WorldWideScience

Sample records for relaxation time estimated

  1. Only through perturbation can relaxation times be estimated

    Czech Academy of Sciences Publication Activity Database

    Ditlevsen, S.; Lánský, Petr

    2012-01-01

    Roč. 86, č. 5 (2012), 050102-5 ISSN 1539-3755 R&D Projects: GA ČR(CZ) GAP103/11/0282; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 Keywords : stochastic diffusion * parameter estimation * time constant Subject RIV: JD - Computer Applications, Robotics Impact factor: 2.313, year: 2012

  2. Only through perturbation can relaxation times be estimated

    DEFF Research Database (Denmark)

    Ditlevsen, Susanne; Lansky, Petr

    2012-01-01

    Estimation of model parameters is as important as model building, but is often neglected in model studies. Here we show that despite the existence of well known results on parameter estimation in a simple homogenous Ornstein-Uhlenbeck process, in most practical situations the methods suffer greatly...... on computer experiments based on applications in neuroscience and pharmacokinetics, which show a striking improvement of the quality of estimation. The results are important for judicious designs of experiments to obtain maximal information from each data point, especially when samples are expensive...

  3. The relaxation time approximation

    International Nuclear Information System (INIS)

    Gairola, R.P.; Indu, B.D.

    1991-01-01

    A plausible approximation has been made to estimate the relaxation time from a knowledge of the transition probability of phonons from one state (r vector, q vector) to other state (r' vector, q' vector), as a result of collision. The relaxation time, thus obtained, shows a strong dependence on temperature and weak dependence on the wave vector. In view of this dependence, relaxation time has been expressed in terms of a temperature Taylor's series in the first Brillouin zone. Consequently, a simple model for estimating the thermal conductivity is suggested. the calculations become much easier than the Callaway model. (author). 14 refs

  4. Estimation of T2 relaxation time of breast cancer: Correlation with clinical, imaging and pathological features

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Mirinae; Sohn, Yu Mee [Dept. of Radiology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul (Korea, Republic of); Ryu, Jung Kyu; Jahng, Geon Ho; Rhee, Sun Jung; Oh, Jang Hoon; Won, Kyu Yeoun [Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul (Korea, Republic of)

    2017-01-15

    The purpose of this study was to estimate the T2* relaxation time in breast cancer, and to evaluate the association between the T2* value with clinical-imaging-pathological features of breast cancer. Between January 2011 and July 2013, 107 consecutive women with 107 breast cancers underwent multi-echo T2*-weighted imaging on a 3T clinical magnetic resonance imaging system. The Student's t test and one-way analysis of variance were used to compare the T2* values of cancer for different groups, based on the clinical-imaging-pathological features. In addition, multiple linear regression analysis was performed to find independent predictive factors associated with the T2* values. Of the 107 breast cancers, 92 were invasive and 15 were ductal carcinoma in situ (DCIS). The mean T2* value of invasive cancers was significantly longer than that of DCIS (p = 0.029). Signal intensity on T2-weighted imaging (T2WI) and histologic grade of invasive breast cancers showed significant correlation with T2* relaxation time in univariate and multivariate analysis. Breast cancer groups with higher signal intensity on T2WI showed longer T2* relaxation time (p = 0.005). Cancer groups with higher histologic grade showed longer T2* relaxation time (p = 0.017). The T2* value is significantly longer in invasive cancer than in DCIS. In invasive cancers, T2* relaxation time is significantly longer in higher histologic grades and high signal intensity on T2WI. Based on these preliminary data, quantitative T2* mapping has the potential to be useful in the characterization of breast cancer.

  5. Optimal Configuration for Relaxation Times Estimation in Complex Spin Echo Imaging

    Directory of Open Access Journals (Sweden)

    Fabio Baselice

    2014-01-01

    Full Text Available Many pathologies can be identified by evaluating differences raised in the physical parameters of involved tissues. In a Magnetic Resonance Imaging (MRI framework, spin-lattice T1 and spin-spin T2 relaxation time parameters play a major role in such an identification. In this manuscript, a theoretical study related to the evaluation of the achievable performances in the estimation of relaxation times in MRI is proposed. After a discussion about the considered acquisition model, an analysis on the ideal imaging acquisition parameters in the case of spin echo sequences, i.e., echo and repetition times, is conducted. In particular, the aim of the manuscript consists in providing an empirical rule for optimal imaging parameter identification with respect to the tissues under investigation. Theoretical results are validated on different datasets in order to show the effectiveness of the presented study and of the proposed methodology.

  6. Development of rapid methods for relaxation time mapping and motion estimation using magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gilani, Syed Irtiza Ali

    2008-09-15

    Recent technological developments in the field of magnetic resonance imaging have resulted in advanced techniques that can reduce the total time to acquire images. For applications such as relaxation time mapping, which enables improved visualisation of in vivo structures, rapid imaging techniques are highly desirable. TAPIR is a Look- Locker-based sequence for high-resolution, multislice T{sub 1} relaxation time mapping. Despite the high accuracy and precision of TAPIR, an improvement in the k-space sampling trajectory is desired to acquire data in clinically acceptable times. In this thesis, a new trajectory, termed line-sharing, is introduced for TAPIR that can potentially reduce the acquisition time by 40 %. Additionally, the line-sharing method was compared with the GRAPPA parallel imaging method. These methods were employed to reconstruct time-point images from the data acquired on a 4T high-field MR research scanner. Multislice, multipoint in vivo results obtained using these methods are presented. Despite improvement in acquisition speed, through line-sharing, for example, motion remains a problem and artefact-free data cannot always be obtained. Therefore, in this thesis, a rapid technique is introduced to estimate in-plane motion. The presented technique is based on calculating the in-plane motion parameters, i.e., translation and rotation, by registering the low-resolution MR images. The rotation estimation method is based on the pseudo-polar FFT, where the Fourier domain is composed of frequencies that reside in an oversampled set of non-angularly, equispaced points. The essence of the method is that unlike other Fourier-based registration schemes, the employed approach does not require any interpolation to calculate the pseudo-polar FFT grid coordinates. Translation parameters are estimated by the phase correlation method. However, instead of two-dimensional analysis of the phase correlation matrix, a low complexity subspace identification of the phase

  7. Development of rapid methods for relaxation time mapping and motion estimation using magnetic resonance imaging

    International Nuclear Information System (INIS)

    Gilani, Syed Irtiza Ali

    2008-09-01

    Recent technological developments in the field of magnetic resonance imaging have resulted in advanced techniques that can reduce the total time to acquire images. For applications such as relaxation time mapping, which enables improved visualisation of in vivo structures, rapid imaging techniques are highly desirable. TAPIR is a Look- Locker-based sequence for high-resolution, multislice T 1 relaxation time mapping. Despite the high accuracy and precision of TAPIR, an improvement in the k-space sampling trajectory is desired to acquire data in clinically acceptable times. In this thesis, a new trajectory, termed line-sharing, is introduced for TAPIR that can potentially reduce the acquisition time by 40 %. Additionally, the line-sharing method was compared with the GRAPPA parallel imaging method. These methods were employed to reconstruct time-point images from the data acquired on a 4T high-field MR research scanner. Multislice, multipoint in vivo results obtained using these methods are presented. Despite improvement in acquisition speed, through line-sharing, for example, motion remains a problem and artefact-free data cannot always be obtained. Therefore, in this thesis, a rapid technique is introduced to estimate in-plane motion. The presented technique is based on calculating the in-plane motion parameters, i.e., translation and rotation, by registering the low-resolution MR images. The rotation estimation method is based on the pseudo-polar FFT, where the Fourier domain is composed of frequencies that reside in an oversampled set of non-angularly, equispaced points. The essence of the method is that unlike other Fourier-based registration schemes, the employed approach does not require any interpolation to calculate the pseudo-polar FFT grid coordinates. Translation parameters are estimated by the phase correlation method. However, instead of two-dimensional analysis of the phase correlation matrix, a low complexity subspace identification of the phase

  8. Characterization of dynamics in complex lyophilized formulations: I. Comparison of relaxation times measured by isothermal calorimetry with data estimated from the width of the glass transition temperature region.

    Science.gov (United States)

    Chieng, Norman; Mizuno, Masayasu; Pikal, Michael

    2013-10-01

    The purposes of this study are to characterize the relaxation dynamics in complex freeze dried formulations and to investigate the quantitative relationship between the structural relaxation time as measured by thermal activity monitor (TAM) and that estimated from the width of the glass transition temperature (ΔT(g)). The latter method has advantages over TAM because it is simple and quick. As part of this objective, we evaluate the accuracy in estimating relaxation time data at higher temperatures (50 °C and 60 °C) from TAM data at lower temperature (40 °C) and glass transition region width (ΔT(g)) data obtained by differential scanning calorimetry. Formulations studied here were hydroxyethyl starch (HES)-disaccharide, HES-polyol, and HES-disaccharide-polyol at various ratios. We also re-examine, using TAM derived relaxation times, the correlation between protein stability (human growth hormone, hGH) and relaxation times explored in a previous report, which employed relaxation time data obtained from ΔT(g). Results show that most of the freeze dried formulations exist in single amorphous phase, and structural relaxation times were successfully measured for these systems. We find a reasonably good correlation between TAM measured relaxation times and corresponding data obtained from estimates based on ΔT(g), but the agreement is only qualitative. The comparison plot showed that TAM data are directly proportional to the 1/3 power of ΔT(g) data, after correcting for an offset. Nevertheless, the correlation between hGH stability and relaxation time remained qualitatively the same as found with using ΔT(g) derived relaxation data, and it was found that the modest extrapolation of TAM data to higher temperatures using ΔT(g) method and TAM data at 40 °C resulted in quantitative agreement with TAM measurements made at 50 °C and 60 °C, provided the TAM experiment temperature, is well below the Tg of the sample. Copyright © 2013 Elsevier B.V. All rights

  9. A model problem for estimation of moving-film time relaxation at sudden change of boundary conditions

    Science.gov (United States)

    Smirnovsky, Alexander A.; Eliseeva, Viktoria O.

    2018-05-01

    The study of the film flow occurred under the influence of a gas slug flow is of definite interest in heat and mass transfer during the motion of a coolant in the second circuit of a nuclear water-water reactor. Thermohydraulic codes are usually used for analysis of the such problems in which the motion of the liquid film and the vapor is modeled on the basis of a one-dimensional balance equations. Due to a greater inertia of the liquid film motion, film flow parameters changes with a relaxation compared with gas flow. We consider a model problem of film flow under the influence of friction from gas slug flow neglecting such effects as wave formation, droplet breakage and deposition on the film surface, evaporation and condensation. Such a problem is analogous to the well-known problems of Couette and Stokes flows. An analytical solution has been obtained for laminar flow. Numerical RANS-based simulation of turbulent flow was performed using OpenFOAM. It is established that the relaxation process is almost self-similar. This fact opens a possibility of obtaining valuable correlations for the relaxation time.

  10. In vivo estimation of transverse relaxation time constant (T2 ) of 17 human brain metabolites at 3T.

    Science.gov (United States)

    Wyss, Patrik O; Bianchini, Claudio; Scheidegger, Milan; Giapitzakis, Ioannis A; Hock, Andreas; Fuchs, Alexander; Henning, Anke

    2018-08-01

    The transverse relaxation times T 2 of 17 metabolites in vivo at 3T is reported and region specific differences are addressed. An echo-time series protocol was applied to one, two, or three volumes of interest with different fraction of white and gray matter including a total number of 106 healthy volunteers and acquiring a total number of 128 spectra. The data were fitted with the 2D fitting tool ProFit2, which included individual line shape modeling for all metabolites and allowed the T 2 calculation of 28 moieties of 17 metabolites. The T 2 of 10 metabolites and their moieties have been reported for the first time. Region specific T 2 differences in white and gray matter enriched tissue occur in 16 of 17 metabolites examined including single resonance lines and coupled spin systems. The relaxation time T 2 is regions specific and has to be considered when applying tissue composition correction for internal water referencing. Magn Reson Med 80:452-461, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  11. Pair plasma relaxation time scales.

    Science.gov (United States)

    Aksenov, A G; Ruffini, R; Vereshchagin, G V

    2010-04-01

    By numerically solving the relativistic Boltzmann equations, we compute the time scale for relaxation to thermal equilibrium for an optically thick electron-positron plasma with baryon loading. We focus on the time scales of electromagnetic interactions. The collisional integrals are obtained directly from the corresponding QED matrix elements. Thermalization time scales are computed for a wide range of values of both the total-energy density (over 10 orders of magnitude) and of the baryonic loading parameter (over 6 orders of magnitude). This also allows us to study such interesting limiting cases as the almost purely electron-positron plasma or electron-proton plasma as well as intermediate cases. These results appear to be important both for laboratory experiments aimed at generating optically thick pair plasmas as well as for astrophysical models in which electron-positron pair plasmas play a relevant role.

  12. NMR relaxation times of natural rubber latex

    International Nuclear Information System (INIS)

    Harun, S.; Aziz, H.; Basir, Z.

    1994-01-01

    NMR relaxation times T sub 1 and T sub 2 of natural rubber latex have been measured at 25 degree C on a pulsed NMR spectrometer. The work focuses on the variation of the relaxation times with the amount of water content from 0% to 50%. The water content was adjusted by centrifuging and removing a certain amount of water from the sample. The data were analysed using a biexponential fitting procedure which yields simultaneously either T sub 1a and T sub 1b or T sub 2a and T sub 2b. The amount of solid was compared with the known amount of dry rubber content

  13. Current relaxation time scales in toroidal plasmas

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.

    1987-02-01

    An approximate normal mode analysis of plasma current diffusion in tokamaks is presented. The work is based on numerical solutions of the current diffusion equation in cylindrical geometry. Eigenvalues and eigenfunctions are shown for a broad range of plasma conductivity profile shapes. Three classes of solutions are considered which correspond to three types of tokamak operation. Convenient approximations to the three lowest eigenvalues in each class are presented and simple formulae for the current relaxation time scales are given

  14. Paramagnetic relaxation effects in perturbed angular correlations for arbitrary electronic relaxation time

    International Nuclear Information System (INIS)

    Chopin, C.; Spanjaard, D.; Hartmann-Boutron, F.

