WorldWideScience

Sample records for relaxation times t2

  1. T2 relaxation time is related to liver fibrosis severity

    Science.gov (United States)

    Siqueira, Luiz; Uppal, Ritika; Alford, Jamu; Fuchs, Bryan C.; Yamada, Suguru; Tanabe, Kenneth; Chung, Raymond T.; Lauwers, Gregory; Chew, Michael L.; Boland, Giles W.; Sahani, Duhyant V.; Vangel, Mark; Hahn, Peter F.; Caravan, Peter

    2016-01-01

    Background The grading of liver fibrosis relies on liver biopsy. Imaging techniques, including elastography and relaxometric, techniques have had varying success in diagnosing moderate fibrosis. The goal of this study was to determine if there is a relationship between the T2-relaxation time of hepatic parenchyma and the histologic grade of liver fibrosis in patients with hepatitis C undergoing both routine, liver MRI and liver biopsy, and to validate our methodology with phantoms and in a rat model of liver fibrosis. Methods This study is composed of three parts: (I) 123 patients who underwent both routine, clinical liver MRI and biopsy within a 6-month period, between July 1999 and January 2010 were enrolled in a retrospective study. MR imaging was performed at 1.5 T using dual-echo turbo-spin echo equivalent pulse sequence. T2 relaxation time of liver parenchyma in patients was calculated by mono-exponential fit of a region of interest (ROI) within the right lobe correlating to histopathologic grading (Ishak 0–6) and routine serum liver inflammation [aspartate aminotransferase (AST) and alanine aminotransferase (ALT)]. Statistical comparison was performed using ordinary logistic and ordinal logistic regression and ANOVA comparing T2 to Ishak fibrosis without and using AST and ALT as covariates; (II) a phantom was prepared using serial dilutions of dextran coated magnetic iron oxide nanoparticles. T2 weighed imaging was performed by comparing a dual echo fast spin echo sequence to a Carr-Purcell-Meigboom-Gill (CPMG) multi-echo sequence at 1.5 T. Statistical comparison was performed using a paired t-test; (III) male Wistar rats receiving weekly intraperitoneal injections of phosphate buffer solution (PBS) control (n=4 rats); diethylnitrosamine (DEN) for either 5 (n=5 rats) or 8 weeks (n=4 rats) were MR imaged on a Bruker Pharmascan 4.7 T magnet with a home-built bird-cage coil. T2 was quantified by using a mono-exponential fitting algorithm on multi-slice multi

  2. Correlation between T2 relaxation time and intervertebral disk degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Takashima, Hiroyuki; Takebayashi, Tsuneo; Yoshimoto, Mitsunori; Terashima, Yoshinori; Tsuda, Hajime; Ida, Kazunori; Yamashita, Toshihiko [Sapporo Medical University, Department of Orthopedic Surgery, School of Medicine, Sapporo, Hokkaido (Japan)

    2012-02-15

    Magnetic resonance T2 mapping allows for the quantification of water and proteoglycan content within tissues and can be used to detect early cartilage abnormalities as well as to track the response to therapy. The goal of the present study was to use T2 mapping to quantify intervertebral disk water content according to the Pfirrmann classification. This study involved 60 subjects who underwent lumbar magnetic resonance imaging (a total of 300 lumbar disks). The degree of disk degeneration was assessed in the midsagittal section on T2-weighted images according to the Pfirrmann classification (grades I to V). Receiver operating characteristic (ROC) analysis was performed among grades to determine the cut-off values. In the nucleus pulposus, T2 values tended to decrease with increasing grade, and there was a significant difference in T2 values between each grade from grades I to IV. However, there was no significant difference in T2 values in the anterior or posterior annulus fibrosus. T2 values according to disk degeneration level classification were as follows: grade I (>116.8 ms), grade II (92.7-116.7 ms), grade III (72.1-92.6 ms), grade IV (<72.0 ms). T2 values decreased with increasing Pfirrmann classification grade in the nucleus pulposus, likely reflecting a decrease in proteoglycan and water content. Thus, T2 value-based measurements of intervertebral disk water content may be useful for future clinical research on degenerative disk diseases. (orig.)

  3. Estimation of T2 relaxation time of breast cancer: Correlation with clinical, imaging and pathological features

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Mirinae; Sohn, Yu Mee [Dept. of Radiology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul (Korea, Republic of); Ryu, Jung Kyu; Jahng, Geon Ho; Rhee, Sun Jung; Oh, Jang Hoon; Won, Kyu Yeoun [Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul (Korea, Republic of)

    2017-01-15

    The purpose of this study was to estimate the T2* relaxation time in breast cancer, and to evaluate the association between the T2* value with clinical-imaging-pathological features of breast cancer. Between January 2011 and July 2013, 107 consecutive women with 107 breast cancers underwent multi-echo T2*-weighted imaging on a 3T clinical magnetic resonance imaging system. The Student's t test and one-way analysis of variance were used to compare the T2* values of cancer for different groups, based on the clinical-imaging-pathological features. In addition, multiple linear regression analysis was performed to find independent predictive factors associated with the T2* values. Of the 107 breast cancers, 92 were invasive and 15 were ductal carcinoma in situ (DCIS). The mean T2* value of invasive cancers was significantly longer than that of DCIS (p = 0.029). Signal intensity on T2-weighted imaging (T2WI) and histologic grade of invasive breast cancers showed significant correlation with T2* relaxation time in univariate and multivariate analysis. Breast cancer groups with higher signal intensity on T2WI showed longer T2* relaxation time (p = 0.005). Cancer groups with higher histologic grade showed longer T2* relaxation time (p = 0.017). The T2* value is significantly longer in invasive cancer than in DCIS. In invasive cancers, T2* relaxation time is significantly longer in higher histologic grades and high signal intensity on T2WI. Based on these preliminary data, quantitative T2* mapping has the potential to be useful in the characterization of breast cancer.

  4. T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Mamisch, Tallal Charles [University Bern, Department of Orthopedic Surgery, Inselspital, Bern (Switzerland); University Bern, Magnetic Resonance Spectroscopy and Methodology, Department of Clinical Research, Bern (Switzerland); Hughes, Timothy [Siemens Medical Solutions, Erlangen (Germany); Mosher, Timothy J. [Penn State University College of Medicine, Musculoskeletal Imaging and MRI, Department of Radiology, Hershey, PA (United States); Mueller, Christoph [University of Erlangen, Department of Trauma Surgery, Erlangen (Germany); Trattnig, Siegfried [Medical University of Vienna, MR Center - High Field MR, Department of Radiology, Vienna (Austria); Boesch, Chris [University Bern, Magnetic Resonance Spectroscopy and Methodology, Department of Clinical Research, Bern (Switzerland); Welsch, Goetz Hannes [University of Erlangen, Department of Trauma Surgery, Erlangen (Germany); Medical University of Vienna, MR Center - High Field MR, Department of Radiology, Vienna (Austria)

    2012-03-15

    T2 mapping techniques use the relaxation constant as an indirect marker of cartilage structure, and the relaxation constant has also been shown to be a sensitive parameter for cartilage evaluation. As a possible additional robust biomarker, T2* relaxation time is a potential, clinically feasible parameter for the biochemical evaluation of articular cartilage. The knees of 15 healthy volunteers and 15 patients after microfracture therapy (MFX) were evaluated with a multi-echo spin-echo T2 mapping technique and a multi-echo gradient-echo T2* mapping sequence at 3.0 Tesla MRI. Inline maps, using a log-linear least squares fitting method, were assessed with respect to the zonal dependency of T2 and T2* relaxation for the deep and superficial regions of healthy articular cartilage and cartilage repair tissue. There was a statistically significant correlation between T2 and T2* values. Both parameters demonstrated similar spatial dependency, with longer values measured toward the articular surface for healthy articular cartilage. No spatial variation was observed for cartilage repair tissue after MFX. Within this feasibility study, both T2 and T2* relaxation parameters demonstrated a similar response in the assessment of articular cartilage and cartilage repair tissue. The potential advantages of T2*-mapping of cartilage include faster imaging times and the opportunity for 3D acquisitions, thereby providing greater spatial resolution and complete coverage of the articular surface. (orig.)

  5. T2 relaxation time mapping of the cartilage cap of osteochondromas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Kyung; Horn, Paul; Laor, Tal [Cincinnati Children' s Hospital Medical Center, Cincinnati (United States); Daedzinski, Bernard J. [Dept. of Radiology, Children' s Hospital of Philadelphia, University of Pennsylvania, Philadelphia (United States); Kim, Dong Hoon [Dept. of Radiology, Pharmacology, Korea University College of Medicine, Seoul (Korea, Republic of)

    2016-02-15

    Our aim was to evaluate the cartilage cap of osteochondromas using T2 maps and to compare these values to those of normal patellar cartilage, from age and gender matched controls. This study was approved by the Institutional Review Board and request for informed consent was waived. Eleven children (ages 5-17 years) with osteochondromas underwent MR imaging, which included T2-weighted fat suppressed and T2 relaxation time mapping (echo time = 9-99/repetition time = 1500 msec) sequences. Lesion origins were femur (n = 5), tibia (n = 3), fibula (n = 2), and scapula (n = 1). Signal intensity of the cartilage cap, thickness, mean T2 relaxation times, and T2 spatial variation (mean T2 relaxation times as a function of distance) were evaluated. Findings were compared to those of patellar cartilage from a group of age and gender matched subjects. The cartilage caps showed a fluid-like high T2 signal, with mean thickness of 4.8 mm. The mean value of mean T2 relaxation times of the osteochondromas was 264.0 ± 80.4 msec (range, 151.0-366.0 msec). Mean T2 relaxation times were significantly longer than the values from patellar cartilage (39.0 msec) (p < 0.0001). These findings were observed with T2 spatial variation plots across the entire distance of the cartilage cap, with the most pronounced difference in the middle section of the cartilage. Longer T2 relaxation times of the cartilage caps of osteochondromas should be considered as normal, and likely to reflect an increased water content, different microstructure and component.

  6. T2 relaxation time mapping of the cartilage cap of osteochondromas

    International Nuclear Information System (INIS)

    Kim, Hee Kyung; Horn, Paul; Laor, Tal; Daedzinski, Bernard J.; Kim, Dong Hoon

    2016-01-01

    Our aim was to evaluate the cartilage cap of osteochondromas using T2 maps and to compare these values to those of normal patellar cartilage, from age and gender matched controls. This study was approved by the Institutional Review Board and request for informed consent was waived. Eleven children (ages 5-17 years) with osteochondromas underwent MR imaging, which included T2-weighted fat suppressed and T2 relaxation time mapping (echo time = 9-99/repetition time = 1500 msec) sequences. Lesion origins were femur (n = 5), tibia (n = 3), fibula (n = 2), and scapula (n = 1). Signal intensity of the cartilage cap, thickness, mean T2 relaxation times, and T2 spatial variation (mean T2 relaxation times as a function of distance) were evaluated. Findings were compared to those of patellar cartilage from a group of age and gender matched subjects. The cartilage caps showed a fluid-like high T2 signal, with mean thickness of 4.8 mm. The mean value of mean T2 relaxation times of the osteochondromas was 264.0 ± 80.4 msec (range, 151.0-366.0 msec). Mean T2 relaxation times were significantly longer than the values from patellar cartilage (39.0 msec) (p < 0.0001). These findings were observed with T2 spatial variation plots across the entire distance of the cartilage cap, with the most pronounced difference in the middle section of the cartilage. Longer T2 relaxation times of the cartilage caps of osteochondromas should be considered as normal, and likely to reflect an increased water content, different microstructure and component

  7. T2 relaxation times of irradiated vertebral bone marrow in patients with seminoma.

    Science.gov (United States)

    Argiris, A; Maris, T; Vlahos, L

    1997-01-01

    Our purpose was to demonstrate the effects of localized radiotherapy on lumbar vertebral bone marrow with the use of quantitative MRI with measurements of T2 relaxation times. Ten patients with early stage testicular seminoma with a history of radiation therapy to a "dog-leg" field including the lumbar vertebrae underwent MR imaging of their lumbar spine using a 0.5 Tesla magnet. Five healthy subjects and two nonirradiated patients were imaged as well. The intervals from the beginning of radiotherapy to MRI examination varied from 1.5 to 52 months, and the radiation dose ranged from 3000-4200 cGy. The T2 relaxation times of the lumbar vertebral bone marrow and subcutaneous fat were calculated for each subject. Postirradiation bone marrow in irradiated seminoma patients exhibited significantly longer T2 relaxation times than nonirradiated bone marrow in controls (71.1 vs. 63.6 ms, p = 0.047, t-test). The differences between the T2 relaxation times of bone marrow and subcutaneous fat for each subject allowed for even better differentiation between irradiated patients and controls (10.4 vs. 0.4 ms, p = 0.0004, t-test). Postirradiation bone marrow had significantly longer T2 relaxation times than subcutaneous fat in irradiated patients (N = 10, 71.1 vs. 60.7 ms, p = 0.00009, t-test), while nonirradiated bone marrow had T2 relaxation times not statistically different from subcutaneous fat in nonirradiated subjects (N = 7, 63.6 vs. 63.2 ms). Measurements of T2 relaxation times of bone marrow enabled us to differentiate between irradiated seminoma patients and controls. Postirradiation bone marrow undergoes late radiation effects resulting in longer T2 relaxation times than nonirradiated bone marrow and subcutaneous fat.

  8. T2 Relaxation Time Mapping of the Cartilage Cap of Osteochondromas

    OpenAIRE

    Kim, Hee Kyung; Horn, Paul; Dardzinski, Bernard J.; Kim, Dong Hoon; Laor, Tal

    2016-01-01

    Objective Our aim was to evaluate the cartilage cap of osteochondromas using T2 maps and to compare these values to those of normal patellar cartilage, from age and gender matched controls. Materials and Methods This study was approved by the Institutional Review Board and request for informed consent was waived. Eleven children (ages 5-17 years) with osteochondromas underwent MR imaging, which included T2-weighted fat suppressed and T2 relaxation time mapping (echo time = 9-99/repetition tim...

  9. T2 relaxation time analysis in patients with multiple sclerosis: correlation with magnetization transfer ratio

    International Nuclear Information System (INIS)

    Papanikolaou, Nickolas; Papadaki, Eufrosini; Karampekios, Spyros; Maris, Thomas; Prassopoulos, Panos; Gourtsoyiannis, Nicholas; Spilioti, Martha

    2004-01-01

    The aim of the current study was to perform T2 relaxation time measurements in multiple sclerosis (MS) patients and correlate them with magnetization transfer ratio (MTR) measurements, in order to investigate in more detail the various histopathological changes that occur in lesions and normal-appearing white matter (NAWM). A total number of 291 measurements of MTR and T2 relaxation times were performed in 13 MS patients and 10 age-matched healthy volunteers. Measurements concerned MS plaques (105), NAWM (80), and ''dirty'' white matter (DWM; 30), evenly divided between the MS patients, and normal white matter (NWM; 76) in the healthy volunteers. Biexponential T2 relaxation-time analysis was performed, and also possible linearity between MTR and mean T2 relaxation times was evaluated using linear regression analysis in all subgroups. Biexponential relaxation was more pronounced in ''black-hole'' lesions (16.6%) and homogeneous enhancing plaques (10%), whereas DWM, NAWM, and mildly hypointense lesions presented biexponential behavior with a lower frequency(6.6, 5, and 3.1%, respectively). Non-enhancing isointense lesions and normal white matter did not reveal any biexponentional behavior. Linear regression analysis between monoexponential T2 relaxation time and MTR measurements demonstrated excellent correlation for DWM(r=-0.78, p<0.0001), very good correlation for black-hole lesions(r=-0.71, p=0.002), good correlation for isointense lesions(r=-0.60, p=0.005), moderate correlation for mildly hypointense lesions(r=-0.34, p=0.007), and non-significant correlation for homogeneous enhancing plaques, NAWM, and NWM. Biexponential T2 relaxation-time behavior is seen in only very few lesions (mainly on plaques with high degree of demyelination and axonal loss). A strong correlation between MTR and monoexponential T2 values was found in regions where either inflammation or demyelination predominates; however, when both pathological conditions coexist, this linear

  10. Menstrual variation of breast volume and T2 relaxation times in cyclical mastalgia

    International Nuclear Information System (INIS)

    Hussain, Zainab; Brooks, Jonathan; Percy, Dave

    2008-01-01

    Purpose: Hormonal activity causes breast volume to change during the menstrual cycle. One possible cause of this volume change is thought to be due to water retention or oedema within the tissues. We used magnetic resonance imaging (MRI) to study the variation in breast volume and 1 H Magnetic Resonance Spectroscopy (MRS) to measure T 2 relaxation times which are known to increase with increasing tissue water content. We hypothesised that an increase in breast volume will elevate T 2 relaxation due to the presence of an increased water content within the breast. T 2 Relaxation time and volume were studied in fifteen control subjects and in a cohort of eight patients with cyclical mastalgia in order to determine whether changes in breast volume and T 2 relaxation times differed in controls and patients during menses, ovulation and premenses. Method: Breast volume was determined by the Cavalieri method in combination with point counting techniques on MR images and T 2 relaxation times of the water and fat in a voxel of breast tissue were obtained using 1 H Magnetic Resonance Spectroscopy (MRS). Results: Statistical analysis (ANOVA) demonstrated highly significant differences in breast volume between the three stages of the cycle (p 2 of fat or water did not depend on stage of cycle. T-tests demonstrated no significant differences in T 2 of water or fat between patient and control groups. The average T 2 relaxation time of water was lowest in the patient and control groups during ovulation and highest in the patient group during premenses. Conclusion: We have performed the first combined volumetric and spectroscopic study of women with cyclical mastalgia and demonstrated that the global changes in volumes and T 2 were not significantly different from normal menstrual variations

  11. T(2) relaxation time of hyaline cartilage in presence of different gadolinium-based contrast agents.

    Science.gov (United States)

    Wiener, Edzard; Settles, Marcus; Diederichs, Gerd

    2010-01-01

    The transverse relaxation time, T(2), of native cartilage is used to quantify cartilage degradation. T(2) is frequently measured after contrast administration, assuming that the impact of gadolinium-based contrast agents on cartilage T(2) is negligible. To verify this assumption the depth-dependent variation of T(2) in the presence of gadopentetate dimeglumine, gadobenate dimeglumine and gadoteridol was investigated. Furthermore, the r(2)/r(1) relaxivity ratios were quantified in different cartilage layers to demonstrate differences between T(2) and T(1) relaxation effects. Transverse high-spatial-resolution T(1)- and T(2)-maps were simultaneously acquired on a 1.5 T MR scanner before and after contrast administration in nine bovine patellae using a turbo-mixed sequence. The r(2)/r(1) ratios were calculated for each contrast agent in cartilage. Profiles of T(1), T(2) and r(2)/r(1) across cartilage thickness were generated in the absence and presence of contrast agent. The mean values in different cartilage layers were compared for global variance using the Kruskal-Wallis test and pairwise using the Mann-Whitney U-test. T(2) of unenhanced cartilage was 98 +/- 5 ms at 1 mm and 65 +/- 4 ms at 3 mm depth. Eleven hours after contrast administration significant differences (p cartilage thickness were close to 1.0 (range 0.9-1.3). At 1.5 T, T(2) decreased significantly in the presence of contrast agents, more pronounced in superficial than in deep cartilage. The change in T(2) relaxation rate was similar to the change in T(1). Cartilage T(2) measurements after contrast administration will lead to systematic errors in the quantification of cartilage degradation. 2010 John Wiley & Sons, Ltd.

  12. Temperature dependence of 1H NMR relaxation time, T2, for intact and neoplastic plant tissues

    Science.gov (United States)

    Lewa, Czesław J.; Lewa, Maria

    Temperature dependences of the spin-spin proton relaxation time, T2, have been shown for normal and tumorous tissues collected from kalus culture Nicotiana tabacum and from the plant Kalanchoe daigremontiana. For neoplastic plant tissues, time T2 was increased compared to that for intact plants, a finding similar to that for animal and human tissues. The temperature dependences obtained were compared to analogous relations observed with animal tissues.

  13. T2 Relaxation Time Mapping of Proximal Tibiofibular Cartilage by 3-Tesla Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Kwack, Kyu-Sung; Cho, Jae Hyun; Kim, Jun Man; Kim, Sun Yong; Min, Byoung-Hyun; Yoon, Seung-Hyun

    2009-01-01

    Background: The proximal tibiofibular joint (PTFJ) can be considered the fourth compartment of the knee joint. However, there have been no studies of the T2 values (T2 relaxation time) of PTFJ cartilage. Purpose: To assess the T2 values of PTFJ cartilage at 3T magnetic resonance imaging (MRI), and to show the clinical utility of T2 values of PTFJ cartilage for the diagnosis of osteoarthritis (OA). Material and Methods: 118 patients who had knee MR imaging and knee radiography were enrolled. MRI was performed using a 3T MRI scanner, and T2 maps were calculated from a sagittal multi-echo acquisition. Two regions of interest (ROIs) were positioned within PTFJ cartilage and medial femoral condyle (MFC) cartilage. The average T2 value and standard deviation (SD) of each ROI were recorded. Using PTFJ cartilage as a standard reference, the T2 index ((MFC/PTFJ)x100) and T2SD index ((MFCSD/PTFJSD)x100) were calculated. A paired t test was performed to compare the mean and SD of ROIs within PTFJ and MFC cartilage. Correlation analyses were performed among the parameters age, Kellgren-Lawrence (KL) score, means and SDs of ROIs within PTFJ and MFC cartilage, T2 index, and T2SD index. Results: PTFJ cartilage had a significantly shorter T2 value than did MFC cartilage (P<0.0001). ROIs within PTFJ cartilage showed significantly smaller SDs than did those within MFC cartilage (P<0.0001). The average T2 value and SD of MFC and the T2SD index showed a positive correlation to the KL score (P<0.05). The correlation coefficients for the average T2 value, SD, and T2SD index of MFC were R=0.203, 0.254, and 0.268, respectively. However, there was no significant correlation between T2 values of PTFJ cartilage and KL score (P=0.643). Conclusion: PTFJ cartilage showed shorter and more homogeneous T2 values with a small SD than did MFC cartilage, regardless of the degree of OA at femorotibial compartments. PTFJ cartilage may be a useful internal standard reference to diagnose OA and would be

  14. T2 Relaxation Time Mapping of Proximal Tibiofibular Cartilage by 3-Tesla Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kwack, Kyu-Sung; Cho, Jae Hyun; Kim, Jun Man; Kim, Sun Yong (Dept. of Radiology, Ajou Univ. Medical Center, Suwon (Korea)); Min, Byoung-Hyun; Yoon, Seung-Hyun (Cartilage Regeneration Center, Ajou Univ. Medical Center, Suwon (Korea))

    2009-11-15

    Background: The proximal tibiofibular joint (PTFJ) can be considered the fourth compartment of the knee joint. However, there have been no studies of the T2 values (T2 relaxation time) of PTFJ cartilage. Purpose: To assess the T2 values of PTFJ cartilage at 3T magnetic resonance imaging (MRI), and to show the clinical utility of T2 values of PTFJ cartilage for the diagnosis of osteoarthritis (OA). Material and Methods: 118 patients who had knee MR imaging and knee radiography were enrolled. MRI was performed using a 3T MRI scanner, and T2 maps were calculated from a sagittal multi-echo acquisition. Two regions of interest (ROIs) were positioned within PTFJ cartilage and medial femoral condyle (MFC) cartilage. The average T2 value and standard deviation (SD) of each ROI were recorded. Using PTFJ cartilage as a standard reference, the T2 index ((MFC/PTFJ)x100) and T2SD index ((MFCSD/PTFJSD)x100) were calculated. A paired t test was performed to compare the mean and SD of ROIs within PTFJ and MFC cartilage. Correlation analyses were performed among the parameters age, Kellgren-Lawrence (KL) score, means and SDs of ROIs within PTFJ and MFC cartilage, T2 index, and T2SD index. Results: PTFJ cartilage had a significantly shorter T2 value than did MFC cartilage (P<0.0001). ROIs within PTFJ cartilage showed significantly smaller SDs than did those within MFC cartilage (P<0.0001). The average T2 value and SD of MFC and the T2SD index showed a positive correlation to the KL score (P<0.05). The correlation coefficients for the average T2 value, SD, and T2SD index of MFC were R=0.203, 0.254, and 0.268, respectively. However, there was no significant correlation between T2 values of PTFJ cartilage and KL score (P=0.643). Conclusion: PTFJ cartilage showed shorter and more homogeneous T2 values with a small SD than did MFC cartilage, regardless of the degree of OA at femorotibial compartments. PTFJ cartilage may be a useful internal standard reference to diagnose OA and would be

  15. T2 relaxation time in MR imaging of normal and abnormal lung parenchyma

    International Nuclear Information System (INIS)

    Mayo, J.R.; McKay, A.; Mueller, N.L.

    1990-01-01

    To measure the T2 relaxation times of normal and abnormal lung parenchyma and to evaluate the influence of field strength and lung inflation on T2. Five healthy volunteers and five patients with diffuse lung disease were imaged at 0.15 and 1.5 T. Excised normal pig lung was imaged at 0.15 and 1.5 T and analyzed in a spectrometer at 2.0 T. Single-echo (Hahn) pulse sequences (TR, 2,000 msec; TE, 20, 40, 60, 80, and 100 msec) were compared with multiecho trains (Carr-Purcell-Meiboom-Gill [CPMG] at 0.15 T (TR, 2,000 msec; TE, 20-40-60... 240 msec) and 2.0 T (TR, 2,000 msec; TE, 1, 2, 3,..., 10msec). T2 relaxation times calculated from single-echo sequences showed considerable variation between 0.15 and 2.0 T. T2 also changed with lung inflation. However, the T2 measurements on CPMG sequences did not change significantly (P > .05) with field strength and were only minimally affected by lung inflation. The mean ± SD T2 values for normal lung were 99 ± 8 and for abnormal lung were 84 ± 17. Lung parenchyma T2 measurements obtained with the use of conventional single-echo pulse sequences are variable and inaccurate because of inflation and field strength dependent magnetic susceptibility effects that lead to rapid nonrecoverable dephasing. The results indicate that multiecho sequences with appropriately short echo spacings yield more reproducible determinations of T2, which are independent of field strength and less dependent on lung inflation

  16. Discuss the value of T2 relaxation time in the research of femorotibial joint biological tissue

    International Nuclear Information System (INIS)

    Zhong Jinglian; Song Lingling; Liang Biling; Ye Ruixin; Yun Wenjuan

    2009-01-01

    Objective: To discuss the value of T 2 relaxation time in the research of the biomechanics and function of cartilage of knee joint. Methods: Knees of 20 healthy adults and 19 osteoarthritis patients were examined with sagittal 8-echo sequence. The T 2 value of cartilage was calculated. The T 2 values in the superficial and deeper cartilage of femoral and tibial joint were compared, so did between the osteoarthritis patients and healthy adults. Results: The T 2 values in the superficial and the deeper tibital cartilage were (48.8±6.3) ms, (44.3±5.7) ms, respectively. The T 2 values in the superficial and deeper femoral cartilage were (52.1±5.7) ms, (47.7±5.3) ms, respectively. There was a significant difference between superficial and deeper femoral cartilage (t=3.148 and t=3.384, P 2 value in the tibial cartilage of osteoarthritis patients was (56.0±9.1) ms and was higher than that of healthy adults. There was a significant difference between osteoarthritis patients and healthy adults (t=-3.446, P 2 relaxation time can be used in the research of the biomechanics and function of cartilage and has a application value in clinical diagnosis. (authors)

  17. Harsh corporal punishment is associated with increased T2 relaxation time in dopamine-rich regions.

    Science.gov (United States)

    Sheu, Yi-Shin; Polcari, Ann; Anderson, Carl M; Teicher, Martin H

    2010-11-01

    Harsh corporal punishment (HCP) was defined as frequent parental administration of corporal punishment (CP) for discipline, with occasional use of objects such as straps, or paddles. CP is linked to increased risk for depression and substance abuse. We examine whether long-term exposure to HCP acts as sub-traumatic stressor that contributes to brain alterations, particularly in dopaminergic pathways, which may mediate their increased vulnerability to drug and alcohol abuse. Nineteen young adults who experienced early HCP but no other forms of maltreatment and twenty-three comparable controls were studied. T2 relaxation time (T2-RT) measurements were performed with an echo planar imaging TE stepping technique and T2 maps were calculated and analyzed voxel-by-voxel to locate regional T2-RT differences between groups. Previous studies indicated that T2-RT provides an indirect index of resting cerebral blood volume. Region of interest (ROI) analyses were also conducted in caudate, putamen, nucleus accumbens, anterior cingulate cortex, dorsolateral prefrontal cortex, thalamus, globus pallidus and cerebellar hemispheres. Voxel-based relaxometry showed that HCP was associated with increased T2-RT in right caudate and putamen. ROI analyses also revealed increased T2-RT in dorsolateral prefrontal cortex, substantia nigra, thalamus and accumbens but not globus pallidus or cerebellum. There were significant associations between T2-RT measures in dopamine target regions and use of drugs and alcohol, and memory performance. Alteration in the paramagnetic or hemodynamic properties of dopaminergic cell body and projection regions were observed in subjects with HCP, and these findings may relate to their increased risk for drug and alcohol abuse. Copyright 2010 Elsevier Inc. All rights reserved.

  18. MR spectroscopy of liver in overweight children and adolescents: Investigation of 1H T2 relaxation times at 3 T

    International Nuclear Information System (INIS)

    Chabanova, Elizaveta; Bille, Dorthe S.; Thisted, Ebbe; Holm, Jens-Christian; Thomsen, Henrik S.

    2012-01-01

    Objective: The objective was to investigate T 2 relaxation values and to optimize hepatic fat quantification using proton MR spectroscopy ( 1 H MRS) at 3 T in overweight and obese children and adolescents. Subjects: The study included 123 consecutive children and adolescents with a body mass index above the 97th percentile according to age and sex. 1 H MR spectroscopy was performed at 3.0 T using point resolved spectroscopy sequence with series TE. T 2 relaxation values and hepatic fat content corrected for the T 2 relaxation effects were calculated. Results: T 2 values for water ranged from 22 ms to 42 ms (mean value 28 ms) and T 2 values for fat ranged from 36 ms to 99 ms (mean value 64 ms). Poor correlation was observed: (1) between T 2 relaxation times of fat and T 2 relaxation times of water (correlation coefficient r = 0.038, P = 0.79); (2) between T 2 relaxation times of fat and fat content (r = 0.057, P = 0.69); (3) between T 2 relaxation times of water and fat content (r = 0.160, P = 0.26). Correlation between fat peak content and the T 2 corrected fat content decreased with increasing echo time TE: r = 0.97 for TE = 45, r = 0.93 for TE = 75, r = 0.89 for TE = 105, P 1 H MRS at 3 T is an effective technique for measuring hepatic fat content in overweight and obese children and adolescents. It is necessary to measure T 2 relaxation values and to correct the spectra for the T 2 relaxation effects in order to obtain an accurate estimate of the hepatic fat content.

  19. Relaxation times T1, T2, and T2* of apples, pears, citrus fruits, and potatoes with a comparison to human tissues

    International Nuclear Information System (INIS)

    Werz, Karin; Braun, Hans; Vitha, Dominik; Bruno, Graziano; Martirosian, Petros; Steidle, Guenter; Schick, Fritz

    2011-01-01

    The aim of the project was a systematic assessment of relaxation times of different fruits and vegetables and a comparison to values of human tissues. Results provide an improved basis for selection of plant phantoms for development of new MR techniques and sequences. Vessels filled with agar gel are mostly used for this purpose, preparation of which is effortful and time-consuming. In the presented study apples, (malus, 8 species), pears, (pyrus, 2 species), citrus fruits (citrus, 5 species) and uncooked potatoes (solanum tuberosum, 8 species) from the supermarket were examined which are easily available nearly all-the-year. T1, T2 and T2 * relaxation times of these nature products were measured on a 1.5 Tesla MR system with adapted examination protocols and mono-exponential fitting, and compared to literature data of human parenchyma tissues, fatty tissue and body fluid (cerebrospinal fluid). Resulting values were as follows: apples: T1: 1486 - 1874 ms, T2: 163 - 281 ms, T2 * : 2,3 - 3,2 ms; pears: T1: 1631 - 1969 ms, T2: 119 - 133 ms, T2 * : 10,1 - 10,6 ms, citrus fruits (pulp) T1: 2055 - 2632 ms, T2: 497 - 998 ms, T2 * : 151 - 182 ms; citrus fruits (skin) T1: 561 - 1669 ms, T2: 93 - 119 ms; potatoes: T1: 1011 - 1459 ms, T2: 166 - 210 ms, T2 * : 20 - 30 ms. All T1-values of the examined objects (except for potatoes and skins of citrus fruits) were longer than T1 values of human tissues. Also T2 values (except for pears and skins of citrus fruits) of the fruits and the potatoes tended to be longer. T2 * values of apples, pears and potatoes were shorter than in healthy human tissue. Results show relaxation values of many fruits to be not exactly fitting to human tissue, but with suitable selection of the fruits and optionally with an adaption of measurement parameters one can achieve suitable contrast and signal characteristics for some purposes. (orig.)

  20. Objective measurement of minimal fat in normal skeletal muscles of healthy children using T2 relaxation time mapping (T2 maps) and MR spectroscopy.

    Science.gov (United States)

    Kim, Hee Kyung; Serai, Suraj; Merrow, Arnold C; Wang, Lily; Horn, Paul S; Laor, Tal

    2014-02-01

    Various skeletal muscle diseases result in fatty infiltration, making it important to develop noninvasive biomarkers to objectively measure muscular fat. We compared T2 relaxation time mapping (T2 maps) and magnetic resonance spectroscopy (MRS) with physical characteristics previously correlated with intramuscular fat to validate T2 maps and MRS as objective measures of skeletal muscle fat. We evaluated gluteus maximus muscles in 30 healthy boys (ages 5-19 years) at 3 T with T1-weighted images, T2-W images with fat saturation, T2 maps with and without fat saturation, and MR spectroscopy. We calculated body surface area (BSA), body mass index (BMI) and BMI percentile (BMI %). We performed fat and inflammation grading on T1-W imaging and fat-saturated T2-W imaging, respectively. Mean T2 values from T2 maps with fat saturation were subtracted from T2 maps without fat saturation to determine T2 fat values. We obtained lipid-to-water ratios by MR spectroscopy. Pearson correlation was used to assess relationships between BSA, BMI, BMI %, T2 fat values, and lipid-to-water ratios for each boy. Twenty-four boys completed all exams; 21 showed minimal and 3 showed no fatty infiltration. None showed muscle inflammation. There was correlation between BSA, BMI, and BMI %, and T2 fat values (P values and lipid-to-water ratios (P skeletal muscles, even in microscopic amounts, and validate each other. Both techniques might enable detection of minimal pathological fatty infiltration in children with skeletal muscle disorders.

  1. Comparative study of the sensitivity of ADC value and T2 relaxation time for early detection of Wallerian degeneration

    International Nuclear Information System (INIS)

    Zhang Fan; Lu Guangming; Zee Chishing

    2011-01-01

    Background and purpose: Wallerian degeneration (WD), the secondary degeneration of axons from cortical and subcortical injuries, is associated with poor neurological outcome. There is some quantitative MR imaging techniques used to estimate the biologic changes secondary to delayed neuronal and axonal losses. Our purpose is to assess the sensitivity of ADC value and T 2 relaxation time for early detection of WD. Methods: Ten male Sprague-Dawley rats were used to establish in vivo Wallerian degeneration model of CNS by ipsilateral motor-sensory cortex ablation. 5 days after cortex ablation, multiecho-T 2 relaxometry and multi-b value DWI were acquired by using a 7 T MR imaging scanner. ADC-map and T 2 -map were reconstructed by post-processing. ROIs are selected according to pathway of corticospinal tract from cortex, internal capsule, cerebral peduncle, pons, medulla oblongata to upper cervical spinal cord to measure ADC value and T 2 relaxation time of healthy side and affected side. The results were compared between the side with cortical ablation and the side without ablation. Results: Excluding ablated cortex, ADC values of the corticospinal tract were significantly increased (P 2 relaxation time was observed between the affected and healthy sides. Imaging findings were correlated with histological examinations. Conclusion: As shown in this animal experiment, ADC values could non-invasively demonstrate the secondary degeneration involving descending white matter tracts. ADC values are more sensitive indicators for detection of early WD than T 2 relaxation time.

  2. Follow-up of regional myocardial T2 relaxation times in patients with myocardial infarction evaluated with magnetic resonance imaging

    International Nuclear Information System (INIS)

    Krauss, X.H.; Wall, E. van der; Laarse, A. van der; Dijkman, P.R.M. van; Bruschke, A.V.G.; Doornbos, J.; Roos, A. de; Voorthuisen, A.E. van

    1990-01-01

    Multi-echo spin-echo cardiac magnetic resonance imaging studies (echo times 30, 60, 90 and 120 ms) were performed in 19 patients with a 7-14-day (mean 10) old myocardial infarction and were repeated in 13 patients 4-7 months (mean 6) later. Also, 10 normal subjects were studied with magnetic resonance imaging. T2 relaxation times of certain left ventricular segments were calculated from the signal intensities at echo times of 30 and 90 ms. Compared to normal individuals, the mean T2 values on the early magnetic resonance images of the patients with inferior infarction showed significantly prolonged T2 times in the inferiorly localized segments, while on the follow-up magnetic resonance images the T2 times had almost returned to the normal range. Also the patients with anterior infarction showed significantly prolonged T2 times in the anteriorly localized segments on the early nuclear magnetic resonance images, but the T2 times remained prolonged at the follow-up magnetic resonance images. For every patient a myocardial damage score was determined, which was defined as the sum of the segmental T2 values in the patients minus the upper limit of normal T2 values obtained from the normal volunteers (= mean normal+2SD). The damage score on both the early and late magnetic resonance imaging study correlated well with the infarction size determined by myocardial enzyme release. Only the patients with an inferior infarction showed a significant decrease in damage score at follow-up magnetic resonance imaging. It is concluded that the regional T2 relaxation times are increased in infarcted myocardial regions and may remain prolonged for at least up to 7 months after the acute event, particularly in patients with an anterior infarction. These findings demonstrate the clinical potential of T2-weighted magnetic resonance imaging studies for detecting myocardial infarction, and estimating infarct size for an extended period after acute myocardial infarction. (author). 29 refs

  3. In-vivo measurement of proton relaxation time (T1 and T2) in paediatric brain by MRI

    International Nuclear Information System (INIS)

    Masumura, Michio

    1986-01-01

    The clinical application of MRI led to the detailed imaging of the three-dimentional structure of the brain. Thus, significant information has been obtained with respect to the diagnosis of various diseases, rating severity, evaluation of curative effects, etc. On the other hand, the proportion of the comparative length of the relaxation time to the signal intensity of the images (especially the Spin-Echo image) was not necessarily linear. Consquently, the evaluation of severity was not easy to make. However, if we can obtain T 1 and T 2 precisely as the parameters costituting the images, it will be possible to overcome the above-mentioned difficulties. Further, the usefulness of MRI in activities such as determining the water metabolism of the brain is expected to increase even more. By means of VISTA-MR (0.15 Tesla, resistive magnet ; Picker International Co.) we measured the proton relaxation time (spin-lattice relaxation time (T 1 ) and spin-spin relaxation time (T 2 )) of various intracerebral lesions in paediatric cases. As the control group, 43 children, 4 adolescents and 6 adults were used. The T 1 and T 2 in the normal infantile cases prolonged significantly as compared with adult case. Thereafter, they become shortened by aging. In the age of two or three years, they reach the normal level of adult case. In the cases of degenerative disease, brain tumor, and cerebral contusion, the remarkable prolongation of both T 1 and T 2 , compared with normal value of the same age was observed. In the cases of brain atrophy and epilepsy, T 1 and T 2 were slightly short or within normal value of the same age. In the cases of intracerebral hemorrhage, T 1 was shortened. The in-vivo proton relaxation time obtained by MRI have various limits, but they can be a noninvasive and useful index in evaluation of severity or curative effects in various cerebral diseases. (author)

  4. In vivo estimation of transverse relaxation time constant (T2 ) of 17 human brain metabolites at 3T.

    Science.gov (United States)

    Wyss, Patrik O; Bianchini, Claudio; Scheidegger, Milan; Giapitzakis, Ioannis A; Hock, Andreas; Fuchs, Alexander; Henning, Anke

    2018-08-01

    The transverse relaxation times T 2 of 17 metabolites in vivo at 3T is reported and region specific differences are addressed. An echo-time series protocol was applied to one, two, or three volumes of interest with different fraction of white and gray matter including a total number of 106 healthy volunteers and acquiring a total number of 128 spectra. The data were fitted with the 2D fitting tool ProFit2, which included individual line shape modeling for all metabolites and allowed the T 2 calculation of 28 moieties of 17 metabolites. The T 2 of 10 metabolites and their moieties have been reported for the first time. Region specific T 2 differences in white and gray matter enriched tissue occur in 16 of 17 metabolites examined including single resonance lines and coupled spin systems. The relaxation time T 2 is regions specific and has to be considered when applying tissue composition correction for internal water referencing. Magn Reson Med 80:452-461, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  5. Evaluation of dysthyroid optic neuropathy using T2-relaxation time of extraocular muscle as parameter

    International Nuclear Information System (INIS)

    Yu, Fumihiko; Maeda, Toshine; Inoue, Toyoko; Inoue, Yoichi

    2001-01-01

    The T2 value of magnetic resonance imaging (MRI) is useful in evaluating the activity of dysthyroid ophthlamopathy. We applied this method in evaluating dysthyroid optic neuropathy in 15 affected eyes of 15 patients. Another group of 40 eyes of 20 patients of dysthyroid opthalmopathy without hypertrophy of extraocular muscles served as control. The T2 value in dysthyroid optic neuropathy significantly decreased following treatment with corticosteroid but the value was still higher than that in control eyes. The findings show that the T2 value of MRI is useful in evaluating the therapeutic effect of dysthyroid optic neuropathy. (author)

  6. Evaluation of dysthyroid optic neuropathy using T2-relaxation time of extraocular muscle as parameter

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Fumihiko; Maeda, Toshine; Inoue, Toyoko; Inoue, Yoichi [Olympia Eye Hospital, Tokyo (Japan)

    2001-11-01

    The T2 value of magnetic resonance imaging (MRI) is useful in evaluating the activity of dysthyroid ophthlamopathy. We applied this method in evaluating dysthyroid optic neuropathy in 15 affected eyes of 15 patients. Another group of 40 eyes of 20 patients of dysthyroid opthalmopathy without hypertrophy of extraocular muscles served as control. The T2 value in dysthyroid optic neuropathy significantly decreased following treatment with corticosteroid but the value was still higher than that in control eyes. The findings show that the T2 value of MRI is useful in evaluating the therapeutic effect of dysthyroid optic neuropathy. (author)

  7. Magnetic resonance fingerprinting using echo-planar imaging: Joint quantification of T1 and T2relaxation times.

    Science.gov (United States)

    Rieger, Benedikt; Zimmer, Fabian; Zapp, Jascha; Weingärtner, Sebastian; Schad, Lothar R

    2017-11-01

    To develop an implementation of the magnetic resonance fingerprinting (MRF) paradigm for quantitative imaging using echo-planar imaging (EPI) for simultaneous assessment of T 1 and T2∗. The proposed MRF method (MRF-EPI) is based on the acquisition of 160 gradient-spoiled EPI images with rapid, parallel-imaging accelerated, Cartesian readout and a measurement time of 10 s per slice. Contrast variation is induced using an initial inversion pulse, and varying the flip angles, echo times, and repetition times throughout the sequence. Joint quantification of T 1 and T2∗ is performed using dictionary matching with integrated B1+ correction. The quantification accuracy of the method was validated in phantom scans and in vivo in 6 healthy subjects. Joint T 1 and T2∗ parameter maps acquired with MRF-EPI in phantoms are in good agreement with reference measurements, showing deviations under 5% and 4% for T 1 and T2∗, respectively. In vivo baseline images were visually free of artifacts. In vivo relaxation times are in good agreement with gold-standard techniques (deviation T 1 : 4 ± 2%, T2∗: 4 ± 5%). The visual quality was comparable to the in vivo gold standard, despite substantially shortened scan times. The proposed MRF-EPI method provides fast and accurate T 1 and T2∗ quantification. This approach offers a rapid supplement to the non-Cartesian MRF portfolio, with potentially increased usability and robustness. Magn Reson Med 78:1724-1733, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  8. Quantitative Assessment of the T2 Relaxation Time of the Gluteus Muscles in Children with Duchenne Muscular Dystrophy: a Comparative Study Before and After Steroid Treatment

    International Nuclear Information System (INIS)

    Kim, Hee Kyung; Laor, Tal; Wong, Brenda; Horn, Paul S.

    2010-01-01

    To determine the feasibility of using T2 mapping as a quantitative method to longitudinally follow the disease activity in children with Duchenne muscular dystrophy (DMD) who are treated with steroids. Eleven boys with DMD (age range: 5-14 years) underwent evaluation with the clinical functional score (CFS), and conventional pelvic MRI and T2 mapping before and during steroid therapy. The gluteus muscle inflammation and fatty infiltration were evaluated on conventional MRI. The histograms and mean T2 relaxation times were obtained from the T2 maps. The CFS, the conventional MRI findings and the T2 values were compared before and during steroid therapy. None of the patients showed interval change of their CFSs. On conventional MRI, none of the images showed muscle inflammation. During steroid treatment, two boys showed increased fatty infiltration on conventional MRI, and both had an increase of the mean T2 relaxation time (p < 0.05). The remaining nine boys had no increase in fatty infiltration. Of these, three showed an increased mean T2 relaxation time (p < 0.05), two showed no change and four showed a decreased mean T2 relaxation time (p < 0.05). T2 mapping is a feasible technique to evaluate the longitudinal muscle changes in those children who receive steroid therapy for DMD. The differences of the mean T2 relaxation time may reflect alterations in disease activity, and even when the conventional MRI and CFS remain stable

  9. Quantitative Assessment of the T2 Relaxation Time of the Gluteus Muscles in Children with Duchenne Muscular Dystrophy: a Comparative Study Before and After Steroid Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Kyung; Laor, Tal; Wong, Brenda [Cincinnati Children' s Hospital Medical Center, Cincinnati (United States); Horn, Paul S. [University of Cincinnati, Cincinnati (United States)

    2010-06-15

    To determine the feasibility of using T2 mapping as a quantitative method to longitudinally follow the disease activity in children with Duchenne muscular dystrophy (DMD) who are treated with steroids. Eleven boys with DMD (age range: 5-14 years) underwent evaluation with the clinical functional score (CFS), and conventional pelvic MRI and T2 mapping before and during steroid therapy. The gluteus muscle inflammation and fatty infiltration were evaluated on conventional MRI. The histograms and mean T2 relaxation times were obtained from the T2 maps. The CFS, the conventional MRI findings and the T2 values were compared before and during steroid therapy. None of the patients showed interval change of their CFSs. On conventional MRI, none of the images showed muscle inflammation. During steroid treatment, two boys showed increased fatty infiltration on conventional MRI, and both had an increase of the mean T2 relaxation time (p < 0.05). The remaining nine boys had no increase in fatty infiltration. Of these, three showed an increased mean T2 relaxation time (p < 0.05), two showed no change and four showed a decreased mean T2 relaxation time (p < 0.05). T2 mapping is a feasible technique to evaluate the longitudinal muscle changes in those children who receive steroid therapy for DMD. The differences of the mean T2 relaxation time may reflect alterations in disease activity, and even when the conventional MRI and CFS remain stable.

  10. The immediate effect of long-distance running on T2 and T2* relaxation times of articular cartilage of the knee in young healthy adults at 3.0 T MR imaging.

    Science.gov (United States)

    Behzadi, Cyrus; Welsch, Goetz H; Laqmani, Azien; Henes, Frank O; Kaul, Michael G; Schoen, Gerhard; Adam, Gerhard; Regier, Marc

    2016-08-01

    To quantitatively assess the immediate effect of long-distance running on T2 and T2* relaxation times of the articular cartilage of the knee at 3.0 T in young healthy adults. 30 healthy male adults (18-31 years) who perform sports at an amateur level underwent an initial MRI at 3.0 T with T2 weighted [16 echo times (TEs): 9.7-154.6 ms] and T2* weighted (24 TEs: 4.6-53.6 ms) relaxation measurements. Thereafter, all participants performed a 45-min run. After the run, all individuals were immediately re-examined. Data sets were post-processed using dedicated software (ImageJ; National Institute of Health, Bethesda, MD). 22 regions of interest were manually drawn in segmented areas of the femoral, tibial and patellar cartilage. For statistical evaluation, Pearson product-moment correlation coefficients and confidence intervals were computed. Mean initial values were 35.7 ms for T2 and 25.1 ms for T2*. After the run, a significant decrease in the mean T2 and T2* relaxation times was observed for all segments in all participants. A mean decrease of relaxation time was observed for T2 with 4.6 ms (±3.6 ms) and for T2* with 3.6 ms (±5.1 ms) after running. A significant decrease could be observed in all cartilage segments for both biomarkers. Both quantitative techniques, T2 and T2*, seem to be valuable parameters in the evaluation of immediate changes in the cartilage ultrastructure after running. This is the first direct comparison of immediate changes in T2 and T2* relaxation times after running in healthy adults.

  11. The application of T1 and T2 relaxation time and magnetization transfer ratios to the early diagnosis of patellar cartilage osteoarthritis

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Weiwu; Qu, Nan; Lu, Zhihua; Yang, Shixun [Shanghai Jiaotong University, Department of Radiology, Shanghai (China)

    2009-11-15

    We compare the T1 and T2 relaxation times and magnetization transfer ratios (MTRs) of normal subjects and patients with osteoarthritis (OA) to evaluate the ability of these techniques to aid in the early diagnosis and treatment of OA. The knee joints in 11 normal volunteers and 40 patients with OA were prospectively evaluated using T1 relaxation times as measured using delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), T2 relaxation times (multiple spin-echo sequence, T2 mapping), and MTRs. The OA patients were further categorized into mild, moderate, and severe OA. The mean T1 relaxation times of the four groups (normal, mild OA, moderate OA, and severe OA) were: 487.3{+-}27.7, 458.0{+-}55.9, 405.9{+-}57.3, and 357.9{+-}36.7 respectively (p<0.001). The mean T2 relaxation times of the four groups were: 37.8{+-}3.3, 44.0{+-}8.5, 50.9{+-}9.5, and 57.4{+-}4.8 respectively (p<0.001). T1 relaxation time decreased and T2 relaxation time increased with worsening degeneration of patellar cartilage. The result of the covariance analysis showed that the covariate age had a significant influence on T2 relaxation time (p<0.001). No significant differences between the normal and OA groups using MTR were noted. T1 and T2 relaxation times are relatively sensitive to early degenerative changes in the patellar cartilage, whereas the MTR may have some limitations with regard to early detection of OA. In addition, The T1 and T2 relaxation times negatively correlate with each other, which is a novel finding. (orig.)

  12. Patellofemoral instability in children: T2 relaxation times of the patellar cartilage in patients with and without patellofemoral instability and correlation with morphological grading of cartilage damage.

    Science.gov (United States)

    Kang, Chang Ho; Kim, Hee Kyung; Shiraj, Sahar; Anton, Christopher; Kim, Dong Hoon; Horn, Paul S

    2016-07-01

    Patellofemoral instability is one of the most common causes of cartilage damage in teenagers. To quantitatively evaluate the patellar cartilage in patients with patellofemoral instability using T2 relaxation time maps (T2 maps), compare the values to those in patients without patellofemoral instability and correlate them with morphological grades in patients with patellofemoral instability. Fifty-three patients with patellofemoral instability (mean age: 15.9 ± 2.4 years) and 53 age- and gender-matched patients without patellofemoral instability were included. Knee MR with axial T2 map was performed. Mean T2 relaxation times were obtained at the medial, central and lateral zones of the patellar cartilage and compared between the two groups. In the patellofemoral instability group, morphological grading of the patellar cartilage (0-4) was performed and correlated with T2 relaxation times. Mean T2 relaxation times were significantly longer in the group with patellofemoral instability as compared to those of the control group across the patellar cartilage (Student's t-test, Ppatellofemoral instability, patellar cartilage damage occurs across the entire cartilage with the highest T2 values at the apex. T2 relaxation times directly reflect the severity in low-grade cartilage damage, which implies an important role for T2 maps in differentiating between normal and low-grade cartilage damage.

  13. Patellofemoral instability in children: T2 relaxation times of the patellar cartilage in patients with and without patellofemoral instability and correlation with morphological grading of cartilage damage

    International Nuclear Information System (INIS)

    Kang, Chang Ho; Kim, Hee Kyung; Shiraj, Sahar; Anton, Christopher; Kim, Dong Hoon; Horn, Paul S.

    2016-01-01

    Patellofemoral instability is one of the most common causes of cartilage damage in teenagers. To quantitatively evaluate the patellar cartilage in patients with patellofemoral instability using T2 relaxation time maps (T2 maps), compare the values to those in patients without patellofemoral instability and correlate them with morphological grades in patients with patellofemoral instability. Fifty-three patients with patellofemoral instability (mean age: 15.9 ± 2.4 years) and 53 age- and gender-matched patients without patellofemoral instability were included. Knee MR with axial T2 map was performed. Mean T2 relaxation times were obtained at the medial, central and lateral zones of the patellar cartilage and compared between the two groups. In the patellofemoral instability group, morphological grading of the patellar cartilage (0-4) was performed and correlated with T2 relaxation times. Mean T2 relaxation times were significantly longer in the group with patellofemoral instability as compared to those of the control group across the patellar cartilage (Student's t-test, P<0.05) with the longest time at the central area. Positive correlation was seen between mean T2 relaxation time and morphological grading (Pearson correlation coefficiency, P<0.001). T2 increased with severity of morphological grading from 0 to 3 (mixed model, P<0.001), but no statistical difference was seen between grades 3 and 4. In patellofemoral instability, patellar cartilage damage occurs across the entire cartilage with the highest T2 values at the apex. T2 relaxation times directly reflect the severity in low-grade cartilage damage, which implies an important role for T2 maps in differentiating between normal and low-grade cartilage damage. (orig.)

  14. T2 relaxation time in patellar cartilage - global and regional reproducibility at 1.5 Tesla and 3 Tesla

    International Nuclear Information System (INIS)

    Glaser, C.; Horng, A.; Mendlik, T.; Weckbach, S.; Hoffmann, R.T.; Wagner, S.; Raya, J.G.; Reiser, M.; Horger, W.

    2007-01-01

    Purpose: Evaluation of the global and regional reproducibility of T2 relaxation time in patellar cartilage at 1.5 T and 3 T. Materials and Methods: 6 left patellae of 6 healthy volunteers (aged 25-30, 3 female, 3 male) were examined using a fat-saturated multiecho sequence and a T1-w 3D-FLASH sequence with water excitation at 1.5 Tesla and 3 Tesla. Three consecutive data sets were acquired within one MRI session with the examined knee being repositioned in the coil and scanner between each data set. The segmented cartilage (FLASH sequence) was overlaid on the multiecho data and T2 values were calculated for the total cartilage, 3 horizontal layers consisting of a superficial, intermedial and deep layer, 3 facets consisting of a medial, median (ridge) and lateral facet (global T2 values) and 27 ROIs/MRI slices (regional T2 value). The reproducibility (precision error) was calculated as the root mean square average of the individual standard deviations [ms] and coefficients of variation (COV) [%]. Results: The mean global reproducibility error for T2 was 3.53% (±0.38%) at 1.5 Tesla and 3.25% (±0.61%) at 3 Tesla. The mean regional reproducibility error for T2 was 8.62% (±2.61%) at 1.5 Tesla and 9.66% (±3.37%) at 3 Tesla. There was no significant difference with respect to absolute reproducibility errors between 1.5 Tesla and 3 Tesla at a constant spatial resolution. However, different reproducibility errors were found between the cartilage layers. One third of the data variability could be attributed to the influence of the different cartilage layers, and another 10% to the influence of the separate MRI slices. Conclusion: Our data provides an estimation of the global and regional reproducibility errors of T2 in healthy cartilage. In the analysis of small subregions, an increase in the regional reproducibility error must be accepted. The data may serve as a basis for sample size calculations of study populations and may contribute to the decision regarding the

  15. The age dependence of T2 relaxation times of N-acetyl aspartate, creatine and choline in the human brain at 3 and 4T

    Czech Academy of Sciences Publication Activity Database

    Jirů, F.; Škoch, A.; Wágnerová, D.; Dezortová, M.; Visková, J.; Profant, Oliver; Syka, Josef; Hájek, M.

    2016-01-01

    Roč. 29, č. 3 (2016), s. 284-292 ISSN 0952-3480 Institutional support: RVO:68378041 Keywords : MRS * T2 relaxation times of metabolites * age dependence of T2 Subject RIV: FH - Neurology Impact factor: 2.872, year: 2016

  16. Quantitative assessment of the T2 relaxation time of the gluteus muscles in children with Duchenne muscular dystrophy: a comparative study before and after steroid treatment.

    Science.gov (United States)

    Kim, Hee Kyung; Laor, Tal; Horn, Paul S; Wong, Brenda

    2010-01-01

    To determine the feasibility of using T2 mapping as a quantitative method to longitudinally follow the disease activity in children with Duchenne muscular dystrophy (DMD) who are treated with steroids. ELEVEN BOYS WITH DMD (AGE RANGE: 5-14 years) underwent evaluation with the clinical functional score (CFS), and conventional pelvic MRI and T2 mapping before and during steroid therapy. The gluteus muscle inflammation and fatty infiltration were evaluated on conventional MRI. The histograms and mean T2 relaxation times were obtained from the T2 maps. The CFS, the conventional MRI findings and the T2 values were compared before and during steroid therapy. None of the patients showed interval change of their CFSs. On conventional MRI, none of the images showed muscle inflammation. During steroid treatment, two boys showed increased fatty infiltration on conventional MRI, and both had an increase of the mean T2 relaxation time (p muscle changes in those children who receive steroid therapy for DMD. The differences of the mean T2 relaxation time may reflect alterations in disease activity, and even when the conventional MRI and CFS remain stable.

  17. Fast mapping of the T2 relaxation time of cerebral metabolites using proton echo-planar spectroscopic imaging (PEPSI).

    Science.gov (United States)

    Tsai, Shang-Yueh; Posse, Stefan; Lin, Yi-Ru; Ko, Cheng-Wen; Otazo, Ricardo; Chung, Hsiao-Wen; Lin, Fa-Hsuan

    2007-05-01

    Metabolite T2 is necessary for accurate quantification of the absolute concentration of metabolites using long-echo-time (TE) acquisition schemes. However, lengthy data acquisition times pose a major challenge to mapping metabolite T2. In this study we used proton echo-planar spectroscopic imaging (PEPSI) at 3T to obtain fast T2 maps of three major cerebral metabolites: N-acetyl-aspartate (NAA), creatine (Cre), and choline (Cho). We showed that PEPSI spectra matched T2 values obtained using single-voxel spectroscopy (SVS). Data acquisition for 2D metabolite maps with a voxel volume of 0.95 ml (32 x 32 image matrix) can be completed in 25 min using five TEs and eight averages. A sufficient spectral signal-to-noise ratio (SNR) for T2 estimation was validated by high Pearson's correlation coefficients between logarithmic MR signals and TEs (R2 = 0.98, 0.97, and 0.95 for NAA, Cre, and Cho, respectively). In agreement with previous studies, we found that the T2 values of NAA, but not Cre and Cho, were significantly different between gray matter (GM) and white matter (WM; P PEPSI and SVS scans was less than 9%. Consistent spatial distributions of T2 were found in six healthy subjects, and disagreement among subjects was less than 10%. In summary, the PEPSI technique is a robust method to obtain fast mapping of metabolite T2. (c) 2007 Wiley-Liss, Inc.

  18. Gd-EOB-DTPA-Enhanced MR Imaging of the Liver: The Effect on T2 Relaxation Times and Apparent Diffusion Coefficient (ADC)

    International Nuclear Information System (INIS)

    Cieszanowski, Andrzej; Podgórska, Joanna; Rosiak, Grzegorz; Maj, Edyta; Grudziński, Ireneusz P.; Kaczyński, Bartosz; Szeszkowski, Wojciech; Milczarek, Krzysztof; Rowiński, Olgierd

    2016-01-01

    To investigate the effect of gadoxetic acid disodium (Gd-EOB-DTPA) on T2 relaxation times and apparent diffusion coefficient (ADC) values of the liver and focal liver lesions on a 1.5-T system. Magnetic resonance (MR) studies of 50 patients with 35 liver lesions were retrospectively analyzed. All examinations were performed at 1.5T and included T2-weighted turbo spin-echo (TSE) and diffusion-weighted (DW) images acquired before and after intravenous administration of Gd-EOB-DTPA. To assess the effect of this hepatobiliary contrast agent on T2-weighted TSE images and DW images T2 relaxation times and ADC values of the liver and FLLs were calculated and compared pre- and post-injection. The mean T2 relaxation times of the liver and focal hepatic lesions were lower on enhanced than on unenhanced T2-weighted TSE images (decrease of 2.7% and 3.6% respectively), although these differences were not statistically significant. The mean ADC values of the liver showed statistically significant decrease (of 4.6%) on contrast-enhanced DW images, compared to unenhanced images (P>0.05). The mean ADC value of liver lesions was lower on enhanced than on unenhanced DW images, but this difference (of 2.9%) did not reach statistical significance. The mean T2 relaxation times of the liver and focal liver lesions as well as the mean ADC values of liver lesions were not significantly different before and after administration of Gd-EOB-DTPA. Therefore, acquisition of T2-weighted and DW images between the dynamic contrast-enhanced examination and hepatobiliary phase is feasible and time-saving

  19. Microwave Amplitude Modulation Technique to Measure Spin-Lattice (T 1) and Spin-Spin (T 2) Relaxation Times

    Science.gov (United States)

    Misra, Sushil K.

    The measurement of very short spin-lattice, or longitudinal, relaxation (SLR) times (i.e., 10-10 Misra, 1998), and polymer resins doped with rare-earth ions (Pescia et al., 1999a; Pescia et al. 1999b). The ability to measure such fast SLR data on amorphous Si and copper-chromium-tin spinel led to an understanding of the role of exchange interaction in affecting spin-lattice relaxation, while the data on polymer resins doped with rare-earth ions provided evidence of spin-fracton relaxation (Pescia et al., 1999a, b). But such fast SLR times are not measurable by the most commonly used techniques of saturation- and inversion-recovery (Poole, 1982; Alger, 1968), which only measure spin-lattice relaxation times longer than 10-6 s. A summary of relevant experimental data is presented in Table 1.

  20. Relaxation times T1, T2, and T2{sup *} of apples, pears, citrus fruits, and potatoes with a comparison to human tissues; T1-, T2- und T2{sup *}-Relaxationswerte von Aepfeln, Birnen, Zitrusfruechten und Kartoffeln im Vergleich zu menschlichen Geweben

    Energy Technology Data Exchange (ETDEWEB)

    Werz, Karin; Braun, Hans; Vitha, Dominik; Bruno, Graziano; Martirosian, Petros; Steidle, Guenter; Schick, Fritz [Tuebingen Univ. (Germany). Sektion fuer Experimentelle Radiologie

    2011-07-01

    The aim of the project was a systematic assessment of relaxation times of different fruits and vegetables and a comparison to values of human tissues. Results provide an improved basis for selection of plant phantoms for development of new MR techniques and sequences. Vessels filled with agar gel are mostly used for this purpose, preparation of which is effortful and time-consuming. In the presented study apples, (malus, 8 species), pears, (pyrus, 2 species), citrus fruits (citrus, 5 species) and uncooked potatoes (solanum tuberosum, 8 species) from the supermarket were examined which are easily available nearly all-the-year. T1, T2 and T2{sup *} relaxation times of these nature products were measured on a 1.5 Tesla MR system with adapted examination protocols and mono-exponential fitting, and compared to literature data of human parenchyma tissues, fatty tissue and body fluid (cerebrospinal fluid). Resulting values were as follows: apples: T1: 1486 - 1874 ms, T2: 163 - 281 ms, T2{sup *}: 2,3 - 3,2 ms; pears: T1: 1631 - 1969 ms, T2: 119 - 133 ms, T2{sup *}: 10,1 - 10,6 ms, citrus fruits (pulp) T1: 2055 - 2632 ms, T2: 497 - 998 ms, T2{sup *}: 151 - 182 ms; citrus fruits (skin) T1: 561 - 1669 ms, T2: 93 - 119 ms; potatoes: T1: 1011 - 1459 ms, T2: 166 - 210 ms, T2{sup *}: 20 - 30 ms. All T1-values of the examined objects (except for potatoes and skins of citrus fruits) were longer than T1 values of human tissues. Also T2 values (except for pears and skins of citrus fruits) of the fruits and the potatoes tended to be longer. T2{sup *} values of apples, pears and potatoes were shorter than in healthy human tissue. Results show relaxation values of many fruits to be not exactly fitting to human tissue, but with suitable selection of the fruits and optionally with an adaption of measurement parameters one can achieve suitable contrast and signal characteristics for some purposes. (orig.)

  1. Quantitative MRI T2 relaxation time evaluation of knee cartilage: comparison of meniscus-intact and -injured knees after anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Li, Hong; Chen, Shuang; Tao, Hongyue; Chen, Shiyi

    2015-04-01

    Associated meniscal injury is well recognized at anterior cruciate ligament (ACL) reconstruction, and it is a known risk factor for osteoarthritis. To evaluate and characterize the postoperative appearance of articular cartilage after different meniscal treatment in ACL-reconstructed knees using T2 relaxation time evaluation on MRI. Cohort study; Level of evidence, 3. A total of 62 consecutive patients who under ACL reconstruction were recruited in this study, including 23 patients undergoing partial meniscectomy (MS group), 21 patients undergoing meniscal repair (MR group), and 18 patients with intact menisci (MI group) at time of surgery. Clinical evaluation, including subjective functional scores and physical examination, was performed on the same day as the MRI examination and at follow-up times ranging from 2 to 4.2 years. The MRI multiecho sagittal images were segmented to determine the T2 relaxation time value of each meniscus and articular cartilage plate. Differences in each measurement were compared among groups. No patient had joint-line tenderness or reported pain or clicking on McMurray test or instability. There were also no statistically significant differences in functional scores or medial or lateral meniscus T2 values among the 3 groups (P > .05 for both). There was a significantly higher articular cartilage T2 value in the medial femorotibial articular cartilage for the MS group (P T2 value between the MS and MR groups (P > .05) in each articular cartilage plate. The medial tibial articular cartilage T2 value had a significant positive correlation with medial meniscus T2 value (r = 0.287; P = .024) CONCLUSION: This study demonstrates that knees with meniscectomy or meniscal repair had articular cartilage degeneration at 2 to 4 years postoperatively, with higher articular cartilage T2 relaxation time values compared with the knees with an intact meniscus. © 2015 The Author(s).

  2. Quantification of glutathione transverse relaxation time T2 using echo time extension with variable refocusing selectivity and symmetry in the human brain at 7 Tesla

    Science.gov (United States)

    Swanberg, Kelley M.; Prinsen, Hetty; Coman, Daniel; de Graaf, Robin A.; Juchem, Christoph

    2018-05-01

    subjects. The T2 of glutathione was calculated to be 145.0 ± 20.1 ms (mean ± standard deviation); this result was robust within one standard deviation to changes in metabolite fitting baseline corrections and removal of individual data points on the signal decay curve. The measured T2 of NAA (222.1 ± 24.7 ms) and total creatine (153.0 ± 19.9 ms) were both higher than that calculated for GSH. Apparent glutathione concentration quantified relative to both reference metabolites increased by up to 32% and 6%, respectively, upon correction with calculated T2 values, emphasizing the importance of considering T2 relaxation differences in the spectroscopic measurement of these metabolites, especially at longer echo times.

  3. A study on magnetic relaxation times of various organs and body fluids using superconducting magnetic resonance imaging system part I: measurement of relative signal intensity and T2 relaxation time in various portions of brain and cerebrospinal fluid

    International Nuclear Information System (INIS)

    Chang, Kee Hyun; Lee, Ghi Jai; Han, Moon Hee; Kim, Jae Ho; Han, Man Chang; Kim, Chu Wan

    1988-01-01

    This study was undertake to determine if routine clinical magnetic resonance imaging sequences using only two different repetition times (TRs) and with only two sequential echo times (TEs) can be used to measure reproducible relative signal intensity and T2 relaxation time for normal brain tissues and cerebrospinal fluid using a 2.0T superconducting system. In 47 patients 6 different anatomic sites were measured. For each anatomic location, the mean and standard deviation of these values were determined. On T1-weighted (SE 500msec/30msec) images, in globus pallidus and thalamus, of the CSF, cortical gray matter and retrobulbar fat tissue varied more, with a standard deviation of 11-14% on T1-weighted images. On T2-weighted (SE 3000msec/30msec and 3000msec/80msec) images, the relative signal intensity of all anatomic regions varied more than on T1-weighted images. The standard deviation of T2 relaxation times also varied from 10% (fat tissue) to 18% (CSF). These variations might be due to partial volume averaging, signal alteration of CSF secondary to CSF pulsatile motion, etc. Knowing that relative signal intensity and T2 relaxation times calculated from routine imaging sequences are reproducible in only limited area, these normal ranges can be used to investigate changes occurring in disease states of the limited regions.

  4. Determination of intra-axial brain tumors cellularity through the analysis of T2 Relaxation time of brain tumors before surgery using MATLAB software.

    Science.gov (United States)

    Abdolmohammadi, Jamil; Shafiee, Mohsen; Faeghi, Fariborz; Arefan, Douman; Zali, Alireza; Motiei-Langroudi, Rouzbeh; Farshidfar, Zahra; Nazarlou, Ali Kiani; Tavakkoli, Ali; Yarham, Mohammad

    2016-08-01

    Timely diagnosis of brain tumors could considerably affect the process of patient treatment. To do so, para-clinical methods, particularly MRI, cannot be ignored. MRI has so far answered significant questions regarding tumor characteristics, as well as helping neurosurgeons. In order to detect the tumor cellularity, neuro-surgeons currently have to sample specimens by biopsy and then send them to the pathology unit. The aim of this study is to determine the tumor cellularity in the brain. In this cross-sectional study, 32 patients (18 males and 14 females from 18-77 y/o) were admitted to the neurosurgery department of Shohada-E Tajrish Hospital in Tehran, Iran from April 2012 to February 2014. In addition to routine pulse sequences, T2W Multi echo pulse sequences were taken and the images were analyzed using the MATLAB software to determine the brain tumor cellularity, compared with the biopsy. These findings illustrate the need for more T2 relaxation time decreases, the higher classes of tumors will stand out in the designed table. In this study, the results show T2 relaxation time with a 85% diagnostic weight, compared with the biopsy, to determine the brain tumor cellularity (p<0.05). Our results indicate that the T2 relaxation time feature is the best method to distinguish and present the degree of intra-axial brain tumors cellularity (85% accuracy compared to biopsy). The use of more data is recommended in order to increase the percent accuracy of this techniques.

