WorldWideScience

Sample records for relaxation times magnetization

  1. Dependence of Brownian and Néel relaxation times on magnetic field strength

    International Nuclear Information System (INIS)

    Deissler, Robert J.; Wu, Yong; Martens, Michael A.

    2014-01-01

    Purpose: In magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS) the relaxation time of the magnetization in response to externally applied magnetic fields is determined by the Brownian and Néel relaxation mechanisms. Here the authors investigate the dependence of the relaxation times on the magnetic field strength and the implications for MPI and MPS. Methods: The Fokker–Planck equation with Brownian relaxation and the Fokker–Planck equation with Néel relaxation are solved numerically for a time-varying externally applied magnetic field, including a step-function, a sinusoidally varying, and a linearly ramped magnetic field. For magnetic fields that are applied as a step function, an eigenvalue approach is used to directly calculate both the Brownian and Néel relaxation times for a range of magnetic field strengths. For Néel relaxation, the eigenvalue calculations are compared to Brown's high-barrier approximation formula. Results: The relaxation times due to the Brownian or Néel mechanisms depend on the magnitude of the applied magnetic field. In particular, the Néel relaxation time is sensitive to the magnetic field strength, and varies by many orders of magnitude for nanoparticle properties and magnetic field strengths relevant for MPI and MPS. Therefore, the well-known zero-field relaxation times underestimate the actual relaxation times and, in particular, can underestimate the Néel relaxation time by many orders of magnitude. When only Néel relaxation is present—if the particles are embedded in a solid for instance—the authors found that there can be a strong magnetization response to a sinusoidal driving field, even if the period is much less than the zero-field relaxation time. For a ferrofluid in which both Brownian and Néel relaxation are present, only one relaxation mechanism may dominate depending on the magnetic field strength, the driving frequency (or ramp time), and the phase of the magnetization relative to the

  2. Transverse magnetic field effects on the relaxation time of the magnetization in Mn12 measured by 55Mn-NMR

    International Nuclear Information System (INIS)

    Furukawa, Y.; Watanabe, K.; Kumagai, K.; Borsa, F.; Gatteschi, D.

    2003-01-01

    The longitudinal (H Z ) and transverse (H T ) magnetic field dependence of the relaxation time of the magnetization in Mn12 in its S=10 ground state was measured by NMR. The minima in the relaxation time at the fields for level crossing are due to the quantum tunneling of the magnetization. The shortening of the relaxation time under the application of H T is shown to be due mainly to the reduction of the energy barrier

  3. Transverse magnetic field effects on the relaxation time of the magnetization in Mn12 measured by {sup 55}Mn-NMR

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Y.; Watanabe, K.; Kumagai, K.; Borsa, F.; Gatteschi, D

    2003-05-01

    The longitudinal (H{sub Z}) and transverse (H{sub T}) magnetic field dependence of the relaxation time of the magnetization in Mn12 in its S=10 ground state was measured by NMR. The minima in the relaxation time at the fields for level crossing are due to the quantum tunneling of the magnetization. The shortening of the relaxation time under the application of H{sub T} is shown to be due mainly to the reduction of the energy barrier.

  4. Negative magnetic relaxation in superconductors

    Directory of Open Access Journals (Sweden)

    Krasnoperov E.P.

    2013-01-01

    Full Text Available It was observed that the trapped magnetic moment of HTS tablets or annuli increases in time (negative relaxation if they are not completely magnetized by a pulsed magnetic field. It is shown, in the framework of the Bean critical-state model, that the radial temperature gradient appearing in tablets or annuli during a pulsed field magnetization can explain the negative magnetic relaxation in the superconductor.

  5. Relaxation of the magnetization in magnetic molecules

    Science.gov (United States)

    Carretta, S.; Bianchi, A.; Liviotti, E.; Santini, P.; Amoretti, G.

    2006-04-01

    Several mechanisms characterize the relaxation dynamics in magnetic molecules. We investigate two of them, spin-lattice coupling and incoherent quantum tunneling. The effect of the phonon heat bath is studied by analyzing the exponential time decay of the autocorrelation of the magnetization. We show that in ferromagnetic (Cu6) and antiferromagnetic (Fe6) molecular rings this decay is characterized by a single characteristic time. At very low temperature, relaxation through incoherent quantum tunneling may occur in nanomagnets such as Fe8 or Ni4. The mixing between levels with different values of the total spin (S mixing) greatly influences this mechanism. In particular, we demonstrate that a fourth-order anisotropy term O44, required to interpret experimental electron paramagnetic resonance and relaxation data in Ni4, naturally arises when S mixing is considered in calculations.

  6. On-chip Brownian relaxation measurements of magnetic nanobeads in the time domain

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Rizzi, Giovanni; Hansen, Mikkel Fougt

    2013-01-01

    the time and frequency domain methods on Brownian relaxation detection of clustering of streptavidin coated magnetic beads in the presence of different concentrations of biotin-conjugated bovine serum albumin and obtain comparable results. In the time domain, a measurement is carried out in less than 30 s...

  7. Thermally induced magnetic relaxation in square artificial spin ice

    Science.gov (United States)

    Andersson, M. S.; Pappas, S. D.; Stopfel, H.; Östman, E.; Stein, A.; Nordblad, P.; Mathieu, R.; Hjörvarsson, B.; Kapaklis, V.

    2016-11-01

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system - square artificial spin ice - we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Using time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.

  8. Evaluation of relaxation time measurements by magnetic resonance imaging. A phantom study

    DEFF Research Database (Denmark)

    Kjaer, L; Thomsen, C; Henriksen, O

    1987-01-01

    Several circumstances may explain the great variation in reported proton T1 and T2 relaxation times usually seen. This study was designed to evaluate the accuracy of relaxation time measurements by magnetic resonance imaging (MRI) operating at 1.5 tesla. Using a phantom of nine boxes with different...... concentrations of CuSO4 and correlating the calculated T1 and T2 values with reference values obtained by two spectrometers (corrected to MRI-proton frequency = 64 MHz) we found a maximum deviation of about 10 per cent. Measurements performed on a large water phantom in order to evaluate the homogeneity...... in the imaging plane showed a variation of less than 10 per cent within 10 cm from the centre of the magnet in all three imaging planes. Changing the gradient field strength apparently had no influence on the T2 values recorded. Consequently diffusion processes seem without significance. It is concluded...

  9. Magnetic-relaxation method of analysis of inorganic substances

    International Nuclear Information System (INIS)

    Popel', A.A.

    1978-01-01

    The magnetic-relaxation method is considered of the quantitative analysis of inorganic substances based on time dependence of magnetic nuclei relaxation on the quantity of paramagnetic centres in a solution. The characteristic is given of some methods of measuring nuclear magnetic relaxation times: method of weak oscillation generator and pulse methods. The effect of temperature, general solution viscosity, diamagnetic salt concentration, medium acidity on nuclear relaxation velocity is described. The determination sensitivity is estimated and the means of its increase definable concentration intervals and method selectivity are considered. The method application when studying complexing in the solution is described. A particular attention is given to the investigation of heteroligand homocentre, heterocentre and protonated complexes as well as to the problems of particle exchange of the first coordination sphere with particles from the mass of solution. The equations for equilibrium constant calculation in different systems are given. Possibilities of determining diamagnetic ions by the magnetic-relaxation method using paramagnetic indicators are confirmed by the quantitative analysis of indium, gallium, thorium and scandium in their salt solutions

  10. COMPARATIVE ASSESSMENT OF NUCLEAR MAGNETIC RELAXATION CHARACTERISTICS OF SUNFLOWER AND RAPESEED LECITHIN

    OpenAIRE

    Lisovaya E. V.; Victorova E. P.; Agafonov O. S.; Kornen N. N.; Shahray T. A.

    2015-01-01

    The article presents a comparative assessment and peculiarities of nuclear magnetic relaxation characteristics of rapeseed and sunflower lecithin. It was established, that lecithin’s nuclear magnetic relaxation characteristics, namely, protons’ spin-spin relaxation time and amplitudes of nuclear magnetic relaxation signals of lecithin components, depend on content of oil’s fat acids and phospholipids, contained in the lecithin. Comparative assessment of protons’ spin-spin relaxation time of r...

  11. Magnetic relaxation in analytical, coordination and bioinorganic chemistry

    International Nuclear Information System (INIS)

    Mikhajlov, O.

    1982-01-01

    Nuclear magnetic relaxation is a special type of nuclear magnetic resonance in which the rate is measured of energy transfer between the excited nuclei and their molecular medium (spin-lattice relaxation) or the whole nuclear spin system (spin-spin relaxation). Nuclear magnetic relaxation relates to nuclei with a spin of 1/2, primarily H 1 1 , and is mainly measured in water solutions. It is suitable for (1) analytical chemistry because the relaxation time rapidly reduces in the presence of paramagnetic ions, (2) the study of complex compounds, (3) the study of biochemical reactions in the presence of different metal ions. It is also suitable for testing the composition of a flowing liquid. Its disadvantage is that it requires complex and expensive equipment. (Ha)

  12. Nuclear magnetic resonance relaxation times for human lung cancer and lung tissues

    International Nuclear Information System (INIS)

    Matsuura, Yoshifumi; Shioya, Sumie; Kurita, Daisaku; Ohta, Takashi; Haida, Munetaka; Ohta, Yasuyo; Suda, Syuichi; Fukuzaki, Minoru.

    1994-01-01

    We investigated the nuclear magnetic resonance (NMR) relaxation times, T 1 and T 2 , for lung cancer tissue, and other samples of lung tissue obtained from surgical specimens. The samples were nine squamous cell carcinomas, five necrotic squamous cell carcinomas, 15 adenocarcinomas, two benign mesotheliomas, and 13 fibrotic lungs. The relaxation times were measured with a 90 MHz NMR spectrometer and the results were correlated with histological changes. The values of T 1 and T 2 for squamous cell carcinoma and mesothelioma were significantly longer than those of adenocarcinoma and fibrotic lung tissue. There were no significant differences in values of T 1 and T 2 between adenocarcinoma and lung tissue. The values of T 1 and T 2 for benign mesothelioma were similar to those of squamous cell carcinoma, which suggested that increases in T 1 and T 2 are not specific to malignant tissues. (author)

  13. Nuclear relaxation in semiconductors doped with magnetic impurities

    International Nuclear Information System (INIS)

    Mel'nichuk, S.V.; Tovstyuk, N.K.

    1984-01-01

    The temperature and concentration dependences are investigated of the nuclear spin-lattice relaxation time with account of spin diffusion for degenerated and non-degenerated semicon- ductors doped with magnetic impurities. In case of the non-degenerated semiconductor the time is shown to grow with temperature, while in case of degenerated semiconductor it is practically independent of temperature. The impurity concentration growth results in decreasing the spin-lattice relaxation time

  14. Engineering and Scaling the Spontaneous Magnetization Reversal of Faraday Induced Magnetic Relaxation in Nano-Sized Amorphous Ni Coated on Crystalline Au.

    Science.gov (United States)

    Li, Wen-Hsien; Lee, Chi-Hung; Kuo, Chen-Chen

    2016-05-28

    We report on the generation of large inverse remanent magnetizations in nano-sized core/shell structure of Au/Ni by turning off the applied magnetic field. The remanent magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before the switching off of the magnetic field. Spontaneous reversal in direction and increase in magnitude of the remanent magnetization in subsequent relaxations over time were found. All of the various types of temporal relaxation curves of the remanent magnetizations are successfully scaled by a stretched exponential decay profile, characterized by two pairs of relaxation times and dynamic exponents. The relaxation time is used to describe the reduction rate, while the dynamic exponent describes the dynamical slowing down of the relaxation through time evolution. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction.

  15. Engineering and Scaling the Spontaneous Magnetization Reversal of Faraday Induced Magnetic Relaxation in Nano-Sized Amorphous Ni Coated on Crystalline Au

    Science.gov (United States)

    Li, Wen-Hsien; Lee, Chi-Hung; Kuo, Chen-Chen

    2016-01-01

    We report on the generation of large inverse remanent magnetizations in nano-sized core/shell structure of Au/Ni by turning off the applied magnetic field. The remanent magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before the switching off of the magnetic field. Spontaneous reversal in direction and increase in magnitude of the remanent magnetization in subsequent relaxations over time were found. All of the various types of temporal relaxation curves of the remanent magnetizations are successfully scaled by a stretched exponential decay profile, characterized by two pairs of relaxation times and dynamic exponents. The relaxation time is used to describe the reduction rate, while the dynamic exponent describes the dynamical slowing down of the relaxation through time evolution. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction. PMID:28773549

  16. T2 relaxation time analysis in patients with multiple sclerosis: correlation with magnetization transfer ratio

    International Nuclear Information System (INIS)

    Papanikolaou, Nickolas; Papadaki, Eufrosini; Karampekios, Spyros; Maris, Thomas; Prassopoulos, Panos; Gourtsoyiannis, Nicholas; Spilioti, Martha

    2004-01-01

    The aim of the current study was to perform T2 relaxation time measurements in multiple sclerosis (MS) patients and correlate them with magnetization transfer ratio (MTR) measurements, in order to investigate in more detail the various histopathological changes that occur in lesions and normal-appearing white matter (NAWM). A total number of 291 measurements of MTR and T2 relaxation times were performed in 13 MS patients and 10 age-matched healthy volunteers. Measurements concerned MS plaques (105), NAWM (80), and ''dirty'' white matter (DWM; 30), evenly divided between the MS patients, and normal white matter (NWM; 76) in the healthy volunteers. Biexponential T2 relaxation-time analysis was performed, and also possible linearity between MTR and mean T2 relaxation times was evaluated using linear regression analysis in all subgroups. Biexponential relaxation was more pronounced in ''black-hole'' lesions (16.6%) and homogeneous enhancing plaques (10%), whereas DWM, NAWM, and mildly hypointense lesions presented biexponential behavior with a lower frequency(6.6, 5, and 3.1%, respectively). Non-enhancing isointense lesions and normal white matter did not reveal any biexponentional behavior. Linear regression analysis between monoexponential T2 relaxation time and MTR measurements demonstrated excellent correlation for DWM(r=-0.78, p<0.0001), very good correlation for black-hole lesions(r=-0.71, p=0.002), good correlation for isointense lesions(r=-0.60, p=0.005), moderate correlation for mildly hypointense lesions(r=-0.34, p=0.007), and non-significant correlation for homogeneous enhancing plaques, NAWM, and NWM. Biexponential T2 relaxation-time behavior is seen in only very few lesions (mainly on plaques with high degree of demyelination and axonal loss). A strong correlation between MTR and monoexponential T2 values was found in regions where either inflammation or demyelination predominates; however, when both pathological conditions coexist, this linear

  17. The influence of measurement and relaxation time on flux jumps in high temperature superconductors

    International Nuclear Information System (INIS)

    Yang Xiaobin; Zhou Youhe; Tu Shandong

    2010-01-01

    The influence of the magnetization and relaxation time on flux jumps in high temperature superconductors (HTSC) under varying magnetic field is studied using the fundamental electromagnetic field equations and the thermal diffusion equation; temperature variety corresponding to flux jump is also discussed. We find that for a low sweep rate of the applied magnetic field, the measurement and relaxation times can reduce flux jump and to constrain the number of flux jumps, even stabilizing the HTSC, since much heat produced by the motion of magnetic flux can transfer into coolant during the measurement and relaxation times. As high temperature superconductors are subjected to a high sweep rate or a strong pulsed magnetic field, magnetization undergoes from stability or oscillation to jump for different pause times. And the period of temperature oscillation is equal to the measurement and relaxation time.

  18. Hyperpolarized nanodiamond with long spin-relaxation times

    Science.gov (United States)

    Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David E. J.; Reilly, David J.

    2015-10-01

    The use of hyperpolarized agents in magnetic resonance, such as 13C-labelled compounds, enables powerful new imaging and detection modalities that stem from a 10,000-fold boost in signal. A major challenge for the future of the hyperpolarization technique is the inherently short spin-relaxation times, typically nanodiamond can be hyperpolarized at cryogenic and room temperature without the use of free radicals, and, owing to their solid-state environment, exhibit relaxation times exceeding 1 h. Combined with the already established applications of nanodiamonds in the life sciences as inexpensive fluorescent markers and non-cytotoxic substrates for gene and drug delivery, these results extend the theranostic capabilities of nanoscale diamonds into the domain of hyperpolarized magnetic resonance.

  19. Relaxation of magnetization in spinel CuCrZrS4

    International Nuclear Information System (INIS)

    Ito, Masakazu; Furuta, Tatsuya; Terada, Norio; Ebisu, Shuji; Nagata, Shoichi

    2012-01-01

    We studied time t dependence of magnetization M(t) of thiospinel CuCrZrS 4 which has a spin-glass freezing. The relaxation of M is observed below T f ≃6K and shows a logarithmic time dependence. This means that a relaxation time τ of CuCrZrS 4 is distributed in a wide time range. Randomness of an arrangement of the Cr and Zr ions in CuCrZrS 4 probably gives rise to a distribution of τ. Temperature T dependence of magnetic viscosity β(T) is understood by a conventional after-effect model with a box-type distribution function of τ.

  20. Relaxation in x-space magnetic particle imaging.

    Science.gov (United States)

    Croft, Laura R; Goodwill, Patrick W; Conolly, Steven M

    2012-12-01

    Magnetic particle imaging (MPI) is a new imaging modality that noninvasively images the spatial distribution of superparamagnetic iron oxide nanoparticles (SPIOs). MPI has demonstrated high contrast and zero attenuation with depth, and MPI promises superior safety compared to current angiography methods, X-ray, computed tomography, and magnetic resonance imaging angiography. Nanoparticle relaxation can delay the SPIO magnetization, and in this work we investigate the open problem of the role relaxation plays in MPI scanning and its effect on the image. We begin by amending the x-space theory of MPI to include nanoparticle relaxation effects. We then validate the amended theory with experiments from a Berkeley x-space relaxometer and a Berkeley x-space projection MPI scanner. Our theory and experimental data indicate that relaxation reduces SNR and asymmetrically blurs the image in the scanning direction. While relaxation effects can have deleterious effects on the MPI scan, we show theoretically and experimentally that x-space reconstruction remains robust in the presence of relaxation. Furthermore, the role of relaxation in x-space theory provides guidance as we develop methods to minimize relaxation-induced blurring. This will be an important future area of research for the MPI community.

  1. Magnetic relaxation behaviour in Pr_2NiSi_3

    International Nuclear Information System (INIS)

    Pakhira, Santanu; Mazumdar, Chandan; Ranganathan, R.

    2016-01-01

    Time dependent isothemal remanent magnetizatin (IRM) behaviour for polycrystalline compound Pr_2NiSi_3 have been studied below its characteristic temperature. The compound undergoes slow magnetic relaxation with time. Along with competing interaction, non-magnetic atom disorder plays an important role in formation of non-equilibrium glassy like ground state for this compound.

  2. Relaxational dissipation of magnetic field energy in a rarefied plasma

    International Nuclear Information System (INIS)

    Vekshtejn, G.E.

    1987-01-01

    A mechanism of solar corona plasma heating connected with relaxation of a magnetic configuration in the corona to the state of the magnetic energy minimum at restrictions imposed by high conductivity of a medium is considered. Photospheric plasma pulsations leading to generation of longitudinal currents in the corona are in this case energy sources. The excess magnetic energy of these currents is dissipated as a result of reclosing of force lines of the magnetic field in narrow current layers. Plasmaturbulence related to the process of magnetic reclosing is phenomenologically described in this case by introducing certain characteristic time of relaxation. Such an approach permits to relate the plasma heating energy with parameters of photospheric motions in the framework of a simple model of the magnetic field

  3. Characterization of anomalous relaxation using the time-fractional Bloch equation and multiple echo T2 *-weighted magnetic resonance imaging at 7 T.

    Science.gov (United States)

    Qin, Shanlin; Liu, Fawang; Turner, Ian W; Yu, Qiang; Yang, Qianqian; Vegh, Viktor

    2017-04-01

    To study the utility of fractional calculus in modeling gradient-recalled echo MRI signal decay in the normal human brain. We solved analytically the extended time-fractional Bloch equations resulting in five model parameters, namely, the amplitude, relaxation rate, order of the time-fractional derivative, frequency shift, and constant offset. Voxel-level temporal fitting of the MRI signal was performed using the classical monoexponential model, a previously developed anomalous relaxation model, and using our extended time-fractional relaxation model. Nine brain regions segmented from multiple echo gradient-recalled echo 7 Tesla MRI data acquired from five participants were then used to investigate the characteristics of the extended time-fractional model parameters. We found that the extended time-fractional model is able to fit the experimental data with smaller mean squared error than the classical monoexponential relaxation model and the anomalous relaxation model, which do not account for frequency shift. We were able to fit multiple echo time MRI data with high accuracy using the developed model. Parameters of the model likely capture information on microstructural and susceptibility-induced changes in the human brain. Magn Reson Med 77:1485-1494, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  4. Nuclear magnetic relaxation of methyl group in liquids

    International Nuclear Information System (INIS)

    Blicharska, B.

    1986-01-01

    The theoretical description of the relaxation process of methyl group in liquids and some results of the measurements of relaxation function and relaxation times for cryoprotective solutions are presented. Starting from the application of the operator formalism the general equation for spin operators e.g. components of the nuclear spin and magnetization is founded. Next, the spin Hamiltonian is presented as contraction of the symmetry adapted spherical tensors as well as the correlation functions and spectral densities. On the basis of extended and modified Woessner model of motion the correlation functions and spectral densities are calculated for methyl group in liquids. Using these functions the relaxation matrix elements, the spin-spin and spin-lattice relaxation times can be expressed. The prediction of the theory agrees with author's previous experiments on cryoprotective solutions. The observed dependence on temperature, frequency and isotopic dilution in methanol-water, methanol-dimethyl sulfoxide (DMSO) and DMSO-water solutions is in a satisfactory agreement with theoretical equations. 34 refs. (author)

  5. Influence of aging time of oleate precursor on the magnetic relaxation of cobalt ferrite nanoparticles synthesized by the thermal decomposition method

    International Nuclear Information System (INIS)

    Herrera, Adriana P.; Polo-Corrales, Liliana; Chavez, Ermides; Cabarcas-Bolivar, Jari; Uwakweh, Oswald N.C.; Rinaldi, Carlos

    2013-01-01

    Cobalt ferrite nanoparticles are of interest because of their room temperature coercivity and high magnetic anisotropy constant, which make them attractive in applications such as sensors based on the Brownian relaxation mechanism and probes to determine the mechanical properties of complex fluids at the nanoscale. These nanoparticles can be synthesized with a narrow size distribution by the thermal decomposition of an iron–cobalt oleate precursor in a high boiling point solvent. We studied the influence of aging time of the iron–cobalt oleate precursor on the structure, chemical composition, size, and magnetic relaxation of cobalt ferrite nanoparticles synthesized by the thermal decomposition method. The structure and thermal behavior of the iron–cobalt oleate was studied during the aging process. Infrared spectra indicated a shift in the coordination state of the oleate and iron/cobalt ions from bidentate to bridging coordination. Aging seemed to influence the thermal decomposition of the iron–cobalt oleate as determined from thermogravimmetric analysis and differential scanning calorimetry, where shifts in the temperatures corresponding to decomposition events and a narrowing of the endotherms associated with these events were observed. Aging promoted formation of the spinel crystal structure, as determined from X-ray diffraction, and influenced the nanoparticle magnetic properties, resulting in an increase in blocking temperature and magnetocrystalline anisotropy. Mossbauer spectra also indicated changes in the magnetic properties resulting from aging of the precursor oleate. Although all samples exhibited some degree of Brownian relaxation, as determined from complex susceptibility measurements in a liquid medium, aging of the iron–cobalt oleate precursor resulted in crossing of the in-phase χ′and out-of-phase χ″ components of the complex susceptibility at the frequency of the Brownian magnetic relaxation peak, as expected for nanoparticles

  6. Magnetic resonance imaging (MRI) and relaxation time mapping of concrete

    Science.gov (United States)

    Beyea, Steven Donald

    2001-07-01

    The use of Magnetic Resonance Imaging (MRI) of water in concrete is presented. This thesis will approach the problem of MR imaging of concrete by attempting to design new methods, suited to concrete materials, rather than attempting to force the material to suit the method. A number of techniques were developed, which allow the spatial observation of water in concrete in up to three dimensions, and permits the determination of space resolved moisture content, as well as local NMR relaxation times. These methods are all based on the Single-Point Imaging (SPI) method. The development of these new methods will be described, and the techniques validated using phantom studies. The study of one-dimensional moisture transport in drying concrete was performed using SPI. This work examined the effect of initial mixture proportions and hydration time on the drying behaviour of concrete, over a period of three months. Studies of drying concrete were also performed using spatial mapping of the spin-lattice (T1) and effective spin-spin (T2*) relaxation times, thereby permitting the observation of changes in the water occupied pore surface-to-volume ratio (S/V) as a function of drying. Results of this work demonstrated changes in the S/V due to drying, hydration and drying induced microcracking. Three-dimensional MRI of concrete was performed using SPRITE (Single-Point Ramped Imaging with T1 Enhancement) and turboSPI (turbo Single Point Imaging). While SPRITE allows for weighting of MR images using T 1 and T2*, turboSPI allows T2 weighting of the resulting images. Using relaxation weighting it was shown to be possible to discriminate between water contained within a hydrated cement matrix, and water in highly porous aggregates, used to produce low-density concrete. Three dimensional experiments performed using SPRITE and turboSPI examined the role of self-dessication, drying, initial aggregate saturation and initial mixture conditions on the transport of moisture between porous

  7. Mechanism of nuclear cross-relaxation in magnetically ordered media

    Energy Technology Data Exchange (ETDEWEB)

    Buishvili, L L; Volzhan, E B; Giorgadze, N P [AN Gruzinskoj SSR, Tbilisi. Inst. Fiziki

    1975-09-01

    A mechanism of two-step nuclear relaxation in magnetic ordered dielectrics is proposed. The case is considered where the energy conservation in the cross relaxation (CR) process is ensured by the lattice itself without spin-spin interactions. Expressions have been obtained describing the temperature dependence of the CR rate. For a nonuniform broadened NMR line it has been shown that the spin-lattice relaxation time for a spin packet taken out from the equilibrium may be determined by the CR time owing to the mechanism suggested. When the quantization axes for electron and nuclear spins coincide, the spin-lattice relaxation is due to the three-magnon mechanism. The cross-relaxation stage has been shown to play a significant role in the range of low temperatures (T<10 deg K) and to become negligible with a temperature increase.

  8. Radiation self-polarization of electrons moving in a magnetic field. [Vector spin operator, relaxation time

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V G; Dorofeev, O F; Sokolov, A A; Ternov, I M; Khalilov, V R [Moskovskij Gosudarstvennyj Univ. (USSR)

    1975-03-11

    When electrons move in a magnetic field, synchrotron radiation gives rise to transitions accompanied by the electron spin reorientation. In this case, it is essential that the transition probability depends on the spin orientation; as a result electron polarization takes place with the spin orientation being predominantly opposite to the direction of the magnetic field. This effect has been called ''radiative self-polarization of electrons''. The present work is concerned with the question how the choice of the spin operator will affect the self-polarization degree and relaxation time. The problem has been solved for a vector spin operator.

  9. Magnetic relaxation phenomena in the chiral magnet Fe1 -xCoxSi : An ac susceptibility study

    Science.gov (United States)

    Bannenberg, L. J.; Lefering, A. J. E.; Kakurai, K.; Onose, Y.; Endoh, Y.; Tokura, Y.; Pappas, C.

    2016-10-01

    We present a systematic study of the ac susceptibility of the chiral magnet Fe1 -xCoxSi with x =0.30 covering four orders of magnitude in frequencies from 0.1 Hz to 1 kHz, with particular emphasis to the pronounced history dependence. Characteristic relaxation times ranging from a few milliseconds to tens of seconds are observed around the skyrmion lattice A phase, the helical-to-conical transition and in a region above TC. The distribution of relaxation frequencies around the A phase is broad, asymmetric, and originates from multiple coexisting relaxation processes. The pronounced dependence of the magnetic phase diagram on the magnetic history and cooling rates as well as the asymmetric frequency dependence and slow dynamics suggest more complicated physical phenomena in Fe0.7Co0.3Si than in other chiral magnets.

  10. Finite magnetic relaxation in x-space magnetic particle imaging: Comparison of measurements and ferrohydrodynamic models.

    Science.gov (United States)

    Dhavalikar, R; Hensley, D; Maldonado-Camargo, L; Croft, L R; Ceron, S; Goodwill, P W; Conolly, S M; Rinaldi, C

    2016-08-03

    Magnetic Particle Imaging (MPI) is an emerging tomographic imaging technology that detects magnetic nanoparticle tracers by exploiting their non-linear magnetization properties. In order to predict the behavior of nanoparticles in an imager, it is possible to use a non-imaging MPI relaxometer or spectrometer to characterize the behavior of nanoparticles in a controlled setting. In this paper we explore the use of ferrohydrodynamic magnetization equations for predicting the response of particles in an MPI relaxometer. These include a magnetization equation developed by Shliomis (Sh) which has a constant relaxation time and a magnetization equation which uses a field-dependent relaxation time developed by Martsenyuk, Raikher and Shliomis (MRSh). We compare the predictions from these models with measurements and with the predictions based on the Langevin function that assumes instantaneous magnetization response of the nanoparticles. The results show good qualitative and quantitative agreement between the ferrohydrodynamic models and the measurements without the use of fitting parameters and provide further evidence of the potential of ferrohydrodynamic modeling in MPI.

  11. Follow-up of regional myocardial T2 relaxation times in patients with myocardial infarction evaluated with magnetic resonance imaging

    International Nuclear Information System (INIS)

    Krauss, X.H.; Wall, E. van der; Laarse, A. van der; Dijkman, P.R.M. van; Bruschke, A.V.G.; Doornbos, J.; Roos, A. de; Voorthuisen, A.E. van

    1990-01-01

    Multi-echo spin-echo cardiac magnetic resonance imaging studies (echo times 30, 60, 90 and 120 ms) were performed in 19 patients with a 7-14-day (mean 10) old myocardial infarction and were repeated in 13 patients 4-7 months (mean 6) later. Also, 10 normal subjects were studied with magnetic resonance imaging. T2 relaxation times of certain left ventricular segments were calculated from the signal intensities at echo times of 30 and 90 ms. Compared to normal individuals, the mean T2 values on the early magnetic resonance images of the patients with inferior infarction showed significantly prolonged T2 times in the inferiorly localized segments, while on the follow-up magnetic resonance images the T2 times had almost returned to the normal range. Also the patients with anterior infarction showed significantly prolonged T2 times in the anteriorly localized segments on the early nuclear magnetic resonance images, but the T2 times remained prolonged at the follow-up magnetic resonance images. For every patient a myocardial damage score was determined, which was defined as the sum of the segmental T2 values in the patients minus the upper limit of normal T2 values obtained from the normal volunteers (= mean normal+2SD). The damage score on both the early and late magnetic resonance imaging study correlated well with the infarction size determined by myocardial enzyme release. Only the patients with an inferior infarction showed a significant decrease in damage score at follow-up magnetic resonance imaging. It is concluded that the regional T2 relaxation times are increased in infarcted myocardial regions and may remain prolonged for at least up to 7 months after the acute event, particularly in patients with an anterior infarction. These findings demonstrate the clinical potential of T2-weighted magnetic resonance imaging studies for detecting myocardial infarction, and estimating infarct size for an extended period after acute myocardial infarction. (author). 29 refs

  12. Energy equation for the analysis of magnetization relaxation to equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Bertotti, G. [IEN Galileo Ferraris, Materials Department, Strada delle Cacce, 91, I-10135 Torino (Italy)]. E-mail: bertotti@ien.it; Bonin, R. [Dipartimento di Fisica, Politecnico di Torino, I-10129 Torino (Italy); Magni, A. [IEN Galileo Ferraris, Materials Department, Strada delle Cacce, 91, I-10135 Torino (Italy); Mayergoyz, I.D. [Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, 20742 (United States); Serpico, C. [Dipartimento di Ingegneria Elettrica, Universita di Napoli ' Federico II' , I-80125 Naples (Italy)

    2005-02-01

    Magnetization relaxation starting from a generic non-equilibrium state is analytically described. An equation for the energy decay is obtained. On this basis, an approximate expression for the magnetization motion during the ringing process is obtained in terms of Jacobi elliptic functions with time-dependent parameters.

  13. Energy equation for the analysis of magnetization relaxation to equilibrium

    International Nuclear Information System (INIS)

    Bertotti, G.; Bonin, R.; Magni, A.; Mayergoyz, I.D.; Serpico, C.

    2005-01-01

    Magnetization relaxation starting from a generic non-equilibrium state is analytically described. An equation for the energy decay is obtained. On this basis, an approximate expression for the magnetization motion during the ringing process is obtained in terms of Jacobi elliptic functions with time-dependent parameters

  14. Magnetic resonance studies on the brain edema by the administration of the osmotic agents; Special references to the relaxation times

    Energy Technology Data Exchange (ETDEWEB)

    Niino, Masaki; Asakura, Tetsuhiko; Nakamura, Katsumi; Yatsushiro, Kazutaka; Kadota, Koki (Kagoshima Univ. (Japan). Faculty of Medicine); Sasahira, Masahiro; Fujimoto, Toshiro; Shimooki, Susumu

    1990-03-01

    Changes of proton relaxation times (T{sub 1} and T{sub 2}) and MR imaging of the brain edema by the administration of the osmotic agents (mannitol or glycerol) were studied. Subjects were 11 patients who were composed of 4 gliomas, 2 metastatic brain tumors, 2 meningiomas, 2 hypertensive intracerebral hematomas, and a C-P angle tumor. 20% mannitol or 10% glycerol 550 ml was rapidly injected intravenously. Scanning was done before injection, just after injection, and post injection until 2 hours with passing times. We regarded the peritumoral or perihemorrahgical low density area on the CT scan as the edema, and then, relaxation times of the edema was obtained from the ROI of the calculated images corresponding to the surrounding low density area on the CT scan. The results were as follows. (1) In general, relaxation times of the edema showed a tendency to decrease after injection of the osmotic agents. Normal white matter, in the same way, showed the decreasing tendency, but the degree of the decreasing was more clearly in the edematous areas than in the white matter. (2) The changes of relaxation times did not show a uniform pattern. In most cases, relaxation times decreased just after injection. But in a few cases, relaxation times increased just after injection, transiently. In some cases, decreased relaxation times continued more than 2 hours, in the other cases, relaxation times increased at 2 hours. (3) The changes of relaxation times thought to be varied by some factors, that is --kinds of the lesions causing edema, degree of malignancy of the lesions, or phase of edema (acute or chronic) etc. (4) Osmotic agents were supposed to dehydrate the edematous lesions. In the current MR systems, there are considerably large standard deviations and inequality in the magnetic field, therefore, further investigations should be done moreover. (author).

  15. Anisotropic temperature relaxation of plasmas in an external magnetic field

    International Nuclear Information System (INIS)

    Hassan, M.H.A.

    1977-01-01

    The magnetized kinetic equation derived in an earlier paper (Hassan and Watson, 1977) is used to study the problem of relaxation of anisotropic electron and ion temperatures in a magnetized plasma. In the case of anisotropic electron temperature relaxation, it is shown that for small anisotropies the exchange of energy within the electrons between the components parallel and perpendicular to the magnetic field direction determine the relaxation rate. For anisotropic ion temperature relaxation it is shown that the essential mechanism for relaxation is provided by energy transfer between ions and electrons, and that the expression for the relaxation rate perpendicular to the magnetic field contains a significant term proportional to ln eta 0 ln (msub(e)/msub(i)) (where eta 0 = Ωsub(e)/ksub(D)Vsub(e perpendicular to)), in addition to the term proportional to the Coulomb logarithm. (author)

  16. Energy relaxation between low lying tunnel split spin-states of the single molecule magnet Ni4

    Science.gov (United States)

    de Loubens, G.; Chaves-O'Flynn, G. D.; Kent, A. D.; Ramsey, C.; Del Barco, E.; Beedle, C.; Hendrickson, D. N.

    2007-03-01

    We have developed integrated magnetic sensors to study quantum tunneling of magnetization (QTM) in single molecule magnet (SMMs) single crystals. These sensors incorporate a microstrip resonator (30 GHz) and a micro-Hall effect magnetometer. They have been used to investigate the relaxation rates between the 2 lowest lying tunnel split spin-states of the SMM Ni4 (S=4). EPR spectroscopy at 30 GHz and 0.4 K and concurrent magnetization measurements of several Ni4 single crystals are presented. EPR enables measurement of the energy splitting between the 2 lowest lying superposition states as a function of the longitudinal and transverse fields. The energy relaxation rate is determined in two ways. First, in cw microwave experiments the change in spin-population together with the microwave absorption directly gives the relaxation time from energy conservation in steady-state. Second, direct time-resolved measurements of the magnetization with pulsed microwave radiation have been performed. The relaxation time is found to vary by several orders of magnitude in different crystals, from a few seconds down to smaller than 100 μs. We discuss this and the form of the relaxation found for different crystals and pulse conditions.

  17. Relaxed plasmas in external magnetic fields

    International Nuclear Information System (INIS)

    Spies, G.O.; Li, J.

    1991-08-01

    The well-known theory of relaxed plasmas (Taylor states) is extended to external magnetic fields whose field lines intersect the conducting toroidal boundary. Application to an axially symmetric, large-aspect-ratio torus with circular cross section shows that the maximum pinch ratio, and hence the phenomenon of current saturation, is independent of the external field. The relaxed state is explicitly given for an external octupole field. In this case, field reversal is inhibited near parts of the boundary if the octupole generates magnetic x-points within the plasma. (orig.)

  18. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: longitudinal relaxation dispersion for a dipole-coupled spin-1/2 pair.

    Science.gov (United States)

    Chang, Zhiwei; Halle, Bertil

    2013-10-14

    In complex biological or colloidal samples, magnetic relaxation dispersion (MRD) experiments using the field-cycling technique can characterize molecular motions on time scales ranging from nanoseconds to microseconds, provided that a rigorous theory of nuclear spin relaxation is available. In gels, cross-linked proteins, and biological tissues, where an immobilized macromolecular component coexists with a mobile solvent phase, nuclear spins residing in solvent (or cosolvent) species relax predominantly via exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings. The physical or chemical exchange processes that dominate the MRD typically occur on a time scale of microseconds or longer, where the conventional perturbation theory of spin relaxation breaks down. There is thus a need for a more general relaxation theory. Such a theory, based on the stochastic Liouville equation (SLE) for the EMOR mechanism, is available for a single quadrupolar spin I = 1. Here, we present the corresponding theory for a dipole-coupled spin-1/2 pair. To our knowledge, this is the first treatment of dipolar MRD outside the motional-narrowing regime. Based on an analytical solution of the spatial part of the SLE, we show how the integral longitudinal relaxation rate can be computed efficiently. Both like and unlike spins, with selective or non-selective excitation, are treated. For the experimentally important dilute regime, where only a small fraction of the spin pairs are immobilized, we obtain simple analytical expressions for the auto-relaxation and cross-relaxation rates which generalize the well-known Solomon equations. These generalized results will be useful in biophysical studies, e.g., of intermittent protein dynamics. In addition, they represent a first step towards a rigorous theory of water (1)H relaxation in biological tissues, which is a prerequisite for unravelling the molecular basis of soft

  19. Statistical foundation of the Kubo-Tomita theory of magnetic relaxation

    International Nuclear Information System (INIS)

    Yul'met'ev, R.M.

    1974-01-01

    With the aim to give the statistical foundation of the Kubo-Tomita theory the theoretical-functional method of the projection operators is applied to the phenomenon of magnetic relaxation. The exact nonmarkov nonlinear kinetic equations are found for the time correlation functions (TCF) of the longitudinal and transversal components of the spin magnetization of a system including the spin-lattice interaction lambda H' in a general form. The markov kinetic equations of the well-known Bloch-type are derived in the weak coupling Van Hove limits t → infinity, lambda → 0, lambda 2 t=const., and the rate of the spin-lattice (T 1 -1 ) and spin-spin (T 2 -1 ) relaxation is obtained from the relaxation coefficients. It is found that the formulas of the Kubo-Tomita for T 1 -1 and T 2 -1 are correct only in the case of rapid thermal motions when ω 0 tau 0 0 is the resonance frequency and tau 0 is the typical correlation time of the molecular thermal motions). In the other limiting case (ω 0 tau 0 >>1) of slow motion, the effective spectral densities which enter T 1 and T 2 are determined by a set of relaxation times Tsub(β)sup(n) of the spin irreducible operators Vsub(β)sup(n) from the spin-lattice interaction lambda H'. It is found that the time dependence of the transversal component of magnetization had been left out in the collision integral of Kubo-Tomita's theory. Precisely considering this circumstance the frequency dependence of T 2 -1 on the resonance frequency must be changed. (author)

  20. Magnetic relaxation behaviour in Pr{sub 2}NiSi{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Pakhira, Santanu, E-mail: santanupakhira20006@gmail.com; Mazumdar, Chandan; Ranganathan, R. [Condensed Matter Physics Division, Saha Institute Of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 (India)

    2016-05-06

    Time dependent isothemal remanent magnetizatin (IRM) behaviour for polycrystalline compound Pr{sub 2}NiSi{sub 3} have been studied below its characteristic temperature. The compound undergoes slow magnetic relaxation with time. Along with competing interaction, non-magnetic atom disorder plays an important role in formation of non-equilibrium glassy like ground state for this compound.

  1. F19 relaxation in non-magnetic hexafluorides

    International Nuclear Information System (INIS)

    Rigny, P.

    1969-01-01

    The interesting properties of the fluorine magnetic resonance in the hexafluorides of molybdenum, tungsten and uranium, are very much due to large anisotropies of the chemical shift tensors. In the solid phases these anisotropies, the values of which are deduced from line shape studies, allow one to show that the molecules undergo hindered rotations about the metal atom. The temperature and frequency dependence of the fluorine longitudinal relaxation times shows that the relaxation is due to the molecular motion. The dynamical parameters of this motion are then deduced from the complete study of the fluorine relaxation in the rotating frame. In the liquid phases, the existence of anisotropies allows an estimation of the different contributions to the relaxation. In particular, the frequency and temperature dependence of the relaxation shows it to be dominated by the spin-rotation interaction. We have shown that the strength of this interaction can be deduced from the chemical shifts, and the angle through which the molecule rotates quasi-freely can be determined. In the hexafluorides, this angle is roughly one radian at 70 C, and with the help of this value, the friction coefficients which describe the intermolecular interactions are discussed. (author) [fr

  2. The application of T1 and T2 relaxation time and magnetization transfer ratios to the early diagnosis of patellar cartilage osteoarthritis

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Weiwu; Qu, Nan; Lu, Zhihua; Yang, Shixun [Shanghai Jiaotong University, Department of Radiology, Shanghai (China)

    2009-11-15

    We compare the T1 and T2 relaxation times and magnetization transfer ratios (MTRs) of normal subjects and patients with osteoarthritis (OA) to evaluate the ability of these techniques to aid in the early diagnosis and treatment of OA. The knee joints in 11 normal volunteers and 40 patients with OA were prospectively evaluated using T1 relaxation times as measured using delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), T2 relaxation times (multiple spin-echo sequence, T2 mapping), and MTRs. The OA patients were further categorized into mild, moderate, and severe OA. The mean T1 relaxation times of the four groups (normal, mild OA, moderate OA, and severe OA) were: 487.3{+-}27.7, 458.0{+-}55.9, 405.9{+-}57.3, and 357.9{+-}36.7 respectively (p<0.001). The mean T2 relaxation times of the four groups were: 37.8{+-}3.3, 44.0{+-}8.5, 50.9{+-}9.5, and 57.4{+-}4.8 respectively (p<0.001). T1 relaxation time decreased and T2 relaxation time increased with worsening degeneration of patellar cartilage. The result of the covariance analysis showed that the covariate age had a significant influence on T2 relaxation time (p<0.001). No significant differences between the normal and OA groups using MTR were noted. T1 and T2 relaxation times are relatively sensitive to early degenerative changes in the patellar cartilage, whereas the MTR may have some limitations with regard to early detection of OA. In addition, The T1 and T2 relaxation times negatively correlate with each other, which is a novel finding. (orig.)

  3. Multiple-decker phthalocyaninato dinuclear lanthanoid(III) single-molecule magnets with dual-magnetic relaxation processes.

    Science.gov (United States)

    Katoh, Keiichi; Horii, Yoji; Yasuda, Nobuhiro; Wernsdorfer, Wolfgang; Toriumi, Koshiro; Breedlove, Brian K; Yamashita, Masahiro

    2012-11-28

    The SMM behaviour of dinuclear Ln(III)-Pc multiple-decker complexes (Ln = Tb(3+) and Dy(3+)) with energy barriers and slow-relaxation behaviour were explained by using X-ray crystallography and static and dynamic susceptibility measurements. In particular, interactions among the 4f electrons of several dinuclear Ln(III)-Pc type SMMs have never been discussed on the basis of the crystal structure. For dinuclear Tb(III)-Pc complexes, a dual magnetic relaxation process was observed. The relaxation processes are due to the anisotropic centres. Our results clearly show that the two Tb(3+) ion sites are equivalent and are consistent with the crystal structure. On the other hand, the mononuclear Tb(III)-Pc complex exhibited only a single magnetic relaxation process. This is clear evidence that the magnetic relaxation mechanism depends heavily on the dipole-dipole (f-f) interactions between the Tb(3+) ions in the dinuclear systems. Furthermore, the SMM behaviour of dinuclear Dy(III)-Pc type SMMs with smaller energy barriers compared with that of Tb(III)-Pc and slow-relaxation behaviour was explained. Dinuclear Dy(III)-Pc SMMs exhibited single-component magnetic relaxation behaviour. The results indicate that the magnetic relaxation properties of dinuclear Ln(III)-Pc multiple-decker complexes are affected by the local molecular symmetry and are extremely sensitive to tiny distortions in the coordination geometry. In other words, the spatial arrangement of the Ln(3+) ions (f-f interactions) in the crystal is important. Our work shows that the SMM properties can be fine-tuned by introducing weak intermolecular magnetic interactions in a controlled SMM spatial arrangement.

  4. A model of magnetic and relaxation properties of the mononuclear [Pc2Tb](-)TBA+ complex.

    Science.gov (United States)

    Reu, O S; Palii, A V; Ostrovsky, S M; Tregenna-Piggott, P L W; Klokishner, S I

    2012-10-15

    The present work is aimed at the elaboration of the model of magnetic properties and magnetic relaxation in the mononuclear [Pc(2)Tb](-)TBA(+) complex that displays single-molecule magnet properties. We calculate the Stark structure of the ground (7)F(6) term of the Tb(3+) ion in the exchange charge model of the crystal field, taking account for covalence effects. The ground Stark level of the complex possesses the maximum value of the total angular momentum projection, while the energies of the excited Stark levels increase with decreasing |M(J)| values, thus giving rise to a barrier for the reversal of magnetization. The one-phonon transitions between the Stark levels of the Tb(3+) ion induced by electron-vibrational interaction are shown to lead to magnetization relaxation in the [Pc(2)Tb](-)TBA(+) complex. The rates of all possible transitions between the low-lying Stark levels are calculated in the temperature range 14 Krelaxation time of magnetization, we solve the set of master equations for the populations of the Stark levels. The relaxation time is shown to diminish from 3.2 × 10(-2) s to 1.52 × 10(-4) s as the temperature increases from 27 K to 40 K. The obtained values of the relaxation time are in satisfactory agreement with the observed ones. The developed model also provides satisfactory description of the dc-magnetic data and paramagnetic shifts.

  5. A study on magnetic relaxation times of various organs and body fluids using superconducting magnetic resonance imaging system part I: measurement of relative signal intensity and T2 relaxation time in various portions of brain and cerebrospinal fluid

    International Nuclear Information System (INIS)

    Chang, Kee Hyun; Lee, Ghi Jai; Han, Moon Hee; Kim, Jae Ho; Han, Man Chang; Kim, Chu Wan

    1988-01-01

    This study was undertake to determine if routine clinical magnetic resonance imaging sequences using only two different repetition times (TRs) and with only two sequential echo times (TEs) can be used to measure reproducible relative signal intensity and T2 relaxation time for normal brain tissues and cerebrospinal fluid using a 2.0T superconducting system. In 47 patients 6 different anatomic sites were measured. For each anatomic location, the mean and standard deviation of these values were determined. On T1-weighted (SE 500msec/30msec) images, in globus pallidus and thalamus, of the CSF, cortical gray matter and retrobulbar fat tissue varied more, with a standard deviation of 11-14% on T1-weighted images. On T2-weighted (SE 3000msec/30msec and 3000msec/80msec) images, the relative signal intensity of all anatomic regions varied more than on T1-weighted images. The standard deviation of T2 relaxation times also varied from 10% (fat tissue) to 18% (CSF). These variations might be due to partial volume averaging, signal alteration of CSF secondary to CSF pulsatile motion, etc. Knowing that relative signal intensity and T2 relaxation times calculated from routine imaging sequences are reproducible in only limited area, these normal ranges can be used to investigate changes occurring in disease states of the limited regions.

  6. Measurements of spin-lattice relaxation time in mixed alkali halide crystals

    International Nuclear Information System (INIS)

    Tannus, A.

    1983-01-01

    Using magneto-optic techniques the ground state spin-lattice relaxation times (T1) of 'F' centers in mixed Alkali Halide cristals (KCl-KBr), was studied. A computer assisted system to optically measure short relaxation times (approx. = 1mS), was described. The technique is based on the measurement of the Magnetic Circular Dicroism (MCD) presented by F centers. The T1 magnetic field dependency at 2 K (up to 65 KGauss), was obtained as well as the MCD spectra for different relative concentration at the mixed matrices. The theory developed by Panepucci and Mollenauer for F centers spin-lattice relaxation in pure matrices was modified to explain the behaviour of T1 in mixed cristals. The Direct Process results (T approx. = 2.0 K) compared against that theory shows that the main relaxation mecanism, up to 25 KGauss, continues to be phonon modulation of the hiperfine iteraction between F electrons and surrounding nuclei. (Author) [pt

  7. Quantifying NMR relaxation correlation and exchange in articular cartilage with time domain analysis

    Science.gov (United States)

    Mailhiot, Sarah E.; Zong, Fangrong; Maneval, James E.; June, Ronald K.; Galvosas, Petrik; Seymour, Joseph D.

    2018-02-01

    Measured nuclear magnetic resonance (NMR) transverse relaxation data in articular cartilage has been shown to be multi-exponential and correlated to the health of the tissue. The observed relaxation rates are dependent on experimental parameters such as solvent, data acquisition methods, data analysis methods, and alignment to the magnetic field. In this study, we show that diffusive exchange occurs in porcine articular cartilage and impacts the observed relaxation rates in T1-T2 correlation experiments. By using time domain analysis of T2-T2 exchange spectroscopy, the diffusive exchange time can be quantified by measurements that use a single mixing time. Measured characteristic times for exchange are commensurate with T1 in this material and so impacts the observed T1 behavior. The approach used here allows for reliable quantification of NMR relaxation behavior in cartilage in the presence of diffusive fluid exchange between two environments.

  8. An open-source software tool for the generation of relaxation time maps in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Messroghli, Daniel R; Rudolph, Andre; Abdel-Aty, Hassan; Wassmuth, Ralf; Kühne, Titus; Dietz, Rainer; Schulz-Menger, Jeanette

    2010-01-01

    In magnetic resonance (MR) imaging, T1, T2 and T2* relaxation times represent characteristic tissue properties that can be quantified with the help of specific imaging strategies. While there are basic software tools for specific pulse sequences, until now there is no universal software program available to automate pixel-wise mapping of relaxation times from various types of images or MR systems. Such a software program would allow researchers to test and compare new imaging strategies and thus would significantly facilitate research in the area of quantitative tissue characterization. After defining requirements for a universal MR mapping tool, a software program named MRmap was created using a high-level graphics language. Additional features include a manual registration tool for source images with motion artifacts and a tabular DICOM viewer to examine pulse sequence parameters. MRmap was successfully tested on three different computer platforms with image data from three different MR system manufacturers and five different sorts of pulse sequences: multi-image inversion recovery T1; Look-Locker/TOMROP T1; modified Look-Locker (MOLLI) T1; single-echo T2/T2*; and multi-echo T2/T2*. Computing times varied between 2 and 113 seconds. Estimates of relaxation times compared favorably to those obtained from non-automated curve fitting. Completed maps were exported in DICOM format and could be read in standard software packages used for analysis of clinical and research MR data. MRmap is a flexible cross-platform research tool that enables accurate mapping of relaxation times from various pulse sequences. The software allows researchers to optimize quantitative MR strategies in a manufacturer-independent fashion. The program and its source code were made available as open-source software on the internet

  9. An open-source software tool for the generation of relaxation time maps in magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Kühne Titus

    2010-07-01

    Full Text Available Abstract Background In magnetic resonance (MR imaging, T1, T2 and T2* relaxation times represent characteristic tissue properties that can be quantified with the help of specific imaging strategies. While there are basic software tools for specific pulse sequences, until now there is no universal software program available to automate pixel-wise mapping of relaxation times from various types of images or MR systems. Such a software program would allow researchers to test and compare new imaging strategies and thus would significantly facilitate research in the area of quantitative tissue characterization. Results After defining requirements for a universal MR mapping tool, a software program named MRmap was created using a high-level graphics language. Additional features include a manual registration tool for source images with motion artifacts and a tabular DICOM viewer to examine pulse sequence parameters. MRmap was successfully tested on three different computer platforms with image data from three different MR system manufacturers and five different sorts of pulse sequences: multi-image inversion recovery T1; Look-Locker/TOMROP T1; modified Look-Locker (MOLLI T1; single-echo T2/T2*; and multi-echo T2/T2*. Computing times varied between 2 and 113 seconds. Estimates of relaxation times compared favorably to those obtained from non-automated curve fitting. Completed maps were exported in DICOM format and could be read in standard software packages used for analysis of clinical and research MR data. Conclusions MRmap is a flexible cross-platform research tool that enables accurate mapping of relaxation times from various pulse sequences. The software allows researchers to optimize quantitative MR strategies in a manufacturer-independent fashion. The program and its source code were made available as open-source software on the internet.

  10. Magnetization relaxation in spin glasses above transition point

    International Nuclear Information System (INIS)

    Zajtsev, I.A.; Minakov, A.A.; Galonzka, R.R.

    1988-01-01

    Magnetization relaxation of Cd 0.6 Zn 0.4 Cr 2 Se 4 and Cd 0.6 Mn 0.4 Te monocrystalline samples with T g =21 K and T g =12 K respectively and magnetic colloid is investigated. It is shown that magnetization inexponential relaxation detected experimentally in spin and dipole glasses is essentially higher than T g temperature transition. It is found that at temperatures higher than T g the essential difference is observed in behaviour of spin glasses with different Z and disorder types

  11. Understanding generalized inversions of nuclear magnetic resonance transverse relaxation time in porous media

    Science.gov (United States)

    Mitchell, J.; Chandrasekera, T. C.

    2014-12-01

    The nuclear magnetic resonance transverse relaxation time T2, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T2 provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T2 distributions demands appropriate processing of the measured data since T2 is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form -ant_e^k (where n is the number and te the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T2 distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries.

  12. Cooling-history effects on magnetic relaxation through quantum tunneling

    Science.gov (United States)

    Fernandez, Julio; Alonso, Juan

    2003-03-01

    Magnetic clusters, such as Fe8 and Mn_12, that make up the core of large organometallic molecules, behave at low temperatures as large single spins S. In crystals, magnetic anisotropy energies U inhibit magnetic relaxation of these spins, which can then proceed at very small temperatures (at k_BT tunneling (MQT). Magnetic dipolar interactions then play an essential role. We study how an Ising system of spins that interact through magnetic dipolar fields relaxes. A spin is allowed to flip, at rate Γ, only if the magnetic field h acting on it is within some tunnel window -hw < h< h_w. We let (1) this system be initially held for some time at some temperature Ta that is above both the long-range ordering temperature and T ˜ U/S, and (2) apply a magnetic field at t=0, inmediately after the system is quenched to T < 0.1U/S. This is somewhat as in the experiments of Wernsdorfer et al on Fe_8. The time evolution of the magnetiztion m and field distributions after the field is applied at t=0 is studied. For small applied fields H, m ˜= hw HF(Γ t). In addition, F(Γ t)˜= cΓ t for Γ t < 1 and F(Γ t)˜= cΓ t for 1 <Γ t < (h_d/h_w)^2, where hd is a nearest neighbor dipolar field. We will show how c depends on the cooling protocol. Finally, m saturates at m_s˜= 0.13\\varepsilon_aH.

  13. Dynamics and relaxation in confined medium. Application to 129Xe magnetic relaxation in Vycor

    International Nuclear Information System (INIS)

    Pasquier, Virginie

    1995-01-01

    Porous media morphology and topology drive the exploration of pore space by fluid. So, analysis of transport process, associated with relaxation mechanism, allows indirect study of pore geometry. The purpose of this work is to understand better the relation between geometry and transport. This study involves two parts: a modelization and prediction step is followed by an experimental application of magnetic relaxation. Numerical simulations and analytical models allow to quantify the influence on the solid interface of the dynamical behavior of confined gas in disordered porous media (granular structure and porous network) or in common geometry (cylindrical and lamellar interfaces). The formalism of diffusion propagator is a powerful tool to quantify the influence of the pore geometry on the diffusion of confined gas. The propagator holds all dynamical information on the system; it also predicts the temporal evolution of the autocorrelation functions of the Hamiltonian describing local coupling. In an intermediate time scale, magnetic relaxation shows complex diffusional regime: the autocorrelation functions decrease in a power law with a exponent smaller than d/2 (where d is the Euclidian dimension of the system). This behavior is analogous to dynamic in low-dimensional space, but here arises from surface correlations of the porous media. The long-time behavior of the autocorrelation functions retrieves the asymptotic decrease t -d/2 . Moreover, atypical behavior is observed for the Knudsen diffusion between infinite planes. It turns out that 129 Xe NMR is a appropriate technique to characterize organization and diffusion of gas confined in Vycor. Systematic studies of temperature and pressure effect on the 129 Xe chemical shift allow to specify the Xe/solid interaction. The analysis of the relaxation measurements, thanks to the numerical development, confirms conclusions arising from the study of diffusion propagator. (author) [fr

  14. Thermal relaxation of magnetic clusters in amorphous Hf57Fe43 alloy

    International Nuclear Information System (INIS)

    Pajic, Damir; Zadro, Kreso; Ristic, Ramir; Zivkovic, Ivica; Skoko, Zeljko; Babic, Emil

    2007-01-01

    The magnetization processes in binary magnetic/non-magnetic amorphous alloy Hf 57 Fe 43 are investigated by the detailed measurement of magnetic hysteresis loops, temperature dependence of magnetization, relaxation of magnetization and magnetic ac susceptibility, including a nonlinear term. Blocking of magnetic moments at lower temperatures is accompanied by the slow relaxation of magnetization and magnetic hysteresis loops. All of the observed properties are explained by the superparamagnetic behaviour of the single domain magnetic clusters inside the non-magnetic host, their blocking by the anisotropy barriers and thermal fluctuation over the barriers accompanied by relaxation of magnetization. From magnetic viscosity analysis based on thermal relaxation over the anisotropy barriers it is found that magnetic clusters occupy the characteristic volume from 25 up to 200 nm 3 . The validity of the superparamagnetic model of Hf 57 Fe 43 is based on the concentration of iron in the Hf 100-x Fe x system that is just below the threshold for long range magnetic ordering. This work also throws more light on the magnetic behaviour of other amorphous alloys

  15. TOMROP: a sequence for determining the longitudinal relaxation time T1 in NMR

    International Nuclear Information System (INIS)

    Graumann, R.; Barfuss, H.; Fischer, H.; Hentschel, D.; Oppelt, A.

    1987-01-01

    We developed the pulse sequence TOMROP (T One by Multiple Read Out Pulses) for determining precisely the spatial distribution of the longitudinal relaxation time T 1 in nuclear magnetic resonance (NMR): a series of small-angle selection pulses is used to read out longitudinal magnetization from its initial state till thermal equilibrium. Hence, one measurement will produce several images with different T 1 weightings whose pixel brilliance depends exponentially from read-out time. T 1 can be determined from these independent of initial magnetization and selection pulse angle. The measuring time corresponds to the time needed in multi-echo imaging for the determination of the transversal relaxation time T 2 . We demonstrate this new method using head images of volunteers produced with a 0.23 T test facility. (orig./HP) [de

  16. Homogeneous magnetic relaxation in iron-yttrium garnets in the vicinity of a phase transition

    International Nuclear Information System (INIS)

    Luzyanin, I.D.; Khavronin, V.P.

    1977-01-01

    Results are presented of an experimental investigation of the dynamics of homogeneous magnetization during a phase transition of the second kind in iron-yttrium garnet (IYG) single crystals of various shapes. It is shown that homogeneous relaxation significantly depends on both the magnitude of 4πchisub(st) (chisub(st) is static magnetic susceptibility) as well as on the relation between the variable field frequency (at which the investigation is carried out) and the characteristic energies. It is shown that beginning from temperatures such as 4πchisub(st) approximately 1, the characteristic dipole interaction energy becomes frequency dependent; this indicates that in this case Lorentz coupling between the dynamic susceptibility and homogeneous relaxation time is invalid. This is a principle point in investigations of homogeneous relaxation by radio-frequency techniques. The temperature dependence of the homogeneous relaxation time and static susceptibility is determined in the exchange region. It is found that the phase transition in IYG involves anomalous phenomena which manifest in release and absorption of heat by a sample and in the appearance of additional singularities in the temperature dependence of the homogeneous relaxation time

  17. Magnetization relaxation of single molecule magnets after field cooling

    Science.gov (United States)

    Fernandez, Julio F.; Alonso, Juan J.

    2004-03-01

    Magnetic clusters, such as Fe8 and Mn_12, behave at low temperatures as large single spins S. In crystals, anisotropy energies U allow magnetic relaxation only through tunneling at k_BTstackrelspins with dipolar interactions. To mimic tunneling effects, a spin on a lattice site where h is within some tunnel window -h_wmagnetic dipole field drift.

  18. Improve Image Quality of Transversal Relaxation Time PROPELLER and FLAIR on Magnetic Resonance Imaging

    Science.gov (United States)

    Rauf, N.; Alam, D. Y.; Jamaluddin, M.; Samad, B. A.

    2018-03-01

    The Magnetic Resonance Imaging (MRI) is a medical imaging technique that uses the interaction between the magnetic field and the nuclear spins. MRI can be used to show disparity of pathology by transversal relaxation time (T2) weighted images. Some techniques for producing T2-weighted images are Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction (PROPELLER) and Fluid Attenuated Inversion Recovery (FLAIR). A comparison of T2 PROPELLER and T2 FLAIR parameters in MRI image has been conducted. And improve Image Quality the image by using RadiAnt DICOM Viewer and ENVI software with method of image segmentation and Region of Interest (ROI). Brain images were randomly selected. The result of research showed that Time Repetition (TR) and Time Echo (TE) values in all types of images were not influenced by age. T2 FLAIR images had longer TR value (9000 ms), meanwhile T2 PROPELLER images had longer TE value (100.75 - 102.1 ms). Furthermore, areas with low and medium signal intensity appeared clearer by using T2 PROPELLER images (average coefficients of variation for low and medium signal intensity were 0.0431 and 0.0705, respectively). As for areas with high signal intensity appeared clearer by using T2 FLAIR images (average coefficient of variation was 0.0637).

  19. The effects of bone on proton NMR relaxation times of surrounding liquids

    Science.gov (United States)

    Davis, C. A.; Genant, H. K.; Dunham, J. S.

    1986-01-01

    Preliminary attempts by our group at UCSF to assess fat content of vertebral marrow in the lumbar spine using relaxation time information demonstrated that the presence of trabecular bone affects relaxation times. The objective of this work was a thorough study of the effects of bone on NMR relaxation characteristics of surrounding liquids. Trabecular bone from autopsy specimens was ground up and sifted into a series of powders with graded densities ranging from 0.3 gm/cc to 0.8 gm/cc. Each powder was placed first in n-saline and then in cottonseed oil. With spectroscopy, spin-lattice relaxation times (T1) and effective spin-spin relaxation times (T2*) were measured for each liquid in each bone powder. As bone density and surface to volume ratio increased, T1 decreased faster for saline than for oil. T2* decreased significantly for both water and oil as the surface to volume ratio increased. It was concluded that effects of water on T1 could be explained by a surface interaction at the bone/liquid interface, which restricted rotational and translational motion of nearby molecules. The T1s of oil were not affected since oil molecules are nonpolar, do not participate in significant intermolecular hydrogen bonding, and therefore would not be expected to interact strongly with the bone surface. Effects on T2* could be explained by local magnetic field inhomogeneities created by discontinuous magnetic susceptibility near the bone surface. These preliminary results suggest that water in contact with trabecular bone in vivo will exhibit shortened relaxation times.

  20. The study of magnetic properties and relaxation processes in Co/Au bimetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hrubovčák, Pavol [Department of Condensed Matter Physics, P.J. Šafárik University, Park Angelinum 9, Košice (Slovakia); Zeleňáková, Adriana, E-mail: adriana.zelenakova@upjs.sk [Department of Condensed Matter Physics, P.J. Šafárik University, Park Angelinum 9, Košice (Slovakia); Zeleňák, Vladimir [Department of Inorganic Chemistry, P.J. Šafárik University, Moyzesova 11, Košice (Slovakia); Kováč, Jozef [Institute of Experimental Physics, SAS, Watsonova 41, Košice (Slovakia)

    2015-11-15

    Co/Au bimetallic fine nanoparticles were prepared employing the method of microemulsion using reverse micelle as nanoreactor, controlling the particles size. Magnetic and structural properties of two different samples Co/Au1 and Co/Au2 with almost comparable size of Co core and different size of Au layer were studied. The investigation of magnetic relaxation processes present in the particles was carried out by means of ac and dc magnetization data obtained at different temperatures and magnitudes of magnetic field. We observed the existence of superspin glass state characterized by the strong inter-particle interactions in the nanoparticle systems. In this paper, we discuss the attributes of novel superspin glass magnetic state reflected on various features (saturated FC magnetization at low temperatures, shift of the Cole–Cole arc downwards) and calculated parameters (relaxation time, critical exponent zv ∼ 10 and frequency dependent criterion p < 0.05). Comparison of the magnetic properties of two studied samples show that the thickness of diamagnetic Au shell significantly influences the magnetic interactions and change the relaxation dynamics. - Highlights: • Co/Au fine nanoparticles prepared by reverse micelle as nanoreactor, controlling the size. • Existence of superspin glass state confirmed from ac magnetic susceptibility study. • Individual particles exhibit the collective behavior below glass temperature T{sub SSG}. • Influence of diamagnetic shell on the magnetic properties of core–shell nanoparticles.

  1. Magnetic Resonance Fingerprinting with short relaxation intervals.

    Science.gov (United States)

    Amthor, Thomas; Doneva, Mariya; Koken, Peter; Sommer, Karsten; Meineke, Jakob; Börnert, Peter

    2017-09-01

    The aim of this study was to investigate a technique for improving the performance of Magnetic Resonance Fingerprinting (MRF) in repetitive sampling schemes, in particular for 3D MRF acquisition, by shortening relaxation intervals between MRF pulse train repetitions. A calculation method for MRF dictionaries adapted to short relaxation intervals and non-relaxed initial spin states is presented, based on the concept of stationary fingerprints. The method is applicable to many different k-space sampling schemes in 2D and 3D. For accuracy analysis, T 1 and T 2 values of a phantom are determined by single-slice Cartesian MRF for different relaxation intervals and are compared with quantitative reference measurements. The relevance of slice profile effects is also investigated in this case. To further illustrate the capabilities of the method, an application to in-vivo spiral 3D MRF measurements is demonstrated. The proposed computation method enables accurate parameter estimation even for the shortest relaxation intervals, as investigated for different sampling patterns in 2D and 3D. In 2D Cartesian measurements, we achieved a scan acceleration of more than a factor of two, while maintaining acceptable accuracy: The largest T 1 values of a sample set deviated from their reference values by 0.3% (longest relaxation interval) and 2.4% (shortest relaxation interval). The largest T 2 values showed systematic deviations of up to 10% for all relaxation intervals, which is discussed. The influence of slice profile effects for multislice acquisition is shown to become increasingly relevant for short relaxation intervals. In 3D spiral measurements, a scan time reduction of 36% was achieved, maintaining the quality of in-vivo T1 and T2 maps. Reducing the relaxation interval between MRF sequence repetitions using stationary fingerprint dictionaries is a feasible method to improve the scan efficiency of MRF sequences. The method enables fast implementations of 3D spatially

  2. Menstrual variation of breast volume and T2 relaxation times in cyclical mastalgia

    International Nuclear Information System (INIS)

    Hussain, Zainab; Brooks, Jonathan; Percy, Dave

    2008-01-01

    Purpose: Hormonal activity causes breast volume to change during the menstrual cycle. One possible cause of this volume change is thought to be due to water retention or oedema within the tissues. We used magnetic resonance imaging (MRI) to study the variation in breast volume and 1 H Magnetic Resonance Spectroscopy (MRS) to measure T 2 relaxation times which are known to increase with increasing tissue water content. We hypothesised that an increase in breast volume will elevate T 2 relaxation due to the presence of an increased water content within the breast. T 2 Relaxation time and volume were studied in fifteen control subjects and in a cohort of eight patients with cyclical mastalgia in order to determine whether changes in breast volume and T 2 relaxation times differed in controls and patients during menses, ovulation and premenses. Method: Breast volume was determined by the Cavalieri method in combination with point counting techniques on MR images and T 2 relaxation times of the water and fat in a voxel of breast tissue were obtained using 1 H Magnetic Resonance Spectroscopy (MRS). Results: Statistical analysis (ANOVA) demonstrated highly significant differences in breast volume between the three stages of the cycle (p 2 of fat or water did not depend on stage of cycle. T-tests demonstrated no significant differences in T 2 of water or fat between patient and control groups. The average T 2 relaxation time of water was lowest in the patient and control groups during ovulation and highest in the patient group during premenses. Conclusion: We have performed the first combined volumetric and spectroscopic study of women with cyclical mastalgia and demonstrated that the global changes in volumes and T 2 were not significantly different from normal menstrual variations

  3. Phase diagram and magnetic relaxation phenomena in Cu2OSeO3

    Science.gov (United States)

    Qian, F.; Wilhelm, H.; Aqeel, A.; Palstra, T. T. M.; Lefering, A. J. E.; Brück, E. H.; Pappas, C.

    2016-08-01

    We present an investigation of the magnetic-field-temperature phase diagram of Cu2OSeO3 based on dc magnetization and ac susceptibility measurements covering a broad frequency range of four orders of magnitude, from very low frequencies reaching 0.1 Hz up to 1 kHz. The experiments were performed in the vicinity of Tc=58.2 K and around the skyrmion lattice A phase. At the borders between the different phases the characteristic relaxation times reach several milliseconds and the relaxation is nonexponential. Consequently the borders between the different phases depend on the specific criteria and frequency used and an unambiguous determination is not possible.

  4. Magnetism of a relaxed single atom vacancy in graphene

    Science.gov (United States)

    Wu, Yunyi; Hu, Yonghong; Xue, Li; Sun, Tieyu; Wang, Yu

    2018-04-01

    It has been suggested in literature that defects in graphene (e.g. absorbed atoms and vacancies) may induce magnetizations due to unpaired electrons. The nature of magnetism, i.e. ferromagnetic or anti-ferromagnetic, is dependent on a number of structural factors including locations of magnetic moments and lattice symmetry. In the present work we investigated the influence of a relaxed single atom vacancy in garphnene on magnetization which were obtained under different pinning boundary conditions, aiming to achieve a better understanding of the magnetic behaviors of graphene. Through first principles calculations, we found that major spin polarizations occur on atoms that deviate slightly from their original lattice positions, and pinning boundaries could also affect the relaxed positions of atoms and determine which atom(s) would become the main source(s) of total spin polarizations and magnetic moments. When the pinning boundary condition is free, a special non-magnetic and semi-conductive structure may be obtained, suggesting that magnetization should more readily occur under pinning boundary conditions.

