Ice sheet growth with laterally varying bedrock relaxation time
van der Wal, Wouter; Vizcaino Rubio, Pablo; De Boer, Bas; van de Wal, Roderik
2017-04-01
Isostatic response of the bedrock, or glacial isostatic adjustment (GIA) in included in most ice sheet models. This is important because the surface elevation determines the mass balance and thereby implicitly also the strength of the mass balance feedback where higher surface elevation yields lower temperatures implying less melt and vice versa. Usually a single relaxation time or a set of relaxation times is used to model the response everywhere on Earth or at least for an entire ice sheet. In reality the viscosity in the Earth's mantle, and hence the relaxation time experienced by the ice, varies with location. Seismic studies indicate that several regions that were covered by ice during the last glacial cycle are underlain by mantle in which viscosity varies with orders of magnitude, such as Antarctica and North America. The question is whether such a variation of viscosity influences ice evolution. Several GIA models exist that can deal with 3D viscosity, but their large computation times make it nearly impossible to couple them to ice sheet models. Here we use the ANICE ice-sheet model (de Boer et al. 2013) with a simple bedrock-relaxation model in which a different relaxation time is used for separate regions. A temperature anomaly is applied to grow a schematic ice sheet on a flat earth, with other forcing mechanisms neglected. It is shown that in locations with a fast relaxation time of 300 years the equilibrium ice sheet is significantly thinner and narrower but also ice thickness in neighbouring regions (with the more standard relaxation time of 3000 years) is affected.
Echterhoff, J.; Simonis, I.; Atkinson, R.
2012-04-01
The infrastructure to gather, store and access information about our environment is improving and growing rapidly. The increasing amount of information allows us to get a better understanding of the current state of our environment, historical processes and to simulate and predict the future state of the environment. Finer grained spatial and temporal data and more reliable communications make it easier to model dynamic states and ephemeral features. The exchange of information within and across geospatial domains is facilitated through the use of harmonized information models. The Observations & Measurements (O&M) developed through OGC and standardised by ISO is an example of such a cross-domain information model. It is used in many domains, including meteorology, hydrology as well as the emergency management. O&M enables harmonized representation of common metadata that belong to the act of determining the state of a feature property, whether by sensors, simulations or humans. In addition to the resulting feature property value, information such as the result quality but especially the time that the result applies to the feature property can be represented. Temporal metadata is critical to modelling past and future states of a feature. The features, and the semantics of each property, are defined in domain specific Application Schema using the General Feature Model (GFM) from ISO 19109 and usually encoded following ISO 19136. However, at the moment these standards provide only limited support for the representation and handling of time varying feature data. Features like rivers, wildfires or gas plumes have a defined state - for example geographic extent - at any given point in time. To keep track of changes, a more complex model for example using time-series coverages is required. Furthermore, the representation and management of feature property value changes via the service interfaces defined by OGC and ISO - namely: WFS and WCS - would be rather complex
Relaxation time estimation in surface NMR
Grunewald, Elliot D.; Walsh, David O.
2017-03-21
NMR relaxation time estimation methods and corresponding apparatus generate two or more alternating current transmit pulses with arbitrary amplitudes, time delays, and relative phases; apply a surface NMR acquisition scheme in which initial preparatory pulses, the properties of which may be fixed across a set of multiple acquisition sequence, are transmitted at the start of each acquisition sequence and are followed by one or more depth sensitive pulses, the pulse moments of which are varied across the set of multiple acquisition sequences; and apply processing techniques in which recorded NMR response data are used to estimate NMR properties and the relaxation times T.sub.1 and T.sub.2* as a function of position as well as one-dimensional and two-dimension distributions of T.sub.1 versus T.sub.2* as a function of subsurface position.
Relaxation time estimation in surface NMR
Grunewald, Elliot D.; Walsh, David O.
2017-03-21
NMR relaxation time estimation methods and corresponding apparatus generate two or more alternating current transmit pulses with arbitrary amplitudes, time delays, and relative phases; apply a surface NMR acquisition scheme in which initial preparatory pulses, the properties of which may be fixed across a set of multiple acquisition sequence, are transmitted at the start of each acquisition sequence and are followed by one or more depth sensitive pulses, the pulse moments of which are varied across the set of multiple acquisition sequences; and apply processing techniques in which recorded NMR response data are used to estimate NMR properties and the relaxation times T.sub.1 and T.sub.2* as a function of position as well as one-dimensional and two-dimension distributions of T.sub.1 versus T.sub.2* as a function of subsurface position.
Multiple relaxation modes in associative polymer networks with varying connectivity
Bohdan, M.; Sprakel, J.; van der Gucht, J.
2016-09-01
The dynamics and mechanics of networks depend sensitively on their spatial connectivity. To explore the effect of connectivity on local network dynamics, we prepare transient polymer networks in which we systematically cut connecting bonds. We do this by creating networks formed from hydrophobically modified difunctionalized polyethylene glycol chains. These form physical gels, consisting of flowerlike micelles that are transiently cross-linked by connecting bridges. By introducing monofunctionalized chains, we can systematically reduce the number of bonds between micelles and thus lower the network connectivity, which strongly reduces the network elasticity and relaxation time. Dynamic light scattering reveals a complex relaxation dynamics that are not apparent in bulk rheology. We observe three distinct relaxation modes. First we find a fast diffusive mode that does not depend on the number of bridges and is attributed to the diffusion of micelles within a cage formed by neighboring micelles. A second, intermediate mode depends strongly on network connectivity but surprisingly is independent of the scattering vector q . We attribute this viscoelastic mode to fluctuations in local connectivity of the network. The third, slowest mode is also diffusive and is attributed to the diffusion of micelle clusters through the viscoelastic matrix. These results shed light on the microscopic dynamics in weakly interconnected transient networks.
Christoffersen, Peter; Feunoua, Bruno; Jeon, Yoontae
We estimate a continuous-time model with stochastic volatility and dynamic crash probability for the S&P 500 index and find that market illiquidity dominates other factors in explaining the stock market crash risk. While the crash probability is time-varying, its dynamic depends only weakly on re...
Christoffersen, Peter; Feunoua, Bruno; Jeon, Yoontae
We estimate a continuous-time model with stochastic volatility and dynamic crash probability for the S&P 500 index and find that market illiquidity dominates other factors in explaining the stock market crash risk. While the crash probability is time-varying, its dynamic depends only weakly...... on return variance once we include market illiquidity as an economic variable in the model....
Time of relaxation in dusty plasma model
Timofeev, A. V.
2015-11-01
Dust particles in plasma may have different values of average kinetic energy for vertical and horizontal motion. The partial equilibrium of the subsystems and the relaxation processes leading to this asymmetry are under consideration. A method for the relaxation time estimation in nonideal dusty plasma is suggested. The characteristic relaxation times of vertical and horizontal motion of dust particles in gas discharge are estimated by analytical approach and by analysis of simulation results. These relaxation times for vertical and horizontal subsystems appear to be different. A single hierarchy of relaxation times is proposed.
Time-varying cosmological term
Socorro, J.; D'oleire, M.; Pimentel, Luis O.
2015-11-01
We present the case of time-varying cosmological term using the Lagrangian formalism characterized by a scalar field ϕ with standard kinetic energy and arbitrary potential V(ϕ). This model is applied to Friedmann-Robertson-Walker (FRW)cosmology. Exact solutions of the field equations are obtained by a special ansats to solve the Einstein-Klein-Gordon equation and a particular potential for the scalar field and barotropic perfect fluid. We present the evolution on this cosmological term with different scenarios.
Time-Varying Fundamental Constants
Olive, Keith
2003-04-01
Recent data from quasar absorption systems can be interpreted as arising from a time variation in the fine-structure constant. However, there are numerous cosmological, astro-physical, and terrestrial bounds on any such variation. These includes bounds from Big Bang Nucleosynthesis (from the ^4He abundance), the Oklo reactor (from the resonant neutron capture cross-section of Sm), and from meteoretic lifetimes of heavy radioactive isotopes. The bounds on the variation of the fine-structure constant are significantly strengthened in models where all gauge and Yukawa couplings vary in a dependent manner, as would be expected in unified theories. Models which are consistent with all data are severly challenged when Equivalence Principle constraints are imposed.
Relaxation time in disordered molecular systems
Rocha, Rodrigo P. [Departamento de Física, Universidade Federal de Santa Catarina, 88040-900 Florianópolis-SC (Brazil); Freire, José A., E-mail: jfreire@fisica.ufpr.br [Departamento de Física, Universidade Federal do Paraná, 81531-990 Curitiba-PR (Brazil)
2015-05-28
Relaxation time is the typical time it takes for a closed physical system to attain thermal equilibrium. The equilibrium is brought about by the action of a thermal reservoir inducing changes in the system micro-states. The relaxation time is intuitively expected to increase with system disorder. We derive a simple analytical expression for this dependence in the context of electronic equilibration in an amorphous molecular system model. We find that the disorder dramatically enhances the relaxation time but does not affect its independence of the nature of the initial state.
Rounded stretched exponential for time relaxation functions.
Powles, J G; Heyes, D M; Rickayzen, G; Evans, W A B
2009-12-01
A rounded stretched exponential function is introduced, C(t)=exp{(tau(0)/tau(E))(beta)[1-(1+(t/tau(0))(2))(beta/2)]}, where t is time, and tau(0) and tau(E) are two relaxation times. This expression can be used to represent the relaxation function of many real dynamical processes, as at long times, t>tau(0), the function converges to a stretched exponential with normalizing relaxation time, tau(E), yet its expansion is even or symmetric in time, which is a statistical mechanical requirement. This expression fits well the shear stress relaxation function for model soft soft-sphere fluids near coexistence, with tau(E)Cole-Cole plots for dielectric and shear stress relaxation (both the modulus and viscosity forms). It is shown that both the dielectric spectra and dynamic shear modulus imaginary parts approach the real axis with a slope equal to 0 at high frequency, whereas the dynamic viscosity has an infinite slope in the same limit. This indicates that inertial effects at high frequency are best discerned in the modulus rather than the viscosity Cole-Cole plot. As a consequence of the even expansion in time of the shear stress relaxation function, the value of the storage modulus derived from it at very high frequency exceeds that in the infinite frequency limit (i.e., G(infinity)).
A new varied-time photonic crystals
Wu, Xiang-Yao; Ma, Ji; Liu, Xiao-Jing; Liang, Yu; Li, Hong; Chen, Wan-Jin; Yuan, Hong-chun; Li, Heng-Mei
2015-01-01
In this paper, we have firstly proposed a new one-dimensional varied-time photonic crystals, i.e., the refractive indices of media $A$ and $B$ are the time functions. We consider the varied-time photonic crystals of refractive indices period variation and calculate the transmissivity and electronic field distribution with and without defect layer, which are different from the conventional photonic crystals, which transmissivity and electronic field distribution are static, but the varied-time...
A new varied-time photonic crystals
2015-01-01
In this paper, we have firstly proposed a new one-dimensional varied-time photonic crystals, i.e., the refractive indices of media $A$ and $B$ are the time functions. We consider the varied-time photonic crystals of refractive indices period variation and calculate the transmissivity and electronic field distribution with and without defect layer, which are different from the conventional photonic crystals, which transmissivity and electronic field distribution are static, but the varied-time...
Probing relaxation times in graphene quantum dots
Volk, Christian; Neumann, Christoph; Kazarski, Sebastian; Fringes, Stefan; Engels, Stephan; Haupt, Federica; Müller, André; Stampfer, Christoph
2013-01-01
Graphene quantum dots are attractive candidates for solid-state quantum bits. In fact, the predicted weak spin-orbit and hyperfine interaction promise spin qubits with long coherence times. Graphene quantum dots have been extensively investigated with respect to their excitation spectrum, spin-filling sequence and electron-hole crossover. However, their relaxation dynamics remain largely unexplored. This is mainly due to challenges in device fabrication, in particular concerning the control of carrier confinement and the tunability of the tunnelling barriers, both crucial to experimentally investigate decoherence times. Here we report pulsed-gate transient current spectroscopy and relaxation time measurements of excited states in graphene quantum dots. This is achieved by an advanced device design that allows to individually tune the tunnelling barriers down to the low megahertz regime, while monitoring their asymmetry. Measuring transient currents through electronic excited states, we estimate a lower bound for charge relaxation times on the order of 60–100 ns. PMID:23612294
Relaxation time measurements by an electronic method.
Brousseau, R.; Vanier, J.
1973-01-01
Description of a simple electronic system that permits the direct measurement of time constants of decaying signals. The system was used in connection with relaxation experiments on hydrogen and rubidium masers and was found to operate well. The use of a computing counter in the systems gives the possibility of making averages on several experiments and obtaining the standard deviation of the results from the mean. The program for the computing counter is given.
Time course of corticospinal excitability and intracortical inhibition just before muscle relaxation
Tomotaka eSuzuki
2016-01-01
Full Text Available Using transcranial magnetic stimulation (TMS, we investigated how short-interval intracortical inhibition (SICI was involved with transient motor cortex excitability changes observed just before the transition from muscle contraction to muscle relaxation. Ten healthy participants performed a simultaneous relaxation task of the ipsilateral finger and foot, relaxing from 10% of their maximal voluntary contraction force after the go signal. In the simple reaction time paradigm, single or paired TMS pulses were randomly delivered after the go signal, and motor evoked potentials were recorded from the right first dorsal interosseous muscle. We analyzed the time course prior to the estimated relaxation reaction time, defined here as the onset of voluntary relaxation. SICI decreased in the 80–100 ms before relaxation reaction time, and motor evoked potentials were significantly greater in amplitude in the 60–80 ms period before relaxation reaction time than in the other intervals in single-pulse trials. TMS pulses did not effectively increase relaxation reaction time. These results show that cortical excitability in the early stage, before muscle relaxation, plays an important role in muscle relaxation control. SICI circuits may vary between decreased and increased activation to continuously maintain muscle relaxation during or after a relaxation response. With regard to motor cortex excitability dynamics, we suggest that SICI also dynamically changes throughout the muscle relaxation process.
Time varying effects in survival analysis
Scheike, Thomas H.
2002-01-01
additive risk model; counting process; proportional hazards model; semi-parametric models; survival data; time-varying effects; nonparametric testing......additive risk model; counting process; proportional hazards model; semi-parametric models; survival data; time-varying effects; nonparametric testing...
Fractal analysis of time varying data
Vo-Dinh, Tuan; Sadana, Ajit
2002-01-01
Characteristics of time varying data, such as an electrical signal, are analyzed by converting the data from a temporal domain into a spatial domain pattern. Fractal analysis is performed on the spatial domain pattern, thereby producing a fractal dimension D.sub.F. The fractal dimension indicates the regularity of the time varying data.
Inflationary Phase with Time Varying Fundamental Constants
Berman, M S; Berman, Marcelo S.; Trevisan, Luis A.
2002-01-01
Following Barrow, and Barrow and collaborators, we find a cosmological JBD model, with varying speed of light and varying fine structure constant, where the deceleration parameter is -1,causing acceleration of the Universe.Indeed, we have an exponential inflationary phase. Plancks time, energy, length,etc.,might have had different numerical values in the past, than those available in the litterature, due to the varying values for speed of light, and gravitational constant.
RELAXATION TIME LIMITS PROBLEM FOR HYDRODYNAMIC MODELS IN SEMICONDUCTOR SCIENCE
无
2007-01-01
In this article, two relaxation time limits, namely, the momentum relaxation time limit and the energy relaxation time limit are considered. By the compactness argument, it is obtained that the smooth solutions of the multidimensional nonisentropic Euler-Poisson problem converge to the solutions of an energy transport model or a drift diffusion model, respectively, with respect to different time scales.
First Passage Times, Lifetimes, and Relaxation Times of Unfolded Proteins
Dai, Wei; Sengupta, Anirvan M.; Levy, Ronald M.
2015-01-01
The dynamics of proteins in the unfolded state can be quantified in computer simulations by calculating a spectrum of relaxation times which describes the time scales over which the population fluctuations decay to equilibrium. If the unfolded state space is discretized we can evaluate the relaxation time of each state. We derive a simple relation that shows the mean first passage time to any state is equal to the relaxation time of that state divided by the equilibrium population. This explains why mean first passage times from state to state within the unfolded ensemble can be very long but the energy landscape can still be smooth (minimally frustrated). In fact, when the folding kinetics is two-state, all of the unfolded state relaxation times within the unfolded free energy basin are faster than the folding time. This result supports the well-established funnel energy landscape picture and resolves an apparent contradiction between this model and the recently proposed kinetic hub model of protein folding. We validate these concepts by analyzing a Markov State Model of the kinetics in the unfolded state and folding of the mini-protein NTL9 constructed from a 2.9 millisecond simulation provided by D. E. Shaw Research. PMID:26252709
Internal relaxation time in immersed particulate materials
Rognon, P; Gay, C
2009-01-01
We study the dynamics of the solid to liquid transition for a model material made of elastic particles immersed in a viscous fluid. The interaction between particle surfaces includes their viscous lubrication, a sharp repulsion when they get closer than a tuned steric length and their elastic deflection induced by those two forces. We use Soft Dynamics to simulate the dynamics of this material when it experiences a step increase in the shear stress and a constant normal stress. We observe a long creep phase before a substantial flow eventually establishes. We find that the typical creep time relies on an internal relaxation process, namely the separation of two particles driven by the applied stress and resisted by the viscous friction. This mechanism should be relevant for granular pastes, living cells, emulsions and wet foams.
Immersed boundary lattice Boltzmann model based on multiple relaxation times.
Lu, Jianhua; Han, Haifeng; Shi, Baochang; Guo, Zhaoli
2012-01-01
As an alterative version of the lattice Boltzmann models, the multiple relaxation time (MRT) lattice Boltzmann model introduces much less numerical boundary slip than the single relaxation time (SRT) lattice Boltzmann model if some special relationship between the relaxation time parameters is chosen. On the other hand, most current versions of the immersed boundary lattice Boltzmann method, which was first introduced by Feng and improved by many other authors, suffer from numerical boundary slip as has been investigated by Le and Zhang. To reduce such a numerical boundary slip, an immerse boundary lattice Boltzmann model based on multiple relaxation times is proposed in this paper. A special formula is given between two relaxation time parameters in the model. A rigorous analysis and the numerical experiments carried out show that the numerical boundary slip reduces dramatically by using the present model compared to the single-relaxation-time-based model.
On a time varying fine structure constant
Berman, M S; Berman, Marcelo S.; Trevisan, Luis A.
2001-01-01
By employing Dirac LNH, and a further generalization by Berman (GLNH), we estimate how should vary the total number of nucleons, the energy density, Newton Gravitational constant, the cosmological constant, the magnetic permeability and electric permitivity, of the Universe,in order to account for the experimentally observed time variation of the fine structure constant. As a bonus,we find an acceptable value for the deceleration parameter of the present Universe, compatible with the Supernovae observations.
Suzuki, Tomotaka; Sugawara, Kenichi; Ogahara, Kakuya; Higashi, Toshio
2016-01-01
Using transcranial magnetic stimulation (TMS), we investigated how short-interval intracortical inhibition (SICI) was involved with transient motor cortex (M1) excitability changes observed just before the transition from muscle contraction to muscle relaxation. Ten healthy participants performed a simultaneous relaxation task of the ipsilateral finger and foot, relaxing from 10% of their maximal voluntary contraction (MVC) force after the go signal. In the simple reaction time (RT) paradigm, single or paired TMS pulses were randomly delivered after the go signal, and motor evoked potentials (MEPs) were recorded from the right first dorsal interosseous (FDI) muscle. We analyzed the time course prior to the estimated relaxation reaction time (RRT), defined here as the onset of voluntary relaxation. SICI decreased in the 80-100 ms before RRT, and MEPs were significantly greater in amplitude in the 60-80 ms period before RRT than in the other intervals in single-pulse trials. TMS pulses did not effectively increase RRT. These results show that cortical excitability in the early stage, before muscle relaxation, plays an important role in muscle relaxation control. SICI circuits may vary between decreased and increased activation to continuously maintain muscle relaxation during or after a relaxation response. With regard to M1 excitability dynamics, we suggest that SICI also dynamically changes throughout the muscle relaxation process.
Time Course of Corticospinal Excitability and Intracortical Inhibition Just before Muscle Relaxation
Suzuki, Tomotaka; Sugawara, Kenichi; Ogahara, Kakuya; Higashi, Toshio
2016-01-01
Using transcranial magnetic stimulation (TMS), we investigated how short-interval intracortical inhibition (SICI) was involved with transient motor cortex (M1) excitability changes observed just before the transition from muscle contraction to muscle relaxation. Ten healthy participants performed a simultaneous relaxation task of the ipsilateral finger and foot, relaxing from 10% of their maximal voluntary contraction (MVC) force after the go signal. In the simple reaction time (RT) paradigm, single or paired TMS pulses were randomly delivered after the go signal, and motor evoked potentials (MEPs) were recorded from the right first dorsal interosseous (FDI) muscle. We analyzed the time course prior to the estimated relaxation reaction time (RRT), defined here as the onset of voluntary relaxation. SICI decreased in the 80–100 ms before RRT, and MEPs were significantly greater in amplitude in the 60–80 ms period before RRT than in the other intervals in single-pulse trials. TMS pulses did not effectively increase RRT. These results show that cortical excitability in the early stage, before muscle relaxation, plays an important role in muscle relaxation control. SICI circuits may vary between decreased and increased activation to continuously maintain muscle relaxation during or after a relaxation response. With regard to M1 excitability dynamics, we suggest that SICI also dynamically changes throughout the muscle relaxation process. PMID:26858619
A time-varying magnetic flux concentrator
Kibret, B.; Premaratne, M.; Lewis, P. M.; Thomson, R.; Fitzgerald, P. B.
2016-08-01
It is known that diverse technological applications require the use of focused magnetic fields. This has driven the quest for controlling the magnetic field. Recently, the principles in transformation optics and metamaterials have allowed the realization of practical static magnetic flux concentrators. Extending such progress, here, we propose a time-varying magnetic flux concentrator cylindrical shell that uses electric conductors and ferromagnetic materials to guide magnetic flux to its center. Its performance is discussed based on finite-element simulation results. Our proposed design has potential applications in magnetic sensors, medical devices, wireless power transfer, and near-field wireless communications.
Inventory Replenishment Policy with Time-Varying Demand and Shortages Considering Time-Varying Costs
无
2000-01-01
In this paper, a generalized EOQ model is developed with time-varying demand and shortages considering time-varying costs. The solution procedure is shown for determining the op timal replenishment policy over a finite time horizon during which the replenishment periods are assumed to be constant. The existence and uniqueness of the optimal replenishment policy are pre sented. The procedure is illustrated with two special cases of linear and non-linear demands and costs. Two numerical examples are also given.
Schlüter, Steffen [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis Oregon USA; Department Soil Physics, Helmholtz-Centre for Environmental Research-UFZ, Halle Germany; Berg, Steffen [Shell Global Solutions International B.V., Rijswijk Netherlands; Li, Tianyi [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis Oregon USA; Vogel, Hans-Jörg [Department Soil Physics, Helmholtz-Centre for Environmental Research-UFZ, Halle Germany; Institut für Agrar- und Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, Halle Germany; Wildenschild, Dorthe [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis Oregon USA
2017-06-01
The relaxation dynamics toward a hydrostatic equilibrium after a change in phase saturation in porous media is governed by fluid reconfiguration at the pore scale. Little is known whether a hydrostatic equilibrium in which all interfaces come to rest is ever reached and which microscopic processes govern the time scales of relaxation. Here we apply fast synchrotron-based X-ray tomography (X-ray CT) to measure the slow relaxation dynamics of fluid interfaces in a glass bead pack after fast drainage of the sample. The relaxation of interfaces triggers internal redistribution of fluids, reduces the surface energy stored in the fluid interfaces, and relaxes the contact angle toward the equilibrium value while the fluid topology remains unchanged. The equilibration of capillary pressures occurs in two stages: (i) a quick relaxation within seconds in which most of the pressure drop that built up during drainage is dissipated, a process that is to fast to be captured with fast X-ray CT, and (ii) a slow relaxation with characteristic time scales of 1–4 h which manifests itself as a spontaneous imbibition process that is well described by the Washburn equation for capillary rise in porous media. The slow relaxation implies that a hydrostatic equilibrium is hardly ever attained in practice when conducting two-phase experiments in which a flux boundary condition is changed from flow to no-flow. Implications for experiments with pressure boundary conditions are discussed.
Reactor flush time correction in relaxation experiments
den Otter, M.W.; Bouwmeester, Henricus J.M.; Boukamp, Bernard A.; Verweij, H.
2001-01-01
The present paper deals with the analysis of experimental data from conductivity relaxation experiments. It is shown that evaluation of the chemical diffusion and surface transfer coefficients for oxygen by use of this technique is possible only if accurate data for the conductivity transient can be
Determination of Relaxation Time of a Josephson Tunnel Junction
WEN Xue-Da; YU Yang
2008-01-01
We propose a non-stationary method to measure the energy relaxation time of Josephson tunnel junctions from microwave enhanced escape phenomena.Compared with the previous methods,our method possesses simple and accurate features.Moreover,having determined the energy relaxation time,we can further obtain the coupling strength between the microwave source and the junction by changing the microwave power.
Time varying arctic climate change amplification
Chylek, Petr [Los Alamos National Laboratory; Dubey, Manvendra K [Los Alamos National Laboratory; Lesins, Glen [DALLHOUSIE U; Wang, Muyin [NOAA/JISAO
2009-01-01
During the past 130 years the global mean surface air temperature has risen by about 0.75 K. Due to feedbacks -- including the snow/ice albedo feedback -- the warming in the Arctic is expected to proceed at a faster rate than the global average. Climate model simulations suggest that this Arctic amplification produces warming that is two to three times larger than the global mean. Understanding the Arctic amplification is essential for projections of future Arctic climate including sea ice extent and melting of the Greenland ice sheet. We use the temperature records from the Arctic stations to show that (a) the Arctic amplification is larger at latitudes above 700 N compared to those within 64-70oN belt, and that, surprisingly; (b) the ratio of the Arctic to global rate of temperature change is not constant but varies on the decadal timescale. This time dependence will affect future projections of climate changes in the Arctic.
Time-varying modeling of cerebral hemodynamics.
Marmarelis, Vasilis Z; Shin, Dae C; Orme, Melissa; Rong Zhang
2014-03-01
The scientific and clinical importance of cerebral hemodynamics has generated considerable interest in their quantitative understanding via computational modeling. In particular, two aspects of cerebral hemodynamics, cerebral flow autoregulation (CFA) and CO2 vasomotor reactivity (CVR), have attracted much attention because they are implicated in many important clinical conditions and pathologies (orthostatic intolerance, syncope, hypertension, stroke, vascular dementia, mild cognitive impairment, Alzheimer's disease, and other neurodegenerative diseases with cerebrovascular components). Both CFA and CVR are dynamic physiological processes by which cerebral blood flow is regulated in response to fluctuations in cerebral perfusion pressure and blood CO2 tension. Several modeling studies to date have analyzed beat-to-beat hemodynamic data in order to advance our quantitative understanding of CFA-CVR dynamics. A confounding factor in these studies is the fact that the dynamics of the CFA-CVR processes appear to vary with time (i.e., changes in cerebrovascular characteristics) due to neural, endocrine, and metabolic effects. This paper seeks to address this issue by tracking the changes in linear time-invariant models obtained from short successive segments of data from ten healthy human subjects. The results suggest that systemic variations exist but have stationary statistics and, therefore, the use of time-invariant modeling yields "time-averaged models" of physiological and clinical utility.
Correlation of transverse relaxation time with structure of biological tissue
Furman, Gregory B.; Meerovich, Victor M.; Sokolovsky, Vladimir L.
2016-09-01
Transverse spin-spin relaxation of liquids entrapped in nanocavities with different orientational order is theoretically investigated. Based on the bivariate normal distribution of nanocavities directions, we have calculated the anisotropy of the transverse relaxation time for biological systems, such as collagenous tissues, articular cartilage, and tendon. In the framework of the considered model, the dipole-dipole interaction is determined by a single coupling constant. The calculation results for the transverse relaxation time explain the angular dependence observed in MRI experiments with biological objects. The good agreement with the experimental data is obtained by adjustment of only one parameter which characterizes the disorder in fiber orientations. The relaxation time is correlated with the degree of ordering in biological tissues. Thus, microstructure of the tissues can be revealed from the measurement of relaxation time anisotropy. The clinical significance of the correlation, especially in the detection of damage must be evaluated in a large prospective clinical trials.
Time-Varying Graphs and Dynamic Networks
Casteigts, Arnaud; Quattrociocchi, Walter; Santoro, Nicola
2010-01-01
The past few years have seen intensive research efforts carried out in some apparently unrelated areas of dynamic systems -- delay-tolerant networks, opportunistic-mobility networks, social networks -- obtaining closely related insights. Indeed, the concepts discovered in these investigations can be viewed as parts of the same conceptual universe; and the formal models proposed so far to express some specific concepts can be viewed as fragments of a larger formal description of this universe. The main contribution of this paper is to integrate the existing partial models proposed in the literature into a unified framework, which we call TVG (for time-varying graphs). Using this framework, it is possible to express directly in the same formalism not only the concepts common to all those different areas, but also those specific to each. As part of the framework definition, we identify a hierarchy of classes of TVGs, defined with respects to basic properties to which correspond necessary conditions and impossibi...
Chemical relaxation times in a hadron gas at finite temperature
Goity, J L
1993-01-01
The relaxation times of particle numbers in hot hadronic matter with vanishing baryon number are estimated using the ideal gas approximation and taking into account resonance decays and annihilation processes as the only sources of particle number fluctuations. Near the QCD critical temperature the longest relaxation times turn out to be of the order of 10 fm and grow roughly exponentially to become of the order of $10^{3}$ fm at temperatures around 100 MeV. As a consequence of such long relaxation times, a clear departure from chemical equilibrium must be observed in the momentum distribution of secondary particles produced in high energy nuclear collisions.
Modelling tourists arrival using time varying parameter
Suciptawati, P.; Sukarsa, K. G.; Kencana, Eka N.
2017-06-01
The importance of tourism and its related sectors to support economic development and poverty reduction in many countries increase researchers’ attentions to study and model tourists’ arrival. This work is aimed to demonstrate time varying parameter (TVP) technique to model the arrival of Korean’s tourists to Bali. The number of Korean tourists whom visiting Bali for period January 2010 to December 2015 were used to model the number of Korean’s tourists to Bali (KOR) as dependent variable. The predictors are the exchange rate of Won to IDR (WON), the inflation rate in Korea (INFKR), and the inflation rate in Indonesia (INFID). Observing tourists visit to Bali tend to fluctuate by their nationality, then the model was built by applying TVP and its parameters were approximated using Kalman Filter algorithm. The results showed all of predictor variables (WON, INFKR, INFID) significantly affect KOR. For in-sample and out-of-sample forecast with ARIMA’s forecasted values for the predictors, TVP model gave mean absolute percentage error (MAPE) as much as 11.24 percent and 12.86 percent, respectively.
Timed arrays wideband and time varying antenna arrays
Haupt, Randy L
2015-01-01
Introduces timed arrays and design approaches to meet the new high performance standards The author concentrates on any aspect of an antenna array that must be viewed from a time perspective. The first chapters briefly introduce antenna arrays and explain the difference between phased and timed arrays. Since timed arrays are designed for realistic time-varying signals and scenarios, the book also reviews wideband signals, baseband and passband RF signals, polarization and signal bandwidth. Other topics covered include time domain, mutual coupling, wideband elements, and dispersion. The auth
Immersed Boundary-Lattice Boltzmann Method Using Two Relaxation Times
Kosuke Hayashi
2012-06-01
Full Text Available An immersed boundary-lattice Boltzmann method (IB-LBM using a two-relaxation time model (TRT is proposed. The collision operator in the lattice Boltzmann equation is modeled using two relaxation times. One of them is used to set the fluid viscosity and the other is for numerical stability and accuracy. A direct-forcing method is utilized for treatment of immersed boundary. A multi-direct forcing method is also implemented to precisely satisfy the boundary conditions at the immersed boundary. Circular Couette flows between a stationary cylinder and a rotating cylinder are simulated for validation of the proposed method. The method is also validated through simulations of circular and spherical falling particles. Effects of the functional forms of the direct-forcing term and the smoothed-delta function, which interpolates the fluid velocity to the immersed boundary and distributes the forcing term to fixed Eulerian grid points, are also examined. As a result, the following conclusions are obtained: (1 the proposed method does not cause non-physical velocity distribution in circular Couette flows even at high relaxation times, whereas the single-relaxation time (SRT model causes a large non-physical velocity distortion at a high relaxation time, (2 the multi-direct forcing reduces the errors in the velocity profile of a circular Couette flow at a high relaxation time, (3 the two-point delta function is better than the four-point delta function at low relaxation times, but worse at high relaxation times, (4 the functional form of the direct-forcing term does not affect predictions, and (5 circular and spherical particles falling in liquids are well predicted by using the proposed method both for two-dimensional and three-dimensional cases.
Relaxation Study of N-Submitted Amides with Alcohol Mixtures by Time Domain Reflectometry
A. Arunkumar
2016-08-01
Full Text Available Using Time Domain Reflectometry (TDR, dielectric relaxation studies have been carried out on binary mixtures of amides (N-methylacetamide, N,N-dimethylacetamide with alcohols (1-butanol, 1-pentanol for various concentrations over the frequency range from 10 MHz to 10 GHz at 303 K. The Kirkwood correlation factor and excess dielectric constant properties were determined and discussed to yield information on the molecular interactions of the systems. The relaxation time is vary with the chain length of alcohols and substituted amides are noticed. The Bruggeman plot shows a deviation from linearity. This deviation was attributed to some sort of molecular interaction which may take place between the alcohols and substituted amides. The excess static permittivity and excess inverse relaxation time values vary from negative to positive for all the systems indicating the solute-solvent interaction to exist between alcohols and substituted amides for all the dynamics of the mixture.
Tracking time-varying coefficient-functions
Nielsen, Henrik Aalborg; Nielsen, Torben Skov; Joensen, Alfred K.;
2000-01-01
is a combination of recursive least squares with exponential forgetting and local polynomial regression. It is argued, that it is appropriate to let the forgetting factor vary with the value of the external signal which is the argument of the coefficient functions. Some of the key properties of the modified method......, but otherwise unknown, functions of a low-dimensional input process. These coefficient functions are estimated adaptively and recursively without specifying a global parametric, form, i.e. the method allows for online tracking of the coefficient functions. Essentially, in its most simple form, the method...
Tracking Time-Varying Coefficient-Functions
Nielsen, Henrik Aalborg; Nielsen, Torben Skov; Joensen, Alfred K.;
1999-01-01
of recursive least squares with exponential forgetting and local polynomial regression. However, it is argued, that it is appropriate to let the forgetting factor vary with the value of the external signal shich is argument of the coeffieient-functions.The properties of the modified method are sutdied......A conditional parametric ARX-model is an ARX-model in which the parameters re replaced by smooth functions of an, possibly multivariate, externalinput signal. These functions are called coefficient functions is suggested. Essentially, in its most simple form, this method is a combination...
Time-Varying Fund Manager Skill
2011-01-01
How to evaluate a fund manager’s skill is a central question in empirical finance. Prior literature has defined skill as an ability to either pick stocks or time the market, at all times. We propose a new definition of skill as a general cognitive ability used in different ways at different times. We find evidence for stock picking in booms and for market timing in recessions. Moreover, the same fund managers that pick stocks well in expansions also time the market well in recessions. These f...
Mindfulness meditation and relaxation training increases time sensitivity.
Droit-Volet, S; Fanget, M; Dambrun, M
2015-01-01
Two experiments examined the effect of mindfulness meditation and relaxation on time perception using a temporal bisection task. In Experiment 1, the participants performed a temporal task before and after exercises of mindfulness meditation or relaxation. In Experiment 2, the procedure was similar than that used in Experiment 1, except that the participants were trained to mediate or relax every day over a period of several weeks. The results showed that mindfulness meditation exercises increased sensitivity to time and lengthened perceived time. However, this temporal improvement with meditation exercises was primarily observed in the experienced meditators. Our results also showed the experienced meditators were less anxious than the novice participants, and that the sensitivity to time increased when the level of anxiety decreased. Our results were explained by the practice of mindfulness technique that had developed individuals' abilities in devoting more attention resources to temporal information processing.
Electron-phonon relaxation time in ultrathin tungsten silicon film
Sidorova, M; Korneev, A; Chulkova, G; Korneeva, Yu; Mikhailov, M; Devizenko, Yu; Kozorezov, A; Goltsman, G
2016-01-01
Using amplitude-modulated absorption of sub-THz radiation (AMAR) method, we studied electron-phonon relaxation in thin disordered films of tungsten silicide. We found a response time ~ 800 ps at critical temperature Tc = 3.4 K, which scales as minus 3 in the temperature range from 1.8 to 3.4 K. We discuss mechanisms, which can result in a strong phonon bottle-neck effect in a few nanometers thick film and yield a substantial difference between the measured time, characterizing response at modulation frequency, and the inelastic electron-phonon relaxation time. We estimate the electron-phonon relaxation time to be in the range ~ 100-200 ps at 3.4 K.
Petrov, Oleg V.; Stapf, Siegfried
2017-06-01
This work addresses the problem of a compact and easily comparable representation of multi-exponential relaxation data. It is often convenient to describe such data in a few parameters, all being of physical significance and easy to interpret, and in such a way that enables a model-free comparison between different groups of samples. Logarithmic moments (LMs) of the relaxation time constitute a set of parameters which are related to the characteristic relaxation time on the log-scale, the width and the asymmetry of an underlying distribution of exponentials. On the other hand, the calculation of LMs does not require knowing the actual distribution function and is reduced to a numerical integration of original data. The performance of this method has been tested on both synthetic and experimental NMR relaxation data which differ in a signal-to-noise ratio, the sampling range and the sampling rate. The calculation of two lower-order LMs, the log-mean time and the log-variance, has proved robust against deficiencies of the experiment such as scattered data point and incomplete sampling. One may consider using them as such to monitor formation of a heterogeneous structure, e.g., in phase separation, vitrification, polymerization, hydration, aging, contrast agent propagation processes. It may also assist in interpreting frequency and temperature dependences of relaxation, revealing a crossover from slow to fast exchange between populations. The third LM was found to be a less reliable quantity due to its susceptibility to the noise and must be used with caution.
Experimental study on relaxation time in direction changing movement
Liu, Chi; Song, Weiguo; Fu, Libi; Lian, Liping; Lo, Siuming
2017-02-01
Controlled experiments were conducted to clarify the movement characteristics of pedestrians in direction changing processes. We track pedestrians' trajectories and map them into real space coordinates by the direct linear transformation method. In the acceleration process, the relaxation time and free moving speed in our experiments respectively equal 0.659 s and 1.540 m/s, which are consistent with those for Chinese participants in other experiments. Meanwhile, the values of relaxation time in the direction changing process are calculated by a derived equation from the concept of the social force model. It is observed that the relaxation time is not an invariable parameter, and tends to increase with an increase in the angular difference. Furthermore, results show that pedestrians are insensitive to a tiny angular difference between instantaneous velocity and desired velocity. These experimental results presented in this work can be applied in model development and validation.
Recurrence Metrics and Time Varying Light Cones
Singh-Modgil, M
2005-01-01
It is shown by explicit construction of new metrics, that General Relativity can solve the exact Poinc$\\acute{a}$re recurrence problem. In these solutions, the light cone, flips periodically between past and future, due to a periodically alternating arrow of the proper time. The geodesics in these universes show periodic Loschmidt's velocity reversion $v \\to -v$, at critical points, which leads to recurrence. However, the matter tensors of some of these solutions exhibit unusual properties - such as, periodic variations in density and pressure. While this is to be expected in periodic models, the physical basis for such a variation is not clear. Present paper therefore can be regarded as an extension of Tipler's "no go theorem for recurrence in an expanding universe", to other space-time geometries.
Conductivity and relaxation time of porous silicon using the Kramers-Kronig relation
Dariani, R.S., E-mail: dariani@alzahra.ac.ir; Tavakoli, F.
2015-01-01
To review the dielectric characteristics of porous silicon samples with various porosities, an equivalent circuit including a capacitor and parallel resistance was used. By applying AC voltage with a constant amplitude of 200 mV to the circuit and using impedance measurements of the samples between 10–100 KHz, the variations in the capacitance, dielectric function, refractive index, and resistance for the samples at room temperature and up to 350 °C were studied. The dielectric characteristics of the samples decreased with increasing frequency. In addition, with increasing temperature, the pore diameters increased, and the dielectric characteristics varied. In this paper, we demonstrate that the relaxation time and DC conductivity could be obtained using the Kramers-Kronig function and Hilbert transformation. Our results indicate that the relaxation time and DC conductivity increase with increasing porosity, and with increasing temperature, the relaxation time decreases and the DC conductivity increases.
Ultrafast NMR T1 relaxation measurements: probing molecular properties in real time.
Smith, Pieter E S; Donovan, Kevin J; Szekely, Or; Baias, Maria; Frydman, Lucio
2013-09-16
The longitudinal relaxation properties of NMR active nuclei carry useful information about the site-specific chemical environments and about the mobility of molecular fragments. Molecular mobility is in turn a key parameter reporting both on stable properties, such as size, as well as on dynamic ones, such as transient interactions and irreversible aggregation. In order to fully investigate the latter, a fast sampling of the relaxation parameters of transiently formed molecular species may be needed. Nevertheless, the acquisition of longitudinal relaxation data is typically slow, being limited by the requirement that the time for which the nucleus relaxes be varied incrementally until a complete build-up curve is generated. Recently, a number of single-shot-inversion-recovery methods have been developed capable of alleviating this need; still, these may be challenged by either spectral resolution restrictions or when coping with very fast relaxing nuclei. Here, we present a new experiment to measure the T1s of multiple nuclear spins that experience fast longitudinal relaxation, while retaining full high-resolution chemical shift information. Good agreement is observed between T1s measured with conventional means and T1s measured using the new technique. The method is applied to the real-time investigation of the reaction between D-xylose and sodium borate, which is in turn elucidated with the aid of ancillary ultrafast and conventional 2D TOCSY measurements. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Relaxation Characteristics of 828 DGEBA Epoxy Over Long Time Periods
Hoo, Jasmine; Reprogle, Riley C.; Wisler, Brian; Arechederra, Gabriel K.; McCoy, John D.; Kropka, Jamie M.; Long, Kevin N.
The mechanical relaxation response in uniaxial compression of a diglycidyl ether of bisphenol-A epoxy was studied over long time periods. The epoxy, 828DEA, was Epon 828 cured with diethanolamine (DEA). A sample was compressed at constant strain rate and held at various strain levels for days to allow the sample to relax. The sample was then compressed further and held once more. The relaxation curves were fit with a stretched exponential function. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Distribution of relaxation times of relaxors: comparison with dipolar glasses
Banys, Juras; Grigalaitis, Robertas; Mikonis, Andrejus; Keburis, Povilas [Faculty of Physics, Vilnius University, Sauletekio 9, 10222 Vilnius (Lithuania); Macutkevic, Jan [Semiconductor Physics Institute, A. Gostauto 11, 01108 Vilnius (Lithuania)
2009-12-15
In the present publication we report the results of dielectric spectroscopy investigations of two classes of materials - relaxor and dipolar glasses. As model relaxor was chosen (Pb{sub 1-x}La{sub x})(Zr{sub y}Ti{sub 1-y})O{sub 3} (PLZT 100(x/y/1-y)). The real distribution function of the relaxation times f ({tau}) of the relaxor ferroelectric ceramics PLZT 8/65/35 and 9.5/65/35 was calculated from the dielectric measurements results in the wide frequency range (10{sup 1}-10{sup 12} Hz). Below the Burns temperature T{sub B} {approx_equal} 620 K, when the clusters begin to appear on cooling, the distribution function of the relaxation times is symmetrically shaped. On cooling the dispersion and loss spectra strongly broaden and slow down, the f ({tau}) function becomes asymmetrically shaped and the second maximum appears. The width of the f ({tau}) function was calculated at different temperatures. The longest relaxation times diverge according to the Vogel-Fulcher law with the freezing temperature 299 K and 252 K for the 8/65/35 and 9.5/65/35 samples, respectively. The shortest relaxation time is about 10{sup -12} s and it remains almost temperature independent. Similar behaviour was observed in dipolar glasses betaine phosphate betaine phosphite (BP/BPI). Much more information was obtained from two dimensional distribution of the relaxation times. This confirmed Meyer-Neldel law in relaxors and dipolar glasses. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Decker, A. J.
1982-01-01
The use of a Nd:YAG laser to record holographic motion pictures of time-varying reflecting objects and time-varying phase objects is discussed. Sample frames from both types of holographic motion pictures are presented. The holographic system discussed is intended for three-dimensional flow visualization of the time-varying flows that occur in jet-engine components.
Space and time dynamical heterogeneity in glassy relaxation. The role of democratic clusters
Appignanesi, G A; Rodriguez Fris, J A [Fisicoquimica, Departamento de Quimica, Universidad Nacional del Sur, Avenida Alem 1253, 8000 BahIa Blanca (Argentina); Seccion de Fisicoquimica, Instituto de Quimica de la Universidad Nacional del Sur, INQUISUR-UNS-CONICET, Universidad Nacional del Sur, Avenida Alem 1253, 8000 BahIa Blanca (Argentina)], E-mail: appignan@criba.edu.ar
2009-05-20
In this work we review recent computational advances in the understanding of the relaxation dynamics of supercooled glass-forming liquids. In such a supercooled regime these systems experience a striking dynamical slowing down which can be rationalized in terms of the picture of dynamical heterogeneities, wherein the dynamics can vary by orders of magnitude from one region of the sample to another and where the sizes and timescales of such slowly relaxing regions are expected to increase considerably as the temperature is decreased. We shall focus on the relaxation events at a microscopic level and describe the finding of the collective motions of particles responsible for the dynamical heterogeneities. In so doing, we shall demonstrate that the dynamics in different regions of the system is not only heterogeneous in space but also in time. In particular, we shall be interested in the events relevant to the long-time structural relaxation or {alpha} relaxation. In this regard, we shall focus on the discovery of cooperatively relaxing units involving the collective motion of relatively compact clusters of particles, called 'democratic clusters' or d-clusters. These events have been shown to trigger transitions between metabasins of the potential energy landscape (collections of similar configurations or structures) and to consist of the main steps in the {alpha} relaxation. Such events emerge in systems quite different in nature such as simple model glass formers and supercooled amorphous water. Additionally, another relevant issue in this context consists in the determination of a link between structure and dynamics. In this context, we describe the relationship between the d-cluster events and the constraints that the local structure poses on the relaxation dynamics, thus revealing their role in reformulating structural constraints. (topical review)
Inversion of generalized relaxation time distributions with optimized damping parameter
Florsch, Nicolas; Revil, André; Camerlynck, Christian
2014-10-01
Retrieving the Relaxation Time Distribution (RDT), the Grains Size Distribution (GSD) or the Pore Size Distribution (PSD) from low-frequency impedance spectra is a major goal in geophysics. The “Generalized RTD” generalizes parametric models like Cole-Cole and many others, but remains tricky to invert since this inverse problem is ill-posed. We propose to use generalized relaxation basis function (for instance by decomposing the spectra on basis of generalized Cole-Cole relaxation elements instead of the classical Debye basis) and to use the L-curve approach to optimize the damping parameter required to get smooth and realistic inverse solutions. We apply our algorithm to three examples, one synthetic and two real data sets, and the program includes the possibility of converting the RTD into GSD or PSD by choosing the value of the constant connecting the relaxation time to the characteristic polarization size of interest. A high frequencies (typically above 1 kHz), a dielectric term in taken into account in the model. The code is provided as an open Matlab source as a supplementary file associated with this paper.
Delay-independent stabilization for teleoperation with time varying delay
Fujita, Hiroyuki; Namerikawa, Toru
2009-01-01
This paper deals with the stability for nonlinear teleoperation with time varying communication delays. The proposed method is passivity-based controllers with time varying gains which depend on the rate of change of time varying delay. In our proposed method, stability condition is independent of the magnitude of the communication delay and the damping of the system. The delay-independent stability is shown via Lyapunov stability methods. Several experimental results show the effectiveness o...
Hyperpolarized nanodiamond with long spin-relaxation times
Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David E. J.; Reilly, David J.
2015-10-01
The use of hyperpolarized agents in magnetic resonance, such as 13C-labelled compounds, enables powerful new imaging and detection modalities that stem from a 10,000-fold boost in signal. A major challenge for the future of the hyperpolarization technique is the inherently short spin-relaxation times, typically nanodiamond can be hyperpolarized at cryogenic and room temperature without the use of free radicals, and, owing to their solid-state environment, exhibit relaxation times exceeding 1 h. Combined with the already established applications of nanodiamonds in the life sciences as inexpensive fluorescent markers and non-cytotoxic substrates for gene and drug delivery, these results extend the theranostic capabilities of nanoscale diamonds into the domain of hyperpolarized magnetic resonance.
Carrier relaxation time divergence in single and double layer cuprates
Schneider, M. L.; Rast, S.; Onellion, M.; Demsar, J.; Taylor, A. J.; Glinka, Y.; Tolk, N. H.; Ren, Y. H.; Lüpke, G.; Klimov, A.; Xu, Y.; Sobolewski, R.; Si, W.; Zeng, X. H.; Soukiassian, A.; Xi, X. X.; Abrecht, M.; Ariosa, D.; Pavuna, D.; Krapf, A.; Manzke, R.; Printz, J. O.; Williamsen, M. S.; Downum, K. E.; Guptasarma, P.; Bozovic, I.
2003-12-01
We report the transient optical pump-probe reflectivity measurements on single and double layer cuprate single crystals and thin films of ten different stoichiometries. We find that with sufficiently low fluence the relaxation time (tauR) of all samples exhibits a power law divergence with temperature (T): tauR ∝ T^{-3 ± 0.5}. Further, the divergence has an onset temperature above the superconducting transition temperature for all superconducting samples. Possible causes of this divergence are discussed.
Relaxation Time and the Problem of the Pleistocene
Steven M. Holland
2013-04-01
Full Text Available Although changes in habitat area, driven by changes in sea level, have long been considered as a possible cause of marine diversity change in the Phanerozoic, the lack of Pleistocene extinction in the Californian Province has raised doubts, given the large and rapid sea-level changes during the Pleistocene. Neutral models of metacommunities presented here suggest that diversity responds rapidly to changes in habitat area, with relaxation times of a few hundred to a few thousand years. Relaxation time is controlled partly by metacommunity size, implying that different provinces or trophic levels might have measurably different responses to changes in habitable area. Geologically short relaxation times imply that metacommunities should be able to stay nearly in equilibrium with all but the most rapid changes in area. A simulation of the Californian Province during the Pleistocene confirms this, with the longest lags in diversity approaching 20 kyr. The apparent lack of Pleistocene extinction in the Californian Province likely results from the difficulty of sampling rare species, coupled with repopulation from adjacent deep-water or warm-water regions.
Audio Effects Based on Biorthogonal Time-Varying Frequency Warping
Cavaliere Sergio
2001-01-01
Full Text Available We illustrate the mathematical background and musical use of a class of audio effects based on frequency warping. These effects alter the frequency content of a signal via spectral mapping. They can be implemented in dispersive tapped delay lines based on a chain of all-pass filters. In a homogeneous line with first-order all-pass sections, the signal formed by the output samples at a given time is related to the input via the Laguerre transform. However, most musical signals require a time-varying frequency modification in order to be properly processed. Vibrato in musical instruments or voice intonation in the case of vocal sounds may be modeled as small and slow pitch variations. Simulation of these effects requires techniques for time-varying pitch and/or brightness modification that are very useful for sound processing. The basis for time-varying frequency warping is a time-varying version of the Laguerre transformation. The corresponding implementation structure is obtained as a dispersive tapped delay line, where each of the frequency dependent delay element has its own phase response. Thus, time-varying warping results in a space-varying, inhomogeneous, propagation structure. We show that time-varying frequency warping is associated to an expansion over biorthogonal sets generalizing the discrete Laguerre basis. Slow time-varying characteristics lead to slowly varying parameter sequences. The corresponding sound transformation does not suffer from discontinuities typical of delay lines based on unit delays.