  5. Comparison of T2* relaxation times of articular cartilage of the knee in elite professional football players and age-and BMI-matched amateur athletes

    Energy Technology Data Exchange (ETDEWEB)

    Behzadi, C., E-mail: c.behzadi@uke.de [Department of Diagnostic and Interventional Radiology and Nuclearmedicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246 (Germany); Welsch, G.H. [Department of Sports Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246 (Germany); Laqmani, A.; Henes, F.O.; Kaul, M.G. [Department of Diagnostic and Interventional Radiology and Nuclearmedicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246 (Germany); Schoen, G. [Department of Medical Biometry and Epidemiology, University Medical Center, Hamburg-Eppendorf, Hamburg, 20246 (Germany); Adam, G.; Regier, M. [Department of Diagnostic and Interventional Radiology and Nuclearmedicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246 (Germany)

    2017-01-15

    Objective: Recent investigation has underlined the potential of quantitative MR imaging to be used as a complementary tool for the diagnosis of cartilage degeneration at an early state. The presented study analyses T2* relaxation times of articular cartilage of the knee in professional athletes and compares the results to age- and BMI (Body Mass Index)-matched healthy amateur athletes. Materials and methods: 22 professional football players and 22 age- and BMI-matched individuals were underwent knee Magnetic Resonance Imaging (MRI) at 3T including qualitative and quantitative analysis. Qualitative analysis included e.g. meniscal tears, joint effusion and bone edema. For quantitative analysis T2* (22 ET: 4.6-53.6 ms) measurements in 3D data acquisition were performed. Deep and superficial layers of 22 predefined cartilage segments were analysed. All data sets were postprocessed using a dedicated software tool. Statistical analysis included Student t-test, confidence intervals and a random effects model. Results: In both groups, T2* relaxation times were significantly higher in the superficial compared to the deep layers (p < 0.001). Professional athletes had significantly higher relaxation times in eight superficial and three deep cartilage layers in the predefined cartilage segments (p < 0.05). Highly significant differences were found in the weight-bearing segments of the lateral superficial femoral condyle (p < 0.001). Conclusion: Elevated T2* values in cartilage layers of professional football players compared to amateur athletes were noted. The effects seem to predominate in superficial cartilage layers.

  6. Comparison of T2* relaxation times of articular cartilage of the knee in elite professional football players and age-and BMI-matched amateur athletes

    International Nuclear Information System (INIS)

    Behzadi, C.; Welsch, G.H.; Laqmani, A.; Henes, F.O.; Kaul, M.G.; Schoen, G.; Adam, G.; Regier, M.

    2017-01-01

    Objective: Recent investigation has underlined the potential of quantitative MR imaging to be used as a complementary tool for the diagnosis of cartilage degeneration at an early state. The presented study analyses T2* relaxation times of articular cartilage of the knee in professional athletes and compares the results to age- and BMI (Body Mass Index)-matched healthy amateur athletes. Materials and methods: 22 professional football players and 22 age- and BMI-matched individuals were underwent knee Magnetic Resonance Imaging (MRI) at 3T including qualitative and quantitative analysis. Qualitative analysis included e.g. meniscal tears, joint effusion and bone edema. For quantitative analysis T2* (22 ET: 4.6-53.6 ms) measurements in 3D data acquisition were performed. Deep and superficial layers of 22 predefined cartilage segments were analysed. All data sets were postprocessed using a dedicated software tool. Statistical analysis included Student t-test, confidence intervals and a random effects model. Results: In both groups, T2* relaxation times were significantly higher in the superficial compared to the deep layers (p < 0.001). Professional athletes had significantly higher relaxation times in eight superficial and three deep cartilage layers in the predefined cartilage segments (p < 0.05). Highly significant differences were found in the weight-bearing segments of the lateral superficial femoral condyle (p < 0.001). Conclusion: Elevated T2* values in cartilage layers of professional football players compared to amateur athletes were noted. The effects seem to predominate in superficial cartilage layers.

  7. Diagnostic value of T1 and T2 * relaxation times and off-resonance saturation effects in the evaluation of Achilles tendinopathy by MRI at 3T.

    Science.gov (United States)

    Grosse, Ulrich; Syha, Roland; Hein, Tobias; Gatidis, Sergios; Grözinger, Gerd; Schabel, Christoph; Martirosian, Petros; Schick, Fritz; Springer, Fabian

    2015-04-01

    To evaluate and compare the diagnostic value of T1 , T2 * relaxation times and off-resonance saturation ratios (OSR) in healthy controls and patients with different clinical and morphological stages of Achilles tendinopathy. Forty-two healthy Achilles tendons and 34 tendons of 17 patients with symptomatic and asymptomatic tendinopathy were investigated clinically with conventional magnetic resonance imaging (MRI) sequences on a 3T whole-body MR scanner and a dynamic ultrasound examination. In addition, T1 and T2 * relaxation times were assessed using an ultrashort echo time (UTE) imaging sequence with flip angle and echo time variation. For the calculation of OSR values a Gaussian off-resonance saturation pulse (frequency offset: 750-5000 Hz) was used. The diagnostic value of the derived MR values was assessed and compared using receiver operating characteristic (ROC) curves. ROC curves demonstrate the highest overall test performance for OSR values at 2000 Hz off-resonance in differentiating slightly (OSR-2000 [AUC: 0.930] > T2 * [AUC: 0.884] > T1 [AUC: 0.737]) and more severe pathologically altered tendon areas (OSR-2000 [AUC: 0.964] > T2 * [AUC: 0.917] > T1 [AUC: 0.819]) from healthy ones. OSR values at a frequency offset of 2000 Hz demonstrated a better sensitivity and specificity for detecting mild and severe stages of tendinopathy compared to T2 * and particularly when compared to T1 relaxation times. © 2014 Wiley Periodicals, Inc.

  8. Topographical Variation of Human Femoral Articular Cartilage Thickness, T1rho and T2 Relaxation Times Is Related to Local Loading during Walking.

    Science.gov (United States)

    Van Rossom, Sam; Wesseling, Mariska; Van Assche, Dieter; Jonkers, Ilse

    2018-01-01

    Objective Early detection of degenerative changes in the cartilage matrix composition is essential for evaluating early interventions that slow down osteoarthritis (OA) initiation. T1rho and T2 relaxation times were found to be effective for detecting early changes in proteoglycan and collagen content. To use these magnetic resonance imaging (MRI) methods, it is important to document the topographical variation in cartilage thickness, T1rho and T2 relaxation times in a healthy population. As OA is partially mechanically driven, the relation between these MRI-based parameters and localized mechanical loading during walking was investigated. Design MR images were acquired in 14 healthy adults and cartilage thickness and T1rho and T2 relaxation times were determined. Experimental gait data was collected and processed using musculoskeletal modeling to identify weight-bearing zones and estimate the contact force impulse during gait. Variation of the cartilage properties (i.e., thickness, T1rho, and T2) over the femoral cartilage was analyzed and compared between the weight-bearing and non-weight-bearing zone of the medial and lateral condyle as well as the trochlea. Results Medial condyle cartilage thickness was correlated to the contact force impulse ( r = 0.78). Lower T1rho, indicating increased proteoglycan content, was found in the medial weight-bearing zone. T2 was higher in all weight-bearing zones compared with the non-weight-bearing zones, indicating lower relative collagen content. Conclusions The current results suggest that medial condyle cartilage is adapted as a long-term protective response to localized loading during a frequently performed task and that the weight-bearing zone of the medial condyle has superior weight bearing capacities compared with the non-weight-bearing zones.

  9. Multicomponent T2 relaxation studies of the avian egg.

    Science.gov (United States)

    Mitsouras, Dimitris; Mulkern, Robert V; Maier, Stephan E

    2016-05-01

    To investigate the tissue-like multiexponential T2 signal decays in avian eggs. Transverse relaxation studies of raw, soft-boiled and hard-boiled eggs were performed at 3 Tesla using a three-dimensional Carr-Purcell-Meiboom-Gill imaging sequence. Signal decays over a TE range of 11 to 354 ms were fitted assuming single- and multicomponent signal decays with up to three separately decaying components. Fat saturation was used to facilitate spectral assignment of observed decay components. Egg white, yolk and the centrally located latebra all demonstrate nonmonoexponential T2 decays. Specifically, egg white exhibits two-component decays with intermediate and long T2 times. Meanwhile, yolk and latebra are generally best characterized with triexponential decays, with short, intermediate and very long T2 decay times. Fat saturation revealed that the intermediate component of yolk could be attributed to lipids. Cooking of the egg profoundly altered the decay curves. Avian egg T2 decay curves cover a wide range of decay times. Observed T2 components in yolk and latebra as short as 10 ms, may prove valuable for testing clinical sequences designed to measure short T2 components, such as myelin-associated water in the brain. Thus we propose that the egg can be a versatile and widely available MR transverse relaxation phantom. © 2015 Wiley Periodicals, Inc.

  10. T1rho and T2 relaxation times of the normal adult knee meniscus at 3T: analysis of zonal differences.

    Science.gov (United States)

    Takao, Shoichiro; Nguyen, Tan B; Yu, Hon J; Hagiwara, Shigeo; Kaneko, Yasuhito; Nozaki, Taiki; Iwamoto, Seiji; Otomo, Maki; Schwarzkopf, Ran; Yoshioka, Hiroshi

    2017-05-18

    Prior studies describe histological and immunohistochemical differences in collagen and proteoglycan content in different meniscal zones. The aim of this study is to evaluate horizontal and vertical zonal differentiation of T1rho and T2 relaxation times of the entire meniscus from volunteers without symptom and imaging abnormality. Twenty volunteers age between 19 and 38 who have no knee-related clinical symptoms, and no history of prior knee surgeries were enrolled in this study. Two T1rho mapping (b-FFE T1rho and SPGR T1rho) and T2 mapping images were acquired with a 3.0-T MR scanner. Each meniscus was divided manually into superficial and deep zones for horizontal zonal analysis. The anterior and posterior horns of each meniscus were divided manually into white, red-white and red zones for vertical zonal analysis. Zonal differences of average relaxation times among each zone, and both inter- and intra-observer reproducibility were statistically analyzed. In horizontal zonal analysis, T1rho relaxation times of the superficial zone tended to be higher than those of the deep zone, and this difference was statistically significant in the medial meniscal segments (84.3 ms vs 76.0 ms on b-FFE, p meniscus (88.4 ms vs 77.1 ms on b-FFE, p meniscus, p = 0.011). T2 relaxation times of the white zone were significantly higher than those of the red zone in the medial meniscus posterior horn (96.8 ms vs 84.3 ms, p meniscus anterior horn (104.6 ms vs 84.2 ms, p 0.74) or good (0.60-0.74) in all meniscal segments on both horizontal and vertical zonal analysis, except for inter-class correlation coefficients of the lateral meniscus on SPGR. Compared with SPGR T1rho images, b-FFE T1rho images demonstrated more significant zonal differentiation with higher inter- and intra-observer reproducibility. There are zonal differences in T1rho and T2 relaxation times of the normal meniscus.

  11. Preliminary study for differential diagnosis of intracranial tumors using in vivo quantitative proton MR spectroscopy with correction for T2 relaxation time

    International Nuclear Information System (INIS)

    Isobe, Tomonori; Yamamoto, Tetsuya; Akutsu, Hiroyoshi; Shiigai, Masanari; Shibata, Yasushi; Takada, Kenta; Masumoto, Tomohiko; Anno, Izumi; Matsumura, Akira

    2015-01-01

    Introduction: The intent of this study was to differentiate intracranial tumors using the metabolite concentrations obtained by quantification with correction for T2 relaxation time, and to analyze whether the spectrum peak was generated by the existence of metabolites in proton magnetic resonance spectroscopy (MRS). Methods: All proton MRS studies were performed on a clinical 1.5T MR system. 7 normal volunteers and 57 patients (gliomas, metastases, meningiomas, acoustic neuromas, and pituitary adenomas) underwent single voxel proton MRS with different echo times (TE: 68, 136, 272 ms) for T2 correction of signal derived from metabolites and tissue water. With tissue water employed as an internal reference, the concentrations of metabolite (i.e. N-acetylaspartate (NAA), total creatine (t-Cr) and choline-containing compounds (Cho)) were calculated. Moreover, proton MRS data of previously published typical literatures were critically reviewed and compared with our data. Results: Extramedullary tumors were characterized by absence of NAA compared with intramedullary tumors. High-grade glioma differed from low-grade glioma by lower t-Cr concentrations. Metastasis differed from cystic glioblastoma by higher Cho concentrations, lower t-Cr concentrations, an absence of NAA, and a prominent Lipids peak. Based on these results and review of previous reports, we suggest a clinical pathway for the differentiation of intracranial tumors. Conclusion: The metabolite concentrations obtained by quantification with correction for T2 relaxation time, and to analyze whether the spectrum peak was generated by the existence of metabolites in proton MRS is useful for the diagnosis of the intracranial tumors

  12. Non-invasive evaluation of blood oxygen saturation and hematocrit from T1 and T2 relaxation times: In-vitro validation in fetal blood.

    Science.gov (United States)

    Portnoy, Sharon; Seed, Mike; Sled, John G; Macgowan, Christopher K

    2017-12-01

    We propose an analytical method for calculating blood hematocrit (Hct) and oxygen saturation (sO 2 ) from measurements of its T 1 and T 2 relaxation times. Through algebraic substitution, established two-compartment relationships describing R1=T1-1 and R2=T2-1 as a function of hematocrit and oxygen saturation were rearranged to solve for Hct and sO 2 in terms of R 1 and R 2 . Resulting solutions for Hct and sO 2 are the roots of cubic polynomials. Feasibility of the method was established by comparison of Hct and sO 2 estimates obtained from relaxometry measurements (at 1.5 Tesla) in cord blood specimens to ground-truth values obtained by blood gas analysis. Monte Carlo simulations were also conducted to assess the effect of T 1 , T 2 measurement uncertainty on precision of Hct and sO 2 estimates. Good agreement was observed between estimated and ground-truth blood properties (bias = 0.01; 95% limits of agreement = ±0.13 for Hct and sO 2 ). Considering the combined effects of biological variability and random measurement noise, we estimate a typical uncertainty of ±0.1 for Hct, sO 2 estimates. Results demonstrate accurate quantification of Hct and sO 2 from T 1 and T 2 . This method is applicable to noninvasive fetal vessel oximetry-an application where existing oximetry devices are unusable or require risky blood-sampling procedures. Magn Reson Med 78:2352-2359, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  13. Spatial characterization of T1 and T2 relaxation times and the water apparent diffusion coefficient in rabbit Achilles tendon subjected to tensile loading.

    Science.gov (United States)

    Wellen, J; Helmer, K G; Grigg, P; Sotak, C H

    2005-03-01

    Tendons exhibit viscoelastic mechanical behavior under tensile loading. The elasticity arises from the collagen chains that form fibrils, while the viscous response arises from the interaction of the water with the solid matrix. Therefore, an understanding of the behavior of water in response to the application of a load is crucial to the understanding of the origin of the viscous response. Three-dimensional MRI mapping of rabbit Achilles tendons was performed at 2.0 T to characterize the response of T(1) and T(2) relaxation times and the apparent diffusion coefficient (ADC) of water to tensile loading. The ADC was measured in directions both parallel (ADC( parallel)) and perpendicular (ADC( perpendicular)) to the long axis of the tendon. At a short diffusion time (5.8 ms) MR parameter maps showed the existence of two regions, here termed "core" and "rim", that exhibited statistically significant differences in T(1), T(2), and ADC( perpendicular) under the baseline loading condition. MR parameter maps were also generated at a second loading condition of approximately 1 MPa. At a diffusion time of 5.8 ms, there was a statistically significant increase in the rim region for both ADC( perpendicular) (57.5%) and ADC( parallel) (20.5%) upon tensile loading. The changes in core ADC(( perpendicular), ( parallel)), as well as the relaxation parameters in both core and rim regions, were not statistically significant. The effect of diffusion time on the ADC(( perpendicular), ( parallel)) values was investigated by creating maps at three additional diffusion times (50.0, 125.0, 250.0 ms) using a diffusion-weighted, stimulated-echo (DW-STE) pulse sequence. At longer diffusion times, ADC(( perpendicular), ( parallel)) values increased rather than approaching a constant value. This observation was attributed to T(1) spin-editing during the DW-STE pulse sequence, which resulted in the loss of short-T(1) components (with correspondingly lower ADCs) at longer diffusion times

  14. Characterization of anomalous relaxation using the time-fractional Bloch equation and multiple echo T2 *-weighted magnetic resonance imaging at 7 T.

    Science.gov (United States)

    Qin, Shanlin; Liu, Fawang; Turner, Ian W; Yu, Qiang; Yang, Qianqian; Vegh, Viktor

    2017-04-01

    To study the utility of fractional calculus in modeling gradient-recalled echo MRI signal decay in the normal human brain. We solved analytically the extended time-fractional Bloch equations resulting in five model parameters, namely, the amplitude, relaxation rate, order of the time-fractional derivative, frequency shift, and constant offset. Voxel-level temporal fitting of the MRI signal was performed using the classical monoexponential model, a previously developed anomalous relaxation model, and using our extended time-fractional relaxation model. Nine brain regions segmented from multiple echo gradient-recalled echo 7 Tesla MRI data acquired from five participants were then used to investigate the characteristics of the extended time-fractional model parameters. We found that the extended time-fractional model is able to fit the experimental data with smaller mean squared error than the classical monoexponential relaxation model and the anomalous relaxation model, which do not account for frequency shift. We were able to fit multiple echo time MRI data with high accuracy using the developed model. Parameters of the model likely capture information on microstructural and susceptibility-induced changes in the human brain. Magn Reson Med 77:1485-1494, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  15. What is the most suitable MR signal index for quantitative evaluation of placental function using Half-Fourier acquisition single-shot turbo spin-echo compared with T2-relaxation time?

    Science.gov (United States)

    Kameyama, Kyoko Nakao; Kido, Aki; Himoto, Yuki; Moribata, Yusaku; Minamiguchi, Sachiko; Konishi, Ikuo; Togashi, Kaori

    2018-06-01

    Background Half-Fourier acquisition single-shot turbo spin-echo (HASTE) imaging is now widely used for placental and fetal imaging because of its rapidity and low sensitivity to fetal movement. If placental dysfunction is also predicted by quantitative value obtained from HASTE image, then it might be beneficial for evaluating placental wellbeing. Purpose To ascertain the most suitable magnetic resonance (MR) signal indexes reflecting placental function using HASTE imaging. Material and Methods This retrospective study included 37 consequent patients who had given informed consent to MR imaging (MRI) examinations. All had undergone MRI examinations between February 2014 and June 2015. First, the correlation between T2-relaxation time of normal placenta and gestational age (GA) was examined. Second, correlation between signal intensity ratios (SIRs) using HASTE imaging and placental T2-relaxation time were assessed. The SIRs were calculated using placental signal intensity (SI) relative to the SI of the amniotic fluid, fetal ocular globes, gastric fluid, bladder, maternal psoas major muscles, and abdominal subcutaneous adipose tissue. Results Among the 37 patients, the correlation between T2-relaxation time of the 25 normal placentas and GA showed a moderately strong correlation (Spearman rho = -0.447, P = 0.0250). The most significant correlation with placental T2-relaxation time was observed with the placental SIR relative to the maternal psoas major muscles (SIR pl./psoas muscle ) (Spearman rho = -0.531, P = 0.0007). Conclusion This study revealed that SIR pl./psoas muscle showed the best correlation to placental T2-relaxation time. Results show that SIR pl./psoas muscle might be optimal as a clinically available quantitative index of placental function.

  16. T2 relaxation times of the glenohumeral joint at 3.0 T MRI in patients with and without primary and secondary osteoarthritis.

    Science.gov (United States)

    Lee, So-Yeon; Park, Hee-Jin; Kwon, Heon-Ju; Kim, Mi Sung; Choi, Seon Hyeong; Choi, Yoon Jung; Kim, Eugene

    2015-11-01

    Quantitative magnetic resonance imaging (MRI) of cartilage has recently been applied to patients with osteoarthritis (OA). T2 mapping is a sensitive method of detecting changes in the chemical composition and structure of cartilage. To establish baseline T2 values of glenohumeral joint cartilage at 3.0 T and compare T2 values among subjects with and without OA. The study involved 30 patients (18 women, 12 men; median age, 67 years; age range, 51-78 years) with primary (n = 7) and secondary OA (n = 23) in the glenohumeral joint and 34 subjects without OA (19 women, 15 men; median age, 49 years; age range, 23-63 years). All subjects were evaluated by radiography and 3.0 T MRI including a multi-echo T2-weighted spin echo pulse sequence. The T2 value of the cartilage was measured by manually drawing the region of interest on the T2 map. Per-zone comparison of T2 values was performed using Mann-Whitney U test. Median T2 values differed significantly between subjects without OA (36.00 ms [interquartile range, 33.89-37.31 ms]) and those with primary (37.52 ms [36.84-39.11], P = 0.028), but not secondary (36.87 ms [34.70-41.10], P = 0.160) OA. Glenohumeral cartilage T2 values were higher in different zones between patients with primary and secondary OA than in subjects without OA. These T2 values can be used for comparison to assess cartilage degeneration in patients with shoulder OA. Significant differences in T2 were observed among subjects without OA and those with primary and secondary OA. © The Foundation Acta Radiologica 2014.

  17. Calculation of T2 relaxation time from ultrafast single shot sequences for differentiation of liver tumors. Comparison of echo-planar, HASTE, and spin-echo sequences

    International Nuclear Information System (INIS)

    Abe, Yasuko; Yamashita, Yasuyuki; Tang, Yi; Namimoto, Tomohiro; Takahashi, Mutsumasa

    2000-01-01

    The purpose of this study was to evaluate the accuracy of T2 calculation from single shot imaging sequences such as echo-planar imaging (EPI) and half-Fourier single shot turbo spin-echo (HASTE) imaging. For the phantom study, we prepared vials containing different concentrations of agarose, copper sulfate, and nickel chloride. The temperature of the phantom was kept at 22 deg C. MR images were obtained with a 1.5-Tesla superconductive magnet. Spin-echo (SE)-type EPI and HASTE sequences with different TEs were obtained for T2 calculation, and the T2 values were compared with those obtained from the Carr-Purcell-Meiborm-Gill (CPMG) sequence. The clinical study group consisted of 30 consecutive patients referred for MR imaging to characterize focal liver lesions. A total of 40 focal liver lesions were evaluated, including 25 primary or metastatic solid masses and 15 non-solid lesions. Single shot SE-type EPI and HASTE were both performed with TEs of 64 and 90 msec. In the phantom study, the T2 values obtained from both single shot sequences showed significant correlations with those from the CPMG sequence (T2 on EPI vs. T2 on CPMG: r=0.98, p<0.01; T2 on HASTE vs. T2 on CPMG: r=0.99, p<0.01). In the clinical study, mean T2 values for liver calculated from EPI (42 msec) were significantly shorter than those calculated from the HASTE sequence (58 msec) (p<0.001). Mean T2 values for solid tumors were 95 msec with HASTE and 72 msec with EPI, and mean T2 values for non-solid lesions were 128 msec with HASTE and 159 msec with EPI. Although mean T2 values between solid and non-solid lesions were significantly different for both EPI and HASTE sequences (p=0.01 for HASTE, p<0.001 for EPI), the overlap of solid and non-solid lesions was less frequent in EPI than in HASTE. With single shot sequences, it is possible to obtain the T2 values that show excellent correlation with the CPMG sequence. Although both HASTE and EPI are useful to calculate T2 values, EPI appears to be more

  18. Quantitative Skeletal Muscle MRI: Part 2, MR Spectroscopy and T2 Relaxation Time Mapping-Comparison Between Boys With Duchenne Muscular Dystrophy and Healthy Boys.

    Science.gov (United States)

    Kim, Hee Kyung; Serai, Suraj; Lindquist, Diana; Merrow, Arnold C; Horn, Paul S; Kim, Dong Hoon; Wong, Brenda L

    2015-08-01

    The purpose of this study is to validate the use of MR spectroscopy (MRS) in measuring muscular fat and to compare it with T2 maps in differentiating boys with Duchenne muscular dystrophy (DMD) from healthy boys. Forty-two boys with DMD and 31 healthy boys were evaluated with MRI with (1)H-MRS and T2 maps. Grading of muscle fat and edema on conventional images, calculation of fat fractions ([fat / fat] + water) on MRS, and calculation of T2 fat values on T2 maps of the gluteus maximus and vastus lateralis muscles were performed. Group comparisons were made. The 95% reference interval (RI) of fat fraction for the control group was applied and compared with T2 map results. Minimal fat on T1-weighted images was seen in 90.3% (gluteus maximus) and 71.0% (vastus lateralis) of healthy boys, versus 33.3% (gluteus maximus) and 52.4% (vastus lateralis) of boys with DMD. Muscle edema was seen in none of the healthy boys versus 52.4% (gluteus maximus) and 57.1% (vastus lateralis) of the boys with DMD. Fat fractions were higher in the DMD group (52.7%, gluteus maximus; 27.3%, vastus lateralis) than in the control group (12.8%, gluteus maximus; 13.7%, vastus lateralis) (p muscle edema in DMD.

  19. Development of a Rabbit Model of Radiation-Induced Sciatic Nerve Injury: In Vivo Evaluation Using T2 Relaxation Time Measurements.

    Science.gov (United States)

    Wan, Qi; Zeng, Qian; Li, Xinchun; Sun, Chongpeng; Zhou, Jiaxuan; Zou, Qiao; Deng, Yingshi; Niu, Daoli

    2015-01-01

    To develop a rabbit model of radiation-induced sciatic nerve injury (RISNI), using computed tomography (CT)-guided stereotactic radiosurgery, and assess the value of T2 measurements of injured nerves. Twenty New Zealand rabbits were randomly divided into A (n = 5) and B (n = 15) groups. Group A rabbits underwent CT and magnetic resonance scan and were then killed for comparison of images and anatomy of sciatic nerves. One side of the sciatic nerve of group B rabbits received irradiation doses of 35, 50, or 70 Gy (n = 5 per group). Magnetic resonance imaging and functional assessments were performed before irradiation and 1, 2, 3, and 4 months thereafter. The thigh section of the sciatic nerve outside the pelvis could be observed by CT and magnetic resonance imaging. T2 values of the irradiated nerve of the 35-Gy group increased gradually, peaking at 4 months; T2 values of the 50-Gy group increased faster, peaking at 3 months. Significant differences between the 35-Gy and control groups were found at 3 and 4 months, and between the 50-Gy and control groups at 2, 3, and 4 months. Functional scores of the 50-Gy group declined progressively, whereas the 35-Gy group scores reached a low point at 3 months posttreatment and then recovered. Functional scores of the irradiated limbs demonstrated a negative correlation with T2 values (r = -0.591 and -0.595, P T2 values are useful for monitoring RISNI, they may not be sensitive enough to evaluate its severity.

  20. Conservatively treated knee injury is associated with knee cartilage matrix degeneration measured with MRI-based T2 relaxation times. Data from the osteoarthritis initiative

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Felix C. [University of California San Francisco, Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Technical University of Munich, Department of Radiology, Munich (Germany); Neumann, Jan; Heilmeier, Ursula; Joseph, Gabby B.; Link, Thomas M. [University of California San Francisco, Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Nevitt, Michael C.; McCulloch, Charles E. [University of California San Francisco, Department of Epidemiology and Biostatistics, San Francisco, CA (United States)

    2018-01-15

    To investigate the association of cartilage degeneration with previous knee injuries not undergoing surgery, determined by morphologic and quantitative 3-T magnetic resonance imaging (MRI). We performed a nested cross-sectional study of right knee MRIs from participants in the Osteoarthritis Initiative (OAI) aged 45-79 with baseline Kellgren-Lawrence score of 0-2. Cases were 142 right knees of patients with self-reported history of injury limiting the ability to walk for at least 2 days. Controls were 426 right knees without history of injury, frequency-matched to cases on age, BMI, gender, KL scores and race (1:3 ratio). Cases and controls were compared using covariate-adjusted linear regression analysis, with the outcomes of region-specific T2 mean, laminar analysis and heterogeneity measured by texture analysis to investigate early cartilage matrix abnormalities and the Whole-Organ Magnetic Resonance Imaging Score (WORMS) to investigate morphologic knee lesions. Compared to control subjects, we found significantly higher mean T2 values in the injury [lateral tibia (28.10 ms vs. 29.11 ms, p = 0.001), medial tibia (29.70 ms vs. 30.40 ms, p = 0.014) and global knee cartilage (32.73 ms vs. 33.29 ms, p = 0.005)]. Injury subjects also had more heterogeneous cartilage as measured by GLCM texture contrast, variance and entropy (p < 0.05 in 14 out of 18 texture parameters). WORMS gradings were not significantly different between the two groups (p > 0.05). A history of knee injury not treated surgically is associated with higher and more heterogeneous T2 values, but not with morphologic knee abnormalities. Our findings suggest that significant, conservatively treated knee injuries are associated with permanent cartilage matrix abnormalities. (orig.)

  1. Conservatively treated knee injury is associated with knee cartilage matrix degeneration measured with MRI-based T2 relaxation times. Data from the osteoarthritis initiative

    International Nuclear Information System (INIS)

    Hofmann, Felix C.; Neumann, Jan; Heilmeier, Ursula; Joseph, Gabby B.; Link, Thomas M.; Nevitt, Michael C.; McCulloch, Charles E.

    2018-01-01

    To investigate the association of cartilage degeneration with previous knee injuries not undergoing surgery, determined by morphologic and quantitative 3-T magnetic resonance imaging (MRI). We performed a nested cross-sectional study of right knee MRIs from participants in the Osteoarthritis Initiative (OAI) aged 45-79 with baseline Kellgren-Lawrence score of 0-2. Cases were 142 right knees of patients with self-reported history of injury limiting the ability to walk for at least 2 days. Controls were 426 right knees without history of injury, frequency-matched to cases on age, BMI, gender, KL scores and race (1:3 ratio). Cases and controls were compared using covariate-adjusted linear regression analysis, with the outcomes of region-specific T2 mean, laminar analysis and heterogeneity measured by texture analysis to investigate early cartilage matrix abnormalities and the Whole-Organ Magnetic Resonance Imaging Score (WORMS) to investigate morphologic knee lesions. Compared to control subjects, we found significantly higher mean T2 values in the injury [lateral tibia (28.10 ms vs. 29.11 ms, p = 0.001), medial tibia (29.70 ms vs. 30.40 ms, p = 0.014) and global knee cartilage (32.73 ms vs. 33.29 ms, p = 0.005)]. Injury subjects also had more heterogeneous cartilage as measured by GLCM texture contrast, variance and entropy (p < 0.05 in 14 out of 18 texture parameters). WORMS gradings were not significantly different between the two groups (p > 0.05). A history of knee injury not treated surgically is associated with higher and more heterogeneous T2 values, but not with morphologic knee abnormalities. Our findings suggest that significant, conservatively treated knee injuries are associated with permanent cartilage matrix abnormalities. (orig.)

  2. Proton T2 relaxation effect of superparamagnetic iron oxide. Comparison between fast spin echo and conventional spin echo sequence

    International Nuclear Information System (INIS)

    Tanimoto, Akihiro; Satoh, Yoshinori; Higuchi, Nobuya; Izutsu, Mutsumu; Yuasa, Yuji; Hiramatsu, Kyoichi

    1995-01-01

    Superparamagnetic iron oxide (SPIO) particles have been known to show a great T 2 relaxation effect in the liver, which contributes to significant liver signal decrease and detection of hepatic neoplasms. Recently, fast spin echo (FSE) sequence with less scanning time than conventional spin echo (SE) sequence has been rapidly introduced in clinical MR imaging. To investigate whether SPIO would show decreased T 2 relaxation effect on FSE, we obtained T 2 relaxivity (R2) of SPIO in vitro and liver signal decrease caused by SPIO in vivo. SPIO showed 20% less R2 on Carr-Purcell-Meiboom-Gill (CPMG) sequence than on SE. Relative liver signal-to-noise ratio (SNR) decrease caused by SPIO was significantly smaller (p 2 relaxation effect on FSE than on SE. However, further studies will be required to assess the diagnostic capability of SPIO on FSE, in the detection of hepatic neoplasms. (author)

  3. The relaxation time approximation

    International Nuclear Information System (INIS)

    Gairola, R.P.; Indu, B.D.

    1991-01-01

    A plausible approximation has been made to estimate the relaxation time from a knowledge of the transition probability of phonons from one state (r vector, q vector) to other state (r' vector, q' vector), as a result of collision. The relaxation time, thus obtained, shows a strong dependence on temperature and weak dependence on the wave vector. In view of this dependence, relaxation time has been expressed in terms of a temperature Taylor's series in the first Brillouin zone. Consequently, a simple model for estimating the thermal conductivity is suggested. the calculations become much easier than the Callaway model. (author). 14 refs

  4. NMR relaxation in natural soils: Fast Field Cycling and T1-T2 Determination by IR-MEMS

    Science.gov (United States)

    Haber-Pohlmeier, S.; Pohlmeier, A.; Stapf, S.; van Dusschoten, D.

    2009-04-01

    Soils are natural porous media of highest importance for food production and sustainment of water resources. For these functions, prominent properties are their ability of water retainment and transport, which are mainly controlled by pore size distribution. The latter is related to NMR relaxation times of water molecules, of which the longitudinal relaxation time can be determined non-invasively by fast-field cycling relaxometry (FFC) and both are obtainable by inversion recovery - multi-echo- imaging (IR-MEMS) methods. The advantage of the FFC method is the determination of the field dependent dispersion of the spin-lattice relaxation rate, whereas MRI at high field is capable of yielding spatially resolved T1 and T2 times. Here we present results of T1- relaxation time distributions of water in three natural soils, obtained by the analysis of FFC data by means of the inverse Laplace transformation (CONTIN)1. Kaldenkirchen soil shows relatively broad bimodal distribution functions D(T1) which shift to higher relaxation rates with increasing relaxation field. These data are compared to spatially resolved T1- and T2 distributions, obtained by IR-MEMS. The distribution of T1 corresponds well to that obtained by FFC.

  5. Characterization of the collagen component of cartilage repair tissue of the talus with quantitative MRI: comparison of T2 relaxation time measurements with a diffusion-weighted double-echo steady-state sequence (dwDESS)

    International Nuclear Information System (INIS)

    Kretzschmar, M.; Hainc, N.; Studler, U.; Bieri, O.; Miska, M.; Wiewiorski, M.; Valderrabano, V.

    2015-01-01

    The purpose of this study was to characterize the collagen component of repair tissue (RT) of the talus after autologous matrix-induced chondrogenesis (AMIC) using quantitative T2 and diffusion-weighted imaging. Mean T2 values and diffusion coefficients of AMIC-RT and normal cartilage of the talus of 25 patients with posttraumatic osteochondral lesions and AMIC repair were compared in a cross-sectional design using partially spoiled steady-state free precession (pSSFP) for T2 quantification, and diffusion-weighted double-echo steady-state (dwDESS) for diffusion measurement. RT and cartilage were graded with modified Noyes and MOCART scores on morphological sequences. An association between follow-up interval and quantitative MRI measures was assessed using multivariate regression, after stratifying the cohort according to time interval between surgery and MRI. Mean T2 of the AMIC-RT and cartilage were 43.1 ms and 39.1 ms, respectively (p = 0.26). Mean diffusivity of the RT (1.76 μm 2 /ms) was significantly higher compared to normal cartilage (1.46 μm 2 /ms) (p = 0.0092). No correlation was found between morphological and quantitative parameters. RT diffusivity was lowest in the subgroup with follow-up >28 months (p = 0.027). Compared to T2-mapping, dwDESS demonstrated greater sensitivity in detecting differences in the collagen matrix between AMIC-RT and cartilage. Decreased diffusivity in patients with longer follow-up times may indicate an increased matrix organization of RT. (orig.)

  6. Characterization of the collagen component of cartilage repair tissue of the talus with quantitative MRI: comparison of T2 relaxation time measurements with a diffusion-weighted double-echo steady-state sequence (dwDESS)

    Energy Technology Data Exchange (ETDEWEB)

    Kretzschmar, M.; Hainc, N.; Studler, U. [University Hospital Basel, Department of Radiology, Basel (Switzerland); Bieri, O. [University Hospital Basel, Division of Radiological Physics, Basel (Switzerland); Miska, M. [University Hospital, Department of Orthopedics, Heidelberg (Germany); Wiewiorski, M.; Valderrabano, V. [University Hospital Basel, Department of Orthopedic Surgery, Basel (Switzerland)

    2015-04-01

    The purpose of this study was to characterize the collagen component of repair tissue (RT) of the talus after autologous matrix-induced chondrogenesis (AMIC) using quantitative T2 and diffusion-weighted imaging. Mean T2 values and diffusion coefficients of AMIC-RT and normal cartilage of the talus of 25 patients with posttraumatic osteochondral lesions and AMIC repair were compared in a cross-sectional design using partially spoiled steady-state free precession (pSSFP) for T2 quantification, and diffusion-weighted double-echo steady-state (dwDESS) for diffusion measurement. RT and cartilage were graded with modified Noyes and MOCART scores on morphological sequences. An association between follow-up interval and quantitative MRI measures was assessed using multivariate regression, after stratifying the cohort according to time interval between surgery and MRI. Mean T2 of the AMIC-RT and cartilage were 43.1 ms and 39.1 ms, respectively (p = 0.26). Mean diffusivity of the RT (1.76 μm{sup 2}/ms) was significantly higher compared to normal cartilage (1.46 μm{sup 2}/ms) (p = 0.0092). No correlation was found between morphological and quantitative parameters. RT diffusivity was lowest in the subgroup with follow-up >28 months (p = 0.027). Compared to T2-mapping, dwDESS demonstrated greater sensitivity in detecting differences in the collagen matrix between AMIC-RT and cartilage. Decreased diffusivity in patients with longer follow-up times may indicate an increased matrix organization of RT. (orig.)

  7. T1 and T2 relaxivity of intracellular and extracellular USPIO at 1.5T and 3T clinical MR scanning

    International Nuclear Information System (INIS)

    Simon, Gerhard H.; Bauer, Jan; Saborovski, Olaf; Fu, Yanjun; Wendland, Michael F.; Daldrup-Link, Heike E.; Corot, Claire

    2006-01-01

    In this study we evaluated the effects of intracellular compartmentalization of the ultrasmall superparamagnetic iron oxide (USPIO) ferumoxtran-10 on its proton T1 and T2 relaxivities at 1.5 and 3T. Monocytes were labeled with ferumoxtran-10 by simple incubation. Decreasing quantities of ferumoxtran-10-labeled cells (2.5 x 10 7 -0.3 x 10 7 cells/ml) and decreasing concentrations of free ferumoxtran-10 (without cells) in Ficoll solution were evaluated with 1.5 and 3T clinical magnetic resonance (MR) scanners. Pulse sequences comprised axial spin echo (SE) sequences with multiple TRs and fixed TE and SE sequences with fixed TR and increasing TEs. Signal intensity measurements were used to calculate T1 and T2 relaxation times of all samples, assuming a monoexponential signal decay. The iron content in all samples was determined by inductively coupled plasma atomic emission spectrometry and used for calculating relaxivities. Measurements at 1.5T and 3T showed higher T1 and T2 relaxivity values of free extracellular ferumoxtran-10 as opposed to intracellularly compartmentalized ferumoxtran-10, under the evaluated conditions of homogeneously dispersed contrast agents/cells in Ficoll solution and a cell density of up to 2.5 x 10 7 cells/ml. At 3T, differences in T1-relaxivities between intra- and extracellular USPIO were smaller, while differences in USPIO T2-relaxivities were similar compared with 1.5T. In conclusion, cellular compartmentalization of ferumoxtran-10 changes proton relaxivity. (orig.)

  8. NMR relaxation times in human brain tumors (preliminary results)

    International Nuclear Information System (INIS)

    Benoist, L.; Certaines, J. de; Chatel, M.; Menault, F.

    1981-01-01

    Since the early work of Damadian in 1971, proton NMR studies of tumors has been well documented. Present study concerns the spin-lattice T 1 and spin-spin T 2 relaxation times of normal dog brain according to the histological differentiation and of 35 human benignant or malignant tumors. The results principally show T 2 important variations between white and gray substance in normal brain but no discrimination between malignant and benignant tumors [fr

  9. Assessing the effects of subject motion on T2 relaxation under spin tagging (TRUST) cerebral oxygenation measurements using volume navigators.

    Science.gov (United States)

    Stout, Jeffrey N; Tisdall, M Dylan; McDaniel, Patrick; Gagoski, Borjan; Bolar, Divya S; Grant, Patricia Ellen; Adalsteinsson, Elfar

    2017-12-01

    Subject motion may cause errors in estimates of blood T 2 when using the T 2 -relaxation under spin tagging (TRUST) technique on noncompliant subjects like neonates. By incorporating 3D volume navigators (vNavs) into the TRUST pulse sequence, independent measurements of motion during scanning permit evaluation of these errors. The effects of integrated vNavs on TRUST-based T 2 estimates were evaluated using simulations and in vivo subject data. Two subjects were scanned with the TRUST+vNav sequence during prescribed movements. Mean motion scores were derived from vNavs and TRUST images, along with a metric of exponential fit quality. Regression analysis was performed between T 2 estimates and mean motion scores. Also, motion scores were determined from independent neonatal scans. vNavs negligibly affected venous blood T 2 estimates and better detected subject motion than fit quality metrics. Regression analysis showed that T 2 is biased upward by 4.1 ms per 1 mm of mean motion score. During neonatal scans, mean motion scores of 0.6 to 2.0 mm were detected. Motion during TRUST causes an overestimate of T 2 , which suggests a cautious approach when comparing TRUST-based cerebral oxygenation measurements of noncompliant subjects. Magn Reson Med 78:2283-2289, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  10. Pair plasma relaxation time scales.

    Science.gov (United States)

    Aksenov, A G; Ruffini, R; Vereshchagin, G V

    2010-04-01

    By numerically solving the relativistic Boltzmann equations, we compute the time scale for relaxation to thermal equilibrium for an optically thick electron-positron plasma with baryon loading. We focus on the time scales of electromagnetic interactions. The collisional integrals are obtained directly from the corresponding QED matrix elements. Thermalization time scales are computed for a wide range of values of both the total-energy density (over 10 orders of magnitude) and of the baryonic loading parameter (over 6 orders of magnitude). This also allows us to study such interesting limiting cases as the almost purely electron-positron plasma or electron-proton plasma as well as intermediate cases. These results appear to be important both for laboratory experiments aimed at generating optically thick pair plasmas as well as for astrophysical models in which electron-positron pair plasmas play a relevant role.

  11. Evaluation of iron deposits in the reticuloendothelial system using T2-relaxation rate of MRI. Relation with serum ferritin and Fe concentration

    International Nuclear Information System (INIS)

    Ootsuka, Kae; Togami, Izumi; Kitagawa, Takahiro

    1996-01-01

    MR imaging is a useful non-invasive technique to detect iron deposits in many organs, but it is difficult to evaluate quantitatively. This study was performed to determine the possibility whether T2 relaxation rate (1/T2) could quantify iron deposits in the reticuloendothelial system (liver, spleen and bone marrow) of 11 patients and four normal volunteers. A moderate correlation was obtained between T2-relaxation rate and the serum ferritin level. These results suggest that T2-relaxation rate may provide useful information for the repeated quantitative evaluation of patients with iron-overload-syndromes. (author)

  12. An investigation into the effects of pore connectivity on T2 NMR relaxation

    Science.gov (United States)

    Ghomeshi, Shahin; Kryuchkov, Sergey; Kantzas, Apostolos

    2018-04-01

    Nuclear Magnetic Resonance (NMR) is a powerful technique used to characterize fluids and flow in porous media. The NMR relaxation curves are closely related to pore geometry, and the inversion of the NMR relaxometry data is known to give useful information with regards to pore size distribution (PSD) through the relative amplitudes of the fluids stored in the small and large pores. While this information is crucial, the main challenge for the successful use of the NMR measurements is the proper interpretation of the measured signals. Natural porous media patterns consist of complex pore structures with many interconnected or "coupled" regions, as well as isolated pores. This connectivity along the throats changes the relaxation distribution and in order to properly interpret this data, a thorough understanding of the effects of pore connectivity on the NMR relaxation distribution is warranted. In this paper we address two main points. The first pertains to the fact that there is a discrepancy between the relaxation distribution obtained from experiments, and the ones obtained from solving the mathematical models of diffusion process in the digitized images of the pore space. There are several reasons that may attribute to this such as the lack of a proper incorporation of surface roughness into the model. However, here we are more interested in the effects of pore connectivity and to understand why the typical NMR relaxation distribution obtained from experiments are wider, while the numerical simulations predict that a wider NMR relaxation distribution may indicate poor connectivity. Secondly, by not taking into account the pore coupling effects, from our experience in interpreting the data, we tend to underestimate the pore volume of small pores and overestimate the amplitudes in the large pores. The role of pore coupling becomes even more prominent in rocks with small pore sizes such as for example in shales, clay in sandstones, and in the microstructures of

  13. Characterizing the microstructural basis of "unidentified bright objects" in neurofibromatosis type 1: A combined in vivo multicomponent T2 relaxation and multi-shell diffusion MRI analysis.

    Science.gov (United States)

    Billiet, Thibo; Mädler, Burkhard; D'Arco, Felice; Peeters, Ronald; Deprez, Sabine; Plasschaert, Ellen; Leemans, Alexander; Zhang, Hui; den Bergh, Bea Van; Vandenbulcke, Mathieu; Legius, Eric; Sunaert, Stefan; Emsell, Louise

    2014-01-01

    The histopathological basis of "unidentified bright objects" (UBOs) (hyperintense regions seen on T2-weighted magnetic resonance (MR) brain scans in neurofibromatosis-1 (NF1)) remains unclear. New in vivo MRI-based techniques (multi-exponential T2 relaxation (MET2) and diffusion MR imaging (dMRI)) provide measures relating to microstructural change. We combined these methods and present previously unreported data on in vivo UBO microstructure in NF1. 3-Tesla dMRI data were acquired on 17 NF1 patients, covering 30 white matter UBOs. Diffusion tensor, kurtosis and neurite orientation and dispersion density imaging parameters were calculated within UBO sites and in contralateral normal appearing white matter (cNAWM). Analysis of MET2 parameters was performed on 24 UBO-cNAWM pairs. No significant alterations in the myelin water fraction and intra- and extracellular (IE) water fraction were found. Mean T2 time of IE water was significantly higher in UBOs. UBOs furthermore showed increased axial, radial and mean diffusivity, and decreased fractional anisotropy, mean kurtosis and neurite density index compared to cNAWM. Neurite orientation dispersion and isotropic fluid fraction were unaltered. Our results suggest that demyelination and axonal degeneration are unlikely to be present in UBOs, which appear to be mainly caused by a shift towards a higher T2-value of the intra- and extracellular water pool. This may arise from altered microstructural compartmentalization, and an increase in 'extracellular-like', intracellular water, possibly due to intramyelinic edema. These findings confirm the added value of combining dMRI and MET2 to characterize the microstructural basis of T2 hyperintensities in vivo.

  14. Quantitative t2 values predict time from symptom onset in acute stroke patients

    DEFF Research Database (Denmark)

    Siemonsen, Susanne; Mouridsen, Kim; Holst, Brigitte

    2009-01-01

    BACKGROUND AND PURPOSE: We hypothesize that in comparison to diffusion-weighted imaging, quantitative T2 values (qT2) are more directly related to water uptake in ischemic tissue, depending on time from symptom onset. We measured the increase of qT2 in the infarct core to quantify the correlation...

  15. Proton T2 Relaxation effect of superparamagnetic iron oxide on fast spin echo sequence. Influence of echo number (even or odd) of effective TE

    International Nuclear Information System (INIS)

    Tsuchihashi, Toshio; Maki, Toshio; Kitagawa, Matsuo; Suzuki, Takeshi; Fujita, Isao

    1999-01-01

    The T 2 relaxation effect of the fast spin echo sequence (FSE) was investigated using superparamagnetic iron oxide (SPIO) particles. When even echoes were used as the effective TE of FSE, the signal intensity ratio [signal intensity of FSE/signal intensity of conventional spin echo sequence (CSE)] of FSE and CSE increased, whereas the T 2 relaxation effect of SPIO with FSE was reduced. However, when odd echoes were used, neither signal intensity changed, and weakening of the T 2 relaxation effect, considered a problem with FSE, was reduced. This phenomenon was not observed when the refocusing flip angle was changed to 30 and 60 degrees. However, it was observed when the refocusing flip angle was 120 and 150 degrees. Thus, this phenomenon can be considered to be related to oscillation in longitudinal magnetization when using the Carr-Purcell-Meiboom-Gill (CPMG) technique. (author)

  16. Quantifying NMR relaxation correlation and exchange in articular cartilage with time domain analysis

    Science.gov (United States)

    Mailhiot, Sarah E.; Zong, Fangrong; Maneval, James E.; June, Ronald K.; Galvosas, Petrik; Seymour, Joseph D.

    2018-02-01

    Measured nuclear magnetic resonance (NMR) transverse relaxation data in articular cartilage has been shown to be multi-exponential and correlated to the health of the tissue. The observed relaxation rates are dependent on experimental parameters such as solvent, data acquisition methods, data analysis methods, and alignment to the magnetic field. In this study, we show that diffusive exchange occurs in porcine articular cartilage and impacts the observed relaxation rates in T1-T2 correlation experiments. By using time domain analysis of T2-T2 exchange spectroscopy, the diffusive exchange time can be quantified by measurements that use a single mixing time. Measured characteristic times for exchange are commensurate with T1 in this material and so impacts the observed T1 behavior. The approach used here allows for reliable quantification of NMR relaxation behavior in cartilage in the presence of diffusive fluid exchange between two environments.

  17. Ovarian chocolate cysts. Staging with relaxation time in MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sugimura, Kazuro; Ishida, Tetsuya; Takemori, Masayuki; Kitagaki, Hajime; Tanaka, Yutaka; Yamasaki, Katsuhito; Shimizu, Tadafumi; Kono, Michio

    1988-10-01

    Accurate preoperative staging of ovarian chocolate cysts is very important because recent hormonal therapy has been effective in low stage patients. However, it has been difficult to assess the preoperative stage of ovarian chocolate cysts. We evaluated the diagnostic potential of MRI in preoperative staging of 15 overian chocolate cysts. It was well known that the older the ovarian chocolate cyst was the more iron content it had. We examined the iron contents effect on T1 and T2 relaxation times in surgically confirmed chocolate cysts (stage II: 3 cases, stage III: 3 cases and stage IV: 9 cases by AFS classification, 1985) employing the 0.15-T MR system and 200 MHz spectrometer. There was a positive linear relation between T1 of the lesion using the MR system (T1) and T1 of the resected contents using the spectrometer (sp-T1); r = 0.93. The same relation was revealed between T2 and sp-T2; r = 0.87. It was indicated that T1 and T2 using the MR system was accurate. There was a negative linear relation between T1 and the iron contents ( r = -0.81) but no relation between T2 and the iron contents. T1 was 412 +- 91 msec for stage II, 356 +- 126 msec for stage III and 208 +- 30 msec for stage IV. T1 for stage IV was shorter than that for stage II and III, statistically significant differences were noted (p < 0.05). Thus, T1 was useful in differentiating a fresh from an old ovarian chocolate cyst. We concluded that T1 relaxation time using the MR system was useful for the staging of an ovarian chocolate cyst without surgery.

  18. Changes in Regional t2 Relaxation in Compressed Cartilage: a Microscopic MRI (µMRI) Study

    Science.gov (United States)

    Alhadlaq, Hisham; Xia, Yang

    2004-10-01

    T2-anisotropy of articular cartilage in magnetic field has its origin on the proton dipolar interactions and the collagen matrix organization, which influences T2 with a dependency as (3s^2(θ)-1). Seven specimens from a beagle humeral head were compressed at 12% and 20% strain values in μMRI experiments. T2 mappings at two orientations (0r and 55r) before and during compression were conducted on a Bruker AMX 300 NMR. Under load, the 2D cartilage maps at the magic angle lost its usual homogenous appearance. T2 values were averaged at the superficial zone (SZ), the transitional zone (TZ), and the radial zone (RZ). At 0r and relative to uncompressed tissue, SZ T2 was significantly lower, and RZ T2 increased significantly at both strain rates (12% and 20%). At 55r and relative to uncompressed tissue, ``bulk'' T2 and RZ T2 were significantly lower at only 20% strain. However, SZ T2 and TZ T2 were significantly lower at both strain rates. In addition, relative to 12% strain, SZ T2 was significantly lower at 0r; and ``bulk'' T2 and TZ T2 were significantly lower at 55r. The results demonstrate the modifications in collagen fiber organization as the dipolar interaction is altered due to tissue compression.

  19. NMR relaxation times of natural rubber latex

    International Nuclear Information System (INIS)

    Harun, S.; Aziz, H.; Basir, Z.

    1994-01-01

    NMR relaxation times T sub 1 and T sub 2 of natural rubber latex have been measured at 25 degree C on a pulsed NMR spectrometer. The work focuses on the variation of the relaxation times with the amount of water content from 0% to 50%. The water content was adjusted by centrifuging and removing a certain amount of water from the sample. The data were analysed using a biexponential fitting procedure which yields simultaneously either T sub 1a and T sub 1b or T sub 2a and T sub 2b. The amount of solid was compared with the known amount of dry rubber content

  20. Simultaneous acquisition for T2 -T2 Exchange and T1 -T2 correlation NMR experiments

    Science.gov (United States)

    Montrazi, Elton T.; Lucas-Oliveira, Everton; Araujo-Ferreira, Arthur G.; Barsi-Andreeta, Mariane; Bonagamba, Tito J.

    2018-04-01

    The NMR measurements of longitudinal and transverse relaxation times and its multidimensional correlations provide useful information about molecular dynamics. However, these experiments are very time-consuming, and many researchers proposed faster experiments to reduce this issue. This paper presents a new way to simultaneously perform T2 -T2 Exchange and T1 -T2 correlation experiments by taking the advantage of the storage time and the two steps phase cycling used for running the relaxation exchange experiment. The data corresponding to each step is either summed or subtracted to produce the T2 -T2 and T1 -T2 data, enhancing the information obtained while maintaining the experiment duration. Comparing the results from this technique with traditional NMR experiments it was possible to validate the method.

  1. Nuclear magnetic resonance relaxation times for human lung cancer and lung tissues

    International Nuclear Information System (INIS)

    Matsuura, Yoshifumi; Shioya, Sumie; Kurita, Daisaku; Ohta, Takashi; Haida, Munetaka; Ohta, Yasuyo; Suda, Syuichi; Fukuzaki, Minoru.

    1994-01-01

    We investigated the nuclear magnetic resonance (NMR) relaxation times, T 1 and T 2 , for lung cancer tissue, and other samples of lung tissue obtained from surgical specimens. The samples were nine squamous cell carcinomas, five necrotic squamous cell carcinomas, 15 adenocarcinomas, two benign mesotheliomas, and 13 fibrotic lungs. The relaxation times were measured with a 90 MHz NMR spectrometer and the results were correlated with histological changes. The values of T 1 and T 2 for squamous cell carcinoma and mesothelioma were significantly longer than those of adenocarcinoma and fibrotic lung tissue. There were no significant differences in values of T 1 and T 2 between adenocarcinoma and lung tissue. The values of T 1 and T 2 for benign mesothelioma were similar to those of squamous cell carcinoma, which suggested that increases in T 1 and T 2 are not specific to malignant tissues. (author)

  2. Measurements of T1 and T2 over time in formalin-fixed human whole-brain specimens

    International Nuclear Information System (INIS)

    Tovi, M.; Ericsson, A.

    1992-01-01

    T1 and T2 were measured in 5 formalin-fixed human whole-brain specimens as a function of time. Gray matter/white matter contrast reversal was observed around the 4th day and was considered to be due to the greater decrease in T1 in gray than in white matter. A possible explanation for this is that the decomposition of the myelin phospholipid structure by formalin somewhat counteracts the general reductive effect of the fixation procedure on relaxation times. (orig.)

  3. Comparison of MRI T2 Relaxation Changes of Knee Articular Cartilage before and after Running between Young and Old Amateur Athletes

    International Nuclear Information System (INIS)

    Cha, Jang Gyu; Jeon, Chan Hong; Lee, Eun Hye; Lee, Jae Chul; Kim, Hyun Joo; Han, Jong Kyu; Kim, Yong Dai

    2012-01-01

    To compare changes in T2 relaxation on magnetic resonance (MR) images of knee articular cartilage in younger and older amateur athletes before and after running. By using a 3.0-T MR imager, quantitative T2 maps of weight-bearing femoral and tibial articular cartilages in 10 younger and 10 older amateur athletes were acquired before, immediately after, and 2 hours after 30 minutes of running. Changes in global cartilage T2 signals of the medial and lateral condyles of the femur and tibia and regional cartilage T2 signals in the medial condyles of femoral and tibia in response to exercise were compared between the two age groups. Changes in global cartilage T2 values after running did not differ significantly between the age groups. In terms of the depth variation, relatively higher T2 values in the older group than in the younger group were observed mainly in the superficial layers of the femoral and tibial cartilage (p < 0.05). Age-related cartilage changes may occur mainly in the superficial layer of cartilage where collagen matrix degeneration is primarily initiated. However, no trend is observed regarding a global T2 changes between the younger and older age groups in response to exercise.

  4. Current relaxation time scales in toroidal plasmas

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.

    1987-02-01

    An approximate normal mode analysis of plasma current diffusion in tokamaks is presented. The work is based on numerical solutions of the current diffusion equation in cylindrical geometry. Eigenvalues and eigenfunctions are shown for a broad range of plasma conductivity profile shapes. Three classes of solutions are considered which correspond to three types of tokamak operation. Convenient approximations to the three lowest eigenvalues in each class are presented and simple formulae for the current relaxation time scales are given

  5. Paramagnetic relaxation effects in perturbed angular correlations for arbitrary electronic relaxation time

    International Nuclear Information System (INIS)

    Chopin, C.; Spanjaard, D.; Hartmann-Boutron, F.

    1975-01-01

    Previous perturbation treatments of paramagnetic relaxation effects in γγ PAC were limited to the case of very short electronic relaxation times. This limitation is circumvented by invoking a new perturbation theory recently elaborated by Hirst and others for handling relaxation effects in Moessbauer spectra. Under the assumption of spherical electronic relaxation the perturbation factors are computed as functions of certain relaxation parameters which are directly related to the microscopic relaxation Hamiltonian. The results are compared to those of the stochastic theory of Scherer and Blume [fr

  6. Magnetic resonance imaging (MRI) and relaxation time mapping of concrete

    Science.gov (United States)

    Beyea, Steven Donald

    2001-07-01

    The use of Magnetic Resonance Imaging (MRI) of water in concrete is presented. This thesis will approach the problem of MR imaging of concrete by attempting to design new methods, suited to concrete materials, rather than attempting to force the material to suit the method. A number of techniques were developed, which allow the spatial observation of water in concrete in up to three dimensions, and permits the determination of space resolved moisture content, as well as local NMR relaxation times. These methods are all based on the Single-Point Imaging (SPI) method. The development of these new methods will be described, and the techniques validated using phantom studies. The study of one-dimensional moisture transport in drying concrete was performed using SPI. This work examined the effect of initial mixture proportions and hydration time on the drying behaviour of concrete, over a period of three months. Studies of drying concrete were also performed using spatial mapping of the spin-lattice (T1) and effective spin-spin (T2*) relaxation times, thereby permitting the observation of changes in the water occupied pore surface-to-volume ratio (S/V) as a function of drying. Results of this work demonstrated changes in the S/V due to drying, hydration and drying induced microcracking. Three-dimensional MRI of concrete was performed using SPRITE (Single-Point Ramped Imaging with T1 Enhancement) and turboSPI (turbo Single Point Imaging). While SPRITE allows for weighting of MR images using T 1 and T2*, turboSPI allows T2 weighting of the resulting images. Using relaxation weighting it was shown to be possible to discriminate between water contained within a hydrated cement matrix, and water in highly porous aggregates, used to produce low-density concrete. Three dimensional experiments performed using SPRITE and turboSPI examined the role of self-dessication, drying, initial aggregate saturation and initial mixture conditions on the transport of moisture between porous

  7. Relaxation Processes and Time Scale Transformation.

    Science.gov (United States)

    1982-03-01

    the response function may be immediately recognized as being 14 of the Kubo - Green type in the classical regime. Given this general framework, it is now...b as a function of temperature is 24 equivalent to the Vogel-Beuche-Fulcher empirical law for viscosity or the Williams-Landel-Ferry empirical law...relaxation times. With the weighted sum in the form of an integral , one can write exp(-(t/T)b ] = f dT’g(r’) exp[-(t/T’)], O

  8. The interplay of T1- and T2-relaxation on T1-weighted MRI of hMSCs induced by Gd-DOTA-peptides.

    Science.gov (United States)

    Cao, Limin; Li, Binbin; Yi, Peiwei; Zhang, Hailu; Dai, Jianwu; Tan, Bo; Deng, Zongwu

    2014-04-01

    Three Gd-DOTA-peptide complexes with different peptide sequence are synthesized and used as T1 contrast agent to label human mesenchymal stem cells (hMSCs) for magnetic resonance imaging study. The peptides include a universal cell penetrating peptide TAT, a linear MSC-specific peptide EM7, and a cyclic MSC-specific peptide CC9. A significant difference in labeling efficacy is observed between the Gd-DOTA-peptides as well as a control Dotarem. All Gd-DOTA-peptides as well as Dotarem induce significant increase in T1 relaxation rate which is in favor of T1-weighted MR imaging. Gd-DOTA-CC9 yields the maximum labeling efficacy but poor T1 contrast enhancement. Gd-DOTA-EM7 yields the minimum labeling efficacy but better T1 contrast enhancement. Gd-DOTA-TAT yields a similar labeling efficacy as Gd-DOTA-CC9 and similar T1 contrast enhancement as Gd-DOTA-EM7. The underlying mechanism that governs T1 contrast enhancement effect is discussed. Our results suggest that T1 contrast enhancement induced by Gd-DOTA-peptides depends not only on the introduced cellular Gd content, but more importantly on the effect that Gd-DOTA-peptides exert on the T1-relaxation and T2-relaxation processes/rates. Both T1 and particularly T2 relaxation rate have to be taken into account to interpret T1 contrast enhancement. In addition, the interpretation has to be based on cellular instead of aqueous longitudinal and transverse relaxivities of Gd-DOTA-peptides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Signal intensity and T2 time of extraocular muscles in assessment of their physiological status in MR imaging in healthy subjects

    International Nuclear Information System (INIS)

    Pająk, Michał; Loba, Piotr; Wieczorek-Pastusiak, Julia; Antosik-Biernacka, Aneta; Stefańczyk, Ludomir; Majos, Agata

    2012-01-01

    Lack of standardised orbital MR protocols leads to a situation, when each institution/centre may arbitrarily choose sequence parameters. Therefore, the results obtained and published by the authors may not be compared freely, and what is most important may not be considered fully reliable. Signal intensity (IS) and T2 time (T2) are important parameters in estimation of inflammatory processes of extraocular muscles in the clinical practice. The aim of this study was to determine the reference values (i.e. cut-off values) for absolute signal intensity and T2 relaxation time in healthy subjects, their relativised values to white matter (WM) and temporal muscles (TM) and to evaluate the correlation between those parameters. The orbital examination was performed in healthy volunteers according to the protocol prepared in the Radiology-Imaging Diagnostic Department of the Medical University of Lodz for patients with suspected/diagnosed thyroid orbitopathy. Using two of the standard sequences IS and T2 time were calculated for the muscles and two relativisation tissues in realtion to WM and TM. Subsequently cut-off values for healthy volunteers were calculated. The differences between muscles for IS, IS MAX, IS/TM, IS/WM, IS MAX/TM, IS MAX/WM and T2 MAX/WM were not statistically significant. Therefore one cut-off value of these parameters for all the rectus muscles was calculated. T2-relaxation time and T2 relativised to white matter had to be calculated separately for each muscle. No statistical correlation was found between IS and T2-time for extraocular muscles in healthy volunteers. We calculated the reference ranges (cut-off values) for absolute IS and T2-time values and relativised parameters. In the clinical practice the objectification of IS and T2-time values should be done to WM, than to IS or T2 of the temporal muscle. The T2 MAX/WM seems to have the highest clinical utility for the assessment of the pathophysiological status of extraocular muscles

  10. Musculoskeletal MRI at 3.0 T and 7.0 T: A comparison of relaxation times and image contrast

    International Nuclear Information System (INIS)

    Jordan, Caroline D.; Saranathan, Manojkumar; Bangerter, Neal K.; Hargreaves, Brian A.; Gold, Garry E.

    2013-01-01

    Objective: The purpose of this study was to measure and compare the relaxation times of musculoskeletal tissues at 3.0 T and 7.0 T, and to use these measurements to select appropriate parameters for musculoskeletal protocols at 7.0 T. Materials and methods: We measured the T 1 and T 2 relaxation times of cartilage, muscle, synovial fluid, bone marrow and subcutaneous fat at both 3.0 T and 7.0 T in the knees of five healthy volunteers. The T 1 relaxation times were measured using a spin-echo inversion recovery sequence with six inversion times. The T 2 relaxation times were measured using a spin-echo sequence with seven echo times. The accuracy of both the T 1 and T 2 measurement techniques was verified in phantoms at both magnetic field strengths. We used the measured relaxation times to help design 7.0 T musculoskeletal protocols that preserve the favorable contrast characteristics of our 3.0 T protocols, while achieving significantly higher resolution at higher SNR efficiency. Results: The T 1 relaxation times in all tissues at 7.0 T were consistently higher than those measured at 3.0 T, while the T 2 relaxation times at 7.0 T were consistently lower than those measured at 3.0 T. The measured relaxation times were used to help develop high resolution 7.0 T protocols that had similar fluid-to-cartilage contrast to that of the standard clinical 3.0 T protocols for the following sequences: proton-density-weighted fast spin-echo (FSE), T 2 -weighted FSE, and 3D-FSE-Cube. Conclusion: The T 1 and T 2 changes were within the expected ranges. Parameters for musculoskeletal protocols at 7.0 T can be optimized based on these values, yielding improved resolution in musculoskeletal imaging with similar contrast to that of standard 3.0 T clinical protocols

  11. Relaxation time of normal breast tissues. Changes with age and variations during the menstrual cycle

    International Nuclear Information System (INIS)

    Dean, K.I.; Majurin, M.L.; Komu, M.

    1994-01-01

    The influence of age on the relaxation times of normal breast parenchyma and its surrounding fatty tissue were evaluated, and the variations during a normal menstrual cycle were analyzed using an ultra low field 0.02 T imager. Thirty-nine healthy volunteers aged 21 to 59 years were examined to determine T1 and T2 relaxation times, and 8 of these volunteers were studied once weekly during one menstrual cycle. The only significant trend was an increase in the T2 of breast parenchyma with increasing age. During the menstrual cycle there was a slight but insignificant (p=0.10) increase in T1 of the breast parenchyma values during the latter half of the menstrual cycle, and a corresponding increase in T2 values between the 2nd and 3rd weeks of the menstrual cycle, which was significant. (orig.)

  12. Relaxation time of normal breast tissues. Changes with age and variations during the menstrual cycle

    Energy Technology Data Exchange (ETDEWEB)

    Dean, K.I. (University Central Hospital, Turku (Finland). Dept. of Diagnostic Radiology); Majurin, M.L. (University Central Hospital, Turku (Finland). Dept. of Diagnostic Radiology); Komu, M. (University Central Hospital, Turku (Finland). Dept. of Diagnostic Radiology)

    1994-05-01

    The influence of age on the relaxation times of normal breast parenchyma and its surrounding fatty tissue were evaluated, and the variations during a normal menstrual cycle were analyzed using an ultra low field 0.02 T imager. Thirty-nine healthy volunteers aged 21 to 59 years were examined to determine T1 and T2 relaxation times, and 8 of these volunteers were studied once weekly during one menstrual cycle. The only significant trend was an increase in the T2 of breast parenchyma with increasing age. During the menstrual cycle there was a slight but insignificant (p=0.10) increase in T1 of the breast parenchyma values during the latter half of the menstrual cycle, and a corresponding increase in T2 values between the 2nd and 3rd weeks of the menstrual cycle, which was significant. (orig.).

  13. Evaluation of relaxation time measurements by magnetic resonance imaging. A phantom study

    DEFF Research Database (Denmark)

    Kjaer, L; Thomsen, C; Henriksen, O

    1987-01-01

    Several circumstances may explain the great variation in reported proton T1 and T2 relaxation times usually seen. This study was designed to evaluate the accuracy of relaxation time measurements by magnetic resonance imaging (MRI) operating at 1.5 tesla. Using a phantom of nine boxes with different...... concentrations of CuSO4 and correlating the calculated T1 and T2 values with reference values obtained by two spectrometers (corrected to MRI-proton frequency = 64 MHz) we found a maximum deviation of about 10 per cent. Measurements performed on a large water phantom in order to evaluate the homogeneity...... in the imaging plane showed a variation of less than 10 per cent within 10 cm from the centre of the magnet in all three imaging planes. Changing the gradient field strength apparently had no influence on the T2 values recorded. Consequently diffusion processes seem without significance. It is concluded...

  14. Metabolism of T-2 toxin in rats: Effects of dose, route, and time

    International Nuclear Information System (INIS)

    Pfeiffer, R.L.; Swanson, S.P.; Buck, W.B.

    1988-01-01

    Metabolic profiles of the excreta from rats following iv, oral, and dermal administration of tritium-labeled T-2 toxin at 0.15 and 0.60 mg/kg were determined. The major metabolites in urine were 3'-OH HT-2, T-2 tetraol, and unknown metabolite M5, whereas the major metabolites in feces were deepoxy T-2 tetraol, 3'-OH HT-2, and unknown metabolites M5, M7, and M9. The metabolite labeled M9 (major metabolite) was tentatively identified as deepoxy 3'-OH HT-2. There was no significant effect on metabolic profiles due to dose, but there was a variable effect associated with the route of administration. The increase over time of appreciable levels of deepoxy metabolites as a percentage of extracted radioactivity was both consistent and statistically significant

  15. Improve Image Quality of Transversal Relaxation Time PROPELLER and FLAIR on Magnetic Resonance Imaging

    Science.gov (United States)

    Rauf, N.; Alam, D. Y.; Jamaluddin, M.; Samad, B. A.