  5. Continuous monitoring of the zinc-phosphate acid-base cement setting reaction by proton nuclear magnetic relaxation

    International Nuclear Information System (INIS)

    Apih, T.; Lebar, A.; Pawlig, O.; Trettin, R.

    2001-01-01

    Proton nuclear magnetic relaxation is a well-established technique for continuous and non destructive monitoring of hydration of conventional Portland building cements. Here, we demonstrate the feasibility of nuclear magnetic resonance (NMR) monitoring of the setting reaction of zinc-phosphate acid-base dental cements, which harden in minutes as compared to days, as in the case of Portland cements. We compare the setting of cement powder (mainly, zinc oxide) prepared with clinically used aluminum-modified orthophosphoric acid solution with the setting of a model system where cement powder is mixed with pure orthophosphoric acid solution. In contrast to previously published NMR studies of setting Portland cements, where a decrease of spin-lattice relaxation time is attributed to enhanced relaxation at the growing internal surface, spin-lattice relaxation time T 1 increases during the set of clinically used zinc-phosphate cement. Comparison of these results with a detailed study of diffusion, viscosity, and magnetic-field dispersion of T 1 in pure and aluminum-modified orthophosphoric acid demonstrates that the increase of T 1 in the setting cement is connected with the increase of molecular mobility in the residual phosphoric acid solution. Although not taken into account so far, such effects may also significantly influence the relaxation times in setting Portland cements, particularly when admixtures with an effect on water viscosity are used. [copyright] 2001 American Institute of Physics

  6. The relaxation time approximation

    International Nuclear Information System (INIS)

    Gairola, R.P.; Indu, B.D.

    1991-01-01

    A plausible approximation has been made to estimate the relaxation time from a knowledge of the transition probability of phonons from one state (r vector, q vector) to other state (r' vector, q' vector), as a result of collision. The relaxation time, thus obtained, shows a strong dependence on temperature and weak dependence on the wave vector. In view of this dependence, relaxation time has been expressed in terms of a temperature Taylor's series in the first Brillouin zone. Consequently, a simple model for estimating the thermal conductivity is suggested. the calculations become much easier than the Callaway model. (author). 14 refs

  7. Gradient-induced longitudinal relaxation of hyperpolarized noble gases in the fringe fields of superconducting magnets used for magnetic resonance.

    Science.gov (United States)

    Zheng, Wangzhi; Cleveland, Zackary I; Möller, Harald E; Driehuys, Bastiaan

    2011-02-01

    When hyperpolarized noble gases are brought into the bore of a superconducting magnet for magnetic resonance imaging (MRI) or spectroscopy studies, the gases must pass through substantial field gradients, which can cause rapid longitudinal relaxation. In this communication, we present a means of calculating this spatially dependent relaxation rate in the fringe field of typical magnets. We then compare these predictions to experimental measurements of (3)He relaxation at various positions near a medium-bore 2-T small animal MRI system. The calculated and measured relaxation rates on the central axis of the magnet agree well and show a maximum (3)He relaxation rate of 3.83×10(-3) s(-1) (T(1)=4.4 min) at a distance of 47 cm from the magnet isocenter. We also show that if this magnet were self-shielded, its minimum T(1) would drop to 1.2 min. In contrast, a typical self-shielded 1.5-T clinical MRI scanner will induce a minimum on-axis T(1) of 12 min. Additionally, we show that the cylindrically symmetric fields of these magnets enable gradient-induced relaxation to be calculated using only knowledge of the on-axis longitudinal field, which can either be measured directly or calculated from a simple field model. Thus, while most MRI magnets employ complex and proprietary current configurations, we show that their fringe fields and the resulting gradient-induced relaxation are well approximated by simple solenoid models. Finally, our modeling also demonstrates that relaxation rates can increase by nearly an order of magnitude at radial distances equivalent to the solenoid radius. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. A nuclear magnetic relaxation study on internal motion of polyelectrolytes in solution

    International Nuclear Information System (INIS)

    Schriever, J.

    1977-01-01

    The aim of this thesis is to investigate the significance and the amount of information which can be extracted from the study of frequency dependence of magnetic relaxation rates in solutions of a synthetic macromolecule. Solutions of poly(methacrylic acid), PMA, in water were chosen as the object of the present work. A short survey of nuclear magnetic relaxation in solutions of simple macromolecules is presented. Results obtained by continuous wave experiments on PMA solutions are shown (viz. the information about the transverse relaxation from line width analysis of 60 MHz proton spectra). Water enriched in 17 O is used in magnetic relaxation studies; the results of the determination of hydrogen lifetimes in aqueous solutions of acetic acid and poly(methacrylic acid) are given. The possibility of obtaining information about the dynamics of deuterons in the acid side groups of weak polyacids by measuring deuteron relaxation in heavy water solutions of those acids is considered. The use of deuteron relaxation rate experiments on solutions of selectively methylene deuterated poly(methacrylic acid), [-CD 2 -CCH 3 COOH-]n, is demonstrated and the backbone methylene C-atom motion is charachterized. The magne-tic relaxation of nuclei in the side groups of methylene deuterated PMA, viz. protons in the methyland deuterons in the acid side groups is presented

  9. Nuclear magnetic resonance studies on brain edema. Time course of /sup 1/H-NMR relaxation times

    Energy Technology Data Exchange (ETDEWEB)

    Naruse, S; Horikawa, Y; Tanaka, C; Hirakawa, K; Nishikawa, H [Kyoto Prefectural Univ. of Medicine (Japan)

    1981-06-01

    1. The state of water in normal and edematous brain tissue was studied by measurement of proton longitudinal (T/sub 1/) and transverse (T/sub 2/) relaxation times using pulsed nuclear magnetic resonance (NMR) technique. 2. In control rats, T/sub 1/ and T/sub 2/ of water showed one component, which was more fast in white matter. Those values displayed 1.07 - 1.18 sec. of T/sub 1/ and 75 - 76 msec. of T/sub 2/. 3. When rat brain was injured by cold, T/sub 1/ was observed to become longer (1.18 - 1.27 sec.), and T/sub 2/ was observed be separated into two components, the faster T/sub 2/ (45 - 50 msec.) and slower T/sub 2/ (100 - 105 msec.), in both gray and white matter of the injured side. 4. In triethyltin (TET) induced brain edema, elongation of T/sub 1/ (1.2 sec.) and remarkable separation of T/sub 2/, faster T/sub 2/ (75 msec.) and slower T/sub 2/ (400 - 450 msec.), were observed in white matter. 5. In both cold and TET induced edema, slower T/sub 2/ fraction is suggested to be the extracellular space and faster T/sub 2/ fraction, intracellular. 6. T/sub 2/ changes precede the water content changes in cold injury, and parallel in TET induced edema. Those changes of relaxation times are reversible. 7. T/sub 2/ changes of water is more sensitive than the T/sub 1/ for the detection of production and disappearance of brain edema. 8. These results disclose the dynamic movements of water during the course of brain edema and offered significant information of the clinical application of NMR-CT.

  10. Effect of magnetic field on charge imbalance relaxation of non-equilibrium superconductivity

    International Nuclear Information System (INIS)

    Tsuboi, Kazuki; Yagi, Ryuta

    2010-01-01

    We have studied relaxation of charge imbalance of non-equilibrium superconductivity in magnetic field. We found that excess current due to charge imbalance showed striking dependence on magnitude of magnetic field and its orientation. We discussed origin of the relaxation.

  11. Electrically driven magnetic relaxation in multiferroic LuFe2O4

    International Nuclear Information System (INIS)

    Wang Fen; Li Changhui; Zou Tao; Liu Yi; Sun Young

    2010-01-01

    We report the electrical control of magnetization in multiferroic LuFe 2 O 4 by applying short current pulses. The magnitude of the induced magnetization change depends on the pulse width and current density. The voltage variation during the applied current pulses evidences an electric-field-induced breakdown of charge order and excludes the role of Joule heating. This current driven magnetization change can be interpreted with a three-temperature model in which the delocalized electrons accelerate spin relaxation through a strong spin-charge coupling inherent to multiferroicity. The electrically assisted magnetic relaxation provides a new approach for electrical control of magnetization.

  12. Magnetization relaxation in (Ga, Mn)As ferromagnetic semiconductors

    Czech Academy of Sciences Publication Activity Database

    Sinova, J.; Jungwirth, Tomáš; Liu, X.; Sasaki, Y.; Furdyna, J. K.; Atkinson, W. A.; MacDonald, A. H.

    2004-01-01

    Roč. 69, č. 8 (2004), 085209/1-085209/6 ISSN 0163-1829 R&D Projects: GA ČR GA202/02/0912 Institutional research plan: CEZ:AV0Z1010914 Keywords : magnetization relaxation * ferromagnetic semiconductors Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.075, year: 2004

  13. AC relaxation in the iron(8) molecular magnet

    Science.gov (United States)

    Rose, Geordie

    2000-11-01

    We investigate the low energy magnetic relaxation characteristics of the ``iron eight'' (Fe8) molecular magnet. Each molecule in this material contains a cluster of eight Fe 3+ ions surrounded by organic ligands. The molecules arrange themselves into a regular lattice with triclinic symmetry. At sufficiently low energies, the electronic spins of the Fe3+ ions lock together into a ``quantum rotator'' with spin S = 10. We derive a low energy effective Hamiltonian for this system, valid for temperatures less than Tc ~ 360 mK , where Tc is the temperature at which the Fe8 system crosses over into a ``quantum regime'' where relaxation characteristics become temperature independent. We show that in this regime the dominant environmental coupling is to the environmental spin bath in the molecule. We show how to explicitly calculate these couplings, given crystallographic information about the molecule, and do this for Fe8. We use this information to calculate the linewidth, topological decoherence and orthogonality blocking parameters. All of these quantities are shown to exhibit an isotope effect. We demonstrate that orthogonality blocking in Fe8 is significant and suppresses coherent tunneling. We then use our low energy effective Hamiltonian to calculate the single-molecule relaxation rate in the presence of an external magnetic field with both AC and DC components by solving the Landau-Zener problem in the presence of a nuclear spin bath. Both sawtooth and sinusoidal AC fields are analyzed. This single-molecule relaxation rate is then used as input into a master equation in order to take into account the many-molecule nature of the full system. Our results are then compared to quantum regime relaxation experiments performed on the Fe8 system.

  14. Menstrual variation of breast volume and T{sub 2} relaxation times in cyclical mastalgia

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Zainab [Department of Medical Imaging, University of Liverpool, Johnstone Building, Brownlow Hill, P.O. Box 147, Liverpool, Merseyside L69 3GB (United Kingdom); Magnetic Resonance and Image Analysis Research Centre, University of Liverpool, Johnstone Building, Brownlow Hill, P.O. Box 147, Liverpool, Merseyside L69 3GB (United Kingdom)], E-mail: zay@liverpool.ac.uk; Brooks, Jonathan [Magnetic Resonance and Image Analysis Research Centre, University of Liverpool, Johnstone Building, Brownlow Hill, P.O. Box 147, Liverpool, Merseyside L69 3GB (United Kingdom); Department of Human Anatomy and Genetics, University of Oxford, Oxford (United Kingdom); Percy, Dave [Centre for Operational Research and Applied Statistics, University of Salford, Salford, Greater Manchester M5 4WT (United Kingdom)

    2008-02-15

    Purpose: Hormonal activity causes breast volume to change during the menstrual cycle. One possible cause of this volume change is thought to be due to water retention or oedema within the tissues. We used magnetic resonance imaging (MRI) to study the variation in breast volume and {sup 1}H Magnetic Resonance Spectroscopy (MRS) to measure T{sub 2} relaxation times which are known to increase with increasing tissue water content. We hypothesised that an increase in breast volume will elevate T{sub 2} relaxation due to the presence of an increased water content within the breast. T{sub 2} Relaxation time and volume were studied in fifteen control subjects and in a cohort of eight patients with cyclical mastalgia in order to determine whether changes in breast volume and T{sub 2} relaxation times differed in controls and patients during menses, ovulation and premenses. Method: Breast volume was determined by the Cavalieri method in combination with point counting techniques on MR images and T{sub 2} relaxation times of the water and fat in a voxel of breast tissue were obtained using {sup 1}H Magnetic Resonance Spectroscopy (MRS). Results: Statistical analysis (ANOVA) demonstrated highly significant differences in breast volume between the three stages of the cycle (p < 0.0005) with breast volume being greatest premenstrually. Patients did not exhibit an increase in volume premenstrually, significantly above controls. T{sub 2} of fat or water did not depend on stage of cycle. T-tests demonstrated no significant differences in T{sub 2} of water or fat between patient and control groups. The average T{sub 2} relaxation time of water was lowest in the patient and control groups during ovulation and highest in the patient group during premenses. Conclusion: We have performed the first combined volumetric and spectroscopic study of women with cyclical mastalgia and demonstrated that the global changes in volumes and T{sub 2} were not significantly different from normal

  15. MR pulse sequences for selective relaxation time measurements: a phantom study

    DEFF Research Database (Denmark)

    Thomsen, C; Jensen, K E; Jensen, M

    1990-01-01

    a Siemens Magnetom wholebody magnetic resonance scanner operating at 1.5 Tesla was used. For comparison six imaging pulse sequences for relaxation time measurements were tested on the same phantom. The spectroscopic pulse sequences all had an accuracy better than 10% of the reference values....

  16. Resonantly enhanced spin-lattice relaxation of Mn2 + ions in diluted magnetic (Zn,Mn)Se/(Zn,Be)Se quantum wells

    Science.gov (United States)

    Debus, J.; Ivanov, V. Yu.; Ryabchenko, S. M.; Yakovlev, D. R.; Maksimov, A. A.; Semenov, Yu. G.; Braukmann, D.; Rautert, J.; Löw, U.; Godlewski, M.; Waag, A.; Bayer, M.

    2016-05-01

    The dynamics of spin-lattice relaxation in the magnetic Mn2 + ion system of (Zn,Mn)Se/(Zn,Be)Se quantum-well structures are studied using optical methods. Pronounced cusps are found in the giant Zeeman shift of the quantum-well exciton photoluminescence at specific magnetic fields below 10 T, when the Mn spin system is heated by photogenerated carriers. The spin-lattice relaxation time of the Mn ions is resonantly accelerated at the cusp magnetic fields. Our theoretical analysis demonstrates that a cusp occurs at a spin-level mixing of single Mn2 + ions and a quick-relaxing cluster of nearest-neighbor Mn ions, which can be described as intrinsic cross-relaxation resonance within the Mn spin system.

  17. Time-dependent magnetization of a type-II superconductor numerically calculated by using the flux-creep equation

    International Nuclear Information System (INIS)

    Lee, J. H.; Park, I. S.; Ahmad, D.; Kim, D.; Kim, Y. C.; Ko, R. K.; Jeong, D. Y.

    2012-01-01

    The macroscopic magnetic behaviors of a type-II superconductor, such as the field- or the temperature-dependent magnetization, have been described by using critical state models. However, because the models are time-independent, the magnetic relaxation in a type-II superconductor cannot be described by them, and the time dependence of the magnetization can affect the field or the temperature-dependent magnetization curve described by the models. In order to avoid the time independence of critical state models, we try the numerical calculation used by Qin et al., who mainly calculated the temperature dependence of the ac susceptibility χ(T). Their calculation showed that the frequency-dependent χ(T) could be obtained by using the flux-creep equation. We calculated the field-dependent magnetization and magnetic relaxation by using a numerical method. The calculated field-dependent magnetization M(H) curves shows the shapes of a typical type-II superconductor. The calculated magnetic relaxation do not show a logarithmic decay of the magnetization, but the addition of a surface barrier to the relaxation calculation caused a clear logarithmic decay of the magnetization, producing a crossover at a mid-time. This means that the logarithmic magnetic relaxation is caused by not only flux creep but also a combination of flux creep and a surface barrier.

  18. Effect of substrate rotation on domain structure and magnetic relaxation in magnetic antidot lattice arrays

    International Nuclear Information System (INIS)

    Mallick, Sougata; Mallik, Srijani; Bedanta, Subhankar

    2015-01-01

    Microdimensional triangular magnetic antidot lattice arrays were prepared by varying the speed of substrate rotation. The pre-deposition patterning has been performed using photolithography technique followed by a post-deposition lift-off. Surface morphology taken by atomic force microscopy depicted that the growth mechanism of the grains changes from chain like formation to island structures due to the substrate rotation. Study of magnetization reversal via magneto optic Kerr effect based microscopy revealed reduction of uniaxial anisotropy and increase in domain size with substrate rotation. The relaxation measured under constant magnetic field becomes faster with rotation of the substrate during deposition. The nature of relaxation for the non-rotating sample can be described by a double exponential decay. However, the relaxation for the sample with substrate rotation is well described either by a double exponential or a Fatuzzo-Labrune like single exponential decay, which increases in applied field

  19. Effects of pulmonary inhalation on hyperpolarized krypton-83 magnetic resonance T1 relaxation.

    Science.gov (United States)

    Stupic, K F; Elkins, N D; Pavlovskaya, G E; Repine, J E; Meersmann, T

    2011-07-07

    The (83)Kr magnetic resonance (MR) relaxation time T(1) of krypton gas in contact with model surfaces was previously found to be highly sensitive to surface composition, surface-to-volume ratio, and surface temperature. The work presented here explored aspects of pulmonary (83)Kr T(1) relaxation measurements in excised lungs from healthy rats using hyperpolarized (hp) (83)Kr with approximately 4.4% spin polarization. MR spectroscopy without spatial resolution was applied to the ex vivo lungs that actively inhale hp (83)Kr through a custom designed ventilation system. Various inhalation schemes were devised to study the influence of anatomical dead space upon the measured (83)Kr T(1) relaxation times. The longitudinal (83)Kr relaxation times in the distal airways and the respiratory zones were independent of the lung inhalation volume, with T(1) = 1.3 s and T(1) = 1.0 s, depending only on the applied inhalation scheme. The obtained data were highly reproducible between different specimens. Further, the (83)Kr T(1) relaxation times in excised lungs were unaffected by the presence of up to 40% oxygen in the hp gas mixture. The results support the possible importance of (83)Kr as a biomarker for evaluating lung function.

  20. Carboxylated magnetic nanoparticles as MRI contrast agents: Relaxation measurements at different field strengths

    Energy Technology Data Exchange (ETDEWEB)

    Jedlovszky-Hajdu, Angela, E-mail: angela.hajdu@net.sote.hu [Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvarad Sq 4, H-1089 Budapest (Hungary); Tombacz, Etelka, E-mail: tombacz@chem.u-szeged.hu [Department of Physical Chemistry and Material Science, University of Szeged, Aradi Vt. Sq 1, Szeged 6720 (Hungary); Banyai, Istvan, E-mail: banyai.istvan@science.unideb.hu [Department of Colloid and Environmental Chemistry, University of Debrecen (Hungary); Babos, Magor, E-mail: babosmagor@yahoo.com [Euromedic Diagnostics Szeged Ltd., Semmelweis St 6, Szeged 6720 (Hungary); Palko, Andras, E-mail: palko@radio.szote.u-szeged.hu [Faculty of Medicine, Department of Radiology, University of Szeged (Hungary)

    2012-09-15

    At the moment the biomedical applications of magnetic fluids are the subject of intensive scientific interest. In the present work, magnetite nanoparticles (MNPs) were synthesized and stabilized in aqueous medium with different carboxylic compounds (citric acid (CA), polyacrylic acid (PAA), and sodium oleate (NaOA)), in order to prepare well stabilized magnetic fluids (MFs). The magnetic nanoparticles can be used in the magnetic resonance imaging (MRI) as contrast agents. Magnetic resonance relaxation measurements of the above MFs were performed at different field strengths (i.e., 0.47, 1.5 and 9.4 T) to reveal the field strength dependence of their magnetic responses, and to compare them with that of ferucarbotran, a well-known superparamagnetic contrast agent. The measurements showed characteristic differences between the tested magnetic fluids stabilized by carboxylic compounds and ferucarbotran. It is worthy of note that our magnetic fluids have the highest r2 relaxivities at the field strength of 1.5 T, where the most of the MRI works in worldwide. - Highlights: Black-Right-Pointing-Pointer Magnetic resonance relaxation measurements were done at different field strengths. Black-Right-Pointing-Pointer Results show characteristic differences between the tested carboxylated MFs. Black-Right-Pointing-Pointer r1 and r2 relaxivities depend on the thickness of the protecting layer. Black-Right-Pointing-Pointer MFs have high r2/r1 ratios at each magnetic field.

  1. Slowing hot-carrier relaxation in graphene using a magnetic field

    Science.gov (United States)

    Plochocka, P.; Kossacki, P.; Golnik, A.; Kazimierczuk, T.; Berger, C.; de Heer, W. A.; Potemski, M.

    2009-12-01

    A degenerate pump-probe technique is used to investigate the nonequilibrium carrier dynamics in multilayer graphene. Two distinctly different dynamics of the carrier relaxation are observed. A fast relaxation (˜50fs) of the carriers after the initial effect of phase-space filling followed by a slower relaxation (˜4ps) due to thermalization. Both relaxation processes are less efficient when a magnetic field is applied at low temperatures which is attributed to the suppression of the electron-electron Auger scattering due to the nonequidistant Landau-level spacing of the Dirac fermions in graphene.

  2. On-chip measurement of the Brownian relaxation frequency of magnetic beads using magnetic tunneling junctions

    DEFF Research Database (Denmark)

    Donolato, M.; Sogne, E.; Dalslet, Bjarke Thomas

    2011-01-01

    We demonstrate the detection of the Brownian relaxation frequency of 250 nm diameter magnetic beads using a lab-on-chip platform based on current lines for exciting the beads with alternating magnetic fields and highly sensitive magnetic tunnel junction (MTJ) sensors with a superparamagnetic free...

  3. Intra-well relaxation process in magnetic fluids subjected to strong polarising fields

    Energy Technology Data Exchange (ETDEWEB)

    Marin, C.N., E-mail: cmarin@physics.uvt.ro [West University of Timisoara, Faculty of Physics, B-dul V. Parvan, No. 4, Timisoara 300223 (Romania); Fannin, P.C. [Department of Electronic and Electrical Engineering, Trinity College, Dublin 2 (Ireland); Malaescu, I.; Barvinschi, P.; Ercuta, A. [West University of Timisoara, Faculty of Physics, B-dul V. Parvan, No. 4, Timisoara 300223 (Romania)

    2012-02-15

    We report on the frequency and field dependent complex magnetic susceptibility measurements of a kerosene-based magnetic fluid with iron oxide nanoparticles, stabilized with oleic acid, in the frequency range 0.1-6 GHz and over the polarising field range of 0-168.4 kA/m. By increasing polarising field, H, a subsidiary loss-peak clearly occurs in the vicinity of the ferromagnetic resonance peak, from which it remains distinct even in strong polarising fields of 168.4 kA/m. This is in contrast to other reported cases in which the intra-well relaxation process is manifested only as a shoulder of the resonance peak, which vanishes in polarising fields larger than that of 100 kA/m. The results of the XRD analysis connected to the anisotropy field results confirm that the investigated sample contains particles of magnetite and of the tetragonal phase of maghemite. Taking into account the characteristics of our sample, the theoretical analysis revealed that the intra-well relaxation process of the small particles of the tetragonal phase of maghemite may be responsible for the subsidiary loss peak of the investigated magnetic fluid. - Highlights: > Intra-well relaxation process in a magnetic fluid is studied. > Sample consists of the tetragonal phase of maghemite and magnetite particles. > A subsidiary relaxation peak is observed in the vicinity of the resonance peak. > Relaxation peak is correlated to the intra-well relaxation process. > It is assigned to the tetragonal phase of maghemite particles.

  4. An approach to the magnetic relaxation processes in lithium ferrites

    International Nuclear Information System (INIS)

    Torres, C.; Gonzalez Arias, A.; Hernandez-Gomez, P.; Francisco, C. de; Alejos, O.; Munoz, J.M.; Zazo, M.

    2007-01-01

    The relaxation of the initial magnetic permeability has been measured in polycrystalline Li x Fe 3- x O 4 samples, with x ranging from 0 to 0.5, by means of the magnetic disaccommodation (DA) technique. We have found that there is no abrupt transition for a given composition, but there is a progressive modification of the characteristic relaxation processes of magnetite. These results have been interpreted on the basis of the increasing amount of Li ions in the spinel lattice and hence, the resulting modifications on their proximities

  5. Spin dynamics of Mn12-acetate in the thermally activated tunneling regime: ac susceptibility and magnetization relaxation

    Science.gov (United States)

    Pohjola, Teemu; Schoeller, Herbert

    2000-12-01

    In this work, we study the spin dynamics of Mn12-acetate molecules in the regime of thermally assisted tunneling. In particular, we describe the system in the presence of a strong transverse magnetic field. Similar to recent experiments, the relaxation time/rate is found to display a series of resonances; their Lorentzian shape is found to stem from the tunneling. The dynamic susceptibility χ(ω) is calculated starting from the microscopic Hamiltonian and the resonant structure manifests itself also in χ(ω). Similar to recent results reported on another molecular magnet, Fe8, we find oscillations of the relaxation rate as a function of the transverse magnetic field when the field is directed along a hard axis of the molecules. This phenomenon is attributed to the interference of the geometrical or Berry phase. We propose susceptibility experiments to be carried out for strong transverse magnetic fields to study these oscillations and for a better resolution of the sharp satellite peaks in the relaxation rates.

  6. Chemical exchange effects during refocusing pulses in constant-time CPMG relaxation dispersion experiments

    International Nuclear Information System (INIS)

    Myint, Wazo; Ishima, Rieko

    2009-01-01

    In the analysis of the constant-time Carr-Purcell-Meiboom-Gill (CT-CPMG) relaxation dispersion experiment, chemical exchange parameters, such as rate of exchange and population of the exchanging species, are typically optimized using equations that predict experimental relaxation rates recorded as a function of effective field strength. In this process, the effect of chemical exchange during the CPMG pulses is typically assumed to be the same as during the free-precession. This approximation may introduce systematic errors into the analysis of data because the number of CPMG pulses is incremented during the constant-time relaxation period, and the total pulse duration therefore varies as a function of the effective field strength. In order to estimate the size of such errors, we simulate the time-dependence of magnetization during the entire constant time period, explicitly taking into account the effect of the CPMG pulses on the spin relaxation rate. We show that in general the difference in the relaxation dispersion profile calculated using a practical pulse width from that calculated using an extremely short pulse width is small, but under certain circumstances can exceed 1 s -1 . The difference increases significantly when CPMG pulses are miscalibrated

  7. Functional behavior of the anomalous magnetic relaxation observed in melt-textured YBa_2Cu_3O_7_-_δ samples showing the paramagnetic Meissner effect

    International Nuclear Information System (INIS)

    Dias, F.T.; Vieira, V.N.; Garcia, E.L.; Wolff-Fabris, F.; Kampert, E.; Gouvêa, C.P.; Schaf, J.; Obradors, X.; Puig, T.; Roa, J.J.

    2016-01-01

    Highlights: • Paramagnetic Meissner effect observed up to 5T in FCC and FCW measurements. • Time effects evidenced by irreversibilities between FCC and FCW measurements. • Strong time effects causing an anomalous paramagnetic relaxation. • Paramagnetic relaxation governed by different flux dynamics in different intervals. • An interpretative analysis to identify the flux dynamics in the relaxation process. - Abstract: We have studied the functional behavior of the field-cooled (FC) magnetic relaxation observed in melt-textured YBa_2Cu_3O_7_-_δ (Y123) samples with 30 wt% of Y_2Ba_1Cu_1O_5 (Y211) phase, in order to investigate anomalous paramagnetic moments observed during the experiments. FC magnetic relaxation experiments were performed under controlled conditions, such as cooling rate and temperature. Magnetic fields up to 5T were applied parallel to the ab plane and along the c-axis. Our results are associated with the paramagnetic Meissner effect (PME), characterized by positive moments during FC experiments, and related to the magnetic flux compression into the samples. After different attempts our experimental data could be adequately fitted by an exponential decay function with different relaxation times. We discuss our results suggesting the existence of different and preferential flux dynamics governing the anomalous FC paramagnetic relaxation in different time intervals. This work is one of the first attempts to interpret this controversial effect in a simple analysis of the pinning mechanisms and flux dynamics acting during the time evolution of the magnetic moment. However, the results may be useful to develop models to explain this interesting and still misunderstood feature of the paramagnetic Meissner effect.

  8. Relaxation dynamics of magnetization transitions in synthetic antiferromagnet with perpendicular anisotropy

    Science.gov (United States)

    Talantsev, A.; Lu, Y.; Fache, T.; Lavanant, M.; Hamadeh, A.; Aristov, A.; Koplak, O.; Morgunov, R.; Mangin, S.

    2018-04-01

    Two synthetic antiferromagnet bilayer systems with strong perpendicular anisotropy CoFeB/Ta/CoFeB and Pt/Co/Ir/Co/Pt have been grown using sputtering techniques. For both systems two types of magnetization transitions have been studied. The first one concerns transitions from a state where magnetizations of the two magnetic layers are parallel (P state) to a state where magnetizations of the two layers are aligned antiparallel (AP state). The second one concerns transitions between the two possible antiparallel alignments (AP+  to AP-). For both systems and both transitions after-effect measurements can be understood in the frame of nucleation—propagation model. Time derivative analysis of magnetic relaxation curves and mapping of the first order reversal curves at different temperature allowed us to demonstrate the presence of different pinning centers, which number can be controlled by magnetic field and temperature.

  9. Cross-relaxation in multiple pulse NQR spin-locking

    Energy Technology Data Exchange (ETDEWEB)

    Beltjukov, P. A.; Kibrik, G. E. [Perm State University, Physics Department (Russian Federation); Furman, G. B., E-mail: gregoryf@bgu.ac.il; Goren, S. D. [Ben Gurion University, Physics Department (Israel)

    2008-01-15

    The experimental and theoretical NQR multiple-pulse spin locking study of cross-relaxation process in solids containing nuclei of two different sorts I > 1/2 and S = 1/2 coupled by the dipole-dipole interactions and influenced by an external magnetic field. Two coupled equations for the inverse spin temperatures of the both spin systems describing the mutual spin lattice relaxation and the cross-relaxation were obtained using the method of the nonequilibrium state operator. It is shown that the relaxation process is realized with non-exponential time dependence describing by a sum of two exponents. The cross relaxation time is calculated as a function of the multiple-pulse field parameters which agree with the experimental data. The calculated magnetization cross relaxation time vs the strength of the applied magnetic field agrees well with the obtained experimental data.

  10. T2 relaxation times of irradiated vertebral bone marrow in patients with seminoma.

    Science.gov (United States)

    Argiris, A; Maris, T; Vlahos, L

    1997-01-01

    Our purpose was to demonstrate the effects of localized radiotherapy on lumbar vertebral bone marrow with the use of quantitative MRI with measurements of T2 relaxation times. Ten patients with early stage testicular seminoma with a history of radiation therapy to a "dog-leg" field including the lumbar vertebrae underwent MR imaging of their lumbar spine using a 0.5 Tesla magnet. Five healthy subjects and two nonirradiated patients were imaged as well. The intervals from the beginning of radiotherapy to MRI examination varied from 1.5 to 52 months, and the radiation dose ranged from 3000-4200 cGy. The T2 relaxation times of the lumbar vertebral bone marrow and subcutaneous fat were calculated for each subject. Postirradiation bone marrow in irradiated seminoma patients exhibited significantly longer T2 relaxation times than nonirradiated bone marrow in controls (71.1 vs. 63.6 ms, p = 0.047, t-test). The differences between the T2 relaxation times of bone marrow and subcutaneous fat for each subject allowed for even better differentiation between irradiated patients and controls (10.4 vs. 0.4 ms, p = 0.0004, t-test). Postirradiation bone marrow had significantly longer T2 relaxation times than subcutaneous fat in irradiated patients (N = 10, 71.1 vs. 60.7 ms, p = 0.00009, t-test), while nonirradiated bone marrow had T2 relaxation times not statistically different from subcutaneous fat in nonirradiated subjects (N = 7, 63.6 vs. 63.2 ms). Measurements of T2 relaxation times of bone marrow enabled us to differentiate between irradiated seminoma patients and controls. Postirradiation bone marrow undergoes late radiation effects resulting in longer T2 relaxation times than nonirradiated bone marrow and subcutaneous fat.

  11. Study by magnetic resonance and relaxation of carbon 13 of some paramagnetic coordination complexes

    International Nuclear Information System (INIS)

    Ronfard-Haret, Jean-Claude

    1977-01-01

    This research thesis reports the study of coordination complexes by using NMR. After a brief recall of the theoretical background required for the processing of experimental data (hyper-fine coupling and magnetic resonance, spin density distribution, chemical displacement, dipolar, scalar and electronic relaxation), the author describes the conditions in which experiments have been performed and presents measurement methods (pulsed nuclear magnetic resonance, relaxation time measurement, determination of hyper-fine coupling constants, spectrometers and reactants). The next chapters address the study of different coordination complexes: [(pyridine-N-oxide) 2 Ni(acetylacetonate) 2 ], carbon 13 in alkyl-anilines-Ni II, complexation of 1- and 2-aminonaphthalene by transition ions, complexation of pyridine-N-oxide by the nickel Ni ++ ion in presence of water

  12. Paramagnetic relaxation effects in perturbed angular correlations for arbitrary electronic relaxation time

    International Nuclear Information System (INIS)

    Chopin, C.; Spanjaard, D.; Hartmann-Boutron, F.

    1975-01-01

    Previous perturbation treatments of paramagnetic relaxation effects in γγ PAC were limited to the case of very short electronic relaxation times. This limitation is circumvented by invoking a new perturbation theory recently elaborated by Hirst and others for handling relaxation effects in Moessbauer spectra. Under the assumption of spherical electronic relaxation the perturbation factors are computed as functions of certain relaxation parameters which are directly related to the microscopic relaxation Hamiltonian. The results are compared to those of the stochastic theory of Scherer and Blume [fr

  13. Magnetic relaxation in anisotropic magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1971-01-01

    The line shape and the kinematic and thermodynamic slowing down of the critical and paramagnetic relaxation in axially anisotropic materials are discussed. Kinematic slowing down occurs only in the longitudinal relaxation function. The thermodynamic slowing down occurs in either the transverse...... or longitudinal relaxation function depending on the sign of the axial anisotropy....

  14. Molecular theory for nuclear magnetic relaxation in protein solutions and tissue

    International Nuclear Information System (INIS)

    Kimmich, R.; Nusser, W.; Gneiting, T.

    1990-01-01

    A model theory is presented explaining a series of striking phenomena observed with nuclear magnetic relaxation in protein systems such as solutions or tissue. The frequency, concentration and temperature dependences of proton or deuteron relaxation times of protein solutions and tissue are explained. It is concluded that the translational diffusion of water molecules along the rugged surfaces of proteins and, to a minor degree, protein backbone fluctuations are crucial processes. The rate limiting factor of macromolecular tumbling is assumed to be given by the free water content in a certain analogy to the free-volume model of Cohen ad Turnbull. There are two characteristic water mass fractions indicating the saturation of the hydration shells and the onset of protein tumbling. A closed and relatively simple set of relaxation formulas is presented. The potentially fractal nature of the diffusion of water molecules on the protein surface is discussed. (author). 43 refs.; 4 figs

  15. Development of rapid methods for relaxation time mapping and motion estimation using magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gilani, Syed Irtiza Ali

    2008-09-15

    Recent technological developments in the field of magnetic resonance imaging have resulted in advanced techniques that can reduce the total time to acquire images. For applications such as relaxation time mapping, which enables improved visualisation of in vivo structures, rapid imaging techniques are highly desirable. TAPIR is a Look- Locker-based sequence for high-resolution, multislice T{sub 1} relaxation time mapping. Despite the high accuracy and precision of TAPIR, an improvement in the k-space sampling trajectory is desired to acquire data in clinically acceptable times. In this thesis, a new trajectory, termed line-sharing, is introduced for TAPIR that can potentially reduce the acquisition time by 40 %. Additionally, the line-sharing method was compared with the GRAPPA parallel imaging method. These methods were employed to reconstruct time-point images from the data acquired on a 4T high-field MR research scanner. Multislice, multipoint in vivo results obtained using these methods are presented. Despite improvement in acquisition speed, through line-sharing, for example, motion remains a problem and artefact-free data cannot always be obtained. Therefore, in this thesis, a rapid technique is introduced to estimate in-plane motion. The presented technique is based on calculating the in-plane motion parameters, i.e., translation and rotation, by registering the low-resolution MR images. The rotation estimation method is based on the pseudo-polar FFT, where the Fourier domain is composed of frequencies that reside in an oversampled set of non-angularly, equispaced points. The essence of the method is that unlike other Fourier-based registration schemes, the employed approach does not require any interpolation to calculate the pseudo-polar FFT grid coordinates. Translation parameters are estimated by the phase correlation method. However, instead of two-dimensional analysis of the phase correlation matrix, a low complexity subspace identification of the phase

  16. Development of rapid methods for relaxation time mapping and motion estimation using magnetic resonance imaging

    International Nuclear Information System (INIS)

    Gilani, Syed Irtiza Ali

    2008-09-01

    Recent technological developments in the field of magnetic resonance imaging have resulted in advanced techniques that can reduce the total time to acquire images. For applications such as relaxation time mapping, which enables improved visualisation of in vivo structures, rapid imaging techniques are highly desirable. TAPIR is a Look- Locker-based sequence for high-resolution, multislice T 1 relaxation time mapping. Despite the high accuracy and precision of TAPIR, an improvement in the k-space sampling trajectory is desired to acquire data in clinically acceptable times. In this thesis, a new trajectory, termed line-sharing, is introduced for TAPIR that can potentially reduce the acquisition time by 40 %. Additionally, the line-sharing method was compared with the GRAPPA parallel imaging method. These methods were employed to reconstruct time-point images from the data acquired on a 4T high-field MR research scanner. Multislice, multipoint in vivo results obtained using these methods are presented. Despite improvement in acquisition speed, through line-sharing, for example, motion remains a problem and artefact-free data cannot always be obtained. Therefore, in this thesis, a rapid technique is introduced to estimate in-plane motion. The presented technique is based on calculating the in-plane motion parameters, i.e., translation and rotation, by registering the low-resolution MR images. The rotation estimation method is based on the pseudo-polar FFT, where the Fourier domain is composed of frequencies that reside in an oversampled set of non-angularly, equispaced points. The essence of the method is that unlike other Fourier-based registration schemes, the employed approach does not require any interpolation to calculate the pseudo-polar FFT grid coordinates. Translation parameters are estimated by the phase correlation method. However, instead of two-dimensional analysis of the phase correlation matrix, a low complexity subspace identification of the phase

  17. Application of magnetic liposomes for magnetically guided transport of muscle relaxants and anti-cancer photodynamic drugs

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Anatoly A.; Filippov, Victor I.; Alyautdin, Renat N.; Torshina, N.L.; Kuznetsov, O.A. E-mail: oleg@louisiana.edu

    2001-07-01

    Magnetic liposomes containing submicron-sized ferromagnetic particles were prepared encapsulating the muscle relaxant drugs, diadony or diperony, for local anesthesia. Alternatively, metal phthalocyanines (Photosense or Teraphthal), sensitizers for photodynamic or catalytic cancer therapy were loaded into the magnetic liposomes. Animal trials demonstrated successful magnetically guided transport of the drug-loaded liposomes.

  18. Application of magnetic liposomes for magnetically guided transport of muscle relaxants and anti-cancer photodynamic drugs

    International Nuclear Information System (INIS)

    Kuznetsov, Anatoly A.; Filippov, Victor I.; Alyautdin, Renat N.; Torshina, N.L.; Kuznetsov, O.A.

    2001-01-01

    Magnetic liposomes containing submicron-sized ferromagnetic particles were prepared encapsulating the muscle relaxant drugs, diadony or diperony, for local anesthesia. Alternatively, metal phthalocyanines (Photosense or Teraphthal), sensitizers for photodynamic or catalytic cancer therapy were loaded into the magnetic liposomes. Animal trials demonstrated successful magnetically guided transport of the drug-loaded liposomes

  19. Muon-spin-relaxation study of magnetism in ErBa2Cu3O6.2

    International Nuclear Information System (INIS)

    Lichti, R.L.; Chan, K.B.; Adams, T.R.; Boekema, C.; Dawson, W.K.; Flint, J.A.; Cooke, D.W.; Kwok, R.S.; Willis, J.O.

    1990-01-01

    The copper magnetism of ErBa 2 Cu 3 O 6.2 is examined by transverse-field (TF) and zero-field (ZF) muon-spin relaxation (μSR). These data indicate two magnetic phases with T N1 congruent 330 K and T N2 ∼65 K. The second phase is signaled by deviation of the ZF-μSR frequencies from a standard magnetization curve and an abrupt change in the TF-μSR relaxation rate. A relaxation feature indicates a muon depolarization mechanism with a T 3/2 dependence in the low-temperature phase. Observed fields are compared to those calculated for proposed magnetic structures

  20. Effect of magnetic coupling on non-radiative relaxation time of Fe3+ sites on LaAl1-xFexO3 pigments

    Science.gov (United States)

    Novatski, A.; Somer, A.; Maranha, F. G.; de Souza, E. C. F.; Andrade, A. V. C.; Antunes, S. R. M.; Borges, C. P. F.; Dias, D. T.; Medina, A. N.; Astrath, N. G. C.

    2018-02-01

    Inorganic pigments of the system LaAl1-xFexO3 were prepared by the Pechini and the Solid State Reaction (SSR) methods. Magnetic interactions and non-radiative relaxation time were analyzed by means of phase-resolved photoacoustic spectroscopy and electron paramagnetic resonance (EPR) techniques. EPR results show a change in the magnetic behavior from paramagnetic (x = 0.2 and 0.4) to antiferromagnetic (x = 1.0), which is believed to be a result of the SSR preparation method. Trends in the optical absorption bands of the Fe3+ are attributed to their electronic transitions, and the increase in the band's intensity at 480 and 550 nm was assigned to the increase in the magnetic coupling between Fe-Fe. The phase-resolved method is capable of distinguishing between the two preparation methods, and it is possible to infer that SSR modifies the magnetic coupling of Fe-Fe with x.

  1. Nuclear magnetic resonance relaxation in multiple sclerosis

    DEFF Research Database (Denmark)

    Larsson, H B; Barker, G J; MacKay, A

    1998-01-01

    OBJECTIVES: The theory of relaxation processes and their measurements are described. An overview is presented of the literature on relaxation time measurements in the normal and the developing brain, in experimental diseases in animals, and in patients with multiple sclerosis. RESULTS...... AND CONCLUSION: Relaxation time measurements provide insight into development of multiple sclerosis plaques, especially the occurrence of oedema, demyelination, and gliosis. There is also evidence that normal appearing white matter in patients with multiple sclerosis is affected. What is now needed are fast...

  2. Nuclear magnetic relaxation by the dipolar EMOR mechanism: Multi-spin systems

    Science.gov (United States)

    Chang, Zhiwei; Halle, Bertil

    2017-08-01

    In aqueous systems with immobilized macromolecules, including biological tissues, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. Starting from the stochastic Liouville equation, we have previously developed a rigorous EMOR relaxation theory for dipole-coupled two-spin and three-spin systems. Here, we extend the stochastic Liouville theory to four-spin systems and use these exact results as a guide for constructing an approximate multi-spin theory, valid for spin systems of arbitrary size. This so-called generalized stochastic Redfield equation (GSRE) theory includes the effects of longitudinal-transverse cross-mode relaxation, which gives rise to an inverted step in the relaxation dispersion profile, and coherent spin mode transfer among solid-like spins, which may be regarded as generalized spin diffusion. The GSRE theory is compared to an existing theory, based on the extended Solomon equations, which does not incorporate these phenomena. Relaxation dispersion profiles are computed from the GSRE theory for systems of up to 16 protons, taken from protein crystal structures. These profiles span the range from the motional narrowing limit, where the coherent mode transfer plays a major role, to the ultra-slow motion limit, where the zero-field rate is closely related to the strong-collision limit of the dipolar relaxation rate. Although a quantitative analysis of experimental data is beyond the scope of this work, it is clear from the magnitude of the predicted relaxation rate and the shape of the relaxation dispersion profile that the dipolar EMOR mechanism is the principal cause of water-1H low-field longitudinal relaxation in aqueous systems of immobilized macromolecules, including soft biological tissues. The relaxation theory developed here therefore provides a basis for molecular-level interpretation of endogenous soft

  3. Carrier relaxation in (In,Ga)As quantum dots with magnetic field-induced anharmonic level structure

    Energy Technology Data Exchange (ETDEWEB)

    Kurtze, H.; Bayer, M. [Experimentelle Physik 2, TU Dortmund, D-44221 Dortmund (Germany)

    2016-07-04

    Sophisticated models have been worked out to explain the fast relaxation of carriers into quantum dot ground states after non-resonant excitation, overcoming the originally proposed phonon bottleneck. We apply a magnetic field along the quantum dot heterostructure growth direction to transform the confined level structure, which can be approximated by a Fock–Darwin spectrum, from a nearly equidistant level spacing at zero field to strong anharmonicity in finite fields. This changeover leaves the ground state carrier population rise time unchanged suggesting that fast relaxation is maintained upon considerable changes of the level spacing. This corroborates recent models explaining the relaxation by polaron formation in combination with quantum kinetic effects.

  4. Evaluation of PHB/Clay nanocomposite by spin-lattice relaxation time

    Directory of Open Access Journals (Sweden)

    Mariana Bruno

    2008-12-01

    Full Text Available Poly(3-hydroxybutyrate (PHB based on nanocomposites containing different amounts of a commercial organically modified clay (viscogel B7 were prepared employing solution intercalation method. Three solvents, such as: CHCl3, dimethylchloride (DMC and tetrahydrofuran (THF were used. The relationship among the processing conditions; molecular structure and intermolecular interaction, between both nanocomposite components, were investigated using a nuclear magnetic resonance (NMR, as a part of characterization methodology, which has been used by Tavares et al. It involves the hydrogen spin-lattice relaxation time, T1H, by solid state nuclear magnetic resonance, employing low field NMR. X ray diffraction was also employed because it is a conventional technique, generally used to obtain the first information on nanocomposite formation. Changes in PHB crystallinity were observed after the organophilic nanoclay had been incorporated in the polymer matrix. These changes, in the microstructure, were detected by the variation of hydrogen nuclear relaxation time values and by X ray, which showed an increase in the clay interlamelar space due to the intercalation of the polymer in the clay between lamellae. It was also observed, for both techniques, that the solvents affect directly the organization of the crystalline region, promoting a better intercalation, considering that they behave like a plasticizer.

  5. Magnetic resonance fingerprinting using echo-planar imaging: Joint quantification of T1 and T2∗ relaxation times.

    Science.gov (United States)

    Rieger, Benedikt; Zimmer, Fabian; Zapp, Jascha; Weingärtner, Sebastian; Schad, Lothar R

    2017-11-01

    To develop an implementation of the magnetic resonance fingerprinting (MRF) paradigm for quantitative imaging using echo-planar imaging (EPI) for simultaneous assessment of T 1 and T2∗. The proposed MRF method (MRF-EPI) is based on the acquisition of 160 gradient-spoiled EPI images with rapid, parallel-imaging accelerated, Cartesian readout and a measurement time of 10 s per slice. Contrast variation is induced using an initial inversion pulse, and varying the flip angles, echo times, and repetition times throughout the sequence. Joint quantification of T 1 and T2∗ is performed using dictionary matching with integrated B1+ correction. The quantification accuracy of the method was validated in phantom scans and in vivo in 6 healthy subjects. Joint T 1 and T2∗ parameter maps acquired with MRF-EPI in phantoms are in good agreement with reference measurements, showing deviations under 5% and 4% for T 1 and T2∗, respectively. In vivo baseline images were visually free of artifacts. In vivo relaxation times are in good agreement with gold-standard techniques (deviation T 1 : 4 ± 2%, T2∗: 4 ± 5%). The visual quality was comparable to the in vivo gold standard, despite substantially shortened scan times. The proposed MRF-EPI method provides fast and accurate T 1 and T2∗ quantification. This approach offers a rapid supplement to the non-Cartesian MRF portfolio, with potentially increased usability and robustness. Magn Reson Med 78:1724-1733, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  6. Magnetic switching, relaxation, and domain structure of a Co/Si(111) film

    Science.gov (United States)

    Baird, M. J.; Bland, J. A. C.; Gu, E.; Ives, A. J. R.; Schumann, F. O.; Hughes, H. P.

    1993-11-01

    We have used scanning magneto-optic Kerr effect (MOKE) microscopy to investigate the magnetic relaxation of a polycrystalline hcp 125 Å Co/Si(111) film with planar uniaxial anisotropy, on time scales between 10 and 2400 s and with a spatial resolution of 15 μm. In a static magnetic field slightly less than the coercive field and applied along the easy axis direction, domains develop and the magnetization reversal proceeds via displacements of 180° domain walls. Microscopic images of this metastable state allow the 180° domains to be identified by calibration of the MOKE signal with respect to that for the saturated magnetization states. The 180° reversed domains are observed to grow in the direction of the field in the form of narrow fingers, extending via short Barkhausen jumps, randomly spaced in time over the entire time-scale range investigated, with typical distances between pinning sites of the order of microns. This reversal behavior is qualitatively similar to that reported for Au/Co perpendicular anisotropy films a few monolayers thick.

  7. Role of Magnetic Exchange Interactions in the Magnetization Relaxation of {3d-4f} Single-Molecule Magnets: A Theoretical Perspective.

    Science.gov (United States)

    Singh, Saurabh Kumar; Beg, Mohammad Faizan; Rajaraman, Gopalan

    2016-01-11

    Combined density functional and ab initio calculations are performed on two isomorphous tetranuclear {Ni3 (III) Ln(III) } star-type complexes [Ln=Gd (1), Dy (2)] to shed light on the mechanism of magnetic exchange in 1 and the origin of the slow magnetization relaxation in complex 2. DFT calculations correctly reproduce the sign and magnitude of the J values compared to the experiments for complex 1. Acute ∢Ni-O-Gd bond angles present in 1 instigate a significant interaction between the 4fxyz orbital of the Gd(III) ion and 3d${{_{x{^{2}}- y{^{2}}}}}$ orbital of the Ni(II) ions, leading to rare and strong antiferromagnetic Ni⋅⋅⋅Gd interactions. Calculations reveal the presence of a strong next-nearest-neighbour Ni⋅⋅⋅Ni antiferromagnetic interaction in complex 1 leading to spin frustration behavior. CASSCF+RASSI-SO calculations performed on complex 2 suggest that the octahedral environment around the Dy(III) ion is neither strong enough to stabilize the mJ |±15/2〉 as the ground state nor able to achieve a large ground-state-first-excited-state gap. The ground-state Kramers doublet for the Dy(III) ion is found to be the mJ |±13/2〉 state with a significant transverse anisotropy, leading to very strong quantum tunneling of magnetization (QTM). Using the POLY_ANISO program, we have extracted the JNiDy interaction as -1.45 cm(-1) . The strong Ni⋅⋅⋅Dy and next-nearest-neighbour Ni⋅⋅⋅Ni interactions are found to quench the QTM to a certain extent, resulting in zero-field SMM behavior for complex 2. The absence of any ac signals at zero field for the structurally similar [Dy(AlMe4 )3 ] highlights the importance of both the Ni⋅⋅⋅Dy and the Ni⋅⋅⋅Ni interactions in the magnetization relaxation of complex 2. To the best of our knowledge, this is the first time that the roles of both the Ni⋅⋅⋅Dy and Ni⋅⋅⋅Ni interactions in magnetization relaxation of a {3d-4f} molecular magnet have been established. © 2016

  8. Intrinsic spin-relaxation induced negative tunnel magnetoresistance in a single-molecule magnet

    Science.gov (United States)

    Xie, Haiqing; Wang, Qiang; Xue, Hai-Bin; Jiao, HuJun; Liang, J.-Q.

    2013-06-01

    We investigate theoretically the effects of intrinsic spin-relaxation on the spin-dependent transport through a single-molecule magnet (SMM), which is weakly coupled to ferromagnetic leads. The tunnel magnetoresistance (TMR) is obtained by means of the rate-equation approach including not only the sequential but also the cotunneling processes. It is shown that the TMR is strongly suppressed by the fast spin-relaxation in the sequential region and can vary from a large positive to slight negative value in the cotunneling region. Moreover, with an external magnetic field along the easy-axis of SMM, a large negative TMR is found when the relaxation strength increases. Finally, in the high bias voltage limit the TMR for the negative bias is slightly larger than its characteristic value of the sequential region; however, it can become negative for the positive bias caused by the fast spin-relaxation.

  9. Optimal Configuration for Relaxation Times Estimation in Complex Spin Echo Imaging

    Directory of Open Access Journals (Sweden)

    Fabio Baselice

    2014-01-01

    Full Text Available Many pathologies can be identified by evaluating differences raised in the physical parameters of involved tissues. In a Magnetic Resonance Imaging (MRI framework, spin-lattice T1 and spin-spin T2 relaxation time parameters play a major role in such an identification. In this manuscript, a theoretical study related to the evaluation of the achievable performances in the estimation of relaxation times in MRI is proposed. After a discussion about the considered acquisition model, an analysis on the ideal imaging acquisition parameters in the case of spin echo sequences, i.e., echo and repetition times, is conducted. In particular, the aim of the manuscript consists in providing an empirical rule for optimal imaging parameter identification with respect to the tissues under investigation. Theoretical results are validated on different datasets in order to show the effectiveness of the presented study and of the proposed methodology.

  10. Universal relaxation times for electron and nucleon gases

    OpenAIRE

    Pelc, M.; Marciak-Kozlowska, J.; Kozlowski, M.

    2007-01-01

    In this paper we calculate the universal relaxation times for electron and nucleon fermionic gases. We argue that the universal relaxation time tau(i) is equal tau(i)=h/m square v(i) where v(i)=alpha(i)c and alpha(1)=0.15 for nucleon gas and alpha(2)=1/137 for electron gas, c=light velocity. With the universal relaxation time we formulate the thermal Proca equation for fermionic gases. Key words: universal relaxation time, thermal universal Proca equation.

  11. Time-resolved optically-detected magnetic resonance of II-VI diluted-magnetic-semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, V.Yu.; Karczewski, G. [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland); Godlewski, M. [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland); Dept. Mathem. and Natural Sci. College of Sci., Card. S. Wyszynski Univ., Warsaw (Poland); Yakovlev, D.R. [Experimental Physics 2, University of Dortmund, 44221 Dortmund (Germany); A. F. Ioffe Physico-Technical Institute, 194017 St. Petersburg (Russian Federation); Ryabchenko, S.M. [Institute of Physics NAS Ukraine, 03028 Kiev (Ukraine); Waag, A. [Institute of Semiconductor Technology, Braunschweig Technical University, 38106 Braunschweig (Germany)

    2007-01-15

    Time-resolved optically-detected magnetic resonance (ODMR) technique was used to study spin dynamics of Mn{sup 2+} ions in (Zn,Mn)Se- and (Cd,Mn)Te-based diluted magnetic semiconductor quantum wells. Times of spin-lattice relaxation have been measured directly from a dynamical shift of exciton luminescence lines after a pulsed impact of 60 GHz microwave radiation. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Scaling of transverse nuclear magnetic relaxation due to magnetic nanoparticle aggregation

    International Nuclear Information System (INIS)

    Brown, Keith A.; Vassiliou, Christophoros C.; Issadore, David; Berezovsky, Jesse; Cima, Michael J.; Westervelt, R.M.

    2010-01-01

    The aggregation of superparamagnetic iron oxide (SPIO) nanoparticles decreases the transverse nuclear magnetic resonance (NMR) relaxation time T 2 CP of adjacent water molecules measured by a Carr-Purcell-Meiboom-Gill (CPMG) pulse-echo sequence. This effect is commonly used to measure the concentrations of a variety of small molecules. We perform extensive Monte Carlo simulations of water diffusing around SPIO nanoparticle aggregates to determine the relationship between T 2 CP and details of the aggregate. We find that in the motional averaging regime T 2 CP scales as a power law with the number N of nanoparticles in an aggregate. The specific scaling is dependent on the fractal dimension d of the aggregates. We find T 2 CP ∝Ν -0.44 for aggregates with d=2.2, a value typical of diffusion limited aggregation. We also find that in two-nanoparticle systems, T 2 CP is strongly dependent on the orientation of the two nanoparticles relative to the external magnetic field, which implies that it may be possible to sense the orientation of a two-nanoparticle aggregate. To optimize the sensitivity of SPIO nanoparticle sensors, we propose that it is best to have aggregates with few nanoparticles, close together, measured with long pulse-echo times.

  13. Relaxation-based viscosity mapping for magnetic particle imaging

    Science.gov (United States)

    Utkur, M.; Muslu, Y.; Saritas, E. U.

    2017-05-01

    Magnetic particle imaging (MPI) has been shown to provide remarkable contrast for imaging applications such as angiography, stem cell tracking, and cancer imaging. Recently, there is growing interest in the functional imaging capabilities of MPI, where ‘color MPI’ techniques have explored separating different nanoparticles, which could potentially be used to distinguish nanoparticles in different states or environments. Viscosity mapping is a promising functional imaging application for MPI, as increased viscosity levels in vivo have been associated with numerous diseases such as hypertension, atherosclerosis, and cancer. In this work, we propose a viscosity mapping technique for MPI through the estimation of the relaxation time constant of the nanoparticles. Importantly, the proposed time constant estimation scheme does not require any prior information regarding the nanoparticles. We validate this method with extensive experiments in an in-house magnetic particle spectroscopy (MPS) setup at four different frequencies (between 250 Hz and 10.8 kHz) and at three different field strengths (between 5 mT and 15 mT) for viscosities ranging between 0.89 mPa · s-15.33 mPa · s. Our results demonstrate the viscosity mapping ability of MPI in the biologically relevant viscosity range.

  14. Experimental investigations of relaxation times of gel electrolytes during polymerization by MR methods

    Czech Academy of Sciences Publication Activity Database

    Kořínek, Radim; Vondrák, J.; Bartušek, Karel; Sedlaříková, M.

    2013-01-01

    Roč. 17, č. 8 (2013), s. 2109-2114 ISSN 1432-8488 R&D Projects: GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Gel electrolyte * Relaxation times * Polarization * Nuclear magnetic resonance Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.234, year: 2013

  15. Functional behavior of the anomalous magnetic relaxation observed in melt-textured YBa{sub 2}Cu{sub 3}O{sub 7-δ} samples showing the paramagnetic Meissner effect

    Energy Technology Data Exchange (ETDEWEB)

    Dias, F.T., E-mail: fabio.dias@ufpel.edu.br [Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, 96010-900, Pelotas, Rio Grande do Sul (Brazil); Vieira, V.N.; Garcia, E.L. [Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, 96010-900, Pelotas, Rio Grande do Sul (Brazil); Wolff-Fabris, F.; Kampert, E. [Dresden High Magnetic Field Laboratory, Helmholtz-Zentrum Dresden-Rossendorf, 01314, Dresden (Germany); Gouvêa, C.P. [National Institute of Metrology, Quality and Technology (Inmetro), Material Metrology Division, 25250-020, Duque de Caxias, Rio de Janeiro (Brazil); Schaf, J. [Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Rio Grande do Sul (Brazil); Obradors, X.; Puig, T. [Institut de Ciència de Materials de Barcelona, CSIC, Universitat Autònoma de Barcelona, 08193, Bellaterra (Spain); Roa, J.J. [Departamento de Ciencia de Materiales e Ingeniería Metalúrgica, Universitat Politècnica de Catalunya, 08028, Barcelona (Spain)

    2016-10-15

    Highlights: • Paramagnetic Meissner effect observed up to 5T in FCC and FCW measurements. • Time effects evidenced by irreversibilities between FCC and FCW measurements. • Strong time effects causing an anomalous paramagnetic relaxation. • Paramagnetic relaxation governed by different flux dynamics in different intervals. • An interpretative analysis to identify the flux dynamics in the relaxation process. - Abstract: We have studied the functional behavior of the field-cooled (FC) magnetic relaxation observed in melt-textured YBa{sub 2}Cu{sub 3}O{sub 7-δ} (Y123) samples with 30 wt% of Y{sub 2}Ba{sub 1}Cu{sub 1}O{sub 5} (Y211) phase, in order to investigate anomalous paramagnetic moments observed during the experiments. FC magnetic relaxation experiments were performed under controlled conditions, such as cooling rate and temperature. Magnetic fields up to 5T were applied parallel to the ab plane and along the c-axis. Our results are associated with the paramagnetic Meissner effect (PME), characterized by positive moments during FC experiments, and related to the magnetic flux compression into the samples. After different attempts our experimental data could be adequately fitted by an exponential decay function with different relaxation times. We discuss our results suggesting the existence of different and preferential flux dynamics governing the anomalous FC paramagnetic relaxation in different time intervals. This work is one of the first attempts to interpret this controversial effect in a simple analysis of the pinning mechanisms and flux dynamics acting during the time evolution of the magnetic moment. However, the results may be useful to develop models to explain this interesting and still misunderstood feature of the paramagnetic Meissner effect.

  16. Variational formulation of relaxed and multi-region relaxed magnetohydrodynamics

    Science.gov (United States)

    Dewar, R. L.; Yoshida, Z.; Bhattacharjee, A.; Hudson, S. R.

    2015-12-01

    > Ideal magnetohydrodynamics (IMHD) is strongly constrained by an infinite number of microscopic constraints expressing mass, entropy and magnetic flux conservation in each infinitesimal fluid element, the latter preventing magnetic reconnection. By contrast, in the Taylor relaxation model for formation of macroscopically self-organized plasma equilibrium states, all these constraints are relaxed save for the global magnetic fluxes and helicity. A Lagrangian variational principle is presented that leads to a new, fully dynamical, relaxed magnetohydrodynamics (RxMHD), such that all static solutions are Taylor states but also allows state with flow. By postulating that some long-lived macroscopic current sheets can act as barriers to relaxation, separating the plasma into multiple relaxation regions, a further generalization, multi-region relaxed magnetohydrodynamics (MRxMHD) is developed.

  17. Estimation of magnetic relaxation property for CVD processed YBCO-coated conductors

    International Nuclear Information System (INIS)

    Takahashi, Y.; Kiuchi, M.; Otabe, E.S.; Matsushita, T.; Shikimachi, K.; Watanabe, T.; Kashima, N.; Nagaya, S.

    2010-01-01

    Ion Beam Assist Deposition/Chemical Vapor Deposition(IBAD/CVD)-processed YBCO-coated conductors with high critical current density J c at high magnetic fields are expected to be applied to superconducting equipments such as superconducting magnetic energy storage (SMES). For application to superconducting magnet in SMES one of the most important properties for superconductors is the relaxation property of superconducting current. In this paper, the relaxation property is investigated for IBAD/CVD-processed YBCO-coated conductors of the superconducting layer in the range of 0.18-0.90 μm. This property can be quantitatively characterized by the apparent pinning potential, U 0 *. It is found that U 0 * takes a smaller value due to the two-dimensional pinning mechanism at high magnetic fields for conductor with thinner superconducting layer. Although U 0 * decreases with increasing thickness at low magnetic fields at 20 K, it increases at high magnetic fields. The results are theoretically explained by the model of the flux creep and flow based on the dimensionality of flux pinning. Scaling analysis is examined for the dependence of U 0 * on the magnetic field, temperature and the layer thickness.

  18. Duchenne muscular dystrophy carriers. Proton spin-lattice relaxation times of skeletal muscles on magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, K.; Nakano, I. (Shimoshizu National Hospital, Chiba (Japan). Dept. of Neurology); Fukuda, N.; Ikehira, H.; Tateno, Y. (National Inst. of Radiological Sciences, Chiba (Japan). Div. of Clinical Research); Aoki, Y. (National Inst. of Radiological Sciences, Chiba (Japan))

    1989-11-01

    By means of magnetic resonance imaging (MRI), the proton spin-lattice relaxation times (T1 values) of the skeletal muscles were measured in Duchenne muscular dystrophy (DMD) carriers and normal controls. The bound water fraction (BWF) was calculated from the T1 values obtained, according to the fast proton diffusion model. In the DMD carriers, T1 values of the gluteus maximus and quadriceps femoris muscles were significantly higher, and BWFs of these muscles were significantly lower than in normal control. Degenerative muscular changes accompanied by interstitial edema were presumed responsible for this abnormality. No correlation was observed between the muscle T1 and serum creatine kinase values. The present study showed that MRI could be a useful method for studying the dynamic state of water in both normal and pathological skeletal muscles. Its possible utility for DMD carrier detection was discussed briefly. (orig.).

  19. Relaxation properties in classical diamagnetism

    Science.gov (United States)

    Carati, A.; Benfenati, F.; Galgani, L.

    2011-06-01

    It is an old result of Bohr that, according to classical statistical mechanics, at equilibrium a system of electrons in a static magnetic field presents no magnetization. Thus a magnetization can occur only in an out of equilibrium state, such as that produced through the Foucault currents when a magnetic field is switched on. It was suggested by Bohr that, after the establishment of such a nonequilibrium state, the system of electrons would quickly relax back to equilibrium. In the present paper, we study numerically the relaxation to equilibrium in a modified Bohr model, which is mathematically equivalent to a billiard with obstacles, immersed in a magnetic field that is adiabatically switched on. We show that it is not guaranteed that equilibrium is attained within the typical time scales of microscopic dynamics. Depending on the values of the parameters, one has a relaxation either to equilibrium or to a diamagnetic (presumably metastable) state. The analogy with the relaxation properties in the Fermi Pasta Ulam problem is also pointed out.

  20. Magnetic resonance imaging of the bone marrow in patients with acute leukemia during and after chemotherapy. Changes in T1 relaxation

    DEFF Research Database (Denmark)

    Jensen, K E; Grundtvig Sørensen, P; Thomsen, C

    1990-01-01

    Twenty-seven patients with acute leukemia were examined at the time of diagnosis with MR imaging and in vivo T1 relaxation time measurements of the hemopoietic bone marrow. A 1.5 T whole body magnetic resonance scanner was used. Twenty of the patients had follow-up examinations in relation...... to chemotherapy. Bone marrow biopsies from the posterior iliac crest were obtained within a short time interval of all MR examinations. At the time of diagnosis, T1 relaxation times were increased significantly in all the leukemic patients, compared with 24 age-matched controls. A decrease in T1 relaxation time......, also showed prolongation of T1 relaxation time in relation to leukemic relapse. The results indicate that changes observed in T1 relaxation times of the hemopoietic bone marrow in patients with acute leukemia reflect changes in disease activity, and, that serial measurements of T1 values may provide...

  1. Determination of the magnetic impurities contribution to the nuclear relaxation in metals

    International Nuclear Information System (INIS)

    Cohen, A.M.

    1982-01-01

    The renormalization group techniques developed by Wilson for the Kondo problem are applied, for the first time, to the calculation of nuclear spin relaxation rates in dilute magnetic alloys. A procedure that calculates the longitudinal relaxation time T 1 over the entire temperature range 0 B T 1 is derived; for distances R between the impurity and the nucleus large compared to the inverse Fermi momentum H f , the result is identical to Korringa's expression for the nuclear spin relaxation rate in the pure metal. For smaller k F R, T 1 increases and becomes infinite as k F R→0. A numerical approach, capable of calculating T 1 at finite temperatures, is presented and tested by calculating T 1 for T→0; the numerical results are in excellent agreement with the analytical expression discussed above. Only for k F R→ infinity do the results for T 1 at T=0 agree with those found by Roshen and Saam, who recently analysed this problem in the light of Nozieres's Fermi liquid theory. The reasons for the discrepancy for finite k F R are discussed. (author) [pt

  2. Nuclear magnetic relaxation by the dipolar EMOR mechanism: General theory with applications to two-spin systems.

    Science.gov (United States)

    Chang, Zhiwei; Halle, Bertil

    2016-02-28

    In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. We have embarked on a systematic program to develop, from the stochastic Liouville equation, a general and rigorous theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole coupling strengths, and Larmor frequencies. Here, we present a general theoretical framework applicable to spin systems of arbitrary size with symmetric or asymmetric exchange. So far, the dipolar EMOR theory is only available for a two-spin system with symmetric exchange. Asymmetric exchange, when the spin system is fragmented by the exchange, introduces new and unexpected phenomena. Notably, the anisotropic dipole couplings of non-exchanging spins break the axial symmetry in spin Liouville space, thereby opening up new relaxation channels in the locally anisotropic sites, including longitudinal-transverse cross relaxation. Such cross-mode relaxation operates only at low fields; at higher fields it becomes nonsecular, leading to an unusual inverted relaxation dispersion that splits the extreme-narrowing regime into two sub-regimes. The general dipolar EMOR theory is illustrated here by a detailed analysis of the asymmetric two-spin case, for which we present relaxation dispersion profiles over a wide range of conditions as well as analytical results for integral relaxation rates and time-dependent spin modes in the zero-field and motional-narrowing regimes. The general theoretical framework presented here will enable a quantitative analysis of frequency-dependent water-proton longitudinal relaxation in model systems with immobilized macromolecules and, ultimately, will provide a rigorous link between relaxation-based magnetic resonance image contrast and molecular parameters.

  3. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: longitudinal relaxation dispersion for spin I = 1.

    Science.gov (United States)

    Nilsson, Tomas; Halle, Bertil

    2012-08-07

    The frequency dependence of the longitudinal relaxation rate, known as the magnetic relaxation dispersion (MRD), can provide a frequency-resolved characterization of molecular motions in complex biological and colloidal systems on time scales ranging from 1 ns to 100 μs. The conformational dynamics of immobilized proteins and other biopolymers can thus be probed in vitro or in vivo by exploiting internal water molecules or labile hydrogens that exchange with a dominant bulk water pool. Numerous water (1)H and (2)H MRD studies of such systems have been reported, but the widely different theoretical models currently used to analyze the MRD data have resulted in divergent views of the underlying molecular motions. We have argued that the essential mechanism responsible for the main dispersion is the exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings when internal water molecules or labile hydrogens escape from orientationally confining macromolecular sites. In the EMOR model, the exchange process is thus not just a means of mixing spin populations but it is also the direct cause of spin relaxation. Although the EMOR theory has been used in several studies to analyze water (2)H MRD data from immobilized biopolymers, the fully developed theory has not been described. Here, we present a comprehensive account of a generalized version of the EMOR theory for spin I = 1 nuclides like (2)H. As compared to a previously described version of the EMOR theory, the present version incorporates three generalizations that are all essential in applications to experimental data: (i) a biaxial (residual) electric field gradient tensor, (ii) direct and indirect effects of internal motions, and (iii) multiple sites with different exchange rates. In addition, we describe and assess different approximations to the exact EMOR theory that are useful in various regimes. In particular, we consider the experimentally

  4. Relationship between aging and T1 relaxation time in deep gray matter: A voxel-based analysis.

    Science.gov (United States)

    Okubo, Gosuke; Okada, Tomohisa; Yamamoto, Akira; Fushimi, Yasutaka; Okada, Tsutomu; Murata, Katsutoshi; Togashi, Kaori

    2017-09-01

    To investigate age-related changes in T 1 relaxation time in deep gray matter structures in healthy volunteers using magnetization-prepared 2 rapid acquisition gradient echoes (MP2RAGE). In all, 70 healthy volunteers (aged 20-76, mean age 42.6 years) were scanned at 3T magnetic resonance imaging (MRI). A MP2RAGE sequence was employed to quantify T 1 relaxation times. After the spatial normalization of T 1 maps with the diffeomorphic anatomical registration using the exponentiated Lie algebra algorithm, voxel-based regression analysis was conducted. In addition, linear and quadratic regression analyses of regions of interest (ROIs) were also performed. With aging, voxel-based analysis (VBA) revealed significant T 1 value decreases in the ventral-inferior putamen, nucleus accumbens, and amygdala, whereas T 1 values significantly increased in the thalamus and white matter as well (P time vary by location in deep gray matter. 2 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:724-731. © 2017 International Society for Magnetic Resonance in Medicine.

  5. Abrupt relaxation in high-spin molecules

    International Nuclear Information System (INIS)

    Chang, C.-R.; Cheng, T.C.