Analysis of time-varying psoriasis lesion image patterns
Maletti, Gabriela Mariel; Ersbøll, Bjarne Kjær; Nielsen, Allan Aasbjerg
2004-01-01
The multivariate alteration detection transform is applied to pairs of within and between time varying registered psoriasis image patterns. Color band contribution to the variates explaining maximal change is analyzed.......The multivariate alteration detection transform is applied to pairs of within and between time varying registered psoriasis image patterns. Color band contribution to the variates explaining maximal change is analyzed....
Time Frequency Features of Rotor Systems with Slowly Varying Mass
Tao Yu
2011-01-01
Full Text Available With the analytic method and numerical method respectively, the asymptotic solutions and finite element model of rotor system with single slowly varying mass is obtained to investigate the time frequency features of such rotor system; furthermore, with given model of slowly varying mass, the rotor system with dual slowly varying mass is studied. For the first order approximate solution is used, there exists difference between the results with analytic method and numerical method. On the base of common characteristics of rotor system with dual slowly varying mass, the general rules and formula describing the frequency distribution of rotor system with multiple slowly varying mass are proposed.
Time varying voltage combustion control and diagnostics sensor
Chorpening, Benjamin T.; Thornton, Jimmy D.; Huckaby, E. David; Fincham, William
2011-04-19
A time-varying voltage is applied to an electrode, or a pair of electrodes, of a sensor installed in a fuel nozzle disposed adjacent the combustion zone of a continuous combustion system, such as of the gas turbine engine type. The time-varying voltage induces a time-varying current in the flame which is measured and used to determine flame capacitance using AC electrical circuit analysis. Flame capacitance is used to accurately determine the position of the flame from the sensor and the fuel/air ratio. The fuel and/or air flow rate (s) is/are then adjusted to provide reduced flame instability problems such as flashback, combustion dynamics and lean blowout, as well as reduced emissions. The time-varying voltage may be an alternating voltage and the time-varying current may be an alternating current.
Krylov-subspace acceleration of time periodic waveform relaxation
Lumsdaine, A. [Univ. of Notre Dame, IN (United States)
1994-12-31
In this paper the author uses Krylov-subspace techniques to accelerate the convergence of waveform relaxation applied to solving systems of first order time periodic ordinary differential equations. He considers the problem in the frequency domain and presents frequency dependent waveform GMRES (FDWGMRES), a member of a new class of frequency dependent Krylov-subspace techniques. FDWGMRES exhibits many desirable properties, including finite termination independent of the number of timesteps and, for certain problems, a convergence rate which is bounded from above by the convergence rate of GMRES applied to the static matrix problem corresponding to the linear time-invariant ODE.
Time-Varying FOPDT System Identification with Unknown Disturbance Input
Sun, Zhen; Yang, Zhenyu
2012-01-01
The Time-Varying First Order Plus Dead Time (TV-FOPDT) model is an extension of the conventional FOPDT by allowing the system parameters, which are primarily defined on the transfer function description, i.e., the DC-gain, time constant and time delay, to be time dependent. The TV-FOPDT identific...
Impulsive control of nonlinear systems with time-varying delays
Yu Yong-Bin; Bao Jing-Fu; Zhang Hong-Bin; Zhong Qi-Shui; Liao Xiao-Feng; Yu Jue-Sang
2008-01-01
A whole impulsive control scheme of nonlinear systems with time-varying delays, which is an extension for impulsive control of nonlinear systems without time delay, is presented in this paper. Utilizing the Lyapunov functions and the impulsive-type comparison principles, we establish a series of different conditions under which impulsively controlled nonlinear systems with time-varying delays are asymptotically stable. Then we estimate upper bounds of impulse interval and time-varying delays for asymptotically stable control. Finally a numerical example is given to illustrate the effectiveness of the method.
Implications of a Time-Varying Fine Structure Constant
Alfonso-Faus, A
2002-01-01
Much work has been done after the possibility of a fine structure constant being time-varying. It has been taken as an indication of a time-varying speed of light. Here we prove that this is not the case. We prove that the speed of light may or may not vary with time, independently of the fine structure constant being constant or not. Time variations of the speed of light, if present, have to be derived by some other means and not from the fine structure constant. No implications based on the possible variations of the fine structure constant can be imposed on the speed of light.
Expected optimal feedback with Time-Varying Parameters
Tucci, M.P.; Kendrick, D.A.; Amman, H.M.
2011-01-01
In this paper we derive the closed loop form of the Expected Optimal Feedback rule, sometimes called passive learning stochastic control, with time varying parameters. As such this paper extends the work of Kendrick (1981,2002, Chapter 6) where parameters are assumed to vary randomly around a known
Multiple-relaxation-time model for the correct thermohydrodynamic equations.
Zheng, Lin; Shi, Baochang; Guo, Zhaoli
2008-08-01
A coupling lattice Boltzmann equation (LBE) model with multiple relaxation times is proposed for thermal flows with viscous heat dissipation and compression work. In this model the fixed Prandtl number and the viscous dissipation problems in the energy equation, which exist in most of the LBE models, are successfully overcome. The model is validated by simulating the two-dimensional Couette flow, thermal Poiseuille flow, and the natural convection flow in a square cavity. It is found that the numerical results agree well with the analytical solutions and/or other numerical results.
Tomadakis, Manolis M.; Robertson, Teri J.
2003-07-01
We present a random walk based investigation of the pore size probability distribution and its moments, the survival probability and mean survival time, and the principal relaxation time, for random and ordered arrays of cylindrical fibers of various orientation distributions. The dimensionless mean survival time, principal relaxation time, mean pore size, and mean square pore size are found to increase with porosity, remain practically independent of the directionality of random fiber beds, and attain lower values for ordered arrays. Wide pore size distributions are obtained for random fiber structures and relatively narrow for ordered square arrays, all in very good agreement with theoretically predicted limiting values. Analytical results derived for the pore size probability and its lower moments for square arrays of fibers practically coincide with the corresponding simulation results. Earlier variational bounds on the mean survival time and principal relaxation time are obeyed by our numerical results in all cases, and are found to be quite sharp up to very high porosities. Dimensionless groups representing the deviation of such bounds from our simulation results vary in practically the same range as the corresponding values reported earlier for beds of spherical particles. A universal scaling expression of the literature relating the mean survival time to the mean pore size [S. Torquato and C. L. Y. Yeong, J. Chem. Phys. 106, 8814 (1997)] agrees very well with our results for all types of fiber structures, thus validated for the first time for anisotropic porous media.
Design of 2D Time-Varying Vector Fields
Chen, Guoning
2012-10-01
Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects. © 1995-2012 IEEE.
Effective rotational correlation times of proteins from NMR relaxation interference
Lee, Donghan; Hilty, Christian; Wider, Gerhard; Wüthrich, Kurt
2006-01-01
Knowledge of the effective rotational correlation times, τc, for the modulation of anisotropic spin-spin interactions in macromolecules subject to Brownian motion in solution is of key interest for the practice of NMR spectroscopy in structural biology. The value of τc enables an estimate of the NMR spin relaxation rates, and indicates possible aggregation of the macromolecular species. This paper reports a novel NMR pulse scheme, [ 15N, 1H]-TRACT, which is based on transverse relaxation-optimized spectroscopy and permits to determine τc for 15N- 1H bonds without interference from dipole-dipole coupling of the amide proton with remote protons. [ 15N, 1H]-TRACT is highly efficient since only a series of one-dimensional NMR spectra need to be recorded. Its use is suggested for a quick estimate of the rotational correlation time, to monitor sample quality and to determine optimal parameters for complex multidimensional NMR experiments. Practical applications are illustrated with the 110 kDa 7,8-dihydroneopterin aldolase from Staphylococcus aureus, the uniformly 15N-labeled Escherichia coli outer membrane protein X (OmpX) in 60 kDa mixed OmpX/DHPC micelles with approximately 90 molecules of unlabeled 1,2-dihexanoyl- sn-glycero-3-phosphocholine (DHPC), and the 16 kDa pheromone-binding protein from Bombyx mori, which cover a wide range of correlation times.
The structure of precipitation fronts for finite relaxation time
Stechmann, Samuel N.; Majda, Andrew J. [New York University, Department of Mathematics and Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York, NY (United States)
2006-11-15
When convection is parameterized in an atmospheric circulation model, what types of waves are supported by the parameterization? Several studies have addressed this question by finding the linear waves of simplified tropical climate models with convective parameterizations. In this paper's simplified tropical climate model, convection is parameterized by a nonlinear precipitation term, and the nonlinearity gives rise to precipitation front solutions. Precipitation fronts are solutions where the spatial domain is divided into two regions, and the precipitation (and other model variables) changes abruptly at the boundary of the two regions. In one region the water vapor is below saturation and there is no precipitation, and in the other region the water vapor is above saturation level and precipitation is nonzero. The boundary between the two regions is a free boundary that moves at a constant speed. It is shown that only certain front speeds are allowed. The three types of fronts that exist for this model are drying fronts, slow moistening fronts, and fast moistening fronts. Both types of moistening fronts violate Lax's stability criterion, but they are robustly realizable in numerical experiments that use finite relaxation times. Remarkably, here it is shown that all three types of fronts are robustly realizable analytically for finite relaxation time. All three types of fronts may be physically unreasonable if the front spans an unrealistically large physical distance; this depends on various model parameters, which are investigated below. From the viewpoint of applied mathematics, these model equations exhibit novel phenomena as well as features in common with the established applied mathematical theories of relaxation limits for conservation laws and waves in reacting gas flows. (orig.)
Synchronization of networks with time-varying couplings
LU Wen-lian; CHEN Tian-ping
2013-01-01
In this paper, we present a review of our recent works on complete synchro-nization analyses of networks of the coupled dynamical systems with time-varying cou-plings. The main approach is composed of algebraic graph theory and dynamic system method. More precisely, the Hajnal diameter of matrix sequence plays a key role in in-vestigating synchronization dynamics and the joint graph across time periods possessing spanning tree is a doorsill for time-varying topologies to reach synchronization. These techniques with proper modification count for diverse models of networks of the cou-pled systems, including discrete-time and continuous-time models, linear and nonlinear models, deterministic and stochastic time-variations. Alternatively, transverse stability analysis of general time-varying dynamic systems can be employed for synchronization study as a special case and proved to be equivalent to Hajnal diameter.
Estimation of Time Varying Autoregressive Symmetric Alpha Stable
National Aeronautics and Space Administration — In this work, we present a novel method for modeling time-varying autoregressive impulsive signals driven by symmetric alpha stable distributions. The proposed...
PERMANENCE AND PERSISTENCE OF TIME VARYING LOTKA-VOLTERRA SYSTEMS
无
2006-01-01
In this article, the permanence and persistence for three classes time varying Lotka-Volterra ecological system are investigated by using Lyapunov stability analysis and constructing the compact set of attraction. Some examples are given to illustrate the theorems.
Modeling non-Gaussian time-varying vector autoregressive process
National Aeronautics and Space Administration — We present a novel and general methodology for modeling time-varying vector autoregressive processes which are widely used in many areas such as modeling of chemical...
Do Time-Varying Covariances, Volatility Comovement and Spillover Matter?
Lakshmi Balasubramanyan
2005-01-01
Financial markets and their respective assets are so intertwined; analyzing any single market in isolation ignores important information. We investigate whether time varying volatility comovement and spillover impact the true variance-covariance matrix under a time-varying correlation set up. Statistically significant volatility spillover and comovement between US, UK and Japan is found. To demonstrate the importance of modelling volatility comovement and spillover, we look at a simple portfo...
Hydration Dependence of Energy Relaxation Time for Cytochrome C
Ye, Shuji; Chen, Jing-Yin; Knab, Joseph R.; Markelz, Andrea
2006-03-01
Hydration plays a critical role in protein dynamics. Here we consider the effects of hydration on energy relaxation for an electronically excited heme protein cytochrome c. We measure the hydration dependence of energy relaxation time of cytochrome C films after photoexcitation in the Soret regionusing two-color pump/probe time resolved transmission measurements. Thin films were prepared from cytochrome C/ Trizma buffer solutions and mounted in a hydration controlled cell. We used 400nm (˜3 mW) to pump the B band and 800 nm (˜1 mW) to probe the III band. The III band corresponds to the charge-transfer transition between heme π and iron d orbital, and is assigned to the ground electronic state of the heme. Therefore this band can be used to probe the ground state population. Three separate dynamic components were observed: a very fast transient τ1 ˜ 200 fs; a several hundred femtosecond component (τ2); and a recovery of the ground state absorption(τ3). We find τ3 apparently decreases with decreasing hydration while τ1 and τ2 are independent of hydration.
Mascarenhas, Ajith Arthur [Univ. of North Carolina, Chapel Hill, NC (United States)
2006-01-01
I present time-varying Reeb graphs as a topological framework to support the analysis of continuous time-varying data. Such data is captured in many studies, including computational fluid dynamics, oceanography, medical imaging, and climate modeling, by measuring physical processes over time, or by modeling and simulating them on a computer. Analysis tools are applied to these data sets by scientists and engineers who seek to understand the underlying physical processes. A popular tool for analyzing scientific datasets is level sets, which are the points in space with a fixed data value s. Displaying level sets allows the user to study their geometry, their topological features such as connected components, handles, and voids, and to study the evolution of these features for varying s. For static data, the Reeb graph encodes the evolution of topological features and compactly represents topological information of all level sets. The Reeb graph essentially contracts each level set component to a point. It can be computed efficiently, and it has several uses: as a succinct summary of the data, as an interface to select meaningful level sets, as a data structure to accelerate level set extraction, and as a guide to remove noise. I extend these uses of Reeb graphs to time-varying data. I characterize the changes to Reeb graphs over time, and develop an algorithm that can maintain a Reeb graph data structure by tracking these changes over time. I store this sequence of Reeb graphs compactly, and call it a time-varying Reeb graph. I augment the time-varying Reeb graph with information that records the topology of level sets of all level values at all times, that maintains the correspondence of level set components over time, and that accelerates the extraction of level sets for a chosen level value and time. Scientific data sampled in space-time must be extended everywhere in this domain using an interpolant. A poor choice of interpolant can create degeneracies that are
Nonstationary Feller process with time-varying coefficients
Masoliver, Jaume
2016-01-01
We study the nonstationary Feller process with time varying coefficients. We obtain the exact probability distribution exemplified by its characteristic function and cumulants. In some particular cases we exactly invert the distribution and achieve the probability density function. We show that for sufficiently long times this density approaches a Γ distribution with time-varying shape and scale parameters. Not far from the origin the process obeys a power law with an exponent dependent of time, thereby concluding that accessibility to the origin is not static but dynamic. We finally discuss some possible applications of the process.
Stability interval for time-varying delay systems
Ariba, Yassine; Gouaisbaut, F.; Johansson, Karl Henrik
2010-01-01
We investigate the stability analysis of linear time-delay systems. The time-delay is assumed to be a time-varying continuous function belonging to an interval (possibly excluding zero) with a bound on its derivative. To this end, we propose to use the quadratic separation framework to assess the intervals on the delay that preserves the stability. Nevertheless, to take the time-varying nature of the delay into account, the quadratic separation principle has to be extended to cope with the ge...
Relaxation therapy for insomnia: nighttime and day time effects.
Means, M K; Lichstein, K L; Epperson, M T; Johnson, C T
2000-07-01
We compared day time functioning in college students with and without insomnia and explored changes in day time functioning after progressive relaxation (PR) treatment for insomnia. Students with insomnia (SWI; n = 57) were compared to a control group of students not complaining of insomnia (SNI; n = 61) on self-reported sleep variables and five questionnaires: Insomnia Impact Scale (IIS), Dysfunctional Beliefs and Attitudes About Sleep Scale (DBAS), Epworth Sleepiness Scale (ESS), Fatigue Severity Scale (FSS), and Penn State Worry Questionnaire (PSWQ). SWI demonstrated significant impairment on all day time functioning and sleep measures compared to SNI. To investigate treatment effects on day time functioning, 28 SWI were randomly assigned to PR. Treated SWI were compared to untreated SWI and SNI at posttreatment. Treated participants improved sleep in comparison to untreated SWI, but failed to show significant improvements in day time functioning. Insomnia treatments focused on improving sleep may not improve day time functioning, or day time gains may emerge more slowly than sleep gains. This study documents the wide range of day time functioning complaints in young adults with insomnia and suggests that the goal of insomnia treatment should be to not only improve sleep but also to improve the subjective experience of day time functioning.
Relaxation time effects of wave ripples on tidal beaches
Austin, M. J.; Masselink, G.; O'Hare, T. J.; Russell, P. E.
2007-08-01
Seabed roughness due to wave ripples is a key factor in controlling sediment transport processes in the nearshore zone. Roughness is commonly considered a function of the ripple geometry, which in turn, can be predicted from sediment and hydrodynamic parameters. Existing ripple predictors consider the bed morphology to be in equilibrium with the hydrodynamics, whereas recent laboratory measurements show that the time scale for ripple development is of the order of tens of minutes to hours. Here we show that wave ripples on tidal beaches are significantly affected by relaxation time effects, with ripple height and length progressively increasing during the rising tide and remaining constant during the falling tide. Moreover, we examine the ripples in the context of existing empirical models and suggest how the temporal evolution over a tidal cycle may be predicted.
Generalized dynamic scaling for quantum critical relaxation in imaginary time.
Zhang, Shuyi; Yin, Shuai; Zhong, Fan
2014-10-01
We study the imaginary-time relaxation critical dynamics of a quantum system with a vanishing initial correlation length and an arbitrary initial order parameter M0. We find that in quantum critical dynamics, the behavior of M0 under scale transformations deviates from a simple power law, which was proposed for very small M0 previously. A universal characteristic function is then suggested to describe the rescaled initial magnetization, similar to classical critical dynamics. This characteristic function is shown to be able to describe the quantum critical dynamics in both short- and long-time stages of the evolution. The one-dimensional transverse-field Ising model is employed to numerically determine the specific form of the characteristic function. We demonstrate that it is applicable as long as the system is in the vicinity of the quantum critical point. The universality of the characteristic function is confirmed by numerical simulations of models belonging to the same universality class.
A method for longitudinal relaxation time measurement in inhomogeneous fields
Chen, Hao; Cai, Shuhui; Chen, Zhong
2017-08-01
The spin-lattice relaxation time (T1) plays a crucial role in the study of spin dynamics, signal optimization and data quantification. However, the measurement of chemical shift-specific T1 constants is hampered by the magnetic field inhomogeneity due to poorly shimmed external magnetic fields or intrinsic magnetic susceptibility heterogeneity in samples. In this study, we present a new protocol to determine chemical shift-specific T1 constants in inhomogeneous fields. Based on intermolecular double-quantum coherences, the new method can resolve overlapped peaks in inhomogeneous fields. The measurement results are in consistent with the measurements in homogeneous fields using the conventional method. Since spatial encoding technique is involved, the experimental time for the new method is very close to that for the conventional method. With the aid of T1 knowledge, some concealed information can be exploited by T1 weighting experiments.
A 1-year time course study of the relaxation times and histology for irradiated rat lungs
Shioya, S.; Haida, M.; Fukuzaki, M.; Ono, Y.; Tsuda, M.; Ohta, Y.; Yamabayashi, H. (Tokai Univ. School of Medicine, Kanagawa (Japan))
1990-05-01
To investigate the NMR relaxation times for irradiated rat lung tissue, we measured T1 and T2 at 11 different times during the injury's 1-year time course. A biexponential analysis of T2 was used to determine T2 fast (T2f) and T2 slow (T2s). In addition, we measured water content and correlated changes in the relaxation times with pathological changes. The correlation indicates the following: (1) Shortly after irradiation, the biexponential T2 decay for 1/3 of the samples became monoexponential and there were no noticeable pathological changes observed using light microscopy. (2) During radiation pneumonitis, T2f and T2s were prolonged. This accompanied acute edematous changes and inflammatory cell infiltration. (3) Finally, during radiation fibrosis T1 shortened and collagen increased. We observed no significant correlation between relaxation time changes and water content changes throughout the 1-year time course.
Upper D region chemical kinetic modeling of LORE relaxation times
Gordillo-Vázquez, F. J.; Luque, A.; Haldoupis, C.
2016-04-01
The recovery times of upper D region electron density elevations, caused by lightning-induced electromagnetic pulses (EMP), are modeled. The work was motivated from the need to understand a recently identified narrowband VLF perturbation named LOREs, an acronym for LOng Recovery Early VLF events. LOREs associate with long-living electron density perturbations in the upper D region ionosphere; they are generated by strong EMP radiated from large peak current intensities of ±CG (cloud to ground) lightning discharges, known also to be capable of producing elves. Relaxation model scenarios are considered first for a weak enhancement in electron density and then for a much stronger one caused by an intense lightning EMP acting as an impulsive ionization source. The full nonequilibrium kinetic modeling of the perturbed mesosphere in the 76 to 92 km range during LORE-occurring conditions predicts that the electron density relaxation time is controlled by electron attachment at lower altitudes, whereas above 79 km attachment is balanced totally by associative electron detachment so that electron loss at these higher altitudes is controlled mainly by electron recombination with hydrated positive clusters H+(H2O)n and secondarily by dissociative recombination with NO+ ions, a process which gradually dominates at altitudes >88 km. The calculated recovery times agree fairly well with LORE observations. In addition, a simplified (quasi-analytic) model build for the key charged species and chemical reactions is applied, which arrives at similar results with those of the full kinetic model. Finally, the modeled recovery estimates for lower altitudes, that is <79 km, are in good agreement with the observed short recovery times of typical early VLF events, which are known to be associated with sprites.
Modeling hyporheic exchange and in-stream transport with time-varying transit time distributions
Ball, A.; Harman, C. J.; Ward, A. S.
2014-12-01
Transit time distributions (TTD) are used to understand in-stream transport and exchange with the hyporheic zone by quantifying the probability of water (and of dissolved material) taking time T to traverse the stream reach control volume. However, many studies using this method assume a TTD that is time-invariant, despite the time-variability of the streamflow. Others assume that storage is 'randomly sampled' or 'well-mixed' with a fixed volume or fixed exchange rate. Here we present a formulation for a time-variable TTD that relaxes both the time-invariant and 'randomly sampled' assumptions and only requires a few parameters. The framework is applied to transient storage, representing some combination of in-stream and hyporheic storage, along a stream reach. This approach does not assume that hyporheic and dead-zone storage is fixed or temporally-invariant, and allows for these stores to be sampled in more physically representative ways determined by the system itself. Instead of using probability distributions of age, probability distributions of storage (ranked by age) called Ω functions are used to describe how the off-stream storage is sampled in the outflow. Here the Ω function approach is used to describe hyporheic exchange during diurnal fluctuations in streamflow in a gaining reach of the H.J. Andrews Experimental Forest. The breakthrough curves of salt slugs injected four hours apart over a 28-hour period show a systematic variation in transit time distribution. This new approach allows us to relate these salt slug TTDs to a corresponding time-variation in the Ω function, which can then be related to changes in in-stream storage and hyporheic zone mobilization under varying flow conditions. Thus, we can gain insights into how channel storage and hyporheic exchange are changing through time without having to specify difficult to measure or unmeasurable quantities of our system, such as total storage.
Time-Varying Triplet State Lifetimes of Single Molecules
Veerman, J.A.; Garcia-Parajo, M.F.; Kuipers, L.; Hulst, van N.F.
1999-01-01
It is found that triplet state lifetimes and intersystem crossing yields of individual molecules embedded in a polymer host at room temperature are not constant in time. The range over which the triplet lifetime of a single molecule varies during long observation times shows a strong similarity with
Time-varying correlation and common structures in volatility
Liu, Yang
2016-01-01
This thesis studies time series properties of the covariance structure of multivariate asset returns. First, the time-varying feature of correlation is investigated at the intraday level with a new correlation model incorporating the intraday correlation dynamics. Second, the thesis develops a
Time-Varying Metasurfaces and Lorentz Non-Reciprocity
Shaltout, Amr; Shalaev, Vladimir
2015-01-01
A cornerstone equation of optics, Snell's law, relates the angles of incidence and refraction for light passing through an interface between two media. It is built on two fundamental constrains: the conservation of tangential momentum and the conservation of energy. By relaxing the classical Snell law photon momentum conservation constrain when using space-gradient phase discontinuity, optical metasurfaces enabled an entirely new class of ultrathin optical devices. Here, we show that by eradicating the photon energy conservation constrain when introducing time-gradient phase discontinuity, we can further empower the area of flat photonics and obtain a new genus of optical devices. With this approach, classical Snell relations are developed into a more universal form not limited by Lorentz reciprocity, hence, meeting all the requirements for building magnetic-free optical isolators. Furthermore, photons experience inelastic interaction with time-gradient metasurfaces, which modifies photonic energy eigenstates...
Anomalous divergence of a relaxation time in discontinuous shear thickening suspensions
Maharjan, Rijan
2016-01-01
We investigated the transient relaxation of a Discontinuous Shear Thickening (DST) suspension of cornstarch in water. Starting from a steady shear in a parallel plate rheometer, we stopped the top plate rotation and measured the transient stress relaxation. We found that at low effective packing fraction $\\phi_{eff}$, the suspensions exhibited a relaxation behavior consistent with a rheometric fluid in which the relaxation is determined by the steady-state viscosity. However, for larger $\\phi_{eff}$, we find up to two exponential relaxation regimes, which both become distinct from the rheometric model. The discrepancy between the measured relaxation times and the rheometric prediction was found to be as large as 4 orders of magnitude and diverges in the limit as $\\phi_{eff} \\rightarrow \\phi_c$, corresponding to the liquid solid transition, as the measured relaxation times diverge to infinity while the rheometric prediction approaches 0. In this limit, the measured relaxation time scales are on the order of $\\...
Social contagions on time-varying community networks
Liu, Mian-Xin; Liu, Ying; Tang, Ming; Cai, Shi-Min; Zhang, Hai-Feng
2016-01-01
Time-varying community structures widely exist in various real-world networks. However, the spreading dynamics on this kind of network has not been fully studied. To this end, we systematically study the effects of time-varying community structures on social contagions. We first propose a non-Markovian social contagion model on time-varying community networks based on the activity driven network model, in which an individual adopts a behavior if and only if the accumulated behavioral information it has ever received reaches a threshold. Then, we develop a mean-field theory to describe the proposed model. From theoretical analyses and numerical simulations, we find that behavior adoption in the social contagions exhibits a hierarchical feature, i.e., the behavior first quickly spreads in one of the communities, and then outbreaks in the other. Moreover, under different behavioral information transmission rates, the final behavior adoption proportion in the whole network versus the community strength shows one ...
Mixing properties of ARCH and time-varying ARCH processes
Fryzlewicz, Piotr; 10.3150/10-BEJ270
2011-01-01
There exist very few results on mixing for non-stationary processes. However, mixing is often required in statistical inference for non-stationary processes such as time-varying ARCH (tvARCH) models. In this paper, bounds for the mixing rates of a stochastic process are derived in terms of the conditional densities of the process. These bounds are used to obtain the $\\alpha$, 2-mixing and $\\beta$-mixing rates of the non-stationary time-varying $\\operatorname {ARCH}(p)$ process and $\\operatorname {ARCH}(\\infty)$ process. It is shown that the mixing rate of the time-varying $\\operatorname {ARCH}(p)$ process is geometric, whereas the bound on the mixing rate of the $\\operatorname {ARCH}(\\infty)$ process depends on the rate of decay of the $\\operatorname {ARCH}(\\infty)$ parameters. We note that the methodology given in this paper is applicable to other processes.
Time varying networks and the weakness of strong ties
Karsai, Márton; Perra, Nicola; Vespignani, Alessandro
2014-02-01
In most social and information systems the activity of agents generates rapidly evolving time-varying networks. The temporal variation in networks' connectivity patterns and the ongoing dynamic processes are usually coupled in ways that still challenge our mathematical or computational modelling. Here we analyse a mobile call dataset and find a simple statistical law that characterize the temporal evolution of users' egocentric networks. We encode this observation in a reinforcement process defining a time-varying network model that exhibits the emergence of strong and weak ties. We study the effect of time-varying and heterogeneous interactions on the classic rumour spreading model in both synthetic, and real-world networks. We observe that strong ties severely inhibit information diffusion by confining the spreading process among agents with recurrent communication patterns. This provides the counterintuitive evidence that strong ties may have a negative role in the spreading of information across networks.
Modeling and Analysis of Time-Varying Graphs
Basu, Prithwish; Ramanathan, Ram; Johnson, Matthew P
2010-01-01
We live in a world increasingly dominated by networks -- communications, social, information, biological etc. A central attribute of many of these networks is that they are dynamic, that is, they exhibit structural changes over time. While the practice of dynamic networks has proliferated, we lag behind in the fundamental, mathematical understanding of network dynamism. Existing research on time-varying graphs ranges from preliminary algorithmic studies (e.g., Ferreira's work on evolving graphs) to analysis of specific properties such as flooding time in dynamic random graphs. A popular model for studying dynamic graphs is a sequence of graphs arranged by increasing snapshots of time. In this paper, we study the fundamental property of reachability in a time-varying graph over time and characterize the latency with respect to two metrics, namely store-or-advance latency and cut-through latency. Instead of expected value analysis, we concentrate on characterizing the exact probability distribution of routing l...
Chiral Relaxation Time at the Chiral Crossover of Quantum Chromodynamics
Ruggieri, M; Chernodub, M
2016-01-01
We study microscopic processes responsible for chirality flips in the thermal bath of Quantum Chromodynamics at finite temperature and zero baryon chemical potential. We focus on the temperature range where the crossover from chirally broken phase to quark-gluon plasma takes place, namely $T \\simeq (150, 200)$ MeV. The processes we consider are quark-quark scatterings mediated by collective excitations with the quantum number of pions and $\\sigma$-meson, hence we refer to these processes simply as \\sugg{to} one-pion (one-$\\sigma$) exchange\\sugg{s}. We use a Nambu-Jona-Lasinio model to compute equilibrium properties of the thermal bath, as well as the relevant scattering kernel to be used in the collision integral to estimate the chiral relaxation time $\\tau$. We find $\\tau\\simeq 0.1 \\div 1$ fm/c around the chiral crossover.
Implicit versus explicit momentum relaxation time solution for semiconductor nanowires
Marin, E. G., E-mail: egmarin@ugr.es; Ruiz, F. G., E-mail: franruiz@ugr.es; Godoy, A., E-mail: agodoy@ugr.es; Tienda-Luna, I. M.; Gámiz, F. [Departamento de Electrónica, Universidad de Granada, Av. Fuentenueva S/N, 18071–Granada (Spain)
2015-07-14
We discuss the necessity of the exact implicit Momentum Relaxation Time (MRT) solution of the Boltzmann transport equation in order to achieve reliable carrier mobility results in semiconductor nanowires. Firstly, the implicit solution for a 1D electron gas with a isotropic bandstructure is presented resulting in the formulation of a simple matrix system. Using this solution as a reference, the explicit approach is demonstrated to be inaccurate for the calculation of inelastic anisotropic mechanisms such as polar optical phonons, characteristic of III-V materials. Its validity for elastic and isotropic mechanisms is also evaluated. Finally, the implications of the MRT explicit approach inaccuracies on the total mobility of Si and III-V NWs are studied.
Akhmedshina, E. N.; Nefed'ev, L. A.; Garnaeva, G. I.
2016-09-01
The dependence of the time of the appearance of a Stark (gradient) echo response on the irreversible transverse relaxation time of a system in the nanosecond range and on the width of the excitation region of an inhomogeneously broadened line has been investigated. It has been shown that the use of nonresonant laser pulses with an artificially created spatial inhomogeneity makes it possible to determine the relaxation time in the nanosecond range from the time of the appearance of a Stark (gradient) echo response, which is a more accurate method than the method of determining the relaxation time from the decay of the intensity by varying time intervals of the exposure to inhomogeneous electromagnetic fields.
Ovarian chocolate cysts. Staging with relaxation time in MR imaging
Sugimura, Kazuro; Ishida, Tetsuya; Takemori, Masayuki; Kitagaki, Hajime; Tanaka, Yutaka; Yamasaki, Katsuhito; Shimizu, Tadafumi; Kono, Michio.
1988-10-01
Accurate preoperative staging of ovarian chocolate cysts is very important because recent hormonal therapy has been effective in low stage patients. However, it has been difficult to assess the preoperative stage of ovarian chocolate cysts. We evaluated the diagnostic potential of MRI in preoperative staging of 15 overian chocolate cysts. It was well known that the older the ovarian chocolate cyst was the more iron content it had. We examined the iron contents effect on T1 and T2 relaxation times in surgically confirmed chocolate cysts (stage II: 3 cases, stage III: 3 cases and stage IV: 9 cases by AFS classification, 1985) employing the 0.15-T MR system and 200 MHz spectrometer. There was a positive linear relation between T1 of the lesion using the MR system (T1) and T1 of the resected contents using the spectrometer (sp-T1); r = 0.93. The same relation was revealed between T2 and sp-T2; r = 0.87. It was indicated that T1 and T2 using the MR system was accurate. There was a negative linear relation between T1 and the iron contents ( r = -0.81) but no relation between T2 and the iron contents. T1 was 412 +- 91 msec for stage II, 356 +- 126 msec for stage III and 208 +- 30 msec for stage IV. T1 for stage IV was shorter than that for stage II and III, statistically significant differences were noted (p < 0.05). Thus, T1 was useful in differentiating a fresh from an old ovarian chocolate cyst. We concluded that T1 relaxation time using the MR system was useful for the staging of an ovarian chocolate cyst without surgery.
Comparative Analysis of Instruments Measuring Time Varying Harmonics
Belchior, Fernando Nunes; Ribeiro, Paulo Fernando; Carvalho, Frederico Marques
2016-08-01
This paper aims to evaluate the performance of commercial class A and class S power quality (PQ) instruments when measuring time-varying harmonics. By using a high precision programmable voltage and current source, two meters from different manufacturers are analyzed and compared. Three-phase voltage signals are applied to PQ instruments, considering 3 situations of time-varying harmonic distortions, whose harmonic distortion values are in accordance with typical values found in power systems. This work is relevant considering that international standardization documents do not pay much attention to this aspect of harmonic distortion.
Climatic response to a time varying solar constant
North, G. R.; Short, D. A.; Mengel, J. G.
1983-01-01
Recent measurements of the solar constant, theoretical arguments, and climatic measurements combined with signal processing suggest the possibility that the solar constant varies significantly on time scales ranging from billions of years to 11-yr (sunspot) cycles, and even to scales of a few weeks. Simple climate models with a time varying solar constant are examined here, with emphasis on the heat balance models (North et al., 1981). Linear heat balance model results are presented for high (10 cycles/yr) and low (0.1 cycle/yr) frequencies, providing a useful guide in estimating the direct heat response to solar variability.
Kjaer, L; Henriksen, O
1988-01-01
(PSIR) sequence with TR varying between 0.24 and 8.0 s. The median T1 relaxation times obtained in cortical grey matter and cerebrospinal fluid were significantly shorter in the IR experiments at TR = 2 s than in those carried out at TR = 4 s. Concerning white matter the discrepancy was much less...
Poverty Index With Time Varying Consumption and Income Distributions
Chattopadhyay, Amit K; Mallick, Sushanta K
2016-01-01
In a recent work (Chattopadhyay, A. K. et al, Europhys. Lett. {\\bf 91}, 58003, 2010) based on food consumption statistics, we showed how a stochastic agent based model could represent the time variation of the income distribution statistics in a developing economy, thereby defining an alternative \\enquote{poverty index} (PI) that largely agreed with poverty gap index data. This PI used two variables, the probability density function of the income statistics and a consumption deprivation (CD) function, representing the shortfall in the minimum consumption needed for survival. Since the time dependence of the CD function was introduced there through data extrapolation only and not through an endogenous time dependent series, this model left unexplained how the minimum consumption needed for survival varies with time. The present article overcomes these limitations and arrives at a new unified theoretical structure through time varying consumption and income distributions where trade is only allowed when the inc...
Time varying market efficiency of the GCC stock markets
Charfeddine, Lanouar; Khediri, Karim Ben
2016-02-01
This paper investigates the time-varying levels of weak-form market efficiency for the GCC stock markets over the period spanning from May 2005 to September 2013. We use two empirical approaches: (1) the generalized autoregressive conditional heteroscedasticity in mean (GARCH-M) model with state space time varying parameter (Kalman filter), and (2) a rolling technique sample test of the fractional long memory parameter d. As long memory estimation methods, we use the detrended fluctuation analysis (DFA) technique, the modified R/S statistic, the exact local whittle (ELW) and the feasible Exact Local Whittle (FELW) methods. Moreover, we use the Bai and Perron (1998, 2003) multiple structural breaks technique to test and date the time varying behavior of stock market efficiency. Empirical results show that GCC markets have different degrees of time-varying efficiency, and also have experiencing periods of efficiency improvement. Results also show evidence of structural breaks in all GCC markets. Moreover, we observe that the recent financial shocks such as Arab spring and subprime crises have a significant impact on the time path evolution of market efficiency.
ZHANG Feng; CHEN Feng; TANG Guochun
2004-01-01
Scheduling unrelated parallel machines with controllable processing times subject to release times is investigated. Based on the convex quadratic programming relaxation and the randomized rounding strategy, a 2-approximation algorithm is obtained for a special case with the all-or-none property and then a 3-approximation algorithm is presented for general problem.
Time Varying Market Integration and Expected Rteurns in Emerging Markets
de Jong, F.C.J.M.; de Roon, F.A.
2001-01-01
We use a simple model in which the expected returns in emerging markets depend on their systematic risk as measured by their beta relative to the world portfolio as well as on the level of integration in that market.The level of integration is a time-varying variable that depends on the market value
Time-varying Combinations of Predictive Densities using Nonlinear Filtering
M. Billio (Monica); R. Casarin (Roberto); F. Ravazzolo (Francesco); H.K. van Dijk (Herman)
2012-01-01
textabstractWe propose a Bayesian combination approach for multivariate predictive densities which relies upon a distributional state space representation of the combination weights. Several specifications of multivariate time-varying weights are introduced with a particular focus on weight dynamics
Cosmology with a time-varying speed of light
Albrecht, Andreas
1999-01-01
Cosmic inflation is the only known mechanism with the potential to explain the very special initial conditions which are required at the early stages of the evolution of our universe. This article outlines my work with Joao Magueijo which attempts to construct an alternative mechanism based on a time-varying speed of light.
Cosmology with a time-varying speed of light
Albrecht, Andreas
1999-07-01
Cosmic inflation is the only known mechanism with the potential to explain the very special initial conditions which are required at the early stages of the evolution of our universe. This article outlines my work with Joao Magueijo which attempts to construct an alternative mechanism based on a time-varying speed of light.
Time-Varying Affective Response for Humanoid Robots
Moshkina, Lilia; Arkin, Ronald C.; Lee, Jamee K.; Jung, Hyunryong
This paper describes the design of a complex time-varying affective architecture. It is an expansion of the TAME architecture (traits, attitudes, moods, and emotions) as applied to humanoid robotics. It particular it is intended to promote effective human-robot interaction by conveying the robot’s affective state to the user in an easy-to-interpret manner.
Artificial Bee Colony Algorithm with Time-Varying Strategy
Quande Qin
2015-01-01
Full Text Available Artificial bee colony (ABC is one of the newest additions to the class of swarm intelligence. ABC algorithm has been shown to be competitive with some other population-based algorithms. However, there is still an insufficiency that ABC is good at exploration but poor at exploitation. To make a proper balance between these two conflictive factors, this paper proposed a novel ABC variant with a time-varying strategy where the ratio between the number of employed bees and the number of onlooker bees varies with time. The linear and nonlinear time-varying strategies can be incorporated into the basic ABC algorithm, yielding ABC-LTVS and ABC-NTVS algorithms, respectively. The effects of the added parameters in the two new ABC algorithms are also studied through solving some representative benchmark functions. The proposed ABC algorithm is a simple and easy modification to the structure of the basic ABC algorithm. Moreover, the proposed approach is general and can be incorporated in other ABC variants. A set of 21 benchmark functions in 30 and 50 dimensions are utilized in the experimental studies. The experimental results show the effectiveness of the proposed time-varying strategy.
Coupling currents in Rutherford cables under time varying conditions
Verweij, A.P.; Kate, ten H.H.J.
1993-01-01
A network model is presented to simulate fully transposed Rutherford cables under time varying conditions. The intrinsic properties of the cable and the external applied conditions can be changed spatially. Several statistical distributions of the contact resistances are built in to investigate loca
PERFORMANCE EVALUATION OF DWTBASED MULTICARRIER SYSTEM IN TIME VARYING CHANNELS
Meenu S Kumar; Sandra Prasad; Ramanathan R
2015-01-01
With an increase in user mobility, data rate and carrier frequencies we have to consider time variant channels. In order to overcome the impairments of the time varying channel on conventional OFDM system, a wavelet based OFDM system is investigated in place of FFT based system and its BER performance is analyzed for different Doppler frequencies. The results show that DWT based OFDM gives better performance compared to conventional OFDM system.
PERFORMANCE EVALUATION OF DWTBASED MULTICARRIER SYSTEM IN TIME VARYING CHANNELS
Meenu S Kumar
2015-10-01
Full Text Available With an increase in user mobility, data rate and carrier frequencies we have to consider time variant channels. In order to overcome the impairments of the time varying channel on conventional OFDM system, a wavelet based OFDM system is investigated in place of FFT based system and its BER performance is analyzed for different Doppler frequencies. The results show that DWT based OFDM gives better performance compared to conventional OFDM system.
Testing for time-varying loadings in dynamic factor models
Mikkelsen, Jakob Guldbæk
factors. The squared correlation coefficient times the sample size has a limiting chi-squared distribution. The test can be made robust to serial correlation in the idiosyncratic errors. We find evidence for factor loadings variance in over half of the variables in a dataset for the US economy, while...... there is evidence of time-varying loadings on the risk factors underlying portfolio returns for around 80% of the portfolios....
Nonlinear scale space with spatially varying stopping time.
Gilboa, Guy
2008-12-01
A general scale space algorithm is presented for denoising signals and images with spatially varying dominant scales. The process is formulated as a partial differential equation with spatially varying time. The proposed adaptivity is semi-local and is in conjunction with the classical gradient-based diffusion coefficient, designed to preserve edges. The new algorithm aims at maximizing a local SNR measure of the denoised image. It is based on a generalization of a global stopping time criterion presented recently by the author and colleagues. Most notably, the method works well also for partially textured images and outperforms any selection of a global stopping time. Given an estimate of the noise variance, the procedure is automatic and can be applied well to most natural images.
Stabilising compensators for linear time-varying differential systems
Oberst, Ulrich
2016-04-01
In this paper, we describe a constructive test to decide whether a given linear time-varying (LTV) differential system admits a stabilising compensator for the control tasks of tracking, disturbance rejection or model matching and construct and parametrise all of them if at least one exists. In analogy to the linear time-invariant (LTI) case, the ring of stable rational functions, noncommutative in the LTV situation, and the Kučera-Youla parametrisation play prominent parts in the theory. We transfer Blumthaler's thesis from the LTI to the LTV case and sharpen, complete and simplify the corresponding results in the book 'Linear Time-Varying Systems' by Bourlès and Marinescu.
Vehicle routing problem with time-varying speed
LIU Yun-zhong
2010-01-01
Vehicle routing problem with time-varying speed(VRPTS)is a generalization of vehicle routing problem in which the travel speed between two locations depends on the passing areas and the time of a day.This paper proposes a simple model for estimating time-varying travel speeds in VRPTS that relieves much bur den to the data-related problems.The study further presents three heuristics(saving technique,proximity priority searching technique,and insertion technique)for VRPTS,developed by extending and modifying the existing heuristics for conventional VRP.The results of computational experiments demonstrate that the proposed estimation model performs well and the saving technique is the best among the three heuristics.
M. de la Sen
2010-01-01
Full Text Available This paper investigates the stability properties of a class of dynamic linear systems possessing several linear time-invariant parameterizations (or configurations which conform a linear time-varying polytopic dynamic system with a finite number of time-varying time-differentiable point delays. The parameterizations may be timevarying and with bounded discontinuities and they can be subject to mixed regular plus impulsive controls within a sequence of time instants of zero measure. The polytopic parameterization for the dynamics associated with each delay is specific, so that (q+1 polytopic parameterizations are considered for a system with q delays being also subject to delay-free dynamics. The considered general dynamic system includes, as particular cases, a wide class of switched linear systems whose individual parameterizations are timeinvariant which are governed by a switching rule. However, the dynamic system under consideration is viewed as much more general since it is time-varying with timevarying delays and the bounded discontinuous changes of active parameterizations are generated by impulsive controls in the dynamics and, at the same time, there is not a prescribed set of candidate potential parameterizations.
Analysis of Linear Time-varying Systems via Haar Wavelet
无
1999-01-01
In this paper Haar wavelet integral operational matrices are introduced and the n applied to analyse linear time-varying systems. The method converts the origi nal problem to solving linear algebraic equations. Hence, computational difficulties are considerably reduced. Based on the property of time-frequency localization of Haar wavelet bases, the solution of a system includes both the frequency information and the time information. Other orthogonal functions do not have this property. An example is given, and the results are shown to be ver y accurate.
Contagion dynamics in time-varying metapopulation networks
Perra, Nicola; Liu, Suyu; Baronchelli, Andrea
2014-03-01
The metapopulation framework is adopted in a wide array of disciplines to describe systems of well separated yet connected subpopulations. The subgroups/patches are often represented as nodes in a network whose links represent the migration routes among them. The connections has been so far mostly considered as static, but in general evolve in time. Here we address this case by investigating simple contagion processes on time-varying metapopulation networks. We focus on the SIR process, and determine analytically the mobility threshold for the onset of an epidemic spreading in the framework of activity-driven network models. We find profound differences from the case of static networks. The threshold is entirely described by the dynamical parameters defining the average number of instantaneously migrating individuals, and does not depend on the properties of the static network representation. Remarkably, the diffusion and contagion processes are slower in time-varying graphs than in their aggregated static counterparts, the mobility threshold been even two orders of magnitude larger in the first case. The presented results confirm the importance of considering the time-varying nature of complex networks.
Morphable Word Clouds for Time-Varying Text Data Visualization.
Chi, Ming-Te; Lin, Shih-Syun; Chen, Shiang-Yi; Lin, Chao-Hung; Lee, Tong-Yee
2015-12-01
A word cloud is a visual representation of a collection of text documents that uses various font sizes, colors, and spaces to arrange and depict significant words. The majority of previous studies on time-varying word clouds focuses on layout optimization and temporal trend visualization. However, they do not fully consider the spatial shapes and temporal motions of word clouds, which are important factors for attracting people's attention and are also important cues for human visual systems in capturing information from time-varying text data. This paper presents a novel method that uses rigid body dynamics to arrange multi-temporal word-tags in a specific shape sequence under various constraints. Each word-tag is regarded as a rigid body in dynamics. With the aid of geometric, aesthetic, and temporal coherence constraints, the proposed method can generate a temporally morphable word cloud that not only arranges word-tags in their corresponding shapes but also smoothly transforms the shapes of word clouds over time, thus yielding a pleasing time-varying visualization. Using the proposed frame-by-frame and morphable word clouds, people can observe the overall story of a time-varying text data from the shape transition, and people can also observe the details from the word clouds in frames. Experimental results on various data demonstrate the feasibility and flexibility of the proposed method in morphable word cloud generation. In addition, an application that uses the proposed word clouds in a simulated exhibition demonstrates the usefulness of the proposed method.
Time-varying priority queuing models for human dynamics.
Jo, Hang-Hyun; Pan, Raj Kumar; Kaski, Kimmo
2012-06-01
Queuing models provide insight into the temporal inhomogeneity of human dynamics, characterized by the broad distribution of waiting times of individuals performing tasks. We theoretically study the queuing model of an agent trying to execute a task of interest, the priority of which may vary with time due to the agent's "state of mind." However, its execution is disrupted by other tasks of random priorities. By considering the priority of the task of interest either decreasing or increasing algebraically in time, we analytically obtain and numerically confirm the bimodal and unimodal waiting time distributions with power-law decaying tails, respectively. These results are also compared to the updating time distribution of papers in arXiv.org and the processing time distribution of papers in Physical Review journals. Our analysis helps to understand human task execution in a more realistic scenario.
Time-Varying Priority Queuing Models for Human Dynamics
Jo, Hang-Hyun; Kaski, Kimmo
2011-01-01
Queuing models provide insight into the temporal inhomogeneity of human dynamics, characterized by the broad distribution of waiting times of individuals performing tasks. We study the queuing model of an agent trying to execute a task of interest, the priority of which may vary with time due to the agent's "state of mind." However, its execution can be disrupted by other tasks of random priorities. By considering the priority of the task of interest either decreasing or increasing algebraically in time, we analytically obtain and numerically confirm the bimodal and unimodal waiting time distributions with power-law decaying tails, respectively. These results are also compared to the updating time distribution of papers in the arXiv and the processing time distribution of papers in Physical Review journals. Our analysis helps to understand the human task execution behavior in a more realistic scenario.
Modelling Time-Varying Volatility in Financial Returns
Amado, Cristina; Laakkonen, Helinä
2014-01-01
The “unusually uncertain” phase in the global financial markets has inspired many researchers to study the effects of ambiguity (or “Knightian uncertainty”) on the decisions made by investors and their implications for the capital markets. We contribute to this literature by using a modified...... version of the time-varying GARCH model of Amado and Teräsvirta (2013) to analyze whether the increasing uncertainty has caused excess volatility in the US and European government bond markets. In our model, volatility is multiplicatively decomposed into two time-varying conditional components: the first...... being captured by a stable GARCH(1,1) process and the second driven by the level of uncertainty in the financial market....
Threshold regression for survival data with time-varying covariates.
Lee, Mei-Ling Ting; Whitmore, G A; Rosner, Bernard A
2010-03-30
Time-to-event data with time-varying covariates pose an interesting challenge for statistical modeling and inference, especially where the data require a regression structure but are not consistent with the proportional hazard assumption. Threshold regression (TR) is a relatively new methodology based on the concept that degradation or deterioration of a subject's health follows a stochastic process and failure occurs when the process first reaches a failure state or threshold (a first-hitting-time). Survival data with time-varying covariates consist of sequential observations on the level of degradation and/or on covariates of the subject, prior to the occurrence of the failure event. Encounters with this type of data structure abound in practical settings for survival analysis and there is a pressing need for simple regression methods to handle the longitudinal aspect of the data. Using a Markov property to decompose a longitudinal record into a series of single records is one strategy for dealing with this type of data. This study looks at the theoretical conditions for which this Markov approach is valid. The approach is called threshold regression with Markov decomposition or Markov TR for short. A number of important special cases, such as data with unevenly spaced time points and competing risks as stopping modes, are discussed. We show that a proportional hazards regression model with time-varying covariates is consistent with the Markov TR model. The Markov TR procedure is illustrated by a case application to a study of lung cancer risk. The procedure is also shown to be consistent with the use of an alternative time scale. Finally, we present the connection of the procedure to the concept of a collapsible survival model.
Possible Cosmological Implications of Time Varying Fine Structure Constant
Berman, M S; Berman, Marcelo S.; Trevisan, Luis A.
2001-01-01
We make use of Dirac LNH and results for a time varying fine structure constant in order to derive possible laws of variation for speed of light, the number of nucleons in the Universe, energy density and gravitational constant. By comparing with experimental bounds on G variation, we find that the deceleration paramenter of the present Universe is negative. This is coherent with recent Supernovae observations.
Simple Model with Time-Varying Fine-Structure ``Constant''
Berman, M. S.
