have attempted to account for ageing processes in various species. Following the theory of Pearl, Harman suggested fifty years ago that the accumulation of oxidants could explain the alteration of physical and cognitive functions with ageing. Oxygen metabolism leads to reactive species, including free radicals, which tend to oxidize surrounding molecules such as DNA, proteins and lipids. As a consequence various functions of cells and tissues can be altered, leading to DNA instability, protein denaturation and accumulation of lipid byproducts. Oxidative stress is an adaptive process which is triggered upon oxidant accumulation and which comprises the induction of protective and survival functions. Experimental evidence suggests that the ageing organism is in a state of oxidative stress, which supports the free radical theory. A number of other theories have been proposed ; some of these are actually compatible with the free radical theory. Caloric restriction is among the best models to increase life span in many species. While the relationship between caloric restriction and corrected metabolic rate is controversial, the decrease in ROS production by mitochondria appears to be experimentally supported. The ROS and mitochondrial theories of ageing appear to be compatible. Genetic models of increased life span, particularly those affecting the Foxo pathway, are usually accompanied by an increased resistance to oxidative insult. The free radical theory is not consistent with programmed senescence theories involving the cell division dependent decrease in telomere length ; however, oxidants are known to alter telomere structure. An appealing view of the role of oxidative stress in ageing is the trade-off principle which states that a phenotypic trait can be evolutionarily conserved because of its positive effects on development, growth or fertility, and despite its negative effect on somatic functions and ageing. It is likely that most cellular

  18. Cellular cardiac regenerative therapy in which patients?

    Chachques, Juan C


    Cell-based myocardial regenerative therapy is undergoing experimental and clinical trials in order to limit the consequences of decreased contractile function and compliance of damaged ventricles owing to ischemic and nonischemic myocardial diseases. A variety of myogenic and angiogenic cell types have been proposed, such as skeletal myoblasts, mononuclear and mesenchymal bone marrow cells, circulating blood-derived progenitors, adipose-derived stromal cells, induced pluripotent stem cells, umbilical cord cells, endometrial mesenchymal stem cells, adult testis pluripotent stem cells and embryonic cells. Current indications for stem cell therapy concern patients who have had a left- or right-ventricular infarction or idiopathic dilated cardiomyopathies. Other indications and potential applications include patients with diabetic cardiomyopathy, Chagas heart disease (American trypanosomiasis), ischemic mitral regurgitation, left ventricular noncompacted myocardium and pediatric cardiomyopathy. Suitable sources of cells for cardiac implant will depend on the types of diseases to be treated. For acute myocardial infarction, a cell that reduces myocardial necrosis and augments vascular blood flow will be desirable. For heart failure, cells that replace or promote myogenesis, reverse apoptopic mechanisms and reactivate dormant cell processes will be useful. It is important to note that stem cells are not an alternative to heart transplantation; selected patients should be in an early stage of heart failure as the goal of this regenerative approach is to avoid or delay organ transplantation. Since the cell niche provides crucial support needed for stem cell maintenance, the most interesting and realistic perspectives include the association of intramyocardial cell transplantation with tissue-engineered scaffolds and multisite cardiac pacing in order to transform a passive regenerative approach into a 'dynamic cellular support', a promising method for the creation of

  19. Effect of lysosomotropic molecules on cellular homeostasis.

    Kuzu, Omer F; Toprak, Mesut; Noory, M Anwar; Robertson, Gavin P


    Weak bases that readily penetrate through the lipid bilayer and accumulate inside the acidic organelles are known as lysosomotropic molecules. Many lysosomotropic compounds exhibit therapeutic activity and are commonly used as antidepressant, antipsychotic, antihistamine, or antimalarial agents. Interestingly, studies also have shown increased sensitivity of cancer cells to certain lysosomotropic agents and suggested their mechanism of action as a promising approach for selective destruction of cancer cells. However, their chemotherapeutic utility may be limited due to various side effects. Hence, understanding the homeostatic alterations mediated by lysosomotropic compounds has significant importance for revealing their true therapeutic potential as well as toxicity. In this review, after briefly introducing the concept of lysosomotropism and classifying the lysosomotropic compounds into two major groups according to their cytotoxicity on cancer cells, we focused on the subcellular alterations mediated by class-II lysosomotropic compounds. Briefly, their effect on intracellular cholesterol homeostasis, autophagy and lysosomal sphingolipid metabolism was discussed. Accordingly, class-II lysosomotropic molecules inhibit intracellular cholesterol transport, leading to the accumulation of cholesterol inside the late endosomal-lysosomal cell compartments. However, the accumulated lysosomal cholesterol is invisible to the cellular homeostatic circuits, hence class-II lysosomotropic molecules also upregulate cholesterol synthesis pathway as a downstream event. Considering the fact that Niemann-Pick disease, a lysosomal cholesterol storage disorder, also triggers similar pathologic abnormalities, this review combines the knowledge obtained from the Niemann-Pick studies and lysosomotropic compounds. Taken together, this review is aimed at allowing readers a better understanding of subcellular alterations mediated by lysosomotropic drugs, as well as their potential

  20. Amplitude metrics for cellular circadian bioluminescence reporters.

    St John, Peter C; Taylor, Stephanie R; Abel, John H; Doyle, Francis J


    Bioluminescence rhythms from cellular reporters have become the most common method used to quantify oscillations in circadian gene expression. These experimental systems can reveal phase and amplitude change resulting from circadian disturbances, and can be used in conjunction with mathematical models to lend further insight into the mechanistic basis of clock amplitude regulation. However, bioluminescence experiments track the mean output from thousands of noisy, uncoupled oscillators, obscuring the direct effect of a given stimulus on the genetic regulatory network. In many cases, it is unclear whether changes in amplitude are due to individual changes in gene expression level or to a change in coherence of the population. Although such systems can be modeled using explicit stochastic simulations, these models are computationally cumbersome and limit analytical insight into the mechanisms of amplitude change. We therefore develop theoretical and computational tools to approximate the mean expression level in large populations of noninteracting oscillators, and further define computationally efficient amplitude response calculations to describe phase-dependent amplitude change. At the single-cell level, a mechanistic nonlinear ordinary differential equation model is used to calculate the transient response of each cell to a perturbation, whereas population-level dynamics are captured by coupling this detailed model to a phase density function. Our analysis reveals that amplitude changes mediated at either the individual-cell or the population level can be distinguished in tissue-level bioluminescence data without the need for single-cell measurements. We demonstrate the effectiveness of the method by modeling experimental bioluminescence profiles of light-sensitive fibroblasts, reconciling the conclusions of two seemingly contradictory studies. This modeling framework allows a direct comparison between in vitro bioluminescence experiments and in silico ordinary