    1975-01-01

    Previous perturbation treatments of paramagnetic relaxation effects in γγ PAC were limited to the case of very short electronic relaxation times. This limitation is circumvented by invoking a new perturbation theory recently elaborated by Hirst and others for handling relaxation effects in Moessbauer spectra. Under the assumption of spherical electronic relaxation the perturbation factors are computed as functions of certain relaxation parameters which are directly related to the microscopic relaxation Hamiltonian. The results are compared to those of the stochastic theory of Scherer and Blume [fr

  15. Relaxation Processes and Time Scale Transformation.

    Science.gov (United States)

    1982-03-01

    the response function may be immediately recognized as being 14 of the Kubo - Green type in the classical regime. Given this general framework, it is now...b as a function of temperature is 24 equivalent to the Vogel-Beuche-Fulcher empirical law for viscosity or the Williams-Landel-Ferry empirical law...relaxation times. With the weighted sum in the form of an integral , one can write exp(-(t/T)b ] = f dT’g(r’) exp[-(t/T’)], O

  16. Sci-Fri AM: MRI and Diagnostic Imaging - 01: Estimating the Transverse Relaxation Time of Taurine Protons in Rat Brain at 9.4 T with Optimized PRESS Sequence Timings

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Marissa; Dobberthien, Brennen; Tessier, Anthony; Yahya, Atiyah [University of Alberta, University of Alberta, Cross Cancer Institute and University of Alberta, Cross Cancer Institute and University of Alberta (Canada)

    2016-08-15

    Purpose: To investigate the response of taurine (Tau) protons as a function of PRESS echo times, TE{sub 1} and TE{sub 2}, to determine two TE combinations that can be employed to estimate the T{sub 2} (transverse relaxation) value of Tau at 9.4 T. The Tau protons are involved in J-coupling interactions; therefore, the two timing combinations should result in similar signal losses due to J-coupling. Methods: Experiments were performed with a 9.4 T animal MRI scanner. Numerical calculations of the response of Tau as a function of PRESS TE{sub 1} and TE{sub 2} were calculated and two TE combinations that yield a similar area for the 3.42 ppm Tau resonance were selected as optimal. The timings were verified on a 50 mM Tau/10 mM Cr (creatine) phantom. In-vivo experiments were performed on four rats. Spectra were acquired with the timings from a voxel placed in the rat brain and Tau peak areas were fit to monoexponentially decaying functions to obtain T{sub 2} values. Results: The PRESS TE combinations selected for Tau T{sub 2} determination are (TE{sub 1}, TE{sub 2}) = (17 ms, 10 ms) and (80 ms, 70 ms); the signal yield for the two timings differs by 5 % theoretically. The average Tau T{sub 2} for the four rats was found to be 106 ms with a standard deviation of 12 ms. Conclusions: We have demonstrated that acquiring PRESS spectra with (TE{sub 1}, TE{sub 2}) = (17 ms, 10 ms) and (TE{sub 1}, TE{sub 2}) = (80 ms, 70 ms) enables T{sub 2} corrected measures of Tau to be obtained at 9.4 T.

  17. Universal relaxation times for electron and nucleon gases

    OpenAIRE

    Pelc, M.; Marciak-Kozlowska, J.; Kozlowski, M.

    2007-01-01

    In this paper we calculate the universal relaxation times for electron and nucleon fermionic gases. We argue that the universal relaxation time tau(i) is equal tau(i)=h/m square v(i) where v(i)=alpha(i)c and alpha(1)=0.15 for nucleon gas and alpha(2)=1/137 for electron gas, c=light velocity. With the universal relaxation time we formulate the thermal Proca equation for fermionic gases. Key words: universal relaxation time, thermal universal Proca equation.

  18. Relaxation time in confined disordered systems

    International Nuclear Information System (INIS)

    Chamati, H.; Korutcheva, E.

    2006-05-01

    The dynamic critical behavior of a quenched hypercubic sample of linear size L is considered within the 'random T c ' field theoretical model with purely relaxation dynamic (Model A). The dynamic finite size scaling behavior is established and analyzed when the system is quenched from a homogeneous phase towards its critical temperature. The obtained results are compared to those reported in the literature. (author)

  19. Relaxation Time of High-Density Amorphous Ice

    Science.gov (United States)

    Handle, Philip H.; Seidl, Markus; Loerting, Thomas

    2012-06-01

    Amorphous water plays a fundamental role in astrophysics, cryoelectron microscopy, hydration of matter, and our understanding of anomalous liquid water properties. Yet, the characteristics of the relaxation processes taking place in high-density amorphous ice (HDA) are unknown. We here reveal that the relaxation processes in HDA at 110-135 K at 0.1-0.2 GPa are of collective and global nature, resembling the alpha relaxation in glassy material. Measured relaxation times suggest liquid-like relaxation characteristics in the vicinity of the crystallization temperature at 145 K. By carefully relaxing pressurized HDA for several hours at 135 K, we produce a state that is closer to the ideal glass state than all HDA states discussed so far in literature.

  20. A moving mesh method with variable relaxation time

    OpenAIRE

    Soheili, Ali Reza; Stockie, John M.

    2006-01-01

    We propose a moving mesh adaptive approach for solving time-dependent partial differential equations. The motion of spatial grid points is governed by a moving mesh PDE (MMPDE) in which a mesh relaxation time \\tau is employed as a regularization parameter. Previously reported results on MMPDEs have invariably employed a constant value of the parameter \\tau. We extend this standard approach by incorporating a variable relaxation time that is calculated adaptively alongside the solution in orde...

  1. Immersed Boundary-Lattice Boltzmann Method Using Two Relaxation Times

    Directory of Open Access Journals (Sweden)

    Kosuke Hayashi

    2012-06-01

    Full Text Available An immersed boundary-lattice Boltzmann method (IB-LBM using a two-relaxation time model (TRT is proposed. The collision operator in the lattice Boltzmann equation is modeled using two relaxation times. One of them is used to set the fluid viscosity and the other is for numerical stability and accuracy. A direct-forcing method is utilized for treatment of immersed boundary. A multi-direct forcing method is also implemented to precisely satisfy the boundary conditions at the immersed boundary. Circular Couette flows between a stationary cylinder and a rotating cylinder are simulated for validation of the proposed method. The method is also validated through simulations of circular and spherical falling particles. Effects of the functional forms of the direct-forcing term and the smoothed-delta function, which interpolates the fluid velocity to the immersed boundary and distributes the forcing term to fixed Eulerian grid points, are also examined. As a result, the following conclusions are obtained: (1 the proposed method does not cause non-physical velocity distribution in circular Couette flows even at high relaxation times, whereas the single-relaxation time (SRT model causes a large non-physical velocity distortion at a high relaxation time, (2 the multi-direct forcing reduces the errors in the velocity profile of a circular Couette flow at a high relaxation time, (3 the two-point delta function is better than the four-point delta function at low relaxation times, but worse at high relaxation times, (4 the functional form of the direct-forcing term does not affect predictions, and (5 circular and spherical particles falling in liquids are well predicted by using the proposed method both for two-dimensional and three-dimensional cases.

  2. Time constant of logarithmic creep and relaxation

    CSIR Research Space (South Africa)

    Nabarro, FRN

    2001-07-15

    Full Text Available length and hardness which vary logarithmically with time. For dimensional reasons, a logarithmic variation must involve a time constant tau characteristic of the process, so that the deformation is proportional to ln(t/tau). Two distinct mechanisms...

  3. Relaxation time of acoustically disturbed plasma

    International Nuclear Information System (INIS)

    Mkrtchyan, K.S.; Abrahamyan, A.S.

    2005-01-01

    The conservation time of an acoustic structure in plasma after relieving of external acoustic influence is investigated. Dependences of the conservation time on discharge parameters are presented. It is asserted that the plasma becomes an anisotropic uniaxial medium with an acoustic superlattice under the acoustic influence

  4. Parameterization of NMR relaxation curves in terms of logarithmic moments of the relaxation time distribution.

    Science.gov (United States)

    Petrov, Oleg V; Stapf, Siegfried

    2017-06-01

    This work addresses the problem of a compact and easily comparable representation of multi-exponential relaxation data. It is often convenient to describe such data in a few parameters, all being of physical significance and easy to interpret, and in such a way that enables a model-free comparison between different groups of samples. Logarithmic moments (LMs) of the relaxation time constitute a set of parameters which are related to the characteristic relaxation time on the log-scale, the width and the asymmetry of an underlying distribution of exponentials. On the other hand, the calculation of LMs does not require knowing the actual distribution function and is reduced to a numerical integration of original data. The performance of this method has been tested on both synthetic and experimental NMR relaxation data which differ in a signal-to-noise ratio, the sampling range and the sampling rate. The calculation of two lower-order LMs, the log-mean time and the log-variance, has proved robust against deficiencies of the experiment such as scattered data point and incomplete sampling. One may consider using them as such to monitor formation of a heterogeneous structure, e.g., in phase separation, vitrification, polymerization, hydration, aging, contrast agent propagation processes. It may also assist in interpreting frequency and temperature dependences of relaxation, revealing a crossover from slow to fast exchange between populations. The third LM was found to be a less reliable quantity due to its susceptibility to the noise and must be used with caution. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Parameterization of NMR relaxation curves in terms of logarithmic moments of the relaxation time distribution

    Science.gov (United States)

    Petrov, Oleg V.; Stapf, Siegfried

    2017-06-01

    This work addresses the problem of a compact and easily comparable representation of multi-exponential relaxation data. It is often convenient to describe such data in a few parameters, all being of physical significance and easy to interpret, and in such a way that enables a model-free comparison between different groups of samples. Logarithmic moments (LMs) of the relaxation time constitute a set of parameters which are related to the characteristic relaxation time on the log-scale, the width and the asymmetry of an underlying distribution of exponentials. On the other hand, the calculation of LMs does not require knowing the actual distribution function and is reduced to a numerical integration of original data. The performance of this method has been tested on both synthetic and experimental NMR relaxation data which differ in a signal-to-noise ratio, the sampling range and the sampling rate. The calculation of two lower-order LMs, the log-mean time and the log-variance, has proved robust against deficiencies of the experiment such as scattered data point and incomplete sampling. One may consider using them as such to monitor formation of a heterogeneous structure, e.g., in phase separation, vitrification, polymerization, hydration, aging, contrast agent propagation processes. It may also assist in interpreting frequency and temperature dependences of relaxation, revealing a crossover from slow to fast exchange between populations. The third LM was found to be a less reliable quantity due to its susceptibility to the noise and must be used with caution.

  6. Algebraic relaxation of a time correlation function

    International Nuclear Information System (INIS)

    Srivastava, S.; Kumar, C.N.; Tankeshwar, K.

    2004-06-01

    A second order non-linear differential equation obtained from Mori's integro- differential equation is shown to transform to another form which provides algebraic decay to a time correlation function. Involved parameters in algebraic formula are related to exact properties of the corresponding correlation function. The model has been used to study a sol-gel system which is known, experimentally, to exhibit a power law decay to stress auto-correlation function. The expression obtained for the viscosity shows a logarithmic divergence at some critical value of the parameter. Some features of the model have also been tested using available information about Lennard-Jones fluids. (author)

  7. In vivo measurements of T1 relaxation times of 31P-metabolites in human skeletal muscle

    DEFF Research Database (Denmark)

    Thomsen, C; Jensen, K E; Henriksen, O

    1989-01-01

    The T1 relaxation times were estimated for 31P-metabolites in human skeletal muscle. Five healthy volunteers were examined in a 1.5 Tesla wholebody imaging system using an inversion recovery pulse sequence. The calculated T1 relaxation times ranged from 5.517 sec for phosphocreatine to 3.603 sec...

  8. Correlation of carrier localization with relaxation time distribution and electrical conductivity relaxation in silver-nanoparticle-embedded moderately doped polypyrrole nanostructures

    Science.gov (United States)

    Biswas, Swarup; Dutta, Bula; Bhattacharya, Subhratanu

    2014-02-01

    The electrical conductivity relaxation in moderately doped polypyrrole and its nanocomposites reinforced with different proportion of silver nanoparticles was investigated in both frequency and time domain. An analytical distribution function of relaxation times is constructed from the results obtained in the frequency domain formalism and is used to evaluate the Kohlrausch-Williams-Watts (KWW) type decay function in the time domain. The thermal evolution of different relaxation parameters was analyzed. The temperature-dependent dc electrical conductivity, estimated from the average conductivity relaxation time is observed to depend strongly on the nanoparticle loading and follows Mott three-dimensional variable range hopping (VRH) conduction mechanism. The extent of charge carrier localization calculated from the VRH mechanism is well correlated to the evidences obtained from the structural characterizations of different nanostructured samples.

  9. Fourier transform distribution function of relaxation times; application and limitations

    NARCIS (Netherlands)

    Boukamp, Bernard A.

    2015-01-01

    A simple Fourier transform (FT) method is presented for obtaining a Distribution Function of Relaxation Times (DFRT) for electrochemical impedance spectroscopy (EIS) data. By using a special data extension procedure the FT is performed over the range from -∞ ≤ lnω ≤ + ∞. The integration procedure is

  10. Influence of relaxation times on the Bloch-Siegert shift

    International Nuclear Information System (INIS)

    Cao Long Van

    1981-01-01

    A new method for calculations of Bloch-Siegert shifts in resonances between excited states with the inclusion of relaxation times is given. It will be shown that in this case the definition of the resonance given by I. Bialynicka-Birula is in agreement with the criterion defining the resonance used by D.A. Andrews and G. Newton. (author)

  11. Deconvolution analysis to determine relaxation time spectra of internal friction peaks

    International Nuclear Information System (INIS)

    Cost, J.R.

    1985-01-01

    A new method for analysis of an internal friction vs temperature peak to obtain an approximation of the spectrum of relaxation time responsible for the peak is described. This method, referred to as direct spectrum analysis (DSA), is shown to provide an accurate estimate of the distribution of relaxation times. The method is validated for various spectra, and it is shown that: (1) It provides approximations to known input spectra which replicate the position, amplitude, width and shape with good accuracy (typically 10%). (2) It does not yield approximations which have false spectral peaks

  12. Hyperpolarized nanodiamond with long spin-relaxation times

    Science.gov (United States)

    Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David E. J.; Reilly, David J.