2009-10-01
Extending the original version written in colaboration with L.A. Trevisan, we study the generalisation of Dirac's LNH, so that time-variation of the fine-structure constant, due to varying electrical and magnetic permittivities is included along with other variations (cosmological and gravitational ``constants''), etc. We consider the present Universe, and also an inflationary scenario. Rotation of the Universe is a given possibility in this model.
STABILITY OF TIME VARYING SINGULAR DIFFERENTIAL SYSTEMS WITH DELAY
无
2008-01-01
In this paper, stability of time varying singular differential systems with delay is considered. Based on variation formula and Gronwall-Bellman integral inequality, we obtain the exponential estimation of the solution and the sufficient conditions under which the considered system is stable and exponentially asymptotically stable. These results will be very useful to further research on Roust stability and control design of uncertain singular control systems with delay.
Dissipativity Analysis of Neural Networks with Time-varying Delays
Yan Sun; Bao-Tong Cui
2008-01-01
A new definition of dissipativity for neural networks is presented in this paper. By constructing proper Lyapunov func- tionals and using some analytic techniques, sufficient conditions are given to ensure the dissipativity of neural networks with or without time-varying parametric uncertainties and the integro-differential neural networks in terms of linear matrix inequalities. Numerical examples are given to illustrate the effectiveness of the obtained results.
Holographic flow visualization of time-varying shock waves
Decker, A. J.
1981-01-01
Rapid-double-exposure, diffuse-illumination holography is evaluated analytically and experimentally as a flow visualization method for time-varying shock waves. Conditions are determined that minimize the distance (localization error) between the surface or curve of interference-fringe localization and the shock surface. Treated specifically are the cases of shock waves in a transonic compressor rotor for which there is laser anemometer data for comparison and shock waves in a flutter cascade.
Determination of T1- and T2-relaxation times in the spleen of patients with splenomegaly
Thomsen, C; Josephsen, P; Karle, H
1990-01-01
Twenty-nine patients with known splenomegaly and seven healthy volunteers were examined. The T1 and T2 relaxation times were read out from a region of interest centrally in the spleen. Even though different mean T1 and T2 relaxation times were found between the groups, the great scatter and the c...... and the considerable overlap between the groups makes the contribution of relaxation time measurements to the differential diagnosis of splenomegaly of limited value....
Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy
Zhang, Yanxiang; Chen, Yu; Yan, Mufu; Chen, Fanglin
2015-06-01
Linear electrochemical impedance spectroscopy (EIS), and in particular its representation of distribution of relaxation time (DRT), enables the identification of the number of processes and their nature involved in electrochemical cells. With the advantage of high frequency resolution, DRT has recently drawn increasing attention for applications in solid oxide fuel cells (SOFCs). However, the method of DRT reconstruction is not yet presented clearly in terms of what mathematical treatments and theoretical assumptions have been made. Here we present unambiguously a method to reconstruct DRT function of impedance based on Tikhonov regularization. By using the synthetic impedances and analytic DRT functions of RQ element, generalized finite length Warburg element, and Gerischer element with physical quantities representative to those of SOFC processes, we show that the quality of DRT reconstruction is sensitive to the sampling points per decade (ppd) of frequency from the impedance measurement. The robustness of the DRT reconstruction to resist noise imbedded in impedance data and numerical calculations can be accomplished by optimizing the weighting factor λ according to well defined criterion.
Fan, Fanghui; Mou, Tian; Nurhadi, Bambang; Roos, Yrjö H.
2016-01-01
Water sorption-induced crystallization, α-relaxations and relaxation times of freeze-dried lactose/whey protein isolate (WPI) systems were studied using dynamic dewpoint isotherms (DDI) method and dielectric analysis (DEA), respectively. The fractional water sorption behavior of lactose/WPI mixtures shown at aw ≤ 0.44 and the critical aw for water sorption-related crystallization (aw(cr)) of lactose were strongly affected by protein content based on DDI data. DEA results showed that the α-rel...
On enhanced time-varying distributed H systems
Sergey Verlan
2002-11-01
Full Text Available An enhanced time-varying distributed H system (ETVDH system is a slightly different definition of the time-varying distributed H system (TVDH system [9] and it was proposed by M. Margenstern and Yu. Rogozhin in [4] under the name of "extended time-varying distributed H system''. The main difference is that the components of the ETVDH system are H systems and therefore splicing rules may be applied more than once as it is done in TVDH systems. This leads to difficulties in investigating the behavior of such systems because they have a higher level of parallelism. It is proved that ETVDH systems of degree 2 (i.e. with 2 components generate all recursively enumerable languages in a sequential way [7] and that ETVDH systems of degree 4 generate all recursively enumerable languages in a "parallel'' way, modelling a formal type-0 grammar [11]. In this paper we improve the last result and we present an ETVDH system of degree 3 which generates all recursively enumerable languages modelling type-0 formal grammars. The problem of the existence of ETVDH systems of degree 2 which generate all recursively enumerable languages in a "parallel'' way is left open.
Sensor trustworthiness in uncertain time varying stochastic environments
Verma, Ajay; Fernandes, Ronald; Vadakkeveedu, Kalyan
2011-06-01
Persistent surveillance applications require unattended sensors deployed in remote regions to track and monitor some physical stimulant of interest that can be modeled as output of time varying stochastic process. However, the accuracy or the trustworthiness of the information received through a remote and unattended sensor and sensor network cannot be readily assumed, since sensors may get disabled, corrupted, or even compromised, resulting in unreliable information. The aim of this paper is to develop information theory based metric to determine sensor trustworthiness from the sensor data in an uncertain and time varying stochastic environment. In this paper we show an information theory based determination of sensor data trustworthiness using an adaptive stochastic reference sensor model that tracks the sensor performance for the time varying physical feature, and provides a baseline model that is used to compare and analyze the observed sensor output. We present an approach in which relative entropy is used for reference model adaptation and determination of divergence of the sensor signal from the estimated reference baseline. We show that that KL-divergence is a useful metric that can be successfully used in determination of sensor failures or sensor malice of various types.
Discovering Patterns in Time-Varying Graphs: A Triclustering Approach
Guigourès, Romain; Rossi, Fabrice
2016-01-01
This paper introduces a novel technique to track structures in time varying graphs. The method uses a maximum a posteriori approach for adjusting a three-dimensional co-clustering of the source vertices, the destination vertices and the time, to the data under study, in a way that does not require any hyper-parameter tuning. The three dimensions are simultaneously segmented in order to build clusters of source vertices, destination vertices and time segments where the edge distributions across clusters of vertices follow the same evolution over the time segments. The main novelty of this approach lies in that the time segments are directly inferred from the evolution of the edge distribution between the vertices, thus not requiring the user to make any a priori quantization. Experiments conducted on artificial data illustrate the good behavior of the technique, and a study of a real-life data set shows the potential of the proposed approach for exploratory data analysis.
Trivedi, C. M.; Rana, V. A.; Hudge, P. G.; Kumbharkhane, A. C.
2016-08-01
Complex permittivity spectra of binary mixtures of varying concentrations of β-picoline and Methanol (MeOH) have been obtained using time domain reflectometry (TDR) technique over frequency range 10 MHz to 25 GHz at 283.15, 288.15, 293.15 and 298.15 K temperatures. The dielectric relaxation parameters namely static permittivity (ɛ0), high frequency limit permittivity (ɛ∞1) and the relaxation time (τ) were determined by fitting complex permittivity data to the single Debye/Cole-Davidson model. Complex nonlinear least square (CNLS) fitting procedure was carried out using LEVMW software. The excess permittivity (ɛ0E) and the excess inverse relaxation time (1/τ)E which contain information regarding molecular structure and interaction between polar-polar liquids were also determined. From the experimental data, parameters such as effective Kirkwood correlation factor (geff), Bruggeman factor (fB) and some thermo dynamical parameters have been calculated. Excess parameters were fitted to the Redlich-Kister polynomial equation. The values of static permittivity and relaxation time increase nonlinearly with increase in the mol-fraction of MeOH at all temperatures. The values of excess static permittivity (ɛ0E) and the excess inverse relaxation time (1/τ)E are negative for the studied β-picoline — MeOH system at all temperatures.
Paruthi, Archini; Misra, Superb K.
2017-08-01
The toxicological impact of engineered nanoparticles in environmental or biological milieu is very difficult to predict and control because of the complexity of interactions of nanoparticles with the varied constituents in the suspended media. Nanoparticles are different from their bulk counterparts due to their high surface area-to-volume ratio per unit mass, which plays a vital role in bioavailability of these nanoparticles to its surroundings. This study explores how changes in the spin-spin nuclear relaxation time can be used to gauge the availability of surface area and suspension stability of selected nanoparticles (CuO, ZnO, and SiO2), in a range of simulated media. Spin-spin nuclear relaxation time can be mathematically correlated to wetted surface area, which is well backed up by the data of hydrodynamic size measurements and suspension stability. We monitored the change in spin-spin relaxation time for all the nanoparticles, over a range of concentrations (2.5 -100 ppm) in deionized water and artificial seawater. Selective concentrations of nanoparticle suspensions were subjected for temporal studies over a period of 48 hrs to understand the concept of spin-spin nuclear relaxation time-based reactivity of nanoparticle suspension. The nanoparticles showed high degree of agglomeration, when suspended in artificial seawater. This was captured by a decrease in spin-spin nuclear relaxation time and also an increment in the hydrodynamic size of the nanoparticles.
Visual exploration of complex time-varying graphs.
Kumar, Gautam; Garland, Michael
2006-01-01
Many graph drawing and visualization algorithms, such as force-directed layout and line-dot rendering, work very well on relatively small and sparse graphs. However, they often produce extremely tangled results and exhibit impractical running times for highly non-planar graphs with large edge density. And very few graph layout algorithms support dynamic time-varying graphs; applying them independently to each frame produces distracting temporally incoherent visualizations. We have developed a new visualization technique based on a novel approach to hierarchically structuring dense graphs via stratification. Using this structure, we formulate a hierarchical force-directed layout algorithm that is both efficient and produces quality graph layouts. The stratification of the graph also allows us to present views of the data that abstract away many small details of its structure. Rather than displaying all edges and nodes at once, resulting in a convoluted rendering, we present an interactive tool that filters edges and nodes using the graph hierarchy and allows users to drill down into the graph for details. Our layout algorithm also accommodates time-varying graphs in a natural way, producing a temporally coherent animation that can be used to analyze and extract trends from dynamic graph data. For example, we demonstrate the use of our method to explore financial correlation data for the U.S. stock market in the period from 1990 to 2005. The user can easily analyze the time-varying correlation graph of the market, uncovering information such as market sector trends, representative stocks for portfolio construction, and the interrelationship of stocks over time.
Interval estimation for uncertain systems with time-varying delays
Efimov, Denis; Perruquetti, Wilfrid; Richard, Jean-Pierre
2013-10-01
The estimation problem for uncertain time-delay systems is addressed. A design method of reduced-order interval observers is proposed. The observer estimates the set of admissible values (the interval) for the state at each instant of time. The cases of known fixed delays and uncertain time-varying delays are analysed. The proposed approach can be applied to linear delay systems and nonlinear time-delay systems in the output canonical form. It involves the properties of quasi-monotone/Metzler/cooperative systems. In this framework, it is shown that if under a suitable coordinate transformation the delay-free subsystem is cooperative, then the delayed estimation error dynamics inherits this property. The conditions to find the observer gains are formulated in the form of LMI. The framework efficiency is demonstrated on examples of nonlinear systems.
Dynamic Server Allocation over Time Varying Channels with Switchover Delay
Celik, Güner D; Modiano, Eytan
2012-01-01
We consider a dynamic server allocation problem over parallel queues with randomly varying connectivity and server switchover delay between the queues. At each time slot the server decides either to stay with the current queue or switch to another queue based on the current connectivity and the queue length information. Switchover delay occurs in many telecommunications applications and is a new modeling component of this problem that has not been previously addressed. We show that the simultaneous presence of randomly varying connectivity and switchover delay changes the system stability region and the structure of optimal policies. In the first part of the paper, we consider a system of two parallel queues, and develop a novel approach to explicitly characterize the stability region of the system using state-action frequencies which are stationary solutions to a Markov Decision Process (MDP) formulation. We then develop a frame-based dynamic control (FBDC) policy, based on the state-action frequencies, and ...
Late time attractors of some varying Chaplygin gas cosmological models
Khurshudyan, M
2015-01-01
Varying Chaplygin gas is one of the dark fluids actively studied in modern cosmology. It does belong to the group of the fluids which has an explicitly given EoS. From the other hand phase space does contain all possible states of the system. Therefore, phase space analysis of the cosmological models does allow to understand qualitative behavior and estimate required characteristics of the models. Phase space analysis is a convenient approach to study a cosmological model, because we do not need to solve a system of differential equations for a given initial conditions, instead, we need to deal with appropriate algebraic equations. The goal of this paper is to find late time attractors for the cosmological models, where a varying Chaplygin gas is one of the components of the large sale universe. We will pay our attention to some non linear interacting models.
The time dependence of rock healing as a universal relaxation process, a tutorial
Snieder, Roel; Sens-Schönfelder, Christoph; Wu, Renjie
2017-01-01
The material properties of earth materials often change after the material has been perturbed (slow dynamics). For example, the seismic velocity of subsurface materials changes after earthquakes, and granular materials compact after being shaken. Such relaxation processes are associated by observables that change logarithmically with time. Since the logarithm diverges for short and long times, the relaxation can, strictly speaking, not have a log-time dependence. We present a self-contained description of a relaxation function that consists of a superposition of decaying exponentials that has log-time behaviour for intermediate times, but converges to zero for long times, and is finite for t = 0. The relaxation function depends on two parameters, the minimum and maximum relaxation time. These parameters can, in principle, be extracted from the observed relaxation. As an example, we present a crude model of a fracture that is closing under an external stress. Although the fracture model violates some of the assumptions on which the relaxation function is based, it follows the relaxation function well. We provide qualitative arguments that the relaxation process, just like the Gutenberg-Richter law, is applicable to a wide range of systems and has universal properties.
Multiple-relaxation-time lattice Boltzmann kinetic model for combustion.
Xu, Aiguo; Lin, Chuandong; Zhang, Guangcai; Li, Yingjun
2015-04-01
To probe both the hydrodynamic nonequilibrium (HNE) and thermodynamic nonequilibrium (TNE) in the combustion process, a two-dimensional multiple-relaxation-time (MRT) version of lattice Boltzmann kinetic model (LBKM) for combustion phenomena is presented. The chemical energy released in the progress of combustion is dynamically coupled into the system by adding a chemical term to the LB kinetic equation. Aside from describing the evolutions of the conserved quantities, the density, momentum, and energy, which are what the Navier-Stokes model describes, the MRT-LBKM presents also a coarse-grained description on the evolutions of some nonconserved quantities. The current model works for both subsonic and supersonic flows with or without chemical reaction. In this model, both the specific-heat ratio and the Prandtl number are flexible, the TNE effects are naturally presented in each simulation step. The model is verified and validated via well-known benchmark tests. As an initial application, various nonequilibrium behaviors, including the complex interplays between various HNEs, between various TNEs, and between the HNE and TNE, around the detonation wave in the unsteady and steady one-dimensional detonation processes are preliminarily probed. It is found that the system viscosity (or heat conductivity) decreases the local TNE, but increases the global TNE around the detonation wave, that even locally, the system viscosity (or heat conductivity) results in two kinds of competing trends, to increase and to decrease the TNE effects. The physical reason is that the viscosity (or heat conductivity) takes part in both the thermodynamic and hydrodynamic responses.
Time-varying properties of renal autoregulatory mechanisms
Zou, Rui; Cupples, Will A; Yip, K P;
2002-01-01
normotensive (Sprague-Dawley, Wistar, and Long-Evans) rats, and spontaneously hypertensive rats. Time-frequency analyses of normotensive and hypertensive blood flow data obtained from either the whole kidney or the single-nephron show that indeed both the myogenic and tubuloglomerular feedback (TGF) mechanisms...... have time-varying characteristics. Furthermore, we utilized the Renyi entropy to measure the complexity of blood-flow dynamics in the time-frequency plane in an effort to discern differences between normotensive and hypertensive recordings. We found a clear difference in Renyi entropy between...... for hypertensive than normotensive rats, suggesting more complex dynamics in the hypertensive condition. To further evaluate whether or not the separation of dynamics between normotensive and hypertensive rats is found in the prescribed frequency ranges of the myogenic and TGF mechanisms, we employed...
Distributed Detection over Time Varying Networks: Large Deviations Analysis
Bajovic, Dragana; Xavier, Joao; Sinopoli, Bruno; Moura, Jose M F
2010-01-01
We apply large deviations theory to study asymptotic performance of running consensus distributed detection in sensor networks. Running consensus is a stochastic approximation type algorithm, recently proposed. At each time step k, the state at each sensor is updated by a local averaging of the sensor's own state and the states of its neighbors (consensus) and by accounting for the new observations (innovation). We assume Gaussian, spatially correlated observations. We allow the underlying network be time varying, provided that the graph that collects the union of links that are online at least once over a finite time window is connected. This paper shows through large deviations that, under stated assumptions on the network connectivity and sensors' observations, the running consensus detection asymptotically approaches in performance the optimal centralized detection. That is, the Bayes probability of detection error (with the running consensus detector) decays exponentially to zero as k goes to infinity at...
Tolerable Time-Varying Overflow on Grass-Covered Slopes
Steven A. Hughes
2015-03-01
Full Text Available Engineers require estimates of tolerable overtopping limits for grass-covered levees, dikes, and embankments that might experience steady overflow. Realistic tolerance estimates can be used for both resilient design and risk assessment. A simple framework is developed for estimating tolerable overtopping on grass-covered slopes caused by slowly-varying (in time overtopping discharge (e.g., events like storm surges or river flood waves. The framework adapts the well-known Hewlett curves of tolerable limiting velocity as a function of overflow duration. It has been hypothesized that the form of the Hewlett curves suggests that the grass erosion process is governed by the flow work on the slope above a critical threshold velocity (referred to as excess work, and the tolerable erosional limit is reached when the cumulative excess work exceeds a given value determined from the time-dependent Hewlett curves. The cumulative excess work is expressed in terms of overflow discharge above a critical discharge that slowly varies in time, similar to a discharge hydrograph. The methodology is easily applied using forecast storm surge hydrographs at specific locations where wave action is minimal. For preliminary planning purposes, when storm surge hydrographs are unavailable, hypothetical equations for the water level and overflow discharge hydrographs are proposed in terms of the values at maximum overflow and the total duration of overflow. An example application is given to illustrate use of the methodology.
Reaching a consensus: a discrete nonlinear time-varying case
Saburov, M.; Saburov, K.
2016-07-01
In this paper, we have considered a nonlinear protocol for a structured time-varying and synchronous multi-agent system. By means of cubic triple stochastic matrices, we present an opinion sharing dynamics of the multi-agent system as a trajectory of a non-homogeneous system of cubic triple stochastic matrices. We show that the multi-agent system eventually reaches to a consensus if either of the following two conditions is satisfied: (1) every member of the group people has a positive subjective distribution on the given task after some revision steps or (2) all entries of some cubic triple stochastic matrix are positive.
Using time-varying covariates in multilevel growth models
D. Betsy McCoach
2010-06-01
Full Text Available This article provides an illustration of growth curve modeling within a multilevel framework. Specifically, we demonstrate coding schemes that allow the researcher to model discontinuous longitudinal data using a linear growth model in conjunction with time varying covariates. Our focus is on developing a level-1 model that accurately reflects the shape of the growth trajectory. We demonstrate the importance of adequately modeling the shape of the level-1 growth trajectory in order to make inferences about the importance of both level-1 and level-2 predictors.
Burstiness and tie reinforcement in time varying social networks
Ubaldi, Enrico; Karsai, Marton; Perra, Nicola; Burioni, Raffaella
2016-01-01
We introduce a time-varying network model accounting for burstiness and tie reinforcement observed in social networks. The analytical solution indicates a non-trivial phase diagram determined by the competition of the leading terms of the two processes. We test our results against numerical simulations, and compare the analytical predictions with an empirical dataset finding good agreements between them. The presented framework can be used to classify the dynamical features of real social networks and to gather new insights about the effects of social dynamics on ongoing spreading processes.
Stochastic synchronization for time-varying complex dynamical networks
Guo Xiao-Yong; Li Jun-Min
2012-01-01
This paper studies the stochastic synchronization problem for time-varying complex dynamical networks. This model is totally different from some existing network models. Based on the Lyapunov stability theory, inequality techniques, and the properties of the Weiner process, some controllers and adaptive laws are designed to ensure achieving stochastic synchronization of a complex dynamical network model. A sufficient synchronization condition is given to ensure that the proposed network model is mean-square stable. Theoretical analysis and numerical simulation fully verify the main results.
Circular motion analysis of time-varying bioimpedance.
Sanchez, B; Louarroudi, E; Rutkove, S B; Pintelon, R
2015-11-01
This paper presents a step forward towards the analysis of a linear periodically time-varying (PTV) bioimpedance ZPTV(jw, t), which is an important subclass of a linear time-varying (LTV) bioimpedance. Similarly to the Fourier coefficients of a periodic signal, a PTV impedance can be decomposed into frequency dependent impedance phasors, [Formula: see text], that are rotating with an angular speed of wr = 2πr/TZ. The vector length of these impedance phasors corresponds to the amplitude of the rth-order harmonic impedance |Zr( jw)| and the initial phase is given by Φr(w, t0) = [Symbol: see text]Zr( jw) + 2πrt0/TZ, with t0∈[0, T] being a time instant within the measurement time T. The impedance period TZ stands for the cycle length of the bio-system under investigation; for example, the elapsed time between two consecutive R-waves in the electrocardiogram or the breathing periodicity in case of the heart or lungs, respectively. First, it is demonstrated that the harmonic impedance phasor [Formula: see text], at a particular measured frequency k, can be represented by a rotating phasor, leading to the so-called circular motion analysis technique. Next, the two dimensional (2D) representation of the harmonic impedance phasors is then extended to a three-dimensional (3D) coordinate system by taking into account the frequency dependence. Finally, we introduce a new visualizing tool to summarize the frequency response behavior of ZPTV( jw, t) into a single 3D plot using the local Frenet-Serret frame. This novel 3D impedance representation is then compared with the 3D Nyquist representation of a PTV impedance. The concepts are illustrated through real measurements conducted on a PTV RC-circuit.
Study of selected phenotype switching strategies in time varying environment
Horvath, Denis, E-mail: horvath.denis@gmail.com [Centre of Interdisciplinary Biosciences, Institute of Physics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, 040 01 Košice (Slovakia); Brutovsky, Branislav, E-mail: branislav.brutovsky@upjs.sk [Department of Biophysics, Institute of Physics, P.J. Šafárik University in Košice, Jesenná 5, 040 01 Košice (Slovakia)
2016-03-22
Population heterogeneity plays an important role across many research, as well as the real-world, problems. The population heterogeneity relates to the ability of a population to cope with an environment change (or uncertainty) preventing its extinction. However, this ability is not always desirable as can be exemplified by an intratumor heterogeneity which positively correlates with the development of resistance to therapy. Causation of population heterogeneity is therefore in biology and medicine an intensively studied topic. In this paper the evolution of a specific strategy of population diversification, the phenotype switching, is studied at a conceptual level. The presented simulation model studies evolution of a large population of asexual organisms in a time-varying environment represented by a stochastic Markov process. Each organism disposes with a stochastic or nonlinear deterministic switching strategy realized by discrete-time models with evolvable parameters. We demonstrate that under rapidly varying exogenous conditions organisms operate in the vicinity of the bet-hedging strategy, while the deterministic patterns become relevant as the environmental variations are less frequent. Statistical characterization of the steady state regimes of the populations is done using the Hellinger and Kullback–Leibler functional distances and the Hamming distance. - Highlights: • Relation between phenotype switching and environment is studied. • The Markov chain Monte Carlo based model is developed. • Stochastic and deterministic strategies of phenotype switching are utilized. • Statistical measures of the dynamic heterogeneity reveal universal properties. • The results extend to higher lattice dimensions.
Relaxation Time of the Particle Beam with an Anisotropic Velocity Distribution
V.P. Vechirka
2012-11-01
Full Text Available The computer experiment for study of the relaxation time of the beam particles with an anisotropic velocity distribution is performed by the molecular dynamics. Obtained results agree with the characteristic times of thermal relaxation in plasma for the electronic coolers in modern storage rings.
Evaluation of relaxation time measurements by magnetic resonance imaging. A phantom study
Kjaer, L; Thomsen, C; Henriksen, O
1987-01-01
Several circumstances may explain the great variation in reported proton T1 and T2 relaxation times usually seen. This study was designed to evaluate the accuracy of relaxation time measurements by magnetic resonance imaging (MRI) operating at 1.5 tesla. Using a phantom of nine boxes with different...
Stretched Exponential Relaxation in Disordered Complex Systems: Fractal Time Random Walk Model
Ekrem Aydmer
2007-01-01
We have analytically derived the relaxation function for one-dimensional disordered complex systems in terms of autocorrelation function of fractal time random walk by using operator formalism. We have shown that the relaxation function has stretched exponential, i.e. the Kohlrausch-Williams-Watts character for a fractal time random walk process.
Epidemic spreading in time-varying community networks
Ren, Guangming, E-mail: wangxy@dlut.edu.cn, E-mail: ren-guang-ming@163.com [School of Electronic and Information, Guangdong Polytechnic Normal University, Guangzhou 510665 (China); Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, Xingyuan, E-mail: wangxy@dlut.edu.cn, E-mail: ren-guang-ming@163.com [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China)
2014-06-15
The spreading processes of many infectious diseases have comparable time scale as the network evolution. Here, we present a simple networks model with time-varying community structure, and investigate susceptible-infected-susceptible epidemic spreading processes in this model. By both theoretic analysis and numerical simulations, we show that the efficiency of epidemic spreading in this model depends intensively on the mobility rate q of the individuals among communities. We also find that there exists a mobility rate threshold q{sub c}. The epidemic will survive when q > q{sub c} and die when q < q{sub c}. These results can help understanding the impacts of human travel on the epidemic spreading in complex networks with community structure.
Contagion dynamics in time-varying metapopulation networks
Liu, Suyu; Perra, Nicola
2012-01-01
The metapopulation framework is adopted in a wide array of disciplines to describe systems of well separated yet connected subpopulations. The subgroups/patches are often represented as nodes in a network whose links represent the migration routes among them. The connections are usually considered as static, an approximation that is appropriate for the description of many systems, such as cities connected by human mobility, but it is obviously inadequate in those real systems where links evolve in time on a faster timescale. In the case of farmed animals, for example, the connections between each farm/node vary in time according to the different stages of production. Here we address this case by investigating simple contagion processes on temporal metapopulation networks. We focus on the SIR process, and we determine the mobility threshold for the onset of an epidemic spreading in the framework of activity-driven network models. Remarkably, we find profound differences from the case of static networks, determ...
Conditional CAPM: Time-varying Betas in the Brazilian Market
Frances Fischberg Blank
2014-10-01
Full Text Available The conditional CAPM is characterized by time-varying market beta. Based on state-space models approach, beta behavior can be modeled as a stochastic process dependent on conditioning variables related to business cycle and estimated using Kalman filter. This paper studies alternative models for portfolios sorted by size and book-to-market ratio in the Brazilian stock market and compares their adjustment to data. Asset pricing tests based on time-series and cross-sectional approaches are also implemented. A random walk process combined with conditioning variables is the preferred model, reducing pricing errors compared to unconditional CAPM, but the errors are still significant. Cross-sectional test show that book-to-market ratio becomes less relevant, but past returns still capture cross-section variation
Controlling Contagion Processes in Time-Varying Networks
Liu, Suyu; Karsai, Marton; Vespignani, Alessandro
2013-01-01
The vast majority of strategies aimed at controlling contagion processes on networks considers the connectivity pattern of the system as either quenched or annealed. However, in the real world many networks are highly dynamical and evolve in time concurrently to the contagion process. Here, we derive an analytical framework for the study of control strategies specifically devised for time-varying networks. We consider the removal/immunization of individual nodes according the their activity in the network and develop a block variable mean-field approach that allows the derivation of the equations describing the evolution of the contagion process concurrently to the network dynamic. We derive the critical immunization threshold and assess the effectiveness of the control strategies. Finally, we validate the theoretical picture by simulating numerically the information spreading process and control strategies in both synthetic networks and a large-scale, real-world mobile telephone call dataset
Network Coded Cooperation Over Time-Varying Channels
Khamfroush, Hana; Lucani Rötter, Daniel Enrique; Barros, joao
2014-01-01
In this paper, we investigate the optimal design of cooperative network-coded strategies for a three-node wireless network with time-varying, half-duplex erasure channels. To this end, we formulate the problem of minimizing the total cost of transmitting M packets from source to two receivers...... that are suitable for practical systems. We use two wireless channel models to analyse the performance of the proposed heuristics in practical wireless networks, namely, (a) an infrastructure-to-vehicle (I2V) communication in a highway scenario considering Rayleigh fading, and (b) real packet loss measurements...... for WiFi using Aalborg University’s Raspberry Pi testbed. We compare our results with random linear network coding (RLNC) broadcasting schemes showing that our heuristics can provide up to 2x gains in completion time and up to 4x gains in terms of reliably serviced data packets....
Flexible Demand Management under Time-Varying Prices
Liang, Yong
In this dissertation, the problem of flexible demand management under time-varying prices is studied. This generic problem has many applications, which usually have multiple periods in which decisions on satisfying demand need to be made, and prices in these periods are time-varying. Examples of such applications include multi-period procurement problem, operating room scheduling, and user-end demand scheduling in the Smart Grid, where the last application is used as the main motivating story throughout the dissertation. The current grid is experiencing an upgrade with lots of new designs. What is of particular interest is the idea of passing time-varying prices that reflect electricity market conditions to end users as incentives for load shifting. One key component, consequently, is the demand management system at the user-end. The objective of the system is to find the optimal trade-off between cost saving and discomfort increment resulted from load shifting. In this dissertation, we approach this problem from the following aspects: (1) construct a generic model, solve for Pareto optimal solutions, and analyze the robust solution that optimizes the worst-case payoffs, (2) extend to a distribution-free model for multiple types of demand (appliances), for which an approximate dynamic programming (ADP) approach is developed, and (3) design other efficient algorithms for practical purposes of the flexible demand management system. We first construct a novel multi-objective flexible demand management model, in which there are a finite number of periods with time-varying prices, and demand arrives in each period. In each period, the decision maker chooses to either satisfy or defer outstanding demand to minimize costs and discomfort over a certain number of periods. We consider both the deterministic model, models with stochastic demand or prices, and when only partial information about the stochastic demand or prices is known. We first analyze the stochastic
Time-varying parameter auto-regressive models for autocovariance nonstationary time series
FEI WanChun; BAI Lun
2009-01-01
In this paper,autocovariance nonstationary time series is clearly defined on a family of time series.We propose three types of TVPAR (time-varying parameter auto-regressive) models:the full order TVPAR model,the time-unvarying order TVPAR model and the time-varying order TVPAR model for autocovariance nonstationary time series.Related minimum AIC (Akaike information criterion) estimations are carried out.
Time-varying parameter auto-regressive models for autocovariance nonstationary time series
无
2009-01-01
In this paper, autocovariance nonstationary time series is clearly defined on a family of time series. We propose three types of TVPAR (time-varying parameter auto-regressive) models: the full order TVPAR model, the time-unvarying order TVPAR model and the time-varying order TV-PAR model for autocovariance nonstationary time series. Related minimum AIC (Akaike information criterion) estimations are carried out.
Time-varying trends of global vegetation activity
Pan, N.; Feng, X.; Fu, B.
2016-12-01
Vegetation plays an important role in regulating the energy change, water cycle and biochemical cycle in terrestrial ecosystems. Monitoring the dynamics of vegetation activity and understanding their driving factors have been an important issue in global change research. Normalized Difference Vegetation Index (NDVI), an indicator of vegetation activity, has been widely used in investigating vegetation changes at regional and global scales. Most studies utilized linear regression or piecewise linear regression approaches to obtain an averaged changing rate over a certain time span, with an implicit assumption that the trend didn't change over time during that period. However, no evidence shows that this assumption is right for the non-linear and non-stationary NDVI time series. In this study, we adopted the multidimensional ensemble empirical mode decomposition (MEEMD) method to extract the time-varying trends of NDVI from original signals without any a priori assumption of their functional form. Our results show that vegetation trends are spatially and temporally non-uniform during 1982-2013. Most vegetated area exhibited greening trends in the 1980s. Nevertheless, the area with greening trends decreased over time since the early 1990s, and the greening trends have stalled or even reversed in many places. Regions with browning trends were mainly located in southern low latitudes in the 1980s, whose area decreased before the middle 1990s and then increased at an accelerated rate. The greening-to-browning reversals were widespread across all continents except Oceania (43% of the vegetated areas), most of which happened after the middle 1990s. In contrast, the browning-to-greening reversals occurred in smaller area and earlier time. The area with monotonic greening and browning trends accounted for 33% and 5% of the vegetated area, respectively. By performing partial correlation analyses between NDVI and climatic elements (temperature, precipitation and cloud cover
Sparsity-constraint LMS Algorithms for Time-varying UWB Channel Estimation
Solomon Nunoo
2014-12-01
Full Text Available Sparsity constraint channel estimation using compressive sensing approach has gained widespread interest in recent times. Mostly, the approach utilizes either the l1-norm or l0-norm relaxation to improve the performance of LMS-type algorithms. In this study, we present the adaptive channel estimation of time-varying ultra wideband channels, which have shown to be sparse, in an indoor environment using sparsity-constraint LMS and NLMS algorithms for different sparsity measures. For a less sparse CIR, higher weightings are allocated to the sparse penalty term. Simulation results show improved performance of the sparsity-constraint algorithms in terms of convergence speed and mean square error performance.
IDENTIFICATION OF TIME-VARYING MODAL PARAMETERS USING LINEAR TIME-FREQUENCY REPRESENTATION
Xu Xiuzhong; Zhang Zhiyi; Hua Hongxing; Chen Zhaoneng
2003-01-01
A new method of parameter identification based on linear time-frequency representation and Hilbert transform is proposed to identify modal parameters of linear time-varying systems from measured vibration responses. Using Gabor expansion and synthesis theory, measured responses are represented in the time-frequency domain and modal components are reconstructed by time-frequency filtering. The Hilbert transform is applied to obtain time histories of the amplitude and phase angle of each modal component, from which time-varying frequencies and damping ratios are identified. The proposed method has been demonstrated with a numerical example in which a linear time-varying system of two degrees of freedom is used to validate the identification scheme based on time-frequency representation. Simulation results have indicated that time-frequency representation presents an effective tool for modal parameter identification of time-varying systems.
Complexity Variability Assessment of Nonlinear Time-Varying Cardiovascular Control
Valenza, Gaetano; Citi, Luca; Garcia, Ronald G.; Taylor, Jessica Noggle; Toschi, Nicola; Barbieri, Riccardo
2017-01-01
The application of complex systems theory to physiology and medicine has provided meaningful information about the nonlinear aspects underlying the dynamics of a wide range of biological processes and their disease-related aberrations. However, no studies have investigated whether meaningful information can be extracted by quantifying second-order moments of time-varying cardiovascular complexity. To this extent, we introduce a novel mathematical framework termed complexity variability, in which the variance of instantaneous Lyapunov spectra estimated over time serves as a reference quantifier. We apply the proposed methodology to four exemplary studies involving disorders which stem from cardiology, neurology and psychiatry: Congestive Heart Failure (CHF), Major Depression Disorder (MDD), Parkinson’s Disease (PD), and Post-Traumatic Stress Disorder (PTSD) patients with insomnia under a yoga training regime. We show that complexity assessments derived from simple time-averaging are not able to discern pathology-related changes in autonomic control, and we demonstrate that between-group differences in measures of complexity variability are consistent across pathologies. Pathological states such as CHF, MDD, and PD are associated with an increased complexity variability when compared to healthy controls, whereas wellbeing derived from yoga in PTSD is associated with lower time-variance of complexity. PMID:28218249
Complexity Variability Assessment of Nonlinear Time-Varying Cardiovascular Control
Valenza, Gaetano; Citi, Luca; Garcia, Ronald G.; Taylor, Jessica Noggle; Toschi, Nicola; Barbieri, Riccardo
2017-02-01
The application of complex systems theory to physiology and medicine has provided meaningful information about the nonlinear aspects underlying the dynamics of a wide range of biological processes and their disease-related aberrations. However, no studies have investigated whether meaningful information can be extracted by quantifying second-order moments of time-varying cardiovascular complexity. To this extent, we introduce a novel mathematical framework termed complexity variability, in which the variance of instantaneous Lyapunov spectra estimated over time serves as a reference quantifier. We apply the proposed methodology to four exemplary studies involving disorders which stem from cardiology, neurology and psychiatry: Congestive Heart Failure (CHF), Major Depression Disorder (MDD), Parkinson’s Disease (PD), and Post-Traumatic Stress Disorder (PTSD) patients with insomnia under a yoga training regime. We show that complexity assessments derived from simple time-averaging are not able to discern pathology-related changes in autonomic control, and we demonstrate that between-group differences in measures of complexity variability are consistent across pathologies. Pathological states such as CHF, MDD, and PD are associated with an increased complexity variability when compared to healthy controls, whereas wellbeing derived from yoga in PTSD is associated with lower time-variance of complexity.
Tomadakis, Manolis M.; Robertson, Teri J.
2005-03-01
Computer simulation results are presented for the mean survival time, principal relaxation time, mean pore size, and mean square pore size, for random porous structures consisting of parallel nonoverlapping or partially overlapping fibers. The numerical procedure is based on a discrete step-by-step random walk mechanism simulating the Brownian diffusion trajectories of molecules in the porous media. Numerical results on the viscous permeability of these structures are computed with a method based on electrical conduction principles and compared to a variational bound derived from the mean survival time. The results show that nonoverlapping fiber structures exhibit lower values of the dimensionless mean survival time, principal relaxation time, mean pore size, and mean square pore size than randomly overlapping fiber structures of the same porosity, while partially overlapping fiber structures show behavior intermediate to those of the two extreme cases. The mean square pore size (second moment of the pore size distribution) is found to be a very good predictor of the mean survival time for non-, partially, and randomly overlapping fiber structures. Dimensionless groups representing the deviation of variational bounds from our simulation results vary in practically the same range as the corresponding values reported earlier for beds of spherical particles. A universal scaling expression of the literature relating the mean survival time to structural properties [S. Torquato and C. L. Y. Yeong, J. Chem. Phys. 106, 8814 (1997)] agrees very well with our results for all examined fiber structures, thus validated for the first time for porous media formed by partially overlapping particles. The permeability behavior of partially overlapping fiber structures resembles that of nonoverlapping fiber structures for flow parallel to the fibers, but not for transverse flow, where percolation phenomena prevail. The permeability results for beds of unidirectional partially
Time-varying vector fields and their flows
Jafarpour, Saber
2014-01-01
This short book provides a comprehensive and unified treatment of time-varying vector fields under a variety of regularity hypotheses, namely finitely differentiable, Lipschitz, smooth, holomorphic, and real analytic. The presentation of this material in the real analytic setting is new, as is the manner in which the various hypotheses are unified using functional analysis. Indeed, a major contribution of the book is the coherent development of locally convex topologies for the space of real analytic sections of a vector bundle, and the development of this in a manner that relates easily to classically known topologies in, for example, the finitely differentiable and smooth cases. The tools used in this development will be of use to researchers in the area of geometric functional analysis.
Time-varying Capital Requirements and Disclosure Rules
Kragh, Jonas; Rangvid, Jesper
Unique and confidential Danish data allow us to identify how changes in disclosure requirements and bank-specific time-varying capital requirements affect banks' lending and capital accumu-lation decisions. We find that banks increase their capital ratios after capital requirements are increased......, implying that resilience in the banking system is also increased. The increase in capital ratios is partly due to a modest reduction in lending. Using a policy changes, we show that banks react stronger to changes in capital requirements when these are public. Our results further suggest that the impact...... of capital requirements differ for small and large banks. Large banks raise their capital ratios more, reduce lending less, and accumulate more new capital compared to small banks....
Time-varying risk aversion. An application to energy hedging
Cotter, John [Centre for Financial Markets, School of Business, University College Dublin, Blackrock, Co. Dublin (Ireland); Hanly, Jim [School of Accounting and Finance, Dublin Institute of Technology, Dublin 2 (Ireland)
2010-03-15
Risk aversion is a key element of utility maximizing hedge strategies; however, it has typically been assigned an arbitrary value in the literature. This paper instead applies a GARCH-in-Mean (GARCH-M) model to estimate a time-varying measure of risk aversion that is based on the observed risk preferences of energy hedging market participants. The resulting estimates are applied to derive explicit risk aversion based optimal hedge strategies for both short and long hedgers. Out-of-sample results are also presented based on a unique approach that allows us to forecast risk aversion, thereby estimating hedge strategies that address the potential future needs of energy hedgers. We find that the risk aversion based hedges differ significantly from simpler OLS hedges. When implemented in-sample, risk aversion hedges for short hedgers outperform the OLS hedge ratio in a utility based comparison. (author)
On Hamiltonian realization of time-varying nonlinear systems
无
2007-01-01
This paper Investigates Hamiltonian realization of time-varying nonlinear (TVN) systems, and proposes a number of new methods for the problem. It is shown that every smooth TVN system can be expressed as a generalized Hamiltonian system if the origin is the equilibrium of the system. If the Jacooian matrix of a TVN system is nonsingu-lar, the system has a generalized Hamiltonian realization whose structural matrix and Hamiltonian function are given explicitly. For the case that the Jacobian matrix is singular, this paper provides a constructive decomposition method, and then proves that a TVN system has a generalized Hamiltonian realization if its Jacobian matrix has a nonsingular main diagonal block. Furthermore, some sufficient (necessary and sufficient) conditions for dissipative Hamiltonian realization of TVN systems are also presented in this paper.
Plumb line deflection varied with time obtained by repeated gravimetry
李辉; 付广裕; 李正心
2001-01-01
In this paper, the plumb line deflection varied with time (PLV) are calculated with the Vening-Meinesz formula for Xiaguan and Beijing point based on the 28 and 39 campaigns of gravimetry at the local gravity networks in the Western Yunnan Earthquake Prediction Experiment Area and the North China, respectively. Based on the results, we conclude that: ① the maximum of PLV is under 0.12 and amplitudes of interannual variation are under 0.022.②PLV can be determined with the reliability of 0.012 by the modeling based on the precession of repeated gravimetry. This implies that repeated gravimetry could be used to determine the PLV. ③There exist some common and different characteristics for the different places and different components. It may provide a new approach for the study on the local or global geodynamic by using repeated gravimetry.
Multivariate Option Pricing with Time Varying Volatility and Correlations
Rombouts, Jeroen V.K.; Stentoft, Lars Peter
In recent years multivariate models for asset returns have received much attention, in particular this is the case for models with time varying volatility. In this paper we consider models of this class and examine their potential when it comes to option pricing. Specifically, we derive the risk...... neutral dynamics for a general class of multivariate heteroskedastic models, and we provide a feasible way to price options in this framework. Our framework can be used irrespective of the assumed underlying distribution and dynamics, and it nests several important special cases. We provide an application...... to options on the minimum of two indices. Our results show that not only is correlation important for these options but so is allowing this correlation to be dynamic. Moreover, we show that for the general model exposure to correlation risk carries an important premium, and when this is neglected option...
Dendroclimatic reconstruction with time varying predictor subsets of tree indices
Meko, D. [Univ. of Arizona, Tucson, AZ (United States)
1997-04-01
Tree-ring site chronologies, the predictors for most dendroclimatic reconstructions, are essentially mean-value functions with a time varying sample size (number of trees) and sample composition. Because reconstruction models are calibrated and verified on the most recent, best-replicated part of the chronologies, regression and verification statistics can be misleading as indicators of long-term reconstruction accuracy. A new reconstruction method is described that circumvents the use of site chronologies and instead derives predictor variables from indices of individual trees. Separate regression models are estimated and cross validated for various time segments of the tree-ring record, depending on the trees available at the time. This approach allows the reconstruction to extend to the first year covered by any tree in the network and yields direct evaluation of the change in reconstruction accuracy with tree-ring sample composition. The method includes two regression stages. The first is to separately deconvolve the local climate signal for individual trees, and the second is to weight the deconvolved signals into estimates of the climatic variable to be reconstructed. The method is illustrated in an application of precipitation and tree-ring data for the San Pedro River Basin in southeastern Arizona. Extensions to larger-scale problems and spatial reconstruction are suggested. 17 refs., 4 figs., 4 tabs.
Time-varying clustering for local lighting and material design
HUANG PeiJie; GU YuanTing; WU XiaoLong; CHEN YanYun; WU EnHua
2009-01-01
This paper presents an interactive graphics processing unit (GPU)-based rellghting system in which local lighting condition,surface materials and viewing direction can all be changed on the fly.To support these changes,we simulate the lighting transportation process at run time,which is normally impractical for interactive use due to its huge computational burden.We greatly alleviate this burden by a hierarchical structure named a transportation tree that clusters similar emitting samples together within a perceptually acceptable error bound.Furthermore,by exploiting the coherence in time as well as in space,we incrementally adjust the dusters rather than computing them from scratch in each frame.With a pre-computed visibility map,we are able to efficiently estimate the indirect illumination in parallel on graphlce hardware,by simply summing up the radiance shoots from cluster representatives,plus a small number of operations of merging and splitting on clusters.With relighting based on the time-varying clusters,Interactive update of global illumination effects with multi-bounced indirect lighting is demonstrated in appllcations to msterial animation and scene decoration.
Vandewalle, S. [Caltech, Pasadena, CA (United States)
1994-12-31
Time-stepping methods for parabolic partial differential equations are essentially sequential. This prohibits the use of massively parallel computers unless the problem on each time-level is very large. This observation has led to the development of algorithms that operate on more than one time-level simultaneously; that is to say, on grids extending in space and in time. The so-called parabolic multigrid methods solve the time-dependent parabolic PDE as if it were a stationary PDE discretized on a space-time grid. The author has investigated the use of multigrid waveform relaxation, an algorithm developed by Lubich and Ostermann. The algorithm is based on a multigrid acceleration of waveform relaxation, a highly concurrent technique for solving large systems of ordinary differential equations. Another method of this class is the time-parallel multigrid method. This method was developed by Hackbusch and was recently subject of further study by Horton. It extends the elliptic multigrid idea to the set of equations that is derived by discretizing a parabolic problem in space and in time.
Time-Varying Metasurfaces and Lorentz Non-Reciprocity
2015-01-01
A cornerstone equation of optics, Snell's law, relates the angles of incidence and refraction for light passing through an interface between two media. It is built on two fundamental constrains: the conservation of tangential momentum and the conservation of energy. By relaxing the classical Snell law photon momentum conservation constrain when using space-gradient phase discontinuity, optical metasurfaces enabled an entirely new class of ultrathin optical devices. Here, we show that by eradi...
Short-Time Beta Relaxation in Glass-Forming Liquids Is Cooperative in Nature
Karmakar, Smarajit; Dasgupta, Chandan; Sastry, Srikanth
2016-02-01
Temporal relaxation of density fluctuations in supercooled liquids near the glass transition occurs in multiple steps. Using molecular dynamics simulations for three model glass-forming liquids, we show that the short-time β relaxation is cooperative in nature. Using finite-size scaling analysis, we extract a growing length scale associated with beta relaxation from the observed dependence of the beta relaxation time on the system size. We find, in qualitative agreement with the prediction of the inhomogeneous mode coupling theory, that the temperature dependence of this length scale is the same as that of the length scale that describes the spatial heterogeneity of local dynamics in the long-time α -relaxation regime.
Global Exponential Stability of Discrete-Time Neural Networks with Time-Varying Delays
S. Udpin
2013-01-01
Full Text Available This paper presents some global stability criteria of discrete-time neural networks with time-varying delays. Based on a discrete-type inequality, a new global stability condition for nonlinear difference equation is derived. We consider nonlinear discrete systems with time-varying delays and independence of delay time. Numerical examples are given to illustrate the effectiveness of our theoretical results.
Estimation of Hot Electron Relaxation Time in GaN Using Hot Electron Transistors
Dasgupta, Sansaptak; Lu, Jing; Nidhi; Raman, Ajay; Hurni, Christophe; Gupta, Geetak; Speck, James S.; Mishra, Umesh K.
2013-03-01
In this paper, we report for the first time an estimation of hot electron relaxation time in GaN using electrical measurements. Hot electron transistors (HETs) with GaN as the base layer and different base-emitter barrier-height configurations and base thicknesses were fabricated. Common-base measurements were performed to extract the differential transfer ratio, and an exponential decay of the transfer ratio with increasing base thickness was observed. A hot electron mean free path was extracted from the corresponding exponential fitting and a relaxation time was computed, which, for low energy injection, matched well with theoretically predicted relaxation times based on longitudinal optical (LO) phonon scattering.
Etiology of phenotype switching strategy in time varying stochastic environment
Horvath, Denis; Brutovsky, Branislav
2016-11-01
In the paper, we present the two-state discrete-time Markovian model to study the impact of the two alternative switching strategies on the fitness of the population evolving in time varying environment. The first strategy, referred as the 'responsive switching', enables the cell to make transition into the state conferring to it higher fitness in the instant environment. If the alternative strategy, termed 'random switching' is applied, the cell undergoes transition into the new state not regarding the instant environment. Each strategy comes with the respective cost for its physical realization. Within the framework of evolutionary model, mutations occur as random events which change parameters of the probabilistic models corresponding to the respective switching strategies. Most of the general trends of population averages can be easily understood at the intuitive level, with a few exceptions related to the cases when too low mutation noise hampers population to follow rapid environmental changes. On the other hand, the more detailed study of the parameter distributions reveals much more complex structure than expected. The simulation results may help to understand, at the conceptual level, relation between the population heterogeneity and its environment that could find important implications in various areas, such as cancer therapy or development of risk diversifying strategies.
TRANSVERSAL INERTIAL EFFECT ON RELAXATION/RETARDATION TIME OF CEMENT MORTAR UNDER HARMONIC WAVE
Jue Zhu; Yonghui Cao; Jiankang Chen
2008-01-01
Under dynamic loading, the constitutive relation of the cement mortar will be signif-icantly affected by the transversal inertial effect of specimens with large diameters. In this paper,one-dimensional theoretical analysis is carried out to determine the transversal inertial effect on the relaxation/retardation time of the cement mortar under the harmonic wave. Relaxation time or retardation time is obtained by means of the wave velocity, attenuation coefficient and the frequency of the harmonic wave. Thus, the transversal inertial effect on the relaxation time from Maxwell model, as well as on retardation time from Voigt model is analyzed. The results show that the transversal inertial effect may lead to the increase of the relaxation time, but induce the decrease of the retardation time. Those should be taken into account when eliminating the transversal inertial effect in applications.
Temperature dependence of proton NMR relaxation times at earth's magnetic field
Niedbalski, Peter; Kiswandhi, Andhika; Parish, Christopher; Ferguson, Sarah; Cervantes, Eduardo; Oomen, Anisha; Krishnan, Anagha; Goyal, Aayush; Lumata, Lloyd
The theoretical description of relaxation processes for protons, well established and experimentally verified at conventional nuclear magnetic resonance (NMR) fields, has remained untested at low fields despite significant advances in low field NMR technology. In this study, proton spin-lattice relaxation (T1) times in pure water and water doped with varying concentrations of the paramagnetic agent copper chloride have been measured from 6 to 92oC at earth's magnetic field (1700 Hz). Results show a linear increase of T1 with temperature for each of the samples studied. Increasing the concentration of the copper chloride greatly reduced T1 and reduced dependence on temperature. The consistency of the results with theory is an important confirmation of past results, while the ability of an ultra-low field NMR system to do contrast-enhanced magnetic resonance imaging (MRI) is promising for future applicability to low-cost medical imaging and chemical identification. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and the Robert A. Welch Foundation Grant No. AT-1877.