    2000-01-01

    Mean-field model suggests that the rate of resonant quantum tunneling in high-spin molecules is not only field-dependent but also time-dependent. The relaxation-assisted resonant tunneling in high-spin molecules produces an abrupt magnetization change during relaxation. When the applied field is very close to the resonant field, a time-dependent interaction field gradually shifts the energies of different collective spin states, and magnetization tunneling is observed as two energies of the spin states coincide

  6. Evaluation of biexponential relaxation processes by magnetic resonance imaging. A phantom study

    DEFF Research Database (Denmark)

    Kjaer, L; Thomsen, C; Larsson, H B

    1988-01-01

    Despite the complexity of biologic tissues, a monoexponential behaviour is usually assumed when estimating relaxation processes in vivo by magnetic resonance imaging (MRI). This study was designed to evaluate the potential of biexponential decomposition of T1 and T2 relaxation curves obtained at 1...... echoes. Applying biexponential curve analysis, a significant deviation from a monoexponential behaviour was recognized at a ratio of corresponding relaxation rates of about 3 and 2, estimating T1 and T2 relaxation, respectively (p less than 0.01, F-test). Requiring an SD less than or equal to 10 per cent...

  7. Superparamagnetic relaxation in alpha-Fe particles

    DEFF Research Database (Denmark)

    Bødker, Franz; Mørup, Steen; Pedersen, Michael Stanley

    1998-01-01

    The superparamagnetic relaxation time of carbon-supported alpha-Fe particles with an average size of 3.0 Mm has been studied over a large temperature range by the use of Mossbauer spectroscopy combined with AC and DC magnetization measurements. It is found that the relaxation time varies...

  8. Measurement of short transverse relaxation times by pseudo-echo nutation experiments

    Science.gov (United States)

    Ferrari, Maude; Moyne, Christian; Canet, Daniel

    2018-07-01

    Very short NMR transverse relaxation times may be difficult to measure by conventional methods. Nutation experiments constitute an alternative approach. Nutation is, in the rotating frame, the equivalent of precession in the laboratory frame. It consists in monitoring the rotation of magnetization around the radio-frequency (rf) field when on-resonance conditions are fulfilled. Depending on the amplitude of the rf field, nutation may be sensitive to the two relaxation rates R1 and R2. A full theoretical development has been worked out for demonstrating how these two relaxation rates could be deduced from a simple nutation experiment, noticing however that inhomogeneity of the rf field may lead to erroneous results. This has led us to devise new experiments which are the equivalent of echo techniques in the rotating frame (pseudo spin-echo nutation experiment and pseudo gradient-echo experiment). Full equations of motion have been derived. Although complicated, they indicate that the sum of the two relaxation rates can be obtained very accurately and not altered by rf field inhomogeneity. This implies however an appropriate data processing accounting for the oscillations which are superposed to the echo decays and, anyway, theoretically predicted. A series of experiments has been carried out for different values of the rf field amplitude on samples of water doped with a paramagnetic compound at different concentrations. Pragmatically, as R1 can be easily measured by conventional methods, its value is entered in the data processing algorithm which then returns exclusively the value of the transverse relaxation time. Very consistent results are obtained that way.

  9. Earth's magnetic field enabled scalar coupling relaxation of 13C nuclei bound to fast-relaxing quadrupolar 14N in amide groups.

    Science.gov (United States)

    Chiavazza, Enrico; Kubala, Eugen; Gringeri, Concetta V; Düwel, Stephan; Durst, Markus; Schulte, Rolf F; Menzel, Marion I

    2013-02-01

    Scalar coupling relaxation, which is usually only associated with closely resonant nuclei (e.g., (79)Br-(13)C), can be a very effective relaxation mechanism. While working on hyperpolarized [5-(13)C]glutamine, fast liquid-state polarization decay during transfer to the MRI scanner was observed. This behavior could hypothetically be explained by substantial T(1) shortening due to a scalar coupling contribution (type II) to the relaxation caused by the fast-relaxing quadrupolar (14)N adjacent to the (13)C nucleus in the amide group. This contribution is only effective in low magnetic fields (i.e., less than 800 μT) and prevents the use of molecules bearing the (13)C-amide group as hyperpolarized MRS/MRI probes. In the present work, this hypothesis is explored both theoretically and experimentally. The results show that high hyperpolarization levels can be retained using either a (15)N-labeled amide or by applying a magnetic field during transfer of the sample from the polarizer to the MRI scanner. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Chip-Based Measurements of Brownian Relaxation of Magnetic Beads Using a Planar Hall Effect Magnetic Field Sensor

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Dalslet, Bjarke Thomas; Snakenborg, Detlef

    2010-01-01

    using only the self-field arising from the bias current applied to the sensors as excitation field. We present measurements on a suspension of magnetic beads with a nominal diameter of 250 nm vs. temperature and find that the observations are consistent with the Cole-Cole model for Brownian relaxation...... with a constant hydrodynamic bead diameter when the temperature dependence of the viscosity of water is taken into account. These measurements demonstrate the feasibility of performing measurements of the Brownian relaxation response in a lab-on-a-chip system and constitute the first step towards an integrated...... biosensor based on the detection of the dynamic response of magnetic beads....

  11. Restricted lithium ion dynamics in PEO-based block copolymer electrolytes measured by high-field nuclear magnetic resonance relaxation

    Science.gov (United States)

    Huynh, Tan Vu; Messinger, Robert J.; Sarou-Kanian, Vincent; Fayon, Franck; Bouchet, Renaud; Deschamps, Michaël

    2017-10-01

    The intrinsic ionic conductivity of polyethylene oxide (PEO)-based block copolymer electrolytes is often assumed to be identical to the conductivity of the PEO homopolymer. Here, we use high-field 7Li nuclear magnetic resonance (NMR) relaxation and pulsed-field-gradient (PFG) NMR diffusion measurements to probe lithium ion dynamics over nanosecond and millisecond time scales in PEO and polystyrene (PS)-b-PEO-b-PS electrolytes containing the lithium salt LiTFSI. Variable-temperature longitudinal (T1) and transverse (T2) 7Li NMR relaxation rates were acquired at three magnetic field strengths and quantitatively analyzed for the first time at such fields, enabling us to distinguish two characteristic time scales that describe fluctuations of the 7Li nuclear electric quadrupolar interaction. Fast lithium motions [up to O (ns)] are essentially identical between the two polymer electrolytes, including sub-nanosecond vibrations and local fluctuations of the coordination polyhedra between lithium and nearby oxygen atoms. However, lithium dynamics over longer time scales [O (10 ns) and greater] are slower in the block copolymer compared to the homopolymer, as manifested experimentally by their different transverse 7Li NMR relaxation rates. Restricted dynamics and altered thermodynamic behavior of PEO chains anchored near PS domains likely explain these results.

  12. Relaxation Time of High-Density Amorphous Ice

    Science.gov (United States)

    Handle, Philip H.; Seidl, Markus; Loerting, Thomas

    2012-06-01

    Amorphous water plays a fundamental role in astrophysics, cryoelectron microscopy, hydration of matter, and our understanding of anomalous liquid water properties. Yet, the characteristics of the relaxation processes taking place in high-density amorphous ice (HDA) are unknown. We here reveal that the relaxation processes in HDA at 110-135 K at 0.1-0.2 GPa are of collective and global nature, resembling the alpha relaxation in glassy material. Measured relaxation times suggest liquid-like relaxation characteristics in the vicinity of the crystallization temperature at 145 K. By carefully relaxing pressurized HDA for several hours at 135 K, we produce a state that is closer to the ideal glass state than all HDA states discussed so far in literature.

  13. Nuclear magnetic relaxation in aqueous praseodymium and europium solutions

    International Nuclear Information System (INIS)

    Lopez, J.L.; Diaz, D.

    1991-01-01

    A general theory for the relaxation of the nuclear spin in paramagnetic complexes where the electronic spin is within a slow-movement regime was presented by Benetis et al. and applied to d-group elements (Ni 2+ , Co 2+ ). This paper show the possibility to apply such formalism to f-group elements and it was developed for S=3(Eu 3+ ). A group of magnitudes characterizing the microstructure and dynamics of these solutions is reported with the approximations used. The dispersion of the nuclear magnetic relaxation (NMRD) for the proton of the variable field was also assessed which had a similar behaviour to what was experimentally reported

  14. Electron spin relaxation can enhance the performance of a cryptochrome-based magnetic compass sensor

    DEFF Research Database (Denmark)

    Kattnig, Daniel R; Sowa, Jakub K; Solov'yov, Ilia A

    2016-01-01

    thaliana cryptochrome 1 were obtained from molecular dynamics (MD) simulations and used to calculate the spin relaxation caused by modulation of the exchange and dipolar interactions. We find that intermediate spin relaxation rates afford substantial enhancements in the sensitivity of the reaction yields....... Here we argue that certain spin relaxation mechanisms can enhance its performance. We focus on the flavin-tryptophan radical pair in cryptochrome, currently the only candidate magnetoreceptor molecule. Correlation functions for fluctuations in the distance between the two radicals in Arabidopsis...... to an Earth-strength magnetic field. Supported by calculations using toy radical pair models, we argue that these enhancements could be consistent with the molecular dynamics and magnetic interactions in avian cryptochromes....

  15. Magnetic relaxation in sintered Tl2Ca2Ba2Cu3O/sub x/ and YBa2Cu3O/sub 7-//sub x/ superconductors

    International Nuclear Information System (INIS)

    McHenry, M.E.; Maley, M.P.; Venturini, E.L.; Ginley, D.L.

    1989-01-01

    We have characterized the time dependence of the zero-field-cooled magnetization for sintered pellets of the Tl 2:2:2:3 and Y 1:2:3 superconductors. The magnetic relaxation in both cases is large and exhibits a logarithmic time dependence. The temperature dependence of the relaxation rate A = dM/d ln(t) has been characterized for both materials for applied fields of 1,2,3, and 10 kG. The relaxation rate for the Y 1:2:3 sintered material is comparable to that observed in similar sintered materials and in single crystals. The Tl 2:2:2:3 material exhibits similar relaxation spectra with a weaker temperature dependence at a given field consistent with stronger pinning in this material. The temperature dependence of the relaxation is analyzed using a phenomenological relaxation model to yield an average pinning energy (0.33 eV at H = 1 kG) and its field dependence

  16. Nuclear magnetic relaxation and origins of RMN signals from GdAl2

    International Nuclear Information System (INIS)

    Santos Oliveira Junior, I. dos.

    1988-12-01

    The intermetallic compound GdAl 2 crystallizes in the cubic Laves phase C15. It is a simple ferromagnet below 176K. The easy direction of magnetization in this compound is such that the Al ions are distributed among two magnetically inequivalent sites. The pulsed NMR technique was used to study the origin of the signals from these two sites and the nuclear magnetic relaxation. (author) [pt

  17. Anisotropy barrier reduction in fast-relaxing Mn12 single-molecule magnets

    Science.gov (United States)

    Hill, Stephen; Murugesu, Muralee; Christou, George

    2009-11-01

    An angle-swept high-frequency electron paramagnetic resonance (HFEPR) technique is described that facilitates efficient in situ alignment of single-crystal samples containing low-symmetry magnetic species such as single-molecule magnets (SMMs). This cavity-based technique involves recording HFEPR spectra at fixed frequency and field, while sweeping the applied field orientation. The method is applied to the study of a low-symmetry Jahn-Teller variant of the extensively studied spin S=10 Mn12 SMMs (e.g., Mn12 -acetate). The low-symmetry complex also exhibits SMM behavior, but with a significantly reduced effective barrier to magnetization reversal (Ueff≈43K) and, hence, faster relaxation at low temperature in comparison with the higher-symmetry species. Mn12 complexes that crystallize in lower symmetry structures exhibit a tendency for one or more of the Jahn-Teller axes associated with the MnIII atoms to be abnormally oriented, which is believed to be the cause of the faster relaxation. An extensive multi-high-frequency angle-swept and field-swept electron paramagnetic resonance study of [Mn12O12(O2CCH2But)16(H2O)4]ṡCH2Cl2ṡMeNO2 is presented in order to examine the influence of the abnormally oriented Jahn-Teller axis on the effective barrier to magnetization reversal. The reduction in the axial anisotropy, D , is found to be insufficient to account for the nearly 40% reduction in Ueff . However, the reduced symmetry of the Mn12 core gives rise to a very significant second-order transverse (rhombic) zero-field-splitting anisotropy, E≈D/6 . This, in turn, causes a significant mixing of spin projection states well below the top of the classical anisotropy barrier. Thus, magnetic quantum tunneling is the dominant factor contributing to the effective barrier reduction in fast relaxing Mn12 SMMs.

  18. Nuclear magnetic resonance study of diffusion and relaxation in hydrating white cement pastes of different water content

    International Nuclear Information System (INIS)

    Nestle, Nikolaus; Galvosas, Petrik; Geier, Oliver; Zimmermann, Christian; Dakkouri, Marwan; Karger, Jorg

    2001-01-01

    While the nuclear spin relaxation time changes in hydrating cement materials have been widely studied by various groups during the last 20 years, data on the self-diffusion behavior of the pore water during hydration of a cement paste are much scarcer. Taking advantage of improved spectrometer hardware for pulsed field gradient diffusometry and a specialized pulse sequence which is designed to compensate the detrimental effects of inner magnetic field gradients in the sample we have studied the water self-diffusion behavior in pastes prepared from white cement at various water/cement ratios. For the same mixtures, studies of the transverse spin relaxation behavior were also conducted. A comparison of the results from both techniques shows that the diffusion coefficient starts to decrease only much later than the relaxation times for all pastes studied. [copyright] 2001 American Institute of Physics

  19. Magnetization and 13C NMR spin-lattice relaxation of nanodiamond powder

    Energy Technology Data Exchange (ETDEWEB)

    Levin, E.M.; Fang, X.W.; Bud' ko, S.L.; Straszheim, W.E.; McCallum, R.W.; Schmidt-Rohr, K.

    2008-02-15

    The bulk magnetization at temperatures of 1.8-400 K and in magnetic fields up to 70 kOe, the ambient temperature {sup 13}C NMR spin-lattice relaxation, T{sub 1,c}, and the elemental composition of three nanodiamond powder samples have been studied. The total magnetization of nanodiamond can be explained in terms of contributions from (1) the diamagnetic effect of carbon, (2) the paramagnetic effect of unpaired electrons present in nanodiamond grains, and (3) ferromagnetic-like and (4) superparamagnetic contributions from Fe-containing particles detected in spatially resolved energy-dispersive spectroscopy. Contributions (1) and (2) are intrinsic to nanodiamond, while contributions (3) and (4) arise from impurities naturally present in detonation nanodiamond samples. {sup 13}C NMR T{sub 1,c} relaxation would be unaffected by the presence of the ferromagnetic particles with the bulk magnetization of {approx} 0.01 emu/g at 300 K. Thus, a reduction of T{sub 1,c} by 3 orders of magnitude compared to natural and synthetic microdiamonds confirms the presence of unpaired electrons in the nanodiamond grains. The spin concentration in nanodiamond powder corresponds to {approx}30 unpaired electrons per {approx}4.6 nm diameter nanodiamond grain.

  20. 13C NMR relaxation times of hepatic glycogen in vitro and in vivo

    International Nuclear Information System (INIS)

    Zang, Lihsin; Laughlin, M.R.; Rothman, D.L.; Shulman, R.G.

    1990-01-01

    The field dependence of relaxation times of the C-1 carbon of glycogen was studied in vitro by natural-abundance 13 C NMR. T 1 is strongly field dependent, while T 2 does not change significantly with magnetic field. T 1 and T 2 were also measured for rat hepatic glycogen enriched with [1- 13 C]glucose in vivo at 4.7 T, and similar relaxation times were observed as those obtained in vitro at the same field. The in vitro values of T 1 were 65 ± 5 ms at 2.1 T, 142 ± 10 ms at 4.7 T, and 300 ± 10 ms at 8.4 T, while T 2 values were 6.7 ± 1 ms at 2.1 T, 9.4 ± 1 ms at 4.7 T, and 9.5 ± 1 ms at 8.4 T. Calculations based on the rigid-rotor nearest-neighbor model give qualitatively good agreement with the T 1 field dependence with a best-fit correlation time of 6.4 x 10 -9 s, which is significantly smaller than τ M , the estimated overall correlation time for the glycogen molecule (ca. 10 -5 s). A more accurate fit of T 1 data using a modified Lipari and Szabo approach indicates that internal fast motions dominate the T 1 relaxation in glycogen. On the other hand, the T 2 relaxation is dominated by the overall correlation time τ M while the internal motions are almost but not completely unrestricted

  1. Investigation of proton spin relaxation in water with dispersed silicon nanoparticles for potential magnetic resonance imaging applications

    Science.gov (United States)

    Kargina, Yu. V.; Gongalsky, M. B.; Perepukhov, A. M.; Gippius, A. A.; Minnekhanov, A. A.; Zvereva, E. A.; Maximychev, A. V.; Timoshenko, V. Yu.

    2018-03-01

    Porous and nonporous silicon (Si) nanoparticles (NPs) prepared by ball-milling of electrochemically etched porous Si layers and crystalline Si wafers were studied as potential agents for enhancement of the proton spin relaxation in aqueous media. While nonporous Si NPs did not significantly influence the spin relaxation, the porous ones resulted in strong shortening of the transverse relaxation times. In order to investigate an effect of the electron spin density in porous Si NPs on the proton spin relaxation, we use thermal annealing of the NPs in vacuum or in air. The transverse relaxation rate of about 0.5 l/(g s) was achieved for microporous Si NPs, which were thermally annealing in vacuum to obtain the electron spin density of the order of 1017 g-1. The transverse relaxation rate was found to be almost proportional to the concentration of porous Si NPs in the range from 0.1 to 20 g/l. The obtained results are discussed in view of possible biomedical applications of Si NPs as contrast agents for magnetic resonance imaging.

  2. Study of magnetic properties and relaxation in amorphous Fe73.9Nb3.1Cu0.9Si13.2B8.9 thin films produced by ion beam sputtering

    International Nuclear Information System (INIS)

    Celegato, F.; Coiesson, M.; Magni, A.; Tiberto, P.; Vinai, F.; Kane, S. N.; Modak, S. S.; Gupta, A.; Sharma, P.

    2007-01-01

    Amorphous Fe 73.9 Nb 3.1 Cu 0.9 Si 13.2 B 8.9 thin films have been produced by ion beam sputtering with two different beam energies (500 and 1000 eV). Magnetic measurements indicate that the samples display a uniaxial magnetic anisotropy, especially for samples prepared with the lower beam energy. Magnetization relaxation has been measured on both films with an alternating gradient force magnetometer and magneto-optical Kerr effect. Magnetization relaxation occurs on time scales of tens of seconds and can be described with a single stretched exponential function. Relaxation intensity turns out to be higher when measured along the easy magnetization axis

  3. Immersed Boundary-Lattice Boltzmann Method Using Two Relaxation Times

    Directory of Open Access Journals (Sweden)

    Kosuke Hayashi

    2012-06-01

    Full Text Available An immersed boundary-lattice Boltzmann method (IB-LBM using a two-relaxation time model (TRT is proposed. The collision operator in the lattice Boltzmann equation is modeled using two relaxation times. One of them is used to set the fluid viscosity and the other is for numerical stability and accuracy. A direct-forcing method is utilized for treatment of immersed boundary. A multi-direct forcing method is also implemented to precisely satisfy the boundary conditions at the immersed boundary. Circular Couette flows between a stationary cylinder and a rotating cylinder are simulated for validation of the proposed method. The method is also validated through simulations of circular and spherical falling particles. Effects of the functional forms of the direct-forcing term and the smoothed-delta function, which interpolates the fluid velocity to the immersed boundary and distributes the forcing term to fixed Eulerian grid points, are also examined. As a result, the following conclusions are obtained: (1 the proposed method does not cause non-physical velocity distribution in circular Couette flows even at high relaxation times, whereas the single-relaxation time (SRT model causes a large non-physical velocity distortion at a high relaxation time, (2 the multi-direct forcing reduces the errors in the velocity profile of a circular Couette flow at a high relaxation time, (3 the two-point delta function is better than the four-point delta function at low relaxation times, but worse at high relaxation times, (4 the functional form of the direct-forcing term does not affect predictions, and (5 circular and spherical particles falling in liquids are well predicted by using the proposed method both for two-dimensional and three-dimensional cases.

  4. In vivo measurements of the T1 relaxation processes in the bone marrow in patients with myelodysplastic syndrome. A magnetic resonance imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, K.E.; Nielsen, H.; Thomsen, C.; Soerensen, P.G.; Karle, H.; Christoffersen, P.; Henriksen, O. (Hvidovre Hospital, Copenhagen (Denmark). Dept. of Magnetic Resonance; Hvidovre Hospital, Copenhagen (Denmark). Dept. of Hematology; Hvidovre Hospital, Copenhagen (Denmark). Dept. of Pathology)

    Nine patients with myelodysplastic syndrome (MDS) were examined with magnetic resonance imaging and in vivo T1 relaxation time measurements of the vertebral bone marrow in a 1.5 tesla whole body scanner. Two patients underwent transformation to acute myeloid leukemia and were evaluated at follow-up examinations. At the time of diagnosis the T1 relaxation times of the vertebral bone marrow were significantly prolonged compared with normal values. The T1 relaxation times of the vertebral bone marrow in patients with MDS showed significantly lower values compared with patients with acute leukemia and did not differ from patients with polycythemia vera. (orig.).

  5. Nuclear magnetic relaxation in picolines solutions in carbon tetrachloride

    International Nuclear Information System (INIS)

    Jurga, J.; Pajak, Z.; Jurga, K.; Jurga, S.

    1973-01-01

    Spin-lattice relaxation times of the ring and CH 3 group have been measured in order to establish the temperature dependence of the longitudinal relaxation times for picolins in carbon tetrachloride solutions. The information concerning the intramolecular contribution to the relaxation times have been obtained. The high resolution NPR spectrometer operating at 25 MHz has been used. The measurements have been performed in the temperature range from -60degC to 80degC. The experimental results are compared to the predictions given by the Nora Hill and Debye models and it has been found that the Nora Hill model fits the experimental data better than the Debye model. (S.B.)

  6. Musculoskeletal MRI at 3.0 T and 7.0 T: a comparison of relaxation times and image contrast.

    Science.gov (United States)

    Jordan, Caroline D; Saranathan, Manojkumar; Bangerter, Neal K; Hargreaves, Brian A; Gold, Garry E

    2013-05-01

    The purpose of this study was to measure and compare the relaxation times of musculoskeletal tissues at 3.0 T and 7.0 T, and to use these measurements to select appropriate parameters for musculoskeletal protocols at 7.0 T. We measured the T₁ and T₂ relaxation times of cartilage, muscle, synovial fluid, bone marrow and subcutaneous fat at both 3.0 T and 7.0 T in the knees of five healthy volunteers. The T₁ relaxation times were measured using a spin-echo inversion recovery sequence with six inversion times. The T₂ relaxation times were measured using a spin-echo sequence with seven echo times. The accuracy of both the T₁ and T₂ measurement techniques was verified in phantoms at both magnetic field strengths. We used the measured relaxation times to help design 7.0 T musculoskeletal protocols that preserve the favorable contrast characteristics of our 3.0 T protocols, while achieving significantly higher resolution at higher SNR efficiency. The T₁ relaxation times in all tissues at 7.0 T were consistently higher than those measured at 3.0 T, while the T₂ relaxation times at 7.0 T were consistently lower than those measured at 3.0 T. The measured relaxation times were used to help develop high resolution 7.0 T protocols that had similar fluid-to-cartilage contrast to that of the standard clinical 3.0 T protocols for the following sequences: proton-density-weighted fast spin-echo (FSE), T₂-weighted FSE, and 3D-FSE-Cube. The T₁ and T₂ changes were within the expected ranges. Parameters for musculoskeletal protocols at 7.0 T can be optimized based on these values, yielding improved resolution in musculoskeletal imaging with similar contrast to that of standard 3.0 T clinical protocols. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Musculoskeletal MRI at 3.0 T and 7.0 T: A comparison of relaxation times and image contrast

    International Nuclear Information System (INIS)

    Jordan, Caroline D.; Saranathan, Manojkumar; Bangerter, Neal K.; Hargreaves, Brian A.; Gold, Garry E.

    2013-01-01

    Objective: The purpose of this study was to measure and compare the relaxation times of musculoskeletal tissues at 3.0 T and 7.0 T, and to use these measurements to select appropriate parameters for musculoskeletal protocols at 7.0 T. Materials and methods: We measured the T 1 and T 2 relaxation times of cartilage, muscle, synovial fluid, bone marrow and subcutaneous fat at both 3.0 T and 7.0 T in the knees of five healthy volunteers. The T 1 relaxation times were measured using a spin-echo inversion recovery sequence with six inversion times. The T 2 relaxation times were measured using a spin-echo sequence with seven echo times. The accuracy of both the T 1 and T 2 measurement techniques was verified in phantoms at both magnetic field strengths. We used the measured relaxation times to help design 7.0 T musculoskeletal protocols that preserve the favorable contrast characteristics of our 3.0 T protocols, while achieving significantly higher resolution at higher SNR efficiency. Results: The T 1 relaxation times in all tissues at 7.0 T were consistently higher than those measured at 3.0 T, while the T 2 relaxation times at 7.0 T were consistently lower than those measured at 3.0 T. The measured relaxation times were used to help develop high resolution 7.0 T protocols that had similar fluid-to-cartilage contrast to that of the standard clinical 3.0 T protocols for the following sequences: proton-density-weighted fast spin-echo (FSE), T 2 -weighted FSE, and 3D-FSE-Cube. Conclusion: The T 1 and T 2 changes were within the expected ranges. Parameters for musculoskeletal protocols at 7.0 T can be optimized based on these values, yielding improved resolution in musculoskeletal imaging with similar contrast to that of standard 3.0 T clinical protocols

  8. Magnetic relaxation induced by transverse flux shaking in MgB{sub 2} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Luzuriaga, J; Nieva, G; Serquis, A; Serrano, G [Centro Atomico Bariloche, CNEA, Instituto Balseiro, UNC (Argentina); BadIa-Majos, A [Departamento de Fisica de la Materia Condensada-ICMA, Universidad de Zaragoza-CSIC (Spain); Giordano, J L [Departamento de Ciencias de la IngenierIa, Universidad de Talca (Chile); Lopez, C [Departamento de Matematicas, Universidad de Alcala de Henares (Spain)], E-mail: luzuriag@cab.cnea.gov.ar

    2009-01-15

    We report on measurements and numerical simulations of the behavior of MgB{sub 2} superconductors when magnetic field components are applied along mutually perpendicular directions. By closely matching the geometry in simulations and measurements, full quantitative agreement is found. The critical state theory and a single phenomenological law, i.e. the field dependence of the critical current density J{sub c}(B), are sufficient for a full quantitative description of the measurements. These were performed in thick strips of carbon nanotube doped MgB{sub 2} samples. Magnetization was measured in two orthogonal directions using a SQUID magnetometer. Magnetic relaxation effects induced by the application of an oscillatory perpendicular field were observed and simulated numerically. The measurements confirm the numerical predictions, that two relaxation regimes appear, depending on the amplitude of the applied magnetic field. The overall agreement constitutes a convincing validation of the critical state model and the numerical procedures used.

  9. Turbulent Magnetic Relaxation in Pulsar Wind Nebulae

    Science.gov (United States)

    Zrake, Jonathan; Arons, Jonathan

    2017-09-01

    We present a model for magnetic energy dissipation in a pulsar wind nebula. A better understanding of this process is required to assess the likelihood that certain astrophysical transients may be powered by the spin-down of a “millisecond magnetar.” Examples include superluminous supernovae, gamma-ray bursts, and anticipated electromagnetic counterparts to gravitational wave detections of binary neutron star coalescence. Our model leverages recent progress in the theory of turbulent magnetic relaxation to specify a dissipative closure of the stationary magnetohydrodynamic (MHD) wind equations, yielding predictions of the magnetic energy dissipation rate throughout the nebula. Synchrotron losses are self-consistently treated. To demonstrate the model’s efficacy, we show that it can reproduce many features of the Crab Nebula, including its expansion speed, radiative efficiency, peak photon energy, and mean magnetic field strength. Unlike ideal MHD models of the Crab (which lead to the so-called σ-problem), our model accounts for the transition from ultra to weakly magnetized plasma flow and for the associated heating of relativistic electrons. We discuss how the predicted heating rates may be utilized to improve upon models of particle transport and acceleration in pulsar wind nebulae. We also discuss implications for the Crab Nebula’s γ-ray flares, and point out potential modifications to models of astrophysical transients invoking the spin-down of a millisecond magnetar.

  10. Turbulent Magnetic Relaxation in Pulsar Wind Nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Zrake, Jonathan [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Arons, Jonathan [Astronomy Department and Theoretical Astrophysics Center, University of California, Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States)

    2017-09-20

    We present a model for magnetic energy dissipation in a pulsar wind nebula. A better understanding of this process is required to assess the likelihood that certain astrophysical transients may be powered by the spin-down of a “millisecond magnetar.” Examples include superluminous supernovae, gamma-ray bursts, and anticipated electromagnetic counterparts to gravitational wave detections of binary neutron star coalescence. Our model leverages recent progress in the theory of turbulent magnetic relaxation to specify a dissipative closure of the stationary magnetohydrodynamic (MHD) wind equations, yielding predictions of the magnetic energy dissipation rate throughout the nebula. Synchrotron losses are self-consistently treated. To demonstrate the model’s efficacy, we show that it can reproduce many features of the Crab Nebula, including its expansion speed, radiative efficiency, peak photon energy, and mean magnetic field strength. Unlike ideal MHD models of the Crab (which lead to the so-called σ -problem), our model accounts for the transition from ultra to weakly magnetized plasma flow and for the associated heating of relativistic electrons. We discuss how the predicted heating rates may be utilized to improve upon models of particle transport and acceleration in pulsar wind nebulae. We also discuss implications for the Crab Nebula’s γ -ray flares, and point out potential modifications to models of astrophysical transients invoking the spin-down of a millisecond magnetar.

  11. Effects of Liver Fibrosis Progression on Tissue Relaxation Times in Different Mouse Models Assessed by Ultrahigh Field Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Andreas Müller

    2017-01-01

    Full Text Available Recently, clinical studies demonstrated that magnetic resonance relaxometry with determination of relaxation times T1 and T2⁎ may aid in staging and management of liver fibrosis in patients suffering from viral hepatitis and steatohepatitis. In the present study we investigated T1 and T2⁎ in different models of liver fibrosis to compare alternate pathophysiologies in their effects on relaxation times and to further develop noninvasive quantification methods of liver fibrosis. MRI was performed with a fast spin echo sequence for measurement of T1 and a multigradient echo sequence for determination of T2⁎. Toxic liver fibrosis was induced by injections of carbon tetrachloride (1.4 mL CCl4 per kg bodyweight and week, for 3 or 6 weeks in BALB/cJ mice. Chronic sclerosing cholangitis was mimicked using the ATP-binding cassette transporter B4 knockout (Abcb4 -/- mouse model. Untreated BALB/cJ mice served as controls. To assess hepatic fibrosis, we ascertained collagen contents and fibrosis scores after Sirius red staining. T1 and T2⁎ correlate differently to disease severity and etiology of liver fibrosis. T2⁎ shows significant decrease correlating with fibrosis in CCl4 treated animals, while demonstrating significant increase with disease severity in Abcb4 -/- mice. Measurements of T1 and T2⁎ may therefore facilitate discrimination between different stages and causes of liver fibrosis.

  12. Control of magnetic relaxation by electric-field-induced ferroelectric phase transition and inhomogeneous domain switching

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Tianxiang; Emori, Satoru; Wang, Xinjun; Hu, Zhongqiang; Xie, Li; Gao, Yuan; Lin, Hwaider; Sun, Nian, E-mail: n.sun@neu.edu [Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States); Peng, Bin; Liu, Ming, E-mail: mingliu@mail.xjtu.edu.cn [Electronic Materials Research Laboratory, Xi' an Jiaotong University, Xi' an 710049 (China); Jiao, Jie; Luo, Haosu [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800 (China); Budil, David [Department of Chemistry, Northeastern University, Boston, Massachusetts 02115 (United States); Jones, John G.; Howe, Brandon M.; Brown, Gail J. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States)

    2016-01-04

    Electric-field modulation of magnetism in strain-mediated multiferroic heterostructures is considered a promising scheme for enabling memory and magnetic microwave devices with ultralow power consumption. However, it is not well understood how electric-field-induced strain influences magnetic relaxation, an important physical process for device applications. Here, we investigate resonant magnetization dynamics in ferromagnet/ferroelectric multiferroic heterostructures, FeGaB/PMN-PT and NiFe/PMN-PT, in two distinct strain states provided by electric-field-induced ferroelectric phase transition. The strain not only modifies magnetic anisotropy but also magnetic relaxation. In FeGaB/PMN-PT, we observe a nearly two-fold change in intrinsic Gilbert damping by electric field, which is attributed to strain-induced tuning of spin-orbit coupling. By contrast, a small but measurable change in extrinsic linewidth broadening is attributed to inhomogeneous ferroelastic domain switching during the phase transition of the PMN-PT substrate.

  13. T1 nuclear magnetic relaxation dispersion of hyperpolarized sodium and cesium hydrogencarbonate-13 C.

    Science.gov (United States)

    Martínez-Santiesteban, Francisco M; Dang, Thien Phuoc; Lim, Heeseung; Chen, Albert P; Scholl, Timothy J

    2017-09-01

    In vivo pH mapping in tissue using hyperpolarized hydrogencarbonate- 13 C has been proposed as a method to study tumor growth and treatment and other pathological conditions related to pH changes. The finite spin-lattice relaxation times (T 1 ) of hyperpolarized media are a significant limiting factor for in vivo imaging. Relaxation times can be measured at standard magnetic fields (1.5 T, 3.0 T etc.), but no such data are available at low fields, where T 1 values can be significantly shorter. This information is required to determine the potential loss of polarization as the agent is dispensed and transported from the polarizer to the MRI scanner. The purpose of this study is to measure T 1 dispersion from low to clinical magnetic fields (0.4 mT to 3.0 T) of different hyperpolarized hydrogencarbonate formulations previously proposed in the literature for in vivo pH measurements. 13 C-enriched cesium and sodium hydrogencarbonate preparations were hyperpolarized using dynamic nuclear polarization, and the T 1 values of different samples were measured at different magnetic field strengths using a fast field-cycling relaxometer and a 3.0 T clinical MRI system. The effects of deuterium oxide as a dissolution medium for sodium hydrogencarbonate were also analyzed. This study finds that the cesium formulation has slightly shorter T 1 values compared with the sodium preparation. However, the higher solubility of cesium hydrogencarbonate- 13 C means it can be polarized at greater concentration, using less trityl radical than sodium hydrogencarbonate- 13 C. This study also establishes that the preparation and handling of sodium hydrogencarbonate formulations in relation to cesium hydrogencarbonate is more difficult, due to the higher viscosity and lower achievable concentrations, and that deuterium oxide significantly increases the T 1 of sodium hydrogencarbonate solutions. Finally, this work also investigates the influence of pH on the spin-lattice relaxation of cesium

  14. Relaxation rates of low-field gas-phase ^129Xe storage cells

    Science.gov (United States)

    Limes, Mark; Saam, Brian

    2010-10-01

    A study of longitudinal nuclear relaxation rates T1 of ^129Xe and Xe-N2 mixtures in a magnetic field of 3.8 mT is presented. In this regime, intrinsic spin relaxation is dominated by the intramolecular spin-rotation interaction due to persistent xenon dimers, a mechanism that can be quelled by introducing large amounts of N2 into the storage cell. Extrinsic spin relaxation is dominated by the wall-relaxation rate, which is the primary quantity of interest for the various low-field storage cells and coatings that we have tested. Previous group work has shown that extremely long gas-phase relaxation times T1 can be obtained, but only at large magnetic fields and low xenon densities. The current work is motivated by the practical benefits of retaining hyperpolarized ^129Xe for extended periods of time in a small magnetic field.

  15. In-situ measurement of magnetic field gradient in a magnetic shield by a spin-exchange relaxation-free magnetometer

    International Nuclear Information System (INIS)

    Fang Jian-Cheng; Wang Tao; Li Yang; Cai Hong-Wei; Zhang Hong

    2015-01-01

    A method of measuring in-situ magnetic field gradient is proposed in this paper. The magnetic shield is widely used in the atomic magnetometer. However, there is magnetic field gradient in the magnetic shield, which would lead to additional gradient broadening. It is impossible to use an ex-situ magnetometer to measure magnetic field gradient in the region of a cell, whose length of side is several centimeters. The method demonstrated in this paper can realize the in-situ measurement of the magnetic field gradient inside the cell, which is significant for the spin relaxation study. The magnetic field gradients along the longitudinal axis of the magnetic shield are measured by a spin-exchange relaxation-free (SERF) magnetometer by adding a magnetic field modulation in the probe beam’s direction. The transmissivity of the cell for the probe beam is always inhomogeneous along the pump beam direction, and the method proposed in this paper is independent of the intensity of the probe beam, which means that the method is independent of the cell’s transmissivity. This feature makes the method more practical experimentally. Moreover, the AC-Stark shift can seriously degrade and affect the precision of the magnetic field gradient measurement. The AC-Stark shift is suppressed by locking the pump beam to the resonance of potassium’s D1 line. Furthermore, the residual magnetic fields are measured with σ + - and σ – -polarized pump beams, which can further suppress the effect of the AC-Stark shift. The method of measuring in-situ magnetic field gradient has achieved a magnetic field gradient precision of better than 30 pT/mm. (paper)

  16. Lattice Distortion Mediated Paramagnetic Relaxation in High-Spin High-Symmetry Molecular Magnets

    Science.gov (United States)

    Garg, Anupam

    1998-08-01

    Field-dependent maxima in the relaxation rate of the magnetic molecules Mn12-Ac and Fe8-tacn have commonly been ascribed to some resonant tunneling phenomena. We argue instead that the relaxation is purely due to phonons. The rate maxima arise because of a Jahn-Teller-like distortion caused by the coupling of phonons to degenerate Zeeman levels of the molecule at the top of the barrier. The binding energy of the distorted intermediate states lowers the barrier height and increases the relaxation rate. A nonperturbative calculation of this effect is carried out for a model system. An approximate result for the field variation near a maximum is found to agree reasonably with experiment.

  17. Relaxation in the XX quantum chain

    International Nuclear Information System (INIS)

    Platini, Thierry; Karevski, Dragi

    2007-01-01

    We present the results obtained on the magnetization relaxation properties of an XX quantum chain in a transverse magnetic field. We first consider an initial thermal kink-like state where half of the chain is initially thermalized at a very high temperature T b while the remaining half, called the system, is put at a lower temperature T s . From this initial state, we derive analytically the Green function associated with the dynamical behaviour of the transverse magnetization. Depending on the strength of the magnetic field and on the temperature of the system, different regimes are obtained for the magnetic relaxation. In particular, with an initial droplet-like state, that is a cold subsystem of the finite size in contact at both ends with an infinite temperature environment, we derive analytically the behaviour of the time-dependent system magnetization

  18. Ultrashort Echo Time Magnetic Resonance Imaging of the Lung Using a High-Relaxivity T1 Blood-Pool Contrast Agent

    Directory of Open Access Journals (Sweden)

    Joris Tchouala Nofiele

    2014-10-01

    Full Text Available The lung remains one of the most challenging organs to image using magnetic resonance imaging (MRI due to intrinsic rapid signal decay. However, unlike conventional modalities such as computed tomography, MRI does not involve radiation and can provide functional and morphologic information on a regional basis. Here we demonstrate proof of concept for a new MRI approach to achieve substantial gains in a signal to noise ratio (SNR in the lung parenchyma: contrast-enhanced ultrashort echo time (UTE imaging following intravenous injection of a high-relaxivity blood-pool manganese porphyrin T1 contrast agent. The new contrast agent increased relative enhancement of the lung parenchyma by over 10-fold compared to gadolinium diethylene triamine pentaacetic acid (Gd-DTPA, and the use of UTE boosted the SNR by a factor of 4 over conventional T1-weighted gradient echo acquisitions. The new agent also maintains steady enhancement over at least 60 minutes, thus providing a long time window for obtaining high-resolution, high-quality images and the ability to measure a number of physiologic parameters.

  19. Local spin dynamics at low temperature in the slowly relaxing molecular chain [Dy(hfac)3{NIT(C6H4OPh)}]: A μ+ spin relaxation study

    Science.gov (United States)

    Arosio, Paolo; Corti, Maurizio; Mariani, Manuel; Orsini, Francesco; Bogani, Lapo; Caneschi, Andrea; Lago, Jorge; Lascialfari, Alessandro

    2015-05-01

    The spin dynamics of the molecular magnetic chain [Dy(hfac)3{NIT(C6H4OPh)}] were investigated by means of the Muon Spin Relaxation (μ+SR) technique. This system consists of a magnetic lattice of alternating Dy(III) ions and radical spins, and exhibits single-chain-magnet behavior. The magnetic properties of [Dy(hfac)3{NIT(C6H4OPh)}] have been studied by measuring the magnetization vs. temperature at different applied magnetic fields (H = 5, 3500, and 16500 Oe) and by performing μ+SR experiments vs. temperature in zero field and in a longitudinal applied magnetic field H = 3500 Oe. The muon asymmetry P(t) was fitted by the sum of three components, two stretched-exponential decays with fast and intermediate relaxation times, and a third slow exponential decay. The temperature dependence of the spin dynamics has been determined by analyzing the muon longitudinal relaxation rate λinterm(T), associated with the intermediate relaxing component. The experimental λinterm(T) data were fitted with a corrected phenomenological Bloembergen-Purcell-Pound law by using a distribution of thermally activated correlation times, which average to τ = τ0 exp(Δ/kBT), corresponding to a distribution of energy barriers Δ. The correlation times can be associated with the spin freezing that occurs when the system condenses in the ground state.

  20. Local spin dynamics at low temperature in the slowly relaxing molecular chain [Dy(hfac)3(NIT(C6H4OPh))]: A μ+ spin relaxation study

    International Nuclear Information System (INIS)

    Arosio, Paolo; Orsini, Francesco; Corti, Maurizio; Mariani, Manuel; Bogani, Lapo; Caneschi, Andrea; Lago, Jorge; Lascialfari, Alessandro

    2015-01-01

    The spin dynamics of the molecular magnetic chain [Dy(hfac) 3 (NIT(C 6 H 4 OPh))] were investigated by means of the Muon Spin Relaxation (μ + SR) technique. This system consists of a magnetic lattice of alternating Dy(III) ions and radical spins, and exhibits single-chain-magnet behavior. The magnetic properties of [Dy(hfac) 3 (NIT(C 6 H 4 OPh))] have been studied by measuring the magnetization vs. temperature at different applied magnetic fields (H = 5, 3500, and 16500 Oe) and by performing μ + SR experiments vs. temperature in zero field and in a longitudinal applied magnetic field H = 3500 Oe. The muon asymmetry P(t) was fitted by the sum of three components, two stretched-exponential decays with fast and intermediate relaxation times, and a third slow exponential decay. The temperature dependence of the spin dynamics has been determined by analyzing the muon longitudinal relaxation rate λ interm (T), associated with the intermediate relaxing component. The experimental λ interm (T) data were fitted with a corrected phenomenological Bloembergen-Purcell-Pound law by using a distribution of thermally activated correlation times, which average to τ = τ 0 exp(Δ/k B T), corresponding to a distribution of energy barriers Δ. The correlation times can be associated with the spin freezing that occurs when the system condenses in the ground state

  1. Macroscopic theory of the relaxation of collective excitations in disordered and noncollinear magnets

    International Nuclear Information System (INIS)

    Bar'yakhtar, V.G.; Belykh, V.G.; Soboleva, T.K.

    1989-01-01

    In the framework of the general hydrodynamic approach a method is proposed for describing the relaxation of low-frequency magnetic excitations in disordered spin systems and many-sublattice magnets. Expressions are obtained in terms of Goldstone fields for the dissipation function both in the exchange approximation and when allowance is made for relativistic interactions

  2. The effect of polymer coatings on proton transverse relaxivities of aqueous suspensions of magnetic nanoparticles

    International Nuclear Information System (INIS)

    Carroll, Matthew R J; House, Michael J; Woodward, Robert C; St Pierre, Timothy G; Huffstetler, Phillip P; Miles, William C; Goff, Jonathon D; Davis, Richey M; Riffle, Judy S

    2011-01-01

    Iron oxide magnetic nanoparticles are good candidates for magnetic resonance imaging (MRI) contrast agents due to their high magnetic susceptibilities. Here we investigate 19 polyether-coated magnetite nanoparticle systems comprising three series. All systems were synthesized from the same batch of magnetite nanoparticles. A different polyether was used for each series. Each series comprised systems with systematically varied polyether loadings per particle. A highly significant (p < 0.0001) linear correlation (r = 0.956) was found between the proton relaxivity and the intensity-weighted average diameter measured by dynamic light scattering in the 19 particle systems studied. The intensity-weighted average diameter measured by dynamic light scattering is sensitive to small number fractions of larger particles/aggregates. We conclude that the primary effect leading to differences in proton relaxivity between systems arises from the small degree of aggregation within the samples, which appears to be determined by the nature of the polymer and, for one system, the degree of polymer loading of the particles. For the polyether coatings used in this study, any changes in relaxivity from differences in water exclusion or diffusion rates caused by the polymer are minor in comparison with the changes in relaxivity resulting from variations in the degree of aggregation.

  3. The effect of polymer coatings on proton transverse relaxivities of aqueous suspensions of magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Matthew R J; House, Michael J; Woodward, Robert C; St Pierre, Timothy G [School of Physics, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009 (Australia); Huffstetler, Phillip P; Miles, William C; Goff, Jonathon D; Davis, Richey M; Riffle, Judy S, E-mail: stpierre@physics.uwa.edu.au [Macromolecules and Interfaces Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States)

    2011-08-12

    Iron oxide magnetic nanoparticles are good candidates for magnetic resonance imaging (MRI) contrast agents due to their high magnetic susceptibilities. Here we investigate 19 polyether-coated magnetite nanoparticle systems comprising three series. All systems were synthesized from the same batch of magnetite nanoparticles. A different polyether was used for each series. Each series comprised systems with systematically varied polyether loadings per particle. A highly significant (p < 0.0001) linear correlation (r = 0.956) was found between the proton relaxivity and the intensity-weighted average diameter measured by dynamic light scattering in the 19 particle systems studied. The intensity-weighted average diameter measured by dynamic light scattering is sensitive to small number fractions of larger particles/aggregates. We conclude that the primary effect leading to differences in proton relaxivity between systems arises from the small degree of aggregation within the samples, which appears to be determined by the nature of the polymer and, for one system, the degree of polymer loading of the particles. For the polyether coatings used in this study, any changes in relaxivity from differences in water exclusion or diffusion rates caused by the polymer are minor in comparison with the changes in relaxivity resulting from variations in the degree of aggregation.

  4. Measurement of the relaxation rate of the magnetization in Mn12O12-acetate using proton NMR echo

    Science.gov (United States)

    Jang; Lascialfari; Borsa; Gatteschi

    2000-03-27

    We present a novel method to measure the relaxation rate W of the magnetization of Mn 12O (12)-acetate (Mn12) magnetic molecular cluster in its S = 10 ground state at low T. It is based on the observation of an exponential growth in time of the proton NMR signal during the thermal equilibration of the magnetization of the molecules. We can explain the novel effect with a simple model which relates the intensity of the proton echo signal to the microscopic reversal of the magnetization of each individual Mn12 molecule during the equilibration process. The method should find wide application in the study of magnetic molecular clusters in off-equilibrium conditions.

  5. Anisotropy of the nuclear magnetic relaxation times induced in solid 3He by modulation of the dipolar interactions

    International Nuclear Information System (INIS)

    Deville, G.

    1976-01-01

    Anisotropic nuclear relaxation times have been measured in solid 3 He samples grown at constant pressure, in the Larmor frequency range 1.5MHz-5MHz where the main relaxation mechanism is the modulation of the dipolar interaction by exchange or by motion of the vacancies. The second order calculation made by Harris for the exchange induced relaxation regime is extended to the regime where vacancy motion dominates. The theory is further refined by considering the fourth moment anisotropy effect on the spectral densities. This latter calculation yields a frequency dependent anisotropic contribution to T 1 which agrees qualitatively with the data, unlike the simpler results by Harris [fr

  6. A moving mesh method with variable relaxation time

    OpenAIRE

    Soheili, Ali Reza; Stockie, John M.

    2006-01-01

    We propose a moving mesh adaptive approach for solving time-dependent partial differential equations. The motion of spatial grid points is governed by a moving mesh PDE (MMPDE) in which a mesh relaxation time \\tau is employed as a regularization parameter. Previously reported results on MMPDEs have invariably employed a constant value of the parameter \\tau. We extend this standard approach by incorporating a variable relaxation time that is calculated adaptively alongside the solution in orde...

  7. A magnetic relaxation study on anisotropic reorientation in aqueous polyelectrolyte solutions

    International Nuclear Information System (INIS)

    Mulder, C.W.R.

    1984-01-01

    The present thesis proposes a study on anisotropic reorientation of aqueous polyelectrolyte solutions. In particular, it is directed to the question to what extent information may be obtained on anisotropic reorientation by nuclear magnetic relaxation experiments. The polymethacrylic acid/water system has been chosen as probe system. (Auth.)

  8. Relaxed and partially relaxed magnetic equilibria in tight-aspect-ratio tori

    International Nuclear Information System (INIS)

    Browning, P.K.; Clegg, J.R.; Duck, R.C.; Rusbridge, M.G.

    1993-01-01

    Force-free equilibrium magnetic fields in tight-aspect-ratio toroidal configurations are investigated. The study is mainly directed to modelling field configurations in the 'rodomak', a modification to the SPHEX gun-injected spheromak in which a current-carrying rod is inserted along the geometric axis. A family of analytical relaxed states (∇ x B = μB, μ constant) is presented for a torus of rectangular cross section, with boundary conditions allowing for flux embedded in the walls, representing the gun. Numerically calculated fields in SPHEX geometry, with μ profiles relevant to the driven phase of operation, are also given. The dependence of the field configurations and global quantities such as energy, helicity and toroidal current on the controlling parameters (gun flux, gun current and rod current) and geometry is discussed. (author)

  9. Metal-Organic Framework of Lanthanoid Dinuclear Clusters Undergoes Slow Magnetic Relaxation

    Directory of Open Access Journals (Sweden)

    Hikaru Iwami

    2017-01-01

    Full Text Available Lanthanoid metal-organic frameworks (Ln-MOFs can adopt a variety of new structures due to the large coordination numbers of Ln metal ions, and Ln-MOFs are expected to show new luminescence and magnetic properties due to the localized f electrons. In particular, some Ln metal ions, such as Dy(III and Tb(III ions, work as isolated quantum magnets when they have magnetic anisotropy. In this work, using 4,4′,4″-s-triazine-2,4,6-triyl-tribenzoic acid (H3TATB as a ligand, two new Ln-MOFs, [Dy(TATB(DMF2] (1 and [Tb(TATB(DMF2] (2, were obtained. The Ln-MOFs contain Ln dinuclear clusters as secondary building units, and 1 underwent slow magnetic relaxation similar to single-molecule magnets.

  10. Influence of AC external magnetic field on guidance force relaxation between HTS bulk and NdFeB guideway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Longcai [Applied Superconductivity Laboratory, P.O. Box 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)], E-mail: zhlcai2000@163.com; Wang Suyu; Wang Jiasu; Zheng Jun [Applied Superconductivity Laboratory, P.O. Box 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2007-12-01

    Superconducting maglev vehicle is one of the most promising applications of HTS bulks. In such a system, the HTS bulks are always exposed to time-varying external magnetic field, which is generated by the inhomogeneous surface magnetic field of the NdFeB guideway. So it is required to study whether the guidance force of the bulks is influenced by the inhomogeneity. In this paper, we studied the characteristics of the guidance force relaxation between the HTS bulk and the NdFeB guideway by an experiment in which AC external magnetic field generated by an electromagnet was used to simulate the time-varying external magnetic field caused by the inhomogeneity of the guideway. From the experiment results, it was found that the guidance force was decreased with the application of the AC external magnetic field, and the decay increased with the amplitude and was almost independent of the frequency.

  11. Spin-Spin Cross Relaxation in Single-Molecule Magnets

    Science.gov (United States)

    Wernsdorfer, W.; Bhaduri, S.; Tiron, R.; Hendrickson, D. N.; Christou, G.

    2002-10-01

    The one-body tunnel picture of single-molecule magnets (SMMs) is not always sufficient to explain the measured tunnel transitions. An improvement to the picture is proposed by including also two-body tunnel transitions such as spin-spin cross relaxation (SSCR) which are mediated by dipolar and weak superexchange interactions between molecules. A Mn4 SMM is used as a model system. At certain external fields, SSCRs lead to additional quantum resonances which show up in hysteresis loop measurements as well-defined steps. A simple model is used to explain quantitatively all observed transitions.

  12. Single-molecule magnetism in three related {Co(III)2Dy(III)2}-acetylacetonate complexes with multiple relaxation mechanisms.

    Science.gov (United States)

    Langley, Stuart K; Chilton, Nicholas F; Moubaraki, Boujemaa; Murray, Keith S

    2013-06-17

    Three new heterometallic complexes with formulas of [Dy(III)2Co(III)2(OMe)2(teaH)2(acac)4(NO3)2] (1), [Dy(III)2Co(III)2(OH)2(teaH)2(acac)4(NO3)2]·4H2O (2), and [Dy(III)2Co(III)2(OMe)2(mdea)2(acac)4(NO3)2] (3) were characterized by single-crystal X-ray diffraction and by dc and ac magnetic susceptibility measurements. All three complexes have an identical "butterfly"-type metallic core that consists of two Dy(III) ions occupying the "body" position and two diamagnetic low-spin Co(III) ions occupying the outer "wing-tips". Each complex displays single-molecule magnet (SMM) behavior in zero applied magnetic field, with thermally activated anisotropy barriers of 27, 28, and 38 K above 7.5 K for 1-3, respectively, as well as observing a temperature-independent mechanism of relaxation below 5 K for 1 and 2 and at 3 K for 3, indicating fast quantum tunneling of magnetization (QTM). A second, faster thermally activated relaxation mechanism may also be active under a zero applied dc field as derived from the Cole-Cole data. Interestingly, these complexes demonstrate further relaxation modes that are strongly dependent upon the application of a static dc magnetic field. Dilution experiments that were performed on 1, in the {Y(III)2Co(III)2} diamagnetic analog, show that the slow magnetic relaxation is of a single-ion origin, but it was found that the neighboring ion also plays an important role in the overall relaxation dynamics.

  13. Clusters of magnetic nanoparticles as contrast agents for MRI: effect of aggregation on transverse relaxivity

    Czech Academy of Sciences Publication Activity Database

    Dědourková, T.; Kaman, Ondřej; Veverka, Pavel; Koktan, Jakub; Veverka, Miroslav; Kuličková, Jarmila; Jirák, Zdeněk; Herynek, V.

    2015-01-01

    Roč. 51, č. 11 (2015), s. 5300804 ISSN 0018-9464 R&D Projects: GA ČR GA15-10088S; GA MPO FR-TI3/521 Institutional support: RVO:68378271 Keywords : contrast agents * magnetic resonance imaging * magnetic nanoparticles * manganites * transverse relaxivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.277, year: 2015

  14. Influence of Na doping on the magnetic relaxation processes of magnetite

    International Nuclear Information System (INIS)

    Torres, C.; Arias, A. Gonzalez; Hisatake, K.; Francisco, C. de; Hernandez-Gomez, P.; Kim, C.O.; Kim, D.J.

    2007-01-01

    The relaxation of the initial magnetic permeability was measured in polycrystalline Na-doped magnetite samples, with nominal composition Na x Fe 3- x O 4 (x ranging from 0 to 0.05), by means of the magnetic disaccommodation (DA) technique. We found that the increasing amount of Na ions modifies the DA spectra and a very different behaviour depending on the sintering atmosphere. These results were discussed in terms of the presence of Na ions in the magnetite lattice, giving rise to certain modifications in their neighbourhood

  15. Measurement of the Relaxation Rate of the Magnetization in Mn12O12 -Acetate Using Proton NMR Echo

    International Nuclear Information System (INIS)

    Jang, Z. H.; Lascialfari, A.; Borsa, F.; Gatteschi, D.

    2000-01-01

    We present a novel method to measure the relaxation rate W of the magnetization of Mn 12 O 12 -acetate (Mn12) magnetic molecular cluster in its S=10 ground state at low T . It is based on the observation of an exponential growth in time of the proton NMR signal during the thermal equilibration of the magnetization of the molecules. We can explain the novel effect with a simple model which relates the intensity of the proton echo signal to the microscopic reversal of the magnetization of each individual Mn12 molecule during the equilibration process. The method should find wide application in the study of magnetic molecular clusters in off-equilibrium conditions. (c) 2000 The American Physical Society

  16. The shear and bulk relaxation times from the general correlation functions

    Science.gov (United States)

    Czajka, Alina; Jeon, Sangyong

    2017-11-01

    In this paper we present two quantum field theoretical analyses on the shear and bulk relaxation times. First, we discuss how to find Kubo formulas for the shear and the bulk relaxation times. Next, we provide results on the shear viscosity relaxation time obtained within the diagrammatic approach for the massless λϕ4 theory.

  17. Estimation of T2 relaxation time of breast cancer: Correlation with clinical, imaging and pathological features

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Mirinae; Sohn, Yu Mee [Dept. of Radiology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul (Korea, Republic of); Ryu, Jung Kyu; Jahng, Geon Ho; Rhee, Sun Jung; Oh, Jang Hoon; Won, Kyu Yeoun [Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul (Korea, Republic of)

    2017-01-15

    The purpose of this study was to estimate the T2* relaxation time in breast cancer, and to evaluate the association between the T2* value with clinical-imaging-pathological features of breast cancer. Between January 2011 and July 2013, 107 consecutive women with 107 breast cancers underwent multi-echo T2*-weighted imaging on a 3T clinical magnetic resonance imaging system. The Student's t test and one-way analysis of variance were used to compare the T2* values of cancer for different groups, based on the clinical-imaging-pathological features. In addition, multiple linear regression analysis was performed to find independent predictive factors associated with the T2* values. Of the 107 breast cancers, 92 were invasive and 15 were ductal carcinoma in situ (DCIS). The mean T2* value of invasive cancers was significantly longer than that of DCIS (p = 0.029). Signal intensity on T2-weighted imaging (T2WI) and histologic grade of invasive breast cancers showed significant correlation with T2* relaxation time in univariate and multivariate analysis. Breast cancer groups with higher signal intensity on T2WI showed longer T2* relaxation time (p = 0.005). Cancer groups with higher histologic grade showed longer T2* relaxation time (p = 0.017). The T2* value is significantly longer in invasive cancer than in DCIS. In invasive cancers, T2* relaxation time is significantly longer in higher histologic grades and high signal intensity on T2WI. Based on these preliminary data, quantitative T2* mapping has the potential to be useful in the characterization of breast cancer.

  18. Quantum process tomography with informational incomplete data of two J-coupled heterogeneous spins relaxation in a time window much greater than T1

    Science.gov (United States)

    Maciel, Thiago O.; Vianna, Reinaldo O.; Sarthour, Roberto S.; Oliveira, Ivan S.

    2015-11-01

    We reconstruct the time dependent quantum map corresponding to the relaxation process of a two-spin system in liquid-state NMR at room temperature. By means of quantum tomography techniques that handle informational incomplete data, we show how to properly post-process and normalize the measurements data for the simulation of quantum information processing, overcoming the unknown number of molecules prepared in a non-equilibrium magnetization state (Nj) by an initial sequence of radiofrequency pulses. From the reconstructed quantum map, we infer both longitudinal (T1) and transversal (T2) relaxation times, and introduce the J-coupling relaxation times ({T}1J,{T}2J), which are relevant for quantum information processing simulations. We show that the map associated to the relaxation process cannot be assumed approximated unital and trace-preserving for times greater than {T}2J.

  19. Local spin dynamics at low temperature in the slowly relaxing molecular chain [Dy(hfac)3(NIT(C6H4OPh))]: A μ{sup +} spin relaxation study

    Energy Technology Data Exchange (ETDEWEB)

    Arosio, Paolo, E-mail: paolo.arosio@guest.unimi.it; Orsini, Francesco [Department of Physics, Università degli Studi di Milano, and INSTM, Milano (Italy); Corti, Maurizio [Department of Physics, Università degli Studi di Pavia and INSTM, Pavia (Italy); Mariani, Manuel [Department of Physics and Astronomy, Università degli Studi di Bologna, Bologna (Italy); Bogani, Lapo [Physikalisches Institut, Universität Stuttgart, Stuttgart (Germany); Caneschi, Andrea [INSTM and Department of Chemistry, University of Florence, Firenze (Italy); Lago, Jorge [Departamento de Quimica Inorganica, Universidad del Pais Vasco, Bilbao (Spain); Lascialfari, Alessandro [Department of Physics, Università degli Studi di Milano, and INSTM, Milano (Italy); Centro S3, Istituto Nanoscienze - CNR, Modena (Italy)

    2015-05-07

    The spin dynamics of the molecular magnetic chain [Dy(hfac){sub 3}(NIT(C{sub 6}H{sub 4}OPh))] were investigated by means of the Muon Spin Relaxation (μ{sup +}SR) technique. This system consists of a magnetic lattice of alternating Dy(III) ions and radical spins, and exhibits single-chain-magnet behavior. The magnetic properties of [Dy(hfac){sub 3}(NIT(C{sub 6}H{sub 4}OPh))] have been studied by measuring the magnetization vs. temperature at different applied magnetic fields (H = 5, 3500, and 16500 Oe) and by performing μ{sup +}SR experiments vs. temperature in zero field and in a longitudinal applied magnetic field H = 3500 Oe. The muon asymmetry P(t) was fitted by the sum of three components, two stretched-exponential decays with fast and intermediate relaxation times, and a third slow exponential decay. The temperature dependence of the spin dynamics has been determined by analyzing the muon longitudinal relaxation rate λ{sub interm}(T), associated with the intermediate relaxing component. The experimental λ{sub interm}(T) data were fitted with a corrected phenomenological Bloembergen-Purcell-Pound law by using a distribution of thermally activated correlation times, which average to τ = τ{sub 0} exp(Δ/k{sub B}T), corresponding to a distribution of energy barriers Δ. The correlation times can be associated with the spin freezing that occurs when the system condenses in the ground state.

  20. Hysteresis in magnetic materials: the role of structural disorder, thermal relaxation, and dynamic effects

    International Nuclear Information System (INIS)

    Bertotti, G.; Basso, V.; Beatrice, C.; LoBue, M.; Magni, A.; Tiberto, P.

    2001-01-01

    An overview is given of the present understanding of hysteresis phenomena in magnetic materials. The problem is addressed from three approximate viewpoints: the connection between rate-independent hysteresis and micromagnetics; the modifications brought into this picture by thermal relaxation effects; the role of rate-dependent magnetization mechanisms, like eddy-current-damped domain wall motion

  1. Spin-relaxation time in the impurity band of wurtzite semiconductors

    Science.gov (United States)

    Tamborenea, Pablo I.; Wellens, Thomas; Weinmann, Dietmar; Jalabert, Rodolfo A.

    2017-09-01

    The spin-relaxation time for electrons in the impurity band of semiconductors with wurtzite crystal structure is determined. The effective Dresselhaus spin-orbit interaction Hamiltonian is taken as the source of the spin relaxation at low temperature and for doping densities corresponding to the metallic side of the metal-insulator transition. The spin-flip hopping matrix elements between impurity states are calculated and used to set up a tight-binding Hamiltonian that incorporates the symmetries of wurtzite semiconductors. The spin-relaxation time is obtained from a semiclassical model of spin diffusion, as well as from a microscopic self-consistent diagrammatic theory of spin and charge diffusion in doped semiconductors. Estimates are provided for particularly important materials. The theoretical spin-relaxation times compare favorably with the corresponding low-temperature measurements in GaN and ZnO. For InN and AlN we predict that tuning of the spin-orbit coupling constant induced by an external potential leads to a potentially dramatic increase of the spin-relaxation time related to the mechanism under study.

  2. Significance of focal relaxation times in head injury

    Energy Technology Data Exchange (ETDEWEB)

    Inao, Suguru; Furuse, Masahiro; Saso, Katsuyoshi; Yoshida, Kazuo; Motegi, Yoshimasa; Kaneoke, Yoshiki; Izawa, Akira

    1987-11-01

    Serial examinations by nuclear magnetic resonance-computed tomography were carried out in 35 head-injured patients aged 7 to 77 years. The injuries were classified as cerebral contusion (nine cases), acute epidural hematoma (eight cases), acute cerebral swelling (two cases), and chronic subdural hematoma (16 cases). The results of 92 measurements were divided into two groups: acute stage (within 3 days of injury) and chronic stage (2 weeks or longer after injury). The spin-lattice relaxation times (T/sub 1/) of brain tissue adjacent to chronic subdural hematoma were evaluated pre- and postoperatively. A Fonar QED 80-alpha system was used for magnetic resonance imaging and measurement of focal T/sub 1/. The T/sub 1/ values at the region of interest were measured 3 to 5 times by the field focusing technique (468 gauss in the focused spot), and the mean value was used for evaluation. The standard T/sub 1/ values obtained from healthy subjects were 290 +- 41 msec in the cerebral cortex and 230 +- 34 msec in the white matter. Prolongation of T/sub 1/ in perifocal brain gradually shortened over time and normalized in the chronic stage. The degree of contusional edema may have been reflected in alterations in T/sub 1/. In contrast, parenchymal injury resulted in a progressive T/sub 1/ elevation, which far exceeded 500 msec in the chronic stage. Such time courses of T/sub 1/ may indicate irreversible tissue damage. There were no noticeable changes in tissue T/sub 1/ over time in patients with acute diffuse cerebral swelling or those who underwent evacuation of acute epidural or chronic subdural hematomas. The underlying pathophysiology in such situations seems to be not brain edema but cerebral hyperemia. In the presence of ischemia, the T/sub 1/ value was prolonged in the early stage, reflecting progression of is chemic edema. (Abstract Truncated)

  3. In vivo estimation of transverse relaxation time constant (T2 ) of 17 human brain metabolites at 3T.

    Science.gov (United States)

    Wyss, Patrik O; Bianchini, Claudio; Scheidegger, Milan; Giapitzakis, Ioannis A; Hock, Andreas; Fuchs, Alexander; Henning, Anke

    2018-08-01

    The transverse relaxation times T 2 of 17 metabolites in vivo at 3T is reported and region specific differences are addressed. An echo-time series protocol was applied to one, two, or three volumes of interest with different fraction of white and gray matter including a total number of 106 healthy volunteers and acquiring a total number of 128 spectra. The data were fitted with the 2D fitting tool ProFit2, which included individual line shape modeling for all metabolites and allowed the T 2 calculation of 28 moieties of 17 metabolites. The T 2 of 10 metabolites and their moieties have been reported for the first time. Region specific T 2 differences in white and gray matter enriched tissue occur in 16 of 17 metabolites examined including single resonance lines and coupled spin systems. The relaxation time T 2 is regions specific and has to be considered when applying tissue composition correction for internal water referencing. Magn Reson Med 80:452-461, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  4. NMR relaxation times of natural rubber latex

    International Nuclear Information System (INIS)

    Harun, S.; Aziz, H.; Basir, Z.

    1994-01-01

    NMR relaxation times T sub 1 and T sub 2 of natural rubber latex have been measured at 25 degree C on a pulsed NMR spectrometer. The work focuses on the variation of the relaxation times with the amount of water content from 0% to 50%. The water content was adjusted by centrifuging and removing a certain amount of water from the sample. The data were analysed using a biexponential fitting procedure which yields simultaneously either T sub 1a and T sub 1b or T sub 2a and T sub 2b. The amount of solid was compared with the known amount of dry rubber content

  5. A stochastic model for magnetic dynamics in single-molecule magnets

    Energy Technology Data Exchange (ETDEWEB)

    López-Ruiz, R., E-mail: rlruiz@ifi.unicamp.br [Instituto de Física Gleb Wataghin - Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil); Almeida, P.T. [Instituto de Física Gleb Wataghin - Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil); Vaz, M.G.F. [Instituto de Química, Universidade Federal Fluminense, 24020-150 Niterói (RJ) (Brazil); Novak, M.A. [Instituto de Física - Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro (RJ) (Brazil); Béron, F.; Pirota, K.R. [Instituto de Física Gleb Wataghin - Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil)

    2016-04-01

    Hysteresis and magnetic relaxation curves were performed on double well potential systems with quantum tunneling possibility via stochastic simulations. Simulation results are compared with experimental ones using the Mn{sub 12} single-molecule magnet, allowing us to introduce time dependence in the model. Despite being a simple simulation model, it adequately reproduces the phenomenology of a thermally activated quantum tunneling and can be extended to other systems with different parameters. Assuming competition between the reversal modes, thermal (over) and tunneling (across) the anisotropy barrier, a separation of classical and quantum contributions to relaxation time can be obtained. - Highlights: • Single-molecule magnets are modeled using a simple stochastic approach. • Simulation reproduces thermally-activated tunnelling magnetization reversal features. • The time is introduced in hysteresis and relaxation simulations. • We can separate the quantum and classical contributions to decay time.

  6. Experimental investigation of plasma relaxation using a compact coaxial magnetized plasma gun in a background plasma

    Science.gov (United States)

    Zhang, Yue; Lynn, Alan; Gilmore, Mark; Hsu, Scott; University of New Mexico Collaboration; Los Alamos National Laboratory Collaboration

    2013-10-01

    A compact coaxial plasma gun is employed for experimental studies of plasma relaxation in a low density background plasma. Experiments are being conducted in the linear HelCat device at UNM. These studies will advance the knowledge of basic plasma physics in the areas of magnetic relaxation and space and astrophysical plasmas, including the evolution of active galactic jets/radio lobes within the intergalactic medium. The gun is powered by a 120pF ignitron-switched capacitor bank which is operated in a range of 5-10 kV and ~100 kA. Multiple diagnostics are employed to investigate plasma relaxation process. Magnetized Argon plasma bubbles with velocities ~1.2Cs and densities ~1020 m-3 have been achieved. Different distinct regimes of operation with qualitatively different dynamics are identified by fast CCD camera images, with the parameter determining the operation regime. Additionally, a B-dot probe array is employed to measure the spatial toroidal and poloidal magnetic flux evolution to identify detached plasma bubble configurations. Experimental data and analysis will be presented.

  7. Intraindividual comparison of T1 relaxation times after gadobutrol and Gd-DTPA administration for cardiac late enhancement imaging

    Energy Technology Data Exchange (ETDEWEB)

    Doeblin, Patrick, E-mail: Patrick.doeblin@charite.de [Department of Cardiology, Charité – Universitätsmedizin Berlin, Charité Campus Benjamin Franklin, Berlin (Germany); Schilling, Rene, E-mail: rene.schilling@charite.de [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); Wagner, Moritz, E-mail: moritz.wagner@charite.de [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); Luhur, Reny, E-mail: renyluhur@yahoo.com [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); Huppertz, Alexander, E-mail: alexander.huppertz@charite.de [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); Imaging Science Institute, Charité, Berlin (Germany); Hamm, Bernd, E-mail: bernd.hamm@charite.de [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); Taupitz, Matthias, E-mail: matthias.taupitz@harite.de [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); and others

    2014-04-15

    Purpose: To evaluate T1-relaxation times of chronic myocardial infarction (CMI) using gadobutrol and gadopentetate dimeglumine (Gd-DTPA) over time and to determine the optimal imaging window for late enhancement imaging with both contrast agents. Material and methods: Twelve patients with CMI were prospectively included and examined on a 1.5 T magnetic resonance (MR) system using relaxivity-adjusted doses of gadobutrol (0.15 mmol/kg) and Gd-DTPA (0.2 mmol/kg) in random order. T1-relaxation times of remote myocardium (RM), infarcted myocardium (IM), and left ventricular cavity (LVC) were assessed from short-axis TI scout imaging using the Look–Locker approach and compared intraindividually using a Wilcoxon paired signed-rank test (α < 0.05). Results: Within 3 min of contrast agent administration (CA), IM showed significantly lower T1-relaxation times than RM with both contrast agents, indicating beginning cardiac late enhancement. Differences between gadobutrol and Gd-DTPA in T1-relaxation times of IM and RM were statistically not significant through all time points. However, gadobutrol led to significantly higher T1-relaxation times of LVC than Gd-DTPA from 6 to 9 min (220 ± 15 ms vs. 195 ± 30 ms p < 0.01) onwards, resulting in a significantly greater ΔT1 of IM to LVC at 9–12 min (−20 ± 35 ms vs. 0 ± 35 ms, p < 0.05) and 12–15 min (−25 ± 45 ms vs. −10 ± 60 ms, p < 0.05). Using Gd-DTPA, comparable ΔT1 values were reached only after 25–35 min. Conclusion: This study indicates good delineation of IM to RM with both contrast agents as early as 3 min after administration. However, we found significant differences in T1 relaxation times with greater ΔT1 IM–LVC using 0.15 mmol/kg gadobutrol compared to 0.20 mmol/kg Gd-DTPA after 9–15 min post-CA suggesting earlier differentiability of IM and LVC using gadobutrol.