    2015-10-01

    The use of hyperpolarized agents in magnetic resonance, such as 13C-labelled compounds, enables powerful new imaging and detection modalities that stem from a 10,000-fold boost in signal. A major challenge for the future of the hyperpolarization technique is the inherently short spin-relaxation times, typically nanodiamond can be hyperpolarized at cryogenic and room temperature without the use of free radicals, and, owing to their solid-state environment, exhibit relaxation times exceeding 1 h. Combined with the already established applications of nanodiamonds in the life sciences as inexpensive fluorescent markers and non-cytotoxic substrates for gene and drug delivery, these results extend the theranostic capabilities of nanoscale diamonds into the domain of hyperpolarized magnetic resonance.

  13. Nernst effect beyond the relaxation-time approximation

    OpenAIRE

    Pikulin, D. I.; Hou, Chang-Yu; Beenakker, C. W. J.

    2011-01-01

    Motivated by recent interest in the Nernst effect in cuprate superconductors, we calculate this magneto-thermo-electric effect for an arbitrary (anisotropic) quasiparticle dispersion relation and elastic scattering rate. The exact solution of the linearized Boltzmann equation is compared with the commonly used relaxation-time approximation. We find qualitative deficiencies of this approximation, to the extent that it can get the sign wrong of the Nernst coefficient. Ziman's improvement of the...

  14. NMR relaxation times in human brain tumors (preliminary results)

    International Nuclear Information System (INIS)

    Benoist, L.; Certaines, J. de; Chatel, M.; Menault, F.

    1981-01-01

    Since the early work of Damadian in 1971, proton NMR studies of tumors has been well documented. Present study concerns the spin-lattice T 1 and spin-spin T 2 relaxation times of normal dog brain according to the histological differentiation and of 35 human benignant or malignant tumors. The results principally show T 2 important variations between white and gray substance in normal brain but no discrimination between malignant and benignant tumors [fr

  15. Spin-relaxation time in the impurity band of wurtzite semiconductors

    Science.gov (United States)

    Tamborenea, Pablo I.; Wellens, Thomas; Weinmann, Dietmar; Jalabert, Rodolfo A.

    2017-09-01

    The spin-relaxation time for electrons in the impurity band of semiconductors with wurtzite crystal structure is determined. The effective Dresselhaus spin-orbit interaction Hamiltonian is taken as the source of the spin relaxation at low temperature and for doping densities corresponding to the metallic side of the metal-insulator transition. The spin-flip hopping matrix elements between impurity states are calculated and used to set up a tight-binding Hamiltonian that incorporates the symmetries of wurtzite semiconductors. The spin-relaxation time is obtained from a semiclassical model of spin diffusion, as well as from a microscopic self-consistent diagrammatic theory of spin and charge diffusion in doped semiconductors. Estimates are provided for particularly important materials. The theoretical spin-relaxation times compare favorably with the corresponding low-temperature measurements in GaN and ZnO. For InN and AlN we predict that tuning of the spin-orbit coupling constant induced by an external potential leads to a potentially dramatic increase of the spin-relaxation time related to the mechanism under study.

  16. Chemical exchange effects during refocusing pulses in constant-time CPMG relaxation dispersion experiments

    International Nuclear Information System (INIS)

    Myint, Wazo; Ishima, Rieko

    2009-01-01

    In the analysis of the constant-time Carr-Purcell-Meiboom-Gill (CT-CPMG) relaxation dispersion experiment, chemical exchange parameters, such as rate of exchange and population of the exchanging species, are typically optimized using equations that predict experimental relaxation rates recorded as a function of effective field strength. In this process, the effect of chemical exchange during the CPMG pulses is typically assumed to be the same as during the free-precession. This approximation may introduce systematic errors into the analysis of data because the number of CPMG pulses is incremented during the constant-time relaxation period, and the total pulse duration therefore varies as a function of the effective field strength. In order to estimate the size of such errors, we simulate the time-dependence of magnetization during the entire constant time period, explicitly taking into account the effect of the CPMG pulses on the spin relaxation rate. We show that in general the difference in the relaxation dispersion profile calculated using a practical pulse width from that calculated using an extremely short pulse width is small, but under certain circumstances can exceed 1 s -1 . The difference increases significantly when CPMG pulses are miscalibrated

  17. Angular-contact ball-bearing internal load estimation algorithm using runtime adaptive relaxation

    Science.gov (United States)

    Medina, H.; Mutu, R.

    2017-07-01

    An algorithm to estimate internal loads for single-row angular contact ball bearings due to externally applied thrust loads and high-operating speeds is presented. A new runtime adaptive relaxation procedure and blending function is proposed which ensures algorithm stability whilst also reducing the number of iterations needed to reach convergence, leading to an average reduction in computation time in excess of approximately 80%. The model is validated based on a 218 angular contact bearing and shows excellent agreement compared to published results.

  18. Spin current relaxation time in thermally evaporated pentacene films

    OpenAIRE

    Tani, Yasuo; Kondo, Takuya; Teki, Yoshio; Shikoh, Eiji

    2017-01-01

    The spin current relaxation time [tau] in thermally evaporated pentacene films was evaluated with the spin-pump-induced spin transport properties and the charge current transport properties in pentacene films. Under an assumption of a diffusive transport of the spin current in pentacene films, the zero-field mobility and the diffusion constant of holes in pentacene films were experimentally obtained to be ~8.0x10^-7 m^2/Vs and ~2.0x10^-8 m^2/s, respectively. Using those values and the previou...

  19. The effects of some parameters on the calculated 1H NMR relaxation times of cell water

    International Nuclear Information System (INIS)

    Koivula, A.; Suominen, K.; Kiviniitty, K.

    1976-01-01

    The effect of some parameters on the longitudinal and transverse relaxation times is calculated and a comparison between the calculated relaxation times with the results of different measurements is made. (M.S.)

  20. The shear and bulk relaxation times from the general correlation functions

    Science.gov (United States)

    Czajka, Alina; Jeon, Sangyong

    2017-11-01

    In this paper we present two quantum field theoretical analyses on the shear and bulk relaxation times. First, we discuss how to find Kubo formulas for the shear and the bulk relaxation times. Next, we provide results on the shear viscosity relaxation time obtained within the diagrammatic approach for the massless λϕ4 theory.

  1. Multiple-relaxation-time lattice Boltzmann model for compressible fluids

    International Nuclear Information System (INIS)

    Chen Feng; Xu Aiguo; Zhang Guangcai; Li Yingjun

    2011-01-01

    We present an energy-conserving multiple-relaxation-time finite difference lattice Boltzmann model for compressible flows. The collision step is first calculated in the moment space and then mapped back to the velocity space. The moment space and corresponding transformation matrix are constructed according to the group representation theory. Equilibria of the nonconserved moments are chosen according to the need of recovering compressible Navier-Stokes equations through the Chapman-Enskog expansion. Numerical experiments showed that compressible flows with strong shocks can be well simulated by the present model. The new model works for both low and high speeds compressible flows. It contains more physical information and has better numerical stability and accuracy than its single-relaxation-time version. - Highlights: → We present an energy-conserving MRT finite-difference LB model. → The moment space is constructed according to the group representation theory. → The new model works for both low and high speeds compressible flows. → It has better numerical stability and wider applicable range than its SRT version.

  2. Magnetic resonance imaging (MRI) and relaxation time mapping of concrete

    Science.gov (United States)

    Beyea, Steven Donald

    2001-07-01

    The use of Magnetic Resonance Imaging (MRI) of water in concrete is presented. This thesis will approach the problem of MR imaging of concrete by attempting to design new methods, suited to concrete materials, rather than attempting to force the material to suit the method. A number of techniques were developed, which allow the spatial observation of water in concrete in up to three dimensions, and permits the determination of space resolved moisture content, as well as local NMR relaxation times. These methods are all based on the Single-Point Imaging (SPI) method. The development of these new methods will be described, and the techniques validated using phantom studies. The study of one-dimensional moisture transport in drying concrete was performed using SPI. This work examined the effect of initial mixture proportions and hydration time on the drying behaviour of concrete, over a period of three months. Studies of drying concrete were also performed using spatial mapping of the spin-lattice (T1) and effective spin-spin (T2*) relaxation times, thereby permitting the observation of changes in the water occupied pore surface-to-volume ratio (S/V) as a function of drying. Results of this work demonstrated changes in the S/V due to drying, hydration and drying induced microcracking. Three-dimensional MRI of concrete was performed using SPRITE (Single-Point Ramped Imaging with T1 Enhancement) and turboSPI (turbo Single Point Imaging). While SPRITE allows for weighting of MR images using T 1 and T2*, turboSPI allows T2 weighting of the resulting images. Using relaxation weighting it was shown to be possible to discriminate between water contained within a hydrated cement matrix, and water in highly porous aggregates, used to produce low-density concrete. Three dimensional experiments performed using SPRITE and turboSPI examined the role of self-dessication, drying, initial aggregate saturation and initial mixture conditions on the transport of moisture between porous

  3. Ovarian chocolate cysts. Staging with relaxation time in MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sugimura, Kazuro; Ishida, Tetsuya; Takemori, Masayuki; Kitagaki, Hajime; Tanaka, Yutaka; Yamasaki, Katsuhito; Shimizu, Tadafumi; Kono, Michio

    1988-10-01

    Accurate preoperative staging of ovarian chocolate cysts is very important because recent hormonal therapy has been effective in low stage patients. However, it has been difficult to assess the preoperative stage of ovarian chocolate cysts. We evaluated the diagnostic potential of MRI in preoperative staging of 15 overian chocolate cysts. It was well known that the older the ovarian chocolate cyst was the more iron content it had. We examined the iron contents effect on T1 and T2 relaxation times in surgically confirmed chocolate cysts (stage II: 3 cases, stage III: 3 cases and stage IV: 9 cases by AFS classification, 1985) employing the 0.15-T MR system and 200 MHz spectrometer. There was a positive linear relation between T1 of the lesion using the MR system (T1) and T1 of the resected contents using the spectrometer (sp-T1); r = 0.93. The same relation was revealed between T2 and sp-T2; r = 0.87. It was indicated that T1 and T2 using the MR system was accurate. There was a negative linear relation between T1 and the iron contents ( r = -0.81) but no relation between T2 and the iron contents. T1 was 412 +- 91 msec for stage II, 356 +- 126 msec for stage III and 208 +- 30 msec for stage IV. T1 for stage IV was shorter than that for stage II and III, statistically significant differences were noted (p < 0.05). Thus, T1 was useful in differentiating a fresh from an old ovarian chocolate cyst. We concluded that T1 relaxation time using the MR system was useful for the staging of an ovarian chocolate cyst without surgery.

  4. Dependence of Brownian and Néel relaxation times on magnetic field strength

    International Nuclear Information System (INIS)

    Deissler, Robert J.; Wu, Yong; Martens, Michael A.

    2014-01-01

    Purpose: In magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS) the relaxation time of the magnetization in response to externally applied magnetic fields is determined by the Brownian and Néel relaxation mechanisms. Here the authors investigate the dependence of the relaxation times on the magnetic field strength and the implications for MPI and MPS. Methods: The Fokker–Planck equation with Brownian relaxation and the Fokker–Planck equation with Néel relaxation are solved numerically for a time-varying externally applied magnetic field, including a step-function, a sinusoidally varying, and a linearly ramped magnetic field. For magnetic fields that are applied as a step function, an eigenvalue approach is used to directly calculate both the Brownian and Néel relaxation times for a range of magnetic field strengths. For Néel relaxation, the eigenvalue calculations are compared to Brown's high-barrier approximation formula. Results: The relaxation times due to the Brownian or Néel mechanisms depend on the magnitude of the applied magnetic field. In particular, the Néel relaxation time is sensitive to the magnetic field strength, and varies by many orders of magnitude for nanoparticle properties and magnetic field strengths relevant for MPI and MPS. Therefore, the well-known zero-field relaxation times underestimate the actual relaxation times and, in particular, can underestimate the Néel relaxation time by many orders of magnitude. When only Néel relaxation is present—if the particles are embedded in a solid for instance—the authors found that there can be a strong magnetization response to a sinusoidal driving field, even if the period is much less than the zero-field relaxation time. For a ferrofluid in which both Brownian and Néel relaxation are present, only one relaxation mechanism may dominate depending on the magnetic field strength, the driving frequency (or ramp time), and the phase of the magnetization relative to the

  5. Temperature dependence of relaxation times in proton components of fatty acids

    International Nuclear Information System (INIS)

    Kuroda, Kagayaki; Iwabuchi, Taku; Saito, Kensuke; Obara, Makoto; Honda, Masatoshi; Imai, Yutaka

    2011-01-01

    We examined the temperature dependence of relaxation times in proton components of fatty acids in various samples in vitro at 11 tesla as a standard calibration data for quantitative temperature imaging of fat. The spin-lattice relaxation time, T 1 , of both the methylene (CH 2 ) chain and terminal methyl (CH 3 ) was linearly related to temperature (r>0.98, P 2 signal for calibration and observed the signal with 18% of CH 3 to estimate temperature. These findings suggested that separating the fatty acid components would significantly improve accuracy in quantitative thermometry for fat. Use of the T 1 of CH 2 seems promising in terms of reliability and reproducibility in measuring temperature of fat. (author)

  6. MR spectroscopy of liver in overweight children and adolescents: Investigation of 1H T2 relaxation times at 3 T

    International Nuclear Information System (INIS)

    Chabanova, Elizaveta; Bille, Dorthe S.; Thisted, Ebbe; Holm, Jens-Christian; Thomsen, Henrik S.

    2012-01-01

    Objective: The objective was to investigate T 2 relaxation values and to optimize hepatic fat quantification using proton MR spectroscopy ( 1 H MRS) at 3 T in overweight and obese children and adolescents. Subjects: The study included 123 consecutive children and adolescents with a body mass index above the 97th percentile according to age and sex. 1 H MR spectroscopy was performed at 3.0 T using point resolved spectroscopy sequence with series TE. T 2 relaxation values and hepatic fat content corrected for the T 2 relaxation effects were calculated. Results: T 2 values for water ranged from 22 ms to 42 ms (mean value 28 ms) and T 2 values for fat ranged from 36 ms to 99 ms (mean value 64 ms). Poor correlation was observed: (1) between T 2 relaxation times of fat and T 2 relaxation times of water (correlation coefficient r = 0.038, P = 0.79); (2) between T 2 relaxation times of fat and fat content (r = 0.057, P = 0.69); (3) between T 2 relaxation times of water and fat content (r = 0.160, P = 0.26). Correlation between fat peak content and the T 2 corrected fat content decreased with increasing echo time TE: r = 0.97 for TE = 45, r = 0.93 for TE = 75, r = 0.89 for TE = 105, P 1 H MRS at 3 T is an effective technique for measuring hepatic fat content in overweight and obese children and adolescents. It is necessary to measure T 2 relaxation values and to correct the spectra for the T 2 relaxation effects in order to obtain an accurate estimate of the hepatic fat content.