Time-fractional derivatives in relaxation processes: a tutorial survey
Mainardi, Francesco
2008-01-01
The aim of this tutorial survey is to revisit the basic theory of relaxation processes governed by linear differential equations of fractional order. The fractional derivatives are intended both in the Rieamann-Liouville sense and in the Caputo sense. After giving a necessary outline of the classical theory of linear viscoelasticity, we contrast these two types of fractional derivatives in their ability to take into account initial conditions in the constitutive equations of fractional order. We also provide historical notes on the origins of the Caputo derivative and on the use of fractional calculus in viscoelasticity.
The relaxation time of processes in a FitzHugh-Nagumo neural system with time delay
Gong Ailing; Zeng Chunhua [Faculty of Science, Kunming University of Science and Technology, Kunming 650093 (China); Wang Hua, E-mail: zchh2009@126.com [Province Engineering Research Center of Industrial Energy Conservation and New Technology, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China)
2011-08-01
In this paper, we study the relaxation time (RT) of the steady-state correlation function in a FitzHugh-Nagumo neural system under the presence of multiplicative and additive white noises and time delay. The noise correlation parameter {lambda} can produce a critical behavior in the RT as functions of the multiplicative noise intensity D, the additive noise intensity Q and the time delay {tau}. That is, the RT decreases as the noise intensities D and Q increase, and increases as the time delay {tau} increases below the critical value of {lambda}. However, above the critical value, the RT first increases, reaches a maximum, and then decreases as D, Q and {tau} increase, i.e. a noise intensity D or Q and a time delay {tau} exist, at which the time scales of the relaxation process are at their largest. In addition, the additive noise intensity Q can also produce a critical behavior in the RT as a function of {lambda}. The noise correlation parameter {lambda} first increases the RT of processes, then decreases it below the critical value of Q. Above the critical value, {lambda} increases it.
Active open boundary forcing using dual relaxation time-scales in downscaled ocean models
Herzfeld, M.; Gillibrand, P. A.
2015-05-01
Regional models actively forced with data from larger scale models at their open boundaries often contain motion at different time-scales (e.g. tidal and low frequency). These motions are not always individually well specified in the forcing data, and one may require a more active boundary forcing while the other exert less influence on the model interior. If a single relaxation time-scale is used to relax toward these data in the boundary equation, then this may be difficult. The method of fractional steps is used to introduce dual relaxation time-scales in an open boundary local flux adjustment scheme. This allows tidal and low frequency oscillations to be relaxed independently, resulting in a better overall solution than if a single relaxation parameter is optimized for tidal (short relaxation) or low frequency (long relaxation) boundary forcing. The dual method is compared to the single relaxation method for an idealized test case where a tidal signal is superimposed on a steady state low frequency solution, and a real application where the low frequency boundary forcing component is derived from a global circulation model for a region extending over the whole Great Barrier Reef, and a tidal signal subsequently superimposed.
Xiao, Jianying; Zhong, Shouming; Li, Yongtao
2015-11-01
In this paper, the problem of passivity analysis is studied for memristor-based uncertain neural networks with leakage and time-varying delays. By combining differential inclusions with set-valued maps, the system of memristive neural networks is changed into the conventional one. By adding a triple quadratic integral and relaxing the requirement for the positive definiteness of some matrices, a proper Lyapunov-Krasovskii functional is constructed. Based on the establishment of the novel Lyapunov-Krasovskii functional, the new passivity criteria are derived by mainly applying Wirtinger-based double integral inequality, S-procedure and so on. Moreover, the conservatism of passivity conditions can be reduced. Finally, four numerical examples are given to show the effectiveness and less conservatism of the proposed criteria.
Spin relaxation time dependence on optical pumping in GaAs:Mn
Burobina, Veronika; Binek, Christian
2015-03-01
We analyze the dependence of electron spin relaxation time on optical pumping in a partially-compensated acceptor semiconductor GaAs:Mn using analytic solutions for the kinetic equations of the charge carrier concentrations. Our results are applied to previous experimental data of spin-relaxation time vs. excitation power for magnetic concentrations of approximately 1017cm-3. The agreement of our analytic solutions with the experimental data supports the mechanism of the earlier-reported atypically long electron-spin relaxation time in the magnetic semiconductor.
Spin relaxation time dependence on optical pumping intensity in GaAs:Mn
Burobina, V. [Department of Physics and Astronomy, University of Utah, 115 South 1400 East, Salt Lake City, Utah 84112-0830 (United States); Binek, Ch. [Department of Physics and Astronomy, Nebraska Center for Materials and Nanoscience, Theodore Jorgensen Hall, 855 North 16th Street, University of Nebraska, P.O. Box 880299, Lincoln, Nebraska 68588-0299 (United States)
2014-04-28
We analyze the dependence of electron spin relaxation time on optical pumping intensity in a partially compensated acceptor semiconductor GaAs:Mn using analytic solutions for the kinetic equations of the charge carrier concentrations. Our results are applied to previous experimental data of spin-relaxation time vs. excitation power for magnetic concentrations of approximately 10{sup 17} cm{sup −3}. The agreement of our analytic solutions with the experimental data supports the mechanism of the earlier-reported atypically long electron-spin relaxation time in the magnetic semiconductor.
Spin relaxation time dependence on optical pumping intensity in GaAs:Mn
Burobina, V.; Binek, Ch.
2014-04-01
We analyze the dependence of electron spin relaxation time on optical pumping intensity in a partially compensated acceptor semiconductor GaAs:Mn using analytic solutions for the kinetic equations of the charge carrier concentrations. Our results are applied to previous experimental data of spin-relaxation time vs. excitation power for magnetic concentrations of approximately 1017 cm-3. The agreement of our analytic solutions with the experimental data supports the mechanism of the earlier-reported atypically long electron-spin relaxation time in the magnetic semiconductor.
Strong Coupling Problem with Time-Varying Sound Speed
Joyce, Austin
2011-01-01
For a single scalar field with unit sound speed, there are exactly three distinct cosmological solutions which produce a scale invariant spectrum of curvature perturbations in a dynamical attractor background, assuming vacuum initial conditions: slow-roll inflation; a slowly contracting adiabatic ekpyrotic phase, described by a rapidly-varying equation of state; and an adiabatic ekpyrotic phase on a slowly expanding background. Of these three, only inflation remains weakly coupled over a wide range of modes, while the other scenarios can produce at most 12 e-folds of scale invariant and gaussian modes. In this paper, we investigate how allowing the speed of sound of fluctuations to evolve in time affects this classification. While in the presence of a variable sound speed there are many more scenarios which are scale invariant at the level of the two-point function, they generically suffer from strong coupling problems similar to those in the canonical case. There is, however, an exceptional case with superlu...
Opinion formation with time-varying bounded confidence
Liu, QiPeng; Zhang, SiYing
2017-01-01
When individuals in social groups communicate with one another and are under the influence of neighbors’ opinions, they typically revise their own opinions to adapt to such peer opinions. The individual threshold of bounded confidence will thus be affected by both a change in individual confidence and by neighbor influence. Individuals thus update their own opinions with new bounded confidence, while their updated opinions also influence their neighbors’ opinions. Based on this reasoned factual assumption, we propose an opinion dynamics model with time-varying bounded confidence. A directed network is formed by the rule of the individual bounded confidence threshold. The threshold of individual bounded confidence involves both confidence variation and the in/out degree of the individual node. When the confidence variation is greater, an individual’s confidence in persisting in his own opinion in interactions is weaker, and the individual is more likely to adopt neighbors’ opinions. In networks, the in/out degree is determined by individual neighbors. Our main research involves the process of opinion evolution and the basic laws of opinion cluster formation. Group opinions converge exponentially to consensus with stable neighbors. An individual opinion evolution is determined by the average neighbor opinion effect strength. We also explore the conditions involved in forming a stable neighbor relationship and the influence of the confidence variation in the convergence of the threshold of bounded confidence. The results show that the influence on opinion evolution is greater with increased confidence variation. PMID:28264038
Innovation diffusion on time-varying activity driven networks
Rizzo, Alessandro; Porfiri, Maurizio
2016-01-01
Since its introduction in the 1960s, the theory of innovation diffusion has contributed to the advancement of several research fields, such as marketing management and consumer behavior. The 1969 seminal paper by Bass [F.M. Bass, Manag. Sci. 15, 215 (1969)] introduced a model of product growth for consumer durables, which has been extensively used to predict innovation diffusion across a range of applications. Here, we propose a novel approach to study innovation diffusion, where interactions among individuals are mediated by the dynamics of a time-varying network. Our approach is based on the Bass' model, and overcomes key limitations of previous studies, which assumed timescale separation between the individual dynamics and the evolution of the connectivity patterns. Thus, we do not hypothesize homogeneous mixing among individuals or the existence of a fixed interaction network. We formulate our approach in the framework of activity driven networks to enable the analysis of the concurrent evolution of the interaction and individual dynamics. Numerical simulations offer a systematic analysis of the model behavior and highlight the role of individual activity on market penetration when targeted advertisement campaigns are designed, or a competition between two different products takes place.
Opinion formation with time-varying bounded confidence.
Zhang, YunHong; Liu, QiPeng; Zhang, SiYing
2017-01-01
When individuals in social groups communicate with one another and are under the influence of neighbors' opinions, they typically revise their own opinions to adapt to such peer opinions. The individual threshold of bounded confidence will thus be affected by both a change in individual confidence and by neighbor influence. Individuals thus update their own opinions with new bounded confidence, while their updated opinions also influence their neighbors' opinions. Based on this reasoned factual assumption, we propose an opinion dynamics model with time-varying bounded confidence. A directed network is formed by the rule of the individual bounded confidence threshold. The threshold of individual bounded confidence involves both confidence variation and the in/out degree of the individual node. When the confidence variation is greater, an individual's confidence in persisting in his own opinion in interactions is weaker, and the individual is more likely to adopt neighbors' opinions. In networks, the in/out degree is determined by individual neighbors. Our main research involves the process of opinion evolution and the basic laws of opinion cluster formation. Group opinions converge exponentially to consensus with stable neighbors. An individual opinion evolution is determined by the average neighbor opinion effect strength. We also explore the conditions involved in forming a stable neighbor relationship and the influence of the confidence variation in the convergence of the threshold of bounded confidence. The results show that the influence on opinion evolution is greater with increased confidence variation.
Long Memory of Financial Time Series and Hidden Markov Models with Time-Varying Parameters
Nystrup, Peter; Madsen, Henrik; Lindström, Erik
2016-01-01
estimation approach that allows for the parameters of the estimated models to be time varying. It is shown that a two-state Gaussian hidden Markov model with time-varying parameters is able to reproduce the long memory of squared daily returns that was previously believed to be the most difficult fact...... to reproduce with a hidden Markov model. Capturing the time-varying behavior of the parameters also leads to improved one-step density forecasts. Finally, it is shown that the forecasting performance of the estimated models can be further improved using local smoothing to forecast the parameter variations....
Long memory of financial time series and hidden Markov models with time-varying parameters
Nystrup, Peter; Madsen, Henrik; Lindström, Erik
facts have not been thoroughly examined. This paper presents an adaptive estimation approach that allows for the parameters of the estimated models to be time-varying. It is shown that a two-state Gaussian hidden Markov model with time-varying parameters is able to reproduce the long memory of squared...... daily returns that was previously believed to be the most difficult fact to reproduce with a hidden Markov model. Capturing the time-varying behavior of the parameters also leads to improved one-step predictions....
Finite time control of a class of time-varying unified chaotic systems.
Ying, Yang; Guopei, Chen
2013-09-01
This paper considers the problem of finite time control for a class of time-varying unified chaotic system. First, based on the finite-time stability theory, a novel adaptive control technique is presented to achieve finite-time stabilization for time-varying unified chaotic system. Comparing with the existing methods, the proposed controller only need to be added on one state variable of systems and it is easy to be implemented. Then, a finite time control technique is provided to realize the tracking of any target function with second-order derivatives. Finally, Simulation results are provided to show the effectiveness of the proposed method.
Large lateral photovoltaic effect with ultrafast relaxation time in SnSe/Si junction
Wang, Xianjie; Zhao, Xiaofeng; Hu, Chang; Zhang, Yang; Song, Bingqian; Zhang, Lingli; Liu, Weilong; Lv, Zhe; Zhang, Yu; Tang, Jinke; Sui, Yu; Song, Bo
2016-07-01
In this paper, we report a large lateral photovoltaic effect (LPE) with ultrafast relaxation time in SnSe/p-Si junctions. The LPE shows a linear dependence on the position of the laser spot, and the position sensitivity is as high as 250 mV mm-1. The optical response time and the relaxation time of the LPE are about 100 ns and 2 μs, respectively. The current-voltage curve on the surface of the SnSe film indicates the formation of an inversion layer at the SnSe/p-Si interface. Our results clearly suggest that most of the excited-electrons diffuse laterally in the inversion layer at the SnSe/p-Si interface, which results in a large LPE with ultrafast relaxation time. The high positional sensitivity and ultrafast relaxation time of the LPE make the SnSe/p-Si junction a promising candidate for a wide range of optoelectronic applications.
Generating survival times to simulate Cox proportional hazards models with time-varying covariates.
Austin, Peter C
2012-12-20
Simulations and Monte Carlo methods serve an important role in modern statistical research. They allow for an examination of the performance of statistical procedures in settings in which analytic and mathematical derivations may not be feasible. A key element in any statistical simulation is the existence of an appropriate data-generating process: one must be able to simulate data from a specified statistical model. We describe data-generating processes for the Cox proportional hazards model with time-varying covariates when event times follow an exponential, Weibull, or Gompertz distribution. We consider three types of time-varying covariates: first, a dichotomous time-varying covariate that can change at most once from untreated to treated (e.g., organ transplant); second, a continuous time-varying covariate such as cumulative exposure at a constant dose to radiation or to a pharmaceutical agent used for a chronic condition; third, a dichotomous time-varying covariate with a subject being able to move repeatedly between treatment states (e.g., current compliance or use of a medication). In each setting, we derive closed-form expressions that allow one to simulate survival times so that survival times are related to a vector of fixed or time-invariant covariates and to a single time-varying covariate. We illustrate the utility of our closed-form expressions for simulating event times by using Monte Carlo simulations to estimate the statistical power to detect as statistically significant the effect of different types of binary time-varying covariates. This is compared with the statistical power to detect as statistically significant a binary time-invariant covariate.
Relaxation in distal and proximal arm muscles: a reaction time study.
Buccolieri, A; Avanzino, L; Trompetto, C; Abbruzzese, G
2003-02-01
To investigate whether the same mechanisms underlie muscle relaxation in proximal and distal arm muscles of normal subjects. Fourteen healthy subjects were studied using a simple visual reaction time paradigm. Relaxation reaction time (R-RT) and contraction reaction time (C-RT) were compared across different tasks involving distal (first dorsal interosseus, FDI, flexor carpi radialis, FCR) and proximal (biceps brachii, BB, triceps brachii, TR) arm muscles. Changes of FCR H-reflex before and during voluntary relaxation were investigated in two subjects. No significant difference was observed between R-RT and C-RT in the distal muscles. The R-RT was significantly shorter than C-RT in both the BB and TR muscles. The relaxation latency (R-RT) was significantly correlated to the subjects' age in all the muscles except the FDI. No inhibition of the FCR H-reflex could be observed in the 20 ms preceding muscle relaxation. Our findings suggest that neural mechanisms contribute differently to the relaxation of muscles with a different functional role. Voluntary relaxation in distal arm muscles is mainly related to the reduction of motor cortical output, while in proximal muscles a spinal disfacilitation is also present and possibly sustained by the modulation of presynaptic inhibition.
Source of non-arrhenius average relaxation time in glass-forming liquids
Dyre, Jeppe
1998-01-01
A major mystery of glass-forming liquids is the non-Arrhenius temperature-dependence of the average relaxation time. This paper briefly reviews the classical phenomenological models for non-Arrhenius behavior the free volume model and the entropy model and critiques against these models. We...... are anharmonic, the non-Arrhenius temperature-dependence of the average relaxation time is a consequence of the fact that the instantaneous shear modulus increases upon cooling....
The necessity for a time local dimension in systems with time-varying attractors
Særmark, Knud H; Ashkenazy, Y; Levitan, J;
1997-01-01
We show that a simple non-linear system for ordinary differential equations may possess a time-varying attractor dimension. This indicates that it is infeasible to characterize EEG and MEG time series with a single time global dimension. We suggest another measure for the description of non...
Least expected time paths in stochastic, time-varying transportation networks
Miller-Hooks, E.D. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Civil and Environmental Engineering; Mahmassani, H.S. [Univ. of Texas, Austin, TX (United States)
1999-06-01
The authors consider stochastic, time-varying transportation networks, where the arc weights (arc travel times) are random variables with probability distribution functions that vary with time. Efficient procedures are widely available for determining least time paths in deterministic networks. In stochastic but time-invariant networks, least expected time paths can be determined by setting each random arc weight to its expected value and solving an equivalent deterministic problem. This paper addresses the problem of determining least expected time paths in stochastic, time-varying networks. Two procedures are presented. The first procedure determines the a priori least expected time paths from all origins to a single destination for each departure time in the peak period. The second procedure determines lower bounds on the expected times of these a priori least expected time paths. This procedure determines an exact solution for the problem where the driver is permitted to react to revealed travel times on traveled links en route, i.e. in a time-adaptive route choice framework. Modifications to each of these procedures for determining least expected cost (where cost is not necessarily travel time) paths and lower bounds on the expected costs of these paths are given. Extensive numerical tests are conducted to illustrate the algorithms` computational performance as well as the properties of the solution.
Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale
Maslennikov, Oleg V.; Nekorkin, Vladimir I. [Institute of Applied Physics of RAS, Nizhny Novgorod (Russian Federation)
2016-07-15
In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.
Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale.
Maslennikov, Oleg V; Nekorkin, Vladimir I
2016-07-01
In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.
Time-dependent Jahn-Teller problem: Phonon-induced relaxation through conical intersection
Pae, Kaja, E-mail: kaja.pae@gmail.com; Hizhnyakov, Vladimir [Institute of Physics University of Tartu, Tartu (Estonia)
2014-12-21
A theoretical study of time-dependent dynamical Jahn-Teller effect in an impurity center in a solid is presented. We are considering the relaxation of excited states in the E⊗e-problem through the conical intersection of the potential energy. A strict quantum-mechanical treatment of vibronic interactions with both the main Jahn-Teller active vibration and the nontotally symmetric phonons causing the energy loss is given. The applied method enables us to calculate the time-dependence of the distribution function of the basic configurational coordinate. We have performed a series of numerical calculations allowing us, among other relaxation features, to visualise the details of the relaxation through the conical intersection. In particular, we elucidate how the Slonczewski quantization of the states in the conical intersection affects the relaxation.
Time-dependent Jahn-Teller problem: phonon-induced relaxation through conical intersection.
Pae, Kaja; Hizhnyakov, Vladimir
2014-12-21
A theoretical study of time-dependent dynamical Jahn-Teller effect in an impurity center in a solid is presented. We are considering the relaxation of excited states in the E⊗e-problem through the conical intersection of the potential energy. A strict quantum-mechanical treatment of vibronic interactions with both the main Jahn-Teller active vibration and the nontotally symmetric phonons causing the energy loss is given. The applied method enables us to calculate the time-dependence of the distribution function of the basic configurational coordinate. We have performed a series of numerical calculations allowing us, among other relaxation features, to visualise the details of the relaxation through the conical intersection. In particular, we elucidate how the Slonczewski quantization of the states in the conical intersection affects the relaxation.
Tracking time-varying parameters with local regression
Joensen, Alfred Karsten; Nielsen, Henrik Aalborg; Nielsen, Torben Skov;
2000-01-01
This paper shows that the recursive least-squares (RLS) algorithm with forgetting factor is a special case of a varying-coe\\$cient model, and a model which can easily be estimated via simple local regression. This observation allows us to formulate a new method which retains the RLS algorithm, bu......, but extends the algorithm by including polynomial approximations. Simulation results are provided, which indicates that this new method is superior to the classical RLS method, if the parameter variations are smooth....
Representations and Metrics for Time-Varying Terrain Surfaces
2013-08-06
multiple terrain scans. The individual scans are point clouds augmented with a varying probability density functions at each sample point. A scalar...system. The boxes are individual executable programs and the cylinders are data files. The Point-Set Generator generates simple test point clouds , such... point clouds to a height-field raster, displayable as a gray-scale image. We first investigated using a 3D, volumetric variant of SIFT which stacks
SEMI-DEFINITE RELAXATION ALGORITHM FOR SINGLE MACHINE SCHEDULING WITH CONTROLLABLE PROCESSING TIMES
CHEN FENG; ZHANG LIANSHENG
2005-01-01
The authors present a semi-definite relaxation algorithm for the scheduling problem with controllable times on a single machine. Their approach shows how to relate this problem with the maximum vertex-cover problem with kernel constraints (MKVC).The established relationship enables to transfer the approximate solutions of MKVCinto the approximate solutions for the scheduling problem. Then, they show how to obtain an integer approximate solution for MKVC based on the semi-definite relaxation and randomized rounding technique.
Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity
Pandey, Vikash; Holm, Sverre
2016-09-01
Many of the most interesting complex media are non-Newtonian and exhibit time-dependent behavior of thixotropy and rheopecty. They may also have temporal responses described by power laws. The material behavior is represented by the relaxation modulus and the creep compliance. On the one hand, it is shown that in the special case of a Maxwell model characterized by a linearly time-varying viscosity, the medium's relaxation modulus is a power law which is similar to that of a fractional derivative element often called a springpot. On the other hand, the creep compliance of the time-varying Maxwell model is identified as Lomnitz's logarithmic creep law, making this possibly its first direct derivation. In this way both fractional derivatives and Lomnitz's creep law are linked to time-varying viscosity. A mechanism which yields fractional viscoelasticity and logarithmic creep behavior has therefore been found. Further, as a result of this linking, the curve-fitting parameters involved in the fractional viscoelastic modeling, and the Lomnitz law gain physical interpretation.
Time-Dependent Behaviors of Granite: Loading-Rate Dependence, Creep, and Relaxation
Hashiba, K.; Fukui, K.
2016-07-01
To assess the long-term stability of underground structures, it is important to understand the time-dependent behaviors of rocks, such as their loading-rate dependence, creep, and relaxation. However, there have been fewer studies on crystalline rocks than on tuff, mudstone, and rock salt, because the high strength of crystalline rocks makes the detection of their time-dependent behaviors much more difficult. Moreover, studies on the relaxation, temporal change of stress and strain (TCSS) conditions, and relations between various time-dependent behaviors are scarce for not only granites, but also other rocks. In this study, previous reports on the time-dependent behaviors of granites were reviewed and various laboratory tests were conducted using Toki granite. These tests included an alternating-loading-rate test, creep test, relaxation test, and TCSS test. The results showed that the degree of time dependence of Toki granite is similar to other granites, and that the TCSS resembles the stress-relaxation curve and creep-strain curve. A viscoelastic constitutive model, proposed in a previous study, was modified to investigate the relations between the time-dependent behaviors in the pre- and post-peak regions. The modified model reproduced the stress-strain curve, creep, relaxation, and the results of the TCSS test. Based on a comparison of the results of the laboratory tests and numerical simulations, close relations between the time-dependent behaviors were revealed quantitatively.
Stochastic skyline route planning under time-varying uncertainty
Yang, Bin; Guo, Chenjuan; Jensen, Christian S.
2014-01-01
Different uses of a road network call for the consideration of different travel costs: in route planning, travel time and distance are typically considered, and green house gas (GHG) emissions are increasingly being considered. Further, travel costs such as travel time and GHG emissions are time...
Yadav, Vivek Kumar; Chandra, Amalendu
2013-06-14
A first principles study of the dynamics of supercritical methanol is carried out by means of ab initio molecular dynamics simulations. In particular, the fluctuation dynamics of hydroxyl stretch frequencies, hydrogen bonds, dangling hydroxyl groups, and orientation of methanol molecules are investigated for three different densities at 523 K. Apart from the dynamical properties, various equilibrium properties of supercritical methanol such as the local density distributions and structural correlations, hydrogen bonding aspects, frequency-structure correlations, and dipole distributions of methanol molecules are also investigated. In addition to the density dependence of various equilibrium and dynamical properties, their dependencies on dispersion interactions are also studied by carrying out additional simulations using a dispersion corrected density functional for all the systems. It is found that the hydrogen bonding between methanol molecules decreases significantly as we move to the supercritical state from the ambient one. The inclusion of dispersion interactions is found to increase the number of hydrogen bonds to some extent. Calculations of the frequency-structure correlation coefficient reveal that a statistical correlation between the hydroxyl stretch frequency and the nearest hydrogen-oxygen distance continues to exist even at supercritical states of methanol, although it is weakened with increase of temperature and decrease of density. In the supercritical state, the frequency time correlation function is found to decay with two time scales: One around or less than 100 fs and the other in the region of 250-700 fs. It is found that, for supercritical methanol, the times scales of vibrational spectral diffusion are determined by an interplay between the dynamics of hydrogen bonds, dangling OD groups, and inertial rotation of methanol molecules and the roles of these various components are found to vary with density of the supercritical solvent. Effects
A theoretical study of the stress relaxation in HMX on the picosecond time scale
Long, Yao; Chen, Jun
2015-12-01
The stress relaxation model of β-HMX on the picosecond time scale is studied by a theoretical approach. The relaxation of normal stress is contributed by lattice vibration, and the relaxation of shear stress is contributed by molecular rotation. Based on this model, the energy dissipation rule of the elastic wave and the profile of the shock wave are investigated. We find at low frequency the dissipation rate of the elastic wave is proportional to the power function of frequency, and under high speed shock loading the width of the stress relaxation zone is less than 0.3 μm there is a pressure peak with a height of 14 GPa near the wave front.
Leporq, Benjamin; Le Troter, Arnaud; Le Fur, Yann; Salort-Campana, Emmanuelle; Guye, Maxime; Beuf, Olivier; Attarian, Shahram; Bendahan, David
2017-08-01
To evaluate the combination of a fat-water separation method with an automated segmentation algorithm to quantify the intermuscular fatty-infiltrated fraction, the relaxation times, and the microscopic fatty infiltration in the normal-appearing muscle. MR acquisitions were performed at 1.5T in seven patients with facio-scapulo-humeral dystrophy and eight controls. Disease severity was assessed using commonly used scales for the upper and lower limbs. The fat-water separation method provided proton density fat fraction (PDFF) and relaxation times maps (T 2* and T 1). The segmentation algorithm distinguished adipose tissue and normal-appearing muscle from the T 2* map and combined active contours, a clustering analysis, and a morphological closing process to calculate the index of fatty infiltration (IFI) in the muscle compartment defined as the relative amount of pixels with the ratio between the number of pixels within IMAT and the total number of pixels (IMAT + normal appearing muscle). In patients, relaxation times were longer and a larger fatty infiltration has been quantified in the normal-appearing muscle. T 2* and PDFF distributions were broader. The relaxation times were correlated to the Vignos scale whereas the microscopic fatty infiltration was linked to the Medwin-Gardner-Walton scale. The IFI was linked to a composite clinical severity scale gathering the whole set of scales. The MRI indices quantified within the normal-appearing muscle could be considered as potential biomarkers of dystrophies and quantitatively illustrate tissue alterations such as inflammation and fatty infiltration.
Wu, Yuanyuan; Cao, Jinde; Alofi, Abdulaziz; Al-Mazrooei, Abdullah; Elaiw, Ahmed
2015-09-01
This paper deals with the finite-time boundedness and stabilization problem for a class of switched neural networks with time-varying delay and parametric uncertainties. Based on Lyapunov-like function method and average dwell time technique, some sufficient conditions are derived to guarantee the finite-time boundedness of considered uncertain switched neural networks. Furthermore, the state feedback controller is designed to solve the finite-time stabilization problem. Moreover, the proposed sufficient conditions can be simplified into the form of linear matrix equalities for conveniently using Matlab LMI toolbox. Finally, two numerical examples are given to show the effectiveness of the main results.
Bowler, R M; Yeh, C-L; Adams, S W; Ward, E J; Ma, R E; Dharmadhikari, S; Snyder, S A; Zauber, S E; Wright, C W; Dydak, U
2017-06-03
This study examines the results of neuropsychological testing of 26 active welders and 17 similar controls and their relationship to welders' shortened MRI T1 relaxation time, indicative of increased brain manganese (Mn) accumulation. Welders were exposed to Mn for an average duration of 12.25 years to average levels of Mn in air of 0.11±0.05mg/m(3). Welders scored significantly worse than controls on Fruit Naming and the Parallel Lines test of graphomotor tremor. Welders had shorter MRI T1 relaxation times than controls in the globus pallidus, substantia nigra, caudate nucleus, and the anterior prefrontal lobe. 63% of the variation in MRI T1 relaxation times was accounted for by exposure group. In welders, lower relaxation times in the caudate nucleus and substantia nigra were associated with lower neuropsychological test performance on tests of verbal fluency (Fruit Naming), verbal learning, memory, and perseveration (WHO-UCLA AVLT). Results indicate that verbal function may be one of the first cognitive domains affected by brain Mn deposition in welders as reflected by MRI T1 relaxation times. Copyright © 2017 Elsevier B.V. All rights reserved.
Kühne Titus
2010-07-01
Full Text Available Abstract Background In magnetic resonance (MR imaging, T1, T2 and T2* relaxation times represent characteristic tissue properties that can be quantified with the help of specific imaging strategies. While there are basic software tools for specific pulse sequences, until now there is no universal software program available to automate pixel-wise mapping of relaxation times from various types of images or MR systems. Such a software program would allow researchers to test and compare new imaging strategies and thus would significantly facilitate research in the area of quantitative tissue characterization. Results After defining requirements for a universal MR mapping tool, a software program named MRmap was created using a high-level graphics language. Additional features include a manual registration tool for source images with motion artifacts and a tabular DICOM viewer to examine pulse sequence parameters. MRmap was successfully tested on three different computer platforms with image data from three different MR system manufacturers and five different sorts of pulse sequences: multi-image inversion recovery T1; Look-Locker/TOMROP T1; modified Look-Locker (MOLLI T1; single-echo T2/T2*; and multi-echo T2/T2*. Computing times varied between 2 and 113 seconds. Estimates of relaxation times compared favorably to those obtained from non-automated curve fitting. Completed maps were exported in DICOM format and could be read in standard software packages used for analysis of clinical and research MR data. Conclusions MRmap is a flexible cross-platform research tool that enables accurate mapping of relaxation times from various pulse sequences. The software allows researchers to optimize quantitative MR strategies in a manufacturer-independent fashion. The program and its source code were made available as open-source software on the internet.
The short-time intramolecular dynamics of solutes in liquids. II. Vibrational population relaxation
Goodyear, Grant; Stratt, Richard M.
1997-08-01
Events such as the vibrational relaxation of a solute are often well described by writing an effective equation of motion—a generalized Langevin equation—which expresses the surrounding medium's influence on the intramolecular dynamics in terms of a friction and a fluctuating force acting on the solute. These quantities, though, can be obtained from the instantaneous normal modes (INMs) of the system when the relaxation takes place in a fluid, suggesting that we should be able to analyze in some detail the solvent motions driving the relaxation, at least for short times. In this paper we show that this promise can indeed be realized for the specific case of a vibrating diatomic molecule dissolved in an atomic solvent. Despite the relatively long times typical of vibrational population relaxation, it turns out that understanding the behavior of the vibrational friction at the short times appropriate to INMs (a few hundred femtoseconds) often suffices to predict T1 times. We use this observation to probe the dependence of these relaxation rates on thermodynamic conditions and to look at the molecular mechanisms underlying the process. We find that raising the temperature at any given density or raising the density at any given temperature will invariably increase the rate of energy relaxation. However, since these two trends may be in conflict in a typical constant-pressure laboratory experiment, we also find that it is possible to make sense of the "anomalous" inverted temperature dependence recently seen experimentally. We find, as well, that the INM theory—which has no explicit collisions built into it—predicts exactly the same density dependence as the venerable independent-binary-collision (IBC) theory (an intriguing result in view of recent claims that experimental observations of this kind of dependence provide support for the IBC theory). The actual mechanisms behind vibrational population relaxation are revealed by looking in detail at the
Stochastic skyline route planning under time-varying uncertainty
Yang, Bin; Guo, Chenjuan; Jensen, Christian S.;
2014-01-01
-dependent and uncertain. To support such uses, we propose techniques that enable the construction of a multi-cost, time-dependent, uncertain graph (MTUG) model of a road network based on GPS data from vehicles that traversed the road network. Based on the MTUG, we define stochastic skyline routes that consider multiple...... costs and time-dependent uncertainty, and we propose efficient algorithms to retrieve stochastic skyline routes for a given source-destination pair and a start time. Empirical studies with three road networks in Denmark and a substantial GPS data set offer insight into the design properties of the MTUG...... and the efficiency of the stochastic skyline routing algorithms....
Time-invariant measurement of time-varying bioimpedance using vector impedance analysis.
Sanchez, B; Louarroudi, E; Pintelon, R
2015-03-01
When stepped-sine impedance spectroscopy measurements are carried out on (periodically) time-varying bio-systems, the inherent time-variant (time-periodic) parts are traditionally ignored or mitigated by filtering. The latter, however, lacks theoretical foundation and, in this paper, it is shown that it only works under certain specific conditions. Besides, we propose an alternative method, based on multisine signals, that exploits the non-stationary nature in time-varying bio-systems with a dominant periodic character, such as cardiovascular and respiratory systems, or measurements interfered with by their physiological activities. The novel method extracts the best—in a mean square sense—linear time-invariant (BLTI) impedance approximation ZBLTI(jω) of a periodically time-varying (PTV) impedance ZPTV(jω, t) as well as its time-periodic part. Relying on the geometrical interpretation of the BLTI concept, a new impedance analysis tool, called vector impedance analysis (VIA), is also presented. The theoretical and practical aspects are validated through measurements performed on a PTV dummy circuit and on an in vivo myocardial tissue.
Andersen, P.; Skjærbæk, P. S.; Kirkegaard, Poul Henning
with the smoothed quanties which have been obtained from SARCOF. The results show the usefulness of the technique for identification of a time varying civil engineering structure. It is found that all the techniques give reliable estiates of the frequencies of the two lowest modes and the first mode shape. Only...
Multigrid waveform relaxation for the time-fractional heat equation
F.J. Gaspar Lorenz (Franscisco); C. Rodrigo (Carmen)
2017-01-01
textabstractIn this work, we propose an efficient and robust multigrid method for solving the time-fractional heat equation. Due to the nonlocal property of fractional differential operators, numerical methods usually generate systems of equations for which the coefficient matrix is dense.
T2 relaxation time mapping of the cartilage cap of osteochondromas
Kim, Hee Kyung; Horn, Paul; Laor, Tal [Cincinnati Children' s Hospital Medical Center, Cincinnati (United States); Daedzinski, Bernard J. [Dept. of Radiology, Children' s Hospital of Philadelphia, University of Pennsylvania, Philadelphia (United States); Kim, Dong Hoon [Dept. of Radiology, Pharmacology, Korea University College of Medicine, Seoul (Korea, Republic of)
2016-02-15
Our aim was to evaluate the cartilage cap of osteochondromas using T2 maps and to compare these values to those of normal patellar cartilage, from age and gender matched controls. This study was approved by the Institutional Review Board and request for informed consent was waived. Eleven children (ages 5-17 years) with osteochondromas underwent MR imaging, which included T2-weighted fat suppressed and T2 relaxation time mapping (echo time = 9-99/repetition time = 1500 msec) sequences. Lesion origins were femur (n = 5), tibia (n = 3), fibula (n = 2), and scapula (n = 1). Signal intensity of the cartilage cap, thickness, mean T2 relaxation times, and T2 spatial variation (mean T2 relaxation times as a function of distance) were evaluated. Findings were compared to those of patellar cartilage from a group of age and gender matched subjects. The cartilage caps showed a fluid-like high T2 signal, with mean thickness of 4.8 mm. The mean value of mean T2 relaxation times of the osteochondromas was 264.0 ± 80.4 msec (range, 151.0-366.0 msec). Mean T2 relaxation times were significantly longer than the values from patellar cartilage (39.0 msec) (p < 0.0001). These findings were observed with T2 spatial variation plots across the entire distance of the cartilage cap, with the most pronounced difference in the middle section of the cartilage. Longer T2 relaxation times of the cartilage caps of osteochondromas should be considered as normal, and likely to reflect an increased water content, different microstructure and component.
Hashemi, Mahnaz; Ghaisari, Jafar; Askari, Javad
2015-07-01
This paper investigates an adaptive controller for a class of Multi Input Multi Output (MIMO) nonlinear systems with unknown parameters, bounded time delays and in the presence of unknown time varying actuator failures. The type of considered actuator failure is one in which some inputs may be stuck at some time varying values where the values, times and patterns of the failures are unknown. The proposed approach is constructed based on a backstepping design method. The boundedness of all the closed-loop signals is guaranteed and the tracking errors are proved to converge to a small neighborhood of the origin. The proposed approach is employed for a double inverted pendulums benchmark and a chemical reactor system. The simulation results show the effectiveness of the proposed method.
Finite-Time Reentry Attitude Control Using Time-Varying Sliding Mode and Disturbance Observer
Xuzhong Wu; Shengjing Tang; Jie Guo; Yao Zhang
2015-01-01
This paper presents the finite-time attitude control problem for reentry vehicle with redundant actuators in consideration of planet uncertainties and external disturbances. Firstly, feedback linearization technique is used to cancel the nonlinearities of equations of motion to construct a basic mode for attitude controller. Secondly, two kinds of time-varying sliding mode control methods with disturbance observer are integrated with the basic mode in order to enhance the control performance ...
Zhang Yunong [School of Information Science and Technology, Sun Yat-sen University, Guangzhou 510275 (China)], E-mail: zhynong@mail.sysu.edu.cn; Li Zhan [School of Information Science and Technology, Sun Yat-sen University, Guangzhou 510275 (China)], E-mail: lizhan@mail2.sysu.edu.cn
2009-04-20
In this Letter, by following Zhang et al.'s method, a recurrent neural network (termed as Zhang neural network, ZNN) is developed and analyzed for solving online the time-varying convex quadratic-programming problem subject to time-varying linear-equality constraints. Different from conventional gradient-based neural networks (GNN), such a ZNN model makes full use of the time-derivative information of time-varying coefficient. The resultant ZNN model is theoretically proved to have global exponential convergence to the time-varying theoretical optimal solution of the investigated time-varying convex quadratic program. Computer-simulation results further substantiate the effectiveness, efficiency and novelty of such ZNN model and method.
Zhang, Yunong; Li, Zhan
2009-04-01
In this Letter, by following Zhang et al.'s method, a recurrent neural network (termed as Zhang neural network, ZNN) is developed and analyzed for solving online the time-varying convex quadratic-programming problem subject to time-varying linear-equality constraints. Different from conventional gradient-based neural networks (GNN), such a ZNN model makes full use of the time-derivative information of time-varying coefficient. The resultant ZNN model is theoretically proved to have global exponential convergence to the time-varying theoretical optimal solution of the investigated time-varying convex quadratic program. Computer-simulation results further substantiate the effectiveness, efficiency and novelty of such ZNN model and method.
Time Resolved Broadband Terahertz Relaxation Dynamics of Electron in Water
Wang, Tianwu; Iwaszczuk, Krzysztof; Cooke, David G.;
We investigated the transient response of the solvated electron in water ejected by photodetachment from potassium ferrocyanide using time resolved terahertz spectroscopy (TSTS). Ultrabroadband THz transients are generated and detected by a two-color femtosecond-induced air plasma and air biased...... coherent detection, respectively. We find that the measured frequency dependent conductivity can be well described by a Drude-Smith model, supplemented by a Lorentz model oscillating near 5 THz....
ARTICLES: Time-Dependent Stokes Shift from Solvent Dielectric Relaxation
Xu, Jing; Wang, Quan-de; Zhu, Quan; Fu, Ke-xiang; He, Fu-cheng; Li, Xiang-yuan
2010-06-01
The Stokes shift response function, which is related to the time dependent solvation energy, is calculated with the dielectric response function and a novel expression of nonequilibrium solvation energy. In the derivation, relationship between the polarization and the dielectric response function is used. With the dipole-in-a-sphere model applied to the system coumarin 343 and water as the solvent, encouraging agreement with the experimental data from Jimenez et al. is obtained [Nature 369, 471 (1994)].
Immiscible multicomponent lattice Boltzmann model for fluids with high relaxation time ratio
Tao Jiang; Qiwei Gong; Ruofan Qiu; Anlin Wang
2014-10-01
An immiscible multicomponent lattice Boltzmann model is developed for fluids with high relaxation time ratios, which is based on the model proposed by Shan and Chen (SC). In the SC model, an interaction potential between particles is incorporated into the discrete lattice Boltzmann equation through the equilibrium velocity. Compared to the SC model, external forces in our model are discretized directly into the discrete lattice Boltzmann equation, as proposed by Guo et al. We develop it into a new multicomponent lattice Boltzmann (LB) model which has the ability to simulate immiscible multicomponent fluids with relaxation time ratio as large as 29.0 and to reduce `spurious velocity’. In this work, the improved model is validated and studied using the central bubble case and the rising bubble case. It finds good applications in both static and dynamic cases for multicomponent simulations with different relaxation time ratios.
ZHENG SHAO-KUAN; CHEN ZHONG; CHEN ZHI-WEI; ZHONG JIAN-HUI
2001-01-01
A one-dimensional NMR method is presented for measuring the transverse relaxation time, T2,n, of intermolecular multiple quantum coherences (IMQCs) of coherence order n in highly polarized spin systems. The pulse sequence proposed in this paper effectively suppresses the effects of radiation damping, molecular diffusion, inhomogeneity of magnetic field, and variations of dipolar correlation distance, all of which may affect quantitation of T2,n. This pulse sequence can be used to measure not only IMQC transverse relaxation time T2,n(n ＞ 1) quickly and directly, but also the conventional transverse relaxation time. Experimental results demonstrate that the quantitative relationship between T2,n(n≥1) and T2 is T2,n≈T2/n. These results will be helpful for understanding the fundamental properties and mechanisms of IMQCs.
Real-time Relaxation of Condensates and Kinetics in Hot Scalar QED Landau Damping
Boyanovsky, D; Holman, R; Kumar, S P; Pisarski, R D; Boyanovsky, Daniel; Vega, Hector J. de; Holman, Richard; Pisarski, Robert D.
1998-01-01
The real time evolution of field condensates with soft length scales k^{-1}>(eT)^{-1} is solved in hot scalar electrodynamics. We rederive the HTL effective action using the techniques of non-equilibrium field theory for small amplitude condensates. We find that transverse gauge invariant condensates relax as 1/t^2 and longitudinal condensates associated with plasmon (charge density) excitations relax with 1/[t log^2 t ] behavior to asymptotic amplitudes that are determined by the quasiparticle poles. The relaxational dynamics and relevant time scales are determined by the global analytic structure of the retarded propagators. To leading order, the long-time behaviour is determined by the Landau discontinuities associated with off-shell processes. Landau damping follows from the contribution of such discontinuities. We derive the influence functional for the soft (gauge invariant) degrees of freedom by integrating out the hard scales in the HTL approximation and obtain consistently the Langevin equation, the ...
Effects of cross-correlated noises on the relaxation time of the bistable system
谢崇伟; 梅冬成
2003-01-01
The stationary correlation function and the associated relaxation time for a general system driven by crosscorrelated white noises are derived, by virtue of a Stratonovich-like ansatz. The effects of correlated noises on the relaxation time of a bistable kinetic model coupled to an additive and a multiplicative white noises are studied. It is proved that for small fluctuations the relaxation time Tc as a function of λ (the correlated intensity between noises)exhibits very different behaviours for α＜ D and for α＞ D (α and D, respectively, stand for the intensities of additive and multiplicative noises). When α＞ D, Tc increases with increasing λ. But when α＜ D, Tc increases with λ for the case of weak correlated noises and sharply decreases with λ for the case of strong correlated noises, and thus Tc-λ curve behaves with one extremum.
Source of non-arrhenius average relaxation time in glass-forming liquids
Dyre, Jeppe
1998-01-01
then discuss a recently proposed model according to which the activation energy of the average relaxation time is determined by the work done in shoving aside the surrounding liquid to create space needed for a "flow event". In this model, which is based on the fact that intermolecular interactions......A major mystery of glass-forming liquids is the non-Arrhenius temperature-dependence of the average relaxation time. This paper briefly reviews the classical phenomenological models for non-Arrhenius behavior the free volume model and the entropy model and critiques against these models. We...... are anharmonic, the non-Arrhenius temperature-dependence of the average relaxation time is a consequence of the fact that the instantaneous shear modulus increases upon cooling....
On-chip Brownian relaxation measurements of magnetic nanobeads in the time domain
Østerberg, Frederik Westergaard; Rizzi, Giovanni; Hansen, Mikkel Fougt
2013-01-01
magnetic fields are needed. First, the method is demonstrated on Brownian relaxation measurements of beads with nominal sizes of 40, 80, 130, and 250 nm. The results are found to compare well to those obtained by an already established measurement technique in the frequency domain. Next, we demonstrate......We present and demonstrate a new method for on-chip Brownian relaxation measurements on magnetic nanobeads in the time domain using magnetoresistive sensors. The beads are being magnetized by the sensor self-field arising from the bias current passed through the sensors and thus no external...... the time and frequency domain methods on Brownian relaxation detection of clustering of streptavidin coated magnetic beads in the presence of different concentrations of biotin-conjugated bovine serum albumin and obtain comparable results. In the time domain, a measurement is carried out in less than 30 s...
Photoacoustic Determination of Non-radiative Relaxation Time of Absorbing Centers in Maize Seeds
Domínguez-Pacheco, A.; Hernández-Aguilar, C.; Cruz-Orea, A.
2017-07-01
Using non-destructive photothermal techniques, it is possible to characterize non-homogenous materials to obtain its optical and thermal properties through photoacoustic spectroscopy (PAS). In photoacoustic (PA) phenomena, there are transient states of thermal excitation, when samples absorb the incident light; these states manifest an excitation process that generates the PA signal, being in direct relation with the non-radiative relaxation times with the sample absorbent centers. The objective of this study was to determine the non-radiative relaxation times associated with different absorbent centers of corn seeds ( Zea mays L.), by using PAS. A frequency scan was done at different wavelengths (350 nm, 470 nm and 650 nm) in order to obtain the non-radiative relaxation times with different types of maize seeds.
Poverty index with time-varying consumption and income distributions
Chattopadhyay, Amit K.; Kumar, T. Krishna; Mallick, Sushanta K.
2017-03-01
Starting from a stochastic agent-based model to represent market exchange in a developing economy, we study time variations of the probability density function of income with simultaneous variation of the consumption deprivation (CD), where CD represents the shortfall in consumption from the saturation level of an essential commodity, cereal. Together, these two models combine income-expenditure-based market dynamics with time variations in consumption due to income. In this new unified theoretical structure, exchange of trade in assets is only allowed when the income exceeds consumption-deprivation while CD itself is endogenously obtained from a separate kinetic model. Our results reveal that the nature of time variation of the CD function leads to a downward trend in the threshold level of consumption of basic necessities, suggesting a possible dietary transition in terms of lower saturation level of food-grain consumption, possibly through an improvement in the level of living. The new poverty index, defined as CD, is amenable to approximate probabilistic prediction within a short time horizon. A major achievement of this work is the intrinsic independence of the poverty index from an exogenous poverty line, making it more objective for policy formulation as opposed to existing poverty indices in the literature.
Time-varying Riemann solvers for conservation laws on networks
Garavello, Mauro; Piccoli, Benedetto
We consider a conservation law on a network and generic Riemann solvers at nodes depending on parameters, which can be seen as control functions. Assuming that the parameters have bounded variation as functions of time, we prove existence of solutions to Cauchy problems on the whole network.
Time-varying determinants of long-run house prices
Dröes, M.; van de Minne, A.
2015-01-01
The determinants of house prices change over time. This paper documents these changes using long-run historical data from Amsterdam from the year 1825 onwards. Because many houses in Amsterdam have survived until this day, we can construct a long-run repeat sales index and examine its determinants.
Constructing seasonally adjusted data with time-varying confidence intervals
S.J. Koopman (Siem Jan); Ph.H.B.F. Franses (Philip Hans)
2001-01-01
textabstractSeasonal adjustment methods transform observed time series data into estimated data, where these estimated data are constructed such that they show no or almost no seasonal variation. An advantage of model-based methods is that these can provide confidence intervals around the seasonally
Time-varying determinants of long-run house prices
Dröes, M.; van de Minne, A.
2015-01-01
The determinants of house prices change over time. This paper documents these changes using long-run historical data from Amsterdam from the year 1825 onwards. Because many houses in Amsterdam have survived until this day, we can construct a long-run repeat sales index and examine its determinants.
M.Syed Ali
2012-01-01
This paper presents the stability analysis for a class of neural networks with time varying delays that are represented by the Takagi-Sugeno (T-S) model.The main results given here focus on the stability criteria using a new Lyapunov functional.New relaxed conditions and new linear matrix inequality-based designs are proposed that outperform the previous results found in the literature.Numerical examples are provided to show that the achieved conditions are less conservative than the existing ones in the literature.
Time derivatives of the spectrum: Relaxing the stationarity assumption
Prieto, G. A.; Thomson, D. J.; Vernon, F. L.
2005-12-01
Spectrum analysis of seismic waveforms has played a significant role towards the understanding of multiple aspects of Earth structure and earthquake source physics. In recent years the multitaper spectrum estimation approach (Thomson, 1982) has been applied to geophysical problems providing not only reliable estimates of the spectrum, but also estimates of spectral uncertainties (Thomson and Chave, 1991). However, these improved spectral estimates were developed under the assumption of local stationarity and provide an incomplete description of the observed process. It is obvious that due to the intrinsic attenuation of the Earth, the amplitudes, and thus the frequency contents are changing with time as waves pass through a seismic station. There have been incredible improvements in different techniques to analyze non-stationary signals, including wavelet decomposition, Wigner-Ville spectrum and the dual-frequency spectrum. We apply one of the recently developed techniques, the Quadratic Inverse Theory (Thomson, 1990, 1994), combined with the multitaper technique to look at the time derivatives of the spectrum. If the spectrum is reasonably white in a certain bandwidth, using QI theory, we can estimate the derivatives of the spectrum at each frequency. We test synthetic signals to corroborate the approach and apply it the records of small earthquakes at local distances. This is a first approach to try and combine the classical spectrum analysis without the assumption of stationarity that is generally taken.
Deconfinement Phase Transition in an Expanding Quark system in Relaxation Time Approximation
Yang, Z; Yang, Zhenwei; Zhuang, Pengfei
2004-01-01
We investigated the effects of nonequilibrium and collision terms on the deconfinement phase transition of an expanding quark system in Friedberg-Lee model in relaxation time approximation. By calculating the effective quark potential, the critical temperature of the phase transition is dominated by the mean field, while the collisions among quarks and mesons change the time structure of the phase transition significantly.
Geerdink, J.B.W.; Hoekstra, A.G.
2009-01-01
We compare the Lattice BGK, the Multiple Relaxation Times and the Entropic Lattice Boltzmann Methods for time harmonic flows. We measure the stability, speed and accuracy of the three models for Reynolds and Womersley numbers that are representative for human arteries. The Lattice BGK shows
Network Coded Cooperation Over Time-Varying Channels
Khamfroush, Hana; Roetter, Daniel Enrique Lucani; Barros, João
2014-01-01
as a Markov Decision Process (MDP). The actions of the MDP model include the source and the type of transmission to be used in a given time slot given perfect knowledge of the system state. The cost of packet transmission is defined such that it can incorporate the difference between broadcast and unicast...... that are suitable for practical systems. We use two wireless channel models to analyse the performance of the proposed heuristics in practical wireless networks, namely, (a) an infrastructure-to-vehicle (I2V) communication in a highway scenario considering Rayleigh fading, and (b) real packet loss measurements...... for WiFi using Aalborg University’s Raspberry Pi testbed. We compare our results with random linear network coding (RLNC) broadcasting schemes showing that our heuristics can provide up to 2x gains in completion time and up to 4x gains in terms of reliably serviced data packets....