  8. Thermodynamic scaling of α-relaxation time and viscosity stems from the Johari-Goldstein β-relaxation or the primitive relaxation of the coupling model.

    Science.gov (United States)

    Ngai, K L; Habasaki, J; Prevosto, D; Capaccioli, S; Paluch, Marian

    2012-07-21

    By now it is well established that the structural α-relaxation time, τ(α), of non-associated small molecular and polymeric glass-formers obey thermodynamic scaling. In other words, τ(α) is a function Φ of the product variable, ρ(γ)/T, where ρ is the density and T the temperature. The constant γ as well as the function, τ(α) = Φ(ρ(γ)/T), is material dependent. Actually this dependence of τ(α) on ρ(γ)/T originates from the dependence on the same product variable of the Johari-Goldstein β-relaxation time, τ(β), or the primitive relaxation time, τ(0), of the coupling model. To support this assertion, we give evidences from various sources itemized as follows. (1) The invariance of the relation between τ(α) and τ(β) or τ(0) to widely different combinations of pressure and temperature. (2) Experimental dielectric and viscosity data of glass-forming van der Waals liquids and polymer. (3) Molecular dynamics simulations of binary Lennard-Jones (LJ) models, the Lewis-Wahnström model of ortho-terphenyl, 1,4 polybutadiene, a room temperature ionic liquid, 1-ethyl-3-methylimidazolium nitrate, and a molten salt 2Ca(NO(3))(2)·3KNO(3) (CKN). (4) Both diffusivity and structural relaxation time, as well as the breakdown of Stokes-Einstein relation in CKN obey thermodynamic scaling by ρ(γ)/T with the same γ. (5) In polymers, the chain normal mode relaxation time, τ(N), is another function of ρ(γ)/T with the same γ as segmental relaxation time τ(α). (6) While the data of τ(α) from simulations for the full LJ binary mixture obey very well the thermodynamic scaling, it is strongly violated when the LJ interaction potential is truncated beyond typical inter-particle distance, although in both cases the repulsive pair potentials coincide for some distances.

  9. Preparation of Mn-Zn ferrite nanoparticles and their silica-coated clusters: magnetic properties and transverse relaxivity

    Czech Academy of Sciences Publication Activity Database

    Kaman, Ondřej; Kuličková, Jarmila; Herynek, Vít; Koktan, Jakub; Maryško, Miroslav; Dědourková, T.; Knížek, Karel; Jirák, Zdeněk

    2017-01-01

    Roč. 427, Apr (2017), s. 251-257 ISSN 0304-8853 Institutional support: RVO:68378271 ; RVO:68378041 Keywords : magnetic nanoparticles * Mn-Zn ferrite * hydrothermal synthesis * magnetic resonance imaging * transverse relaxivity Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.630, year: 2016

  10. Slow magnetic relaxation in carbonato-bridged dinuclear lanthanide(III) complexes with 2,3-quinoxalinediolate ligands.

    Science.gov (United States)

    Vallejo, Julia; Cano, Joan; Castro, Isabel; Julve, Miguel; Lloret, Francesc; Fabelo, Oscar; Cañadillas-Delgado, Laura; Pardo, Emilio

    2012-08-11

    The coordination chemistry of the 2,3-quinoxalinediolate ligand with different lanthanide(III) ions in basic media in air affords a new family of carbonato-bridged M(2)(III) compounds (M = Pr, Gd and Dy), the Dy(2)(III) analogue exhibiting slow magnetic relaxation behaviour typical of single-molecule magnets.

  11. Molecular theory for nuclear magnetic relaxation in protein solutions and tissue; Surface diffusion and free-volume analogy

    Energy Technology Data Exchange (ETDEWEB)

    Kimmich, R; Nusser, W; Gneiting, T [Ulm Universitaet (Federal Republic of Germany). Sektion Kernresonanzspektroskopie

    1990-04-01

    A model theory is presented explaining a series of striking phenomena observed with nuclear magnetic relaxation in protein systems such as solutions or tissue. The frequency, concentration and temperature dependences of proton or deuteron relaxation times of protein solutions and tissue are explained. It is concluded that the translational diffusion of water molecules along the rugged surfaces of proteins and, to a minor degree, protein backbone fluctuations are crucial processes. The rate limiting factor of macromolecular tumbling is assumed to be given by the free water content in a certain analogy to the free-volume model of Cohen ad Turnbull. There are two characteristic water mass fractions indicating the saturation of the hydration shells and the onset of protein tumbling. A closed and relatively simple set of relaxation formulas is presented. The potentially fractal nature of the diffusion of water molecules on the protein surface is discussed. (author). 43 refs.; 4 figs.

  12. Parameterization of NMR relaxation curves in terms of logarithmic moments of the relaxation time distribution.

    Science.gov (United States)

    Petrov, Oleg V; Stapf, Siegfried

    2017-06-01

    This work addresses the problem of a compact and easily comparable representation of multi-exponential relaxation data. It is often convenient to describe such data in a few parameters, all being of physical significance and easy to interpret, and in such a way that enables a model-free comparison between different groups of samples. Logarithmic moments (LMs) of the relaxation time constitute a set of parameters which are related to the characteristic relaxation time on the log-scale, the width and the asymmetry of an underlying distribution of exponentials. On the other hand, the calculation of LMs does not require knowing the actual distribution function and is reduced to a numerical integration of original data. The performance of this method has been tested on both synthetic and experimental NMR relaxation data which differ in a signal-to-noise ratio, the sampling range and the sampling rate. The calculation of two lower-order LMs, the log-mean time and the log-variance, has proved robust against deficiencies of the experiment such as scattered data point and incomplete sampling. One may consider using them as such to monitor formation of a heterogeneous structure, e.g., in phase separation, vitrification, polymerization, hydration, aging, contrast agent propagation processes. It may also assist in interpreting frequency and temperature dependences of relaxation, revealing a crossover from slow to fast exchange between populations. The third LM was found to be a less reliable quantity due to its susceptibility to the noise and must be used with caution. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Parameterization of NMR relaxation curves in terms of logarithmic moments of the relaxation time distribution

    Science.gov (United States)

    Petrov, Oleg V.; Stapf, Siegfried

    2017-06-01

    This work addresses the problem of a compact and easily comparable representation of multi-exponential relaxation data. It is often convenient to describe such data in a few parameters, all being of physical significance and easy to interpret, and in such a way that enables a model-free comparison between different groups of samples. Logarithmic moments (LMs) of the relaxation time constitute a set of parameters which are related to the characteristic relaxation time on the log-scale, the width and the asymmetry of an underlying distribution of exponentials. On the other hand, the calculation of LMs does not require knowing the actual distribution function and is reduced to a numerical integration of original data. The performance of this method has been tested on both synthetic and experimental NMR relaxation data which differ in a signal-to-noise ratio, the sampling range and the sampling rate. The calculation of two lower-order LMs, the log-mean time and the log-variance, has proved robust against deficiencies of the experiment such as scattered data point and incomplete sampling. One may consider using them as such to monitor formation of a heterogeneous structure, e.g., in phase separation, vitrification, polymerization, hydration, aging, contrast agent propagation processes. It may also assist in interpreting frequency and temperature dependences of relaxation, revealing a crossover from slow to fast exchange between populations. The third LM was found to be a less reliable quantity due to its susceptibility to the noise and must be used with caution.

  14. Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids

    Energy Technology Data Exchange (ETDEWEB)

    Sachleben, Joseph Robert [Lawrence Berkeley Lab., CA (United States); California Univ., Berkeley, CA (United States). Dept. of Chemistry

    1993-09-01

    Semiconductor nanocrystals, small biomolecules, and 13C enriched solids were studied through the relaxation in NMR spectra. Surface structure of semiconductor nanocrystals (CdS) was deduced from high resolution 1H and 13C liquid state spectra of thiophenol ligands on the nanocrystal surfaces. The surface coverage by thiophenol was found to be low, being 5.6 and 26% for nanocrystal radii of 11.8 and 19.2 Å. Internal motion is estimated to be slow with a correlation time > 10-8 s-1. The surface thiophenol ligands react to form a dithiophenol when the nanocrystals were subjected to O2 and ultraviolet. A method for measuring 14N-1H J-couplings is demonstrated on pyridine and the peptide oxytocin; selective 2D T1 and T2 experiments are presented for measuring relaxation times in crowded spectra with overlapping peaks in 1D, but relaxation effects interfere. Possibility of carbon-carbon cross relaxation in 13C enriched solids is demonstrated by experiments on zinc acetate and L-alanine.

  15. On-chip measurements of Brownian relaxation of magnetic beads with diameters from 10 nm to 250 nm

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Rizzi, Giovanni; Hansen, Mikkel Fougt

    2013-01-01

    We demonstrate the use of planar Hall effect magnetoresistive sensors for AC susceptibility measurements of magnetic beads with frequencies ranging from DC to 1 MHz. This wide frequency range allows for measuring Brownian relaxation of magnetic beads with diameters ranging from 10 nm to 250 nm....... Brownian relaxation is measured for six different magnetic bead types and their hydrodynamic diameters are determined. The hydrodynamic diameters are found to be within 40% of the nominal bead diameters. We discuss the applicability of the different bead types for volume-based biosensing with respect...... to sedimentation, magnetic trapping, and signal per bead. Among the investigated beads, we conclude that the beads with a nominal diameter of 80 nm are best suited for future on-chip volume-based biosensing experiments using planar Hall effect sensors....

  16. A general model to calculate the spin-lattice (T1) relaxation time of blood, accounting for haematocrit, oxygen saturation and magnetic field strength.

    Science.gov (United States)

    Hales, Patrick W; Kirkham, Fenella J; Clark, Christopher A

    2016-02-01

    Many MRI techniques require prior knowledge of the T1-relaxation time of blood (T1bl). An assumed/fixed value is often used; however, T1bl is sensitive to magnetic field (B0), haematocrit (Hct), and oxygen saturation (Y). We aimed to combine data from previous in vitro measurements into a mathematical model, to estimate T1bl as a function of B0, Hct, and Y. The model was shown to predict T1bl from in vivo studies with a good accuracy (± 87 ms). This model allows for improved estimation of T1bl between 1.5-7.0 T while accounting for variations in Hct and Y, leading to improved accuracy of MRI-derived perfusion measurements. © The Author(s) 2015.

  17. Iron oxide nanoparticles as magnetic relaxation switching (MRSw) sensors: Current applications in nanomedicine.

    Science.gov (United States)

    Alcantara, David; Lopez, Soledad; García-Martin, María Luisa; Pozo, David

    2016-07-01

    Since pioneering work in the early 60s on the development of enzyme electrodes the field of sensors has evolved to different sophisticated technological platforms. Still, for biomedical applications, there are key requirements to meet in order to get fast, low-cost, real-time data acquisition, multiplexed and automatic biosensors. Nano-based sensors are one of the most promising healthcare applications of nanotechnology, and prone to be one of the first to become a reality. From all nanosensors strategies developed, Magnetic Relaxation Switches (MRSw) assays combine several features which are attractive for nanomedical applications such as safe biocompatibility of magnetic nanoparticles, increased sensitivity/specificity measurements, possibility to detect analytes in opaque samples (unresponsive to light-based interferences) and the use of homogeneous setting assay. This review aims at presenting the ongoing progress of MRSw technology and its most important applications in clinical medicine. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. F{sup 19} relaxation in non-magnetic hexafluorides; Contribution a l'etude de la relaxation des fluors dans les hexafluorures non magnetiques

    Energy Technology Data Exchange (ETDEWEB)

    Rigny, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-12-01

    The interesting properties of the fluorine magnetic resonance in the hexafluorides of molybdenum, tungsten and uranium, are very much due to large anisotropies of the chemical shift tensors. In the solid phases these anisotropies, the values of which are deduced from line shape studies, allow one to show that the molecules undergo hindered rotations about the metal atom. The temperature and frequency dependence of the fluorine longitudinal relaxation times shows that the relaxation is due to the molecular motion. The dynamical parameters of this motion are then deduced from the complete study of the fluorine relaxation in the rotating frame. In the liquid phases, the existence of anisotropies allows an estimation of the different contributions to the relaxation. In particular, the frequency and temperature dependence of the relaxation shows it to be dominated by the spin-rotation interaction. We have shown that the strength of this interaction can be deduced from the chemical shifts, and the angle through which the molecule rotates quasi-freely can be determined. In the hexafluorides, this angle is roughly one radian at 70 C, and with the help of this value, the friction coefficients which describe the intermolecular interactions are discussed. (author) [French] Les proprietes de la resonance magnetique des fluors dans les hexafluorures de molybdene, tungstene et uranium sont influencees par l'existence de deplacements chimiques tres anisotropes. Dans les phases solides, la valeur de cette anisotropie peut etre determinee par l'analyse des formes de raies et son existence permet de montrer que les molecules sont en rotation empechee autour de leur atome central. L'etude du temps de relaxation longitudinal en fonction de la temperature et de la frequence montre que la relaxation est due aux mouvements moleculaires, aux plus hautes temperatures. Les proprietes dynamiques du mouvement sont obtenues par l'etude complete de la relaxation spin-reseau dans le referentiel

  19. Quantum Tunneling of Magnetization in Single Molecular Magnets Coupled to Ferromagnetic Reservoirs

    OpenAIRE

    Misiorny, Maciej; Barnas, Józef

    2006-01-01

    The role of spin polarized reservoirs in quantum tunneling of magnetization and relaxation processes in a single molecular magnet (SMM) is investigated theoretically. The SMM is exchange-coupled to the reservoirs and also subjected to a magnetic field varying in time, which enables the quantum tunneling of magnetization (QTM). The spin relaxation times are calculated from the Fermi golden rule. The exchange interaction with tunneling electrons is shown to affect the spin reversal due to QTM. ...

  20. Instrumentation problems in the measurement of relaxation time T1 in MRI

    International Nuclear Information System (INIS)

    Leroy-Willig, A.; Roucayrol, J.C.; Bittoun, J.; Courtieu, J.

    1986-01-01

    Longitudinal relaxation (T 1 ) of protons is a sensitive though non specific tool of tissue characterization. T 1 measurement from magnetic resonance images is unprecise, due to several phenomena that we review: time intervals shorter than in spectroscopic sequences; flip angle inhomogeneity; slice selection and spin echoes. In vivo the molecular inhomogeneity can prevent to measure a true T 1 ; motion and blood flow are important causes of errors. The relative effects of these factors are examined from in vitro and in vivo images acquired at 1.5 T. From a mono-echo single-slice saturation sequence reliable values of T 1 are obtained in vitro, the measurement time being compatible with clinical imaging. In vivo, problems due to various causes of motions are still unresolved [fr

  1. Measuring the equations of state in a relaxed magnetohydrodynamic plasma

    Science.gov (United States)

    Kaur, M.; Barbano, L. J.; Suen-Lewis, E. M.; Shrock, J. E.; Light, A. D.; Brown, M. R.; Schaffner, D. A.

    2018-01-01

    We report measurements of the equations of state of a fully relaxed magnetohydrodynamic (MHD) laboratory plasma. Parcels of magnetized plasma, called Taylor states, are formed in a coaxial magnetized plasma gun, and are allowed to relax and drift into a closed flux conserving volume. Density, ion temperature, and magnetic field are measured as a function of time as the Taylor states compress and heat. The theoretically predicted MHD and double adiabatic equations of state are compared to experimental measurements. We find that the MHD equation of state is inconsistent with our data.

  2. A nuclear magnetic relaxation study of hydrogen exchange and water dynamics in aqueous systems

    International Nuclear Information System (INIS)

    Lankhorst, D.

    1983-01-01

    In this thesis exchange of water protons in solutions of some weak electrolytes and polyelectrolytes is studied. Also the dynamical behaviour of water molecules in pure water is investigated. For these purposes nuclear magnetic resonance relaxation measurements, in solutions of oxygen-17 enriched water, are interpreted. The exchange rate of the water protons is derived from the contribution of 1 H- 17 O scalar coupling to the proton transverse relaxation rate. This rate is measured by the Carr-Purcell technique. (Auth.)

  3. Gadolinium-based magnetic resonance contrast agents at 7 Tesla: in vitro T1 relaxivities in human blood plasma.

    Science.gov (United States)

    Noebauer-Huhmann, Iris M; Szomolanyi, Pavol; Juras, Vladimír; Kraff, Oliver; Ladd, Mark E; Trattnig, Siegfried

    2010-09-01

    PURPOSE/INTRODUCTION: The aim of this study was to determine the T1 relaxivities (r1) of 8 gadolinium (Gd)-based MR contrast agents in human blood plasma at 7 Tesla, compared with 3 Tesla. Eight commercially available Gd-based MR contrast agents were diluted in human blood plasma to concentrations of 0, 0.25, 0.5, 1, and 2 mmol/L. In vitro measurements were performed at 37 degrees C, on a 7 Tesla and on a 3 Tesla whole-body magnetic resonance imaging scanner. For the determination of T1 relaxation times, Inversion Recovery Sequences with inversion times from 0 to 3500 ms were used. The relaxivities were calculated. The r1 relaxivities of all agents, diluted in human blood plasma at body temperature, were lower at 7 Tesla than at 3 Tesla. The values at 3 Tesla were comparable to those published earlier. Notably, in some agents, a minor negative correlation of r1 with a concentration of up to 2 mmol/L could be observed. This was most pronounced in the agents with the highest protein-binding capacity. At 7 Tesla, the in vitro r1 relaxivities of Gd-based contrast agents in human blood plasma are lower than those at 3 Tesla. This work may serve as a basis for the application of Gd-based MR contrast agents at 7 Tesla. Further studies are required to optimize the contrast agent dose in vivo.

  4. Magnetic flux conversion and relaxation toward a minimum-energy state in S-1 spheromak plasmas

    International Nuclear Information System (INIS)

    Janos, A.

    1985-09-01

    S-1 Spheromak currents and magnetic fluxes have been measured with Rogowski coils and flux loops external to the plasma. Toroidal plasma currents up to 350 kA and spheromak configuration lifetimes over 1.0 msec have been achieved at moderate power levels. The plasma formation in the S-1 Spheromak device is based on an inductive transfer of poloidal and toroidal magnetic flux from a toroidal ''flux core'' to the plasma. Formation is programmed to guide the configuration into a force-free, minimum-energy Taylor state. Properly detailed programming of the formation process is found not to be essential since plasmas adjust themselves during formation to a final equilibrium near the Taylor state. After formation, if the plasma evolves away from the stable state, then distinct relaxation oscillation events occur which restore the configuration to that stable state. The relaxation process involves reconnection of magnetic field lines, and conversion of poloidal to toroidal magnetic flux (and vice versa) has been observed and documented. The scaling of toroidal plasma current and toroidal magnetic flux in the plasma with externally applied currents is consistent with the establishment of a Taylor state after formation. In addition, the magnetic helicity is proportional to that injected from the flux core, independent of how that helicity is generated

  5. Measurement of the Relaxation Rate of the Magnetization in Mn{sub 12}O{sub 12} -Acetate Using Proton NMR Echo

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Z. H. [Department of Physics and Astronomy, Ames Laboratory, Iowa State University, Ames, Iowa 50011 (United States); Lascialfari, A. [Dipartimento di Fisica ' ' A. Volta' ' e Unita' , INFM di Pavia, Via Bassi 6, 27100 Pavia, (Italy); Borsa, F. [Department of Physics and Astronomy, Ames Laboratory, Iowa State University, Ames, Iowa 50011 (United States); Dipartimento di Fisica ' ' A. Volta' ' e Unita' , INFM di Pavia, Via Bassi 6, 27100 Pavia, (Italy); Gatteschi, D. [Department of Chemistry, University of Florence, Via Maragliano 77, 50144 Firenze, (Italy)

    2000-03-27

    We present a novel method to measure the relaxation rate W of the magnetization of Mn{sub 12}O {sub 12} -acetate (Mn12) magnetic molecular cluster in its S=10 ground state at low T . It is based on the observation of an exponential growth in time of the proton NMR signal during the thermal equilibration of the magnetization of the molecules. We can explain the novel effect with a simple model which relates the intensity of the proton echo signal to the microscopic reversal of the magnetization of each individual Mn12 molecule during the equilibration process. The method should find wide application in the study of magnetic molecular clusters in off-equilibrium conditions. (c) 2000 The American Physical Society.

  6. T2 relaxation time mapping of the cartilage cap of osteochondromas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Kyung; Horn, Paul; Laor, Tal [Cincinnati Children' s Hospital Medical Center, Cincinnati (United States); Daedzinski, Bernard J. [Dept. of Radiology, Children' s Hospital of Philadelphia, University of Pennsylvania, Philadelphia (United States); Kim, Dong Hoon [Dept. of Radiology, Pharmacology, Korea University College of Medicine, Seoul (Korea, Republic of)

    2016-02-15

    Our aim was to evaluate the cartilage cap of osteochondromas using T2 maps and to compare these values to those of normal patellar cartilage, from age and gender matched controls. This study was approved by the Institutional Review Board and request for informed consent was waived. Eleven children (ages 5-17 years) with osteochondromas underwent MR imaging, which included T2-weighted fat suppressed and T2 relaxation time mapping (echo time = 9-99/repetition time = 1500 msec) sequences. Lesion origins were femur (n = 5), tibia (n = 3), fibula (n = 2), and scapula (n = 1). Signal intensity of the cartilage cap, thickness, mean T2 relaxation times, and T2 spatial variation (mean T2 relaxation times as a function of distance) were evaluated. Findings were compared to those of patellar cartilage from a group of age and gender matched subjects. The cartilage caps showed a fluid-like high T2 signal, with mean thickness of 4.8 mm. The mean value of mean T2 relaxation times of the osteochondromas was 264.0 ± 80.4 msec (range, 151.0-366.0 msec). Mean T2 relaxation times were significantly longer than the values from patellar cartilage (39.0 msec) (p < 0.0001). These findings were observed with T2 spatial variation plots across the entire distance of the cartilage cap, with the most pronounced difference in the middle section of the cartilage. Longer T2 relaxation times of the cartilage caps of osteochondromas should be considered as normal, and likely to reflect an increased water content, different microstructure and component.

  7. T2 relaxation time mapping of the cartilage cap of osteochondromas

    International Nuclear Information System (INIS)

    Kim, Hee Kyung; Horn, Paul; Laor, Tal; Daedzinski, Bernard J.; Kim, Dong Hoon

    2016-01-01

    Our aim was to evaluate the cartilage cap of osteochondromas using T2 maps and to compare these values to those of normal patellar cartilage, from age and gender matched controls. This study was approved by the Institutional Review Board and request for informed consent was waived. Eleven children (ages 5-17 years) with osteochondromas underwent MR imaging, which included T2-weighted fat suppressed and T2 relaxation time mapping (echo time = 9-99/repetition time = 1500 msec) sequences. Lesion origins were femur (n = 5), tibia (n = 3), fibula (n = 2), and scapula (n = 1). Signal intensity of the cartilage cap, thickness, mean T2 relaxation times, and T2 spatial variation (mean T2 relaxation times as a function of distance) were evaluated. Findings were compared to those of patellar cartilage from a group of age and gender matched subjects. The cartilage caps showed a fluid-like high T2 signal, with mean thickness of 4.8 mm. The mean value of mean T2 relaxation times of the osteochondromas was 264.0 ± 80.4 msec (range, 151.0-366.0 msec). Mean T2 relaxation times were significantly longer than the values from patellar cartilage (39.0 msec) (p < 0.0001). These findings were observed with T2 spatial variation plots across the entire distance of the cartilage cap, with the most pronounced difference in the middle section of the cartilage. Longer T2 relaxation times of the cartilage caps of osteochondromas should be considered as normal, and likely to reflect an increased water content, different microstructure and component

  8. Magneto-dependent stress relaxation of magnetorheological gels

    KAUST Repository

    Xu, Yangguang; Liu, Taixiang; Liao, G J; Lubineau, Gilles

    2017-01-01

    The stress relaxation behaviors of magnetorheological (MR) gels under stepwise shear loading are systematically investigated. The particle-enhanced effect, the magneto-induced effect, and the temperature-enhanced effect on the stress relaxation of MR gels are discussed. For further analysis of the magneto-induced stress relaxation mechanism in MR gels, a phenomenological model is established to describe the stress relaxation behavior of the matrix and the magnetic particle chains. All characteristic parameters introduced in the model, i.e. relaxation time, instantaneous modulus, and stable modulus, have well-defined physical meanings and are fitted based on the experimental results. The influence of each parameter on the macroscopic response is discussed and it is found that the relaxation stress induced by the magneto-mechanical coupling effect plays an important role in the stress relaxation process of MR gels.

  9. Magneto-dependent stress relaxation of magnetorheological gels

    KAUST Repository

    Xu, Yangguang

    2017-09-01

    The stress relaxation behaviors of magnetorheological (MR) gels under stepwise shear loading are systematically investigated. The particle-enhanced effect, the magneto-induced effect, and the temperature-enhanced effect on the stress relaxation of MR gels are discussed. For further analysis of the magneto-induced stress relaxation mechanism in MR gels, a phenomenological model is established to describe the stress relaxation behavior of the matrix and the magnetic particle chains. All characteristic parameters introduced in the model, i.e. relaxation time, instantaneous modulus, and stable modulus, have well-defined physical meanings and are fitted based on the experimental results. The influence of each parameter on the macroscopic response is discussed and it is found that the relaxation stress induced by the magneto-mechanical coupling effect plays an important role in the stress relaxation process of MR gels.

  10. Mechanical characterization of journal superconducting magnetic bearings: stiffness, hysteresis and force relaxation

    International Nuclear Information System (INIS)

    Cristache, Cristian; Valiente-Blanco, Ignacio; Diez-Jimenez, Efren; Alvarez-Valenzuela, Marco Antonio; Perez-Diaz, Jose Luis; Pato, Nelson

    2014-01-01

    Superconducting magnetic bearings (SMBs) can provide stable levitation without direct contact between them and a magnetic source (typically a permanent magnet). In this context, superconducting magnetic levitation provides a new tool for mechanical engineers to design non-contact mechanisms solving the tribological problems associated with contact at very low temperatures. In the last years, different mechanisms have been proposed taking advantage of superconducting magnetic levitation. Flywheels, conveyors or mechanisms for high-precision positioning. In this work the mechanical stiffness of a journal SMBs have been experimentally studied. Both radial and axial stiffness have been considered. The influence of the size and shape of the permanent magnets (PM), the size and shape of the HTS, the polarization and poles configuration of PMs of the journal SMB have been studied experimentally. Additionally, in this work hysteresis behavior and force relaxation are considered because they are essential for mechanical engineer when designing bearings that hold levitating axles.

  11. Hydraulic characterisation of iron-oxide-coated sand and gravel based on nuclear magnetic resonance relaxation mode analyses

    Directory of Open Access Journals (Sweden)

    S. Costabel

    2018-03-01

    Full Text Available The capability of nuclear magnetic resonance (NMR relaxometry to characterise hydraulic properties of iron-oxide-coated sand and gravel was evaluated in a laboratory study. Past studies have shown that the presence of paramagnetic iron oxides and large pores in coarse sand and gravel disturbs the otherwise linear relationship between relaxation time and pore size. Consequently, the commonly applied empirical approaches fail when deriving hydraulic quantities from NMR parameters. Recent research demonstrates that higher relaxation modes must be taken into account to relate the size of a large pore to its NMR relaxation behaviour in the presence of significant paramagnetic impurities at its pore wall. We performed NMR relaxation experiments with water-saturated natural and reworked sands and gravels, coated with natural and synthetic ferric oxides (goethite, ferrihydrite, and show that the impact of the higher relaxation modes increases significantly with increasing iron content. Since the investigated materials exhibit narrow pore size distributions, and can thus be described by a virtual bundle of capillaries with identical apparent pore radius, recently presented inversion approaches allow for estimation of a unique solution yielding the apparent capillary radius from the NMR data. We found the NMR-based apparent radii to correspond well to the effective hydraulic radii estimated from the grain size distributions of the samples for the entire range of observed iron contents. Consequently, they can be used to estimate the hydraulic conductivity using the well-known Kozeny–Carman equation without any calibration that is otherwise necessary when predicting hydraulic conductivities from NMR data. Our future research will focus on the development of relaxation time models that consider pore size distributions. Furthermore, we plan to establish a measurement system based on borehole NMR for localising iron clogging and controlling its remediation

  12. Hydraulic characterisation of iron-oxide-coated sand and gravel based on nuclear magnetic resonance relaxation mode analyses

    Science.gov (United States)

    Costabel, Stephan; Weidner, Christoph; Müller-Petke, Mike; Houben, Georg

    2018-03-01

    The capability of nuclear magnetic resonance (NMR) relaxometry to characterise hydraulic properties of iron-oxide-coated sand and gravel was evaluated in a laboratory study. Past studies have shown that the presence of paramagnetic iron oxides and large pores in coarse sand and gravel disturbs the otherwise linear relationship between relaxation time and pore size. Consequently, the commonly applied empirical approaches fail when deriving hydraulic quantities from NMR parameters. Recent research demonstrates that higher relaxation modes must be taken into account to relate the size of a large pore to its NMR relaxation behaviour in the presence of significant paramagnetic impurities at its pore wall. We performed NMR relaxation experiments with water-saturated natural and reworked sands and gravels, coated with natural and synthetic ferric oxides (goethite, ferrihydrite), and show that the impact of the higher relaxation modes increases significantly with increasing iron content. Since the investigated materials exhibit narrow pore size distributions, and can thus be described by a virtual bundle of capillaries with identical apparent pore radius, recently presented inversion approaches allow for estimation of a unique solution yielding the apparent capillary radius from the NMR data. We found the NMR-based apparent radii to correspond well to the effective hydraulic radii estimated from the grain size distributions of the samples for the entire range of observed iron contents. Consequently, they can be used to estimate the hydraulic conductivity using the well-known Kozeny-Carman equation without any calibration that is otherwise necessary when predicting hydraulic conductivities from NMR data. Our future research will focus on the development of relaxation time models that consider pore size distributions. Furthermore, we plan to establish a measurement system based on borehole NMR for localising iron clogging and controlling its remediation in the gravel pack of

  13. Preparation of Mn-Zn ferrite nanoparticles and their silica-coated clusters: Magnetic properties and transverse relaxivity

    Energy Technology Data Exchange (ETDEWEB)

    Kaman, Ondřej, E-mail: kamano@seznam.cz [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); Kuličková, Jarmila [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); Herynek, Vít [Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, 140 21 Praha 4 (Czech Republic); Koktan, Jakub [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); University of Chemistry and Technology, Prague, Technická 5, 166 28 Praha 6 (Czech Republic); Maryško, Miroslav [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); Dědourková, Tereza [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); University of Pardubice, Doubravice 41, 532 10 Pardubice (Czech Republic); Knížek, Karel; Jirák, Zdeněk [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic)

    2017-04-01

    Hydrothermal synthesis of Mn{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} nanoparticles followed by direct encapsulation of the as-grown material into silica is demonstrated as a fast and facile method for preparation of efficient negative contrast agents based on clusters of ferrite crystallites. At first, the hydrothermal procedure is optimized to achieve strictly single-phase magnetic nanoparticles of Mn-Zn ferrites in the compositional range of x≈0.2–0.6 and with the mean size of crystallites ≈10 nm. The products are characterized by powder X-ray diffraction, X-ray fluorescence spectroscopy, and SQUID magnetometry, and the composition close to x=0.4 is selected for the preparation of silica-coated clusters with the mean diameter of magnetic cores ≈25 nm. Their composite structure is studied by means of transmission electron microscopy combined with detailed image analysis and magnetic measurements in DC fields. The relaxometric studies, performed in the magnetic field of B{sub 0}=0.5 T, reveal high transverse relaxivity (r{sub 2}(20 °C)=450 s{sup −1} mmol(Me{sub 3}O{sub 4}){sup −1} L) with a pronounced temperature dependence, which correlates with the observed temperature dependence of magnetization and is ascribed to a mechanism of transverse relaxation similar to the motional averaging regime. - Highlights: • Mn-Zn ferrite particles with size of ≈10 nm are synthesized by hydrothermal method. • Their structure and magnetic properties are analysed in dependence on composition. • Silica-coated clusters with the size ≈26 nm are prepared as contrast agent for MRI. • Their transverse relaxivity shows strong temperature dependence.

  14. On-chip measurements of Brownian relaxation vs. concentration of 40nm magnetic beads

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Rizzi, Giovanni; Hansen, Mikkel Fougt

    2012-01-01

    We present on-chip Brownian relaxation measurements on a logarithmic dilution series of 40 nm beads dispersed in water with bead concentrations between 16 mu g/ml and 4000 mu g/ml. The measurements are performed using a planar Hall effect bridge sensor at frequencies up to 1 MHz. No external fields...... are needed as the beads are magnetized by the field generated by the applied sensor bias current. We show that the Brownian relaxation frequency can be extracted from fitting the Cole-Cole model to measurements for bead concentrations of 64 mu g/ml or higher and that the measured dynamic magnetic response...... is proportional to the bead concentration. For bead concentrations higher than or equal to 500 mu g/ml, we extract a hydrodynamic diameter of 47(1) nm for the beads, which is close to the nominal bead size of 40 nm. Furthermore, we study the signal vs. bead concentration at a fixed frequency close to the Brownian...

  15. Correlation of carrier localization with relaxation time distribution and electrical conductivity relaxation in silver-nanoparticle-embedded moderately doped polypyrrole nanostructures

    Science.gov (United States)

    Biswas, Swarup; Dutta, Bula; Bhattacharya, Subhratanu

    2014-02-01

    The electrical conductivity relaxation in moderately doped polypyrrole and its nanocomposites reinforced with different proportion of silver nanoparticles was investigated in both frequency and time domain. An analytical distribution function of relaxation times is constructed from the results obtained in the frequency domain formalism and is used to evaluate the Kohlrausch-Williams-Watts (KWW) type decay function in the time domain. The thermal evolution of different relaxation parameters was analyzed. The temperature-dependent dc electrical conductivity, estimated from the average conductivity relaxation time is observed to depend strongly on the nanoparticle loading and follows Mott three-dimensional variable range hopping (VRH) conduction mechanism. The extent of charge carrier localization calculated from the VRH mechanism is well correlated to the evidences obtained from the structural characterizations of different nanostructured samples.

  16. Evaluation of biexponential relaxation behaviour in the human brain by magnetic resonance imaging

    DEFF Research Database (Denmark)

    Kjaer, L; Thomsen, C; Henriksen, O

    1989-01-01

    Quantitative estimation of individual biologic components in relaxation curves obtained in vivo may increase the specificity of tissue characterization by magnetic resonance imaging. In this study, the potential of biexponential curve analysis was evaluated in T1 and T2 measurements on the human...... brain at 1.5 tesla. Optimal experimental conditions were carefully observed, including the use of long TR values and a very small voxel size. T1 determination was based on a 12-points partial saturation inversion recovery pulse sequence. T2 determination involved a multiple spin echo sequence with 32...... echoes. No genuine biexponentiality was demonstrated in the T1 and T2 relaxation processes of white matter, cortical grey matter, or cerebrospinal fluid. Thus, a monoexponential model seems adequate for description of the relaxation behaviour in these cases. Furthermore, the results suggest...

  17. Ferromagnetism versus slow paramagnetic relaxation in Fe-doped Li3N

    Science.gov (United States)

    Fix, M.; Jesche, A.; Jantz, S. G.; Bräuninger, S. A.; Klauss, H.-H.; Manna, R. S.; Pietsch, I. M.; Höppe, H. A.; Canfield, P. C.

    2018-02-01

    We report on isothermal magnetization, Mössbauer spectroscopy, and magnetostriction as well as temperature-dependent alternating-current (ac) susceptibility, specific heat, and thermal expansion of single crystalline and polycrystalline Li2(Li1 -xFex) N with x =0 and x ≈0.30 . Magnetic hysteresis emerges at temperatures below T ≈50 K with coercivity fields of up to μ0H =11.6 T at T =2 K and magnetic anisotropy energies of 310 K (27 meV). The ac susceptibility is strongly frequency-dependent (f =10 -10 000 Hz) and reveals an effective energy barrier for spin reversal of Δ E ≈1100 K (90 meV). The relaxation times follow Arrhenius behavior for T >25 K . For T <10 K , however, the relaxation times of τ ≈1010 s are only weakly temperature-dependent, indicating the relevance of a quantum tunneling process instead of thermal excitations. The magnetic entropy amounts to more than 25 J molFe-1 K-1, which significantly exceeds R ln 2 , the value expected for the entropy of a ground-state doublet. Thermal expansion and magnetostriction indicate a weak magnetoelastic coupling in accordance with slow relaxation of the magnetization. The classification of Li2(Li1 -xFex) N as ferromagnet is stressed and contrasted with highly anisotropic and slowly relaxing paramagnetic behavior.

  18. PMR spectra and proton magnetic relaxation in uranyl nitrate-hexamethylenetetramine-urea-water gel forming system

    International Nuclear Information System (INIS)

    Vashman, A.A.; Pronin, I.S.; Brylkina, T.V.; Makarov, V.M.

    1979-01-01

    PMR spectra and proton relaxation in the nitrate-hexamethylenetetramine (HMTA)-urea-water gelling system are studied. According to PMR spectra products of HMTA chemical decomposition, which are supposed to be formed in the gelling process, have not been detected. Effect of hydrogen exchange upon PMR spectra of urea and water in the presence of HMTA and uranyl nitrate is studied. Periods of spin-lattice and spin-spin relaxations of water and HMTA protons in gels on the base of uranyl nitrate are found. Data on relaxation permitted to make qualitative conclusions upon the gel structure and HMTA molecule distribution over ''phases''. Nonproducibility of the results of period measurements in gels is the result of nonproducibility of the gel structure in the course of transformation of liquid solution into gel. Temperature dependences of proton relaxation in the gels are impossible yet to interpret on the basis of temperature behaviour of one correlation period, controlling dipole-dipole nuclear magnetic relaxation, and obeying Arrhenius dependence on the temperature

  19. Mode suppression of a two-dimensional potential relaxation instability in a weakly magnetized discharge plasma

    Science.gov (United States)

    Gyergyek, T.; Čerček, M.; Jelić, N.; Stanojević, M.

    1993-05-01

    A potential relaxation instability (PRI) is modulated by an external signal using an additional grid to modulate the radial plasma potential profile in a magnetized plasma column in a linear magnetized discharge plasma device. It is observed that the electrode current oscillations follow the van der Pol equation with an external forcing term, and the linear growth rate of the instability is measured.

  20. Time-Dependent Behaviors of Granite: Loading-Rate Dependence, Creep, and Relaxation

    Science.gov (United States)

    Hashiba, K.; Fukui, K.

    2016-07-01

    To assess the long-term stability of underground structures, it is important to understand the time-dependent behaviors of rocks, such as their loading-rate dependence, creep, and relaxation. However, there have been fewer studies on crystalline rocks than on tuff, mudstone, and rock salt, because the high strength of crystalline rocks makes the detection of their time-dependent behaviors much more difficult. Moreover, studies on the relaxation, temporal change of stress and strain (TCSS) conditions, and relations between various time-dependent behaviors are scarce for not only granites, but also other rocks. In this study, previous reports on the time-dependent behaviors of granites were reviewed and various laboratory tests were conducted using Toki granite. These tests included an alternating-loading-rate test, creep test, relaxation test, and TCSS test. The results showed that the degree of time dependence of Toki granite is similar to other granites, and that the TCSS resembles the stress-relaxation curve and creep-strain curve. A viscoelastic constitutive model, proposed in a previous study, was modified to investigate the relations between the time-dependent behaviors in the pre- and post-peak regions. The modified model reproduced the stress-strain curve, creep, relaxation, and the results of the TCSS test. Based on a comparison of the results of the laboratory tests and numerical simulations, close relations between the time-dependent behaviors were revealed quantitatively.

  1. Quantum tunneling of magnetization in single molecular magnets coupled to ferromagnetic reservoirs

    Science.gov (United States)

    Misiorny, M.; Barnas, J.

    2007-04-01

    The role of spin polarized reservoirs in quantum tunneling of magnetization and relaxation processes in a single molecular magnet (SMM) is investigated theoretically. The SMM is exchange-coupled to the reservoirs and also subjected to a magnetic field varying in time, which enables the quantum tunneling of magnetization. The spin relaxation times are calculated from the Fermi golden rule. The exchange interaction of SMM and electrons in the leads is shown to affect the spin reversal due to quantum tunneling of magnetization. It is shown that the switching is associated with transfer of a certain charge between the leads.

  2. The impact of structural relaxation on spin polarization and magnetization reversal of individual nano structures studied by spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    Sander, Dirk; Phark, Soo-Hyon; Corbetta, Marco; Fischer, Jeison A; Oka, Hirofumi; Kirschner, Jürgen

    2014-10-01

    The application of low temperature spin-polarized scanning tunneling microscopy and spectroscopy in magnetic fields for the quantitative characterization of spin polarization, magnetization reversal and magnetic anisotropy of individual nano structures is reviewed. We find that structural relaxation, spin polarization and magnetic anisotropy vary on the nm scale near the border of a bilayer Co island on Cu(1 1 1). This relaxation is lifted by perimetric decoration with Fe. We discuss the role of spatial variations of the spin-dependent electronic properties within and at the edge of a single nano structure for its magnetic properties.

  3. Rapid simultaneous high-resolution mapping of myelin water fraction and relaxation times in human brain using BMC-mcDESPOT.

    Science.gov (United States)

    Bouhrara, Mustapha; Spencer, Richard G

    2017-02-15

    A number of central nervous system (CNS) diseases exhibit changes in myelin content and magnetic resonance longitudinal, T 1 , and transverse, T 2 , relaxation times, which therefore represent important biomarkers of CNS pathology. Among the methods applied for measurement of myelin water fraction (MWF) and relaxation times, the multicomponent driven equilibrium single pulse observation of T 1 and T 2 (mcDESPOT) approach is of particular interest. mcDESPOT permits whole brain mapping of multicomponent T 1 and T 2 , with data acquisition accomplished within a clinically realistic acquisition time. Unfortunately, previous studies have indicated the limited performance of mcDESPOT in the setting of the modest signal-to-noise range of high-resolution mapping, required for the depiction of small structures and to reduce partial volume effects. Recently, we showed that a new Bayesian Monte Carlo (BMC) analysis substantially improved determination of MWF from mcDESPOT imaging data. However, our previous study was limited in that it did not discuss determination of relaxation times. Here, we extend the BMC analysis to the simultaneous determination of whole-brain MWF and relaxation times using the two-component mcDESPOT signal model. Simulation analyses and in-vivo human brain studies indicate the overall greater performance of this approach compared to the stochastic region contraction (SRC) algorithm, conventionally used to derive parameter estimates from mcDESPOT data. SRC estimates of the transverse relaxation time of the long T 2 fraction, T 2,l , and the longitudinal relaxation time of the short T 1 fraction, T 1,s , clustered towards the lower and upper parameter search space limits, respectively, indicating failure of the fitting procedure. We demonstrate that this effect is absent in the BMC analysis. Our results also showed improved parameter estimation for BMC as compared to SRC for high-resolution mapping. Overall we find that the combination of BMC analysis

  4. Study of local conformation and molecular movements of homo-polypeptides in aqueous solutions by using magnetic resonance and relaxation

    International Nuclear Information System (INIS)

    Perly, Bruno

    1980-01-01

    The objective of this research thesis is to study local conformations and mobilities of some typical homo-polypeptides by using techniques of magnetic resonance. By using these techniques, it is possible to make highly local observations of molecular elements which allows very efficient analysis of structural and dynamic properties of several biologically important compounds to be performed, and the study of their interactions. After a presentation of the general properties of the studied polypeptides, of magnetic resonance and of magnetic relaxation, the author presents some elements of macromolecular dynamics and movement models. Then, he reports the study of local conformations and structural transitions, applications of spin marking to the dynamic study of polypeptides, a dynamic study of the polypeptide skeleton under the form of statistic balls, the study of local movements of side chains by using nuclear relaxation, the study of the coupling of movements of main and side chains, and of the nuclear relaxation induced by a radical spin marker

  5. Nuclear Spin relaxation mediated by Fermi-edge electrons in n-type GaAs

    Science.gov (United States)

    Kotur, M.; Dzhioev, R. I.; Kavokin, K. V.; Korenev, V. L.; Namozov, B. R.; Pak, P. E.; Kusrayev, Yu. G.

    2014-03-01

    A method based on the optical orientation technique was developed to measure the nuclear-spin lattice relaxation time T 1 in semiconductors. It was applied to bulk n-type GaAs, where T 1 was measured after switching off the optical excitation in magnetic fields from 400 to 1200 G at low (< 30 K) temperatures. The spin-lattice relaxation of nuclei in the studied sample with n D = 9 × 1016 cm-3 was found to be determined by hyperfine scattering of itinerant electrons (Korringa mechanism) which predicts invariability of T 1 with the change in magnetic field and linear dependence of the relaxation rate on temperature. This result extends the experimentally verified applicability of the Korringa relaxation law in degenerate semiconductors, previously studied in strong magnetic fields (several Tesla), to the moderate field range.

  6. Surface-NMR measurements of the longitudinal relaxation time T1 in a homogeneous sandy aquifer in Skive, Denmark

    Science.gov (United States)

    Walbrecker, J.; Behroozmand, A.

    2011-12-01

    Efficient groundwater management requires reliable means of characterizing shallow groundwater aquifers. One key parameter in this respect is hydraulic conductivity. Surface nuclear magnetic resonance (NMR) is a geophysical exploration technique that can potentially provide this type of information in a noninvasive, cost-effective way. The technique is based on measuring the precession of nuclear spins of protons in groundwater molecules. It involves large loop antennas deployed on Earth's surface to generate electromagnetic pulses tuned to specifically excite and detect groundwater proton spins. Naturally, the excited state of spins is transitory - once excited, spins relax back to their equilibrium state. This relaxation process is strongly influenced by the spin environment, which, in the case of groundwater, is defined by the aquifer. By employing empirical relations, changes in relaxation behavior can be used to identify changes in aquifer hydraulic conductivity, making the NMR relaxation signal a very important piece of information. Particularly, efforts are made to record the longitudinal relaxation parameter T1, because it is known from laboratory studies that it often reliably correlates with hydraulic conductivity, even in the presence of magnetic species. In surface NMR, T1 data are collected by recording the NMR signal amplitude following two sequential excitation pulses as a function of the delay time τ between the two pulses. In conventional acquisition, the two pulses have a mutual phase shift of π. Based on theoretical arguments it was recently shown that T1 times acquired according to this conventional surface-NMR scheme are systematically biased. It was proposed that the bias can be minimized by cycling the phase of the two pulses between π and zero in subsequent double-pulse experiments, and subtracting the resulting signal amplitudes (phase-cycled pseudosaturation recovery scheme, pcPSR). We present the first surface-NMR T1 data set recorded

  7. SU-F-I-63: Relaxation Times of Lipid Resonances in NAFLD Animal Model Using Enhanced Curve Fitting

    Energy Technology Data Exchange (ETDEWEB)

    Song, K-H; Yoo, C-H; Lim, S-I; Choe, B-Y [Department of Biomedical Engineering, and Research Institute of Biomedical Engineering, The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: The objective of this study is to evaluate the relaxation time of methylene resonance in comparison with other lipid resonances. Methods: The examinations were performed on a 3.0T MRI scanner using a four-channel animal coil. Eight more Sprague-Dawley rats in the same baseline weight range were housed with ad libitum access to water and a high-fat (HF) diet (60% fat, 20% protein, and 20% carbohydrate). In order to avoid large blood vessels, a voxel (0.8×0.8×0.8 cm{sup 3}) was placed in a homogeneous area of the liver parenchyma during free breathing. Lipid relaxations in NC and HF diet rats were estimated at a fixed repetition time (TR) of 6000 msec, and multi echo time (TEs) of 40–220 msec. All spectra for data measurement were processed using the Advanced Method for Accurate, Robust, and Efficient Spectral (AMARES) fitting algorithm of the Java-based Magnetic Resonance User Interface (jMRUI) package. Results: The mean T2 relaxation time of the methylene resonance in normal-chow diet was 37.1 msec (M{sub 0}, 2.9±0.5), with a standard deviation of 4.3 msec. The mean T2 relaxation time of the methylene resonance was 31.4 msec (M{sub 0}, 3.7±0.3), with a standard deviation of 1.8 msec. The T2 relaxation times of methylene protons were higher in normal-chow diet rats than in HF rats (p<0.05), and the extrapolated M{sub 0} values were higher in HF rats than in NC rats (p<0.005). The excellent linear fit with R{sup 2}>0.9971 and R{sup 2}>0.9987 indicates T2 relaxation decay curves with mono-exponential function. Conclusion: In in vivo, a sufficient spectral resolution and a sufficiently high signal-to-noise ratio (SNR) can be achieved, so that the data measured over short TE values can be extrapolated back to TE = 0 to produce better estimates of the relative weights of the spectral components. In the short term, treating the effective decay rate as exponential is an adequate approximation.

  8. Phonon-assisted relaxation and decoherence of singlet-triplet qubits in Si/SiGe quantum dots

    Directory of Open Access Journals (Sweden)

    Viktoriia Kornich

    2018-05-01

    Full Text Available We study theoretically the phonon-induced relaxation and decoherence of spin states of two electrons in a lateral double quantum dot in a SiGe/Si/SiGe heterostructure. We consider two types of singlet-triplet spin qubits and calculate their relaxation and decoherence times, in particular as a function of level hybridization, temperature, magnetic field, spin orbit interaction, and detuning between the quantum dots, using Bloch-Redfield theory. We show that the magnetic field gradient, which is usually applied to operate the spin qubit, may reduce the relaxation time by more than an order of magnitude. Using this insight, we identify an optimal regime where the magnetic field gradient does not affect the relaxation time significantly, and we propose regimes of longest decay times. We take into account the effects of one-phonon and two-phonon processes and suggest how our theory can be tested experimentally. The spin lifetimes we find here for Si-based quantum dots are significantly longer than the ones reported for their GaAs counterparts.

  9. Real-time relaxation and kinetics in hot scalar QED: Landau damping

    International Nuclear Information System (INIS)

    Boyanovsky, D.; Vega, H.J. de; Holman, R.; Kumar, S.P.; Pisarski, R.D.

    1998-01-01

    The real time evolution of non-equilibrium expectation values with soft length scales ∼k -1 >(eT) -1 is solved in hot scalar electrodynamics, with a view towards understanding relaxational phenomena in the QGP and the electroweak plasma. We find that the gauge invariant non-equilibrium expectation values relax via power laws to asymptotic amplitudes that are determined by the quasiparticle poles. The long time relaxational dynamics and relevant time scales are determined by the behavior of the retarded self-energy not at the small frequencies, but at the Landau damping thresholds. This explains the presence of power laws and not of exponential decay. In the process we rederive the HTL effective action using non-equilibrium field theory. Furthermore we obtain the influence functional, the Langevin equation and the fluctuation-dissipation theorem for the soft modes, identifying the correlators that emerge in the classical limit. We show that a Markovian approximation fails to describe the dynamics both at short and long times. We find that the distribution function for soft quasiparticles relaxes with a power law through Landau damping. We also introduce a novel kinetic approach that goes beyond the standard Boltzmann equation by incorporating off-shell processes and find that the distribution function for soft quasiparticles relaxes with a power law through Landau damping. We find an unusual dressing dynamics of bare particles and anomalous (logarithmic) relaxation of hard quasiparticles. copyright 1998 The American Physical Society

  10. Magneto-optical measurement of spin-lattice relaxation time in KBr and in the Na and Cs halogenetes and Co++ ion magnetic circular dichroism study in KCl

    International Nuclear Information System (INIS)

    Carvalho, R.A.

    1977-01-01

    A magnetic circular dicroism spectrometer is described, which was used in the following experiments: 1) The spin-lattice relaxation time (T 1 ) for F centers in NaCl, NaBr, CsBr and CsCl, at 1,8 0 K in magnetic fields up to 15000Gs is described. The suitability of the theory of ref. (08) to explain the differences observed for halides of differents alkali ions as well as for different structures is verified proves that the hyperfine interaction is the most important mechanism for this kind of centers. It is also verified that, for temperatures between 6 0 K and 15 0 K, T 1 experimental values fits the theory of ref. (21) reasonably well, for F centers in KBr. This theory us an extension of that of ref. (8). 2) The MCD spectra for KCl:Co ++ and Caf 2 :Co ++ in different magnetic fields up to 56KGs, and in temperature range between 1,8 0 K and 4,2 0 K is obtained. The results are consistent with the assumption that Co ++ centers are intersticial in KCl lattice [pt

  11. Magnetic nanoparticles in magnetic resonance imaging and diagnostics.

    Science.gov (United States)

    Rümenapp, Christine; Gleich, Bernhard; Haase, Axel

    2012-05-01

    Magnetic nanoparticles are useful as contrast agents for magnetic resonance imaging (MRI). Paramagnetic contrast agents have been used for a long time, but more recently superparamagnetic iron oxide nanoparticles (SPIOs) have been discovered to influence MRI contrast as well. In contrast to paramagnetic contrast agents, SPIOs can be functionalized and size-tailored in order to adapt to various kinds of soft tissues. Although both types of contrast agents have a inducible magnetization, their mechanisms of influence on spin-spin and spin-lattice relaxation of protons are different. A special emphasis on the basic magnetism of nanoparticles and their structures as well as on the principle of nuclear magnetic resonance is made. Examples of different contrast-enhanced magnetic resonance images are given. The potential use of magnetic nanoparticles as diagnostic tracers is explored. Additionally, SPIOs can be used in diagnostic magnetic resonance, since the spin relaxation time of water protons differs, whether magnetic nanoparticles are bound to a target or not.

  12. Structural relaxation in the magnetically treated glass ceramic Bi1.8Pb0.2Sr2CaCu2Ox

    International Nuclear Information System (INIS)

    Alekseenko, V.I.; Volkova, G.K.; Konstanminova, T.E.; Nosolev, I.K.; Popova, I.B.

    1994-01-01

    Structure relaxation in Bi 1.8 Pb 0.2 Sr 2 CaCu 2 O x amorphous glass ceramics after the treatment using weak pulse magnetic field is studied using microindentation, X-ray structure analysis and inner friction techniques. Structure relaxation after substance treatment using pulse magnetic field is detected to occur at room temperature and to result in its strengthening (increase of microhardness-H v ) and in reduction of inner microstress level.9 refs., 4 figs

  13. Spin wave relaxation and magnetic properties in [M/Cu] super-lattices; M=Fe, Co and Ni

    International Nuclear Information System (INIS)

    Fahmi, A.; Qachaou, A.

    2009-01-01

    In this work, we study the elementary excitations and magnetic properties of the [M/Cu] super-lattices with: M=Fe, Co and Ni, represented by a Heisenberg ferromagnetic system with N atomic planes. The nearest neighbour (NN), next nearest neighbour (NNN) exchange, dipolar interactions and surface anisotropy effects are taken into account and the Hamiltonian is studied in the framework of the linear spin wave theory. In the presence of the exchange alone, the excitation spectrum E(k) and the magnetization z >/S analytical expressions are obtained using the Green's function formalism. The obtained relaxation time of the magnon populations is nearly the same in the Fe and Co-based super-lattices, while these magnetic excitations would last much longer in the Ni-based super lattice. A numerical study of the surface anisotropy and long-ranged dipolar interaction combined effects are also reported. The exchange integral values deduced from a comparison with experience for the three super-lattices are coherent.

  14. Impulsive relaxation process in MHD driven reconnection

    International Nuclear Information System (INIS)

    Kitabata, H.; Hayashi, T.; Sato, T.

    1997-01-01

    Compressible magnetohydrodynamic (MHD) simulation is carried out in order to investigate energy relaxation process of the driven magnetic reconnection in an open finite system through a long time calculation. It is found that a very impulsive energy release occurs in an intermittent fashion through magnetic reconnection for a continuous magnetic flux injection on the boundary. We focus our attention on the detailed process in the impulsive phase, which is the reconnection rate is remarkably enhanced up. (author)

  15. An analysis of the NMR-CT image by the measurement of proton-relaxation times in tissue

    International Nuclear Information System (INIS)

    Naruse, Shoji; Horikawa, Yoshiharu; Tanaka, Chuzo; Hirakawa, Kimiyoshi; Nishikawa, Hiroyasu; Shimizu, Koji; Kiri, Motosada.

    1984-01-01

    NMR-CT images were analyzed by measuring the proton-relaxation times in tissues. The NMR-CT images were obtained in 10 normal volunteers and 16 patients with brain tumors with a prototype superconducting magnet (Shimadzu Corp., Japan) operating at 0.2 T and 0.375 T. A smooth T 1 relaxation curve was obtained in each part of the brain and the brain tumor by the use of the data of the NMR-CT image; consequently, the in vivo T 1 value was proved to be reliable. The in vivo T 1 value showed the specific value corresponding to each region of the normal brain in all cases. Cerebral gray matter normally had the longest T 1 value, followed by the medulla oblongata, the pons, and white matter. The T 1 value of each region of the brain varied to the same degree in proportion to the strength of the static magnetic field. The in vivo T 1 values of the brain tumor varied with the histological type. All were longer than any part of the brain parenchyma, being between 480 and 780 msec at 0.2 T. The prolongation of the T 1 value does not always correspond to the degree of the malignancy in a tumor. The in vitro T 1 and T 2 values were also prolonged in all tumors. Although the absolute value of T 1 did not coincide between the in vitro and in vivo data, the tendency of the prolongation was the same between them. This result indicated that the NMR-CT images could be analysed by the use of the data of the in vitro T 1 and T 2 values in the tumor tissues. It is important to analyse the NMR-CT image by both in vivo and in vitro examinations of the relaxation times. (J.P.N.)

  16. In-vivo measurement of proton relaxation time (T1 and T2) in paediatric brain by MRI

    International Nuclear Information System (INIS)

    Masumura, Michio

    1986-01-01

    The clinical application of MRI led to the detailed imaging of the three-dimentional structure of the brain. Thus, significant information has been obtained with respect to the diagnosis of various diseases, rating severity, evaluation of curative effects, etc. On the other hand, the proportion of the comparative length of the relaxation time to the signal intensity of the images (especially the Spin-Echo image) was not necessarily linear. Consquently, the evaluation of severity was not easy to make. However, if we can obtain T 1 and T 2 precisely as the parameters costituting the images, it will be possible to overcome the above-mentioned difficulties. Further, the usefulness of MRI in activities such as determining the water metabolism of the brain is expected to increase even more. By means of VISTA-MR (0.15 Tesla, resistive magnet ; Picker International Co.) we measured the proton relaxation time (spin-lattice relaxation time (T 1 ) and spin-spin relaxation time (T 2 )) of various intracerebral lesions in paediatric cases. As the control group, 43 children, 4 adolescents and 6 adults were used. The T 1 and T 2 in the normal infantile cases prolonged significantly as compared with adult case. Thereafter, they become shortened by aging. In the age of two or three years, they reach the normal level of adult case. In the cases of degenerative disease, brain tumor, and cerebral contusion, the remarkable prolongation of both T 1 and T 2 , compared with normal value of the same age was observed. In the cases of brain atrophy and epilepsy, T 1 and T 2 were slightly short or within normal value of the same age. In the cases of intracerebral hemorrhage, T 1 was shortened. The in-vivo proton relaxation time obtained by MRI have various limits, but they can be a noninvasive and useful index in evaluation of severity or curative effects in various cerebral diseases. (author)

  17. Toward Monte Carlo simulation of general cases of static muon spin relaxation in disordered magnetic materials: long-range magnetic order in alloys

    International Nuclear Information System (INIS)

    Noakes, D.R.

    2001-01-01

    Monte Carlo simulations of zero-field (ZF) muon spin relaxation (μSR) functions generated by long-range-ordered states with disorder are presented, for the completely static limit. Understanding of this is necessary before Monte Carlo simulation of the effect of short-range magnetic ordering on μSR in spin glasses can begin. Alloy disorder, controlled by the magnetic ion concentration parameter f m , and partial ordering of each moment, controlled by the order parameter f o , are considered. Qualitatively different behavior is seen depending on whether the dense moment, perfect-order limit ( f m =1, f o =1) field at the muon site is non-zero, or cancels (as can happen in high-symmetry materials). Around the edges of the two-dimensional ( f m ,f o ) parameter space, four limit cases with qualitatively different behavior are identified: (A) f o →0, the random frozen spin glass for arbitrary magnetic ion concentration; (B) f o →1, nearly perfect magnetic ordering in a alloy of arbitrary magnetic ion concentration; (C) f m →0, magnetic order developing (as f o increases) in a dilute magnetic alloy; (D) f m →1, magnetic order developing (as f o increases) in a dense magnetic material. Case A was discussed in a previous publication. The results for case D answer the question of how the Gaussian Kubo-Toyabe relaxation function for perfect disorder develops into an oscillating function as magnetic order develops in a material. Case C indicates that the effects of magnetic ordering in the dilute moment limit produce only subtle effects in ZF-μSR spectra that would be difficult to unambiguously identify as due to ordering in a real-world experiment. Case B generates complicated multi-frequency behavior

  18. SU-E-I-64: Transverse Relaxation Time in Methylene Protons of Non-Alcoholic Fatty Liver Disease Rats

    Energy Technology Data Exchange (ETDEWEB)

    Song, K-H; Lee, D-W; Choe, B-Y [Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Seoul (Korea, Republic of)

    2015-06-15

    Purpose: The aim of this study was to evaluate transverse relaxation time of methylene resonance compared to other lipid resonances. Methods: The examinations were performed using a 3.0 T scanner with a point — resolved spectroscopy (PRESS) sequence. Lipid relaxation time in a lipid phantom filled with canola oil was estimated considering repetition time (TR) as 6000 msec and echo time (TE) as 40 — 550 msec. For in vivo proton magnetic resonance spectroscopy ({sup 1}H — MRS), eight male Sprague — Dawley rats were given free access to a normal - chow (NC) and eight other male Sprague-Dawley rats were given free access to a high — fat (HF) diet. Both groups drank water ad libitum. T{sub 2} measurements in the rats’ livers were conducted at a fixed TR of 6000 msec and TE of 40 – 220 msec. Exponential curve fitting quality was calculated through the coefficients of determination (R{sup 2}). Results: A chemical analysis of phantom and liver was not performed but a T{sub 2} decay curve was acquired. The T{sub 2} relaxation time of methylene resonance was estimated as follows: NC rats, 37.07 ± 4.32 msec; HF rats, 31.43 ± 1.81 msec (p < 0.05). The extrapolated M0 values were higher in HF rats than in NC rats (p < 0.005). Conclusion: This study of {sup 1}H-MRS led to sufficient spectral resolution and signal — to — noise ratio differences to characterize all observable resonances for yielding T{sub 2} relaxation times of methylene resonance. {sup 1}H — MRS relaxation times may be useful for quantitative characterization of various liver diseases, including fatty liver disease. This study was supported by grant (2012-007883 and 2014R1A2A1A10050270) from the Mid-career Researcher Program through the NRF funded by Ministry of Science. In addition, this study was supported by the Industrial R&D of MOTIE/KEIT (10048997, Development of the core technology for integrated therapy devices based on real-time MRI-guided tumor tracking)

  19. Real-time observation of cascaded electronic relaxation processes in p-Fluorotoluene

    Science.gov (United States)

    Hao, Qiaoli; Deng, Xulan; Long, Jinyou; Wang, Yanmei; Abulimiti, Bumaliya; Zhang, Bing

    2017-08-01

    Ultrafast electronic relaxation processes following two photoexcitation of 400 nm in p-Fluorotoluene (pFT) have been investigated utilizing time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. Cascaded electronic relaxation processes started from the electronically excited S2 state are directly imaged in real time and well characterized by two distinct time constants of 85 ± 10 fs and 2.4 ± 0.3 ps. The rapid component corresponds to the lifetime of the initially excited S2 state, including the structure relaxation from the Franck-Condon region to the conical intersection of S2/S1 and the subsequent internal conversion to the highly excited S1 state. While, the slower relaxation constant is attributed to the further internal conversion to the high levels of S0 from the secondarily populated S1 locating in the channel three region. Moreover, dynamical differences with benzene and toluene of analogous structures, including, specifically, the slightly slower relaxation rate of S2 and the evidently faster decay of S1, are also presented and tentatively interpreted as the substituent effects. In addition, photoelectron kinetic energy and angular distributions reveal the feature of accidental resonances with low-lying Rydberg states (the 3p, 4s and 4p states) during the multi-photon ionization process, providing totally unexpected but very interesting information for pFT.

  20. Experiments in paramagnetic relaxation

    International Nuclear Information System (INIS)

    Lijphart, E.E.

    1976-01-01

    This thesis presents two attempts to improve the resolving power of the relaxation measurement technique. The first attempt reconsiders the old technique of steady state saturation. When used in conjunction with the pulse technique, it offers the possibility of obtaining additional information about the system in which all-time derivatives are zero; in addition, non-linear effects may be distinguished from each other. The second attempt involved a systematic study of only one system: Cu in the Tutton salts (K and Rb). The systematic approach, the high accuracy of the measurement and the sheer amount of experimental data for varying temperature, magnetic field and concentration made it possible in this case to separate the prevailing relaxation mechanisms reliably

  1. Relaxed states with plasma flow

    International Nuclear Information System (INIS)

    Avinash, K.; Taylor, J.B.

    1991-01-01

    In the theory of relaxation, a turbulent plasma reaches a state of minimum energy subject to constant magnetic helicity. In this state the plasma velocity is zero. Attempts have been made by introducing a number of different constraints, to obtain relaxed states with plasma flow. It is shown that these alternative constraints depend on two self-helicities, one for ions, and one for electrons. However, whereas there are strong arguments for the effective invariance of the original magnetic-helicity, these arguments do not apply to the self-helicities. Consequently the existence of relaxed states with flow remains in doubt. (author)

  2. In vivo measurements of the T1 relaxation processes in the bone marrow in patients with myelodysplastic syndrome. A magnetic resonance imaging study

    DEFF Research Database (Denmark)

    Jensen, K E; Nielsen, H; Thomsen, C

    1989-01-01

    Nine patients with myelodysplastic syndrome (MDS) were examined with magnetic resonance imaging and in vivo T1 relaxation time measurements of the vertebral bone marrow in a 1.5 tesla whole body scanner. Two patients underwent transformation to acute myeloid leukemia and were evaluated at follow-...... not differ from patients with polycythemia vera....

  3. Relaxation and particle diffusion in the Proto S-1/C spheromak

    International Nuclear Information System (INIS)

    Meyerhofer, D.D.

    1987-01-01

    The relationship between relaxation and particle diffusion in the Proto S-1C spheromak has been studied. The plasma was formed in a magnetic configuration which was not the minimum-energy Taylor state, and went through a period of relaxation before its magnetic configuration was that of the Taylor state. Early in the relaxation phase, the internal and external magnetic fluctuations were correlated and it was found that, at the time of peak amplitude, they had a radial structure of a tearing mode. After the reconnection of these modes, the plasma continued to evolve towards the Taylor state with only small magnetic fluctuations at the center of plasma. The local particle diffusion coefficient was measured in these Proto S-1C discharges, the technique used was to inject a delta-function source of impurities into the plasma and observe the motion of the impurities relative to the flux surface. It was found that, during the decay phase of the spheromak discharge, when the plasma was in a Taylor state, the carbon diffusion coefficient was explained classically. While the plasma was relaxing towards the Taylor state, the diffusion coefficient was 2 ∼ 4a times larger than classical. At this time, the plasma was not yet force-free. This nonclassical diffusion appears to have been caused by v/sub ExB/ velocities due to correlations between the fluctuating electric field and density. Because the v/sub ExB/ velocity acts on all of the plasma species similarly, the anomalous hydrogen-particle diffusion coefficient should have been as large as that of carbon

  4. Distribution of relaxation times in (KBr)/sub 0.5/(KCN)/sub 0.5/

    International Nuclear Information System (INIS)

    Birge, N.O.; Jeong, Y.H.; Nagel, S.R.; Bhattacharya, S.; Susman, S.

    1984-01-01

    Measurements of the dielectric response of (KBr)/sub 0.5/(KCN)/sub 0.5/ covering nine decades of frequency are reported. We have shown how the relaxation times proliferate as the temperature is lowered. The anomalously wide distribution of relaxation times can be generated from a Gaussian distribution of energy barriers. As temperature is decreased not only does the spread of relaxation times increase, but more importantly the width of the distribution of activation energies itself increases

  5. Curie-type paramagnetic NMR relaxation in the aqueous solution of Ni(II).

    Science.gov (United States)

    Mareš, Jiří; Hanni, Matti; Lantto, Perttu; Lounila, Juhani; Vaara, Juha

    2014-04-21

    Ni(2+)(aq) has been used for many decades as a model system for paramagnetic nuclear magnetic resonance (pNMR) relaxation studies. More recently, its magnetic properties and also nuclear magnetic relaxation rates have been studied computationally. We have calculated electron paramagnetic resonance and NMR parameters using quantum-mechanical (QM) computation of molecular dynamics snapshots, obtained using a polarizable empirical force field. Statistical averages of hyperfine coupling, g- and zero-field splitting tensors, as well as the pNMR shielding terms, are compared to the available experimental and computational data. In accordance with our previous work, the isotropic hyperfine coupling as well as nuclear shielding values agree well with experimental measurements for the (17)O nuclei of water molecules in the first solvation shell of the nickel ion, whereas larger deviations are found for (1)H centers. We report, for the first time, the Curie-type contribution to the pNMR relaxation rate using QM calculations together with Redfield relaxation theory. The Curie relaxation mechanism is analogous to chemical shift anisotropy relaxation, well-known in diamagnetic NMR. Due to the predominance of other types of paramagnetic relaxation mechanisms for this system, it is possible to extract the Curie term only computationally. The Curie mechanism alone would result in around 16 and 20 s(-1) of relaxation rates (R1 and R2 respectively) for the (1)H nuclei of water molecules bonded to the Ni(2+) center, in a magnetic field of 11.7 T. The corresponding (17)O relaxation rates are around 33 and 38 s(-1). We also report the Curie contribution to the relaxation rate for molecules beyond the first solvation shell in a 1 M solution of Ni(2+) in water.

  6. Spin-lattice relaxation times and knight shift in InSb and InAs

    International Nuclear Information System (INIS)

    Braun, P.; Grande, S.

    1976-01-01

    For a dominant contact interaction between nuclei and conduction electrons the relaxation rate is deduced. The extreme cases of degenerate and non-degenerate semiconductors are separately discussed. At strong degeneracy the product of the Knight shift and relaxation time gives the Korringa relation for metals. Measurements of the NMR spin-lattice relaxation times of 115 InSb and 115 InAs were made between 4.2 and 300 K for strongly degenerated samples. The different relaxation mechanisms are discussed and the experimental and theoretical results are compared. (author)

  7. Study of relaxation times of nanocomposites of starch/montmorillonite employing low field NMR

    International Nuclear Information System (INIS)

    Brito, Luciana M.; Tavares, Maria Ines B.