    2018-03-01

    The Magnetic Resonance Imaging (MRI) is a medical imaging technique that uses the interaction between the magnetic field and the nuclear spins. MRI can be used to show disparity of pathology by transversal relaxation time (T2) weighted images. Some techniques for producing T2-weighted images are Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction (PROPELLER) and Fluid Attenuated Inversion Recovery (FLAIR). A comparison of T2 PROPELLER and T2 FLAIR parameters in MRI image has been conducted. And improve Image Quality the image by using RadiAnt DICOM Viewer and ENVI software with method of image segmentation and Region of Interest (ROI). Brain images were randomly selected. The result of research showed that Time Repetition (TR) and Time Echo (TE) values in all types of images were not influenced by age. T2 FLAIR images had longer TR value (9000 ms), meanwhile T2 PROPELLER images had longer TE value (100.75 - 102.1 ms). Furthermore, areas with low and medium signal intensity appeared clearer by using T2 PROPELLER images (average coefficients of variation for low and medium signal intensity were 0.0431 and 0.0705, respectively). As for areas with high signal intensity appeared clearer by using T2 FLAIR images (average coefficient of variation was 0.0637).

  16. The effects of bone on proton NMR relaxation times of surrounding liquids

    Science.gov (United States)

    Davis, C. A.; Genant, H. K.; Dunham, J. S.

    1986-01-01

    Preliminary attempts by our group at UCSF to assess fat content of vertebral marrow in the lumbar spine using relaxation time information demonstrated that the presence of trabecular bone affects relaxation times. The objective of this work was a thorough study of the effects of bone on NMR relaxation characteristics of surrounding liquids. Trabecular bone from autopsy specimens was ground up and sifted into a series of powders with graded densities ranging from 0.3 gm/cc to 0.8 gm/cc. Each powder was placed first in n-saline and then in cottonseed oil. With spectroscopy, spin-lattice relaxation times (T1) and effective spin-spin relaxation times (T2*) were measured for each liquid in each bone powder. As bone density and surface to volume ratio increased, T1 decreased faster for saline than for oil. T2* decreased significantly for both water and oil as the surface to volume ratio increased. It was concluded that effects of water on T1 could be explained by a surface interaction at the bone/liquid interface, which restricted rotational and translational motion of nearby molecules. The T1s of oil were not affected since oil molecules are nonpolar, do not participate in significant intermolecular hydrogen bonding, and therefore would not be expected to interact strongly with the bone surface. Effects on T2* could be explained by local magnetic field inhomogeneities created by discontinuous magnetic susceptibility near the bone surface. These preliminary results suggest that water in contact with trabecular bone in vivo will exhibit shortened relaxation times.

  17. Relaxation time measurements of white and grey matter in multiple sclerosis patients

    International Nuclear Information System (INIS)

    Rinck, P.A.; Appel, B.; Moens, E.; Academisch Ziekenhuis Middelheim, Antwerp

    1987-01-01

    In a patient population of some 450 with definite, probable, and possible multiple sclerosis referred to us for MRI, some 40 suffering from definite MS were chosen randomly for relaxation time measurements of plaque-free grey and white matter. T 1 values could not be used for diagnostic purposes owing to their broad standard deviation. Overall white matter T 2 was slightly higher in MS patients than in a non-MS population (94 ms versus 89 ms). Because these changes are not visible in MR images, relaxation time measurements may prove valuable for differential diagnosis. (orig.) [de

  18. Universal relaxation times for electron and nucleon gases

    OpenAIRE

    Pelc, M.; Marciak-Kozlowska, J.; Kozlowski, M.

    2007-01-01

    In this paper we calculate the universal relaxation times for electron and nucleon fermionic gases. We argue that the universal relaxation time tau(i) is equal tau(i)=h/m square v(i) where v(i)=alpha(i)c and alpha(1)=0.15 for nucleon gas and alpha(2)=1/137 for electron gas, c=light velocity. With the universal relaxation time we formulate the thermal Proca equation for fermionic gases. Key words: universal relaxation time, thermal universal Proca equation.

  19. Characterizing the microstructural basis of “unidentified bright objects” in neurofibromatosis type 1 : A combined in vivo multicomponent T2 relaxation and multi-shell diffusion MRI analysis

    NARCIS (Netherlands)

    Billiet, T.; Mädler, B.; D'Arco, F.; Deprez, S.; Plasschaert, E.; Leemans, A.; Zhang, H.; Van Den Bergh, B.R.H.; Vandenbulcke, M.; Legius, E.; Sunaert, S.; Emsell, L.

    2014-01-01

    Introduction The histopathological basis of “unidentified bright objects” (UBOs) (hyperintense regions seen on T2-weighted magnetic resonance (MR) brain scans in neurofibromatosis-1 (NF1)) remains unclear. New in vivo MRI-based techniques (multi-exponential T2 relaxation (MET2) and diffusion MR

  20. Relaxation of the vibrational distribution function in N2 time varying discharges

    International Nuclear Information System (INIS)

    Capitelli, M.; Gorse, C.; Ricard, A.

    1981-01-01

    Relaxation of the electron and vibrational distribution functions have been calculated in function of residence time in nitrogen electrical discharges and post-discharges. In the discharge the vibrational temperature get bigger with the residence time for t -2 s. In the post-discharge the vibrational distribution is evolving in such a manner that the high levels are overpopulated as the low vibrational level population is dropping

  1. Influence of fractionation and time on local control of T1 and T2 glottic carcinoma

    International Nuclear Information System (INIS)

    Le, Quynh-Thu; Krieg, Richard M.; Quivey, Jeanne M.; Fu, Karen K.; Meyler, Thomas S.; Stuart, Alex A.; Phillips, Theodore L.

    1996-01-01

    Purpose: To evaluate the influence of fraction size and overall time on local control of T1 and T2 glottic carcinoma Methods and Materials: Between 1956 and 1995, 318 consecutive patients with early glottic carcinoma (250 T1, 68 T2) were treated with definitive megavoltage radiotherapy at UCSF. Treatment was delivered using conventional fractionation at one fraction/day, 5 days/week. Minimum tumor dose ranged from 50 to 81Gy (median: 61Gy). The fraction size was 200cGy. Conclusions: Risk of tumor recurrence increased with higher T-stage, smaller fraction size, and longer overall time. Our results suggest that for optimal local control, radiotherapy for early glottic carcinoma should be completed as soon as possible, preferably within 6 weeks, using a fraction size ≥ 225cGy. Our current policy is to treat T1 and T2 vocal cord carcinomas with 225cGy/fraction/day, 5 days/week to a total dose of 63-65Gy

  2. Relaxation time in confined disordered systems

    International Nuclear Information System (INIS)

    Chamati, H.; Korutcheva, E.

    2006-05-01

    The dynamic critical behavior of a quenched hypercubic sample of linear size L is considered within the 'random T c ' field theoretical model with purely relaxation dynamic (Model A). The dynamic finite size scaling behavior is established and analyzed when the system is quenched from a homogeneous phase towards its critical temperature. The obtained results are compared to those reported in the literature. (author)

  3. 31-P Relaxation times of metabolic compounds in tumors grafted in nude mice

    International Nuclear Information System (INIS)

    Remy, C.; Benabid, A.L.; Jacrot, M.; Riondel, J.; Albrand, J.P.; Decorps, M.

    1985-08-01

    The observation that water proton relaxation rates were longer in tumors than in normal tissues provided a basis for the detection of human tumors by the NMR imaging technique. To evaluate the potentiality of 31-P NMR spectroscopy as a diagnostic tool of the pathological state of tissues, T1 and T2 relaxation times have been measured for the phosphates of ATP, inorganic phosphate (Pi), phosphomonoesters (PME) and phosphocreatine (PCr) in the 31-P NMR spectra obtained in vivo for normal rat brain and rat brain tumors implanted in nude mice

  4. Evaluation of articular cartilage in patients with femoroacetabular impingement (FAI) using T2* mapping at different time points at 3.0 Tesla MRI: a feasibility study

    International Nuclear Information System (INIS)

    Apprich, S.; Mamisch, T.C.; Welsch, G.H.; Bonel, H.; Siebenrock, K.A.; Dudda, M.; Kim, Y.J.; Trattnig, S.

    2012-01-01

    To define the feasibility of utilizing T2* mapping for assessment of early cartilage degeneration prior to surgery in patients with symptomatic femoroacetabular impingement (FAI), we compared cartilage of the hip joint in patients with FAI and healthy volunteers using T2* mapping at 3.0 Tesla over time. Twenty-two patients (13 females and 9 males; mean age 28.1 years) with clinical signs of FAI and Toennis grade ≤ 1 on anterior-posterior x-ray and 35 healthy age-matched volunteers were examined at a 3 T MRI using a flexible body coil. T2* maps were calculated from sagittal- and coronal-oriented gradient-multi-echo sequences using six echoes (TR 125, TE 4.41/8.49/12.57/16.65/20.73/24.81, scan time 4.02 min), both measured at beginning and end of the scan (45 min time span between measurements). Region of interest analysis was manually performed on four consecutive slices for superior and anterior cartilage. Mean T2* values were compared among patients and volunteers, as well as over time using analysis of variance and Student's t-test. Whereas quantitative T2* values for the first measurement did not reveal significant differences between patients and volunteers, either for sagittal (p = 0.644) or coronal images (p = 0.987), at the first measurement, a highly significant difference (p ≤ 0.004) was found for both measurements with time after unloading of the joint. Over time we found decreasing mean T2* values for patients, in contrast to increasing mean T2* relaxation times in volunteers. The study proved the feasibility of utilizing T2* mapping for assessment of early cartilage degeneration in the hip joint in FAI patients at 3 Tesla to predict possible success of joint-preserving surgery. However, we suggest the time point for measuring T2* as an MR biomarker for cartilage and the changes in T2* over time to be of crucial importance for designing an MR protocol in patients with FAI. (orig.)

  5. Evaluation of articular cartilage in patients with femoroacetabular impingement (FAI) using T2* mapping at different time points at 3.0 Tesla MRI: a feasibility study.

    Science.gov (United States)

    Apprich, S; Mamisch, T C; Welsch, G H; Bonel, H; Siebenrock, K A; Kim, Y-J; Trattnig, S; Dudda, M

    2012-08-01

    To define the feasibility of utilizing T2* mapping for assessment of early cartilage degeneration prior to surgery in patients with symptomatic femoroacetabular impingement (FAI), we compared cartilage of the hip joint in patients with FAI and healthy volunteers using T2* mapping at 3.0 Tesla over time. Twenty-two patients (13 females and 9 males; mean age 28.1 years) with clinical signs of FAI and Tönnis grade ≤ 1 on anterior-posterior x-ray and 35 healthy age-matched volunteers were examined at a 3 T MRI using a flexible body coil. T2* maps were calculated from sagittal- and coronal-oriented gradient-multi-echo sequences using six echoes (TR 125, TE 4.41/8.49/12.57/16.65/20.73/24.81, scan time 4.02 min), both measured at beginning and end of the scan (45 min time span between measurements). Region of interest analysis was manually performed on four consecutive slices for superior and anterior cartilage. Mean T2* values were compared among patients and volunteers, as well as over time using analysis of variance and Student's t-test. Whereas quantitative T2* values for the first measurement did not reveal significant differences between patients and volunteers, either for sagittal (p = 0.644) or coronal images (p = 0.987), at the first measurement, a highly significant difference (p ≤ 0.004) was found for both measurements with time after unloading of the joint. Over time we found decreasing mean T2* values for patients, in contrast to increasing mean T2* relaxation times in volunteers. The study proved the feasibility of utilizing T2* mapping for assessment of early cartilage degeneration in the hip joint in FAI patients at 3 Tesla to predict possible success of joint-preserving surgery. However, we suggest the time point for measuring T2* as an MR biomarker for cartilage and the changes in T2* over time to be of crucial importance for designing an MR protocol in patients with FAI.

  6. 13C NMR relaxation times of hepatic glycogen in vitro and in vivo

    International Nuclear Information System (INIS)

    Zang, Lihsin; Laughlin, M.R.; Rothman, D.L.; Shulman, R.G.

    1990-01-01

    The field dependence of relaxation times of the C-1 carbon of glycogen was studied in vitro by natural-abundance 13 C NMR. T 1 is strongly field dependent, while T 2 does not change significantly with magnetic field. T 1 and T 2 were also measured for rat hepatic glycogen enriched with [1- 13 C]glucose in vivo at 4.7 T, and similar relaxation times were observed as those obtained in vitro at the same field. The in vitro values of T 1 were 65 ± 5 ms at 2.1 T, 142 ± 10 ms at 4.7 T, and 300 ± 10 ms at 8.4 T, while T 2 values were 6.7 ± 1 ms at 2.1 T, 9.4 ± 1 ms at 4.7 T, and 9.5 ± 1 ms at 8.4 T. Calculations based on the rigid-rotor nearest-neighbor model give qualitatively good agreement with the T 1 field dependence with a best-fit correlation time of 6.4 x 10 -9 s, which is significantly smaller than τ M , the estimated overall correlation time for the glycogen molecule (ca. 10 -5 s). A more accurate fit of T 1 data using a modified Lipari and Szabo approach indicates that internal fast motions dominate the T 1 relaxation in glycogen. On the other hand, the T 2 relaxation is dominated by the overall correlation time τ M while the internal motions are almost but not completely unrestricted

  7. The time-dependence of exchange-induced relaxation during modulated radio frequency pulses.

    Science.gov (United States)

    Sorce, Dennis J; Michaeli, Shalom; Garwood, Michael

    2006-03-01

    The problem of the relaxation of identical spins 1/2 induced by chemical exchange between spins with different chemical shifts in the presence of time-dependent RF irradiation (in the first rotating frame) is considered for the fast exchange regime. The solution for the time evolution under the chemical exchange Hamiltonian in the tilted doubly rotating frame (TDRF) is presented. Detailed derivation is specified to the case of a two-site chemical exchange system with complete randomization between jumps of the exchanging spins. The derived theory can be applied to describe the modulation of the chemical exchange relaxation rate constants when using a train of adiabatic pulses, such as the hyperbolic secant pulse. Theory presented is valid for quantification of the exchange-induced time-dependent rotating frame longitudinal T1rho,ex and transverse T2rho,ex relaxations in the fast chemical exchange regime.

  8. Relaxation Time of High-Density Amorphous Ice

    Science.gov (United States)

    Handle, Philip H.; Seidl, Markus; Loerting, Thomas

    2012-06-01

    Amorphous water plays a fundamental role in astrophysics, cryoelectron microscopy, hydration of matter, and our understanding of anomalous liquid water properties. Yet, the characteristics of the relaxation processes taking place in high-density amorphous ice (HDA) are unknown. We here reveal that the relaxation processes in HDA at 110-135 K at 0.1-0.2 GPa are of collective and global nature, resembling the alpha relaxation in glassy material. Measured relaxation times suggest liquid-like relaxation characteristics in the vicinity of the crystallization temperature at 145 K. By carefully relaxing pressurized HDA for several hours at 135 K, we produce a state that is closer to the ideal glass state than all HDA states discussed so far in literature.

  9. Quantitative analysis of disc degeneration using axial T2 mapping in a percutaneous annular puncture model in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Jee Won; Kim, Su Jin [Dept. of Radiology, SMG-SNU Boramae Medical Center, Seoul (Korea, Republic of); Kang, Heung Sik; Lee, Joon Woo [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Hong, Sung Hwan [Dept. of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2016-02-15

    To evaluate T2 relaxation time change using axial T2 mapping in a rabbit degenerated disc model and determine the most correlated variable with histologic score among T2 relaxation time, disc height index, and Pfirrmann grade. Degenerated disc model was made in 4 lumbar discs of 11 rabbits (n = 44) by percutaneous annular puncture with various severities of an injury. Lumbar spine lateral radiograph, MR T2 sagittal scan and MR axial T2 mapping were obtained at baseline and 2 weeks and 4 weeks after the injury in 7 rabbits and at baseline and 2 weeks, 4 weeks, and 6 weeks after the injury in 4 rabbits. Generalized estimating equations were used for a longitudinal analysis of changes in T2 relaxation time in degenerated disc model. T2 relaxation time, disc height index and Pfirrmann grade were correlated with the histologic scoring of disc degeneration using Spearman's rho test. There was a significant difference in T2 relaxation time between uninjured and injured discs after annular puncture. Progressive decrease in T2 relaxation time was observed in injured discs throughout the study period. Lower T2 relaxation time was observed in the more severely injured discs. T2 relaxation time showed the strongest inverse correlation with the histologic score among the variables investigated (r = -0.811, p < 0.001). T2 relaxation time measured with axial T2 mapping in degenerated discs is a potential method to assess disc degeneration.

  10. A moving mesh method with variable relaxation time

    OpenAIRE

    Soheili, Ali Reza; Stockie, John M.

    2006-01-01

    We propose a moving mesh adaptive approach for solving time-dependent partial differential equations. The motion of spatial grid points is governed by a moving mesh PDE (MMPDE) in which a mesh relaxation time \\tau is employed as a regularization parameter. Previously reported results on MMPDEs have invariably employed a constant value of the parameter \\tau. We extend this standard approach by incorporating a variable relaxation time that is calculated adaptively alongside the solution in orde...

  11. Immersed Boundary-Lattice Boltzmann Method Using Two Relaxation Times

    Directory of Open Access Journals (Sweden)

    Kosuke Hayashi

    2012-06-01

    Full Text Available An immersed boundary-lattice Boltzmann method (IB-LBM using a two-relaxation time model (TRT is proposed. The collision operator in the lattice Boltzmann equation is modeled using two relaxation times. One of them is used to set the fluid viscosity and the other is for numerical stability and accuracy. A direct-forcing method is utilized for treatment of immersed boundary. A multi-direct forcing method is also implemented to precisely satisfy the boundary conditions at the immersed boundary. Circular Couette flows between a stationary cylinder and a rotating cylinder are simulated for validation of the proposed method. The method is also validated through simulations of circular and spherical falling particles. Effects of the functional forms of the direct-forcing term and the smoothed-delta function, which interpolates the fluid velocity to the immersed boundary and distributes the forcing term to fixed Eulerian grid points, are also examined. As a result, the following conclusions are obtained: (1 the proposed method does not cause non-physical velocity distribution in circular Couette flows even at high relaxation times, whereas the single-relaxation time (SRT model causes a large non-physical velocity distortion at a high relaxation time, (2 the multi-direct forcing reduces the errors in the velocity profile of a circular Couette flow at a high relaxation time, (3 the two-point delta function is better than the four-point delta function at low relaxation times, but worse at high relaxation times, (4 the functional form of the direct-forcing term does not affect predictions, and (5 circular and spherical particles falling in liquids are well predicted by using the proposed method both for two-dimensional and three-dimensional cases.

  12. Local NMR relaxation rates T1-1 and T2-1 depending on the d -vector symmetry in the vortex state of chiral and helical p -wave superconductors

    Science.gov (United States)

    Tanaka, Kenta K.; Ichioka, Masanori; Onari, Seiichiro

    2018-04-01

    Local NMR relaxation rates in the vortex state of chiral and helical p -wave superconductors are investigated by the quasiclassical Eilenberger theory. We calculate the spatial and resonance frequency dependences of the local NMR spin-lattice relaxation rate T1-1 and spin-spin relaxation rate T2-1. Depending on the relation between the NMR relaxation direction and the d -vector symmetry, the local T1-1 and T2-1 in the vortex core region show different behaviors. When the NMR relaxation direction is parallel to the d -vector component, the local NMR relaxation rate is anomalously suppressed by the negative coherence effect due to the spin dependence of the odd-frequency s -wave spin-triplet Cooper pairs. The difference between the local T1-1 and T2-1 in the site-selective NMR measurement is expected to be a method to examine the d -vector symmetry of candidate materials for spin-triplet superconductors.

  13. TOMROP: a sequence for determining the longitudinal relaxation time T1 in NMR

    International Nuclear Information System (INIS)

    Graumann, R.; Barfuss, H.; Fischer, H.; Hentschel, D.; Oppelt, A.

    1987-01-01

    We developed the pulse sequence TOMROP (T One by Multiple Read Out Pulses) for determining precisely the spatial distribution of the longitudinal relaxation time T 1 in nuclear magnetic resonance (NMR): a series of small-angle selection pulses is used to read out longitudinal magnetization from its initial state till thermal equilibrium. Hence, one measurement will produce several images with different T 1 weightings whose pixel brilliance depends exponentially from read-out time. T 1 can be determined from these independent of initial magnetization and selection pulse angle. The measuring time corresponds to the time needed in multi-echo imaging for the determination of the transversal relaxation time T 2 . We demonstrate this new method using head images of volunteers produced with a 0.23 T test facility. (orig./HP) [de

  14. Quantum process tomography with informational incomplete data of two J-coupled heterogeneous spins relaxation in a time window much greater than T1

    Science.gov (United States)

    Maciel, Thiago O.; Vianna, Reinaldo O.; Sarthour, Roberto S.; Oliveira, Ivan S.

    2015-11-01

    We reconstruct the time dependent quantum map corresponding to the relaxation process of a two-spin system in liquid-state NMR at room temperature. By means of quantum tomography techniques that handle informational incomplete data, we show how to properly post-process and normalize the measurements data for the simulation of quantum information processing, overcoming the unknown number of molecules prepared in a non-equilibrium magnetization state (Nj) by an initial sequence of radiofrequency pulses. From the reconstructed quantum map, we infer both longitudinal (T1) and transversal (T2) relaxation times, and introduce the J-coupling relaxation times ({T}1J,{T}2J), which are relevant for quantum information processing simulations. We show that the map associated to the relaxation process cannot be assumed approximated unital and trace-preserving for times greater than {T}2J.

  15. Time constant of logarithmic creep and relaxation

    CSIR Research Space (South Africa)

    Nabarro, FRN

    2001-07-15

    Full Text Available length and hardness which vary logarithmically with time. For dimensional reasons, a logarithmic variation must involve a time constant tau characteristic of the process, so that the deformation is proportional to ln(t/tau). Two distinct mechanisms...

  16. Relaxation time of acoustically disturbed plasma

    International Nuclear Information System (INIS)

    Mkrtchyan, K.S.; Abrahamyan, A.S.

    2005-01-01

    The conservation time of an acoustic structure in plasma after relieving of external acoustic influence is investigated. Dependences of the conservation time on discharge parameters are presented. It is asserted that the plasma becomes an anisotropic uniaxial medium with an acoustic superlattice under the acoustic influence

  17. An open-source software tool for the generation of relaxation time maps in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Messroghli, Daniel R; Rudolph, Andre; Abdel-Aty, Hassan; Wassmuth, Ralf; Kühne, Titus; Dietz, Rainer; Schulz-Menger, Jeanette

    2010-01-01

    In magnetic resonance (MR) imaging, T1, T2 and T2* relaxation times represent characteristic tissue properties that can be quantified with the help of specific imaging strategies. While there are basic software tools for specific pulse sequences, until now there is no universal software program available to automate pixel-wise mapping of relaxation times from various types of images or MR systems. Such a software program would allow researchers to test and compare new imaging strategies and thus would significantly facilitate research in the area of quantitative tissue characterization. After defining requirements for a universal MR mapping tool, a software program named MRmap was created using a high-level graphics language. Additional features include a manual registration tool for source images with motion artifacts and a tabular DICOM viewer to examine pulse sequence parameters. MRmap was successfully tested on three different computer platforms with image data from three different MR system manufacturers and five different sorts of pulse sequences: multi-image inversion recovery T1; Look-Locker/TOMROP T1; modified Look-Locker (MOLLI) T1; single-echo T2/T2*; and multi-echo T2/T2*. Computing times varied between 2 and 113 seconds. Estimates of relaxation times compared favorably to those obtained from non-automated curve fitting. Completed maps were exported in DICOM format and could be read in standard software packages used for analysis of clinical and research MR data. MRmap is a flexible cross-platform research tool that enables accurate mapping of relaxation times from various pulse sequences. The software allows researchers to optimize quantitative MR strategies in a manufacturer-independent fashion. The program and its source code were made available as open-source software on the internet

  18. An open-source software tool for the generation of relaxation time maps in magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Kühne Titus

    2010-07-01

    Full Text Available Abstract Background In magnetic resonance (MR imaging, T1, T2 and T2* relaxation times represent characteristic tissue properties that can be quantified with the help of specific imaging strategies. While there are basic software tools for specific pulse sequences, until now there is no universal software program available to automate pixel-wise mapping of relaxation times from various types of images or MR systems. Such a software program would allow researchers to test and compare new imaging strategies and thus would significantly facilitate research in the area of quantitative tissue characterization. Results After defining requirements for a universal MR mapping tool, a software program named MRmap was created using a high-level graphics language. Additional features include a manual registration tool for source images with motion artifacts and a tabular DICOM viewer to examine pulse sequence parameters. MRmap was successfully tested on three different computer platforms with image data from three different MR system manufacturers and five different sorts of pulse sequences: multi-image inversion recovery T1; Look-Locker/TOMROP T1; modified Look-Locker (MOLLI T1; single-echo T2/T2*; and multi-echo T2/T2*. Computing times varied between 2 and 113 seconds. Estimates of relaxation times compared favorably to those obtained from non-automated curve fitting. Completed maps were exported in DICOM format and could be read in standard software packages used for analysis of clinical and research MR data. Conclusions MRmap is a flexible cross-platform research tool that enables accurate mapping of relaxation times from various pulse sequences. The software allows researchers to optimize quantitative MR strategies in a manufacturer-independent fashion. The program and its source code were made available as open-source software on the internet.

  19. Optimal Configuration for Relaxation Times Estimation in Complex Spin Echo Imaging

    Directory of Open Access Journals (Sweden)

    Fabio Baselice

    2014-01-01

    Full Text Available Many pathologies can be identified by evaluating differences raised in the physical parameters of involved tissues. In a Magnetic Resonance Imaging (MRI framework, spin-lattice T1 and spin-spin T2 relaxation time parameters play a major role in such an identification. In this manuscript, a theoretical study related to the evaluation of the achievable performances in the estimation of relaxation times in MRI is proposed. After a discussion about the considered acquisition model, an analysis on the ideal imaging acquisition parameters in the case of spin echo sequences, i.e., echo and repetition times, is conducted. In particular, the aim of the manuscript consists in providing an empirical rule for optimal imaging parameter identification with respect to the tissues under investigation. Theoretical results are validated on different datasets in order to show the effectiveness of the presented study and of the proposed methodology.

  20. Detection of early gamma-postirradiation effects in murine spleen by proton NMR relaxation times.

    Science.gov (United States)

    Zebrowska, G; Lewa, C J; Ramee, M P; Husson, F; De Certaines, J D

    2001-01-01

    It was our aim to evaluate the potential of proton relaxation times for the early detection of radiation-induced spleen changes. Female Swiss mice were irradiated with doses ranging from 0.05 Gy to 4 Gy. The body weight, the spleen weight and the spleen water content of single animals were determined. Measurements of longitudinal (T1) and transversal (T2) proton relaxation times of the spleen samples were performed in a 0.47 T spectrometer. Histological examinations of the control and irradiated organs were performed. NMR measurements during the first five days after irradiation showed that total body gamma-irradiation with doses from 1.5 Gy to 4 Gy results in decreasing T1 of the murine spleen. Significant shortening in T2 was observed for the spleen of animals irradiated with a dose of 4 Gy. Histological examinations demonstrated subnormal architecture in slices derived from animals irradiated with 2 Gy and 4 Gy. The fluctuations of the spleen T1 and T2 of irradiated mice are correlated with relative spleen weight and can be used to estimate radiation induced changes in this organ.

  1. Parameterization of NMR relaxation curves in terms of logarithmic moments of the relaxation time distribution.

    Science.gov (United States)

    Petrov, Oleg V; Stapf, Siegfried

    2017-06-01

    This work addresses the problem of a compact and easily comparable representation of multi-exponential relaxation data. It is often convenient to describe such data in a few parameters, all being of physical significance and easy to interpret, and in such a way that enables a model-free comparison between different groups of samples. Logarithmic moments (LMs) of the relaxation time constitute a set of parameters which are related to the characteristic relaxation time on the log-scale, the width and the asymmetry of an underlying distribution of exponentials. On the other hand, the calculation of LMs does not require knowing the actual distribution function and is reduced to a numerical integration of original data. The performance of this method has been tested on both synthetic and experimental NMR relaxation data which differ in a signal-to-noise ratio, the sampling range and the sampling rate. The calculation of two lower-order LMs, the log-mean time and the log-variance, has proved robust against deficiencies of the experiment such as scattered data point and incomplete sampling. One may consider using them as such to monitor formation of a heterogeneous structure, e.g., in phase separation, vitrification, polymerization, hydration, aging, contrast agent propagation processes. It may also assist in interpreting frequency and temperature dependences of relaxation, revealing a crossover from slow to fast exchange between populations. The third LM was found to be a less reliable quantity due to its susceptibility to the noise and must be used with caution. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Parameterization of NMR relaxation curves in terms of logarithmic moments of the relaxation time distribution

    Science.gov (United States)

    Petrov, Oleg V.; Stapf, Siegfried

    2017-06-01

    This work addresses the problem of a compact and easily comparable representation of multi-exponential relaxation data. It is often convenient to describe such data in a few parameters, all being of physical significance and easy to interpret, and in such a way that enables a model-free comparison between different groups of samples. Logarithmic moments (LMs) of the relaxation time constitute a set of parameters which are related to the characteristic relaxation time on the log-scale, the width and the asymmetry of an underlying distribution of exponentials. On the other hand, the calculation of LMs does not require knowing the actual distribution function and is reduced to a numerical integration of original data. The performance of this method has been tested on both synthetic and experimental NMR relaxation data which differ in a signal-to-noise ratio, the sampling range and the sampling rate. The calculation of two lower-order LMs, the log-mean time and the log-variance, has proved robust against deficiencies of the experiment such as scattered data point and incomplete sampling. One may consider using them as such to monitor formation of a heterogeneous structure, e.g., in phase separation, vitrification, polymerization, hydration, aging, contrast agent propagation processes. It may also assist in interpreting frequency and temperature dependences of relaxation, revealing a crossover from slow to fast exchange between populations. The third LM was found to be a less reliable quantity due to its susceptibility to the noise and must be used with caution.

  3. Gaining insight into the T _2^*-T2 relationship in surface NMR free-induction decay measurements

    Science.gov (United States)

    Grombacher, Denys; Auken, Esben

    2018-05-01

    One of the primary shortcomings of the surface nuclear magnetic resonance (NMR) free-induction decay (FID) measurement is the uncertainty surrounding which mechanism controls the signal's time dependence. Ideally, the FID-estimated relaxation time T_2^* that describes the signal's decay carries an intimate link to the geometry of the pore space. In this limit the parameter T_2^* is closely linked to a related parameter T2, which is more closely linked to pore-geometry. If T_2^* ˜eq {T_2} the FID can provide valuable insight into relative pore-size and can be used to make quantitative permeability estimates. However, given only FID measurements it is difficult to determine whether T_2^* is linked to pore geometry or whether it has been strongly influenced by background magnetic field inhomogeneity. If the link between an observed T_2^* and the underlying T2 could be further constrained the utility of the standard surface NMR FID measurement would be greatly improved. We hypothesize that an approach employing an updated surface NMR forward model that solves the full Bloch equations with appropriately weighted relaxation terms can be used to help constrain the T_2^*-T2 relationship. Weighting the relaxation terms requires estimating the poorly constrained parameters T2 and T1; to deal with this uncertainty we propose to conduct a parameter search involving multiple inversions that employ a suite of forward models each describing a distinct but plausible T_2^*-T2 relationship. We hypothesize that forward models given poor T2 estimates will produce poor data fits when using the complex-inversion, while forward models given reliable T2 estimates will produce satisfactory data fits. By examining the data fits produced by the suite of plausible forward models, the likely T_2^*-T2 can be constrained by identifying the range of T2 estimates that produce reliable data fits. Synthetic and field results are presented to investigate the feasibility of the proposed technique.

  4. Algebraic relaxation of a time correlation function

    International Nuclear Information System (INIS)

    Srivastava, S.; Kumar, C.N.; Tankeshwar, K.

    2004-06-01

    A second order non-linear differential equation obtained from Mori's integro- differential equation is shown to transform to another form which provides algebraic decay to a time correlation function. Involved parameters in algebraic formula are related to exact properties of the corresponding correlation function. The model has been used to study a sol-gel system which is known, experimentally, to exhibit a power law decay to stress auto-correlation function. The expression obtained for the viscosity shows a logarithmic divergence at some critical value of the parameter. Some features of the model have also been tested using available information about Lennard-Jones fluids. (author)

  5. Understanding generalized inversions of nuclear magnetic resonance transverse relaxation time in porous media

    Science.gov (United States)

    Mitchell, J.; Chandrasekera, T. C.

    2014-12-01

    The nuclear magnetic resonance transverse relaxation time T2, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T2 provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T2 distributions demands appropriate processing of the measured data since T2 is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form -ant_e^k (where n is the number and te the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T2 distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries.

  6. Effects of Liver Fibrosis Progression on Tissue Relaxation Times in Different Mouse Models Assessed by Ultrahigh Field Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Andreas Müller

    2017-01-01

    Full Text Available Recently, clinical studies demonstrated that magnetic resonance relaxometry with determination of relaxation times T1 and T2⁎ may aid in staging and management of liver fibrosis in patients suffering from viral hepatitis and steatohepatitis. In the present study we investigated T1 and T2⁎ in different models of liver fibrosis to compare alternate pathophysiologies in their effects on relaxation times and to further develop noninvasive quantification methods of liver fibrosis. MRI was performed with a fast spin echo sequence for measurement of T1 and a multigradient echo sequence for determination of T2⁎. Toxic liver fibrosis was induced by injections of carbon tetrachloride (1.4 mL CCl4 per kg bodyweight and week, for 3 or 6 weeks in BALB/cJ mice. Chronic sclerosing cholangitis was mimicked using the ATP-binding cassette transporter B4 knockout (Abcb4 -/- mouse model. Untreated BALB/cJ mice served as controls. To assess hepatic fibrosis, we ascertained collagen contents and fibrosis scores after Sirius red staining. T1 and T2⁎ correlate differently to disease severity and etiology of liver fibrosis. T2⁎ shows significant decrease correlating with fibrosis in CCl4 treated animals, while demonstrating significant increase with disease severity in Abcb4 -/- mice. Measurements of T1 and T2⁎ may therefore facilitate discrimination between different stages and causes of liver fibrosis.

  7. T2 mapping in patellar chondromalacia.

    Science.gov (United States)

    Ruiz Santiago, Fernando; Pozuelo Calvo, Rocío; Almansa López, Julio; Guzmán Álvarez, Luis; Castellano García, María Del Mar

    2014-06-01

    To study the correlation between the T2 relaxation times of the patellar cartilage and morphological MRI findings of chondromalacia. This prospective study comprises 50 patients, 27 men and 23 women suffering of anterior knee pain (mean age: 29.7, SD 8.3 years; range: 16-45 years). MRI of 97 knees were performed in these patients at 1.5T magnet including sagittal T1, coronal intermediate, axial intermediate fat sat and T2 mapping. Chondromalacia was assessed using a modified version of Noyes classification. The relaxation time, T2, was studied segmenting the full thickness of the patellar cartilage in 12 areas: 4 proximal (external facet-proximal-lateral (EPL), external facet-proximal-central (EPC), internal facet-proximal-central (IPC), internal facet-proximal-medial (IPM), 4 in the middle section (external facet-middle-lateral (EML), external facet-middle-central (EMC), internal facet-middle-central (IMC), internal facet-middle-medial (IMM) and 4 distal (external facet-distal-lateral (EDL), external facet-distal-central (EDC), internal facet-distal-central (IDC), internal facet-distal-medial (IDM). T2 values showed a significant increase in mild chondromalacia regarding normal cartilage in most of the cartilage areas (pchondromalacia was characterized by a fall of T2 relaxation times with loss of statistical significant differences in comparison with normal cartilage, except in EMC and IMC, where similar values as mild chondromalacia were maintained (pchondromalacia to more severe degrees is associated to a new drop of T2 relaxation times approaching basal values in most of the areas of the patellar cartilage, except in the central area of the middle section, where T2 values remain increased. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Fourier transform distribution function of relaxation times; application and limitations

    NARCIS (Netherlands)

    Boukamp, Bernard A.

    2015-01-01

    A simple Fourier transform (FT) method is presented for obtaining a Distribution Function of Relaxation Times (DFRT) for electrochemical impedance spectroscopy (EIS) data. By using a special data extension procedure the FT is performed over the range from -∞ ≤ lnω ≤ + ∞. The integration procedure is

  9. Influence of relaxation times on the Bloch-Siegert shift

    International Nuclear Information System (INIS)

    Cao Long Van

    1981-01-01

    A new method for calculations of Bloch-Siegert shifts in resonances between excited states with the inclusion of relaxation times is given. It will be shown that in this case the definition of the resonance given by I. Bialynicka-Birula is in agreement with the criterion defining the resonance used by D.A. Andrews and G. Newton. (author)

  10. The influence of microvascular injury on native T1 and T2* relaxation values after acute myocardial infarction: implications for non-contrast-enhanced infarct assessment.

    Science.gov (United States)

    Robbers, Lourens F H J; Nijveldt, Robin; Beek, Aernout M; Teunissen, Paul F A; Hollander, Maurits R; Biesbroek, P Stefan; Everaars, Henk; van de Ven, Peter M; Hofman, Mark B M; van Royen, Niels; van Rossum, Albert C

    2018-02-01

    Native T1 mapping and late gadolinium enhancement (LGE) imaging offer detailed characterisation of the myocardium after acute myocardial infarction (AMI). We evaluated the effects of microvascular injury (MVI) and intramyocardial haemorrhage on local T1 and T2* values in patients with a reperfused AMI. Forty-three patients after reperfused AMI underwent cardiovascular magnetic resonance imaging (CMR) at 4 [3-5] days, including native MOLLI T1 and T2* mapping, STIR, cine imaging and LGE. T1 and T2* values were determined in LGE-defined regions of interest: the MI core incorporating MVI when present, the core-adjacent MI border zone (without any areas of MVI), and remote myocardium. Average T1 in the MI core was higher than in the MI border zone and remote myocardium. However, in the 20 (47%) patients with MVI, MI core T1 was lower than in patients without MVI (MVI 1048±78ms, no MVI 1111±89ms, p=0.02). MI core T2* was significantly lower in patients with MVI than in those without (MVI 20 [18-23]ms, no MVI 31 [26-39]ms, pvalues. T2* mapping suggested that this may be the result of intramyocardial haemorrhage. These findings have important implications for the interpretation of native T1 values shortly after AMI. • Microvascular injury after acute myocardial infarction affects local T1 and T2* values. • Infarct zone T1 values are lower if microvascular injury is present. • T2* mapping suggests that low infarct T1 values are likely haemorrhage. • T1 and T2* values are complimentary for correctly assessing post-infarct myocardium.

  11. Towards quantitative measurements of relaxation times and other parameters in the brain

    International Nuclear Information System (INIS)

    Tofts, P.S.; Du Boulay, E.P.G.H.

    1990-01-01

    The nature and physical significance of the relaxation times T1 and T2 and of proton density are described. Methods of measuring T1 and T2 are discussed with emphasis on the establishment of precision and the maintenance of accuracy. Reported standards of success are briefly reviewed. We expect sensitivities of the order of 1% to be achievable in serial studies. Although early hopes of disease diagnosis by tissue characterisation were not realised, strict scientific method and careful calibration have made it pracitcable to apply relaxation time measurement to research into disease process. Serial measurements in patients and correlation with similar studies in animal models, biopsy results and autopsy material taken together have provided new knowledge about cerebral oedema, water compartmentation, alcoholism and the natural history of multiple sclerosis. There are prospects of using measurement to monitor treatment in other diseases with diffuse brain abnormalities invisible on the usual images. Secondarily derived parameters and notably the quantification of blood-brain barrier defect after injection of Gadolinium-DTPA also offer prospects of valuable data. (orig.)

  12. Hyperpolarized nanodiamond with long spin-relaxation times

    Science.gov (United States)

    Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David E. J.; Reilly, David J.

    2015-10-01

    The use of hyperpolarized agents in magnetic resonance, such as 13C-labelled compounds, enables powerful new imaging and detection modalities that stem from a 10,000-fold boost in signal. A major challenge for the future of the hyperpolarization technique is the inherently short spin-relaxation times, typically nanodiamond can be hyperpolarized at cryogenic and room temperature without the use of free radicals, and, owing to their solid-state environment, exhibit relaxation times exceeding 1 h. Combined with the already established applications of nanodiamonds in the life sciences as inexpensive fluorescent markers and non-cytotoxic substrates for gene and drug delivery, these results extend the theranostic capabilities of nanoscale diamonds into the domain of hyperpolarized magnetic resonance.

  13. The influence of microvascular injury on native T1 and T2* relaxation values after acute myocardial infarction. Implications for non-contrast-enhanced infarct assessment

    Energy Technology Data Exchange (ETDEWEB)

    Robbers, Lourens F.H.J.; Nijveldt, Robin; Beek, Aernout M.; Teunissen, Paul F.A.; Hollander, Maurits R.; Biesbroek, P.S.; Everaars, Henk; Royen, Niels van; Rossum, Albert C. van [VU University Medical Centre, Department of Cardiology, Amsterdam (Netherlands); Ven, Peter M. van de [VU University Medical Centre, Department of Clinical Epidemiology and Biostatistics, Amsterdam (Netherlands); Hofman, Mark B.M. [VU University Medical Centre, Department of Physics and Medical Technology, Amsterdam (Netherlands)

    2018-02-15

    Native T1 mapping and late gadolinium enhancement (LGE) imaging offer detailed characterisation of the myocardium after acute myocardial infarction (AMI). We evaluated the effects of microvascular injury (MVI) and intramyocardial haemorrhage on local T1 and T2* values in patients with a reperfused AMI. Forty-three patients after reperfused AMI underwent cardiovascular magnetic resonance imaging (CMR) at 4 [3-5] days, including native MOLLI T1 and T2* mapping, STIR, cine imaging and LGE. T1 and T2* values were determined in LGE-defined regions of interest: the MI core incorporating MVI when present, the core-adjacent MI border zone (without any areas of MVI), and remote myocardium. Average T1 in the MI core was higher than in the MI border zone and remote myocardium. However, in the 20 (47%) patients with MVI, MI core T1 was lower than in patients without MVI (MVI 1048±78ms, no MVI 1111±89ms, p=0.02). MI core T2* was significantly lower in patients with MVI than in those without (MVI 20 [18-23]ms, no MVI 31 [26-39]ms, p<0.001). The presence of MVI profoundly affects MOLLI-measured native T1 values. T2* mapping suggested that this may be the result of intramyocardial haemorrhage. These findings have important implications for the interpretation of native T1 values shortly after AMI. (orig.)

  14. Nernst effect beyond the relaxation-time approximation

    OpenAIRE

    Pikulin, D. I.; Hou, Chang-Yu; Beenakker, C. W. J.

    2011-01-01

    Motivated by recent interest in the Nernst effect in cuprate superconductors, we calculate this magneto-thermo-electric effect for an arbitrary (anisotropic) quasiparticle dispersion relation and elastic scattering rate. The exact solution of the linearized Boltzmann equation is compared with the commonly used relaxation-time approximation. We find qualitative deficiencies of this approximation, to the extent that it can get the sign wrong of the Nernst coefficient. Ziman's improvement of the...

  15. SU-F-I-63: Relaxation Times of Lipid Resonances in NAFLD Animal Model Using Enhanced Curve Fitting

    Energy Technology Data Exchange (ETDEWEB)

    Song, K-H; Yoo, C-H; Lim, S-I; Choe, B-Y [Department of Biomedical Engineering, and Research Institute of Biomedical Engineering, The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: The objective of this study is to evaluate the relaxation time of methylene resonance in comparison with other lipid resonances. Methods: The examinations were performed on a 3.0T MRI scanner using a four-channel animal coil. Eight more Sprague-Dawley rats in the same baseline weight range were housed with ad libitum access to water and a high-fat (HF) diet (60% fat, 20% protein, and 20% carbohydrate). In order to avoid large blood vessels, a voxel (0.8×0.8×0.8 cm{sup 3}) was placed in a homogeneous area of the liver parenchyma during free breathing. Lipid relaxations in NC and HF diet rats were estimated at a fixed repetition time (TR) of 6000 msec, and multi echo time (TEs) of 40–220 msec. All spectra for data measurement were processed using the Advanced Method for Accurate, Robust, and Efficient Spectral (AMARES) fitting algorithm of the Java-based Magnetic Resonance User Interface (jMRUI) package. Results: The mean T2 relaxation time of the methylene resonance in normal-chow diet was 37.1 msec (M{sub 0}, 2.9±0.5), with a standard deviation of 4.3 msec. The mean T2 relaxation time of the methylene resonance was 31.4 msec (M{sub 0}, 3.7±0.3), with a standard deviation of 1.8 msec. The T2 relaxation times of methylene protons were higher in normal-chow diet rats than in HF rats (p<0.05), and the extrapolated M{sub 0} values were higher in HF rats than in NC rats (p<0.005). The excellent linear fit with R{sup 2}>0.9971 and R{sup 2}>0.9987 indicates T2 relaxation decay curves with mono-exponential function. Conclusion: In in vivo, a sufficient spectral resolution and a sufficiently high signal-to-noise ratio (SNR) can be achieved, so that the data measured over short TE values can be extrapolated back to TE = 0 to produce better estimates of the relative weights of the spectral components. In the short term, treating the effective decay rate as exponential is an adequate approximation.

  16. In vivo field dependence of proton relaxation times in human brain, liver and skeletal muscle: a multicenter study

    DEFF Research Database (Denmark)

    Henriksen, O; de Certaines, J D; Spisni, A

    1993-01-01

    and MRS, the in vivo field dispersion of T1 and T2 has been measured in order to evaluate whether ex vivo data are representative for the in vivo situation. Brain, skeletal muscle, and liver of healthy human volunteers were studied. Fifteen MR units with a field strength ranging from 0.08 T to 1.5 T took......T1 and T2 relaxation times are fundamental parameters for signal contrast behaviour in MRI. A number of ex vivo relaxometry studies have dealt with the magnetic field dispersion of T1. By means of multicenter study within the frame of the COMAC BME Concerted Action on Tissue Characterization by MRI......, whereas no significant variations were seen for T2. Our in vivo data were generally in reasonable agreement with proposed models based on ex vivo measurements....

  17. Spin current relaxation time in thermally evaporated pentacene films

    OpenAIRE

    Tani, Yasuo; Kondo, Takuya; Teki, Yoshio; Shikoh, Eiji

    2017-01-01

    The spin current relaxation time [tau] in thermally evaporated pentacene films was evaluated with the spin-pump-induced spin transport properties and the charge current transport properties in pentacene films. Under an assumption of a diffusive transport of the spin current in pentacene films, the zero-field mobility and the diffusion constant of holes in pentacene films were experimentally obtained to be ~8.0x10^-7 m^2/Vs and ~2.0x10^-8 m^2/s, respectively. Using those values and the previou...

  18. The effects of some parameters on the calculated 1H NMR relaxation times of cell water

    International Nuclear Information System (INIS)

    Koivula, A.; Suominen, K.; Kiviniitty, K.

    1976-01-01

    The effect of some parameters on the longitudinal and transverse relaxation times is calculated and a comparison between the calculated relaxation times with the results of different measurements is made. (M.S.)

  19. Time-resolved VUV spectroscopy in the EXTRAP-T2 reversed field pinch

    International Nuclear Information System (INIS)

    Hedqvist, A.; Rachlew-Kaellne, E.

    1998-01-01

    Time-resolved VUV spectroscopy has been used to investigate the effects of impurities in a reversed field pinch operating with a resistive shell. Results of electron temperature, impurity ion densities, particle confinement time and Z eff together with a description of the interpretation and the equipment are presented. (author)

  20. Time-resolved VUV spectroscopy in the EXTRAP-T2 reversed field pinch

    Science.gov (United States)

    Hedqvist, Anders; Rachlew-Källne, Elisabeth

    1998-09-01

    Time-resolved VUV spectroscopy has been used to investigate the effects of impurities in a reversed field pinch operating with a resistive shell. Results of electron temperature, impurity ion densities, particle confinement time and 0741-3335/40/9/004/img1 together with a description of the interpretation and the equipment are presented.

  1. T2 mapping in patellar chondromalacia

    International Nuclear Information System (INIS)

    Ruiz Santiago, Fernando; Pozuelo Calvo, Rocío; Almansa López, Julio; Guzmán Álvarez, Luis; Castellano García, María del Mar

    2014-01-01

    Objective: To study the correlation between the T2 relaxation times of the patellar cartilage and morphological MRI findings of chondromalacia. Methods: This prospective study comprises 50 patients, 27 men and 23 women suffering of anterior knee pain (mean age: 29.7, SD 8.3 years; range: 16–45 years). MRI of 97 knees were performed in these patients at 1.5 T magnet including sagittal T1, coronal intermediate, axial intermediate fat sat and T2 mapping. Chondromalacia was assessed using a modified version of Noyes classification. The relaxation time, T2, was studied segmenting the full thickness of the patellar cartilage in 12 areas: 4 proximal (external facet–proximal–lateral (EPL), external facet–proximal–central (EPC), internal facet–proximal–central (IPC), internal facet–proximal–medial (IPM), 4 in the middle section (external facet–middle–lateral (EML), external facet–middle–central (EMC), internal facet–middle–central (IMC), internal facet–middle–medial (IMM) and 4 distal (external facet–distal–lateral (EDL), external facet–distal–central (EDC), internal facet–distal–central (IDC), internal facet–distal–medial (IDM). Results: T2 values showed a significant increase in mild chondromalacia regarding normal cartilage in most of the cartilage areas (p < 0.05), except in the internal distal facet (IDC and IDM), EPC, EDL, and IMM. Severe chondromalacia was characterized by a fall of T2 relaxation times with loss of statistical significant differences in comparison with normal cartilage, except in EMC and IMC, where similar values as mild chondromalacia were maintained (p < 0.05). Conclusions: Steepest increase in T2 values of patellar cartilage occurs in early stages of patellar cartilage degeneration. Progression of morphologic changes of chondromalacia to more severe degrees is associated to a new drop of T2 relaxation times approaching basal values in most of the areas of the patellar cartilage, except in the

  2. T2 mapping in patellar chondromalacia

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Santiago, Fernando, E-mail: ferusan12@gmail.com [Department of Radiology, Traumatology Hospital, University Hospital Virgen de las Nieves, Granada (Spain); Pozuelo Calvo, Rocío [Department of Rehabilitation and Physical therapy, Traumatology Hospital, University Hospital Virgen de las Nieves, Granada (Spain); Almansa López, Julio [Department of Physic, University Hospital Virgen de las Nieves, Granada (Spain); Guzmán Álvarez, Luis; Castellano García, María del Mar [Department of Radiology, Traumatology Hospital, University Hospital Virgen de las Nieves, Granada (Spain)

    2014-06-15

    Objective: To study the correlation between the T2 relaxation times of the patellar cartilage and morphological MRI findings of chondromalacia. Methods: This prospective study comprises 50 patients, 27 men and 23 women suffering of anterior knee pain (mean age: 29.7, SD 8.3 years; range: 16–45 years). MRI of 97 knees were performed in these patients at 1.5 T magnet including sagittal T1, coronal intermediate, axial intermediate fat sat and T2 mapping. Chondromalacia was assessed using a modified version of Noyes classification. The relaxation time, T2, was studied segmenting the full thickness of the patellar cartilage in 12 areas: 4 proximal (external facet–proximal–lateral (EPL), external facet–proximal–central (EPC), internal facet–proximal–central (IPC), internal facet–proximal–medial (IPM), 4 in the middle section (external facet–middle–lateral (EML), external facet–middle–central (EMC), internal facet–middle–central (IMC), internal facet–middle–medial (IMM) and 4 distal (external facet–distal–lateral (EDL), external facet–distal–central (EDC), internal facet–distal–central (IDC), internal facet–distal–medial (IDM). Results: T2 values showed a significant increase in mild chondromalacia regarding normal cartilage in most of the cartilage areas (p < 0.05), except in the internal distal facet (IDC and IDM), EPC, EDL, and IMM. Severe chondromalacia was characterized by a fall of T2 relaxation times with loss of statistical significant differences in comparison with normal cartilage, except in EMC and IMC, where similar values as mild chondromalacia were maintained (p < 0.05). Conclusions: Steepest increase in T2 values of patellar cartilage occurs in early stages of patellar cartilage degeneration. Progression of morphologic changes of chondromalacia to more severe degrees is associated to a new drop of T2 relaxation times approaching basal values in most of the areas of the patellar cartilage, except in the

  3. The shear and bulk relaxation times from the general correlation functions

    Science.gov (United States)

    Czajka, Alina; Jeon, Sangyong

    2017-11-01

    In this paper we present two quantum field theoretical analyses on the shear and bulk relaxation times. First, we discuss how to find Kubo formulas for the shear and the bulk relaxation times. Next, we provide results on the shear viscosity relaxation time obtained within the diagrammatic approach for the massless λϕ4 theory.

  4. Multiple-relaxation-time lattice Boltzmann model for compressible fluids

    International Nuclear Information System (INIS)

    Chen Feng; Xu Aiguo; Zhang Guangcai; Li Yingjun

    2011-01-01

    We present an energy-conserving multiple-relaxation-time finite difference lattice Boltzmann model for compressible flows. The collision step is first calculated in the moment space and then mapped back to the velocity space. The moment space and corresponding transformation matrix are constructed according to the group representation theory. Equilibria of the nonconserved moments are chosen according to the need of recovering compressible Navier-Stokes equations through the Chapman-Enskog expansion. Numerical experiments showed that compressible flows with strong shocks can be well simulated by the present model. The new model works for both low and high speeds compressible flows. It contains more physical information and has better numerical stability and accuracy than its single-relaxation-time version. - Highlights: → We present an energy-conserving MRT finite-difference LB model. → The moment space is constructed according to the group representation theory. → The new model works for both low and high speeds compressible flows. → It has better numerical stability and wider applicable range than its SRT version.

  5. 7 Tesla quantitative hip MRI: T1, T2 and T2* mapping of hip cartilage in healthy volunteers

    Energy Technology Data Exchange (ETDEWEB)

    Lazik, Andrea; Theysohn, Jens M.; Geis, Christina [University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Johst, Soeren; Kraff, Oliver [University of Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); Ladd, Mark E. [University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); University of Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); German Cancer Research Center (DKFZ), Medical Physics in Radiology, Heidelberg (Germany); Quick, Harald H. [University of Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); University Hospital Essen, High Field and Hybrid MR Imaging, Essen (Germany)

    2016-05-15

    To evaluate the technical feasibility and applicability of quantitative MR techniques (delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), T2 mapping, T2* mapping) at 7 T MRI for assessing hip cartilage. Hips of 11 healthy volunteers were examined at 7 T MRI with an 8-channel radiofrequency transmit/receive body coil using multi-echo sequences for T2 and T2* mapping and a dual flip angle gradient-echo sequence before (T1{sub 0}) and after intravenous contrast agent administration (T1{sub Gd}; 0.2 mmol/kg Gd-DTPA{sup 2-} followed by 0.5 h of walking and 0.5 h of rest) for dGEMRIC. Relaxation times of cartilage were measured manually in 10 regions of interest. Pearson's correlations between R1{sub delta} = 1/T1{sub Gd} - 1/T1{sub 0} and T1{sub Gd} and between T2 and T2* were calculated. Image quality and the delineation of acetabular and femoral cartilage in the relaxation time maps were evaluated using discrete rating scales. High correlations were found between R1{sub delta} and T1{sub Gd} and between T2 and T2* relaxation times (all p < 0.01). All techniques delivered diagnostic image quality, with best delineation of femoral and acetabular cartilage in the T2* maps (mean 3.2 out of a maximum of 4 points). T1, T2 and T2* mapping of hip cartilage with diagnostic image quality is feasible at 7 T. To perform dGEMRIC at 7 T, pre-contrast T1 mapping can be omitted. (orig.)

  6. Dependence of Brownian and Néel relaxation times on magnetic field strength

    International Nuclear Information System (INIS)

    Deissler, Robert J.; Wu, Yong; Martens, Michael A.

    2014-01-01

    Purpose: In magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS) the relaxation time of the magnetization in response to externally applied magnetic fields is determined by the Brownian and Néel relaxation mechanisms. Here the authors investigate the dependence of the relaxation times on the magnetic field strength and the implications for MPI and MPS. Methods: The Fokker–Planck equation with Brownian relaxation and the Fokker–Planck equation with Néel relaxation are solved numerically for a time-varying externally applied magnetic field, including a step-function, a sinusoidally varying, and a linearly ramped magnetic field. For magnetic fields that are applied as a step function, an eigenvalue approach is used to directly calculate both the Brownian and Néel relaxation times for a range of magnetic field strengths. For Néel relaxation, the eigenvalue calculations are compared to Brown's high-barrier approximation formula. Results: The relaxation times due to the Brownian or Néel mechanisms depend on the magnitude of the applied magnetic field. In particular, the Néel relaxation time is sensitive to the magnetic field strength, and varies by many orders of magnitude for nanoparticle properties and magnetic field strengths relevant for MPI and MPS. Therefore, the well-known zero-field relaxation times underestimate the actual relaxation times and, in particular, can underestimate the Néel relaxation time by many orders of magnitude. When only Néel relaxation is present—if the particles are embedded in a solid for instance—the authors found that there can be a strong magnetization response to a sinusoidal driving field, even if the period is much less than the zero-field relaxation time. For a ferrofluid in which both Brownian and Néel relaxation are present, only one relaxation mechanism may dominate depending on the magnetic field strength, the driving frequency (or ramp time), and the phase of the magnetization relative to the

  7. In vivo relaxation time measurements on a murine tumor model--prolongation of T1 after photodynamic therapy.

    Science.gov (United States)

    Liu, Y H; Hawk, R M; Ramaprasad, S

    1995-01-01

    RIF tumors implanted on mice feet were investigated for changes in relaxation times (T1 and T2) after photodynamic therapy (PDT). Photodynamic therapy was performed using Photofrin II as the photosensitizer and laser light at 630 nm. A home-built proton solenoid coil in the balanced configuration was used to accommodate the tumors, and the relaxation times were measured before, immediately after, and up to several hours after therapy. Several control experiments were performed untreated tumors, tumors treated with Photofrin II alone, or tumors treated with laser light alone. Significant increases in T1s of water protons were observed after PDT treatment. In all experiments, 31P spectra were recorded before and after the therapy to study the tumor status and to confirm the onset of PDT. These studies show significant prolongation of T1s after the PDT treatment. The spin-spin relaxation measurements, on the other hand, did not show such prolongation in T2 values after PDT treatment.

  8. T2 relaxometry of ring lesions of the brain

    International Nuclear Information System (INIS)

    Jayakumar, P.N.; Srikanth, S.G.; Chandrashekar, H.S.; Subbakrishna, D.K.

    2007-01-01

    Aim: To differentiate two common aetiologies of 'ring lesions,' tuberculomas and cysticercal cysts, using T2 relaxometry. Materials and methods: Fifty-five ring-enhancing lesions of the brain (32 cysticercal cysts; 23 tuberculomas) in 27 patients with focal seizures were studied for T2 relaxation times. Results: The mean T2 relaxation times of cysticercal cysts was 617 ms (range 305-1365 ms; SD 272.2) and that of tuberculomas 161 ms (range 83-290 ms; SD 60.3; 95% confidence). Conclusion: T2 relaxometry is a simple, reliable and valuable non-invasive magnetic resonance imaging (MRI) technique to differentiate between intracranial cysticercal cysts and tuberculomas, and may be incorporated in routine diagnostic protocols

  9. Morphological imaging and T2 and T2* mapping of hip cartilage at 7 Tesla MRI under the influence of intravenous gadolinium

    International Nuclear Information System (INIS)

    Lazik-Palm, Andrea; Geis, Christina; Goebel, Juliane; Theysohn, Jens M.; Kraff, Oliver; Johst, Soeren; Ladd, Mark E.; Quick, Harald H.

    2016-01-01

    To investigate the influence of intravenous gadolinium on cartilage T2 and T2* relaxation times and on morphological image quality at 7-T hip MRI. Hips of 11 healthy volunteers were examined at 7 T. Multi-echo sequences for T2 and T2* mapping, 3D T1 volumetric interpolated breath-hold examination (VIBE) and double-echo steady-state (DESS) sequences were acquired before and after intravenous application of gadolinium according to a delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) protocol. Cartilage relaxation times were measured in both scans. Morphological sequences were assessed quantitatively using contrast ratios and qualitatively using a 4-point Likert scale. Student's t-test, Pearson's correlation (ρ) and Wilcoxon sign-rank test were used for statistical comparisons. Pre- and post-contrast T2 and T2* values were highly correlated (T2: acetabular: ρ = 0.76, femoral: ρ = 0.77; T2*: acetabular: ρ = 0.80, femoral: ρ = 0.72). Gadolinium enhanced contrasts between cartilage and joint fluid in DESS and T1 VIBE according to the qualitative (p = 0.01) and quantitative (p < 0.001) analysis. The delineation of acetabular and femoral cartilage and the labrum predominantly improved with gadolinium. Gadolinium showed no relevant influence on T2 or T2* relaxation times and improved morphological image quality at 7 T. Therefore, morphological and quantitative sequences including dGEMRIC can be conducted in a one-stop-shop examination. (orig.)

  10. Synthesis of Tumor-avid Photosensitizer-Gd(III)DTPA conjugates: impact of the number of gadolinium units in T1/T2 relaxivity, intracellular localization, and photosensitizing efficacy.

    Science.gov (United States)

    Goswami, Lalit N; White, William H; Spernyak, Joseph A; Ethirajan, Manivannan; Chen, Yihui; Missert, Joseph R; Morgan, Janet; Mazurchuk, Richard; Pandey, Ravindra K

    2010-05-19

    To develop novel bifunctional agents for tumor imaging (MR) and photodynamic therapy (PDT), certain tumor-avid photosensitizers derived from chlorophyll-a were conjugated with variable number of Gd(III)aminobenzyl DTPA moieties. All the conjugates containing three or six gadolinium units showed significant T(1) and T(2) relaxivities. However, as a bifunctional agent, the 3-(1'-hexyloxyethyl)pyropheophorbide-a (HPPH) containing 3Gd(III) aminophenyl DTPA was most promising with possible applications in tumor-imaging and PDT. Compared to HPPH, the corresponding 3- and 6Gd(III)aminobenzyl DTPA conjugates exhibited similar electronic absorption characteristics with a slightly decreased intensity of the absorption band at 660 nm. However, compared to HPPH, the excitation of the broad "Soret" band (near 400 nm) of the corresponding 3Gd(III)aminobenzyl-DTPA analogues showed a significant decrease in the fluorescence intensity at 667 nm.

  11. Significance of focal relaxation times in head injury

    Energy Technology Data Exchange (ETDEWEB)

    Inao, Suguru; Furuse, Masahiro; Saso, Katsuyoshi; Yoshida, Kazuo; Motegi, Yoshimasa; Kaneoke, Yoshiki; Izawa, Akira

    1987-11-01

    Serial examinations by nuclear magnetic resonance-computed tomography were carried out in 35 head-injured patients aged 7 to 77 years. The injuries were classified as cerebral contusion (nine cases), acute epidural hematoma (eight cases), acute cerebral swelling (two cases), and chronic subdural hematoma (16 cases). The results of 92 measurements were divided into two groups: acute stage (within 3 days of injury) and chronic stage (2 weeks or longer after injury). The spin-lattice relaxation times (T/sub 1/) of brain tissue adjacent to chronic subdural hematoma were evaluated pre- and postoperatively. A Fonar QED 80-alpha system was used for magnetic resonance imaging and measurement of focal T/sub 1/. The T/sub 1/ values at the region of interest were measured 3 to 5 times by the field focusing technique (468 gauss in the focused spot), and the mean value was used for evaluation. The standard T/sub 1/ values obtained from healthy subjects were 290 +- 41 msec in the cerebral cortex and 230 +- 34 msec in the white matter. Prolongation of T/sub 1/ in perifocal brain gradually shortened over time and normalized in the chronic stage. The degree of contusional edema may have been reflected in alterations in T/sub 1/. In contrast, parenchymal injury resulted in a progressive T/sub 1/ elevation, which far exceeded 500 msec in the chronic stage. Such time courses of T/sub 1/ may indicate irreversible tissue damage. There were no noticeable changes in tissue T/sub 1/ over time in patients with acute diffuse cerebral swelling or those who underwent evacuation of acute epidural or chronic subdural hematomas. The underlying pathophysiology in such situations seems to be not brain edema but cerebral hyperemia. In the presence of ischemia, the T/sub 1/ value was prolonged in the early stage, reflecting progression of is chemic edema. (Abstract Truncated)

  12. Quantitative analysis of T2 relaxation times of the patellofemoral joint cartilage 3 years after anterior cruciate ligament reconstruction

    Directory of Open Access Journals (Sweden)

    Chang-Wan Kim

    2018-01-01

    The Translational Potential of this Article: Little data has been reported on PFJ cartilage condition after ACL reconstruction. This study could help develop noninvasive diagnostic methods for detection of early PFJ cartilage degeneration after ACL reconstruction.

  13. Measurements of T1 and T2 relaxation times of colon cancer metastases in rat liver at 7 T

    NARCIS (Netherlands)

    Gambarota, G.; Veltien, A.; van Laarhoven, H.; Philippens, M.; Jonker, A.; Mook, O. R.; Frederiks, W. M.; Heerschap, A.

    2004-01-01

    The purpose of this study was to investigate the magnetic resonance imaging (MRI) characteristics of colon cancer metastases in rat liver at 7 T. A dedicated RF microstrip coil of novel design was built in order to increase the signal-to-noise ratio and, in combination with respiratory triggering,

  14. Rapid simultaneous high-resolution mapping of myelin water fraction and relaxation times in human brain using BMC-mcDESPOT.

    Science.gov (United States)

    Bouhrara, Mustapha; Spencer, Richard G

    2017-02-15

    A number of central nervous system (CNS) diseases exhibit changes in myelin content and magnetic resonance longitudinal, T 1 , and transverse, T 2 , relaxation times, which therefore represent important biomarkers of CNS pathology. Among the methods applied for measurement of myelin water fraction (MWF) and relaxation times, the multicomponent driven equilibrium single pulse observation of T 1 and T 2 (mcDESPOT) approach is of particular interest. mcDESPOT permits whole brain mapping of multicomponent T 1 and T 2 , with data acquisition accomplished within a clinically realistic acquisition time. Unfortunately, previous studies have indicated the limited performance of mcDESPOT in the setting of the modest signal-to-noise range of high-resolution mapping, required for the depiction of small structures and to reduce partial volume effects. Recently, we showed that a new Bayesian Monte Carlo (BMC) analysis substantially improved determination of MWF from mcDESPOT imaging data. However, our previous study was limited in that it did not discuss determination of relaxation times. Here, we extend the BMC analysis to the simultaneous determination of whole-brain MWF and relaxation times using the two-component mcDESPOT signal model. Simulation analyses and in-vivo human brain studies indicate the overall greater performance of this approach compared to the stochastic region contraction (SRC) algorithm, conventionally used to derive parameter estimates from mcDESPOT data. SRC estimates of the transverse relaxation time of the long T 2 fraction, T 2,l , and the longitudinal relaxation time of the short T 1 fraction, T 1,s , clustered towards the lower and upper parameter search space limits, respectively, indicating failure of the fitting procedure. We demonstrate that this effect is absent in the BMC analysis. Our results also showed improved parameter estimation for BMC as compared to SRC for high-resolution mapping. Overall we find that the combination of BMC analysis

  15. Magnetic resonance imaging and T2 relaxometry of human median nerve at 7 Tesla.

    NARCIS (Netherlands)

    Gambarota, G.; Veltien, A.A.; Klomp, D.W.J.; Alfen, N. van; Mulkern, R.V.; Heerschap, A.

    2007-01-01

    Measurements of T2 relaxation times in tissues have provided a unique, noninvasive method to investigate the microenvironment of water molecules in vivo. As more clinical imaging is performed at higher field strengths, tissue relaxation times need to be reassessed in order to optimize tissue

  16. Hydrogen-1 NMR relaxation time studies in membrane: anesthetic systems

    International Nuclear Information System (INIS)

    Pinto, L.M.A.; Fraceto, L.; Paula, E. de; Franzoni, L.; Spisni, A.

    1997-01-01

    The study of local anesthetics'(LA) interaction with model phospholipid membranes is justified by the direct correlation between anesthetic's hydrophobicity and its potency/toxicity. By the same reason, uncharged LA species seems to play a crucial role in anesthesia. Most clinically used LA are small amphiphilics with a protonated amine group (pKa around 8). Although both charged (protonated) and uncharged forms can coexist at physiological pH, it has been shown (Lee, Biochim. Biophys. Acta 514:95, 1978; Screier et al. Biochim. Biophys. Acta 769:231, 1984) that the real anesthetic pka can be down-shifted, due to differential partition into membranes, increasing the ratio of uncharged species at pH 7.4. We have measured 1 H-NMR longitudinal relaxation times (T 1 ) for phospholipid and three local anesthetics (tetracaine, lidocaine, benzocaine), in sonicated vesicles at a 3:1 molar ratio. All the LA protons have shown smaller T 1 in this system than in isotropic phases, reflecting LA immobilization caused by insertion in the membrane. T 1 values for the lipid protons in the presence of LA were analyzed, in an attempt to identify specific LA:lipid contact regions. (author)

  17. Fast T2 gradient-spin-echo (T2-GraSE) mapping for myocardial edema quantification: first in vivo validation in a porcine model of ischemia/reperfusion

    OpenAIRE

    Fern?ndez-Jim?nez, Rodrigo; S?nchez-Gonz?lez, Javier; Aguero, Jaume; del Trigo, Mar?a; Gal?n-Arriola, Carlos; Fuster, Valentin; Ib??ez, Borja

    2015-01-01

    Background Several T2-mapping sequences have been recently proposed to quantify myocardial edema by providing T2 relaxation time values. However, no T2-mapping sequence has ever been validated against actual myocardial water content for edema detection. In addition, these T2-mapping sequences are either time-consuming or require specialized software for data acquisition and/or post-processing, factors impeding their routine clinical use. Our objective was to obtain in vivo validation of a seq...

  18. Thermodynamic scaling of α-relaxation time and viscosity stems from the Johari-Goldstein β-relaxation or the primitive relaxation of the coupling model.