Poverty Index With Time Varying Consumption and Income Distributions
2016-01-01
In a recent work (Chattopadhyay, A. K. et al, Europhys. Lett. {\\bf 91}, 58003, 2010) based on food consumption statistics, we showed how a stochastic agent based model could represent the time variation of the income distribution statistics in a developing economy, thereby defining an alternative \\enquote{poverty index} (PI) that largely agreed with poverty gap index data. This PI used two variables, the probability density function of the income statistics and a consumption deprivation (CD) ...
Only through perturbation can relaxation times be estimated
Ditlevsen, Susanne; Lansky, Petr
2012-01-01
Estimation of model parameters is as important as model building, but is often neglected in model studies. Here we show that despite the existence of well known results on parameter estimation in a simple homogenous Ornstein-Uhlenbeck process, in most practical situations the methods suffer greatly...... from finite sample sizes and especially the estimator of the time constant of the system is degraded. Therefore an alternative solution is of paramount importance. We present such a solution based on perturbation of the system, observing trajectories far from equilibrium. The results are illustrated...... on computer experiments based on applications in neuroscience and pharmacokinetics, which show a striking improvement of the quality of estimation. The results are important for judicious designs of experiments to obtain maximal information from each data point, especially when samples are expensive...
Option pricing during post-crash relaxation times
Dibeh, Ghassan; Harmanani, Haidar M.
2007-07-01
This paper presents a model for option pricing in markets that experience financial crashes. The stochastic differential equation (SDE) of stock price dynamics is coupled to a post-crash market index. The resultant SDE is shown to have stock price and time dependent volatility. The partial differential equation (PDE) for call prices is derived using risk-neutral pricing. European call prices are then estimated using Monte Carlo and finite difference methods. Results of the model show that call option prices after the crash are systematically less than those predicted by the Black-Scholes model. This is a result of the effect of non-constant volatility of the model that causes a volatility skew.
Dielectric relaxation time and structure of bound water in biological materials
Mashimo, S.; Kuwabara, S.; Yagihara, S.; Higasi, K.
1987-12-03
The dielectric behavior of living tissues and a number of biological materials was examined by new equipment of the time domain reflectometry method in a wide frequency range of 10/sup 7/-10/sup 10/ Hz. The authors found two peaks of Debye absorption around 100 MHz and 20 GHz for all the materials. The low-frequency absorption is probably due to bound water while the high-frequency absorption to free water. From the observed relaxation times of bound water a hypothesis is ventured on the structure of bound water and its relaxation mechanism.
Non-Fermi liquid behavior of thermal relaxation time in degenerate electron gas
Sarkar, Sreemoyee
2012-01-01
The thermal relaxation time ($\\tau_{\\kappa_{ee}}$) for the degenerate electron plasma has been calculated by incorporating non-Fermi liquid (NFL) corrections both for the thermal conductivity and specific heat capacity. Perturbative results are presented by making expansion in $T/m_D$ with next to leading order corrections. It is seen that unlike the normal Fermi liquid (FL) result where $\\tau_{\\kappa_{ee}}\\propto 1/T^2$, NFL corrections in leading order (LO) changes the temperature dependence of $\\tau_{\\kappa_{ee}}$ to 1/T. Incorporation of the phase space correction driven by the medium modified Fermion dispersion relation increases the relaxation time further.
Molecular motions and phase transitions. NMR relaxation times studies of several lecithins.
Bar-Adon, R; Gilboa, H
1981-01-01
The spin-lattice relaxation time, T1, and the dipolar energy relaxation time, TD, were measured as a function of temperature. The materials studied were samples of anhydrous L-dipalmitoyl lecithin, DL-dipalmitoyl lecithin, L-dimyristoyl lecithin, DL-dimyristoyl lecithin and their monohydrates, and of anhydrous egg yolk lecithin. It is shown that TD is a much more sensitive parameter than T1 for the determination of the Chapman phase transition. Comparison between T1 and TD provides informatio...
Time-varying effects in the analysis of customer loyalty
Guillen, Montserrat; Perch Nielsen, Jens; Scheike, Thomas
2011-01-01
Insurance customers usually hold more than one contract with the same insurer. A generalization of classical survival analysis methods is used to examine the risk of losing a customer once an initial insurance policy cancellation has occurred. This method does not assume that the model parameters...... are fixed over time, but rather that the parameters may fluctuate. Our results suggest that the kind of contracts held by customers and the concurrence of an external competitor strongly influence customer loyalty right after that cancellation, but those factors become much less significant some months...
Controllability of time-varying cellular neural networks
Wadie Aziz
2005-11-01
Full Text Available In this work, we consider the model of Cellular Neural Network (CNN introduced by Chua and Yang in 1988, but with the cloning templates $omega$-periodic in time. By imposing periodic boundary conditions the matrices involved in the system become circulant and $omega$-periodic. We show some results on the controllability of the linear model using a Theorem by Brunovsky for the case of linear and $omega$-periodic system. Also we use this approach in image detection, specifically foreground, background and contours of figures in different scales of grey.
Zhuo Qi Lee
Full Text Available Biased random walk has been studied extensively over the past decade especially in the transport and communication networks communities. The mean first passage time (MFPT of a biased random walk is an important performance indicator in those domains. While the fundamental matrix approach gives precise solution to MFPT, the computation is expensive and the solution lacks interpretability. Other approaches based on the Mean Field Theory relate MFPT to the node degree alone. However, nodes with the same degree may have very different local weight distribution, which may result in vastly different MFPT. We derive an approximate bound to the MFPT of biased random walk with short relaxation time on complex network where the biases are controlled by arbitrarily assigned node weights. We show that the MFPT of a node in this general case is closely related to not only its node degree, but also its local weight distribution. The MFPTs obtained from computer simulations also agree with the new theoretical analysis. Our result enables fast estimation of MFPT, which is useful especially to differentiate between nodes that have very different local node weight distribution even though they share the same node degrees.
Time-Scale Domain Characterization of Time-Varying Ultrawideband Infostation Channel
U.A.K. Chude-Okonkwo
2012-06-01
Full Text Available The time-scale domain geometrical-based method for the characterization of the time varying ultrawideband (UWB channel typical of an infostation channel is presented. Compared to methods that use Doppler shift as a measure of time-variation in the channel this model provides a more reliable measure of frequency dispersion caused by terminal mobility in the UWB infostation channel. Particularly, it offers carrier frequency independent method of computing wideband channel responses and parameters which are important for ultrawideband systems. Results show that the frequency dispersion of the channel depends on the frequency and not on the choice of bandwidth. And time dispersion depends on bandwidth and not on the frequency. It is also shown that for time-varying UWB, frame length defined over the coherence time obtained with reference to the carrier frequency results in an error margin which can be reduced by using the coherence time defined with respect to the maximum frequency in a given frequency band. And the estimation of the frequency offset using the time-scale domain (wideband model presented here (especially in the case of multiband UWB frequency synchronization is more accurate than using frequency offset estimate obtained from narrowband models.
She, M.; Jiang, L. P.
2014-12-01
In this paper, an oscillating dark energy model is presented in an isotropic but inhomogeneous plane symmetric space-time by considering a time periodic varying deceleration parameter. We find three different types of new solutions which describe different scenarios of oscillating universe. The first two solutions show an oscillating universe with singularities. For the third one, the universe is singularity-free during the whole evolution. Moreover, the Hubble parameter oscillates and keeps positive which explores an interesting possibility to unify the early inflation and late time acceleration of the universe.
Staffing of Time-Varying Queues to Achieve Time-Stable Performance
Zohar Feldman; Avishai Mandelbaum; William A. Massey; Ward Whitt
2008-01-01
This paper develops methods to determine appropriate staffing levels in call centers and other many-server queueing systems with time-varying arrival rates. The goal is to achieve targeted time-stable performance, even in the presence of significant time variation in the arrival rates. The main contribution is a flexible simulation-based iterative-staffing algorithm (ISA) for the M t /G/s t + G model--with nonhomogeneous Poisson arrival process (the M t ) and customer abandonment (the + G). F...
Consumption growth and time-varying expected stock returns
Vinther Møller, Stig
2008-01-01
When the consumption growth rate is measured based upon fourth quarter data, it tracks predictable variation in future excess stock returns. Low fourth quarter consumption growth rates predict high future excess stock returns such that expected returns are high at business cycle troughs and low...... at business cycle peaks. The consumption growth rate loses predictive power when it is measured based upon other quarters. This is consistent with the insight of Jagannathan and Wang [2007. Journal of Finance 62, 1623-1661] that investors tend to review their consumption and investment plans during the end...... of each calendar year, and at possibly random times in between. The consumption growth rate measured based upon fourth quarter data is a much stronger predictive variable than benchmark predictive variables such as the dividend-price ratio, the term spread, and the default spread....
Singh, Simranjeet; Katoch, Jyoti; Xu, Jinsong; Tan, Cheng; Zhu, Tiancong; Amamou, Walid; Hone, James; Kawakami, Roland
2016-09-01
We present an experimental study of spin transport in single layer graphene using atomic sheets of hexagonal boron nitride (h-BN) as a tunnel barrier for spin injection. While h-BN is expected to be favorable for spin injection, previous experimental studies have been unable to achieve spin relaxation times in the nanosecond regime, suggesting potential problems originating from the contacts. Here, we investigate spin relaxation in graphene spin valves with h-BN barriers and observe room temperature spin lifetimes in excess of a nanosecond, which provides experimental confirmation that h-BN is indeed a good barrier material for spin injection into graphene. By carrying out measurements with different thicknesses of h-BN, we show that few layer h-BN is a better choice than monolayer for achieving high non-local spin signals and longer spin relaxation times in graphene.
Yuhao, Liu; Mengmeng, Li; Dong, Lan; Guangming, Xue; Xinsheng, Tan; Haifeng, Yu; Yang, Yu
2016-05-01
One of the primary origins of the energy relaxation in superconducting qubits is the quasiparticle loss. The quasiparticles can be excited remarkably by infrared radiation. In order to minimize the density of quasiparticle and increase the qubit relaxation time, we design and fabricate the infrared filter and shield for superconducting qubits. In comparison with previous filters and shields, a nonmagnetic dielectric is used as the infrared absorbing material, greatly suppressing the background magnetic fluctuations. The filters can be made to impedance-match with other microwave devices. Using the as-fabricated infrared filter and shield, we increased the relaxation time of a transmon qubit from 519 ns to 1125 ns. Project supported by the National Natural Science Foundation of China (Grant Nos. 91321310, 11274156, 11474152, 11474153, 61521001, and 11504165) and the State Key Program for Basic Research of China (Grant Nos. 2011CB922104 and 2011CBA00205).
Korchuganov, Denis S.; Gagnidze, Ivan E.; Tkach, Elena N.; Schulga, Alexey A.; Kirpichnikov, Mikhail P.; Arseniev, Alexander S. [Russian Academy of Sciences, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry (Russian Federation)], E-mail: aars@nmr.ru
2004-12-15
An accurate determination of the overall rotation of a protein plays a crucial role in the investigation of its internal motions by NMR. In the present work, an innovative approach to the determination of the protein rotational correlation time {tau}{sub R} from the heteronuclear relaxation data is proposed. The approach is based on a joint fit of relaxation data acquired at several viscosities of a protein solution. The method has been tested on computer simulated relaxation data as compared to the traditional {tau}{sub R} determination method from T{sub 1}/T{sub 2} ratio. The approach has been applied to ribonuclease barnase from Bacillus amyloliquefaciens dissolved in an aqueous solution and deuterated glycerol as a viscous component. The resulting rotational correlation time of 5.56 {+-} 0.01 ns and other rotational diffusion tensor parameters are in good agreement with those determined from T{sub 1}/T{sub 2} ratio.
Fragile-strong fluid crossover and universal relaxation times in a confined hard-disk fluid.
Yamchi, Mahdi Zaeifi; Ashwin, S S; Bowles, Richard K
2012-11-30
We show that a system of hard disks confined to a narrow channel exhibits a fragile-strong fluid crossover located at the maximum of the isobaric heat capacity and that the relaxation times for different channel widths fall onto a single master curve when rescaled by the relaxation times and temperatures of the crossover. Calculations of the configurational entropy and the inherent structure equation of state find that the crossover is related to properties of the jamming landscape for the model but that the Adam-Gibbs relation does not predict the relaxation behavior. We also show that a facilitated dynamics description of the system, where kinetically excited regions are identified with local packing arrangements of the disks, successfully describes the fragile-strong crossover.
T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study.
Mamisch, Tallal Charles; Hughes, Timothy; Mosher, Timothy J; Mueller, Christoph; Trattnig, Siegfried; Boesch, Chris; Welsch, Goetz Hannes
2012-03-01
T2 mapping techniques use the relaxation constant as an indirect marker of cartilage structure, and the relaxation constant has also been shown to be a sensitive parameter for cartilage evaluation. As a possible additional robust biomarker, T2* relaxation time is a potential, clinically feasible parameter for the biochemical evaluation of articular cartilage. The knees of 15 healthy volunteers and 15 patients after microfracture therapy (MFX) were evaluated with a multi-echo spin-echo T2 mapping technique and a multi-echo gradient-echo T2* mapping sequence at 3.0 Tesla MRI. Inline maps, using a log-linear least squares fitting method, were assessed with respect to the zonal dependency of T2 and T2* relaxation for the deep and superficial regions of healthy articular cartilage and cartilage repair tissue. There was a statistically significant correlation between T2 and T2* values. Both parameters demonstrated similar spatial dependency, with longer values measured toward the articular surface for healthy articular cartilage. No spatial variation was observed for cartilage repair tissue after MFX. Within this feasibility study, both T2 and T2* relaxation parameters demonstrated a similar response in the assessment of articular cartilage and cartilage repair tissue. The potential advantages of T2*-mapping of cartilage include faster imaging times and the opportunity for 3D acquisitions, thereby providing greater spatial resolution and complete coverage of the articular surface.
T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study
Mamisch, Tallal Charles [University Bern, Department of Orthopedic Surgery, Inselspital, Bern (Switzerland); University Bern, Magnetic Resonance Spectroscopy and Methodology, Department of Clinical Research, Bern (Switzerland); Hughes, Timothy [Siemens Medical Solutions, Erlangen (Germany); Mosher, Timothy J. [Penn State University College of Medicine, Musculoskeletal Imaging and MRI, Department of Radiology, Hershey, PA (United States); Mueller, Christoph [University of Erlangen, Department of Trauma Surgery, Erlangen (Germany); Trattnig, Siegfried [Medical University of Vienna, MR Center - High Field MR, Department of Radiology, Vienna (Austria); Boesch, Chris [University Bern, Magnetic Resonance Spectroscopy and Methodology, Department of Clinical Research, Bern (Switzerland); Welsch, Goetz Hannes [University of Erlangen, Department of Trauma Surgery, Erlangen (Germany); Medical University of Vienna, MR Center - High Field MR, Department of Radiology, Vienna (Austria)
2012-03-15
T2 mapping techniques use the relaxation constant as an indirect marker of cartilage structure, and the relaxation constant has also been shown to be a sensitive parameter for cartilage evaluation. As a possible additional robust biomarker, T2* relaxation time is a potential, clinically feasible parameter for the biochemical evaluation of articular cartilage. The knees of 15 healthy volunteers and 15 patients after microfracture therapy (MFX) were evaluated with a multi-echo spin-echo T2 mapping technique and a multi-echo gradient-echo T2* mapping sequence at 3.0 Tesla MRI. Inline maps, using a log-linear least squares fitting method, were assessed with respect to the zonal dependency of T2 and T2* relaxation for the deep and superficial regions of healthy articular cartilage and cartilage repair tissue. There was a statistically significant correlation between T2 and T2* values. Both parameters demonstrated similar spatial dependency, with longer values measured toward the articular surface for healthy articular cartilage. No spatial variation was observed for cartilage repair tissue after MFX. Within this feasibility study, both T2 and T2* relaxation parameters demonstrated a similar response in the assessment of articular cartilage and cartilage repair tissue. The potential advantages of T2*-mapping of cartilage include faster imaging times and the opportunity for 3D acquisitions, thereby providing greater spatial resolution and complete coverage of the articular surface. (orig.)
Wojnarowska, Z; Ngai, K L; Paluch, M
2014-12-01
The article reports the dependence of the conductivity relaxation on temperature T and pressure P in the canonical ionic glass former 0.4Ca(NO(3))(2)-0.6KNO(3)(CKN). At constant conductivity relaxation time τ(σ), the entire conductivity relaxation spectra obtained at widely different combinations of T and P superpose almost perfectly, and thus it is the ion-ion interaction but not thermodynamics that determines the frequency dispersion. Moreover, on vitrifying CKN by either elevating P or decreasing T, changes of P or T dependence of τ(σ) at the glass transition pressure P(g) and temperature T(g) are observed to occur at the same value, i.e., τ(σ)(P(g))=τ(σ)(T(g)), indicating that the relation between τ(σ) and the structural relaxation time τ(α) is also independent of P and T.
Adaptive stabilization of discrete-time systems using linear periodically time varying controllers
Ortega, Romeo; Albertos, Pedro; Lozano, Rogelio
1988-01-01
A direct adaptive scheme based on the use of linear time-varying periodic controllers is proposed which estimates online the periodic coefficients of the controller. It is shown that adaptive stabilization is attained for all possibly nonstably invertible plants of known order but unknown delay. Although no appeal is made to persistency of excitation arguments, a provision is needed to avoid the singularity of an estimated matrix, this property being required only for the analysis and not the control calculations.
Multi-carrier Communications over Time-varying Acoustic Channels
Aval, Yashar M.
Acoustic communication is an enabling technology for many autonomous undersea systems, such as those used for ocean monitoring, offshore oil and gas industry, aquaculture, or port security. There are three main challenges in achieving reliable high-rate underwater communication: the bandwidth of acoustic channels is extremely limited, the propagation delays are long, and the Doppler distortions are more pronounced than those found in wireless radio channels. In this dissertation we focus on assessing the fundamental limitations of acoustic communication, and designing efficient signal processing methods that cam overcome these limitations. We address the fundamental question of acoustic channel capacity (achievable rate) for single-input-multi-output (SIMO) acoustic channels using a per-path Rician fading model, and focusing on two scenarios: narrowband channels where the channel statistics can be approximated as frequency- independent, and wideband channels where the nominal path loss is frequency-dependent. In each scenario, we compare several candidate power allocation techniques, and show that assigning uniform power across all frequencies for the first scenario, and assigning uniform power across a selected frequency-band for the second scenario, are the best practical choices in most cases, because the long propagation delay renders the feedback information outdated for power allocation based on the estimated channel response. We quantify our results using the channel information extracted form the 2010 Mobile Acoustic Communications Experiment (MACE'10). Next, we focus on achieving reliable high-rate communication over underwater acoustic channels. Specifically, we investigate orthogonal frequency division multiplexing (OFDM) as the state-of-the-art technique for dealing with frequency-selective multipath channels, and propose a class of methods that compensate for the time-variation of the underwater acoustic channel. These methods are based on multiple
Revil, A.; Binley, A.; Mejus, L.; Kessouri, P.
2015-08-01
Low-frequency quadrature conductivity spectra of siliclastic materials exhibit typically a characteristic relaxation time, which either corresponds to the peak frequency of the phase or the quadrature conductivity or a typical corner frequency, at which the quadrature conductivity starts to decrease rapidly toward lower frequencies. This characteristic relaxation time can be combined with the (intrinsic) formation factor and a diffusion coefficient to predict the permeability to flow of porous materials at saturation. The intrinsic formation factor can either be determined at several salinities using an electrical conductivity model or at a single salinity using a relationship between the surface and quadrature conductivities. The diffusion coefficient entering into the relationship between the permeability, the characteristic relaxation time, and the formation factor takes only two distinct values for isothermal conditions. For pure silica, the diffusion coefficient of cations, like sodium or potassium, in the Stern layer is equal to the diffusion coefficient of these ions in the bulk pore water, indicating weak sorption of these couterions. For clayey materials and clean sands and sandstones whose surface have been exposed to alumina (possibly iron), the diffusion coefficient of the cations in the Stern layer appears to be 350 times smaller than the diffusion coefficient of the same cations in the pore water. These values are consistent with the values of the ionic mobilities used to determine the amplitude of the low and high-frequency quadrature conductivities and surface conductivity. The database used to test the model comprises a total of 202 samples. Our analysis reveals that permeability prediction with the proposed model is usually within an order of magnitude from the measured value above 0.1 mD. We also discuss the relationship between the different time constants that have been considered in previous works as characteristic relaxation time, including
Adrjanowicz, K.; Paluch, M.; Ngai, K. L.
2010-03-01
By using the dielectric relaxation method proposed recently by Casalini and Roland (2009 Phys. Rev. Lett. 102 035701), we were able to determine the structural α-relaxation times deep in the glassy state of the pharmaceutical, Telmisartan. Normally, deep in the glassy state τα is so long that it cannot be measured but τβ, which is usually much shorter, can be directly determined. The method basically takes advantage of the connection between the α-relaxation and the secondary β-relaxation of the Johari-Goldstein kind, including a relation between their relaxation times τα and τβ, respectively. Thus, τα of Telmisartan were determined by monitoring the change of the dielectric β-loss, ɛ'', with physical aging time at temperatures well below the vitrification temperature. The values of τα were compared with those expected by the coupling model (CM). Unequivocal comparison cannot be made in the case of Telmisartan because its β-loss peak is extremely broad, and the CM predicts only an order of magnitude agreement between the primitive relaxation frequency and the β-peak frequency. We also made an attempt to analyze all isothermal and aging susceptibility data after transformation into the electric modulus representation. The τα found in the glass state by using the method of Casalini and Roland in the modulus representation are similar to those obtained in the susceptibility representation. However, it is remarkable that the stretching parameter βKWW - M = 0.51 in the electric modulus representation gives more precise fits to the aging data than in the susceptibility representation with βKWW = 0.61. Our results suggest that the electric modulus representation may be useful as an alternative to analyze aging data, especially in the case of highly polar glassformers having a large ratio of low frequency and high frequency dielectric constants, such as the Telmisartan studied.
Aso, Y; Yoshioka, S; Kojima, S
2000-03-01
Isothermal crystallization of amorphous nifedipine, phenobarbital, and flopropione was studied at temperatures above and below their glass transition temperatures (T(g)). A sharp decrease in the crystallization rate with decreasing temperature was observed for phenobarbital and flopropione, such that no crystallization was observed at temperatures 20-30 degrees C lower than their T(g) within ordinary experimental time periods. In contrast, the crystallization rate of nifedipine decreased moderately with decreasing temperature, and considerable crystallization was observed at 40 degrees C below its T(g) within 4 months. The molecular mobility of these amorphous drugs was assessed by enthalpy relaxation and (1)H-NMR relaxation measurements. The enthalpy relaxation time of nifedipine was smaller than that of phenobarbital or flopropinone at the same T - T(g) values, suggesting higher molecular mobility of nifedipine. The spin-lattice relaxation time in the rotating frame (T(1rho)) decreased markedly at temperature above T(g). The slope of the Arrhenius type plot of the T(1rho) for nifedipine protons changed at about 10 degrees C below the T(g), whereas the slope for phenobarbital protons became discontinuous at about 10 degrees C above the T(g). Even at temperatures below its T(g), the spin-spin relaxation process of nifedipine could be described by the sum of its Gaussian relaxation, which is characteristic of solid protons, and its Lorentzian relaxation, which is characteristic of protons with higher mobility. In contrast, no Lorentzian relaxation was observed for phenobarbital or flopropione at temperatures below their T(g). These results also suggest that nifedipine has higher molecular mobility than phenobarbital and flopropione at temperatures below T(g). The faster crystallization of nifedipine than that of phenobarbital or flopropione observed at temperatures below its T(g) may be partly ascribed to its higher molecular mobility at these temperatures.
Singh, Jaswinder
2013-12-01
The analysis of a three-dimensional (3-D) wavelength/time/space (W-T-S) asynchronous optical CDMA code family is presented considering MAI only under relaxed cross-correlation (λc ⩾ 1). Based on the code performance, it is shown that for code-limited systems (when W and/or T are non-prime), the number of generated codes and hence the supported users can be significantly increased by relaxing the cross-correlation constraint if a slight degradation in code performance can be tolerated.
Khmelinskii, I.; Makarov, V.
2017-08-01
We report experimental temperature and concentration dependences of the natural spin relaxation time of superparamagnetic Fe3O4 and hemozoin nanocrystals. We recorded the 1H NMR spectrum of 0.5% benzene dissolved in CS2 in function of superparamagnetic particle concentration and temperature, interpreting the 7.261 ± 0.002 ppm benzene line broadening. Our model for the line broadening includes natural, hyperfine magnetic dipole-dipole, and contact hyperfine contributions. The latter arises due to exchange interaction between benzene molecules and suspended nanoparticles. Estimated frequency of fluctuation in the 1 cm3 sample volume is in the 107 Hz scale. Estimated natural electron spin-lattice relaxation frequencies of the superparamagnetic nanocrystals using frequency of fluctuations, and developed theoretical model applied to analysis of experimental data are in good agreement between each other. Thus the presently developed approach may be used to study fluctuations and natural spin-lattice relaxation frequencies in different media.
Halpern, Laurence; Japhet, Caroline
2010-01-01
We design and analyze a Schwarz waveform relaxation algorithm for domain decomposition of advection-diffusion-reaction problems with strong heterogeneities. The interfaces are curved, and we use optimized Robin or Ventcell transmission conditions. We analyze the semi-discretization in time with Discontinuous Galerkin as well. We also show two-dimensional numerical results using generalized mortar finite elements in space.
Dzik-Jurasz, A.S.K.; Leach, M.O.; Rowland, Ian John
2004-01-01
demonstrated that in the presence of competitive binding of other ligands for common binding sites on albumin, the 19F longitudinal relaxation time of 5-fluorouracil can increase by up to 340% from its value in the absence of the competing ligand. The relevance of the findings to in vivo studies is discussed...
MR pulse sequences for selective relaxation time measurements: a phantom study
Thomsen, C; Jensen, K E; Jensen, M
1990-01-01
a Siemens Magnetom wholebody magnetic resonance scanner operating at 1.5 Tesla was used. For comparison six imaging pulse sequences for relaxation time measurements were tested on the same phantom. The spectroscopic pulse sequences all had an accuracy better than 10% of the reference values....
Elastic models for the non-Arrhenius relaxation time of glass-forming liquids
Dyre, Jeppe
We first review the phenomenology of viscous liquids and the standard models used for explaining the non-Arrhenius average relaxation time. Then the focus is turned to the so-called elastic models, arguing that these models are all equivalent in the Einstein approximation (where the short...
Elastic models for the Non-Arrhenius Relaxation Time of Glass-Forming Liquids
Dyre, J. C.
2006-01-01
We first review the phenomenology of viscous liquids and the standard models used for explaining the non-Arrhenius average relaxation time. Then the focus is turned to the so-called elastic models, arguing that these models are all equivalent in the Einstein approximation (where the short...
Wolf, RFE; Slooff, MJH; Go, KG; Kamman, RL
1997-01-01
During cold preservation for transplantation the tissue hydration state changes, It is not known whether such changes lead to altered relaxation times of P-31 nuclei with potential consequences for the quantification of tissue metabolites, Therefore, P-31 spectroscopic and proton T-1 relaxometric
Alexandrov, N.A.; Marinova, K.G.; Gurkov, T.D.; Danov, K.D.; Kralchevsky, P.A.; Stoyanov, S.D.; Blijdenstein, T.B.J.; Arnaudov, L.N.; Pelan, E.G.; Lips, A.
2012-01-01
The pendant-drop method (with drop-shape analysis) and Langmuir trough are applied to investigate the characteristic relaxation times and elasticity of interfacial layers from the protein HFBII hydrophobin. Such layers undergo a transition from fluid to elastic solid films. The transition is
Bochev, Mikhail A.; Oseledets, I.V.; Tyrtyshnikov, E.E.
2013-01-01
The aim of this paper is two-fold. First, we propose an efficient implementation of the continuous time waveform relaxation method based on block Krylov subspaces. Second, we compare this new implementation against Krylov subspace methods combined with the shift and invert technique.
Bochev, Mikhail A.; Oseledets, I.V.; Tyrtyshnikov, E.E.
The aim of this paper is two-fold. First, we propose an efficient implementation of the continuous time waveform relaxation (WR) method based on block Krylov subspaces. Second, we compare this new WR-Krylov implementation against Krylov subspace methods combined with the shift and invert (SAI)
Analysis and Application of Distribution of Relaxation Times in Solid State Ionics
Boukamp, B.A.; Rolle, A.
2017-01-01
Three methods for obtaining a Distribution (Function) of Relaxation Times (DFRT) are compared, Fourier transform (FT), Tikhonov regularization (TR) and a multiple-(RQ) CNLS-fit. The FT method was written in the programming package ‘Borland Delphi’, for the Tikhonov regularization (TR) a freely avail
Zhang, Yanxiang; Chen, Yu; Li, Mei; Yan, Mufu; Ni, Meng; Xia, Changrong
2016-03-01
A new Tikhonov regularization approach without adjusting parameters is proposed for reconstructing distribution of relaxation time (DRT). It is capable of eliminating the pseudo peaks and capturing discontinuities in the DRT, making it feasible to resolve the number and the nature of electrochemical processes without making assumptions.
Finite-Time Reentry Attitude Control Using Time-Varying Sliding Mode and Disturbance Observer
Xuzhong Wu
2015-01-01
Full Text Available This paper presents the finite-time attitude control problem for reentry vehicle with redundant actuators in consideration of planet uncertainties and external disturbances. Firstly, feedback linearization technique is used to cancel the nonlinearities of equations of motion to construct a basic mode for attitude controller. Secondly, two kinds of time-varying sliding mode control methods with disturbance observer are integrated with the basic mode in order to enhance the control performance and system robustness. One method is designed based on boundary layer technique and the other is a novel second-order sliding model control method. The finite-time stability analyses of both resultant closed-loop systems are carried out. Furthermore, after attitude controller produces the torque commands, an optimization control allocation approach is introduced to allocate them into aerodynamic surface deflections and on-off reaction control system thrusts. Finally, the numerical simulation results demonstrate that both of the time-varying sliding mode control methods are robust to uncertainties and disturbances without chattering phenomenon. Moreover, the proposed second-order sliding mode control method possesses better control accuracy.
Fast Time-Varying Volume Rendering Using Time-Space Partition (TSP) Tree
Shen, Han-Wei; Chiang, Ling-Jen; Ma, Kwan-Liu
1999-01-01
We present a new, algorithm for rapid rendering of time-varying volumes. A new hierarchical data structure that is capable of capturing both the temporal and the spatial coherence is proposed. Conventional hierarchical data structures such as octrees are effective in characterizing the homogeneity of the field values existing in the spatial domain. However, when treating time merely as another dimension for a time-varying field, difficulties frequently arise due to the discrepancy between the field's spatial and temporal resolutions. In addition, treating spatial and temporal dimensions equally often prevents the possibility of detecting the coherence that is unique in the temporal domain. Using the proposed data structure, our algorithm can meet the following goals. First, both spatial and temporal coherence are identified and exploited for accelerating the rendering process. Second, our algorithm allows the user to supply the desired error tolerances at run time for the purpose of image-quality/rendering-speed trade-off. Third, the amount of data that are required to be loaded into main memory is reduced, and thus the I/O overhead is minimized. This low I/O overhead makes our algorithm suitable for out-of-core applications.
Seo, Mirinae; Sohn, Yu Mee [Dept. of Radiology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul (Korea, Republic of); Ryu, Jung Kyu; Jahng, Geon Ho; Rhee, Sun Jung; Oh, Jang Hoon; Won, Kyu Yeoun [Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul (Korea, Republic of)
2017-01-15
The purpose of this study was to estimate the T2* relaxation time in breast cancer, and to evaluate the association between the T2* value with clinical-imaging-pathological features of breast cancer. Between January 2011 and July 2013, 107 consecutive women with 107 breast cancers underwent multi-echo T2*-weighted imaging on a 3T clinical magnetic resonance imaging system. The Student's t test and one-way analysis of variance were used to compare the T2* values of cancer for different groups, based on the clinical-imaging-pathological features. In addition, multiple linear regression analysis was performed to find independent predictive factors associated with the T2* values. Of the 107 breast cancers, 92 were invasive and 15 were ductal carcinoma in situ (DCIS). The mean T2* value of invasive cancers was significantly longer than that of DCIS (p = 0.029). Signal intensity on T2-weighted imaging (T2WI) and histologic grade of invasive breast cancers showed significant correlation with T2* relaxation time in univariate and multivariate analysis. Breast cancer groups with higher signal intensity on T2WI showed longer T2* relaxation time (p = 0.005). Cancer groups with higher histologic grade showed longer T2* relaxation time (p = 0.017). The T2* value is significantly longer in invasive cancer than in DCIS. In invasive cancers, T2* relaxation time is significantly longer in higher histologic grades and high signal intensity on T2WI. Based on these preliminary data, quantitative T2* mapping has the potential to be useful in the characterization of breast cancer.
Optically-detected spin-echo method for relaxation times measurements in a Rb atomic vapor
Gharavipour, M.; Affolderbach, C.; Gruet, F.; Radojičić, I. S.; Krmpot, A. J.; Jelenković, B. M.; Mileti, G.
2017-06-01
We introduce and demonstrate an experimental method, optically-detected spin-echo (ODSE), to measure ground-state relaxation times of a rubidium (Rb) atomic vapor held in a glass cell with buffer-gas. The work is motivated by our studies on high-performance Rb atomic clocks, where both population and coherence relaxation times (T 1 and T 2, respectively) of the ‘clock transition’ (52S1/2 | {F}g = 1,{m}F=0> ≤ftrightarrow | {F}g=2,{m}F=0> ) are relevant. Our ODSE method is inspired by classical nuclear magnetic resonance spin-echo method, combined with optical detection. In contrast to other existing methods, like continuous-wave double-resonance (CW-DR) and Ramsey-DR, principles of the ODSE method allow suppression of decoherence arising from the inhomogeneity of the static magnetic field across the vapor cell, thus enabling measurements of intrinsic relaxation rates, as properties of the cell alone. Our experimental result for the coherence relaxation time, specific for the clock transition, measured with the ODSE method is in good agreement with the theoretical prediction, and the ODSE results are validated by comparison to those obtained with Franzen, CW-DR and Ramsey-DR methods. The method is of interest for a wide variety of quantum optics experiments with optical signal readout.
Analysis of the Mode of the Periodically Time-varying Vibration Systems
WANG Sheng-ze; REN Ji-ge
2007-01-01
By Liapunov reducibility theorem, the periodically time-varying vibration system can be transformed to a linear time-invariant system. Based on the dynamic characteristics of the linear time-invariant system, the mode of the periodically time-varying vibration system has been discussed. The paper defines the mode and analyzes its characteristics. It can be found that the mode of the periodically time-varying system is periodically time-varing but has such characteristics as orthogonality. Finally, a method is given to solve the mode. By solving the eigenvalues and the eigenvectors of the state transition matrix in one period, the periodically time-varying mode can be obtained.
Valente, Pedro C.; da Silva, Carlos B.; Pinho, Fernando T.
2013-11-01
We report a numerical study of statistically steady and decaying turbulence of FENE-P fluids for varying polymer relaxation times ranging from the Kolmogorov dissipation time-scale to the eddy turnover time. The total turbulent kinetic energy dissipation is shown to increase with the polymer relaxation time in both steady and decaying turbulence, implying a ``drag increase.'' If the total power input in the statistically steady case is kept equal in the Newtonian and the viscoelastic simulations the increase in the turbulence-polymer energy transfer naturally lead to the previously reported depletion of the Newtonian, but not the overall, kinetic energy dissipation. The modifications to the nonlinear energy cascade with varying Deborah/Weissenberg numbers are quantified and their origins investigated. The authors acknowledge the financial support from Fundação para a Ciência e a Tecnologia under grant PTDC/EME-MFE/113589/2009.
Bonell, Frédéric; Andrieu, Stéphane
2017-02-01
The epitaxial growth of MgO on Fe1 - xVx buffer layers with adjustable lattice parameter is studied by electron diffraction (RHEED) in real time. At the onset of plastic relaxation in the MgO layer, a clear splitting of the diffraction rods is observed in directions, as well as an increase in their length in the directions. Splitting along is also made visible through image background subtraction. These features originate from the surface strain above misfit dislocations, as previously proposed to account for satellite spots in LEED measurements. This explanation is supported by simulations of the diffraction patterns using kinematic diffraction theory. Observation of the diffraction rods splitting is shown to be a powerful way to check the presence of dislocations in MgO tunnel barriers and to accurately determine the critical thickness of plastic relaxation.
Distinguishing between neutrinos and time-varying dark energy through cosmic time
Lorenz, Christiane S.; Calabrese, Erminia; Alonso, David
2017-08-01
We study the correlations between parameters characterizing neutrino physics and the evolution of dark energy. Using a fluid approach, we show that time-varying dark energy models exhibit degeneracies with the cosmic neutrino background over extended periods of the cosmic history, leading to a degraded estimation of the total mass and number of species of neutrinos. We investigate how to break degeneracies and combine multiple probes across cosmic time to anchor the behavior of the two components. We use Planck cosmic microwave background data and baryonic acoustic oscillation measurements from the BOSS, SDSS, and 6dF surveys to present current limits on the model parameters, and then forecast the future reach from the CMB Stage-4 and DESI experiments. We show that a multiprobe analysis of current data provides only marginal improvement on the determination of the individual parameters and no reduction of the correlations. Future observations will better distinguish the neutrino mass and preserve the current sensitivity to the number of species even in case of a time-varying dark energy component.
Delay-dependent stability analysis for discrete-time systems with time varying state delay
Stojanović Sreten B.
2011-01-01
Full Text Available The stability of discrete systems with time-varying delay is considered. Some sufficient delaydependent stability conditions are derived using an appropriate model transformation of the original system. The criteria are presented in the form of LMI, which are dependent on the minimum and maximum delay bounds. It is shown that the stability criteria are approximately the same conservative as the existing ones, but have much simpler mathematical form. The numerical example is presented to illustrate the applicability of the developed results.
Kirsch, R F; Kearney, R E; MacNeil, J B
1993-01-01
We have examined the time variations of stretch reflex dynamics throughout rapid voluntary changes in the isometric contraction level of the human triceps surae muscles. This was achieved by superimposing a small stochastic displacement upon many such changing contractions and then identifying the time-varying relationship between the perturbation and the evoked electromyograms (EMGs). An "ensemble" time-varying system identification technique was used to estimate these input-output dynamics as a set of impulse response functions, one for each time before, during, and after the change in contraction level, with a temporal resolution equal to the data acquisition rate. Three main findings resulted. First, stretch reflex gain (relating joint velocity to EMG) was significantly modulated during changes in voluntary contraction level, increasing as the subject contracted the muscles and decreasing as the subject relaxed. Second, stretch reflex dynamics did not change with contraction level, even when its gain varied substantially. Third, the time course of the gain changes closely followed the level of the EMG, even though the subjects used rather different activation and deactivation patterns. These results suggest that, for the behavior studied (i.e., rapid changes in isometric contraction level), stretch reflex gain and motoneuron pool activation level were controlled by a common descending command rather than being independently specified.
Time-resolved torsional relaxation of spider draglines by an optical technique.
Emile, Olivier; Le Floch, Albert; Vollrath, F.
2007-01-01
International audience; The sensitivity of the torsional pendulum demonstrates the self-shape-memory effect in different types of spider draglines. Here we report the time-resolved noncovalent bonds recovery in the protein structure. The torsional dynamics of such multilevel structure governed by reversible interactions are described in the frame of a nested model. Measurement of three different relaxation times confirms the existence of three energy storage levels in such two protein spidroi...
Determination of relaxation modulus of time-dependent materials using neural networks
Aulova, Alexandra; Govekar, Edvard; Emri, Igor
2016-10-01
Health monitoring systems for plastic based structures require the capability of real time tracking of changes in response to the time-dependent behavior of polymer based structures. The paper proposes artificial neural networks as a tool of solving inverse problem appearing within time-dependent material characterization, since the conventional methods are computationally demanding and cannot operate in the real time mode. Abilities of a Multilayer Perceptron (MLP) and a Radial Basis Function Neural Network (RBFN) to solve ill-posed inverse problems on an example of determination of a time-dependent relaxation modulus curve segment from constant strain rate tensile test data are investigated. The required modeling data composed of strain rate, tensile and related relaxation modulus were generated using existing closed-form solution. Several neural networks topologies were tested with respect to the structure of input data, and their performance was compared to an exponential fitting technique. Selected optimal topologies of MLP and RBFN were tested for generalization and robustness on noisy data; performance of all the modeling methods with respect to the number of data points in the input vector was analyzed as well. It was shown that MLP and RBFN are capable of solving inverse problems related to the determination of a time dependent relaxation modulus curve segment. Particular topologies demonstrate good generalization and robustness capabilities, where the topology of RBFN with data provided in parallel proved to be superior compared to other methods.
Determination of relaxation modulus of time-dependent materials using neural networks
Aulova, Alexandra; Govekar, Edvard; Emri, Igor
2017-08-01
Health monitoring systems for plastic based structures require the capability of real time tracking of changes in response to the time-dependent behavior of polymer based structures. The paper proposes artificial neural networks as a tool of solving inverse problem appearing within time-dependent material characterization, since the conventional methods are computationally demanding and cannot operate in the real time mode. Abilities of a Multilayer Perceptron (MLP) and a Radial Basis Function Neural Network (RBFN) to solve ill-posed inverse problems on an example of determination of a time-dependent relaxation modulus curve segment from constant strain rate tensile test data are investigated. The required modeling data composed of strain rate, tensile and related relaxation modulus were generated using existing closed-form solution. Several neural networks topologies were tested with respect to the structure of input data, and their performance was compared to an exponential fitting technique. Selected optimal topologies of MLP and RBFN were tested for generalization and robustness on noisy data; performance of all the modeling methods with respect to the number of data points in the input vector was analyzed as well. It was shown that MLP and RBFN are capable of solving inverse problems related to the determination of a time dependent relaxation modulus curve segment. Particular topologies demonstrate good generalization and robustness capabilities, where the topology of RBFN with data provided in parallel proved to be superior compared to other methods.
Sensor Fault Estimation Filter Design for Discrete-time Linear Time-varying Systems
WANG Zhen-Hua; RODRIGUES Mickael; THEILLIOL Didier; SHEN Yi
2014-01-01
This paper proposes a sensor fault diagnosis method for a class of discrete-time linear time-varying (LTV) systems. In this paper, the considered system is firstly formulated as a de-scriptor system representation by considering the sensor faults as auxiliary state variables. Based on the descriptor system model, a fault estimation filter which can simultaneously estimate the state and the sensor fault magnitudes is designed via a minimum-variance principle. Then, a fault diagnosis scheme is presented by using a bank of the proposed fault estimation filters. The novelty of this paper lies in developing a sensor fault diagnosis method for discrete LTV systems without any assumption on the dynamic of fault. Another advantage of the proposed method is its ability to detect, isolate and estimate sensor faults in the presence of process noise and measurement noise. Simulation results are given to illustrate the effectiveness of the proposed method.
Pola, Giordano; Di Benedetto, Maria Domenica
2010-01-01
Time-delay systems are an important class of dynamical systems that provide a solid mathematical framework to deal with many application domains of interest. In this paper we focus on nonlinear control systems with unknown and time-varying delay signals and we propose one approach to the control design of such systems, which is based on the construction of symbolic models. Symbolic models are abstract descriptions of dynamical systems in which one symbolic state and one symbolic input correspond to an aggregate of states and an aggregate of inputs. We first introduce the notion of incremental input-delay-to-state stability and characterize it by means of Liapunov-Krasovskii functionals. We then derive sufficient conditions for the existence of symbolic models that are shown to be alternating approximately bisimilar to the original system. Further results are also derived which prove the computability of the proposed symbolic models in a finite number of steps.
Optimal Configuration for Relaxation Times Estimation in Complex Spin Echo Imaging
Fabio Baselice
2014-01-01
Full Text Available Many pathologies can be identified by evaluating differences raised in the physical parameters of involved tissues. In a Magnetic Resonance Imaging (MRI framework, spin-lattice T1 and spin-spin T2 relaxation time parameters play a major role in such an identification. In this manuscript, a theoretical study related to the evaluation of the achievable performances in the estimation of relaxation times in MRI is proposed. After a discussion about the considered acquisition model, an analysis on the ideal imaging acquisition parameters in the case of spin echo sequences, i.e., echo and repetition times, is conducted. In particular, the aim of the manuscript consists in providing an empirical rule for optimal imaging parameter identification with respect to the tissues under investigation. Theoretical results are validated on different datasets in order to show the effectiveness of the presented study and of the proposed methodology.
Ahmadi R.
2012-01-01
Full Text Available In this work, a new approach is described for the calculation of the relaxation time and magnetic anisotropy energy of magnetic nanoparticles. Ferrofluids containing monodispersed magnetite nanoparticles were synthesized via hydrothermal method and then heated using the 10 kA/m external AC magnetic fields in three different frequencies: 10, 50 and 100 kHz. By measuring the temperature variations during the application of the magnetic field, the total magnetic time constant including both Brownian and Neel relaxation times can be calculated. By measuring the magnetic core size and hydrodynamic size of particles, the magnetic anisotropy can be calculated too. Synthesized ferrofluids were characterized via TEM, XRD, VSM and PCS techniques and the results were used for the mentioned calculations.
Relaxation and self-sustained oscillations in the time elapsed neuron network model
Pakdaman, Khashayar; Salort, Delphine
2011-01-01
The time elapsed model describes the firing activity of an homogeneous assembly of neurons thanks to the distribution of times elapsed since the last discharge. It gives a mathematical description of the probability density of neurons structured by this time. In an earlier work, based on generalized relative entropy methods, it is proved that for highly or weakly connected networks the model exhibits relaxation to the steady state and for moderately connected networks it is obtained numerical evidence of appearance of self-sustained periodic solutions. Here, we go further and, using the particular form of the model, we quantify the regime where relaxation to a stationary state occurs in terms of the network connectivity. To introduce our methodology, we first consider the case where the neurons are not connected and we give a new statement showing that total asynchronous firing of neurons appears asymptotically. In a second step, we consider the case with connections and give a low connectivity condition that...
Yokoi, Koki [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI (United States); Raicu, Valerică, E-mail: vraicu@uwm.edu [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI (United States); Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI (United States)
2017-06-28
Relaxation in fractal structures was investigated theoretically starting from a simple model of a Cantorian tree and kinetic equations linking the change in the number of particles (e.g., electrical charges) populating each branch of the tree and their transfer to other branches or to the ground state. We numerically solved the system of differential equations obtained and determined the so-called cumulative distribution function of particles, which, in dielectric or mechanical relaxation parlance, is the same as the relaxation function of the system. As a physical application, we studied the relationship between the dielectric relaxation in time-domain and the dielectric dispersion in the frequency-domain. Upon choosing appropriate rate constants, our model described accurately well-known non-exponential and non-Debye time- and frequency-domain functions, such as stretched exponentials, Havrilliak–Negami, and frequency power law. Our approach opens the door to applying kinetic models to describe a wide array of relaxation processes, which traditionally have posed great challenges to theoretical modeling based on first principles. - Highlights: • Relaxation was investigated for a system of particles flowing through a Cantorian tree. • A set of kinetic equations was formulated and used to compute the relaxation function of the system. • The dispersion function of the system was computed from the relaxation function. • An analytical method was used to recover the original relaxation function from the dispersion function. • This formalism was used to study dielectric relaxation and dispersion in fractal structures.
Synchronization transmission of spatiotemporal chaotic signal in the uncertain time-varying network
Lü, Ling; Chen, Liansong; Han, Changhui; Ge, Lianjun; Gao, Liyu
2017-02-01
In this paper, a new method is presented for the synchronization transmission of spatiotemporal chaotic signal in the uncertain time-varying network. By designing a special function to construct the Lyapunov function of the network, it is sure that the uncertain time-varying network can effectively synchronize the spatiotemporal chaotic signal generated by the synchronization target. At the same time, we also design the identification laws of uncertain parameters and the adaptive laws of the time-varying coupling matrix elements. Especially in our work, the nodes of the uncertain time-varying network and the synchronization target are different. Obviously, this research has the reference value for the application fields.
Fedorov, Dmitry V; Gradhand, Martin; Ostanin, Sergey; Maznichenko, Igor V; Ernst, Arthur; Fabian, Jaroslav; Mertig, Ingrid
2013-04-12
The effect of electron-impurity scattering on momentum and spin relaxation times in graphene is studied by means of relativistic ab initio calculations. Assuming carbon and silicon adatoms as natural impurities in graphene, we are able to simulate fast spin relaxation observed experimentally. We investigate the dependence of the relaxation times on the impurity position and demonstrate that C or Si adatoms act as real-space spin hot spots inducing spin-flip rates about 5 orders of magnitude larger than those of in-plane impurities. This fact confirms the hypothesis that the adatom-induced spin-orbit coupling leads to fast spin relaxation in graphene.
Measurement of interfacial area from NMR time dependent diffusion and relaxation measurements.
Fleury, M
2017-09-07
The interfacial area between two immiscible phases in porous media is an important parameter for describing and predicting 2 phase flow. Although present in several models, experimental investigations are sparse due to the lack of appropriate measurement techniques. We propose two NMR techniques for the measurement of oil-water interfacial area: (i) a time dependent NMR diffusion technique applicable in static conditions, similar to those used for the measurement of the solid specific surface of a porous media, and (ii) a fast relaxation technique applicable in dynamic conditions while flowing, based on an interfacial relaxation mechanism induced by the inclusion of paramagnetic salts in the water phase. For dodecane relaxing on doped water, we found an oil interfacial relaxivity of 1.8μm/s, large enough to permit the measurement of specific interfacial surface as small as 1000cm(2)/cm(3). We demonstrate both NMR techniques in drainage followed by imbibition, in a model porous media with a narrow pore size distribution. While flowing, we observe that the interfacial area is larger in imbibition than in drainage, implying a different organization of the oil phase. In a carbonate sample with a wide pore size distribution, we evidence the gradual invasion of the smallest pores as the oil-water pressure difference is increased. Copyright © 2017. Published by Elsevier Inc.
In vivo measurements of T1 relaxation times of 31P-metabolites in human skeletal muscle
Thomsen, C; Jensen, K E; Henriksen, O
1989-01-01
The T1 relaxation times were estimated for 31P-metabolites in human skeletal muscle. Five healthy volunteers were examined in a 1.5 Tesla wholebody imaging system using an inversion recovery pulse sequence. The calculated T1 relaxation times ranged from 5.517 sec for phosphocreatine to 3.603 sec...