    2011-01-01

    Due to its various applications and features, especially in therapies for controlled release of pharmaceuticals, polymers are among the most widely used excipients in pharmaceutical technology. One of the most promising nanocomposites is formed from organic polymer and inorganic clay minerals. Nanocomposites of starch/montmorillonite were prepared employing solution intercalation and characterized by proton spin-lattice relaxation time, through NMR relaxometry. The characterization of nanocomposites was done by X-ray diffraction and by nuclear magnetic resonance. The results showed that nanostructured films were obtained by intercalation from solution. Furthermore, the use of low field NMR, T1H, provided more precise information about the movement of materials, being complementary to the results obtained by X-ray diffraction. (author)

  8. Rapid parametric mapping of the longitudinal relaxation time T1 using two-dimensional variable flip angle magnetic resonance imaging at 1.5 Tesla, 3 Tesla, and 7 Tesla.

    Science.gov (United States)

    Dieringer, Matthias A; Deimling, Michael; Santoro, Davide; Wuerfel, Jens; Madai, Vince I; Sobesky, Jan; von Knobelsdorff-Brenkenhoff, Florian; Schulz-Menger, Jeanette; Niendorf, Thoralf

    2014-01-01

    Visual but subjective reading of longitudinal relaxation time (T1) weighted magnetic resonance images is commonly used for the detection of brain pathologies. For this non-quantitative measure, diagnostic quality depends on hardware configuration, imaging parameters, radio frequency transmission field (B1+) uniformity, as well as observer experience. Parametric quantification of the tissue T1 relaxation parameter offsets the propensity for these effects, but is typically time consuming. For this reason, this study examines the feasibility of rapid 2D T1 quantification using a variable flip angles (VFA) approach at magnetic field strengths of 1.5 Tesla, 3 Tesla, and 7 Tesla. These efforts include validation in phantom experiments and application for brain T1 mapping. T1 quantification included simulations of the Bloch equations to correct for slice profile imperfections, and a correction for B1+. Fast gradient echo acquisitions were conducted using three adjusted flip angles for the proposed T1 quantification approach that was benchmarked against slice profile uncorrected 2D VFA and an inversion-recovery spin-echo based reference method. Brain T1 mapping was performed in six healthy subjects, one multiple sclerosis patient, and one stroke patient. Phantom experiments showed a mean T1 estimation error of (-63±1.5)% for slice profile uncorrected 2D VFA and (0.2±1.4)% for the proposed approach compared to the reference method. Scan time for single slice T1 mapping including B1+ mapping could be reduced to 5 seconds using an in-plane resolution of (2×2) mm2, which equals a scan time reduction of more than 99% compared to the reference method. Our results demonstrate that rapid 2D T1 quantification using a variable flip angle approach is feasible at 1.5T/3T/7T. It represents a valuable alternative for rapid T1 mapping due to the gain in speed versus conventional approaches. This progress may serve to enhance the capabilities of parametric MR based lesion detection and

  9. Pair plasma relaxation time scales.

    Science.gov (United States)

    Aksenov, A G; Ruffini, R; Vereshchagin, G V

    2010-04-01

    By numerically solving the relativistic Boltzmann equations, we compute the time scale for relaxation to thermal equilibrium for an optically thick electron-positron plasma with baryon loading. We focus on the time scales of electromagnetic interactions. The collisional integrals are obtained directly from the corresponding QED matrix elements. Thermalization time scales are computed for a wide range of values of both the total-energy density (over 10 orders of magnitude) and of the baryonic loading parameter (over 6 orders of magnitude). This also allows us to study such interesting limiting cases as the almost purely electron-positron plasma or electron-proton plasma as well as intermediate cases. These results appear to be important both for laboratory experiments aimed at generating optically thick pair plasmas as well as for astrophysical models in which electron-positron pair plasmas play a relevant role.

  10. A Stable Pentagonal Bipyramidal Dy(III) Single-Ion Magnet with a Record Magnetization Reversal Barrier over 1000 K.

    Science.gov (United States)

    Liu, Jiang; Chen, Yan-Cong; Liu, Jun-Liang; Vieru, Veacheslav; Ungur, Liviu; Jia, Jian-Hua; Chibotaru, Liviu F; Lan, Yanhua; Wernsdorfer, Wolfgang; Gao, Song; Chen, Xiao-Ming; Tong, Ming-Liang

    2016-04-27

    Single-molecule magnets (SMMs) with a large spin reversal barrier have been recognized to exhibit slow magnetic relaxation that can lead to a magnetic hysteresis loop. Synthesis of highly stable SMMs with both large energy barriers and significantly slow relaxation times is challenging. Here, we report two highly stable and neutral Dy(III) classical coordination compounds with pentagonal bipyramidal local geometry that exhibit SMM behavior. Weak intermolecular interactions in the undiluted single crystals are first observed for mononuclear lanthanide SMMs by micro-SQUID measurements. The investigation of magnetic relaxation reveals the thermally activated quantum tunneling of magnetization through the third excited Kramers doublet, owing to the increased axial magnetic anisotropy and weaker transverse magnetic anisotropy. As a result, pronounced magnetic hysteresis loops up to 14 K are observed, and the effective energy barrier (Ueff = 1025 K) for relaxation of magnetization reached a breakthrough among the SMMs.

  11. Scaling of magnetic relaxation in Mn-12: a distribution of tunnel splittings

    Science.gov (United States)

    Sarachik, Myriam P.

    2002-03-01

    In magnetic fields applied parallel to the anisotropy axis, the relaxation of the magnetization of Mn_12-acetate measured for different sweep rates collapses onto a single scaled curve.(K. M. Mertes, Y. Suzuki, M. P. Sarachik, Y. Paltiel, H. Shtrikman, E. Zeldov, E. M. Rumberger, and G. Christou, Phys. Rev. Lett. 87), 227205 (2001). The form of the scaling(E. M. Chudnovsky and D. A. Garanin, Phys. Rev. Lett. 87, 187203 (2001).) implies that the dominant symmetry-breaking process responsible for tunneling is a locally varying second-order transverse anisotropy, forbidden by tetragonal symmetry in the perfect crystal, which gives rise to a broad distribution of tunnel splittings in a real crystal of Mn_12-acetate. Different forms applied to even and odd-numbered steps provide a clear distinction between even resonances (associated with crystal anisotropy) and odd resonances (which require a transverse magnetic field).

  12. MR imaging of the stomach and relaxation measurement with intraluminal hyperpolarized 129Xenon gas

    International Nuclear Information System (INIS)

    Yanagawa, Yasuhiro; Kimura, Atsuomi; Fujiwara, Hideaki; Kinoshita, Yoshimasa; Hattori, Mineyuki; Hiraga, Takashi; Iida, Hidehiro

    2001-01-01

    Using laser optical pumping, the nuclear spin polarization of noble gases can be strongly enhanced. The purpose of this study was to make a simple apparatus that can provide hyperpolarized 129 Xe gas, which can then be used in an attempt to obtain magnetic resonance imaging (MRI). We would also like to study the relaxation behavior of hyperpolarized 129 Xe gas through the measurement of the relaxation time. First, we demonstrated that hyperpolarized 129 Xe gas can be applied to magnetic resonance imaging of the stomach, by using a rat as a model. This was performed under a 4.7 T magnet field using the following imaging parameters for the hyperpolarized 129 Xe gas: TR=50 ms, TE=15 ms, FOV=10 x 10 cm 2 , matrix size 64 x 64, THK=2.54 cm. By using these parameters, we were able to obtain a hyperpolarized image of the stomach in rats for the first time. Next, we measured the relaxation times of the hyperpolarized 129 Xe gas enclosed in cavities such as the stomach of rats as well as in phantoms created by glass and gelatin bulbs. The cavity size dependency of the relaxation time was analyzed on the basis of the kinetic theory of gases. This analysis showed a linear relationship between the relaxation rate (1/T 1 ) and a square inverse of the cavity diameter (1/d 2 ). From this relationship, the wall effect on the 129 Xe relaxation can be estimated in the novel parameter t 1 , wall . This shows drastic dependency on the material of the wall, suggesting a potential use of the relaxation experiment as a diagnostic tool for organ surfaces in the future. (author)

  13. NMR water-proton spin-lattice relaxation time of human red blood cells and red blood cell suspensions

    International Nuclear Information System (INIS)

    Sullivan, S.G.; Rosenthal, J.S.; Winston, A.; Stern, A.

    1988-01-01

    NMR water-proton spin-lattice relaxation times were studied as probes of water structure in human red blood cells and red blood cell suspensions. Normal saline had a relaxation time of about 3000 ms while packed red blood cells had a relaxation time of about 500 ms. The relaxation time of a red blood cell suspension at 50% hematocrit was about 750 ms showing that surface charges and polar groups of the red cell membrane effectively structure extracellular water. Incubation of red cells in hypotonic saline increases relaxation time whereas hypertonic saline decreases relaxation time. Relaxation times varied independently of mean corpuscular volume and mean corpuscular hemoglobin concentration in a sample population. Studies with lysates and resealed membrane ghosts show that hemoglobin is very effective in lowering water-proton relaxation time whereas resealed membrane ghosts in the absence of hemoglobin are less effective than intact red cells. 9 refs.; 3 figs.; 1 table

  14. Effect of lithographically-induced strain relaxation on the magnetic domain configuration in microfabricated epitaxially grown Fe81Ga19

    Science.gov (United States)

    Beardsley, R. P.; Parkes, D. E.; Zemen, J.; Bowe, S.; Edmonds, K. W.; Reardon, C.; Maccherozzi, F.; Isakov, I.; Warburton, P. A.; Campion, R. P.; Gallagher, B. L.; Cavill, S. A.; Rushforth, A. W.

    2017-02-01

    We investigate the role of lithographically-induced strain relaxation in a micron-scaled device fabricated from epitaxial thin films of the magnetostrictive alloy Fe81Ga19. The strain relaxation due to lithographic patterning induces a magnetic anisotropy that competes with the magnetocrystalline and shape induced anisotropies to play a crucial role in stabilising a flux-closing domain pattern. We use magnetic imaging, micromagnetic calculations and linear elastic modelling to investigate a region close to the edges of an etched structure. This highly-strained edge region has a significant influence on the magnetic domain configuration due to an induced magnetic anisotropy resulting from the inverse magnetostriction effect. We investigate the competition between the strain-induced and shape-induced anisotropy energies, and the resultant stable domain configurations, as the width of the bar is reduced to the nanoscale range. Understanding this behaviour will be important when designing hybrid magneto-electric spintronic devices based on highly magnetostrictive materials.

  15. Thermal relaxation time of a mixture of relativistic electrons and neutrinos

    International Nuclear Information System (INIS)

    Herrera, M.A.; Hacyan, S.

    1987-01-01

    The interaction between the components of a relativistic binary mixture is studied by means of a fully covariant formalism. Assuming both components to differ slightly in temperature, an application of the relativistic Boltzmann equation yields general expressions for the energy transfer rate and for the relaxation time of the system. The resulting relation is then applied to a mixture of relativistic electrons and neutrinos to obtain numerical values of its relaxation time. (author)

  16. Large lateral photovoltaic effect with ultrafast relaxation time in SnSe/Si junction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianjie; Zhao, Xiaofeng; Hu, Chang; Zhang, Yang; Song, Bingqian; Zhang, Lingli; Liu, Weilong; Lv, Zhe; Zhang, Yu; Sui, Yu, E-mail: suiyu@hit.edu.cn [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Tang, Jinke [Department of Physics and Astronomy, University of Wyoming, Laramie, Wyoming 82071 (United States); Song, Bo, E-mail: songbo@hit.edu.cn [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150001 (China)

    2016-07-11

    In this paper, we report a large lateral photovoltaic effect (LPE) with ultrafast relaxation time in SnSe/p-Si junctions. The LPE shows a linear dependence on the position of the laser spot, and the position sensitivity is as high as 250 mV mm{sup −1}. The optical response time and the relaxation time of the LPE are about 100 ns and 2 μs, respectively. The current-voltage curve on the surface of the SnSe film indicates the formation of an inversion layer at the SnSe/p-Si interface. Our results clearly suggest that most of the excited-electrons diffuse laterally in the inversion layer at the SnSe/p-Si interface, which results in a large LPE with ultrafast relaxation time. The high positional sensitivity and ultrafast relaxation time of the LPE make the SnSe/p-Si junction a promising candidate for a wide range of optoelectronic applications.

  17. Electron spin relaxation in cryptochrome-based magnetoreception

    DEFF Research Database (Denmark)

    Kattnig, Daniel R; Solov'yov, Ilia A; Hore, P J

    2016-01-01

    The magnetic compass sense of migratory birds is thought to rely on magnetically sensitive radical pairs formed photochemically in cryptochrome proteins in the retina. An important requirement of this hypothesis is that electron spin relaxation is slow enough for the Earth's magnetic field to have...... this question for a structurally characterized model cryptochrome expected to share many properties with the putative avian receptor protein. To this end we combine all-atom molecular dynamics simulations, Bloch-Redfield relaxation theory and spin dynamics calculations to assess the effects of spin relaxation...... on the performance of the protein as a compass sensor. Both flavin-tryptophan and flavin-Z˙ radical pairs are studied (Z˙ is a radical with no hyperfine interactions). Relaxation is considered to arise from modulation of hyperfine interactions by librational motions of the radicals and fluctuations in certain...

  18. Relaxed plasma-vacuum systems

    International Nuclear Information System (INIS)

    Spies, G.O.; Lortz, D.; Kaiser, R.

    2001-01-01

    Taylor's theory of relaxed toroidal plasmas (states of lowest energy with fixed total magnetic helicity) is extended to include a vacuum between the plasma and the wall. In the extended variational problem, one prescribes, in addition to the helicity and the magnetic fluxes whose conservation follows from the perfect conductivity of the wall, the fluxes whose conservation follows from the assumption that the plasma-vacuum interface is also perfectly conducting (if the wall is a magnetic surface, then one has the toroidal and the poloidal flux in the vacuum). Vanishing of the first energy variation implies a pressureless free-boundary magnetohydrostatic equilibrium with a Beltrami magnetic field in the plasma, and in general with a surface current in the interface. Positivity of the second variation implies that the equilibrium is stable according to ideal magnetohydrodynamics, that it is a relaxed state according to Taylor's theory if the interface is replaced by a wall, and that the surface current is nonzero (at least if there are no closed magnetic field lines in the interface). The plane slab, with suitable boundary conditions to simulate a genuine torus, is investigated in detail. The relaxed state has the same double symmetry as the vessel if, and only if, the prescribed helicity is in an interval that depends on the prescribed fluxes. This interval is determined in the limit of a thin slab

  19. {CoIII2DyIII2} single molecule magnet with two resolved thermal activated magnetization relaxation pathways at zero field.

    Science.gov (United States)

    Funes, Alejandro V; Carrella, Luca; Rentschler, Eva; Alborés, Pablo

    2014-02-14

    The new complex [Co(III)2Dy(III)2(OMe)2(teaH)2(Piv)6] in the {Co(III)2Dy(III)2} family, shows two well resolved thermal activated magnetization relaxation pathways under AC experiments in zero DC field. Fitted crystal field parameters suggest that the origin of these two pathways relies on two different excited mJ sub-levels.

  20. Simultaneous MR quantification of hepatic fat content, fatty acid composition, transverse relaxation time and magnetic susceptibility for the diagnosis of non-alcoholic steatohepatitis.

    Science.gov (United States)

    Leporq, B; Lambert, S A; Ronot, M; Vilgrain, V; Van Beers, B E

    2017-10-01

    Non-alcoholic steatohepatitis (NASH) is characterized at histology by steatosis, hepatocyte ballooning and inflammatory infiltrates, with or without fibrosis. Although diamagnetic material in fibrosis and inflammation can be detected with quantitative susceptibility imaging, fatty acid composition changes in NASH relative to simple steatosis have also been reported. Therefore, our aim was to develop a single magnetic resonance (MR) acquisition and post-processing scheme for the diagnosis of steatohepatitis by the simultaneous quantification of hepatic fat content, fatty acid composition, T 2 * transverse relaxation time and magnetic susceptibility in patients with non-alcoholic fatty liver disease. MR acquisition was performed at 3.0 T using a three-dimensional, multi-echo, spoiled gradient echo sequence. Phase images were unwrapped to compute the B 0 field inhomogeneity (ΔB 0 ) map. The ΔB 0 -demodulated real part images were used for fat-water separation, T 2 * and fatty acid composition quantification. The external and internal fields were separated with the projection onto dipole field method. Susceptibility maps were obtained after dipole inversion from the internal field map with single-orientation Bayesian regularization including spatial priors. Method validation was performed in 32 patients with biopsy-proven, non-alcoholic fatty liver disease from which 12 had simple steatosis and 20 NASH. Liver fat fraction and T 2 * did not change significantly between patients with simple steatosis and NASH. In contrast, the saturated fatty acid fraction increased in patients with NASH relative to patients with simple steatosis (48 ± 2% versus 44 ± 4%; p magnetic susceptibility decreased (-0.30 ± 0.27 ppm versus 0.10 ± 0.14 ppm; p magnetic susceptibility as NASH marker was 0.91 (95% CI: 0.79-1.0). Simultaneous MR quantification of fat content, fatty acid composition, T 2 * and magnetic susceptibility is feasible in the liver. Our preliminary results

  1. Microscopic magnetic nature of layered cobalt dioxides investigated by muon-spin rotation and relaxation

    International Nuclear Information System (INIS)

    Sugiyama, Jun; Ikedo, Yutaka; Mukai, Kazuhiko; Nozaki, Hiroshi; Russo, Peter L.; Ansaldo, Eduardo J.; Brewer, Jess H.; Andreica, Daniel; Amato, Alex

    2009-01-01

    In order to elucidate the nature of layered cobalt dioxides A x CoO 2 , we have investigated their microscopic magnetism by means of positive muon-spin rotation and relaxation (μ + SR) spectroscopy, in particular for A=Li, Na, and K. The dome-shaped magnetic phase diagram for Na x CoO 2 with x≥0.75 suggests the competition between the spin concentration and geometrical frustration on the two-dimensional triangular lattice of the CoO 2 plane. The additional experiment on Li x CoO 2 and K x CoO 2 indicates both a weakly coupled regime for the d electrons in the CoO 2 plane and an ignorable weak effect of the inter-plane interaction on their magnetic order at low T.

  2. Mechanisms of relaxation and spin decoherence in nanomagnets

    Science.gov (United States)

    van Tol, Johan

    Relaxation in spin systems is of great interest with respect to various possible applications like quantum information processing and storage, spintronics, and dynamic nuclear polarization (DNP). The implementation of high frequencies and fields is crucial in the study of systems with large zero-field splitting or large interactions, as for example molecular magnets and low dimensional magnetic materials. Here we will focus on the implementation of pulsed Electron Paramagnetic Resonance (ERP) at multiple frequencies of 10, 95, 120, 240, and 336 GHz, and the relaxation and decoherence processes as a function of magnetic field and temperature. Firstly, at higher frequencies the direct single-phonon spin-lattice relaxation (SLR) is considerably enhanced, and will more often than not be the dominant relaxation mechanism at low temperatures, and can be much faster than at lower fields and frequencies. In principle the measurement of the SLR rates as a function of the frequency provides a means to map the phonon density of states. Secondly, the high electron spin polarization at high fields has a strong influence on the spin fluctuations in relatively concentrated spin systems, and the contribution of the electron-electron dipolar interactions to the coherence rate can be partially quenched at low temperatures. This not only allows the study of relatively concentrated spin systems by pulsed EPR (as for example magnetic nanoparticles and molecular magnets), it enables the separation of the contribution of the fluctuations of the electron spin system from other decoherence mechanisms. Besides choice of temperature and field, several strategies in sample design, pulse sequences, or clock transitions can be employed to extend the coherence time in nanomagnets. A review will be given of the decoherence mechanisms with an attempt at a quantitative comparison of experimental rates with theory.

  3. Relaxation Processes and Time Scale Transformation.

    Science.gov (United States)

    1982-03-01

    the response function may be immediately recognized as being 14 of the Kubo - Green type in the classical regime. Given this general framework, it is now...b as a function of temperature is 24 equivalent to the Vogel-Beuche-Fulcher empirical law for viscosity or the Williams-Landel-Ferry empirical law...relaxation times. With the weighted sum in the form of an integral , one can write exp(-(t/T)b ] = f dT’g(r’) exp[-(t/T’)], O

  4. Picosecond energy relaxation in La0.67Ca0.33MnO3

    International Nuclear Information System (INIS)

    Dorosinets, Vladimir; Richter, Pablo; Mohler, Ernst; Roskos, Hartmut G.; Jakob, Gerhard

    2005-01-01

    Investigating the reflectance response dynamics of La 0.67 Ca 0.33 MnO 3 thin films after excitation by femtosecond laser pulses, we identify for the first time a picosecond relaxation step which only exists below the Curie temperature T C . The relaxation time increases from zero at T C to several picoseconds at low temperatures. The data can be explained with the existence of a magnetization-related effective energy gap, and assuming relaxation between these states to be mediated by a Frohlich-type electron-lattice interaction

  5. Degradation of phosphate ester hydraulic fluid in power station turbines investigated by a three-magnet unilateral magnet array.

    Science.gov (United States)

    Guo, Pan; He, Wei; García-Naranjo, Juan C

    2014-04-14

    A three-magnet array unilateral NMR sensor with a homogeneous sensitive spot was employed for assessing aging of the turbine oils used in two different power stations. The Carr-Purcell-Meiboom-Gill (CPMG) sequence and Inversion Recovery-prepared CPMG were employed for measuring the ¹H-NMR transverse and longitudinal relaxation times of turbine oils with different service status. Two signal components with different lifetimes were obtained by processing the transverse relaxation curves with a numeric program based on the Inverse Laplace Transformation. The long lifetime components of the transverse relaxation time T₂eff and longitudinal relaxation time T₁ were chosen to monitor the hydraulic fluid aging. The results demonstrate that an increase of the service time of the turbine oils clearly results in a decrease of T₂eff,long and T₁,long. This indicates that the T₂eff,long and T₁,long relaxation times, obtained from the unilateral magnetic resonance measurements, can be applied as indices for degradation of the hydraulic fluid in power station turbines.

  6. Computer simulations of equilibrium magnetization and microstructure in magnetic fluids

    Science.gov (United States)

    Rosa, A. P.; Abade, G. C.; Cunha, F. R.

    2017-09-01

    -dipole interactions, the standard method of minimum image is both accurate and computationally efficient. Otherwise, lattice sums of magnetic particle interactions are required to accelerate convergence of the equilibrium magnetization. The accuracy of the numerical code is also quantitatively verified by comparing the magnetization obtained from numerical results with asymptotic predictions of high order in the particle volume fraction, in the presence of dipole-dipole interactions. In addition, Brownian Dynamics simulations are used in order to examine magnetization relaxation of a ferrofluid and to calculate the magnetic relaxation time as a function of the magnetic particle interaction strength for a given particle volume fraction and a non-dimensional applied field. The simulations of magnetization relaxation have shown the existence of a critical value of the dipole-dipole interaction parameter. For strength of the interactions below the critical value at a given particle volume fraction, the magnetic relaxation time is close to the Brownian relaxation time and the suspension has no appreciable memory. On the other hand, for strength of dipole interactions beyond its critical value, the relaxation time increases exponentially with the strength of dipole-dipole interaction. Although we have considered equilibrium conditions, the obtained results have far-reaching implications for the analysis of magnetic suspensions under external flow.

  7. Spin dynamics of the itinerant helimagnet MnSi studied by positive muon spin relaxation

    International Nuclear Information System (INIS)

    Kadono, R.; Matsuzaki, T.; Yamazaki, T.; Kreitzman, S.R.; Brewer, J.H.

    1990-03-01

    The local magnetic fields and spin dynamics of the itinerant helimagnet MnSi(T c ≅ 29.5 K) have been studied experimentally using positive muon spin rotation/relaxation (μ + SR) methods. In the ordered phase (T c ), zero-field μSR was used to measure the hyperfine fields at the muon sites as well as the muon spin-lattice relaxation time T 1 μ . Two magnetically inequivalent interstitial μ + sites were found with hyperfine coupling constants A hf (1) = -3.94 kOe/μ B and A hf (2) = -6.94 kOe/μ B , respectively. In the paramagnetic phase (T > T c ), the muon-nuclear spin double relaxation technique was used to simultaneously but independently determine the spin-lattice relaxation time T 1 Mn of 55 Mn spins and that of positive muons (T 1 μ ) over a wide temperature range (T c 1 Mn and T 1 μ in both phases shows systematic deviations from the predictions of self-consistent renormalization (SCR) theory. (author)

  8. Large deviations of the finite-time magnetization of the Curie-Weiss random-field Ising model

    Science.gov (United States)

    Paga, Pierre; Kühn, Reimer

    2017-08-01

    We study the large deviations of the magnetization at some finite time in the Curie-Weiss random field Ising model with parallel updating. While relaxation dynamics in an infinite-time horizon gives rise to unique dynamical trajectories [specified by initial conditions and governed by first-order dynamics of the form mt +1=f (mt) ] , we observe that the introduction of a finite-time horizon and the specification of terminal conditions can generate a host of metastable solutions obeying second-order dynamics. We show that these solutions are governed by a Newtonian-like dynamics in discrete time which permits solutions in terms of both the first-order relaxation ("forward") dynamics and the backward dynamics mt +1=f-1(mt) . Our approach allows us to classify trajectories for a given final magnetization as stable or metastable according to the value of the rate function associated with them. We find that in analogy to the Freidlin-Wentzell description of the stochastic dynamics of escape from metastable states, the dominant trajectories may switch between the two types (forward and backward) of first-order dynamics. Additionally, we show how to compute rate functions when uncertainty in the quenched disorder is introduced.

  9. Observation of a Relaxed Plasma State in a Quasi-Infinite Cylinder

    Science.gov (United States)

    Gray, T.; Brown, M. R.; Dandurand, D.

    2013-02-01

    A helical relaxed plasma state is observed in a long cylindrical volume. The cylinder is long enough so that the predicted minimum energy state is a close approximation to the infinite cylinder solution. The plasma is injected at v≥50km/s by a coaxial magnetized plasma gun located at one end of the cylindrical volume. The relaxed state is rapidly attained in 1-2 axial Alfvén times after initiation of the plasma. Magnetic data are favorably compared with an analytical model. Magnetic data exhibit broadband fluctuations of the measured axial modes during the formation period. The broadband activity rapidly decays as the energy condenses into the lowest energy mode, which is in agreement with the minimum energy eigenstate of ∇×B=λB.

  10. Relaxation Behavior by Time-Salt and Time-Temperature Superpositions of Polyelectrolyte Complexes from Coacervate to Precipitate

    Directory of Open Access Journals (Sweden)

    Samim Ali

    2018-01-01

    Full Text Available Complexation between anionic and cationic polyelectrolytes results in solid-like precipitates or liquid-like coacervate depending on the added salt in the aqueous medium. However, the boundary between these polymer-rich phases is quite broad and the associated changes in the polymer relaxation in the complexes across the transition regime are poorly understood. In this work, the relaxation dynamics of complexes across this transition is probed over a wide timescale by measuring viscoelastic spectra and zero-shear viscosities at varying temperatures and salt concentrations for two different salt types. We find that the complexes exhibit time-temperature superposition (TTS at all salt concentrations, while the range of overlapped-frequencies for time-temperature-salt superposition (TTSS strongly depends on the salt concentration (Cs and gradually shifts to higher frequencies as Cs is decreased. The sticky-Rouse model describes the relaxation behavior at all Cs. However, collective relaxation of polyelectrolyte complexes gradually approaches a rubbery regime and eventually exhibits a gel-like response as Cs is decreased and limits the validity of TTSS.

  11. Thermal relaxation and heat transport in spin ice Dy{sub 2}Ti{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Klemke, Bastian; Meissner, M.; Tennant, D.A. [Helmholtz-Zentrum Berlin (Germany); Technische Universitaet Berlin (Germany); Strehlow, P. [Technische Universitaet Berlin (Germany); Physikalisch Technische Bundesanstalt, Institut Berlin (Germany); Kiefer, K. [Helmholtz-Zentrum Berlin (Germany); Grigera, S.A. [School of Physics and Astronomy, St. Andrews (United Kingdom); Instituto de Fisica de Liquidos y Sistemas Biologicos, CONICET, UNLP, La Plata (Argentina)

    2011-07-01

    The thermal properties of single crystalline Dy{sub 2}Ti{sub 2}O{sub 7} have been studied at temperature below 30 K and magnetic fields applied along [110] direction up to 1.5 T. Based on a thermodynamic field theory (TFT) various heat relaxation and thermal transport measurements were analysed. So we were able to present not only the heat capacity of Dy{sub 2}Ti{sub 2}O{sub 7}, but also for the first time the different contributions of the magnetic excitations and their corresponding relaxation times in the spin ice phase. In addition, the thermal conductivity and the shortest relaxation time were determined by thermodynamic analysis of steady state heat transport measurements. Finally, we were able to reproduce the temperature profiles recorded in heat pulse experiments on the basis of TFT using the previously determined heat capacity and thermal conductivity data without additional parameters. Thus, TFT has been proved to be thermodynamically consistent in describing three thermal transport experiments on different time scales. The observed temperature and field dependencies of heat capacity contributions and relaxation times indicate the magnetic excitations in the spin ice Dy{sub 2}Ti{sub 2}O{sub 7} as thermally activated monopole-antimonopole defects.

  12. Simulation study of stepwise relaxation in a spheromak plasma

    International Nuclear Information System (INIS)

    Horiuchi, Ritoku; Uchida, Masaya; Sato, Tetsuya.

    1991-10-01

    The energy relaxation process of a spheromak plasma in a flux conserver is investigated by means of a three-dimensional magnetohydrodynamic simulation. The resistive decay of an initial force-free profile brings the spheromak plasma to an m = 1/n = 2 ideal kink unstable region. It is found that the energy relaxation takes place in two steps; namely, the relaxation consists of two physically distinguished phases, and there exists an intermediate phase in between, during which the relaxation becomes inactive temporarily. The first relaxation corresponds to the transition from an axially symmetric force-free state to a helically symmetric one with an n = 2 crescent magnetic island structure via the helical kink instability. The n = 2 helical structure is nonlinearly sustained in the intermediate phase. The helical twisting of the flux tube creates a reconnection current in the vicinity of the geometrical axis. The second relaxation is triggered by the rapid growth of the n = 1 mode when the reconnection current exceeds a critical value. The helical twisting relaxes through magnetic reconnection toward an axially symmetric force-free state. It is also found that the poloidal flux reduces during the helical twisting in the first relaxation and the generation of the toroidal flux occurs through the magnetic reconnection process in the second relaxation. (author)

  13. Robust high-resolution quantification of time signals encoded by in vivo magnetic resonance spectroscopy

    Science.gov (United States)

    Belkić, Dževad; Belkić, Karen

    2018-01-01

    This paper on molecular imaging emphasizes improving specificity of magnetic resonance spectroscopy (MRS) for early cancer diagnostics by high-resolution data analysis. Sensitivity of magnetic resonance imaging (MRI) is excellent, but specificity is insufficient. Specificity is improved with MRS by going beyond morphology to assess the biochemical content of tissue. This is contingent upon accurate data quantification of diagnostically relevant biomolecules. Quantification is spectral analysis which reconstructs chemical shifts, amplitudes and relaxation times of metabolites. Chemical shifts inform on electronic shielding of resonating nuclei bound to different molecular compounds. Oscillation amplitudes in time signals retrieve the abundance of MR sensitive nuclei whose number is proportional to metabolite concentrations. Transverse relaxation times, the reciprocal of decay probabilities of resonances, arise from spin-spin coupling and reflect local field inhomogeneities. In MRS single voxels are used. For volumetric coverage, multi-voxels are employed within a hybrid of MRS and MRI called magnetic resonance spectroscopic imaging (MRSI). Common to MRS and MRSI is encoding of time signals and subsequent spectral analysis. Encoded data do not provide direct clinical information. Spectral analysis of time signals can yield the quantitative information, of which metabolite concentrations are the most clinically important. This information is equivocal with standard data analysis through the non-parametric, low-resolution fast Fourier transform and post-processing via fitting. By applying the fast Padé transform (FPT) with high-resolution, noise suppression and exact quantification via quantum mechanical signal processing, advances are made, presented herein, focusing on four areas of critical public health importance: brain, prostate, breast and ovarian cancers.

  14. Giant deviation of a relaxation time from generalized Newtonian theory in discontinuous shear thickening suspensions

    Science.gov (United States)

    Maharjan, Rijan; Brown, Eric

    2017-12-01

    We investigated the transient relaxation of a discontinuous shear thickening (DST) suspension of cornstarch in water. We performed two types of relaxation experiments starting from a steady shear in a parallel-plate rheometer, followed either by stopping the top plate rotation and measuring the transient torque relaxation or by removing the torque on the plate and measuring the transient rotation of the tool. We found that at low effective weight fraction ϕeffmodel. The regime where the relaxation was inconsistent with the generalized Newtonian model was the same where we found positive normal stress during relaxation, and in some cases we found an oscillatory response, suggestive of a solidlike structure consisting of a system-spanning contact network of particles. This regime also corresponds to the same packing fraction range where we consistently found discontinuous shear thickening in rate-controlled, steady-state measurements. The relaxation time in this range scales with the inverse of the critical shear rate at the onset of shear thickening, which may correspond to a contact relaxation time for nearby particles in the structure to flow away from each other. In this range, the relaxation time was the same in both stress- and rate-controlled relaxation experiments, indicating the relaxation time is more intrinsic than an effective viscosity in this range and is needed in addition to the steady-state viscosity function to describe transient flows. The discrepancy between the measured relaxation times and the generalized Newtonian prediction was found to be as large as four orders of magnitude, and extrapolations diverge in the limit as ϕeff→ϕc as the generalized Newtonian prediction approaches 0. This quantitative discrepancy indicates the relaxation is not controlled by the dissipative terms in the constitutive relation. At the highest weight fractions, the relaxation time scales were measured to be on the order of ˜1 s. The fact that this time scale is

  15. Deconvolution analysis to determine relaxation time spectra of internal friction peaks

    International Nuclear Information System (INIS)

    Cost, J.R.

    1985-01-01

    A new method for analysis of an internal friction vs temperature peak to obtain an approximation of the spectrum of relaxation time responsible for the peak is described. This method, referred to as direct spectrum analysis (DSA), is shown to provide an accurate estimate of the distribution of relaxation times. The method is validated for various spectra, and it is shown that: (1) It provides approximations to known input spectra which replicate the position, amplitude, width and shape with good accuracy (typically 10%). (2) It does not yield approximations which have false spectral peaks

  16. Nernst effect beyond the relaxation-time approximation

    OpenAIRE

    Pikulin, D. I.; Hou, Chang-Yu; Beenakker, C. W. J.

    2011-01-01

    Motivated by recent interest in the Nernst effect in cuprate superconductors, we calculate this magneto-thermo-electric effect for an arbitrary (anisotropic) quasiparticle dispersion relation and elastic scattering rate. The exact solution of the linearized Boltzmann equation is compared with the commonly used relaxation-time approximation. We find qualitative deficiencies of this approximation, to the extent that it can get the sign wrong of the Nernst coefficient. Ziman's improvement of the...

  17. Continuous relaxation time spectrum of α-process in glass-like B2O3

    International Nuclear Information System (INIS)

    Bartenev, G.M.; Lomovskij, V.A.

    1991-01-01

    α-process of relaxation of glass-like B 2 O 3 was investigated in a wide temperature range. Continuous spectrum of relaxation times H(τ) for this process was constructed, using data of dynamic methods of investigation. It is shown that increase of temperature of α-process investigation leads to change of glass-like BaO 3 structure in such a way, that H(τ) spectrum tends to the maxwell one with a unit relaxation time

  18. Paramagnetism and magnetic relaxation in melt-textured grown GdBa2Cu3O6+y

    International Nuclear Information System (INIS)

    Qin, M.J.; Fu, X.K.; Ren, H.T.

    1996-01-01

    Magnetic measurements have been performed on a melt-textured grown (MTG) GdBa 2 Cu 3 O 6+y sample. Because of the paramagnetism of the Gd 3+ ions, the magnetization relaxation rate is increased by a factor of 4πχ. The effect of paramagnetism on the U(J) relationship of the sample has also been discussed. At the end, we extraxted the U(J) relationship based on the field sweep rate H, which is in agreement with the one after corrections for paramagnetism. (orig.)

  19. Anomalous reduction in the long-time flux creep relaxation in superconducting Ca10(Pt4As8)((Fe1‑x Pt x )2As2)5 (x ≈ 0.05) single crystals

    Science.gov (United States)

    Haberkorn, N.; Huang, Silu; Jin, R.

    2018-06-01

    We report the vortex dynamics of superconducting a Ca10(Pt4As8)((Fe1‑x Pt x )2As2)5 (x ≈ 0.05) single crystal with T c = 26 K investigated by performing magnetic measurements. The field dependence of the magnetization displays a second peak (SPM), typically related to a crossover between elastic and plastic vortex relaxation in a weak pinning scenario. Long-time flux creep relaxation measurements for fields smaller that of the SPM show that the vortex dynamics can be separated in two different regions. For magnetic fields smaller than the lower end of the SPM, glassy relaxation (with a characteristic glassy exponent μ) is observed. For magnetic fields between the lower end and the SPM, the flux creep rate decreases systematically to values below to the ones predicted by the collective theory. This effect can be understood by considering a stable vortex lattice configuration. As the field position of the SPM can be adjusted by modifying the quenched potential, our results suggest that extremely low flux creep relaxation rate may be tuned in many other superconducting materials.

  20. Motional spin relaxation in photoexcited triplet states

    International Nuclear Information System (INIS)

    Harryvan, D.; Faassen, E. van

    1997-01-01

    Transient EPR experiments were performed on photoexcited spin triplet states of the luminescent dye EOSIN-Y in diluted (order of 1 nMol) frozen propane-1-ol solutions at various temperatures. Photoexcitation was achieved by irradiation with intense, short laser pulses. The details of the spin relaxation, in particular the dependence on time, magnetic field and microwave field strength are all reproduced by a model which computes the total magnetization in a population of photoexcited triplet states undergoing random reorientational motion. Using this model, we estimated the motional correlation times to be around a microsecond. This timescale is two orders of magnitude slower than the phase memory time of the triplets. (author)

  1. Relating Magnetic Properties and High Hyperthermia Performance of Iron Oxide Nanoflowers

    DEFF Research Database (Denmark)

    Bender, Philipp; Fock, Jeppe; Frandsen, Cathrine

    2018-01-01

    We investigated in depth the interrelations among structure, magnetic properties, relaxation dynamics and magnetic hyperthermia performance of magnetic nanoflowers. The nanoflowers are about 39 nm in size, and consist of densely packed iron oxide cores. They display a remanent magnetization, which...... we explain by the exchange coupling between the cores, but we observe indications for internal spin disorder. By polarized small angle neutron scattering we unambiguously confirm that on average the nanoflowers are preferentially magnetized along one direction. The extracted discrete relaxation time...... distribution of the colloidally dispersed particles indicates the presence of three distinct relaxation contributions. We can explain the two slower processes by Brownian and classical Néel relaxation, respectively. The additionally observed very fast relaxation contributions are attributed by us...

  2. Bulk viscosity of strongly interacting matter in the relaxation time approximation

    Science.gov (United States)

    Czajka, Alina; Hauksson, Sigtryggur; Shen, Chun; Jeon, Sangyong; Gale, Charles

    2018-04-01

    We show how thermal mean field effects can be incorporated consistently in the hydrodynamical modeling of heavy-ion collisions. The nonequilibrium correction to the distribution function resulting from a temperature-dependent mass is obtained in a procedure which automatically satisfies the Landau matching condition and is thermodynamically consistent. The physics of the bulk viscosity is studied here for Boltzmann and Bose-Einstein gases within the Chapman-Enskog and 14-moment approaches in the relaxation time approximation. Constant and temperature-dependent masses are considered in turn. It is shown that, in the small mass limit, both methods lead to the same value of the ratio of the bulk viscosity to its relaxation time. The inclusion of a temperature-dependent mass leads to the emergence of the βλ function in that ratio, and it is of the expected parametric form for the Boltzmann gas, while for the Bose-Einstein case it is affected by the infrared cutoff. This suggests that the relaxation time approximation may be too crude to obtain a reliable form of ζ /τR for gases obeying Bose-Einstein statistics.

  3. Reversal time of jump-noise magnetization dynamics in nanomagnets via Monte Carlo simulations

    Science.gov (United States)

    Parthasarathy, Arun; Rakheja, Shaloo

    2018-06-01

    The jump-noise is a nonhomogeneous Poisson process which models thermal effects in magnetization dynamics, with special applications in low temperature escape rate phenomena. In this work, we develop improved numerical methods for Monte Carlo simulation of the jump-noise dynamics and validate the method by comparing the stationary distribution obtained empirically against the Boltzmann distribution. In accordance with the Néel-Brown theory, the jump-noise dynamics display an exponential relaxation toward equilibrium with a characteristic reversal time, which we extract for nanomagnets with uniaxial and cubic anisotropy. We relate the jump-noise dynamics to the equivalent Landau-Lifshitz dynamics up to second order correction for a general energy landscape and obtain the analogous Néel-Brown theory's solution of the reversal time. We find that the reversal time of jump-noise dynamics is characterized by Néel-Brown theory's solution at the energy saddle point for small noise. For large noise, the magnetization reversal due to jump-noise dynamics phenomenologically represents macroscopic tunneling of magnetization.

  4. Gd-DTPA T1 relaxivity in brain tissue obtained by convection-enhanced delivery, magnetic resonance imaging and emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Haar, Peter J [Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA (United States); Broaddus, William C; Chen Zhijian; Gillies, George T [Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA (United States); Fatouros, Panos P; Corwin, Frank D, E-mail: wbroaddus@mcvh-vcu.ed [Department of Radiology, Virginia Commonwealth University, Richmond, VA (United States)

    2010-06-21

    A common approach to quantify gadolinium (Gd) contrast agents involves measuring the post-contrast change in T1 rate and then using the constant T1 relaxivity R to determine the contrast agent concentration. Because this method is fast and non-invasive, it could be potentially valuable in many areas of brain research. However, to accurately measure contrast agent concentrations in the brain, the T1 relaxivity R of the specific agent must be accurately known. Furthermore, the macromolecular content and compartmentalization of the brain extracellular space (ECS) are expected to significantly alter R from values measured in aqueous solutions. In this study, the T1 relaxivity R of gadolinium-diethylene-triamine penta-acetic acid (Gd-DTPA) was measured following direct interstitial infusions of three different contrast agent concentrations to the parenchyma of rat brains. Changes in magnetic resonance (MR) T1 values were compared to brain slice concentrations determined with inductively coupled plasma atomic emission spectroscopy (ICP-AES) to determine R in 15 rats. Additionally, samples of cerebrospinal fluid, blood and urine were analyzed to evaluate possible Gd-DTPA clearance from the brain. The T1 relaxivity R of Gd-DTPA in the brain ECS was measured to be 5.35 (mM s){sup -1} in a 2.4 T field. This value is considerably higher than estimations used in studies by other groups. Measurements of brain Gd-DTPA tissue concentrations using MRI and ICP-AES demonstrated a high degree of coincidence. Clearance of Gd-DTPA was minimal at the time point immediately after infusion. These results suggest that the environment of the brain does in fact significantly affect Gd T1 relaxivity, and that MRI can accurately measure contrast agent concentrations when this relaxivity is well characterized.

  5. Gd-DTPA T1 relaxivity in brain tissue obtained by convection-enhanced delivery, magnetic resonance imaging and emission spectroscopy

    Science.gov (United States)

    Haar, Peter J.; Broaddus, William C.; Chen, Zhi-jian; Fatouros, Panos P.; Gillies, George T.; Corwin, Frank D.

    2010-06-01

    A common approach to quantify gadolinium (Gd) contrast agents involves measuring the post-contrast change in T1 rate and then using the constant T1 relaxivity R to determine the contrast agent concentration. Because this method is fast and non-invasive, it could be potentially valuable in many areas of brain research. However, to accurately measure contrast agent concentrations in the brain, the T1 relaxivity R of the specific agent must be accurately known. Furthermore, the macromolecular content and compartmentalization of the brain extracellular space (ECS) are expected to significantly alter R from values measured in aqueous solutions. In this study, the T1 relaxivity R of gadolinium-diethylene-triamine penta-acetic acid (Gd-DTPA) was measured following direct interstitial infusions of three different contrast agent concentrations to the parenchyma of rat brains. Changes in magnetic resonance (MR) T1 values were compared to brain slice concentrations determined with inductively coupled plasma atomic emission spectroscopy (ICP-AES) to determine R in 15 rats. Additionally, samples of cerebrospinal fluid, blood and urine were analyzed to evaluate possible Gd-DTPA clearance from the brain. The T1 relaxivity R of Gd-DTPA in the brain ECS was measured to be 5.35 (mM s)-1 in a 2.4 T field. This value is considerably higher than estimations used in studies by other groups. Measurements of brain Gd-DTPA tissue concentrations using MRI and ICP-AES demonstrated a high degree of coincidence. Clearance of Gd-DTPA was minimal at the time point immediately after infusion. These results suggest that the environment of the brain does in fact significantly affect Gd T1 relaxivity, and that MRI can accurately measure contrast agent concentrations when this relaxivity is well characterized.

  6. Gd-DTPA T1 relaxivity in brain tissue obtained by convection-enhanced delivery, magnetic resonance imaging and emission spectroscopy

    International Nuclear Information System (INIS)

    Haar, Peter J; Broaddus, William C; Chen Zhijian; Gillies, George T; Fatouros, Panos P; Corwin, Frank D

    2010-01-01

    A common approach to quantify gadolinium (Gd) contrast agents involves measuring the post-contrast change in T1 rate and then using the constant T1 relaxivity R to determine the contrast agent concentration. Because this method is fast and non-invasive, it could be potentially valuable in many areas of brain research. However, to accurately measure contrast agent concentrations in the brain, the T1 relaxivity R of the specific agent must be accurately known. Furthermore, the macromolecular content and compartmentalization of the brain extracellular space (ECS) are expected to significantly alter R from values measured in aqueous solutions. In this study, the T1 relaxivity R of gadolinium-diethylene-triamine penta-acetic acid (Gd-DTPA) was measured following direct interstitial infusions of three different contrast agent concentrations to the parenchyma of rat brains. Changes in magnetic resonance (MR) T1 values were compared to brain slice concentrations determined with inductively coupled plasma atomic emission spectroscopy (ICP-AES) to determine R in 15 rats. Additionally, samples of cerebrospinal fluid, blood and urine were analyzed to evaluate possible Gd-DTPA clearance from the brain. The T1 relaxivity R of Gd-DTPA in the brain ECS was measured to be 5.35 (mM s) -1 in a 2.4 T field. This value is considerably higher than estimations used in studies by other groups. Measurements of brain Gd-DTPA tissue concentrations using MRI and ICP-AES demonstrated a high degree of coincidence. Clearance of Gd-DTPA was minimal at the time point immediately after infusion. These results suggest that the environment of the brain does in fact significantly affect Gd T1 relaxivity, and that MRI can accurately measure contrast agent concentrations when this relaxivity is well characterized.

  7. Gd-EOB-DTPA-Enhanced MR Imaging of the Liver: The Effect on T2 Relaxation Times and Apparent Diffusion Coefficient (ADC)

    International Nuclear Information System (INIS)

    Cieszanowski, Andrzej; Podgórska, Joanna; Rosiak, Grzegorz; Maj, Edyta; Grudziński, Ireneusz P.; Kaczyński, Bartosz; Szeszkowski, Wojciech; Milczarek, Krzysztof; Rowiński, Olgierd

    2016-01-01

    To investigate the effect of gadoxetic acid disodium (Gd-EOB-DTPA) on T2 relaxation times and apparent diffusion coefficient (ADC) values of the liver and focal liver lesions on a 1.5-T system. Magnetic resonance (MR) studies of 50 patients with 35 liver lesions were retrospectively analyzed. All examinations were performed at 1.5T and included T2-weighted turbo spin-echo (TSE) and diffusion-weighted (DW) images acquired before and after intravenous administration of Gd-EOB-DTPA. To assess the effect of this hepatobiliary contrast agent on T2-weighted TSE images and DW images T2 relaxation times and ADC values of the liver and FLLs were calculated and compared pre- and post-injection. The mean T2 relaxation times of the liver and focal hepatic lesions were lower on enhanced than on unenhanced T2-weighted TSE images (decrease of 2.7% and 3.6% respectively), although these differences were not statistically significant. The mean ADC values of the liver showed statistically significant decrease (of 4.6%) on contrast-enhanced DW images, compared to unenhanced images (P>0.05). The mean ADC value of liver lesions was lower on enhanced than on unenhanced DW images, but this difference (of 2.9%) did not reach statistical significance. The mean T2 relaxation times of the liver and focal liver lesions as well as the mean ADC values of liver lesions were not significantly different before and after administration of Gd-EOB-DTPA. Therefore, acquisition of T2-weighted and DW images between the dynamic contrast-enhanced examination and hepatobiliary phase is feasible and time-saving

  8. Observation of a relaxed plasma state in a quasi-infinite cylinder.

    Science.gov (United States)

    Gray, T; Brown, M R; Dandurand, D

    2013-02-22

    A helical relaxed plasma state is observed in a long cylindrical volume. The cylinder is long enough so that the predicted minimum energy state is a close approximation to the infinite cylinder solution. The plasma is injected at v ≥ 50 km/s by a coaxial magnetized plasma gun located at one end of the cylindrical volume. The relaxed state is rapidly attained in 1-2 axial Alfvén times after initiation of the plasma. Magnetic data are favorably compared with an analytical model. Magnetic data exhibit broadband fluctuations of the measured axial modes during the formation period. The broadband activity rapidly decays as the energy condenses into the lowest energy mode, which is in agreement with the minimum energy eigenstate of [Symbol: see text] × B = λB.

  9. The time-dependence of exchange-induced relaxation during modulated radio frequency pulses.

    Science.gov (United States)

    Sorce, Dennis J; Michaeli, Shalom; Garwood, Michael

    2006-03-01

    The problem of the relaxation of identical spins 1/2 induced by chemical exchange between spins with different chemical shifts in the presence of time-dependent RF irradiation (in the first rotating frame) is considered for the fast exchange regime. The solution for the time evolution under the chemical exchange Hamiltonian in the tilted doubly rotating frame (TDRF) is presented. Detailed derivation is specified to the case of a two-site chemical exchange system with complete randomization between jumps of the exchanging spins. The derived theory can be applied to describe the modulation of the chemical exchange relaxation rate constants when using a train of adiabatic pulses, such as the hyperbolic secant pulse. Theory presented is valid for quantification of the exchange-induced time-dependent rotating frame longitudinal T1rho,ex and transverse T2rho,ex relaxations in the fast chemical exchange regime.

  10. Photoacoustic Determination of Non-radiative Relaxation Time of Absorbing Centers in Maize Seeds

    Science.gov (United States)

    Domínguez-Pacheco, A.; Hernández-Aguilar, C.; Cruz-Orea, A.

    2017-07-01

    Using non-destructive photothermal techniques, it is possible to characterize non-homogenous materials to obtain its optical and thermal properties through photoacoustic spectroscopy (PAS). In photoacoustic (PA) phenomena, there are transient states of thermal excitation, when samples absorb the incident light; these states manifest an excitation process that generates the PA signal, being in direct relation with the non-radiative relaxation times with the sample absorbent centers. The objective of this study was to determine the non-radiative relaxation times associated with different absorbent centers of corn seeds ( Zea mays L.), by using PAS. A frequency scan was done at different wavelengths (350 nm, 470 nm and 650 nm) in order to obtain the non-radiative relaxation times with different types of maize seeds.

  11. Observation of relaxation on time scale of core hole decay by coincidence photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2007-01-01

    It is shown by a many-body theory that when the relaxation time of a metastable core hole state(s) to the most stable one is comparable to or shorter than core hole decay time of the former state(s), a comparison between the singles (noncoincidence) photoelectron spectroscopy (PES) spectrum and the coincidence one provides a direct evidence of the relaxation. In principle the variation with photoelectron kinetic energy of relaxation (or charge transfer (CT)) time can be determined. By singles measurement the correlation of a photoelectron generated by creation of the metastable states not only with an Auger electron generated by annihilation of the same core hole state but also with an Auger electron generated by annihilation of the stable state via relaxation of the metastable state, is completely lost, unless only the metastable state is observed by PES, whereas the correlation often manifests directly in the coincidence spectra. Thus, compared to the coincidence spectroscopy the singles one is often much less capable of elucidating the competition between relaxation and core hole decay of a metastable state. Such examples are discussed

  12. Comparison of confinement in resistive-shell reversed-field pinch devices with two different magnetic shell penetration times

    International Nuclear Information System (INIS)

    Gravestijn, R M; Drake, J R; Hedqvist, A; Rachlew, E

    2004-01-01

    A loop voltage is required to sustain the reversed-field pinch (RFP) equilibrium. The configuration is characterized by redistribution of magnetic helicity but with the condition that the total helicity is maintained constant. The magnetic field shell penetration time, τ s , has a critical role in the stability and performance of the RFP. Confinement in the EXTRAP device has been studied with two values of τ s , first (EXTRAP-T2) with tau s of the order of the typical relaxation cycle timescale and then (EXTRAP-T2R) with τ s much longer than the relaxation cycle timescale, but still much shorter than the pulse length. Plasma parameters show significant improvements in confinement in EXTRAP-T2R. The typical loop voltage required to sustain comparable electron poloidal beta values is a factor of 3 lower in the EXTRAP-T2R device. The improvement is attributed to reduced magnetic turbulence

  13. T2 relaxation time in MR imaging of normal and abnormal lung parenchyma

    International Nuclear Information System (INIS)

    Mayo, J.R.; McKay, A.; Mueller, N.L.

    1990-01-01

    To measure the T2 relaxation times of normal and abnormal lung parenchyma and to evaluate the influence of field strength and lung inflation on T2. Five healthy volunteers and five patients with diffuse lung disease were imaged at 0.15 and 1.5 T. Excised normal pig lung was imaged at 0.15 and 1.5 T and analyzed in a spectrometer at 2.0 T. Single-echo (Hahn) pulse sequences (TR, 2,000 msec; TE, 20, 40, 60, 80, and 100 msec) were compared with multiecho trains (Carr-Purcell-Meiboom-Gill [CPMG] at 0.15 T (TR, 2,000 msec; TE, 20-40-60... 240 msec) and 2.0 T (TR, 2,000 msec; TE, 1, 2, 3,..., 10msec). T2 relaxation times calculated from single-echo sequences showed considerable variation between 0.15 and 2.0 T. T2 also changed with lung inflation. However, the T2 measurements on CPMG sequences did not change significantly (P > .05) with field strength and were only minimally affected by lung inflation. The mean ± SD T2 values for normal lung were 99 ± 8 and for abnormal lung were 84 ± 17. Lung parenchyma T2 measurements obtained with the use of conventional single-echo pulse sequences are variable and inaccurate because of inflation and field strength dependent magnetic susceptibility effects that lead to rapid nonrecoverable dephasing. The results indicate that multiecho sequences with appropriately short echo spacings yield more reproducible determinations of T2, which are independent of field strength and less dependent on lung inflation

  14. Nuclear magnetic resonance and relaxation studies of the structure and segmental motions of 4-vinyl-pyridinic polymers in solution

    International Nuclear Information System (INIS)

    Ghesquiere, Denis

    1978-01-01

    The poly 4-vinylpyridine, its quaternized products from HBr and n-alkyl-bromides, and its N-oxide form have been investigated by nuclear magnetic resonance of proton at 100 and 250 MHz and carbon-13 at 25.15 MHz, The 1 H and 13 C relaxation data of poly-vinylpyridine and its ionized form have been correlated with conformational calculations. They have been interpreted in terms of an isotropic motion of the macromolecular segments introducing a correlation times distribution and of an oscillation motion of the pyridyl groups. The same treatment have been used for the 13 C relaxation data of the poly 4- vinyl-pyridines quaternized at various rates by n-alkyl-bromides. The 13 C relaxation times in the side-chains have been interpreted first by semi-empirical equations assuming an exponential gradient of the diffusion coefficients along them, and also by a Monte Carlo simulation of the motions. The results have shown that the quaternization induces a strong rigidity of the macromolecular backbone and that the dominant effect is the electrostatic interactions. On the other hand it seems that the motion of pyridyl rings is not affected. Moreover we have found a range of oscillation amplitudes in agreement with conformational energy calculations and the results obtained from a conformational study of the poly 4-vinylpyridine N-oxide by 1 H and 13 C NMR contact shifts induced by Ni II paramagnetic ions. (author) [fr

  15. The modified relaxation time function: A novel analysis technique for relaxation processes. Application to high-temperature molybdenum internal friction peaks

    International Nuclear Information System (INIS)

    Matteo, C.L.; Lambri, O.A.; Zelada-Lambri, G.I.; Sorichetti, P.A.; Garcia, J.A.

    2008-01-01

    The modified relaxation time (MRT) function, which is based on a general linear viscoelastic formalism, has several important mathematical properties that greatly simplify the analysis of relaxation processes. In this work, the MRT is applied to the study of the relaxation damping peaks in deformed molybdenum at high temperatures. The dependence of experimental data from these relaxation processes with temperature are adequately described by a Havriliak-Negami (HN) function, and the MRT makes it possible to find a relation between the parameters of the HN function and the activation energy of the process. The analysis reveals that for the relaxation peak appearing at temperatures below 900 K, the physical mechanism is related to a vacancy-diffusion-controlled movement of dislocations. In contrast, when the peak appears at temperatures higher than 900 K, the damping is controlled by a mechanism of diffusion in the low-temperature tail of the peak, and in the high-temperature tail of the peak the creation plus diffusion of vacancies at the dislocation line occurs

  16. Anisotropic spin relaxation in graphene

    NARCIS (Netherlands)

    Tombros, N.; Tanabe, S.; Veligura, A.; Jozsa, C.; Popinciuc, M.; Jonkman, H. T.; van Wees, B. J.

    2008-01-01

    Spin relaxation in graphene is investigated in electrical graphene spin valve devices in the nonlocal geometry. Ferromagnetic electrodes with in-plane magnetizations inject spins parallel to the graphene layer. They are subject to Hanle spin precession under a magnetic field B applied perpendicular

  17. Brownian rotational relaxation and power absorption in magnetite nanoparticles

    International Nuclear Information System (INIS)

    Goya, G.F.; Fernandez-Pacheco, R.; Arruebo, M.; Cassinelli, N.; Ibarra, M.R.

    2007-01-01

    We present a study of the power absorption efficiency in several magnetite-based colloids, to asses their potential as magnetic inductive hyperthermia (MIH) agents. Relaxation times τ were measured through the imaginary susceptibility component χ ' '(T), and analyzed within Debye's theory of dipolar fluid. The results indicated Brownian rotational relaxation and allowed to calculate the hydrodynamic radius close to the values obtained from photon correlation. The study of the colloid performances as power absorbers showed no detectable increase of temperature for dextran-coated Fe 3 O 4 nanoparticles, whereas a second Fe 3 O 4 -based dispersion of similar concentration could be heated up to 12K after 30min under similar experimental conditions. The different power absorption efficiencies are discussed in terms of the magnetic structure of the nanoparticles

  18. Current relaxation time scales in toroidal plasmas

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.

    1987-02-01

    An approximate normal mode analysis of plasma current diffusion in tokamaks is presented. The work is based on numerical solutions of the current diffusion equation in cylindrical geometry. Eigenvalues and eigenfunctions are shown for a broad range of plasma conductivity profile shapes. Three classes of solutions are considered which correspond to three types of tokamak operation. Convenient approximations to the three lowest eigenvalues in each class are presented and simple formulae for the current relaxation time scales are given

  19. Low-field one-dimensional and direction-dependent relaxation imaging of bovine articular cartilage

    Science.gov (United States)

    Rössler, Erik; Mattea, Carlos; Mollova, Ayret; Stapf, Siegfried

    2011-12-01

    The structure of articular cartilage is separated into three layers of differently oriented collagen fibers, which is accompanied by a gradient of increasing glycosaminoglycan (GAG) and decreasing water concentration from the top layer towards the bone interface. The combined effect of these structural variations results in a change of the longitudinal and transverse relaxation times as a function of the distance from the cartilage surface. In this paper, this dependence is investigated at a magnetic field strength of 0.27 T with a one-dimensional depth resolution of 50 μm on bovine hip and stifle joint articular cartilage. By employing this method, advantage is taken of the increasing contrast of the longitudinal relaxation rate found at lower magnetic field strengths. Furthermore, evidence for an orientational dependence of relaxation times with respect to an axis normal to the surface plane is given, an observation that has recently been reported using high-field MRI and that was explained by preferential orientations of collagen bundles in each of the three cartilage zones. In order to quantify the extent of a further contrast mechanism and to estimate spatially dependent glycosaminoglycan concentrations, the data are supplemented by proton relaxation times that were acquired in bovine articular cartilage that was soaked in a 0.8 mM aqueous Gd ++ solution.

  20. Ideal relaxation of the Hopf fibration

    Science.gov (United States)

    Smiet, Christopher Berg; Candelaresi, Simon; Bouwmeester, Dirk

    2017-07-01

    Ideal magnetohydrodynamics relaxation is the topology-conserving reconfiguration of a magnetic field into a lower energy state where the net force is zero. This is achieved by modeling the plasma as perfectly conducting viscous fluid. It is an important tool for investigating plasma equilibria and is often used to study the magnetic configurations in fusion devices and astrophysical plasmas. We study the equilibrium reached by a localized magnetic field through the topology conserving relaxation of a magnetic field based on the Hopf fibration in which magnetic field lines are closed circles that are all linked with one another. Magnetic fields with this topology have recently been shown to occur in non-ideal numerical simulations. Our results show that any localized field can only attain equilibrium if there is a finite external pressure, and that for such a field a Taylor state is unattainable. We find an equilibrium plasma configuration that is characterized by a lowered pressure in a toroidal region, with field lines lying on surfaces of constant pressure. Therefore, the field is in a Grad-Shafranov equilibrium. Localized helical magnetic fields are found when plasma is ejected from astrophysical bodies and subsequently relaxes against the background plasma, as well as on earth in plasmoids generated by, e.g., a Marshall gun. This work shows under which conditions an equilibrium can be reached and identifies a toroidal depression as the characteristic feature of such a configuration.

  1. Relaxation dispersion in MRI induced by fictitious magnetic fields.

    Science.gov (United States)

    Liimatainen, Timo; Mangia, Silvia; Ling, Wen; Ellermann, Jutta; Sorce, Dennis J; Garwood, Michael; Michaeli, Shalom

    2011-04-01

    A new method entitled Relaxation Along a Fictitious Field (RAFF) was recently introduced for investigating relaxations in rotating frames of rank ≥ 2. RAFF generates a fictitious field (E) by applying frequency-swept pulses with sine and cosine amplitude and frequency modulation operating in a sub-adiabatic regime. In the present work, MRI contrast is created by varying the orientation of E, i.e. the angle ε between E and the z″ axis of the second rotating frame. When ε > 45°, the amplitude of the fictitious field E generated during RAFF is significantly larger than the RF field amplitude used for transmitting the sine/cosine pulses. Relaxation during RAFF was investigated using an invariant-trajectory approach and the Bloch-McConnell formalism. Dipole-dipole interactions between identical (like) spins and anisochronous exchange (e.g., exchange between spins with different chemical shifts) in the fast exchange regime were considered. Experimental verifications were performed in vivo in human and mouse brain. Theoretical and experimental results demonstrated that changes in ε induced a dispersion of the relaxation rate constants. The fastest relaxation was achieved at ε ≈ 56°, where the averaged contributions from transverse components during the pulse are maximal and the contribution from longitudinal components are minimal. RAFF relaxation dispersion was compared with the relaxation dispersion achieved with off-resonance spin lock T(₁ρ) experiments. As compared with the off-resonance spin lock T(₁ρ) method, a slower rotating frame relaxation rate was observed with RAFF, which under certain experimental conditions is desirable. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. T2 Relaxation Time Mapping of Proximal Tibiofibular Cartilage by 3-Tesla Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Kwack, Kyu-Sung; Cho, Jae Hyun; Kim, Jun Man; Kim, Sun Yong; Min, Byoung-Hyun; Yoon, Seung-Hyun

    2009-01-01

    Background: The proximal tibiofibular joint (PTFJ) can be considered the fourth compartment of the knee joint. However, there have been no studies of the T2 values (T2 relaxation time) of PTFJ cartilage. Purpose: To assess the T2 values of PTFJ cartilage at 3T magnetic resonance imaging (MRI), and to show the clinical utility of T2 values of PTFJ cartilage for the diagnosis of osteoarthritis (OA). Material and Methods: 118 patients who had knee MR imaging and knee radiography were enrolled. MRI was performed using a 3T MRI scanner, and T2 maps were calculated from a sagittal multi-echo acquisition. Two regions of interest (ROIs) were positioned within PTFJ cartilage and medial femoral condyle (MFC) cartilage. The average T2 value and standard deviation (SD) of each ROI were recorded. Using PTFJ cartilage as a standard reference, the T2 index ((MFC/PTFJ)x100) and T2SD index ((MFCSD/PTFJSD)x100) were calculated. A paired t test was performed to compare the mean and SD of ROIs within PTFJ and MFC cartilage. Correlation analyses were performed among the parameters age, Kellgren-Lawrence (KL) score, means and SDs of ROIs within PTFJ and MFC cartilage, T2 index, and T2SD index. Results: PTFJ cartilage had a significantly shorter T2 value than did MFC cartilage (P<0.0001). ROIs within PTFJ cartilage showed significantly smaller SDs than did those within MFC cartilage (P<0.0001). The average T2 value and SD of MFC and the T2SD index showed a positive correlation to the KL score (P<0.05). The correlation coefficients for the average T2 value, SD, and T2SD index of MFC were R=0.203, 0.254, and 0.268, respectively. However, there was no significant correlation between T2 values of PTFJ cartilage and KL score (P=0.643). Conclusion: PTFJ cartilage showed shorter and more homogeneous T2 values with a small SD than did MFC cartilage, regardless of the degree of OA at femorotibial compartments. PTFJ cartilage may be a useful internal standard reference to diagnose OA and would be

  3. T2 Relaxation Time Mapping of Proximal Tibiofibular Cartilage by 3-Tesla Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kwack, Kyu-Sung; Cho, Jae Hyun; Kim, Jun Man; Kim, Sun Yong (Dept. of Radiology, Ajou Univ. Medical Center, Suwon (Korea)); Min, Byoung-Hyun; Yoon, Seung-Hyun (Cartilage Regeneration Center, Ajou Univ. Medical Center, Suwon (Korea))

    2009-11-15

    Background: The proximal tibiofibular joint (PTFJ) can be considered the fourth compartment of the knee joint. However, there have been no studies of the T2 values (T2 relaxation time) of PTFJ cartilage. Purpose: To assess the T2 values of PTFJ cartilage at 3T magnetic resonance imaging (MRI), and to show the clinical utility of T2 values of PTFJ cartilage for the diagnosis of osteoarthritis (OA). Material and Methods: 118 patients who had knee MR imaging and knee radiography were enrolled. MRI was performed using a 3T MRI scanner, and T2 maps were calculated from a sagittal multi-echo acquisition. Two regions of interest (ROIs) were positioned within PTFJ cartilage and medial femoral condyle (MFC) cartilage. The average T2 value and standard deviation (SD) of each ROI were recorded. Using PTFJ cartilage as a standard reference, the T2 index ((MFC/PTFJ)x100) and T2SD index ((MFCSD/PTFJSD)x100) were calculated. A paired t test was performed to compare the mean and SD of ROIs within PTFJ and MFC cartilage. Correlation analyses were performed among the parameters age, Kellgren-Lawrence (KL) score, means and SDs of ROIs within PTFJ and MFC cartilage, T2 index, and T2SD index. Results: PTFJ cartilage had a significantly shorter T2 value than did MFC cartilage (P<0.0001). ROIs within PTFJ cartilage showed significantly smaller SDs than did those within MFC cartilage (P<0.0001). The average T2 value and SD of MFC and the T2SD index showed a positive correlation to the KL score (P<0.05). The correlation coefficients for the average T2 value, SD, and T2SD index of MFC were R=0.203, 0.254, and 0.268, respectively. However, there was no significant correlation between T2 values of PTFJ cartilage and KL score (P=0.643). Conclusion: PTFJ cartilage showed shorter and more homogeneous T2 values with a small SD than did MFC cartilage, regardless of the degree of OA at femorotibial compartments. PTFJ cartilage may be a useful internal standard reference to diagnose OA and would be

  4. Low-field EPR studies of levels near the top of the barrier in Mn 12-acetate reveal a new magnetization relaxation pathway

    Science.gov (United States)

    Rakvin, Boris; Žilić, Dijana; Dalal, Naresh S.; Harter, Andrew; Sanakis, Yiannis

    2006-07-01

    We show that X-band electron paramagnetic resonance (EPR) measurements using a dual-mode resonance cavity can directly probe the levels near the top of the magnetization reversal barrier in the single-molecule magnet (SMM) Mn 12-acetate. The observed transitions are much sharper than those reported in high-field EPR studies. The observed temperature dependence of the line positions points to the presence of a spin-diffusional mode. The correlation time for such fluctuations is of the order of 6×10 -8 s at 10 K, and follows an Arrhenius activation energy of 35-40 K. These results open a new avenue for understanding the mechanism of tunneling and spin-lattice relaxations in these SMMs.

  5. Dielectric dispersion, relaxation dynamics and thermodynamic studies of Beta-Alanine in aqueous solutions using picoseconds time domain reflectometry

    Science.gov (United States)

    Vinoth, K.; Ganesh, T.; Senthilkumar, P.; Sylvester, M. Maria; Karunakaran, D. J. S. Anand; Hudge, Praveen; Kumbharkhane, A. C.

    2017-09-01

    The aqueous solution of beta-alanine characterised and studied by their dispersive dielectric properties and relaxation process in the frequency domain of 10×106 Hz to 30×109 Hz with varying concentration in mole fractions and temperatures. The molecular interaction and dielectric parameters are discussed in terms of counter-ion concentration theory. The static permittivity (ε0), high frequency dielectric permittivity (ε∞) and excess dielectric parameters are accomplished by frequency depended physical properties and relaxation time (τ). Molecular orientation, ordering and correlation factors are reported as confirmation of intermolecular interactions. Ionic conductivity and thermo dynamical properties are concluded with the behaviour of the mixture constituents. Solute-solvent, solute-solute interaction, structure making and breaking abilities of the solute in aqueous medium are interpreted. Fourier Transform Infrared (FTIR) spectra of beta- alanine single crystal and liquid state have been studied. The 13C Nuclear Magnetic Resonance (NMR) spectral studies give the signature for resonating frequencies and chemical shifts of beta-alanine.

  6. Spin-charge coupled dynamics driven by a time-dependent magnetization

    Science.gov (United States)

    Tölle, Sebastian; Eckern, Ulrich; Gorini, Cosimo

    2017-03-01

    The spin-charge coupled dynamics in a thin, magnetized metallic system are investigated. The effective driving force acting on the charge carriers is generated by a dynamical magnetic texture, which can be induced, e.g., by a magnetic material in contact with a normal-metal system. We consider a general inversion-asymmetric substrate/normal-metal/magnet structure, which, by specifying the precise nature of each layer, can mimic various experimentally employed setups. Inversion symmetry breaking gives rise to an effective Rashba spin-orbit interaction. We derive general spin-charge kinetic equations which show that such spin-orbit interaction, together with anisotropic Elliott-Yafet spin relaxation, yields significant corrections to the magnetization-induced dynamics. In particular, we present a consistent treatment of the spin density and spin current contributions to the equations of motion, inter alia, identifying a term in the effective force which appears due to a spin current polarized parallel to the magnetization. This "inverse-spin-filter" contribution depends markedly on the parameter which describes the anisotropy in spin relaxation. To further highlight the physical meaning of the different contributions, the spin-pumping configuration of typical experimental setups is analyzed in detail. In the two-dimensional limit the buildup of dc voltage is dominated by the spin-galvanic (inverse Edelstein) effect. A measuring scheme that could isolate this contribution is discussed.