  7. Significance of focal relaxation times in head injury

    Energy Technology Data Exchange (ETDEWEB)

    Inao, Suguru; Furuse, Masahiro; Saso, Katsuyoshi; Yoshida, Kazuo; Motegi, Yoshimasa; Kaneoke, Yoshiki; Izawa, Akira

    1987-11-01

    Serial examinations by nuclear magnetic resonance-computed tomography were carried out in 35 head-injured patients aged 7 to 77 years. The injuries were classified as cerebral contusion (nine cases), acute epidural hematoma (eight cases), acute cerebral swelling (two cases), and chronic subdural hematoma (16 cases). The results of 92 measurements were divided into two groups: acute stage (within 3 days of injury) and chronic stage (2 weeks or longer after injury). The spin-lattice relaxation times (T/sub 1/) of brain tissue adjacent to chronic subdural hematoma were evaluated pre- and postoperatively. A Fonar QED 80-alpha system was used for magnetic resonance imaging and measurement of focal T/sub 1/. The T/sub 1/ values at the region of interest were measured 3 to 5 times by the field focusing technique (468 gauss in the focused spot), and the mean value was used for evaluation. The standard T/sub 1/ values obtained from healthy subjects were 290 +- 41 msec in the cerebral cortex and 230 +- 34 msec in the white matter. Prolongation of T/sub 1/ in perifocal brain gradually shortened over time and normalized in the chronic stage. The degree of contusional edema may have been reflected in alterations in T/sub 1/. In contrast, parenchymal injury resulted in a progressive T/sub 1/ elevation, which far exceeded 500 msec in the chronic stage. Such time courses of T/sub 1/ may indicate irreversible tissue damage. There were no noticeable changes in tissue T/sub 1/ over time in patients with acute diffuse cerebral swelling or those who underwent evacuation of acute epidural or chronic subdural hematomas. The underlying pathophysiology in such situations seems to be not brain edema but cerebral hyperemia. In the presence of ischemia, the T/sub 1/ value was prolonged in the early stage, reflecting progression of is chemic edema. (Abstract Truncated)

  8. 13C NMR relaxation times of hepatic glycogen in vitro and in vivo

    International Nuclear Information System (INIS)

    Zang, Lihsin; Laughlin, M.R.; Rothman, D.L.; Shulman, R.G.

    1990-01-01

    The field dependence of relaxation times of the C-1 carbon of glycogen was studied in vitro by natural-abundance 13 C NMR. T 1 is strongly field dependent, while T 2 does not change significantly with magnetic field. T 1 and T 2 were also measured for rat hepatic glycogen enriched with [1- 13 C]glucose in vivo at 4.7 T, and similar relaxation times were observed as those obtained in vitro at the same field. The in vitro values of T 1 were 65 ± 5 ms at 2.1 T, 142 ± 10 ms at 4.7 T, and 300 ± 10 ms at 8.4 T, while T 2 values were 6.7 ± 1 ms at 2.1 T, 9.4 ± 1 ms at 4.7 T, and 9.5 ± 1 ms at 8.4 T. Calculations based on the rigid-rotor nearest-neighbor model give qualitatively good agreement with the T 1 field dependence with a best-fit correlation time of 6.4 x 10 -9 s, which is significantly smaller than τ M , the estimated overall correlation time for the glycogen molecule (ca. 10 -5 s). A more accurate fit of T 1 data using a modified Lipari and Szabo approach indicates that internal fast motions dominate the T 1 relaxation in glycogen. On the other hand, the T 2 relaxation is dominated by the overall correlation time τ M while the internal motions are almost but not completely unrestricted

  9. Bayesian estimation of multicomponent relaxation parameters in magnetic resonance fingerprinting.

    Science.gov (United States)

    McGivney, Debra; Deshmane, Anagha; Jiang, Yun; Ma, Dan; Badve, Chaitra; Sloan, Andrew; Gulani, Vikas; Griswold, Mark

    2018-07-01

    To estimate multiple components within a single voxel in magnetic resonance fingerprinting when the number and types of tissues comprising the voxel are not known a priori. Multiple tissue components within a single voxel are potentially separable with magnetic resonance fingerprinting as a result of differences in signal evolutions of each component. The Bayesian framework for inverse problems provides a natural and flexible setting for solving this problem when the tissue composition per voxel is unknown. Assuming that only a few entries from the dictionary contribute to a mixed signal, sparsity-promoting priors can be placed upon the solution. An iterative algorithm is applied to compute the maximum a posteriori estimator of the posterior probability density to determine the magnetic resonance fingerprinting dictionary entries that contribute most significantly to mixed or pure voxels. Simulation results show that the algorithm is robust in finding the component tissues of mixed voxels. Preliminary in vivo data confirm this result, and show good agreement in voxels containing pure tissue. The Bayesian framework and algorithm shown provide accurate solutions for the partial-volume problem in magnetic resonance fingerprinting. The flexibility of the method will allow further study into different priors and hyperpriors that can be applied in the model. Magn Reson Med 80:159-170, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  10. Hydrogen-1 NMR relaxation time studies in membrane: anesthetic systems

    International Nuclear Information System (INIS)

    Pinto, L.M.A.; Fraceto, L.; Paula, E. de; Franzoni, L.; Spisni, A.

    1997-01-01

    The study of local anesthetics'(LA) interaction with model phospholipid membranes is justified by the direct correlation between anesthetic's hydrophobicity and its potency/toxicity. By the same reason, uncharged LA species seems to play a crucial role in anesthesia. Most clinically used LA are small amphiphilics with a protonated amine group (pKa around 8). Although both charged (protonated) and uncharged forms can coexist at physiological pH, it has been shown (Lee, Biochim. Biophys. Acta 514:95, 1978; Screier et al. Biochim. Biophys. Acta 769:231, 1984) that the real anesthetic pka can be down-shifted, due to differential partition into membranes, increasing the ratio of uncharged species at pH 7.4. We have measured 1 H-NMR longitudinal relaxation times (T 1 ) for phospholipid and three local anesthetics (tetracaine, lidocaine, benzocaine), in sonicated vesicles at a 3:1 molar ratio. All the LA protons have shown smaller T 1 in this system than in isotropic phases, reflecting LA immobilization caused by insertion in the membrane. T 1 values for the lipid protons in the presence of LA were analyzed, in an attempt to identify specific LA:lipid contact regions. (author)

  11. Estimates for a general fractional relaxation equation and application to an inverse source problem

    OpenAIRE

    Bazhlekova, Emilia

    2018-01-01

    A general fractional relaxation equation is considered with a convolutional derivative in time introduced by A. Kochubei (Integr. Equ. Oper. Theory 71 (2011), 583-600). This equation generalizes the single-term, multi-term and distributed-order fractional relaxation equations. The fundamental and the impulse-response solutions are studied in detail. Properties such as analyticity and subordination identities are established and employed in the proof of an upper and a lower bound. The obtained...

  12. Relaxation Estimation of RMSD in Molecular Dynamics Immunosimulations

    Directory of Open Access Journals (Sweden)

    Wolfgang Schreiner

    2012-01-01

    Full Text Available Molecular dynamics simulations have to be sufficiently long to draw reliable conclusions. However, no method exists to prove that a simulation has converged. We suggest the method of “lagged RMSD-analysis” as a tool to judge if an MD simulation has not yet run long enough. The analysis is based on RMSD values between pairs of configurations separated by variable time intervals Δt. Unless RMSD(Δt has reached a stationary shape, the simulation has not yet converged.

  13. Thermodynamic scaling of α-relaxation time and viscosity stems from the Johari-Goldstein β-relaxation or the primitive relaxation of the coupling model.

    Science.gov (United States)

    Ngai, K L; Habasaki, J; Prevosto, D; Capaccioli, S; Paluch, Marian

    2012-07-21

    By now it is well established that the structural α-relaxation time, τ(α), of non-associated small molecular and polymeric glass-formers obey thermodynamic scaling. In other words, τ(α) is a function Φ of the product variable, ρ(γ)/T, where ρ is the density and T the temperature. The constant γ as well as the function, τ(α) = Φ(ρ(γ)/T), is material dependent. Actually this dependence of τ(α) on ρ(γ)/T originates from the dependence on the same product variable of the Johari-Goldstein β-relaxation time, τ(β), or the primitive relaxation time, τ(0), of the coupling model. To support this assertion, we give evidences from various sources itemized as follows. (1) The invariance of the relation between τ(α) and τ(β) or τ(0) to widely different combinations of pressure and temperature. (2) Experimental dielectric and viscosity data of glass-forming van der Waals liquids and polymer. (3) Molecular dynamics simulations of binary Lennard-Jones (LJ) models, the Lewis-Wahnström model of ortho-terphenyl, 1,4 polybutadiene, a room temperature ionic liquid, 1-ethyl-3-methylimidazolium nitrate, and a molten salt 2Ca(NO(3))(2)·3KNO(3) (CKN). (4) Both diffusivity and structural relaxation time, as well as the breakdown of Stokes-Einstein relation in CKN obey thermodynamic scaling by ρ(γ)/T with the same γ. (5) In polymers, the chain normal mode relaxation time, τ(N), is another function of ρ(γ)/T with the same γ as segmental relaxation time τ(α). (6) While the data of τ(α) from simulations for the full LJ binary mixture obey very well the thermodynamic scaling, it is strongly violated when the LJ interaction potential is truncated beyond typical inter-particle distance, although in both cases the repulsive pair potentials coincide for some distances.

  14. Continuous relaxation time spectrum of α-process in glass-like B2O3

    International Nuclear Information System (INIS)

    Bartenev, G.M.; Lomovskij, V.A.

    1991-01-01

    α-process of relaxation of glass-like B 2 O 3 was investigated in a wide temperature range. Continuous spectrum of relaxation times H(τ) for this process was constructed, using data of dynamic methods of investigation. It is shown that increase of temperature of α-process investigation leads to change of glass-like BaO 3 structure in such a way, that H(τ) spectrum tends to the maxwell one with a unit relaxation time

  15. T2 relaxation time is related to liver fibrosis severity

    Science.gov (United States)

    Siqueira, Luiz; Uppal, Ritika; Alford, Jamu; Fuchs, Bryan C.; Yamada, Suguru; Tanabe, Kenneth; Chung, Raymond T.; Lauwers, Gregory; Chew, Michael L.; Boland, Giles W.; Sahani, Duhyant V.; Vangel, Mark; Hahn, Peter F.; Caravan, Peter

    2016-01-01

    Background The grading of liver fibrosis relies on liver biopsy. Imaging techniques, including elastography and relaxometric, techniques have had varying success in diagnosing moderate fibrosis. The goal of this study was to determine if there is a relationship between the T2-relaxation time of hepatic parenchyma and the histologic grade of liver fibrosis in patients with hepatitis C undergoing both routine, liver MRI and liver biopsy, and to validate our methodology with phantoms and in a rat model of liver fibrosis. Methods This study is composed of three parts: (I) 123 patients who underwent both routine, clinical liver MRI and biopsy within a 6-month period, between July 1999 and January 2010 were enrolled in a retrospective study. MR imaging was performed at 1.5 T using dual-echo turbo-spin echo equivalent pulse sequence. T2 relaxation time of liver parenchyma in patients was calculated by mono-exponential fit of a region of interest (ROI) within the right lobe correlating to histopathologic grading (Ishak 0–6) and routine serum liver inflammation [aspartate aminotransferase (AST) and alanine aminotransferase (ALT)]. Statistical comparison was performed using ordinary logistic and ordinal logistic regression and ANOVA comparing T2 to Ishak fibrosis without and using AST and ALT as covariates; (II) a phantom was prepared using serial dilutions of dextran coated magnetic iron oxide nanoparticles. T2 weighed imaging was performed by comparing a dual echo fast spin echo sequence to a Carr-Purcell-Meigboom-Gill (CPMG) multi-echo sequence at 1.5 T. Statistical comparison was performed using a paired t-test; (III) male Wistar rats receiving weekly intraperitoneal injections of phosphate buffer solution (PBS) control (n=4 rats); diethylnitrosamine (DEN) for either 5 (n=5 rats) or 8 weeks (n=4 rats) were MR imaged on a Bruker Pharmascan 4.7 T magnet with a home-built bird-cage coil. T2 was quantified by using a mono-exponential fitting algorithm on multi-slice multi

  16. Relaxation parameter estimation and comparison of NLS and LLS methods for DCE MRI in the cervix

    DEFF Research Database (Denmark)

    Mariager, Christian; Kallehauge, Jesper; Tanderup, Kari

    Dynamic Contrast Enhanced (DCE) MRI is a promising tool for tumor treatment planning. However, prior knowledge of the T1 value within each tumor voxel is needed to utilize this technique. Therefore, a T1 relaxation measurement is performed before the DCE experiment to establish a baseline, before...... any injection of contrast agent. This T1 relaxation measurement is often performed using a variable flip angle spoiled gradient recalled echo (SPGR) sequence. T1 can then be estimated using either a linear least squares (LLS) or a non-linear least squares (NLS) fitting algorithm....

  17. Spin-lattice relaxation times and knight shift in InSb and InAs

    International Nuclear Information System (INIS)

    Braun, P.; Grande, S.

    1976-01-01

    For a dominant contact interaction between nuclei and conduction electrons the relaxation rate is deduced. The extreme cases of degenerate and non-degenerate semiconductors are separately discussed. At strong degeneracy the product of the Knight shift and relaxation time gives the Korringa relation for metals. Measurements of the NMR spin-lattice relaxation times of 115 InSb and 115 InAs were made between 4.2 and 300 K for strongly degenerated samples. The different relaxation mechanisms are discussed and the experimental and theoretical results are compared. (author)

  18. Investigation of the proteins relaxation time in human blood serum; Badania relaksacyjne bialek surowicy krwi II

    Energy Technology Data Exchange (ETDEWEB)

    Blicharska, B.; Klauza, M. [Inst. Fizyki, Uniwersytet Jagiellonski, Cracow (Poland); Kuliszkiewicz-Janus, M. [Akademia Medyczna, Wroclaw (Poland)

    1994-12-31

    In this paper the results of human blood serum proteins relaxation time measurements by means of NMR method are presented. The measurements have been done for three samples of human blood: i/laudably ii/leukemia iii/granulomas. The dependences of the relaxation time on the temperature are also presented. 3 refs, 4 figs.