Menstrual variation of breast volume and T{sub 2} relaxation times in cyclical mastalgia
Hussain, Zainab [Department of Medical Imaging, University of Liverpool, Johnstone Building, Brownlow Hill, P.O. Box 147, Liverpool, Merseyside L69 3GB (United Kingdom); Magnetic Resonance and Image Analysis Research Centre, University of Liverpool, Johnstone Building, Brownlow Hill, P.O. Box 147, Liverpool, Merseyside L69 3GB (United Kingdom)], E-mail: zay@liverpool.ac.uk; Brooks, Jonathan [Magnetic Resonance and Image Analysis Research Centre, University of Liverpool, Johnstone Building, Brownlow Hill, P.O. Box 147, Liverpool, Merseyside L69 3GB (United Kingdom); Department of Human Anatomy and Genetics, University of Oxford, Oxford (United Kingdom); Percy, Dave [Centre for Operational Research and Applied Statistics, University of Salford, Salford, Greater Manchester M5 4WT (United Kingdom)
2008-02-15
Purpose: Hormonal activity causes breast volume to change during the menstrual cycle. One possible cause of this volume change is thought to be due to water retention or oedema within the tissues. We used magnetic resonance imaging (MRI) to study the variation in breast volume and {sup 1}H Magnetic Resonance Spectroscopy (MRS) to measure T{sub 2} relaxation times which are known to increase with increasing tissue water content. We hypothesised that an increase in breast volume will elevate T{sub 2} relaxation due to the presence of an increased water content within the breast. T{sub 2} Relaxation time and volume were studied in fifteen control subjects and in a cohort of eight patients with cyclical mastalgia in order to determine whether changes in breast volume and T{sub 2} relaxation times differed in controls and patients during menses, ovulation and premenses. Method: Breast volume was determined by the Cavalieri method in combination with point counting techniques on MR images and T{sub 2} relaxation times of the water and fat in a voxel of breast tissue were obtained using {sup 1}H Magnetic Resonance Spectroscopy (MRS). Results: Statistical analysis (ANOVA) demonstrated highly significant differences in breast volume between the three stages of the cycle (p < 0.0005) with breast volume being greatest premenstrually. Patients did not exhibit an increase in volume premenstrually, significantly above controls. T{sub 2} of fat or water did not depend on stage of cycle. T-tests demonstrated no significant differences in T{sub 2} of water or fat between patient and control groups. The average T{sub 2} relaxation time of water was lowest in the patient and control groups during ovulation and highest in the patient group during premenses. Conclusion: We have performed the first combined volumetric and spectroscopic study of women with cyclical mastalgia and demonstrated that the global changes in volumes and T{sub 2} were not significantly different from normal
On the ?2-stability of time-varying linear and nonlinear discrete-time MIMO systems
Y.V.VENKATESH
2014-01-01
New conditions are derived for the 2-stability of time-varying linear and nonlinear discrete-time multiple-input multiple-output (MIMO) systems, having a linear time time-invariant block with the transfer function Γ(z), in negative feedback with a matrix of periodic/aperiodic gains A(k),k =0,1,2,. . . and a vector of certain classes of non-monotone/monotone nonlinearitiesϕ( · ), without restrictions on their slopes and also not requiring path-independence of their line integrals. The stability conditions, which are derived in the frequency domain, have the following features: i) They involve the positive definiteness of the real part (as evaluated on |z| = 1) of the product of Γ(z) and a matrix multiplier function of z. ii) For periodic A(k), one class of multiplier functions can be chosen so as to impose no constraint on the rate of variations A(k), but for aperiodic A(k), which allows a more general multiplier function, constraints are imposed on certain global averages of the generalized eigenvalues of (A(k+1),A(k)),k=1,2,. . . . iii) They are distinct from and less restrictive than recent results in the literature.
Nguyen, Hoai-Nam
2014-01-01
A comprehensive development of interpolating control, this monograph demonstrates the reduced computational complexity of a ground-breaking technique compared with the established model predictive control. The text deals with the regulation problem for linear, time-invariant, discrete-time uncertain dynamical systems having polyhedral state and control constraints, with and without disturbances, and under state or output feedback. For output feedback a non-minimal state-space representation is used with old inputs and outputs as state variables. Constrained Control of Uncertain, Time-Varying, Discrete-time Systems details interpolating control in both its implicit and explicit forms. In the former at most two linear-programming or one quadratic-programming problem are solved on-line at each sampling instant to yield the value of the control variable. In the latter the control law is shown to be piecewise affine in the state, and so the state space is partitioned into polyhedral cells so that at each sampling ...
Bradley, T D; McFerran, J J; Jouin, J; Debord, B; Alharbi, M; Thomas, P; Gerome, F; Benabid, F
2015-01-01
We report on the measurement of ground state atomic polarization relaxation tile of Rb vapor confined in five different hypocycloidal core shape Kagome hollow core photonic crystal fibers made with uncoated silica glass. We are able to distinguish between wall-collision and transit-time effects in optical waveguide and deduce the contribution of the atom's dwell time at the core wall surface. In contrast with convetional macroscopic atomic cell configuration, and in agreement with Monte Carlo simulations, the measured relaxation times were found to be at least one order of magnitude longer than the limit set by the atom-wall collisional relaxation from thermal atoms. This extended relaxation time is explained by the combination of a stronger contribution of the slow atoms in the atomic polarization build-up, and of the relatively significant contribution of dwell time to the relaxation process of the ground state polarization.
Minimal and non-minimal optimal fixed-order compensators for time-varying discrete-time systems
Willigenburg, van L.G.; Koning, de W.L.
2002-01-01
The finite horizon optimal fixed-order LQG compensation problem for time-varying discrete-time systems is considered. Using the minimality property of finite horizon time-varying compensators, established in this paper, strengthened discrete-time optimal projection equations and associated boundary
Chon, Ki H; Zhong, Yuru; Moore, Leon C;
2008-01-01
The extent to which renal blood flow dynamics vary in time and whether such variation contributes substantively to dynamic complexity have emerged as important questions. Data from Sprague-Dawley rats (SDR) and spontaneously hypertensive rats (SHR) were analyzed by time-varying transfer functions...... (TVTF) and time-varying coherence functions (TVCF). Both TVTF and TVCF allow quantification of nonstationarity in the frequency ranges associated with the autoregulatory mechanisms. TVTF analysis shows that autoregulatory gain in SDR and SHR varies in time and that SHR exhibit significantly more...
Shear viscosity to relaxation time ratio in SU(3) lattice gauge theory
Kohno, Yasuhiro; Kitazawa, Masakiyo
2011-01-01
We evaluate the ratio of the shear viscosity to the relaxation time of the shear flux above but near the critical temperature $T_c$ in SU(3) gauge theory on the lattice. The ratio is related to Kubo's canonical correlation of the energy-momentum tensor in Euclidean space with the relaxation time approximation and an appropriate regularization. Using this relation, the ratio is evaluated by direct measurements of the Euclidean observables on the lattice. We obtained the ratio with reasonable statistics for the range of temperature $1.3T_c \\lesssim T \\lesssim 4T_c$. We also found that the characteristic speed of the transverse plane wave in gluon media is almost constant, $v \\simeq 0.5$, for $T \\gtrsim 1.5T_c$, which is compatible with the causality in the second order dissipative hydrodynamics.
Pradipto; Purqon, Acep
2017-07-01
Lattice Boltzmann Method (LBM) is the novel method for simulating fluid dynamics. Nowadays, the application of LBM ranges from the incompressible flow, flow in the porous medium, until microflows. The common collision model of LBM is the BGK with a constant single relaxation time τ. However, BGK suffers from numerical instabilities. These instabilities could be eliminated by implementing LBM with multiple relaxation time. Both of those scheme have implemented for incompressible 2 dimensions lid-driven cavity. The stability analysis has done by finding the maximum Reynolds number and velocity for converged simulations. The accuracy analysis is done by comparing the velocity profile with the benchmark results from Ghia, et al and calculating the net velocity flux. The tests concluded that LBM with MRT are more stable than BGK, and have a similar accuracy. The maximum Reynolds number that converges for BGK is 3200 and 7500 for MRT respectively.
The generalized Phillips-Twomey method for NMR relaxation time inversion.
Gao, Yang; Xiao, Lizhi; Zhang, Yi; Xie, Qingming
2016-10-01
The inversion of NMR relaxation time involves the Fredholm integral equation of the first kind. Due to its ill-posedness, numerical solutions to this type of equations are often found much less accurate and bear little resemblance to the true solution. There has been a strong interest in finding a well-posed method for this ill-posed problem since 1950s. In this paper, we prove the existence, the uniqueness, the stability and the convergence of the generalized Phillips-Twomey regularization method for solving this type of equations. Numerical simulations and core analyses arising from NMR transverse relaxation time inversion are conducted to show the effectiveness of the generalized Phillips-Twomey method. Both the simulation results and the core analyses agree well with the model and the realities.
Enthalpy Relaxation of a DGEBA Epoxy as a function of Time, Temperature, and Cooling Rate
Clarkson, Caitlyn M.; McCoy, John D.; Kropka, Jamie M.
2015-03-01
Enthalpy relaxation resulting from physical aging of a DGEBA epoxy, Epon 828, cross-linked with an amine curative, Jeffamine T-403, was studied for two isothermal aging temperatures at sequential aging times up to two weeks. Results were analyzed using the peak shift method to obtain the relaxation parameters β, δ (H*), and χ. The individual effects of cooling rate from the equilibrated state, aging time, and aging temperature were isolated to understand the initial state of the glassy epoxy and its evolution during physical aging. [Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Chahid, M.; Benhamou, M. E-mail: benhamou.mabrouk@caramail.com
2000-08-01
The purpose of the present work is a quantitative study of the spin time relaxation within superweak ferrimagnetic materials exhibiting a paramagnetic-ferrimagnetic transition, when the temperature is changed from an initial value T{sub i} to a final one T{sub f} very close to the critical temperature T{sub c}. From a magnetic point of view, the material under investigation is considered to be made of two strongly coupled paramagnetic sublattices of respective moments phi (cursive,open) Greek and {psi}. Calculations are made within a Landau mean-field theory, whose free energy involves, in addition to quadratic and quartic terms in both moments phi (cursive,open) Greek and {psi}, a lowest-order coupling - Cphi (cursive,open) Greek{psi}, where C<0 stands for the coupling constant measuring the interaction between the two sublattices. We first determine the time dependence of the shifts of the order parameters {delta}phi (cursive,open) Greek and {delta}{psi} from the equilibrium state. We find that this time dependence is completely controlled by two kinds of relaxation times {tau}{sub 1} and {tau}{sub 2}. The former is a long time and the second a short one, and they are associated, respectively, with long and local wavelength fluctuations. We find that, only the first relaxation time is relevant for physics, since it drives the system to undergo a phase transition. Spatial fluctuations are also taken into account. In this case, we find an explicit expression of the relaxation times, which are functions of temperature T, coupling constant C and wave vector q. We find that the critical mode is that given by the zero scattering-angle limit, i.e. q=0. Finally, we emphasize that the appearance of these two relaxation times is in good agreement with results reported in recent experimental work dealt with the Curie-Weiss paramagnet compound Li{sub x}Ni{sub 2-x}O{sub 2}, where the composition x is very close to 1.
Andrew J Shattock
2016-02-01
Full Text Available Introduction: International investment in the response to HIV and AIDS has plateaued and its future level is uncertain. With many countries committed to ending the epidemic, it is essential to allocate available resources efficiently over different response periods to maximize impact. The objective of this study is to propose a technique to determine the optimal allocation of funds over time across a set of HIV programmes to achieve desirable health outcomes. Methods: We developed a technique to determine the optimal time-varying allocation of funds (1 when the future annual HIV budget is pre-defined and (2 when the total budget over a period is pre-defined, but the year-on-year budget is to be optimally determined. We use this methodology with Optima, an HIV transmission model that uses non-linear relationships between programme spending and associated programmatic outcomes to quantify the expected epidemiological impact of spending. We apply these methods to data collected from Zambia to determine the optimal distribution of resources to fund the right programmes, for the right people, at the right time. Results and discussion: Considering realistic implementation and ethical constraints, we estimate that the optimal time-varying redistribution of the 2014 Zambian HIV budget between 2015 and 2025 will lead to a 7.6% (7.3% to 7.8% decrease in cumulative new HIV infections compared with a baseline scenario where programme allocations remain at 2014 levels. This compares to a 5.1% (4.6% to 5.6% reduction in new infections using an optimal allocation with constant programme spending that recommends unrealistic programmatic changes. Contrasting priorities for programme funding arise when assessing outcomes for a five-year funding period over 5-, 10- and 20-year time horizons. Conclusions: Countries increasingly face the need to do more with the resources available. The methodology presented here can aid decision-makers in planning as to when to
Remarks concerning bulk viscosity of hadron matter in relaxation time ansatz
Khvorostukhin, A.S., E-mail: hvorost@theor.jinr.ru [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Institute of Applied Physics, Moldova Academy of Science, MD-2028 Kishineu (Moldova, Republic of); Toneev, V.D. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Voskresensky, D.N. [National Research Nuclear University “MEPhI”, Kashirskoe sh. 31, Moscow 115409 (Russian Federation)
2013-10-03
The bulk viscosity is calculated for hadron matter produced in heavy-ion collisions, being described in the relaxation time approximation within the relativistic mean-field-based model with scaled hadron masses and couplings. We show how different approximations used in the literature affect the result. Numerical evaluations of the bulk viscosity with three considered models deviate not much from each other confirming earlier results.
Implicit-correction-based immersed boundary-lattice Boltzmann method with two relaxation times
Seta, Takeshi; Rojas, Roberto; Hayashi, Kosuke; Tomiyama, Akio
2014-02-01
In the present paper, we verify the effectiveness of the two-relaxation-time (TRT) collision operator in reducing boundary slip computed by the immersed boundary-lattice Boltzmann method (IB-LBM). In the linear collision operator of the TRT, we decompose the distribution function into symmetric and antisymmetric components and define the relaxation parameters for each part. The Chapman-Enskog expansion indicates that one relaxation time for the symmetric component is related to the kinematic viscosity. Rigorous analysis of the symmetric shear flows reveals that the relaxation time for the antisymmetric part controls the velocity gradient, the boundary velocity, and the boundary slip velocity computed by the IB-LBM. Simulation of the symmetric shear flows, the symmetric Poiseuille flows, and the cylindrical Couette flows indicates that the profiles of the numerical velocity calculated by the TRT collision operator under the IB-LBM framework exactly agree with those of the multirelaxation time (MRT). The TRT is as effective in removing the boundary slip as the MRT. We demonstrate analytically and numerically that the error of the boundary velocity is caused by the smoothing technique using the δ function used in the interpolation method. In the simulation of the flow past a circular cylinder, the IB-LBM based on the implicit correction method with the TRT succeeds in preventing the flow penetration through the solid surface as well as unphysical velocity distortion. The drag coefficient, the wake length, and the separation points calculated by the present IB-LBM agree well with previous studies at Re = 10, 20, and 40.
In-vivo T2-relaxation times of asymptomatic cervical intervertebral discs
Driscoll, Sean J.; Mao, Haiqing; Li, Guoan [Massachusetts General Hospital/Harvard Medical School, Bioengineering Laboratory, Department of Orthopaedic Surgery, Boston, MA (United States); Zhong, Weiye [Massachusetts General Hospital/Harvard Medical School, Bioengineering Laboratory, Department of Orthopaedic Surgery, Boston, MA (United States); Second Xiangya Hospital and Central South University, Department of Spinal Surgery, Changsha, Hunan (China); Torriani, Martin [Massachusetts General Hospital/Harvard Medical School, Musculoskeletal Imaging and Intervention, Department of Radiology, Boston, MA (United States); Wood, Kirkham B.; Cha, Thomas D. [Massachusetts General Hospital/Harvard Medical School, Spine Service, Department of Orthopaedic Surgery, Boston, MA (United States)
2016-03-15
Limited research exists on T2-mapping techniques for cervical intervertebral discs and its potential clinical utility. The objective of this research was to investigate the in-vivo T2-relaxation times of cervical discs, including C2-C3 through C7-T1. Ten asymptomatic subjects were imaged using a 3.0 T MR scanner and a sagittal multi-slice multi-echo sequence. Using the mid-sagittal image, intervertebral discs were divided into five regions-of-interest (ROIs), centered along the mid-line of the disc. Average T2 relaxation time values were calculated for each ROI using a mono-exponential fit. Differences in T2 values between disc levels and across ROIs of the same disc were examined. For a given ROI, the results showed a trend of increasing relaxation times moving down the spinal column, particularly in the middle regions (ROIs 2, 3 and 4). The C6-C7 and C7-T1 discs had significantly greater T2 values compared to superior discs (discs between C2 and C6). The results also showed spatial homogeneity of T2 values in the C3-C4, C4-C5, and C5-C6 discs, while C2-C3, C6-C7, and C7-T1 showed significant differences between ROIs. The findings indicate there may be inherent differences in T2-relaxation time properties between different cervical discs. Clinical evaluations utilizing T2-mapping techniques in the cervical spine may need to be level-dependent. (orig.)
Influence of Heat Sources and Relaxation Time on Temperature Distribution in Tissues
Sharma S.
2014-05-01
Full Text Available In the present study, the temperature fluctuations in tissues based on Penne’s bio-heat transfer equation is investigated by applying the Laplace and Hankel transforms. To get the solution in a physical form, a numerical inversion technique has been applied. The temporal and spatial distribution of temperature is investigated with the effect of relaxation time and is presented graphically.
Applied Time Domain Stability Margin Assessment for Nonlinear Time-Varying Systems
Kiefer, J. M.; Johnson, M. D.; Wall, J. H.; Dominguez, A.
2016-01-01
The baseline stability margins for NASA's Space Launch System (SLS) launch vehicle were generated via the classical approach of linearizing the system equations of motion and determining the gain and phase margins from the resulting frequency domain model. To improve the fidelity of the classical methods, the linear frequency domain approach can be extended by replacing static, memoryless nonlinearities with describing functions. This technique, however, does not address the time varying nature of the dynamics of a launch vehicle in flight. An alternative technique for the evaluation of the stability of the nonlinear launch vehicle dynamics along its trajectory is to incrementally adjust the gain and/or time delay in the time domain simulation until the system exhibits unstable behavior. This technique has the added benefit of providing a direct comparison between the time domain and frequency domain tools in support of simulation validation. This technique was implemented by using the Stability Aerospace Vehicle Analysis Tool (SAVANT) computer simulation to evaluate the stability of the SLS system with the Adaptive Augmenting Control (AAC) active and inactive along its ascent trajectory. The gains for which the vehicle maintains apparent time-domain stability defines the gain margins, and the time delay similarly defines the phase margin. This method of extracting the control stability margins from the time-domain simulation is relatively straightforward and the resultant margins can be compared to the linearized system results. The sections herein describe the techniques employed to extract the time-domain margins, compare the results between these nonlinear and the linear methods, and provide explanations for observed discrepancies. The SLS ascent trajectory was simulated with SAVANT and the classical linear stability margins were evaluated at one second intervals. The linear analysis was performed with the AAC algorithm disabled to attain baseline stability
Adrjanowicz, K; Paluch, M [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Ngai, K L [Naval Research Laboratory, Washington, DC 20375-5320 (United States)
2010-03-31
By using the dielectric relaxation method proposed recently by Casalini and Roland (2009 Phys. Rev. Lett. 102 035701), we were able to determine the structural alpha-relaxation times deep in the glassy state of the pharmaceutical, Telmisartan. Normally, deep in the glassy state tau{sub a}lpha is so long that it cannot be measured but tau{sub b}eta, which is usually much shorter, can be directly determined. The method basically takes advantage of the connection between the alpha-relaxation and the secondary beta-relaxation of the Johari-Goldstein kind, including a relation between their relaxation times tau{sub a}lpha and tau{sub b}eta, respectively. Thus, tau{sub a}lpha of Telmisartan were determined by monitoring the change of the dielectric beta-loss, epsilon'', with physical aging time at temperatures well below the vitrification temperature. The values of tau{sub a}lpha were compared with those expected by the coupling model (CM). Unequivocal comparison cannot be made in the case of Telmisartan because its beta-loss peak is extremely broad, and the CM predicts only an order of magnitude agreement between the primitive relaxation frequency and the beta-peak frequency. We also made an attempt to analyze all isothermal and aging susceptibility data after transformation into the electric modulus representation. The tau{sub a}lpha found in the glass state by using the method of Casalini and Roland in the modulus representation are similar to those obtained in the susceptibility representation. However, it is remarkable that the stretching parameter beta{sub KWWM} = 0.51 in the electric modulus representation gives more precise fits to the aging data than in the susceptibility representation with beta{sub KWW} = 0.61. Our results suggest that the electric modulus representation may be useful as an alternative to analyze aging data, especially in the case of highly polar glassformers having a large ratio of low frequency and high frequency dielectric
Analytical impact time and angle guidance via time-varying sliding mode technique.
Zhao, Yao; Sheng, Yongzhi; Liu, Xiangdong
2016-05-01
To concretely provide a feasible solution for homing missiles with the precise impact time and angle, this paper develops a novel guidance law, based on the nonlinear engagement dynamics. The guidance law is firstly designed with the prior assumption of a stationary target, followed by the practical extension to a moving target scenario. The time-varying sliding mode (TVSM) technique is applied to fulfill the terminal constraints, in which a specific TVSM surface is constructed with two unknown coefficients. One is tuned to meet the impact time requirement and the other one is targeted with a global sliding mode, so that the impact angle constraint as well as the zero miss distance can be satisfied. Because the proposed law possesses three guidance gain as design parameters, the intercept trajectory can be shaped according to the operational conditions and missile׳s capability. To improve the tolerance of initial heading errors and broaden the application, a new frame of reference is also introduced. Furthermore, the analytical solutions of the flight trajectory, heading angle and acceleration command can be totally expressed for the prediction and offline parameter selection by solving a first-order linear differential equation. Numerical simulation results for various scenarios validate the effectiveness of the proposed guidance law and demonstrate the accuracy of the analytic solutions.
Shan, Ming-Lei; Zhu, Chang-Ping; Yao, Cheng; Yin, Cheng; Jiang, Xiao-Yan
2016-10-01
The dynamics of the cavitation bubble collapse is a fundamental issue for the bubble collapse application and prevention. In the present work, the modified forcing scheme for the pseudopotential multi-relaxation-time lattice Boltzmann model developed by Li Q et al. [Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301] is adopted to develop a cavitation bubble collapse model. In the respects of coexistence curves and Laplace law verification, the improved pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. It is found that the thermodynamic consistency and surface tension are independent of kinematic viscosity. By homogeneous and heterogeneous cavitation simulation, the ability of the present model to describe the cavitation bubble development as well as the cavitation inception is verified. The bubble collapse between two parallel walls is simulated. The dynamic process of a collapsing bubble is consistent with the results from experiments and simulations by other numerical methods. It is demonstrated that the present pseudopotential multi-relaxation-time lattice Boltzmann model is applicable and efficient, and the lattice Boltzmann method is an alternative tool for collapsing bubble modeling. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274092 and 1140040119) and the Natural Science Foundation of Jiangsu Province, China (Grant No. SBK2014043338).
Kikuchi, Yuta; Kunihiro, Teiji
2016-01-01
We give a detailed derivation of the second-order (local) hydrodynamics for Boltzmann equation with an external force by using the renormalization group method. In this method, we solve the Boltzmann equation faithfully to extract the hydrodynamics without recourse to any ansatz. Our method leads to microscopic expressions of not only all the transport coefficients that are of the same form as those in Chapman-Enskog method but also those of the viscous relaxation times $\\tau_i$ that admit physically natural interpretations. As an example, we apply our microscopic expressions to calculate the transport coefficients and the relaxation times of the cold fermionic atoms in a quantitative way, where the transition probability in the collision term is given explicitly in terms of the $s$-wave scattering length $a_s$. We thereby discuss the quantum statistical effects, temperature dependence, and scattering-length dependence of the first-order transport coefficients and the viscous relaxation times: It is shown tha...
Richert, Ranko
2017-02-01
On the basis of adiabatic calorimetry data and results obtained from dielectric relaxation studies in the presence of a high static electric field, the effects of temperature and electric field induced changes of the excess entropy are compared for the same sample: supercooled cresolphthalein dimethylether. A field induced reduction of the excess entropy by 45 mJ K-1 mol-1 at constant temperature increases the structural relaxation time by 0.75%, while the same entropy change originating from lowering the temperature at constant field increases the time constant by 3.5%. Therefore, there is no simple link connecting excess entropy and relaxation time that is independent of the control parameter that is used to modify the entropy. A consequence is that the Adam-Gibbs approach does not provide a quantitative prediction for how the dynamics of liquids depend on the electric field, and, more generally, on excess entropy. This work compares the dynamics for temperature versus field induced changes of isobaric excess entropy, thereby eliminating previous uncertainties arising from isochoric versus isobaric conditions and from unknown relations between thermodynamic, excess, and configurational entropies.
Viscosity, relaxation time, and dynamics within a model asphalt of larger molecules
Li, Derek D.; Greenfield, Michael L.
2014-01-01
The dynamics properties of a new "next generation" model asphalt system that represents SHRP AAA-1 asphalt using larger molecules than past models is studied using molecular simulation. The system contains 72 molecules distributed over 12 molecule types that range from nonpolar branched alkanes to polar resins and asphaltenes. Molecular weights range from 290 to 890 g/mol. All-atom molecular dynamics simulations conducted at six temperatures from 298.15 to 533.15 K provide a wealth of correlation data. The modified Kohlrausch-Williams-Watts equation was regressed to reorientation time correlation functions and extrapolated to calculate average rotational relaxation times for individual molecules. The rotational relaxation rate of molecules decreased significantly with increasing size and decreasing temperature. Translational self-diffusion coefficients followed an Arrhenius dependence. Similar activation energies of ˜42 kJ/mol were found for all 12 molecules in the model system, while diffusion prefactors spanned an order of magnitude. Viscosities calculated directly at 533.15 K and estimated at lower temperatures using the Debye-Stokes-Einstein relationship were consistent with experimental data for asphalts. The product of diffusion coefficient and rotational relaxation time showed only small changes with temperature above 358.15 K, indicating rotation and translation that couple self-consistently with viscosity. At lower temperatures, rotation slowed more than diffusion.
Viscosity, relaxation time, and dynamics within a model asphalt of larger molecules
Li, Derek D.; Greenfield, Michael L., E-mail: greenfield@egr.uri.edu [Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881 (United States)
2014-01-21
The dynamics properties of a new “next generation” model asphalt system that represents SHRP AAA-1 asphalt using larger molecules than past models is studied using molecular simulation. The system contains 72 molecules distributed over 12 molecule types that range from nonpolar branched alkanes to polar resins and asphaltenes. Molecular weights range from 290 to 890 g/mol. All-atom molecular dynamics simulations conducted at six temperatures from 298.15 to 533.15 K provide a wealth of correlation data. The modified Kohlrausch-Williams-Watts equation was regressed to reorientation time correlation functions and extrapolated to calculate average rotational relaxation times for individual molecules. The rotational relaxation rate of molecules decreased significantly with increasing size and decreasing temperature. Translational self-diffusion coefficients followed an Arrhenius dependence. Similar activation energies of ∼42 kJ/mol were found for all 12 molecules in the model system, while diffusion prefactors spanned an order of magnitude. Viscosities calculated directly at 533.15 K and estimated at lower temperatures using the Debye-Stokes-Einstein relationship were consistent with experimental data for asphalts. The product of diffusion coefficient and rotational relaxation time showed only small changes with temperature above 358.15 K, indicating rotation and translation that couple self-consistently with viscosity. At lower temperatures, rotation slowed more than diffusion.
Matteo, C.L. [Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires, Avda. Paseo Colon 850, 1063 Buenos Aires (Argentina); Lambri, O.A. [Instituto de Fisica Rosario, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Laboratorio de Materiales, Escuela de Ing. Electrica, Universidad Nacional de Rosario, Avda. Pellegrini 250, (2000) Rosario (Argentina)], E-mail: olambri@fceia.unr.edu.ar; Zelada-Lambri, G.I. [Instituto de Fisica Rosario, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Laboratorio de Materiales, Escuela de Ing. Electrica, Universidad Nacional de Rosario, Avda. Pellegrini 250, (2000) Rosario (Argentina); Sorichetti, P.A. [Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires, Avda. Paseo Colon 850, 1063 Buenos Aires (Argentina); Garcia, J.A. [Departamento de Fisica Aplicada II, Facultad de Ciencias y Tecnologia, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao, Pais Vasco (Spain)
2008-07-01
The modified relaxation time (MRT) function, which is based on a general linear viscoelastic formalism, has several important mathematical properties that greatly simplify the analysis of relaxation processes. In this work, the MRT is applied to the study of the relaxation damping peaks in deformed molybdenum at high temperatures. The dependence of experimental data from these relaxation processes with temperature are adequately described by a Havriliak-Negami (HN) function, and the MRT makes it possible to find a relation between the parameters of the HN function and the activation energy of the process. The analysis reveals that for the relaxation peak appearing at temperatures below 900 K, the physical mechanism is related to a vacancy-diffusion-controlled movement of dislocations. In contrast, when the peak appears at temperatures higher than 900 K, the damping is controlled by a mechanism of diffusion in the low-temperature tail of the peak, and in the high-temperature tail of the peak the creation plus diffusion of vacancies at the dislocation line occurs.
Direct Time-domain Observation of Conformational Relaxation in Gas-phase Cold Collisions
Drayna, Garrett K; Wang, Kenneth; Domingos, Sergio R; Eibengerber, Sandra; Doyle, John M; Patterson, David
2016-01-01
Cooling molecules in the gas phase is important for precision spectroscopy, cold molecule physics, and physical chemistry. Measurements of conformational relaxation cross sections shed important light on potential energy surfaces and energy flow within a molecule. However, gas-phase conformational cooling has not been previously observed directly. In this work, we directly observe conformational dynamics of 1,2-propanediol in cold (6K) collisions with atomic helium using microwave spectroscopy and buffer-gas cooling. Precise knowledge and control of the collisional environment in the buffer-gas allows us to measure the absolute collision cross-section for conformational relaxation. Several conformers of 1,2-propanediol are investigated and found to have relaxation cross-sections with He ranging from $\\sigma=4.7(3.0)\\times10^{-18}\\:\\mathrm{cm}^{2}$ to $\\sigma>5\\times10^{-16}\\:\\mathrm{cm}^{2}$. Our method is applicable to a broad class of molecules and could be used to provide information about the potential en...
Dynamical theory of spin noise and relaxation - prospects for real time NMR measurements
Field, Timothy
2014-03-01
The dynamics of a spin system is usually calculated using the density matrix. However, the usual formulation in terms of the density matrix predicts that the signal will decay to zero, and does not address the stochastic dynamics of individual spins. Spin fluctuations are to be viewed as an intrinsic quantum mechanical property of such systems immersed in random magnetic environments, and are observed as ``spin noise'' in the absence of any radio frequency (RF) excitation. Using stochastic calculus we develop a dynamical theory of spin noise and relaxation whose origins lie in the component spin fluctuations. This entails consideration of random pure states for individual protons, and how these pure states are correctly combined when the density matrix is formulated. Both the lattice and the spins are treated quantum mechanically. Such treatment incorporates both the processes of spin-spin and (finite temperature) spin-lattice relaxation. Our results reveal the intimate connections between spin noise and conventional spin relaxation, in terms of a modified spin density (MSD), distinct from the density matrix, which is necessary to describe non-ensemble averaged properties of spin systems. With the prospect of ultra-fast digitization, the role of spin noise in real time parameter extraction for (NMR) spin systems, and the advantage over standard techniques, is of essential importance, especially for systems containing a small number of spins. In this presentation we outline prospects for harnessing the recent dynamical theory in terms of spin noise measurement, with attention to real time properties.
Relaxation time diagram for identifying heat generation mechanisms in magnetic fluid hyperthermia
Lima, Enio, E-mail: lima@cab.cnea.gov.ar; De Biasi, Emilio; Zysler, Roberto D.; Vasquez Mansilla, Marcelo; Mojica-Pisciotti, Mary L. [Centro Atómico Bariloche/CONICET (Argentina); Torres, Teobaldo E.; Calatayud, M. Pilar; Marquina, C.; Ricardo Ibarra, M.; Goya, Gerardo F. [Universidad de Zaragoza, Instituto de Nanociencia de Aragón INA (Spain)
2014-12-15
We present a versatile diagram to envisage the dominant relaxation mechanism of single-domain magnetic nanoparticles (MNPs) under alternating magnetic fields, as those used in magnetic fluid hyperthermia (MFH). The diagram allows estimating the heating efficiency, measured by the Specific Power Absorption (SPA), originated in the magnetic and viscous relaxation times of single-domain MNPs for a given frequency of the ac magnetic field (AFM). The diagram has been successfully applied to different colloids, covering a wide variety of MNPs with different magnetic anisotropy and particle size, and dispersed in different viscous liquid carriers. From the general diagram, we derived a specific chart based on the Linear Response Theory in order to easily estimate the experimental condition for the optimal SPA values of most colloids currently used in MFH.
De Mey, S.; Thomas, J. D.; Greenberg, N. L.; Vandervoort, P. M.; Verdonck, P. R.
2001-01-01
The objective of this study was to use high-fidelity animal data and numerical simulations to gain more insight into the reliability of the estimated relaxation constant derived from left ventricular pressure decays, assuming a monoexponential model with either a fixed zero or free moving pressure asymptote. Comparison of the experimental data with the results of the simulations demonstrated a trade off between the fixed zero and the free moving asymptote approach. The latter method more closely fits the pressure curves and has the advantage of producing an extra coefficient with potential diagnostic information. On the other hand, this method suffers from larger standard errors on the estimated coefficients. The method with fixed zero asymptote produces values of the time constant of isovolumetric relaxation (tau) within a narrow confidence interval. However, if the pressure curve is actually decaying to a nonzero pressure asymptote, this method results in an inferior fit of the pressure curve and a biased estimation of tau.
Biogeographic kinetics: estimation of relaxation times for avifaunas of southwest pacific islands.
Diamond, J M
1972-11-01
When species diversity S on an island is displaced from the equilibrium value by injection or removal of species, S relaxes to equilibrium by an imbalance between immigration and extinction rates. Estimates of exponential relaxation times, t(r), for avifaunas of New Guinea satellite islands are calculated from analysis of four "experiments of nature": recolonization of exploded volcanoes, contraction in island area due to rising sea level, severing of land bridges, and disappearance of landbridge relict species. t(r) is in the range 3,000-18,000 years for avifaunas of islands of 50-3000 square miles (130-7800 km(2)), and increases with island area. Immigration coefficients decrease and extinction coefficients increase with increasing S. The results may be relevant to the design of rainforest preserves.
Feng, Zhipeng; Chen, Xiaowang; Wang, Tianyang
2017-07-01
Rolling bearings often work under variable speed conditions, resulting in nonstationary vibrations. How to effectively extract the time-varying fault frequency from nonstationary vibration signals is a key issue in rolling bearing fault diagnosis. To address this issue, a quality time-frequency analysis of excellent time-frequency readability and robust to noise is necessary. To this end, the concentration of frequency and time (ConceFT) method is exploited. Based on this time-frequency analysis method, and considering the modulation feature of rolling bearing vibrations, we propose joint time-varying amplitude and frequency demodulated spectra to reveal the time-varying fault characteristic frequency. Firstly, the optimal frequency band sensitive to rolling bearing fault is selected by spectral kurtosis. Then, both the amplitude envelope and instantaneous frequency of the sensitive signal component within the selected optimal frequency band are calculated. Next, the ConceFT method is applied to the amplitude envelope and instantaneous frequency to generate the time-varying amplitude and frequency demodulated spectra. Finally, rolling bearing fault can be diagnosed by analysis of the time-varying frequency revealed by the time-varying demodulated spectra. This method is free from complex time-varying sidebands, and is robust to noise interference. It is illustrated by numerical simulated signal analysis, and is further validated via lab experimental rolling bearing vibration signal analyses. The localized defects on both inner and outer race are successfully diagnosed.
Stabilization of the Wave Equation with Boundary Time-Varying Delay
Hao Li
2014-01-01
Full Text Available We study the stabilization of the wave equation with variable coefficients in a bounded domain and a time-varying delay term in the time-varying, weakly nonlinear boundary feedbacks. By the Riemannian geometry methods and a suitable assumption of nonlinearity, we obtain the uniform decay of the energy of the closed loop system.
Alexandrov, Nikola A; Marinova, Krastanka G; Gurkov, Theodor D; Danov, Krassimir D; Kralchevsky, Peter A; Stoyanov, Simeon D; Blijdenstein, Theodorus B J; Arnaudov, Luben N; Pelan, Eddie G; Lips, Alex
2012-06-15
The pendant-drop method (with drop-shape analysis) and Langmuir trough are applied to investigate the characteristic relaxation times and elasticity of interfacial layers from the protein HFBII hydrophobin. Such layers undergo a transition from fluid to elastic solid films. The transition is detected as an increase in the error of the fit of the pendant-drop profile by means of the Laplace equation of capillarity. The relaxation of surface tension after interfacial expansion follows an exponential-decay law, which indicates adsorption kinetics under barrier control. The experimental data for the relaxation time suggest that the adsorption rate is determined by the balance of two opposing factors: (i) the barrier to detachment of protein molecules from bulk aggregates and (ii) the attraction of the detached molecules by the adsorption layer due to the hydrophobic surface force. The hydrophobic attraction can explain why a greater surface coverage leads to a faster adsorption. The relaxation of surface tension after interfacial compression follows a different, square-root law. Such behavior can be attributed to surface diffusion of adsorbed protein molecules that are condensing at the periphery of interfacial protein aggregates. The surface dilatational elasticity, E, is determined in experiments on quick expansion or compression of the interfacial protein layers. At lower surface pressures (<11 mN/m) the experiments on expansion, compression and oscillations give close values of E that are increasing with the rise of surface pressure. At higher surface pressures, E exhibits the opposite tendency and the data are scattered. The latter behavior can be explained with a two-dimensional condensation of adsorbed protein molecules at the higher surface pressures. The results could be important for the understanding and control of dynamic processes in foams and emulsions stabilized by hydrophobins, as well as for the modification of solid surfaces by adsorption of such
Nemati Hasan
2011-01-01
Full Text Available A numerical investigation of the two-dimensional laminar flow and heat transfer a rotating circular cylinder with uniform planar shear, where the free-stream velocity varies linearly across the cylinder using Multi-Relaxation-Time Lattice Boltzmann method is conducted. The effects of variation of Reynolds number, rotational speed ratio at shear rate 0.1, blockage ratio 0.1 and Prandtl number 0.71 are studied. The Reynolds number changing from 50 to 160 for three rotational speed ratios of 0, 0.5, 1 is investigated. Results show that flow and heat transfer depends significantly on the rotational speed ratio as well as the Reynolds number. The effect of Reynolds number on the vortex-shedding frequency and period-surface Nusselt numbers is overall very strong compared with rotational speed ratio. Flow and heat conditions characteristics such as lift and drag coefficients, Strouhal number and Nusselt numbers are studied.
Wilkinson, Iain; Boguslavskiy, Andrey E; Mikosch, Jochen; Bertrand, Julien B; Wörner, Hans Jakob; Villeneuve, David M; Spanner, Michael; Patchkovskii, Serguei; Stolow, Albert
2014-05-28
The excited state dynamics of isolated sulfur dioxide molecules have been investigated using the time-resolved photoelectron spectroscopy and time-resolved photoelectron-photoion coincidence techniques. Excited state wavepackets were prepared in the spectroscopically complex, electronically mixed (B̃)(1)B1/(Ã)(1)A2, Clements manifold following broadband excitation at a range of photon energies between 4.03 eV and 4.28 eV (308 nm and 290 nm, respectively). The resulting wavepacket dynamics were monitored using a multiphoton ionisation probe. The extensive literature associated with the Clements bands has been summarised and a detailed time domain description of the ultrafast relaxation pathways occurring from the optically bright (B̃)(1)B1 diabatic state is presented. Signatures of the oscillatory motion on the (B̃)(1)B1/(Ã)(1)A2 lower adiabatic surface responsible for the Clements band structure were observed. The recorded spectra also indicate that a component of the excited state wavepacket undergoes intersystem crossing from the Clements manifold to the underlying triplet states on a sub-picosecond time scale. Photoelectron signal growth time constants have been predominantly associated with intersystem crossing to the (c̃)(3)B2 state and were measured to vary between 750 and 150 fs over the implemented pump photon energy range. Additionally, pump beam intensity studies were performed. These experiments highlighted parallel relaxation processes that occurred at the one- and two-pump-photon levels of excitation on similar time scales, obscuring the Clements band dynamics when high pump beam intensities were implemented. Hence, the Clements band dynamics may be difficult to disentangle from higher order processes when ultrashort laser pulses and less-differential probe techniques are implemented.
Thermoelastic Thick Plate under Illumination of a Uniform Laser Beam with one Relaxation time
Ezzat. F. Henain
2013-05-01
Full Text Available The problem of thermoelasticity, based on the theory of Lord and Shulman (L-S with one relaxation time, is used to solve a one dimensional boundary value problem of a thick plate. The upper surface of the medium is taken as traction free and heated by a pulsed laser beam. The lower surface of the medium rests on a rigid and thermally isolated. The general solution is obtained in the Laplace transform domain. Approximate small time analytical solutions to temperature, stress and displacement are obtained. Results of this problem are presented graphically.
Elastic models for the non-Arrhenius relaxation time of glass-forming liquids
Dyre, Jeppe
We first review the phenomenology of viscous liquids and the standard models used for explaining the non-Arrhenius average relaxation time. Then the focus is turned to the so-called elastic models, arguing that these models are all equivalent in the Einstein approximation (where the short......-time elastic properties are all determined by just one effective, temperature-dependent force constant). We finally discuss the connection between the elastic models and two well-established research fields of condensed-matter physics: point defects in crystals and solid-state diffusion....
Elastic models for the Non-Arrhenius Relaxation Time of Glass-Forming Liquids
Dyre, J. C.
2006-01-01
We first review the phenomenology of viscous liquids and the standard models used for explaining the non-Arrhenius average relaxation time. Then the focus is turned to the so-called elastic models, arguing that these models are all equivalent in the Einstein approximation (where the short......-time elastic properties are all determined by just one effective, temperature-dependent force constant). We finally discuss the connection between the elastic models and two well-established research fields of condensed-matter physics: point defects in crystals and solid-state diffusion....
Time-Resolved Torsional Relaxation of Spider Draglines by an Optical Technique
Emile, O.; Floch, A. Le; Vollrath, F.
2007-04-01
The sensitivity of the torsional pendulum demonstrates the self-shape-memory effect in different types of spider draglines. Here we report the time-resolved noncovalent bonds recovery in the protein structure. The torsional dynamics of such multilevel structure governed by reversible interactions are described in the frame of a nested model. Measurement of three different relaxation times confirms the existence of three energy storage levels in such two protein spidroin systems. Torsion opens the way to further investigations towards unraveling the tiny torque effects in biological molecules.
Elastic Models for the Non-Arrhenius Relaxation Time of Glass-Forming Liquids
Dyre, Jeppe C.
2006-05-01
We first review the phenomenology of viscous liquids and the standard models used for explaining the non-Arrhenius average relaxation time. Then the focus is turned to the so-called elastic models, arguing that these models are all equivalent in the Einstein approximation (where the short-time elastic properties are all determined by just one effective, temperature-dependent force constant). We finally discuss the connection between the elastic models and two well-established research fields of condensed-matter physics: point defects in crystals and solid-state diffusion.
Superparamagnetic relaxation in alpha-Fe particles
Bødker, Franz; Mørup, Steen; Pedersen, Michael Stanley;
1998-01-01
The superparamagnetic relaxation time of carbon-supported alpha-Fe particles with an average size of 3.0 Mm has been studied over a large temperature range by the use of Mossbauer spectroscopy combined with AC and DC magnetization measurements. It is found that the relaxation time varies with tem...
Containment consensus with measurement noises and time-varying communication delays
周峰; 王正杰; 范宁军
2015-01-01
In this paper, we consider the containment consensus control problem for multi-agent systems with measurement noises and time-varying communication delays under directed networks. By using stochastic analysis tools and algebraic graph theory, we prove that the followers can converge to the convex hull spanned by the leaders in the sense of mean square if the allowed upper bound of the time-varying delays satisfies a certain sufficient condition. Moreover, the time-varying delays are asymmetric for each follower agent, and the time-delay-dependent consensus condition is derived. Finally, numerical simulations are provided to illustrate the effectiveness of the obtained theoretical results.
T(2) relaxation time of hyaline cartilage in presence of different gadolinium-based contrast agents.
Wiener, Edzard; Settles, Marcus; Diederichs, Gerd
2010-01-01
The transverse relaxation time, T(2), of native cartilage is used to quantify cartilage degradation. T(2) is frequently measured after contrast administration, assuming that the impact of gadolinium-based contrast agents on cartilage T(2) is negligible. To verify this assumption the depth-dependent variation of T(2) in the presence of gadopentetate dimeglumine, gadobenate dimeglumine and gadoteridol was investigated. Furthermore, the r(2)/r(1) relaxivity ratios were quantified in different cartilage layers to demonstrate differences between T(2) and T(1) relaxation effects. Transverse high-spatial-resolution T(1)- and T(2)-maps were simultaneously acquired on a 1.5 T MR scanner before and after contrast administration in nine bovine patellae using a turbo-mixed sequence. The r(2)/r(1) ratios were calculated for each contrast agent in cartilage. Profiles of T(1), T(2) and r(2)/r(1) across cartilage thickness were generated in the absence and presence of contrast agent. The mean values in different cartilage layers were compared for global variance using the Kruskal-Wallis test and pairwise using the Mann-Whitney U-test. T(2) of unenhanced cartilage was 98 +/- 5 ms at 1 mm and 65 +/- 4 ms at 3 mm depth. Eleven hours after contrast administration significant differences (p cartilage thickness were close to 1.0 (range 0.9-1.3). At 1.5 T, T(2) decreased significantly in the presence of contrast agents, more pronounced in superficial than in deep cartilage. The change in T(2) relaxation rate was similar to the change in T(1). Cartilage T(2) measurements after contrast administration will lead to systematic errors in the quantification of cartilage degradation. 2010 John Wiley & Sons, Ltd.
Zhou, Si-Da; Heylen, Ward; Sas, Paul; Liu, Li
2014-05-01
This paper investigates the problem of modal parameter estimation of time-varying structures under unknown excitation. A time-frequency-domain maximum likelihood estimator of modal parameters for linear time-varying structures is presented by adapting the frequency-domain maximum likelihood estimator to the time-frequency domain. The proposed estimator is parametric, that is, the linear time-varying structures are represented by a time-dependent common-denominator model. To adapt the existing frequency-domain estimator for time-invariant structures to the time-frequency methods for time-varying cases, an orthogonal polynomial and z-domain mapping hybrid basis function is presented, which has the advantageous numerical condition and with which it is convenient to calculate the modal parameters. A series of numerical examples have evaluated and illustrated the performance of the proposed maximum likelihood estimator, and a group of laboratory experiments has further validated the proposed estimator.
Bradley, T. D.; Ilinova, E.; McFerran, J. J.; Jouin, J.; Debord, B.; Alharbi, M.; Thomas, P.; Gérôme, F.; Benabid, F.
2016-09-01
We report on the measurement of ground-state atomic polarization relaxation time of Rb vapor confined in five different hypocycloidal core-shape Kagome hollow-core photonic crystal fibers made with uncoated silica glass. We are able to distinguish between wall-collision and transit-time effects in an optical waveguide and deduce the contribution of the atom’s dwell time at the core wall surface. In contrast with conventional macroscopic atomic cell configuration, and in agreement with Monte Carlo simulations, the measured relaxation times were found to be at least one order of magnitude longer than the limit set by atom-wall collisional from thermal atoms. This extended relaxation time is explained by the combination of a stronger contribution of the slow atoms in the atomic polarization build-up, and of the relatively significant contribution of dwell time to the relaxation process of the ground state polarization.
Bienert, M; Kun, S Yu
2006-01-01
We estimate how accurate the phase relaxation time of quantum many-body systems can be determined from data on forward peaking of evaporating protons from a compound nucleus. The angular range and accuracy of the data needed for a reliable determination of the phase relaxation time are evaluated. The general method is applied to analyze the inelastic scattering of 18 MeV protons from Pt for which previously measured double differential cross sections for two angles in the evaporating domain of the spectra show a strong forward peaking. A new experiment for an improved determination of the phase relaxation time is proposed.
Empirical mode decomposition as a time-varying multirate signal processing system
Yang, Yanli
2016-08-01
Empirical mode decomposition (EMD) can adaptively split composite signals into narrow subbands termed intrinsic mode functions (IMFs). Although an analytical expression of IMFs extracted by EMD from signals is introduced in Yang et al. (2013) [1], it is only used for the case of extrema spaced uniformly. In this paper, the EMD algorithm is analyzed from digital signal processing perspective for the case of extrema spaced nonuniformly. Firstly, the extrema extraction is represented by a time-varying extrema decimator. The nonuniform extrema extraction is analyzed through modeling the time-varying extrema decimation at a fixed time point as a time-invariant decimation. Secondly, by using the impulse/summation approach, spline interpolation for knots spaced nonuniformly is shown as two basic operations, time-varying interpolation and filtering by a time-varying spline filter. Thirdly, envelopes of signals are written as the output of the time-varying spline filter. An expression of envelopes of signals in both time and frequency domain is presented. The EMD algorithm is then described as a time-varying multirate signal processing system. Finally, an equation to model IMFs is derived by using a matrix formulation in time domain for the general case of extrema spaced nonuniformly.
Arbitrary eigenvalue assignments for linear time-varying multivariable control systems
Nguyen, Charles C.
1987-01-01
The problem of eigenvalue assignments for a class of linear time-varying multivariable systems is considered. Using matrix operators and canonical transformations, it is shown that a time-varying system that is 'lexicography-fixedly controllable' can be made via state feedback to be equivalent to a time-invariant system whose eigenvalues are arbitrarily assignable. A simple algorithm for the design of the state feedback is provided.
Time-varying interaction leads to amplitude death in coupled nonlinear oscillators
Awadhesh Prasad
2013-09-01
A new form of time-varying interaction in coupled oscillators is introduced. In this interaction, each individual oscillator has always time-independent self-feedback while its interaction with other oscillators are modulated with time-varying function. This interaction gives rise to a phenomenon called amplitude death even in diffusively coupled identical oscillators. The nonlinear variation of the locus of bifurcation point is shown. Results are illustrated with Landau–Stuart (LS) and Rössler oscillators.
Nested Markov Compliance Class Model in the Presence of Time-Varying Noncompliance
Lin, Julia Y.; Ten Have, Thomas R.; ELLIOTT, MICHAEL R.
2009-01-01
We consider a Markov structure for partially unobserved time-varying compliance classes in the Imbens-Rubin (1997) compliance model framework. The context is a longitudinal randomized intervention study where subjects are randomized once at baseline, outcomes and patient adherence are measured at multiple follow-ups, and patient adherence to their randomized treatment could vary over time. We propose a nested latent compliance class model where we use time-invariant subject-specific complianc...
Analysis of Heart Rate Variability Using Time-Varying Filtering of Heart Transplanted Patients
Laouini, Ghailen; Meste, Olivier; Meo, Marianna
2012-01-01
International audience; In this paper, we analyze the heart rate variability (HRV), obtained by using the time-varying integral pulse frequency modulation (TVIPFM) which is well adapted to the exercise stress testing. We consider that the mean heart period is varying function of time, during exercise. This technique allows the estimation of the autonomic nervous system modulation (ANS) from the beat occurrences. The estimated respiratory sinus arrhythmia is then filtered in the time-frequency...
Wei, H. L.; Balikhin, M.; S. A. Billings
2003-01-01
Identification techniques for nonlinear time-varying systems are investigated based on the NARMAX model and multiresolution wavelet expansions. It is shown that a NARMAX model with time-varying coefficients can be reduced to a time-invariant linear-in-the-parameters analysis problem by then adapted to estimate the parameters. An application data relating to magnetic storms is used to illustrate the realistic application of the new identification technique.
Analysis of distributed power control under constant and time-varying delays
Campos-delgado, Daniel U.; Luna-rivera, J. Martin; Bonilla, Isela
2013-10-01
This work studies the distributed power control algorithm proposed in 1993 by Foschini-Miljanic, standardised for universal mobile telecommunication systems. Continuous and discrete time versions of this algorithm are analysed. First, the stability of the distributed power allocation schemes was studied, where sufficient conditions to guarantee stability and convergence to a desired quality of service were provided. In this study, the channel gains are assumed to be slowly time-varying or piece-wise constant. For closed-loop control, a proportional controller is then employed under integral action in order to achieve good tracking despite time-varying and unknown channel gains. Next, the effects of constant and time-varying time delays in the closed-loop structure are studied. Explicit stability regions for the control gains in the Foschini-Miljanic scheme are derived for both the continuous and discrete-time versions of the algorithm, under constant and time-varying delays. For time-varying scenario, the resulting stability regions do not impose limitations on the rate change of the time-varying profiles. A comprehensive evaluation using simulations is performed to validate the analytical derivations described in the paper.