    Science.gov (United States)

    Ngai, K L; Habasaki, J; Prevosto, D; Capaccioli, S; Paluch, Marian

    2012-07-21

    By now it is well established that the structural α-relaxation time, τ(α), of non-associated small molecular and polymeric glass-formers obey thermodynamic scaling. In other words, τ(α) is a function Φ of the product variable, ρ(γ)/T, where ρ is the density and T the temperature. The constant γ as well as the function, τ(α) = Φ(ρ(γ)/T), is material dependent. Actually this dependence of τ(α) on ρ(γ)/T originates from the dependence on the same product variable of the Johari-Goldstein β-relaxation time, τ(β), or the primitive relaxation time, τ(0), of the coupling model. To support this assertion, we give evidences from various sources itemized as follows. (1) The invariance of the relation between τ(α) and τ(β) or τ(0) to widely different combinations of pressure and temperature. (2) Experimental dielectric and viscosity data of glass-forming van der Waals liquids and polymer. (3) Molecular dynamics simulations of binary Lennard-Jones (LJ) models, the Lewis-Wahnström model of ortho-terphenyl, 1,4 polybutadiene, a room temperature ionic liquid, 1-ethyl-3-methylimidazolium nitrate, and a molten salt 2Ca(NO(3))(2)·3KNO(3) (CKN). (4) Both diffusivity and structural relaxation time, as well as the breakdown of Stokes-Einstein relation in CKN obey thermodynamic scaling by ρ(γ)/T with the same γ. (5) In polymers, the chain normal mode relaxation time, τ(N), is another function of ρ(γ)/T with the same γ as segmental relaxation time τ(α). (6) While the data of τ(α) from simulations for the full LJ binary mixture obey very well the thermodynamic scaling, it is strongly violated when the LJ interaction potential is truncated beyond typical inter-particle distance, although in both cases the repulsive pair potentials coincide for some distances.

  19. Effects of repetitive freeze–thawing cycles on T2 and T2* of the Achilles tendon

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Eric Y., E-mail: ericchangmd@gmail.com [Department of Radiology, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161 (United States); Department of Radiology, University of California, 200 West Arbor St., San Diego, CA 92103 (United States); Bae, Won C., E-mail: wbae@ucsd.edu [Department of Radiology, University of California, 200 West Arbor St., San Diego, CA 92103 (United States); Statum, Sheronda, E-mail: sherondastatum@msn.com [Department of Radiology, University of California, 200 West Arbor St., San Diego, CA 92103 (United States); Du, Jiang, E-mail: jiangdu@ucsd.edu [Department of Radiology, University of California, 200 West Arbor St., San Diego, CA 92103 (United States); Chung, Christine B., E-mail: cbchung@ucsd.edu [Department of Radiology, University of California, 200 West Arbor St., San Diego, CA 92103 (United States); Department of Radiology, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161 (United States)

    2014-02-15

    Introduction: In this study we sought to evaluate the effects of multiple freezing and thawing cycles on two MR parameters to study Achilles tendon, T2 and T2*. Materials and methods: Four fresh Achilles tendons were imaged on a 3T clinical scanner and again after 1, 2, 4, and 5 freeze–thaw cycles with spin-echo (SE) and ultrashort echo time (UTE) sequences. Regions of interest were manually drawn over the entire Achilles tendon and mono-exponential curves were used to determine T2 and T2* relaxation times. Results: There was no statistically significant difference in mean T2 or T2* values between the fresh specimens and after subsequent cycles of freeze–thaw treatment (p > 0.1). Linear regression between SE T2 values at baseline and after successive freeze–thaw cycles demonstrated moderate agreement (r = 0.60) whereas UTE T2* values at baseline and after successive-freeze thaw cycles demonstrated strong agreement (r = 0.92). Conclusion: These findings suggest that changes between specimens seen in vitro are due to factors other than frozen storage. Furthermore, our results suggest that there is stronger agreement between baseline (fresh) and successive freeze–thaw T2* values of tendon obtained with the UTE technique in comparison to T2 values obtained with a conventional clinical CPMG technique.

  20. Effects of repetitive freeze–thawing cycles on T2 and T2* of the Achilles tendon

    International Nuclear Information System (INIS)

    Chang, Eric Y.; Bae, Won C.; Statum, Sheronda; Du, Jiang; Chung, Christine B.

    2014-01-01

    Introduction: In this study we sought to evaluate the effects of multiple freezing and thawing cycles on two MR parameters to study Achilles tendon, T2 and T2*. Materials and methods: Four fresh Achilles tendons were imaged on a 3T clinical scanner and again after 1, 2, 4, and 5 freeze–thaw cycles with spin-echo (SE) and ultrashort echo time (UTE) sequences. Regions of interest were manually drawn over the entire Achilles tendon and mono-exponential curves were used to determine T2 and T2* relaxation times. Results: There was no statistically significant difference in mean T2 or T2* values between the fresh specimens and after subsequent cycles of freeze–thaw treatment (p > 0.1). Linear regression between SE T2 values at baseline and after successive freeze–thaw cycles demonstrated moderate agreement (r = 0.60) whereas UTE T2* values at baseline and after successive-freeze thaw cycles demonstrated strong agreement (r = 0.92). Conclusion: These findings suggest that changes between specimens seen in vitro are due to factors other than frozen storage. Furthermore, our results suggest that there is stronger agreement between baseline (fresh) and successive freeze–thaw T2* values of tendon obtained with the UTE technique in comparison to T2 values obtained with a conventional clinical CPMG technique

  1. Continuous relaxation time spectrum of α-process in glass-like B2O3

    International Nuclear Information System (INIS)

    Bartenev, G.M.; Lomovskij, V.A.

    1991-01-01

    α-process of relaxation of glass-like B 2 O 3 was investigated in a wide temperature range. Continuous spectrum of relaxation times H(τ) for this process was constructed, using data of dynamic methods of investigation. It is shown that increase of temperature of α-process investigation leads to change of glass-like BaO 3 structure in such a way, that H(τ) spectrum tends to the maxwell one with a unit relaxation time

  2. Spin-lattice relaxation times and knight shift in InSb and InAs

    International Nuclear Information System (INIS)

    Braun, P.; Grande, S.

    1976-01-01

    For a dominant contact interaction between nuclei and conduction electrons the relaxation rate is deduced. The extreme cases of degenerate and non-degenerate semiconductors are separately discussed. At strong degeneracy the product of the Knight shift and relaxation time gives the Korringa relation for metals. Measurements of the NMR spin-lattice relaxation times of 115 InSb and 115 InAs were made between 4.2 and 300 K for strongly degenerated samples. The different relaxation mechanisms are discussed and the experimental and theoretical results are compared. (author)

  3. 3T deep gray matter T2 hypointensity correlates with disability over time in stable relapsing-remitting multiple sclerosis: a 3-year pilot study.

    Science.gov (United States)

    Zhang, Y; Metz, L M; Yong, V W; Mitchell, J R

    2010-10-15

    Abnormally decreased deep gray matter (GM) signal intensity on T2-weighted MRI (T2 hypointensity) is associated with brain atrophy and disability progression in patients with multiple sclerosis (MS) and is believed to represent excessive iron deposition. We investigated the time course of deep GM T2 hypointensity and its relationship with disability at 3T in 8 stable relapsing-remitting (RR) MS patients treated with minocycline over 3years. MRI and disability measurements were compared at baseline, 6, 12, 24, and 36months. Grand mean deep GM T2 hypointensity was negatively correlated with EDSS over time (r=-0.94, P=0.02). This correlation was strongest in the head of caudate (r=-0.95, P=0.01) and putamen (r=-0.89, P=0.04). Additionally, baseline grand mean deep GM T2 hypointensity appears to predict third year EDSS (r=-0.72, P=0.04). These results suggest that iron associated deep GM injury correlates with patient disability in stable RRMS. Measurements of deep GM T2 hypointensity at high field MRI may prove to be useful in monitoring individuals with MS. Further studies are required to confirm these results in a large sample and to determine if T2 hypointensity changes in clinically active MS patients. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Investigation of the proteins relaxation time in human blood serum; Badania relaksacyjne bialek surowicy krwi II

    Energy Technology Data Exchange (ETDEWEB)

    Blicharska, B.; Klauza, M. [Inst. Fizyki, Uniwersytet Jagiellonski, Cracow (Poland); Kuliszkiewicz-Janus, M. [Akademia Medyczna, Wroclaw (Poland)

    1994-12-31

    In this paper the results of human blood serum proteins relaxation time measurements by means of NMR method are presented. The measurements have been done for three samples of human blood: i/laudably ii/leukemia iii/granulomas. The dependences of the relaxation time on the temperature are also presented. 3 refs, 4 figs.

  5. An analysis of the NMR-CT image by the measurement of proton-relaxation times in tissue

    International Nuclear Information System (INIS)

    Naruse, Shoji; Horikawa, Yoshiharu; Tanaka, Chuzo; Hirakawa, Kimiyoshi; Nishikawa, Hiroyasu; Shimizu, Koji; Kiri, Motosada.

    1984-01-01

    NMR-CT images were analyzed by measuring the proton-relaxation times in tissues. The NMR-CT images were obtained in 10 normal volunteers and 16 patients with brain tumors with a prototype superconducting magnet (Shimadzu Corp., Japan) operating at 0.2 T and 0.375 T. A smooth T 1 relaxation curve was obtained in each part of the brain and the brain tumor by the use of the data of the NMR-CT image; consequently, the in vivo T 1 value was proved to be reliable. The in vivo T 1 value showed the specific value corresponding to each region of the normal brain in all cases. Cerebral gray matter normally had the longest T 1 value, followed by the medulla oblongata, the pons, and white matter. The T 1 value of each region of the brain varied to the same degree in proportion to the strength of the static magnetic field. The in vivo T 1 values of the brain tumor varied with the histological type. All were longer than any part of the brain parenchyma, being between 480 and 780 msec at 0.2 T. The prolongation of the T 1 value does not always correspond to the degree of the malignancy in a tumor. The in vitro T 1 and T 2 values were also prolonged in all tumors. Although the absolute value of T 1 did not coincide between the in vitro and in vivo data, the tendency of the prolongation was the same between them. This result indicated that the NMR-CT images could be analysed by the use of the data of the in vitro T 1 and T 2 values in the tumor tissues. It is important to analyse the NMR-CT image by both in vivo and in vitro examinations of the relaxation times. (J.P.N.)

  6. Longitudinal evaluation of T1ρ and T2 spatial distribution in osteoarthritic and healthy medial knee cartilage.

    Science.gov (United States)

    Schooler, J; Kumar, D; Nardo, L; McCulloch, C; Li, X; Link, T M; Majumdar, S

    2014-01-01

    To investigate longitudinal changes in laminar and spatial distribution of knee articular cartilage magnetic resonance imaging (MRI) T1ρ and T2 relaxation times, in individuals with and without medial compartment cartilage defects. All subjects (at baseline n = 88, >18 years old) underwent 3-Tesla knee MRI at baseline and annually thereafter for 3 years. The MR studies were evaluated for presence of cartilage defects (modified Whole-Organ Magnetic Resonance Imaging Scoring - mWORMS), and quantitative T1ρ and T2 relaxation time maps. Subjects were segregated into those with (mWORMS ≥2) and without (mWORMS ≤1) cartilage lesions at the medial tibia (MT) or medial femur (MF) at each time point. Laminar (bone and articular layer) and spatial (gray level co-occurrence matrix - GLCM) distribution of the T1ρ and T2 relaxation time maps were calculated. Linear regression models (cross-sectional) and Generalized Estimating Equations (GEEs) (longitudinal) were used. Global T1ρ, global T2 and articular layer T2 relaxation times at the MF, and global and articular layer T2 relaxation times at the MT, were higher in subjects with cartilage lesions compared to those without lesions. At the MT global T1ρ relaxation times were higher at each time point in subjects with lesions. MT T1ρ and T2 became progressively more heterogeneous than control compartments over the course of the study. Spatial distribution of T1ρ and T2 relaxation time maps in medial knee OA using GLCM technique may be a sensitive indicator of cartilage deterioration, in addition to whole-compartment relaxation time data. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  7. The relaxation time of processes in a FitzHugh-Nagumo neural system with time delay

    International Nuclear Information System (INIS)

    Gong Ailing; Zeng Chunhua; Wang Hua

    2011-01-01

    In this paper, we study the relaxation time (RT) of the steady-state correlation function in a FitzHugh-Nagumo neural system under the presence of multiplicative and additive white noises and time delay. The noise correlation parameter λ can produce a critical behavior in the RT as functions of the multiplicative noise intensity D, the additive noise intensity Q and the time delay τ. That is, the RT decreases as the noise intensities D and Q increase, and increases as the time delay τ increases below the critical value of λ. However, above the critical value, the RT first increases, reaches a maximum, and then decreases as D, Q and τ increase, i.e. a noise intensity D or Q and a time delay τ exist, at which the time scales of the relaxation process are at their largest. In addition, the additive noise intensity Q can also produce a critical behavior in the RT as a function of λ. The noise correlation parameter λ first increases the RT of processes, then decreases it below the critical value of Q. Above the critical value, λ increases it.

  8. Giant deviation of a relaxation time from generalized Newtonian theory in discontinuous shear thickening suspensions

    Science.gov (United States)

    Maharjan, Rijan; Brown, Eric

    2017-12-01

    We investigated the transient relaxation of a discontinuous shear thickening (DST) suspension of cornstarch in water. We performed two types of relaxation experiments starting from a steady shear in a parallel-plate rheometer, followed either by stopping the top plate rotation and measuring the transient torque relaxation or by removing the torque on the plate and measuring the transient rotation of the tool. We found that at low effective weight fraction ϕeffmodel. The regime where the relaxation was inconsistent with the generalized Newtonian model was the same where we found positive normal stress during relaxation, and in some cases we found an oscillatory response, suggestive of a solidlike structure consisting of a system-spanning contact network of particles. This regime also corresponds to the same packing fraction range where we consistently found discontinuous shear thickening in rate-controlled, steady-state measurements. The relaxation time in this range scales with the inverse of the critical shear rate at the onset of shear thickening, which may correspond to a contact relaxation time for nearby particles in the structure to flow away from each other. In this range, the relaxation time was the same in both stress- and rate-controlled relaxation experiments, indicating the relaxation time is more intrinsic than an effective viscosity in this range and is needed in addition to the steady-state viscosity function to describe transient flows. The discrepancy between the measured relaxation times and the generalized Newtonian prediction was found to be as large as four orders of magnitude, and extrapolations diverge in the limit as ϕeff→ϕc as the generalized Newtonian prediction approaches 0. This quantitative discrepancy indicates the relaxation is not controlled by the dissipative terms in the constitutive relation. At the highest weight fractions, the relaxation time scales were measured to be on the order of ˜1 s. The fact that this time scale is

  9. The influence of measurement and relaxation time on flux jumps in high temperature superconductors

    International Nuclear Information System (INIS)

    Yang Xiaobin; Zhou Youhe; Tu Shandong

    2010-01-01

    The influence of the magnetization and relaxation time on flux jumps in high temperature superconductors (HTSC) under varying magnetic field is studied using the fundamental electromagnetic field equations and the thermal diffusion equation; temperature variety corresponding to flux jump is also discussed. We find that for a low sweep rate of the applied magnetic field, the measurement and relaxation times can reduce flux jump and to constrain the number of flux jumps, even stabilizing the HTSC, since much heat produced by the motion of magnetic flux can transfer into coolant during the measurement and relaxation times. As high temperature superconductors are subjected to a high sweep rate or a strong pulsed magnetic field, magnetization undergoes from stability or oscillation to jump for different pause times. And the period of temperature oscillation is equal to the measurement and relaxation time.

  10. Isotope effect on hydrated electron relaxation dynamics studied with time-resolved liquid jet photoelectron spectroscopy

    Science.gov (United States)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2016-05-01

    The excited state relaxation dynamics of the solvated electron in H2O and D2O are investigated using time-resolved photoelectron spectroscopy in a liquid microjet. The data show that the initial excited state decays on a time scale of 75 ± 12 fs in H2O and 102 ± 8 fs in D2O, followed by slower relaxation on time scales of 400 ± 70 fs and 390 ± 70 fs that are isotopically invariant within the precision of our measurements. Based on the time evolution of the transient signals, the faster and slower time constants are assigned to p → s internal conversion (IC) of the hydrated electron and relaxation on the ground electronic state, respectively. This assignment is consistent with the non-adiabatic mechanism for relaxation of the hydrated electron and yields an isotope effect of 1.4 ± 0.2 for IC of the hydrated electron.

  11. NMR water-proton spin-lattice relaxation time of human red blood cells and red blood cell suspensions

    International Nuclear Information System (INIS)

    Sullivan, S.G.; Rosenthal, J.S.; Winston, A.; Stern, A.

    1988-01-01

    NMR water-proton spin-lattice relaxation times were studied as probes of water structure in human red blood cells and red blood cell suspensions. Normal saline had a relaxation time of about 3000 ms while packed red blood cells had a relaxation time of about 500 ms. The relaxation time of a red blood cell suspension at 50% hematocrit was about 750 ms showing that surface charges and polar groups of the red cell membrane effectively structure extracellular water. Incubation of red cells in hypotonic saline increases relaxation time whereas hypertonic saline decreases relaxation time. Relaxation times varied independently of mean corpuscular volume and mean corpuscular hemoglobin concentration in a sample population. Studies with lysates and resealed membrane ghosts show that hemoglobin is very effective in lowering water-proton relaxation time whereas resealed membrane ghosts in the absence of hemoglobin are less effective than intact red cells. 9 refs.; 3 figs.; 1 table

  12. Thermal relaxation time of a mixture of relativistic electrons and neutrinos

    International Nuclear Information System (INIS)

    Herrera, M.A.; Hacyan, S.

    1987-01-01

    The interaction between the components of a relativistic binary mixture is studied by means of a fully covariant formalism. Assuming both components to differ slightly in temperature, an application of the relativistic Boltzmann equation yields general expressions for the energy transfer rate and for the relaxation time of the system. The resulting relation is then applied to a mixture of relativistic electrons and neutrinos to obtain numerical values of its relaxation time. (author)

  13. Hyaline articular cartilage: relaxation times, pulse-sequence parameters and MR appearance at 1.5 T

    Energy Technology Data Exchange (ETDEWEB)

    Chalkias, S.M. [Dept. of Radiology, A.H.E.P.A. General Hospital of the Aristotelian Univ., Thessaloniki (Greece); Pozzi-Mucelli, R.S. [Dept. of Radiology, Univ. of Trieste (Italy); Pozzi-Mucelli, M. [Orthopaedic Clinic, Univ. of Trieste (Italy); Frezza, F. [Dept. of Radiology, Univ. of Trieste (Italy); Longo, R. [Dept. of Radiology, Univ. of Trieste (Italy)

    1994-08-01

    In order to optimize the parameters for the best visualization of the internal architecture of the hyaline articular cartilage a study both ex vivo and in vivo was performed. Accurate T1 and T2 relaxation times of articular cartilage were obtained with a particular mixed sequence and then used for the creation of isocontrast intensity graphs. These graphs subsequently allowed in all pulse sequences (spin echo, SE and gradient echo, GRE) the best combination of repetition time (TR), echo time (TE) and flip angle (FA) for optimization of signal differences between MR cartilage zones. For SE sequences maximum contrast between cartilage zones can be obtained by using a long TR (> 1,500 ms) with a short TE (< 30 ms), whereas for GRE sequences maximum contrast is obtained with the shortest TE (< 15 ms) combined with a relatively long TR (> 400 ms) and an FA greater than 40 . A trilaminar appearance was demonstrated with a superficial and deep hypointense zone in all sequences and an intermediate zone that was moderately hyperintense on SE T1-weighted images, slightly more hyperintense on proton density Rho and SE T2-weighted images and even more hyperintense on GRE images. (orig.)

  14. Long T2 suppression in native lung 3-D imaging using k-space reordered inversion recovery dual-echo ultrashort echo time MRI.

    Science.gov (United States)

    Gai, Neville D; Malayeri, Ashkan A; Bluemke, David A

    2017-08-01

    Long T2 species can interfere with visualization of short T2 tissue imaging. For example, visualization of lung parenchyma can be hindered by breathing artifacts primarily from fat in the chest wall. The purpose of this work was to design and evaluate a scheme for long T2 species suppression in lung parenchyma imaging using 3-D inversion recovery double-echo ultrashort echo time imaging with a k-space reordering scheme for artifact suppression. A hyperbolic secant (HS) pulse was evaluated for different tissues (T1/T2). Bloch simulations were performed with the inversion pulse followed by segmented UTE acquisition. Point spread function (PSF) was simulated for a standard interleaved acquisition order and a modulo 2 forward-reverse acquisition order. Phantom and in vivo images (eight volunteers) were acquired with both acquisition orders. Contrast to noise ratio (CNR) was evaluated in in vivo images prior to and after introduction of the long T2 suppression scheme. The PSF as well as phantom and in vivo images demonstrated reduction in artifacts arising from k-space modulation after using the reordering scheme. CNR measured between lung and fat and lung and muscle increased from -114 and -148.5 to +12.5 and 2.8 after use of the IR-DUTE sequence. Paired t test between the CNRs obtained from UTE and IR-DUTE showed significant positive change (p lung-fat CNR and p = 0.03 for lung-muscle CNR). Full 3-D lung parenchyma imaging with improved positive contrast between lung and other long T2 tissue types can be achieved robustly in a clinically feasible time using IR-DUTE with image subtraction when segmented radial acquisition with k-space reordering is employed.

  15. Measurements of spin-lattice relaxation time in mixed alkali halide crystals

    International Nuclear Information System (INIS)

    Tannus, A.

    1983-01-01

    Using magneto-optic techniques the ground state spin-lattice relaxation times (T1) of 'F' centers in mixed Alkali Halide cristals (KCl-KBr), was studied. A computer assisted system to optically measure short relaxation times (approx. = 1mS), was described. The technique is based on the measurement of the Magnetic Circular Dicroism (MCD) presented by F centers. The T1 magnetic field dependency at 2 K (up to 65 KGauss), was obtained as well as the MCD spectra for different relative concentration at the mixed matrices. The theory developed by Panepucci and Mollenauer for F centers spin-lattice relaxation in pure matrices was modified to explain the behaviour of T1 in mixed cristals. The Direct Process results (T approx. = 2.0 K) compared against that theory shows that the main relaxation mecanism, up to 25 KGauss, continues to be phonon modulation of the hiperfine iteraction between F electrons and surrounding nuclei. (Author) [pt

  16. Real-time relaxation and kinetics in hot scalar QED: Landau damping

    International Nuclear Information System (INIS)

    Boyanovsky, D.; Vega, H.J. de; Holman, R.; Kumar, S.P.; Pisarski, R.D.

    1998-01-01

    The real time evolution of non-equilibrium expectation values with soft length scales ∼k -1 >(eT) -1 is solved in hot scalar electrodynamics, with a view towards understanding relaxational phenomena in the QGP and the electroweak plasma. We find that the gauge invariant non-equilibrium expectation values relax via power laws to asymptotic amplitudes that are determined by the quasiparticle poles. The long time relaxational dynamics and relevant time scales are determined by the behavior of the retarded self-energy not at the small frequencies, but at the Landau damping thresholds. This explains the presence of power laws and not of exponential decay. In the process we rederive the HTL effective action using non-equilibrium field theory. Furthermore we obtain the influence functional, the Langevin equation and the fluctuation-dissipation theorem for the soft modes, identifying the correlators that emerge in the classical limit. We show that a Markovian approximation fails to describe the dynamics both at short and long times. We find that the distribution function for soft quasiparticles relaxes with a power law through Landau damping. We also introduce a novel kinetic approach that goes beyond the standard Boltzmann equation by incorporating off-shell processes and find that the distribution function for soft quasiparticles relaxes with a power law through Landau damping. We find an unusual dressing dynamics of bare particles and anomalous (logarithmic) relaxation of hard quasiparticles. copyright 1998 The American Physical Society

  17. Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale

    International Nuclear Information System (INIS)

    Maslennikov, Oleg V.; Nekorkin, Vladimir I.

    2016-01-01

    In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.

  18. Morphological imaging and T2 and T2* mapping of hip cartilage at 7 Tesla MRI under the influence of intravenous gadolinium

    Energy Technology Data Exchange (ETDEWEB)

    Lazik-Palm, Andrea; Geis, Christina; Goebel, Juliane; Theysohn, Jens M. [University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Kraff, Oliver; Johst, Soeren [University of Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); Ladd, Mark E. [University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); University of Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); German Cancer Research Center (DKFZ), Division of Medical Physics in Radiology, Heidelberg (Germany); Quick, Harald H. [University of Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); University Hospital Essen, High-Field and Hybrid MR Imaging, Essen (Germany)

    2016-11-15

    To investigate the influence of intravenous gadolinium on cartilage T2 and T2* relaxation times and on morphological image quality at 7-T hip MRI. Hips of 11 healthy volunteers were examined at 7 T. Multi-echo sequences for T2 and T2* mapping, 3D T1 volumetric interpolated breath-hold examination (VIBE) and double-echo steady-state (DESS) sequences were acquired before and after intravenous application of gadolinium according to a delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) protocol. Cartilage relaxation times were measured in both scans. Morphological sequences were assessed quantitatively using contrast ratios and qualitatively using a 4-point Likert scale. Student's t-test, Pearson's correlation (ρ) and Wilcoxon sign-rank test were used for statistical comparisons. Pre- and post-contrast T2 and T2* values were highly correlated (T2: acetabular: ρ = 0.76, femoral: ρ = 0.77; T2*: acetabular: ρ = 0.80, femoral: ρ = 0.72). Gadolinium enhanced contrasts between cartilage and joint fluid in DESS and T1 VIBE according to the qualitative (p = 0.01) and quantitative (p < 0.001) analysis. The delineation of acetabular and femoral cartilage and the labrum predominantly improved with gadolinium. Gadolinium showed no relevant influence on T2 or T2* relaxation times and improved morphological image quality at 7 T. Therefore, morphological and quantitative sequences including dGEMRIC can be conducted in a one-stop-shop examination. (orig.)

  19. Time-Dependent Behaviors of Granite: Loading-Rate Dependence, Creep, and Relaxation

    Science.gov (United States)

    Hashiba, K.; Fukui, K.

    2016-07-01

    To assess the long-term stability of underground structures, it is important to understand the time-dependent behaviors of rocks, such as their loading-rate dependence, creep, and relaxation. However, there have been fewer studies on crystalline rocks than on tuff, mudstone, and rock salt, because the high strength of crystalline rocks makes the detection of their time-dependent behaviors much more difficult. Moreover, studies on the relaxation, temporal change of stress and strain (TCSS) conditions, and relations between various time-dependent behaviors are scarce for not only granites, but also other rocks. In this study, previous reports on the time-dependent behaviors of granites were reviewed and various laboratory tests were conducted using Toki granite. These tests included an alternating-loading-rate test, creep test, relaxation test, and TCSS test. The results showed that the degree of time dependence of Toki granite is similar to other granites, and that the TCSS resembles the stress-relaxation curve and creep-strain curve. A viscoelastic constitutive model, proposed in a previous study, was modified to investigate the relations between the time-dependent behaviors in the pre- and post-peak regions. The modified model reproduced the stress-strain curve, creep, relaxation, and the results of the TCSS test. Based on a comparison of the results of the laboratory tests and numerical simulations, close relations between the time-dependent behaviors were revealed quantitatively.

  20. T2 and T2* mapping in patients after matrix-associated autologous chondrocyte transplantation: initial results on clinical use with 3.0-Tesla MRI

    International Nuclear Information System (INIS)

    Welsch, Goetz H.; Trattnig, Siegfried; Quirbach, Sebastian; Hughes, Timothy; Olk, Alexander; Blanke, Matthias; Marlovits, Stefan; Mamisch, Tallal C.

    2010-01-01

    To use T2 and T2* mapping in patients after matrix-associated autologous chondrocyte transplantation (MACT) of the knee, and to compare and correlate both methodologies. 3.0-Tesla MRI was performed on 30 patients (34.6 ± 9.9 years) with a follow-up period of 28.1 ± 18.8 months after MACT. Multi-echo, spin-echo-based T2 mapping using six echoes and gradient-echo-based T2* mapping using six echoes were prepared. T2 and T2* maps were obtained using a pixel-wise, mono-exponential, non-negative least-squares fit analysis. Region-of-interest analysis was performed for mean (full-thickness) as well as deep and superficial aspects of the cartilage repair tissue and control cartilage sites. Mean T2 values (ms) were comparable for the control cartilage (53.4 ± 11.7) and the repair tissue (55.5 ± 11.6) (p > 0.05). Mean T2* values (ms) for control cartilage (30.9 ± 6.6) were significantly higher than those of the repair tissue (24.5 ± 8.1) (p < 0.001). Zonal stratification was more pronounced for T2* than for T2. The correlation between T2 and T2* was highly significant (p < 0.001), with a Pearson coefficient between 0.276 and 0.433. T2 and T2* relaxation time measurements in the evaluation of cartilage repair tissue and its zonal variation show promising results, although the properties visualised by T2 and T2* may differ. (orig.)

  1. Time, stress, and temperature-dependent deformation in nanostructured copper: Stress relaxation tests and simulations

    International Nuclear Information System (INIS)

    Yang, Xu-Sheng; Wang, Yun-Jiang; Wang, Guo-Yong; Zhai, Hui-Ru; Dai, L.H.; Zhang, Tong-Yi

    2016-01-01

    In the present work, stress relaxation tests, high-resolution transmission electron microscopy (HRTEM), and molecular dynamics (MD) simulations were conducted on coarse-grained (cg), nanograined (ng), and nanotwinned (nt) copper at temperatures of 22 °C (RT), 30 °C, 40 °C, 50 °C, and 75 °C. The comprehensive investigations provide sufficient information for the building-up of a formula to describe the time, stress, and temperature-dependent deformation and clarify the relationship among the strain rate sensitivity parameter, stress exponent, and activation volume. The typically experimental curves of logarithmic plastic strain rate versus stress exhibited a three staged relaxation process from a linear high stress relaxation region to a subsequent nonlinear stress relaxation region and finally to a linear low stress relaxation region, which only showed-up at the test temperatures higher than 22 °C, 22 °C, and 30 °C, respectively, in the tested cg-, ng-, and nt-Cu specimens. The values of stress exponent, stress-independent activation energy, and activation volume were determined from the experimental data in the two linear regions. The determined activation parameters, HRTEM images, and MD simulations consistently suggest that dislocation-mediated plastic deformation is predominant in all tested cg-, ng-, and nt-Cu specimens in the initial linear high stress relaxation region at the five relaxation temperatures, whereas in the linear low stress relaxation region, the grain boundary (GB) diffusion-associated deformation is dominant in the ng- and cg-Cu specimens, while twin boundary (TB) migration, i.e., twinning and detwinning with parallel partial dislocations, governs the time, stress, and temperature-dependent deformation in the nt-Cu specimens.

  2. Space and time dynamical heterogeneity in glassy relaxation. The role of democratic clusters

    International Nuclear Information System (INIS)

    Appignanesi, G A; Rodriguez Fris, J A

    2009-01-01

    In this work we review recent computational advances in the understanding of the relaxation dynamics of supercooled glass-forming liquids. In such a supercooled regime these systems experience a striking dynamical slowing down which can be rationalized in terms of the picture of dynamical heterogeneities, wherein the dynamics can vary by orders of magnitude from one region of the sample to another and where the sizes and timescales of such slowly relaxing regions are expected to increase considerably as the temperature is decreased. We shall focus on the relaxation events at a microscopic level and describe the finding of the collective motions of particles responsible for the dynamical heterogeneities. In so doing, we shall demonstrate that the dynamics in different regions of the system is not only heterogeneous in space but also in time. In particular, we shall be interested in the events relevant to the long-time structural relaxation or α relaxation. In this regard, we shall focus on the discovery of cooperatively relaxing units involving the collective motion of relatively compact clusters of particles, called 'democratic clusters' or d-clusters. These events have been shown to trigger transitions between metabasins of the potential energy landscape (collections of similar configurations or structures) and to consist of the main steps in the α relaxation. Such events emerge in systems quite different in nature such as simple model glass formers and supercooled amorphous water. Additionally, another relevant issue in this context consists in the determination of a link between structure and dynamics. In this context, we describe the relationship between the d-cluster events and the constraints that the local structure poses on the relaxation dynamics, thus revealing their role in reformulating structural constraints. (topical review)

  3. Three-dimensional T1 and T2* mapping of human lung parenchyma using interleaved saturation recovery with dual echo ultrashort echo time imaging (ITSR-DUTE).

    Science.gov (United States)

    Gai, Neville D; Malayeri, Ashkan A; Bluemke, David A

    2017-04-01

    To develop and assess a new technique for three-dimensional (3D) full lung T1 and T2* mapping using a single free breathing scan during a clinically feasible time. A 3D stack of dual-echo ultrashort echo time (UTE) radial acquisition interleaved with and without a WET (water suppression enhanced through T1 effects) saturation pulse was used to map T1 and T2* simultaneously in a single scan. Correction for modulation due to multiple views per segment was derived. Bloch simulations were performed to study saturation pulse excitation profile on lung tissue. Optimization of the saturation delay time (for T1 mapping) and echo time (for T2* mapping) was performed. Monte Carlo simulation was done to predict accuracy and precision of the sequence with signal-to-noise ratio of in vivo images used in the simulation. A phantom study was carried out using the 3D interleaved saturation recovery with dual echo ultrashort echo time imaging (ITSR-DUTE) sequence and reference standard inversion recovery spin echo sequence (IR-SE) to compare accuracy of the sequence. Nine healthy volunteers were imaged and mean (SD) of T1 and T2* in lung parenchyma at 3T were estimated through manually assisted segmentation. 3D lung coverage with a resolution of 2.5 × 2.5 × 6 mm 3 was performed and nominal scan time was recorded for the scans. Repeatability was assessed in three of the volunteers. Regional differences in T1/T2* values were also assessed. The phantom study showed accuracy of T1 values to be within 2.3% of values obtained from IR-SE. Mean T1 value in lung parenchyma was 1002 ± 82 ms while T2* was 0.85 ± 0.1 ms. Scan time was ∼10 min for volunteer scans. Mean coefficient of variation (CV) across slices was 0.057 and 0.09, respectively. Regional variation along the gravitational direction and between right and left lung were not significant (P = 0.25 and P = 0.06, respectively) for T1. T2* showed significant variation (P = 0.03) along the

  4. Quantitative evaluation of hyaline articular cartilage T2 maps of knee and determine the relationship of cartilage T2 values with age, gender, articular changes.

    Science.gov (United States)

    Cağlar, E; Şahin, G; Oğur, T; Aktaş, E

    2014-11-01

    To identify changes in knee joint cartilage transverse relaxation values depending on the patient's age and gender and to investigate the relationship between knee joint pathologies and the transverse relaxation time. Knee MRI images of 107 symptomatic patients with various pathologic knee conditions were analyzed retrospectively. T2 values were measured at patellar cartilage, posteromedial and posterolateral femoral cartilage adjacent to the central horn of posterior meniscus. 963 measurements were done for 107 knees MRI. Relationship of T2 values with seven features including subarticular bone marrow edema, subarticular cysts, marginal osteophytes, anterior-posterior cruciate and collateral ligament tears, posterior medial and posterior lateral meniscal tears, synovial thickening and effusion were analyzed. T2 values in all three compartments were evaluated according to age and gender. A T2 value increase correlated with age was present in all three compartments measured in the subgroup with no knee joint pathology and in all patient groups. According to the ROC curve, an increase showing a statistically significant difference was present in the patient group aged over 40 compared to the patient group aged 40 and below in all patient groups. There is a statistically difference at T2 values with and without subarticular cysts, marginal osteophytes, synovial thickening and effusion. T2 relaxation time showed a statistically significant increase in the patients with a medial meniscus tear compared to those without a tear and no statistically significant difference was found in T2 relaxation times of patients with and without a posterior lateral meniscus tear. T2 cartilage mapping on MRI provides opportunity to exhibit biochemical and structural changes related with cartilage extracellular matrix without using invasive diagnostic methods.

  5. Correlation of carrier localization with relaxation time distribution and electrical conductivity relaxation in silver-nanoparticle-embedded moderately doped polypyrrole nanostructures

    Science.gov (United States)

    Biswas, Swarup; Dutta, Bula; Bhattacharya, Subhratanu

    2014-02-01

    The electrical conductivity relaxation in moderately doped polypyrrole and its nanocomposites reinforced with different proportion of silver nanoparticles was investigated in both frequency and time domain. An analytical distribution function of relaxation times is constructed from the results obtained in the frequency domain formalism and is used to evaluate the Kohlrausch-Williams-Watts (KWW) type decay function in the time domain. The thermal evolution of different relaxation parameters was analyzed. The temperature-dependent dc electrical conductivity, estimated from the average conductivity relaxation time is observed to depend strongly on the nanoparticle loading and follows Mott three-dimensional variable range hopping (VRH) conduction mechanism. The extent of charge carrier localization calculated from the VRH mechanism is well correlated to the evidences obtained from the structural characterizations of different nanostructured samples.

  6. Time Resolved Broadband Terahertz Relaxation Dynamics of Electron in Water

    DEFF Research Database (Denmark)

    Wang, Tianwu; Iwaszczuk, Krzysztof; Cooke, David G.

    We investigated the transient response of the solvated electron in water ejected by photodetachment from potassium ferrocyanide using time resolved terahertz spectroscopy (TSTS). Ultrabroadband THz transients are generated and detected by a two-color femtosecond-induced air plasma and air biased...

  7. Only through perturbation can relaxation times be estimated

    Czech Academy of Sciences Publication Activity Database

    Ditlevsen, S.; Lánský, Petr

    2012-01-01

    Roč. 86, č. 5 (2012), 050102-5 ISSN 1539-3755 R&D Projects: GA ČR(CZ) GAP103/11/0282; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 Keywords : stochastic diffusion * parameter estimation * time constant Subject RIV: JD - Computer Applications, Robotics Impact factor: 2.313, year: 2012

  8. Dielectric relaxation and hydrogen bonding interaction in xylitol-water mixtures using time domain reflectometry

    Science.gov (United States)

    Rander, D. N.; Joshi, Y. S.; Kanse, K. S.; Kumbharkhane, A. C.

    2016-01-01

    The measurements of complex dielectric permittivity of xylitol-water mixtures have been carried out in the frequency range of 10 MHz-30 GHz using a time domain reflectometry technique. Measurements have been done at six temperatures from 0 to 25 °C and at different weight fractions of xylitol (0 xylitol-water can be well described by Cole-Davidson model having an asymmetric distribution of relaxation times. The dielectric parameters such as static dielectric constant and relaxation time for the mixtures have been evaluated. The molecular interaction between xylitol and water molecules is discussed using the Kirkwood correlation factor ( g eff ) and thermodynamic parameter.

  9. Spin-relaxation time in the impurity band of wurtzite semiconductors

    Science.gov (United States)

    Tamborenea, Pablo I.; Wellens, Thomas; Weinmann, Dietmar; Jalabert, Rodolfo A.

    2017-09-01

    The spin-relaxation time for electrons in the impurity band of semiconductors with wurtzite crystal structure is determined. The effective Dresselhaus spin-orbit interaction Hamiltonian is taken as the source of the spin relaxation at low temperature and for doping densities corresponding to the metallic side of the metal-insulator transition. The spin-flip hopping matrix elements between impurity states are calculated and used to set up a tight-binding Hamiltonian that incorporates the symmetries of wurtzite semiconductors. The spin-relaxation time is obtained from a semiclassical model of spin diffusion, as well as from a microscopic self-consistent diagrammatic theory of spin and charge diffusion in doped semiconductors. Estimates are provided for particularly important materials. The theoretical spin-relaxation times compare favorably with the corresponding low-temperature measurements in GaN and ZnO. For InN and AlN we predict that tuning of the spin-orbit coupling constant induced by an external potential leads to a potentially dramatic increase of the spin-relaxation time related to the mechanism under study.

  10. Real-time observation of cascaded electronic relaxation processes in p-Fluorotoluene

    Science.gov (United States)

    Hao, Qiaoli; Deng, Xulan; Long, Jinyou; Wang, Yanmei; Abulimiti, Bumaliya; Zhang, Bing

    2017-08-01

    Ultrafast electronic relaxation processes following two photoexcitation of 400 nm in p-Fluorotoluene (pFT) have been investigated utilizing time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. Cascaded electronic relaxation processes started from the electronically excited S2 state are directly imaged in real time and well characterized by two distinct time constants of 85 ± 10 fs and 2.4 ± 0.3 ps. The rapid component corresponds to the lifetime of the initially excited S2 state, including the structure relaxation from the Franck-Condon region to the conical intersection of S2/S1 and the subsequent internal conversion to the highly excited S1 state. While, the slower relaxation constant is attributed to the further internal conversion to the high levels of S0 from the secondarily populated S1 locating in the channel three region. Moreover, dynamical differences with benzene and toluene of analogous structures, including, specifically, the slightly slower relaxation rate of S2 and the evidently faster decay of S1, are also presented and tentatively interpreted as the substituent effects. In addition, photoelectron kinetic energy and angular distributions reveal the feature of accidental resonances with low-lying Rydberg states (the 3p, 4s and 4p states) during the multi-photon ionization process, providing totally unexpected but very interesting information for pFT.

  11. Chemical exchange effects during refocusing pulses in constant-time CPMG relaxation dispersion experiments

    International Nuclear Information System (INIS)

    Myint, Wazo; Ishima, Rieko

    2009-01-01

    In the analysis of the constant-time Carr-Purcell-Meiboom-Gill (CT-CPMG) relaxation dispersion experiment, chemical exchange parameters, such as rate of exchange and population of the exchanging species, are typically optimized using equations that predict experimental relaxation rates recorded as a function of effective field strength. In this process, the effect of chemical exchange during the CPMG pulses is typically assumed to be the same as during the free-precession. This approximation may introduce systematic errors into the analysis of data because the number of CPMG pulses is incremented during the constant-time relaxation period, and the total pulse duration therefore varies as a function of the effective field strength. In order to estimate the size of such errors, we simulate the time-dependence of magnetization during the entire constant time period, explicitly taking into account the effect of the CPMG pulses on the spin relaxation rate. We show that in general the difference in the relaxation dispersion profile calculated using a practical pulse width from that calculated using an extremely short pulse width is small, but under certain circumstances can exceed 1 s -1 . The difference increases significantly when CPMG pulses are miscalibrated

  12. Photoacoustic Determination of Non-radiative Relaxation Time of Absorbing Centers in Maize Seeds

    Science.gov (United States)

    Domínguez-Pacheco, A.; Hernández-Aguilar, C.; Cruz-Orea, A.

    2017-07-01

    Using non-destructive photothermal techniques, it is possible to characterize non-homogenous materials to obtain its optical and thermal properties through photoacoustic spectroscopy (PAS). In photoacoustic (PA) phenomena, there are transient states of thermal excitation, when samples absorb the incident light; these states manifest an excitation process that generates the PA signal, being in direct relation with the non-radiative relaxation times with the sample absorbent centers. The objective of this study was to determine the non-radiative relaxation times associated with different absorbent centers of corn seeds ( Zea mays L.), by using PAS. A frequency scan was done at different wavelengths (350 nm, 470 nm and 650 nm) in order to obtain the non-radiative relaxation times with different types of maize seeds.

  13. Energy-level statistics and time relaxation in quantum systems

    International Nuclear Information System (INIS)

    Gruver, J.L.; Cerdeira, H.A.; Aliaga, J.; Mello, P.A.; Proto, A.N.

    1997-05-01

    We study a quantum-mechanical system, prepared, at t = 0, in a model state, that subsequently decays into a sea of other states whose energy levels form a discrete spectrum with given statistical properties. An important quantity is the survival probability P(t), defined as the probability, at time t, to find the system in the original model state. Our main purpose is to analyze the influence of the discreteness and statistical properties of the spectrum on the behavior of P(t). Since P(t) itself is a statistical quantity, we restrict our attention to its ensemble average , which is calculated analytically using random-matrix techniques, within certain approximations discussed in the text. We find, for , an exponential decay, followed by a revival, governed by the two-point structure of the statistical spectrum, thus giving a nonzero asymptotic value for large t's. The analytic result compares well with a number of computer simulations, over a time range discussed in the text. (author). 17 refs, 1 fig

  14. Observation of relaxation on time scale of core hole decay by coincidence photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2007-01-01

    It is shown by a many-body theory that when the relaxation time of a metastable core hole state(s) to the most stable one is comparable to or shorter than core hole decay time of the former state(s), a comparison between the singles (noncoincidence) photoelectron spectroscopy (PES) spectrum and the coincidence one provides a direct evidence of the relaxation. In principle the variation with photoelectron kinetic energy of relaxation (or charge transfer (CT)) time can be determined. By singles measurement the correlation of a photoelectron generated by creation of the metastable states not only with an Auger electron generated by annihilation of the same core hole state but also with an Auger electron generated by annihilation of the stable state via relaxation of the metastable state, is completely lost, unless only the metastable state is observed by PES, whereas the correlation often manifests directly in the coincidence spectra. Thus, compared to the coincidence spectroscopy the singles one is often much less capable of elucidating the competition between relaxation and core hole decay of a metastable state. Such examples are discussed

  15. On-chip Brownian relaxation measurements of magnetic nanobeads in the time domain

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Rizzi, Giovanni; Hansen, Mikkel Fougt

    2013-01-01

    the time and frequency domain methods on Brownian relaxation detection of clustering of streptavidin coated magnetic beads in the presence of different concentrations of biotin-conjugated bovine serum albumin and obtain comparable results. In the time domain, a measurement is carried out in less than 30 s...

  16. Deconvolution analysis to determine relaxation time spectra of internal friction peaks

    International Nuclear Information System (INIS)

    Cost, J.R.

    1985-01-01

    A new method for analysis of an internal friction vs temperature peak to obtain an approximation of the spectrum of relaxation time responsible for the peak is described. This method, referred to as direct spectrum analysis (DSA), is shown to provide an accurate estimate of the distribution of relaxation times. The method is validated for various spectra, and it is shown that: (1) It provides approximations to known input spectra which replicate the position, amplitude, width and shape with good accuracy (typically 10%). (2) It does not yield approximations which have false spectral peaks

  17. Large lateral photovoltaic effect with ultrafast relaxation time in SnSe/Si junction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianjie; Zhao, Xiaofeng; Hu, Chang; Zhang, Yang; Song, Bingqian; Zhang, Lingli; Liu, Weilong; Lv, Zhe; Zhang, Yu; Sui, Yu, E-mail: suiyu@hit.edu.cn [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Tang, Jinke [Department of Physics and Astronomy, University of Wyoming, Laramie, Wyoming 82071 (United States); Song, Bo, E-mail: songbo@hit.edu.cn [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150001 (China)

    2016-07-11

    In this paper, we report a large lateral photovoltaic effect (LPE) with ultrafast relaxation time in SnSe/p-Si junctions. The LPE shows a linear dependence on the position of the laser spot, and the position sensitivity is as high as 250 mV mm{sup −1}. The optical response time and the relaxation time of the LPE are about 100 ns and 2 μs, respectively. The current-voltage curve on the surface of the SnSe film indicates the formation of an inversion layer at the SnSe/p-Si interface. Our results clearly suggest that most of the excited-electrons diffuse laterally in the inversion layer at the SnSe/p-Si interface, which results in a large LPE with ultrafast relaxation time. The high positional sensitivity and ultrafast relaxation time of the LPE make the SnSe/p-Si junction a promising candidate for a wide range of optoelectronic applications.

  18. Isotope effect on hydrated electron relaxation dynamics studied with time-resolved liquid jet photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Elkins, Madeline H.; Williams, Holly L. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Neumark, Daniel M., E-mail: dneumark@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2016-05-14

    The excited state relaxation dynamics of the solvated electron in H{sub 2}O and D{sub 2}O are investigated using time-resolved photoelectron spectroscopy in a liquid microjet. The data show that the initial excited state decays on a time scale of 75 ± 12 fs in H{sub 2}O and 102 ± 8 fs in D{sub 2}O, followed by slower relaxation on time scales of 400 ± 70 fs and 390 ± 70 fs that are isotopically invariant within the precision of our measurements. Based on the time evolution of the transient signals, the faster and slower time constants are assigned to p → s internal conversion (IC) of the hydrated electron and relaxation on the ground electronic state, respectively. This assignment is consistent with the non-adiabatic mechanism for relaxation of the hydrated electron and yields an isotope effect of 1.4 ± 0.2 for IC of the hydrated electron.

  19. Distinction of salvaged and infarcted myocardium within the ischaemic area-at-risk with T2 mapping

    DEFF Research Database (Denmark)

    Hammer-Hansen, Sophia; Ugander, Martin; Hsu, Li-Yueh

    2014-01-01

    values from T2 maps and signal intensities on T2-weighted images were measured in the corresponding areas. RESULTS: At both imaging time points, the T2 of the salvaged myocardium was longer than of remote (66.0 ± 6.9 vs. 51.4 ± 3.5 ms, P ...AIM: Area-at-risk (AAR) measurements often rely on T2-weighted images, but subtle differences in T2 may be overlooked with this method. To determine the differences in oedema between salvaged and infarcted myocardium, we performed quantitative T2 mapping of the AAR. We also aimed to determine...... (14.7 ± 5.6 vs. 8.7 ± 5.1 ms, P = 0.02). CONCLUSIONS: T2 relaxation parameters are different in the infarcted and salvaged myocardium, and both are significantly longer than remote. Furthermore, the magnitude of increase in T2 was less in the salvaged myocardium after longer reperfusion, indicating...

  20. Transverse magnetic field effects on the relaxation time of the magnetization in Mn12 measured by 55Mn-NMR

    International Nuclear Information System (INIS)

    Furukawa, Y.; Watanabe, K.; Kumagai, K.; Borsa, F.; Gatteschi, D.

    2003-01-01

    The longitudinal (H Z ) and transverse (H T ) magnetic field dependence of the relaxation time of the magnetization in Mn12 in its S=10 ground state was measured by NMR. The minima in the relaxation time at the fields for level crossing are due to the quantum tunneling of the magnetization. The shortening of the relaxation time under the application of H T is shown to be due mainly to the reduction of the energy barrier

  1. Distribution of relaxation times in (KBr)/sub 0.5/(KCN)/sub 0.5/

    International Nuclear Information System (INIS)

    Birge, N.O.; Jeong, Y.H.; Nagel, S.R.; Bhattacharya, S.; Susman, S.

    1984-01-01

    Measurements of the dielectric response of (KBr)/sub 0.5/(KCN)/sub 0.5/ covering nine decades of frequency are reported. We have shown how the relaxation times proliferate as the temperature is lowered. The anomalously wide distribution of relaxation times can be generated from a Gaussian distribution of energy barriers. As temperature is decreased not only does the spread of relaxation times increase, but more importantly the width of the distribution of activation energies itself increases

  2. Energy and Momentum Relaxation Times of 2D Electrons Due to Near Surface Deformation Potential Scattering

    Science.gov (United States)

    Pipa, Viktor; Vasko, Fedor; Mitin, Vladimir

    1997-03-01

    The low temperature energy and momentum relaxation rates of 2D electron gas placed near the free or clamped surface of a semi-infinit sample are calculated. To describe the electron-acoustic phonon interaction with allowance of the surface effect the method of elasticity theory Green functions was used. This method allows to take into account the reflection of acoustic waves from the surface and related mutual conversion of LA and TA waves. It is shown that the strength of the deformation potential scattering at low temperatures substantially depends on the mechanical conditions at the surface: relaxation rates are suppressed for the free surface while for the rigid one the rates are enhanced. The dependence of the conductivity on the distance between the 2D layer and the surface is discussed. The effect is most pronounced in the range of temperatures 2 sl pF < T < (2 hbar s_l)/d, where pF is the Fermi momentum, sl is the velocity of LA waves, d is the width of the quantum well.

  3. Experimental investigations of relaxation times of gel electrolytes during polymerization by MR methods

    Czech Academy of Sciences Publication Activity Database

    Kořínek, Radim; Vondrák, J.; Bartušek, Karel; Sedlaříková, M.

    2013-01-01

    Roč. 17, č. 8 (2013), s. 2109-2114 ISSN 1432-8488 R&D Projects: GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Gel electrolyte * Relaxation times * Polarization * Nuclear magnetic resonance Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.234, year: 2013

  4. Time stepping free numerical solution of linear differential equations: Krylov subspace versus waveform relaxation

    NARCIS (Netherlands)

    Bochev, Mikhail A.; Oseledets, I.V.; Tyrtyshnikov, E.E.

    2013-01-01

    The aim of this paper is two-fold. First, we propose an efficient implementation of the continuous time waveform relaxation method based on block Krylov subspaces. Second, we compare this new implementation against Krylov subspace methods combined with the shift and invert technique.

  5. Source of non-arrhenius average relaxation time in glass-forming liquids

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    1998-01-01

    then discuss a recently proposed model according to which the activation energy of the average relaxation time is determined by the work done in shoving aside the surrounding liquid to create space needed for a "flow event". In this model, which is based on the fact that intermolecular interactions...

  6. MR pulse sequences for selective relaxation time measurements: a phantom study

    DEFF Research Database (Denmark)

    Thomsen, C; Jensen, K E; Jensen, M

    1990-01-01

    a Siemens Magnetom wholebody magnetic resonance scanner operating at 1.5 Tesla was used. For comparison six imaging pulse sequences for relaxation time measurements were tested on the same phantom. The spectroscopic pulse sequences all had an accuracy better than 10% of the reference values....

  7. Simulation of Cavity Flow by the Lattice Boltzmann Method using Multiple-Relaxation-Time scheme

    International Nuclear Information System (INIS)

    Ryu, Seung Yeob; Kang, Ha Nok; Seo, Jae Kwang; Yun, Ju Hyeon; Zee, Sung Quun

    2006-01-01

    Recently, the lattice Boltzmann method(LBM) has gained much attention for its ability to simulate fluid flows, and for its potential advantages over conventional CFD method. The key advantages of LBM are, (1) suitability for parallel computations, (2) absence of the need to solve the time-consuming Poisson equation for pressure, and (3) ease with multiphase flows, complex geometries and interfacial dynamics may be treated. The LBM using relaxation technique was introduced by Higuerea and Jimenez to overcome some drawbacks of lattice gas automata(LGA) such as large statistical noise, limited range of physical parameters, non- Galilean invariance, and implementation difficulty in three-dimensional problem. The simplest LBM is the lattice Bhatnager-Gross-Krook(LBGK) equation, which based on a single-relaxation-time(SRT) approximation. Due to its extreme simplicity, the lattice BGK(LBGK) equation has become the most popular lattice Boltzmann model in spite of its well-known deficiencies, for example, in simulating high-Reynolds numbers flow. The Multiple-Relaxation-Time(MRT) LBM was originally developed by D'Humieres. Lallemand and Luo suggests that the use of a Multiple-Relaxation-Time(MRT) models are much more stable than LBGK, because the different relaxation times can be individually tuned to achieve 'optimal' stability. A lid-driven cavity flow is selected as the test problem because it has geometrically singular points in the flow, but geometrically simple. Results are compared with those using SRT, MRT model in the LBGK method and previous simulation data using Navier-Stokes equations for the same flow conditions. In summary, LBM using MRT model introduces much less spatial oscillations near geometrical singular points, which is important for the successful simulation of higher Reynolds number flows

  8. Whole brain MP2RAGE-based mapping of the longitudinal relaxation time at 9.4T.

    Science.gov (United States)

    Hagberg, G E; Bause, J; Ethofer, T; Ehses, P; Dresler, T; Herbert, C; Pohmann, R; Shajan, G; Fallgatter, A; Pavlova, M A; Scheffler, K

    2017-01-01

    Mapping of the longitudinal relaxation time (T 1 ) with high accuracy and precision is central for neuroscientific and clinical research, since it opens up the possibility to obtain accurate brain tissue segmentation and gain myelin-related information. An ideal, quantitative method should enable whole brain coverage within a limited scan time yet allow for detailed sampling with sub-millimeter voxel sizes. The use of ultra-high magnetic fields is well suited for this purpose, however the inhomogeneous transmit field potentially hampers its use. In the present work, we conducted whole brain T 1 mapping based on the MP2RAGE sequence at 9.4T and explored potential pitfalls for automated tissue classification compared with 3T. Data accuracy and T 2 -dependent variation of the adiabatic inversion efficiency were investigated by single slice T 1 mapping with inversion recovery EPI measurements, quantitative T 2 mapping using multi-echo techniques and simulations of the Bloch equations. We found that the prominent spatial variation of the transmit field at 9.4T (yielding flip angles between 20% and 180% of nominal values) profoundly affected the result of image segmentation and T 1 mapping. These effects could be mitigated by correcting for both flip angle and inversion efficiency deviations. Based on the corrected T 1 maps, new, 'flattened', MP2RAGE contrast images were generated, that were no longer affected by variations of the transmit field. Unlike the uncorrected MP2RAGE contrast images acquired at 9.4T, these flattened images yielded image segmentations comparable to 3T, making bias-field correction prior to image segmentation and tissue classification unnecessary. In terms of the T 1 estimates at high field, the proposed correction methods resulted in an improved precision, with test-retest variability below 1% and a coefficient-of-variation across 25 subjects below 3%. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Characterizing the microstructural basis of “unidentified bright objects” in neurofibromatosis type 1: A combined in vivo multicomponent T2 relaxation and multi-shell diffusion MRI analysis

    Directory of Open Access Journals (Sweden)

    Thibo Billiet

    2014-01-01

    Conclusion: Our results suggest that demyelination and axonal degeneration are unlikely to be present in UBOs, which appear to be mainly caused by a shift towards a higher T2-value of the intra- and extracellular water pool. This may arise from altered microstructural compartmentalization, and an increase in ‘extracellular-like’, intracellular water, possibly due to intramyelinic edema. These findings confirm the added value of combining dMRI and MET2 to characterize the microstructural basis of T2 hyperintensities in vivo.

  10. Cardiac T2-mapping using a fast gradient echo spin echo sequence - first in vitro and in vivo experience

    OpenAIRE

    Baessler, Bettina; Schaarschmidt, Frank; Stehning, Christian; Schnackenburg, Bernhard; Maintz, David; Bunck, Alexander C.

    2015-01-01

    Background: The aim of this study was the evaluation of a fast Gradient Spin Echo Technique (GraSE) for cardiac T2-mapping, combining a robust estimation of T2 relaxation times with short acquisition times. The sequence was compared against two previously introduced T2-mapping techniques in a phantom and in vivo. Methods: Phantom experiments were performed at 1.5 T using a commercially available cylindrical gel phantom. Three different T2-mapping techniques were compared: a Multi Echo Spin Ec...

  11. Isothermal structural relaxation of Fe40Ni40B20 metallic glass in the relaxation times spectrum model

    NARCIS (Netherlands)

    Csach, K; Haruyama, O; Kasardova, A; Ocelik, Vaclav

    1997-01-01

    The structural relaxation of amorphous as-quenched Fe40Ni40B20 sample was investigated during isothermal annealing at temperatures close to 400 degrees C by: (i) the residual electrical resistance measured at liquid N-2 temperature; (ii) the in-situ electrical resistance; and (iii) the length

  12. Investigation of dielectric relaxation in systems with hierarchical organization: From time to frequency domain and back again

    Energy Technology Data Exchange (ETDEWEB)

    Yokoi, Koki [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI (United States); Raicu, Valerică, E-mail: vraicu@uwm.edu [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI (United States); Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI (United States)

    2017-06-28

    Relaxation in fractal structures was investigated theoretically starting from a simple model of a Cantorian tree and kinetic equations linking the change in the number of particles (e.g., electrical charges) populating each branch of the tree and their transfer to other branches or to the ground state. We numerically solved the system of differential equations obtained and determined the so-called cumulative distribution function of particles, which, in dielectric or mechanical relaxation parlance, is the same as the relaxation function of the system. As a physical application, we studied the relationship between the dielectric relaxation in time-domain and the dielectric dispersion in the frequency-domain. Upon choosing appropriate rate constants, our model described accurately well-known non-exponential and non-Debye time- and frequency-domain functions, such as stretched exponentials, Havrilliak–Negami, and frequency power law. Our approach opens the door to applying kinetic models to describe a wide array of relaxation processes, which traditionally have posed great challenges to theoretical modeling based on first principles. - Highlights: • Relaxation was investigated for a system of particles flowing through a Cantorian tree. • A set of kinetic equations was formulated and used to compute the relaxation function of the system. • The dispersion function of the system was computed from the relaxation function. • An analytical method was used to recover the original relaxation function from the dispersion function. • This formalism was used to study dielectric relaxation and dispersion in fractal structures.

  13. Effect of intra-articular injection of intermediate-weight hyaluronic acid on hip and knee cartilage: in-vivo evaluation using T2 mapping.

    Science.gov (United States)

    Ferrero, Giulio; Sconfienza, Luca Maria; Fiz, Francesco; Fabbro, Emanuele; Corazza, Angelo; Dettore, Daniele; Orlandi, Davide; Castellazzo, Carlo; Tornago, Stefano; Serafini, Giovanni

    2018-06-01

    We used T2 mapping to quantify the effect of intra-articular hyaluronic acid administration (IAHAA) on cartilage with correlation to clinical symptoms. One hundred two patients with clinical and MRI diagnosis of hip or knee grade I-III chondropathy were prospectively included. All patients received a standard MRI examination of the affected hip/knee (one joint/patient) and T2-mapping multiecho sequence for cartilage evaluation. T2 values of all slices were averaged and used for analysis. One month after MR evaluation 72 patients (38 males; mean age 51±10 years) underwent IAHAA. As a control group, 30 subjects (15 males; 51 ± 9 years) were not treated. MR and WOMAC evaluation was performed at baseline and after 3, 9, and 15 months in all patients. T2 mapping in hyaluronic acid (HA) patients showed a significant increase in T2 relaxation times from baseline to the first time point after therapy in knees (40.7 ± 9.8 ms vs. 45.8 ± 8.6 ms) and hips (40.9 ± 9.7 ms; 45.9 ± 9.5 ms) (p evaluations, T2 relaxation dropped to values similar to the baseline ones (p T2 increase and pain reduction after IAHAA was statistically significant (r = 0.54, p T2 mapping can be used to evaluate the effect over time of IAHAA in patients with hip and knee chondropathy. • T2 relaxation times change over time after hyaluronic acid intra-articular administration • T2 relaxation times of the medial femoral condyle correlate with WOMAC variation • T2 relaxation times are different between Outerbridge I and II-III.

  14. The Influence of the Relaxation Time on the Dynamic Hysteresis in Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Palici Alexandra

    2018-01-01

    Full Text Available We investigate the dynamic behavior of perovskite solar cells by focusing on the relaxation time τ, which corresponds to the slow de-polarization process from an initial bias pre-poled state. The dynamic electrical model (DEM is employed for simulating the J-V characteristics for different bias scan rates and pre-poling conditions. Depending on the sign of the initial polarization normal or inverted hysteresis may be induced. For fixed pre-poling conditions, the relaxation time, in relation to the bias scan rate, governs the magnitude of the dynamic hysteresis. In the limit of large τ the hysteretic effects are vanishing for the typical range of bias scan rates considered, while for very small τ the hysteresis is significant only when it is comparable with the measurement time interval.

  15. Measurement of short transverse relaxation times by pseudo-echo nutation experiments

    Science.gov (United States)

    Ferrari, Maude; Moyne, Christian; Canet, Daniel

    2018-07-01

    Very short NMR transverse relaxation times may be difficult to measure by conventional methods. Nutation experiments constitute an alternative approach. Nutation is, in the rotating frame, the equivalent of precession in the laboratory frame. It consists in monitoring the rotation of magnetization around the radio-frequency (rf) field when on-resonance conditions are fulfilled. Depending on the amplitude of the rf field, nutation may be sensitive to the two relaxation rates R1 and R2. A full theoretical development has been worked out for demonstrating how these two relaxation rates could be deduced from a simple nutation experiment, noticing however that inhomogeneity of the rf field may lead to erroneous results. This has led us to devise new experiments which are the equivalent of echo techniques in the rotating frame (pseudo spin-echo nutation experiment and pseudo gradient-echo experiment). Full equations of motion have been derived. Although complicated, they indicate that the sum of the two relaxation rates can be obtained very accurately and not altered by rf field inhomogeneity. This implies however an appropriate data processing accounting for the oscillations which are superposed to the echo decays and, anyway, theoretically predicted. A series of experiments has been carried out for different values of the rf field amplitude on samples of water doped with a paramagnetic compound at different concentrations. Pragmatically, as R1 can be easily measured by conventional methods, its value is entered in the data processing algorithm which then returns exclusively the value of the transverse relaxation time. Very consistent results are obtained that way.

  16. Three-dimensional ultrashort echo time MRI and Short T2 images generated from subtraction for determination of tumor burden in lung cancer: Preclinical investigation in transgenic mice.

    Science.gov (United States)

    Müller, Andreas; Jagoda, Philippe; Fries, Peter; Gräber, Stefan; Bals, Robert; Buecker, Arno; Jungnickel, Christopher; Beisswenger, Christoph

    2018-02-01

    To investigate the potential of 3D ultrashort echo time MRI and short T 2 images generated by subtraction for determination of total tumor burden in lung cancer. As an animal model of spontaneously developing non-small cell lung cancer, the K-rasLA1 transgenic mouse was used. Three-dimensional MR imaging was performed with radial k-space acquisition and echo times of 20 µs and 1 ms. For investigation of the short T 2 component in the recorded signal, subtraction images were generated from these data sets and used for consensus identification of tumors. Next, manual segmentation was performed on all MR images by two independent investigators. MRI data were compared with the results from histologic investigations and among the investigators. Tumor number and total tumor burden from imaging experiments correlated strongly with the results of histologic investigations. Intra- and interuser comparison showed highest correlations between the individual measurements for ultra-short TE MRI. Three-dimensional MRI protocols facilitate accurate tumor identification in mice harboring lung tumors. Ultrashort TE MRI is the superior imaging strategy when investigating lung tumors of miscellaneous size with 3D MR imaging strategies. Magn Reson Med 79:1052-1060, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Menstrual variation of breast volume and T{sub 2} relaxation times in cyclical mastalgia

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Zainab [Department of Medical Imaging, University of Liverpool, Johnstone Building, Brownlow Hill, P.O. Box 147, Liverpool, Merseyside L69 3GB (United Kingdom); Magnetic Resonance and Image Analysis Research Centre, University of Liverpool, Johnstone Building, Brownlow Hill, P.O. Box 147, Liverpool, Merseyside L69 3GB (United Kingdom)], E-mail: zay@liverpool.ac.uk; Brooks, Jonathan [Magnetic Resonance and Image Analysis Research Centre, University of Liverpool, Johnstone Building, Brownlow Hill, P.O. Box 147, Liverpool, Merseyside L69 3GB (United Kingdom); Department of Human Anatomy and Genetics, University of Oxford, Oxford (United Kingdom); Percy, Dave [Centre for Operational Research and Applied Statistics, University of Salford, Salford, Greater Manchester M5 4WT (United Kingdom)

    2008-02-15

    Purpose: Hormonal activity causes breast volume to change during the menstrual cycle. One possible cause of this volume change is thought to be due to water retention or oedema within the tissues. We used magnetic resonance imaging (MRI) to study the variation in breast volume and {sup 1}H Magnetic Resonance Spectroscopy (MRS) to measure T{sub 2} relaxation times which are known to increase with increasing tissue water content. We hypothesised that an increase in breast volume will elevate T{sub 2} relaxation due to the presence of an increased water content within the breast. T{sub 2} Relaxation time and volume were studied in fifteen control subjects and in a cohort of eight patients with cyclical mastalgia in order to determine whether changes in breast volume and T{sub 2} relaxation times differed in controls and patients during menses, ovulation and premenses. Method: Breast volume was determined by the Cavalieri method in combination with point counting techniques on MR images and T{sub 2} relaxation times of the water and fat in a voxel of breast tissue were obtained using {sup 1}H Magnetic Resonance Spectroscopy (MRS). Results: Statistical analysis (ANOVA) demonstrated highly significant differences in breast volume between the three stages of the cycle (p < 0.0005) with breast volume being greatest premenstrually. Patients did not exhibit an increase in volume premenstrually, significantly above controls. T{sub 2} of fat or water did not depend on stage of cycle. T-tests demonstrated no significant differences in T{sub 2} of water or fat between patient and control groups. The average T{sub 2} relaxation time of water was lowest in the patient and control groups during ovulation and highest in the patient group during premenses. Conclusion: We have performed the first combined volumetric and spectroscopic study of women with cyclical mastalgia and demonstrated that the global changes in volumes and T{sub 2} were not significantly different from normal

  18. In vivo measurements of T1 relaxation times of 31P-metabolites in human skeletal muscle

    DEFF Research Database (Denmark)

    Thomsen, C; Jensen, K E; Henriksen, O

    1989-01-01

    The T1 relaxation times were estimated for 31P-metabolites in human skeletal muscle. Five healthy volunteers were examined in a 1.5 Tesla wholebody imaging system using an inversion recovery pulse sequence. The calculated T1 relaxation times ranged from 5.517 sec for phosphocreatine to 3.603 sec...

  19. Animal experimental studies on the influence of fatty infiltration of the liver on tissue relaxation times and signal changes in MRT

    International Nuclear Information System (INIS)

    Kreft, B.; Stark, D.; Schild, H.

    1995-01-01

    Using a spectrometer (n=60) in vitro and MRT imaging (n=8) in vivo, we studied the influence of fatty changes of liver cells on the relaxation times of the liver (two animal models of fatty liver disease/orotic acid, L-ethionine). Induction of fatty degeneration of the liver by means of an orotic acid diet resulted in pure deposition of fat in the liver without any histological or serological proof of inflammatory changes. Although accumulation of triglyceride in the liver reduced the T 1 relaxation time only relatively slightly (-15%), there was good correlation (r=0.88) between fat content and T 1 . There was also good correlation (r=0.92) between T 2 and histological fat content. Inflammatory changes besides fatty deposition were seen both serologically and histologically in the L-ethionine model, so that the fatty content did not correlate with T 1 . In-vivo MRT imaging showed that spin-echo sequences are inappropriate for diagnosing fatty infiltration of the liver despite the relaxation time changes produced by the fatty deposition. On the other hand, chemical-shift imaging sequences are very sensitive to identify fatty deposits, and are also independent of any additionally existing inflammatory changes. (orig.) [de

  20. Cerebral abnormalities: use of calculated T1 and T2 magnetic resonance images for diagnosis

    International Nuclear Information System (INIS)

    Mills, C.M.; Crooks, L.E.; Kaufman, L.; Brant-Zawadzki, M.