  19. Travel time estimation using Bluetooth.

    Science.gov (United States)

    2015-06-01

    The objective of this study was to investigate the feasibility of using a Bluetooth Probe Detection System (BPDS) to : estimate travel time in an urban area. Specifically, the study investigated the possibility of measuring overall congestion, the : ...

  20. Double Scaling in the Relaxation Time in the β -Fermi-Pasta-Ulam-Tsingou Model

    Science.gov (United States)

    Lvov, Yuri V.; Onorato, Miguel

    2018-04-01

    We consider the original β -Fermi-Pasta-Ulam-Tsingou system; numerical simulations and theoretical arguments suggest that, for a finite number of masses, a statistical equilibrium state is reached independently of the initial energy of the system. Using ensemble averages over initial conditions characterized by different Fourier random phases, we numerically estimate the time scale of equipartition and we find that for very small nonlinearity it matches the prediction based on exact wave-wave resonant interaction theory. We derive a simple formula for the nonlinear frequency broadening and show that when the phenomenon of overlap of frequencies takes place, a different scaling for the thermalization time scale is observed. Our result supports the idea that the Chirikov overlap criterion identifies a transition region between two different relaxation time scalings.

  1. Freeway travel-time estimation and forecasting.

    Science.gov (United States)

    2012-09-01

    This project presents a microsimulation-based framework for generating short-term forecasts of travel time on freeway corridors. The microsimulation model that is developed (GTsim), replicates freeway capacity drop and relaxation phenomena critical f...

  2. The relaxation time of processes in a FitzHugh-Nagumo neural system with time delay

    International Nuclear Information System (INIS)

    Gong Ailing; Zeng Chunhua; Wang Hua

    2011-01-01

    In this paper, we study the relaxation time (RT) of the steady-state correlation function in a FitzHugh-Nagumo neural system under the presence of multiplicative and additive white noises and time delay. The noise correlation parameter λ can produce a critical behavior in the RT as functions of the multiplicative noise intensity D, the additive noise intensity Q and the time delay τ. That is, the RT decreases as the noise intensities D and Q increase, and increases as the time delay τ increases below the critical value of λ. However, above the critical value, the RT first increases, reaches a maximum, and then decreases as D, Q and τ increase, i.e. a noise intensity D or Q and a time delay τ exist, at which the time scales of the relaxation process are at their largest. In addition, the additive noise intensity Q can also produce a critical behavior in the RT as a function of λ. The noise correlation parameter λ first increases the RT of processes, then decreases it below the critical value of Q. Above the critical value, λ increases it.

  3. Detection of early gamma-postirradiation effects in murine spleen by proton NMR relaxation times.

    Science.gov (United States)

    Zebrowska, G; Lewa, C J; Ramee, M P; Husson, F; De Certaines, J D

    2001-01-01

    It was our aim to evaluate the potential of proton relaxation times for the early detection of radiation-induced spleen changes. Female Swiss mice were irradiated with doses ranging from 0.05 Gy to 4 Gy. The body weight, the spleen weight and the spleen water content of single animals were determined. Measurements of longitudinal (T1) and transversal (T2) proton relaxation times of the spleen samples were performed in a 0.47 T spectrometer. Histological examinations of the control and irradiated organs were performed. NMR measurements during the first five days after irradiation showed that total body gamma-irradiation with doses from 1.5 Gy to 4 Gy results in decreasing T1 of the murine spleen. Significant shortening in T2 was observed for the spleen of animals irradiated with a dose of 4 Gy. Histological examinations demonstrated subnormal architecture in slices derived from animals irradiated with 2 Gy and 4 Gy. The fluctuations of the spleen T1 and T2 of irradiated mice are correlated with relative spleen weight and can be used to estimate radiation induced changes in this organ.

  4. Giant deviation of a relaxation time from generalized Newtonian theory in discontinuous shear thickening suspensions

    Science.gov (United States)

    Maharjan, Rijan; Brown, Eric

    2017-12-01

    We investigated the transient relaxation of a discontinuous shear thickening (DST) suspension of cornstarch in water. We performed two types of relaxation experiments starting from a steady shear in a parallel-plate rheometer, followed either by stopping the top plate rotation and measuring the transient torque relaxation or by removing the torque on the plate and measuring the transient rotation of the tool. We found that at low effective weight fraction ϕeffmodel. The regime where the relaxation was inconsistent with the generalized Newtonian model was the same where we found positive normal stress during relaxation, and in some cases we found an oscillatory response, suggestive of a solidlike structure consisting of a system-spanning contact network of particles. This regime also corresponds to the same packing fraction range where we consistently found discontinuous shear thickening in rate-controlled, steady-state measurements. The relaxation time in this range scales with the inverse of the critical shear rate at the onset of shear thickening, which may correspond to a contact relaxation time for nearby particles in the structure to flow away from each other. In this range, the relaxation time was the same in both stress- and rate-controlled relaxation experiments, indicating the relaxation time is more intrinsic than an effective viscosity in this range and is needed in addition to the steady-state viscosity function to describe transient flows. The discrepancy between the measured relaxation times and the generalized Newtonian prediction was found to be as large as four orders of magnitude, and extrapolations diverge in the limit as ϕeff→ϕc as the generalized Newtonian prediction approaches 0. This quantitative discrepancy indicates the relaxation is not controlled by the dissipative terms in the constitutive relation. At the highest weight fractions, the relaxation time scales were measured to be on the order of ˜1 s. The fact that this time scale is

  5. The influence of measurement and relaxation time on flux jumps in high temperature superconductors

    International Nuclear Information System (INIS)

    Yang Xiaobin; Zhou Youhe; Tu Shandong

    2010-01-01

    The influence of the magnetization and relaxation time on flux jumps in high temperature superconductors (HTSC) under varying magnetic field is studied using the fundamental electromagnetic field equations and the thermal diffusion equation; temperature variety corresponding to flux jump is also discussed. We find that for a low sweep rate of the applied magnetic field, the measurement and relaxation times can reduce flux jump and to constrain the number of flux jumps, even stabilizing the HTSC, since much heat produced by the motion of magnetic flux can transfer into coolant during the measurement and relaxation times. As high temperature superconductors are subjected to a high sweep rate or a strong pulsed magnetic field, magnetization undergoes from stability or oscillation to jump for different pause times. And the period of temperature oscillation is equal to the measurement and relaxation time.

  6. Isotope effect on hydrated electron relaxation dynamics studied with time-resolved liquid jet photoelectron spectroscopy

    Science.gov (United States)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2016-05-01

    The excited state relaxation dynamics of the solvated electron in H2O and D2O are investigated using time-resolved photoelectron spectroscopy in a liquid microjet. The data show that the initial excited state decays on a time scale of 75 ± 12 fs in H2O and 102 ± 8 fs in D2O, followed by slower relaxation on time scales of 400 ± 70 fs and 390 ± 70 fs that are isotopically invariant within the precision of our measurements. Based on the time evolution of the transient signals, the faster and slower time constants are assigned to p → s internal conversion (IC) of the hydrated electron and relaxation on the ground electronic state, respectively. This assignment is consistent with the non-adiabatic mechanism for relaxation of the hydrated electron and yields an isotope effect of 1.4 ± 0.2 for IC of the hydrated electron.

  7. NMR water-proton spin-lattice relaxation time of human red blood cells and red blood cell suspensions

    International Nuclear Information System (INIS)

    Sullivan, S.G.; Rosenthal, J.S.; Winston, A.; Stern, A.

    1988-01-01

    NMR water-proton spin-lattice relaxation times were studied as probes of water structure in human red blood cells and red blood cell suspensions. Normal saline had a relaxation time of about 3000 ms while packed red blood cells had a relaxation time of about 500 ms. The relaxation time of a red blood cell suspension at 50% hematocrit was about 750 ms showing that surface charges and polar groups of the red cell membrane effectively structure extracellular water. Incubation of red cells in hypotonic saline increases relaxation time whereas hypertonic saline decreases relaxation time. Relaxation times varied independently of mean corpuscular volume and mean corpuscular hemoglobin concentration in a sample population. Studies with lysates and resealed membrane ghosts show that hemoglobin is very effective in lowering water-proton relaxation time whereas resealed membrane ghosts in the absence of hemoglobin are less effective than intact red cells. 9 refs.; 3 figs.; 1 table

  8. Location estimation in wireless sensor networks using spring-relaxation technique.

    Science.gov (United States)

    Zhang, Qing; Foh, Chuan Heng; Seet, Boon-Chong; Fong, A C M

    2010-01-01

    Accurate and low-cost autonomous self-localization is a critical requirement of various applications of a large-scale distributed wireless sensor network (WSN). Due to its massive deployment of sensors, explicit measurements based on specialized localization hardware such as the Global Positioning System (GPS) is not practical. In this paper, we propose a low-cost WSN localization solution. Our design uses received signal strength indicators for ranging, light weight distributed algorithms based on the spring-relaxation technique for location computation, and the cooperative approach to achieve certain location estimation accuracy with a low number of nodes with known locations. We provide analysis to show the suitability of the spring-relaxation technique for WSN localization with cooperative approach, and perform simulation experiments to illustrate its accuracy in localization.

  9. Location Estimation in Wireless Sensor Networks Using Spring-Relaxation Technique

    Directory of Open Access Journals (Sweden)

    Qing Zhang

    2010-05-01

    Full Text Available Accurate and low-cost autonomous self-localization is a critical requirement of various applications of a large-scale distributed wireless sensor network (WSN. Due to its massive deployment of sensors, explicit measurements based on specialized localization hardware such as the Global Positioning System (GPS is not practical. In this paper, we propose a low-cost WSN localization solution. Our design uses received signal strength indicators for ranging, light weight distributed algorithms based on the spring-relaxation technique for location computation, and the cooperative approach to achieve certain location estimation accuracy with a low number of nodes with known locations. We provide analysis to show the suitability of the spring-relaxation technique for WSN localization with cooperative approach, and perform simulation experiments to illustrate its accuracy in localization.

  10. Quantifying NMR relaxation correlation and exchange in articular cartilage with time domain analysis

    Science.gov (United States)

    Mailhiot, Sarah E.; Zong, Fangrong; Maneval, James E.; June, Ronald K.; Galvosas, Petrik; Seymour, Joseph D.

    2018-02-01

    Measured nuclear magnetic resonance (NMR) transverse relaxation data in articular cartilage has been shown to be multi-exponential and correlated to the health of the tissue. The observed relaxation rates are dependent on experimental parameters such as solvent, data acquisition methods, data analysis methods, and alignment to the magnetic field. In this study, we show that diffusive exchange occurs in porcine articular cartilage and impacts the observed relaxation rates in T1-T2 correlation experiments. By using time domain analysis of T2-T2 exchange spectroscopy, the diffusive exchange time can be quantified by measurements that use a single mixing time. Measured characteristic times for exchange are commensurate with T1 in this material and so impacts the observed T1 behavior. The approach used here allows for reliable quantification of NMR relaxation behavior in cartilage in the presence of diffusive fluid exchange between two environments.

  11. T2 relaxation times of irradiated vertebral bone marrow in patients with seminoma.

    Science.gov (United States)

    Argiris, A; Maris, T; Vlahos, L

    1997-01-01

    Our purpose was to demonstrate the effects of localized radiotherapy on lumbar vertebral bone marrow with the use of quantitative MRI with measurements of T2 relaxation times. Ten patients with early stage testicular seminoma with a history of radiation therapy to a "dog-leg" field including the lumbar vertebrae underwent MR imaging of their lumbar spine using a 0.5 Tesla magnet. Five healthy subjects and two nonirradiated patients were imaged as well. The intervals from the beginning of radiotherapy to MRI examination varied from 1.5 to 52 months, and the radiation dose ranged from 3000-4200 cGy. The T2 relaxation times of the lumbar vertebral bone marrow and subcutaneous fat were calculated for each subject. Postirradiation bone marrow in irradiated seminoma patients exhibited significantly longer T2 relaxation times than nonirradiated bone marrow in controls (71.1 vs. 63.6 ms, p = 0.047, t-test). The differences between the T2 relaxation times of bone marrow and subcutaneous fat for each subject allowed for even better differentiation between irradiated patients and controls (10.4 vs. 0.4 ms, p = 0.0004, t-test). Postirradiation bone marrow had significantly longer T2 relaxation times than subcutaneous fat in irradiated patients (N = 10, 71.1 vs. 60.7 ms, p = 0.00009, t-test), while nonirradiated bone marrow had T2 relaxation times not statistically different from subcutaneous fat in nonirradiated subjects (N = 7, 63.6 vs. 63.2 ms). Measurements of T2 relaxation times of bone marrow enabled us to differentiate between irradiated seminoma patients and controls. Postirradiation bone marrow undergoes late radiation effects resulting in longer T2 relaxation times than nonirradiated bone marrow and subcutaneous fat.

  12. Thermal relaxation time of a mixture of relativistic electrons and neutrinos

    International Nuclear Information System (INIS)

    Herrera, M.A.; Hacyan, S.

    1987-01-01

    The interaction between the components of a relativistic binary mixture is studied by means of a fully covariant formalism. Assuming both components to differ slightly in temperature, an application of the relativistic Boltzmann equation yields general expressions for the energy transfer rate and for the relaxation time of the system. The resulting relation is then applied to a mixture of relativistic electrons and neutrinos to obtain numerical values of its relaxation time. (author)

  13. Comparative study of the sensitivity of ADC value and T2 relaxation time for early detection of Wallerian degeneration

    International Nuclear Information System (INIS)

    Zhang Fan; Lu Guangming; Zee Chishing

    2011-01-01

    Background and purpose: Wallerian degeneration (WD), the secondary degeneration of axons from cortical and subcortical injuries, is associated with poor neurological outcome. There is some quantitative MR imaging techniques used to estimate the biologic changes secondary to delayed neuronal and axonal losses. Our purpose is to assess the sensitivity of ADC value and T 2 relaxation time for early detection of WD. Methods: Ten male Sprague-Dawley rats were used to establish in vivo Wallerian degeneration model of CNS by ipsilateral motor-sensory cortex ablation. 5 days after cortex ablation, multiecho-T 2 relaxometry and multi-b value DWI were acquired by using a 7 T MR imaging scanner. ADC-map and T 2 -map were reconstructed by post-processing. ROIs are selected according to pathway of corticospinal tract from cortex, internal capsule, cerebral peduncle, pons, medulla oblongata to upper cervical spinal cord to measure ADC value and T 2 relaxation time of healthy side and affected side. The results were compared between the side with cortical ablation and the side without ablation. Results: Excluding ablated cortex, ADC values of the corticospinal tract were significantly increased (P 2 relaxation time was observed between the affected and healthy sides. Imaging findings were correlated with histological examinations. Conclusion: As shown in this animal experiment, ADC values could non-invasively demonstrate the secondary degeneration involving descending white matter tracts. ADC values are more sensitive indicators for detection of early WD than T 2 relaxation time.