Mingzhu Song
2016-01-01
Full Text Available We address the problem of globally asymptotic stability for a class of stochastic nonlinear systems with time-varying delays. By the backstepping method and Lyapunov theory, we design a linear output feedback controller recursively based on the observable linearization for a class of stochastic nonlinear systems with time-varying delays to guarantee that the closed-loop system is globally asymptotically stable in probability. In particular, we extend the deterministic nonlinear system to stochastic nonlinear systems with time-varying delays. Finally, an example and its simulations are given to illustrate the theoretical results.
RELIABILITY ANALYSIS FOR A REPAIRABLE PARALLEL SYSTEM WITH TIME-VARYING FAILURE RATES
TangShengdao; WangFengquan
2005-01-01
To solve a real problem :how to calculate the reliability of a system with time-varying failure rates in industry systems,this paper studies a model for the load-sharing parallel system with time-varying failure rates,and obtains calculating formulas of reliability and availability of the system by solving differential equations. In this paper, the failure rates are expressed in polynomial configuration. The constant,linear and Weibull failure rate are in their special form. The polynomial failure rates provide flexibility in modeling the practical time-varying failure rates.
顾成奎; 王正欧; 孙雅明
2003-01-01
A new method for identifying nonlinear time-varying systems with unknown structure is presented. The method extends the application area of basis sequence identification. The essential idea is to utilize the learning and nonlinear approximating ability of neural networks to model the non-linearity of the system, characterize time-varying dynamics of the system by the time-varying parametric vector of the network, then the parametric vector of the network is approximated by a weighted sum of known basis sequences. Because of black-box modeling ability of neural networks, the presented method can identify nonlinear time-varying systems with unknown structure. In order to improve the real-time capability of the algorithm, the neural network is trained by a simple fast learning algorithm based on local least squares presented by the authors. The effectiveness and the performance of the method are demonstrated by some simulation results.
Semistability of Nonlinear Systems Having a Continuum of Equilibria and Time-Varying Delays
Hui, Qing
2010-01-01
In this paper, we develop a semistability analysis framework for nonlinear systems with time-varying delays with applications to stability analysis of multiagent dynamic networks with consensus protocols in the presence of unknown heterogeneous time-varying delays along the communication links. We show that for such a nonlinear system having a continuum of equilibria, if the system asymptotically converges to a constant time-delay system and this new system is semistable, then the original time-varying delay system is semistable, provided that the delays are just bounded, not necessarily differentiable. In proving our results, we extend the limiting equation approach to the time-varying delay systems and also develop some new convergence results for functional differential equations.
Panczyk, Tomasz; Konczak, Lukasz; Zapotoczny, Szczepan; Szabelski, Pawel; Nowakowska, Maria
2015-01-01
In this work we have analyzed the influence of various factors on the transverse relaxation times T2 of water protons in suspension of magnetic nanoparticles. For that purpose we developed a full molecular dynamics force field which includes the effects of dispersion interactions between magnetic nanoparticles and water molecules, electrostatic interactions between charged nanoparticles and magnetic dipole-dipole and dipole-external field interactions. We also accounted for the magnetization reversal within the nanoparticles body frames due to finite magnetic anisotropy barriers. The force field together with the Langevin dynamics imposed on water molecules and the nanoparticles allowed us to monitor the dephasing of water protons in real time. Thus, we were able to determine the T2 relaxation times including the effects of the adsorption of water on the nanoparticles' surfaces, thermal fluctuations of the orientation of nanoparticles' magnetizations as well as the effects of the core-shell architecture of nanoparticles and their agglomeration into clusters. We found that there exists an optimal cluster size for which T2 is minimized and that the retardation of water molecules motion, due to adsorption on the nanoparticles surfaces, has some effect in the measured T2 times. The typical strengths of the external magnetic fields in MRI are enough to keep the magnetizations fixed along the field direction, however, in the case of low magnetic fields, we observed significant enhancement of T2 due to thermal fluctuations of the orientations of magnetizations. Copyright © 2014 Elsevier Inc. All rights reserved.
Release of native and amended boron from arid zone soils after varying incubation times
In this study we evaluated the boron (B) release from soils containing elevated native B and examined the extent to which incubation time affected B release. Five soils varying in initial pH and clay content were selected for the study. The soils were spiked with five varying doses of B as H3BO3 (...
Estimation of time-varying selectivity in stock assessments using state-space models
Nielsen, Anders; Berg, Casper Willestofte
2014-01-01
-varying selectivity pattern. The fishing mortality rates are considered (possibly correlated) stochastic processes, and the corresponding process variances are estimated within the model. The model is applied to North Sea cod and it is verified from simulations that time-varying selectivity can be estimated...
FINITE-TIME RUIN PROBABILITY WITH NQD DOMINATED VARYING-TAILED CLAIMS AND NLOD INTER-ARRIVAL TIMES
Jingzhi LI; Kaiyong WANG; Yuebao WANG
2009-01-01
In 2007, Chen and Ng investigated infinite-time ruin probability with constant interest force and negatively quadrant dependent and extended regularly varying-tailed claims. Following this work, the authors obtain a weakly asymptotic equivalent formula for the finite-time and infinite-time ruin probability with constant interest force, negatively quadrant dependent, and dominated varying-tailed claims and negatively lower orthant dependent inter-arrival times. In particular, when the claims are consistently varying-tailed, an asymptotic equivalent formula is presented.
Relaxation time of the Cooper pairs near Tc in cuprate superconductors
Ramallo, M. V.; Carballeira, C.; Viña, J.; Veira, J. A.; Mishonov, T.; Pavuna, D.; Vidal, F.
1999-10-01
It is first shown that the thermal fluctuation effects on the transport and on the thermodynamic observables above the superconducting transition may provide, when they are analyzed simultaneously and consistently, a powerful tool to access the relaxation time, τ0, of the Cooper pairs with wave vector k = 0 in high-temperature cuprate superconductors (HTSC). Then, we apply this procedure to optimally doped YBa2Cu3O7 - δ (Y-123) crystals. It is found that in this HTSC τ0 follows, within 20% accuracy, the BCS temperature behaviour and amplitude given by τ0 = πhbar/[8kB(T - Tc0)].
ZHU Ping; CHEN Shi-Bo; MEI Dong-Cheng
2006-01-01
We investigate the intensity correlation function C(s) and its associated relaxation time Tc for a saturation model of single-mode laser with correlated noises.The expressions of C(s) and Tc are derived by means of the projection operator method,and effects of correlations between an additive noise and a multiplicative noise are discussed by numerical calculation.Based on the calculated results,it is found that the correlation strength λ between the additive noise and the multiplicative noise can enhance the fluctuation decay of the laser intensity.
One-Dimensional Problem of a Conducting Viscous Fluid with One Relaxation Time
Angail A. Samaan
2011-01-01
Full Text Available We introduce a magnetohydrodynamic model of boundary-layer equations for conducting viscous fluids. This model is applied to study the effects of free convection currents with thermal relaxation time on the flow of a viscous conducting fluid. The method of the matrix exponential formulation for these equations is introduced. The resulting formulation together with the Laplace transform technique is applied to a variety problems. The effects of a plane distribution of heat sources on the whole and semispace are studied. Numerical results are given and illustrated graphically for the problem.
A Novel Statistical Approach for Brain MR Images Segmentation Based on Relaxation Times
Fabio Baselice
2015-01-01
Full Text Available Brain tissue segmentation in Magnetic Resonance Imaging is useful for a wide range of applications. Classical approaches exploit the gray levels image and implement criteria for differentiating regions. Within this paper a novel approach for brain tissue joint segmentation and classification is presented. Starting from the estimation of proton density and relaxation times, we propose a novel method for identifying the optimal decision regions. The approach exploits the statistical distribution of the involved signals in the complex domain. The technique, compared to classical threshold based ones, is able to globally improve the classification rate. The effectiveness of the approach is evaluated on both simulated and real datasets.
Ronca, Enrico; Angeli, Celestino; Belpassi, Leonardo; De Angelis, Filippo; Tarantelli, Francesco; Pastore, Mariachiara
2014-09-09
Making use of the recently developed excited state charge displacement analysis [E. Ronca et al., J. Chem. Phys. 140, 054110 (2014)], suited to quantitatively characterize the charge fluxes coming along an electronic excitation, we investigate the role of the density relaxation effects in the overall description of electronically excited states of different nature, namely, valence, ionic, and charge transfer (CT), considering a large set of prototypical small and medium-sized molecular systems. By comparing the response densities provided by time-dependent density functional theory (TDDFT) and the corresponding relaxed densities obtained by applying the Z-vector postlinear-response approach [N. C. Handy and H. F. Schaefer, J. Chem. Phys. 81, 5031 (1984)] with those obtained by highly correlated state-of-the-art wave function calculations, we show that the inclusion of the relaxation effects is imperative to get an accurate description of the considered excited states. We also examine what happens at the quality of the response function when an increasing amount of Hartree-Fock (HF) exchange is included in the functional, showing that the usually improved excitation energies in the case of CT states are not always the consequence of an improved description of their overall properties. Remarkably, we find that the relaxation of the response densities is always able to reproduce, independently of the extent of HF exchange in the functional, the benchmark wave function densities. Finally, we propose a novel and computationally convenient strategy, based on the use of the natural orbitals derived from the relaxed TDDFT density to build zero-order wave function for multireference perturbation theory calculations. For a significant set of different excited states, the proposed approach provided accurate excitation energies, comparable to those obtained by computationally demanding ab initio calculations.
Extending the EGP constitutive model for polymer glasses to multiple relaxation times
van Breemen, L. C. A.; Klompen, E. T. J.; Govaert, L. E.; Meijer, H. E. H.
2011-10-01
The one-mode EGP (Eindhoven glassy polymer) model captures the plastic flow at yield and post-yield quantitatively, but behaves poor in the non-linear viscoelastic pre-yield region. Since a proper description here is important in cases of complex loading and unloading situations, such as e.g. in indentation and scratching, an extension to non-linear modeling is required using a spectrum of relaxation times. It is shown that such a reference spectrum can be obtained from simple tensile tests. It shifts to shorter times under the influence of stress and is independent of the two important time-dependent processes in polymers: the strain rate applied during testing and the aging time during storage and use. The multi-mode model is critically tested and proves quantitative in describing the intrinsic polymer response and, based thereupon, in predicting the correct response in tensile testing, including necking, in flat tip indentation and in notched loading.
Visulization of Time-Varying Multiresolution Date Using Error-Based Temporal-Spatial Resuse
Nuber, C; LaMar, E; Hamann, B; Joy, K
2002-04-22
In this paper, we report results on exploration of two-dimensional (2D) time varying datasets. We extend the notion of multiresolution spatial data approximation of static datasets to spatio-temporal approximation of time-varying datasets. Time-varying datasets typically do not change ''uniformly,'' i.e., some spatial sub-domains can experience only little or no change for extended periods of time. In these sub-domains, we show that approximation error bounds can be met when using sub-domains from other time-steps effectively. We generate a more general approximation scheme where sub-domains may approximate congruent sub-domains from any other time steps. While this incurs an O(T2) overhead, where T is the total number of time-steps, we show significant reduction in data transmission. We also discuss ideas for improvements to reduce overhead.
Positive Almost Periodic Solutions for a Time-Varying Fishing Model with Delay
Xia Li
2011-01-01
Full Text Available This paper is concerned with a time-varying fishing model with delay. By means of the continuation theorem of coincidence degree theory, we prove that it has at least one positive almost periodic solution.
STABILIZATION OF NONLINEAR TIME-VARYING SYSTEMS: A CONTROL LYAPUNOV FUNCTION APPROACH
Zhongping JIANG; Yuandan LIN; Yuan WANG
2009-01-01
This paper presents a control Lyapunov function approach to the global stabilization problem for general nonlinear and time-varying systems. Explicit stabilizing feedback control laws are proposed based on the method of control Lyapunov functions and Sontag's universal formula.
Moraes, Tiago Bueno; Monaretto, Tatiana; Colnago, Luiz Alberto
2016-09-01
Longitudinal (T1) and transverse (T2) relaxation times have been widely used in time-domain NMR (TD-NMR) to determine several physicochemical properties of petroleum, polymers, and food products. The measurement of T2 through the CPMG pulse sequence has been used in most of these applications because it denotes a rapid, robust method. On the other hand, T1 has been occasionally used in TD-NMR due to the long measurement time required to collect multiple points along the T1 relaxation curve. Recently, several rapid methods to measure T1 have been proposed. Those methods based upon single shot, known as Continuous Wave Free Precession (CWFP) pulse sequences, have been employed in the simultaneous measurement of T1 and T2 in a rapid fashion. However, these sequences can be used exclusively in instrument featuring short dead time because the magnitude of the signal at thermal equilibrium is required. In this paper, we demonstrate that a special CWFP sequence with a low flip angle can be a simple and rapid method to measure T1 regardless of instruments dead time. Experimental results confirmed that the method called CWFP-T1 may be used to measure both single T1 value and T1 distribution in heterogeneous samples. Therefore, CWFP-T1 sequence can be a feasible alternative to CPMG in the determination of physicochemical properties, particularly in processes where fast protocols are requested such as industrial applications.
Wrastawa Ridwan
2011-08-01
Full Text Available This paper investigates the problem of H∞ performance analysis for continous–time systems with two additive time-varying delays in the state. Our objective is focused on stability analysis of a continuous system with two time-varying delays with an H∞ disturbance attenuation level γ. By exploiting Lyapunov-Krasovski functional and introducing free weighting matrix variables, LMI stability condition have been derived.
Design of reduced-order state estimators for linear time-varying multivariable systems
Nguyen, Charles C.
1987-01-01
The design of reduced-order state estimators for linear time-varying multivariable systems is considered. Employing the concepts of matrix operators and the method of canonical transformations, this paper shows that there exists a reduced-order state estimator for linear time-varying systems that are 'lexicography-fixedly observable'. In addition, the eigenvalues of the estimator can be arbitrarily assigned. A simple algorithm is proposed for the design of the state estimator.
Delay dependent stability criteria for recurrent neural networks with time varying delays
Zhanshan WANG; Huaguang ZHANG
2009-01-01
This paper aims to present some delay-dependent global asymptotic stability criteria for recurrent neural networks with time varying delays.The obtained results have no restriction on the magnitude of derivative of time varying delay,and can be easily checked due to the form of linear matrix inequality.By comparison with some previous results,the obtained results are less conservative.A numerical example is utilized to demonstrate the effectiveness of the obtained results.
Robust stability of time-varying uncertain systems with rational dependence on the uncertainty
2010-01-01
Robust stability of time-varying uncertain systems is a key problem in automatic control. This note considers the case of linear systems with rational dependence on an uncertain time-varying vector constrained in a polytope, which is typically addressed in the literature by using the linear fractional representation (LFR). A novel sufficient condition for robust stability is derived in terms of a linear matrix inequality (LMI) feasibility test by exploiting homogeneous polynomial Lyapunov fun...
Estimating Time-Varying Beta of Price Limits and Its Applications in China Stock Market
Rongquan Bai
2013-01-01
Full Text Available This paper proposes an estimation method of time-varying beta of price limits. It uses China stock market trading data to estimate time-varying beta and researches on systemic risk in China stock market. By comparing prediction errors of market model, SS market model, and Censored-SS market model, it verifies the effectiveness of Censored-SS market model. Furthermore it has some meaningful conclusions in China stock market.
Estimating Time-Varying Beta of Price Limits and Its Applications in China Stock Market
Rongquan Bai; Zuoquan Zhang; Menggang Li
2013-01-01
This paper proposes an estimation method of time-varying beta of price limits. It uses China stock market trading data to estimate time-varying beta and researches on systemic risk in China stock market. By comparing prediction errors of market model, SS market model, and Censored-SS market model, it verifies the effectiveness of Censored-SS market model. Furthermore it has some meaningful conclusions in China stock market.
Robustness of controllability and observability of linear time-varying systems
Sastry, S.S.; Desoer, C.A.
1982-08-01
Fixed point methods from nonlinear analysis are used to establish conditions under which the uniform complete controllability of linear time-varying systems is preserved under nonlinear perturbations in the state dynamics and the zero-input uniform complete observability of linear time-varying systems is preserved under nonlinear perturbation in the state dynamics and output read-out map. Robustness of partial controllability, observability, and a specific kind of nonzero input observability are also proven.
An improved impulsive control approach to nonlinear systems with time-varying delays
Zhang Hua-Guang; Fu Jie; Ma Tie-Dong; Tong Shao-Cheng
2009-01-01
A scheme for the impulsive control of nonlinear systems with time-varying delays is investigated in this paper. Based on the Lyapunov-like stability theorem for impulsive functional differential equations (FDEs), some sufficient conditions are presented to guarantee the uniform asymptotic stability of impulsively controlled nonlinear systems with time-varying delays. These conditions are more effective and less conservative than those obtained. Finally, two numerical examples are provided to demonstrate the effectiveness of the proposed method.
Acceleration of carbon-13 spin-lattice relaxation times in amino acids by electrolytes
Tian Jinping; Yin Yingwu
2004-01-01
A series of amino acids and carboxylic acids were determined by 13C NMR spectroscopy.The results showed that addition of 3M MgCl2 led to the 13C NMR integral area of samples being well proportional to number of carbon atoms that produce the particular signal with reliability over 95%. Measurements of 13C spin-lattice relaxation times (T1's) are reported for a number of amino acids. T1's of all the carbons in amino acids generally tend to decrease with the increase of the concentration of electrolytes, and the presence of magnesium slats is of significant. Carboxylic carbons in amino acids are the most sensitive "acceptor" of the 13C spin-lattice relaxation accelerating effects in electrolytes, and the 13C spin-lattice relaxation accelerating ability of electrolytes is Mg(ClO4)2 ＞MgCl2 ＞CaCl2 ＞NaCl ＞KCl ＞LiClO4 ＞NaOH. In general, T1's of C1 carbons in nonpolar a-amino acids are higher than those in polar and basic a-amino acids both in aqueous and 3M MgCl2 medium. In aliphatic straight-chain amino acids, a-, a-, a-, ai- and a- amino acids, T1's of C1 carbons tend to reduce with the increase of inserted carbon numbers between amino and carboxylic groups compared with Gly. T1's can be decreased even more when amino acids are mixed in 3M MgCl2, but T1's of carbons in amino acids decrease slightly with increase of the concentration of amino acids in 3M MgCl2. The mechanisms of the observed phenomena are discussed in terms of intermolecular interaction and paramagnetic impurity in electrolytes, large contributions of intermolecular interaction which is enhanced in electrolytes concentrate on the incoming "unsaturation" of the primary solvation shell of cations with the increase of electrolytes concentration and complexes formation of amino acids with metal ions. In electrolytes, amino acids are "anchored" to cations and molecule tumbling is slowed down, molecular rigidity is increased and molecular size is "enlarged", all of these are helpful to accelerate
Evaluation of PHB/Clay nanocomposite by spin-lattice relaxation time
Mariana Bruno
2008-12-01
Full Text Available Poly(3-hydroxybutyrate (PHB based on nanocomposites containing different amounts of a commercial organically modified clay (viscogel B7 were prepared employing solution intercalation method. Three solvents, such as: CHCl3, dimethylchloride (DMC and tetrahydrofuran (THF were used. The relationship among the processing conditions; molecular structure and intermolecular interaction, between both nanocomposite components, were investigated using a nuclear magnetic resonance (NMR, as a part of characterization methodology, which has been used by Tavares et al. It involves the hydrogen spin-lattice relaxation time, T1H, by solid state nuclear magnetic resonance, employing low field NMR. X ray diffraction was also employed because it is a conventional technique, generally used to obtain the first information on nanocomposite formation. Changes in PHB crystallinity were observed after the organophilic nanoclay had been incorporated in the polymer matrix. These changes, in the microstructure, were detected by the variation of hydrogen nuclear relaxation time values and by X ray, which showed an increase in the clay interlamelar space due to the intercalation of the polymer in the clay between lamellae. It was also observed, for both techniques, that the solvents affect directly the organization of the crystalline region, promoting a better intercalation, considering that they behave like a plasticizer.
MRI-Based Visualization of the Relaxation Times of Early Somatic Embryos
Mikulka J.
2016-04-01
Full Text Available The large set of scientific activities supported by MRI includes, among others, the research of water and mineral compounds transported within a plant, the investigation of cellular processes, and the examination of the growth and development of plants. MRI is a method of major importance for the measurement of early somatic embryos (ESE during cultivation, and in this respect it offers several significant benefits discussed within this paper. We present the following procedures: non-destructive measurement of the volume and content of water during cultivation; exact three-dimensional differentiation between the ESEs and the medium; investigation of the influence of ions and the change of relaxation times during cultivation; and multiparametric segmentation of MR images to differentiate between embryogenic and non-embryogenic cells. An interesting technique consists in two-parameter imaging of the relaxation times of the callus; this method is characterized by tissue changes during cultivation at a microscopic level, which can be monitored non-destructively.
Niu, Xiao-Dong; Hyodo, Shi-Aki; Munekata, Toshihisa; Suga, Kazuhiko
2007-09-01
It is well known that the Navier-Stokes equations cannot adequately describe gas flows in the transition and free-molecular regimes. In these regimes, the Boltzmann equation (BE) of kinetic theory is invoked to govern the flows. However, this equation cannot be solved easily, either by analytical techniques or by numerical methods. Hence, in order to efficiently maneuver around this equation for modeling microscale gas flows, a kinetic lattice Boltzmann method (LBM) has been introduced in recent years. This method is regarded as a numerical approach for solving the BE in discrete velocity space with Gauss-Hermite quadrature. In this paper, a systematic description of the kinetic LBM, including the lattice Boltzmann equation, the diffuse-scattering boundary condition for gas-surface interactions, and definition of the relaxation time, is provided. To capture the nonlinear effects due to the high-order moments and wall boundaries, an effective relaxation time and a modified regularization procedure of the nonequilibrium part of the distribution function are further presented based on previous work [Guo et al., J. Appl. Phys. 99, 074903 (2006); Shan et al., J. Fluid Mech. 550, 413 (2006)]. The capability of the kinetic LBM of simulating microscale gas flows is illustrated based on the numerical investigations of micro Couette and force-driven Poiseuille flows.
Enhancing Web applications in radiology with Java: estimating MR imaging relaxation times.
Dagher, A P; Fitzpatrick, M; Flanders, A E; Eng, J
1998-01-01
Java is a relatively new programming language that has been used to develop a World Wide Web-based tool for estimating magnetic resonance (MR) imaging relaxation times, thereby demonstrating how Java may be used for Web-based radiology applications beyond improving the user interface of teaching files. A standard processing algorithm coded with Java is downloaded along with the hypertext markup language (HTML) document. The user (client) selects the desired pulse sequence and inputs data obtained from a region of interest on the MR images. The algorithm is used to modify selected MR imaging parameters in an equation that models the phenomenon being evaluated. MR imaging relaxation times are estimated, and confidence intervals and a P value expressing the accuracy of the final results are calculated. Design features such as simplicity, object-oriented programming, and security restrictions allow Java to expand the capabilities of HTML by offering a more versatile user interface that includes dynamic annotations and graphics. Java also allows the client to perform more sophisticated information processing and computation than is usually associated with Web applications. Java is likely to become a standard programming option, and the development of stand-alone Java applications may become more common as Java is integrated into future versions of computer operating systems.
Eugene, M.; Lechat, P.; Hadjiisky, P.; Teillac, A.; Grosgogeat, Y.; Cabrol, C.
1986-01-01
It should be possible to detect heart transplant rejection by nuclear magnetic resonance (NMR) imaging if it induces myocardial T1 and T2 proton relaxation time alterations or both. We studied 20 Lewis rats after a heterotopic heart transplantation. In vitro measurement of T1 and T2 was performed on a Minispec PC20 (Bruker) 3 to 9 days after transplantation. Histologic analysis allowed the quantification of rejection process based on cellular infiltration and myocardiolysis. Water content, a major determinant of relaxation time, was also studied. T1 and T2 were significantly prolonged in heterotopic vs orthotopic hearts (638 +/- 41 msec vs 606 +/- 22 msec for T1, p less than 0.01 and 58.2 +/- 8.4 msec vs 47.4 +/- 1.9 msec for T2, p less than 0.001). Water content was also increased in heterotopic hearts (76.4 +/- 2.3 vs 73.8 +/- 1.0, p less than 0.01). Most importantly, we found close correlations between T1 and especially T2 vs water content, cellular infiltration, and myocardiolysis. We conclude that rejection reaction should be noninvasively detected by NMR imaging, particularly with pulse sequences emphasizing T2.
Nuclear magnetic resonance relaxation times for human lung cancer and lung tissues
Matsuura, Yoshifumi; Shioya, Sumie; Kurita, Daisaku; Ohta, Takashi; Haida, Munetaka; Ohta, Yasuyo [Tokai Univ., Isehara, Kanagawa (Japan). School of Medicine; Suda, Syuichi; Fukuzaki, Minoru
1994-12-01
We investigated the nuclear magnetic resonance (NMR) relaxation times, T{sub 1} and T{sub 2}, for lung cancer tissue, and other samples of lung tissue obtained from surgical specimens. The samples were nine squamous cell carcinomas, five necrotic squamous cell carcinomas, 15 adenocarcinomas, two benign mesotheliomas, and 13 fibrotic lungs. The relaxation times were measured with a 90 MHz NMR spectrometer and the results were correlated with histological changes. The values of T{sub 1} and T{sub 2} for squamous cell carcinoma and mesothelioma were significantly longer than those of adenocarcinoma and fibrotic lung tissue. There were no significant differences in values of T{sub 1} and T{sub 2} between adenocarcinoma and lung tissue. The values of T{sub 1} and T{sub 2} for benign mesothelioma were similar to those of squamous cell carcinoma, which suggested that increases in T{sub 1} and T{sub 2} are not specific to malignant tissues. (author).
Frequency-domain L2-stability conditions for time-varying linear and nonlinear MIMO systems
Zhihong HUANG; Y. V. VENKATESH; Cheng XIANG; Tong Heng LEE
2014-01-01
The paper deals with the L2-stability analysis of multi-input-multi-output (MIMO) systems, governed by integral equations, with a matrix of periodic/aperiodic time-varying gains and a vector of monotone, non-monotone and quasi-monotone nonlin-earities. For nonlinear MIMO systems that are described by differential equations, most of the literature on stability is based on an application of quadratic forms as Lyapunov-function candidates. In contrast, a non-Lyapunov framework is employed here to derive new and more general L2-stability conditions in the frequency domain. These conditions have the following features:i) They are expressed in terms of the positive definiteness of the real part of matrices involving the transfer function of the linear time-invariant block and a matrix multiplier function that incorporates the minimax properties of the time-varying linear/nonlinear block. ii) For certain cases of the periodic time-varying gain, they contain, depending on the multiplier function chosen, no restrictions on the normalized rate of variation of the time-varying gain, but, for other periodic/aperiodic time-varying gains, they do. Overall, even when specialized to periodic-coefficient linear and nonlinear MIMO systems, the stability conditions are distinct from and less restrictive than recent results in the literature. No comparable results exist in the literature for aperiodic time-varying gains. Furthermore, some new stability results concerning the dwell-time problem and time-varying gain switching in linear and nonlinear MIMO systems with periodic/aperiodic matrix gains are also presented. Examples are given to illustrate a few of the stability theorems.
Global exponential stability for switched memristive neural networks with time-varying delays.
Xin, Youming; Li, Yuxia; Cheng, Zunshui; Huang, Xia
2016-08-01
This paper considers the problem of exponential stability for switched memristive neural networks (MNNs) with time-varying delays. Different from most of the existing papers, we model a memristor as a continuous system, and view switched MNNs as switched neural networks with uncertain time-varying parameters. Based on average dwell time technique, mode-dependent average dwell time technique and multiple Lyapunov-Krasovskii functional approach, two conditions are derived to design the switching signal and guarantee the exponential stability of the considered neural networks, which are delay-dependent and formulated by linear matrix inequalities (LMIs). Finally, the effectiveness of the theoretical results is demonstrated by two numerical examples.
Consensus for Linear Multiagent Systems With Time-Varying Delays: A Frequency Domain Perspective.
Chen, Yuanye; Shi, Yang
2016-07-27
This paper investigates the consensus problem for multiagent systems with time-varying delays. The bounded delays can be arbitrarily fast time-varying. The communication topology is assumed to be undirected and fixed. With general linear dynamics under average state feedback protocols, the consensus problem is then transformed into the robust control problem. Further, sufficient frequency domain criteria are established in terms of small gain theorem by analyzing the delay dependent gains for both continuous-time and discrete-time systems. The controller synthesis problems can be solved by applying the frequency domain design methods. Numerical examples are demonstrated to verify the effectiveness of the proposed approaches.
A blind separation method of overlapped multi-components based on time varying AR model
无
2008-01-01
A method utilizing single channel recordings to blindly separate the multicomponents overlapped in time and frequency domains is proposed in this paper. Based on the time varying AR model, the instantaneous frequency and amplitude of each signal component are estimated respectively, thus the signal component separation is achieved. By using prolate spheroidal sequence as basis functions to expand the time varying parameters of the AR model, the method turns the problem of linear time varying parameters estimation to a linear time invariant parameter estimation problem, then the parameters are estimated by a recursive algorithm. The computation of this method is simple, and no prior knowledge of the signals is needed. Simulation results demonstrate validity and excellent performance of this method.
Modal Vibration Control in Periodic Time-Varying Structures with Focus on Rotor-Blade Systems
Christensen, Rene Hardam; Santos, Ilmar
2003-01-01
to be overcome. Among others it is necessary, that the control scheme is capable to cope with non-linear time-varying dynamical system behaviour. However, rotating at constant speed the mathematical model becomes periodic time-variant. In this framework the present paper gives a contribution to design procedures...... of active modal controllers. The main aim is to reduce vibrations in periodic time-varying structures. Special emphasis is given to vibration control of coupled bladed rotor systems. A state feedback modal control law is developed based on modal analysis in periodic time-varying structures. The first step...... is reformulated using complex mode theory. Next, a linear constant gain controller for the reformulated system is designed by linear control technique. Finally, this constant gain controller is transformed to a time-periodic form by applying reverse modal transformation. The non-measurable states are estimated...
Ahn, Choon Ki; Shi, Peng; Wu, Ligang
2015-12-01
This paper is concerned with the problems of receding horizon stabilization and disturbance attenuation for neural networks with time-varying delay. New delay-dependent conditions on the terminal weighting matrices of a new finite horizon cost functional for receding horizon stabilization are established for neural networks with time-varying or time-invariant delays using single- and double-integral Wirtinger-type inequalities. Based on the results, delay-dependent sufficient conditions for the receding horizon disturbance attenuation are given to guarantee the infinite horizon H∞ performance of neural networks with time-varying or time-invariant delays. Three numerical examples are provided to illustrate the effectiveness of the proposed approach.
Sanchez, B; Louarroudi, E; Jorge, E; Cinca, J; Bragos, R; Pintelon, R
2013-03-01
The bioimpedance measurement/identification of time-varying biological systems Z(ω, t) by means of electrical impedance spectroscopy (EIS) is still a challenge today. This paper presents a novel measurement and identification approach, the so-called parametric-in-time approach, valid for time-varying (bio-)impedance systems with a (quasi) periodic character. The technique is based on multisine EIS. Contrary to the widely used nonparametric-in-time strategy, the (bio-)impedance Z(ω, t) is assumed to be time-variant during the measurement interval. Therefore, time-varying spectral analysis tools are required. This new parametric-in-time measuring/identification technique has experimentally been validated through three independent sets of in situ measurements of in vivo myocardial impedance. We show that the time-varying myocardial impedance Z(ω, t) is dominantly periodically time varying (PTV), denoted as ZPTV(ω, t). From the temporal analysis of ZPTV(ω, t), we demonstrate that it is possible to decompose ZPTV(ω, t) into a(n) (in)finite sum of fundamental (bio-)impedance spectra, the so-called harmonic impedance spectra (HIS) Zk(ω)s with [Formula: see text]. This is similar to the well-known Fourier series of a periodic signal, but now understood at the level of a periodic system's frequency response. The HIS Zk(ω)s for [Formula: see text] actually summarize in the bi-frequency (ω, k) domain all the temporal in-cycle information about the periodic changes of Z(ω, t). For the particular case k = 0 (i.e. on the ω-axis), Z0(ω) reflects the mean in-cycle behavior of the time-varying bioimpedance. Finally, the HIS Zk(ω)s are directly identified from noisy current and voltage myocardium measurements at the multisine measurement frequencies (i.e. nonparametric-in-frequency).
Average-atom treatment of relaxation time in x-ray Thomson scattering from warm dense matter.
Johnson, W R; Nilsen, J
2016-03-01
The influence of finite relaxation times on Thomson scattering from warm dense plasmas is examined within the framework of the average-atom approximation. Presently most calculations use the collision-free Lindhard dielectric function to evaluate the free-electron contribution to the Thomson cross section. In this work, we use the Mermin dielectric function, which includes relaxation time explicitly. The relaxation time is evaluated by treating the average atom as an impurity in a uniform electron gas and depends critically on the transport cross section. The calculated relaxation rates agree well with values inferred from the Ziman formula for the static conductivity and also with rates inferred from a fit to the frequency-dependent conductivity. Transport cross sections determined by the phase-shift analysis in the average-atom potential are compared with those evaluated in the commonly used Born approximation. The Born approximation converges to the exact cross sections at high energies; however, differences that occur at low energies lead to corresponding differences in relaxation rates. The relative importance of including relaxation time when modeling x-ray Thomson scattering spectra is examined by comparing calculations of the free-electron dynamic structure function for Thomson scattering using Lindhard and Mermin dielectric functions. Applications are given to warm dense Be plasmas, with temperatures ranging from 2 to 32 eV and densities ranging from 2 to 64 g/cc.
More relaxed condition for dynamics of discrete time delayed Hopfield neural networks
Zhang Qiang
2008-01-01
The dynamics of discrete time delayed Hopfield neural networks is investigated.By using a difference inequality combining with the linear matrix inequality,a sufficient condition ensuring global exponential stability of the unique equilibrium point of the networks is found.The result obtained holds not only for constant delay but also for time-varying delays.
Prantner, Viktoria; Isaksson, Hanna; Nissi, Mikko J; Jurvelin, Jukka S [Department of Physics and Mathematics, University of Eastern Finland, PO Box 1627, 70211 Kuopio (Finland); Naervaeinen, Johanna; Groehn, Olli H J [Department of Neurobiology, A I Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, 70211 Kuopio (Finland); Lammentausta, Eveliina [Department of Diagnostic Radiology, Oulu University Hospital, PO Box 50, 90029 OYS, Oulu (Finland); Avela, Janne, E-mail: hanna.isaksson@uef.f [Department of Biology of Physical Activity, University of Jyvaeskylae, PO Box 35, 40014 Jyvaeskylae (Finland)
2010-12-07
Nuclear magnetic resonance (NMR) spectroscopy provides a potential tool for non-invasive evaluation of the trabecular bone structure. The objective of this study was to determine the reproducibility of the NMR relaxation parameters (T{sub 2}, Carr-Purcel-T{sub 2}, T{sub 1}{rho}) for fat and water and relate those to the structural parameters obtained by micro-computed tomography ({mu}CT). Especially, we aimed to evaluate the effect of freezing on the relaxation parameters. For storing bone samples, freezing is the standard procedure during which the biochemical and cellular organization of the bone marrow may be affected. Bovine trabecular bone samples were stored at -20 {sup 0}C for 7 days and measured by NMR spectroscopy before and after freezing. The reproducibility of NMR relaxation parameters, as expressed by the coefficient of variation, ranged from 3.1% to 27.9%. In fresh samples, some correlations between NMR and structural parameters (Tb.N, Tb.Sp) were significant (e.g. the relaxation rate for T{sub 2} of fat versus Tb.Sp: r = -0.716, p < 0.01). Freezing did not significantly change the NMR relaxation times but the correlations between relaxation parameters and the {mu}CT structural parameters were not statistically significant after freezing, suggesting some nonsystematic alterations of the marrow structure. Therefore, the use of frozen bone samples for NMR relaxation studies may provide inferior information about the trabecular bone structure.
牟静; 陶超; 杜功焕
2003-01-01
In this paper we propose and investigate the synchronization of a new chaotic model with time-varying parameters and apply it to improve the security of chaotic communication. In this model, the chaotic system is modulated by both the message and the varying parameters. The varying parameters distort the phase space so heavily that they prevent the carrier from being broken by nonlinear dynamic forecasting method. Theory and simulation experiments with speech signal communication indicate that the receiver can gain a perfect synchronization with the transmitter, and the intruder cannot break down this communication system. We also discuss the robustness of the new communication system.
无
2007-01-01
Using time domain reflectometry (TDR), dielectric relaxation studies were carried out on binary mixtures of amides (N-methyfformamide (NMF) and N,N-dimethylformamide (DMF)) with alcohols (1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, and 1-decanol) for various concentrations over the frequency range from 10 MHz to 10 GHz at 303 K. The Kirkwood correlation factor and excess dielectric constant properties were determined and discussed to yield information on the molecular interactions of the systems. The relaxation time varied with the chain length of alcohols and substituted amides were noticed. The Bruggeman plot shows a deviation from linearity. This deviation was attributed to some sort of molecular interaction which may take place between the alcohols and substituted amides. The excess static permittivity and excess inverse relaxation time values varied from negative to positive for all the systems indicating that the solute-solvent interaction existed between alcohols and substituted amides for all the dynamics of the mixture.
Observer-based Adaptive Iterative Learning Control for Nonlinear Systems with Time-varying Delays
Wei-Sheng Chen; Rui-Hong Li; Jing Li
2010-01-01
An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (LMI) method is employed to design the nonlinear observer. The designed controller contains a proportional-integral-derivative (PID) feedback term in time domain. The learning law of unknown constant parameter is differential-difference-type, and the learning law of unknown time-varying parameter is difference-type. It is assumed that the unknown delay-dependent uncertainty is nonlinearly parameterized. By constructing a Lyapunov-Krasovskii-like composite energy function (CEF), we prove the boundedness of all closed-loop signals and the convergence of tracking error. A simulation example is provided to illustrate the effectiveness of the control algorithm proposed in this paper.
Observer-based robust stabilization for uncertain systems with unknown time-varying delay
Peigang JIANG; Chunwen LI
2004-01-01
This paper focuses on the problem of robust stabiiization for a class of linear systems with uncertain parameters and time varying delays in states. The parameter uncertainty is continuous, time varying, and norm-bounded. The state delay is unknown and time varying. The states of the system are not all measurable and an observer is constructed to estimate the states. If a linear matrix inequality (LMI) is solvable, the gains of the controller and observer can be obtained from the solution of the LMI.The observer and controller are dependent on the size of time delay and on the size of delay derivative. Finally, an example is given to illustrate the effectiveness of the proposed control method.
A Full Performance Analysis of Channel Estimation Methods for Time Varying OFDM Systems
Aida, Zaier; 10.5121/ijmnct.2011.1201
2012-01-01
In this paper, we have evaluated various methods of time-frequency-selective fading channels estimation in OFDM system and some of them improved under time varying conditions. So, these different techniques will be studied through different algorithms and for different schemes of modulations (16 QAM, BPSK, QPSK, ...). Channel estimation gathers different schemes and algorithms, some of them are dedicated for slowly time varying (such as block type arrangement insertion, Bayesian Cramer-Rao Bound, Kalman estimator, Subspace estimator, ...) whereas the others concern highly time varying channels (comb type insertion, ...). There are others methods that are just suitable for stationary channels like blind or semi blind estimators. For this aim, diverse algorithms were used for these schemes such as Least Squares estimator LS, Least Minimum Squares LMS, Minimum Mean-Square-Error MMSE, Linear Minimum Mean-Square-Error LMMSE, Maximum Likelihood ML, ... to refine estimators shown previously.
Modal Vibration Control in Periodic Time-Varying Structures with Focus on Rotor Blade Systems
Christensen, Rene Hardam; Santos, Ilmar
2004-01-01
The demands for high efficiency machines initiate a demand for monitoring and active control of vibrations to improve machinery performance and to prolong machinery lifetime. Applying active control to reduce vibrations in flexible bladed rotor-systems imply that several difficulties have...... of active modal controllers. The main aim is to reduce vibrations in periodic time-varying structures. Special emphasis is given to vibration control of coupled bladed rotor systems. A state feedback modal control law is developed based on modal analysis in periodic time-varying structures. The first step...... to be overcome. Among others it is necessary, that the control scheme is capable to cope with non-linear time-varying dynamical system behaviour. However, rotating at constant speed the mathematical model becomes periodic time-variant. In this framework the present paper gives a contribution to design procedures...
Mean Square Exponential Stability of Stochastic Switched System with Interval Time-Varying Delays
Manlika Rajchakit
2012-01-01
Full Text Available This paper is concerned with mean square exponential stability of switched stochastic system with interval time-varying delays. The time delay is any continuous function belonging to a given interval, but not necessary to be differentiable. By constructing a suitable augmented Lyapunov-Krasovskii functional combined with Leibniz-Newton’s formula, a switching rule for the mean square exponential stability of switched stochastic system with interval time-varying delays and new delay-dependent sufficient conditions for the mean square exponential stability of the switched stochastic system are first established in terms of LMIs. Numerical example is given to show the effectiveness of the obtained result.
SUBSPACE METHOD FOR BLIND IDENTIFICATION OF CDMA TIME-VARYING CHANNELS
Liu Yulin; Peng Qicong
2002-01-01
A new blind method is proposed for identification of CDMA Time-Varying (TV)channels in this paper. By representing the TV channel's impulse responses in the delay-Doppler spread domain, the discrete-time canonical model of CDMA-TV systems is developed and a subspace method to identify blindly the Time-Invariant (TI) coordinates is proposed. Unlike existing basis expansion methods, this new algorithm does not require .estimation of the base frequencies, neither need the assumption of linearly varying delays across symbols. The algorithm offers definite explanation of the expansion coordinates. Simulation demonstrates the effectiveness of the algorithm.
H∞ Control of Four-Wheel-Independent-Drive Electric Vehicles with Random Time-Varying Delays
Gang Qin
2015-01-01
Full Text Available The random time-varying delays would reduce control performance and even deteriorate the EV system. To deal with random time-varying delays and achieve a real-time steady-state response, considering randomness of delay and a rapid response, an H∞-based delay-tolerant linear quadratic regulator (LQR control method based on Taylor series expansion is proposed in this paper. The results of cosimulations with Simulink and CarSim demonstrate the effectiveness of the proposed controller through the control performance of yaw rate, sideslip angle, and the running track. Moreover, the results of comparison with the other controller illustrate the strength of explicitly.
Microwave breakdown in air for multi-carrier, modulated or stochastically time varying RF fields
Jordan, U; Anderson, D; Lisak, M; Olsson, T
2003-01-01
An investigation is made of the threshold for microwave breakdown in air in situations where the microwave power is strongly modulated or stochastically varying in time as, e.g. in communication systems based on multi-carrier operation where interference between the carriers may cause occasional high power peaks in the microwave power. Thresholds are established for the scenario of coherent and co-phased carriers as well as for breakdown in an electric field with a stochastically varying amplitude.
The generalized harmonic potential theorem in the presence of a time-varying magnetic field
Lai, Meng-Yun; Pan, Xiao-Yin
2016-10-01
We investigate the evolution of the many-body wave function of a quantum system with time-varying effective mass, confined by a harmonic potential with time-varying frequency in the presence of a uniform time-varying magnetic field, and perturbed by a time-dependent uniform electric field. It is found that the wave function is comprised of a phase factor times the solution to the unperturbed time-dependent Schrödinger equation with the latter being translated by a time-dependent value that satisfies the classical driven equation of motion. In other words, we generalize the harmonic potential theorem to the case when the effective mass, harmonic potential, and the external uniform magnetic field with arbitrary orientation are all time-varying. The results reduce to various special cases obtained in the literature, particulary to that of the harmonic potential theorem wave function when the effective mass and frequency are both static and the external magnetic field is absent.
Positivity and stability of fractional descriptor time–varying discrete–time linear systems
Kaczorek Tadeusz
2016-03-01
Full Text Available The Weierstrass–Kronecker theorem on the decomposition of the regular pencil is extended to fractional descriptor time-varying discrete-time linear systems. A method for computing solutions of fractional systems is proposed. Necessary and sufficient conditions for the positivity of these systems are established.
Model-Free Adaptive Switching Control of Time-Varying Plants
Battistelli, Giorgio; Hespanha, João P.; Mosca, Edoardo; Tesi, Pietro
2013-01-01
This paper addresses the problem of controlling an uncertain time-varying plant by means of a finite family of candidate controllers supervised by an appropriate switching logic. It is assumed that, at every time, the plant consists of an uncertain single-input/single output linear system. It is sho
The generalized harmonic potential theorem in the presence of a time-varying magnetic field
Lai, Meng-Yun; Pan, Xiao-Yin
2016-01-01
We investigate the evolution of the many-body wave function of a quantum system with time-varying effective mass, confined by a harmonic potential with time-varying frequency in the presence of a uniform time-varying magnetic field, and perturbed by a time-dependent uniform electric field. It is found that the wave function is comprised of a phase factor times the solution to the unperturbed time-dependent Schrödinger equation with the latter being translated by a time-dependent value that satisfies the classical driven equation of motion. In other words, we generalize the harmonic potential theorem to the case when the effective mass, harmonic potential, and the external uniform magnetic field with arbitrary orientation are all time-varying. The results reduce to various special cases obtained in the literature, particulary to that of the harmonic potential theorem wave function when the effective mass and frequency are both static and the external magnetic field is absent. PMID:27748461
Optimal Consumption and Investment under Time-Varying Relative Risk Aversion
Steffensen, Mogens
2011-01-01
We consider the continuous time consumption-investment problem originally formalized and solved by Merton in case of constant relative risk aversion. We present a complete solution for the case where relative risk aversion with respect to consumption varies with time, having in mind an investor...
Mahler, Anna-Britt; Diner, David J; Chipman, Russell A
2011-05-10
Multiangle Spectropolarimetric Imager (MSPI) sensitivity to static and time-varying polarization errors is examined. For a system without noise, static polarization errors are accurately represented by the calibration coefficients, and therefore do not impede correct mapping of measured to input Stokes vectors. But noise is invariably introduced during the detection process, and static polarization errors reduce the system's signal-to-noise ratio (SNR) by increasing noise sensitivity. Noise sensitivity is minimized by minimizing the condition number of the system data reduction matrix [Appl. Opt.41, 619 (2002)]. The sensitivity of condition numbers to static polarization errors is presented. The condition number of the nominal MSPI data reduction matrix is approximately 1.1 or less for all fields. The increase in the condition number above 1 results primarily from a quarter wave plate and mirror coating retardance magnitude errors. Sensitivity of the degree of linear polarization (DoLP) error with respect to time-varying diattenuation and retardance error was used to set a time-varying diattenuation magnitude tolerance of 0.005 and a time-varying retardance magnitude tolerance of ±0.2°. A Monte Carlo simulation of the calibration and measurements using anticipated static and time-varying errors indicates that MSPI has a probability of 0.9 of meeting its 0.005 DoLP uncertainty requirement.
Opinion formation in time-varying social networks: The case of Naming Game
Maity, Suman Kalyan; Mukherjee, Animesh
2012-01-01
We study the dynamics of the Naming Game as an opinion formation model on time-varying social networks. This agent-based model captures the essential features of the agreement dynamics by means of a memory-based negotiation process. Our study focuses on the impact of time-varying properties of the social network of the agents on the Naming Game dynamics. We investigate the outcomes of the dynamics on two different types of time-varying data - (i) the networks vary across days and (ii) the networks vary within very short intervals of time (20 seconds). In the first case, we find that networks with strong community structure hinder the system from reaching global agreement; the evolution of the Naming Game in these networks maintains clusters of coexisting opinions indefinitely leading to metastability. In the second case, we investigate the evolution of the Naming Game in perfect synchronization with the time evolution of the underlying social network shedding new light on the traditional emergent properties o...
Opinion formation in time-varying social networks: The case of the naming game
Maity, Suman Kalyan; Manoj, T. Venkat; Mukherjee, Animesh
2012-09-01
We study the dynamics of the naming game as an opinion formation model on time-varying social networks. This agent-based model captures the essential features of the agreement dynamics by means of a memory-based negotiation process. Our study focuses on the impact of time-varying properties of the social network of the agents on the naming game dynamics. In particular, we perform a computational exploration of this model using simulations on top of real networks. We investigate the outcomes of the dynamics on two different types of time-varying data: (1) the networks vary on a day-to-day basis and (2) the networks vary within very short intervals of time (20 sec). In the first case, we find that networks with strong community structure hinder the system from reaching global agreement; the evolution of the naming game in these networks maintains clusters of coexisting opinions indefinitely leading to metastability. In the second case, we investigate the evolution of the naming game in perfect synchronization with the time evolution of the underlying social network shedding new light on the traditional emergent properties of the game that differ largely from what has been reported in the existing literature.
Beatriz Vaz de Melo Mendes
2005-12-01
Full Text Available It is now widespread the use of Value-at-Risk (VaR as a canonical measure at risk. Most accurate VaR measures make use of some volatility model such as GARCH-type models. However, the pattern of volatility dynamic of a portfolio follows from the (univariate behavior of the risk assets, as well as from the type and strength of the associations among them. Moreover, the dependence structure among the components may change conditionally t past observations. Some papers have attempted to model this characteristic by assuming a multivariate GARCH model, or by considering the conditional correlation coefficient, or by incorporating some possibility for switches in regimes. In this paper we address this problem using time-varying copulas. Our modeling strategy allows for the margins to follow some FIGARCH type model while the copula dependence structure changes over time.
Zhu, Tianqi; Dos Reis, Mario; Yang, Ziheng
2015-03-01
Genetic sequence data provide information about the distances between species or branch lengths in a phylogeny, but not about the absolute divergence times or the evolutionary rates directly. Bayesian methods for dating species divergences estimate times and rates by assigning priors on them. In particular, the prior on times (node ages on the phylogeny) incorporates information in the fossil record to calibrate the molecular tree. Because times and rates are confounded, our posterior time estimates will not approach point values even if an infinite amount of sequence data are used in the analysis. In a previous study we developed a finite-sites theory to characterize the uncertainty in Bayesian divergence time estimation in analysis of large but finite sequence data sets under a strict molecular clock. As most modern clock dating analyses use more than one locus and are conducted under relaxed clock models, here we extend the theory to the case of relaxed clock analysis of data from multiple loci (site partitions). Uncertainty in posterior time estimates is partitioned into three sources: Sampling errors in the estimates of branch lengths in the tree for each locus due to limited sequence length, variation of substitution rates among lineages and among loci, and uncertainty in fossil calibrations. Using a simple but analogous estimation problem involving the multivariate normal distribution, we predict that as the number of loci ([Formula: see text]) goes to infinity, the variance in posterior time estimates decreases and approaches the infinite-data limit at the rate of 1/[Formula: see text], and the limit is independent of the number of sites in the sequence alignment. We then confirmed the predictions by using computer simulation on phylogenies of two or three species, and by analyzing a real genomic data set for six primate species. Our results suggest that with the fossil calibrations fixed, analyzing multiple loci or site partitions is the most effective way
Evaluation model for service life of dam based on time-varying risk probability
无
2009-01-01
For many dam projects in China, the 50-year designed life time is coming to an end. It is urgent to study the theory and method to evaluate the dam service life. In this paper, firstly, the probability theory of fuzzy event and time-varying effect theory are used to analyze the time-variety of various risk factors in the process of dam operations. A method is proposed to quantify the above time-variety and a model to describe the fuzzy time-varying risk probability for the dam structure is also built. Secondly, the information entropy theory is used to analyze the uncertain degree relationship between the characteristic value of membership function and fuzzy risk probability, and a mathematical method is presented to calculate the time-varying risk probability accordingly. Thirdly, the relation mode between time-varying risk probability and service life is discussed. Based on this relation mode and the acceptable risk probability of dams in China, a method is put forward to evaluate and forecast the dam service life. Finally, the proposed theory and method are used to analyze one concrete dam. The dynamic variability and mutation feature of the dam risk probability are analyzed. The remaining service life of this dam is forecasted. The obtained results can provide technology support for the project management department to make treatment measures of engineering and reasonably arrange reinforce cost. The principles in this paper have wide applicability and can be used in risk analysis for slope instability and other fields.