    1984-01-01

    The potential clinical importance of T1 and T2 relaxation times in distinguishing normal and pathologic tissue with magnetic resonance (MR) is discussed and clinical examples of cerebral abnormalities are given. Five patients with cerebral infarction, 15 with multiple sclerosis, two with Wilson disease, and four with tumors were imaged. Hemorrhagic and ischemic cerebrovascular accidents were distinguished using the spin echo technique. In the patients with multiple sclerosis, lesions had prolonged T1 and T2 times, but the definition of plaque was limited by spatial resolution. No abnormalities in signal intensity were seen in the patient with Wilson disease who was no longer severly disabled; abnormal increased signal intensity in the basal ganglia was found in the second patient with Wilson disease. Four tumors produced abnormal T1 and T2 relaxation times but these values alone were not sufficient for tumor characterization

  1. Using Dielectric Relaxation Spectroscopy to Characterize the Glass Transition Time of Polydextrose.

    Science.gov (United States)

    Buehler, Martin G; Kindle, Michael L; Carter, Brady P

    2015-06-01

    Dielectric relaxation spectroscopy was used to characterize the glass transition time, tg , of polydextrose, where the glass transition temperature, Tg , and water activity, aw (relative humidity), were held constant during polydextrose relaxation. The tg was determined from a shift in the peak frequency of the imaginary capacitance spectrum with time. It was found that when the peak frequency reaches 30 mHz, polydextrose undergoes glass transition. Glass transition time, tg , is the time for polydextrose to undergo glass transition at a specific Tg and aw . Results lead to a modified state diagram, where Tg is depressed with increasing aw . This curve forms a boundary: (a) below the boundary, polydextrose does not undergo glass transition and (b) above the boundary, polydextrose rapidly undergoes glass transition. As the boundary curve is specified by a tg value, it can assist in the selection of storage conditions. An important point on the boundary curve is at aw = 0, where Tg0 = 115 °C. The methodology can also be used to calculate the stress-relaxation viscosity of polydextrose as a function of Tg and aw , which is important when characterizing the flow properties of polydextrose initially in powder form. © 2015 Institute of Food Technologists®

  2. Deducting the temperature dependence of the structural relaxation time in equilibrium far below the nominal Tg by aging the decoupled conductivity relaxation to equilibrium.

    Science.gov (United States)

    Wojnarowska, Z; Ngai, K L; Paluch, M

    2014-05-07

    Using broadband dielectric spectroscopy we investigate the changes in the conductivity relaxation times τσ observed during the physical aging of the protic ionic conductor carvedilol dihydrogen phosphate (CP). Due to the large decoupling of ion diffusion from host molecule reorientation, the ion conductivity relaxation time τσ(Tage,tage) can be directly measured at temperatures Tage below Tg for exceedingly long aging times tage till τσ(Tage,tage) has reached the equilibrium value τσ(eq)(Tage). The dependence of τσ(Tage,tage) on tage is well described by the stretched exponential function, τσ(Tage, tage) = Aexp[-((tage)/(τage(Tage)))(β)] + τσ(eq)(Tage), where β is a constant and τage(Tage) can be taken as the structural α-relaxation time of the equilibrium liquid at T = Tage. The value of τσ(eq)(Tage) obtained after 63 days long annealing of CP, deviates from the Vogel-Fulcher-Tammann-Hesse (VFTHσ) dependence of τσ(T) determined from data taken above Tg and extrapolated down to Tage. Concurrently, τage(Tage) also deviates from the Vogel-Fulcher-Tammann-Hesse (VFTHα) dependence. The results help to answer the longstanding question of whether the VFTH dependence of τσ(T) as well as the structural α-relaxation time τα(T) holds or not in the equilibrium liquid state far below Tg.

  3. State of health assessment for lithium batteries based on voltage–time relaxation measure

    International Nuclear Information System (INIS)

    Baghdadi, Issam; Briat, Olivier; Gyan, Philippe; Vinassa, Jean Michel

    2016-01-01

    Highlights: • Calendar aging under different storage conditions for three different battery technologies studied. • Two scenarios of aging under power cycling at two different temperatures investigated for one battery technology. • Relaxation profile of battery voltage just after full charge is highly correlated to aging. • Linear dependence between just after charge open circuit voltage and remaining capacity demonstrated. • No computational method and direct prediction of battery state of health or remaining capacity. - Abstract: The performance of lithium batteries degrades over time. The degradation rate strongly depends on stress conditions during use and even at rest. Thus, accurate and rapid diagnosis of battery state of health (SOH) is necessary for electric vehicle manufacturers to manage their vehicle fleets and warranties. This paper demonstrates a simple method for assessing SOH related to battery energy capability (SOH E ). The presented method is based on the monitoring of U relax over aging. U relax is the open-circuit voltage of the battery measured after full charging and 30 min of rest. A linear dependence between U relax and remaining capacity is noted. This correlation is demonstrated for three different commercial battery technologies (different chemistries) aged under different calendar and power cycling aging conditions. It was determined that the difference between two U relax voltages measured at two different aging states is proportional to SOH E decay. The mean error of the linear model is less than 2% for certain cases. This method could also be a highly useful and rapid tool for a complete battery pack diagnosis.

  4. Accuracy and Numerical Stabilty Analysis of Lattice Boltzmann Method with Multiple Relaxation Time for Incompressible Flows

    Science.gov (United States)

    Pradipto; Purqon, Acep

    2017-07-01

    Lattice Boltzmann Method (LBM) is the novel method for simulating fluid dynamics. Nowadays, the application of LBM ranges from the incompressible flow, flow in the porous medium, until microflows. The common collision model of LBM is the BGK with a constant single relaxation time τ. However, BGK suffers from numerical instabilities. These instabilities could be eliminated by implementing LBM with multiple relaxation time. Both of those scheme have implemented for incompressible 2 dimensions lid-driven cavity. The stability analysis has done by finding the maximum Reynolds number and velocity for converged simulations. The accuracy analysis is done by comparing the velocity profile with the benchmark results from Ghia, et al and calculating the net velocity flux. The tests concluded that LBM with MRT are more stable than BGK, and have a similar accuracy. The maximum Reynolds number that converges for BGK is 3200 and 7500 for MRT respectively.

  5. Temperature dependence of relaxation times in proton components of fatty acids

    International Nuclear Information System (INIS)

    Kuroda, Kagayaki; Iwabuchi, Taku; Saito, Kensuke; Obara, Makoto; Honda, Masatoshi; Imai, Yutaka

    2011-01-01

    We examined the temperature dependence of relaxation times in proton components of fatty acids in various samples in vitro at 11 tesla as a standard calibration data for quantitative temperature imaging of fat. The spin-lattice relaxation time, T 1 , of both the methylene (CH 2 ) chain and terminal methyl (CH 3 ) was linearly related to temperature (r>0.98, P 2 signal for calibration and observed the signal with 18% of CH 3 to estimate temperature. These findings suggested that separating the fatty acid components would significantly improve accuracy in quantitative thermometry for fat. Use of the T 1 of CH 2 seems promising in terms of reliability and reproducibility in measuring temperature of fat. (author)

  6. Dielectric Relaxation Studies of 2-Butoxyethanol with Aniline and Substituted Anilines Using Time Domain Reflectometry

    Directory of Open Access Journals (Sweden)

    P. Jeevanandham

    2014-01-01

    Full Text Available The complex dielectric spectra of 2-butoxyethanol with aniline and substituted anilines like aniline, o-chloroaniline, m-chloroaniline, o-anisidine and m-anisidine binary mixtures in the composition of different volumes of percent (0%, 25%, 50%, 75%, and 100% have been measured as a function of frequency between 10 MHz and 30 GHz at 298.15 K. The dielectric parameters like static dielectric constant ε0 and relaxation time τ have been obtained by using least square fit method. By using these parameters ε0,τ, effective Kirkwood correlation factor geff, corrective Kirkwood correlation factor gf, Bruggeman factor fB, excess dielectric constant εE, and excess inverse relaxation time 1/τE values are calculated and discussed to yield information on the dipolar alignment and molecular rotation of the binary liquid mixtures. From all the derived dielectric parameters, molecular interactions are interpreted through hydrogen bonding.

  7. Characterization of relaxation processes in interacting vortex matter through a time-dependent correlation length

    International Nuclear Information System (INIS)

    Pleimling, Michel; Täuber, Uwe C

    2015-01-01

    Vortex lines in type-II superconductors display complicated relaxation processes due to the intricate competition between their mutual repulsive interactions and pinning to attractive point or extended defects. We perform extensive Monte Carlo simulations for an interacting elastic line model with either point-like or columnar pinning centers. From measurements of the space- and time-dependent height-height correlation function for lateral flux line fluctuations, we extract a characteristic correlation length that we use to investigate different non-equilibrium relaxation regimes. The specific time dependence of this correlation length for different disorder configurations displays characteristic features that provide a novel diagnostic tool to distinguish between point-like pinning centers and extended columnar defects. (paper)

  8. Relaxation Behavior by Time-Salt and Time-Temperature Superpositions of Polyelectrolyte Complexes from Coacervate to Precipitate

    Directory of Open Access Journals (Sweden)

    Samim Ali

    2018-01-01

    Full Text Available Complexation between anionic and cationic polyelectrolytes results in solid-like precipitates or liquid-like coacervate depending on the added salt in the aqueous medium. However, the boundary between these polymer-rich phases is quite broad and the associated changes in the polymer relaxation in the complexes across the transition regime are poorly understood. In this work, the relaxation dynamics of complexes across this transition is probed over a wide timescale by measuring viscoelastic spectra and zero-shear viscosities at varying temperatures and salt concentrations for two different salt types. We find that the complexes exhibit time-temperature superposition (TTS at all salt concentrations, while the range of overlapped-frequencies for time-temperature-salt superposition (TTSS strongly depends on the salt concentration (Cs and gradually shifts to higher frequencies as Cs is decreased. The sticky-Rouse model describes the relaxation behavior at all Cs. However, collective relaxation of polyelectrolyte complexes gradually approaches a rubbery regime and eventually exhibits a gel-like response as Cs is decreased and limits the validity of TTSS.

  9. The modified relaxation time function: A novel analysis technique for relaxation processes. Application to high-temperature molybdenum internal friction peaks

    International Nuclear Information System (INIS)

    Matteo, C.L.; Lambri, O.A.; Zelada-Lambri, G.I.; Sorichetti, P.A.; Garcia, J.A.

    2008-01-01

    The modified relaxation time (MRT) function, which is based on a general linear viscoelastic formalism, has several important mathematical properties that greatly simplify the analysis of relaxation processes. In this work, the MRT is applied to the study of the relaxation damping peaks in deformed molybdenum at high temperatures. The dependence of experimental data from these relaxation processes with temperature are adequately described by a Havriliak-Negami (HN) function, and the MRT makes it possible to find a relation between the parameters of the HN function and the activation energy of the process. The analysis reveals that for the relaxation peak appearing at temperatures below 900 K, the physical mechanism is related to a vacancy-diffusion-controlled movement of dislocations. In contrast, when the peak appears at temperatures higher than 900 K, the damping is controlled by a mechanism of diffusion in the low-temperature tail of the peak, and in the high-temperature tail of the peak the creation plus diffusion of vacancies at the dislocation line occurs

  10. A spectroscopic system for time- and space-resolved studies of impurities on the EXTRAP-T2 reversed field pinch

    Science.gov (United States)

    Sallander, J.

    1998-06-01

    The radial distribution of impurity line emission in the EXTRAP-T2 reversed field pinch (RFP) is studied with a five viewing chord, absolutely calibrated, spectrometer system. The light is analyzed with a single 0.5 m grating spectrometer. Different parts of the entrance slit are used for different channels. This arrangement makes it possible to use the system over a wide wavelength range, from 2500 to 6500 Å, without having to recalibrate the relative sensitivity for the different channels. The rather short plasma pulses of 10-15 ms require a high time resolution. The use of photomultiplier tubes provides a time resolution of 10 μs which is limited by the transient recorders used. The result is a robust, low-cost system that produces reliable measurements of the radial dependence of emission from a wide range of impurity ions.

  11. The water proton spin-lattice relaxation times in virus-infected cells

    International Nuclear Information System (INIS)

    Valensin, G.; Gaggelli, E.; Tiezzi, E.; Valensin, P.E.; Bianchi Bandinelli, M.L.

    1979-01-01

    The water proton spin-lattice relaxation times in HEp-2 cell cultures were determined immediately after 1 h of polio-virus adsorption. The shortening of the water T 1 was closely related to the multiplicity of infection, allowing direct inspections of the virus-cell interaction since the first steps of the infectious cycle. Virus-induced structural and conformational changes of cell constituents were suggested to be detectable by NMR investigation of cell water. (Auth.)

  12. Determining the structural relaxation times deep in the glassy state of the pharmaceutical Telmisartan

    Energy Technology Data Exchange (ETDEWEB)

    Adrjanowicz, K; Paluch, M [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Ngai, K L [Naval Research Laboratory, Washington, DC 20375-5320 (United States)

    2010-03-31

    By using the dielectric relaxation method proposed recently by Casalini and Roland (2009 Phys. Rev. Lett. 102 035701), we were able to determine the structural alpha-relaxation times deep in the glassy state of the pharmaceutical, Telmisartan. Normally, deep in the glassy state tau{sub a}lpha is so long that it cannot be measured but tau{sub b}eta, which is usually much shorter, can be directly determined. The method basically takes advantage of the connection between the alpha-relaxation and the secondary beta-relaxation of the Johari-Goldstein kind, including a relation between their relaxation times tau{sub a}lpha and tau{sub b}eta, respectively. Thus, tau{sub a}lpha of Telmisartan were determined by monitoring the change of the dielectric beta-loss, epsilon'', with physical aging time at temperatures well below the vitrification temperature. The values of tau{sub a}lpha were compared with those expected by the coupling model (CM). Unequivocal comparison cannot be made in the case of Telmisartan because its beta-loss peak is extremely broad, and the CM predicts only an order of magnitude agreement between the primitive relaxation frequency and the beta-peak frequency. We also made an attempt to analyze all isothermal and aging susceptibility data after transformation into the electric modulus representation. The tau{sub a}lpha found in the glass state by using the method of Casalini and Roland in the modulus representation are similar to those obtained in the susceptibility representation. However, it is remarkable that the stretching parameter beta{sub KWWM} = 0.51 in the electric modulus representation gives more precise fits to the aging data than in the susceptibility representation with beta{sub KWW} = 0.61. Our results suggest that the electric modulus representation may be useful as an alternative to analyze aging data, especially in the case of highly polar glassformers having a large ratio of low frequency and high frequency dielectric

  13. T2 relaxometry of the infrapatellar fat pad after arthroscopic surgery

    Energy Technology Data Exchange (ETDEWEB)

    Torriani, Martin; Bredella, Miriam A. [Massachusetts General Hospital and Harvard Medical School, Musculoskeletal Imaging and Intervention, Department of Radiology, Boston, MA (United States); Taneja, Atul K. [Hospital do Coracao (HCor), Teleimagem, and Hospital Israelita Albert Einstein, Division of Musculoskeletal Imaging, Department of Radiology, Sao Paulo (Brazil); Hosseini, Ali; Li, Guoan [Massachusetts General Hospital and Harvard Medical School, Bioengineering Laboratory, Department of Orthopedics, Boston, MA (United States); Gill, Thomas J. [Massachusetts General Hospital and Harvard Medical School, Sports Medicine Center, Department of Orthopedics, Boston, MA (United States)

    2014-03-15

    To investigate the T2 relaxation values of the infrapatellar fat pad (IFP) after arthroscopic surgery. This study was approved by the institutional review board; all individuals signed informed consent. We performed MRI in 16 knees from 8 subjects. Prior to imaging, each subject had unilateral arthroscopic knee surgery and an asymptomatic non-operated contralateral knee. We used a 10-echo multiple-TE fast-spin echo pulse sequence for creation of T2 relaxation time maps. Two musculoskeletal radiologists independently placed regions of interest in the IFP, suprapatellar subcutaneous and deep intermuscular adipose tissue. Qualitative assessments were performed to assess fibrotic changes affecting patellar retinaculum and IFP. Statistical analyses of T2 values determined differences between groups, correlation with time after surgery, and cut-off values to differentiate groups. The average time between arthroscopy and imaging was 3.5 ± 0.4 years. IFP of knees with prior surgery had significantly shorter mean T2 values (133 ± 14 ms) compared with control knees (147 ± 8 ms, P = 0.03). There was no significant difference between operated and control knees regarding T2 values of suprapatellar subcutaneous (P = 0.3) or deep intermuscular adipose tissue (P = 0.2). There was no correlation between IFP T2 values and time after surgery (P > 0.2). IFP T2 values ≤ 139 ms had 75 % sensitivity and 88 % specificity in identifying prior arthroscopy. Shortening of T2 relaxation values is present in IFP chronically after arthroscopic surgery and may be an indicator of adipose tissue fibrosis. (orig.)

  14. Parametric T2 and T2* mapping techniques to visualize intervertebral disc degeneration in patients with low back pain: initial results on the clinical use of 3.0 Tesla MRI

    International Nuclear Information System (INIS)

    Welsch, Goetz Hannes; Trattnig, Siegfried; Goed, Sabine; Stelzeneder, David; Paternostro-Sluga, Tatjana; Bohndorf, Klaus; Mamisch, Tallal Charles

    2011-01-01

    To assess, compare and correlate quantitative T2 and T2* relaxation time measurements of intervertebral discs (IVDs) in patients suffering from low back pain, with respect to the IVD degeneration as assessed by the morphological Pfirrmann Score. Special focus was on the spatial variation of T2 and T2* between the annulus fibrosus (AF) and the nucleus pulposus (NP). Thirty patients (mean age: 38.1 ± 9.1 years; 20 female, 10 male) suffering from low back pain were included. Morphological (sagittal T1-FSE, sagittal and axial T2-FSE) and biochemical (sagittal T2- and T2* mapping) MRI was performed at 3 Tesla covering IVDs L1-L2 to L5-S1. All IVDs were morphologically classified using the Pfirrmann score. Region-of-interest (ROI) analysis was performed on midsagittal T2 and T2* maps at five ROIs from anterior to posterior to obtain information on spatial variation between the AF and the NP. Statistical analysis-of-variance and Pearson correlation was performed. The spatial variation as an increase in T2 and T2* values from the AF to the NP was highest at Pfirmann grade I and declined at higher Pfirmann grades II-IV (p < 0.05). With increased IVD degeneration, T2 and T2* revealed a clear differences in the NP, whereas T2* was additionally able to depict changes in the posterior AF. Correlation between T2 and T2* showed a medium Pearson's correlation (0.210 to 0.356 [p < 0.001]). The clear differentiation of IVD degeneration and the possible quantification by means of T2 and fast T2* mapping may provide a new tool for follow-up therapy protocols in patients with low back pain. (orig.)

  15. Two-relaxation-time lattice Boltzmann method and its application to advective-diffusive-reactive transport

    Science.gov (United States)

    Yan, Zhifeng; Yang, Xiaofan; Li, Siliang; Hilpert, Markus

    2017-11-01

    The lattice Boltzmann method (LBM) based on single-relaxation-time (SRT) or multiple-relaxation-time (MRT) collision operators is widely used in simulating flow and transport phenomena. The LBM based on two-relaxation-time (TRT) collision operators possesses strengths from the SRT and MRT LBMs, such as its simple implementation and good numerical stability, although tedious mathematical derivations and presentations of the TRT LBM hinder its application to a broad range of flow and transport phenomena. This paper describes the TRT LBM clearly and provides a pseudocode for easy implementation. Various transport phenomena were simulated using the TRT LBM to illustrate its applications in subsurface environments. These phenomena include advection-diffusion in uniform flow, Taylor dispersion in a pipe, solute transport in a packed column, reactive transport in uniform flow, and bacterial chemotaxis in porous media. The TRT LBM demonstrated good numerical performance in terms of accuracy and stability in predicting these transport phenomena. Therefore, the TRT LBM is a powerful tool to simulate various geophysical and biogeochemical processes in subsurface environments.

  16. Bulk viscosity of strongly interacting matter in the relaxation time approximation

    Science.gov (United States)

    Czajka, Alina; Hauksson, Sigtryggur; Shen, Chun; Jeon, Sangyong; Gale, Charles

    2018-04-01

    We show how thermal mean field effects can be incorporated consistently in the hydrodynamical modeling of heavy-ion collisions. The nonequilibrium correction to the distribution function resulting from a temperature-dependent mass is obtained in a procedure which automatically satisfies the Landau matching condition and is thermodynamically consistent. The physics of the bulk viscosity is studied here for Boltzmann and Bose-Einstein gases within the Chapman-Enskog and 14-moment approaches in the relaxation time approximation. Constant and temperature-dependent masses are considered in turn. It is shown that, in the small mass limit, both methods lead to the same value of the ratio of the bulk viscosity to its relaxation time. The inclusion of a temperature-dependent mass leads to the emergence of the βλ function in that ratio, and it is of the expected parametric form for the Boltzmann gas, while for the Bose-Einstein case it is affected by the infrared cutoff. This suggests that the relaxation time approximation may be too crude to obtain a reliable form of ζ /τR for gases obeying Bose-Einstein statistics.

  17. Pseudopotential multi-relaxation-time lattice Boltzmann model for cavitation bubble collapse with high density ratio

    International Nuclear Information System (INIS)

    Shan Ming-Lei; Zhu Chang-Ping; Yao Cheng; Yin Cheng; Jiang Xiao-Yan

    2016-01-01

    The dynamics of the cavitation bubble collapse is a fundamental issue for the bubble collapse application and prevention. In the present work, the modified forcing scheme for the pseudopotential multi-relaxation-time lattice Boltzmann model developed by Li Q et al. [Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301] is adopted to develop a cavitation bubble collapse model. In the respects of coexistence curves and Laplace law verification, the improved pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. It is found that the thermodynamic consistency and surface tension are independent of kinematic viscosity. By homogeneous and heterogeneous cavitation simulation, the ability of the present model to describe the cavitation bubble development as well as the cavitation inception is verified. The bubble collapse between two parallel walls is simulated. The dynamic process of a collapsing bubble is consistent with the results from experiments and simulations by other numerical methods. It is demonstrated that the present pseudopotential multi-relaxation-time lattice Boltzmann model is applicable and efficient, and the lattice Boltzmann method is an alternative tool for collapsing bubble modeling. (paper)

  18. Asymptotic description of two metastable processes of solidification for the case of large relaxation time

    International Nuclear Information System (INIS)

    Omel'yanov, G.A.

    1995-07-01

    The non-isothermal Cahn-Hilliard equations in the n-dimensional case (n = 2,3) are considered. The interaction length is proportional to a small parameter, and the relaxation time is proportional to a constant. The asymptotic solutions describing two metastable processes are constructed and justified. The soliton type solution describes the first stage of separation in alloy, when a set of ''superheated liquid'' appears inside the ''solid'' part. The Van der Waals type solution describes the free interface dynamics for large time. The smoothness of temperature is established for large time and the Mullins-Sekerka problem describing the free interface is derived. (author). 46 refs

  19. Magnetic Resonance Fingerprinting with short relaxation intervals.

    Science.gov (United States)

    Amthor, Thomas; Doneva, Mariya; Koken, Peter; Sommer, Karsten; Meineke, Jakob; Börnert, Peter

    2017-09-01

    The aim of this study was to investigate a technique for improving the performance of Magnetic Resonance Fingerprinting (MRF) in repetitive sampling schemes, in particular for 3D MRF acquisition, by shortening relaxation intervals between MRF pulse train repetitions. A calculation method for MRF dictionaries adapted to short relaxation intervals and non-relaxed initial spin states is presented, based on the concept of stationary fingerprints. The method is applicable to many different k-space sampling schemes in 2D and 3D. For accuracy analysis, T 1 and T 2 values of a phantom are determined by single-slice Cartesian MRF for different relaxation intervals and are compared with quantitative reference measurements. The relevance of slice profile effects is also investigated in this case. To further illustrate the capabilities of the method, an application to in-vivo spiral 3D MRF measurements is demonstrated. The proposed computation method enables accurate parameter estimation even for the shortest relaxation intervals, as investigated for different sampling patterns in 2D and 3D. In 2D Cartesian measurements, we achieved a scan acceleration of more than a factor of two, while maintaining acceptable accuracy: The largest T 1 values of a sample set deviated from their reference values by 0.3% (longest relaxation interval) and 2.4% (shortest relaxation interval). The largest T 2 values showed systematic deviations of up to 10% for all relaxation intervals, which is discussed. The influence of slice profile effects for multislice acquisition is shown to become increasingly relevant for short relaxation intervals. In 3D spiral measurements, a scan time reduction of 36% was achieved, maintaining the quality of in-vivo T1 and T2 maps. Reducing the relaxation interval between MRF sequence repetitions using stationary fingerprint dictionaries is a feasible method to improve the scan efficiency of MRF sequences. The method enables fast implementations of 3D spatially

  20. Relaxation dynamics and thermophysical properties of vegetable oils using time-domain reflectometry.

    Science.gov (United States)

    Sonkamble, Anil A; Sonsale, Rahul P; Kanshette, Mahesh S; Kabara, Komal B; Wananje, Kunal H; Kumbharkhane, Ashok C; Sarode, Arvind V

    2017-04-01

    Dielectric relaxation studies of vegetable oils are important for insights into their hydrogen bonding and intermolecular dynamics. The dielectric relaxation and thermo physical properties of triglycerides present in some vegetable oils have been measured over the frequency range of 10 MHz to 7 GHz in the temperature region 25 to 10 °C using a time-domain reflectometry approach. The frequency and temperature dependence of dielectric constants and dielectric loss factors were determined for coconut, peanut, soya bean, sunflower, palm, and olive oils. The dielectric permittivity spectra for each of the studied vegetable oils are explained using the Debye model with their complex dielectric permittivity analyzed using the Havriliak-Negami equation. The dielectric parameters static permittivity (ε 0 ), high-frequency limiting static permittivity (ε ∞ ), average relaxation time (τ 0 ), and thermodynamic parameters such as free energy (∆F τ ), enthalpy (∆H τ ), and entropy of activation (∆S τ ) were also measured. Calculation and analysis of these thermodynamic parameters agrees with the determined dielectric parameters, giving insights into the temperature dependence of the molecular dynamics of these systems.

  1. Magnetic resonance studies on the brain edema by the administration of the osmotic agents; Special references to the relaxation times

    Energy Technology Data Exchange (ETDEWEB)

    Niino, Masaki; Asakura, Tetsuhiko; Nakamura, Katsumi; Yatsushiro, Kazutaka; Kadota, Koki (Kagoshima Univ. (Japan). Faculty of Medicine); Sasahira, Masahiro; Fujimoto, Toshiro; Shimooki, Susumu

    1990-03-01

    Changes of proton relaxation times (T{sub 1} and T{sub 2}) and MR imaging of the brain edema by the administration of the osmotic agents (mannitol or glycerol) were studied. Subjects were 11 patients who were composed of 4 gliomas, 2 metastatic brain tumors, 2 meningiomas, 2 hypertensive intracerebral hematomas, and a C-P angle tumor. 20% mannitol or 10% glycerol 550 ml was rapidly injected intravenously. Scanning was done before injection, just after injection, and post injection until 2 hours with passing times. We regarded the peritumoral or perihemorrahgical low density area on the CT scan as the edema, and then, relaxation times of the edema was obtained from the ROI of the calculated images corresponding to the surrounding low density area on the CT scan. The results were as follows. (1) In general, relaxation times of the edema showed a tendency to decrease after injection of the osmotic agents. Normal white matter, in the same way, showed the decreasing tendency, but the degree of the decreasing was more clearly in the edematous areas than in the white matter. (2) The changes of relaxation times did not show a uniform pattern. In most cases, relaxation times decreased just after injection. But in a few cases, relaxation times increased just after injection, transiently. In some cases, decreased relaxation times continued more than 2 hours, in the other cases, relaxation times increased at 2 hours. (3) The changes of relaxation times thought to be varied by some factors, that is --kinds of the lesions causing edema, degree of malignancy of the lesions, or phase of edema (acute or chronic) etc. (4) Osmotic agents were supposed to dehydrate the edematous lesions. In the current MR systems, there are considerably large standard deviations and inequality in the magnetic field, therefore, further investigations should be done moreover. (author).

  2. Observation of exchange of micropore water in cement pastes by two-dimensional T(2)-T(2) nuclear magnetic resonance relaxometry.

    Science.gov (United States)

    Monteilhet, L; Korb, J-P; Mitchell, J; McDonald, P J

    2006-12-01

    The first detailed analysis of the two-dimensional (2D) NMR T(2)-T(2) exchange experiment with a period of magnetization storage between the two T(2) relaxation encoding periods (T(2)-store-T(2)) is presented. It is shown that this experiment has certain advantages over the T(1)-T(2) variant for the quantization of chemical exchange. New T(2)-store-T(2) 2D 1H NMR spectra of the pore water within white cement paste are presented. Based on these spectra, the exchange rate of water between the two smallest porosity reservoirs is estimated for the first time. It is found to be of the order of 5 ms{-1}. Further, a careful estimate of the pore sizes of these reservoirs is made. They are found to be of the order of 1.4 nm and 10-30 nm , respectively. A discussion of the results is developed in terms of possible calcium silicate hydrate products. A water diffusion coefficient inferred from the exchange rate and the cement particle size is found to compare favorably with the results of molecular-dynamics simulations to be found in the literature.

  3. Elastic models for the non-Arrhenius relaxation time of glass-forming liquids

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    We first review the phenomenology of viscous liquids and the standard models used for explaining the non-Arrhenius average relaxation time. Then the focus is turned to the so-called elastic models, arguing that these models are all equivalent in the Einstein approximation (where the short-time...... elastic properties are all determined by just one effective, temperature-dependent force constant). We finally discuss the connection between the elastic models and two well-established research fields of condensed-matter physics: point defects in crystals and solid-state diffusion....

  4. Elastic models for the Non-Arrhenius Relaxation Time of Glass-Forming Liquids

    DEFF Research Database (Denmark)

    Dyre, J. C.

    2006-01-01

    We first review the phenomenology of viscous liquids and the standard models used for explaining the non-Arrhenius average relaxation time. Then the focus is turned to the so-called elastic models, arguing that these models are all equivalent in the Einstein approximation (where the short-time...... elastic properties are all determined by just one effective, temperature-dependent force constant). We finally discuss the connection between the elastic models and two well-established research fields of condensed-matter physics: point defects in crystals and solid-state diffusion....

  5. T2 mapping of muscle activity using ultrafast imaging

    International Nuclear Information System (INIS)

    Tawara, Noriyuki; Nitta, Osamu; Kuruma, Hironobu; Niitsu, Mamoru; Itoh, Akiyoshi

    2011-01-01

    Measuring exercise-induced muscle activity is essential in sports medicine. Previous studies proposed measuring transverse relaxation time (T 2 ) using muscle functional magnetic resonance imaging (mfMRI) to map muscle activity. However, mfMRI uses a spin-echo (SE) sequence that requires several minutes for acquisition. We evaluated the feasibility of T 2 mapping of muscle activity using ultrafast imaging, called fast-acquired mfMRI (fast-mfMRI), to reduce image acquisition time. The current method uses 2 pulse sequences, spin-echo echo-planar imaging (SE-EPI) and true fast imaging with steady precession (TrueFISP). SE-EPI images are used to calculate T 2 , and TrueFISP images are used to obtain morphological information. The functional image is produced by subtracting the image of muscle activity obtained using T 2 at rest from that produced after exercise. Final fast-mfMRI images are produced by fusing the functional images with the morphologic images. Ten subjects repeated ankle plantar flexion 200 times. In the fused images, the areas of activated muscle in the fast-mfMRI and SE-EPI images were identical. The geometric location of the fast-mfMRI did not differ between the morphologic and functional images. Morphological and functional information from fast-mfMRI can be applied to the human trunk, which requires limited scan duration. The difference obtained by subtracting T 2 at rest from T 2 after exercise can be used as a functional image of muscle activity. (author)

  6. Musculoskeletal MRI at 3.0 T and 7.0 T: a comparison of relaxation times and image contrast.

    Science.gov (United States)

    Jordan, Caroline D; Saranathan, Manojkumar; Bangerter, Neal K; Hargreaves, Brian A; Gold, Garry E

    2013-05-01

    The purpose of this study was to measure and compare the relaxation times of musculoskeletal tissues at 3.0 T and 7.0 T, and to use these measurements to select appropriate parameters for musculoskeletal protocols at 7.0 T. We measured the T₁ and T₂ relaxation times of cartilage, muscle, synovial fluid, bone marrow and subcutaneous fat at both 3.0 T and 7.0 T in the knees of five healthy volunteers. The T₁ relaxation times were measured using a spin-echo inversion recovery sequence with six inversion times. The T₂ relaxation times were measured using a spin-echo sequence with seven echo times. The accuracy of both the T₁ and T₂ measurement techniques was verified in phantoms at both magnetic field strengths. We used the measured relaxation times to help design 7.0 T musculoskeletal protocols that preserve the favorable contrast characteristics of our 3.0 T protocols, while achieving significantly higher resolution at higher SNR efficiency. The T₁ relaxation times in all tissues at 7.0 T were consistently higher than those measured at 3.0 T, while the T₂ relaxation times at 7.0 T were consistently lower than those measured at 3.0 T. The measured relaxation times were used to help develop high resolution 7.0 T protocols that had similar fluid-to-cartilage contrast to that of the standard clinical 3.0 T protocols for the following sequences: proton-density-weighted fast spin-echo (FSE), T₂-weighted FSE, and 3D-FSE-Cube. The T₁ and T₂ changes were within the expected ranges. Parameters for musculoskeletal protocols at 7.0 T can be optimized based on these values, yielding improved resolution in musculoskeletal imaging with similar contrast to that of standard 3.0 T clinical protocols. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. T2 Mapping of the Sacroiliac Joints With 3-T MRI: A Preliminary Study.

    Science.gov (United States)

    Lefebvre, Guillaume; Bergère, Antonin; Rafei, Mazen El; Duhamel, Alain; Teixeira, Pedro; Cotten, Anne

    2017-08-01

    The objective of this study was to assess the feasibility of T2 relaxation time measurements of the sacroiliac joints. The sacroiliac joints of 40 patients were imaged by 3-T MRI using an oblique axial multislice multiecho spin-echo T2-weighted sequence. Manual plotting and automatic subdivision of ROIs allowed us to obtain T2 values for up to 48 different areas per patient (posterior and anterior parts, sacral, intermediate, and iliac parts). Intraand interobserver reproducibility of T2 values were calculated after independent assessment by two musculoskeletal radiologists. A total of 1656 measurement sites could be analyzed. Mean (± SD) T2 values were 40.6 ± 6.7 ms and 41.2 ± 6.3 ms for observer 1 and 39.9 ± 6.6 ms for observer 2. The intraobserver intraclass correlation coefficient was 0.72 (95% CI, 0.70-0.74), and the interobserver intraclass correlation coefficient was 0.71 (95% CI, 0.68-0.72). Our study shows the feasibility of T2 relaxation time measurements at the sacroiliac joints.

  8. Radiation self-polarization of electrons moving in a magnetic field. [Vector spin operator, relaxation time

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V G; Dorofeev, O F; Sokolov, A A; Ternov, I M; Khalilov, V R [Moskovskij Gosudarstvennyj Univ. (USSR)

    1975-03-11

    When electrons move in a magnetic field, synchrotron radiation gives rise to transitions accompanied by the electron spin reorientation. In this case, it is essential that the transition probability depends on the spin orientation; as a result electron polarization takes place with the spin orientation being predominantly opposite to the direction of the magnetic field. This effect has been called ''radiative self-polarization of electrons''. The present work is concerned with the question how the choice of the spin operator will affect the self-polarization degree and relaxation time. The problem has been solved for a vector spin operator.

  9. One-Dimensional Problem of a Conducting Viscous Fluid with One Relaxation Time

    Directory of Open Access Journals (Sweden)

    Angail A. Samaan

    2011-01-01

    Full Text Available We introduce a magnetohydrodynamic model of boundary-layer equations for conducting viscous fluids. This model is applied to study the effects of free convection currents with thermal relaxation time on the flow of a viscous conducting fluid. The method of the matrix exponential formulation for these equations is introduced. The resulting formulation together with the Laplace transform technique is applied to a variety problems. The effects of a plane distribution of heat sources on the whole and semispace are studied. Numerical results are given and illustrated graphically for the problem.

  10. Application of Generalized Fractional Thermoelasticity Theory with Two Relaxation Times to an Electromagnetothermoelastic Thick Plate

    Directory of Open Access Journals (Sweden)

    A. M. Abd El-Latief

    2016-01-01

    Full Text Available The fractional mathematical model of Maxwell’s equations in an electromagnetic field and the fractional generalized thermoelastic theory associated with two relaxation times are applied to a 1D problem for a thick plate. Laplace transform is used. The solution in Laplace transform domain has been obtained using a direct method and its inversion is calculated numerically using a method based on Fourier series expansion technique. Finally, the effects of the two fractional parameters (thermo and magneto on variable fields distributions are made. Numerical results are represented graphically.

  11. Predicting how nanoconfinement changes the relaxation time of a supercooled liquid.

    Science.gov (United States)

    Ingebrigtsen, Trond S; Errington, Jeffrey R; Truskett, Thomas M; Dyre, Jeppe C

    2013-12-06

    The properties of nanoconfined fluids can be strikingly different from those of bulk liquids. A basic unanswered question is whether the equilibrium and dynamic consequences of confinement are related to each other in a simple way. We study this question by simulation of a liquid comprising asymmetric dumbbell-shaped molecules, which can be deeply supercooled without crystallizing. We find that the dimensionless structural relaxation times-spanning six decades as a function of temperature, density, and degree of confinement-collapse when plotted versus excess entropy. The data also collapse when plotted versus excess isochoric heat capacity, a behavior consistent with the existence of isomorphs in the bulk and confined states.

  12. Coupled kinetic equations for fermions and bosons in the relaxation-time approximation

    Science.gov (United States)

    Florkowski, Wojciech; Maksymiuk, Ewa; Ryblewski, Radoslaw

    2018-02-01

    Kinetic equations for fermions and bosons are solved numerically in the relaxation-time approximation for the case of one-dimensional boost-invariant geometry. Fermions are massive and carry baryon number, while bosons are massless. The conservation laws for the baryon number, energy, and momentum lead to two Landau matching conditions, which specify the coupling between the fermionic and bosonic sectors and determine the proper-time dependence of the effective temperature and baryon chemical potential of the system. The numerical results illustrate how a nonequilibrium mixture of fermions and bosons approaches hydrodynamic regime described by the Navier-Stokes equations with appropriate forms of the kinetic coefficients. The shear viscosity of a mixture is the sum of the shear viscosities of fermion and boson components, while the bulk viscosity is given by the formula known for a gas of fermions, however, with the thermodynamic variables characterising the mixture. Thus, we find that massless bosons contribute in a nontrivial way to the bulk viscosity of a mixture, provided fermions are massive. We further observe the hydrodynamization effect, which takes place earlier in the shear sector than in the bulk one. The numerical studies of the ratio of the longitudinal and transverse pressures show, to a good approximation, that it depends on the ratio of the relaxation and proper times only. This behavior is connected with the existence of an attractor solution for conformal systems.

  13. Kubo formulae for the shear and bulk viscosity relaxation times and the scalar field theory shear $\\tau_\\pi$ calculation

    OpenAIRE

    Czajka, Alina; Jeon, Sangyong

    2017-01-01

    In this paper we provide a quantum field theoretical study on the shear and bulk relaxation times. First, we find Kubo formulas for the shear and the bulk relaxation times, respectively. They are found by examining response functions of the stress-energy tensor. We use general properties of correlation functions and the gravitational Ward identity to parametrize analytical structures of the Green functions describing both sound and diffusion mode. We find that the hydrodynamic limits of the r...

  14. Kubo formulas for the shear and bulk viscosity relaxation times and the scalar field theory shear τπ calculation

    Science.gov (United States)

    Czajka, Alina; Jeon, Sangyong

    2017-06-01

    In this paper we provide a quantum field theoretical study on the shear and bulk relaxation times. First, we find Kubo formulas for the shear and the bulk relaxation times, respectively. They are found by examining response functions of the stress-energy tensor. We use general properties of correlation functions and the gravitational Ward identity to parametrize analytical structures of the Green functions describing both sound and diffusion mode. We find that the hydrodynamic limits of the real parts of the respective energy-momentum tensor correlation functions provide us with the method of computing both the shear and bulk viscosity relaxation times. Next, we calculate the shear viscosity relaxation time using the diagrammatic approach in the Keldysh basis for the massless λ ϕ4 theory. We derive a respective integral equation which enables us to compute η τπ and then we extract the shear relaxation time. The relaxation time is shown to be inversely related to the thermal width as it should be.

  15. Quasiparticle energy distribution and relaxation times in a tunnel-injected superconductor

    International Nuclear Information System (INIS)

    Kirtley, J.R.; Kent, D.S.; Langenberg, D.N.; Kaplan, S.B.; Chang, J.; Yang, C.

    1980-01-01

    Experiments are reported in which a nonequilibrium quasiparticle distribution was created in a dirty Al film by tunnel injection and probed using a second tunnel junction. The distribution was found to have the form of a quasithermal distribution characterized by an effective temperature greater than the ambient bath temperature and dependent on injection level, plus small sharp structures which originate in structures in the injected quasiparticle distribution due to gap-edge peaks in the quasiparticle density of states. A systematic theoretical analysis of these structures correctly predicts their shapes and relative amplitudes. The amplitudes show directly the presence of branch imbalance in the nonequilibrium quasiparticle distribution. Using the theoretical model, inelastic quasiparticle relaxation and elastic branch mixing times, as functions of energy and temperature, are extracted from the experimental data without need for phonon-trapping corrections. The qualitative and quantitative behavior of these times is in reasonable accord with theoretical expectations and the results of other experiments. Experiments of the type reported here are shown to provide a kind of spectroscopy of tunnel-injection and quasiparticle-relaxation processes in superconductors

  16. Evaluation of PHB/Clay nanocomposite by spin-lattice relaxation time

    Directory of Open Access Journals (Sweden)

    Mariana Bruno

    2008-12-01

    Full Text Available Poly(3-hydroxybutyrate (PHB based on nanocomposites containing different amounts of a commercial organically modified clay (viscogel B7 were prepared employing solution intercalation method. Three solvents, such as: CHCl3, dimethylchloride (DMC and tetrahydrofuran (THF were used. The relationship among the processing conditions; molecular structure and intermolecular interaction, between both nanocomposite components, were investigated using a nuclear magnetic resonance (NMR, as a part of characterization methodology, which has been used by Tavares et al. It involves the hydrogen spin-lattice relaxation time, T1H, by solid state nuclear magnetic resonance, employing low field NMR. X ray diffraction was also employed because it is a conventional technique, generally used to obtain the first information on nanocomposite formation. Changes in PHB crystallinity were observed after the organophilic nanoclay had been incorporated in the polymer matrix. These changes, in the microstructure, were detected by the variation of hydrogen nuclear relaxation time values and by X ray, which showed an increase in the clay interlamelar space due to the intercalation of the polymer in the clay between lamellae. It was also observed, for both techniques, that the solvents affect directly the organization of the crystalline region, promoting a better intercalation, considering that they behave like a plasticizer.

  17. Double Scaling in the Relaxation Time in the β -Fermi-Pasta-Ulam-Tsingou Model

    Science.gov (United States)

    Lvov, Yuri V.; Onorato, Miguel

    2018-04-01

    We consider the original β -Fermi-Pasta-Ulam-Tsingou system; numerical simulations and theoretical arguments suggest that, for a finite number of masses, a statistical equilibrium state is reached independently of the initial energy of the system. Using ensemble averages over initial conditions characterized by different Fourier random phases, we numerically estimate the time scale of equipartition and we find that for very small nonlinearity it matches the prediction based on exact wave-wave resonant interaction theory. We derive a simple formula for the nonlinear frequency broadening and show that when the phenomenon of overlap of frequencies takes place, a different scaling for the thermalization time scale is observed. Our result supports the idea that the Chirikov overlap criterion identifies a transition region between two different relaxation time scalings.

  18. Spin relaxation of iron in mixed state hemoproteins

    International Nuclear Information System (INIS)

    Wajnberg, E.; Kalinowski, H.J.; Bemski, G.; Helman, J.S.

    1984-01-01

    In pure states hemoproteins the relaxation of iron depends on its spin state. It is found that in both mixed state met-hemoglobin and met-myoglobin, the low and high spin states relax through an Orbach-like process. Also, very short (approx. 1 ns) and temperature independent transverse relaxation times T 2 were estimated. This peculiar behaviour of the relaxation may result from the unusual electronic structure of mixed state hemoproteins that allows thermal equilibrium and interconversion of the spin states. (Author) [pt

  19. Anisotropy of the nuclear magnetic relaxation times induced in solid 3He by modulation of the dipolar interactions

    International Nuclear Information System (INIS)

    Deville, G.

    1976-01-01

    Anisotropic nuclear relaxation times have been measured in solid 3 He samples grown at constant pressure, in the Larmor frequency range 1.5MHz-5MHz where the main relaxation mechanism is the modulation of the dipolar interaction by exchange or by motion of the vacancies. The second order calculation made by Harris for the exchange induced relaxation regime is extended to the regime where vacancy motion dominates. The theory is further refined by considering the fourth moment anisotropy effect on the spectral densities. This latter calculation yields a frequency dependent anisotropic contribution to T 1 which agrees qualitatively with the data, unlike the simpler results by Harris [fr

  20. The relaxation phenomena of radicals induced in irradiated fresh mangoes

    International Nuclear Information System (INIS)

    Kikuchi, Masahiro; Morishita, Norio; Kobayashi, Yasuhiko; Ogawa, Hideyuki; Shimoyama, Yuhei; Ukai, Mitsuko

    2009-01-01

    Using the γ-irradiated fresh mangoes followed by freeze-drying and powderization, electron spin resonance spectrometry of specimens was performed. As a result, a strong single peak in the flesh, the pericarp and the seed was observed at g=2.004 and attributed to organic free radicals. When relaxation times of the peak was calculated using the method of Lund et al., T 2 showed dose responses according to increasing doses while T 1 was almost constant. Dose responsibility of the relaxation time T 2 obtained from flesh specimens of the mangoes could be measured regardless of the preservation period of 1 to 9 days following γ-irradiation. Therefore, there might be possible to detect the irradiation treatment of fresh mangoes using relaxation time T 2 . (author)

  1. Extracting energy and structure properties of glass-forming liquids from structural relaxation time.

    Science.gov (United States)

    Wang, Lianwen

    2012-04-18

    A comprehensive examination of the kinetic liquid model (Wang et al 2010 J. Phys.: Condens. Matter 22 455104) is carried out by fitting the structural relaxation time of 26 different glass-forming liquids in a wide temperature range, including most of the well-studied materials. Careful analysis of the compiled reported data reveals that experimental inaccuracies should not be overlooked in any 'benchmark test' of relating theories or models (e.g. in Lunkenheimer et al 2010 Phys. Rev. E 81 051504). The procedure, accuracy, ability, and efficiency of the kinetic liquid model are discussed in detail and in comparison with other available fitting methods. In general, the kinetic liquid model could be verified by 17 of the 26 compiled data sets and can serve as a meaningful approximative method for analyzing these liquids. Nonetheless, further experimental examinations in a wide temperature range are needed and are called for. Through fitting, the microscopic details of these liquids are extracted, namely, the enthalpy, entropy, and cooperativity in structural relaxation, which may facilitate further quantitative analysis to both the liquidus and glassy states of these materials.

  2. Multi-relaxation-time lattice Boltzmann modeling of the acoustic field generated by focused transducer

    Science.gov (United States)

    Shan, Feng; Guo, Xiasheng; Tu, Juan; Cheng, Jianchun; Zhang, Dong

    The high-intensity focused ultrasound (HIFU) has become an attractive therapeutic tool for the noninvasive tumor treatment. The ultrasonic transducer is the key component in HIFU treatment to generate the HIFU energy. The dimension of focal region generated by the transducer is closely relevant to the safety of HIFU treatment. Therefore, it is essential to numerically investigate the focal region of the transducer. Although the conventional acoustic wave equations have been used successfully to describe the acoustic field, there still exist some inherent drawbacks. In this work, we presented an axisymmetric isothermal multi-relaxation-time lattice Boltzmann method (MRT-LBM) model with the Bouzidi-Firdaouss-Lallemand (BFL) boundary condition in cylindrical coordinate system. With this model, some preliminary simulations were firstly conducted to determine a reasonable value of the relaxation parameter. Then, the validity of the model was examined by comparing the results obtained with the LBM results with the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and the Spheroidal beam equation (SBE) for the focused transducers with different aperture angles, respectively. In addition, the influences of the aperture angle on the focal region were investigated. The proposed model in this work will provide significant references for the parameter optimization of the focused transducer for applications in the HIFU treatment or other fields, and provide new insights into the conventional acoustic numerical simulations.

  3. Instrumentation problems in the measurement of relaxation time T1 in MRI

    International Nuclear Information System (INIS)

    Leroy-Willig, A.; Roucayrol, J.C.; Bittoun, J.; Courtieu, J.

    1986-01-01

    Longitudinal relaxation (T 1 ) of protons is a sensitive though non specific tool of tissue characterization. T 1 measurement from magnetic resonance images is unprecise, due to several phenomena that we review: time intervals shorter than in spectroscopic sequences; flip angle inhomogeneity; slice selection and spin echoes. In vivo the molecular inhomogeneity can prevent to measure a true T 1 ; motion and blood flow are important causes of errors. The relative effects of these factors are examined from in vitro and in vivo images acquired at 1.5 T. From a mono-echo single-slice saturation sequence reliable values of T 1 are obtained in vitro, the measurement time being compatible with clinical imaging. In vivo, problems due to various causes of motions are still unresolved [fr

  4. Three-dimensional simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model

    OpenAIRE

    Song-Gui Chen; Chuan-Hu Zhang; Yun-Tian Feng; Qi-Cheng Sun; Feng Jin

    2016-01-01

    This paper presents a three-dimensional (3D) parallel multiple-relaxation-time lattice Boltzmann model (MRT-LBM) for Bingham plastics which overcomes numerical instabilities in the simulation of non-Newtonian fluids for the Bhatnagar–Gross–Krook (BGK) model. The MRT-LBM and several related mathematical models are briefly described. Papanastasiou’s modified model is incorporated for better numerical stability. The impact of the relaxation parameters of the model is studied in detail. The MRT-L...

  5. Time and environmental science. Pt. 2. Time and fundamental concepts; Die Bedeutung der Zeit. T. 2. Die Umweltwissenschaften im Kontext von Zeit: Begriffe unter dem Aspekt der Zeit

    Energy Technology Data Exchange (ETDEWEB)

    Kuemmerer, K. [Inst. fuer Umweltmedizin und Krankenhaushygiene, Freiburg (Germany); Held, M. [Evangelische Akademie, Tutzing (Germany)

    1997-06-01

    The consideration of time in environmental research allows new insights into the fundamentals of the environmental sciences. Considering temporalities, rhythms and time scales as well as their interdependencies with environmental science enables us to acquire a better understanding of such basic principles as irreversibility, persistence, disturbance, damage or resilience. Time scales and rhythms are of special importance for these principles and considerations. With regard to their persistence, especially the critical substances demonstrate reactivities which are so low that they are stable enough for application, although these reactivities are still seen to be present to a certain degree and they reveal a rate of transport which is not too high. In this manner, persistence is a factor which is dependent on the particular circumstances. Whether changes are to be classified as reversible or irreversible is dependent on the particular time period and the specific systems, their description and the parameters hereby selected. A prerequisite for the continuing existence of a system is, among other things, that this system must demonstrate a specific rate of development and must take into account the interconnectedness of the various time scales. Ecological systems can continue to develop according to their own dynamics if disturbances can be avoided which lead, compared to their own time scales, to rapid alterations and consequently to critical fluctuations. The duration of such disturbances should be as short as possible in order to minimize the rapid anthropogenic changes in an ecosystem as compared with the systems own time scales. (orig.) [Deutsch] Zeit in umweltwissenschaftliche Fragestellungen einzubeziehen, ermoeglicht ein neues Verstaendnis grundlegender Begriffe der Umweltwissenschaften sowie neue Zugaenge zu oekologischen Fragestellungen. Dies betrifft Vorstellungen und Kriterien, die fuer die Forschung, aber auch die praktische Umsetzung der

  6. Entropic multiple-relaxation-time multirange pseudopotential lattice Boltzmann model for two-phase flow

    Science.gov (United States)

    Qin, Feifei; Mazloomi Moqaddam, Ali; Kang, Qinjun; Derome, Dominique; Carmeliet, Jan

    2018-03-01

    An entropic multiple-relaxation-time lattice Boltzmann approach is coupled to a multirange Shan-Chen pseudopotential model to study the two-phase flow. Compared with previous multiple-relaxation-time multiphase models, this model is stable and accurate for the simulation of a two-phase flow in a much wider range of viscosity and surface tension at a high liquid-vapor density ratio. A stationary droplet surrounded by equilibrium vapor is first simulated to validate this model using the coexistence curve and Laplace's law. Then, two series of droplet impact behavior, on a liquid film and a flat surface, are simulated in comparison with theoretical or experimental results. Droplet impact on a liquid film is simulated for different Reynolds numbers at high Weber numbers. With the increase of the Sommerfeld parameter, onset of splashing is observed and multiple secondary droplets occur. The droplet spreading ratio agrees well with the square root of time law and is found to be independent of Reynolds number. Moreover, shapes of simulated droplets impacting hydrophilic and superhydrophobic flat surfaces show good agreement with experimental observations through the entire dynamic process. The maximum spreading ratio of a droplet impacting the superhydrophobic flat surface is studied for a large range of Weber numbers. Results show that the rescaled maximum spreading ratios are in good agreement with a universal scaling law. This series of simulations demonstrates that the proposed model accurately captures the complex fluid-fluid and fluid-solid interfacial physical processes for a wide range of Reynolds and Weber numbers at high density ratios.

  7. Time-dependent, bidirectional, anti- and pro-spinal hyper-reflexia and muscle spasticity effect after chronic spinal glycine transporter 2 (GlyT2) oligonucleotide-induced downregulation.

    Science.gov (United States)

    Kamizato, Kota; Marsala, Silvia; Navarro, Michael; Kakinohana, Manabu; Platoshyn, Oleksandr; Yoshizumi, Tetsuya; Lukacova, Nadezda; Wancewicz, Ed; Powers, Berit; Mazur, Curt; Marsala, Martin

    2018-07-01

    The loss of local spinal glycine-ergic tone has been postulated as one of the mechanisms contributing to the development of spinal injury-induced spasticity. In our present study using a model of spinal transection-induced muscle spasticity, we characterize the effect of spinally-targeted GlyT2 downregulation once initiated at chronic stages after induction of spasticity in rats. In animals with identified hyper-reflexia, the anti-spasticity effect was studied after intrathecal treatment with: i) glycine, ii) GlyT2 inhibitor (ALX 1393), and iii) GlyT2 antisense oligonucleotide (GlyT2-ASO). Administration of glycine and GlyT2 inhibitor led to significant suppression of spasticity lasting for a minimum of 45-60 min. Treatment with GlyT2-ASO led to progressive suppression of muscle spasticity seen at 2-3 weeks after treatment. Over the subsequent 4-12 weeks, however, the gradual appearance of profound spinal hyper-reflexia was seen. This was presented as spontaneous or slight-tactile stimulus-evoked muscle oscillations in the hind limbs (but not in upper limbs) with individual hyper-reflexive episodes lasting between 3 and 5 min. Chronic hyper-reflexia induced by GlyT2-ASO treatment was effectively blocked by intrathecal glycine. Immunofluorescence staining and Q-PCR analysis of the lumbar spinal cord region showed a significant (>90%) decrease in GlyT2 mRNA and GlyT2 protein. These data demonstrate that spinal GlyT2 downregulation provides only a time-limited therapeutic benefit and that subsequent loss of glycine vesicular synthesis resulting from chronic GlyT2 downregulation near completely eliminates the tonic glycine-ergic activity and is functionally expressed as profound spinal hyper-reflexia. These characteristics also suggest that chronic spinal GlyT2 silencing may be associated with pro-nociceptive activity. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. MRI T2* mapping correlates with biochemistry and histology in intervertebral disc degeneration in a large animal model

    NARCIS (Netherlands)

    Detiger, Suzanne E. L.; Holewijn, Roderick M.; Hoogendoorn, Roel J. W.; van Royen, Barend J.; Helder, Marco N.; Berger, Ferco H.; Kuijer, Joost P. A.; Smit, Theo H.

    2015-01-01

    To evaluate intervertebral disc (IVD) degeneration and treatments, an objective diagnostic tool is needed. Recently, T2* relaxation time mapping was proposed as a technique to assess early IVD degeneration, yet the correlation with biochemical content and histological features has not been

  9. Radiation effects in the rat spinal cord: evaluation with apparent diffusion coefficient versus T2 at serial MR imaging.

    NARCIS (Netherlands)

    Philippens, M.E.P.; Gambarota, G.; Kogel, A.J. van der; Heerschap, A.

    2009-01-01

    PURPOSE: To prospectively determine whether apparent diffusion coefficients (ADCs) are more sensitive to radiation-induced changes in the rat spinal cord than T2 relaxation times. MATERIALS AND METHODS: The study was approved by the institutional ethical committee on animal welfare. One centimeter

  10. MRI T2* mapping correlates with biochemistry and histology in intervertebral disc degeneration in a large animal model

    NARCIS (Netherlands)

    Detiger, S.E.L.; Holewijn, R.M.; Hoogendoorn, R.J.W.; van Royen, B.J.; Helder, M.N.; Berger, F.H.; Kuijer, J.P.A.; Smit, T.H.

    2015-01-01

    Purpose: To evaluate intervertebral disc (IVD) degeneration and treatments, an objective diagnostic tool is needed. Recently, T2* relaxation time mapping was proposed as a technique to assess early IVD degeneration, yet the correlation with biochemical content and histological features has not been

  11. Relaxation time T/sub 1/ and bound water fraction of muscle by NMR imager

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, N.; Ikehira, H.; Yamane, T.; Tateno, Y.; Torii, S.; Matsumura, K.

    1986-05-01

    In order to establish the efficacy of NMR-CT in the diagnostic investigation of muscle disorders, proton NMR-CT imaging was performed and muscle longitudinal relaxation (T1) times were measured in 20 Duchenne muscular dystrophy (DMD) patients and normal controls (NC). In addition, the bound water fraction (BWF) was calculated from the measured T1 value in appropriate cases. Results show that in DMD muscle T1 values were above normal in the early clinical stages, declined rapidly with progress of the disease, and reached the same low level as the subcutaneous fat. This decrease of T1 values was not uniform for all muscles, being most prominent in gluteus maximus and least in sartorius and gracilis. In NC muscle BWF increased with maturation under the age of 10 years, and became fixed beyond that. In the early stages of DMD, BWF was below normal.

  12. Study of relaxation times of nanocomposites of starch/montmorillonite employing low field NMR

    International Nuclear Information System (INIS)

    Brito, Luciana M.; Tavares, Maria Ines B.

    2011-01-01

    Due to its various applications and features, especially in therapies for controlled release of pharmaceuticals, polymers are among the most widely used excipients in pharmaceutical technology. One of the most promising nanocomposites is formed from organic polymer and inorganic clay minerals. Nanocomposites of starch/montmorillonite were prepared employing solution intercalation and characterized by proton spin-lattice relaxation time, through NMR relaxometry. The characterization of nanocomposites was done by X-ray diffraction and by nuclear magnetic resonance. The results showed that nanostructured films were obtained by intercalation from solution. Furthermore, the use of low field NMR, T1H, provided more precise information about the movement of materials, being complementary to the results obtained by X-ray diffraction. (author)

  13. Characterization of D-maltose as a T2 -exchange contrast agent for dynamic contrast-enhanced MRI.

    Science.gov (United States)

    Goldenberg, Joshua M; Pagel, Mark D; Cárdenas-Rodríguez, Julio

    2018-09-01

    We sought to investigate the potential of D-maltose, D-sorbitol, and D-mannitol as T 2 exchange magnetic resonance imaging (MRI) contrast agents. We also sought to compare the in vivo pharmacokinetics of D-maltose with D-glucose with dynamic contrast enhancement (DCE) MRI. T 1 and T 2 relaxation time constants of the saccharides were measured using eight pH values and nine concentrations. The effect of echo spacing in a multiecho acquisition sequence used for the T 2 measurement was evaluated for all samples. Finally, performances of D-maltose and D-glucose during T 2 -weighted DCE-MRI were compared in vivo. Estimated T 2 relaxivities (r 2 ) of D-glucose and D-maltose were highly and nonlinearly dependent on pH and echo spacing, reaching their maximum at pH = 7.0 (∼0.08 mM -1 s -1 ). The r 2 values of D-sorbitol and D-mannitol were estimated to be ∼0.02 mM -1 s -1 and were invariant to pH and echo spacing for pH ≤7.0. The change in T 2 in tumor and muscle tissues remained constant after administration of D-maltose, whereas the change in T 2 decreased in tumor and muscle after administration of D-glucose. Therefore, D-maltose has a longer time window for T 2 -weighted DCE-MRI in tumors. We have demonstrated that D-maltose can be used as a T 2 exchange MRI contrast agent. The larger, sustained T 2 -weighted contrast from D-maltose relative to D-glucose has practical advantages for tumor diagnoses during T 2 -weighted DCE-MRI. Magn Reson Med 80:1158-1164, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  14. A systematic evaluation of three different cardiac T2-mapping sequences at 1.5 and 3T in healthy volunteers.

    Science.gov (United States)

    Baeßler, Bettina; Schaarschmidt, Frank; Stehning, Christian; Schnackenburg, Bernhard; Maintz, David; Bunck, Alexander C

    2015-11-01

    Previous studies showed that myocardial T2 relaxation times measured by cardiac T2-mapping vary significantly depending on sequence and field strength. Therefore, a systematic comparison of different T2-mapping sequences and the establishment of dedicated T2 reference values is mandatory for diagnostic decision-making. Phantom experiments using gel probes with a range of different T1 and T2 times were performed on a clinical 1.5T and 3T scanner. In addition, 30 healthy volunteers were examined at 1.5 and 3T in immediate succession. In each examination, three different T2-mapping sequences were performed at three short-axis slices: Multi Echo Spin Echo (MESE), T2-prepared balanced SSFP (T2prep), and Gradient Spin Echo with and without fat saturation (GraSEFS/GraSE). Segmented T2-Maps were generated according to the AHA 16-segment model and statistical analysis was performed. Significant intra-individual differences between mean T2 times were observed for all sequences. In general, T2prep resulted in lowest and GraSE in highest T2 times. A significant variation with field strength was observed for mean T2 in phantom as well as in vivo, with higher T2 values at 1.5T compared to 3T, regardless of the sequence used. Segmental T2 values for each sequence at 1.5 and 3T are presented. Despite a careful selection of sequence parameters and volunteers, significant variations of the measured T2 values were observed between field strengths, MR sequences and myocardial segments. Therefore, we present segmental T2 values for each sequence at 1.5 and 3T with the inherent potential to serve as reference values for future studies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Development of rapid methods for relaxation time mapping and motion estimation using magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gilani, Syed Irtiza Ali

    2008-09-15

    Recent technological developments in the field of magnetic resonance imaging have resulted in advanced techniques that can reduce the total time to acquire images. For applications such as relaxation time mapping, which enables improved visualisation of in vivo structures, rapid imaging techniques are highly desirable. TAPIR is a Look- Locker-based sequence for high-resolution, multislice T{sub 1} relaxation time mapping. Despite the high accuracy and precision of TAPIR, an improvement in the k-space sampling trajectory is desired to acquire data in clinically acceptable times. In this thesis, a new trajectory, termed line-sharing, is introduced for TAPIR that can potentially reduce the acquisition time by 40 %. Additionally, the line-sharing method was compared with the GRAPPA parallel imaging method. These methods were employed to reconstruct time-point images from the data acquired on a 4T high-field MR research scanner. Multislice, multipoint in vivo results obtained using these methods are presented. Despite improvement in acquisition speed, through line-sharing, for example, motion remains a problem and artefact-free data cannot always be obtained. Therefore, in this thesis, a rapid technique is introduced to estimate in-plane motion. The presented technique is based on calculating the in-plane motion parameters, i.e., translation and rotation, by registering the low-resolution MR images. The rotation estimation method is based on the pseudo-polar FFT, where the Fourier domain is composed of frequencies that reside in an oversampled set of non-angularly, equispaced points. The essence of the method is that unlike other Fourier-based registration schemes, the employed approach does not require any interpolation to calculate the pseudo-polar FFT grid coordinates. Translation parameters are estimated by the phase correlation method. However, instead of two-dimensional analysis of the phase correlation matrix, a low complexity subspace identification of the phase

  16. Development of rapid methods for relaxation time mapping and motion estimation using magnetic resonance imaging

    International Nuclear Information System (INIS)

    Gilani, Syed Irtiza Ali

    2008-09-01

    Recent technological developments in the field of magnetic resonance imaging have resulted in advanced techniques that can reduce the total time to acquire images. For applications such as relaxation time mapping, which enables improved visualisation of in vivo structures, rapid imaging techniques are highly desirable. TAPIR is a Look- Locker-based sequence for high-resolution, multislice T 1 relaxation time mapping. Despite the high accuracy and precision of TAPIR, an improvement in the k-space sampling trajectory is desired to acquire data in clinically acceptable times. In this thesis, a new trajectory, termed line-sharing, is introduced for TAPIR that can potentially reduce the acquisition time by 40 %. Additionally, the line-sharing method was compared with the GRAPPA parallel imaging method. These methods were employed to reconstruct time-point images from the data acquired on a 4T high-field MR research scanner. Multislice, multipoint in vivo results obtained using these methods are presented. Despite improvement in acquisition speed, through line-sharing, for example, motion remains a problem and artefact-free data cannot always be obtained. Therefore, in this thesis, a rapid technique is introduced to estimate in-plane motion. The presented technique is based on calculating the in-plane motion parameters, i.e., translation and rotation, by registering the low-resolution MR images. The rotation estimation method is based on the pseudo-polar FFT, where the Fourier domain is composed of frequencies that reside in an oversampled set of non-angularly, equispaced points. The essence of the method is that unlike other Fourier-based registration schemes, the employed approach does not require any interpolation to calculate the pseudo-polar FFT grid coordinates. Translation parameters are estimated by the phase correlation method. However, instead of two-dimensional analysis of the phase correlation matrix, a low complexity subspace identification of the phase

  17. An anisotropic linear thermo-viscoelastic constitutive law - Elastic relaxation and thermal expansion creep in the time domain

    Science.gov (United States)

    Pettermann, Heinz E.; DeSimone, Antonio

    2017-09-01

    A constitutive material law for linear thermo-viscoelasticity in the time domain is presented. The time-dependent relaxation formulation is given for full anisotropy, i.e., both the elastic and the viscous properties are anisotropic. Thereby, each element of the relaxation tensor is described by its own and independent Prony series expansion. Exceeding common viscoelasticity, time-dependent thermal expansion relaxation/creep is treated as inherent material behavior. The pertinent equations are derived and an incremental, implicit time integration scheme is presented. The developments are implemented into an implicit FEM software for orthotropic material symmetry under plane stress assumption. Even if this is a reduced problem, all essential features are present and allow for the entire verification and validation of the approach. Various simulations on isotropic and orthotropic problems are carried out to demonstrate the material behavior under investigation.

  18. Characteristics of Viscoelastic Crustal Deformation Following a Megathrust Earthquake: Discrepancy Between the Apparent and Intrinsic Relaxation Time Constants

    Science.gov (United States)

    Fukahata, Yukitoshi; Matsu'ura, Mitsuhiro

    2018-02-01

    The viscoelastic deformation of an elastic-viscoelastic composite system is significantly different from that of a simple viscoelastic medium. Here, we show that complicated transient deformation due to viscoelastic stress relaxation after a megathrust earthquake can occur even in a very simple situation, in which an elastic surface layer (lithosphere) is underlain by a viscoelastic substratum (asthenosphere) under gravity. Although the overall decay rate of the system is controlled by the intrinsic relaxation time constant of the asthenosphere, the apparent decay time constant at each observation point is significantly different from place to place and generally much longer than the intrinsic relaxation time constant of the asthenosphere. It is also not rare that the sense of displacement rate is reversed during the viscoelastic relaxation. If we do not bear these points in mind, we may draw false conclusions from observed deformation data. Such complicated transient behavior can be explained mathematically from the characteristics of viscoelastic solution: for an elastic-viscoelastic layered half-space, the viscoelastic solution is expressed as superposition of three decaying components with different relaxation time constants that depend on wavelength.

  19. Direct measurements of relaxation times of phosphorus metabolites in the human myocardium

    International Nuclear Information System (INIS)

    Schindler, R.; Krahe, T.; Neubauer, S.; Hillenbrand, H.; Entzeroth, C.; Horn, M.; Lackner, K.; Ertl, G.

    1992-01-01

    The T 1 relaxation times of the phosphorus metabolites in human heart muscle measurable by 31 P-MR spectra were determined in 12 individuals using a 1.5 Tesla system. Several spectra were recorded consecutively with a pulse repetition time of 1.6s to 24 s. The T 1 times of creatine phosphate (CP), of γ-, α-, β-adenosintriphosphate (ATP), 2,3-diphosphoglycerate (2,3-DPG) together with anorganic phosphate) and phosphodiester (PDE) showed mean measurements of 6.1±0.5, 5.4±0.5, 5.0±0.5, 5.8±1.0, 7.6±1.0, and 5.0±1.0s (M±SE). The accuracy of the ISIS technique was tested with a special phantom. T 1 times were also measured in standard solutions (20mM CP, 10mM ATP); CP was 8.7±0.2s and γ-ATP was 9.9±0.7s. Corrections for partially saturated 31 P-MR spectra - at least for CP/ATP ratios - are relatively small. (orig.) [de

  20. The study of NMR relaxation time spectra multi-exponential inversion based on Lloyd–Max optimal quantization

    International Nuclear Information System (INIS)

    Li, Xuewei; Kong, Li; Cheng, Jingjing; Wu, Lei

    2015-01-01

    The multi-exponential inversion of a NMR relaxation signal plays a key role in core analysis and logging interpretation in the formation of porous media. To find an efficient metod of inverting high-resolution relaxation time spectra rapidly, this paper studies the effect of inversion which is based on the discretization of the original echo in a time domain by using a simulation model. This paper analyzes the ill-condition of discrete equations on the basis of the NMR inversion model and method, determines the appropriate number of discrete echoes and acquires the optimal distribution of discrete echo points by the Lloyd–Max optimal quantization method, in considering the inverse precision and computational complexity comprehensively. The result shows that this method can effectively improve the efficiency of the relaxation time spectra inversion while guaranteeing inversed accuracy. (paper)

  1. Long Spin-Relaxation Times in a Transition-Metal Atom in Direct Contact to a Metal Substrate.

    Science.gov (United States)

    Hermenau, Jan; Ternes, Markus; Steinbrecher, Manuel; Wiesendanger, Roland; Wiebe, Jens

    2018-03-14

    Long spin-relaxation times are a prerequisite for the use of spins in data storage or nanospintronics technologies. An atomic-scale solid-state realization of such a system is the spin of a transition-metal atom adsorbed on a suitable substrate. For the case of a metallic substrate, which enables the direct addressing of the spin by conduction electrons, the experimentally measured lifetimes reported to date are on the order of only hundreds of femtoseconds. Here, we show that the spin states of iron atoms adsorbed directly on a conductive platinum substrate have a surprisingly long spin-relaxation time in the nanosecond regime, which is comparable to that of a transition metal atom decoupled from the substrate electrons by a thin decoupling layer. The combination of long spin-relaxation times and strong coupling to conduction electrons implies the possibility to use flexible coupling schemes to process the spin information.