  14. Measurements of spin-lattice relaxation time in mixed alkali halide crystals

    International Nuclear Information System (INIS)

    Tannus, A.

    1983-01-01

    Using magneto-optic techniques the ground state spin-lattice relaxation times (T1) of 'F' centers in mixed Alkali Halide cristals (KCl-KBr), was studied. A computer assisted system to optically measure short relaxation times (approx. = 1mS), was described. The technique is based on the measurement of the Magnetic Circular Dicroism (MCD) presented by F centers. The T1 magnetic field dependency at 2 K (up to 65 KGauss), was obtained as well as the MCD spectra for different relative concentration at the mixed matrices. The theory developed by Panepucci and Mollenauer for F centers spin-lattice relaxation in pure matrices was modified to explain the behaviour of T1 in mixed cristals. The Direct Process results (T approx. = 2.0 K) compared against that theory shows that the main relaxation mecanism, up to 25 KGauss, continues to be phonon modulation of the hiperfine iteraction between F electrons and surrounding nuclei. (Author) [pt

  15. Real-time relaxation and kinetics in hot scalar QED: Landau damping

    International Nuclear Information System (INIS)

    Boyanovsky, D.; Vega, H.J. de; Holman, R.; Kumar, S.P.; Pisarski, R.D.

    1998-01-01

    The real time evolution of non-equilibrium expectation values with soft length scales ∼k -1 >(eT) -1 is solved in hot scalar electrodynamics, with a view towards understanding relaxational phenomena in the QGP and the electroweak plasma. We find that the gauge invariant non-equilibrium expectation values relax via power laws to asymptotic amplitudes that are determined by the quasiparticle poles. The long time relaxational dynamics and relevant time scales are determined by the behavior of the retarded self-energy not at the small frequencies, but at the Landau damping thresholds. This explains the presence of power laws and not of exponential decay. In the process we rederive the HTL effective action using non-equilibrium field theory. Furthermore we obtain the influence functional, the Langevin equation and the fluctuation-dissipation theorem for the soft modes, identifying the correlators that emerge in the classical limit. We show that a Markovian approximation fails to describe the dynamics both at short and long times. We find that the distribution function for soft quasiparticles relaxes with a power law through Landau damping. We also introduce a novel kinetic approach that goes beyond the standard Boltzmann equation by incorporating off-shell processes and find that the distribution function for soft quasiparticles relaxes with a power law through Landau damping. We find an unusual dressing dynamics of bare particles and anomalous (logarithmic) relaxation of hard quasiparticles. copyright 1998 The American Physical Society

  16. Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale

    International Nuclear Information System (INIS)

    Maslennikov, Oleg V.; Nekorkin, Vladimir I.

    2016-01-01

    In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.

  17. Time-Dependent Behaviors of Granite: Loading-Rate Dependence, Creep, and Relaxation

    Science.gov (United States)

    Hashiba, K.; Fukui, K.

    2016-07-01

    To assess the long-term stability of underground structures, it is important to understand the time-dependent behaviors of rocks, such as their loading-rate dependence, creep, and relaxation. However, there have been fewer studies on crystalline rocks than on tuff, mudstone, and rock salt, because the high strength of crystalline rocks makes the detection of their time-dependent behaviors much more difficult. Moreover, studies on the relaxation, temporal change of stress and strain (TCSS) conditions, and relations between various time-dependent behaviors are scarce for not only granites, but also other rocks. In this study, previous reports on the time-dependent behaviors of granites were reviewed and various laboratory tests were conducted using Toki granite. These tests included an alternating-loading-rate test, creep test, relaxation test, and TCSS test. The results showed that the degree of time dependence of Toki granite is similar to other granites, and that the TCSS resembles the stress-relaxation curve and creep-strain curve. A viscoelastic constitutive model, proposed in a previous study, was modified to investigate the relations between the time-dependent behaviors in the pre- and post-peak regions. The modified model reproduced the stress-strain curve, creep, relaxation, and the results of the TCSS test. Based on a comparison of the results of the laboratory tests and numerical simulations, close relations between the time-dependent behaviors were revealed quantitatively.

  18. T2 relaxation time analysis in patients with multiple sclerosis: correlation with magnetization transfer ratio

    International Nuclear Information System (INIS)

    Papanikolaou, Nickolas; Papadaki, Eufrosini; Karampekios, Spyros; Maris, Thomas; Prassopoulos, Panos; Gourtsoyiannis, Nicholas; Spilioti, Martha

    2004-01-01

    The aim of the current study was to perform T2 relaxation time measurements in multiple sclerosis (MS) patients and correlate them with magnetization transfer ratio (MTR) measurements, in order to investigate in more detail the various histopathological changes that occur in lesions and normal-appearing white matter (NAWM). A total number of 291 measurements of MTR and T2 relaxation times were performed in 13 MS patients and 10 age-matched healthy volunteers. Measurements concerned MS plaques (105), NAWM (80), and ''dirty'' white matter (DWM; 30), evenly divided between the MS patients, and normal white matter (NWM; 76) in the healthy volunteers. Biexponential T2 relaxation-time analysis was performed, and also possible linearity between MTR and mean T2 relaxation times was evaluated using linear regression analysis in all subgroups. Biexponential relaxation was more pronounced in ''black-hole'' lesions (16.6%) and homogeneous enhancing plaques (10%), whereas DWM, NAWM, and mildly hypointense lesions presented biexponential behavior with a lower frequency(6.6, 5, and 3.1%, respectively). Non-enhancing isointense lesions and normal white matter did not reveal any biexponentional behavior. Linear regression analysis between monoexponential T2 relaxation time and MTR measurements demonstrated excellent correlation for DWM(r=-0.78, p<0.0001), very good correlation for black-hole lesions(r=-0.71, p=0.002), good correlation for isointense lesions(r=-0.60, p=0.005), moderate correlation for mildly hypointense lesions(r=-0.34, p=0.007), and non-significant correlation for homogeneous enhancing plaques, NAWM, and NWM. Biexponential T2 relaxation-time behavior is seen in only very few lesions (mainly on plaques with high degree of demyelination and axonal loss). A strong correlation between MTR and monoexponential T2 values was found in regions where either inflammation or demyelination predominates; however, when both pathological conditions coexist, this linear

  19. Time, stress, and temperature-dependent deformation in nanostructured copper: Stress relaxation tests and simulations

    International Nuclear Information System (INIS)

    Yang, Xu-Sheng; Wang, Yun-Jiang; Wang, Guo-Yong; Zhai, Hui-Ru; Dai, L.H.; Zhang, Tong-Yi

    2016-01-01

    In the present work, stress relaxation tests, high-resolution transmission electron microscopy (HRTEM), and molecular dynamics (MD) simulations were conducted on coarse-grained (cg), nanograined (ng), and nanotwinned (nt) copper at temperatures of 22 °C (RT), 30 °C, 40 °C, 50 °C, and 75 °C. The comprehensive investigations provide sufficient information for the building-up of a formula to describe the time, stress, and temperature-dependent deformation and clarify the relationship among the strain rate sensitivity parameter, stress exponent, and activation volume. The typically experimental curves of logarithmic plastic strain rate versus stress exhibited a three staged relaxation process from a linear high stress relaxation region to a subsequent nonlinear stress relaxation region and finally to a linear low stress relaxation region, which only showed-up at the test temperatures higher than 22 °C, 22 °C, and 30 °C, respectively, in the tested cg-, ng-, and nt-Cu specimens. The values of stress exponent, stress-independent activation energy, and activation volume were determined from the experimental data in the two linear regions. The determined activation parameters, HRTEM images, and MD simulations consistently suggest that dislocation-mediated plastic deformation is predominant in all tested cg-, ng-, and nt-Cu specimens in the initial linear high stress relaxation region at the five relaxation temperatures, whereas in the linear low stress relaxation region, the grain boundary (GB) diffusion-associated deformation is dominant in the ng- and cg-Cu specimens, while twin boundary (TB) migration, i.e., twinning and detwinning with parallel partial dislocations, governs the time, stress, and temperature-dependent deformation in the nt-Cu specimens.

  20. Space and time dynamical heterogeneity in glassy relaxation. The role of democratic clusters

    International Nuclear Information System (INIS)

    Appignanesi, G A; Rodriguez Fris, J A

    2009-01-01

    In this work we review recent computational advances in the understanding of the relaxation dynamics of supercooled glass-forming liquids. In such a supercooled regime these systems experience a striking dynamical slowing down which can be rationalized in terms of the picture of dynamical heterogeneities, wherein the dynamics can vary by orders of magnitude from one region of the sample to another and where the sizes and timescales of such slowly relaxing regions are expected to increase considerably as the temperature is decreased. We shall focus on the relaxation events at a microscopic level and describe the finding of the collective motions of particles responsible for the dynamical heterogeneities. In so doing, we shall demonstrate that the dynamics in different regions of the system is not only heterogeneous in space but also in time. In particular, we shall be interested in the events relevant to the long-time structural relaxation or α relaxation. In this regard, we shall focus on the discovery of cooperatively relaxing units involving the collective motion of relatively compact clusters of particles, called 'democratic clusters' or d-clusters. These events have been shown to trigger transitions between metabasins of the potential energy landscape (collections of similar configurations or structures) and to consist of the main steps in the α relaxation. Such events emerge in systems quite different in nature such as simple model glass formers and supercooled amorphous water. Additionally, another relevant issue in this context consists in the determination of a link between structure and dynamics. In this context, we describe the relationship between the d-cluster events and the constraints that the local structure poses on the relaxation dynamics, thus revealing their role in reformulating structural constraints. (topical review)

  1. SU-F-I-63: Relaxation Times of Lipid Resonances in NAFLD Animal Model Using Enhanced Curve Fitting

    Energy Technology Data Exchange (ETDEWEB)

    Song, K-H; Yoo, C-H; Lim, S-I; Choe, B-Y [Department of Biomedical Engineering, and Research Institute of Biomedical Engineering, The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: The objective of this study is to evaluate the relaxation time of methylene resonance in comparison with other lipid resonances. Methods: The examinations were performed on a 3.0T MRI scanner using a four-channel animal coil. Eight more Sprague-Dawley rats in the same baseline weight range were housed with ad libitum access to water and a high-fat (HF) diet (60% fat, 20% protein, and 20% carbohydrate). In order to avoid large blood vessels, a voxel (0.8×0.8×0.8 cm{sup 3}) was placed in a homogeneous area of the liver parenchyma during free breathing. Lipid relaxations in NC and HF diet rats were estimated at a fixed repetition time (TR) of 6000 msec, and multi echo time (TEs) of 40–220 msec. All spectra for data measurement were processed using the Advanced Method for Accurate, Robust, and Efficient Spectral (AMARES) fitting algorithm of the Java-based Magnetic Resonance User Interface (jMRUI) package. Results: The mean T2 relaxation time of the methylene resonance in normal-chow diet was 37.1 msec (M{sub 0}, 2.9±0.5), with a standard deviation of 4.3 msec. The mean T2 relaxation time of the methylene resonance was 31.4 msec (M{sub 0}, 3.7±0.3), with a standard deviation of 1.8 msec. The T2 relaxation times of methylene protons were higher in normal-chow diet rats than in HF rats (p<0.05), and the extrapolated M{sub 0} values were higher in HF rats than in NC rats (p<0.005). The excellent linear fit with R{sup 2}>0.9971 and R{sup 2}>0.9987 indicates T2 relaxation decay curves with mono-exponential function. Conclusion: In in vivo, a sufficient spectral resolution and a sufficiently high signal-to-noise ratio (SNR) can be achieved, so that the data measured over short TE values can be extrapolated back to TE = 0 to produce better estimates of the relative weights of the spectral components. In the short term, treating the effective decay rate as exponential is an adequate approximation.

  2. Time Resolved Broadband Terahertz Relaxation Dynamics of Electron in Water

    DEFF Research Database (Denmark)

    Wang, Tianwu; Iwaszczuk, Krzysztof; Cooke, David G.

    We investigated the transient response of the solvated electron in water ejected by photodetachment from potassium ferrocyanide using time resolved terahertz spectroscopy (TSTS). Ultrabroadband THz transients are generated and detected by a two-color femtosecond-induced air plasma and air biased...

  3. Dielectric relaxation and hydrogen bonding interaction in xylitol-water mixtures using time domain reflectometry

    Science.gov (United States)

    Rander, D. N.; Joshi, Y. S.; Kanse, K. S.; Kumbharkhane, A. C.

    2016-01-01

    The measurements of complex dielectric permittivity of xylitol-water mixtures have been carried out in the frequency range of 10 MHz-30 GHz using a time domain reflectometry technique. Measurements have been done at six temperatures from 0 to 25 °C and at different weight fractions of xylitol (0 xylitol-water can be well described by Cole-Davidson model having an asymmetric distribution of relaxation times. The dielectric parameters such as static dielectric constant and relaxation time for the mixtures have been evaluated. The molecular interaction between xylitol and water molecules is discussed using the Kirkwood correlation factor ( g eff ) and thermodynamic parameter.