  7. Time-Domain Nuclear Magnetic Resonance Investigation of Water Dynamics in Different Ginger Cultivars.

    Science.gov (United States)

    Huang, Chongyang; Zhou, Qi; Gao, Shan; Bao, Qingjia; Chen, Fang; Liu, Chaoyang

    2016-01-20

    Different ginger cultivars may contain different nutritional and medicinal values. In this study, a time-domain nuclear magnetic resonance method was employed to study water dynamics in different ginger cultivars. Significant differences in transverse relaxation time T2 values assigned to the distribution of water in different parts of the plant were observed between Henan ginger and four other ginger cultivars. Ion concentration and metabolic analysis showed similar differences in Mn ion concentrations and organic solutes among the different ginger cultivars, respectively. On the basis of Pearson's correlation analysis, many organic solutes and 6-gingerol, the main active substance of ginger, exhibited significant correlations with water distribution as determined by NMR T2 relaxation, suggesting that the organic solute differences may impact water distribution. Our work demonstrates that low-field NMR relaxometry provides useful information about water dynamics in different ginger cultivars as affected by the presence of different organic solutes.

  8. Coaxial helicity injection and n=1 relaxation activity in the HIST spherical torus

    International Nuclear Information System (INIS)

    Nagata, M.; Oguro, T.; Kagei, Y.

    2003-01-01

    In order to understand comprehensively the role of the n=1 instability and relaxation on current generation processes in helicity-driven spherical systems, we have investigated dynamics of ST plasmas produced in the HIST device by decreasing the external toroidal field (TF) and reversing its sign in time. In result, we have discovered that the ST relaxes towards flipped ST configurations through formation of reversed-field pinches (RFPs)-like magnetic field profiles. Surprisingly, it has been observed that not only toroidal flux but also poloidal flux reverses sign spontaneously during the relaxation process. The dynamics associated to self-reversal of the magnetic fields is presently investigated by using three-dimensional magnetohydrodynamic (MHD) numerical simulations. Furthermore, we have first demonstrated that a flipped ST plasma can be successfully sustained by CHI. The n=1 relaxation activity is found to be essential in the current sustainment of the flipped ST as well as the spheromak and the unflipped ST. (author)

  9. Feasibility of high-resolution one-dimensional relaxation imaging at low magnetic field using a single-sided NMR scanner applied to articular cartilage

    Science.gov (United States)

    Rössler, Erik; Mattea, Carlos; Stapf, Siegfried

    2015-02-01

    Low field Nuclear Magnetic Resonance increases the contrast of the longitudinal relaxation rate in many biological tissues; one prominent example is hyaline articular cartilage. In order to take advantage of this increased contrast and to profile the depth-dependent variations, high resolution parameter measurements are carried out which can be of critical importance in an early diagnosis of cartilage diseases such as osteoarthritis. However, the maximum achievable spatial resolution of parameter profiles is limited by factors such as sensor geometry, sample curvature, and diffusion limitation. In this work, we report on high-resolution single-sided NMR scanner measurements with a commercial device, and quantify these limitations. The highest achievable spatial resolution on the used profiler, and the lateral dimension of the sensitive volume were determined. Since articular cartilage samples are usually bent, we also focus on averaging effects inside the horizontally aligned sensitive volume and their impact on the relaxation profiles. Taking these critical parameters into consideration, depth-dependent relaxation time profiles with the maximum achievable vertical resolution of 20 μm are discussed, and are correlated with diffusion coefficient profiles in hyaline articular cartilage in order to reconstruct T2 maps from the diffusion-weighted CPMG decays of apparent relaxation rates.

  10. Isotope effect on hydrated electron relaxation dynamics studied with time-resolved liquid jet photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Elkins, Madeline H.; Williams, Holly L. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Neumark, Daniel M., E-mail: dneumark@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2016-05-14

    The excited state relaxation dynamics of the solvated electron in H{sub 2}O and D{sub 2}O are investigated using time-resolved photoelectron spectroscopy in a liquid microjet. The data show that the initial excited state decays on a time scale of 75 ± 12 fs in H{sub 2}O and 102 ± 8 fs in D{sub 2}O, followed by slower relaxation on time scales of 400 ± 70 fs and 390 ± 70 fs that are isotopically invariant within the precision of our measurements. Based on the time evolution of the transient signals, the faster and slower time constants are assigned to p → s internal conversion (IC) of the hydrated electron and relaxation on the ground electronic state, respectively. This assignment is consistent with the non-adiabatic mechanism for relaxation of the hydrated electron and yields an isotope effect of 1.4 ± 0.2 for IC of the hydrated electron.

  11. Isotope effect on hydrated electron relaxation dynamics studied with time-resolved liquid jet photoelectron spectroscopy

    Science.gov (United States)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2016-05-01

    The excited state relaxation dynamics of the solvated electron in H2O and D2O are investigated using time-resolved photoelectron spectroscopy in a liquid microjet. The data show that the initial excited state decays on a time scale of 75 ± 12 fs in H2O and 102 ± 8 fs in D2O, followed by slower relaxation on time scales of 400 ± 70 fs and 390 ± 70 fs that are isotopically invariant within the precision of our measurements. Based on the time evolution of the transient signals, the faster and slower time constants are assigned to p → s internal conversion (IC) of the hydrated electron and relaxation on the ground electronic state, respectively. This assignment is consistent with the non-adiabatic mechanism for relaxation of the hydrated electron and yields an isotope effect of 1.4 ± 0.2 for IC of the hydrated electron.

  12. Advances in magnetic resonance 12

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 12, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains six chapters and begins with a discussion of diffusion and self-diffusion measurements by nuclear magnetic resonance. This is followed by separate chapters on spin-lattice relaxation time in hydrogen isotope mixtures; the principles of optical detection of nuclear spin alignment and nuclear quadropole resonance; and the spin-1 behavior, including the relaxation of the quasi-invariants of the motion of a system of pairs of dipolar coupled spin-1/2 nu

  13. Concentration dependence of fluorine impurity spin-lattice relaxation rate in bone mineral

    International Nuclear Information System (INIS)

    Code, R.F.; Armstrong, R.L.; Cheng, P.-T.

    1992-01-01

    The concentration dependence of the fluoride ion spin-lattice relaxation rate has been observed by nuclear magnetic resonance experiments on samples of defatted and dried bone. The 19 F spin-lattice relaxation rates increased linearly with bone fluoride concentration. Different results were obtained from trabecular than from cortical bone. For the same macroscopic fluoride content per gram of bone calcium, relaxation rate is significantly faster in cortical bone. Relaxation rates in cortical bone samples prepared from rats and dogs were apparently controlled by the same species-independent processes. For samples from beagle dogs, bulk fluoride concentrations measured by neutron activation analysis were 3.1±0.3 times greater in trabecular bone than in corresponding cortical bone. The beagle spin-lattice relaxation data suggest that microscopic fluoride concentrations in bone mineral were 1.8±0.4 times greater in trabecular bone than in cortical bone. It is concluded that accumulation of fluoride impurities in bone mineral is non-uniform. (author)

  14. Nuclear spin-magnon relaxation in two-dimensional Heisenberg antiferromagnets

    International Nuclear Information System (INIS)

    Wal, A.J. van der.

    1979-01-01

    Experiments are discussed of the dependence on temperature and magnetic field of the longitudinal relaxation time of single crystals of antiferromagnetically ordered insulators, i.e. in the temperature range below the Neel temperature and in fields up to the spin-flop transition. The experiments are done on 19 F nuclei in the Heisenberg antiferromagnets K 2 MnF 4 and K 2 NiF 4 , the magnetic structure of which is two-dimensional quadratic. (C.F.)

  15. Time domain-nuclear magnetic resonance study of chars from southern hardwoods

    International Nuclear Information System (INIS)

    Elder, Thomas; Labbe, Nicole; Harper, David; Rials, Timothy

    2006-01-01

    Chars from the thermal degradation of silver maple (Acer saccharinum), red maple (Acer rubrum), sugar maple (Acer saccharum), and white oak (Quercus spp.), performed at temperatures from 250 to 350 o C, were examined using time domain-nuclear magnetic resonance spectroscopy. Prior to analysis, the chars were equilibrated under conditions insuring the presence of bound water only and both bound water and free water. Transverse relaxation times were found to be related to the moisture content of the chars, which varied with temperature. At elevated temperatures the number of signals assigned to free water decreased, indicative of an increase in pore size within the chars

  16. Prolonged bone marrow T1-relaxation in acute leukaemia. In vivo tissue characterization by magnetic resonance imaging

    DEFF Research Database (Denmark)

    Thomsen, C; Sørensen, P G; Karle, H

    1987-01-01

    In vivo tissue characterization by measurement of T1- and T2-relaxation processes is one of the greatest potentials of magnetic resonance imaging (MRI). This may be especially useful in the evaluation of bone marrow disorders as the MRI-signal from bone marrow is not influenced by the overlying...... osseous tissue. Nine patients with acute leukaemia, one patient with myelodysplastic syndrome, and ten normal volunteers were included in the study. The T1- and T2-relaxation processes were measured in the lumbar spine bone marrow using a wholebody superconductive MR-scanner operating at 1.5 Tesla.......38-0.60 sec.). No significant difference was seen in the T2-relaxation process. In relation to chemotherapy T1 decreased towards the normal range in the patients who obtained complete remission, whereas T1 remained prolonged in the patients who did not respond successfully to the treatment. The results...

  17. Thermal Fluctuations in the Magnetic Ground State of the Molecular Cluster Mn12O12 Acetate from μSR and Proton NMR Relaxation

    International Nuclear Information System (INIS)

    Lascialfari, A.; Borsa, F.; Carretta, P.; Jang, Z.H.; Borsa, F.; Gatteschi, D.

    1998-01-01

    Measurements of the spin-lattice relaxation rate are reported for muons and protons as a function of temperature for different values of the applied magnetic field in the Mn 12 O 12 molecular cluster. Strongly field dependent maxima in the relaxation rate versus temperature are observed below 50thinspthinspK. The results are explained in terms of thermal fluctuations of the total magnetization of the cluster among the different orientations with respect to the anisotropy axis. The lifetimes of the different m components of the total spin, S T =10 , of the molecule are obtained from the experiment and shown to be consistent with the ones expected from a spin-phonon coupling mechanism. No clear evidence for macroscopic quantum tunneling was observed in the field dependence of the proton relaxation rate at low T . copyright 1998 The American Physical Society

  18. The effects of some parameters on the calculated 1H NMR relaxation times of cell water

    International Nuclear Information System (INIS)

    Koivula, A.; Suominen, K.; Kiviniitty, K.

    1976-01-01

    The effect of some parameters on the longitudinal and transverse relaxation times is calculated and a comparison between the calculated relaxation times with the results of different measurements is made. (M.S.)

  19. Space and time dynamical heterogeneity in glassy relaxation. The role of democratic clusters

    International Nuclear Information System (INIS)

    Appignanesi, G A; Rodriguez Fris, J A

    2009-01-01

    In this work we review recent computational advances in the understanding of the relaxation dynamics of supercooled glass-forming liquids. In such a supercooled regime these systems experience a striking dynamical slowing down which can be rationalized in terms of the picture of dynamical heterogeneities, wherein the dynamics can vary by orders of magnitude from one region of the sample to another and where the sizes and timescales of such slowly relaxing regions are expected to increase considerably as the temperature is decreased. We shall focus on the relaxation events at a microscopic level and describe the finding of the collective motions of particles responsible for the dynamical heterogeneities. In so doing, we shall demonstrate that the dynamics in different regions of the system is not only heterogeneous in space but also in time. In particular, we shall be interested in the events relevant to the long-time structural relaxation or α relaxation. In this regard, we shall focus on the discovery of cooperatively relaxing units involving the collective motion of relatively compact clusters of particles, called 'democratic clusters' or d-clusters. These events have been shown to trigger transitions between metabasins of the potential energy landscape (collections of similar configurations or structures) and to consist of the main steps in the α relaxation. Such events emerge in systems quite different in nature such as simple model glass formers and supercooled amorphous water. Additionally, another relevant issue in this context consists in the determination of a link between structure and dynamics. In this context, we describe the relationship between the d-cluster events and the constraints that the local structure poses on the relaxation dynamics, thus revealing their role in reformulating structural constraints. (topical review)

  20. Optimizing the Relaxivity of MRI Probes at High Magnetic Field Strengths With Binuclear GdIII Complexes

    Directory of Open Access Journals (Sweden)

    Loredana Leone

    2018-05-01

    Full Text Available The key criteria to optimize the relaxivity of a Gd(III contrast agent at high fields (defined as the region ≥ 1.5 T can be summarized as follows: (i the occurrence of a rotational correlation time τR in the range of ca. 0.2–0.5 ns; (ii the rate of water exchange is not critical, but a τM < 100 ns is preferred; (iii a relevant contribution from water molecules in the second sphere of hydration. In addition, the use of macrocycle-based systems ensures the formation of thermodynamically and kinetically stable Gd(III complexes. Binuclear Gd(III complexes could potentially meet these requirements. Their efficiency depends primarily on the degree of flexibility of the linker connecting the two monomeric units, the absence of local motions and the presence of contribution from the second sphere water molecules. With the aim to maximize relaxivity (per Gd over a wide range of magnetic field strengths, two binuclear Gd(III chelates derived from the well-known macrocyclic systems DOTA-monopropionamide and HPDO3A (Gd2L1 and Gd2L2, respectively were synthesized through a multistep synthesis. Chemical Exchange Saturation Transfer (CEST experiments carried out on Eu2L2 at different pH showed the occurrence of a CEST effect at acidic pH that disappears at neutral pH, associated with the deprotonation of the hydroxyl groups. Then, a complete 1H and 17O NMR relaxometric study was carried out in order to evaluate the parameters that govern the relaxivity associated with these complexes. The relaxivities of Gd2L1 and Gd2L2 (20 MHz, 298 K are 8.7 and 9.5 mM−1 s−1, respectively, +77% and +106% higher than the relaxivity values of the corresponding mononuclear GdDOTAMAP-En and GdHPDO3A complexes. A significant contribution of second sphere water molecules was accounted for the strong relaxivity enhancement of Gd2L2. MR phantom images of the dinuclear complexes compared to GdHPDO3A, recorded at 7 T, confirmed the superiority of Gd2L2. Finally, ab initio

  1. relaxGUI: a new software for fast and simple NMR relaxation data analysis and calculation of ps-ns and μs motion of proteins

    International Nuclear Information System (INIS)

    Bieri, Michael; D’Auvergne, Edward J.; Gooley, Paul R.

    2011-01-01

    Investigation of protein dynamics on the ps-ns and μs-ms timeframes provides detailed insight into the mechanisms of enzymes and the binding properties of proteins. Nuclear magnetic resonance (NMR) is an excellent tool for studying protein dynamics at atomic resolution. Analysis of relaxation data using model-free analysis can be a tedious and time consuming process, which requires good knowledge of scripting procedures. The software relaxGUI was developed for fast and simple model-free analysis and is fully integrated into the software package relax. It is written in Python and uses wxPython to build the graphical user interface (GUI) for maximum performance and multi-platform use. This software allows the analysis of NMR relaxation data with ease and the generation of publication quality graphs as well as color coded images of molecular structures. The interface is designed for simple data analysis and management. The software was tested and validated against the command line version of relax.

  2. relaxGUI: a new software for fast and simple NMR relaxation data analysis and calculation of ps-ns and μs motion of proteins.

    Science.gov (United States)

    Bieri, Michael; d'Auvergne, Edward J; Gooley, Paul R

    2011-06-01

    Investigation of protein dynamics on the ps-ns and μs-ms timeframes provides detailed insight into the mechanisms of enzymes and the binding properties of proteins. Nuclear magnetic resonance (NMR) is an excellent tool for studying protein dynamics at atomic resolution. Analysis of relaxation data using model-free analysis can be a tedious and time consuming process, which requires good knowledge of scripting procedures. The software relaxGUI was developed for fast and simple model-free analysis and is fully integrated into the software package relax. It is written in Python and uses wxPython to build the graphical user interface (GUI) for maximum performance and multi-platform use. This software allows the analysis of NMR relaxation data with ease and the generation of publication quality graphs as well as color coded images of molecular structures. The interface is designed for simple data analysis and management. The software was tested and validated against the command line version of relax.

  3. Spin relaxation and the Kondo effect in transition metal dichalcogenide monolayers

    International Nuclear Information System (INIS)

    Rostami, Habib; Moghaddam, Ali G; Asgari, Reza

    2016-01-01

    We investigate the spin relaxation and Kondo resistivity caused by magnetic impurities in doped transition metal dichalcogenide monolayers. We show that momentum and spin relaxation times, due to the exchange interaction by magnetic impurities, are much longer when the Fermi level is inside the spin-split region of the valence band. In contrast to the spin relaxation, we find that the dependence of Kondo temperature T K on the doping is not strongly affected by the spin–orbit induced splitting, although only one of the spin species are present at each valley. This result, which is obtained using both perturbation theory and the poor man’s scaling methods, originates from the intervalley spin-flip scattering in the spin-split region. We further demonstrate the decline in the conductivity with temperatures close to T K , which can vary with the doping. Our findings reveal the qualitative difference with the Kondo physics in conventional metallic systems and other Dirac materials. (paper)

  4. A Linear Tetranuclear Dysprosium(III) Compound Showing Single-Molecule Magnet Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Hongshan; Xu, Gong Feng; Guo, Yun-Nan; Gamez, Patrick; Beavers, Christine M; Teat, Simon J; Tang, Jinkui

    2010-04-20

    Although magnetic measurements reveal a single-relaxation time for a linear tetranuclear Dy(III) compound, the wide distribution of the relaxation time observed clearly suggests the presence of two slightly different anisotropic centres, therefore opening new avenues for investigating the relaxation dynamics of lanthanide aggregates.

  5. Spin–transfer torque oscillator in magnetic tunneling junction with short–wavelength magnon excitation

    Directory of Open Access Journals (Sweden)

    Shizhu Qiao

    2018-05-01

    Full Text Available Bloch–Bloembergen–Slonczewski (BBS equation is established by extending Bloch–Bloembergen equation, and it is used to study magnetization oscillation in the free magnetic layer of a magnetic tunneling junction. Since both short–wavelength magnon excitation and spin–transfer torque are taken into account in the BBS equation, it is distinguished from Landau–Lifshitz–Gilbert–Slonczewski equation. The macro–spin BBS model predicts that the transverse relaxation time in free magnetic layer should be long enough, as compared with the longitudinal relaxation time, to achieve stable magnetization oscillation for spin–transfer torque oscillator application. Moreover, field–like torque favors the tolerance of fast transverse relaxation, which makes magnetic tunneling junction a better choice than spin valve for the spin–transfer torque oscillator application.

  6. Quantifying protein dynamics in the ps–ns time regime by NMR relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, Griselda; LeMaster, David M., E-mail: david.lemaster@health.ny.gov [University at Albany - SUNY, Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, School of Public Health (United States)

    2016-11-15

    Both {sup 15}N chemical shift anisotropy (CSA) and sufficiently rapid exchange linebroadening transitions exhibit relaxation contributions that are proportional to the square of the magnetic field. Deconvoluting these contributions is further complicated by residue-dependent variations in protein amide {sup 15}N CSA values which have proven difficult to accurately measure. Exploiting recently reported improvements for the implementation of T{sub 1} and T{sub 1ρ} experiments, field strength-dependent studies have been carried out on the B3 domain of protein G (GB3) as well as on the immunophilin FKBP12 and a H87V variant of that protein in which the major conformational exchange linebroadening transition is suppressed. By applying a zero frequency spectral density rescaling analysis to the relaxation data collected at magnetic fields from 500 to 900 MHz {sup 1}H, differential residue-specific {sup 15}N CSA values have been obtained for GB3 which correlate with those derived from solid state and liquid crystalline NMR measurements to a level similar to the correlation among those previously reported studies. Application of this analysis protocol to FKBP12 demonstrated an efficient quantitation of both weak exchange linebroadening contributions and differential residue-specific {sup 15}N CSA values. Experimental access to such differential residue-specific {sup 15}N CSA values should significantly facilitate more accurate comparisons with molecular dynamics simulations of protein motion that occurs within the timeframe of global molecular tumbling.

  7. Brownian rotational relaxation and power absorption in magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Goya, G.F. [Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50009 Zaragoza (Spain)]. E-mail: goya@unizar.es; Fernandez-Pacheco, R. [Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50009 Zaragoza (Spain); Arruebo, M. [Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50009 Zaragoza (Spain); Cassinelli, N. [Electronics Division, Bauer and Associates, Buenos Aires (Argentina); Facultad de Ingenieria, UNLP (Argentina); Ibarra, M.R. [Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50009 Zaragoza (Spain)

    2007-09-15

    We present a study of the power absorption efficiency in several magnetite-based colloids, to asses their potential as magnetic inductive hyperthermia (MIH) agents. Relaxation times {tau} were measured through the imaginary susceptibility component {chi}{sup '}'(T), and analyzed within Debye's theory of dipolar fluid. The results indicated Brownian rotational relaxation and allowed to calculate the hydrodynamic radius close to the values obtained from photon correlation. The study of the colloid performances as power absorbers showed no detectable increase of temperature for dextran-coated Fe{sub 3}O{sub 4} nanoparticles, whereas a second Fe{sub 3}O{sub 4}-based dispersion of similar concentration could be heated up to 12K after 30min under similar experimental conditions. The different power absorption efficiencies are discussed in terms of the magnetic structure of the nanoparticles.

  8. Temperature dependence of relaxation times in proton components of fatty acids

    International Nuclear Information System (INIS)

    Kuroda, Kagayaki; Iwabuchi, Taku; Saito, Kensuke; Obara, Makoto; Honda, Masatoshi; Imai, Yutaka

    2011-01-01

    We examined the temperature dependence of relaxation times in proton components of fatty acids in various samples in vitro at 11 tesla as a standard calibration data for quantitative temperature imaging of fat. The spin-lattice relaxation time, T 1 , of both the methylene (CH 2 ) chain and terminal methyl (CH 3 ) was linearly related to temperature (r>0.98, P 2 signal for calibration and observed the signal with 18% of CH 3 to estimate temperature. These findings suggested that separating the fatty acid components would significantly improve accuracy in quantitative thermometry for fat. Use of the T 1 of CH 2 seems promising in terms of reliability and reproducibility in measuring temperature of fat. (author)

  9. Relaxation time measurements of white and grey matter in multiple sclerosis patients

    International Nuclear Information System (INIS)

    Rinck, P.A.; Appel, B.; Moens, E.; Academisch Ziekenhuis Middelheim, Antwerp

    1987-01-01

    In a patient population of some 450 with definite, probable, and possible multiple sclerosis referred to us for MRI, some 40 suffering from definite MS were chosen randomly for relaxation time measurements of plaque-free grey and white matter. T 1 values could not be used for diagnostic purposes owing to their broad standard deviation. Overall white matter T 2 was slightly higher in MS patients than in a non-MS population (94 ms versus 89 ms). Because these changes are not visible in MR images, relaxation time measurements may prove valuable for differential diagnosis. (orig.) [de

  10. Measurement of N and C diffusion in Sm2Fe17 by magnetic relaxation

    International Nuclear Information System (INIS)

    Mommer, N.; Hirscher, M.; Gerlach, M.; Van Lier, J.; Kronmueller, H.; Kubis, M.; Mueller, K.-H.

    1998-01-01

    Magnetic after-effect (MAE) measurements of nitrided and carburized Sm 2 Fe 17 compounds were performed in the temperature range of 140 K to 480 K. Both nitrided and carburized compounds show relaxation maxima at 285 and 300 K, respectively, which are absent in pure Sm 2 Fe 17 compounds. Therefore, these relaxation maxima are attributed to jumps of interstitially dissolved nitrogen or carbon atoms. Numerical evaluation yielded an activation enthalpy Q N (0.84±0.05) eV and a pre-exponential factor τ 0 N =3.10 -15±1 s for the short-range diffusion of N atoms. The corresponding values for the carbon diffusion are Q C =(0.91±0.05) eV and τ 0 C =1.10 -15±1 s. The carbon and nitrogen content of the samples was determined from the increase in mass during nitrogenation or carburization to Sm 2 Fe 17 N 1.2 and Sm 2 Fe 17 C 2.6 . (orig.)

  11. Multiple-relaxation-time lattice Boltzmann model for compressible fluids

    International Nuclear Information System (INIS)

    Chen Feng; Xu Aiguo; Zhang Guangcai; Li Yingjun

    2011-01-01

    We present an energy-conserving multiple-relaxation-time finite difference lattice Boltzmann model for compressible flows. The collision step is first calculated in the moment space and then mapped back to the velocity space. The moment space and corresponding transformation matrix are constructed according to the group representation theory. Equilibria of the nonconserved moments are chosen according to the need of recovering compressible Navier-Stokes equations through the Chapman-Enskog expansion. Numerical experiments showed that compressible flows with strong shocks can be well simulated by the present model. The new model works for both low and high speeds compressible flows. It contains more physical information and has better numerical stability and accuracy than its single-relaxation-time version. - Highlights: → We present an energy-conserving MRT finite-difference LB model. → The moment space is constructed according to the group representation theory. → The new model works for both low and high speeds compressible flows. → It has better numerical stability and wider applicable range than its SRT version.

  12. Graphene oxide-Fe{sub 3}O{sub 4} nanoparticle composite with high transverse proton relaxivity value for magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesha, N.; Srivastava, Chandan, E-mail: csrivastava@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Poojar, Pavan; Geethanath, Sairam [Medical Imaging Research Centre, Dayananda Sagar Institutions, Bangalore 560078 (India); Qurishi, Yasrib [Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012 (India)

    2015-04-21

    The potential of graphene oxide–Fe{sub 3}O{sub 4} nanoparticle (GO-Fe{sub 3}O{sub 4}) composite as an image contrast enhancing material in magnetic resonance imaging has been investigated. Proton relaxivity values were obtained in three different homogeneous dispersions of GO-Fe{sub 3}O{sub 4} composites synthesized by precipitating Fe{sub 3}O{sub 4} nanoparticles in three different reaction mixtures containing 0.01 g, 0.1 g, and 0.2 g of graphene oxide. A noticeable difference in proton relaxivity values was observed between the three cases. A comprehensive structural and magnetic characterization revealed discrete differences in the extent of reduction of the graphene oxide and spacing between the graphene oxide sheets in the three composites. The GO-Fe{sub 3}O{sub 4} composite framework that contained graphene oxide with least extent of reduction of the carboxyl groups and largest spacing between the graphene oxide sheets provided the optimum structure for yielding a very high transverse proton relaxivity value. It was found that the GO-Fe{sub 3}O{sub 4} composites possessed good biocompatibility with normal cell lines, whereas they exhibited considerable toxicity towards breast cancer cells.

  13. Influence of relaxation times on the Bloch-Siegert shift

    International Nuclear Information System (INIS)

    Cao Long Van

    1981-01-01

    A new method for calculations of Bloch-Siegert shifts in resonances between excited states with the inclusion of relaxation times is given. It will be shown that in this case the definition of the resonance given by I. Bialynicka-Birula is in agreement with the criterion defining the resonance used by D.A. Andrews and G. Newton. (author)

  14. The relaxation time of processes in a FitzHugh-Nagumo neural system with time delay

    International Nuclear Information System (INIS)

    Gong Ailing; Zeng Chunhua; Wang Hua

    2011-01-01

    In this paper, we study the relaxation time (RT) of the steady-state correlation function in a FitzHugh-Nagumo neural system under the presence of multiplicative and additive white noises and time delay. The noise correlation parameter λ can produce a critical behavior in the RT as functions of the multiplicative noise intensity D, the additive noise intensity Q and the time delay τ. That is, the RT decreases as the noise intensities D and Q increase, and increases as the time delay τ increases below the critical value of λ. However, above the critical value, the RT first increases, reaches a maximum, and then decreases as D, Q and τ increase, i.e. a noise intensity D or Q and a time delay τ exist, at which the time scales of the relaxation process are at their largest. In addition, the additive noise intensity Q can also produce a critical behavior in the RT as a function of λ. The noise correlation parameter λ first increases the RT of processes, then decreases it below the critical value of Q. Above the critical value, λ increases it.

  15. Time, stress, and temperature-dependent deformation in nanostructured copper: Stress relaxation tests and simulations

    International Nuclear Information System (INIS)

    Yang, Xu-Sheng; Wang, Yun-Jiang; Wang, Guo-Yong; Zhai, Hui-Ru; Dai, L.H.; Zhang, Tong-Yi

    2016-01-01

    In the present work, stress relaxation tests, high-resolution transmission electron microscopy (HRTEM), and molecular dynamics (MD) simulations were conducted on coarse-grained (cg), nanograined (ng), and nanotwinned (nt) copper at temperatures of 22 °C (RT), 30 °C, 40 °C, 50 °C, and 75 °C. The comprehensive investigations provide sufficient information for the building-up of a formula to describe the time, stress, and temperature-dependent deformation and clarify the relationship among the strain rate sensitivity parameter, stress exponent, and activation volume. The typically experimental curves of logarithmic plastic strain rate versus stress exhibited a three staged relaxation process from a linear high stress relaxation region to a subsequent nonlinear stress relaxation region and finally to a linear low stress relaxation region, which only showed-up at the test temperatures higher than 22 °C, 22 °C, and 30 °C, respectively, in the tested cg-, ng-, and nt-Cu specimens. The values of stress exponent, stress-independent activation energy, and activation volume were determined from the experimental data in the two linear regions. The determined activation parameters, HRTEM images, and MD simulations consistently suggest that dislocation-mediated plastic deformation is predominant in all tested cg-, ng-, and nt-Cu specimens in the initial linear high stress relaxation region at the five relaxation temperatures, whereas in the linear low stress relaxation region, the grain boundary (GB) diffusion-associated deformation is dominant in the ng- and cg-Cu specimens, while twin boundary (TB) migration, i.e., twinning and detwinning with parallel partial dislocations, governs the time, stress, and temperature-dependent deformation in the nt-Cu specimens.

  16. Relaxation of the Shallow Acceptor Center Magnetic Moment in a Highly Doped Silicon

    CERN Document Server

    Mamedov, T N; Herlach, D; Gorelkin, V N; Gritsaj, K I; Duginov, V N; Kormann, O; Major, J V; Stoikov, A V; Zimmermann, U

    2001-01-01

    Results on the temperature dependence of the residual polarization of negative muons in crystalline silicon with germanium, boron and phosphorus impurities are presented. The measurements were carried out in a magnetic field of 0.1 T transverse to the direction of the muon spin in the temperature range 4.2-300 K. It is found that in a silicon sample with a high concentration of germanium impurity (9\\cdot 10^{19} cm^{-3}), as in the samples of n- and p-type silicon with impurity concentrations up to \\sim 10^{17} cm^{-3}, the relaxation rate \

  17. Nuclear relaxation study of the spin dynamics in a one-dimensional Heisenberg system, TMMC

    International Nuclear Information System (INIS)

    Bakheit, M.A.

    1974-01-01

    Changes in the nuclear relaxation time as a function of the magnetic field intensity in TMMC are very different wether the field direction is parallel or perpendicular to the direction of the exchange chains (vector c). In parallel field, the relaxation probability increases as the field decreases. The process of spin diffusion in a one-dimensional system is well illustrated by the changes experimentally observed. In perpendicular field, the relaxation probability is constant as far as H 0 >2kG, it clearly decreases for H 0 [fr

  18. Using Dielectric Relaxation Spectroscopy to Characterize the Glass Transition Time of Polydextrose.

    Science.gov (United States)

    Buehler, Martin G; Kindle, Michael L; Carter, Brady P

    2015-06-01

    Dielectric relaxation spectroscopy was used to characterize the glass transition time, tg , of polydextrose, where the glass transition temperature, Tg , and water activity, aw (relative humidity), were held constant during polydextrose relaxation. The tg was determined from a shift in the peak frequency of the imaginary capacitance spectrum with time. It was found that when the peak frequency reaches 30 mHz, polydextrose undergoes glass transition. Glass transition time, tg , is the time for polydextrose to undergo glass transition at a specific Tg and aw . Results lead to a modified state diagram, where Tg is depressed with increasing aw . This curve forms a boundary: (a) below the boundary, polydextrose does not undergo glass transition and (b) above the boundary, polydextrose rapidly undergoes glass transition. As the boundary curve is specified by a tg value, it can assist in the selection of storage conditions. An important point on the boundary curve is at aw = 0, where Tg0 = 115 °C. The methodology can also be used to calculate the stress-relaxation viscosity of polydextrose as a function of Tg and aw , which is important when characterizing the flow properties of polydextrose initially in powder form. © 2015 Institute of Food Technologists®

  19. Real-Time Observation of Ultrafast Intraband Relaxation and Exciton Multiplication in PbS Quantum Dots

    KAUST Repository

    El-Ballouli, Ala’a O.

    2014-03-19

    We examine ultrafast intraconduction band relaxation and multiple-exciton generation (MEG) in PbS quantum dots (QDs) using transient absorption spectroscopy with 120 fs temporal resolution. The intraconduction band relaxation can be directly and excellently resolved spectrally and temporally by applying broadband pump-probe spectroscopy to excite and detect the wavelengths around the exciton absorption peak, which is located in the near-infrared region. The time-resolved data unambiguously demonstrate that the intraband relaxation time progressively increases as the pump-photon energy increases. Moreover, the relaxation time becomes much shorter as the size of the QDs decreases, indicating the crucial role of spatial confinement in the intraband relaxation process. Additionally, our results reveal the systematic scaling of the intraband relaxation time with both excess energy above the effective energy band gap and QD size. We also assess MEG in different sizes of the QDs. Under the condition of high-energy photon excitation, which is well above the MEG energy threshold, ultrafast bleach recovery due to the nonradiative Auger recombination of the multiple electron-hole pairs provides conclusive experimental evidence for the presence of MEG. For instance, we achieved quantum efficiencies of 159, 129 and 106% per single-absorbed photon at pump photoexcition of three times the band gap for QDs with band gaps of 880 nm (1.41 eV), 1000 nm (1.24 eV) and 1210 nm (1.0 eV), respectively. These findings demonstrate clearly that the efficiency of transferring excess photon energy to carrier multiplication is significantly increased in smaller QDs compared with larger ones. Finally, we discuss the Auger recombination dynamics of the multiple electron-hole pairs as a function of QD size.

  20. Deducting the temperature dependence of the structural relaxation time in equilibrium far below the nominal Tg by aging the decoupled conductivity relaxation to equilibrium.

    Science.gov (United States)

    Wojnarowska, Z; Ngai, K L; Paluch, M

    2014-05-07

    Using broadband dielectric spectroscopy we investigate the changes in the conductivity relaxation times τσ observed during the physical aging of the protic ionic conductor carvedilol dihydrogen phosphate (CP). Due to the large decoupling of ion diffusion from host molecule reorientation, the ion conductivity relaxation time τσ(Tage,tage) can be directly measured at temperatures Tage below Tg for exceedingly long aging times tage till τσ(Tage,tage) has reached the equilibrium value τσ(eq)(Tage). The dependence of τσ(Tage,tage) on tage is well described by the stretched exponential function, τσ(Tage, tage) = Aexp[-((tage)/(τage(Tage)))(β)] + τσ(eq)(Tage), where β is a constant and τage(Tage) can be taken as the structural α-relaxation time of the equilibrium liquid at T = Tage. The value of τσ(eq)(Tage) obtained after 63 days long annealing of CP, deviates from the Vogel-Fulcher-Tammann-Hesse (VFTHσ) dependence of τσ(T) determined from data taken above Tg and extrapolated down to Tage. Concurrently, τage(Tage) also deviates from the Vogel-Fulcher-Tammann-Hesse (VFTHα) dependence. The results help to answer the longstanding question of whether the VFTH dependence of τσ(T) as well as the structural α-relaxation time τα(T) holds or not in the equilibrium liquid state far below Tg.

  1. Electron-spin dynamics in Mn-doped GaAs using time-resolved magneto-optical techniques

    Science.gov (United States)

    Akimov, I. A.; Dzhioev, R. I.; Korenev, V. L.; Kusrayev, Yu. G.; Zhukov, E. A.; Yakovlev, D. R.; Bayer, M.

    2009-08-01

    We study the electron-spin dynamics in p -type GaAs doped with magnetic Mn acceptors by means of time-resolved pump-probe and photoluminescence techniques. Measurements in transverse magnetic fields show a long spin-relaxation time of 20 ns that can be uniquely related to electrons. Application of weak longitudinal magnetic fields above 100 mT extends the spin-relaxation times up to microseconds which is explained by suppression of the Bir-Aronov-Pikus spin relaxation for the electron on the Mn acceptor.

  2. Spin-Relaxation Anisotropy in a GaAs Quantum Dot

    NARCIS (Netherlands)

    Scarlino, P.; Kawakami, E.; Stano, P.; Shafiei, M.; Reichl, C.; Wegscheider, W.; Vandersypen, L.M.K.

    2014-01-01

    We report that the electron spin-relaxation time T1 in a GaAs quantum dot with a spin-1/2 ground state has a 180° periodicity in the orientation of the in-plane magnetic field. This periodicity has been predicted for circular dots as being due to the interplay of Rashba and Dresselhaus spin orbit

  3. Multi-Quanta Spin-Locking Nuclear Magnetic Resonance Relaxation Measurements: An Analysis of the Long-Time Dynamical Properties of Ions and Water Molecules Confined within Dense Clay Sediments

    Directory of Open Access Journals (Sweden)

    Patrice Porion

    2017-11-01

    Full Text Available Solid/liquid interfaces are exploited in various industrial applications because confinement strongly modifies the physico-chemical properties of bulk fluids. In that context, investigating the dynamical properties of confined fluids is crucial to identify and better understand the key factors responsible for their behavior and to optimize their structural and dynamical properties. For that purpose, we have developed multi-quanta spin-locking nuclear magnetic resonance relaxometry of quadrupolar nuclei in order to fill the gap between the time-scales accessible by classical procedures (like dielectric relaxation, inelastic and quasi-elastic neutron scattering and obtain otherwise unattainable dynamical information. This work focuses on the use of quadrupolar nuclei (like 2H, 7Li and 133Cs, because quadrupolar isotopes are the most abundant NMR probes in the periodic table. Clay sediments are the confining media selected for this study because they are ubiquitous materials implied in numerous industrial applications (ionic exchange, pollutant absorption, drilling, waste storing, cracking and heterogeneous catalysis.

  4. Fast evaluation of protein dynamics from deficient 15N relaxation data

    KAUST Repository

    Jaremko, Łukasz

    2018-03-28

    Simple and convenient method of protein dynamics evaluation from the insufficient experimental N relaxation data is presented basing on the ratios, products, and differences of longitudinal and transverse N relaxation rates obtained at a single magnetic field. Firstly, the proposed approach allows evaluating overall tumbling correlation time (nanosecond time scale). Next, local parameters of the model-free approach characterizing local mobility of backbone amide N–H vectors on two different time scales, S and R, can be elucidated. The generalized order parameter, S, describes motions on the time scale faster than the overall tumbling correlation time (pico- to nanoseconds), while the chemical exchange term, R, identifies processes slower than the overall tumbling correlation time (micro- to milliseconds). Advantages and disadvantages of different methods of data handling are thoroughly discussed.

  5. Fast evaluation of protein dynamics from deficient 15N relaxation data

    KAUST Repository

    Jaremko, Łukasz; Jaremko, Mariusz; Ejchart, Andrzej; Nowakowski, Michał

    2018-01-01

    Simple and convenient method of protein dynamics evaluation from the insufficient experimental N relaxation data is presented basing on the ratios, products, and differences of longitudinal and transverse N relaxation rates obtained at a single magnetic field. Firstly, the proposed approach allows evaluating overall tumbling correlation time (nanosecond time scale). Next, local parameters of the model-free approach characterizing local mobility of backbone amide N–H vectors on two different time scales, S and R, can be elucidated. The generalized order parameter, S, describes motions on the time scale faster than the overall tumbling correlation time (pico- to nanoseconds), while the chemical exchange term, R, identifies processes slower than the overall tumbling correlation time (micro- to milliseconds). Advantages and disadvantages of different methods of data handling are thoroughly discussed.

  6. Kubo formulas for the shear and bulk viscosity relaxation times and the scalar field theory shear τπ calculation

    Science.gov (United States)

    Czajka, Alina; Jeon, Sangyong

    2017-06-01

    In this paper we provide a quantum field theoretical study on the shear and bulk relaxation times. First, we find Kubo formulas for the shear and the bulk relaxation times, respectively. They are found by examining response functions of the stress-energy tensor. We use general properties of correlation functions and the gravitational Ward identity to parametrize analytical structures of the Green functions describing both sound and diffusion mode. We find that the hydrodynamic limits of the real parts of the respective energy-momentum tensor correlation functions provide us with the method of computing both the shear and bulk viscosity relaxation times. Next, we calculate the shear viscosity relaxation time using the diagrammatic approach in the Keldysh basis for the massless λ ϕ4 theory. We derive a respective integral equation which enables us to compute η τπ and then we extract the shear relaxation time. The relaxation time is shown to be inversely related to the thermal width as it should be.

  7. Simulation of Cavity Flow by the Lattice Boltzmann Method using Multiple-Relaxation-Time scheme

    International Nuclear Information System (INIS)

    Ryu, Seung Yeob; Kang, Ha Nok; Seo, Jae Kwang; Yun, Ju Hyeon; Zee, Sung Quun

    2006-01-01

    Recently, the lattice Boltzmann method(LBM) has gained much attention for its ability to simulate fluid flows, and for its potential advantages over conventional CFD method. The key advantages of LBM are, (1) suitability for parallel computations, (2) absence of the need to solve the time-consuming Poisson equation for pressure, and (3) ease with multiphase flows, complex geometries and interfacial dynamics may be treated. The LBM using relaxation technique was introduced by Higuerea and Jimenez to overcome some drawbacks of lattice gas automata(LGA) such as large statistical noise, limited range of physical parameters, non- Galilean invariance, and implementation difficulty in three-dimensional problem. The simplest LBM is the lattice Bhatnager-Gross-Krook(LBGK) equation, which based on a single-relaxation-time(SRT) approximation. Due to its extreme simplicity, the lattice BGK(LBGK) equation has become the most popular lattice Boltzmann model in spite of its well-known deficiencies, for example, in simulating high-Reynolds numbers flow. The Multiple-Relaxation-Time(MRT) LBM was originally developed by D'Humieres. Lallemand and Luo suggests that the use of a Multiple-Relaxation-Time(MRT) models are much more stable than LBGK, because the different relaxation times can be individually tuned to achieve 'optimal' stability. A lid-driven cavity flow is selected as the test problem because it has geometrically singular points in the flow, but geometrically simple. Results are compared with those using SRT, MRT model in the LBGK method and previous simulation data using Navier-Stokes equations for the same flow conditions. In summary, LBM using MRT model introduces much less spatial oscillations near geometrical singular points, which is important for the successful simulation of higher Reynolds number flows

  8. Corroborative evidences of TV γ -scaling of the α-relaxation originating from the primitive relaxation/JG β relaxation

    Science.gov (United States)

    Ngai, K. L.; Paluch, M.

    2017-12-01

    Successful thermodynamic scaling of the structural alpha-relaxation time or transport coefficients of glass-forming liquids determined at various temperatures T and pressures P means the data conform to a single function of the product variable TVgamma, where V is the specific volume and gamma is a material specific constant. In the past two decades we have witnessed successful TVgamma-scaling in many molecular, polymeric, and even metallic glass-formers, and gamma is related to the slope of the repulsive part of the intermolecular potential. The advances made indicate TVgamma-scaling is an important aspect of the dynamic and thermodynamic properties of glass-formers. In this paper we show the origin of TVgamma-scaling is not from the structural alpha-relaxation time. Instead it comes from its precursor, the Johari-Goldstein beta-relaxation or the primitive relaxation of the Coupling Model and their relaxation times or tau_0 respectively. It is remarkable that all relaxation times are functions of TVgamma with the same gama, as well as the fractional exponent of the Kohlrausch correlation function of the structural alpha-relaxation. We arrive at this conclusion convincingly based on corroborative evidences from a number of experiments and molecular dynamics simulations performed on a wide variety of glass-formers and in conjunction with consistency with the predictions of the Coupling Model.

  9. In vivo measurements of the T1 relaxation processes in the bone marrow in patients with myelodysplastic syndrome

    International Nuclear Information System (INIS)

    Jensen, K.E.; Nielsen, H.; Thomsen, C.; Soerensen, P.G.; Karle, H.; Christoffersen, P.; Henriksen, O.; Hvidovre Hospital, Copenhagen; Hvidovre Hospital, Copenhagen

    1989-01-01

    Nine patients with myelodysplastic syndrome (MDS) were examined with magnetic resonance imaging and in vivo T1 relaxation time measurements of the vertebral bone marrow in a 1.5 tesla whole body scanner. Two patients underwent transformation to acute myeloid leukemia and were evaluated at follow-up examinations. At the time of diagnosis the T1 relaxation times of the vertebral bone marrow were significantly prolonged compared with normal values. The T1 relaxation times of the vertebral bone marrow in patients with MDS showed significantly lower values compared with patients with acute leukemia and did not differ from patients with polycythemia vera. (orig.)

  10. Magnetic energy dissipation in force-free jets

    Science.gov (United States)

    Choudhuri, Arnab Rai; Konigl, Arieh

    1986-01-01

    It is shown that a magnetic pressure-dominated, supersonic jet which expands or contracts in response to variations in the confining external pressure can dissipate magnetic energy through field-line reconnection as it relaxes to a minimum-energy configuration. In order for a continuous dissipation to occur, the effective reconnection time must be a fraction of the expansion time. The dissipation rate for the axisymmetric minimum-energy field configuration is analytically derived. The results indicate that the field relaxation process could be a viable mechanism for powering the synchrotron emission in extragalactic jets if the reconnection time is substantially shorter than the nominal resistive tearing time in the jet.

  11. Magnetic relaxation switch and colorimetric detection of thrombin using aptamer-functionalized gold-coated iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liang Guohai; Cai Shaoyu; Zhang Peng [Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433 (China); Peng Youyuan [Department of Chemistry, Quanzhou Normal University, Quanzhou 362000 (China); Chen Hui; Zhang Song [Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433 (China); Kong Jilie, E-mail: jlkong@fudan.edu.cn [Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433 (China)

    2011-03-18

    We describe a sensitive biosensing system combining magnetic relaxation switch diagnosis and colorimetric detection of human {alpha}-thrombin, based on the aptamer-protein interaction induced aggregation of Fe{sub 3}O{sub 4}-Au nanoparticles. To demonstrate the concept, gold-coated iron oxide nanoparticle was synthesized by iterative reduction of HAuCl{sub 4} onto the dextran-coated Fe{sub 3}O{sub 4} nanoparticles. The resulting core-shell structure had a flowerlike shape with pretty narrow size distribution (referred to as 'nanorose'). The two aptamers corresponding to human {alpha}-thrombin were conjugated separately to two distinct nanorose populations. Once a solution containing human {alpha}-thrombin was introduced, the nanoroses switched from a well dispersed state to an aggregated one, leading to a change in the spin-spin relaxation time (T{sub 2}) as well as the UV-Vis absorption spectra of the solution. Thus the qualitative and quantitative detection method for human {alpha}-thrombin was established. The dual-mode detection is clearly advantageous in obtaining a more reliable result; the detection range is widened as well. By using the dual-mode detection method, a detectable T{sub 2} change is observed with 1.0 nM human {alpha}-thrombin, and the detection range is from 1.6 nM to 30.4 nM.

  12. Quasi-Particle Relaxation and Quantum Femtosecond Magnetism in Non-Equilibrium Phases of Insulating Manganites

    Science.gov (United States)

    Perakis, Ilias; Kapetanakis, Myron; Lingos, Panagiotis; Barmparis, George; Patz, A.; Li, T.; Wang, Jigang

    We study the role of spin quantum fluctuations driven by photoelectrons during 100fs photo-excitation of colossal magneto-resistive manganites in anti-ferromagnetic (AFM) charge-ordered insulating states with Jahn-Teller distortions. Our mean-field calculation of composite fermion excitations demonstrates that spin fluctuations reduce the energy gap by quasi-instantaneously deforming the AFM background, thus opening a conductive electronic pathway via FM correlation. We obtain two quasi-particle bands with distinct spin-charge dynamics and dependence on lattice distortions. To connect with fs-resolved spectroscopy experiments, we note the emergence of fs magnetization in the low-temperature magneto-optical signal, with threshold dependence on laser intensity characteristic of a photo-induced phase transition. Simultaneously, the differential reflectivity shows bi-exponential relaxation, with fs component, small at low intensity, exceeding ps component above threshold for fs AFM-to-FM switching. This suggests the emergence of a non-equilibrium metallic FM phase prior to establishment of a new lattice structure, linked with quantum magnetism via spin/charge/lattice couplings for weak magnetic fields.

  13. One and two-phonon processes of the spin-flip relaxation in quantum dots: Spin-phonon coupling mechanism

    Science.gov (United States)

    Wang, Zi-Wu; Li, Shu-Shen

    2012-07-01

    We investigate the spin-flip relaxation in quantum dots using a non-radiation transition approach based on the descriptions for the electron-phonon deformation potential and Fröhlich interaction in the Pavlov-Firsov spin-phonon Hamiltonian. We give the comparisons of the electron relaxations with and without spin-flip assisted by one and two-phonon processes. Calculations are performed for the dependence of the relaxation time on the external magnetic field, the temperature and the energy separation between the Zeeman sublevels of the ground and first-excited state. We find that the electron relaxation time of the spin-flip process is more longer by three orders of magnitudes than that of no spin-flip process.

  14. Magnetic Switching of a Single Molecular Magnet due to Spin-Polarized Current

    OpenAIRE

    Misiorny, Maciej; Barnas, Józef

    2006-01-01

    Magnetic switching of a single molecular magnet (SMM) due to spin-polarized current flowing between ferromagnetic metallic electrodes is investigated theoretically. Magnetic moments of the electrodes are assumed to be collinear and parallel to the magnetic easy axis of the molecule. Electrons tunneling through a barrier between magnetic leads are coupled to the SMM via exchange interaction. The current flowing through the system as well as the spin relaxation times of the SMM are calculated f...

  15. In-situ grazing incidence X-ray diffraction measurements of relaxation in Fe/MgO/Fe epitaxial magnetic tunnel junctions during annealing

    Energy Technology Data Exchange (ETDEWEB)

    Eastwood, D.S. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Ali, M.; Hickey, B.J. [Department of Physics and Astronomy, University of Leeds, Leeds LS2 1JT (United Kingdom); Tanner, B.K., E-mail: b.k.tanner@dur.ac.uk [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2013-12-15

    The relaxation of Fe/MgO/Fe tunnel junctions grown epitaxially on (001) MgO substrates has been measured by in-situ grazing incidence in-plane X-ray diffraction during the thermal annealing cycle. We find that the Fe layers are fully relaxed and that there are no irreversible changes during annealing. The MgO tunnel barrier is initially strained towards the Fe but on annealing, relaxes and expands towards the bulk MgO value. The strain dispersion is reduced in the MgO by about 40% above 480 K post-annealing. There is no significant change in the “twist” mosaic. Our results indicate that the final annealing stage of device fabrication, crucial to attainment of high TMR, induces substantial strain relaxation at the MgO barrier/lower Fe electrode interface. - Highlights: • Lattice relaxation of Fe/MgO/Fe epitaxial magnetic tunnel junctions measured. • In-plane lattice parameter of Fe equal to bulk value; totally relaxed. • MgO barrier initially strained towards the Fe but relaxes on annealing. • Reduction in strain dispersion in the MgO barrier by 40% above about 470 K. • No change in the in-plane “twist” mosaic throughout the annealing cycle.

  16. Fourier transform distribution function of relaxation times; application and limitations

    NARCIS (Netherlands)

    Boukamp, Bernard A.

    2015-01-01

    A simple Fourier transform (FT) method is presented for obtaining a Distribution Function of Relaxation Times (DFRT) for electrochemical impedance spectroscopy (EIS) data. By using a special data extension procedure the FT is performed over the range from -∞ ≤ lnω ≤ + ∞. The integration procedure is

  17. Relaxation dynamics and thermophysical properties of vegetable oils using time-domain reflectometry.

    Science.gov (United States)

    Sonkamble, Anil A; Sonsale, Rahul P; Kanshette, Mahesh S; Kabara, Komal B; Wananje, Kunal H; Kumbharkhane, Ashok C; Sarode, Arvind V

    2017-04-01

    Dielectric relaxation studies of vegetable oils are important for insights into their hydrogen bonding and intermolecular dynamics. The dielectric relaxation and thermo physical properties of triglycerides present in some vegetable oils have been measured over the frequency range of 10 MHz to 7 GHz in the temperature region 25 to 10 °C using a time-domain reflectometry approach. The frequency and temperature dependence of dielectric constants and dielectric loss factors were determined for coconut, peanut, soya bean, sunflower, palm, and olive oils. The dielectric permittivity spectra for each of the studied vegetable oils are explained using the Debye model with their complex dielectric permittivity analyzed using the Havriliak-Negami equation. The dielectric parameters static permittivity (ε 0 ), high-frequency limiting static permittivity (ε ∞ ), average relaxation time (τ 0 ), and thermodynamic parameters such as free energy (∆F τ ), enthalpy (∆H τ ), and entropy of activation (∆S τ ) were also measured. Calculation and analysis of these thermodynamic parameters agrees with the determined dielectric parameters, giving insights into the temperature dependence of the molecular dynamics of these systems.

  18. Imaging tooth enamel using zero echo time (ZTE) magnetic resonance imaging

    Science.gov (United States)

    Rychert, Kevin M.; Zhu, Gang; Kmiec, Maciej M.; Nemani, Venkata K.; Williams, Benjamin B.; Flood, Ann B.; Swartz, Harold M.; Gimi, Barjor

    2015-03-01

    In an event where many thousands of people may have been exposed to levels of radiation that are sufficient to cause the acute radiation syndrome, we need technology that can estimate the absorbed dose on an individual basis for triage and meaningful medical decision making. Such dose estimates may be achieved using in vivo electron paramagnetic resonance (EPR) tooth biodosimetry, which measures the number of persistent free radicals that are generated in tooth enamel following irradiation. However, the accuracy of dose estimates may be impacted by individual variations in teeth, especially the amount and distribution of enamel in the inhomogeneous sensitive volume of the resonator used to detect the radicals. In order to study the relationship between interpersonal variations in enamel and EPR-based dose estimates, it is desirable to estimate these parameters nondestructively and without adding radiation to the teeth. Magnetic Resonance Imaging (MRI) is capable of acquiring structural and biochemical information without imparting additional radiation, which may be beneficial for many EPR dosimetry studies. However, the extremely short T2 relaxation time in tooth structures precludes tooth imaging using conventional MRI methods. Therefore, we used zero echo time (ZTE) MRI to image teeth ex vivo to assess enamel volumes and spatial distributions. Using these data in combination with the data on the distribution of the transverse radio frequency magnetic field from electromagnetic simulations, we then can identify possible sources of variations in radiation-induced signals detectable by EPR. Unlike conventional MRI, ZTE applies spatial encoding gradients during the RF excitation pulse, thereby facilitating signal acquisition almost immediately after excitation, minimizing signal loss from short T2 relaxation times. ZTE successfully provided volumetric measures of tooth enamel that may be related to variations that impact EPR dosimetry and facilitate the development

  19. Prolonged T1 relaxation of the hemopoietic bone marrow in patients with chronic leukemia

    International Nuclear Information System (INIS)

    Jensen, K.E.; Soerensen, P.G.; Thomsen, C.; Christoffersen, P.; Henriksen, O.; Karle, H.; Hvidovre Hospital; Hvidovre Hospital; Gentofte Hospital

    1990-01-01

    Eleven patients with chronic leukemia (7 with chronic lymphocytic leukemia and 4 with chronic myeloid leukemia) were evaluated with magnetic resonance (MR) imaging and T1 relaxation time measurements by use of a 1.5 tesla whole body MR scanner. Bone marrow biopsies were obtained from the posterior iliac crest (within 72 hours of the MR examination) in order to provide data on bone marrow cellularity and differential counts. The patients with chronic leukemia all showed a significant prolongation of the T1 relaxation times compared with the normal range for hemopoietic bone marrow. (orig.)

  20. In vivo measurements of T1 relaxation times of 31P-metabolites in human skeletal muscle

    DEFF Research Database (Denmark)

    Thomsen, C; Jensen, K E; Henriksen, O

    1989-01-01

    The T1 relaxation times were estimated for 31P-metabolites in human skeletal muscle. Five healthy volunteers were examined in a 1.5 Tesla wholebody imaging system using an inversion recovery pulse sequence. The calculated T1 relaxation times ranged from 5.517 sec for phosphocreatine to 3.603 sec...

  1. Experimental comparison of diffusional nuclear magnetic relaxation theories using ZrHsub(1.684)

    International Nuclear Information System (INIS)

    Korn, C.; Goren, S.

    1984-01-01

    The spin-lattice relaxation time of hydrogen in ZrHsub(1.684) was measured at a resonance frequency of 16.69 MHz as a function of temperature in a temperature range where the major relaxation mechanism was hydrogen diffusion. This parameter was used to calculate the hydrogen jump frequencies using the theories of Bloembergen, Purcell and Pound (BPP), of Bustard and of Barton and Sholl. A comparison shows that the BPP theory gives results closest to Arrhenius-type behaviour. The diffusional activation energy was found to be 13.3 kcal mol -1 . (Auth.)

  2. Temperature dependence of levitation force and its relaxation in a HTS levitation system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Jun; Zhang Xingyi [Key Laboratory of Mechanics on Western Disaster and Environment, Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Zhou Youhe, E-mail: zhouyh@lzu.edu.c [Key Laboratory of Mechanics on Western Disaster and Environment, Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2010-03-01

    Using a modified Gifford-McMahon refrigerator to cool the cylindrical bulk YBaCuO superconductor within the region of 100-10 K, and using an updated high-temperature superconductor (HTS) maglev measurement system, the levitation force and its time relaxation at different temperatures between a YBaCuO bulk superconductor and a permanent magnet (PM) have been measured under zero-field cooling. It is found that decrease the cooling temperature of HTS can decrease the hysteresis of magnetization and increase the maximum levitation force of each hysteresis loop. For the relaxation of levitation force, if the temperature is continually lowered to 10 K after the relaxation measurement at given cooling temperature is performed for 600 s, the levitation force will continue to decrease sharply with the lowering of temperature even though it will get stable if the temperature is not lowered. Our results shown in this work are a benefit to the understanding of levitation systems.

  3. Relaxation of a coherent, magnetic s–p model system coupled to one and two thermal baths and a laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Lefkidis, G. [Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Box 3049, 67653 Kaiserslautern (Germany); School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072 (China); Sold, S.; Hübner, W. [Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Box 3049, 67653 Kaiserslautern (Germany)

    2017-06-15

    We study an s–p model magnetic system with a triplet ground state coupled to two temperature baths. By varying the temperatures we both generate non-thermal electronic distributions and create additional coherences in the density matrix of the system. Thus the thermally-induced magnetic response goes beyond the simple picture of majority-minority population dynamics. Furthermore, we discuss the influence of temperature induced relaxation effects on the dynamics induced by an optical perturbation for this quantum system.

  4. Investigation of the proteins relaxation time in human blood serum; Badania relaksacyjne bialek surowicy krwi II

    Energy Technology Data Exchange (ETDEWEB)

    Blicharska, B.; Klauza, M. [Inst. Fizyki, Uniwersytet Jagiellonski, Cracow (Poland); Kuliszkiewicz-Janus, M. [Akademia Medyczna, Wroclaw (Poland)

    1994-12-31

    In this paper the results of human blood serum proteins relaxation time measurements by means of NMR method are presented. The measurements have been done for three samples of human blood: i/laudably ii/leukemia iii/granulomas. The dependences of the relaxation time on the temperature are also presented. 3 refs, 4 figs.

  5. Evaluating the influence of initial magnetization conditions on extracted exchange parameters in NMR relaxation experiments: applications to CPMG and CEST

    Energy Technology Data Exchange (ETDEWEB)

    Yuwen, Tairan; Sekhar, Ashok; Kay, Lewis E., E-mail: kay@pound.med.utoronto.ca [The University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry (Canada)

    2016-08-15

    Transient excursions of native protein states to functionally relevant higher energy conformations often occur on the μs–ms timescale. NMR spectroscopy has emerged as an important tool to probe such processes using techniques such as Carr–Purcell–Meiboom–Gill (CPMG) relaxation dispersion and Chemical Exchange Saturation Transfer (CEST). The extraction of kinetic and structural parameters from these measurements is predicated upon mathematical modeling of the resulting relaxation profiles, which in turn relies on knowledge of the initial magnetization conditions at the start of the CPMG/CEST relaxation elements in these experiments. Most fitting programs simply assume initial magnetization conditions that are given by equilibrium populations, which may be incorrect in certain implementations of experiments. In this study we have quantified the systematic errors in extracted parameters that are generated from analyses of CPMG and CEST experiments using incorrect initial boundary conditions. We find that the errors in exchange rates (k{sub ex}) and populations (p{sub E}) are typically small (<10 %) and thus can be safely ignored in most cases. However, errors become larger and cannot be fully neglected (20–40 %) as k{sub ex} falls near the lower limit of each method or when short CPMG/CEST relaxation elements are used in these experiments. The source of the errors can be rationalized and their magnitude given by a simple functional form. Despite the fact that errors tend to be small, it is recommended that the correct boundary conditions be implemented in fitting programs so as to obtain as robust estimates of exchange parameters as possible.

  6. Levitation and guidance force relaxations of the single-seeded and multi-seeded YBCO superconductors

    Science.gov (United States)

    Abdioglu, M.; Ozturk, K.; Kabaer, M.; Ekici, M.

    2018-01-01

    The stable levitation and guidance forces at higher force levels are important parameters for technological applicability of high temperature superconductors (HTSs) in Maglev and Flywheel energy storage systems. In this study, we have investigated the levitation and guidance force relaxation of both the single-seeded and multi-seeded YBCOs for different (HTS)-permanent magnetic guideway (PMG) arrangements in different cooling heights (CH). The measured saturated force values of Halbach PMG arrangements are bigger than the maximum force values of other PMGs. It is determined that the normalized magnetic levitation force (MLF) and normalized guidance force (GF) relaxation rate values decrease while the relaxation rates increase with increasing magnetic pole number and the effective external magnetic field area for both the single-seeded and multi-seeded YBCO. Also it can be said that the force stability at the higher force value of Halbach PMG arrangement indicates that the relaxation quality of Halbach PMG is better than that of the others. Additionally, it can be said that both the MLF and GF relaxation qualities of the multi-seeded YBCOs are better than that of the single-seeded ones. This magnetic force and relaxation results of the single-seeded and multi-seeded YBCOs are useful to optimize the loading capacity and lateral reliability of HTS Maglev and similar magnetic bearing systems.

  7. Slow relaxation of the magnetization observed in an antiferromagnetically ordered phase for SCM-based two-dimensional layered compounds.

    Science.gov (United States)

    Kagesawa, Koichi; Nishimura, Yuki; Yoshida, Hiroki; Breedlove, Brian K; Yamashita, Masahiro; Miyasaka, Hitoshi

    2017-03-07

    Two-dimensional layered compounds with different counteranions, [{Mn(salen)} 4 C6](BF 4 ) 2 ·2(CH 3 OH) (1) and [{Mn(salen)} 4 C6](PF 6 ) 2 ·2(CH 3 OH) (2) (salen 2- = N,N'-bis(salicylideneiminato), C6 2- = C 6 H 12 (COO) 2 2- ), were synthesized by assembling [Mn(salen)(H 2 O)]X (X - = BF 4 - and PF 6 - ) and C 6 H 12 (CO 2 - ) 2 (C6 2- ) in a methanol/2-propanol medium. The compounds have similar structures, which are composed of Mn(salen) out-of-plane dimers bridged by μ 4 -type C6 2- ions, forming a brick-wall-type network of [-{Mn 2 }-OCO-] chains alternately connected via C 6 H 12 linkers of C6 2- moieties. The counteranions for 1 and 2, i.e., BF 4 - and PF 6 - , respectively, are located between layers. Since the size of BF 4 - is smaller than that of PF 6 - , intra-layer inter-chain and inter-plane nearest-neighbor MnMn distances are shorter in 1 than in 2. The zigzag chain moiety of [-{Mn 2 }-OCO-] leads to a canted S = 2 spin arrangement with ferromagnetic coupling in the Mn III out-of-plane dimer moiety and antiferromagnetic coupling through -OCO- bridges. Due to strong uniaxial anisotropy of the Mn III ion, the [-{Mn 2 }-OCO-] chains could behave as a single-chain magnet (SCM), which exhibits slow relaxation of magnetization at low temperatures. Nevertheless, these compounds fall into an antiferromagnetic ground state at higher temperatures of T N = 4.6 and 3.8 K for 1 and 2, respectively, than active temperatures for SCM behavior. The spin flip field at 1.8 K is 2.7 and 1.8 kOe for 1 and 2, respectively, which is attributed to the inter-chain interactions tuned by the size of the counteranions. The relaxation times of magnetization become longer at the boundary between the antiferromagnetic phase and the paramagnetic phase.

  8. Levitation force relaxation under reloading in a HTS Maglev system

    International Nuclear Information System (INIS)

    He Qingyong; Wang Jiasu; Wang Suyu; Wang Jiansi; Dong Hao; Wang Yuxin; Shao Senhao

    2009-01-01

    The loading capacity of the high-temperature superconducting (HTS) Maglev vehicle is an important parameter in the practical application. It is closely related to the levitation force of the HTS bulk. Many papers reported that the levitation force showed the relaxation characteristic. Because different loads cause different levitation gaps and different applied magnetic fields, the levitation force relaxations under the different loads are not the same. In terms of cylindrical YBCO bulk levitated over the permanent magnetic guideway, the relationship between the levitation force relaxation and the reloading is investigated experimentally in this paper. The decrement, the decrement rate and the relaxation rate of the levitation force are calculated, respectively. This work might be helpful for studying the loading capacity of the HTS Maglev vehicle

  9. Levitation force relaxation under reloading in a HTS Maglev system

    Energy Technology Data Exchange (ETDEWEB)

    He Qingyong [Applied Superconductivity Laboratory, M/S 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)], E-mail: hedoubling@gmail.com; Wang Jiasu; Wang Suyu; Wang Jiansi; Dong Hao; Wang Yuxin; Shao Senhao [Applied Superconductivity Laboratory, M/S 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2009-02-01

    The loading capacity of the high-temperature superconducting (HTS) Maglev vehicle is an important parameter in the practical application. It is closely related to the levitation force of the HTS bulk. Many papers reported that the levitation force showed the relaxation characteristic. Because different loads cause different levitation gaps and different applied magnetic fields, the levitation force relaxations under the different loads are not the same. In terms of cylindrical YBCO bulk levitated over the permanent magnetic guideway, the relationship between the levitation force relaxation and the reloading is investigated experimentally in this paper. The decrement, the decrement rate and the relaxation rate of the levitation force are calculated, respectively. This work might be helpful for studying the loading capacity of the HTS Maglev vehicle.

  10. The Effect of a Pulsed Magnetic Field on Domain Wall Resistance in Magnetic Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, R; Tehranchi, M M; Tabrizi, K Ghafoori [Department of Physics, G.C., Shahid Beheshti University, Evin, 19838-63113, Tehran (Iran, Islamic Republic of); Phirouznia, A, E-mail: Teranchi@cc.sbu.ac.ir [Department of Physics, Azarbaijan University of Tarbiat Moallem, 53714-161 Tabriz (Iran, Islamic Republic of)

    2011-04-01

    The effect of a pulsed magnetic field on domain wall magnetoresistance for an ideal one-dimensional magnetic nanowire with a domain wall has been investigated. The analysis has been based on the Boltzmann transport equation, within the relaxation time approximation. The results indicate that the domain wall resistance increase when enhancing the magnetic field. The evaluation of local magnetization has been considered in the presence of a pulsed magnetic field. The time evaluation of the magnetization also has an effect on the domain wall resistance. The resistance depends on the contribution of the Zeeman and exchange interactions.

  11. The Effect of a Pulsed Magnetic Field on Domain Wall Resistance in Magnetic Nanowires

    International Nuclear Information System (INIS)

    Majidi, R; Tehranchi, M M; Tabrizi, K Ghafoori; Phirouznia, A

    2011-01-01

    The effect of a pulsed magnetic field on domain wall magnetoresistance for an ideal one-dimensional magnetic nanowire with a domain wall has been investigated. The analysis has been based on the Boltzmann transport equation, within the relaxation time approximation. The results indicate that the domain wall resistance increase when enhancing the magnetic field. The evaluation of local magnetization has been considered in the presence of a pulsed magnetic field. The time evaluation of the magnetization also has an effect on the domain wall resistance. The resistance depends on the contribution of the Zeeman and exchange interactions.

  12. Detection of molecules and cells using nuclear magnetic resonance with magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rümenapp, Christine, E-mail: ruemenapp@tum.de [Zentralinstitut für Medizintechnik (IMETUM), Technische Universität München, Garching (Germany); Gleich, Bernhard [Zentralinstitut für Medizintechnik (IMETUM), Technische Universität München, Garching (Germany); Mannherz, Hans Georg [Abteilung für Anatomie und Molekulare Embryologie, Ruhr Universität Bochum, Bochum (Germany); Haase, Axel [Zentralinstitut für Medizintechnik (IMETUM), Technische Universität München, Garching (Germany)

    2015-04-15

    For the detection of small molecules, proteins or even cells in vitro, functionalised magnetic nanoparticles and nuclear magnetic resonance measurements can be applied. In this work, magnetic nanoparticles with the size of 5–7 nm were functionalised with antibodies to detect two model systems of different sizes, the protein avidin and Saccharomyces cerevisiae as the model organism. The synthesised magnetic nanoparticles showed a narrow size distribution, which was determined using transmission electron microscopy and dynamic light scattering. The magnetic nanoparticles were functionalised with the according antibodies via EDC/NHS chemistry. The binding of the antigen to magnetic nanoparticles was detected through the change in the NMR T{sub 2} relaxation time at 0.5 T (≈21.7 MHz). In case of a specific binding the particles cluster and the T{sub 2} relaxation time of the sample changes. The detection limit in buffer for FITC-avidin was determined to be 1.35 nM and 10{sup 7} cells/ml for S. cerevisiae. For fluorescent microscopy the avidin molecules were labelled with FITC and for the detection of S. cerevisiae the magnetic nanoparticles were additionally functionalised with rhodamine. The binding of the particles to S. cerevisiae and the resulting clustering was also seen by transmission electron microscopy.

  13. Electron Spin Relaxation Can Enhance the Performance of a Cryptochrome-Based Magnetic Compass Sensor

    Science.gov (United States)

    2016-08-19

    interactions. Wefind that intermediate spin relaxation rates afford substantial enhancements in the sensitivity of the reaction yields to an Earth...resulting in intermediate relaxation rates (106 s−1<kSTD<10 8 s−1) therefore boost the compass sensitivity well above the level expected for a time...steps along the Trp-triad are complete within a nanosecondwhich is too fast for singlet–triplet coherence to be generated in the intermediate radical

  14. Probing α-relaxation with nuclear magnetic resonance echo decay and relaxation: a study on nitrile butadiene rubber.

    Science.gov (United States)

    Sturniolo, Simone; Pieruccini, Marco; Corti, Maurizio; Rigamonti, Attilio

    2013-01-01

    One dimensional (1)H NMR measurements have been performed to probe slow molecular motions in nitrile butadiene rubber (NBR) around its calorimetric glass transition temperature Tg. The purpose is to show how software aided data analysis can extract meaningful dynamical data from these measurements. Spin-lattice relaxation time, free induction decay (FID) and magic sandwich echo (MSE) measurements have been carried out at different values of the static field, as a function of temperature. It has been evidenced how the efficiency of the MSE signal in reconstructing the original FID exhibits a sudden minimum at a given temperature, with a slight dependence from the measuring frequency. Computer simulations performed with the software SPINEVOLUTION have shown that the minimum in the efficiency reconstruction of the MSE signal corresponds to the average motional frequency taking a value around the inter-proton coupling. The FID signals have been fitted with a truncated form of a newly derived exact correlation function for the transverse magnetization of a dipolar interacting spin pair, which allows one to avoid the restriction of the stationary and Gaussian approximations. A direct estimate of the conformational dynamics on approaching the Tg is obtained, and the results are in agreement with the analysis performed via the MSE reconstruction efficiency. The occurrence of a wide distribution of correlation frequencies for the chains motion, with a Vogel-Fulcher type temperature dependence, is addressed. A route for a fruitful study of the dynamics accompanying the glass transition by a variety of NMR measurements is thus proposed. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Experimental evidence for simultaneous relaxation processes in super spin glass γ-Fe2O3 nanoparticle system

    Science.gov (United States)

    Nikolic, V.; Perovic, M.; Kusigerski, V.; Boskovic, M.; Mrakovic, A.; Blanusa, J.; Spasojevic, V.