  2. Liposomes Loaded with Hydrophobic Iron Oxide Nanoparticles: Suitable T2 Contrast Agents for MRI

    OpenAIRE

    Raquel Martínez-González; Joan Estelrich; Maria Antònia Busquets

    2016-01-01

    There has been a recent surge of interest in the use of superparamagnetic iron oxide nanoparticles (SPIONs) as contrast agents (CAs) for magnetic resonance imaging (MRI), due to their tunable properties and their low toxicity compared with other CAs such as gadolinium. SPIONs exert a strong influence on spin-spin T 2 relaxation times by decreasing the MR signal in the regions to which they are delivered, consequently yielding darker images or negative contrast. Given the potential of these na...

  3. MRI T2 relaxometry of brain regions and cognitive dysfunction following electroconvulsive therapy

    OpenAIRE

    Kunigiri, Girish; Jayakumar, P. N.; Janakiramaiah, N.; Gangadhar, B. N.

    2007-01-01

    Background: Although electroconvulsive therapy (ECT) causes no structural brain damage, recent studies reported altered brain perfusion acutely following ECT. This is in keeping with brain edema which was noted in animal experiments following electroconvulsive shock. Aim: This study examined alteration in magnetic resonance imaging (MRI) T2 relaxation time, a measure of brain edema, and its relation to therapeutic efficacy, orientation and memory impairment with ECT. Materials and Methods: Fi...

  4. Nonadiabatic dynamics of electron transfer in solution: Explicit and implicit solvent treatments that include multiple relaxation time scales

    International Nuclear Information System (INIS)

    Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2014-01-01

    The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents for a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible

  5. Lineshape theory of pigment-protein complexes: How the finite relaxation time of nuclei influences the exciton relaxation-induced lifetime broadening

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Thanh-Chung; Renger, Thomas, E-mail: thomas.renger@jku.at [Institut für Theoretische Physik, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz (Austria)

    2016-07-21

    In pigment-protein complexes, often the excited states are partially delocalized and the exciton-vibrational coupling in the basis of delocalized states contains large diagonal and small off-diagonal elements. This inequality may be used to introduce potential energy surfaces (PESs) of exciton states and to treat the inter-PES coupling in Markov and secular approximations. The resulting lineshape function consists of a Lorentzian peak that is broadened by the finite lifetime of the exciton states caused by the inter-PES coupling and a vibrational sideband that results from the mutual displacement of the excitonic PESs with respect to that of the ground state. So far analytical expressions have been derived that relate the exciton relaxation-induced lifetime broadening to the Redfield [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)] or modified Redfield [M. Schröder, U. Kleinekathöfer, and M. Schreiber, J. Chem. Phys. 124, 084903 (2006)] rate constants of exciton relaxation, assuming that intra-PES nuclear relaxation is fast compared to inter-PES transfer. Here, we go beyond this approximation and provide an analytical expression, termed Non-equilibrium Modified Redfield (NeMoR) theory, for the lifetime broadening that takes into account the finite nuclear relaxation time. In an application of the theory to molecular dimers, we find that, for a widely used experimental spectral density of the exciton-vibrational coupling of pigment-protein complexes, the NeMoR spectrum at low-temperatures (T < 150 K) is better approximated by Redfield than by modified Redfield theory. At room temperature, the lifetime broadening obtained with Redfield theory underestimates the NeMoR broadening, whereas modified Redfield theory overestimates it by a similar amount. A fortuitous error compensation in Redfield theory is found to explain the good performance of this theory at low temperatures. Since steady state spectra of PPCs are often measured at low temperatures

  6. Nuclear magnetic resonance studies on brain edema. Time course of /sup 1/H-NMR relaxation times

    Energy Technology Data Exchange (ETDEWEB)

    Naruse, S; Horikawa, Y; Tanaka, C; Hirakawa, K; Nishikawa, H [Kyoto Prefectural Univ. of Medicine (Japan)

    1981-06-01

    1. The state of water in normal and edematous brain tissue was studied by measurement of proton longitudinal (T/sub 1/) and transverse (T/sub 2/) relaxation times using pulsed nuclear magnetic resonance (NMR) technique. 2. In control rats, T/sub 1/ and T/sub 2/ of water showed one component, which was more fast in white matter. Those values displayed 1.07 - 1.18 sec. of T/sub 1/ and 75 - 76 msec. of T/sub 2/. 3. When rat brain was injured by cold, T/sub 1/ was observed to become longer (1.18 - 1.27 sec.), and T/sub 2/ was observed be separated into two components, the faster T/sub 2/ (45 - 50 msec.) and slower T/sub 2/ (100 - 105 msec.), in both gray and white matter of the injured side. 4. In triethyltin (TET) induced brain edema, elongation of T/sub 1/ (1.2 sec.) and remarkable separation of T/sub 2/, faster T/sub 2/ (75 msec.) and slower T/sub 2/ (400 - 450 msec.), were observed in white matter. 5. In both cold and TET induced edema, slower T/sub 2/ fraction is suggested to be the extracellular space and faster T/sub 2/ fraction, intracellular. 6. T/sub 2/ changes precede the water content changes in cold injury, and parallel in TET induced edema. Those changes of relaxation times are reversible. 7. T/sub 2/ changes of water is more sensitive than the T/sub 1/ for the detection of production and disappearance of brain edema. 8. These results disclose the dynamic movements of water during the course of brain edema and offered significant information of the clinical application of NMR-CT.

  7. Real-Time Observation of Ultrafast Intraband Relaxation and Exciton Multiplication in PbS Quantum Dots

    KAUST Repository

    El-Ballouli, Ala’a O.

    2014-03-19

    We examine ultrafast intraconduction band relaxation and multiple-exciton generation (MEG) in PbS quantum dots (QDs) using transient absorption spectroscopy with 120 fs temporal resolution. The intraconduction band relaxation can be directly and excellently resolved spectrally and temporally by applying broadband pump-probe spectroscopy to excite and detect the wavelengths around the exciton absorption peak, which is located in the near-infrared region. The time-resolved data unambiguously demonstrate that the intraband relaxation time progressively increases as the pump-photon energy increases. Moreover, the relaxation time becomes much shorter as the size of the QDs decreases, indicating the crucial role of spatial confinement in the intraband relaxation process. Additionally, our results reveal the systematic scaling of the intraband relaxation time with both excess energy above the effective energy band gap and QD size. We also assess MEG in different sizes of the QDs. Under the condition of high-energy photon excitation, which is well above the MEG energy threshold, ultrafast bleach recovery due to the nonradiative Auger recombination of the multiple electron-hole pairs provides conclusive experimental evidence for the presence of MEG. For instance, we achieved quantum efficiencies of 159, 129 and 106% per single-absorbed photon at pump photoexcition of three times the band gap for QDs with band gaps of 880 nm (1.41 eV), 1000 nm (1.24 eV) and 1210 nm (1.0 eV), respectively. These findings demonstrate clearly that the efficiency of transferring excess photon energy to carrier multiplication is significantly increased in smaller QDs compared with larger ones. Finally, we discuss the Auger recombination dynamics of the multiple electron-hole pairs as a function of QD size.

  8. Biochemical T2* MR quantification of ankle arthrosis in pes cavovarus.

    Science.gov (United States)

    Krause, Fabian G; Klammer, Georg; Benneker, Lorin M; Werlen, Stefan; Mamisch, Tallal C; Weber, Martin

    2010-12-01

    Pes cavovarus affects the ankle biomechanics and may lead to ankle arthrosis. Quantitative T2 STAR (T2*) magnetic resonance (MR) mapping allows high resolution of thin cartilage layers and quantitative grading of cartilage degeneration. Detection of ankle arthrosis using T2* mapping in cavovarus feet was evaluated. Eleven cavovarus patients with symptomatic ankle arthrosis (13 feet, mean age 55.6 years, group 1), 10 cavovarus patients with no or asymptomatic, mild ankle arthrosis (12 feet, mean age 41.8 years, group 2), and 11 controls without foot deformity (18 feet, mean age 29.8 years, group 3) had quantitative T2* MR mapping. Additional assessment included plain radiographs and the American Orthopaedic Foot and Ankle Society (AOFAS) score (groups 1 and 2 only). Mean global T2* relaxation time was significantly different between groups 1 and 2 (p = 0.001) and groups 1 and 3 (p = 0.017), but there was no significance for decreased global T2* values in group 2 compared to group 3 (p = 0.345). Compared to the medial compartment T2* values of the lateral compartment were significantly (p = 0.025) higher within group 1. T2* values in the medial ankle joint compartment of group 2 were significantly lower than those of group 1 (p = 0.019). Ankle arthrosis on plain radiographs and the AOFAS score correlated significantly with T2* values in the medial compartment of group 1 (p = 0.04 and 0.039, respectively). Biochemical, quantitative T2* MR mapping is likely effective to evaluate ankle arthrosis in cavovarus feet but further studies are required. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. 31P spin-lattice relaxation time measurements in biological systems

    International Nuclear Information System (INIS)

    Suzuki, Eiji; Maeda, Munehiro; Kuki, Satoru; Tsukamoto, Kenji; Kawakami, Tsuyoshi; Seo, Yoshiteru; Murakami, Masataka; Watari, Hiroshi

    1989-01-01

    Spin-lattice relaxation time (T 1 ) of phosphorus compounds in the perfused heart, liver, kidney and erythrocytes of rats were measured by the DESPOT (Driven-equilibrium single-pulse observation of T 1 ) method at 8.45 T. This method is a rapid and accurate technique for the measurement of T 1 values. T 1 values of phosphomonoesters (PME), 2, 3-diphosphoglycerate (DPG), inorganic phosphate (Pi), phosphodiesters (PDE), phosphocreatine (PCr) and three phosphates of ATP were ranged from 0.15±0.02 sec (β-ATP in the liver) to 8.5±1.6 sec (PDE in the kidney). T 1 value of β-ATP in the liver was 1/4-1/5 of those in the mandibular gland, heart, erythrocytes and kidney. T 1 values obtained from biological materials are useful for selecting the optimal pulse repetition times and pulse angles to maximize the signal-to-noise ratio of 13 P spectra, and for correcting distortions of signal intensities in the spectra. (author)

  10. Two-relaxation-time lattice Boltzmann method for the anisotropic dispersive Henry problem

    Science.gov (United States)

    Servan-Camas, Borja; Tsai, Frank T.-C.

    2010-02-01

    This study develops a lattice Boltzmann method (LBM) with a two-relaxation-time collision operator (TRT) to cope with anisotropic heterogeneous hydraulic conductivity and anisotropic velocity-dependent hydrodynamic dispersion in the saltwater intrusion problem. The directional-speed-of-sound technique is further developed to address anisotropic hydraulic conductivity and dispersion tensors. Forcing terms are introduced in the LBM to correct numerical errors that arise during the recovery procedure and to describe the sink/source terms in the flow and transport equations. In order to facilitate the LBM implementation, the forcing terms are combined with the equilibrium distribution functions (EDFs) to create pseudo-EDFs. This study performs linear stability analysis and derives LBM stability domains to solve the anisotropic advection-dispersion equation. The stability domains are used to select the time step at which the lattice Boltzmann method provides stable solutions to the numerical examples. The LBM was implemented for the anisotropic dispersive Henry problem with high ratios of longitudinal to transverse dispersivities, and the results compared well to the solutions in the work of Abarca et al. (2007).

  11. Proton relaxation relationships of human and animal tissues in vitro. Changes due to autolysis and fixing

    International Nuclear Information System (INIS)

    Grodd, W.; Schmitt, W.G.H.

    1983-01-01

    The results of measurements of proton relaxation times of various tissues from rats, pigs and humans are reported; these were obtained by a resonance spectroscope at 20 MHz and 40 0 C. There were specific differences in both relaxation times (T 1 and T 2 ) of the liver and spleen. There was a difference of more than 150 ms in the longitudinal relaxation time between grey and white cerebral tissue. Autolytic changes show an increase in both relaxation times. Fixation produced a reduction in T 1 only. The significance of these findings for NMR tomography is discussed. (orig.) [de

  12. Ab initio relaxation times and time-dependent Hamiltonians within the steepest-entropy-ascent quantum thermodynamic framework

    Science.gov (United States)

    Kim, Ilki; von Spakovsky, Michael R.

    2017-08-01

    Quantum systems driven by time-dependent Hamiltonians are considered here within the framework of steepest-entropy-ascent quantum thermodynamics (SEAQT) and used to study the thermodynamic characteristics of such systems. In doing so, a generalization of the SEAQT framework valid for all such systems is provided, leading to the development of an ab initio physically relevant expression for the intrarelaxation time, an important element of this framework and one that had as of yet not been uniquely determined as an integral part of the theory. The resulting expression for the relaxation time is valid as well for time-independent Hamiltonians as a special case and makes the description provided by the SEAQT framework more robust at the fundamental level. In addition, the SEAQT framework is used to help resolve a fundamental issue of thermodynamics in the quantum domain, namely, that concerning the unique definition of process-dependent work and heat functions. The developments presented lead to the conclusion that this framework is not just an alternative approach to thermodynamics in the quantum domain but instead one that uniquely sheds new light on various fundamental but as of yet not completely resolved questions of thermodynamics.

  13. T 2 mapping of cerebrospinal fluid

    DEFF Research Database (Denmark)

    Spijkerman, Jolanda M; Petersen, Esben T; Hendrikse, Jeroen

    2018-01-01

    the performance of this method at 7 T and evaluated the influence of partial volume and B 1 and B 0 inhomogeneity. MATERIALS AND METHODS: T 2-preparation-based CSF T 2-mapping was performed in seven healthy volunteers at 7 and 3 T, and was compared with a single echo spin-echo sequence with various echo times......OBJECT: Cerebrospinal fluid (CSF) T 2 mapping can potentially be used to investigate CSF composition. A previously proposed CSF T 2-mapping method reported a T 2 difference between peripheral and ventricular CSF, and suggested that this reflected different CSF compositions. We studied....... The influence of partial volume was assessed by our analyzing the longest echo times only. B 1 and B 0 maps were acquired. B 1 and B 0 dependency of the sequences was tested with a phantom. RESULTS: T 2,CSF was shorter at 7 T compared with 3 T. At 3 T, but not at 7 T, peripheral T 2,CSF was significantly...

  14. Multiple-Relaxation-Time Lattice Boltzmann Approach to Richtmyer-Meshkov Instability

    International Nuclear Information System (INIS)

    Chen Feng; Li Yingjun; Xu Aiguo; Zhang Guangcai

    2011-01-01

    The aims of the present paper are twofold. At first, we further study the Multiple-Relaxation-Time (MRT) Lattice Boltzmann (LB) model proposed in [Europhys. Lett. 90 (2010) 54003]. We discuss the reason why the Gram-Schmidt orthogonalization procedure is not needed in the construction of transformation matrix M; point out a reason why the Kataoka-Tsutahara model [Phys. Rev. E 69 (2004) 035701 (R)] is only valid in subsonic flows. The von Neumann stability analysis is performed. Secondly, we carry out a preliminary quantitative study on the Richtmyer-Meshkov instability using the proposed MRT LB model. When a shock wave travels from a light medium to a heavy one, the simulated growth rate is in qualitative agreement with the perturbation model by Zhang-Sohn. It is about half of the predicted value by the impulsive model and is closer to the experimental result. When the shock wave travels from a heavy medium to a light one, our simulation results are also consistent with physical analysis. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  15. Diffusion relaxation times of nonequilibrium isolated small bodies and their solid phase ensembles to equilibrium states

    Science.gov (United States)

    Tovbin, Yu. K.

    2017-08-01

    The possibility of obtaining analytical estimates in a diffusion approximation of the times needed by nonequilibrium small bodies to relax to their equilibrium states based on knowledge of the mass transfer coefficient is considered. This coefficient is expressed as the product of the self-diffusion coefficient and the thermodynamic factor. A set of equations for the diffusion transport of mixture components is formulated, characteristic scales of the size of microheterogeneous phases are identified, and effective mass transfer coefficients are constructed for them. Allowing for the developed interface of coexisting and immiscible phases along with the porosity of solid phases is discussed. This approach can be applied to the diffusion equalization of concentrations of solid mixture components in many physicochemical systems: the mutual diffusion of components in multicomponent systems (alloys, semiconductors, solid mixtures of inert gases) and the mass transfer of an absorbed mobile component in the voids of a matrix consisting of slow components or a mixed composition of mobile and slow components (e.g., hydrogen in metals, oxygen in oxides, and the transfer of molecules through membranes of different natures, including polymeric).

  16. Experimental study of electric field influence on low temperature long-time relaxation in crystalline ferroelectrics

    International Nuclear Information System (INIS)

    Sahling, S.; Kolac, M.; Sahling, A.

    1987-01-01

    Calorimetric measurements with polycrystalline Pb 0.915 La 0.085 x(Zr 0.65 Ti 0.35 )O 3 were performed at helium temperatures in electric field E (0 ≤ E ≤ 4.3 kV/cm). Heat release after cooling from T 1 (1.3 K ≤ T 1 ≤ 35 K) to T 0 =1.3 K is very similar to that in amorphous metals and dielectrics. Experimental results disagree with the standard tunneling model. The observed release may be explained assuming the existence of a maximum energy is an element of f in the distribution function. The maximum relaxation time τ max was found as a function of T 1 . A similar heat release is observed after switching on or off the electric field. In dependent of T for 1.1 K ≤ T ≤ 3 K, proportional to E 2 with τ max ∼ E. No heat release was observed in the KH 2 PO 4 single crystal

  17. On a two-relaxation-time D2Q9 lattice Boltzmann model for the Navier-Stokes equations

    Science.gov (United States)

    Zhao, Weifeng; Wang, Liang; Yong, Wen-An

    2018-02-01

    In this paper, we are concerned with the stability of some lattice kinetic schemes. First, we show that a recently proposed lattice kinetic scheme is a two-relaxation-time model different from those in the literature. Second, we analyze the stability of the model by verifying the Onsager-like relation. In addition, a necessary stability criterion for hyperbolic relaxation systems is adapted to the lattice Boltzmann method. As an application of this criterion, we find some necessary stability conditions for a previously proposed lattice kinetic scheme. Numerical experiments are conducted to validate the necessary stability conditions.

  18. Transverse magnetic field effects on the relaxation time of the magnetization in Mn12 measured by {sup 55}Mn-NMR

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Y.; Watanabe, K.; Kumagai, K.; Borsa, F.; Gatteschi, D

    2003-05-01

    The longitudinal (H{sub Z}) and transverse (H{sub T}) magnetic field dependence of the relaxation time of the magnetization in Mn12 in its S=10 ground state was measured by NMR. The minima in the relaxation time at the fields for level crossing are due to the quantum tunneling of the magnetization. The shortening of the relaxation time under the application of H{sub T} is shown to be due mainly to the reduction of the energy barrier.

  19. Time course of action and endotracheal intubating conditions of Org 9487, a new short-acting steroidal muscle relaxant; a comparison with succinylcholine

    NARCIS (Netherlands)

    Wierda, JMKH; van den Broek, L; Proost, JH; Verbaan, BW; Hennis, PJ

    In a randomized study, we evaluated lag time (time from the end of injection of muscle relaxant until the first depression of the train-of-four response [TOF]), onset time (time from the end of injection of muscle relaxant until the maximum depression of the first twitch of the TOF [T1]),

  20. Intraindividual comparison of T1 relaxation times after gadobutrol and Gd-DTPA administration for cardiac late enhancement imaging

    Energy Technology Data Exchange (ETDEWEB)

    Doeblin, Patrick, E-mail: Patrick.doeblin@charite.de [Department of Cardiology, Charité – Universitätsmedizin Berlin, Charité Campus Benjamin Franklin, Berlin (Germany); Schilling, Rene, E-mail: rene.schilling@charite.de [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); Wagner, Moritz, E-mail: moritz.wagner@charite.de [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); Luhur, Reny, E-mail: renyluhur@yahoo.com [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); Huppertz, Alexander, E-mail: alexander.huppertz@charite.de [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); Imaging Science Institute, Charité, Berlin (Germany); Hamm, Bernd, E-mail: bernd.hamm@charite.de [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); Taupitz, Matthias, E-mail: matthias.taupitz@harite.de [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); and others

    2014-04-15

    Purpose: To evaluate T1-relaxation times of chronic myocardial infarction (CMI) using gadobutrol and gadopentetate dimeglumine (Gd-DTPA) over time and to determine the optimal imaging window for late enhancement imaging with both contrast agents. Material and methods: Twelve patients with CMI were prospectively included and examined on a 1.5 T magnetic resonance (MR) system using relaxivity-adjusted doses of gadobutrol (0.15 mmol/kg) and Gd-DTPA (0.2 mmol/kg) in random order. T1-relaxation times of remote myocardium (RM), infarcted myocardium (IM), and left ventricular cavity (LVC) were assessed from short-axis TI scout imaging using the Look–Locker approach and compared intraindividually using a Wilcoxon paired signed-rank test (α < 0.05). Results: Within 3 min of contrast agent administration (CA), IM showed significantly lower T1-relaxation times than RM with both contrast agents, indicating beginning cardiac late enhancement. Differences between gadobutrol and Gd-DTPA in T1-relaxation times of IM and RM were statistically not significant through all time points. However, gadobutrol led to significantly higher T1-relaxation times of LVC than Gd-DTPA from 6 to 9 min (220 ± 15 ms vs. 195 ± 30 ms p < 0.01) onwards, resulting in a significantly greater ΔT1 of IM to LVC at 9–12 min (−20 ± 35 ms vs. 0 ± 35 ms, p < 0.05) and 12–15 min (−25 ± 45 ms vs. −10 ± 60 ms, p < 0.05). Using Gd-DTPA, comparable ΔT1 values were reached only after 25–35 min. Conclusion: This study indicates good delineation of IM to RM with both contrast agents as early as 3 min after administration. However, we found significant differences in T1 relaxation times with greater ΔT1 IM–LVC using 0.15 mmol/kg gadobutrol compared to 0.20 mmol/kg Gd-DTPA after 9–15 min post-CA suggesting earlier differentiability of IM and LVC using gadobutrol.

  1. The influence of temperature, viscosity and pH on the relaxation time T1 in flowing liquids

    International Nuclear Information System (INIS)

    Toczylowska, B.

    1995-01-01

    The designed and constructed at the Institute of Biocybernetics and Biomedical Engineering facility for the relaxation time (T 1 ) measurements of liquids flow has been presented. The influence of temperature, viscosity and pH has been determined for several liquids, especially physiological fluids

  2. Evaluation of MR imaging with T1 and T2* mapping for the determination of hepatic iron overload.

    Science.gov (United States)

    Henninger, B; Kremser, C; Rauch, S; Eder, R; Zoller, H; Finkenstedt, A; Michaely, H J; Schocke, M

    2012-11-01

    To evaluate MRI using T1 and T2* mapping sequences in patients with suspected hepatic iron overload (HIO). Twenty-five consecutive patients with clinically suspected HIO were retrospectively studied. All underwent MRI and liver biopsy. For the quantification of liver T2* values we used a fat-saturated multi-echo gradient echo sequence with 12 echoes (TR = 200 ms, TE = 0.99 ms +  n × 1.41 ms, flip angle 20°). T1 values were obtained using a fast T1 mapping sequence based on an inversion recovery snapshot FLASH sequence. Parameter maps were analysed using regions of interest. ROC analysis calculated cut-off points at 10.07 ms and 15.47 ms for T2* in the determination of HIO with accuracy 88 %/88 %, sensitivity 84 %/89.5 % and specificity 100 %/83 %. MRI correctly classified 20 patients (80 %). All patients with HIO only had decreased T1 and T2* relaxation times. There was a significant difference in T1 between patients with HIO only and patients with HIO and steatohepatitis (P = 0.018). MRI-based T2* relaxation diagnoses HIO very accurately, even at low iron concentrations. Important additional information may be obtained by the combination of T1 and T2* mapping. It is a rapid, non-invasive, accurate and reproducible technique for validating the evidence of even low hepatic iron concentrations. • Hepatic iron overload causes fibrosis, cirrhosis and increases hepatocellular carcinoma risk. • MRI detects iron because of the field heterogeneity generated by haemosiderin. • T2* relaxation is very accurate in diagnosing hepatic iron overload. • Additional information may be obtained by T1 and T2* mapping.

  3. Interaction study of polyisobutylene with paraffins by NMR using the evaluation of spin-lattice relaxation times for hydrogen nuclei

    International Nuclear Information System (INIS)

    Marques, Rosana G.G.; Tavares, Maria I.B.

    2001-01-01

    The evaluation of spin-lattice relaxation times of 1 H for polyisobutylene/paraffin systems, were obtained using the classic inversion recovery technique, and also through Cross Polarization Magic Angle Spinning (CP/MAS) techniques varying the contact time and also by the delayed contact time pulse sequence. NMR results showed that the polyisobutylene/paraffin systems in which high molecular weight paraffins were used, is heterogeneous. However, for paraffins with low molecular weight, the system presents good homogeneity. (author)

  4. Simultaneous MR quantification of hepatic fat content, fatty acid composition, transverse relaxation time and magnetic susceptibility for the diagnosis of non-alcoholic steatohepatitis.

    Science.gov (United States)

    Leporq, B; Lambert, S A; Ronot, M; Vilgrain, V; Van Beers, B E

    2017-10-01

    Non-alcoholic steatohepatitis (NASH) is characterized at histology by steatosis, hepatocyte ballooning and inflammatory infiltrates, with or without fibrosis. Although diamagnetic material in fibrosis and inflammation can be detected with quantitative susceptibility imaging, fatty acid composition changes in NASH relative to simple steatosis have also been reported. Therefore, our aim was to develop a single magnetic resonance (MR) acquisition and post-processing scheme for the diagnosis of steatohepatitis by the simultaneous quantification of hepatic fat content, fatty acid composition, T 2 * transverse relaxation time and magnetic susceptibility in patients with non-alcoholic fatty liver disease. MR acquisition was performed at 3.0 T using a three-dimensional, multi-echo, spoiled gradient echo sequence. Phase images were unwrapped to compute the B 0 field inhomogeneity (ΔB 0 ) map. The ΔB 0 -demodulated real part images were used for fat-water separation, T 2 * and fatty acid composition quantification. The external and internal fields were separated with the projection onto dipole field method. Susceptibility maps were obtained after dipole inversion from the internal field map with single-orientation Bayesian regularization including spatial priors. Method validation was performed in 32 patients with biopsy-proven, non-alcoholic fatty liver disease from which 12 had simple steatosis and 20 NASH. Liver fat fraction and T 2 * did not change significantly between patients with simple steatosis and NASH. In contrast, the saturated fatty acid fraction increased in patients with NASH relative to patients with simple steatosis (48 ± 2% versus 44 ± 4%; p magnetic susceptibility decreased (-0.30 ± 0.27 ppm versus 0.10 ± 0.14 ppm; p magnetic susceptibility as NASH marker was 0.91 (95% CI: 0.79-1.0). Simultaneous MR quantification of fat content, fatty acid composition, T 2 * and magnetic susceptibility is feasible in the liver. Our preliminary results

  5. Three dimensional orbital magnetic resonance T2-mapping in the evaluation of patients with Graves' ophthalmopathy.

    Science.gov (United States)

    Hou, Kai; Ai, Tao; Hu, Wei-Kun; Luo, Ban; Wu, Yi-Ping; Liu, Rong

    2017-12-01

    The clinical application of orbital magnetic resonance (MR) T2-mapping imaging in detecting the disease activity of Graves' ophthalmopathy (GO), and the predictive values of therapy response to intravenous glucocorticoid (ivGC) were investigated. Approved by the local institutional review board (IRB), 106 consecutive patients with GO were included in this prospective study. All subjects were divided into two groups according to the patients' clinical activity score (CAS): the CAS positive group (CAS ≥3) or the CAS negative group (CAS T2 relaxation time of extraocular muscles (T2RT; ms) and the areas of four extra-ocular muscles (AEOMs; mm 2 ) were measured by 3D T2-mapping MR sequence before and after methylprednisolone treatment, so as the CAS and some ophthalmic examinations including visual acuity, intra-ocular pressure, eyeball movement, diplopia and proptosis. In addition, 24 healthy volunteers were recruited as the control group. The mean T2RT and AEOMs in CAS positive group were higher than those in CAS negative group. Both CAS positive and negative groups had significantly higher mean T2RT and AEOMs than the control group (Pevaluate the activity of GO, CAS was mostly related to inflammation symptoms of ocular surface, more than that, T2RT and AEOMs were also related to abnormal findings of the ophthalmic examinations including high ocular pressure, impaired eyeball movement, diplopia and proptosis. T2RT and AEOMs can reflex the inflammation state of ocular muscles better. CAS combined with 3D T2-mapping MR imaging could improve the sensitivity of detection of active GO so as the prediction and evaluation of the response to methylprednisolone treatment.

  6. Thermal behaviour of the ESR Relaxation time in slightly dirty superconductors

    International Nuclear Information System (INIS)

    Schwachheim, G.; Machado, S.F.; Tsallis, C.

    1978-07-01

    The thermal behaviour of the ESR relaxation rate in slightly dirty superconductors is discussed for both exchange and spin-orbit interactions between the conduction electrons and the impurities. The sensibility to the electronic density of states is exhibited by using, in a modified BCS framework, an heuristic analytic form which avoids two of three defects of a previous similar treatment. The sudden increase (decrease) of the relaxation rate immediately below the critical temperature for the exchange (spin-orbit) case is confirmed. Reasonable agreement with experimental data in LaRu 2 ; Gd is obtained [pt

  7. Simulation of turbulent flow over staggered tube bundles using multi-relaxation time lattice Boltzmann method

    International Nuclear Information System (INIS)

    Park, Jong Woon; Choi, Hyun Gyung

    2014-01-01

    A turbulent fluid flow over staggered tube bundles is of great interest in many engineering fields including nuclear fuel rods, heat exchangers and especially a gas cooled reactor lower plenum. Computational methods have evolved for the simulation of such flow for decades and lattice Boltzmann method (LBM) is one of the attractive methods due to its sound physical basis and ease of computerization including parallelization. In this study to find computational performance of the LBM in turbulent flows over staggered tubes, a fluid flow analysis code employing multi-relaxation time lattice Boltzmann method (MRT-LBM) is developed based on a 2-dimensional D2Q9 lattice model and classical sub-grid eddy viscosity model of Smagorinsky. As a first step, fundamental performance MRT-LBM is investigated against a standard problem of a flow past a cylinder at low Reynolds number in terms of drag forces. As a major step, benchmarking of the MRT-LBM is performed over a turbulent flow through staggered tube bundles at Reynolds number of 18,000. For a flow past a single cylinder, the accuracy is validated against existing experimental data and previous computations in terms of drag forces on the cylinder. Mainly, the MRT-LBM computation for a flow through staggered tube bundles is performed and compared with experimental data and general purpose computational fluid dynamic (CFD) analyses with standard k-ω turbulence and large eddy simulation (LES) equipped with turbulence closures of Smagrinsky-Lilly and wall-adapting local eddy-viscosity (WALE) model. The agreement between the experimental and the computational results from the present MRT-LBM is found to be reasonably acceptable and even comparable to the LES whereas the computational efficiency is superior. (orig.)

  8. Simulation of turbulent flow over staggered tube bundles using multi-relaxation time lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Woon; Choi, Hyun Gyung [Dongguk Univ., Gyeongju (Korea, Republic of). Nuclear and Energy Engineering Dept.

    2014-02-15

    A turbulent fluid flow over staggered tube bundles is of great interest in many engineering fields including nuclear fuel rods, heat exchangers and especially a gas cooled reactor lower plenum. Computational methods have evolved for the simulation of such flow for decades and lattice Boltzmann method (LBM) is one of the attractive methods due to its sound physical basis and ease of computerization including parallelization. In this study to find computational performance of the LBM in turbulent flows over staggered tubes, a fluid flow analysis code employing multi-relaxation time lattice Boltzmann method (MRT-LBM) is developed based on a 2-dimensional D2Q9 lattice model and classical sub-grid eddy viscosity model of Smagorinsky. As a first step, fundamental performance MRT-LBM is investigated against a standard problem of a flow past a cylinder at low Reynolds number in terms of drag forces. As a major step, benchmarking of the MRT-LBM is performed over a turbulent flow through staggered tube bundles at Reynolds number of 18,000. For a flow past a single cylinder, the accuracy is validated against existing experimental data and previous computations in terms of drag forces on the cylinder. Mainly, the MRT-LBM computation for a flow through staggered tube bundles is performed and compared with experimental data and general purpose computational fluid dynamic (CFD) analyses with standard k-ω turbulence and large eddy simulation (LES) equipped with turbulence closures of Smagrinsky-Lilly and wall-adapting local eddy-viscosity (WALE) model. The agreement between the experimental and the computational results from the present MRT-LBM is found to be reasonably acceptable and even comparable to the LES whereas the computational efficiency is superior. (orig.)

  9. Binding and relaxation behavior of Coumarin-153 in lecithin-taurocholate mixed micelles: A time resolved fluorescence spectroscopic study

    Science.gov (United States)

    Chakrabarty, Debdeep; Chakraborty, Anjan; Seth, Debabrata; Hazra, Partha; Sarkar, Nilmoni

    2005-09-01

    The microenvironment of the bile salt-lecithin mixed aggregates has been investigated using steady state and picosecond time resolved fluorescence spectroscopy. The steady state spectra show that the polarity of the bile salt is higher compared to lecithin vesicles or the mixed aggregates. We have observed slow solvent relaxation in bile salt micelles and lecithin vesicles. The solvation time is gradually slowed down due to gradual addition of the bile salt in lecithin vesicles. Addition of bile salt leads to the tighter head group packing in lecithin. Thus, mobility of the water molecules becomes slower and consequently the solvation time is also retarded. We have observed bimodal slow rotational relaxation time in all these systems.

  10. MR signal-fat-fraction analysis and T2* weighted imaging measure BAT reliably on humans without cold exposure.

    Science.gov (United States)

    Holstila, Milja; Pesola, Marko; Saari, Teemu; Koskensalo, Kalle; Raiko, Juho; Borra, Ronald J H; Nuutila, Pirjo; Parkkola, Riitta; Virtanen, Kirsi A

    2017-05-01

    Brown adipose tissue (BAT) is compositionally distinct from white adipose tissue (WAT) in terms of triglyceride and water content. In adult humans, the most significant BAT depot is localized in the supraclavicular area. Our aim is to differentiate brown adipose tissue from white adipose tissue using fat T2* relaxation time mapping and signal-fat-fraction (SFF) analysis based on a commercially available modified 2-point-Dixon (mDixon) water-fat separation method. We hypothesize that magnetic resonance (MR) imaging can reliably measure BAT regardless of the cold-induced metabolic activation, with BAT having a significantly higher water and iron content compared to WAT. The supraclavicular area of 13 volunteers was studied on 3T PET-MRI scanner using T2* relaxation time and SFF mapping both during cold exposure and at ambient temperature; and 18 F-FDG PET during cold exposure. Volumes of interest (VOIs) were defined semiautomatically in the supraclavicular fat depot, subcutaneous WAT and muscle. The supraclavicular fat depot (assumed to contain BAT) had a significantly lower SFF and fat T2* relaxation time compared to subcutaneous WAT. Cold exposure did not significantly affect MR-based measurements. SFF and T2* values measured during cold exposure and at ambient temperature correlated inversely with the glucose uptake measured by 18 F-FDG PET. Human BAT can be reliably and safely assessed using MRI without cold activation and PET-related radiation exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The freezing of water bonded in the wheat (Triticum aestivum L.) grain studied by means protons magnetic relaxation method

    International Nuclear Information System (INIS)

    Haranczyk, H.; Jasinski, G.; Strzalka, K.

    1994-01-01

    Some biological aspects of water freezing in the wheat grain have been studied using NMR methods. Measuring of the relaxation times for freezing and liquid water shown absence of T 2 ∼100 μs and T 2 ∼1 ms separated components what pointed for some different way of water bonding

  12. Escape time, relaxation, and sticky states of a softened Henon-Heiles model: Low-frequency vibrational mode effects and glass relaxation

    Science.gov (United States)

    Toledo-Marín, J. Quetzalcóatl; Naumis, Gerardo G.

    2018-04-01

    Here we study the relaxation of a chain consisting of three masses joined by nonlinear springs and periodic conditions when the stiffness is weakened. This system, when expressed in their normal coordinates, yields a softened Henon-Heiles system. By reducing the stiffness of one low-frequency vibrational mode, a faster relaxation is enabled. This is due to a reduction of the energy barrier heights along the softened normal mode as well as for a widening of the opening channels of the energy landscape in configurational space. The relaxation is for the most part exponential, and can be explained by a simple flux equation. Yet, for some initial conditions the relaxation follows as a power law, and in many cases there is a regime change from exponential to power-law decay. We pinpoint the initial conditions for the power-law decay, finding two regions of sticky states. For such states, quasiperiodic orbits are found since almost for all components of the initial momentum orientation, the system is trapped inside two pockets of configurational space. The softened Henon-Heiles model presented here is intended as the simplest model in order to understand the interplay of rigidity, nonlinear interactions and relaxation for nonequilibrium systems such as glass-forming melts or soft matter. Our softened system can be applied to model β relaxation in glasses and suggest that local reorientational jumps can have an exponential and a nonexponential contribution for relaxation, the latter due to asymmetric molecules sticking in cages for certain orientations.

  13. Monte Carlo computation of correlation times of independent relaxation modes at criticality

    NARCIS (Netherlands)

    Bloete, H.W.J.; Nightingale, M.P.

    2000-01-01

    We investigate aspects of universality of Glauber critical dynamics in two dimensions. We compute the critical exponent $z$ and numerically corroborate its universality for three different models in the static Ising universality class and for five independent relaxation modes. We also present

  14. Measurements of neutral hydrogen profiles on the EXTRAP-T2 reversed-field pinch from time-resolved ? line emission

    Science.gov (United States)

    Sallander, J.; Hedqvist, A.; Rachlew-Källne, E.

    1998-09-01

    The investigations of the radial distributions of 0953-4075/31/17/015/img2 emission from the EXTRAP-T2 reversed-field pinch (RFP) plasma show that the emission profile varies a lot, even during one plasma discharge. At central electron temperatures of about 150 eV it was expected that the 0953-4075/31/17/015/img2 emission should emerge from the plasma centre. In comparison, 0953-4075/31/17/015/img4 is always observed to radiate from the centre. Our measurements of 0953-4075/31/17/015/img2 emission have, however, shown that this is not always the case, the emission often comes from the plasma edge. The analysis of the measurements has led us to conclude that the edge emission comes from charge-exchange recombination with neutral hydrogen near the carbon first wall. These observations provide a way to estimate the change in neutral hydrogen density during local plasma-wall interaction.

  15. T2 Relaxometry MRI Predicts Cerebral Palsy in Preterm Infants.

    Science.gov (United States)

    Chen, L-W; Wang, S-T; Huang, C-C; Tu, Y-F; Tsai, Y-S

    2018-01-18

    T2-relaxometry brain MR imaging enables objective measurement of brain maturation based on the water-macromolecule ratio in white matter, but the outcome correlation is not established in preterm infants. Our study aimed to predict neurodevelopment with T2-relaxation values of brain MR imaging among preterm infants. From January 1, 2012, to May 31, 2015, preterm infants who underwent both T2-relaxometry brain MR imaging and neurodevelopmental follow-up were retrospectively reviewed. T2-relaxation values were measured over the periventricular white matter, including sections through the frontal horns, midbody of the lateral ventricles, and centrum semiovale. Periventricular T2 relaxometry in relation to corrected age was analyzed with restricted cubic spline regression. Prediction of cerebral palsy was examined with the receiver operating characteristic curve. Thirty-eight preterm infants were enrolled for analysis. Twenty patients (52.6%) had neurodevelopmental abnormalities, including 8 (21%) with developmental delay without cerebral palsy and 12 (31.6%) with cerebral palsy. The periventricular T2-relaxation values in relation to age were curvilinear in preterm infants with normal development, linear in those with developmental delay without cerebral palsy, and flat in those with cerebral palsy. When MR imaging was performed at >1 month corrected age, cerebral palsy could be predicted with T2 relaxometry of the periventricular white matter on sections through the midbody of the lateral ventricles (area under the receiver operating characteristic curve = 0.738; cutoff value of >217.4 with 63.6% sensitivity and 100.0% specificity). T2-relaxometry brain MR imaging could provide prognostic prediction of neurodevelopmental outcomes in premature infants. Age-dependent and area-selective interpretation in preterm brains should be emphasized. © 2018 by American Journal of Neuroradiology.

  16. DEVICE FOR MEASURMENT OF RELAXATION TIME OF THE BLEACHED STATE OF OPTICAL MATERIALS BY THE «PUMP-PROBE» METHOD IN SUB-ΜS TIME DOMAIN

    Directory of Open Access Journals (Sweden)

    I. V. Glazunov

    2016-01-01

    Full Text Available The use of passive shutters to control the duration of the light pulses is an important aspect in the miniature and microchip lasers. One of the key spectroscopic characteristics which determine the properties of the material, which can be used as a passive shutter is relaxation time of its bleached state.We describe a device for determination of relaxation time of the bleached state in optical materials by the «pump-probe» method in the sub-μs time domain. This device allows one to determine relaxation times for materials which absorb at the light wavelength of 1.5 μm, e.g., materials doped with cobalt ions Co2+. The results of test examinations of the device are described, and the relaxation time of the bleached state of Co2+ ions is measured for a novel material – transparent glass-ceramics with Co2+:Ga2 O3 nanophase – amounting to 190 ± 6 ns. 

  17. SU-E-I-64: Transverse Relaxation Time in Methylene Protons of Non-Alcoholic Fatty Liver Disease Rats

    Energy Technology Data Exchange (ETDEWEB)

    Song, K-H; Lee, D-W; Choe, B-Y [Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Seoul (Korea, Republic of)

    2015-06-15

    Purpose: The aim of this study was to evaluate transverse relaxation time of methylene resonance compared to other lipid resonances. Methods: The examinations were performed using a 3.0 T scanner with a point — resolved spectroscopy (PRESS) sequence. Lipid relaxation time in a lipid phantom filled with canola oil was estimated considering repetition time (TR) as 6000 msec and echo time (TE) as 40 — 550 msec. For in vivo proton magnetic resonance spectroscopy ({sup 1}H — MRS), eight male Sprague — Dawley rats were given free access to a normal - chow (NC) and eight other male Sprague-Dawley rats were given free access to a high — fat (HF) diet. Both groups drank water ad libitum. T{sub 2} measurements in the rats’ livers were conducted at a fixed TR of 6000 msec and TE of 40 – 220 msec. Exponential curve fitting quality was calculated through the coefficients of determination (R{sup 2}). Results: A chemical analysis of phantom and liver was not performed but a T{sub 2} decay curve was acquired. The T{sub 2} relaxation time of methylene resonance was estimated as follows: NC rats, 37.07 ± 4.32 msec; HF rats, 31.43 ± 1.81 msec (p < 0.05). The extrapolated M0 values were higher in HF rats than in NC rats (p < 0.005). Conclusion: This study of {sup 1}H-MRS led to sufficient spectral resolution and signal — to — noise ratio differences to characterize all observable resonances for yielding T{sub 2} relaxation times of methylene resonance. {sup 1}H — MRS relaxation times may be useful for quantitative characterization of various liver diseases, including fatty liver disease. This study was supported by grant (2012-007883 and 2014R1A2A1A10050270) from the Mid-career Researcher Program through the NRF funded by Ministry of Science. In addition, this study was supported by the Industrial R&D of MOTIE/KEIT (10048997, Development of the core technology for integrated therapy devices based on real-time MRI-guided tumor tracking)

  18. Water-selective excitation of short T2 species with binomial pulses.

    Science.gov (United States)

    Deligianni, Xeni; Bär, Peter; Scheffler, Klaus; Trattnig, Siegfried; Bieri, Oliver

    2014-09-01

    For imaging of fibrous musculoskeletal components, ultra-short echo time methods are often combined with fat suppression. Due to the increased chemical shift, spectral excitation of water might become a favorable option at ultra-high fields. Thus, this study aims to compare and explore short binomial excitation schemes for spectrally selective imaging of fibrous tissue components with short transverse relaxation time (T2 ). Water selective 1-1-binomial excitation is compared with nonselective imaging using a sub-millisecond spoiled gradient echo technique for in vivo imaging of fibrous tissue at 3T and 7T. Simulations indicate a maximum signal loss from binomial excitation of approximately 30% in the limit of very short T2 (0.1 ms), as compared to nonselective imaging; decreasing rapidly with increasing field strength and increasing T2 , e.g., to 19% at 3T and 10% at 7T for T2 of 1 ms. In agreement with simulations, a binomial phase close to 90° yielded minimum signal loss: approximately 6% at 3T and close to 0% at 7T for menisci, and for ligaments 9% and 13%, respectively. Overall, for imaging of short-lived T2 components, short 1-1 binomial excitation schemes prove to offer marginal signal loss especially at ultra-high fields with overall improved scanning efficiency. Copyright © 2013 Wiley Periodicals, Inc.

  19. Evaluation of liver fat in the presence of iron with MRI using T2* correction: a clinical approach.

    Science.gov (United States)

    Henninger, Benjamin; Benjamin, Henninger; Kremser, Christian; Christian, Kremser; Rauch, Stefan; Stefan, Rauch; Eder, Robert; Robert, Eder; Judmaier, Werner; Werner, Judmaier; Zoller, Heinz; Heinz, Zoller; Michaely, Henrik; Henrik, Michaely; Schocke, Michael; Michael, Schocke

    2013-06-01

    To assess magnetic resonance imaging (MRI) with conventional chemical shift-based sequences with and without T2* correction for the evaluation of steatosis hepatitis (SH) in the presence of iron. Thirty-one patients who underwent MRI and liver biopsy because of clinically suspected diffuse liver disease were retrospectively analysed. The signal intensity (SI) was calculated in co-localised regions of interest (ROIs) using conventional spoiled gradient-echo T1 FLASH in-phase and opposed-phase (IP/OP). T2* relaxation time was recorded in a fat-saturated multi-echo-gradient-echo sequence. The fat fraction (FF) was calculated with non-corrected and T2*-corrected SIs. Results were correlated with liver biopsy. There was significant difference (P T2* corrected FF in patients with SH and concomitant hepatic iron overload (HIO). Using 5 % as a threshold resulted in eight false negative results with uncorrected FF whereas T2* corrected FF lead to true positive results in 5/8 patients. ROC analysis calculated three threshold values (8.97 %, 5.3 % and 3.92 %) for T2* corrected FF with accuracy 84 %, sensitivity 83-91 % and specificity 63-88 %. FF with T2* correction is accurate for the diagnosis of hepatic fat in the presence of HIO. Findings of our study suggest the use of IP/OP imaging in combination with T2* correction. • Magnetic resonance helps quantify both iron and fat content within the liver • T2* correction helps to predict the correct diagnosis of steatosis hepatitis • "Fat fraction" from T2*-corrected chemical shift-based sequences accurately quantifies hepatic fat • "Fat fraction" without T2* correction underestimates hepatic fat with iron overload.

  20. Using Cartilage MRI T2-Mapping to Analyze Early Cartilage Degeneration in the Knee Joint of Young Professional Soccer Players.

    Science.gov (United States)

    Waldenmeier, Leonie; Evers, Christoph; Uder, Michael; Janka, Rolf; Hennig, Frank Friedrich; Pachowsky, Milena Liese; Welsch, Götz Hannes

    2018-02-01

    Objective To evaluate and characterize the appearance of articular cartilage in the tibiofemoral joint of young professional soccer players using T2-relaxation time evaluation on magnetic resonance imaging (MRI). Design In this study, we included 57 male adolescents from the youth academy of a professional soccer team. The MRI scans were acquired of the knee joint of the supporting leg. An "early unloading" (minute 0) and "late unloading" (minute 28) T2-sequence was included in the set of images. Quantitative T2-analysis was performed in the femorotibial joint cartilage in 4 slices with each 10 regions of interest (ROIs). Statistical evaluation, using Wilcoxon signed-rank tests, was primarily performed to compare the T2 values of the "early unloading" and "late unloading." Results When comparing "early unloading" with "late unloading," our findings showed a significant increase of T2-relaxation times in the weightbearing femoral cartilage of the medial ( P cartilage of the medial compartment ( P cartilage were found with a maximum in the medial condyle where the biomechanical load of the knee joint is highest, as well as where most of the chronic cartilage lesions occur. To avoid chronic damage, special focus should be laid on this region.

  1. Associated relaxation time and the correlation function for a tumor cell growth system subjected to color noises

    International Nuclear Information System (INIS)

    Wang Canjun; Wei Qun; Mei Dongcheng

    2008-01-01

    The associated relaxation time T c and the normalized correlation function C(s) for a tumor cell growth system subjected to color noises are investigated. Using the Novikov theorem and Fox approach, the steady probability distribution is obtained. Based on them, the expressions of T c and C(s) are derived by means of projection operator method, in which the effects of the memory kernels of the correlation function are taken into account. Performing the numerical computations, it is found: (1) With the cross-correlation intensity |λ|, the additive noise intensity α and the multiplicative noise self-correlation time τ 1 increasing, the tumor cell numbers can be restrained; And the cross-correlation time τ 3 , the multiplicative noise intensity D can induce the tumor cell numbers increasing; However, the additive noise self-correlation time τ 2 cannot affect the tumor cell numbers; The relaxation time T c is a stochastic resonant phenomenon, and the distribution curves exhibit a single-maximum structure with D increasing. (2) The cross-correlation strength λ weakens the related activity between two states of the tumor cell numbers at different time, and enhances the stability of the tumor cell growth system in the steady state; On the contrast, τ 1 and τ 3 enhance the related activity between two states at different time; However, τ 2 has no effect on the related activity between two states at different time

  2. Associated relaxation time and the correlation function for a tumor cell growth system subjected to color noises

    Science.gov (United States)

    Wang, Can-Jun; Wei, Qun; Mei, Dong-Cheng

    2008-03-01

    The associated relaxation time T and the normalized correlation function C(s) for a tumor cell growth system subjected to color noises are investigated. Using the Novikov theorem and Fox approach, the steady probability distribution is obtained. Based on them, the expressions of T and C(s) are derived by means of projection operator method, in which the effects of the memory kernels of the correlation function are taken into account. Performing the numerical computations, it is found: (1) With the cross-correlation intensity |λ|, the additive noise intensity α and the multiplicative noise self-correlation time τ increasing, the tumor cell numbers can be restrained; And the cross-correlation time τ, the multiplicative noise intensity D can induce the tumor cell numbers increasing; However, the additive noise self-correlation time τ cannot affect the tumor cell numbers; The relaxation time T is a stochastic resonant phenomenon, and the distribution curves exhibit a single-maximum structure with D increasing. (2) The cross-correlation strength λ weakens the related activity between two states of the tumor cell numbers at different time, and enhances the stability of the tumor cell growth system in the steady state; On the contrast, τ and τ enhance the related activity between two states at different time; However, τ has no effect on the related activity between two states at different time.

  3. Predicting How Nanoconfinement Changes the Relaxation Time of a Supercooled Liquid

    DEFF Research Database (Denmark)

    Ingebrigtsen, Trond; Errington, Jeff; Truskett, Tom

    2013-01-01

    The properties of nanoconfined fluids can be strikingly different from those of bulk liquids. A basic unanswered question is whether the equilibrium and dynamic consequences of confinement are related to each other in a simple way. We study this question by simulation of a liquid comprising...... asymmetric dumbbell-shaped molecules, which can be deeply supercooled without crystallizing. We find that the dimensionless structural relaxation times—spanning six decades as a function of temperature, density, and degree of confinement—collapse when plotted versus excess entropy. The data also collapse...

  4. Repeatability of magnetic resonance fingerprinting T1 and T2 estimates assessed using the ISMRM/NIST MRI system phantom.

    Science.gov (United States)

    Jiang, Yun; Ma, Dan; Keenan, Kathryn E; Stupic, Karl F; Gulani, Vikas; Griswold, Mark A

    2017-10-01

    The purpose of this study was to evaluate accuracy and repeatability of T 1 and T 2 estimates of a MR fingerprinting (MRF) method using the ISMRM/NIST MRI system phantom. The ISMRM/NIST MRI system phantom contains multiple compartments with standardized T 1 , T 2 , and proton density values. Conventional inversion-recovery spin echo and spin echo methods were used to characterize the T 1 and T 2 values in the phantom. The phantom was scanned using the MRF-FISP method over 34 consecutive days. The mean T 1 and T 2 values were compared with the values from the spin echo methods. The repeatability was characterized as the coefficient of variation of the measurements over 34 days. T 1 and T 2 values from MRF-FISP over 34 days showed a strong linear correlation with the measurements from the spin echo methods (R 2  = 0.999 for T 1 ; R 2  = 0.996 for T 2 ). The MRF estimates over the wide ranges of T 1 and T 2 values have less than 5% variation, except for the shortest T 2 relaxation times where the method still maintains less than 8% variation. MRF measurements of T 1 and T 2 are highly repeatable over time and across wide ranges of T 1 and T 2 values. Magn Reson Med 78:1452-1457, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  5. Surface-NMR measurements of the longitudinal relaxation time T1 in a homogeneous sandy aquifer in Skive, Denmark

    Science.gov (United States)

    Walbrecker, J.; Behroozmand, A.

    2011-12-01

    Efficient groundwater management requires reliable means of characterizing shallow groundwater aquifers. One key parameter in this respect is hydraulic conductivity. Surface nuclear magnetic resonance (NMR) is a geophysical exploration technique that can potentially provide this type of information in a noninvasive, cost-effective way. The technique is based on measuring the precession of nuclear spins of protons in groundwater molecules. It involves large loop antennas deployed on Earth's surface to generate electromagnetic pulses tuned to specifically excite and detect groundwater proton spins. Naturally, the excited state of spins is transitory - once excited, spins relax back to their equilibrium state. This relaxation process is strongly influenced by the spin environment, which, in the case of groundwater, is defined by the aquifer. By employing empirical relations, changes in relaxation behavior can be used to identify changes in aquifer hydraulic conductivity, making the NMR relaxation signal a very important piece of information. Particularly, efforts are made to record the longitudinal relaxation parameter T1, because it is known from laboratory studies that it often reliably correlates with hydraulic conductivity, even in the presence of magnetic species. In surface NMR, T1 data are collected by recording the NMR signal amplitude following two sequential excitation pulses as a function of the delay time τ between the two pulses. In conventional acquisition, the two pulses have a mutual phase shift of π. Based on theoretical arguments it was recently shown that T1 times acquired according to this conventional surface-NMR scheme are systematically biased. It was proposed that the bias can be minimized by cycling the phase of the two pulses between π and zero in subsequent double-pulse experiments, and subtracting the resulting signal amplitudes (phase-cycled pseudosaturation recovery scheme, pcPSR). We present the first surface-NMR T1 data set recorded

  6. Quantitative T2 magnetic resonance imaging compared to morphological grading of the early cervical intervertebral disc degeneration: an evaluation approach in asymptomatic young adults.

    Directory of Open Access Journals (Sweden)

    Chun Chen

    Full Text Available OBJECTIVE: The objective of this study was to evaluate the efficacy of quantitative T2 magnetic resonance imaging (MRI for quantifying early cervical intervertebral disc (IVD degeneration in asymptomatic young adults by correlating the T2 value with Pfirrmann grade, sex, and anatomic level. METHODS: Seventy asymptomatic young subjects (34 men and 36 women; mean age, 22.80±2.11 yr; range, 18-25 years underwent 3.0-T MRI to obtain morphological data (one T1-fast spin echo (FSE and three-plane T2-FSE, used to assign a Pfirrmann grade (I-V and for T2 mapping (multi-echo spin echo. T2 values in the nucleus pulposus (NP, n = 350 and anulus fibrosus (AF, n = 700 were obtained. Differences in T2 values between sexes and anatomic level were evaluated, and linear correlation analysis of T2 values versus degenerative grade was conducted. FINDINGS: Cervical IVDs of healthy young adults were commonly determined to be at Pfirrmann grades I and II. T2 values of NPs were significantly higher than those of AF at all anatomic levels (P0.05. T2 values decreased linearly with degenerative grade. Linear correlation analysis revealed a strong negative association between the Pfirrmann grade and the T2 values of the NP (P = 0.000 but not the T2 values of the AF (P = 0.854. However, non-degenerated discs (Pfirrmann grades I and II showed a wide range of T2 relaxation time. T2 values according to disc degeneration level classification were as follows: grade I (>62.03 ms, grade II (54.60-62.03 ms, grade III (<54.60 ms. CONCLUSIONS: T2 quantitation provides a more sensitive and robust approach for detecting and characterizing the early stage of cervical IVD degeneration and to create a reliable quantitative in healthy young adults.

  7. Quantitative T2 magnetic resonance imaging compared to morphological grading of the early cervical intervertebral disc degeneration: an evaluation approach in asymptomatic young adults.

    Science.gov (United States)

    Chen, Chun; Huang, Minghua; Han, Zhihua; Shao, Lixin; Xie, Yan; Wu, Jianhong; Zhang, Yan; Xin, Hongkui; Ren, Aijun; Guo, Yong; Wang, Deli; He, Qing; Ruan, Dike

    2014-01-01

    The objective of this study was to evaluate the efficacy of quantitative T2 magnetic resonance imaging (MRI) for quantifying early cervical intervertebral disc (IVD) degeneration in asymptomatic young adults by correlating the T2 value with Pfirrmann grade, sex, and anatomic level. Seventy asymptomatic young subjects (34 men and 36 women; mean age, 22.80±2.11 yr; range, 18-25 years) underwent 3.0-T MRI to obtain morphological data (one T1-fast spin echo (FSE) and three-plane T2-FSE, used to assign a Pfirrmann grade (I-V)) and for T2 mapping (multi-echo spin echo). T2 values in the nucleus pulposus (NP, n = 350) and anulus fibrosus (AF, n = 700) were obtained. Differences in T2 values between sexes and anatomic level were evaluated, and linear correlation analysis of T2 values versus degenerative grade was conducted. Cervical IVDs of healthy young adults were commonly determined to be at Pfirrmann grades I and II. T2 values of NPs were significantly higher than those of AF at all anatomic levels (P0.05). T2 values decreased linearly with degenerative grade. Linear correlation analysis revealed a strong negative association between the Pfirrmann grade and the T2 values of the NP (P = 0.000) but not the T2 values of the AF (P = 0.854). However, non-degenerated discs (Pfirrmann grades I and II) showed a wide range of T2 relaxation time. T2 values according to disc degeneration level classification were as follows: grade I (>62.03 ms), grade II (54.60-62.03 ms), grade III (T2 quantitation provides a more sensitive and robust approach for detecting and characterizing the early stage of cervical IVD degeneration and to create a reliable quantitative in healthy young adults.

  8. New results from T2K

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    The Tokai to Kamioka (T2K) experiment is a long baseline neutrino oscillation experiment situated in Japan. A high intensity neutrino beam is produced at the Japan Proton Accelerator Research Complex, in Tokai, Japan. In 2011, the collaboration announced the first indication of muon neutrino to electron neutrino transformation, which was then a new type of neutrino oscillation; now, with 3.5 times more data, this transformation is firmly established. This T2K observation is the first of its kind in that an explicit appearance of a unique flavor of neutrino at a detection point is unequivocally observed from a different flavor of neutrino at its production point. The T2K collaboration also reports a precision measurement of muon neutrino disappearance with an ooff-axis neutrino beam with a peak energy of 0.6 GeV. Near detector is used in both oscillation measurements to constrain the neutrino flux and cross section parameters.

  9. The effect of solvent relaxation time constants on free energy gap law for ultrafast charge recombination following photoinduced charge separation.

    Science.gov (United States)

    Mikhailova, Valentina A; Malykhin, Roman E; Ivanov, Anatoly I

    2018-05-16

    To elucidate the regularities inherent in the kinetics of ultrafast charge recombination following photoinduced charge separation in donor-acceptor dyads in solutions, the simulations of the kinetics have been performed within the stochastic multichannel point-transition model. Increasing the solvent relaxation time scales has been shown to strongly vary the dependence of the charge recombination rate constant on the free energy gap. In slow relaxing solvents the non-equilibrium charge recombination occurring in parallel with solvent relaxation is very effective so that the charge recombination terminates at the non-equilibrium stage. This results in a crucial difference between the free energy gap laws for the ultrafast charge recombination and the thermal charge transfer. For the thermal reactions the well-known Marcus bell-shaped dependence of the rate constant on the free energy gap is realized while for the ultrafast charge recombination only a descending branch is predicted in the whole area of the free energy gap exceeding 0.2 eV. From the available experimental data on the population kinetics of the second and first excited states for a series of Zn-porphyrin-imide dyads in toluene and tetrahydrofuran solutions, an effective rate constant of the charge recombination into the first excited state has been calculated. The obtained rate constant being very high is nearly invariable in the area of the charge recombination free energy gap from 0.2 to 0.6 eV that supports the theoretical prediction.

  10. A model problem for estimation of moving-film time relaxation at sudden change of boundary conditions

    Science.gov (United States)

    Smirnovsky, Alexander A.; Eliseeva, Viktoria O.

    2018-05-01

    The study of the film flow occurred under the influence of a gas slug flow is of definite interest in heat and mass transfer during the motion of a coolant in the second circuit of a nuclear water-water reactor. Thermohydraulic codes are usually used for analysis of the such problems in which the motion of the liquid film and the vapor is modeled on the basis of a one-dimensional balance equations. Due to a greater inertia of the liquid film motion, film flow parameters changes with a relaxation compared with gas flow. We consider a model problem of film flow under the influence of friction from gas slug flow neglecting such effects as wave formation, droplet breakage and deposition on the film surface, evaporation and condensation. Such a problem is analogous to the well-known problems of Couette and Stokes flows. An analytical solution has been obtained for laminar flow. Numerical RANS-based simulation of turbulent flow was performed using OpenFOAM. It is established that the relaxation process is almost self-similar. This fact opens a possibility of obtaining valuable correlations for the relaxation time.

  11. Time-domain simulation of constitutive relations for nonlinear acoustics including relaxation for frequency power law attenuation media modeling

    Science.gov (United States)

    Jiménez, Noé; Camarena, Francisco; Redondo, Javier; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.

    2015-10-01

    We report a numerical method for solving the constitutive relations of nonlinear acoustics, where multiple relaxation processes are included in a generalized formulation that allows the time-domain numerical solution by an explicit finite differences scheme. Thus, the proposed physical model overcomes the limitations of the one-way Khokhlov-Zabolotskaya-Kuznetsov (KZK) type models and, due to the Lagrangian density is implicitly included in the calculation, the proposed method also overcomes the limitations of Westervelt equation in complex configurations for medical ultrasound. In order to model frequency power law attenuation and dispersion, such as observed in biological media, the relaxation parameters are fitted to both exact frequency power law attenuation/dispersion media and also empirically measured attenuation of a variety of tissues that does not fit an exact power law. Finally, a computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the finite difference scheme, and, on the other hand, improve stability trough artificial attenuation when shock waves are present. This technique avoids the use of high-order finite-differences schemes leading to fast calculations. The present algorithm is especially suited for practical configuration where spatial discontinuities are present in the domain (e.g. axisymmetric domains or zero normal velocity boundary conditions in general). The accuracy of the method is discussed by comparing the proposed simulation solutions to one dimensional analytical and k-space numerical solutions.

  12. Quantifying protein dynamics in the ps–ns time regime by NMR relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, Griselda; LeMaster, David M., E-mail: david.lemaster@health.ny.gov [University at Albany - SUNY, Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, School of Public Health (United States)

    2016-11-15

    Both {sup 15}N chemical shift anisotropy (CSA) and sufficiently rapid exchange linebroadening transitions exhibit relaxation contributions that are proportional to the square of the magnetic field. Deconvoluting these contributions is further complicated by residue-dependent variations in protein amide {sup 15}N CSA values which have proven difficult to accurately measure. Exploiting recently reported improvements for the implementation of T{sub 1} and T{sub 1ρ} experiments, field strength-dependent studies have been carried out on the B3 domain of protein G (GB3) as well as on the immunophilin FKBP12 and a H87V variant of that protein in which the major conformational exchange linebroadening transition is suppressed. By applying a zero frequency spectral density rescaling analysis to the relaxation data collected at magnetic fields from 500 to 900 MHz {sup 1}H, differential residue-specific {sup 15}N CSA values have been obtained for GB3 which correlate with those derived from solid state and liquid crystalline NMR measurements to a level similar to the correlation among those previously reported studies. Application of this analysis protocol to FKBP12 demonstrated an efficient quantitation of both weak exchange linebroadening contributions and differential residue-specific {sup 15}N CSA values. Experimental access to such differential residue-specific {sup 15}N CSA values should significantly facilitate more accurate comparisons with molecular dynamics simulations of protein motion that occurs within the timeframe of global molecular tumbling.

  13. The T2-Shortening Effect of Gadolinium and the Optimal Conditions for Maximizing the CNR for Evaluating the Biliary System: a Phantom Study

    International Nuclear Information System (INIS)

    Lee, Mi Jung; Kim, Myung Joon; Yoon, Choon Sik; Song, Si Young; Park, Kyung Soo; Kim, Woo Sun

    2011-01-01

    Clear depiction of the common bile duct is important when evaluating neonatal cholestasis in order to differentiate biliary atresia from other diseases. During MR cholangiopancreatography, the T2-shortening effect of gadolinium can increase the contrast-to-noise ratio (CNR) of the bile duct and enhance its depiction. The purpose of this study was to confirm, by performing a phantom study, the T2-shortening effect of gadolinium, to evaluate the effect of different gadolinium chelates with different gadolinium concentrations and different magnetic field strengths for investigating the optimal combination of these conditions, and for identifying the maximum CNR for the evaluation of the biliary system. MR imaging using a T2-weighted single-shot fast spin echo sequence and T2 relaxometry was performed with a sponge phantom in a syringe tube. Two kinds of contrast agents (Gd-DTPA and Gd-EOB-DTPA) with different gadolinium concentrations were evaluated with 1.5T and 3T scanners. The signal intensities, the CNRs and the T2 relaxation time were analyzed. The signal intensities significantly decreased as the gadolinium concentrations increased (p < 0.001) with both contrast agents. These signal intensities were higher on a 3T (p < 0.001) scanner. The CNRs were higher on a 1.5T (p < 0.001) scanner and they showed no significant change with different gadolinium concentrations. The T2 relaxation time also showed a negative correlation with the gadolinium concentrations (p < 0.001) and the CNRs showed decrease more with Gd-EOB-DTPA (versus Gd-DTPA; p < 0.001) on a 3T scanner (versus 1.5T; p < 0.001). A T2-shortening effect of gadolinium exhibits a negative correlation with the gadolinium concentration for both the signal intensities and the T2 relaxation time. A higher CNR can be obtained with Gd-DTPA on a 1.5T MRI scanner.

  14. Factors associated with diabetes-related distress over time among patients with T2DM in a tertiary hospital in Singapore.

    Science.gov (United States)

    Tan, Maudrene L; Tan, Chuen S; Griva, Konstadina; Lee, Yung S; Lee, Jeannette; Tai, E S; Khoo, Eric Y; Wee, Hwee-Lin

    2017-06-23

    Persistent diabetes-related distress (DRD) is experienced by patients with Type 2 Diabetes Mellitus. Knowing factors associated with persistent DRD will aid clinicians in prioritising interventions efforts. A total of 216 patients were recruited from a tertiary hospital in Singapore, an Asian city state, and followed for 1.5 years (2011-2014). Data was collected by self-completed questionnaires assessing DRD (measured by the Problem Areas in Diabetes score) and other psychosocial aspects such as social support, presenteeism, depression, health-related quality of life (HRQoL) and excessive daytime sleepiness (EDS) at three time points. Clinical data (body-mass-index and glycated haemoglobin) was obtained from medical records. Change score was calculated for each clinical and psychosocial variable to capture changes in these variables from baseline. Generalized Linear Model with Generalized Estimating Equation method was used to assess whether baseline and change scores in clinical and psychosocial are associated with DRD over time. Complete data was available for 73 patients, with mean age 44 (SD 12.5) years and 67% males. Persistent DRD was experienced by 21% of the patients. In the final model, baseline HRQoL (OR = 0.56, p < 0.05) and change score of EDS (OR = 1.22, p < 0.05) was significantly associated with DRD over time. EDS might be a surrogate marker for persistent DRD and should be explored in larger samples of population to confirm the findings from this study.

  15. Properties of the relaxation time distribution underlying the Kohlrausch-Williams-Watts photoionization of the DX centers in Cd1-xMnxTe mixed crystals

    International Nuclear Information System (INIS)

    Trzmiel, J; Weron, K; Placzek-Popko, E; Janczura, J

    2009-01-01

    In this paper we clarify the relationship between the relaxation rate and relaxation time distributions underlying the Kohlrausch-Williams-Watts (KWW) photoconductivity build-ups in indium- and gallium-doped Cd 1-x Mn x Te mixed crystals. We discuss the role of asymptotic properties of the corresponding probability density functions. We show that the relaxation rate distribution, as a completely asymmetric α-stable distribution, leads to an infinite mean value of the effective relaxation rate. In contrast, the relaxation time distribution related to it leads to a finite mean value of the effective relaxation time. It follows from the experimental data analysis that for all the investigated samples the KWW exponent α decreases linearly with increasing photon flux in the range of (0.6-0.99) and its values are more spread in the case of gallium-doped material. We also observe a linear dependence of the mean relaxation time on the characteristic material time constant, which is consistent with the theoretical model.