  4. T2 relaxation time mapping of the cartilage cap of osteochondromas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Kyung; Horn, Paul; Laor, Tal [Cincinnati Children' s Hospital Medical Center, Cincinnati (United States); Daedzinski, Bernard J. [Dept. of Radiology, Children' s Hospital of Philadelphia, University of Pennsylvania, Philadelphia (United States); Kim, Dong Hoon [Dept. of Radiology, Pharmacology, Korea University College of Medicine, Seoul (Korea, Republic of)

    2016-02-15

    Our aim was to evaluate the cartilage cap of osteochondromas using T2 maps and to compare these values to those of normal patellar cartilage, from age and gender matched controls. This study was approved by the Institutional Review Board and request for informed consent was waived. Eleven children (ages 5-17 years) with osteochondromas underwent MR imaging, which included T2-weighted fat suppressed and T2 relaxation time mapping (echo time = 9-99/repetition time = 1500 msec) sequences. Lesion origins were femur (n = 5), tibia (n = 3), fibula (n = 2), and scapula (n = 1). Signal intensity of the cartilage cap, thickness, mean T2 relaxation times, and T2 spatial variation (mean T2 relaxation times as a function of distance) were evaluated. Findings were compared to those of patellar cartilage from a group of age and gender matched subjects. The cartilage caps showed a fluid-like high T2 signal, with mean thickness of 4.8 mm. The mean value of mean T2 relaxation times of the osteochondromas was 264.0 ± 80.4 msec (range, 151.0-366.0 msec). Mean T2 relaxation times were significantly longer than the values from patellar cartilage (39.0 msec) (p < 0.0001). These findings were observed with T2 spatial variation plots across the entire distance of the cartilage cap, with the most pronounced difference in the middle section of the cartilage. Longer T2 relaxation times of the cartilage caps of osteochondromas should be considered as normal, and likely to reflect an increased water content, different microstructure and component.

  5. T2 relaxation time mapping of the cartilage cap of osteochondromas

    International Nuclear Information System (INIS)

    Kim, Hee Kyung; Horn, Paul; Laor, Tal; Daedzinski, Bernard J.; Kim, Dong Hoon

    2016-01-01

    Our aim was to evaluate the cartilage cap of osteochondromas using T2 maps and to compare these values to those of normal patellar cartilage, from age and gender matched controls. This study was approved by the Institutional Review Board and request for informed consent was waived. Eleven children (ages 5-17 years) with osteochondromas underwent MR imaging, which included T2-weighted fat suppressed and T2 relaxation time mapping (echo time = 9-99/repetition time = 1500 msec) sequences. Lesion origins were femur (n = 5), tibia (n = 3), fibula (n = 2), and scapula (n = 1). Signal intensity of the cartilage cap, thickness, mean T2 relaxation times, and T2 spatial variation (mean T2 relaxation times as a function of distance) were evaluated. Findings were compared to those of patellar cartilage from a group of age and gender matched subjects. The cartilage caps showed a fluid-like high T2 signal, with mean thickness of 4.8 mm. The mean value of mean T2 relaxation times of the osteochondromas was 264.0 ± 80.4 msec (range, 151.0-366.0 msec). Mean T2 relaxation times were significantly longer than the values from patellar cartilage (39.0 msec) (p < 0.0001). These findings were observed with T2 spatial variation plots across the entire distance of the cartilage cap, with the most pronounced difference in the middle section of the cartilage. Longer T2 relaxation times of the cartilage caps of osteochondromas should be considered as normal, and likely to reflect an increased water content, different microstructure and component

  6. Real-time observation of cascaded electronic relaxation processes in p-Fluorotoluene

    Science.gov (United States)

    Hao, Qiaoli; Deng, Xulan; Long, Jinyou; Wang, Yanmei; Abulimiti, Bumaliya; Zhang, Bing

    2017-08-01

    Ultrafast electronic relaxation processes following two photoexcitation of 400 nm in p-Fluorotoluene (pFT) have been investigated utilizing time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. Cascaded electronic relaxation processes started from the electronically excited S2 state are directly imaged in real time and well characterized by two distinct time constants of 85 ± 10 fs and 2.4 ± 0.3 ps. The rapid component corresponds to the lifetime of the initially excited S2 state, including the structure relaxation from the Franck-Condon region to the conical intersection of S2/S1 and the subsequent internal conversion to the highly excited S1 state. While, the slower relaxation constant is attributed to the further internal conversion to the high levels of S0 from the secondarily populated S1 locating in the channel three region. Moreover, dynamical differences with benzene and toluene of analogous structures, including, specifically, the slightly slower relaxation rate of S2 and the evidently faster decay of S1, are also presented and tentatively interpreted as the substituent effects. In addition, photoelectron kinetic energy and angular distributions reveal the feature of accidental resonances with low-lying Rydberg states (the 3p, 4s and 4p states) during the multi-photon ionization process, providing totally unexpected but very interesting information for pFT.

  7. Photoacoustic Determination of Non-radiative Relaxation Time of Absorbing Centers in Maize Seeds

    Science.gov (United States)

    Domínguez-Pacheco, A.; Hernández-Aguilar, C.; Cruz-Orea, A.

    2017-07-01

    Using non-destructive photothermal techniques, it is possible to characterize non-homogenous materials to obtain its optical and thermal properties through photoacoustic spectroscopy (PAS). In photoacoustic (PA) phenomena, there are transient states of thermal excitation, when samples absorb the incident light; these states manifest an excitation process that generates the PA signal, being in direct relation with the non-radiative relaxation times with the sample absorbent centers. The objective of this study was to determine the non-radiative relaxation times associated with different absorbent centers of corn seeds ( Zea mays L.), by using PAS. A frequency scan was done at different wavelengths (350 nm, 470 nm and 650 nm) in order to obtain the non-radiative relaxation times with different types of maize seeds.

  8. The time-dependence of exchange-induced relaxation during modulated radio frequency pulses.

    Science.gov (United States)

    Sorce, Dennis J; Michaeli, Shalom; Garwood, Michael

    2006-03-01

    The problem of the relaxation of identical spins 1/2 induced by chemical exchange between spins with different chemical shifts in the presence of time-dependent RF irradiation (in the first rotating frame) is considered for the fast exchange regime. The solution for the time evolution under the chemical exchange Hamiltonian in the tilted doubly rotating frame (TDRF) is presented. Detailed derivation is specified to the case of a two-site chemical exchange system with complete randomization between jumps of the exchanging spins. The derived theory can be applied to describe the modulation of the chemical exchange relaxation rate constants when using a train of adiabatic pulses, such as the hyperbolic secant pulse. Theory presented is valid for quantification of the exchange-induced time-dependent rotating frame longitudinal T1rho,ex and transverse T2rho,ex relaxations in the fast chemical exchange regime.

  9. Energy-level statistics and time relaxation in quantum systems

    International Nuclear Information System (INIS)

    Gruver, J.L.; Cerdeira, H.A.; Aliaga, J.; Mello, P.A.; Proto, A.N.

    1997-05-01

    We study a quantum-mechanical system, prepared, at t = 0, in a model state, that subsequently decays into a sea of other states whose energy levels form a discrete spectrum with given statistical properties. An important quantity is the survival probability P(t), defined as the probability, at time t, to find the system in the original model state. Our main purpose is to analyze the influence of the discreteness and statistical properties of the spectrum on the behavior of P(t). Since P(t) itself is a statistical quantity, we restrict our attention to its ensemble average , which is calculated analytically using random-matrix techniques, within certain approximations discussed in the text. We find, for , an exponential decay, followed by a revival, governed by the two-point structure of the statistical spectrum, thus giving a nonzero asymptotic value for large t's. The analytic result compares well with a number of computer simulations, over a time range discussed in the text. (author). 17 refs, 1 fig

  10. Observation of relaxation on time scale of core hole decay by coincidence photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2007-01-01

    It is shown by a many-body theory that when the relaxation time of a metastable core hole state(s) to the most stable one is comparable to or shorter than core hole decay time of the former state(s), a comparison between the singles (noncoincidence) photoelectron spectroscopy (PES) spectrum and the coincidence one provides a direct evidence of the relaxation. In principle the variation with photoelectron kinetic energy of relaxation (or charge transfer (CT)) time can be determined. By singles measurement the correlation of a photoelectron generated by creation of the metastable states not only with an Auger electron generated by annihilation of the same core hole state but also with an Auger electron generated by annihilation of the stable state via relaxation of the metastable state, is completely lost, unless only the metastable state is observed by PES, whereas the correlation often manifests directly in the coincidence spectra. Thus, compared to the coincidence spectroscopy the singles one is often much less capable of elucidating the competition between relaxation and core hole decay of a metastable state. Such examples are discussed

  11. On-chip Brownian relaxation measurements of magnetic nanobeads in the time domain

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Rizzi, Giovanni; Hansen, Mikkel Fougt

    2013-01-01

    the time and frequency domain methods on Brownian relaxation detection of clustering of streptavidin coated magnetic beads in the presence of different concentrations of biotin-conjugated bovine serum albumin and obtain comparable results. In the time domain, a measurement is carried out in less than 30 s...

  12. Relaxation time measurements of white and grey matter in multiple sclerosis patients

    International Nuclear Information System (INIS)

    Rinck, P.A.; Appel, B.; Moens, E.; Academisch Ziekenhuis Middelheim, Antwerp

    1987-01-01

    In a patient population of some 450 with definite, probable, and possible multiple sclerosis referred to us for MRI, some 40 suffering from definite MS were chosen randomly for relaxation time measurements of plaque-free grey and white matter. T 1 values could not be used for diagnostic purposes owing to their broad standard deviation. Overall white matter T 2 was slightly higher in MS patients than in a non-MS population (94 ms versus 89 ms). Because these changes are not visible in MR images, relaxation time measurements may prove valuable for differential diagnosis. (orig.) [de

  13. Menstrual variation of breast volume and T2 relaxation times in cyclical mastalgia

    International Nuclear Information System (INIS)

    Hussain, Zainab; Brooks, Jonathan; Percy, Dave

    2008-01-01

    Purpose: Hormonal activity causes breast volume to change during the menstrual cycle. One possible cause of this volume change is thought to be due to water retention or oedema within the tissues. We used magnetic resonance imaging (MRI) to study the variation in breast volume and 1 H Magnetic Resonance Spectroscopy (MRS) to measure T 2 relaxation times which are known to increase with increasing tissue water content. We hypothesised that an increase in breast volume will elevate T 2 relaxation due to the presence of an increased water content within the breast. T 2 Relaxation time and volume were studied in fifteen control subjects and in a cohort of eight patients with cyclical mastalgia in order to determine whether changes in breast volume and T 2 relaxation times differed in controls and patients during menses, ovulation and premenses. Method: Breast volume was determined by the Cavalieri method in combination with point counting techniques on MR images and T 2 relaxation times of the water and fat in a voxel of breast tissue were obtained using 1 H Magnetic Resonance Spectroscopy (MRS). Results: Statistical analysis (ANOVA) demonstrated highly significant differences in breast volume between the three stages of the cycle (p 2 of fat or water did not depend on stage of cycle. T-tests demonstrated no significant differences in T 2 of water or fat between patient and control groups. The average T 2 relaxation time of water was lowest in the patient and control groups during ovulation and highest in the patient group during premenses. Conclusion: We have performed the first combined volumetric and spectroscopic study of women with cyclical mastalgia and demonstrated that the global changes in volumes and T 2 were not significantly different from normal menstrual variations

  14. The effects of bone on proton NMR relaxation times of surrounding liquids

    Science.gov (United States)

    Davis, C. A.; Genant, H. K.; Dunham, J. S.

    1986-01-01

    Preliminary attempts by our group at UCSF to assess fat content of vertebral marrow in the lumbar spine using relaxation time information demonstrated that the presence of trabecular bone affects relaxation times. The objective of this work was a thorough study of the effects of bone on NMR relaxation characteristics of surrounding liquids. Trabecular bone from autopsy specimens was ground up and sifted into a series of powders with graded densities ranging from 0.3 gm/cc to 0.8 gm/cc. Each powder was placed first in n-saline and then in cottonseed oil. With spectroscopy, spin-lattice relaxation times (T1) and effective spin-spin relaxation times (T2*) were measured for each liquid in each bone powder. As bone density and surface to volume ratio increased, T1 decreased faster for saline than for oil. T2* decreased significantly for both water and oil as the surface to volume ratio increased. It was concluded that effects of water on T1 could be explained by a surface interaction at the bone/liquid interface, which restricted rotational and translational motion of nearby molecules. The T1s of oil were not affected since oil molecules are nonpolar, do not participate in significant intermolecular hydrogen bonding, and therefore would not be expected to interact strongly with the bone surface. Effects on T2* could be explained by local magnetic field inhomogeneities created by discontinuous magnetic susceptibility near the bone surface. These preliminary results suggest that water in contact with trabecular bone in vivo will exhibit shortened relaxation times.