    2015-03-01

    Spherical γ-Fe2O3 nanoparticles with the narrow size distribution of (5 ± 1) nm were synthesized by the method of thermal decomposition from iron acetyl acetonate precursor. The existence of super spin-glass state at low temperatures and in low applied magnetic fields was confirmed by DC magnetization measurements on a SQUID magnetometer. The comprehensive investigation of magnetic relaxation dynamics in low-temperature region was conducted through the measurements of single-stop and multiple stop ZFC memory effects, ZFC magnetization relaxation, and AC susceptibility measurements. The experimental findings revealed the peculiar change of magnetic relaxation dynamics at T ≈ 10 K, which arose as a consequence of simultaneous existence of different relaxation processes in Fe2O3 nanoparticle system. Complementarity of the applied measurements was utilized in order to single out distinct relaxation processes as well as to elucidate complex relaxation mechanisms in the investigated interacting nanoparticle system.

  16. Investigation of dielectric relaxation in systems with hierarchical organization: From time to frequency domain and back again

    Energy Technology Data Exchange (ETDEWEB)

    Yokoi, Koki [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI (United States); Raicu, Valerică, E-mail: vraicu@uwm.edu [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI (United States); Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI (United States)

    2017-06-28

    Relaxation in fractal structures was investigated theoretically starting from a simple model of a Cantorian tree and kinetic equations linking the change in the number of particles (e.g., electrical charges) populating each branch of the tree and their transfer to other branches or to the ground state. We numerically solved the system of differential equations obtained and determined the so-called cumulative distribution function of particles, which, in dielectric or mechanical relaxation parlance, is the same as the relaxation function of the system. As a physical application, we studied the relationship between the dielectric relaxation in time-domain and the dielectric dispersion in the frequency-domain. Upon choosing appropriate rate constants, our model described accurately well-known non-exponential and non-Debye time- and frequency-domain functions, such as stretched exponentials, Havrilliak–Negami, and frequency power law. Our approach opens the door to applying kinetic models to describe a wide array of relaxation processes, which traditionally have posed great challenges to theoretical modeling based on first principles. - Highlights: • Relaxation was investigated for a system of particles flowing through a Cantorian tree. • A set of kinetic equations was formulated and used to compute the relaxation function of the system. • The dispersion function of the system was computed from the relaxation function. • An analytical method was used to recover the original relaxation function from the dispersion function. • This formalism was used to study dielectric relaxation and dispersion in fractal structures.

  17. Slow magnetic relaxation and single-molecule toroidal behaviour in a family of heptanuclear {Cr"I"I"ILn"I"I"I_6} (Ln=Tb, Ho, Er) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Vignesh, Kuduva R. [IITB-Monash Research Academy, IIT Bombay, Powai, Mumbai (India); Langley, Stuart K. [School of Science and the Environment, Division of Chemistry, Manchester Metropolitan University, Manchester (United Kingdom); Swain, Abinash; Rajaraman, Gopalan [Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai (India); Moubaraki, Boujemaa; Murray, Keith S. [School of Chemistry, Monash University, Clayton, VIC (Australia); Damjanovic, Marko; Wernsdorfer, Wolfgang [Institute Neel, CNRS, Universite Grenoble Alpes, Grenoble (France); Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany)

    2018-01-15

    The synthesis, magnetic properties, and theoretical studies of three heterometallic {Cr"I"I"ILn"I"I"I_6} (Ln=Tb, Ho, Er) complexes, each containing a metal topology consisting of two Ln{sub 3} triangles connected via a Cr{sup III} linker, are reported. The {CrTb_6} and {CrEr_6} analogues display slow relaxation of magnetization in a 3000 Oe static magnetic field. Single-crystal measurements reveal opening up of the hysteresis loop for {CrTb_6} and {CrHo_6} molecules at low temperatures. Ab initio calculations predict toroidal magnetic moments in the two Ln{sub 3} triangles, which are found to couple, stabilizing a con-rotating ferrotoroidal ground state in Tb and Ho examples and extend the possibility of observing toroidal behaviour in non Dy{sup III} complexes for the first time. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Estimating side-chain order in methyl-protonated, perdeuterated proteins via multiple-quantum relaxation violated coherence transfer NMR spectroscopy

    International Nuclear Information System (INIS)

    Sun Hechao; Godoy-Ruiz, Raquel; Tugarinov, Vitali

    2012-01-01

    Relaxation violated coherence transfer NMR spectroscopy (Tugarinov et al. in J Am Chem Soc 129:1743–1750, 2007) is an established experimental tool for quantitative estimation of the amplitudes of side-chain motions in methyl-protonated, highly deuterated proteins. Relaxation violated coherence transfer experiments monitor the build-up of methyl proton multiple-quantum coherences that can be created in magnetically equivalent spin-systems as long as their transverse magnetization components relax with substantially different rates. The rate of this build-up is a reporter of the methyl-bearing side-chain mobility. Although the build-up of multiple-quantum 1 H coherences is monitored in these experiments, the decay of the methyl signal during relaxation delays occurs when methyl proton magnetization is in a single-quantum state. We describe a relaxation violated coherence transfer approach where the relaxation of multiple-quantum 1 H– 13 C methyl coherences during the relaxation delay period is quantified. The NMR experiment and the associated fitting procedure that models the time-dependence of the signal build-up, are applicable to the characterization of side-chain order in [ 13 CH 3 ]-methyl-labeled, highly deuterated protein systems up to ∼100 kDa in molecular weight. The feasibility of extracting reliable measures of side-chain order is experimentally verified on methyl-protonated, perdeuterated samples of an 8.5-kDa ubiquitin at 10°C and an 82-kDa Malate Synthase G at 37°C.

  19. Magnetic properties of hematite nanoparticles

    DEFF Research Database (Denmark)

    Bødker, Franz; Hansen, Mikkel Fougt; Bender Koch, Christian

    2000-01-01

    The magnetic properties of hematite (alpha-Fe2O3) particles with sizes of about 16 nm have been studied by use of Mossbauer spectroscopy, magnetization measurements, and neutron diffraction. The nanoparticles are weakly ferromagnetic at temperatures at least down to 5 K with a spontaneous...... magnetization that is only slightly higher than that of weakly ferromagnetic bulk hematite. At T greater than or similar to 100 K the Mossbauer spectra contain a doublet, which is asymmetric due to magnetic relaxation in the presence of an electric field gradient in accordance with the Blume-Tjon model......, Simultaneous fitting of series of Mossbauer spectra obtained at temperatures from 5 K to well above the superparamagnetic blocking temperature allowed the estimation of the pre-exponential factor in Neel's expression for the superparamagnetic relaxation time, tau(0) = (6 +/- 4) X 10(-11) s and the magnetic...

  20. Changes in T1 relaxation processes in the bone marrow following treatment in children with acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Jensen, K.E.; Thomsen, C.; Henriksen, O.; Hertz, H.; Johansen, H.K.; Yssing, M.

    1990-01-01

    Magnetic resonance imaging (MRI) and T 1 relaxation time measurements of the vertebral bone marrow were performed in 11 children with acute lymphoblastic leukemia (ALL) at diagnosis. Nine of the children were re-examined after chemotherapeutic treatment. The results were compared with histological data from bone marrow biopsies obtained in close association to the MR examinations. Ten age matched children were examined as a control group. A 1.5 Tesla whole body scanner was used for the measurements. The pretreatment T 1 relaxation times of the bone marrow were significantly prolonged, compared to the age matched controls. After chemotherapy the T 1 relaxation times of the children with ALL decreased significantly towards or into the normal range. A significant correlation was found between the T 1 relaxation time and the content of malignant blast cells in the bone marrow. (orig.)

  1. Effect of time-varying flow-shear on the nonlinear stability of the boundary of magnetized toroidal plasmas

    Directory of Open Access Journals (Sweden)

    Youngmin Oh

    2018-02-01

    Full Text Available We propose a phenomenological yet general model in a form of extended complex Ginzburg-Landau equation to understand edge-localized modes (ELMs, a class of quasi-periodic fluid instabilities in the boundary of toroidal magnetized high-temperature plasmas. The model reproduces key dynamical features of the ELMs (except the final explosive relaxation stage observed in the high-confinement state plasmas on the Korea Superconducting Tokamak Advanced Research: quasi-steady states characterized by field-aligned filamentary eigenmodes, transitions between different quasi-steady eigenmodes, and rapid transition to non-modal filamentary structure prior to the relaxation. It is found that the inclusion of time-varying perpendicular sheared flow is crucial for reproducing all of the observed dynamical features.

  2. Dynamic and structural characterisation of micellar solutions of surfactants by spin relaxation and translational diffusion

    International Nuclear Information System (INIS)

    Mahieu, Nathalie

    1992-01-01

    The work reported in this research thesis aimed at characterizing micellar phases formed by some surfactants (sodium carboxylates) in aqueous solution. After some recalls on nuclear magnetic resonance dealing with spin relaxation (longitudinal relaxation, transverse relaxation, relaxation in the rotating coordinate system, and crossed relaxation), and comments on the dipolar mechanism responsible of relaxation phenomena, the author presents the methods used for relaxation parameter measurement and the data processing software issued from experiments. He presents experiments which allowed the self-diffusion coefficient to be measured, reports data processing, and addresses problems of special diffusion and of coherence transfers during diffusion measurements. Results of proton relaxation measurements are then presented and discussed. They are used to determine the micellar state of the studied carboxylates. The case of the oleate is also addressed. Measurements of carbon-13 relaxation times are reported, and exploited in terms of structural parameters by using the Relaxator software. An original method of the hetero-nuclear Overhauser method is presented, and used to assess the average distance between water molecules and micelle surface [fr

  3. Electron relaxation properties of Ar magnetron plasmas

    Science.gov (United States)

    Xinjing, CAI; Xinxin, WANG; Xiaobing, ZOU

    2018-03-01

    An understanding of electron relaxation properties in plasmas is of importance in the application of magnetrons. An improved multi-term approximation of the Boltzmann equation is employed to study electron transport and relaxation properties in plasmas. Elastic, inelastic and nonconservative collisions between electrons and neutral particles are considered. The expressions for the transport coefficients are obtained using the expansion coefficients and the collision operator term. Numerical solutions of the matrix equations for the expansion coefficients are also investigated. Benchmark calculations of the Reid model are presented to demonstrate the accuracy of the improved multi-term approximation. It is shown that the two-term approximation is generally not accurate enough and the magnetic fields can reduce the anisotropy of the velocity distribution function. The electron relaxation properties of Ar plasmas in magnetrons for various magnetic fields are studied. It is demonstrated that the energy parameters change more slowly than the momentum parameters.

  4. Effects of superparamagnetic iron oxide nanoparticles on the longitudinal and transverse relaxation of hyperpolarized xenon gas

    Science.gov (United States)

    Burant, Alex; Antonacci, Michael; McCallister, Drew; Zhang, Le; Branca, Rosa Tamara

    2018-06-01

    SuperParamagnetic Iron Oxide Nanoparticles (SPIONs) are often used in magnetic resonance imaging experiments to enhance Magnetic Resonance (MR) sensitivity and specificity. While the effect of SPIONs on the longitudinal and transverse relaxation time of 1H spins has been well characterized, their effect on highly diffusive spins, like those of hyperpolarized gases, has not. For spins diffusing in linear magnetic field gradients, the behavior of the magnetization is characterized by the relative size of three length scales: the diffusion length, the structural length, and the dephasing length. However, for spins diffusing in non-linear gradients, such as those generated by iron oxide nanoparticles, that is no longer the case, particularly if the diffusing spins experience the non-linearity of the gradient. To this end, 3D Monte Carlo simulations are used to simulate the signal decay and the resulting image contrast of hyperpolarized xenon gas near SPIONs. These simulations reveal that signal loss near SPIONs is dominated by transverse relaxation, with little contribution from T1 relaxation, while simulated image contrast and experiments show that diffusion provides no appreciable sensitivity enhancement to SPIONs.

  5. Microwave Amplitude Modulation Technique to Measure Spin-Lattice (T 1) and Spin-Spin (T 2) Relaxation Times

    Science.gov (United States)

    Misra, Sushil K.

    The measurement of very short spin-lattice, or longitudinal, relaxation (SLR) times (i.e., 10-10 Misra, 1998), and polymer resins doped with rare-earth ions (Pescia et al., 1999a; Pescia et al. 1999b). The ability to measure such fast SLR data on amorphous Si and copper-chromium-tin spinel led to an understanding of the role of exchange interaction in affecting spin-lattice relaxation, while the data on polymer resins doped with rare-earth ions provided evidence of spin-fracton relaxation (Pescia et al., 1999a, b). But such fast SLR times are not measurable by the most commonly used techniques of saturation- and inversion-recovery (Poole, 1982; Alger, 1968), which only measure spin-lattice relaxation times longer than 10-6 s. A summary of relevant experimental data is presented in Table 1.

  6. Power-law versus exponential relaxation of {sup 29}Si nucleus spins in Si:B crystals

    Energy Technology Data Exchange (ETDEWEB)

    Koplak, O.V. [Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow (Russian Federation); Taras Shevchenko Kiev National University and National Academy of Sciences, 01033 Kiev (Ukraine); Talantsev, A.D., E-mail: adt@icp.ac.ru [Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow (Russian Federation); Morgunov, R.B. [Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow (Russian Federation); Sholokhov Moscow State University for the Humanities, 109240 Moscow (Russian Federation)

    2016-02-15

    The Si:B micro-crystals enriched with {sup 29}Si isotope have been studied by high resolution nuclear magnetic resonance (NMR) in the 300–800 K temperature range. The recovery of nuclear magnetization saturated by radiofrequency impulses follows pure power-law kinetics at 300 K, while admixture of exponential relaxation takes place at 500 K. The power-law relaxation corresponds to direct electron–nuclear relaxation due to the inhomogeneous distribution of paramagnetic centers, while exponential kinetics corresponds to the nuclear spin diffusion mechanism. The inhomogeneous distribution of deformation defects is a most probable reason of the power-law kinetics of nuclear spin relaxation. - Highlights: • {sup 29}Si nuclear magnetization relaxation follows mixed power-exponential law. • Power-law corresponds to direct electron–nuclear relaxation. • Admixture of exponential relaxation corresponds to the nuclear spin diffusion. • Inhomogeneously distributed deformation defects are responsible for power low. • Homogeneously distributed Boron acceptors are responsible for exponential part.

  7. Positive muon studies of magnetic materials

    International Nuclear Information System (INIS)

    Patterson, B.D.

    1975-01-01

    Polarized positive muons (μ + ) are stopped in magnetic materials, and the μ + precession is observed via the muons's asymmetric decay to a positron. The precession frequency is a measure of the local magnetic field at the μ + . Relaxation of the μ + spin is caused by spatially or time-varying local fields. The local field at a stopped μ + in ferromagnetic nickel is measured. From this measurement, the hyperfine field seen by an interstitial μ + due to its contact interaction with polarized screening electrons is inferred to be -0.66kG. A discussion of this value in terms of a simple model for the screening configuration is presented. Critical spin fluctuations in Ni at temperatures just above the Curie point rapidly relax the μ + spin. The temperature and external magnetic field dependence of the relaxation rate is determined experimentally. A theory for the relaxation rate is presented which demonstrates the importance of the hyperfine and dipolar interactions of the μ + with its Ni host. Preliminary results on μ + studies in ferromagnetic iron and cobalt are also discussed. (U.S.)

  8. Dielectric relaxation and hydrogen bonding interaction in xylitol-water mixtures using time domain reflectometry

    Science.gov (United States)

    Rander, D. N.; Joshi, Y. S.; Kanse, K. S.; Kumbharkhane, A. C.

    2016-01-01

    The measurements of complex dielectric permittivity of xylitol-water mixtures have been carried out in the frequency range of 10 MHz-30 GHz using a time domain reflectometry technique. Measurements have been done at six temperatures from 0 to 25 °C and at different weight fractions of xylitol (0 xylitol-water can be well described by Cole-Davidson model having an asymmetric distribution of relaxation times. The dielectric parameters such as static dielectric constant and relaxation time for the mixtures have been evaluated. The molecular interaction between xylitol and water molecules is discussed using the Kirkwood correlation factor ( g eff ) and thermodynamic parameter.

  9. NMR relaxation times in human brain tumors (preliminary results)

    International Nuclear Information System (INIS)

    Benoist, L.; Certaines, J. de; Chatel, M.; Menault, F.

    1981-01-01

    Since the early work of Damadian in 1971, proton NMR studies of tumors has been well documented. Present study concerns the spin-lattice T 1 and spin-spin T 2 relaxation times of normal dog brain according to the histological differentiation and of 35 human benignant or malignant tumors. The results principally show T 2 important variations between white and gray substance in normal brain but no discrimination between malignant and benignant tumors [fr

  10. Characteristics of Viscoelastic Crustal Deformation Following a Megathrust Earthquake: Discrepancy Between the Apparent and Intrinsic Relaxation Time Constants

    Science.gov (United States)

    Fukahata, Yukitoshi; Matsu'ura, Mitsuhiro

    2018-02-01

    The viscoelastic deformation of an elastic-viscoelastic composite system is significantly different from that of a simple viscoelastic medium. Here, we show that complicated transient deformation due to viscoelastic stress relaxation after a megathrust earthquake can occur even in a very simple situation, in which an elastic surface layer (lithosphere) is underlain by a viscoelastic substratum (asthenosphere) under gravity. Although the overall decay rate of the system is controlled by the intrinsic relaxation time constant of the asthenosphere, the apparent decay time constant at each observation point is significantly different from place to place and generally much longer than the intrinsic relaxation time constant of the asthenosphere. It is also not rare that the sense of displacement rate is reversed during the viscoelastic relaxation. If we do not bear these points in mind, we may draw false conclusions from observed deformation data. Such complicated transient behavior can be explained mathematically from the characteristics of viscoelastic solution: for an elastic-viscoelastic layered half-space, the viscoelastic solution is expressed as superposition of three decaying components with different relaxation time constants that depend on wavelength.

  11. Stress relaxation in a ferrofluid with clustered nanoparticles

    International Nuclear Information System (INIS)

    Borin, Dmitry Yu; Odenbach, Stefan; Zubarev, Andrey Yu; Chirikov, Dmitry N

    2014-01-01

    The formation of structures in a ferrofluid by an applied magnetic field causes various changes in the rheological behaviour of the ferrofluid. A ferrofluid based on clustered iron nanoparticles was investigated. We experimentally and theoretically consider stress relaxation in the ferrofluid under the influence of a magnetic field, when the flow is suddenly interrupted. It is shown that the residual stress observed in the fluid after the relaxation is correlated with the measured and theoretically predicted magnetic field-induced yield stress. Furthermore, we have shown that the total macroscopic stress in the ferrofluid after the flow is interrupted is defined by the presence of both linear chains and dense, drop-like bulk aggregates. The proposed theoretical approach is consistent with the experimentally observed behaviour, despite a number of simplifications which have been made in the formulation of the model. Thus, the obtained results contribute a lot to the understanding of the complex, magnetic field-induced rheological properties of magnetic colloids near the yield stress point. (paper)

  12. Dielectric relaxation studies in 5CB nematic liquid crystal at 9 GHz ...

    Indian Academy of Sciences (India)

    Resonance width, shift in resonance frequency, relaxation time and activation energy of 5CB nematic liquid crystal are measured using microwave cavity technique under the influence of an external magnetic field at 9 GHz and at different temperatures. The dielectric response in liquid crystal at different temperatures and ...

  13. Determining the structural relaxation times deep in the glassy state of the pharmaceutical Telmisartan

    Energy Technology Data Exchange (ETDEWEB)

    Adrjanowicz, K; Paluch, M [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Ngai, K L [Naval Research Laboratory, Washington, DC 20375-5320 (United States)

    2010-03-31

    By using the dielectric relaxation method proposed recently by Casalini and Roland (2009 Phys. Rev. Lett. 102 035701), we were able to determine the structural alpha-relaxation times deep in the glassy state of the pharmaceutical, Telmisartan. Normally, deep in the glassy state tau{sub a}lpha is so long that it cannot be measured but tau{sub b}eta, which is usually much shorter, can be directly determined. The method basically takes advantage of the connection between the alpha-relaxation and the secondary beta-relaxation of the Johari-Goldstein kind, including a relation between their relaxation times tau{sub a}lpha and tau{sub b}eta, respectively. Thus, tau{sub a}lpha of Telmisartan were determined by monitoring the change of the dielectric beta-loss, epsilon'', with physical aging time at temperatures well below the vitrification temperature. The values of tau{sub a}lpha were compared with those expected by the coupling model (CM). Unequivocal comparison cannot be made in the case of Telmisartan because its beta-loss peak is extremely broad, and the CM predicts only an order of magnitude agreement between the primitive relaxation frequency and the beta-peak frequency. We also made an attempt to analyze all isothermal and aging susceptibility data after transformation into the electric modulus representation. The tau{sub a}lpha found in the glass state by using the method of Casalini and Roland in the modulus representation are similar to those obtained in the susceptibility representation. However, it is remarkable that the stretching parameter beta{sub KWWM} = 0.51 in the electric modulus representation gives more precise fits to the aging data than in the susceptibility representation with beta{sub KWW} = 0.61. Our results suggest that the electric modulus representation may be useful as an alternative to analyze aging data, especially in the case of highly polar glassformers having a large ratio of low frequency and high frequency dielectric

  14. What is the most suitable MR signal index for quantitative evaluation of placental function using Half-Fourier acquisition single-shot turbo spin-echo compared with T2-relaxation time?

    Science.gov (United States)

    Kameyama, Kyoko Nakao; Kido, Aki; Himoto, Yuki; Moribata, Yusaku; Minamiguchi, Sachiko; Konishi, Ikuo; Togashi, Kaori

    2018-06-01

    Background Half-Fourier acquisition single-shot turbo spin-echo (HASTE) imaging is now widely used for placental and fetal imaging because of its rapidity and low sensitivity to fetal movement. If placental dysfunction is also predicted by quantitative value obtained from HASTE image, then it might be beneficial for evaluating placental wellbeing. Purpose To ascertain the most suitable magnetic resonance (MR) signal indexes reflecting placental function using HASTE imaging. Material and Methods This retrospective study included 37 consequent patients who had given informed consent to MR imaging (MRI) examinations. All had undergone MRI examinations between February 2014 and June 2015. First, the correlation between T2-relaxation time of normal placenta and gestational age (GA) was examined. Second, correlation between signal intensity ratios (SIRs) using HASTE imaging and placental T2-relaxation time were assessed. The SIRs were calculated using placental signal intensity (SI) relative to the SI of the amniotic fluid, fetal ocular globes, gastric fluid, bladder, maternal psoas major muscles, and abdominal subcutaneous adipose tissue. Results Among the 37 patients, the correlation between T2-relaxation time of the 25 normal placentas and GA showed a moderately strong correlation (Spearman rho = -0.447, P = 0.0250). The most significant correlation with placental T2-relaxation time was observed with the placental SIR relative to the maternal psoas major muscles (SIR pl./psoas muscle ) (Spearman rho = -0.531, P = 0.0007). Conclusion This study revealed that SIR pl./psoas muscle showed the best correlation to placental T2-relaxation time. Results show that SIR pl./psoas muscle might be optimal as a clinically available quantitative index of placental function.

  15. Two-relaxation-time lattice Boltzmann method and its application to advective-diffusive-reactive transport

    Science.gov (United States)

    Yan, Zhifeng; Yang, Xiaofan; Li, Siliang; Hilpert, Markus

    2017-11-01

    The lattice Boltzmann method (LBM) based on single-relaxation-time (SRT) or multiple-relaxation-time (MRT) collision operators is widely used in simulating flow and transport phenomena. The LBM based on two-relaxation-time (TRT) collision operators possesses strengths from the SRT and MRT LBMs, such as its simple implementation and good numerical stability, although tedious mathematical derivations and presentations of the TRT LBM hinder its application to a broad range of flow and transport phenomena. This paper describes the TRT LBM clearly and provides a pseudocode for easy implementation. Various transport phenomena were simulated using the TRT LBM to illustrate its applications in subsurface environments. These phenomena include advection-diffusion in uniform flow, Taylor dispersion in a pipe, solute transport in a packed column, reactive transport in uniform flow, and bacterial chemotaxis in porous media. The TRT LBM demonstrated good numerical performance in terms of accuracy and stability in predicting these transport phenomena. Therefore, the TRT LBM is a powerful tool to simulate various geophysical and biogeochemical processes in subsurface environments.

  16. DEVICE FOR MEASURMENT OF RELAXATION TIME OF THE BLEACHED STATE OF OPTICAL MATERIALS BY THE «PUMP-PROBE» METHOD IN SUB-ΜS TIME DOMAIN

    Directory of Open Access Journals (Sweden)

    I. V. Glazunov

    2016-01-01

    Full Text Available The use of passive shutters to control the duration of the light pulses is an important aspect in the miniature and microchip lasers. One of the key spectroscopic characteristics which determine the properties of the material, which can be used as a passive shutter is relaxation time of its bleached state.We describe a device for determination of relaxation time of the bleached state in optical materials by the «pump-probe» method in the sub-μs time domain. This device allows one to determine relaxation times for materials which absorb at the light wavelength of 1.5 μm, e.g., materials doped with cobalt ions Co2+. The results of test examinations of the device are described, and the relaxation time of the bleached state of Co2+ ions is measured for a novel material – transparent glass-ceramics with Co2+:Ga2 O3 nanophase – amounting to 190 ± 6 ns. 

  17. Source of non-arrhenius average relaxation time in glass-forming liquids

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    1998-01-01

    then discuss a recently proposed model according to which the activation energy of the average relaxation time is determined by the work done in shoving aside the surrounding liquid to create space needed for a "flow event". In this model, which is based on the fact that intermolecular interactions...

  18. Thickness Dependence of Magnetic Relaxation and E-J Characteristics in Superconducting (Gd-Y)-Ba-Cu-O Films with Strong Vortex Pinning

    Energy Technology Data Exchange (ETDEWEB)

    Polat, Ozgur [ORNL; Sinclair IV, John W [ORNL; Zuev, Yuri L [ORNL; Thompson, James R [ORNL; Christen, David K [ORNL; Cook, Sylvester W [ORNL; Kumar, Dhananjay [ORNL; Chen, Y [SuperPower Incorporated, Schenectady, New York; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York

    2011-01-01

    The dependence of the critical current density Jc on temperature, magnetic field, and film thickness has been investigated in (Gd-Y)BaCu-oxide materials of 0.7, 1.4, and 2.8 m thickness. Generally, the Jc decreases with film thickness at investigated temperatures and magnetic fields. The nature and strength of the pinning centers for vortices have been identified through angular and temperature measurements, respectively. These films do not exhibit c-axis correlated vortex pinning, but do have correlated defects oriented near the ab-planes. For all film thicknesses studied, strong pinning dominates at most temperatures. The vortex dynamics were investigated through magnetic relaxation studies in the temperature range of 5 77 K in 1 T and 3 T applied magnetic fields, H || surface-normal. The creep rate S is thickness dependent at high temperatures, implying that the pinning energy is also thickness dependent. Maley analyses of the relaxation data show an inverse power law variation for the effective pinning energy Ueff ~ (J0/J) . Finally, the electric field-current density (E-J) characteristics were determined over a wide range of dissipation by combining experimental results from transport, swept field magnetometry (VSM), and Superconducting Quantum Interference Device (SQUID) magnetometry. We develop a self-consistent model of the combined experimental results, leading to an estimation of the critical current density Jc0(T) in the absence of flux creep.

  19. Dynamic regulation of GDP binding to G proteins revealed by magnetic field-dependent NMR relaxation analyses.

    Science.gov (United States)

    Toyama, Yuki; Kano, Hanaho; Mase, Yoko; Yokogawa, Mariko; Osawa, Masanori; Shimada, Ichio

    2017-02-22

    Heterotrimeric guanine-nucleotide-binding proteins (G proteins) serve as molecular switches in signalling pathways, by coupling the activation of cell surface receptors to intracellular responses. Mutations in the G protein α-subunit (Gα) that accelerate guanosine diphosphate (GDP) dissociation cause hyperactivation of the downstream effector proteins, leading to oncogenesis. However, the structural mechanism of the accelerated GDP dissociation has remained unclear. Here, we use magnetic field-dependent nuclear magnetic resonance relaxation analyses to investigate the structural and dynamic properties of GDP bound Gα on a microsecond timescale. We show that Gα rapidly exchanges between a ground-state conformation, which tightly binds to GDP and an excited conformation with reduced GDP affinity. The oncogenic D150N mutation accelerates GDP dissociation by shifting the equilibrium towards the excited conformation.

  20. Comparison of the Magnetic Anisotropy and Spin Relaxation Phenomenon of Dinuclear Terbium(III) Phthalocyaninato Single-Molecule Magnets Using the Geometric Spin Arrangement.

    Science.gov (United States)

    Morita, Takaumi; Damjanović, Marko; Katoh, Keiichi; Kitagawa, Yasutaka; Yasuda, Nobuhiro; Lan, Yanhua; Wernsdorfer, Wolfgang; Breedlove, Brian K; Enders, Markus; Yamashita, Masahiro

    2018-02-28

    Herein we report the synthesis and characterization of a dinuclear Tb III single-molecule magnet (SMM) with two [TbPc 2 ] 0 units connected via a fused-phthalocyaninato ligand. The stable and robust complex [(obPc)Tb(Fused-Pc)Tb(obPc)] (1) was characterized by using synchrotron radiation measurements and other spectroscopic techniques (ESI-MS, FT-IR, UV). The magnetic couplings between the Tb III ions and the two π radicals present in 1 were explored by means of density functional theory (DFT). Direct and alternating current magnetic susceptibility measurements were conducted on magnetically diluted and nondiluted samples of 1, indicating this compound to be an SMM with improved properties compared to those of the well-known [TbPc 2 ] -/0/+ and the axially symmetric dinuclear Tb III phthalocyaninato triple-decker complex (Tb 2 (obPc) 3 ). Assuming that the probability of quantum tunneling of the magnetization (QTM) occurring in one TbPc 2 unit is P QTM , the probability of QTM simultaneously occurring in 1 is P QTM 2 , meaning that QTM is effectively suppressed. Furthermore, nondiluted samples of 1 underwent slow magnetic relaxation times (τ ≈ 1000 s at 0.1 K), and the blocking temperature (T B ) was determined to be ca. 16 K with an energy barrier for spin reversal (U eff ) of 588 cm -1 (847 K) due to D 4d geometry and weak inter- and intramolecular magnetic interactions as an exchange bias (H bias ), reducing QTM. Four hyperfine steps were observed by micro-SQUID measurement. Furthermore, solution NMR measurements (one-dimensional, two-dimensional, and dynamic) were done on 1, which led to the determination of the high rotation barrier (83 ± 10 kJ/mol) of the obPc ligand. A comparison with previously reported Tb III triple-decker compounds shows that ambient temperature NMR measurements can indicate improvements in the design of coordination environments for SMMs. A large U eff causes strong uniaxial magnetic anisotropy in 1, leading to a χ ax value (1.39

  1. Dielectric relaxation in epitaxial films of paraelectric-magnetic SrTiO.sub.3./sub.-SrMnO.sub.3./sub. solid solution

    Czech Academy of Sciences Publication Activity Database

    Savinov, Maxim; Bovtun, Viktor; Tereshina-Chitrova, Evgenia; Stupakov, Alexandr; Dejneka, Alexandr; Tyunina, Marina

    2018-01-01

    Roč. 112, č. 5 (2018), s. 1-4, č. článku 052901. ISSN 0003-6951 R&D Projects: GA ČR GA15-15123S Institutional support: RVO:68378271 Keywords : dielectric relaxation * epitaxial films * paraelectric-magnetic * SrTiO 3 -SrMnO 3 solid solution Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics , supercond.) Impact factor: 3.411, year: 2016

  2. Numerical evaluation of energy barriers and magnetic relaxation in interacting nanostructured magnetic systems

    International Nuclear Information System (INIS)

    Chubykalo-Fesenko, Oksana A.; Chantrell, Roy W.

    2004-01-01

    We discuss a model to quantify long-time thermally induced magnetization reversal in magnetic systems with distributed properties. Two algorithms, based on kinetic and Metropolis Monte Carlo are introduced. While the former requires the constant recalculation of all energy barriers and is useful when the interactions are weak, the latter uses the Metropolis Monte Carlo to estimate the magnetization trajectory and, consequently, only the most probable transition rates are evaluated. The ridge optimization method is used to evaluate the energy barriers in a multidimensional energy landscape. The algorithms are applied to a granular system modeled by means of Voronoi polyhedra and having random in-plane anisotropy

  3. Predicting the effect of relaxation during frequency-selective adiabatic pulses

    Science.gov (United States)

    Pfaff, Annalise R.; McKee, Cailyn E.; Woelk, Klaus

    2017-11-01

    Adiabatic half and full passages are invaluable for achieving uniform, B1-insensitive excitation or inversion of macroscopic magnetization across a well-defined range of NMR frequencies. To accomplish narrow frequency ranges with adiabatic pulses (computer-calculated data with experimental results demonstrates that, in non-viscous, small-molecule fluids, it is possible to model magnetization and relaxation by considering standard T1 and T2 relaxation in the traditional rotating frame. The proposed model is aimed at performance optimizations of applications in which these pulses are employed. It differs from previous reports which focused on short high-power adiabatic pulses and relaxation that is governed by dipole-dipole interactions, cross polarization, or chemical exchange.

  4. Experimental evidence for simultaneous relaxation processes in super spin glass γ-Fe{sub 2}O{sub 3} nanoparticle system

    Energy Technology Data Exchange (ETDEWEB)

    Nikolic, V.; Perovic, M., E-mail: mara.perovic@vinca.rs; Kusigerski, V.; Boskovic, M.; Mrakovic, A.; Blanusa, J.; Spasojevic, V. [University of Belgrade, Condensed Matter Physics Laboratory, Institute of Nuclear Sciences Vinca (Serbia)

    2015-03-15

    Spherical γ-Fe{sub 2}O{sub 3} nanoparticles with the narrow size distribution of (5 ± 1) nm were synthesized by the method of thermal decomposition from iron acetyl acetonate precursor. The existence of super spin-glass state at low temperatures and in low applied magnetic fields was confirmed by DC magnetization measurements on a SQUID magnetometer. The comprehensive investigation of magnetic relaxation dynamics in low-temperature region was conducted through the measurements of single-stop and multiple stop ZFC memory effects, ZFC magnetization relaxation, and AC susceptibility measurements. The experimental findings revealed the peculiar change of magnetic relaxation dynamics at T ≈ 10 K, which arose as a consequence of simultaneous existence of different relaxation processes in Fe{sub 2}O{sub 3} nanoparticle system. Complementarity of the applied measurements was utilized in order to single out distinct relaxation processes as well as to elucidate complex relaxation mechanisms in the investigated interacting nanoparticle system.

  5. Ferromagnetic resonance study of structure and relaxation of magnetization in NiFe/Ru superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Alayo, W., E-mail: willian.rodriguez@ufpel.edu.br [Depto. de Física, Univ. Federal de Pelotas, Campus Universitário, 96010-900, Pelotas, RS (Brazil); Landi Jr, S. [Instituto Federal Goiano, Rio Verde 75901-970 (Brazil); Pelegrini, F. [Instituto de Física, Universidade Federal de Goiás, Goiânia 74001-970 (Brazil); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180 (Brazil)

    2014-01-15

    The structural properties and relaxation processes of magnetization in [Ni{sub 81}Fe{sub 19}(t{sub 1})/Ru(t{sub 2})]{sub N} superlattices (N=number of bilayers) were analyzed by ferromagnetic resonance (FMR) with a fixed microwave frequency. One series of samples was deposited with constant NiFe layer thickness (t{sub 1}) and variable Ru layer thickness (t{sub 2}); the other series, with constant t{sub 2} and variable t{sub 1}. A single FMR mode was observed for t{sub 2}<15 Å and t{sub 1}>75 Å and it has been attributed to the resonance of the exchange-coupled NiFe layers across the Ru interlayers. For the other values of t{sub 1} and t{sub 2}, several FMR modes appeared and they were associated to non-coupled magnetic phases with different effective magnetization formed during the multilayer growth. The FMR linewidths were analyzed as a function of the magnetic layer thickness and a strong dependence on t{sub 1}{sup −2} was observed. It was attributed to the contribution of the two-magnon scattering mechanism for the linewidth. - Highlights: • We present a study of magnetic properties of NiFe/Ru superlattices by ferromagnetic resonance (FMR). • The FMR spectra show several modes for large Ru thicknesses and for low NiFe thicknesses. • The above behavior is correlated with the interlayer exchange coupling. • The two-magnon scattering mechanism is revealed by the dependence of the FMR linewidth on the NiFe thickness.

  6. Diagnostic value of T1 and T2 * relaxation times and off-resonance saturation effects in the evaluation of Achilles tendinopathy by MRI at 3T.

    Science.gov (United States)

    Grosse, Ulrich; Syha, Roland; Hein, Tobias; Gatidis, Sergios; Grözinger, Gerd; Schabel, Christoph; Martirosian, Petros; Schick, Fritz; Springer, Fabian

    2015-04-01

    To evaluate and compare the diagnostic value of T1 , T2 * relaxation times and off-resonance saturation ratios (OSR) in healthy controls and patients with different clinical and morphological stages of Achilles tendinopathy. Forty-two healthy Achilles tendons and 34 tendons of 17 patients with symptomatic and asymptomatic tendinopathy were investigated clinically with conventional magnetic resonance imaging (MRI) sequences on a 3T whole-body MR scanner and a dynamic ultrasound examination. In addition, T1 and T2 * relaxation times were assessed using an ultrashort echo time (UTE) imaging sequence with flip angle and echo time variation. For the calculation of OSR values a Gaussian off-resonance saturation pulse (frequency offset: 750-5000 Hz) was used. The diagnostic value of the derived MR values was assessed and compared using receiver operating characteristic (ROC) curves. ROC curves demonstrate the highest overall test performance for OSR values at 2000 Hz off-resonance in differentiating slightly (OSR-2000 [AUC: 0.930] > T2 * [AUC: 0.884] > T1 [AUC: 0.737]) and more severe pathologically altered tendon areas (OSR-2000 [AUC: 0.964] > T2 * [AUC: 0.917] > T1 [AUC: 0.819]) from healthy ones. OSR values at a frequency offset of 2000 Hz demonstrated a better sensitivity and specificity for detecting mild and severe stages of tendinopathy compared to T2 * and particularly when compared to T1 relaxation times. © 2014 Wiley Periodicals, Inc.

  7. MR spectroscopy of liver in overweight children and adolescents: Investigation of 1H T2 relaxation times at 3 T

    International Nuclear Information System (INIS)

    Chabanova, Elizaveta; Bille, Dorthe S.; Thisted, Ebbe; Holm, Jens-Christian; Thomsen, Henrik S.

    2012-01-01

    Objective: The objective was to investigate T 2 relaxation values and to optimize hepatic fat quantification using proton MR spectroscopy ( 1 H MRS) at 3 T in overweight and obese children and adolescents. Subjects: The study included 123 consecutive children and adolescents with a body mass index above the 97th percentile according to age and sex. 1 H MR spectroscopy was performed at 3.0 T using point resolved spectroscopy sequence with series TE. T 2 relaxation values and hepatic fat content corrected for the T 2 relaxation effects were calculated. Results: T 2 values for water ranged from 22 ms to 42 ms (mean value 28 ms) and T 2 values for fat ranged from 36 ms to 99 ms (mean value 64 ms). Poor correlation was observed: (1) between T 2 relaxation times of fat and T 2 relaxation times of water (correlation coefficient r = 0.038, P = 0.79); (2) between T 2 relaxation times of fat and fat content (r = 0.057, P = 0.69); (3) between T 2 relaxation times of water and fat content (r = 0.160, P = 0.26). Correlation between fat peak content and the T 2 corrected fat content decreased with increasing echo time TE: r = 0.97 for TE = 45, r = 0.93 for TE = 75, r = 0.89 for TE = 105, P 1 H MRS at 3 T is an effective technique for measuring hepatic fat content in overweight and obese children and adolescents. It is necessary to measure T 2 relaxation values and to correct the spectra for the T 2 relaxation effects in order to obtain an accurate estimate of the hepatic fat content.

  8. Comparison of T2* relaxation times of articular cartilage of the knee in elite professional football players and age-and BMI-matched amateur athletes

    Energy Technology Data Exchange (ETDEWEB)

    Behzadi, C., E-mail: c.behzadi@uke.de [Department of Diagnostic and Interventional Radiology and Nuclearmedicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246 (Germany); Welsch, G.H. [Department of Sports Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246 (Germany); Laqmani, A.; Henes, F.O.; Kaul, M.G. [Department of Diagnostic and Interventional Radiology and Nuclearmedicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246 (Germany); Schoen, G. [Department of Medical Biometry and Epidemiology, University Medical Center, Hamburg-Eppendorf, Hamburg, 20246 (Germany); Adam, G.; Regier, M. [Department of Diagnostic and Interventional Radiology and Nuclearmedicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246 (Germany)

    2017-01-15

    Objective: Recent investigation has underlined the potential of quantitative MR imaging to be used as a complementary tool for the diagnosis of cartilage degeneration at an early state. The presented study analyses T2* relaxation times of articular cartilage of the knee in professional athletes and compares the results to age- and BMI (Body Mass Index)-matched healthy amateur athletes. Materials and methods: 22 professional football players and 22 age- and BMI-matched individuals were underwent knee Magnetic Resonance Imaging (MRI) at 3T including qualitative and quantitative analysis. Qualitative analysis included e.g. meniscal tears, joint effusion and bone edema. For quantitative analysis T2* (22 ET: 4.6-53.6 ms) measurements in 3D data acquisition were performed. Deep and superficial layers of 22 predefined cartilage segments were analysed. All data sets were postprocessed using a dedicated software tool. Statistical analysis included Student t-test, confidence intervals and a random effects model. Results: In both groups, T2* relaxation times were significantly higher in the superficial compared to the deep layers (p < 0.001). Professional athletes had significantly higher relaxation times in eight superficial and three deep cartilage layers in the predefined cartilage segments (p < 0.05). Highly significant differences were found in the weight-bearing segments of the lateral superficial femoral condyle (p < 0.001). Conclusion: Elevated T2* values in cartilage layers of professional football players compared to amateur athletes were noted. The effects seem to predominate in superficial cartilage layers.

  9. Comparison of T2* relaxation times of articular cartilage of the knee in elite professional football players and age-and BMI-matched amateur athletes

    International Nuclear Information System (INIS)

    Behzadi, C.; Welsch, G.H.; Laqmani, A.; Henes, F.O.; Kaul, M.G.; Schoen, G.; Adam, G.; Regier, M.

    2017-01-01

    Objective: Recent investigation has underlined the potential of quantitative MR imaging to be used as a complementary tool for the diagnosis of cartilage degeneration at an early state. The presented study analyses T2* relaxation times of articular cartilage of the knee in professional athletes and compares the results to age- and BMI (Body Mass Index)-matched healthy amateur athletes. Materials and methods: 22 professional football players and 22 age- and BMI-matched individuals were underwent knee Magnetic Resonance Imaging (MRI) at 3T including qualitative and quantitative analysis. Qualitative analysis included e.g. meniscal tears, joint effusion and bone edema. For quantitative analysis T2* (22 ET: 4.6-53.6 ms) measurements in 3D data acquisition were performed. Deep and superficial layers of 22 predefined cartilage segments were analysed. All data sets were postprocessed using a dedicated software tool. Statistical analysis included Student t-test, confidence intervals and a random effects model. Results: In both groups, T2* relaxation times were significantly higher in the superficial compared to the deep layers (p < 0.001). Professional athletes had significantly higher relaxation times in eight superficial and three deep cartilage layers in the predefined cartilage segments (p < 0.05). Highly significant differences were found in the weight-bearing segments of the lateral superficial femoral condyle (p < 0.001). Conclusion: Elevated T2* values in cartilage layers of professional football players compared to amateur athletes were noted. The effects seem to predominate in superficial cartilage layers.

  10. Confinement sensitivity in quantum dot singlet-triplet relaxation

    Science.gov (United States)

    Wesslén, C. J.; Lindroth, E.

    2017-11-01

    Spin-orbit mediated phonon relaxation in a two-dimensional quantum dot is investigated using different confining potentials. Elliptical harmonic oscillator and cylindrical well results are compared to each other in the case of a two-electron GaAs quantum dot subjected to a tilted magnetic field. The lowest energy set of two-body singlet and triplet states are calculated including spin-orbit and magnetic effects. These are used to calculate the phonon induced transition rate from the excited triplet to the ground state singlet for magnetic fields up to where the states cross. The roll of the cubic Dresselhaus effect, which is found to be much more important than previously assumed, and the positioning of ‘spin hot-spots’ are discussed and relaxation rates for a few different systems are exhibited.

  11. The study of NMR relaxation time spectra multi-exponential inversion based on Lloyd–Max optimal quantization

    International Nuclear Information System (INIS)

    Li, Xuewei; Kong, Li; Cheng, Jingjing; Wu, Lei

    2015-01-01

    The multi-exponential inversion of a NMR relaxation signal plays a key role in core analysis and logging interpretation in the formation of porous media. To find an efficient metod of inverting high-resolution relaxation time spectra rapidly, this paper studies the effect of inversion which is based on the discretization of the original echo in a time domain by using a simulation model. This paper analyzes the ill-condition of discrete equations on the basis of the NMR inversion model and method, determines the appropriate number of discrete echoes and acquires the optimal distribution of discrete echo points by the Lloyd–Max optimal quantization method, in considering the inverse precision and computational complexity comprehensively. The result shows that this method can effectively improve the efficiency of the relaxation time spectra inversion while guaranteeing inversed accuracy. (paper)

  12. 31-P Relaxation times of metabolic compounds in tumors grafted in nude mice

    International Nuclear Information System (INIS)

    Remy, C.; Benabid, A.L.; Jacrot, M.; Riondel, J.; Albrand, J.P.; Decorps, M.

    1985-08-01

    The observation that water proton relaxation rates were longer in tumors than in normal tissues provided a basis for the detection of human tumors by the NMR imaging technique. To evaluate the potentiality of 31-P NMR spectroscopy as a diagnostic tool of the pathological state of tissues, T1 and T2 relaxation times have been measured for the phosphates of ATP, inorganic phosphate (Pi), phosphomonoesters (PME) and phosphocreatine (PCr) in the 31-P NMR spectra obtained in vivo for normal rat brain and rat brain tumors implanted in nude mice

  13. On the microscopic fluctuations driving the NMR relaxation of quadrupolar ions in water

    Energy Technology Data Exchange (ETDEWEB)

    Carof, Antoine; Salanne, Mathieu; Rotenberg, Benjamin, E-mail: benjamin.rotenberg@upmc.fr [Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Laboratoire PHENIX, Case 51, 4 Place Jussieu, F-75005 Paris (France); Charpentier, Thibault [CEA, IRAMIS, NIMBE, LSDRM, UMR CEA-CNRS 3685, F-91191 Gif-sur-Yvette Cedex (France)

    2015-11-21

    Nuclear Magnetic Resonance (NMR) relaxation is sensitive to the local structure and dynamics around the probed nuclei. The Electric Field Gradient (EFG) is the key microscopic quantity to understand the NMR relaxation of quadrupolar ions, such as {sup 7}Li{sup +}, {sup 23}Na{sup +}, {sup 25}Mg{sup 2+}, {sup 35}Cl{sup −}, {sup 39}K{sup +}, or {sup 133}Cs{sup +}. Using molecular dynamics simulations, we investigate the statistical and dynamical properties of the EFG experienced by alkaline, alkaline Earth, and chloride ions at infinite dilution in water. Specifically, we analyze the effect of the ionic charge and size on the distribution of the EFG tensor and on the multi-step decay of its auto-correlation function. The main contribution to the NMR relaxation time arises from the slowest mode, with a characteristic time on the picosecond time scale. The first solvation shell of the ion plays a dominant role in the fluctuations of the EFG, all the more that the ion radius is small and its charge is large. We propose an analysis based on a simplified charge distribution around the ion, which demonstrates that the auto-correlation of the EFG, hence the NMR relaxation time, reflects primarily the collective translational motion of water molecules in the first solvation shell of the cations. Our findings provide a microscopic route to the quantitative interpretation of NMR relaxation measurements and open the way to the design of improved analytical theories for NMR relaxation for small ionic solutes, which should focus on water density fluctuations around the ion.

  14. Casein-Coated Fe5C2 Nanoparticles with Superior r2 Relaxivity for Liver-Specific Magnetic Resonance Imaging.

    Science.gov (United States)

    Cowger, Taku A; Tang, Wei; Zhen, Zipeng; Hu, Kai; Rink, David E; Todd, Trever J; Wang, Geoffrey D; Zhang, Weizhong; Chen, Hongmin; Xie, Jin

    2015-01-01

    Iron oxide nanoparticles have been extensively used as T2 contrast agents for liver-specific magnetic resonance imaging (MRI). The applications, however, have been limited by their mediocre magnetism and r2 relaxivity. Recent studies show that Fe5C2 nanoparticles can be prepared by high temperature thermal decomposition. The resulting nanoparticles possess strong and air stable magnetism, suggesting their potential as a novel type of T2 contrast agent. To this end, we improve the synthetic and surface modification methods of Fe5C2 nanoparticles, and investigated the impact of size and coating on their performances for liver MRI. Specifically, we prepared 5, 14, and 22 nm Fe5C2 nanoparticles and engineered their surface by: 1) ligand addition with phospholipids, 2) ligand exchange with zwitterion-dopamine-sulfonate (ZDS), and 3) protein adsorption with casein. It was found that the size and surface coating have varied levels of impact on the particles' hydrodynamic size, viability, uptake by macrophages, and r2 relaxivity. Interestingly, while phospholipid- and ZDS-coated Fe5C2 nanoparticles showed comparable r2, the casein coating led to an r2 enhancement by more than 2 fold. In particular, casein coated 22 nm Fe5C2 nanoparticle show a striking r2 of 973 mM(-1)s(-1), which is one of the highest among all of the T2 contrast agents reported to date. Small animal studies confirmed the advantage of Fe5C2 nanoparticles over iron oxide nanoparticles in inducing hypointensities on T2-weighted MR images, and the particles caused little toxicity to the host. The improvements are important for transforming Fe5C2 nanoparticles into a new class of MRI contrast agents. The observations also shed light on protein-based surface modification as a means to modulate contrast ability of magnetic nanoparticles.

  15. Field dependence of the electron spin relaxation in quantum dots.

    Science.gov (United States)

    Calero, Carlos; Chudnovsky, E M; Garanin, D A

    2005-10-14

    The interaction of the electron spin with local elastic twists due to transverse phonons is studied. The universal dependence of the spin-relaxation rate on the strength and direction of the magnetic field is obtained in terms of the electron gyromagnetic tensor and macroscopic elastic constants of the solid. The theory contains no unknown parameters and it can be easily tested in experiment. At high magnetic field it provides a parameter-free lower bound on the electron spin relaxation in quantum dots.

  16. Effects of a vertical magnetic field on particle confinement in a magnetized plasma torus.

    Science.gov (United States)

    Müller, S H; Fasoli, A; Labit, B; McGrath, M; Podestà, M; Poli, F M

    2004-10-15

    The particle confinement in a magnetized plasma torus with superimposed vertical magnetic field is modeled and measured experimentally. The formation of an equilibrium characterized by a parallel plasma current canceling out the grad B and curvature drifts is described using a two-fluid model. Characteristic response frequencies and relaxation rates are calculated. The predictions for the particle confinement time as a function of the vertical magnetic field are verified in a systematic experimental study on the TORPEX device, including the existence of an optimal vertical field and the anticorrelation between confinement time and density.

  17. Low-field anomalous magnetic phase in the kagome-lattice shandite C o3S n2S2

    Science.gov (United States)

    Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki

    2017-07-01

    The magnetization process of single crystals of the metallic kagome ferromagnet C o3S n2S2 was carefully measured via magnetization and ac susceptibility. Field-dependent anomalous transitions observed in low fields indicate the presence of an unconventional magnetic phase just below the Curie temperature, TC. The magnetic phase diagrams in low magnetic fields along different crystallographic directions were determined for the first time. The magnetic relaxation measurements at various frequencies covering five orders of magnitude from 0.01 to 1000 Hz indicate markedly slow spin dynamics only in the anomalous phase with characteristic relaxation times longer than 10 s.

  18. Spin current relaxation time in thermally evaporated pentacene films

    OpenAIRE

    Tani, Yasuo; Kondo, Takuya; Teki, Yoshio; Shikoh, Eiji

    2017-01-01

    The spin current relaxation time [tau] in thermally evaporated pentacene films was evaluated with the spin-pump-induced spin transport properties and the charge current transport properties in pentacene films. Under an assumption of a diffusive transport of the spin current in pentacene films, the zero-field mobility and the diffusion constant of holes in pentacene films were experimentally obtained to be ~8.0x10^-7 m^2/Vs and ~2.0x10^-8 m^2/s, respectively. Using those values and the previou...

  19. Anisotropy and relaxation processes of uniaxially oriented CoFe2O4 nanoparticles dispersed in PDMS

    International Nuclear Information System (INIS)

    Antonel, P.S.; Negri, R.M.; Leyva, A.G.; Jorge, G.A.

    2012-01-01

    When a uniaxial magnetic field is applied to a non-magnetic dispersive medium filled with magnetic nanoparticles, they auto-assemble into thin needles parallel to the field direction, due to the strong dipolar interaction among them. We have prepared in this way magnetically oriented nanocomposites of nanometer-size CoFe 2 O 4 particles in a polydimethylsiloxane polymer matrix, with 10% w/w of magnetic particles. We present the characteristic magnetic relaxation curves measured after the application of a magnetic field forming an angle α with respect to the needle direction. We show that the magnetic viscosity (calculated from the logarithmic relaxation curves) as a function of α presents a minimum at α=0, indicating slower relaxation processes associated with this configuration of fields. The results seems to point out that the local magnetic anisotropy of the nanoparticles is oriented along the needles, resulting in the macroscopic magnetic anisotropy observed in our measurements.

  20. Quasiparticle energy distribution and relaxation times in a tunnel-injected superconductor

    International Nuclear Information System (INIS)

    Kirtley, J.R.; Kent, D.S.; Langenberg, D.N.; Kaplan, S.B.; Chang, J.; Yang, C.

    1980-01-01

    Experiments are reported in which a nonequilibrium quasiparticle distribution was created in a dirty Al film by tunnel injection and probed using a second tunnel junction. The distribution was found to have the form of a quasithermal distribution characterized by an effective temperature greater than the ambient bath temperature and dependent on injection level, plus small sharp structures which originate in structures in the injected quasiparticle distribution due to gap-edge peaks in the quasiparticle density of states. A systematic theoretical analysis of these structures correctly predicts their shapes and relative amplitudes. The amplitudes show directly the presence of branch imbalance in the nonequilibrium quasiparticle distribution. Using the theoretical model, inelastic quasiparticle relaxation and elastic branch mixing times, as functions of energy and temperature, are extracted from the experimental data without need for phonon-trapping corrections. The qualitative and quantitative behavior of these times is in reasonable accord with theoretical expectations and the results of other experiments. Experiments of the type reported here are shown to provide a kind of spectroscopy of tunnel-injection and quasiparticle-relaxation processes in superconductors

  1. An anisotropic linear thermo-viscoelastic constitutive law - Elastic relaxation and thermal expansion creep in the time domain

    Science.gov (United States)

    Pettermann, Heinz E.; DeSimone, Antonio

    2017-09-01

    A constitutive material law for linear thermo-viscoelasticity in the time domain is presented. The time-dependent relaxation formulation is given for full anisotropy, i.e., both the elastic and the viscous properties are anisotropic. Thereby, each element of the relaxation tensor is described by its own and independent Prony series expansion. Exceeding common viscoelasticity, time-dependent thermal expansion relaxation/creep is treated as inherent material behavior. The pertinent equations are derived and an incremental, implicit time integration scheme is presented. The developments are implemented into an implicit FEM software for orthotropic material symmetry under plane stress assumption. Even if this is a reduced problem, all essential features are present and allow for the entire verification and validation of the approach. Various simulations on isotropic and orthotropic problems are carried out to demonstrate the material behavior under investigation.

  2. Slow magnetic relaxation in a cobalt magnetic chain.

    Science.gov (United States)

    Yang, Chen-I; Chuang, Po-Hsiang; Lu, Kuang-Lieh

    2011-04-21

    A homospin ladder-like chain, [Co(Hdhq)(OAc)](n) (1; H(2)dhq = 2,3-dihydroxyquinoxaline), shows a single-chain-magnet-like (SCM-like) behavior with the characteristics of frequency dependence of the out-of-phase component in alternating current (ac) magnetic susceptibilities and hysteresis loops. © The Royal Society of Chemistry 2011

  3. Enhanced magnetic domain relaxation frequency and low power losses in Zn{sup 2+} substituted manganese ferrites potential for high frequency applications

    Energy Technology Data Exchange (ETDEWEB)

    Praveena, K., E-mail: praveenaou@gmail.com [Department of Physics, National Taiwan Normal University, Taipei, 11677, Taiwan (China); Chen, Hsiao-Wen [Department of Physics, National Taiwan Normal University, Taipei, 11677, Taiwan (China); Liu, Hsiang-Lin, E-mail: hliu@ntnu.edu.tw [Department of Physics, National Taiwan Normal University, Taipei, 11677, Taiwan (China); Sadhana, K., E-mail: sadhana@osmania.ac.in [Department of Physics, Osmania University, Saifabad, Hyderabad, 500004 (India); Murthy, S.R. [Department of Physics, Osmania University, Hyderabad, 500007 (India)

    2016-12-15

    Nowadays electronic industries prerequisites magnetic materials, i.e., iron rich materials and their magnetic alloys. However, with the advent of high frequency applications, the standard techniques of reducing eddy current losses, using iron cores, were no longer efficient or cost effective. Current market trends of the switched mode power supplies industries required even low energy losses in power conversion with maintenance of adequate initial permeability. From the above point of view, in the present study we aimed at the production of Manganese–Zinc ferrites prepared via solution combustion method using mixture of fuels and achieved low loss, high saturation magnetization, high permeability, and high magnetic domain relaxation frequency. The as-synthesized Zn{sup 2+} substituted MnFe{sub 2}O{sub 4} were characterized by X-ray diffractometer (XRD) and transmission electron microscopy (TEM). The fractions of Mn{sup 2+}, Zn{sup 2+} and Fe{sup 2+} cations occupying tetrahedral sites along with Fe occupying octahedral sites within the unit cell of all ferrite samples were estimated by Raman scattering spectroscopy. The magnetic domain relaxation was investigated by inductance spectroscopy (IS) and the observed magnetic domain relaxation frequency (f{sub r}) was increased with the increase in grain size. The real and imaginary part of permeability (μ′ and μ″) increased with frequency and showed a maximum above 100 MHz. This can be explained on the basis of spin rotation and domain wall motion. The saturation magnetization (M{sub s}), remnant magnetization (M{sub r}) and magneton number (µ{sub B}) decreased gradually with increasing Zn{sup 2+} concentration. The decrease in the saturation magnetization was discussed with Yafet–Kittel (Y–K) model. The Zn{sup 2+} concentration increases the relative number of ferric ions on the A sites, reduces the A–B interactions. The frequency dependent total power losses decreased as the zinc concentration increased

  4. Transport relaxation measurements and glassy state effects in superconducting MgB2

    International Nuclear Information System (INIS)

    Olutas, M.; Yetis, H.; Altinkok, A.; Kilic, A.; Kilic, K.

    2008-01-01

    Time dependent effects in superconducting MgB 2 have been studied systematically for the first time by transport relaxation measurements (V-t curves) as a function of transport current (I), temperature (T) and external magnetic field (H). At very low dissipation levels (below ∼1 μV), it was observed that the sample voltage grows up smoothly in time by exhibiting the details of initial stage of relaxation process. At high dissipation levels, steady state corresponding to constant flow rate is maintained within a very short time and monitoring of details of flux dynamic evolving along sample becomes difficult on long time scales. Another interesting behavior is the appearance of voltage peak when the transport current was reduced to a finite value. After peak, it was observed that the sample voltage relaxes smoothly by leveling off within a very short time. The evolution of V-t curves suggests that formation of resistive flow channels along sample develops easily, which is quite similar to that of obtained for the superconducting ceramic samples whose grain boundaries are improved. Time dependent effects were also observed in magnetovoltage measurements (V-H curves) as the field sweep rate (dH/dt) varies. The observations were interpreted mainly in terms of flux trapping in grains

  5. Long Spin-Relaxation Times in a Transition-Metal Atom in Direct Contact to a Metal Substrate.

    Science.gov (United States)

    Hermenau, Jan; Ternes, Markus; Steinbrecher, Manuel; Wiesendanger, Roland; Wiebe, Jens

    2018-03-14

    Long spin-relaxation times are a prerequisite for the use of spins in data storage or nanospintronics technologies. An atomic-scale solid-state realization of such a system is the spin of a transition-metal atom adsorbed on a suitable substrate. For the case of a metallic substrate, which enables the direct addressing of the spin by conduction electrons, the experimentally measured lifetimes reported to date are on the order of only hundreds of femtoseconds. Here, we show that the spin states of iron atoms adsorbed directly on a conductive platinum substrate have a surprisingly long spin-relaxation time in the nanosecond regime, which is comparable to that of a transition metal atom decoupled from the substrate electrons by a thin decoupling layer. The combination of long spin-relaxation times and strong coupling to conduction electrons implies the possibility to use flexible coupling schemes to process the spin information.

  6. Simple expressions of the nuclear relaxation rate enhancement due to quadrupole nuclei in slowly tumbling molecules

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Pascal H., E-mail: pascal-h.fries@cea.fr [Université Grenoble Alpes, INAC-SCIB, RICC, F-38000 Grenoble (France); CEA, INAC-SCIB, RICC, F-38000 Grenoble (France); Belorizky, Elie [Université Grenoble Alpes, LIPHY, F-38000 Grenoble (France); CEA, Leti-Clinatec, F-38000 Grenoble (France)

    2015-07-28

    For slowly tumbling entities or quasi-rigid lattices, we derive very simple analytical expressions of the quadrupole relaxation enhancement (QRE) of the longitudinal relaxation rate R{sub 1} of nuclear spins I due to their intramolecular magnetic dipolar coupling with quadrupole nuclei of arbitrary spins S ≥ 1. These expressions are obtained by using the adiabatic approximation for evaluating the time evolution operator of the quantum states of the quadrupole nuclei S. They are valid when the gyromagnetic ratio of the spin S is much smaller than that of the spin I. The theory predicts quadrupole resonant peaks in the dispersion curve of R{sub 1} vs magnetic field. The number, positions, relative intensities, Lorentzian shapes, and widths of these peaks are explained in terms of the following properties: the magnitude of the quadrupole Hamiltonian and the asymmetry parameter of the electric field gradient (EFG) acting on the spin S, the S-I inter-spin orientation with respect to the EFG principal axes, the rotational correlation time of the entity carrying the S–I pair, and/or the proper relaxation time of the spin S. The theory is first applied to protein amide protons undergoing dipolar coupling with fast-relaxing quadrupole {sup 14}N nuclei and mediating the QRE to the observed bulk water protons. The theoretical QRE agrees well with its experimental counterpart for various systems such as bovine pancreatic trypsin inhibitor and cartilages. The anomalous behaviour of the relaxation rate of protons in synthetic aluminium silicate imogolite nano-tubes due to the QRE of {sup 27}Al (S = 5/2) nuclei is also explained.

  7. Dynamics of the α-relaxation in glass-forming polymers. Study by neutron scattering and relaxation techniques

    Science.gov (United States)

    Colmenero, J.

    1993-12-01

    The dynamics of the α-relaxation in three different polymeric systems, poly(vinyl methyl ether) (PVME), poly(vinyl chloride) (PVC) and poly(bisphenol A, 2-hydroxypropylether) (PH) has been studied by means of relaxation techniques and quasielastic neutron scattering (backscattering spectrometers IN10 and IN13 at the ILL-Grenoble). By using these techniques we have covered a wide time scale ranging from mesoscopic to macroscopic times (10 -10 -10 1 s). For analyzing the experimental data we have developed a phenomenological procedure in the frequency domain based on the Havriliak-Negami relaxation function, which in fact implies a Kohlrausch-Williams-Watts relaxation function in the time domain. The results obtained indicate that the dynamics of the α-relaxation in a wide time scale shows a clear non-Debye behaviour. The shape of the relaxation functions is found to be similar for the different techniques used and independent of temperature and momentum transfer ( Q). Moreover, the characteristic relaxation times deduced from the fitting of the experimental data can also be described using only one Vogel-Fulcher functional form. Besides we found that the Q-dependence of the relaxation times obtained by QENS is given by a power law, τ( Q) ∞ Q- n ( n>2), n being dependent on the system, and that the Q-behaviour and the non-Debye behaviour are directly correlated. In the case of PVC, time of flight (TOF) neutron scattering experiments confirm these results in a shorter time scale (2×10 -11 -2× 10 -12 s). Moreover, TOF results also suggest the possibility of interpreting the “fast process” usually detected in glass-forming systems as a Debye-like short regime of the α-relaxation.

  8. T2 relaxation time is related to liver fibrosis severity

    Science.gov (United States)

    Siqueira, Luiz; Uppal, Ritika; Alford, Jamu; Fuchs, Bryan C.; Yamada, Suguru; Tanabe, Kenneth; Chung, Raymond T.; Lauwers, Gregory; Chew, Michael L.; Boland, Giles W.; Sahani, Duhyant V.; Vangel, Mark; Hahn, Peter F.; Caravan, Peter

    2016-01-01

    Background The grading of liver fibrosis relies on liver biopsy. Imaging techniques, including elastography and relaxometric, techniques have had varying success in diagnosing moderate fibrosis. The goal of this study was to determine if there is a relationship between the T2-relaxation time of hepatic parenchyma and the histologic grade of liver fibrosis in patients with hepatitis C undergoing both routine, liver MRI and liver biopsy, and to validate our methodology with phantoms and in a rat model of liver fibrosis. Methods This study is composed of three parts: (I) 123 patients who underwent both routine, clinical liver MRI and biopsy within a 6-month period, between July 1999 and January 2010 were enrolled in a retrospective study. MR imaging was performed at 1.5 T using dual-echo turbo-spin echo equivalent pulse sequence. T2 relaxation time of liver parenchyma in patients was calculated by mono-exponential fit of a region of interest (ROI) within the right lobe correlating to histopathologic grading (Ishak 0–6) and routine serum liver inflammation [aspartate aminotransferase (AST) and alanine aminotransferase (ALT)]. Statistical comparison was performed using ordinary logistic and ordinal logistic regression and ANOVA comparing T2 to Ishak fibrosis without and using AST and ALT as covariates; (II) a phantom was prepared using serial dilutions of dextran coated magnetic iron oxide nanoparticles. T2 weighed imaging was performed by comparing a dual echo fast spin echo sequence to a Carr-Purcell-Meigboom-Gill (CPMG) multi-echo sequence at 1.5 T. Statistical comparison was performed using a paired t-test; (III) male Wistar rats receiving weekly intraperitoneal injections of phosphate buffer solution (PBS) control (n=4 rats); diethylnitrosamine (DEN) for either 5 (n=5 rats) or 8 weeks (n=4 rats) were MR imaged on a Bruker Pharmascan 4.7 T magnet with a home-built bird-cage coil. T2 was quantified by using a mono-exponential fitting algorithm on multi-slice multi

  9. Prolonged T1 relaxation of the hemopoietic bone marrow in patients with chronic leukemia

    DEFF Research Database (Denmark)

    Jensen, K E; Sørensen, P G; Thomsen, C

    1990-01-01

    Eleven patients with chronic leukemia (7 with chronic lymphocytic leukemia and 4 with chronic myeloid leukemia) were evaluated with magnetic resonance (MR) imaging and T1 relaxation time measurements by use of a 1.5 tesla whole body MR scanner. Bone marrow biopsies were obtained from the posterior...

  10. Stress relaxation in viscous soft spheres.

    Science.gov (United States)

    Boschan, Julia; Vasudevan, Siddarth A; Boukany, Pouyan E; Somfai, Ellák; Tighe, Brian P

    2017-10-04

    We report the results of molecular dynamics simulations of stress relaxation tests in athermal viscous soft sphere packings close to their unjamming transition. By systematically and simultaneously varying both the amplitude of the applied strain step and the pressure of the initial condition, we access both linear and nonlinear response regimes and control the distance to jamming. Stress relaxation in viscoelastic solids is characterized by a relaxation time τ* that separates short time scales, where viscous loss is substantial, from long time scales, where elastic storage dominates and the response is essentially quasistatic. We identify two distinct plateaus in the strain dependence of the relaxation time, one each in the linear and nonlinear regimes. The height of both plateaus scales as an inverse power law with the distance to jamming. By probing the time evolution of particle velocities during relaxation, we further identify a correlation between mechanical relaxation in the bulk and the degree of non-affinity in the particle velocities on the micro scale.

  11. Sandpile model for relaxation in complex systems

    International Nuclear Information System (INIS)

    Vazquez, A.; Sotolongo-Costa, O.; Brouers, F.

    1997-10-01

    The relaxation in complex systems is, in general, nonexponential. After an initial rapid decay the system relaxes slowly following a long time tail. In the present paper a sandpile moderation of the relaxation in complex systems is analysed. Complexity is introduced by a process of avalanches in the Bethe lattice and a feedback mechanism which leads to slower decay with increasing time. In this way, some features of relaxation in complex systems: long time tails relaxation, aging, and fractal distribution of characteristic times, are obtained by simple computer simulations. (author)

  12. Nonadiabatic dynamics of electron transfer in solution: Explicit and implicit solvent treatments that include multiple relaxation time scales

    International Nuclear Information System (INIS)

    Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2014-01-01

    The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents for a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible

  13. Relaxation of the vibrational distribution function in N2 time varying discharges

    International Nuclear Information System (INIS)

    Capitelli, M.; Gorse, C.; Ricard, A.

    1981-01-01

    Relaxation of the electron and vibrational distribution functions have been calculated in function of residence time in nitrogen electrical discharges and post-discharges. In the discharge the vibrational temperature get bigger with the residence time for t -2 s. In the post-discharge the vibrational distribution is evolving in such a manner that the high levels are overpopulated as the low vibrational level population is dropping

  14. The Influence of the Relaxation Time on the Dynamic Hysteresis in Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Palici Alexandra

    2018-01-01

    Full Text Available We investigate the dynamic behavior of perovskite solar cells by focusing on the relaxation time τ, which corresponds to the slow de-polarization process from an initial bias pre-poled state. The dynamic electrical model (DEM is employed for simulating the J-V characteristics for different bias scan rates and pre-poling conditions. Depending on the sign of the initial polarization normal or inverted hysteresis may be induced. For fixed pre-poling conditions, the relaxation time, in relation to the bias scan rate, governs the magnitude of the dynamic hysteresis. In the limit of large τ the hysteretic effects are vanishing for the typical range of bias scan rates considered, while for very small τ the hysteresis is significant only when it is comparable with the measurement time interval.

  15. Manganese(II), iron(II), and mixed-metal metal-organic frameworks based on chains with mixed carboxylate and azide bridges: magnetic coupling and slow relaxation.