  16. A biomarker-responsive T2ex MRI contrast agent.

    Science.gov (United States)

    Daryaei, Iman; Randtke, Edward A; Pagel, Mark D

    2017-04-01

    This study investigated a fundamentally new type of responsive MRI contrast agent for molecular imaging that alters T 2 exchange (T 2ex ) properties after interacting with a molecular biomarker. The contrast agent Tm-DO3A-oAA was treated with nitric oxide (NO) and O 2 . The R 1 and R 2 relaxation rates of the reactant and product were measured with respect to concentration, temperature, and pH. Chemical exchange saturation transfer (CEST) spectra of the reactant and product were acquired using a 7 Tesla (T) MRI scanner and analyzed to estimate the chemical exchange rates and r 2ex relaxivities. The reaction of Tm-DO3A-oAA with NO and O 2 caused a 6.4-fold increase in the r 2 relaxivity of the agent, whereas r 1 relaxivity remained unchanged, which demonstrated that Tm-DO3A-oAA is a responsive T 2ex agent. The effects of pH and temperature on the r 2 relaxivities of the reactant and product supported the conclusion that the product's benzimidazole ligand caused the agent to have a fast chemical exchange rate relative to the slow exchange rate of the reactant's ortho-aminoanilide ligand. T 2ex MRI contrast agents are a new type of responsive agent that have good detection sensitivity and specificity for detecting a biomarker, which can serve as a new tool for molecular imaging. Magn Reson Med 77:1665-1670, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  17. Liver, bone marrow, pancreas and pituitary gland iron overload in young and adult thalassemic patients: a T2 relaxometry study

    International Nuclear Information System (INIS)

    Argyropoulou, Maria I.; Astrakas, Loukas; Metafratzi, Zafiria; Efremidis, Stavros C.; Kiortsis, Dimitrios N.; Chalissos, Nikolaos

    2007-01-01

    Thirty-seven patients with β-thalassemia major, including 14 adolescents (15.2 ± 3.0 years) and 23 adults (26.4 ± 6.9 years), were studied. T2 relaxation time (T2) of the liver, bone marrow, pancreas and pituitary gland was measured in a 1.5-Tesla magnetic resonance (MR) imager, using a multiecho spin-echo sequence (TR/TE 2,000/20, 40, 60, 80, 100, 120, 140, 160 ms). Pituitary gland height was evaluated in a midline sagittal scan of a spin-echo sequence (TR/TE, 500/20 ms). The T2 of the pituitary gland was higher in adolescents (59.4 ± 15 ms) than in adults (45.3 ± 10.4 ms), P < 0.05. The T2 of the pancreas was lower in adolescents (43.6 ± 10.3 ms) than in adults (54.4 ± 10.4 ms). No difference among groups was found in the T2 of the liver and bone marrow. There was no significant correlation of the T2 among the liver, pancreas, pituitary gland and bone marrow. There was no significant correlation between serum ferritin and T2 of the liver, pancreas and bone marrow. Pituitary T2 showed a significant correlation with pituitary gland height (adolescents: R = 0.63, adults: R = 0.62, P < 0.05) and serum ferritin (adolescents: R = -0.60, adults: R = -0.50, P < 0.05). In conclusion, iron overload evaluated by T2 is organ specific. After adolescence, age-related T2 changes are predominantly associated with pituitary siderosis and fatty degeneration of the pancreas. Pituitary size decreases with progressing siderosis. (orig.)

  18. Liver, bone marrow, pancreas and pituitary gland iron overload in young and adult thalassemic patients: a T2 relaxometry study

    Energy Technology Data Exchange (ETDEWEB)

    Argyropoulou, Maria I.; Astrakas, Loukas; Metafratzi, Zafiria; Efremidis, Stavros C. [University of Ioannina, Department of Radiology, Medical School, Ioannina (Greece); Kiortsis, Dimitrios N. [University of Ioannina, Laboratory of Physiology, Medical School, Ioannina (Greece); Chalissos, Nikolaos [University of Ioannina, Department of Radiology, Medical School, Ioannina (Greece); University of Ioannina, Laboratory of Physiology, Medical School, Ioannina (Greece)

    2007-12-15

    Thirty-seven patients with {beta}-thalassemia major, including 14 adolescents (15.2 {+-} 3.0 years) and 23 adults (26.4 {+-} 6.9 years), were studied. T2 relaxation time (T2) of the liver, bone marrow, pancreas and pituitary gland was measured in a 1.5-Tesla magnetic resonance (MR) imager, using a multiecho spin-echo sequence (TR/TE 2,000/20, 40, 60, 80, 100, 120, 140, 160 ms). Pituitary gland height was evaluated in a midline sagittal scan of a spin-echo sequence (TR/TE, 500/20 ms). The T2 of the pituitary gland was higher in adolescents (59.4 {+-} 15 ms) than in adults (45.3 {+-} 10.4 ms), P < 0.05. The T2 of the pancreas was lower in adolescents (43.6 {+-} 10.3 ms) than in adults (54.4 {+-} 10.4 ms). No difference among groups was found in the T2 of the liver and bone marrow. There was no significant correlation of the T2 among the liver, pancreas, pituitary gland and bone marrow. There was no significant correlation between serum ferritin and T2 of the liver, pancreas and bone marrow. Pituitary T2 showed a significant correlation with pituitary gland height (adolescents: R = 0.63, adults: R = 0.62, P < 0.05) and serum ferritin (adolescents: R = -0.60, adults: R = -0.50, P < 0.05). In conclusion, iron overload evaluated by T2 is organ specific. After adolescence, age-related T2 changes are predominantly associated with pituitary siderosis and fatty degeneration of the pancreas. Pituitary size decreases with progressing siderosis. (orig.)

  19. The effect of timing of intravenous muscle relaxant on the quality of double-contrast barium enema

    International Nuclear Information System (INIS)

    Elson, E.M.; Elson, E.M.; Campbell, D.M.; Halligan, S.; Shaikh, I.; Davitt, S.; Bartram, C.I.

    2000-01-01

    AIM: To determine whether the timing of buscopan administration during double-contrast barium enema examination (DCBE) affects diagnostic quality. MATERIALS AND METHODS: In a prospective setting, 100 consecutive adult out-patients referred for DCBE received 20 mg buscopan (hyoscine-N-butylbromide) intravenously, either before infusion of barium suspension (Group A) or after barium infusion and gas insufflation (Group B). A subjective assessment of ease of contrast medium infusion was made at the time of examination and the films subsequently analysed by two radiologists unaware of the mode of relaxant administration, who noted the quality of mucosal coating and made subjective and objective measurements of segmental distension. RESULTS: There was no significant difference in screening times, infusion difficulty or colonic contrast medium coating between the two groups. Subjective assessment of distension of the caecum, ascending colon, transverse colon and rectum were not significantly different. Patients receiving intravenous relaxant after barium and gas infusion had less subjective descending (P = 0.05) and sigmoid (P = 0.04) colon distension, but there was no significant difference with respect to maximal bowel diameter in any of the segments measured. CONCLUSION: The timing of intravenous administration during DCBE is likely to have no significant effect on the diagnostic quality of the study. Elson, E.M. (2000)

  20. Measurement of the exchange rate of waters of hydration in elastin by 2D T2-T2 correlation nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Sun Cheng; Boutis, Gregory S

    2011-01-01

    We report on a direct measurement of the exchange rate of waters of hydration in elastin by T 2 -T 2 exchange spectroscopy. The exchange rates in bovine nuchal ligament elastin and aortic elastin at temperatures near, below and at the physiological temperature are reported here. Using an inverse Laplace transform (ILT) algorithm, we are able to identify four components in the relaxation times. While three of the components are in good agreement with previous measurements that used multi-exponential fitting, the ILT algorithm distinguishes a fourth component having relaxation times close to that of free water and is identified as water between fibers. With the aid of scanning electron microscopy, a model is proposed that allows for the application of a two-site exchange analysis between any two components for the determination of exchange rates between reservoirs. The results of the measurements support a model (described by Urry and Parker 2002 J. Muscle Res. Cell Motil. 23 543-59) wherein the net entropy of waters of hydration should increase with increasing temperature in the inverse temperature transition.

  1. Measurement of the Exchange Rate of Waters of Hydration in Elastin by 2D T(2)-T(2) Correlation Nuclear Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Sun, Cheng; Boutis, Gregory S

    2011-02-28

    We report on the direct measurement of the exchange rate of waters of hydration in elastin by T(2)-T(2) exchange spectroscopy. The exchange rates in bovine nuchal ligament elastin and aortic elastin at temperatures near, below and at the physiological temperature are reported. Using an Inverse Laplace Transform (ILT) algorithm, we are able to identify four components in the relaxation times. While three of the components are in good agreement with previous measurements that used multi-exponential fitting, the ILT algorithm distinguishes a fourth component having relaxation times close to that of free water and is identified as water between fibers. With the aid of scanning electron microscopy, a model is proposed allowing for the application of a two-site exchange analysis between any two components for the determination of exchange rates between reservoirs. The results of the measurements support a model (described elsewhere [1]) wherein the net entropy of bulk waters of hydration should increase upon increasing temperature in the inverse temperature transition.

  2. T2-mapping of the sacroiliac joints at 1.5 Tesla: a feasibility and reproducibility study.

    Science.gov (United States)

    Albano, Domenico; Chianca, Vito; Cuocolo, Renato; Bignone, Rodolfo; Ciccia, Francesco; Sconfienza, Luca Maria; Midiri, Massimo; Brunetti, Arturo; Lagalla, Roberto; Galia, Massimo

    2018-04-20

    To evaluate the reproducibility of T2 relaxation time measurements of the sacroiliac joints at 1.5 T. Healthy volunteers underwent an oblique axial multislice multiecho spin-echo sequence of the sacroiliac joints at 1.5 T. Regions of interest were manually drawn using a dedicated software by two musculoskeletal radiologists to include the cartilaginous part of the sacroiliac joints. A senior radiologist performed the measurement twice, while a resident measured once. Intra- and inter-observer reproducibility was tested using the Bland-Altman method. Association between sex and T2 relaxation times was tested using the Mann-Whitney U test. Correlation between T2 relaxation times and body mass index (BMI) was tested using the Spearman's rho. Eighty sacroiliac joints of 40 subjects (mean age: 28 ± 4.8 years, range: 20-43; mean BMI: 23.3 ± 3.1, range: 18.9-30) were imaged. The mean T2 values obtained by the senior radiologist in the first series of measurements were 42 ± 4.4 ms, whereas in the second series were 40.7 ± 4.5 ms. The mean T2 values obtained by the radiology resident were 41.1 ± 4.2 ms. Intra-observer reproducibility was 88% (coefficient of repeatability = 3.8; bias = 1.28; p sacroiliac joints seems to be highly reproducible at 1.5 T. Further studies could investigate the potential clinical application of this tool in the sacroiliac joints.

  3. NMR quantification of diffusional exchange in cell suspensions with relaxation rate differences between intra and extracellular compartments.

    Science.gov (United States)

    Eriksson, Stefanie; Elbing, Karin; Söderman, Olle; Lindkvist-Petersson, Karin; Topgaard, Daniel; Lasič, Samo

    2017-01-01

    Water transport across cell membranes can be measured non-invasively with diffusion NMR. We present a method to quantify the intracellular lifetime of water in cell suspensions with short transverse relaxation times, T2, and also circumvent the confounding effect of different T2 values in the intra- and extracellular compartments. Filter exchange spectroscopy (FEXSY) is specifically sensitive to exchange between compartments with different apparent diffusivities. Our investigation shows that FEXSY could yield significantly biased results if differences in T2 are not accounted for. To mitigate this problem, we propose combining FEXSY with diffusion-relaxation correlation experiment, which can quantify differences in T2 values in compartments with different diffusivities. Our analysis uses a joint constrained fitting of the two datasets and considers the effects of diffusion, relaxation and exchange in both experiments. The method is demonstrated on yeast cells with and without human aquaporins.

  4. Relationship between aging and T1 relaxation time in deep gray matter: A voxel-based analysis.

    Science.gov (United States)

    Okubo, Gosuke; Okada, Tomohisa; Yamamoto, Akira; Fushimi, Yasutaka; Okada, Tsutomu; Murata, Katsutoshi; Togashi, Kaori

    2017-09-01

    To investigate age-related changes in T 1 relaxation time in deep gray matter structures in healthy volunteers using magnetization-prepared 2 rapid acquisition gradient echoes (MP2RAGE). In all, 70 healthy volunteers (aged 20-76, mean age 42.6 years) were scanned at 3T magnetic resonance imaging (MRI). A MP2RAGE sequence was employed to quantify T 1 relaxation times. After the spatial normalization of T 1 maps with the diffeomorphic anatomical registration using the exponentiated Lie algebra algorithm, voxel-based regression analysis was conducted. In addition, linear and quadratic regression analyses of regions of interest (ROIs) were also performed. With aging, voxel-based analysis (VBA) revealed significant T 1 value decreases in the ventral-inferior putamen, nucleus accumbens, and amygdala, whereas T 1 values significantly increased in the thalamus and white matter as well (P time vary by location in deep gray matter. 2 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:724-731. © 2017 International Society for Magnetic Resonance in Medicine.

  5. Contact problem for a solid indenter and a viscoelastic half-space described by the spectrum of relaxation and retardation times

    Science.gov (United States)

    Stepanov, F. I.

    2018-04-01

    The mechanical properties of a material which is modeled by an exponential creep kernel characterized by a spectrum of relaxation and retardation times are studied. The research is carried out considering a contact problem for a solid indenter sliding over a viscoelastic half-space. The contact pressure, indentation depth of the indenter, and the deformation component of the friction coefficient are analyzed with respect to the case of half-space material modeled by single relaxation and retardation times.

  6. Anomalous NMR Relaxation in Cartilage Matrix Components and Native Cartilage: Fractional-Order Models

    Science.gov (United States)

    Magin, Richard L.; Li, Weiguo; Velasco, M. Pilar; Trujillo, Juan; Reiter, David A.; Morgenstern, Ashley; Spencer, Richard G.

    2011-01-01

    We present a fractional-order extension of the Bloch equations to describe anomalous NMR relaxation phenomena (T1 and T2). The model has solutions in the form of Mittag-Leffler and stretched exponential functions that generalize conventional exponential relaxation. Such functions have been shown by others to be useful for describing dielectric and viscoelastic relaxation in complex, heterogeneous materials. Here, we apply these fractional-order T1 and T2 relaxation models to experiments performed at 9.4 and 11.7 Tesla on type I collagen gels, chondroitin sulfate mixtures, and to bovine nasal cartilage (BNC), a largely isotropic and homogeneous form of cartilage. The results show that the fractional-order analysis captures important features of NMR relaxation that are typically described by multi-exponential decay models. We find that the T2 relaxation of BNC can be described in a unique way by a single fractional-order parameter (α), in contrast to the lack of uniqueness of multi-exponential fits in the realistic setting of a finite signal-to-noise ratio. No anomalous behavior of T1 was observed in BNC. In the single-component gels, for T2 measurements, increasing the concentration of the largest components of cartilage matrix, collagen and chondroitin sulfate, results in a decrease in α, reflecting a more restricted aqueous environment. The quality of the curve fits obtained using Mittag-Leffler and stretched exponential functions are in some cases superior to those obtained using mono- and bi-exponential models. In both gels and BNC, α appears to account for microstructural complexity in the setting of an altered distribution of relaxation times. This work suggests the utility of fractional-order models to describe T2 NMR relaxation processes in biological tissues. PMID:21498095

  7. MR imaging and T2 measurements in peripheral nerve repair with activation of Toll-like receptor 4 of neurotmesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiang; Zhang, Fang; Lu, Liejing; Li, Haojiang; Wen, Xuehua; Shen, Jun [Sun Yat-Sen University, Department of Radiology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong (China)

    2014-05-15

    To investigate the role of MR imaging in neurotmesis combined with surgical repair and Toll-like receptor 4 (TLR4) activation. Forty-eight rats received subepineurial microinjection of the TLR4 agonist lipopolysaccharide (LPS, n = 24) or phosphate buffered saline (PBS, n = 24) immediately after surgical repair of the transected sciatic nerve. Sequential fat-suppressed T2-weighted imaging and quantitative T2 measurements were obtained at 3, 7, 14 and 21 days after surgery, with histologic assessments performed at regular intervals. T2 relaxation times and histological quantification of the distal stumps were measured and compared. The distal stumps of transected nerves treated with LPS or PBS both showed persistent enlargement and hyperintense signal. T2 values of the distal stumps showed a rapid rise to peak level followed by a rapid decline pattern in nerves treated with LPS, while exhibiting a slow rise to peak value followed by a slow decline in nerves treated with PBS. Nerves treated with LPS exhibited more prominent macrophage recruitment, faster myelin debris clearance and more pronounced nerve regeneration. Nerves treated with TLR4 activation had a characteristic pattern of T2 value change over time. Longitudinal T2 measurements can be used to detect the enhanced repair effect associated with TLR4 activation in the surgical repair of neurotmesis. (orig.)

  8. Proton NMR relaxation in hydrous melts

    International Nuclear Information System (INIS)

    Braunstein, J.; Bacarella, A.L.; Benjamin, B.M.; Brown, L.L.; Girard, C.

    1976-01-01

    Pulse and continuous wave NMR measurements are reported for protons in hydrous melts of calcium nitrate at temperatures between -4 and 120 0 C. Although measured in different temperature ranges, spin-lattice (T 1 ) and spin-spin (T 2 ) relaxation times appear to be nearly equal to each other and proportional to the self-diffusion coefficients of solute metal cations such as Cd 2+ . At temperatures near 50 0 C, mean Arrhenius coefficients Δ H/sub T 1 / (kcal/mol) are 7.9, 7.3, and 4.8, respectively, for melts containing 2.8, 4.0, and 8.0 moles of water per mole of calcium nitrate, compared to 4.6 kcal/mol for pure water. Temperature dependence of T 1 and T 2 in Ca(NO 3 ) 2 -2.8 H 2 O between -4 and 120 0 C are non-Arrhenius and can be represented by a Fulcher-type equation with a ''zero mobility temperature'' (T 0 ) of 225 0 K, close to the value of T 0 for solute diffusion, electrical conductance and viscosity. Resolution of the relaxation rates into correlation times for intramolecular (rotational) and intermolecular (translational) diffusional motion is discussed in terms of the Bloembergen-Purcell-Pound and more recent models for dipolar relaxation

  9. Relaxation dynamics of the conductive processes for PbNb2O6 ferroelectric ceramics in the frequency and time domain

    International Nuclear Information System (INIS)

    Gonzalez, R L; Leyet, Y; Guerrero, F; Guerra, J de Los S; Venet, M; Eiras, J A

    2007-01-01

    The relaxation dynamics of the conductive process present in PbNb 2 O 6 piezoelectric ceramics was investigated. A relaxation function in the time domain, Φ(t), was found from the frequency dependence of the dielectric modulus (imaginary component, M'') by using a relaxation function in the frequency domain, F*(ω). The best relaxation function, F*(ω), was found to be a Cole-Cole distribution function, in which relaxation characteristic parameters, such as α and τ CC , are involved. On the other hand, the relaxation function, Φ(t), obtained by the time domain method, was found to be a Kohlrausch-Williams-Watts (KWW) function type. The thermal evolution of the characteristics parameters of the KWW function (β and τ*) was analysed. The values of the activation energy (E a ), obtained in the whole investigated temperature interval, suggest the existence of a relaxation mechanism (a conductive process), which may be interpreted by an ion hopping between neighbouring sites within the crystalline lattice. The results are corroborated with the formalism of the AC conductivity

  10. The Abridgment and Relaxation Time for a Linear Multi-Scale Model Based on Multiple Site Phosphorylation.

    Directory of Open Access Journals (Sweden)

    Shuo Wang

    Full Text Available Random effect in cellular systems is an important topic in systems biology and often simulated with Gillespie's stochastic simulation algorithm (SSA. Abridgment refers to model reduction that approximates a group of reactions by a smaller group with fewer species and reactions. This paper presents a theoretical analysis, based on comparison of the first exit time, for the abridgment on a linear chain reaction model motivated by systems with multiple phosphorylation sites. The analysis shows that if the relaxation time of the fast subsystem is much smaller than the mean firing time of the slow reactions, the abridgment can be applied with little error. This analysis is further verified with numerical experiments for models of bistable switch and oscillations in which linear chain system plays a critical role.

  11. Hyperpolarized 13C Urea Relaxation Mechanism Reveals Renal Changes in Diabetic Nephropathy

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Stokholm Nørlinger, Thomas; Christoffer Hansen, David

    2016-01-01

    Purpose: Our aim was to assess a novel 13C radial fast spin echo golden ratio single shot method for interrogating early renal changes in the diabetic kidney, using hyperpolarized (HP) [13C,15N2]urea as a T2 relaxation based contrast bio-probe. Methods: A novel HP 13C MR contrast experiment...... saturation level and the relaxation times were observed in the healthy controls. Conclusion: HP [13C,15N2]urea apparent T2 mapping may be a useful for interrogating local renal pO2 status and renal tissue alterations....

  12. Influence of delayed gadolinium enhanced MRI of cartilage (dGEMRIC) protocol on T2-mapping: is it possible to comprehensively assess knee cartilage composition in one post-contrast MR examination at 3 Tesla?

    Science.gov (United States)

    Verschueren, J; van Tiel, J; Reijman, M; Bron, E E; Klein, S; Verhaar, J A N; Bierma-Zeinstra, S M A; Krestin, G P; Wielopolski, P A; Oei, E H G

    2017-09-01

    To evaluate the possibility of assessing knee cartilage with T2-mapping and delayed gadolinium enhanced magnetic resonance imaging (MRI) of cartilage (dGEMRIC) in one post-contrast MR examination at 3 Tesla (T). T2 mapping was performed in 10 healthy volunteers at baseline; directly after baseline; after 10 min of cycling; and after 90 min delay, and in 16 osteoarthritis patients before and after intravenous administration of a double dose gadolinium dimeglumine contrast agent, reflecting key dGEMRIC protocol elements. Differences in T2 relaxation times between each timepoint and baseline were calculated for 6 cartilage regions using paired t tests or Wilcoxon signed-rank tests and the smallest detectable change (SDC). After cycling, a significant change in T2 relaxation times was found in the lateral weight-bearing tibial plateau (+1.0 ms, P = 0.04). After 90 min delay, significant changes were found in the lateral weight-bearing femoral condyle (+1.2 ms, P = 0.03) and the lateral weight-bearing tibial plateau (+1.3 ms, P = 0.01). In these regions of interests (ROIs), absolute differences were small and lower than the corresponding SDCs. T2-mapping after contrast administration only showed statistically significantly lower T2 relaxation times in the medial posterior femoral condyle (-2.4 ms, P T2 relaxation times that were not consistent and lower than the SDC in the majority of regions, our results suggest that T2-mapping and dGEMRIC can be performed reliably in a single imaging session to assess cartilage biochemical composition in knee osteoarthritis (OA) at 3 T. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  13. An in vitro comparative study of T2 and T2* mappings of human articular cartilage at 3-Tesla MRI using histology as the standard of reference

    International Nuclear Information System (INIS)

    Kim, Taehee; Park, Sunghoon; Min, Byoung-Hyun; Yoon, Seung-Hyun; Kim, Hakil; Lee, Hyun Young; Kwack, Kyu-Sung

    2014-01-01

    The aim of this study was to evaluate the correlations between T2 value, T2* value, and histological grades of degenerated human articular cartilage. T2 mapping and T2* mapping of nine tibial osteochondral specimens were obtained using a 3-T MRI after total knee arthroplasty. A total of 94 ROIs were analyzed. Histological grades were assessed using the David-Vaudey scale. Spearman's rho correlation analysis and Pearson's correlation analysis were performed. The mean relaxation values in T2 map with different histological grades (0, 1, 2) of the cartilage were 51.9 ± 9.2 ms, 55.8 ± 12.8 ms, and 59.6 ± 10.2 ms, respectively. The mean relaxation values in T2* map with different histological grades (0, 1, 2) of the cartilage were 20.3 ± 10.3 ms, 21.1 ± 12.4 ms, and 15.4 ± 8.5 ms, respectively. Spearman's rho correlation analysis confirmed a positive correlation between T2 value and histological grade (ρ = 0.313, p < 0.05). Pearson's correlation analysis revealed a significant negative correlation between T2 and T2* (r = -0.322, p < 0.05). Although T2* values showed a decreasing trend with an increase in cartilage degeneration, this correlation was not statistically significant in this study (ρ = -0.192, p = 0.129). T2 mapping was correlated with histological degeneration, and it may be a good biomarker for osteoarthritis in human articular cartilage. However, the strength of the correlation was weak (ρ = 0.313). Although T2* values showed a decreasing trend with an increase in cartilage degeneration, the correlation was not statistically significant. Therefore, T2 mapping may be more appropriate for the initial diagnosis of articular cartilage degeneration in the knee joint. Further studies on T2* mapping are needed to confirm its reliability and mechanism in cartilage degeneration. (orig.)

  14. Dielectric dispersion, relaxation dynamics and thermodynamic studies of Beta-Alanine in aqueous solutions using picoseconds time domain reflectometry

    Science.gov (United States)

    Vinoth, K.; Ganesh, T.; Senthilkumar, P.; Sylvester, M. Maria; Karunakaran, D. J. S. Anand; Hudge, Praveen; Kumbharkhane, A. C.

    2017-09-01

    The aqueous solution of beta-alanine characterised and studied by their dispersive dielectric properties and relaxation process in the frequency domain of 10×106 Hz to 30×109 Hz with varying concentration in mole fractions and temperatures. The molecular interaction and dielectric parameters are discussed in terms of counter-ion concentration theory. The static permittivity (ε0), high frequency dielectric permittivity (ε∞) and excess dielectric parameters are accomplished by frequency depended physical properties and relaxation time (τ). Molecular orientation, ordering and correlation factors are reported as confirmation of intermolecular interactions. Ionic conductivity and thermo dynamical properties are concluded with the behaviour of the mixture constituents. Solute-solvent, solute-solute interaction, structure making and breaking abilities of the solute in aqueous medium are interpreted. Fourier Transform Infrared (FTIR) spectra of beta- alanine single crystal and liquid state have been studied. The 13C Nuclear Magnetic Resonance (NMR) spectral studies give the signature for resonating frequencies and chemical shifts of beta-alanine.

  15. Three-dimensional simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model

    Directory of Open Access Journals (Sweden)

    Song-Gui Chen

    2016-01-01

    Full Text Available This paper presents a three-dimensional (3D parallel multiple-relaxation-time lattice Boltzmann model (MRT-LBM for Bingham plastics which overcomes numerical instabilities in the simulation of non-Newtonian fluids for the Bhatnagar–Gross–Krook (BGK model. The MRT-LBM and several related mathematical models are briefly described. Papanastasiou’s modified model is incorporated for better numerical stability. The impact of the relaxation parameters of the model is studied in detail. The MRT-LBM is then validated through a benchmark problem: a 3D steady Poiseuille flow. The results from the numerical simulations are consistent with those derived analytically which indicates that the MRT-LBM effectively simulates Bingham fluids but with better stability. A parallel MRT-LBM framework is introduced, and the parallel efficiency is tested through a simple case. The MRT-LBM is shown to be appropriate for parallel implementation and to have high efficiency. Finally, a Bingham fluid flowing past a square-based prism with a fixed sphere is simulated. It is found the drag coefficient is a function of both Reynolds number (Re and Bingham number (Bn. These results reveal the flow behavior of Bingham plastics.

  16. Meniscal T1rho and T2 measured with 3.0T MRI increases directly after running a marathon

    Energy Technology Data Exchange (ETDEWEB)

    Stehling, Christoph [University of California, Musculoskeletal and Quantitative Imaging Group (MQIR), Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); University of Muenster, Department of Clinical Radiology, Muenster (Germany); Luke, Anthony [University of California, Department of Orthopedic Surgery, San Francisco, CA (United States); Stahl, Robert [University of California, Musculoskeletal and Quantitative Imaging Group (MQIR), Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Ludwig Maximilians University of Munich, Department of Clinical Radiology, Munich (Germany); Baum, Thomas; Joseph, Gabby; Pan, Judong; Link, Thomas M. [University of California, Musculoskeletal and Quantitative Imaging Group (MQIR), Department of Radiology and Biomedical Imaging, San Francisco, CA (United States)

    2011-06-15

    To prospectively evaluate changes in T1rho and T2 relaxation time in the meniscus using 3.0 T MRI in asymptomatic knees of marathon runners and to compare these findings with those of age-matched healthy subjects. Thirteen marathon runners underwent 3.0 T MRI including T1rho and T2 mapping sequences before, 48-72 h after, and 3 months after competition. Ten controls were examined at baseline and after 3 months. All images were analyzed by two musculoskeletal radiologists identifying and grading cartilage, meniscal, ligamentous. and other knee abnormalities with WORMS scores. Meniscal segmentation was performed to generate T1rho and T2 maps in six compartments. No differences in morphological knee abnormalities were found before and after the marathon. However, all marathon runners showed a significant increase in T1rho and T2 values after competition in all meniscus compartments (p < 0.0001), which may indicate changes in the biochemical composition of meniscal tissue. While T2 values decreased after 3 months T1rho values remained at a high level, indicating persisting changes in the meniscal matrix composition after a marathon. T2 values in menisci have the potential to be used as biomarkers for identifying reversible meniscus matrix changes indicating potential tissue damage. T1rho values need further study, but may be a valuable marker for diagnosing early, degenerative changes in the menisci following exercise. (orig.)

  17. Mechanical relaxation in glasses

    International Nuclear Information System (INIS)

    Hiki, Y.

    2004-01-01

    The basic properties of glasses and the characteristics of mechanical relaxation in glasses were briefly reviewed, and then our studies concerned were presented. Experimental methods adopted were viscosity, internal friction, ultrasonic attenuation, and Brillouin scattering measurements. The specimens used were several kinds of inorganic, organic, and metallic glasses. The measurements were mainly carried out from the room temperature up to the glass transition temperature, and the relaxation time was determined as a function of temperature. The 'double relaxation' composed of two Arrhenius-type relaxations was observed in many materials. In both relaxations, the 'compensation effect' showing a correlation of the pre-exponential factor and the activation energy was observed. These results were explained by considering the 'complex relaxation' due to cooperative motions of atoms or group of atoms. Values of activation energy near the glass transition determined by the various experimental methods were compared with each other

  18. Real T1 relaxation time measurement and diurnal variation analysis of intervertebral discs in a healthy population of 50 volunteers

    International Nuclear Information System (INIS)

    Galley, J.; Maestretti, G.; Koch, G.; Hoogewoud, H-M.

    2017-01-01

    Purpose: To measure the real T1 relaxation time of the lumbar intervertebral discs in a young and healthy population, using different inversion recovery times, and assess diurnal variation. Material and methods: Intervertebral discs from D12 to S1 of 50 healthy volunteers from 18 to 25 years old were evaluated twice the same day, in the morning and in the late afternoon. Dedicated MRI sequences with different inversion recovery times (from 100 to 2500 ms) were used to calculate the real T1 relaxation time. Three regions of interest (ROIs) were defined in each disc, the middle representing the nucleus pulposus (NP) and the outer parts the annulus fibrosus (AF) anterior and posterior. Diurnal variation and differences between each disc level were analyzed. Results: T1 mean values in the NP were 1142 ± 12 ms in the morning and 1085 ± 13 ms in the afternoon, showing a highly significant decrease of 57 ms (p < 0.001). A highly significant difference between the levels of the spine was found. The mean T1 of the anterior part of the AF was 577 ± 9 ms in the morning and 554 ± 8 ms in the afternoon. For the posterior part, the mean values were 633 ± 8 ms in the morning and 581 ± 7 ms in the evening. It shows a highly significant decrease of 23 ms for the anterior part and 51 ms for the posterior part (all p < 0.001). Conclusion: T1 mapping is a promising method of intervertebral disc evaluation. Significant diurnal variation and difference between levels of the lumbar spine were demonstrated. A potential use for longitudinal study in post-operative follow up or sport medicine needs to be evaluated.

  19. Real T1 relaxation time measurement and diurnal variation analysis of intervertebral discs in a healthy population of 50 volunteers

    Energy Technology Data Exchange (ETDEWEB)

    Galley, J., E-mail: galleyjulien@gmail.com [Department of Radiology, HFR Fribourg, Hôpital Cantonal (Switzerland); Maestretti, G. [Department of Orthopedic Surgery, HFR Fribourg, Hôpital Cantonal (Switzerland); Koch, G.; Hoogewoud, H-M. [Department of Radiology, HFR Fribourg, Hôpital Cantonal (Switzerland)

    2017-02-15

    Purpose: To measure the real T1 relaxation time of the lumbar intervertebral discs in a young and healthy population, using different inversion recovery times, and assess diurnal variation. Material and methods: Intervertebral discs from D12 to S1 of 50 healthy volunteers from 18 to 25 years old were evaluated twice the same day, in the morning and in the late afternoon. Dedicated MRI sequences with different inversion recovery times (from 100 to 2500 ms) were used to calculate the real T1 relaxation time. Three regions of interest (ROIs) were defined in each disc, the middle representing the nucleus pulposus (NP) and the outer parts the annulus fibrosus (AF) anterior and posterior. Diurnal variation and differences between each disc level were analyzed. Results: T1 mean values in the NP were 1142 ± 12 ms in the morning and 1085 ± 13 ms in the afternoon, showing a highly significant decrease of 57 ms (p < 0.001). A highly significant difference between the levels of the spine was found. The mean T1 of the anterior part of the AF was 577 ± 9 ms in the morning and 554 ± 8 ms in the afternoon. For the posterior part, the mean values were 633 ± 8 ms in the morning and 581 ± 7 ms in the evening. It shows a highly significant decrease of 23 ms for the anterior part and 51 ms for the posterior part (all p < 0.001). Conclusion: T1 mapping is a promising method of intervertebral disc evaluation. Significant diurnal variation and difference between levels of the lumbar spine were demonstrated. A potential use for longitudinal study in post-operative follow up or sport medicine needs to be evaluated.

  20. Characterization of dynamics in complex lyophilized formulations: I. Comparison of relaxation times measured by isothermal calorimetry with data estimated from the width of the glass transition temperature region.

    Science.gov (United States)

    Chieng, Norman; Mizuno, Masayasu; Pikal, Michael

    2013-10-01

    The purposes of this study are to characterize the relaxation dynamics in complex freeze dried formulations and to investigate the quantitative relationship between the structural relaxation time as measured by thermal activity monitor (TAM) and that estimated from the width of the glass transition temperature (ΔT(g)). The latter method has advantages over TAM because it is simple and quick. As part of this objective, we evaluate the accuracy in estimating relaxation time data at higher temperatures (50 °C and 60 °C) from TAM data at lower temperature (40 °C) and glass transition region width (ΔT(g)) data obtained by differential scanning calorimetry. Formulations studied here were hydroxyethyl starch (HES)-disaccharide, HES-polyol, and HES-disaccharide-polyol at various ratios. We also re-examine, using TAM derived relaxation times, the correlation between protein stability (human growth hormone, hGH) and relaxation times explored in a previous report, which employed relaxation time data obtained from ΔT(g). Results show that most of the freeze dried formulations exist in single amorphous phase, and structural relaxation times were successfully measured for these systems. We find a reasonably good correlation between TAM measured relaxation times and corresponding data obtained from estimates based on ΔT(g), but the agreement is only qualitative. The comparison plot showed that TAM data are directly proportional to the 1/3 power of ΔT(g) data, after correcting for an offset. Nevertheless, the correlation between hGH stability and relaxation time remained qualitatively the same as found with using ΔT(g) derived relaxation data, and it was found that the modest extrapolation of TAM data to higher temperatures using ΔT(g) method and TAM data at 40 °C resulted in quantitative agreement with TAM measurements made at 50 °C and 60 °C, provided the TAM experiment temperature, is well below the Tg of the sample. Copyright © 2013 Elsevier B.V. All rights

  1. Time dependence of volcano inflation: mass influx or viscoelastic relaxation? Insights from Grímsvötn volcano, Iceland

    Science.gov (United States)

    Segall, P.

    2017-12-01

    Distinguishing magma chamber pressurization from relaxation of a viscoelastic aureole surrounding the chamber based on geodetic measurements has remained challenging. Elastic models with mass inflow proportional to the pressure difference between the chamber and a deep reservoir predict exponentially decaying flux. For a spherical chamber surrounded by a Maxwell viscoelastic shell with pressure dependent recharge, the surface deformation is the sum of two exponentials (Segall, 2016). GPS displacements following eruptions of Grímsvötn, Iceland in 2004 and 2011 exhibit rapid post-eruptive inflation (time scale of 0.1 yr), followed by inflation with a much longer time constant. Markov Chain Monte Carlo inversion with the viscoelastic model shows the GPS time series can be fit with viscosity of 2e16 Pa-s, and a relatively incompressible magma, B = beta_c/ (beta_m + beta_c) > 0.6, where beta_m and beta_c are chamber and magma compressibility. The latter appears to conflict with the ratio of erupted volume to geodetically inferred source volume change, rv 10, obtained for the best fitting spherical (Mogi ) source (Hreinsdóttir, 2014). Since rv = 1/B, this implies a relatively compressible melt, B 0.1. Reexamination of the co-eruptive GPS and tilt data with the more general ellipsoidal model of Cervelli (2013), reveals that the best fitting sources are oblate (b/a 3), deeper, and with larger volume changes, rv 3, relative to spherical models. Oblate magma chambers are consistent with seismic tomography. FEM calculations including free surface effects lead to even larger co-eruptive volume changes, smaller rv and hence larger B. I conclude that the data are consistent with rapid post-eruptive inflation driven by viscoelastic relaxation with a relatively incompressible magma, although other interpretations will be discussed.

  2. A weighted multiple-relaxation-time lattice Boltzmann method for multiphase flows and its application to partial coalescence cascades

    Science.gov (United States)

    Fakhari, Abbas; Bolster, Diogo; Luo, Li-Shi

    2017-07-01

    We present a lattice Boltzmann method (LBM) with a weighted multiple-relaxation-time (WMRT) collision model and an adaptive mesh refinement (AMR) algorithm for direct numerical simulation of two-phase flows in three dimensions. The proposed WMRT model enhances the numerical stability of the LBM for immiscible fluids at high density ratios, particularly on the D3Q27 lattice. The effectiveness and efficiency of the proposed WMRT-LBM-AMR is validated through simulations of (a) buoyancy-driven motion and deformation of a gas bubble rising in a viscous liquid; (b) the bag-breakup mechanism of a falling drop; (c) crown splashing of a droplet on a wet surface; and (d) the partial coalescence mechanism of a liquid drop at a liquid-liquid interface. The numerical simulations agree well with available experimental data and theoretical approximations where applicable.

  3. Multi-relaxation-time Lattice Boltzman model for uniform-shear flow over a rotating circular cylinder

    Directory of Open Access Journals (Sweden)

    Nemati Hasan

    2011-01-01

    Full Text Available A numerical investigation of the two-dimensional laminar flow and heat transfer a rotating circular cylinder with uniform planar shear, where the free-stream velocity varies linearly across the cylinder using Multi-Relaxation-Time Lattice Boltzmann method is conducted. The effects of variation of Reynolds number, rotational speed ratio at shear rate 0.1, blockage ratio 0.1 and Prandtl number 0.71 are studied. The Reynolds number changing from 50 to 160 for three rotational speed ratios of 0, 0.5, 1 is investigated. Results show that flow and heat transfer depends significantly on the rotational speed ratio as well as the Reynolds number. The effect of Reynolds number on the vortex-shedding frequency and period-surface Nusselt numbers is overall very strong compared with rotational speed ratio. Flow and heat conditions characteristics such as lift and drag coefficients, Strouhal number and Nusselt numbers are studied.

  4. Three-dimensional multi-relaxation-time lattice Boltzmann front-tracking method for two-phase flow

    International Nuclear Information System (INIS)

    Xie Hai-Qiong; Zeng Zhong; Zhang Liang-Qi

    2016-01-01

    We developed a three-dimensional multi-relaxation-time lattice Boltzmann method for incompressible and immiscible two-phase flow by coupling with a front-tracking technique. The flow field was simulated by using an Eulerian grid, an adaptive unstructured triangular Lagrangian grid was applied to track explicitly the motion of the two-fluid interface, and an indicator function was introduced to update accurately the fluid properties. The surface tension was computed directly on a triangular Lagrangian grid, and then the surface tension was distributed to the background Eulerian grid. Three benchmarks of two-phase flow, including the Laplace law for a stationary drop, the oscillation of a three-dimensional ellipsoidal drop, and the drop deformation in a shear flow, were simulated to validate the present model. (paper)

  5. Duchenne muscular dystrophy carriers. Proton spin-lattice relaxation times of skeletal muscles on magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, K.; Nakano, I. (Shimoshizu National Hospital, Chiba (Japan). Dept. of Neurology); Fukuda, N.; Ikehira, H.; Tateno, Y. (National Inst. of Radiological Sciences, Chiba (Japan). Div. of Clinical Research); Aoki, Y. (National Inst. of Radiological Sciences, Chiba (Japan))

    1989-11-01

    By means of magnetic resonance imaging (MRI), the proton spin-lattice relaxation times (T1 values) of the skeletal muscles were measured in Duchenne muscular dystrophy (DMD) carriers and normal controls. The bound water fraction (BWF) was calculated from the T1 values obtained, according to the fast proton diffusion model. In the DMD carriers, T1 values of the gluteus maximus and quadriceps femoris muscles were significantly higher, and BWFs of these muscles were significantly lower than in normal control. Degenerative muscular changes accompanied by interstitial edema were presumed responsible for this abnormality. No correlation was observed between the muscle T1 and serum creatine kinase values. The present study showed that MRI could be a useful method for studying the dynamic state of water in both normal and pathological skeletal muscles. Its possible utility for DMD carrier detection was discussed briefly. (orig.).

  6. Measurement of solute proton spin-lattice relaxation times in water using the 1,3,3,1 sequence

    International Nuclear Information System (INIS)

    Sankar, S.S.; Mole, P.A.; Coulson, R.L.

    1986-01-01

    1 H NMR spin-lattice relaxation times (T1) of the N-CH3 proton resonances of phosphocreatine (PCr) and creatine (Cr) in water solutions were obtained using the 1,3,3,1 pulse sequence. These T1 values were equivalent to those obtained in D 2 O and water using either the conventional inversion-recovery experiment or the 1,3,3,1 pulse sequence. Thus, the 1,3,3,1 sequence of proton NMR can provide an independent means along with phosphorous NMR for assess PCr and for the study of the creatine kinase reaction (PCr + ADP in equilibrium ATP + Cr) in aqueous solutions and perhaps in biological preparations

  7. Results from T2K

    International Nuclear Information System (INIS)

    Di Luise, S.

    2014-01-01

    T2K is an off-axis long baseline neutrino oscillation experiment designed to measure the θ 13 mixing parameter through the observation of ν e appearance in a ν μ beam. Concurrent measurement of ν μ disappearance allows refined measurements of the atmospheric Δm 23 2 and of the θ 23 mixing parameters. Analysis of data taken from January 2010 to March 2011 led to the first indication to ν μ → ν e appearance, it means θ 13 ≠ 0 (2.5σ significance), opening the way to CP violation searches in the leptonic sector. Measurement for ν μ disappearance were performed as well. Data taking restarted in March 2012 at higher intensities. Results, data taking status and future plans will be discussed. (author)

  8. Truncation of the many body hierarchy and relaxation times in the McKean model

    International Nuclear Information System (INIS)

    Schmitt, K.J.

    1987-01-01

    In the McKean model the BBGKY-hierarchy is equivalent to a simple hierarchy of coupled equations for the p-particle correlation functions. Truncation effects and the convergence of the one-particle distribution towards its exact shape have been studied. In the long time limit the equations can be solved in a closed form. It turns out that the p-particle correlation decays p-times faster than the non-equilibrium one-particle distribution

  9. TRUNCATION OF THE MANY BODY HIERARCHY AND RELAXATION TIMES IN THE McKEAN MODEL

    OpenAIRE

    Schmitt , K.-J.

    1987-01-01

    In the McKean model the BBGKY-hierarchy is equivalent to a simple hierarchy of coupled equations for the p-particle correlation functions. Truncation effects and the convergence of the one-particle distribution towards its exact shape have been studied. In the long time limit the equations can be solved in a closed form. It turns out that the p-particle correlation decays p-times faster than the non-equilibrium one-particle distribution.

  10. New results from T2K

    Science.gov (United States)

    Longhin, A.

    2017-12-01

    The T2K experiment is a 295-km long-baseline neutrino experiment in Japan employing an off-axis muon neutrino beam with a 0.6 GeV peak energy. The beam, produced from 30-GeV protons at the J-PARC complex on the Pacific coast, is directed to the Super-Kamiokande detector. T2K released the first long-baseline measurement of a nonzero value for the θ13 mixing parameter through the observation of electron neutrino appearance (vµ → ve) and produced the most precise measurement of θ23 through the observation of muon neutrino disappearance (vµ → vµ). T2K data, in combination with reactor experiments, also excludes at 90% C.L. a significant region of the Dirac CP phase: δCP -0.49(-0.98) for the normal (inverted) hierarchy. A full joint appearance and disappearance fit including both neutrino (7×1020 protons on target, PoT) and anti-neutrino (4 × 1020 PoT) data and, for the first time, a constraint from water target data in the near detector, is presented yielding improved sensitivity on δCP and improved precision on sin2 2θ23 and the atmospheric mass splitting.

  11. Process of advective diffusive enrichment using differential gradients and the effects of variations in relaxation times

    International Nuclear Information System (INIS)

    Suarez Antola R.; Bernasconi, G.; Bertolotti, Angel

    1995-01-01

    A multicomponent solution is considered in advective diffusion chambers between two half-permeable barriers. A mathematical model is developed to calculate the concentration fields in the chamber. A new enrichment process is proposed and assessed using a digital simulation of space-time dynamics, based on the analytical solution of the model

  12. The time-local view of nonequilibrium statistical mechanics. I. Linear theory of transport and relaxation

    Science.gov (United States)

    der, R.

    1987-01-01

    The various approaches to nonequilibrium statistical mechanics may be subdivided into convolution and convolutionless (time-local) ones. While the former, put forward by Zwanzig, Mori, and others, are used most commonly, the latter are less well developed, but have proven very useful in recent applications. The aim of the present series of papers is to develop the time-local picture (TLP) of nonequilibrium statistical mechanics on a new footing and to consider its physical implications for topics such as the formulation of irreversible thermodynamics. The most natural approach to TLP is seen to derive from the Fourier-Laplace transformwidetilde{C}(z)) of pertinent time correlation functions, which on the physical sheet typically displays an essential singularity at z=∞ and a number of macroscopic and microscopic poles in the lower half-plane corresponding to long- and short-lived modes, respectively, the former giving rise to the autonomous macrodynamics, whereas the latter are interpreted as doorway modes mediating the transfer of information from relevant to irrelevant channels. Possible implications of this doorway mode concept for socalled extended irreversible thermodynamics are briefly discussed. The pole structure is used for deriving new kinds of generalized Green-Kubo relations expressing macroscopic quantities, transport coefficients, e.g., by contour integrals over current-current correlation functions obeying Hamiltonian dynamics, the contour integration replacing projection. The conventional Green-Kubo relations valid for conserved quantities only are rederived for illustration. Moreover,widetilde{C}(z) may be expressed by a Laurent series expansion in positive and negative powers of z, from which a rigorous, general, and straightforward method is developed for extracting all macroscopic quantities from so-called secularly divergent expansions ofwidetilde{C}(z) as obtained from the application of conventional many-body techniques to the calculation

  13. T2 relaxometry of brain in myotonic dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Di Costanzo, A.; Bonavita, V.; Tedeschi, G. [Inst. of Neurological Sciences, 2. Univ. of Naples (Italy); Di Salle, F. [Dept. of Biomorphological and Functional Sciences, Univ. ' ' Federico II' ' , Naples (Italy); Santoro, L. [Dept. of Neurological Sciences, University ' ' Federico II' ' , Naples (Italy)

    2001-03-01

    We investigated the nature and extent of brain involvement in myotonic dystrophy (DM), examining possible T2 relaxation abnormalities in the brain of 20 patients with adult-onset DM and 20 sex- and age-matched normal controls. Brain MRI was performed at 0.5 T, and T2 values were calculated from signal intensity in two echoes. Regions of interest included: frontal, parietal, temporal, occipital and callosal (rostral and splenial) normal-appearing white matter; frontal, occipital, insular and hippocampal cortex; caudate nucleus, putamen, globus pallidus and thalamus. All white-matter and occipital and right frontal cortex regions showed a significantly longer T2 in the patients. Multiple regression analysis, including grey- and white-matter T2 as dependent variables, plus age at onset and at imaging, disease duration, muscular disability, brain atrophy and CTG trinucleotide repeats as independent variables, revealed that only white-matter T2 elongation and disease duration correlated positively. White-matter involvement in DM is more extensive than previously reported by MRI and neuropathological studies and seems to be progressive in the course of disease. (orig.)

  14. T2 relaxometry of brain in myotonic dystrophy

    International Nuclear Information System (INIS)

    Di Costanzo, A.; Bonavita, V.; Tedeschi, G.; Di Salle, F.; Santoro, L.

    2001-01-01

    We investigated the nature and extent of brain involvement in myotonic dystrophy (DM), examining possible T2 relaxation abnormalities in the brain of 20 patients with adult-onset DM and 20 sex- and age-matched normal controls. Brain MRI was performed at 0.5 T, and T2 values were calculated from signal intensity in two echoes. Regions of interest included: frontal, parietal, temporal, occipital and callosal (rostral and splenial) normal-appearing white matter; frontal, occipital, insular and hippocampal cortex; caudate nucleus, putamen, globus pallidus and thalamus. All white-matter and occipital and right frontal cortex regions showed a significantly longer T2 in the patients. Multiple regression analysis, including grey- and white-matter T2 as dependent variables, plus age at onset and at imaging, disease duration, muscular disability, brain atrophy and CTG trinucleotide repeats as independent variables, revealed that only white-matter T2 elongation and disease duration correlated positively. White-matter involvement in DM is more extensive than previously reported by MRI and neuropathological studies and seems to be progressive in the course of disease. (orig.)

  15. Time-dependent entropy evolution in microscopic and macroscopic electromagnetic relaxation

    International Nuclear Information System (INIS)

    Baker-Jarvis, James

    2005-01-01

    This paper is a study of entropy and its evolution in the time and frequency domains upon application of electromagnetic fields to materials. An understanding of entropy and its evolution in electromagnetic interactions bridges the boundaries between electromagnetism and thermodynamics. The approach used here is a Liouville-based statistical-mechanical theory. I show that the microscopic entropy is reversible and the macroscopic entropy satisfies an H theorem. The spectral entropy development can be very useful for studying the frequency response of materials. Using a projection-operator based nonequilibrium entropy, different equations are derived for the entropy and entropy production and are applied to the polarization, magnetization, and macroscopic fields. I begin by proving an exact H theorem for the entropy, progress to application of time-dependent entropy in electromagnetics, and then apply the theory to relevant applications in electromagnetics. The paper concludes with a discussion of the relationship of the frequency-domain form of the entropy to the permittivity, permeability, and impedance

  16. A statistical correlation investigation for the role of surface spins to the spin relaxation of nitrogen vacancy centers

    Directory of Open Access Journals (Sweden)

    Xuerui Song

    2014-04-01

    Full Text Available We investigated the influence of spins on surface of nanodiamonds (NDs to the longitudinal relaxation time (T1 and transverse relaxation time (T2 of nitrogen vacancy (NV centers in ND. A spherical model of the NDs was suggested to account for the experimental results of T1 and T2, and the density of surface spins was roughly estimated based on the statistical analysis of experimental results of 72 NDs containing a single NV center. For NDs studied here, the T1 of NV center inside is highly dependent to the surface spins of the NDs. However, for the T2 of NV center, intrinsic contributions must be much pronounced than that by surface spins. In other words, T1 of an NV center in NDs is more sensitive to the change of the surface spin density than T2.

  17. In vivo deformation of thin cartilage layers: Feasibility and applicability of T2* mapping.

    Science.gov (United States)

    Van Ginckel, Ans; Witvrouw, Erik E

    2016-05-01

    The objectives of this study were as follows: (i) to assess segmentation consistency and scan precision of T2* mapping of human tibio-talar cartilage, and (ii) to monitor changes in T2* relaxation times of ankle cartilage immediately following a clinically relevant in vivo exercise and during recovery. Using multi-echo gradient recalled echo sequences, averaged T2* values were calculated for tibio-talar cartilage layers in 10 healthy volunteers. Segmentation consistency and scan precision were determined from two repeated segmentations and two repeated acquisitions with repositioning, respectively. Subsequently, acute in vivo cartilage loading responses were monitored by calculating averaged tibio-talar T2* values at rest, immediately after (i.e., deformation) and at 15 min (i.e., recovery) following a 30-repetition knee bending exercise. Precision errors attained 4-6% with excellent segmentation consistency point estimates (i.e., intra-rater ICC of 0.95) and acceptable limits of confidence. At deformation, T2* values were increased in both layers [+16.1 (10.7)%, p = 0.004 and +17.3 (15.3)%, p = 0.023, for the talus and tibia, respectively] whereas during recovery no significant changes could be established when comparing to baseline [talar cartilage: +5.2 (8.2)%, p = 0.26 and tibial cartilage: +6.6 (10.4)%, p = 0.23]. T2* mapping is a viable method to monitor deformational behavior in thin cartilage layers such as ankle cartilage. Longitudinal changes in T2* can be reliably appraised and require at least 4-6% differences to ascertain statistical significance. The ability to detect considerable change even after non-strenuous loading events, endorses T2* mapping as an innovative method to evaluate the effects of therapeutic exercise on thin cartilage layers. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:771-778, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  18. Simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model

    Science.gov (United States)

    Chen, SongGui; Sun, QiCheng; Jin, Feng; Liu, JianGuo

    2014-03-01

    Fresh cement mortar is a type of workable paste, which can be well approximated as a Bingham plastic and whose flow behavior is of major concern in engineering. In this paper, Papanastasiou's model for Bingham fluids is solved by using the multiplerelaxation-time lattice Boltzmann model (MRT-LB). Analysis of the stress growth exponent m in Bingham fluid flow simulations shows that Papanastasiou's model provides a good approximation of realistic Bingham plastics for values of m > 108. For lower values of m, Papanastasiou's model is valid for fluids between Bingham and Newtonian fluids. The MRT-LB model is validated by two benchmark problems: 2D steady Poiseuille flows and lid-driven cavity flows. Comparing the numerical results of the velocity distributions with corresponding analytical solutions shows that the MRT-LB model is appropriate for studying Bingham fluids while also providing better numerical stability. We further apply the MRT-LB model to simulate flow through a sudden expansion channel and the flow surrounding a round particle. Besides the rich flow structures obtained in this work, the dynamics fluid force on the round particle is calculated. Results show that both the Reynolds number Re and the Bingham number Bn affect the drag coefficients C D , and a drag coefficient with Re and Bn being taken into account is proposed. The relationship of Bn and the ratio of unyielded zone thickness to particle diameter is also analyzed. Finally, the Bingham fluid flowing around a set of randomly dispersed particles is simulated to obtain the apparent viscosity and velocity fields. These results help simulation of fresh concrete flowing in porous media.

  19. Reversed-field pinch experiments in EXTRAP T2R with a resistive shell boundary

    International Nuclear Information System (INIS)

    Malmberg, J.-A.; Cecconello, M.; Brunsell, P.R.; Yadikin, D.; Drake, J.R.

    2003-01-01

    The EXTRAP T2R reversed-field pinch has a resistive shell with a magnetic penetration time of 6 ms. This time is intermediate between the dynamo/relaxation cycle time scale (<2ms) and the pulse length (∼20ms). The resonant tearing modes do not wall-lock. They rotate with angular phase velocities in the range of 20 to 600 krad/s. As a result of the rotation the radial component of the perturbations at the shell from the resonant modes is suppressed. Non-resonant (resistive-wall) kink modes are unstable and their linear growth rates have been measured. The measured growth rates follow the trend expected from theoretical estimates for a range of equilibrium parameters. Furthermore, when the resonant modes are rotating, the loop voltage and confinement parameters have values comparable to those of a conducting shell RFP. The poloidal beta is around 10% for a range of current and density. (author)

  20. Simultaneous multislice triple-echo steady-state (SMS-TESS) T1 , T2 , PD, and off-resonance mapping in the human brain.

    Science.gov (United States)

    Heule, Rahel; Celicanin, Zarko; Kozerke, Sebastian; Bieri, Oliver

    2018-02-21

    To investigate the ability of simultaneous multislice triple-echo steady-state (SMS-TESS) imaging to provide quantitative maps of multiple tissue parameters, i.e., longitudinal and transverse relaxation times (T 1 and T 2 ), proton density (PD), and off-resonance (ΔB 0 ), in the human brain at 3T from a single scan. TESS acquisitions were performed in 2D mode to reduce motion sensitivity and accelerated by an SMS excitation scheme (CAIPIRINHA) with SENSE reconstruction. SMS-acceleration factors (R) of 2 and 4 were evaluated. The in vitro and in vivo validation process included standard reference scans to analyze the accuracy of T 1 , T 2 , and ΔB 0 estimates, as well as single-slice TESS measurements. For R = 2, the quantification of T 1 , T 2 , PD, and ΔB 0 was overall reliable with marginal noise enhancement. T 1 and T 2 values were in good agreement with the reference measurements and single-slice TESS. For R = 4, the agreement of ΔB 0 with the standard reference was excellent and the determination of T 1 , T 2 , and PD was reproducible; however, increased variations in T 1 and T 2 values with respect to single-slice TESS were observed. SMS-TESS has shown potential to offer rapid simultaneous T 1 , T 2 , PD, and ΔB 0 mapping of human brain tissues. © 2018 International Society for Magnetic Resonance in Medicine.

  1. Diastolic Function in Normal Sinus Rhythm vs. Chronic Atrial Fibrillation: Comparison by Fractionation of E-wave Deceleration Time into Stiffness and Relaxation Components.

    Science.gov (United States)

    Mossahebi, Sina; Kovács, Sándor J

    2014-01-01

    Although the electrophysiologic derangement responsible for atrial fibrillation (AF) has been elucidated, how AF remodels the ventricular chamber and affects diastolic function (DF) has not been fully characterized. The previously validated Parametrized Diastolic Filling (PDF) formalism models suction-initiated filling kinematically and generates error-minimized fits to E-wave contours using unique load (x o ), relaxation (c), and stiffness (k) parameters. It predicts that E-wave deceleration time (DT) is a function of both stiffness and relaxation. Ascribing DT s to stiffness and DTr to relaxation such that DT=DT s +DT r is legitimate because of causality and their predicted and observed high correlation (r=0.82 and r=0.94) with simultaneous (diastatic) chamber stiffness (dP/dV) and isovolumic relaxation (tau), respectively. We analyzed simultaneous echocardiography-cardiac catheterization data and compared 16 age matched, chronic AF subjects to 16, normal sinus rhythm (NSR) subjects (650 beats). All subjects had diastatic intervals. Conventional DF parameters (DT, AT, E peak , E dur , E-VTI, E/E') and E-wave derived PDF parameters (c, k, DT s , DT r ) were compared. Total DT and DT s , DT r in AF were shorter than in NSR (pwave DT in AF is due to stiffness compared to NSR. By trending individual subjects, this method can elucidate and characterize the beneficial or adverse long-term effects on chamber remodeling due to alternative therapies in terms of chamber stiffness and relaxation.

  2. Numerical simulation of convection and heat transfer in Czochralski crystal growth by multiple-relaxation-time LBM

    Science.gov (United States)

    Liu, Ding; Huang, Weichao; Zhang, Ni

    2017-07-01

    A two-dimensional axisymmetric swirling model based on the lattice Boltzmann method (LBM) in a pseudo Cartesian coordinate system is posited to simulate Czochralski (Cz) crystal growth in this paper. Specifically, the multiple-relaxation-time LBM (MRT-LBM) combined with the finite difference method (FDM) is used to analyze the melt convection and heat transfer in the process of Cz crystal growth. An incompressible axisymmetric swirling MRT-LB D2Q9 model is applied to solve for the axial and radial velocities by inserting thermal buoyancy and rotational inertial force into the two-dimensional lattice Boltzmann equation. In addition, the melt temperature and the azimuthal velocity are solved by MRT-LB D2Q5 models, and the crystal temperature is solved by FDM. The comparison results of stream functions values of different methods demonstrate that our hybrid model can be used to simulate the fluid-thermal coupling in the axisymmetric swirling model correctly and effectively. Furthermore, numerical simulations of melt convection and heat transfer are conducted under the conditions of high Grashof (Gr) numbers, within the range of 105 ˜ 107, and different high Reynolds (Re) numbers. The experimental results show our hybrid model can obtain the exact solution of complex crystal-growth models and analyze the fluid-thermal coupling effectively under the combined action of natural convection and forced convection.

  3. Rapid Evaluation of Platelet Function With T2 Magnetic Resonance

    Science.gov (United States)

    Cuker, Adam; Husseinzadeh, Holleh; Lebedeva, Tatiana; Marturano, Joseph E.; Massefski, Walter; Lowery, Thomas J.; Lambert, Michele P.; Abrams, Charles S.; Weisel, John W.

    2016-01-01

    Objectives: The clinical diagnosis of qualitative platelet disorders (QPDs) based on light transmission aggregometry (LTA) requires significant blood volume, time, and expertise, all of which can be barriers to utilization in some populations and settings. Our objective was to develop a more rapid assay of platelet function by measuring platelet-mediated clot contraction in small volumes (35 µL) of whole blood using T2 magnetic resonance (T2MR). Methods: We established normal ranges for platelet-mediated clot contraction using T2MR, used these ranges to study patients with known platelet dysfunction, and then evaluated agreement between T2MR and LTA with arachidonic acid, adenosine diphosphate, epinephrine, and thrombin receptor activator peptide. Results: Blood from 21 healthy donors was studied. T2MR showed 100% agreement with LTA with each of the four agonists and their cognate inhibitors tested. T2MR successfully detected abnormalities in each of seven patients with known QPDs, with the exception of one patient with a novel mutation leading to Hermansky-Pudlak syndrome. T2MR appeared to detect platelet function at similar or lower platelet counts than LTA. Conclusions: T2MR may provide a clinically useful approach to diagnose QPDs using small volumes of whole blood, while also providing new insight into platelet biology not evident using plasma-based platelet aggregation tests. PMID:28028118

  4. T2 shortening in childhood moyamoya disease

    International Nuclear Information System (INIS)

    Takanashi, J.; Sugita, K.; Tanabe, Y.; Ito, C.; Date, H.; Niimi, H.

    1996-01-01

    We examined T2 shortening in six children with infarcts due to moyamoya disease to clarify whether there are characteristic patterns of T2 shortening in the deep grey and white matter. Profound T2 shortening in the deep grey and white matter was observed in the acute stage of infarct in two cases, which changed to high intensity in the chronic stage; in this stage no T2 shortening was demonstrated in any case. Neither haemorrhagic infarction nor calcification was seen on CT or MRI. There could be longitudinally different T2 shortening patterns between infarcts due to moyamoya disease and other disorders. (orig.). With 2 figs., 1 tab

  5. Energy relaxation and separation of a hot electron-hole pair in organic aggregates from a time-dependent wavepacket diffusion method

    International Nuclear Information System (INIS)

    Han, Lu; Liang, WanZhen; Zhao, Yi; Zhong, Xinxin

    2014-01-01

    The time-dependent wavepacket diffusive method [X. Zhong and Y. Zhao, J. Chem. Phys. 138, 014111 (2013)] is extended to investigate the energy relaxation and separation of a hot electron-hole pair in organic aggregates with incorporation of Coulomb interaction and electron-phonon coupling. The pair initial condition generated by laser pulse is represented by a Gaussian wavepacket with a central momentum. The results reveal that the hot electron energy relaxation is very well described by two rate processes with the fast rate much larger than the slow one, consistent with experimental observations, and an efficient electron-hole separation is accomplished accompanying the fast energy relaxation. Furthermore, although the extra energy indeed helps the separation by overcoming the Coulomb interaction, the width of initial wavepacket is much sensitive to the separation efficiency and the narrower wavepacket generates the more separated charges. This behavior may be useful to understand the experimental controversy of the hot carrier effect on charge separation

  6. T2 mapping of the articular cartilage in the ankle: Correlation to the status of anterior talofibular ligament

    International Nuclear Information System (INIS)

    Lee, S.; Yoon, Y.C.; Kim, J.H.

    2013-01-01

    Aim: To evaluate differences in T2 relaxation time of ankle cartilage using magnetic resonance imaging (MRI) according to the status of the anterior talofibular ligament (ATFL). Materials and methods: The talar trochlear cartilage (TTC) was evaluated in 52 patients with ankle pain that were categorized according to the status of ATFL; normal (NL; n = 23, mean age 40 years); partial tear (PT; n = 21, mean age 39 years); or complete tear (CT; n = 8, mean age 33 years). The TTC was divided into six compartments (medial anterior, medial centre, medial posterior, lateral anterior, lateral centre, and lateral posterior). The mean T2 value of each compartment was obtained using the multi-echo sequence. Data were analysed with parametric and non-parametric statistical tests. Results: The mean T2 values of the TTC showed significant differences between the three groups; NL, PT, and CT (p < 0.001). The T2 value between the three ligamentous groups were significantly different in the medial anterior, lateral anterior, and lateral centre compartments (p = 0.003, 0.002, 0.002, respectively). T2 values of the PT and CT groups were significantly higher than those of the NL group in the medial anterior compartment (p = 0.015, 0.002) and lateral anterior compartment (p = 0.026, <0.001). The T2 value of the CT group was significantly higher than that of NL and PT groups in the lateral centre compartment (p < 0.001, 0.031). Conclusion: The T2 value of the TTC in patients with ATFL injury increased at the medial anterior, lateral anterior, and lateral centre compartments

  7. Relationship between thermodynamic parameter and thermodynamic scaling parameter for orientational relaxation time for flip-flop motion of nematic liquid crystals.

    Science.gov (United States)

    Satoh, Katsuhiko

    2013-03-07

    Thermodynamic parameter Γ and thermodynamic scaling parameter γ for low-frequency relaxation time, which characterize flip-flop motion in a nematic phase, were verified by molecular dynamics simulation with a simple potential based on the Maier-Saupe theory. The parameter Γ, which is the slope of the logarithm for temperature and volume, was evaluated under various conditions at a wide range of temperatures, pressures, and volumes. To simulate thermodynamic scaling so that experimental data at isobaric, isothermal, and isochoric conditions can be rescaled onto a master curve with the parameters for some liquid crystal (LC) compounds, the relaxation time was evaluated from the first-rank orientational correlation function in the simulations, and thermodynamic scaling was verified with the simple potential representing small clusters. A possibility of an equivalence relationship between Γ and γ determined from the relaxation time in the simulation was assessed with available data from the experiments and simulations. In addition, an argument was proposed for the discrepancy between Γ and γ for some LCs in experiments: the discrepancy arises from disagreement of the value of the order parameter P2 rather than the constancy of relaxation time τ1(*) on pressure.

  8. Comparison between T2*- and T2-weighted images in diagnosing rotator cuff tears

    International Nuclear Information System (INIS)

    Kumagai, Hideo; Ito, Hisao; Kubo, Atsushi.

    1995-01-01

    This study was performed to determine the merits of T2 * -weighted images in diagnosing rotator cuff tear, compared with T2-weighted images. T2- and T2 * -weighted images were obtained in 10 asymptomatic volunteers and 94 patients with symptoms referable to the rotator cuff. The increased signal with full thickness of the rotator cuff was not shown on either T2- or T2 * -weighted images in the volunteers. These findings on T2-weighted images and on T2 * -weighted images were observed in 33 and 58 of 94 patients with symptoms, respectively. Every patient who showed these abnormal findings on T2-weighted images had the abnormal findings on T2 * -weighted images. These findings on T2 * -weighted images were wider than those on T2-weighted images in 20 of 33 patients. Surgical findings were available in 21 of 94 patients. Rotator cuff tears were surgically confirmed in 20 patients whose MR images showed increased signal lesions on both T2- and T2 * -weighted images. On the other hand, one patient who did not have rotator cuff tear showed increased signal lesion with full thickness on T2 * -weighted images, but not on T2-weighted images. We think increased signal lesions on T2-weighted images may strongly suggest rotator cuff tear, whereas those on T2 * -weighted images are not specific. (author)

  9. Rotational and translational dynamics and their relation to hydrogen bond lifetimes in an ionic liquid by means of NMR relaxation time experiments and molecular dynamics simulation

    Science.gov (United States)

    Strate, Anne; Neumann, Jan; Overbeck, Viviane; Bonsa, Anne-Marie; Michalik, Dirk; Paschek, Dietmar; Ludwig, Ralf

    2018-05-01

    We report a concerted theoretical and experimental effort to determine the reorientational dynamics as well as hydrogen bond lifetimes for the doubly ionic hydrogen bond +OH⋯O- in the ionic liquid (2-hydroxyethyl)trimethylammonium bis(trifluoromethylsulfonyl)imide [Ch][NTf2] by using a combination of NMR relaxation time experiments, density functional theory (DFT) calculations, and molecular dynamics (MD) simulations. Due to fast proton exchange, the determination of rotational correlation times is challenging. For molecular liquids, 17O-enhanced proton relaxation time experiments have been used to determine the rotational correlation times for the OH vectors in water or alcohols. As an alternative to those expensive isotopic substitution experiments, we employed a recently introduced approach which is providing access to the rotational dynamics from a single NMR deuteron quadrupolar relaxation time experiment. Here, the deuteron quadrupole coupling constants (DQCCs) are obtained from a relation between the DQCC and the δ1H proton chemical shifts determined from a set of DFT calculated clusters in combination with experimentally determined proton chemical shifts. The NMR-obtained rotational correlation times were compared to those obtained from MD simulations and then related to viscosities for testing the applicability of popular hydrodynamic models. In addition, hydrogen bond lifetimes were derived, using hydrogen bond population correlation functions computed from MD simulations. Here, two different time domains were observed: The short-time contributions to the hydrogen lifetimes and the reorientational correlation times have roughly the same size and are located in the picosecond range, whereas the long-time contributions decay with relaxation times in the nanosecond regime and are related to rather slow diffusion processes. The computed average hydrogen bond lifetime is dominated by the long-time process, highlighting the importance and longevity of

  10. Simultaneous Measurement of T2 and Apparent Diffusion Coefficient (T2+ADC) in the Heart With Motion-Compensated Spin Echo Diffusion-Weighted Imaging

    Science.gov (United States)

    Aliotta, Eric; Moulin, Kévin; Zhang, Zhaohuan; Ennis, Daniel B.

    2018-01-01

    Purpose To evaluate a technique for simultaneous quantitative T2 and apparent diffusion coefficient (ADC) mapping in the heart (T2+ADC) using spin echo (SE) diffusion-weighted imaging (DWI). Theory and Methods T2 maps from T2+ADC were compared with single-echo SE in phantoms and with T2-prepared (T2-prep) balanced steady-state free precession (bSSFP) in healthy volunteers. ADC maps from T2+ADC were compared with conventional DWI in phantoms and in vivo. T2+ADC was also demonstrated in a patient with acute myocardial infarction (MI). Results Phantom T2 values from T2+ADC were closer to a single-echo SE reference than T2-prep bSSFP (−2.3 ± 6.0% vs 22.2 ± 16.3%; P T2 values from T2+ADC were significantly shorter than T2-prep bSSFP (35.8 ± 3.1 vs 46.8 ± 3.8 ms; P T2+ADC and conventional motion-compensated DWI (1.39 ± 0.18 vs 1.38 ± 0.18 mm2/ms; P = N.S.). In the patient, T2 and ADC were both significantly elevated in the infarct compared with remote myocardium (T2: 40.4 ± 7.6 vs 56.8 ± 22.0; P T2+ADC generated coregistered, free-breathing T2 and ADC maps in healthy volunteers and a patient with acute MI with no cost in accuracy, precision, or scan time compared with DWI. PMID:28516485

  11. 7 Tesla quantitative hip MRI: a comparison between TESS and CPMG for T2 mapping.