Van Rossom, Sam; Smith, Colin Robert; Zevenbergen, Lianne; Thelen, Darryl Gerard; Vanwanseele, Benedicte; Van Assche, Dieter; Jonkers, Ilse
2017-01-01
Cartilage is responsive to the loading imposed during cyclic routine activities. However, the local relation between cartilage in terms of thickness distribution and biochemical composition and the local contact pressure during walking has not been established. The objective of this study was to evaluate the relation between cartilage thickness, proteoglycan and collagen concentration in the knee joint and knee loading in terms of contact forces and pressure during walking. 3D gait analysis and MRI (3D-FSE, T1ρ relaxation time and T2 relaxation time sequence) of fifteen healthy subjects were acquired. Experimental gait data was processed using musculoskeletal modeling to calculate the contact forces, impulses and pressure distribution in the tibiofemoral joint. Correlates to local cartilage thickness and mean T1ρ and T2 relaxation times of the weight-bearing area of the femoral condyles were examined. Local thickness was significantly correlated with local pressure: medial thickness was correlated with medial condyle contact pressure and contact force, and lateral condyle thickness was correlated with lateral condyle contact pressure and contact force during stance. Furthermore, average T1ρ and T2 relaxation time correlated significantly with the peak contact forces and impulses. Increased T1ρ relaxation time correlated with increased shear loading, decreased T1ρ and T2 relaxation time correlated with increased compressive forces and pressures. Thicker cartilage was correlated with higher condylar loading during walking, suggesting that cartilage thickness is increased in those areas experiencing higher loading during a cyclic activity such as gait. Furthermore, the proteoglycan and collagen concentration and orientation derived from T1ρ and T2 relaxation measures were related to loading. PMID:28076431
Linear Impulsive Periodic System with Time-Varying Generating Operators on Banach Space
Wei W
2007-01-01
Full Text Available A class of the linear impulsive periodic system with time-varying generating operators on Banach space is considered. By constructing the impulsive evolution operator, the existence of -periodic -mild solution for homogeneous linear impulsive periodic system with time-varying generating operators is reduced to the existence of fixed point for a suitable operator. Further the alternative results on -periodic -mild solution for nonhomogeneous linear impulsive periodic system with time-varying generating operators are established and the relationship between the boundness of solution and the existence of -periodic -mild solution is shown. The impulsive periodic motion controllers that are robust to parameter drift are designed for a given periodic motion. An example given for demonstration.
Adaptive Control for Nonlinear Systems with Time-Varying Control Gain
Alejandro Rincon
2012-01-01
Full Text Available We propose a scheme for nonlinear plants with time-varying control gain and time-varying plant coefficients, on the basis of a plant model consisting of a Brunovsky-type model with polynomials as approximators. We develop an adaptive robust control scheme for this plant, under the following assumptions: (i the plant terms involve time-varying but bounded coefficients, being its upper bound unknown; (ii the control gain is unknown, not necessarily bounded, and only its signum is known. To achieve robustness, we use a combination of robustifying control inputs and dead zone-type update laws. We apply this methodology to the speed control of a permanent magnet synchronous motor (PMSM, and we achieve proper tracking results.
From calls to communities: a model for time varying social networks
Laurent, Guillaume; Karsai, Márton
2015-01-01
Social interactions vary in time and appear to be driven by intrinsic mechanisms, which in turn shape the emerging structure of the social network. Large-scale empirical observations of social interaction structure have become possible only recently, and modelling their dynamics is an actual challenge. Here we propose a temporal network model which builds on the framework of activity-driven time-varying networks with memory. The model also integrates key mechanisms that drive the formation of social ties - social reinforcement, focal closure and cyclic closure, which have been shown to give rise to community structure and the global connectedness of the network. We compare the proposed model with a real-world time-varying network of mobile phone communication and show that they share several characteristics from heterogeneous degrees and weights to rich community structure. Further, the strong and weak ties that emerge from the model follow similar weight-topology correlations as real-world social networks, i...
Stability Analysis of Networked Control Systems With Aperiodic Sampling and Time-Varying Delay.
Chen, Jie; Meng, Su; Sun, Jian
2016-12-01
This paper addresses the stability of networked control systems with aperiodic sampling and time-varying network-induced delay. The sampling intervals are assumed to vary within a known interval. The transmission delay is assumed to belong to a given interval. The closed-loop system is first converted to a discrete-time system with multiple time-varying delays and norm-bounded uncertainties resulting from the variation of the sampling intervals. And then, it is transformed into a delay-free system being form of an interconnection of two subsystems. By utilizing scaled small gain theorem, an asymptotic stability criterion for the closed-loop system is proposed in terms of linear matrix inequality. Finally, numerical examples demonstrate the effectiveness of the proposed method and its advantages over existing methods.
Robustness analysis of the Zhang neural network for online time-varying quadratic optimization
Zhang Yunong; Ruan Gongqin; Li Kene; Yang Yiwen, E-mail: zhynong@mail.sysu.edu.c, E-mail: ynzhang@ieee.or [School of Information Science and Technology, Sun Yat-Sen University, Guangzhou 510006 (China)
2010-06-18
A general type of recurrent neural network (termed as Zhang neural network, ZNN) has recently been proposed by Zhang et al for the online solution of time-varying quadratic-minimization (QM) and quadratic-programming (QP) problems. Global exponential convergence of the ZNN could be achieved theoretically in an ideal error-free situation. In this paper, with the normal differentiation and dynamics-implementation errors considered, the robustness properties of the ZNN model are investigated for solving these time-varying problems. In addition, linear activation functions and power-sigmoid activation functions could be applied to such a perturbed ZNN model. Both theoretical-analysis and computer-simulation results demonstrate the good ZNN robustness and superior performance for online time-varying QM and QP problem solving, especially when using power-sigmoid activation functions.
Eltrudis, K.; Al-Ashouri, A.; Beckel, A.; Ludwig, A.; Wieck, A. D.; Geller, M.; Lorke, A.
2017-08-01
We have measured the spin relaxation time of an excited two-electron spin-triplet state into its singlet ground state in self-assembled InAs/GaAs quantum dots. We use a time-resolved measurement scheme that combines transconductance spectroscopy with spin-to-charge conversion to address the |s ↑,p ↑ 〉 triplet state, where one electron is in the quantum dot s-shell and a second one in the p-shell. The evaluation of the state-selective tunneling times from the dots into a nearby two-dimensional electron gas allows us to determine the s- and p-shell occupation and extract the relaxation time from a rate equation model. A comparably long triplet-to-singlet spin relaxation time of 25 μs is found.
Xu, Song; Li, Yang; Guo, Qi; Yang, Xiao-Feng; Chan, Rosa H M
2017-02-15
Tracking the changes of neural dynamics based on neuronal spiking activities is a critical step to understand the neurobiological basis of learning from behaving animals. These dynamical neurobiological processes associated with learning are also time-varying, which makes the modeling problem challenging. We developed a novel multiwavelet-based time-varying generalized Laguerre-Volterra (TVGLV) modeling framework to study the time-varying neural dynamical systems using natural spike train data. By projecting the time-varying parameters in the TVGLV model onto a finite sequence of multiwavelet basis functions, the time-varying identification problem is converted into a time invariant linear-in-the-parameters one. An effective forward orthogonal regression (FOR) algorithm aided by mutual information (MI) criterion is then applied for the selection of significant model regressors or terms and the refinement of model structure. A generalized linear model fit approach is finally employed for parameter estimation from spike train data. The proposed multiwavelet-based TVGLV approach is used to identify both synthetic input-output spike trains and spontaneous retinal spike train recordings. The proposed method gives excellent the performance of tracking either sharply or slowly changing parameters with high sensitivity and accuracy regardless of the a priori knowledge of spike trains, which these results indicate that the proposed method is shown to deal well with spike train data. The proposed multiwavelet-based TVGLV approach was compared with several state-of-art parametric estimation methods like the steepest descent point process filter (SDPPF) or Chebyshev polynomial expansion method. The conventional SDPPF algorithm, or SDPPF with B-splines wavelet expansion method was shown to have the poor performance of tracking the time-varying system changes with the synthetic spike train data due to the slow convergence of the adaptive filter methods. Although the Chebyshev
Extensional Relaxation Times and Pinch-off Dynamics of Dilute Polymer Solutions
Dinic, Jelena; Zhang, Yiran; Jimenez, Leidy; Sharma, Vivek
2015-11-01
We show that visualization and analysis of capillary-driven thinning and pinch-off dynamics of the columnar neck in an asymmetric liquid bridge created by dripping-onto-substrate can be used for characterizing the extensional rheology of complex fluids. Using a particular example of dilute, aqueous PEO solutions, we show the measurement of both the extensional relaxation time and extensional viscosity of weakly elastic, polymeric complex fluids with low shear viscosity ηsessile drop to a nozzle is detected optically, and the extensional response for viscoelastic fluids is characterized by analyzing their elastocapillary self-thinning, we refer to this technique as optically-detected elastocapillary self-thinning dripping-onto-substrate (ODES-DOS) extensional rheometry.
A new multiple-relaxation-time lattice Boltzmann model for incompressible flows in porous media
Liu, Qing; He, Chao
2013-01-01
In this paper, a two-dimensional eight-velocity (D2Q8) multiple-relaxation-time (MRT) lattice Boltzmann (LB) model is proposed for incompressible porous flows at the representative elementary volume scale based on the Brinkman-Forchheimer-extended Darcy formulation. In the MRT-LB model, newly defined equilibrium moments are employed to account for the porosity of the porous media, and the linear and nonlinear drag forces of the media are incorporated into the model by adding a forcing term to the MRT-LB equation in the moment space. The model is validated by simulating the 2D Poiseuille flow, Couette flow and lid-driven cavity flow in porous media. The numerical results are in excellent agreement with the analytical solutions and/or the well-documented data available in the literature.
Time-resolved photoluminescence study of excitonic relaxation in one-dimensional systems
Tanino, H.; Rühle, W. W.; Takahashi, K.
1988-12-01
Self-trapped exciton luminescence of quasi-one-dimensional (1D) halogen-bridged mixed-valence platinum complexes [Pt(II) (EA)4][Pt(IV)Cl2(EA)4] Cl4.4H2O (EA=ethylamine) and [Pt(II)(en)2] [Pt(IV)Cl2(en)2](ClO4)4 (en=1,2-diaminoethane) are studied by time-resolved photoluminescence experiments. The lifetimes of the luminescence of self-trapped exciton are exceptionally short, of the order of 100 psec. We interpret the short lifetime by a ``giant oscillator strength'' caused by a strong coupling between the electron and hole of the 1D charge transfer exciton and an extended polaronlike character of the 1D state. The lifetimes of the broad luminescence and of the resonant Raman lines during the barrier-free relaxation process are both faster than 7 psec.
Probe Spin-Velocity Dependent New Interactions by Spin Relaxation Times of Polarized $^{3}He$ Gas
Zhang, Y; Peng, S M; Fu, C B; Guo, Hao; Liu, B Q; Yan, H
2014-01-01
We have studied how to constrain the $\\alpha\\vec{\\sigma}\\cdot\\vec{v}$ type interactions with the relaxation time of spin polarized noble gases in magnetic fields. Using the longest $T_{2}$ measured in the laboratory and the earth as the source, we obtained constraints on three new interactions. We present a new experimental upper bound to the vector-axial-vector($V_{VA}$) type interaction for ranges between $1\\sim10^{8}$m. In combination with the previous result, we set the most stringent experiment limits on $g_{V}g_{A}$ ranging from $\\sim\\mu m$ to $\\sim10^{8}$m. We improve the laboratory limit to the axial-axial-vector($V_{AA}$) type interaction by $\\sim2$ orders or more for distances below $\\sim1$cm. To our best knowledge, we report the first experiment upper limit on torsion induced by the earth on its surface.
Relaxation time of the Cooper pairs near T{sub c} in cuprate superconductors
Ramallo, M.V.; Carballeira, C.; Vina, J.; Veira, J.A.; Mishonov, T.; Pavuna, D.; Vidal, F. [Santiago de Compostela Univ. (Spain). Lab. de Bajas Temperaturas y Superconductividad
1999-10-01
It is first shown that the thermal fluctuation effects on the transport and on the thermodynamic observables above the superconducting transition may provide, when they are analyzed simultaneously and consistently, a powerful tool to access the relaxation time, {tau}{sub 0}, of the Cooper pairs with wave vector k = 0 in high-temperature cuprate superconductors (HTSC). Then, we apply this procedure to optimally doped YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (Y-123) crystals. It is found that in this HTSC {tau}{sub 0} follows, within 20% accuracy, the BCS temperature behaviour and amplitude given by {tau}{sub 0} = {pi}{Dirac_h}[8k{sub B}(T-T{sub c0})]. (orig.)
Non-orthogonal multiple-relaxation-time lattice Boltzmann method for incompressible thermal flows
Liu, Qing; Li, Dong
2015-01-01
In this paper, a non-orthogonal multiple-relaxation-time (MRT) lattice Boltzmann (LB) method for simulating incompressible thermal flows is presented. In the method, the incompressible Navier-Stokes equations and temperature equation (or convection-diffusion equation) are solved separately by two different MRT-LB models, which are proposed based on non-orthogonal transformation matrices constructed in terms of some proper non-orthogonal basis vectors obtained from the combinations of the lattice velocity components. The macroscopic equations for incompressible thermal flows can be recovered from the present method through the Chapman-Enskog analysis in the incompressible limit. Numerical simulations of several typical two-dimensional problems are carried out to validate the present method. It is found that the present numerical results are in good agreement with the analytical solutions or other numerical results of previous studies. Furthermore, the grid convergence tests indicate that the present MRT-LB met...
Dual Extended Kalman Filter for the Identification of Time-Varying Human Manual Control Behavior
Popovici, Alexandru; Zaal, Peter M. T.; Pool, Daan M.
2017-01-01
A Dual Extended Kalman Filter was implemented for the identification of time-varying human manual control behavior. Two filters that run concurrently were used, a state filter that estimates the equalization dynamics, and a parameter filter that estimates the neuromuscular parameters and time delay. Time-varying parameters were modeled as a random walk. The filter successfully estimated time-varying human control behavior in both simulated and experimental data. Simple guidelines are proposed for the tuning of the process and measurement covariance matrices and the initial parameter estimates. The tuning was performed on simulation data, and when applied on experimental data, only an increase in measurement process noise power was required in order for the filter to converge and estimate all parameters. A sensitivity analysis to initial parameter estimates showed that the filter is more sensitive to poor initial choices of neuromuscular parameters than equalization parameters, and bad choices for initial parameters can result in divergence, slow convergence, or parameter estimates that do not have a real physical interpretation. The promising results when applied to experimental data, together with its simple tuning and low dimension of the state-space, make the use of the Dual Extended Kalman Filter a viable option for identifying time-varying human control parameters in manual tracking tasks, which could be used in real-time human state monitoring and adaptive human-vehicle haptic interfaces.
Estes, Jason P; Nguyen, Danh V; Dalrymple, Lorien S; Mu, Yi; Şentürk, Damla
2016-05-20
Recent studies found that infection-related hospitalization was associated with increased risk of cardiovascular (CV) events, such as myocardial infarction and stroke in the dialysis population. In this work, we develop time-varying effects modeling tools in order to examine the CV outcome risk trajectories during the time periods before and after an initial infection-related hospitalization. For this, we propose partly conditional and fully conditional partially linear generalized varying coefficient models (PL-GVCMs) for modeling time-varying effects in longitudinal data with substantial follow-up truncation by death. Unconditional models that implicitly target an immortal population is not a relevant target of inference in applications involving a population with high mortality, like the dialysis population. A partly conditional model characterizes the outcome trajectory for the dynamic cohort of survivors, where each point in the longitudinal trajectory represents a snapshot of the population relationships among subjects who are alive at that time point. In contrast, a fully conditional approach models the time-varying effects of the population stratified by the actual time of death, where the mean response characterizes individual trends in each cohort stratum. We compare and contrast partly and fully conditional PL-GVCMs in our aforementioned application using hospitalization data from the United States Renal Data System. For inference, we develop generalized likelihood ratio tests. Simulation studies examine the efficacy of estimation and inference procedures.
Time-varying tolls in a dynamic model of road traffic congestion with elastic demand
Verhoef, E.T.
1997-01-01
In this paper, a dynamic model of road traffic congestion is presented, with an elastic overall demand for morning peak road usage, and with the congestion technology used being 'flow congestion'. It is demonstrated that in such a case, the optimal time-varying toll should include a 'flat', time-invariant component when road users share the same desired arrival time. This has important consequences for the design of optimal toll schemes in reality, because it implies that optimal tolls cannot...
Si-Da Zhou
2015-01-01
Full Text Available Real-time estimation of modal parameters of time-varying structures can conduct an obvious contribution to some specific applications in structural dynamic area, such as health monitoring, damage detection, and vibration control; the recursive algorithm of modal parameter estimation supplies one of fundamentals for acquiring modal parameters in real-time. This paper presents a vector multistage recursive method of modal parameter estimation for time-varying structures in hybrid time and frequency domain, including stages of recursive estimation of time-dependent power spectra, frozen-time modal parameter estimation, recursive modal validation, and continuous-time estimation of modal parameters. An experimental example validates the proposed method finally.
Liu, Zhou-Yang; Lin, Chong; Chen, Bing
2016-03-01
This paper studies the admissibility problem for a class of linear singular systems with time-varying delays. In order to highlight the relations between the delay and the state, the singular system is transformed into a neutral form. Then, an appropriate type of Lyapunov-Krasovskii functionals is proposed to develop a delay-derivative-dependent admissibility condition in terms of linear matrix inequalities. The derivation combines the Wirtinger-based inequality and reciprocally convex combination method. The present criterion is also for the stability test of retarded and neutral systems with time-varying delays. Some examples are provided to illustrate the effectiveness and the benefits of the proposed method.
Integral sliding mode control for a class of nonlinear neutral systems with time-varying delays
Lou Xu-Yang; Cui Bao-Tong
2008-01-01
This paper focuses on sliding mode control problems for a class of nonlinear neutral systems with time-varying delays. An integral sliding surface is firstly constructed. Then it finds a useful criteria to guarantee the global stability for the nonlinear neutral systems with time-varying delays in the specified switching surface, whose condition is formulated as linear matrix inequality. The synthesized sliding mode controller guarantees the reachability of the specified sliding surface. Finally, a numerical simulation validates the effectiveness and feasibility of the proposed technique.
Generalized Projective Synchronization between Two Complex Networks with Time-Varying Coupling Delay
SUN Mei; ZENG Chang-Yan; TIAN Li-Xin
2009-01-01
Generalized projective synchronization (GPS) between two complex networks with time-varying coupling delay is investigated. Based on the Lyapunov stability theory, a nonlinear controller and adaptive updated laws are designed. Feasibility of the proposed scheme is proven in theory. Moreover, two numerical examples are presented, using the energy resource system and Lü's system [Physica A 382 (2007) 672] as the nodes of the networks. GPS between two energy resource complex networks with time-varying coupling delay is achieved. This study can widen the application range of the generalized synchronization methods and will be instructive for the demand-supply of energy resource in some regions of China.
Yang Dai; YunZe Cai; Xiao-Ming Xu
2009-01-01
Exponential estimates and sufficient conditions for the exponential synchronization of complex dynamical networks with bounded time-varying delays are given in terms of linear matrix inequalities (LMIs). A generalized complex networks model involving both neutral delays and retarded ones is presented. The exponential synchronization problem of the complex networks is converted equivalently into the exponential stability problem of a group of uncorrelated delay functional differential equations with mixed time-varying delays. By utilizing the free weighting matrix technique, a less conservative delay-dependent synchronization criterion is derived. An illustrative example is provided to demonstrate the effectiveness of the proposed method.
Yan Che
2012-01-01
Full Text Available The estimation problem is investigated for a class of stochastic nonlinear systems with distributed time-varying delays and missing measurements. The considered distributed time-varying delays, stochastic nonlinearities, and missing measurements are modeled in random ways governed by Bernoulli stochastic variables. The discussed nonlinearities are expressed by the statistical means. By using the linear matrix inequality method, a sufficient condition is established to guarantee the mean-square stability of the estimation error, and then the estimator parameters are characterized by the solution to a set of LMIs. Finally, a simulation example is exploited to show the effectiveness of the proposed design procedures.
Time-varying long term memory in the European Union stock markets
Sensoy, Ahmet; Tabak, Benjamin M.
2015-10-01
This paper proposes a new efficiency index to model time-varying inefficiency in stock markets. We focus on European stock markets and show that they have different degrees of time-varying efficiency. We observe that the 2008 global financial crisis has an adverse effect on almost all EU stock markets. However, the Eurozone sovereign debt crisis has a significant adverse effect only on the markets in France, Spain and Greece. For the late members, joining EU does not have a uniform effect on stock market efficiency. Our results have important implications for policy makers, investors, risk managers and academics.
Stability Analysis and H∞ Output Tracking Control for Linear Systems with Time-Varying Delays
K. H. Kim
2014-01-01
Full Text Available The problem of stability analysis and H∞ output tracking control for linear systems with time-varying delays is studied. First, by construction of a newly augmented Lyapunov-Krasovskii functional, a delay-dependent stability criterion for nominal systems with time-varying delays is established in terms of linear matrix inequalities (LMIs. Second, based on the H∞ sense, the proposed method is extended to solve the problem of designing an H∞ output tracking controller to track the output of a given reference model. Finally, three examples are included to show the validity and effectiveness of the presented delay-dependent stability and the H∞ output tracking controller design.
J. Thipcha
2013-01-01
Full Text Available The global exponential stability for bidirectional associative memory neural networks with time-varying delays is studied. In our study, the lower and upper bounds of the activation functions are allowed to be either positive, negative, or zero. By constructing new and improved Lyapunov-Krasovskii functional and introducing free-weighting matrices, a new and improved delay-dependent exponential stability for BAM neural networks with time-varying delays is derived in the form of linear matrix inequality (LMI. Numerical examples are given to demonstrate that the derived condition is less conservative than some existing results given in the literature.
Adaptive Leader-Following Consensus for Second-Order Time-Varying Nonlinear Multiagent Systems.
Hua, Changchun; You, Xiu; Guan, Xinping
2017-06-01
The leader-following consensus problem is investigated for second-order time-varying nonlinear multiagent systems with unmodeled dynamics and unknown parameters over directed communication topology. Under the assumption that the unknown nonlinearities satisfy Lipschitz conditions with time-varying gains, a local adaptive law is introduced for the design of consensus protocol that enable all followers' state variables to consensus with that of leader asymptotically. The proposed protocols are independent of system parameters and only require the relative state information of its neighbors, and hence they are fully distributed. Simulation examples are given to illustrate the effectiveness of the theoretical results.
A Method of Time-Varying Rayleigh Channel Tracking in MIMO Radio System
GONG Yan-fei; HE Zi-shu; HAN Chun-lin
2005-01-01
A method of MIMO channel tracking based on Kalman filter and MMSE-DFE is proposed. The Kalman filter tracks the time-varying channel by using the MMSE-DFE decision and the MMSE-DFE conducts the next decision by using the channel estimates produced by the Kalman filter. Polynomial fitting is used to bridge the gap between the channel estimates produced by the Kalman filter and those needed for the DFE decision. Computer simulation demonstrates that this method can track the MIMO time-varying channel effectively.
Delay-dependent criteria for the robust stability of systems with time-varying delay
Min WU; Yong HE; Jinhua SHE
2003-01-01
The problem of delay-dependent robust stability for systems with titne-varying delay has been considered. By using the S-procedure and the Park' s inequality in the recent issue, a delay-dependent robust stability criterion which is less conservative than the previous results has been derived for time-delay systems with time-varying structured uncertainties. The same idea has also been easily extended to the systems with nonlinear perturbations. Numerical examples illustrated the effectiveness and the improvement of the proposed approach.
Maximum Likelihood Estimation of Time-Varying Loadings in High-Dimensional Factor Models
Mikkelsen, Jakob Guldbæk; Hillebrand, Eric; Urga, Giovanni
In this paper, we develop a maximum likelihood estimator of time-varying loadings in high-dimensional factor models. We specify the loadings to evolve as stationary vector autoregressions (VAR) and show that consistent estimates of the loadings parameters can be obtained by a two-step maximum...... likelihood estimation procedure. In the first step, principal components are extracted from the data to form factor estimates. In the second step, the parameters of the loadings VARs are estimated as a set of univariate regression models with time-varying coefficients. We document the finite...
Zhang, Wei; Li, Chuandong; Huang, Tingwen; He, Xing
2015-12-01
Synchronization of an array of linearly coupled memristor-based recurrent neural networks with impulses and time-varying delays is investigated in this brief. Based on the Lyapunov function method, an extended Halanay differential inequality and a new delay impulsive differential inequality, some sufficient conditions are derived, which depend on impulsive and coupling delays to guarantee the exponential synchronization of the memristor-based recurrent neural networks. Impulses with and without delay and time-varying delay are considered for modeling the coupled neural networks simultaneously, which renders more practical significance of our current research. Finally, numerical simulations are given to verify the effectiveness of the theoretical results.
Intracerebral pH affects the T2 relaxation time of brain tissue
Schilling, A.M.; Blankenburg, F.B.; Bernarding, J.; Heidenreich, J.O.; Wolf, K.J. [Department of Radiology, University Hospital Benjamin Franklin, Free University Berlin, Hindenburgdamm 30, 12200 Berlin (Germany)
2002-12-01
Signal changes in activated brain areas are detectable by MRI and MR spectroscopy (MRS). Shifts in pH occur during brain activation. Our aim was to investigate the relationship between changes in pH and T2 relaxation times. T2 was determined in vitro at 24 MHz in various liquids at different pH using a Carr-Purcell-Meiboom-Gill (CPMG) spin-echo sequence. We also studied five Fisher rats were studied at 2.4 tesla with a double-tuneable surface coil. After baseline measurements, potassium cyanide was injected, producing intracerebral acidosis. Alternating series of 1H CPMG spin-echo sequences and 31P spectra were acquired. True T2 relaxation times were calculated from a CPMG multi-echo train. Changes in intracellular pH determined from 31P spectra. In vitro measurements demonstrated a correlation between T2 and pH that could be described by a quadratic fit curve. Depending on the initial pH, changes of 0.2 induced changes in T2 of up to 150 ms. In vivo measurements confirmed these findings. After intraperitoneal injection of a sublethal dose of cyanide, T2 decreased by about 5% in four cases, followed by recovery after 2 h. The in vitro measurements demonstrated that changes in pH can lead to significant signal change on T2- or T2*- weighted images. The dependence of T2 on pH in vitro was confirmed in vivo; it may contribute to signal change in activated brain areas. (orig.)
Xianming ZHANG; Min WU; Jinhua SHE; Dongsheng HAN
2006-01-01
This paper examines the delay-dependent H-infinity control problem for discrete-time linear systems with time-varying state delays and norm-bounded uncertainties. A new inequality for the finite sum of quadratic terms is first established. Then, some new delay-dependent criteria are derived by employing the new inequality to guarantee the robust stability of a closed-loop system with a prescribed H-infinity norm bound for all admissible uncertainties and bounded time-vary delays. A numerical example demonstrates that the proposed method is an improvement over existing ones.
Gilani, Syed Irtiza Ali
2008-09-15
Recent technological developments in the field of magnetic resonance imaging have resulted in advanced techniques that can reduce the total time to acquire images. For applications such as relaxation time mapping, which enables improved visualisation of in vivo structures, rapid imaging techniques are highly desirable. TAPIR is a Look- Locker-based sequence for high-resolution, multislice T{sub 1} relaxation time mapping. Despite the high accuracy and precision of TAPIR, an improvement in the k-space sampling trajectory is desired to acquire data in clinically acceptable times. In this thesis, a new trajectory, termed line-sharing, is introduced for TAPIR that can potentially reduce the acquisition time by 40 %. Additionally, the line-sharing method was compared with the GRAPPA parallel imaging method. These methods were employed to reconstruct time-point images from the data acquired on a 4T high-field MR research scanner. Multislice, multipoint in vivo results obtained using these methods are presented. Despite improvement in acquisition speed, through line-sharing, for example, motion remains a problem and artefact-free data cannot always be obtained. Therefore, in this thesis, a rapid technique is introduced to estimate in-plane motion. The presented technique is based on calculating the in-plane motion parameters, i.e., translation and rotation, by registering the low-resolution MR images. The rotation estimation method is based on the pseudo-polar FFT, where the Fourier domain is composed of frequencies that reside in an oversampled set of non-angularly, equispaced points. The essence of the method is that unlike other Fourier-based registration schemes, the employed approach does not require any interpolation to calculate the pseudo-polar FFT grid coordinates. Translation parameters are estimated by the phase correlation method. However, instead of two-dimensional analysis of the phase correlation matrix, a low complexity subspace identification of the phase
MECHANICAL RELAXATION TIME OF A TWO-COMPONENT EPOXY NETWORK-LiClO4 POLYMER ELECTROLYTE
PENG Xinsheng; WU Shuyun; CHEN Donglin
1993-01-01
The mechanical relaxation time of a two-component epoxy network-LiClO4 system as a polymer electrolyte was investigated.The network is composed of diglycidyl ether of polyethylene glycol (DGEPEG) and triglycidyl ether of glycerol (TGEG),wherein LiClO4 was incorporated and acts as both the ionic carrier and the curing catalyst.As the relaxation time is informative to the segmental mobility,which is known to be essential for ionic conductivity,the average relaxation times of the specimens were determined through master curve construction.Experimental results showed that the salt concentration,molecular weight of PEG in DGEPEG and DGEPEG/TGEG ratio have profound effect on the relaxation time of the specimen.Among these factors,the former reinforces the network hains,leading to lengthen the relaxation time,whereas the latter two are in favour of the chain flexibility and show an opposite effect.The findings was rationalized in terms of the free volume concept.
Kumar, Deepak; Subburaj, Karupppasamy; Lin, Wilson; Karampinos, Dimitrios C; McCulloch, Charles E; Li, Xiaojuan; Link, Thomas M; Souza, Richard B; Majumdar, Sharmila
2013-12-01
Controlled laboratory study using a cross-sectional design. To analyze the relationship of quadriceps-hamstrings and medial-lateral quadriceps anatomical cross-sectional area (ACSA) ratios with knee loads during walking and articular and meniscal cartilage composition in young, healthy subjects. Muscle forces affect knee loading during walking, but it is not known if muscle morphology is associated with walking mechanics and cartilage composition in young subjects. Forty-two knees from 27 young, healthy, active volunteers (age, 20-35 years; body mass index, relaxation times and for quadriceps and hamstrings muscle ACSA. Frontal plane kinetics during the stance phase of walking was calculated. Generalized estimating equation models were used to identify muscle variables that predicted MRI and gait parameters. Quadriceps-hamstrings and medial-lateral quadriceps ACSA ratios were positively related to frontal plane loading (β = .21-.54, P≤.006), global articular cartilage relaxation times (β = .22-.28, P≤.041), and the medial-lateral ratio of meniscus T1rho relaxation time (β = .26-.36, P≤.049). The medial-lateral quadriceps ACSA ratio was positively related to global meniscus T1rho relaxation times (β = .30, P = .046). Higher quadriceps-hamstrings and medial-lateral quadriceps ACSA ratios were associated with higher frontal plane loading during walking and with articular and meniscal cartilage T1rho and T2 relaxation times. These findings highlight the relationships between different knee tissues and knee mechanics in young, healthy individuals.
Stochastic Modeling and Power Control of Time-Varying Wireless Communication Networks
Olama, Mohammed M [ORNL; Djouadi, Seddik M [ORNL; Charalambous, Prof. Charalambos [University of Cyprus
2014-01-01
Wireless networks are characterized by nodes mobility, which makes the propagation environment time-varying and subject to fading. As a consequence, the statistical characteristics of the received signal vary continuously, giving rise to a Doppler power spectral density (DPSD) that varies from one observation instant to the next. This paper is concerned with dynamical modeling of time-varying wireless fading channels, their estimation and parameter identification, and optimal power control from received signal measurement data. The wireless channel is characterized using a stochastic state-space form and derived by approximating the time-varying DPSD of the channel. The expected maximization and Kalman filter are employed to recursively identify and estimate the channel parameters and states, respectively, from online received signal strength measured data. Moreover, we investigate a centralized optimal power control algorithm based on predictable strategies and employing the estimated channel parameters and states. The proposed models together with the estimation and power control algorithms are tested using experimental measurement data and the results are presented.
A Partial Backlogging Inventory Model with Time-Varying Demand During Shortage Period
Chen Mang
2010-11-01
Full Text Available Harris’s classic square root economic order quantity (EOQ model forms the basis for many other models that relax one or more of its assumptions. A key assumption of the basic EOQ model is that stockouts are not permitted. Due to the excess demands, stock-out situations may arise occasionally. Sometimes, shortages are permitted and they are backordered and satisfied in the very next replenishment. Therefore the objective of this paper is to develop a partial backlogging inventory model, and proposes a new algorithm to minimize the total cost, at the same time also propose the prediction method and algorithm of ordering period. Finally, a practical example of the numerical analysis is given.
Robust Fusion Filtering for Multisensor Time-Varying Uncertain Systems: The Finite Horizon Case
Xiaoliang Feng
2016-01-01
Full Text Available The robust H∞ fusion filtering problem is considered for linear time-varying uncertain systems observed by multiple sensors. A performance index function for this problem is defined as an indefinite quadratic inequality which is solved by the projection method in Krein space. On this basis, a robust centralized finite horizon H∞ fusion filtering algorithm is proposed. However, this centralized fusion method is with poor real time property, as the number of sensors increases. To resolve this difficulty, within the sequential fusion framework, the performance index function is described as a set of quadratic inequalities including an indefinite quadratic inequality. And a sequential robust finite horizon H∞ fusion filtering algorithm is given by solving this quadratic inequality group. Finally, two simulation examples for time-varying/time-invariant multisensor systems are exploited to demonstrate the effectiveness of the proposed methods in the respect of the real time property and filtering accuracy.
A New Time-varying Concept of Risk in a Changing Climate
Sarhadi, Ali; Ausín, María Concepción; Wiper, Michael P.
2016-01-01
In a changing climate arising from anthropogenic global warming, the nature of extreme climatic events is changing over time. Existing analytical stationary-based risk methods, however, assume multi-dimensional extreme climate phenomena will not significantly vary over time. To strengthen the reliability of infrastructure designs and the management of water systems in the changing environment, multidimensional stationary risk studies should be replaced with a new adaptive perspective. The results of a comparison indicate that current multi-dimensional stationary risk frameworks are no longer applicable to projecting the changing behaviour of multi-dimensional extreme climate processes. Using static stationary-based multivariate risk methods may lead to undesirable consequences in designing water system infrastructures. The static stationary concept should be replaced with a flexible multi-dimensional time-varying risk framework. The present study introduces a new multi-dimensional time-varying risk concept to be incorporated in updating infrastructure design strategies under changing environments arising from human-induced climate change. The proposed generalized time-varying risk concept can be applied for all stochastic multi-dimensional systems that are under the influence of changing environments. PMID:27762398
A New Time-varying Concept of Risk in a Changing Climate
Sarhadi, Ali; Ausín, María Concepción; Wiper, Michael P.
2016-10-01
In a changing climate arising from anthropogenic global warming, the nature of extreme climatic events is changing over time. Existing analytical stationary-based risk methods, however, assume multi-dimensional extreme climate phenomena will not significantly vary over time. To strengthen the reliability of infrastructure designs and the management of water systems in the changing environment, multidimensional stationary risk studies should be replaced with a new adaptive perspective. The results of a comparison indicate that current multi-dimensional stationary risk frameworks are no longer applicable to projecting the changing behaviour of multi-dimensional extreme climate processes. Using static stationary-based multivariate risk methods may lead to undesirable consequences in designing water system infrastructures. The static stationary concept should be replaced with a flexible multi-dimensional time-varying risk framework. The present study introduces a new multi-dimensional time-varying risk concept to be incorporated in updating infrastructure design strategies under changing environments arising from human-induced climate change. The proposed generalized time-varying risk concept can be applied for all stochastic multi-dimensional systems that are under the influence of changing environments.
Synchronization of High-order Discrete-time Linear Complex Networks with Time-varying Delays
HaiLong Li; JianXiang Xi; YaoQing Cao; DuoSheng Wu
2014-01-01
Synchronization of high-order discrete-time complex networks with undirected topologies is studied and the impacts of time delays are investigated. Firstly, by the state decomposition, synchronization problems are transformed into asymptotic stability ones of multiple lower dimensional time-delayed subsystems. Then, linear matrix inequality ( LMI) criteria for synchronization are given, which can guarantee the scalability of complex networks since they only include three LMI constraints independent of the number of agents. Moreover, an explicit expression of the synchronization function is presented, which can describe the synchronization behavior of all agents in complex networks. Finally, a numerical example is given to demonstrate the theoretical results, where it is shown that if the gain matrices of synchronization protocols satisfy LMI criteria for synchronization, synchronization can be achieved.
Finite-Time Consensus with a Time-Varying Reference State and Switching Topology
Jian-Yong Wang
2017-01-01
Full Text Available The finite-time consensus problem in the networks of multiple mobile agents is comprehensively investigated. In order to resolve this problem, a novel nonlinear information exchange protocol is proposed. The proposed protocol ensures that the states of the agents are converged to a weighted-average consensus in finite time if the communication topology is a weighted directed graph with a spanning tree and each strongly connected component is detail-balanced. Furthermore, the proposed protocol is also able to solve the finite-time consensus problem of networks with a switching topology. Finally, computer simulations are presented to demonstrate and validate the effectiveness of the theoretical analysis under the proposed protocol.
Stabilisation for switched linear systems with time-varying delay and input saturation
Chen, Yonggang; Fei, Shumin; Zhang, Kanjian
2014-03-01
This article investigates the stabilisation problems for continuous-time and discrete-time switched systems with time-varying delay and saturated control input. Based on dwell time switching signals and multiple Lyapunov functional method, stabilisation conditions are well obtained in the context of linear matrix inequalities. To estimate attractive regions as large as possible, the feasibility problems are translated into optimisation problems. In addition, the corresponding results are presented for linear time-delay systems and switched delay-free systems, which improve and supplement some existing ones in the literature. Finally, numerical examples and simulations are given to illustrate the effectiveness and values of the proposed results.
A varying time-step explicit numerical integration algorithm for solving motion equation
ZHOU Zheng-hua; WANG Yu-huan; LIU Quan; YIN Xiao-tao; YANG Cheng
2005-01-01
If a traditional explicit numerical integration algorithm is used to solve motion equation in the finite element simulation of wave motion, the time-step used by numerical integration is the smallest time-step restricted by the stability criterion in computational region. However, the excessively small time-step is usually unnecessary for a large portion of computational region. In this paper, a varying time-step explicit numerical integration algorithm is introduced, and its basic idea is to use different time-step restricted by the stability criterion in different computational region. Finally, the feasibility of the algorithm and its effect on calculating precision are verified by numerical test.
Integrated planning problem in supply chains with time-varying delivery
Wang, Hai-ying; Liu, Da-cheng; Ding, Hua; Guo, Fu
2011-10-01
We consider a serial supply chain consisting of a raw material supplier, a manufacturer, a distribution centre and a retailer in the presence of time-varying delivery between manufacturer facility and the retailer warehouse. Delivery time functions are developed based on practical data analysis and the cost models for both linear and non-linear delivery time functions are derived. Analytic solution for system with linear delivery times is derived and a search algorithm for system with non-linear delivery times is established. Finally, sensitivity analysis is made to help decision makers achieve a lower total cost in practice.
Trajectory optimization for real-time guidance. I - Time-varying LQR on a parallel processor
Psiaki, Mark L.; Park, Kihong
1990-01-01
A key algorithmic element of a real-time trajectory optimization hardware/software implementation, the quadratic program (QP) solver element, is presented. The purpose of the effort is to make nonlinear trajectory optimization fast enough to provide real-time commands during guidance of a vehicle such as an aeromaneuvering orbiter. Many methods of nonlinear programming require the solution of a QP at each iteration. In the trajectory optimization case the QP has a special dynamic programming structure, a LQR-like structure. QP algorithm speed is increased by taking advantage of this special structure and by parallel implementation.
无
2008-01-01
A parametric method for the gain-scheduled controller design of a linear time-varying system is given. According to the proposed scheduling method, the performance between adjacent characteristic points is preserved by the invariant eigenvalues and the gradually varying eigenvectors. A sufficient stability criterion is given by constructing a series of Lyapunov functions based on the selected discrete characteristic points. An important contribution is that it provides a simple and feasible approach for the design of gain-scheduled controllers for linear time-varying systems, which can guarantee both the global stability and the desired closed-loop performance of the resulted system. The method is applied to the design of a BTT missile autopilot and the simulation results show that the method is superior to the traditional one in sense of either global stability or system performance.
Stability criteria for linear systems with multiple time-varying delays
Bugong XU
2003-01-01
New delay-independent and delay-dependent stability criteria for linear systems with multiple time-varying delays are established by using the me-domain method. The results are derived based on a new-type stability theorem for general retarded dynamical systems and new analysis techniques developed in the author's previous work. Unlike some results in the literature, all of the established results do not depend on the derivative of time-varying delays. Therefore, they are suitable for the case with very fast me-varying delays. In addition, some remarks are also given to explain the obtained results and to point out the limitations of the previous results in the literature.
Mitchell, J.; Chandrasekera, T. C.
2014-12-01
The nuclear magnetic resonance transverse relaxation time T2, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T2 provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T2 distributions demands appropriate processing of the measured data since T2 is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form -ant_e^k (where n is the number and te the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T2 distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries.
Mitchell, J., E-mail: JMitchell16@slb.com [Schlumberger Gould Research, High Cross, Madingley Road, Cambridge CB3 0EL (United Kingdom); Chandrasekera, T. C. [Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (United Kingdom)
2014-12-14
The nuclear magnetic resonance transverse relaxation time T{sub 2}, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T{sub 2} provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T{sub 2} distributions demands appropriate processing of the measured data since T{sub 2} is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form −ant{sub e}{sup k} (where n is the number and t{sub e} the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T{sub 2} distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries.
Time-Varying FIR Equalization for MIMO Transmission over Doubly Selective Channels
Marc Moonen
2010-01-01
Full Text Available We propose time-varying FIR equalization techniques for spatial multiplexing-based multiple-input multiple-output (MIMO transmission over doubly selective channels. The doubly selective channel is approximated using the basis expansion model (BEM, and equalized by means of time-varying FIR filters designed according to the BEM. By doing so, the time-varying deconvolution problem is converted into a two-dimensional time-invariant deconvolution problem in the time-invariant coefficients of the channel BEM and the time-invariant coefficients of the equalizer BEM. The timevarying FIR equalizers are derived based on either the matched filtering criterion, or the linear minimum mean-square error (MMSE or the zero-forcing (ZF criteria. In addition to the linear equalizers, the decision feedback equalizer (DFE is proposed. The DFE can be designed according to two different scenarios. In the first scenario, the DFE is based on feeding back previously estimated symbols from one particular antenna at a time. Whereas, in the second scenario, the previously estimated symbols from all transmit antennas are fed back together. The performance of the proposed equalizers in the context of MIMO transmission is analyzed in terms of numerical simulations.
Time-varying market integration and expected returns in emerging mrkets
de Jong, F.C.J.M.; de Roon, F.
2001-01-01
We use a simple model in which the expected returns in emerging markets depend on their systematicrisk as measured by their beta relative to the world portfolio as well as on the level ofintegration in that market. The level of integration is a time-varying variable that depends on themarket value o
无
2010-01-01
In view of some courses of the time-varying characteristics processing in the analysis of dam deformation,the paper proposes a new method to analyze the dam time-varying characteristic based on the empirical mode decomposition and phase space reconstruction theory.First of all,to reduce the influences on the traditional statistical model from human factors and assure the analysis accuracy,response variables of the time-varying characteristic are obtained by the way of the empirical mode decomposition;and then,a phase plane of those variables is reconstructed to investigate their processing rules.These methods have already been applied to an actual project and the results showed that data interpretation with the assists of empirical mode decomposition and phase space reconstruction is effective in analyzing the perturbations of response variables,explicit in reflecting the entire development process,and valid for obtaining the evolution rules of the time-varying characteristic.This methodology is a powerful technical support for people to further master the rules of dam operation.
Chen, Huabin; Shi, Peng; Lim, Cheng-Chew; Hu, Peng
2016-06-01
In this paper, the exponential stability in p th( p > 1 )-moment for neutral stochastic Markov systems with time-varying delay is studied. The derived stability conditions comprise two forms: 1) the delay-independent stability criteria which are obtained by establishing an integral inequality and 2) the delay-dependent stability criteria which are captured by using the theory of the functional differential equations. As its applications, the obtained stability results are used to investigate the exponential stability in p th( p > 1 )-moment for the neutral stochastic neural networks with time-varying delay and Markov switching, and the globally exponential adaptive synchronization for the neutral stochastic complex dynamical systems with time-varying delay and Markov switching, respectively. On the delay-independent criteria, sufficient conditions are given in terms of M -matrix and thus are easy to check. The delay-dependent criteria are presented in the forms of the algebraic inequalities, and the least upper bound of the time-varying delay is also provided. The primary advantages of these obtained results over some recent and similar works are that the differentiability or continuity of the delay function is not required, and that the difficulty stemming from the presence of the neutral item and the Markov switching is overcome. Three numerical examples are provided to examine the effectiveness and potential of the theoretic results obtained.
Scalable Video Streaming Adaptive to Time-Varying IEEE 802.11 MAC Parameters
Lee, Kyung-Jun; Suh, Doug-Young; Park, Gwang-Hoon; Huh, Jae-Doo
This letter proposes a QoS control method for video streaming service over wireless networks. Based on statistical analysis, the time-varying MAC parameters highly related to channel condition are selected to predict available bitrate. Adaptive bitrate control of scalably-encoded video guarantees continuity in streaming service even if the channel condition changes abruptly.
Callot, Laurent; Kristensen, Johannes Tang
the monetary policy response to inflation and business cycle fluctuations in the US by estimating a parsimoniously time varying parameter Taylor rule.We document substantial changes in the policy response of the Fed in the 1970s and 1980s, and since 2007, but also document the stability of this response...
Modified Hubble law, the time-varying Hubble parameter and the problem of dark energy
Liu, Jian-Miin
2005-01-01
In the framework of the solvable model of cosmology constructed in the Earth-related coordinate system, we derive the modified Hubble law. This law carries the slowly time-varying Hubble parameter. The modified Hubble law eliminates the need for dark energy.
Robust preparation and manipulation of protected qubits using time--varying Hamiltonians
Coudreau, Thomas; Dubessy, Romain; Andreoli, Daria; Milman, Pérola
2011-01-01
We show that it is possible to initialize and manipulate in a deterministic manner protected qubits using time varying Hamiltonians. Taking advantage of the symmetries of the system, we predict the effect of the noise during the initialization and manipulation. These predictions are in good agreement with numerical simulations. Our study shows that the topological protection remains efficient under realistic experimental conditions.
ON THE PARTIAL EQUIASYMPTOTIC STABILITY OF NONLINEAR TIME-VARYING DIFFERENTIAL EQUATIONS
JianJigui; JiangMinghui; ShenYanjun
2005-01-01
In this paper, the problem of partial equiasymptotic stability for nonlinear time-varying differential equations are analyzed. A sufficient condition of partial stability and a set of sufficient conditions of partial equiasymptotic stability are given. Some of these conditions allow the derivative of Lyapunov function to be positive. Finally, several numerical examples are also given to illustrate the main results.
Adaptive synchronization of neural networks with time-varying delay and distributed delay
Wang, Kai; Teng, Zhidong; Jiang, Haijun
2008-01-01
In this paper, the adaptive synchronization of neural networks with time-varying delay and distributed delay is discussed. Based on the LaSalle invariant principle of functional differential equations and the adaptive feedback control technique, some sufficient conditions for adaptive synchronization of such a system are obtained. Finally, a numerical example is given to show the effectiveness of the proposed synchronization method.
Global stabilization of linear periodically time-varying switched systems via matrix inequalities
无
2006-01-01
In this paper, we address the stabilization problem for linear periodically time-varying switched systems.Using discretization technique, we derive new conditions for the global stabilizability in terms of the solution of matrix inequalities. An algorithm for finding stabilizing controller and switching strategy is presented.
Almost periodic solution of shunting inhibitory cellular neural networks with time-varying delay
Huang Xia; Cao Jinde
2003-07-28
Several sufficient conditions are obtained for the existence of almost periodic solution and its attractivity of shunting inhibitory cellular neural networks with time-varying delay based on the fixed point method and Halanay inequality technique. Some previous results are improved and extended in this Letter and two examples are given to illustrate the effectiveness of the new results.
K. Balachandran
2006-09-01
Full Text Available In this paper we prove the existence of mild and strong solutions of nonlinear time varying delay integrodifferential equations of Sobolev type with nonlocal conditions in Banach spaces. The results are obtained by using the theory of compact semigroups and Schaefer's fixed point theorem.
Impulsive synchronization of two nonidentical chaotic systems with time-varying delay
He Wangli, E-mail: wanglihe07@gmail.co [Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai, 200237 (China); Centre for Intelligent and Networked Systems, Central Queensland University, Rockhampton QLD 4702 (Australia); School of Information and Communication Technology, Central Queensland University, Rockhampton QLD 4702 (Australia); Qian Feng, E-mail: fqian@ecust.edu.c [Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai, 200237 (China); Cao Jinde, E-mail: jdcao@seu.edu.c [Department of Mathematics, Southeast University, Nanjing 210096 (China); Han Qinglong, E-mail: q.han@cqu.edu.a [Centre for Intelligent and Networked Systems, Central Queensland University, Rockhampton QLD 4702 (Australia); School of Information and Communication Technology, Central Queensland University, Rockhampton QLD 4702 (Australia)
2011-01-17
This Letter investigates synchronization of two nonidentical Lur'e systems with time-varying delay and parameter mismatches via impulsive control. Based on the theory of impulsive functional differential equations, sufficient conditions for impulsive synchronization with a bound on the synchronization error are derived. An illustrative example is provided to validate the proposed method.
Kwon, O.M., E-mail: madwind@chungbuk.ac.k [School of Electrical Engineering, Chungbuk National University, Cheongju (Korea, Republic of); Lee, S.M., E-mail: moony@daegu.ac.k [School of Electronics Engineering, Daegu University, Kyongsan (Korea, Republic of); Park, Ju H., E-mail: jessie@ynu.ac.k [Department of Electrical Engineering, Yeungnam University, Kyongsan (Korea, Republic of)
2010-02-22
This Letter investigates the problem of delay-dependent exponential stability analysis for uncertain stochastic neural networks with time-varying delay. Based on the Lyapunov stability theory, improved delay-dependent exponential stability criteria for the networks are established in terms of linear matrix inequalities (LMIs).
Analysis of nonlinear systems with time varying inputs and its application to gain scheduling
J.-T. Lim
1996-01-01
Full Text Available An analytical framework for analysis of a class of nonlinear systems with time varying inputs is presented. It is shown that the trajectories of the transformed nonlinear systems are uniformly bounded with an ultimate bound under certain conditions shown in this paper. The result obtained is useful for applications, in particular, analysis and design of gain scheduling.