    Science.gov (United States)

    Wang, Yan-Qin; Yue, Qi; Qi, Yan; Wang, Kun; Sun, Qian; Gao, En-Qing

    2013-04-15

    Mn(II) and Fe(II) compounds derived from azide and the zwitterionic 1-carboxylatomethylpyridinium-4-carboxylate ligand are isomorphous three-dimensional metal-organic frameworks (MOFs) with the sra net, in which the metal ions are connected into anionic chains by mixed (μ-1,1-azide)bis(μ-carboxylate) triple bridges and the chains are cross-linked by the cationic backbones of the zwitterionic ligands. The Mn(II) MOFs display typical one-dimensional antiferromagnetic behavior. In contrast, with one more d electron per metal center, the Fe(II) counterpart shows intrachain ferromagnetic interactions and slow relaxation of magnetization attributable to the single-chain components. The activation energies for magnetization reversal in the infinite- and finite-chain regimes are Δτ1 = 154 K and Δτ2 = 124 K, respectively. Taking advantage of the isomorphism between the Mn(II) and Fe(II) MOFs, we have prepared a series of mixed-metal Mn(II)(1-x)Fe(II)(x) MOFs with x = 0.41, 0.63, and 0.76, which intrinsically feature random isotropic/anisotropic sites and competing antiferromagnetic-ferromagnetic interactions. The materials show a gradual antiferromagnetic-to-ferromagnetic evolution in overall behaviors as the Fe(II) content increases, and the Fe-rich materials show complex relaxation processes that may arise for mixed SCM and spin-glass mechanisms. A general trend is that the activation energy and the blocking temperature increase with the Fe(II) content, emphasizing the importance of anisotropy for slow relaxation of magnetization.

  16. Tunneling splitting of magnetic levels in Fe8 detected by 1H NMR cross relaxation

    Science.gov (United States)

    Furukawa, Y.; Aizawa, K.; Kumagai, K.; Ullu, R.; Lascialfari, A.; Borsa, F.

    2003-05-01

    Measurements of proton NMR and the spin lattice relaxation rate 1/T1 in the octanuclear iron (III) cluster [Fe8(N3C6H15)6O2(OH)12]ṡ[Br8ṡ9H2O], in short Fe8, have been performed at 1.5 K in a powder sample aligned along the main anisotropy z axis, as a function of a transverse magnetic field (i.e., perpendicular to the main easy axis z). A big enhancement of 1/T1 is observed over a wide range of fields (2.5-5 T), which can be attributed to the tunneling dynamics; in fact, when the tunneling splitting of the pairwise degenerate m=±10 states of the Fe8 molecule becomes equal to the proton Larmor frequency a very effective spin lattice relaxation channel for the nuclei is opened. The experimental results are explained satisfactorily by considering the distribution of tunneling splitting resulting from the distribution of the angles in the hard xy plane for the aligned powder, and the results of the direct diagonalization of the model Hamiltonian.

  17. Magnetic La.sub.1-x./sub.Sr.sub.x./sub.MnO.sub.3./sub. nanoparticles as contrast agents for MRI: the parameters affecting 1H transverse relaxation

    Czech Academy of Sciences Publication Activity Database

    Veverka, Pavel; Kaman, Ondřej; Kačenka, Michal; Herynek, V.; Veverka, Miroslav; Šantavá, Eva; Lukeš, I.; Jirák, Zdeněk

    2015-01-01

    Roč. 17, č. 1 (2015), s. 1-11 ISSN 1388-0764 R&D Projects: GA MPO FR-TI3/521; GA ČR(CZ) GAP108/11/0807 Institutional support: RVO:68378271 Keywords : manganese perovskites * manganite * magnetic nanoparticles * magnetic resonance imaging * relaxivity * core –shell particles Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.101, year: 2015

  18. Measurement of N and C diffusion in Sm{sub 2}Fe{sub 17} by magnetic relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Mommer, N.; Hirscher, M.; Gerlach, M.; Van Lier, J.; Kronmueller, H. [Max-Planck-Institut fuer Metallforschung, Stuttgart (Germany); Kubis, M.; Mueller, K.-H. [Institut fuer Festkoerper und Werkstofforschung, Institut fuer Metallische Werkstoffe, D-01171 Dresden (Germany)

    1998-10-02

    Magnetic after-effect (MAE) measurements of nitrided and carburized Sm{sub 2}Fe{sub 17} compounds were performed in the temperature range of 140 K to 480 K. Both nitrided and carburized compounds show relaxation maxima at 285 and 300 K, respectively, which are absent in pure Sm{sub 2}Fe{sub 17} compounds. Therefore, these relaxation maxima are attributed to jumps of interstitially dissolved nitrogen or carbon atoms. Numerical evaluation yielded an activation enthalpy Q{sup N} (0.84{+-}0.05) eV and a pre-exponential factor {tau}{sub 0}{sup N}=3.10{sup -15{+-}1} s for the short-range diffusion of N atoms. The corresponding values for the carbon diffusion are Q{sup C}=(0.91{+-}0.05) eV and {tau}{sub 0}{sup C}=1.10{sup -15{+-}1} s. The carbon and nitrogen content of the samples was determined from the increase in mass during nitrogenation or carburization to Sm{sub 2}Fe{sub 17}N{sub 1.2} and Sm{sub 2}Fe{sub 17}C{sub 2.6}. (orig.) 18 refs.

  19. Characterization of relaxation processes in interacting vortex matter through a time-dependent correlation length

    International Nuclear Information System (INIS)

    Pleimling, Michel; Täuber, Uwe C

    2015-01-01

    Vortex lines in type-II superconductors display complicated relaxation processes due to the intricate competition between their mutual repulsive interactions and pinning to attractive point or extended defects. We perform extensive Monte Carlo simulations for an interacting elastic line model with either point-like or columnar pinning centers. From measurements of the space- and time-dependent height-height correlation function for lateral flux line fluctuations, we extract a characteristic correlation length that we use to investigate different non-equilibrium relaxation regimes. The specific time dependence of this correlation length for different disorder configurations displays characteristic features that provide a novel diagnostic tool to distinguish between point-like pinning centers and extended columnar defects. (paper)

  20. T2 Relaxation Time Mapping of the Cartilage Cap of Osteochondromas

    OpenAIRE

    Kim, Hee Kyung; Horn, Paul; Dardzinski, Bernard J.; Kim, Dong Hoon; Laor, Tal

    2016-01-01

    Objective Our aim was to evaluate the cartilage cap of osteochondromas using T2 maps and to compare these values to those of normal patellar cartilage, from age and gender matched controls. Materials and Methods This study was approved by the Institutional Review Board and request for informed consent was waived. Eleven children (ages 5-17 years) with osteochondromas underwent MR imaging, which included T2-weighted fat suppressed and T2 relaxation time mapping (echo time = 9-99/repetition tim...

  1. Tunneling splitting of magnetic levels in Fe8 detected by 1H NMR cross relaxation

    OpenAIRE

    Furukawa, Y.; Aizawa, K.; Kumagai, K.; Ullu, R.; Lascialfari, A.; Borsa, F.

    2003-01-01

    Measurements of proton NMR and the spin lattice relaxation rate 1/T1 in the octanuclear iron (III) cluster [Fe8(N3C6H15)6O2(OH)12][Br8 9H2O], in short Fe8, have been performed at 1.5 K in a powder sample aligned along the main anisotropy z axis, as a function of a transverse magnetic field (i.e., perpendicular to the main easy axis z). A big enhancement of 1/T1 is observed over a wide range of fields (2.5-5 T), which can be attributed to the tunneling dynamics; in fact, when the tunneling spl...

  2. Correlation between physical structure and magnetic anisotropy of a magnetic nanoparticle colloid

    Science.gov (United States)

    Dennis, C. L.; Jackson, A. J.; Borchers, J. A.; Gruettner, C.; Ivkov, R.

    2018-05-01

    We show the effects of a time-invariant magnetic field on the physical structure and magnetic properties of a colloid comprising 44 nm diameter magnetite magnetic nanoparticles, with a 24 nm dextran shell, in water. Structural ordering in this colloid parallel to the magnetic field occurs simultaneously with the onset of a colloidal uniaxial anisotropy. Further increases in the applied magnetic field cause the nanoparticles to order perpendicular to the field, producing unexpected colloidal unidirectional and trigonal anisotropies. This magnetic behavior is distinct from the cubic magnetocrystalline anisotropy of the magnetite and has its origins in the magnetic interactions among the mobile nanoparticles within the colloid. Specifically, these field-induced anisotropies and colloidal rearrangements result from the delicate balance between the magnetostatic and steric forces between magnetic nanoparticles. These magnetic and structural rearrangements are anticipated to influence applications that rely upon time-dependent relaxation of the magnetic colloids and fluid viscosity, such as magnetic hyperthermia and shock absorption.

  3. Spin-Polarized Scanning Tunneling Microscope for Atomic-Scale Studies of Spin Transport, Spin Relaxation, and Magnetism in Graphene

    Science.gov (United States)

    2017-11-09

    Polarized Scanning Tunneling Microscope for Atomic-Scale Studies of Spin Transport, Spin Relaxation, and Magnetism in Graphene Report Term: 0-Other Email ...Principal: Y Name: Jay A Gupta Email : gupta.208@osu.edu Name: Roland K Kawakami Email : kawakami.15@osu.edu RPPR Final Report as of 13-Nov-2017...studies on films and devices. Optimization of the Cr tip will be the next important step to establish this technique. We are writing up these early

  4. Dynamics of helicity transport and Taylor relaxation

    International Nuclear Information System (INIS)

    Diamond, P.H.; Malkov, M.

    2003-01-01

    A simple model of the dynamics of Taylor relaxation is derived using symmetry principles alone. No statistical closure approximations are invoked or detailed plasma model properties assumed. Notably, the model predicts several classes of nondiffusive helicity transport phenomena, including traveling nonlinear waves and superdiffusive turbulent pulses. A universal expression for the scaling of the effective magnetic Reynolds number of a system undergoing Taylor relaxation is derived. Some basic properties of intermittency in helicity transport are examined

  5. Effect of coating thickness of iron oxide nanoparticles on their relaxivity in the MRI

    Directory of Open Access Journals (Sweden)

    Farzaneh Hajesmaeelzadeh

    2016-02-01

    Full Text Available Objective(s:Iron oxide nanoparticles have found prevalent applications in various fields including drug delivery, cell separation and as contrast agents. Super paramagnetic iron oxide (SPIO nanoparticles allow researchers and clinicians to enhance the tissue contrast of an area of interest by increasing the relaxation rate of water. In this study, we evaluate the dependency of hydrodynamic size of iron oxide nanoparticles coated with Polyethylene  glycol (PEG on their relativities with 3 Tesla clinical MRI. Materials and Methods: We used three groups of nanoparticles with nominal sizes 20, 50 and 100 nm with a core size of 8.86 nm, 8.69 nm and 10.4 nm that they were covered with PEG 300 and 600 Da. A clinical magnetic resonance scanner determines the T1 and T2 relaxation times for various concentrations of PEG-coated nanoparticles. Results: The size measurement by photon correlation spectroscopy showed the hydrodynamic sizes of MNPs with nominal 20, 50 and 100 nm with 70, 82 and 116 nm for particles with PEG 600 coating and 74, 93 and 100 nm for  particles with PEG 300 coating, respectively. We foud that the relaxivity decreased with increasing overall particle size (via coating thickness. Magnetic resonance imaging showed that by increasing the size of the nanoparticles, r2/r1 increases linearly. Conclusion: According to the data obtained from this study it can be concluded that increments in coating thickness have more influence on relaxivities compared to the changes in core size of magnetic nanoparticles.

  6. Novel spin dynamics in ferrimagnetic molecular chains from 1H NMR and μSR spin-lattice relaxation measurements

    International Nuclear Information System (INIS)

    Micotti, E.; Lascialfari, A.; Rigamonti, A.; Aldrovandi, S.; Caneschi, A.; Gatteschi, D.; Bogani, L.

    2004-01-01

    The spin dynamics in the helical chain Co(hfac) 2 NITPhOMe has been investigated by 1 H NMR and μSR relaxation. In the temperature range 15< T<60 K, the results are consistent with the relaxation of the homogeneous magnetization. For T≤15 K, NMR and μSR evidence a second spin relaxation mechanism, undetected by the magnetization measurements. From the analysis of these data, insights on this novel relaxation process are derived

  7. Novel spin dynamics in ferrimagnetic molecular chains from 1H NMR and μSR spin-lattice relaxation measurements

    Science.gov (United States)

    Micotti, E.; Lascialfari, A.; Rigamonti, A.; Aldrovandi, S.; Caneschi, A.; Gatteschi, D.; Bogani, L.

    2004-05-01

    The spin dynamics in the helical chain Co(hfac) 2NITPhOMe has been investigated by 1H NMR and μSR relaxation. In the temperature range 15relaxation of the homogeneous magnetization. For T⩽15 K, NMR and μSR evidence a second spin relaxation mechanism, undetected by the magnetization measurements. From the analysis of these data, insights on this novel relaxation process are derived.

  8. MAGNETIC VISCOSITY IN NdFeB MAGNETS

    OpenAIRE

    Martinez , J.; Missell , F.

    1988-01-01

    The relaxation of the magnetization is calculated for isotropic and anisotropic magnets. For NdFeB magnets, the dependence of Sv on texture, above room temperature, is roughly consistent with the model, while the NdDyFeB magnets show no dependence upon texture.

  9. Three-dimensional simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model

    OpenAIRE

    Song-Gui Chen; Chuan-Hu Zhang; Yun-Tian Feng; Qi-Cheng Sun; Feng Jin

    2016-01-01

    This paper presents a three-dimensional (3D) parallel multiple-relaxation-time lattice Boltzmann model (MRT-LBM) for Bingham plastics which overcomes numerical instabilities in the simulation of non-Newtonian fluids for the Bhatnagar–Gross–Krook (BGK) model. The MRT-LBM and several related mathematical models are briefly described. Papanastasiou’s modified model is incorporated for better numerical stability. The impact of the relaxation parameters of the model is studied in detail. The MRT-L...

  10. Relaxation dynamics of the conductive processes for PbNb2O6 ferroelectric ceramics in the frequency and time domain

    International Nuclear Information System (INIS)

    Gonzalez, R L; Leyet, Y; Guerrero, F; Guerra, J de Los S; Venet, M; Eiras, J A

    2007-01-01

    The relaxation dynamics of the conductive process present in PbNb 2 O 6 piezoelectric ceramics was investigated. A relaxation function in the time domain, Φ(t), was found from the frequency dependence of the dielectric modulus (imaginary component, M'') by using a relaxation function in the frequency domain, F*(ω). The best relaxation function, F*(ω), was found to be a Cole-Cole distribution function, in which relaxation characteristic parameters, such as α and τ CC , are involved. On the other hand, the relaxation function, Φ(t), obtained by the time domain method, was found to be a Kohlrausch-Williams-Watts (KWW) function type. The thermal evolution of the characteristics parameters of the KWW function (β and τ*) was analysed. The values of the activation energy (E a ), obtained in the whole investigated temperature interval, suggest the existence of a relaxation mechanism (a conductive process), which may be interpreted by an ion hopping between neighbouring sites within the crystalline lattice. The results are corroborated with the formalism of the AC conductivity

  11. Stability of (Fe-Tm-B) amorphous alloys: relaxation and crystallization phenomena

    International Nuclear Information System (INIS)

    Zemcik, T.

    1994-01-01

    Fe-Tm-B base (TM = transition metal) amorphous alloys (metallic glasses) are thermodynamically metastable. This limits their use as otherwise favourable materials, e.g. magnetically soft, corrosion resistant and mechanically firm. By analogy of the mechanical strain-stress dependence, at a certain degree of thermal activation the amorphous structure reaches its limiting state where it changes its character and physical properties. Relaxation and early crystallization processes in amorphous alloys, starting already around 100 C, are reviewed involving subsequently stress relief, free volume shrinking, topological and chemical ordering, pre-crystallization phenomena up to partial (primary) crystallization. Two diametrically different examples are demonstrated from among the soft magnetic materials: relaxation and early crystallization processes in the Fe-Co-B metallic glasses and controlled crystallization of amorphous ribbons yielding rather modern nanocrystalline ''Finemet'' alloys where late relaxation and pre-crystallization phenomena overlap when forming extremely dispersive and fine-grained nanocrystals-in-amorphous-sauce structure. Moessbauer spectroscopy seems to be unique for magnetic and phase analysis of such complicated systems. (orig.)

  12. Transport relaxation measurements and glassy state effects in superconducting MgB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Olutas, M. [Abant Izzet Baysal University, Department of Physics, Turgut Gulez Research Laboratory, 14280 Bolu (Turkey)], E-mail: olutas_m@ibu.edu.tr; Yetis, H.; Altinkok, A.; Kilic, A.; Kilic, K. [Abant Izzet Baysal University, Department of Physics, Turgut Gulez Research Laboratory, 14280 Bolu (Turkey)

    2008-09-15

    Time dependent effects in superconducting MgB{sub 2} have been studied systematically for the first time by transport relaxation measurements (V-t curves) as a function of transport current (I), temperature (T) and external magnetic field (H). At very low dissipation levels (below {approx}1 {mu}V), it was observed that the sample voltage grows up smoothly in time by exhibiting the details of initial stage of relaxation process. At high dissipation levels, steady state corresponding to constant flow rate is maintained within a very short time and monitoring of details of flux dynamic evolving along sample becomes difficult on long time scales. Another interesting behavior is the appearance of voltage peak when the transport current was reduced to a finite value. After peak, it was observed that the sample voltage relaxes smoothly by leveling off within a very short time. The evolution of V-t curves suggests that formation of resistive flow channels along sample develops easily, which is quite similar to that of obtained for the superconducting ceramic samples whose grain boundaries are improved. Time dependent effects were also observed in magnetovoltage measurements (V-H curves) as the field sweep rate (dH/dt) varies. The observations were interpreted mainly in terms of flux trapping in grains.

  13. Capturing molecular multimode relaxation processes in excitable gases based on decomposition of acoustic relaxation spectra

    Science.gov (United States)

    Zhu, Ming; Liu, Tingting; Wang, Shu; Zhang, Kesheng

    2017-08-01

    Existing two-frequency reconstructive methods can only capture primary (single) molecular relaxation processes in excitable gases. In this paper, we present a reconstructive method based on the novel decomposition of frequency-dependent acoustic relaxation spectra to capture the entire molecular multimode relaxation process. This decomposition of acoustic relaxation spectra is developed from the frequency-dependent effective specific heat, indicating that a multi-relaxation process is the sum of the interior single-relaxation processes. Based on this decomposition, we can reconstruct the entire multi-relaxation process by capturing the relaxation times and relaxation strengths of N interior single-relaxation processes, using the measurements of acoustic absorption and sound speed at 2N frequencies. Experimental data for the gas mixtures CO2-N2 and CO2-O2 validate our decomposition and reconstruction approach.

  14. Non-destructive quantification of water gradient in sludge composting with Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Duval, F.P.; Quellec, S.; Tremier, A.; Druilhe, C.; Mariette, F.

    2010-01-01

    Sludge from a slaughter-house wastewater plant, and mixtures of bulking agent (crushed wood pallet) and sludge were studied by Nuclear Magnetic Resonance (NMR). The NMR spin-spin relaxation (T 2 ) and spin-lattice relaxation (T 1 ) signals for sludge, wet crushed wood pallet and mixtures of sludge and bulking agent were decomposed into three relaxation time components. Each relaxation time component was explained by a non-homogeneous water distribution on a microscopic length scale and by the porosity of the material. For all samples, the T 2 relaxation time value of each component was directly related to the dry matter content. The addition of wet crushed wood to sludge induced a decrease in the relaxation time, explained by water transfer between the sludge and the wood. Magnetic Resonance Imaging (MRI) and respirometric measurements were performed on sludge and wood mixtures. MR images of the mixtures were successfully obtained at different biodegradation states. Based on specific NMR measurements in an identified area located in the MRI cells, the results showed that grey levels of MR images reflected dry matter content. This preliminary study showed that MRI would be a powerful tool to measure water distribution in sludge and bulking agent mixtures and highlights the potential of this technique to increase the understanding of sludge composting.

  15. State of health assessment for lithium batteries based on voltage–time relaxation measure

    International Nuclear Information System (INIS)

    Baghdadi, Issam; Briat, Olivier; Gyan, Philippe; Vinassa, Jean Michel

    2016-01-01

    Highlights: • Calendar aging under different storage conditions for three different battery technologies studied. • Two scenarios of aging under power cycling at two different temperatures investigated for one battery technology. • Relaxation profile of battery voltage just after full charge is highly correlated to aging. • Linear dependence between just after charge open circuit voltage and remaining capacity demonstrated. • No computational method and direct prediction of battery state of health or remaining capacity. - Abstract: The performance of lithium batteries degrades over time. The degradation rate strongly depends on stress conditions during use and even at rest. Thus, accurate and rapid diagnosis of battery state of health (SOH) is necessary for electric vehicle manufacturers to manage their vehicle fleets and warranties. This paper demonstrates a simple method for assessing SOH related to battery energy capability (SOH E ). The presented method is based on the monitoring of U relax over aging. U relax is the open-circuit voltage of the battery measured after full charging and 30 min of rest. A linear dependence between U relax and remaining capacity is noted. This correlation is demonstrated for three different commercial battery technologies (different chemistries) aged under different calendar and power cycling aging conditions. It was determined that the difference between two U relax voltages measured at two different aging states is proportional to SOH E decay. The mean error of the linear model is less than 2% for certain cases. This method could also be a highly useful and rapid tool for a complete battery pack diagnosis.

  16. Properties of the relaxation time distribution underlying the Kohlrausch-Williams-Watts photoionization of the DX centers in Cd1-xMnxTe mixed crystals

    International Nuclear Information System (INIS)

    Trzmiel, J; Weron, K; Placzek-Popko, E; Janczura, J

    2009-01-01

    In this paper we clarify the relationship between the relaxation rate and relaxation time distributions underlying the Kohlrausch-Williams-Watts (KWW) photoconductivity build-ups in indium- and gallium-doped Cd 1-x Mn x Te mixed crystals. We discuss the role of asymptotic properties of the corresponding probability density functions. We show that the relaxation rate distribution, as a completely asymmetric α-stable distribution, leads to an infinite mean value of the effective relaxation rate. In contrast, the relaxation time distribution related to it leads to a finite mean value of the effective relaxation time. It follows from the experimental data analysis that for all the investigated samples the KWW exponent α decreases linearly with increasing photon flux in the range of (0.6-0.99) and its values are more spread in the case of gallium-doped material. We also observe a linear dependence of the mean relaxation time on the characteristic material time constant, which is consistent with the theoretical model.

  17. Graphene spin capacitor for magnetic field sensing

    OpenAIRE

    Semenov, Y. G.; Zavada, J. M.; Kim, K. W.

    2010-01-01

    An analysis of a novel magnetic field sensor based on a graphene spin capacitor is presented. The proposed device consists of graphene nanoribbons on top of an insulator material connected to a ferromagnetic source/drain. The time evolution of spin polarized electrons injected into the capacitor can be used for an accurate determination at room temperature of external magnetic fields. Assuming a spin relaxation time of 100 ns, magnetic fields on the order of $\\sim 10$ mOe may be detected at r...

  18. Muon spin relaxation in ferromagnets. Pt. 1

    International Nuclear Information System (INIS)

    Lovesey, S.W.; Karlsson, E.B.

    1991-04-01

    Expressions for the dipolar and hyperfine contributions to the relaxation rate of muons implanted in a ferromagnet are presented and analysed using the Heisenberg model of spin-waves including dipolar and Zeeman energies. Calculations for EuO indicate that relaxation is likely to be dominated by the hyperfine mechanism, even if the ratio of the hyperfine and dipolar coupling constants is small. The hyperfine mechanism is sensitive to the dipolar energy of the atomic spins, whereas the dipolar mechanisms depend essentially on the exchange energy. For both mechanisms there is an almost quadratic dependence on temperature, throughout much of the ordered magnetic phase, which reflects two-spin-wave difference events from the Raman-type relaxation processes. (author)

  19. Pseudopotential multi-relaxation-time lattice Boltzmann model for cavitation bubble collapse with high density ratio

    International Nuclear Information System (INIS)

    Shan Ming-Lei; Zhu Chang-Ping; Yao Cheng; Yin Cheng; Jiang Xiao-Yan

    2016-01-01

    The dynamics of the cavitation bubble collapse is a fundamental issue for the bubble collapse application and prevention. In the present work, the modified forcing scheme for the pseudopotential multi-relaxation-time lattice Boltzmann model developed by Li Q et al. [Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301] is adopted to develop a cavitation bubble collapse model. In the respects of coexistence curves and Laplace law verification, the improved pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. It is found that the thermodynamic consistency and surface tension are independent of kinematic viscosity. By homogeneous and heterogeneous cavitation simulation, the ability of the present model to describe the cavitation bubble development as well as the cavitation inception is verified. The bubble collapse between two parallel walls is simulated. The dynamic process of a collapsing bubble is consistent with the results from experiments and simulations by other numerical methods. It is demonstrated that the present pseudopotential multi-relaxation-time lattice Boltzmann model is applicable and efficient, and the lattice Boltzmann method is an alternative tool for collapsing bubble modeling. (paper)

  20. NMR relaxation induced by iron oxide particles: testing theoretical models.

    Science.gov (United States)

    Gossuin, Y; Orlando, T; Basini, M; Henrard, D; Lascialfari, A; Mattea, C; Stapf, S; Vuong, Q L

    2016-04-15

    Superparamagnetic iron oxide particles find their main application as contrast agents for cellular and molecular magnetic resonance imaging. The contrast they bring is due to the shortening of the transverse relaxation time T 2 of water protons. In order to understand their influence on proton relaxation, different theoretical relaxation models have been developed, each of them presenting a certain validity domain, which depends on the particle characteristics and proton dynamics. The validation of these models is crucial since they allow for predicting the ideal particle characteristics for obtaining the best contrast but also because the fitting of T 1 experimental data by the theory constitutes an interesting tool for the characterization of the nanoparticles. In this work, T 2 of suspensions of iron oxide particles in different solvents and at different temperatures, corresponding to different proton diffusion properties, were measured and were compared to the three main theoretical models (the motional averaging regime, the static dephasing regime, and the partial refocusing model) with good qualitative agreement. However, a real quantitative agreement was not observed, probably because of the complexity of these nanoparticulate systems. The Roch theory, developed in the motional averaging regime (MAR), was also successfully used to fit T 1 nuclear magnetic relaxation dispersion (NMRD) profiles, even outside the MAR validity range, and provided a good estimate of the particle size. On the other hand, the simultaneous fitting of T 1 and T 2 NMRD profiles by the theory was impossible, and this occurrence constitutes a clear limitation of the Roch model. Finally, the theory was shown to satisfactorily fit the deuterium T 1 NMRD profile of superparamagnetic particle suspensions in heavy water.

  1. Atomic level structural modulation during the structural relaxation and its effect on magnetic properties of Fe81Si4B10P4Cu1 nanocrystalline alloy

    Science.gov (United States)

    Cao, C. C.; Zhu, L.; Meng, Y.; Zhai, X. B.; Wang, Y. G.

    2018-06-01

    The evolution of local structure and defects in the Fe81Si4B10P4Cu1 amorphous alloy during the structural relaxation has been investigated by Mössbauer spectroscopy, positron annihilation lifetime spectroscopy and transmission electron microscopy to explore their effects on magnetic properties of the nanocrystalline. The atomic rearrangements at the early stage of the structural relaxation cause the density increase of the amorphous matrix, but the subsequent atomic rearrangements contribute to the transformation of Fe3B-like atomic arrangements to FeB-like ones with the temperature increasing. As the structural relaxation processes, the released Fe atoms both from Fe3B- and Fe3P-like atomic arrangements result in the formation of new Fe clusters and the increase of Fe-Fe coordination number in the existing Fe clusters and the nucleation sites for α-Fe gradually increase, both of which promote the crystallization. However, the homogeneity of amorphous matrix will be finally destroyed under excessive relaxation temperature, which coarsens nanograins during the crystallization instead. Therefore, soft magnetic properties of the Fe81Si4B10P4Cu1 nanocrystalline alloy can be improved by pre-annealing the amorphous precursor at an appropriate temperature due to the atomic level structural optimization.

  2. Ultrafast magnetization dynamics in diluted magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Morandi, O [INRIA Nancy Grand-Est and Institut de Recherche en Mathematiques Avancees, 7 rue Rene Descartes, F-67084 Strasbourg (France); Hervieux, P-A; Manfredi, G [Institut de Physique et Chimie des Materiaux de Strasbourg, 23 rue du Loess, F-67037 Strasbourg (France)], E-mail: morandi@dipmat.univpm.it

    2009-07-15

    We present a dynamical model that successfully explains the observed time evolution of the magnetization in diluted magnetic semiconductor quantum wells after weak laser excitation. Based on the pseudo-fermion formalism and a second-order many-particle expansion of the exact p-d exchange interaction, our approach goes beyond the usual mean-field approximation. It includes both the sub-picosecond demagnetization dynamics and the slower relaxation processes that restore the initial ferromagnetic order in a nanosecond timescale. In agreement with experimental results, our numerical simulations show that, depending on the value of the initial lattice temperature, a subsequent enhancement of the total magnetization may be observed within the timescale of a few hundred picoseconds.

  3. Magnetic switching of a single molecular magnet due to spin-polarized current

    Science.gov (United States)

    Misiorny, Maciej; Barnaś, Józef

    2007-04-01

    Magnetic switching of a single molecular magnet (SMM) due to spin-polarized current flowing between ferromagnetic metallic leads (electrodes) is investigated theoretically. Magnetic moments of the leads are assumed to be collinear and parallel to the magnetic easy axis of the molecule. Electrons tunneling through the barrier between magnetic leads are coupled to the SMM via exchange interaction. The current flowing through the system, as well as the spin relaxation times of the SMM, are calculated from the Fermi golden rule. It is shown that spin of the SMM can be reversed by applying a certain voltage between the two magnetic electrodes. Moreover, the switching may be visible in the corresponding current-voltage characteristics.

  4. Study of vortex dynamics with local magnetic relaxation measurements in the superconducting compound Bi2Sr2CaCu2O8

    International Nuclear Information System (INIS)

    Berry, St.

    2000-01-01

    This experimental study of the magnetic field-temperature phase diagram and of the vortex dynamics in high- T c superconductors focuses on Bismuth-based cuprates: Bi 2 Sr 2 CaCu 2 O 8 . In type-II superconductors, mixed state characterized by the presence of vortices (quanta of magnetic flux) is divided by a transition line determined by two features of magnetization loops. For T > 40 K, magnetization loops vs applied field show a step evidence of a first order transition. From 20 to 40 K, a second peak replacing the step correspond to an abrupt increase of irreversibility interpreted as a bulk current. We want to understand the nature of the second peak (thermodynamic or nonequilibrium property) and separate phenomena contributing to irreversibility (flux pinning, geometrical or surface effects). Magnetic measurement techniques are nondestructive and have a resolution of few microns. Bi 2 Sr 2 CaCu 2 O 8 single crystals are optimized by localizing defectives regions with a magneto-optic technique for flux imaging and elimination of these regions with a wire saw. Local magnetization loops and relaxation measurements performed with a microscopic Hall probe array allow to distinguish irreversibility sources. The shape of induction profiles indicates which current dominate between surface current and bulk pinning induced current. Two crossover with time and a direct observation of two phases coexistence in induction profiles enlighten phenomena in play. The measured electric field-current density characteristics lead to barrier energy U(j) controlling thermally activated flux motion. Three relations (U(j) (surface, bulk low and high field) explain second peak. (author)

  5. In vivo field dependence of proton relaxation times in human brain, liver and skeletal muscle: a multicenter study

    DEFF Research Database (Denmark)

    Henriksen, O; de Certaines, J D; Spisni, A

    1993-01-01

    and MRS, the in vivo field dispersion of T1 and T2 has been measured in order to evaluate whether ex vivo data are representative for the in vivo situation. Brain, skeletal muscle, and liver of healthy human volunteers were studied. Fifteen MR units with a field strength ranging from 0.08 T to 1.5 T took......T1 and T2 relaxation times are fundamental parameters for signal contrast behaviour in MRI. A number of ex vivo relaxometry studies have dealt with the magnetic field dispersion of T1. By means of multicenter study within the frame of the COMAC BME Concerted Action on Tissue Characterization by MRI......, whereas no significant variations were seen for T2. Our in vivo data were generally in reasonable agreement with proposed models based on ex vivo measurements....

  6. Multi-Rate Acquisition for Dead Time Reduction in Magnetic Resonance Receivers: Application to Imaging With Zero Echo Time.

    Science.gov (United States)

    Marjanovic, Josip; Weiger, Markus; Reber, Jonas; Brunner, David O; Dietrich, Benjamin E; Wilm, Bertram J; Froidevaux, Romain; Pruessmann, Klaas P

    2018-02-01

    For magnetic resonance imaging of tissues with very short transverse relaxation times, radio-frequency excitation must be immediately followed by data acquisition with fast spatial encoding. In zero-echo-time (ZTE) imaging, excitation is performed while the readout gradient is already on, causing data loss due to an initial dead time. One major dead time contribution is the settling time of the filters involved in signal down-conversion. In this paper, a multi-rate acquisition scheme is proposed to minimize dead time due to filtering. Short filters and high output bandwidth are used initially to minimize settling time. With increasing time since the signal onset, longer filters with better frequency selectivity enable stronger signal decimation. In this way, significant dead time reduction is accomplished at only a slight increase in the overall amount of output data. Multi-rate acquisition was implemented with a two-stage filter cascade in a digital receiver based on a field-programmable gate array. In ZTE imaging in a phantom and in vivo, dead time reduction by multi-rate acquisition is shown to improve image quality and expand the feasible bandwidth while increasing the amount of data collected by only a few percent.

  7. Structural Relaxation in Fe78Nb2B20 Amorphous Alloy Studied by Moessbauer Spectroscopy

    International Nuclear Information System (INIS)

    Kansy, J.; Hanc, A.; Rasek, J.; Haneczok, G.; Pajak, L.; Stoklosa, Z.; Kwapulinski, P.

    2011-01-01

    It was shown that soft magnetic properties of Fe 78 Nb 2 B 20 amorphous alloy can be significantly improved by applying 1-h annealing at temperature 623 K (permeability increases even about 8 times). The Moessbauer Spectroscopy technique indicated that the optimized microstructure (corresponding to the maximum magnetic permeability) is free of iron nanograins and should be attributed to annealing out of free volume and a reduction of internal stresses i.e. to the relaxed amorphous phase. (authors)

  8. Tuning Valley Polarization in a WSe_{2} Monolayer with a Tiny Magnetic Field

    Directory of Open Access Journals (Sweden)

    T. Smoleński

    2016-05-01

    Full Text Available In monolayers of semiconducting transition metal dichalcogenides, the light helicity (σ^{+} or σ^{-} is locked to the valley degree of freedom, leading to the possibility of optical initialization of distinct valley populations. However, an extremely rapid valley pseudospin relaxation (at the time scale of picoseconds occurring for optically bright (electric-dipole active excitons imposes some limitations on the development of opto-valleytronics. Here, we show that valley pseudospin relaxation of excitons can be significantly suppressed in a WSe_{2} monolayer, a direct-gap two-dimensional semiconductor with the exciton ground state being optically dark. We demonstrate that the already inefficient relaxation of the exciton pseudospin in such a system can be suppressed even further by the application of a tiny magnetic field of about 100 mT. Time-resolved spectroscopy reveals the pseudospin dynamics to be a two-step relaxation process. An initial decay of the pseudospin occurs at the level of dark excitons on a time scale of 100 ps, which is tunable with a magnetic field. This decay is followed by even longer decay (>1  ns, once the dark excitons form more complex pseudo-particles allowing for their radiative recombination. Our findings of slow valley pseudospin relaxation easily manipulated by the magnetic field open new prospects for engineering the dynamics of the valley pseudospin in transition metal dichalcogenides.

  9. Anisotropy and relaxation processes of uniaxially oriented CoFe{sub 2}O{sub 4} nanoparticles dispersed in PDMS

    Energy Technology Data Exchange (ETDEWEB)

    Antonel, P.S.; Negri, R.M. [Instituto de Quimica Fisica de Materiales, Ambiente y Energia (INQUIMAE), Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon II, Av. Cantilo s/n (1428), Buenos Aires (Argentina); Leyva, A.G. [Grupo de Materia Condensada, Gerencia de Investigacion y Aplicaciones, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Avda. Gral. Paz 1499 (1650) San Martin, Pcia. de Buenos Aires, Argentina - Escuela de Ciencia y Tecnologia, UNSAM (Argentina); Jorge, G.A., E-mail: gjorge@df.uba.ar [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, Av. Cantilo s/n (1428), Buenos Aires (Argentina)

    2012-08-15

    When a uniaxial magnetic field is applied to a non-magnetic dispersive medium filled with magnetic nanoparticles, they auto-assemble into thin needles parallel to the field direction, due to the strong dipolar interaction among them. We have prepared in this way magnetically oriented nanocomposites of nanometer-size CoFe{sub 2}O{sub 4} particles in a polydimethylsiloxane polymer matrix, with 10% w/w of magnetic particles. We present the characteristic magnetic relaxation curves measured after the application of a magnetic field forming an angle {alpha} with respect to the needle direction. We show that the magnetic viscosity (calculated from the logarithmic relaxation curves) as a function of {alpha} presents a minimum at {alpha}=0, indicating slower relaxation processes associated with this configuration of fields. The results seems to point out that the local magnetic anisotropy of the nanoparticles is oriented along the needles, resulting in the macroscopic magnetic anisotropy observed in our measurements.

  10. Introduction to electronic relaxation in solids: mechanisms and measuring techniques

    International Nuclear Information System (INIS)

    Bonville, P.

    1983-01-01

    The fluctuations of electronic magnetic moments in solids may be investigated by several techniques, either electronic or nuclear. This paper is an introduction of the most frequently encountered paramagnetic relaxation mechanisms (phonons, conduction electrons, exchange or dipolar interactions) in condensed matter, and to the different techniques used for measuring relaxation frequencies: electronic paramagnetic resonance, nuclear magnetic resonance, Moessbauer spectroscopy, inelastic neutron scattering, measurement of longitudinal ac susceptibility and γ-γ perturbed angular correlations. We mainly focus our attention on individual ionic fluctuation spectra, the majority of the experimental work refered to concerning rare earth systems [fr

  11. Temperature dependence of the NMR spin-lattice relaxation rate for spin-1/2 chains

    Science.gov (United States)

    Coira, E.; Barmettler, P.; Giamarchi, T.; Kollath, C.

    2016-10-01

    We use recent developments in the framework of a time-dependent matrix product state method to compute the nuclear magnetic resonance relaxation rate 1 /T1 for spin-1/2 chains under magnetic field and for different Hamiltonians (XXX, XXZ, isotropically dimerized). We compute numerically the temperature dependence of the 1 /T1 . We consider both gapped and gapless phases, and also the proximity of quantum critical points. At temperatures much lower than the typical exchange energy scale, our results are in excellent agreement with analytical results, such as the ones derived from the Tomonaga-Luttinger liquid (TLL) theory and bosonization, which are valid in this regime. We also cover the regime for which the temperature T is comparable to the exchange coupling. In this case analytical theories are not appropriate, but this regime is relevant for various new compounds with exchange couplings in the range of tens of Kelvin. For the gapped phases, either the fully polarized phase for spin chains or the low-magnetic-field phase for the dimerized systems, we find an exponential decrease in Δ /(kBT ) of the relaxation time and can compute the gap Δ . Close to the quantum critical point our results are in good agreement with the scaling behavior based on the existence of free excitations.

  12. Relaxation time in confined disordered systems

    International Nuclear Information System (INIS)

    Chamati, H.; Korutcheva, E.

    2006-05-01

    The dynamic critical behavior of a quenched hypercubic sample of linear size L is considered within the 'random T c ' field theoretical model with purely relaxation dynamic (Model A). The dynamic finite size scaling behavior is established and analyzed when the system is quenched from a homogeneous phase towards its critical temperature. The obtained results are compared to those reported in the literature. (author)

  13. Towards quantitative measurements of relaxation times and other parameters in the brain

    International Nuclear Information System (INIS)

    Tofts, P.S.; Du Boulay, E.P.G.H.

    1990-01-01

    The nature and physical significance of the relaxation times T1 and T2 and of proton density are described. Methods of measuring T1 and T2 are discussed with emphasis on the establishment of precision and the maintenance of accuracy. Reported standards of success are briefly reviewed. We expect sensitivities of the order of 1% to be achievable in serial studies. Although early hopes of disease diagnosis by tissue characterisation were not realised, strict scientific method and careful calibration have made it pracitcable to apply relaxation time measurement to research into disease process. Serial measurements in patients and correlation with similar studies in animal models, biopsy results and autopsy material taken together have provided new knowledge about cerebral oedema, water compartmentation, alcoholism and the natural history of multiple sclerosis. There are prospects of using measurement to monitor treatment in other diseases with diffuse brain abnormalities invisible on the usual images. Secondarily derived parameters and notably the quantification of blood-brain barrier defect after injection of Gadolinium-DTPA also offer prospects of valuable data. (orig.)

  14. Sharp transition between thermal and quantum tunneling regimes in magnetization relaxation processes

    Science.gov (United States)

    Tejada, J.; Zhang, X. X.; Barbara, B.

    1993-03-01

    In this paper we describe experiments involving measurements of the dependence on time of the thermoremanence magnetization of 2-dimensional random magnets. The low temperature values for the magnetic viscosity agree well with both current theories of tunneling of the magnetization vector (Chudnovsky et al.) and the work of Grabert et al. who predicted that the transition from classical to quantum regime is rather sharp for undamped systems.

  15. T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Mamisch, Tallal Charles [University Bern, Department of Orthopedic Surgery, Inselspital, Bern (Switzerland); University Bern, Magnetic Resonance Spectroscopy and Methodology, Department of Clinical Research, Bern (Switzerland); Hughes, Timothy [Siemens Medical Solutions, Erlangen (Germany); Mosher, Timothy J. [Penn State University College of Medicine, Musculoskeletal Imaging and MRI, Department of Radiology, Hershey, PA (United States); Mueller, Christoph [University of Erlangen, Department of Trauma Surgery, Erlangen (Germany); Trattnig, Siegfried [Medical University of Vienna, MR Center - High Field MR, Department of Radiology, Vienna (Austria); Boesch, Chris [University Bern, Magnetic Resonance Spectroscopy and Methodology, Department of Clinical Research, Bern (Switzerland); Welsch, Goetz Hannes [University of Erlangen, Department of Trauma Surgery, Erlangen (Germany); Medical University of Vienna, MR Center - High Field MR, Department of Radiology, Vienna (Austria)

    2012-03-15

    T2 mapping techniques use the relaxation constant as an indirect marker of cartilage structure, and the relaxation constant has also been shown to be a sensitive parameter for cartilage evaluation. As a possible additional robust biomarker, T2* relaxation time is a potential, clinically feasible parameter for the biochemical evaluation of articular cartilage. The knees of 15 healthy volunteers and 15 patients after microfracture therapy (MFX) were evaluated with a multi-echo spin-echo T2 mapping technique and a multi-echo gradient-echo T2* mapping sequence at 3.0 Tesla MRI. Inline maps, using a log-linear least squares fitting method, were assessed with respect to the zonal dependency of T2 and T2* relaxation for the deep and superficial regions of healthy articular cartilage and cartilage repair tissue. There was a statistically significant correlation between T2 and T2* values. Both parameters demonstrated similar spatial dependency, with longer values measured toward the articular surface for healthy articular cartilage. No spatial variation was observed for cartilage repair tissue after MFX. Within this feasibility study, both T2 and T2* relaxation parameters demonstrated a similar response in the assessment of articular cartilage and cartilage repair tissue. The potential advantages of T2*-mapping of cartilage include faster imaging times and the opportunity for 3D acquisitions, thereby providing greater spatial resolution and complete coverage of the articular surface. (orig.)

  16. Contrast agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Karadjian, V.

    1987-01-01

    The origine of nuclear magnetic resonance signal is reminded and different ways for contrast enhancement in magnetic resonance imaging are presented, especially, modifications of tissus relaxation times. Investigations have focused on development of agents incorporating either paramagnetic ions or stable free radicals. Pharmacological and toxicological aspects are developed. The diagnostic potential of these substances is illustrated by the example of gadolinium complexes [fr

  17. Magnetic resonance imaging by using nano-magnetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Shokrollahi, H., E-mail: Shokrollahi@sutech.ac.ir [Electroceramics Group, Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of); Khorramdin, A. [Electroceramics Group, Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of); Isapour, Gh. [Department of Materials and Engineering, Hakim Sabzevari University (Iran, Islamic Republic of)

    2014-11-15

    Magnetism and magnetic materials play a major role in various biological applications, such as magnetic bioseparation, magnetic resonance imaging (MRI), hyperthermia treatment of cancer and drug delivery. Among these techniques, MRI is a powerful method not only for diagnostic radiology but also for therapeutic medicine that utilizes a magnetic field and radio waves. Recently, this technique has contributed greatly to the promotion of the human quality life. Thus, this paper presents a short review of the physical principles and recent advances of MRI, as well as providing a summary of the synthesis methods and properties of contrast agents, like different core materials and surfactants. - Highlights: • This paper studies the physics of MRI as a powerful diagnostic technique. • MRI uses the differentiation between healthy and pathological tissues. • The relaxation times can be shortened by the use of a magnetic contrast agent. • The magnetic nanoparticles act as contrast agents, helping to increase the resolution. • Different synthesis methods can influence the magnetic resonance behavior.

  18. Novel spin dynamics in ferrimagnetic molecular chains from {sup 1}H NMR and {mu}SR spin-lattice relaxation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Micotti, E. E-mail: micotti@fisicavolta.unipv.it; Lascialfari, A.; Rigamonti, A.; Aldrovandi, S.; Caneschi, A.; Gatteschi, D.; Bogani, L

    2004-05-01

    The spin dynamics in the helical chain Co(hfac){sub 2}NITPhOMe has been investigated by {sup 1}H NMR and {mu}SR relaxation. In the temperature range 15relaxation of the homogeneous magnetization. For T{<=}15 K, NMR and {mu}SR evidence a second spin relaxation mechanism, undetected by the magnetization measurements. From the analysis of these data, insights on this novel relaxation process are derived.

  19. Hyperpolarized krypton-83 as a contrast agent for magnetic resonance imaging.

    Science.gov (United States)

    Pavlovskaya, Galina E; Cleveland, Zackary I; Stupic, Karl F; Basaraba, Randall J; Meersmann, Thomas

    2005-12-20

    For the first time, magnetic resonance imaging (MRI) with hyperpolarized (hp) krypton-83 (83Kr) has become available. The relaxation of the nuclear spin of 83Kr atoms (I = 9/2) is driven by quadrupolar interactions during brief adsorption periods on surrounding material interfaces. Experiments in model systems reveal that the longitudinal relaxation of hp 83Kr gas strongly depends on the chemical composition of the materials. The relaxation-weighted contrast in hp 83Kr MRI allows for the distinction between hydrophobic and hydrophilic surfaces. The feasibility of hp 83Kr MRI of airways is tested in canine lung tissue by using krypton gas with natural abundance isotopic distribution. Additionally, the influence of magnetic field strength and the presence of a breathable concentration of molecular oxygen on longitudinal relaxation are investigated.

  20. Energy relaxation and heating of magnons in ferromagnetic semiconductors

    International Nuclear Information System (INIS)

    Korenblit, I.Ya.; Tankhilevich, B.G.

    1976-01-01

    The warming-up of electrons and magnons by a high electrical field in ferromagnetic semiconductors with wide conduction bands has been considered. The warming-up of magnons determines the dependence of the magnetic characteristics of the semiconductor (for example, its magnetization) on the electric field and leads to some interesting peculiarities in the current-voltage characteristic (CVC). In some cases, owing to a rapid decrease of electrical conductivity with the increasing temperature of magnons, the CVC may contain a descending part. Since the energy relaxation of magnons occurs very slowly, the time during which the stationary state sets in, although varying widely as a function of the lattice temperature T and the electron gas concentration n, may reach values of the order of milliseconds

  1. Oxygen-17 relaxation in aqueous agarose gels

    International Nuclear Information System (INIS)

    Ablett, S.; Lillford, P.J.

    1977-01-01

    Nuclear magnetic relaxation of oxygen-17 in H 2 17 O enriched agarose gels shows that existing explanations of water behaviour are oversimplified. Satisfactory models must include at least three proton phases, two of which involve water molecules. (Auth.)

  2. Dynamics in a one-dimensional ferrogel model: relaxation, pairing, shock-wave propagation.

    Science.gov (United States)

    Goh, Segun; Menzel, Andreas M; Löwen, Hartmut

    2018-05-23

    Ferrogels are smart soft materials, consisting of a polymeric network and embedded magnetic particles. Novel phenomena, such as the variation of the overall mechanical properties by external magnetic fields, emerge consequently. However, the dynamic behavior of ferrogels remains largely unveiled. In this paper, we consider a one-dimensional chain consisting of magnetic dipoles and elastic springs between them as a simple model for ferrogels. The model is evaluated by corresponding simulations. To probe the dynamics theoretically, we investigate a continuum limit of the energy governing the system and the corresponding equation of motion. We provide general classification scenarios for the dynamics, elucidating the touching/detachment dynamics of the magnetic particles along the chain. In particular, it is verified in certain cases that the long-time relaxation corresponds to solutions of shock-wave propagation, while formations of particle pairs underlie the initial stage of the dynamics. We expect that these results will provide insight into the understanding of the dynamics of more realistic models with randomness in parameters and time-dependent magnetic fields.

  3. Analytic treatment of nuclear spin-lattice relaxation for diffusion in a cone model

    Science.gov (United States)

    Sitnitsky, A. E.

    2011-12-01

    We consider nuclear spin-lattice relaxation rate resulted from a diffusion equation for rotational wobbling in a cone. We show that the widespread point of view that there are no analytical expressions for correlation functions for wobbling in a cone model is invalid and prove that nuclear spin-lattice relaxation in this model is exactly tractable and amenable to full analytical description. The mechanism of relaxation is assumed to be due to dipole-dipole interaction of nuclear spins and is treated within the framework of the standard Bloemberger, Purcell, Pound-Solomon scheme. We consider the general case of arbitrary orientation of the cone axis relative the magnetic field. The BPP-Solomon scheme is shown to remain valid for systems with the distribution of the cone axes depending only on the tilt relative the magnetic field but otherwise being isotropic. We consider the case of random isotropic orientation of cone axes relative the magnetic field taking place in powders. Also we consider the cases of their predominant orientation along or opposite the magnetic field and that of their predominant orientation transverse to the magnetic field which may be relevant for, e.g., liquid crystals. Besides we treat in details the model case of the cone axis directed along the magnetic field. The latter provides direct comparison of the limiting case of our formulas with the textbook formulas for free isotropic rotational diffusion. The dependence of the spin-lattice relaxation rate on the cone half-width yields results similar to those predicted by the model-free approach.

  4. Heating efficiency in magnetic nanoparticle hyperthermia

    International Nuclear Information System (INIS)

    Deatsch, Alison E.; Evans, Benjamin A.

    2014-01-01

    Magnetic nanoparticles for hyperthermic treatment of cancers have gained significant attention in recent years. In magnetic hyperthermia, three independent mechanisms result in thermal energy upon stimulation: Néel relaxation, Brownian relaxation, and hysteresis loss. The relative contribution of each is strongly dependent on size, shape, crystalline anisotropy, and degree of aggregation or agglomeration of the nanoparticles. We review the effects of each of these physical mechanisms in light of recent experimental studies and suggest routes for progress in the field. Particular attention is given to the influence of the collective behaviors of nanoparticles in suspension. A number of recent studies have probed the effect of nanoparticle concentration on heating efficiency and have reported superficially contradictory results. We contextualize these studies and show that they consistently indicate a decrease in magnetic relaxation time with increasing nanoparticle concentration, in both Brownian- and Néel-dominated regimes. This leads to a predictable effect on heating efficiency and alleviates a significant source of confusion within the field. - Highlights: • Magnetic nanoparticle hyperthermia. • Heating depends on individual properties and collective properties. • We review recent studies with respect to loss mechanisms. • Collective behavior is a key source of confusion in the field. • We contextualize recent studies to elucidate consistencies and alleviate confusion

  5. Magnetization reversal in single molecule magnets

    Science.gov (United States)

    Bokacheva, Louisa

    2002-09-01

    I have studied the magnetization reversal in single molecule magnets (SMMs). SMMs are Van der Waals crystals, consisting of identical molecules containing transition metal ions, with high spin and large uniaxial magnetic anisotropy. They can be considered as ensembles of identical, iso-oriented nanomagnets. At high temperature, these materials behave as superparamagnets and their magnetization reversal occurs by thermal activation. At low temperature they become blocked, and their magnetic relaxation occurs via thermally assisted tunneling or pure quantum tunneling through the anisotropy barrier. We have conducted detailed experimental studies of the magnetization reversal in SMM material Mn12-acetate (Mn12) with S = 10. Low temperature measurements were conducted using micro-Hall effect magnetometry. We performed hysteresis and relaxation studies as a function of temperature, transverse field, and magnetization state of the sample. We identified magnetic sublevels that dominate the tunneling at a given field, temperature and magnetization. We observed a crossover between thermally assisted and pure quantum tunneling. The form of this crossover depends on the magnitude and direction of the applied field. This crossover is abrupt (first-order) and occurs in a narrow temperature interval (tunneling mechanisms in Mn12.

  6. Low-Dimensional Nanoparticle Clustering in Polymer Micelles and Their Transverse Relaxivity Rates

    Science.gov (United States)

    Hickey, Robert J.; Meng, Xin; Zhang, Peijun; Park, So-Jung

    2015-01-01

    One- or two-dimensional arrays of iron oxide nanoparticles were formed in colloidal assemblies of amphiphilic polymers. Electron tomography imaging revealed that nanoparticles are arranged into one-dimensional strings in magneto-micelles or two-dimensional sheets in magneto-core/shell assemblies. The distinct directional assembly behavior was attributed to the interparticle interaction relative to the nanoparticle–polymer interaction, which was modulated by varying the cosolvent used for the solution phase self-assembly. Magneto-core/shell assemblies with varying structural parameters were formed with a range of different sized as-synthesized nanoparticles. The transverse magnetic relaxivity rates (r2) of a series of different assemblies were determined to examine the effect of nanoparticle arrangement on the magnetic relaxivity for their potential applications in MRI. The results indicated that the assembly structure of nanoparticles in polymer micelles significantly affects the r2 of surrounding water, providing a way to control magnetic relaxivity. PMID:23731021

  7. Application of nonlinear EPR and NMR responses on spin systems in structure and relaxation structures

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, A I; Ryabikin, Yu A; Bitenbaev, M M [Inst. of Physics and Technology, Almaty (Kazakhstan)

    2004-07-01

    Full text: In this work results of investigation of paramagnetic systems (irradiated polymers and crystals, plastic-deformed metals, systems with strong exchange interaction, etc.) by methods of nonlinear relaxation spectroscopy (NRS) are presented. The NRS theoretical grounds were developed in the earlier works. Later the technique was applied successfully to relaxation studies and when analyzing magnetic resonance complicated overlapping spectra. As in course of polymer system irradiation, basically, several type of paramagnetic defects are formed with close values of the g factors, these materials can be used to exemplify NRS capabilities. In this work we use samples of irradiated PMMA copolymers. Analysis of the PMMA spectra shows that several types of paramagnetic defects strongly differing in the spin-lattice relaxation times are formed in irradiated PMMA-based polymer composites. It is found that degradation of the composite physical and engineering characteristics is caused, mainly, by radiation-induced disintegration of macromolecules, following the chain reaction, which can be revealed by occurring lattice radical states. Another portion of work is devoted to NRS application to deterring influence of structural defects (impurity, dislocation, etc.) on variation in times of nuclear spin-lattice relaxation in metal systems. At this stage we managed, for the first time, to separate the distribution functions for spin-lattice relaxation (T{sub l}) and relaxation of nuclear spin dipole-dipole interaction (T{sub d}). It is shown that one can assess an extent of crystal defect by the dependence of T{sub d}=f(c). Also in this work the NRS methods are applied to analyze EPR spectra of polycrystalline solid systems where exchange interaction is strong. It is shown that these systems, as a rule, contain a complete set of spin assemblies having different relaxation times, and the spin assembly distribution over the relaxation time depends on the defect number and

  8. Application of nonlinear EPR and NMR responses on spin systems in structure and relaxation structures

    International Nuclear Information System (INIS)

    Polyakov, A.I.; Ryabikin, Yu.A.; Bitenbaev, M.M.

    2004-01-01

    Full text: In this work results of investigation of paramagnetic systems (irradiated polymers and crystals, plastic-deformed metals, systems with strong exchange interaction, etc.) by methods of nonlinear relaxation spectroscopy (NRS) are presented. The NRS theoretical grounds were developed in the earlier works. Later the technique was applied successfully to relaxation studies and when analyzing magnetic resonance complicated overlapping spectra. As in course of polymer system irradiation, basically, several type of paramagnetic defects are formed with close values of the g factors, these materials can be used to exemplify NRS capabilities. In this work we use samples of irradiated PMMA copolymers. Analysis of the PMMA spectra shows that several types of paramagnetic defects strongly differing in the spin-lattice relaxation times are formed in irradiated PMMA-based polymer composites. It is found that degradation of the composite physical and engineering characteristics is caused, mainly, by radiation-induced disintegration of macromolecules, following the chain reaction, which can be revealed by occurring lattice radical states. Another portion of work is devoted to NRS application to deterring influence of structural defects (impurity, dislocation, etc.) on variation in times of nuclear spin-lattice relaxation in metal systems. At this stage we managed, for the first time, to separate the distribution functions for spin-lattice relaxation (T l ) and relaxation of nuclear spin dipole-dipole interaction (T d ). It is shown that one can assess an extent of crystal defect by the dependence of T d =f(c). Also in this work the NRS methods are applied to analyze EPR spectra of polycrystalline solid systems where exchange interaction is strong. It is shown that these systems, as a rule, contain a complete set of spin assemblies having different relaxation times, and the spin assembly distribution over the relaxation time depends on the defect number and type in solid

  9. Magnetization reversal in ultrashort magnetic field pulses

    International Nuclear Information System (INIS)

    Bauer, M.; Lopusnik, R.; Fassbender, J.; Hillebrands, B.

    2000-01-01

    We report the switching properties of a thin magnetic film subject to an ultrashort, laterally localized magnetic field pulse, obtained by numerical investigations. The magnetization distribution in the film is calculated on a grid assuming Stoner-like coherent rotation within the grid square size. Perpendicularly and in-plane magnetized films exhibit a magnetization reversal due to a 4 ps magnetic field pulse. Outside the central region the pulse duration is short compared to the precession period. In this area the evolution of the magnetization during the field pulse does not depend strongly on magnetic damping and/or pulse shape. However, the final magnetization distribution is affected by the magnetic damping. Although the pulse duration is short compared to the precession period, the time needed for the relaxation of the magnetization to the equilibrium state is rather large. The influence of the different magnetic anisotropy contributions and the magnetic damping parameter enters into the magnetization reversal process. Comparing the case of perpendicular anisotropy with different kinds of in-plane anisotropies, a principal difference is found due to the symmetry of the shape anisotropy with respect to the anisotropy in question

  10. Coaxial helicity injection and n=1 relaxation activity in the HIST spherical torus

    International Nuclear Information System (INIS)

    Nagata, M.

    2002-01-01

    Coaxial Helicity Injection (CHI) has demonstrated non-inductive current generation of spherical tokamak (ST) and spheromak plasmas on several devices. In order to understand comprehensively the role of the n=1 instability and relaxation on current generation processes in helicity-driven spherical systems, we have investigated dynamics of ST plasmas produced in the HIST device (major radius R=0.30 m, minor radius a=0.24 m, aspect ratio A=1.25, toroidal field B t t <150 kA and discharge time t<5 ms in the ST configuration) by decreasing the external toroidal field (TF) and reversing its sign in time. In results, we have discovered that the ST relaxes towards flipped ST configurations through formation of reversed-field pinches (RFPs)-like magnetic field profiles. Surprisingly, it has been observed that not only toroidal flux but also poloidal flux reverses sign spontaneously during the relaxation process. This self-reversal of the poloidal field is thought to be evidence for 'global helicity conservation'. Furthermore, we have first demonstrated that a flipped ST plasma can be successfully sustained by CHI. (author)

  11. The water proton spin-lattice relaxation times in virus-infected cells

    International Nuclear Information System (INIS)

    Valensin, G.; Gaggelli, E.; Tiezzi, E.; Valensin, P.E.; Bianchi Bandinelli, M.L.

    1979-01-01

    The water proton spin-lattice relaxation times in HEp-2 cell cultures were determined immediately after 1 h of polio-virus adsorption. The shortening of the water T 1 was closely related to the multiplicity of infection, allowing direct inspections of the virus-cell interaction since the first steps of the infectious cycle. Virus-induced structural and conformational changes of cell constituents were suggested to be detectable by NMR investigation of cell water. (Auth.)

  12. Topographical Variation of Human Femoral Articular Cartilage Thickness, T1rho and T2 Relaxation Times Is Related to Local Loading during Walking.

    Science.gov (United States)

    Van Rossom, Sam; Wesseling, Mariska; Van Assche, Dieter; Jonkers, Ilse

    2018-01-01

    Objective Early detection of degenerative changes in the cartilage matrix composition is essential for evaluating early interventions that slow down osteoarthritis (OA) initiation. T1rho and T2 relaxation times were found to be effective for detecting early changes in proteoglycan and collagen content. To use these magnetic resonance imaging (MRI) methods, it is important to document the topographical variation in cartilage thickness, T1rho and T2 relaxation times in a healthy population. As OA is partially mechanically driven, the relation between these MRI-based parameters and localized mechanical loading during walking was investigated. Design MR images were acquired in 14 healthy adults and cartilage thickness and T1rho and T2 relaxation times were determined. Experimental gait data was collected and processed using musculoskeletal modeling to identify weight-bearing zones and estimate the contact force impulse during gait. Variation of the cartilage properties (i.e., thickness, T1rho, and T2) over the femoral cartilage was analyzed and compared between the weight-bearing and non-weight-bearing zone of the medial and lateral condyle as well as the trochlea. Results Medial condyle cartilage thickness was correlated to the contact force impulse ( r = 0.78). Lower T1rho, indicating increased proteoglycan content, was found in the medial weight-bearing zone. T2 was higher in all weight-bearing zones compared with the non-weight-bearing zones, indicating lower relative collagen content. Conclusions The current results suggest that medial condyle cartilage is adapted as a long-term protective response to localized loading during a frequently performed task and that the weight-bearing zone of the medial condyle has superior weight bearing capacities compared with the non-weight-bearing zones.

  13. Geometric Magnetic Frustration in Li3Mg2OsO6 Studied with Muon Spin Relaxation

    Science.gov (United States)

    Carlo, J. P.; Derakhshan, S.; Greedan, J. E.

    Geometric frustration manifests when the spatial arrangement of ions inhibits magnetic order. Typically associated with antiferromagnetically (AF)-correlated moments on triangular or tetrahedral lattices, frustration occurs in a variety of structures and systems, resulting in rich phase diagrams and exotic ground states. As a window to exotic physics revealed by the cancellation of normally dominant interactions, the research community has taken great interest in frustrated systems. One family of recent interest are the rock-salt ordered oxides A5BO6, in which the B sites are occupied by magnetic ions comprising a network of interlocked tetrahedra, and nonmagnetic ions on the A sites control the B oxidation state through charge neutrality. Here we will discuss studies of Li3Mg2OsO6 using muon spin relaxation (μSR), a highly sensitive local probe of magnetism. Previous studies of this family included Li5OsO6, which exhibits AF order below 50K with minimal evidence for frustration, and Li4MgReO6, which exhibits glassy magnetism. Li3Mg2RuO6, meanwhile, exhibits long-range AF, with the ordering temperature suppressed by frustration. But its isoelectronic twin, Li3Mg2OsO6 (5d3 vs. 4d3) exhibits very different behavior, revealed by μSR to be a glassy ground state below 12K. Understanding why such similar systems exhibit diverse ground-state behavior is key to understanding the nature of geometric magnetic frustration. Financial support from the Research Corporation for Science Advancement.

  14. Quantitative magnetic resonance techniques in the evaluation of intracranial tuberculomas

    International Nuclear Information System (INIS)

    Vasudev, M.K.; Jayakumar, P.N.; Srikanth, S.G.; Nagarajan, K.; Mohanty, A.

    2007-01-01

    Purpose: To evaluate intracranial tuberculomas using quantitative magnetic resonance (MR) techniques such as T2 relaxometry, magnetization transfer (MT), and diffusion-weighted imaging (DWI). Material and Methods: Thirty-three patients with intracranial tuberculomas (histologically confirmed in 22) were evaluated using proton density/T2-weighted, T1-weighted (with and without MT), and echo-planar diffusion-weighted imaging sequences. T2 relaxation times, MT ratios (MTR), and apparent diffusion coefficient (ADC) values were calculated from the center of the lesion, the periphery, perilesional edema, and contralateral normal white matter. The mean and standard deviation values of each variable were calculated and correlated using Pearson's test (P = 0.05). Results: The measured mean values of T2 relaxation time, MTR, and ADC in the center of lesions were 155.5 ms, 14.1, and 1.27x10-3 mm 2 /s, respectively, compared to 117 ms, 23.72, and 0.74x10-3 mm 2 /s in normal white matter, and a T2 relaxation time of 187.45 ms in normal gray matter. Significant inverse correlations were noted between T2 relaxation values and MTR (P<0.001) and between MTR and ADC (P = 0.046). Significant positive correlation was seen between T2 relaxation and ADC values (P = 0.03). Conclusion: Intracranial tuberculomas are characterized by relatively short T2 relaxation times (compared to normal gray matter), decreased MTR, and mostly no restriction of diffusion. A combination of these quantitative parameters could be of help in the noninvasive diagnosis of tuberculomas

  15. Escape time, relaxation, and sticky states of a softened Henon-Heiles model: Low-frequency vibrational mode effects and glass relaxation

    Science.gov (United States)

    Toledo-Marín, J. Quetzalcóatl; Naumis, Gerardo G.

    2018-04-01

    Here we study the relaxation of a chain consisting of three masses joined by nonlinear springs and periodic conditions when the stiffness is weakened. This system, when expressed in their normal coordinates, yields a softened Henon-Heiles system. By reducing the stiffness of one low-frequency vibrational mode, a faster relaxation is enabled. This is due to a reduction of the energy barrier heights along the softened normal mode as well as for a widening of the opening channels of the energy landscape in configurational space. The relaxation is for the most part exponential, and can be explained by a simple flux equation. Yet, for some initial conditions the relaxation follows as a power law, and in many cases there is a regime change from exponential to power-law decay. We pinpoint the initial conditions for the power-law decay, finding two regions of sticky states. For such states, quasiperiodic orbits are found since almost for all components of the initial momentum orientation, the system is trapped inside two pockets of configurational space. The softened Henon-Heiles model presented here is intended as the simplest model in order to understand the interplay of rigidity, nonlinear interactions and relaxation for nonequilibrium systems such as glass-forming melts or soft matter. Our softened system can be applied to model β relaxation in glasses and suggest that local reorientational jumps can have an exponential and a nonexponential contribution for relaxation, the latter due to asymmetric molecules sticking in cages for certain orientations.

  16. Muon spin relaxation in ferromagnetic PdMn

    International Nuclear Information System (INIS)

    Dodds, S.A.; Gist, G.A.; Heffner, R.H.; Leon, M.; MacLaughlin, D.E.; Mydosh, J.A.; Nieuwenhuys, G.J.; Schillaci, M.E.

    1983-01-01

    Positive-muon (μ + ) spin relaxation experiments have been carried out in the dilute ferromagnetic alloy Pd + 2 at % Mn (T/sub c/ = 5.8 0 K). In the paramagnetic state the inhomogeneous μ + linewidth is proportional to the bulk magnetization. Below T/sub c/ the μ + linewidth and the width of the μ + local field distribution in zero applied field are both in qualitative accord with the Sherrington-Kirkpatrick theory of disordered magnets

  17. Muon spin relaxation in ferromagnetic PdMn

    Energy Technology Data Exchange (ETDEWEB)

    Dodds, S.A.; Gist, G.A. (Rice Univ., Houston, TX (USA)); Heffner, R.H.; Leon, M.; Schillaci, M.E. (Los Alamos National Lab., NM (USA)); MacLaughlin, D.E. (California Univ., Riverside (USA)); Mydosh, J.A.; Nieuwenhuys, G.J. (Rijksuniversiteit Leiden (Netherlands). Kamerlingh Onnes Lab.)

    1984-01-01

    Positive-muon (..mu../sup +/) spin relaxation experiments have been carried out in the dilute ferromagnetic alloy Pd + 2 at.% Mn (Tsub(c) = 5.8 K). In the paramagnetic state the inhomogeneous ..mu../sup +/ linewidth is proportional to the bulk magnetization. Below Tsub(c) the ..mu../sup +/ linewidth and the width of the ..mu../sup +/ local field distribution in zero applied field are both in qualitative accord with the Sherrington-Kirkpatrick theory of disordered magnets.

  18. Nuclear spin-lattice relaxation in n -type insulating and metallic GaAs single crystals

    Science.gov (United States)

    Lu, J.; Hoch, M. J. R.; Kuhns, P. L.; Moulton, W. G.; Gan, Z.; Reyes, A. P.

    2006-09-01

    The coupling of electron and nuclear spins in n-GaAs changes significantly as the donor concentration n increases through the insulator-metal critical concentration nC˜1.2×1016cm-3 . The present measurements of the Ga71 relaxation rates W made as a function of magnetic field (1-13T) and temperature (1.5-300K) for semi-insulating GaAs and for three doped n-GaAs samples with donor concentrations n=5.9×1015 , 7×1016 , and 2×1018cm-3 , show marked changes in the relaxation behavior with n . Korringa-like relaxation is found in both metallic samples for T30K phonon-induced nuclear quadrupolar relaxation is dominant. The relaxation rate measurements permit determination of the electron probability density at Ga71 sites. A small Knight shift of -3.3ppm was measured on the most metallic (2×1018cm-3) sample using magic-angle spinning at room temperature. For the n=5.9×1015cm-3 sample, a nuclear relaxation model involving the Fermi contact hyperfine interaction, rapid spin diffusion, and exchange coupled local moments is proposed. While the relaxation rate behavior with temperature for the weakly metallic sample, n=7×1016cm-3 , is similar to that found for the just-insulating sample, the magnetic field dependence is quite different. For the 5.9×1015cm-3 sample, increasing the magnetic field leads to a decrease in the relaxation rate, while for the 7×1016cm-3 sample this results in an increase in the relaxation rate ascribed to an increase in the density of states at the Fermi level as the Landau level degeneracy is increased.

  19. Mechanical relaxation in glasses

    International Nuclear Information System (INIS)

    Hiki, Y.

    2004-01-01

    The basic properties of glasses and the characteristics of mechanical relaxation in glasses were briefly reviewed, and then our studies concerned were presented. Experimental methods adopted were viscosity, internal friction, ultrasonic attenuation, and Brillouin scattering measurements. The specimens used were several kinds of inorganic, organic, and metallic glasses. The measurements were mainly carried out from the room temperature up to the glass transition temperature, and the relaxation time was determined as a function of temperature. The 'double relaxation' composed of two Arrhenius-type relaxations was observed in many materials. In both relaxations, the 'compensation effect' showing a correlation of the pre-exponential factor and the activation energy was observed. These results were explained by considering the 'complex relaxation' due to cooperative motions of atoms or group of atoms. Values of activation energy near the glass transition determined by the various experimental methods were compared with each other

  20. In vivo measurements of relaxation process in the human liver by MRI. The role of respiratory gating/triggering

    DEFF Research Database (Denmark)

    Thomsen, C; Henriksen, O; Ring, P

    1988-01-01

    In vivo estimation of relaxation processes in the liver by magnetic resonance imaging (MRI) may be helpful for characterization of various pathological conditions in the liver. However, such measurements may be significantly hampered by movement of the liver with the respiration. The effect...... of synchronization of data acquisition to the respiratory cycle on measured T1- and T2-relaxation curves was studied in normal subjects, patients with diffuse liver disease, and patients with focal liver pathology. Multi spin echo sequences with five different repetition times were used. The measurements were...... carried out with and without respiratory gating/triggering. In the healthy subjects as well as in the patients with diffuse liver diseases respiratory synchronization did not alter the obtained relaxation curves. However, in the patients with focal pathology the relaxation curves were significantly...