    Science.gov (United States)

    Kraff, Oliver; Lazik-Palm, Andrea; Heule, Rahel; Theysohn, Jens M; Bieri, Oliver; Quick, Harald H

    2016-06-01

    We aimed to evaluate the feasibility of triple-echo steady state (TESS) T2 mapping as an alternative to conventional multi-echo-spin-echo (CPMG) T2 mapping for the quantitative assessment of hip joint cartilage at 7 T. A total of eight healthy volunteers and three patients were included. Reproducibility of both techniques was evaluated in five volunteers in five scans each. T2 relaxation times were measured by manually drawing regions of interest in multiple regions of the hip joint. Data from both methods were compared using Pearson correlation coefficient, intra-class correlation coefficient, and coefficient of repeatability. The overall image quality and presence of artifacts was assessed. Cartilage transplant and surrounding fluid were well depicted by both methods. Compared to CPMG, TESS provided systematically reduced T2 values (43.3 ± 7.3 vs. 19.2 ± 5.5 ms for acetabular cartilage, and 41.4 ± 5.6 vs. 21.7 ± 5.2 ms for femoral cartilage), in line with previously reported values. No correlation between both methods was found. TESS yielded a slightly better reproducibility than CPMG, while CPMG showed pronounced sensitivity to B1 inhomogeneities. TESS seems to be an attractive alternative to CPMG for improvements in quantitative hip joint imaging at 7 T, allowing shortening of the total acquisition time paired with insensitivity to B1, while rendering comparable image quality with good repeatability.

  12. Low-Field NMR Spectrometry of Chalk and Argillaceous Sandstones: Rock-Fluid Affinity Assessed from T-1/T-2 Ratio

    DEFF Research Database (Denmark)

    Katika, Konstantina; Saidian, Milad; Prasad, Manika

    2017-01-01

    greensand shows different behavior for small and large pores. Small pores (fast-relaxing components) have T-1/T-2 = 2.0 when water saturated, but T-1/T-2 = 3.8 when oil saturated, indicating oil-affinity of chlorite. By contrast, large pores (slow-relaxing components) have significant preference for water...

  13. Ultrafast T2-weighted single shot spin-echo sequences: applications on abdominal and pelvic pathologies

    International Nuclear Information System (INIS)

    Martin, J.; Martin, C.; Falco, J.; Esteban, L.

    1999-01-01

    The magnetic resonance imaging (MRI) sequences that obtain all the data using a sole excitation pulse of 90 degree centigrade, filling the K space in a single repetition time (TR) is known as snap shot or single shot (SS). The SS sequence based on the rapid acquisition with relaxation enhancement (SS-RARE) method, designed by Hening (1) and a variation of it with a half-Fourier reconstruction (SS-HF-RARE (HASTEL)) (2, 3) are capable of obtaining high contrast images in T2, in very short times, that oscillate between one to several seconds. The clinical application of these sequences to abdominal and pelvic pathologies is increasing, providing and improvement in the contrast resolution, but also in the spatial resolution, with a high relation signal/noise ratio, high contrast and absence of movement artifacts. (Author)

  14. Acute Inhalation Toxicity of T-2 Mycotoxin in the Rat and Guinea Pig

    Science.gov (United States)

    1990-01-01

    2/kg body weight for the guinea pig . These data show that inhaled T-2 toxin is approximately 20 times more toxic to the rat (0.05 mg T-2/kg body wt...inhaled vs 1.0 mg T-2/kg body wt ip) and at least twice as toxic to the guinea pig (0.4 mg T-2/kg body wt inhaled vs 1-2 mg T-2/kg body wt ip) than ip...administered T-2 toxin. Histopathologic examination of major organs in both the rat and guinea pig after respiratory exposure to T-2 toxin indicated

  15. Heteronuclear relaxation in time-dependent spin systems: 15N-T1ρ dispersion during adiabatic fast passage

    International Nuclear Information System (INIS)

    Konrat, Robert; Tollinger, Martin

    1999-01-01

    A novel NMR experiment comprising adiabatic fast passage techniques for the measurement of heteronuclear self-relaxation rates in fully 15N-enriched proteins is described. Heteronuclear self-relaxation is monitored by performing adiabatic fast passage (AFP) experiments at variable adiabaticity (e.g., variation of RF spin-lock field intensity). The experiment encompasses gradient- selection and sensitivity-enhancement. It is shown that transverse relaxation rates derived with this method are in good agreement with the ones measured by the classical Carr-Purcell-Meiboom-Gill (CPMG) sequences. An application of this method to the study of the carboxyl-terminal LIM domain of quail cysteine and glycine-rich protein qCRP2(LIM2) is presented

  16. Relaxation System

    Science.gov (United States)

    1987-01-01

    Environ Corporation's relaxation system is built around a body lounge, a kind of super easy chair that incorporates sensory devices. Computer controlled enclosure provides filtered ionized air to create a feeling of invigoration, enhanced by mood changing aromas. Occupant is also surrounded by multidimensional audio and the lighting is programmed to change colors, patterns, and intensity periodically. These and other sensory stimulators are designed to provide an environment in which the learning process is stimulated, because research has proven that while an individual is in a deep state of relaxation, the mind is more receptive to new information.

  17. T2 mapping of CT remodelling patterns in interstitial lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Buzan, Maria T.A. [Iuliu Hatieganu University of Medicine and Pharmacy, Department of Pneumology, Cluj-Napoca (Romania); Thoraxklinik at Heidelberg University Hospital, Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Heidelberg (Germany); University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); Eichinger, Monika; Heussel, Claus Peter [Thoraxklinik at Heidelberg University Hospital, Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Heidelberg (Germany); Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg (Germany); Kreuter, Michael; Herth, Felix J. [Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg (Germany); Thoraxklinik at Heidelberg University Hospital, Department of Pneumology, Center for Rare and Interstitial Lung Diseases, Heidelberg (Germany); Kauczor, Hans-Ulrich [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg (Germany); Warth, Arne [Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg (Germany); University Hospital Heidelberg, Institute for Pathology, Heidelberg (Germany); Pop, Carmen Monica [Iuliu Hatieganu University of Medicine and Pharmacy, Department of Pneumology, Cluj-Napoca (Romania); Dinkel, Julien [Thoraxklinik at Heidelberg University Hospital, Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Heidelberg (Germany); Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg (Germany); Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich (Germany); Ludwig-Maximilians-University Hospital Munich, Institute for Clinical Radiology, Munich (Germany)

    2015-11-15

    To evaluate lung T2 mapping for quantitative characterization and differentiation of ground-glass opacity (GGO), reticulation (RE) and honeycombing (HC) in usual interstitial pneumonia (UIP) and non-specific interstitial pneumonia (NSIP). Twelve patients with stable UIP or NSIP underwent thin-section multislice CT and 1.5-T MRI of the lung. A total of 188 regions were classified at CT into normal (n = 29) and pathological areas, including GGO (n = 48), RE (n = 60) and HC (n = 51) predominant lesions. Entire lung T2 maps based on multi-echo single shot TSE sequence (TE: 20, 40, 79, 140, 179 ms) were generated from each subject with breath-holds at end-expiration and ECG-triggering. The median T2 relaxation of GGO was 67 ms (range 60-72 ms). RE predominant lesions had a median relaxation of 74 ms (range 69-79 ms), while for HC pattern this was 79 ms (range 74-89 ms). The median T2 relaxation for normal lung areas was 41 ms (ranged 38-49 ms), and showed significant difference to pathological areas (p < 0.001). A statistical difference was found between the T2 relaxation of GGO, RE and HC (p < 0.05). The proposed method provides quantitative information for pattern differentiation, potentially allowing for monitoring of progression and response to treatment, in interstitial lung disease. (orig.)

  18. T2 mapping of CT remodelling patterns in interstitial lung disease

    International Nuclear Information System (INIS)

    Buzan, Maria T.A.; Eichinger, Monika; Heussel, Claus Peter; Kreuter, Michael; Herth, Felix J.; Kauczor, Hans-Ulrich; Warth, Arne; Pop, Carmen Monica; Dinkel, Julien

    2015-01-01

    To evaluate lung T2 mapping for quantitative characterization and differentiation of ground-glass opacity (GGO), reticulation (RE) and honeycombing (HC) in usual interstitial pneumonia (UIP) and non-specific interstitial pneumonia (NSIP). Twelve patients with stable UIP or NSIP underwent thin-section multislice CT and 1.5-T MRI of the lung. A total of 188 regions were classified at CT into normal (n = 29) and pathological areas, including GGO (n = 48), RE (n = 60) and HC (n = 51) predominant lesions. Entire lung T2 maps based on multi-echo single shot TSE sequence (TE: 20, 40, 79, 140, 179 ms) were generated from each subject with breath-holds at end-expiration and ECG-triggering. The median T2 relaxation of GGO was 67 ms (range 60-72 ms). RE predominant lesions had a median relaxation of 74 ms (range 69-79 ms), while for HC pattern this was 79 ms (range 74-89 ms). The median T2 relaxation for normal lung areas was 41 ms (ranged 38-49 ms), and showed significant difference to pathological areas (p < 0.001). A statistical difference was found between the T2 relaxation of GGO, RE and HC (p < 0.05). The proposed method provides quantitative information for pattern differentiation, potentially allowing for monitoring of progression and response to treatment, in interstitial lung disease. (orig.)

  19. An in vitro comparative study of T2 and T2* mappings of human articular cartilage at 3-Tesla MRI using histology as the standard of reference

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taehee; Park, Sunghoon [Ajou University School of Medicine, Department of Radiology, Suwon (Korea, Republic of); Ajou University Medical Center, Musculoskeletal Imaging Laboratory, Suwon (Korea, Republic of); Min, Byoung-Hyun [Ajou University School of Medicine, Department of Orthopaedic Surgery, Suwon (Korea, Republic of); Ajou University School of Medicine, Cartilage Regeneration Center, Suwon (Korea, Republic of); Yoon, Seung-Hyun [Ajou University School of Medicine, Cartilage Regeneration Center, Suwon (Korea, Republic of); Kim, Hakil [INHA University, School of Information and Communication Engineering, Incheon (Korea, Republic of); Lee, Hyun Young [Ajou University Medical Center, Regional Clinical Trial Center, Suwon (Korea, Republic of); Yonsei University College of Medicine, Department of Biostatistics, Seoul (Korea, Republic of); Kwack, Kyu-Sung [Ajou University School of Medicine, Department of Radiology, Suwon (Korea, Republic of); Ajou University Medical Center, Musculoskeletal Imaging Laboratory, Suwon (Korea, Republic of); Ajou University School of Medicine, Cartilage Regeneration Center, Suwon (Korea, Republic of)

    2014-07-15

    The aim of this study was to evaluate the correlations between T2 value, T2* value, and histological grades of degenerated human articular cartilage. T2 mapping and T2* mapping of nine tibial osteochondral specimens were obtained using a 3-T MRI after total knee arthroplasty. A total of 94 ROIs were analyzed. Histological grades were assessed using the David-Vaudey scale. Spearman's rho correlation analysis and Pearson's correlation analysis were performed. The mean relaxation values in T2 map with different histological grades (0, 1, 2) of the cartilage were 51.9 ± 9.2 ms, 55.8 ± 12.8 ms, and 59.6 ± 10.2 ms, respectively. The mean relaxation values in T2* map with different histological grades (0, 1, 2) of the cartilage were 20.3 ± 10.3 ms, 21.1 ± 12.4 ms, and 15.4 ± 8.5 ms, respectively. Spearman's rho correlation analysis confirmed a positive correlation between T2 value and histological grade (ρ = 0.313, p < 0.05). Pearson's correlation analysis revealed a significant negative correlation between T2 and T2* (r = -0.322, p < 0.05). Although T2* values showed a decreasing trend with an increase in cartilage degeneration, this correlation was not statistically significant in this study (ρ = -0.192, p = 0.129). T2 mapping was correlated with histological degeneration, and it may be a good biomarker for osteoarthritis in human articular cartilage. However, the strength of the correlation was weak (ρ = 0.313). Although T2* values showed a decreasing trend with an increase in cartilage degeneration, the correlation was not statistically significant. Therefore, T2 mapping may be more appropriate for the initial diagnosis of articular cartilage degeneration in the knee joint. Further studies on T2* mapping are needed to confirm its reliability and mechanism in cartilage degeneration. (orig.)

  20. Analytical representation of time correlation functions and application to relaxation problems; Representation analytique des fonctions de correlation temporelle et application a des problemes de relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Dupuis, M [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires, departement de physico-chimie, services des isotopes stables

    1971-07-01

    Two analytical representations of the Laplace transform of the time autocorrelation of a dynamical variable, namely the moment expansion and Mori's continued fraction expansion, are investigated from the point of view of structure and convergence properties, and the relation between them is established. The general theory is applied first to a dynamical model exactly solvable, the isotopic impurity in a linear chain of coupled harmonic oscillators, and then to two stochastic models recently introduced by Gordon for the rotational diffusion of molecules. In the latter case, the continued fraction expansion yields simple analytical expressions for the infrared absorption band shapes, showing that these models contain all the features of observed shapes in compressed gases, liquids and solutions. (author) [French] Deux representations analytiques de la transformee de Laplace de la fonction d'autocorrelation temporelle d'une variable dynamique, le developpement en moments et le developpement en fraction continue recemment introduit par Mori, sont etudiees du point de vue de leurs proprietes de structure et de convergence, en meme temps que la relation qui existe entre elles est etablie. La theorie generale est appliquee, d'une part, a un modele dynamique exactement soluble, celui d'une particule isotopique dans une chaine lineaire d'oscillateurs harmoniques couples, et, d'autre part, a deux modeles stochastiques recemment proposes par Gordon pour la diffusion rotationnelle des molecules. Dans ce dernier cas, la voie de la fraction continue fournit des expressions analytiques simples pour les formes de bande d'absorption infrarouge, montrant que ces modeles possedent les caracteristiques des formes observees dans les gaz comprimes, les liquides ou les solutions. (auteur)

  1. The Arrow of Time in the Collapse of Collisionless Self-gravitating Systems: Non-validity of the Vlasov-Poisson Equation during Violent Relaxation

    Science.gov (United States)

    Beraldo e Silva, Leandro; de Siqueira Pedra, Walter; Sodré, Laerte; Perico, Eder L. D.; Lima, Marcos

    2017-09-01

    The collapse of a collisionless self-gravitating system, with the fast achievement of a quasi-stationary state, is driven by violent relaxation, with a typical particle interacting with the time-changing collective potential. It is traditionally assumed that this evolution is governed by the Vlasov-Poisson equation, in which case entropy must be conserved. We run N-body simulations of isolated self-gravitating systems, using three simulation codes, NBODY-6 (direct summation without softening), NBODY-2 (direct summation with softening), and GADGET-2 (tree code with softening), for different numbers of particles and initial conditions. At each snapshot, we estimate the Shannon entropy of the distribution function with three different techniques: Kernel, Nearest Neighbor, and EnBiD. For all simulation codes and estimators, the entropy evolution converges to the same limit as N increases. During violent relaxation, the entropy has a fast increase followed by damping oscillations, indicating that violent relaxation must be described by a kinetic equation other than the Vlasov-Poisson equation, even for N as large as that of astronomical structures. This indicates that violent relaxation cannot be described by a time-reversible equation, shedding some light on the so-called “fundamental paradox of stellar dynamics.” The long-term evolution is well-described by the orbit-averaged Fokker-Planck model, with Coulomb logarithm values in the expected range 10{--}12. By means of NBODY-2, we also study the dependence of the two-body relaxation timescale on the softening length. The approach presented in the current work can potentially provide a general method for testing any kinetic equation intended to describe the macroscopic evolution of N-body systems.

  2. The contrasting roles of creep and stress relaxation in the time-dependent deformation during in-situ cooling of a nickel-base single crystal superalloy.

    Science.gov (United States)

    Panwisawas, Chinnapat; D'Souza, Neil; Collins, David M; Bhowmik, Ayan

    2017-09-11

    Time dependent plastic deformation in a single crystal nickel-base superalloy during cooling from casting relevant temperatures has been studied using a combination of in-situ neutron diffraction, transmission electron microscopy and modelling. Visco-plastic deformation during cooling was found to be dependent on the stress and constraints imposed to component contraction during cooling, which mechanistically comprises creep and stress relaxation. Creep results in progressive work hardening with dislocations shearing the γ' precipitates, a high dislocation density in the γ channels and near the γ/γ' interface and precipitate shearing. When macroscopic contraction is restricted, relaxation dominates. This leads to work softening from a decreased dislocation density and the presence of long segment stacking faults in γ phase. Changes in lattice strains occur to a similar magnitude in both the γ and γ' phases during stress relaxation, while in creep there is no clear monotonic trend in lattice strain in the γ phase, but only a marginal increase in the γ' precipitates. Using a visco-plastic law derived from in-situ experiments, the experimentally measured and calculated stresses during cooling show a good agreement when creep predominates. However, when stress relaxation dominates accounting for the decrease in dislocation density during cooling is essential.

  3. High-field transport of electrons and radiative effects using coupled force-balance and Fokker-Planck equations beyond the relaxation-time approximation

    International Nuclear Information System (INIS)

    Huang, Danhong; Apostolova, T.; Alsing, P.M.; Cardimona, D.A.

    2004-01-01

    The dynamics of a many-electron system under both dc and infrared fields is separated into a center-of-mass and a relative motion. The first-order force-balance equation is employed for the slow center-of-mass motion of electrons, and the Fokker-Planck equation is used for the ultrafast relative scattering motion of degenerate electrons. This approach allows us to include the anisotropic energy-relaxation process which has been neglected in the energy-balance equation in the past. It also leads us to include the anisotropic coupling to the incident infrared field with different polarizations. Based on this model, the transport of electrons is explored under strong dc and infrared fields by going beyond the relaxation-time approximation. The anisotropic dependence of the electron distribution function on the parallel and perpendicular kinetic energies of electrons is displayed with respect to the dc field direction, and the effect of anisotropic coupling to an incident infrared field with polarizations parallel and perpendicular to the applied dc electric field is shown. The heating of electrons is more accurately described beyond the energy-balance equation with the inclusion of an anisotropic coupling to the infrared field. The drift velocity of electrons is found to increase with the amplitude of the infrared field due to a suppressed momentum-relaxation process (or frictional force) under parallel polarization but decreases with the amplitude due to an enhanced momentum-relaxation process under perpendicular polarization

  4. Pre-treatment functional MRI of breast cancer: T2* evaluation at 3 T and relationship to dynamic contrast-enhanced and diffusion-weighted imaging.

    Science.gov (United States)

    Kousi, Evanthia; O'Flynn, Elizabeth A M; Borri, Marco; Morgan, Veronica A; deSouza, Nandita M; Schmidt, Maria A

    2018-05-31

    Baseline T2* relaxation time has been proposed as an imaging biomarker in cancer, in addition to Dynamic Contrast-Enhanced (DCE) MRI and diffusion-weighted imaging (DWI) parameters. The purpose of the current work is to investigate sources of error in T2* measurements and the relationship between T2* and DCE and DWI functional parameters in breast cancer. Five female volunteers and thirty-two women with biopsy proven breast cancer were scanned at 3 T, with Research Ethics Committee approval. T2* values of the normal breast were acquired from high-resolution, low-resolution and fat-suppressed gradient-echo sequences in volunteers, and compared. In breast cancer patients, pre-treatment T2*, DCE MRI and DWI were performed at baseline. Pathologically complete responders at surgery and non-responders were identified and compared. Principal component analysis (PCA) and cluster analysis (CA) were performed. There were no significant differences between T2* values from high-resolution, low-resolution and fat-suppressed datasets (p > 0.05). There were not significant differences between baseline functional parameters in responders and non-responders (p > 0.05). However, there were differences in the relationship between T2* and contrast-agent uptake in responders and non-responders. Voxels of similar characteristics were grouped in 5 clusters, and large intra-tumoural variations of all parameters were demonstrated. Breast T2* measurements at 3 T are robust, but spatial resolution should be carefully considered. T2* of breast tumours at baseline is unrelated to DCE and DWI parameters and contribute towards describing functional heterogeneity of breast tumours. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Validity of T2 mapping in characterization of the regeneration tissue by bone marrow derived cell transplantation in osteochondral lesions of the ankle

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, M., E-mail: milva.battaglia@ior.it [Service of Ecography and Radiology, Rizzoli Orthopaedic Institute, via Pupilli n. 1, 40136 Bologna (Italy); Rimondi, E. [Service of Ecography and Radiology, Rizzoli Orthopaedic Institute, via Pupilli n. 1, 40136 Bologna (Italy); Monti, C. [Service of CT and MRI, Casa di Cura Madre Fortunata Toniolo, Bologna (Italy); Guaraldi, F. [Department of Pathology, The Johns Hopkins University, School of Medicine, Baltimore, MD (United States); Sant' Andrea, A. [Service of CT and MRI, Casa di Cura Madre Fortunata Toniolo, Bologna (Italy); Buda, R.; Cavallo, M.; Giannini, S.; Vannini, F. [Clinical Orthopaedic and Traumatology Unit II, Rizzoli Orthopaedic Institute, Bologna (Italy)

    2011-11-15

    Objective: Bone marrow derived cell transplantation (BMDCT) has been recently suggested as a possible surgical technique to repair osteochondral lesions. To date, no qualitative MRI studies have evaluated its efficacy. The aim of our study is to investigate the validity of MRI T2-mapping sequence in characterizing the reparative tissue obtained and its ability to correlate with clinical results. Methods and materials: 20 patients with an osteochondral lesion of the talus underwent BMDCT and were evaluated at 2 years follow up using MRI T2-mapping sequence. 20 healthy volunteers were recruited as controls. MRI images were acquired using a protocol suggested by the International Cartilage Repair Society, MOCART scoring system and T2 mapping. Results were then correlated with AOFAS clinical score. Results: AOFAS score increased from 66.8 {+-} 14.5 pre-operatively to 91.2 {+-} 8.3 (p < 0.0005) at 2 years follow-up. T2-relaxation time value of 35-45 ms was derived from healthy ankles evaluation and assumed as normal hyaline cartilage value and used as a control. Regenerated tissue with a T2-relaxation time value comparable to hyaline cartilage was found in all the cases treated, covering a mean of 78% of the repaired lesion area. A high clinical score was related directly to isointense signal in DPFSE fat sat (p = 0.05), and percentage of regenerated hyaline cartilage (p = 0.05), inversely to the percentage of regenerated fibrocartilage. Lesion's depth negatively related to the integrity of the repaired tissue's surface (tau = -0.523, p = 0.007), and to the percentage of regenerated hyaline cartilage (rho = -0.546, p = 0.013). Conclusions: Because of its ability to detect cartilage's quality and to correlate to the clinical score, MRI T2-mapping sequence integrated with Mocart score represent a valid, non-invasive technique for qualitative cartilage assessment after regenerative surgical procedures.

  6. Slip-flow in complex porous media as determined by a multi-relaxation-time lattice Boltzmann model

    Science.gov (United States)

    Landry, C. J.; Prodanovic, M.; Eichhubl, P.

    2014-12-01

    The pores and throats of shales and mudrocks are predominantly found within a range of 1-100 nm, within this size range the flow of gas at reservoir conditions will fall within the slip-flow and low transition-flow regime (0.001 clays). Molecular dynamics (MD) simulations can be used to predict slip-flow in complex geometries, but due to prohibitive computational demand are generally limited to small volumes (one to several pores). Here we present a multi-relaxation-time lattice Boltzmann model (LBM) parameterized for slip-flow (Guo et al. 2008) and adapted here to complex geometries. LBMs are inherently parallelizable, such that flow in complex geometries of significant (near REV-scale) volumes can be readily simulated at a fraction of the computational cost of MD simulations. At the macroscopic-scale the LBM is parameterized with local effective viscosities at each node to capture the variance of the mean-free-path of gas molecules in a bounded system. The corrected mean-free-path for each lattice node is determined using the mean distance of the node to the pore-wall and Stop's correction for mean-free-paths in an infinite parallel-plate geometry. At the microscopic-scale, a combined bounce-back specular-reflection boundary condition is applied to the pore-wall nodes to capture Maxwellian-slip. The LBM simulation results are first validated in simple tube and channel geometries, where good agreement is found for Knudsen numbers below 0.1, and fair agreement is found for Knudsen numbers between 0.1 and 0.5. More complex geometries are then examined including triangular-ducts and ellipsoid-ducts, both with constant and tapering/expanding cross-sections, as well as a clay pore-network imaged from a hydrocarbon producing shale by sequential focused ion-beam scanning electron microscopy. These results are analyzed to determine grid-independent resolutions, and used to explore the relationship between effective permeability and Knudsen number in complex geometries.

  7. Relaxation time and impurity effects on linear and nonlinear refractive index changes in (In,Ga)N–GaN spherical QD

    Energy Technology Data Exchange (ETDEWEB)

    El Ghazi, Haddou, E-mail: hadghazi@gmail.com [LPS, Faculty of Science, Dhar El Mehrez, BP 1796 Fes-Atlas (Morocco); Special Mathematics, CPGE My Youssef, Rabat (Morocco); Jorio, Anouar [LPS, Faculty of Science, Dhar El Mehrez, BP 1796 Fes-Atlas (Morocco)

    2014-10-01

    By means of a combination of Quantum Genetic Algorithm and Hartree–Fock–Roothaan method, the changes in linear, third-order nonlinear and total refractive index associated with intra-conduction band transition are investigated with and without shallow-donor impurity in wurtzite (In,Ga)N–GaN spherical quantum dot. For both cases with and without impurity, the calculation is performed within the framework of single band effective-mass and parabolic band approximations. Impurity's position and relaxation time effects are investigated. It is found that the modulation of the refractive index changes, suitable for good performance optical modulators and various infra-red optical device applications can be easily obtained by tailoring the relaxation time and the position of the impurity.

  8. In situ real-time x-ray reciprocal space mapping during InGaAs/GaAs growth for understanding strain relaxation mechanisms

    International Nuclear Information System (INIS)

    Sasaki, Takuo; Suzuki, Hidetoshi; Sai, Akihisa; Lee, Jong-Han; Kamiya, Itaru; Ohshita, Yoshio; Yamaguchi, Masafumi; Takahashi, Masamitsu; Fujikawa, Seiji; Arafune, Koji

    2009-01-01

    In situ real-time X-ray diffraction measurements during In 0.12 Ga 0.88 As/GaAs(001) epitaxial growth are performed for the first time to understand the strain relaxation mechanisms in a lattice-mismatched system. The high resolution reciprocal space maps of 004 diffraction obtained at interval of 6.2 nm thickness enable transient behavior of residual strain and crystal quality to be observed simultaneously as a function of InGaAs film thickness. From the evolution of these data, five thickness ranges with different relaxation processes and these transition points are determined quantitatively, and the dominant dislocation behavior in each phase is deduced. (author)

  9. Relaxation time and impurity effects on linear and nonlinear refractive index changes in (In,Ga)N–GaN spherical QD

    International Nuclear Information System (INIS)

    El Ghazi, Haddou; Jorio, Anouar

    2014-01-01

    By means of a combination of Quantum Genetic Algorithm and Hartree–Fock–Roothaan method, the changes in linear, third-order nonlinear and total refractive index associated with intra-conduction band transition are investigated with and without shallow-donor impurity in wurtzite (In,Ga)N–GaN spherical quantum dot. For both cases with and without impurity, the calculation is performed within the framework of single band effective-mass and parabolic band approximations. Impurity's position and relaxation time effects are investigated. It is found that the modulation of the refractive index changes, suitable for good performance optical modulators and various infra-red optical device applications can be easily obtained by tailoring the relaxation time and the position of the impurity

  10. Comparative study of the sensitivity of ADC value and T{sub 2} relaxation time for early detection of Wallerian degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Fan [Department of Radiology, Nanjing Jinling Hospital, Clinical School of Medical College of Nanjing University, Nanjing 210002 (China); Lu Guangming, E-mail: cjr.luguangming@vip.163.com [Department of Radiology, Nanjing Jinling Hospital, Clinical School of Medical College of Nanjing University, Nanjing 210002 (China); Zee Chishing, E-mail: chishing@usc.edu [Department of Radiology, USC Keck School of Medicine (United States)

    2011-07-15

    Background and purpose: Wallerian degeneration (WD), the secondary degeneration of axons from cortical and subcortical injuries, is associated with poor neurological outcome. There is some quantitative MR imaging techniques used to estimate the biologic changes secondary to delayed neuronal and axonal losses. Our purpose is to assess the sensitivity of ADC value and T{sub 2} relaxation time for early detection of WD. Methods: Ten male Sprague-Dawley rats were used to establish in vivo Wallerian degeneration model of CNS by ipsilateral motor-sensory cortex ablation. 5 days after cortex ablation, multiecho-T{sub 2} relaxometry and multi-b value DWI were acquired by using a 7 T MR imaging scanner. ADC-map and T{sub 2}-map were reconstructed by post-processing. ROIs are selected according to pathway of corticospinal tract from cortex, internal capsule, cerebral peduncle, pons, medulla oblongata to upper cervical spinal cord to measure ADC value and T{sub 2} relaxation time of healthy side and affected side. The results were compared between the side with cortical ablation and the side without ablation. Results: Excluding ablated cortex, ADC values of the corticospinal tract were significantly increased (P < 0.05) in affected side compared to the unaffected, healthy side; no difference in T{sub 2} relaxation time was observed between the affected and healthy sides. Imaging findings were correlated with histological examinations. Conclusion: As shown in this animal experiment, ADC values could non-invasively demonstrate the secondary degeneration involving descending white matter tracts. ADC values are more sensitive indicators for detection of early WD than T{sub 2} relaxation time.

  11. NMR relaxation induced by iron oxide particles: testing theoretical models.

    Science.gov (United States)

    Gossuin, Y; Orlando, T; Basini, M; Henrard, D; Lascialfari, A; Mattea, C; Stapf, S; Vuong, Q L

    2016-04-15

    Superparamagnetic iron oxide particles find their main application as contrast agents for cellular and molecular magnetic resonance imaging. The contrast they bring is due to the shortening of the transverse relaxation time T 2 of water protons. In order to understand their influence on proton relaxation, different theoretical relaxation models have been developed, each of them presenting a certain validity domain, which depends on the particle characteristics and proton dynamics. The validation of these models is crucial since they allow for predicting the ideal particle characteristics for obtaining the best contrast but also because the fitting of T 1 experimental data by the theory constitutes an interesting tool for the characterization of the nanoparticles. In this work, T 2 of suspensions of iron oxide particles in different solvents and at different temperatures, corresponding to different proton diffusion properties, were measured and were compared to the three main theoretical models (the motional averaging regime, the static dephasing regime, and the partial refocusing model) with good qualitative agreement. However, a real quantitative agreement was not observed, probably because of the complexity of these nanoparticulate systems. The Roch theory, developed in the motional averaging regime (MAR), was also successfully used to fit T 1 nuclear magnetic relaxation dispersion (NMRD) profiles, even outside the MAR validity range, and provided a good estimate of the particle size. On the other hand, the simultaneous fitting of T 1 and T 2 NMRD profiles by the theory was impossible, and this occurrence constitutes a clear limitation of the Roch model. Finally, the theory was shown to satisfactorily fit the deuterium T 1 NMRD profile of superparamagnetic particle suspensions in heavy water.

  12. Role of the combination of FA and T2* parameters as a new diagnostic method in therapeutic evaluation of parkinson's disease.

    Science.gov (United States)

    Fang, Yuan; Zheng, Tao; Liu, Lanxiang; Gao, Dawei; Shi, Qinglei; Dong, Yanchao; Du, Dan

    2017-11-17

    Simple diffusion delivery (SDD) has attained good effects with only tiny amounts of drugs. Fractional anisotropy (FA) and relaxation time T2* that indicate the integrity of fiber tracts and iron concentration within brain tissue were used to evaluate the therapeutic effect of SDD. To evaluate therapeutic effect of SDD in the Parkinson's disease (PD) rat model with FA and T2* parameters. Prospective case-control animal study. Thirty-two male Sprague Dawley rats (eight normal, eight PD, eight SDD, and eight subcutaneous injection rats). Single-shot spin echo echo-planar imaging and fast low-angle shot T 2 WI sequences at 3.0T. Parameters of FA and T2* on the treated side of the substantia nigra were measured to evaluate the therapeutic effect of SDD in a PD rat model. The effects of time on FA and T2* values were analyzed by repeated measurement tests. A one-way analysis of variance was conducted, followed by individual comparisons of the mean FA and T2* values at different timepoints. The FA values on the treated side of the substantia nigra in the SDD treatment group and subcutaneous injection treatment group were significantly higher at week 1 and lower at week 6 than that of the PD control group (SDD vs. PD, week 1, adjusted P = 0.012; subcutaneous vs. PD, week 1, adjusted P T2* parameter in the SDD treatment group and subcutaneous injection treatment group was significantly higher than that in the PD control group at week 6 (SDD vs. PD, adjusted P = 0.032; subcutaneous vs. PD, adjusted P T2* parameters can potentially serve as a new effective evaluation method of the therapeutic effect of SDD. 1 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2017. © 2017 International Society for Magnetic Resonance in Medicine.

  13. Faster metabolite (1H transverse relaxation in the elder human brain.

    Directory of Open Access Journals (Sweden)

    Małgorzata Marjańska

    Full Text Available (1H magnetic resonance spectroscopy (MRS is unique among imaging modalities because signals from several metabolites are measured during a single examination period. Each metabolite reflects a distinct intracellular process. Furthermore transverse (T2 relaxation times probe the viability of the cell microenvironment, e.g., the viscosity of the cellular fluids, the microscopic susceptibility distribution within the cells, and the iron content. In this study, T2s of brain metabolites were measured in the occipital lobe of eighteen young and fourteen elderly subjects at a field strength of 4 tesla. The T2s of N-acetylaspartate, total creatine, and total choline were 23%, 16% and 10% shorter in elderly than in young subjects. The findings of this study suggest that noninvasive detection of T2 provides useful biological information on changes in the cellular microenvironment that take place during aging.

  14. Influence of aging time of oleate precursor on the magnetic relaxation of cobalt ferrite nanoparticles synthesized by the thermal decomposition method

    International Nuclear Information System (INIS)

    Herrera, Adriana P.; Polo-Corrales, Liliana; Chavez, Ermides; Cabarcas-Bolivar, Jari; Uwakweh, Oswald N.C.; Rinaldi, Carlos

    2013-01-01

    Cobalt ferrite nanoparticles are of interest because of their room temperature coercivity and high magnetic anisotropy constant, which make them attractive in applications such as sensors based on the Brownian relaxation mechanism and probes to determine the mechanical properties of complex fluids at the nanoscale. These nanoparticles can be synthesized with a narrow size distribution by the thermal decomposition of an iron–cobalt oleate precursor in a high boiling point solvent. We studied the influence of aging time of the iron–cobalt oleate precursor on the structure, chemical composition, size, and magnetic relaxation of cobalt ferrite nanoparticles synthesized by the thermal decomposition method. The structure and thermal behavior of the iron–cobalt oleate was studied during the aging process. Infrared spectra indicated a shift in the coordination state of the oleate and iron/cobalt ions from bidentate to bridging coordination. Aging seemed to influence the thermal decomposition of the iron–cobalt oleate as determined from thermogravimmetric analysis and differential scanning calorimetry, where shifts in the temperatures corresponding to decomposition events and a narrowing of the endotherms associated with these events were observed. Aging promoted formation of the spinel crystal structure, as determined from X-ray diffraction, and influenced the nanoparticle magnetic properties, resulting in an increase in blocking temperature and magnetocrystalline anisotropy. Mossbauer spectra also indicated changes in the magnetic properties resulting from aging of the precursor oleate. Although all samples exhibited some degree of Brownian relaxation, as determined from complex susceptibility measurements in a liquid medium, aging of the iron–cobalt oleate precursor resulted in crossing of the in-phase χ′and out-of-phase χ″ components of the complex susceptibility at the frequency of the Brownian magnetic relaxation peak, as expected for nanoparticles

  15. T2-prepared velocity selective labelling

    DEFF Research Database (Denmark)

    Alderliesten, Thomas; De Vis, Jill B; Lemmers, Petra M A

    2016-01-01

    2-BIOS correlated with SO2-NIRS (R(2)=0.41, p=0.002) and SvO2-T2-TRIR (R(2)=0.87, p=0.002). In addition, SO2-NIRS correlated with SvO2-T2-TRIR (R(2)=0.85, p=0.003) Frontal cerebral blood flow correlated with SO2-T2-BIOS (R(2)=0.21, p=0.04), but was not significant in relation to SO2-NIRS. DISCUSSION...

  16. T2*-weighted image/T2-weighted image fusion in postimplant dosimetry of prostate brachytherapy

    International Nuclear Information System (INIS)

    Katayama, Norihisa; Takemoto, Mitsuhiro; Yoshio, Kotaro

    2011-01-01

    Computed tomography (CT)/magnetic resonance imaging (MRI) fusion is considered to be the best method for postimplant dosimetry of permanent prostate brachytherapy; however, it is inconvenient and costly. In T2 * -weighted image (T2 * -WI), seeds can be easily detected without the use of an intravenous contrast material. We present a novel method for postimplant dosimetry using T2 * -WI/T2-weighted image (T2-WI) fusion. We compared the outcomes of T2 * -WI/T2-WI fusion-based and CT/T2-WI fusion-based postimplant dosimetry. Between April 2008 and July 2009, 50 consecutive prostate cancer patients underwent brachytherapy. All the patients were treated with 144 Gy of brachytherapy alone. Dose-volume histogram (DVH) parameters (prostate D90, prostate V100, prostate V150, urethral D10, and rectal D2cc) were prospectively compared between T2 * -WI/T2-WI fusion-based and CT/T2-WI fusion-based dosimetry. All the DVH parameters estimated by T2 * -WI/T2-WI fusion-based dosimetry strongly correlated to those estimated by CT/T2-WI fusion-based dosimetry (0.77≤ R ≤0.91). No significant difference was observed in these parameters between the two methods, except for prostate V150 (p=0.04). These results show that T2 * -WI/T2-WI fusion-based dosimetry is comparable or superior to MRI-based dosimetry as previously reported, because no intravenous contrast material is required. For some patients, rather large differences were observed in the value between the 2 methods. We thought these large differences were a result of seed miscounts in T2 * -WI and shifts in fusion. Improving the image quality of T2 * -WI and the image acquisition speed of T2 * -WI and T2-WI may decrease seed miscounts and fusion shifts. Therefore, in the future, T2 * -WI/T2-WI fusion may be more useful for postimplant dosimetry of prostate brachytherapy. (author)

  17. Articular Cartilage of the Human Knee Joint: In Vivo Multicomponent T2 Analysis at 3.0 T

    Science.gov (United States)

    Choi, Kwang Won; Samsonov, Alexey; Spencer, Richard G.; Wilson, John J.; Block, Walter F.; Kijowski, Richard

    2015-01-01

    Purpose To compare multicomponent T2 parameters of the articular cartilage of the knee joint measured by using multicomponent driven equilibrium single-shot observation of T1 and T2 (mcDESPOT) in asymptomatic volunteers and patients with osteoarthritis. Materials and Methods This prospective study was performed with institutional review board approval and with written informed consent from all subjects. The mcDESPOT sequence was performed in the knee joint of 13 asymptomatic volunteers and 14 patients with osteoarthritis of the knee. Single-component T2 (T2Single), T2 of the fast-relaxing water component (T2F) and of the slow-relaxing water component (T2S), and the fraction of the fast-relaxing water component (FF) of cartilage were measured. Wilcoxon rank-sum tests and multivariate linear regression models were used to compare mcDESPOT parameters between volunteers and patients with osteoarthritis. Receiver operating characteristic analysis was used to assess diagnostic performance with mcDESPOT parameters for distinguishing morphologically normal cartilage from morphologically degenerative cartilage identified at magnetic resonance imaging in eight cartilage subsections of the knee joint. Results Higher cartilage T2Single (P cartilage FF (P cartilage T2F (P = .079) and T2S (P = .124) values were seen in patients with osteoarthritis compared with those in asymptomatic volunteers. Differences in T2Single and FF remained significant (P cartilage (P cartilage T2Single and significantly lower cartilage FF than did asymptomatic volunteers, and receiver operating characteristic analysis results suggested that FF may allow greater diagnostic performance than that with T2Single for distinguishing between normal and degenerative cartilage. © RSNA, 2015 Online supplemental material is available for this article. PMID:26024307

  18. Effect of Au{sup 8+} irradiation on Ni/n-GaP Schottky diode: Its influence on interface state density and relaxation time

    Energy Technology Data Exchange (ETDEWEB)

    Shiwakoti, N.; Bobby, A. [Department of Applied Physics, Indian Institute of Technology (ISM) Dhanbad, Jharkhand 826004 (India); Asokan, K. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Antony, Bobby, E-mail: bka.ism@gmail.com [Department of Applied Physics, Indian Institute of Technology (ISM) Dhanbad, Jharkhand 826004 (India)

    2017-01-01

    The in-situ capacitance-frequency and conductance-frequency measurements of 100 MeV Au{sup 8+} swift heavy ion irradiated Ni/n-GaP Schottky structure at a constant bias voltage have been carried out in the frequency range 1 kHz–1 MHz at room temperature. The interface states density and the relaxation time of the charge carriers have been calculated from Nicollian and Brews method. Various dielectric parameters such as dielectric constant, dielectric loss, loss tangent, series resistance, ac conductivity, real and imaginary parts of electric modulus have been extracted and analyzed under complex permittivity and complex electric modulus formalisms. The capacitance and conductance characteristics are found to exhibit complex behaviors at lower frequency region (1–20 kHz) for all the samples. The observed peaks and dips at low frequency region are attributed to the relaxation mechanisms of charge carriers and the interface or dipolar polarization at the interface. The dielectric properties are found to be effectively changed by the ion fluence which is attributed to the variation in interface states density and their relaxation time.

  19. Verification of T2VOC using an analytical solution for VOC transport in vadose zone

    Energy Technology Data Exchange (ETDEWEB)

    Shan, C. [Lawrence Berkeley Laboratory, Berkeley, CA (United States)

    1995-03-01

    T2VOC represents an adaption of the STMVOC to the TOUGH2 environment. In may contaminated sites, transport of volatile organic chemicals (VOC) is a serious problem which can be simulated by T2VOC. To demonstrate the accuracy and robustness of the code, we chose a practical problem of VOC transport as the test case, conducted T2VOC simulations, and compared the results of T2VOC with those of an analytical solution. The agreements between T2VOC and the analytical solutions are excellent. In addition, the numerical results of T2VOC are less sensitive to grid size and time step to a certain extent.

  20. A comparison of multi-echo spin-echo and triple-echo steady-state T2 mapping for in vivo evaluation of articular cartilage.

    Science.gov (United States)

    Juras, Vladimir; Bohndorf, Klaus; Heule, Rahel; Kronnerwetter, Claudia; Szomolanyi, Pavol; Hager, Benedikt; Bieri, Oliver; Zbyn, Stefan; Trattnig, Siegfried

    2016-06-01

    To assess the clinical relevance of T2 relaxation times, measured by 3D triple-echo steady-state (3D-TESS), in knee articular cartilage compared to conventional multi-echo spin-echo T2-mapping. Thirteen volunteers and ten patients with focal cartilage lesions were included in this prospective study. All subjects underwent 3-Tesla MRI consisting of a multi-echo multi-slice spin-echo sequence (CPMG) as a reference method for T2 mapping, and 3D TESS with the same geometry settings, but variable acquisition times: standard (TESSs 4:35min) and quick (TESSq 2:05min). T2 values were compared in six different regions in the femoral and tibial cartilage using a Wilcoxon signed ranks test and the Pearson correlation coefficient (r). The local ethics committee approved this study, and all participants gave written informed consent. The mean quantitative T2 values measured by CPMG (mean: 46±9ms) in volunteers were significantly higher compared to those measured with TESS (mean: 31±5ms) in all regions. Both methods performed similarly in patients, but CPMG provided a slightly higher difference between lesions and native cartilage (CPMG: 90ms→61ms [31%],p=0.0125;TESS 32ms→24ms [24%],p=0.0839). 3D-TESS provides results similar to those of a conventional multi-echo spin-echo sequence with many benefits, such as shortening of total acquisition time and insensitivity to B1 and B0 changes. • 3D-TESS T 2 mapping provides clinically comparable results to CPMG in shorter scan-time. • Clinical and investigational studies may benefit from high temporal resolution of 3D-TESS. • 3D-TESS T 2 values are able to differentiate between healthy and damaged cartilage.

  1. MRI T2 Mapping of the Knee Articular Cartilage Using Different Acquisition Sequences and Calculation Methods at 1.5 Tesla.

    Science.gov (United States)

    Mars, Mokhtar; Bouaziz, Mouna; Tbini, Zeineb; Ladeb, Fethi; Gharbi, Souha

    2018-06-12

    This study aims to determine how Magnetic Resonance Imaging (MRI) acquisition techniques and calculation methods affect T2 values of knee cartilage at 1.5 Tesla and to identify sequences that can be used for high-resolution T2 mapping in short scanning times. This study was performed on phantom and twenty-nine patients who underwent MRI of the knee joint at 1.5 Tesla. The protocol includes T2 mapping sequences based on Single Echo Spin Echo (SESE), Multi-Echo Spin Echo (MESE), Fast Spin Echo (FSE) and Turbo Gradient Spin Echo (TGSE). The T2 relaxation times were quantified and evaluated using three calculation methods (MapIt, Syngo Offline and monoexponential fit). Signal to Noise Ratios (SNR) were measured in all sequences. All statistical analyses were performed using the t-test. The average T2 values in phantom were 41.7 ± 13.8 ms for SESE, 43.2 ± 14.4 ms for MESE, 42.4 ± 14.1 ms for FSE and 44 ± 14.5 ms for TGSE. In the patient study, the mean differences were 6.5 ± 8.2 ms, 7.8 ± 7.6 ms and 8.4 ± 14.2 ms for MESE, FSE and TGSE compared to SESE respectively; these statistical results were not significantly different (p > 0.05). The comparison between the three calculation methods showed no significant difference (p > 0.05). t-Test showed no significant difference between SNR values for all sequences. T2 values depend not only on the sequence type but also on the calculation method. None of the sequences revealed significant differences compared to the SESE reference sequence. TGSE with its short scanning time can be used for high-resolution T2 mapping. ©2018The Author(s). Published by S. Karger AG, Basel.

  2. Properties of the relaxation time distribution underlying the Kohlrausch-Williams-Watts photoionization of the DX centers in Cd{sub 1-x}Mn{sub x}Te mixed crystals

    Energy Technology Data Exchange (ETDEWEB)

    Trzmiel, J; Weron, K; Placzek-Popko, E [Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Janczura, J [Hugo Steinhaus Center for Stochastic Methods and Institute of Mathematics and Computer Science, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2009-08-26

    In this paper we clarify the relationship between the relaxation rate and relaxation time distributions underlying the Kohlrausch-Williams-Watts (KWW) photoconductivity build-ups in indium- and gallium-doped Cd{sub 1-x}Mn{sub x}Te mixed crystals. We discuss the role of asymptotic properties of the corresponding probability density functions. We show that the relaxation rate distribution, as a completely asymmetric alpha-stable distribution, leads to an infinite mean value of the effective relaxation rate. In contrast, the relaxation time distribution related to it leads to a finite mean value of the effective relaxation time. It follows from the experimental data analysis that for all the investigated samples the KWW exponent alpha decreases linearly with increasing photon flux in the range of (0.6-0.99) and its values are more spread in the case of gallium-doped material. We also observe a linear dependence of the mean relaxation time on the characteristic material time constant, which is consistent with the theoretical model.

  3. Statistical foundation of the Kubo-Tomita theory of magnetic relaxation

    International Nuclear Information System (INIS)

    Yul'met'ev, R.M.

    1974-01-01

    With the aim to give the statistical foundation of the Kubo-Tomita theory the theoretical-functional method of the projection operators is applied to the phenomenon of magnetic relaxation. The exact nonmarkov nonlinear kinetic equations are found for the time correlation functions (TCF) of the longitudinal and transversal components of the spin magnetization of a system including the spin-lattice interaction lambda H' in a general form. The markov kinetic equations of the well-known Bloch-type are derived in the weak coupling Van Hove limits t → infinity, lambda → 0, lambda 2 t=const., and the rate of the spin-lattice (T 1 -1 ) and spin-spin (T 2 -1 ) relaxation is obtained from the relaxation coefficients. It is found that the formulas of the Kubo-Tomita for T 1 -1 and T 2 -1 are correct only in the case of rapid thermal motions when ω 0 tau 0 0 is the resonance frequency and tau 0 is the typical correlation time of the molecular thermal motions). In the other limiting case (ω 0 tau 0 >>1) of slow motion, the effective spectral densities which enter T 1 and T 2 are determined by a set of relaxation times Tsub(β)sup(n) of the spin irreducible operators Vsub(β)sup(n) from the spin-lattice interaction lambda H'. It is found that the time dependence of the transversal component of magnetization had been left out in the collision integral of Kubo-Tomita's theory. Precisely considering this circumstance the frequency dependence of T 2 -1 on the resonance frequency must be changed. (author)

  4. Time domain NMR and conductivity study of apple pectin biopolymers

    International Nuclear Information System (INIS)

    Mattos, Ritamara I.; Souto, Sergio; Tambelli, Caio E.

    2015-01-01

    This communication presents results of "1H nuclear magnetic resonance of continuous distributions of spin-spin relaxation time (T_2) and A.C. conductivity of apple pectin biopolymers plasticized with glycerol and containing acetic acid. The continuous distributions reveals up to three components of spin-spin relaxation times (T_2). The two short T_2 components were associated with protons of pectin polymer chain and the longer T_2 can be attributed with the protons of the glycerol. The conductivity values increase with glycerol concentration with maximum at 7.9 x 10"-"4 S cm"-"1 for sample with 3.0 g of glycerol at 83 deg C. The behavior of activation energy and T_2 continuous distribution indicate an increase of proton mobility due the structural changes caused by glycerol addition. (author)

  5. Lactate and T2 measurements of synovial aspirates at 1.5 T: differentiation of septic from non-septic arthritis

    International Nuclear Information System (INIS)

    Wiener, Edzard; Zanetti, Marco; Hodler, Juerg; Pfirrmann, Christian W.A.

    2008-01-01

    The aim of this study was to differentiate septic from non-septic arthritis by measuring lactate concentration with 1 H magnetic resonance spectroscopy (HMRS) and by estimating total protein content with the assessment of T 2 values. In 30 patients with acute arthritis, synovial fluid was aspirated. Lactate concentrations were analyzed with single voxel HMRS at 1.5 T. T 2 relaxation times were mapped with a multi-spin echo sequence. All samples underwent microbiological testing and routine laboratory analysis to quantify lactate concentration and total protein content. Values obtained in septic and non-septic arthritis were compared with a Mann-Whitney U test. Synovial fluid from patients with septic arthritis (n=10) had higher concentrations of lactate (11.4 ± 4.0 mmol/L) and higher total protein content (51.8 ± 10.7 g/L) than fluid obtained in non-septic arthritis (n=20; 5.2±1.1 mmol/L and 40.4±6.9 g/L, respectively, p 2 relaxation times (as an indicator of total protein content) were moderately correlated to laboratory-confirmed lactate concentration (r 2 =0.71) and total protein content (r 2 =0.73). Markedly increased lactate concentrations (>6 mmol/L) in combination with low T 2 values ( 2 may be of value in the differentiation of septic from non-septic arthritis. (orig.)

  6. The TOTEM GEM Telescope (T2) at the LHC

    International Nuclear Information System (INIS)

    Quinto, M.; Berretti, M.; David, E.; Garcia, F.; Greco, V.; Heino, J.; Hilden, T.; Kurvinen, K.; Lami, S.; Latino, G.; Lauhakangas, R.; Oliveri, E.; Ropelewski, L.; Scribano, A.; Turini, N.; Stenis, M. van

    2011-01-01

    The TOTEM T2 telescope will measure inelastically produced charged particles in the forward region of the LHC Interaction Point 5. Each arm of the telescope consists in a set of 20 triple-GEM (Gas Electron Multiplier) detectors with tracking and trigger capabilities. The GEM technology has been considered for the design of TOTEM very forward T2 telescopes thanks to its characteristics: large active areas, good position and timing resolution, excellent rate capability and radiation hardness. Each of the four T2 half arms has been fully assembled and equipped with electronics at CERN and systematically tested in the SPS beam line H8 in 2008/09. After some optimization, the operation of the GEM chambers was fully satisfactory and the T2 telescopes were installed and commissioned in their final positions at the LHC interaction point. During the first LHC run (December 2009) the T2 telescopes have collected data, at 900 GeV and 2.36 TeV. We will present here the performances of the detector and the preliminary results obtained using the data collected.

  7. The TOTEM GEM Telescope (T2) at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Quinto, M. [INFN Sezione di Bari, Via E.Orabona n 4, 70126 Bari (Italy); Berretti, M. [University of Siena, Physics Department, Via Roma 56, I-53100 Siena (Italy); INFN Sezione di Pisa, Largo B. Pontecorvo, 3. I-56127. Pisa (Italy); David, E. [CERN, PH Department, 1211 Geneva 23, Geneva (Switzerland); Garcia, F. [University of Helsinki, Institute of Physics and Department of Physical Sciences, Helsinki (Finland); Greco, V. [University of Siena, Physics Department, Via Roma 56, I-53100 Siena (Italy); INFN Sezione di Pisa, Largo B. Pontecorvo, 3. I-56127. Pisa (Italy); Heino, J.; Hilden, T.; Kurvinen, K. [University of Helsinki, Institute of Physics and Department of Physical Sciences, Helsinki (Finland); Lami, S. [INFN Sezione di Pisa, Largo B. Pontecorvo, 3. I-56127. Pisa (Italy); Latino, G. [University of Siena, Physics Department, Via Roma 56, I-53100 Siena (Italy); INFN Sezione di Pisa, Largo B. Pontecorvo, 3. I-56127. Pisa (Italy); Lauhakangas, R. [University of Helsinki, Institute of Physics and Department of Physical Sciences, Helsinki (Finland); Oliveri, E. [University of Siena, Physics Department, Via Roma 56, I-53100 Siena (Italy); INFN Sezione di Pisa, Largo B. Pontecorvo, 3. I-56127. Pisa (Italy); Ropelewski, L. [CERN, PH Department, 1211 Geneva 23, Geneva (Switzerland); Scribano, A.; Turini, N. [University of Siena, Physics Department, Via Roma 56, I-53100 Siena (Italy); INFN Sezione di Pisa, Largo B. Pontecorvo, 3. I-56127. Pisa (Italy); Stenis, M. van [CERN, PH Department, 1211 Geneva 23, Geneva (Switzerland)

    2011-06-15

    The TOTEM T2 telescope will measure inelastically produced charged particles in the forward region of the LHC Interaction Point 5. Each arm of the telescope consists in a set of 20 triple-GEM (Gas Electron Multiplier) detectors with tracking and trigger capabilities. The GEM technology has been considered for the design of TOTEM very forward T2 telescopes thanks to its characteristics: large active areas, good position and timing resolution, excellent rate capability and radiation hardness. Each of the four T2 half arms has been fully assembled and equipped with electronics at CERN and systematically tested in the SPS beam line H8 in 2008/09. After some optimization, the operation of the GEM chambers was fully satisfactory and the T2 telescopes were installed and commissioned in their final positions at the LHC interaction point. During the first LHC run (December 2009) the T2 telescopes have collected data, at 900 GeV and 2.36 TeV. We will present here the performances of the detector and the preliminary results obtained using the data collected.

  8. Multiple-relaxation-time lattice Boltzmann model for incompressible miscible flow with large viscosity ratio and high Péclet number

    Science.gov (United States)

    Meng, Xuhui; Guo, Zhaoli

    2015-10-01

    A lattice Boltzmann model with a multiple-relaxation-time (MRT) collision operator is proposed for incompressible miscible flow with a large viscosity ratio as well as a high Péclet number in this paper. The equilibria in the present model are motivated by the lattice kinetic scheme previously developed by Inamuro et al. [Philos. Trans. R. Soc. London, Ser. A 360, 477 (2002), 10.1098/rsta.2001.0942]. The fluid viscosity and diffusion coefficient depend on both the corresponding relaxation times and additional adjustable parameters in this model. As a result, the corresponding relaxation times can be adjusted in proper ranges to enhance the performance of the model. Numerical validations of the Poiseuille flow and a diffusion-reaction problem demonstrate that the proposed model has second-order accuracy in space. Thereafter, the model is used to simulate flow through a porous medium, and the results show that the proposed model has the advantage to obtain a viscosity-independent permeability, which makes it a robust method for simulating flow in porous media. Finally, a set of simulations are conducted on the viscous miscible displacement between two parallel plates. The results reveal that the present model can be used to simulate, to a high level of accuracy, flows with large viscosity ratios and/or high Péclet numbers. Moreover, the present model is shown to provide superior stability in the limit of high kinematic viscosity. In summary, the numerical results indicate that the present lattice Boltzmann model is an ideal numerical tool for simulating flow with a large viscosity ratio and/or a high Péclet number.

  9. Real-time observation of formation and relaxation dynamics of NH4 in (CH3OH)m(NH3)n clusters.

    Science.gov (United States)

    Yamada, Yuji; Nishino, Yoko; Fujihara, Akimasa; Ishikawa, Haruki; Fuke, Kiyokazu

    2009-03-26

    The formation and relaxation dynamics of NH4(CH3OH)m(NH3)n clusters produced by photolysis of ammonia-methanol mixed clusters has been observed by a time-resolved pump-probe method with femtosecond pulse lasers. From the detailed analysis of the time evolutions of the protonated cluster ions, NH4(+)(CH3OH)m(NH3)n, the kinetic model has been constructed, which consists of sequential three-step reaction: ultrafast hydrogen-atom transfer producing the radical pair (NH4-NH2)*, the relaxation process of radical-pair clusters, and dissociation of the solvated NH4 clusters. The initial hydrogen transfer hardly occurs between ammonia and methanol, implying the unfavorable formation of radical pair, (CH3OH2-NH2)*. The remarkable dependence of the time constants in each step on the number and composition of solvents has been explained by the following factors: hydrogen delocalization within the clusters, the internal conversion of the excited-state radical pair, and the stabilization of NH4 by solvation. The dependence of the time profiles on the probe wavelength is attributed to the different ionization efficiency of the NH4(CH3OH)m(NH3)n clusters.

  10. Towards MRI T2 contrast agents of increased efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Branca, Marlène [CNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, F-31077 Toulouse (France); Université de Toulouse, UPS, INPT, LCC, F-31077 Toulouse (France); Marciello, Marzia, E-mail: marziamarciello@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz, 3, Cantoblanco, 28049 Madrid (Spain); Ciuculescu-Pradines, Diana [CNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, F-31077 Toulouse (France); Université de Toulouse, UPS, INPT, LCC, F-31077 Toulouse (France); Respaud, Marc [LPCNO, INSA, 135 Avenue de Rangueil, 31077 Toulouse Cedex 4 (France); Morales, Maria del Puerto [Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz, 3, Cantoblanco, 28049 Madrid (Spain); Serra, Raphael; Casanove, Marie-José [CNRS, CEMES (Centre d' Elaboration des Matériaux et d' Etudes Structurales) (France); Amiens, Catherine, E-mail: catherine.amiens@lcc-toulouse.fr [CNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, F-31077 Toulouse (France); Université de Toulouse, UPS, INPT, LCC, F-31077 Toulouse (France)

    2015-03-01

    Magnetic nanoparticles can be efficient contrast agents for T2 weighted magnetic resonance imaging (MRI) after tuning of some key parameters such as size, surface state, colloidal stability and magnetization, thus motivating the development of new synthetic pathways. In this paper we report the effects of surface coating on the efficiency of two different types of iron based nanoparticles (NPs) as MRI contrast agents. Starting from well-defined hydrophobic iron oxide nanospheres and iron nanocubes of 13 nm size, we have used three methods to increase their hydrophilicity and transfer them into water: surface ligand modification, ligand exchange or encapsulation. The NPs obtained have been characterized by dynamic light scattering and transmission electron microscopy, and the relaxivities of their stable colloidal solutions in water have been determined. Among all samples prepared, iron nanocubes coated by silica display the highest relaxivity (r{sub 2}) value: 628 s{sup −1} mM{sup −1}. - Highlights: • Surface coating effect on the efficiency of iron based nanoparticles (NPs) as MRI contrast agents. • Synthesis of 2 different types of hydrophobic iron based NPs: iron oxide nanospheres and iron nanocubes (13 nm). • Development of three different procedures to stabilize iron based NPs in water. • Iron nanocubes coated by silica displayed the highest r{sub 2} value (628 s{sup −1} mM{sup −1})

  11. Quantitative T2 evaluation at 3.0 T compared to morphological grading of the lumbar intervertebral disc: A standardized evaluation approach in patients with low back pain

    International Nuclear Information System (INIS)

    Stelzeneder, David; Welsch, Goetz Hannes; Kovács, Balázs Krisztián; Goed, Sabine; Paternostro-Sluga, Tatjana; Vlychou, Marianna; Friedrich, Klaus; Mamisch, Tallal Charles; Trattnig, Siegfried

    2012-01-01

    Background: The purpose of our investigation was to compare quantitative T2 relaxation time measurement evaluation of lumbar intervertebral discs with morphological grading in young to middle-aged patients with low back pain, using a standardized region-of-interest evaluation approach. Patients and methods: Three hundred thirty lumbar discs from 66 patients (mean age, 39 years) with low back pain were examined on a 3.0 T MR unit. Sagittal T1-FSE, sagittal, coronal, and axial T2-weighted FSE for morphological MRI, as well as a multi-echo spin-echo sequence for T2 mapping, were performed. Morphologically, all discs were classified according to Pfirrmann et al. Equally sized rectangular regions of interest (ROIs) for the annulus fibrosus were selected anteriorly and posteriorly in the outermost 20% of the disc. The space between was defined as the nucleus pulposus. To assess the reproducibility of this evaluation, inter- and intraobserver statistics were performed. Results: The Pfirrmann scoring of 330 discs showed the following results: grade I: six discs (1.8%); grade II: 189 (57.3%); grade III: 96 (29.1%); grade IV: 38 (11.5%); and grade V: one (0.3%). The mean T2 values (in milliseconds) for the anterior and the posterior annulus, and the nucleus pulposus for the respective Pfirrmann groups were: I: 57/30/239; II: 44/67/129; III: 42/51/82; and IV: 42/44/56. The nucleus pulposus T2 values showed a stepwise decrease from Pfirrmann grade I to IV. The posterior annulus showed the highest T2 values in Pfirrmann group II, while the anterior annulus showed relatively constant T2 values in all Pfirrmann groups. The inter- and intraobserver analysis yielded intraclass correlation coefficients (ICC) for average measures in a range from 0.82 (anterior annulus) to 0.99 (nucleus). Conclusions: Our standardized method of region-specific quantitative T2 relaxation time evaluation seems to be able to characterize different degrees of disc degeneration quantitatively. The

  12. Quantitative T2 evaluation at 3.0T compared to morphological grading of the lumbar intervertebral disc: a standardized evaluation approach in patients with low back pain.

    Science.gov (United States)

    Stelzeneder, David; Welsch, Goetz Hannes; Kovács, Balázs Krisztián; Goed, Sabine; Paternostro-Sluga, Tatjana; Vlychou, Marianna; Friedrich, Klaus; Mamisch, Tallal Charles; Trattnig, Siegfried

    2012-02-01

    The purpose of our investigation was to compare quantitative T2 relaxation time measurement evaluation of lumbar intervertebral discs with morphological grading in young to middle-aged patients with low back pain, using a standardized region-of-interest evaluation approach. Three hundred thirty lumbar discs from 66 patients (mean age, 39 years) with low back pain were examined on a 3.0T MR unit. Sagittal T1-FSE, sagittal, coronal, and axial T2-weighted FSE for morphological MRI, as well as a multi-echo spin-echo sequence for T2 mapping, were performed. Morphologically, all discs were classified according to Pfirrmann et al. Equally sized rectangular regions of interest (ROIs) for the annulus fibrosus were selected anteriorly and posteriorly in the outermost 20% of the disc. The space between was defined as the nucleus pulposus. To assess the reproducibility of this evaluation, inter- and intraobserver statistics were performed. The Pfirrmann scoring of 330 discs showed the following results: grade I: six discs (1.8%); grade II: 189 (57.3%); grade III: 96 (29.1%); grade IV: 38 (11.5%); and grade V: one (0.3%). The mean T2 values (in milliseconds) for the anterior and the posterior annulus, and the nucleus pulposus for the respective Pfirrmann groups were: I: 57/30/239; II: 44/67/129; III: 42/51/82; and IV: 42/44/56. The nucleus pulposus T2 values showed a stepwise decrease from Pfirrmann grade I to IV. The posterior annulus showed the highest T2 values in Pfirrmann group II, while the anterior annulus showed relatively constant T2 values in all Pfirrmann groups. The inter- and intraobserver analysis yielded intraclass correlation coefficients (ICC) for average measures in a range from 0.82 (anterior annulus) to 0.99 (nucleus). Our standardized method of region-specific quantitative T2 relaxation time evaluation seems to be able to characterize different degrees of disc degeneration quantitatively. The reproducibility of our ROI measurements is sufficient to

  13. The simulation of a two-dimensional (2D) transport problem in a rectangular region with Lattice Boltzmann method with two-relaxation-time

    Science.gov (United States)

    Sugiyanto, S.; Hardyanto, W.; Marwoto, P.

    2018-03-01

    Transport phenomena are found in many problems in many engineering and industrial sectors. We analyzed a Lattice Boltzmann method with Two-Relaxation Time (LTRT) collision operators for simulation of pollutant moving through the medium as a two-dimensional (2D) transport problem in a rectangular region model. This model consists of a 2D rectangular region with 54 length (x), 27 width (y), and it has isotropic homogeneous medium. Initially, the concentration is zero and is distributed evenly throughout the region of interest. A concentration of 1 is maintained at 9 < y < 18, whereas the concentration of zero is maintained at 0 < y < 9 and 18 < y < 27. A specific discharge (Darcy velocity) of 1.006 is assumed. A diffusion coefficient of 0.8333 is distributed uniformly with a uniform porosity of 0.35. A computer program is written in MATLAB to compute the concentration of pollutant at any specified place and time. The program shows that LTRT solution with quadratic equilibrium distribution functions (EDFs) and relaxation time τa=1.0 are in good agreement result with other numerical solutions methods such as 3DLEWASTE (Hybrid Three-dimensional Lagrangian-Eulerian Finite Element Model of Waste Transport Through Saturated-Unsaturated Media) obtained by Yeh and 3DFEMWATER-LHS (Three-dimensional Finite Element Model of Water Flow Through Saturated-Unsaturated Media with Latin Hypercube Sampling) obtained by Hardyanto.

  14. Sandpile model for relaxation in complex systems

    International Nuclear Information System (INIS)

    Vazquez, A.; Sotolongo-Costa, O.; Brouers, F.

    1997-10-01

    The relaxation in complex systems is, in general, nonexponential. After an initial rapid decay the system relaxes slowly following a long time tail. In the present paper a sandpile moderation of the relaxation in complex systems is analysed. Complexity is introduced by a process of avalanches in the Bethe lattice and a feedback mechanism which leads to slower decay with increasing time. In this way, some features of relaxation in complex systems: long time tails relaxation, aging, and fractal distribution of characteristic times, are obtained by simple computer simulations. (author)

  15. T2K neutrino flux prediction

    CERN Document Server

    Abe, K.

    2013-01-02

    The Tokai-to-Kamioka (T2K) experiment studies neutrino oscillations using an off-axis muon neutrino beam with a peak energy of about 0.6 GeV that originates at the J-PARC accelerator facility. Interactions of the neutrinos are observed at near detectors placed at 280 m from the production target and at the far detector -- Super-Kamiokande (SK) -- located 295 km away. The flux prediction is an essential part of the successful prediction of neutrino interaction rates at the T2K detectors and is an important input to T2K neutrino oscillation and cross section measurements. A FLUKA and GEANT3 based simulation models the physical processes involved in the neutrino production, from the interaction of primary beam protons in the T2K target, to the decay of hadrons and muons that produce neutrinos. The simulation uses proton beam monitor measurements as inputs. The modeling of hadronic interactions is re-weighted using thin target hadron production data, including recent charged pion and kaon measurements from the NA...

  16. Are prostate carcinoma clinical stages T1C and T2 similar?

    Directory of Open Access Journals (Sweden)

    Athanase Billis

    2006-04-01

    Full Text Available PURPOSE: A recent study has found that PSA recurrence rate for clinical T1c tumors is similar to T2 tumors, indicating a need for further refinement of clinical staging system. To test this finding we compared clinicopathologic characteristics and the time to PSA progression following radical retropubic prostatectomy of patients with clinical stage T1c tumors to those with stage T2, T2a or T2b tumors. MATERIALS AND METHODS: From a total of 186 consecutive patients submitted to prostatectomy, 33.52% had clinical stage T1c tumors, 45.45% stage T2a tumors and 21.02% stage T2b tumors. The variables studied were age, preoperative PSA, prostate weight, Gleason score, tumor extent, positive surgical margins, extraprostatic extension (pT3a, seminal vesicle invasion (pT3b, and time to PSA progression. Tumor extent was evaluated by a point-count method. RESULTS: Patients with clinical stage T1c were younger and had the lowest mean preoperative PSA. In the surgical specimen, they had higher frequency of Gleason score < 7 and more organ confined cancer. In 40.54% of the patients with clinical stage T2b tumors, there was extraprostatic extension (pT3a. During the study period, 54 patients (30.68% developed a biochemical progression. Kaplan-Meier product-limit analysis revealed no significant difference in the time to PSA progression between men with clinical stage T1c versus clinical stage T2 (p = 0.7959, T2a (p = 0.6060 or T2b (p = 0.2941 as well as between men with clinical stage T2a versus stage T2b (p = 0.0994. CONCLUSION: Clinicopathological features are not similar considering clinical stage T1c versus clinical stages T2, T2a or T2b.

  17. Capturing molecular multimode relaxation processes in excitable gases based on decomposition of acoustic relaxation<