  15. SU-E-I-64: Transverse Relaxation Time in Methylene Protons of Non-Alcoholic Fatty Liver Disease Rats

    Energy Technology Data Exchange (ETDEWEB)

    Song, K-H; Lee, D-W; Choe, B-Y [Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Seoul (Korea, Republic of)

    2015-06-15

    Purpose: The aim of this study was to evaluate transverse relaxation time of methylene resonance compared to other lipid resonances. Methods: The examinations were performed using a 3.0 T scanner with a point — resolved spectroscopy (PRESS) sequence. Lipid relaxation time in a lipid phantom filled with canola oil was estimated considering repetition time (TR) as 6000 msec and echo time (TE) as 40 — 550 msec. For in vivo proton magnetic resonance spectroscopy ({sup 1}H — MRS), eight male Sprague — Dawley rats were given free access to a normal - chow (NC) and eight other male Sprague-Dawley rats were given free access to a high — fat (HF) diet. Both groups drank water ad libitum. T{sub 2} measurements in the rats’ livers were conducted at a fixed TR of 6000 msec and TE of 40 – 220 msec. Exponential curve fitting quality was calculated through the coefficients of determination (R{sup 2}). Results: A chemical analysis of phantom and liver was not performed but a T{sub 2} decay curve was acquired. The T{sub 2} relaxation time of methylene resonance was estimated as follows: NC rats, 37.07 ± 4.32 msec; HF rats, 31.43 ± 1.81 msec (p < 0.05). The extrapolated M0 values were higher in HF rats than in NC rats (p < 0.005). Conclusion: This study of {sup 1}H-MRS led to sufficient spectral resolution and signal — to — noise ratio differences to characterize all observable resonances for yielding T{sub 2} relaxation times of methylene resonance. {sup 1}H — MRS relaxation times may be useful for quantitative characterization of various liver diseases, including fatty liver disease. This study was supported by grant (2012-007883 and 2014R1A2A1A10050270) from the Mid-career Researcher Program through the NRF funded by Ministry of Science. In addition, this study was supported by the Industrial R&D of MOTIE/KEIT (10048997, Development of the core technology for integrated therapy devices based on real-time MRI-guided tumor tracking)

  16. T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Mamisch, Tallal Charles [University Bern, Department of Orthopedic Surgery, Inselspital, Bern (Switzerland); University Bern, Magnetic Resonance Spectroscopy and Methodology, Department of Clinical Research, Bern (Switzerland); Hughes, Timothy [Siemens Medical Solutions, Erlangen (Germany); Mosher, Timothy J. [Penn State University College of Medicine, Musculoskeletal Imaging and MRI, Department of Radiology, Hershey, PA (United States); Mueller, Christoph [University of Erlangen, Department of Trauma Surgery, Erlangen (Germany); Trattnig, Siegfried [Medical University of Vienna, MR Center - High Field MR, Department of Radiology, Vienna (Austria); Boesch, Chris [University Bern, Magnetic Resonance Spectroscopy and Methodology, Department of Clinical Research, Bern (Switzerland); Welsch, Goetz Hannes [University of Erlangen, Department of Trauma Surgery, Erlangen (Germany); Medical University of Vienna, MR Center - High Field MR, Department of Radiology, Vienna (Austria)

    2012-03-15

    T2 mapping techniques use the relaxation constant as an indirect marker of cartilage structure, and the relaxation constant has also been shown to be a sensitive parameter for cartilage evaluation. As a possible additional robust biomarker, T2* relaxation time is a potential, clinically feasible parameter for the biochemical evaluation of articular cartilage. The knees of 15 healthy volunteers and 15 patients after microfracture therapy (MFX) were evaluated with a multi-echo spin-echo T2 mapping technique and a multi-echo gradient-echo T2* mapping sequence at 3.0 Tesla MRI. Inline maps, using a log-linear least squares fitting method, were assessed with respect to the zonal dependency of T2 and T2* relaxation for the deep and superficial regions of healthy articular cartilage and cartilage repair tissue. There was a statistically significant correlation between T2 and T2* values. Both parameters demonstrated similar spatial dependency, with longer values measured toward the articular surface for healthy articular cartilage. No spatial variation was observed for cartilage repair tissue after MFX. Within this feasibility study, both T2 and T2* relaxation parameters demonstrated a similar response in the assessment of articular cartilage and cartilage repair tissue. The potential advantages of T2*-mapping of cartilage include faster imaging times and the opportunity for 3D acquisitions, thereby providing greater spatial resolution and complete coverage of the articular surface. (orig.)

  17. An open-source software tool for the generation of relaxation time maps in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Messroghli, Daniel R; Rudolph, Andre; Abdel-Aty, Hassan; Wassmuth, Ralf; Kühne, Titus; Dietz, Rainer; Schulz-Menger, Jeanette

    2010-01-01

    In magnetic resonance (MR) imaging, T1, T2 and T2* relaxation times represent characteristic tissue properties that can be quantified with the help of specific imaging strategies. While there are basic software tools for specific pulse sequences, until now there is no universal software program available to automate pixel-wise mapping of relaxation times from various types of images or MR systems. Such a software program would allow researchers to test and compare new imaging strategies and thus would significantly facilitate research in the area of quantitative tissue characterization. After defining requirements for a universal MR mapping tool, a software program named MRmap was created using a high-level graphics language. Additional features include a manual registration tool for source images with motion artifacts and a tabular DICOM viewer to examine pulse sequence parameters. MRmap was successfully tested on three different computer platforms with image data from three different MR system manufacturers and five different sorts of pulse sequences: multi-image inversion recovery T1; Look-Locker/TOMROP T1; modified Look-Locker (MOLLI) T1; single-echo T2/T2*; and multi-echo T2/T2*. Computing times varied between 2 and 113 seconds. Estimates of relaxation times compared favorably to those obtained from non-automated curve fitting. Completed maps were exported in DICOM format and could be read in standard software packages used for analysis of clinical and research MR data. MRmap is a flexible cross-platform research tool that enables accurate mapping of relaxation times from various pulse sequences. The software allows researchers to optimize quantitative MR strategies in a manufacturer-independent fashion. The program and its source code were made available as open-source software on the internet

  18. An open-source software tool for the generation of relaxation time maps in magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Kühne Titus

    2010-07-01

    Full Text Available Abstract Background In magnetic resonance (MR imaging, T1, T2 and T2* relaxation times represent characteristic tissue properties that can be quantified with the help of specific imaging strategies. While there are basic software tools for specific pulse sequences, until now there is no universal software program available to automate pixel-wise mapping of relaxation times from various types of images or MR systems. Such a software program would allow researchers to test and compare new imaging strategies and thus would significantly facilitate research in the area of quantitative tissue characterization. Results After defining requirements for a universal MR mapping tool, a software program named MRmap was created using a high-level graphics language. Additional features include a manual registration tool for source images with motion artifacts and a tabular DICOM viewer to examine pulse sequence parameters. MRmap was successfully tested on three different computer platforms with image data from three different MR system manufacturers and five different sorts of pulse sequences: multi-image inversion recovery T1; Look-Locker/TOMROP T1; modified Look-Locker (MOLLI T1; single-echo T2/T2*; and multi-echo T2/T2*. Computing times varied between 2 and 113 seconds. Estimates of relaxation times compared favorably to those obtained from non-automated curve fitting. Completed maps were exported in DICOM format and could be read in standard software packages used for analysis of clinical and research MR data. Conclusions MRmap is a flexible cross-platform research tool that enables accurate mapping of relaxation times from various pulse sequences. The software allows researchers to optimize quantitative MR strategies in a manufacturer-independent fashion. The program and its source code were made available as open-source software on the internet.

  19. Error estimation and global fitting in transverse-relaxation dispersion experiments to determine chemical-exchange parameters

    International Nuclear Information System (INIS)

    Ishima, Rieko; Torchia, Dennis A.

    2005-01-01

    Off-resonance effects can introduce significant systematic errors in R 2 measurements in constant-time Carr-Purcell-Meiboom-Gill (CPMG) transverse relaxation dispersion experiments. For an off-resonance chemical shift of 500 Hz, 15 N relaxation dispersion profiles obtained from experiment and computer simulation indicated a systematic error of ca. 3%. This error is three- to five-fold larger than the random error in R 2 caused by noise. Good estimates of total R 2 uncertainty are critical in order to obtain accurate estimates in optimized chemical exchange parameters and their uncertainties derived from χ 2 minimization of a target function. Here, we present a simple empirical approach that provides a good estimate of the total error (systematic + random) in 15 N R 2 values measured for the HIV protease. The advantage of this empirical error estimate is that it is applicable even when some of the factors that contribute to the off-resonance error are not known. These errors are incorporated into a χ 2 minimization protocol, in which the Carver-Richards equation is used fit the observed R 2 dispersion profiles, that yields optimized chemical exchange parameters and their confidence limits. Optimized parameters are also derived, using the same protein sample and data-fitting protocol, from 1 H R 2 measurements in which systematic errors are negligible. Although 1 H and 15 N relaxation profiles of individual residues were well fit, the optimized exchange parameters had large uncertainties (confidence limits). In contrast, when a single pair of exchange parameters (the exchange lifetime, τ ex , and the fractional population, p a ), were constrained to globally fit all R 2 profiles for residues in the dimer interface of the protein, confidence limits were less than 8% for all optimized exchange parameters. In addition, F-tests showed that quality of the fits obtained using τ ex , p a as global parameters were not improved when these parameters were free to fit the R

  20. Large lateral photovoltaic effect with ultrafast relaxation time in SnSe/Si junction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianjie; Zhao, Xiaofeng; Hu, Chang; Zhang, Yang; Song, Bingqian; Zhang, Lingli; Liu, Weilong; Lv, Zhe; Zhang, Yu; Sui, Yu, E-mail: suiyu@hit.edu.cn [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Tang, Jinke [Department of Physics and Astronomy, University of Wyoming, Laramie, Wyoming 82071 (United States); Song, Bo, E-mail: songbo@hit.edu.cn [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150001 (China)

    2016-07-11

    In this paper, we report a large lateral photovoltaic effect (LPE) with ultrafast relaxation time in SnSe/p-Si junctions. The LPE shows a linear dependence on the position of the laser spot, and the position sensitivity is as high as 250 mV mm{sup −1}. The optical response time and the relaxation time of the LPE are about 100 ns and 2 μs, respectively. The current-voltage curve on the surface of the SnSe film indicates the formation of an inversion layer at the SnSe/p-Si interface. Our results clearly suggest that most of the excited-electrons diffuse laterally in the inversion layer at the SnSe/p-Si interface, which results in a large LPE with ultrafast relaxation time. The high positional sensitivity and ultrafast relaxation time of the LPE make the SnSe/p-Si junction a promising candidate for a wide range of optoelectronic applications.

  1. Isotope effect on hydrated electron relaxation dynamics studied with time-resolved liquid jet photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Elkins, Madeline H.; Williams, Holly L. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Neumark, Daniel M., E-mail: dneumark@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2016-05-14

    The excited state relaxation dynamics of the solvated electron in H{sub 2}O and D{sub 2}O are investigated using time-resolved photoelectron spectroscopy in a liquid microjet. The data show that the initial excited state decays on a time scale of 75 ± 12 fs in H{sub 2}O and 102 ± 8 fs in D{sub 2}O, followed by slower relaxation on time scales of 400 ± 70 fs and 390 ± 70 fs that are isotopically invariant within the precision of our measurements. Based on the time evolution of the transient signals, the faster and slower time constants are assigned to p → s internal conversion (IC) of the hydrated electron and relaxation on the ground electronic state, respectively. This assignment is consistent with the non-adiabatic mechanism for relaxation of the hydrated electron and yields an isotope effect of 1.4 ± 0.2 for IC of the hydrated electron.

  2. 31-P Relaxation times of metabolic compounds in tumors grafted in nude mice

    International Nuclear Information System (INIS)

    Remy, C.; Benabid, A.L.; Jacrot, M.; Riondel, J.; Albrand, J.P.; Decorps, M.

    1985-08-01

    The observation that water proton relaxation rates were longer in tumors than in normal tissues provided a basis for the detection of human tumors by the NMR imaging technique. To evaluate the potentiality of 31-P NMR spectroscopy as a diagnostic tool of the pathological state of tissues, T1 and T2 relaxation times have been measured for the phosphates of ATP, inorganic phosphate (Pi), phosphomonoesters (PME) and phosphocreatine (PCr) in the 31-P NMR spectra obtained in vivo for normal rat brain and rat brain tumors implanted in nude mice

  3. Transverse magnetic field effects on the relaxation time of the magnetization in Mn12 measured by 55Mn-NMR

    International Nuclear Information System (INIS)

    Furukawa, Y.; Watanabe, K.; Kumagai, K.; Borsa, F.; Gatteschi, D.

    2003-01-01

    The longitudinal (H Z ) and transverse (H T ) magnetic field dependence of the relaxation time of the magnetization in Mn12 in its S=10 ground state was measured by NMR. The minima in the relaxation time at the fields for level crossing are due to the quantum tunneling of the magnetization. The shortening of the relaxation time under the application of H T is shown to be due mainly to the reduction of the energy barrier

  4. Distribution of relaxation times in (KBr)/sub 0.5/(KCN)/sub 0.5/

    International Nuclear Information System (INIS)

    Birge, N.O.; Jeong, Y.H.; Nagel, S.R.; Bhattacharya, S.; Susman, S.

    1984-01-01

    Measurements of the dielectric response of (KBr)/sub 0.5/(KCN)/sub 0.5/ covering nine decades of frequency are reported. We have shown how the relaxation times proliferate as the temperature is lowered. The anomalously wide distribution of relaxation times can be generated from a Gaussian distribution of energy barriers. As temperature is decreased not only does the spread of relaxation times increase, but more importantly the width of the distribution of activation energies itself increases

  5. Experimental investigations of relaxation times of gel electrolytes during polymerization by MR methods

    Czech Academy of Sciences Publication Activity Database

    Kořínek, Radim; Vondrák, J.; Bartušek, Karel; Sedlaříková, M.

    2013-01-01

    Roč. 17, č. 8 (2013), s. 2109-2114 ISSN 1432-8488 R&D Projects: GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Gel electrolyte * Relaxation times * Polarization * Nuclear magnetic resonance Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.234, year: 2013

  6. Time stepping free numerical solution of linear differential equations: Krylov subspace versus waveform relaxation

    NARCIS (Netherlands)

    Bochev, Mikhail A.; Oseledets, I.V.; Tyrtyshnikov, E.E.

    2013-01-01

    The aim of this paper is two-fold. First, we propose an efficient implementation of the continuous time waveform relaxation method based on block Krylov subspaces. Second, we compare this new implementation against Krylov subspace methods combined with the shift and invert technique.

  7. Source of non-arrhenius average relaxation time in glass-forming liquids

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    1998-01-01

    then discuss a recently proposed model according to which the activation energy of the average relaxation time is determined by the work done in shoving aside the surrounding liquid to create space needed for a "flow event". In this model, which is based on the fact that intermolecular interactions...

  8. MR pulse sequences for selective relaxation time measurements: a phantom study

    DEFF Research Database (Denmark)

    Thomsen, C; Jensen, K E; Jensen, M

    1990-01-01

    a Siemens Magnetom wholebody magnetic resonance scanner operating at 1.5 Tesla was used. For comparison six imaging pulse sequences for relaxation time measurements were tested on the same phantom. The spectroscopic pulse sequences all had an accuracy better than 10% of the reference values....

  9. Diffusion relaxation times of nonequilibrium isolated small bodies and their solid phase ensembles to equilibrium states

    Science.gov (United States)

    Tovbin, Yu. K.

    2017-08-01

    The possibility of obtaining analytical estimates in a diffusion approximation of the times needed by nonequilibrium small bodies to relax to their equilibrium states based on knowledge of the mass transfer coefficient is considered. This coefficient is expressed as the product of the self-diffusion coefficient and the thermodynamic factor. A set of equations for the diffusion transport of mixture components is formulated, characteristic scales of the size of microheterogeneous phases are identified, and effective mass transfer coefficients are constructed for them. Allowing for the developed interface of coexisting and immiscible phases along with the porosity of solid phases is discussed. This approach can be applied to the diffusion equalization of concentrations of solid mixture components in many physicochemical systems: the mutual diffusion of components in multicomponent systems (alloys, semiconductors, solid mixtures of inert gases) and the mass transfer of an absorbed mobile component in the voids of a matrix consisting of slow components or a mixed composition of mobile and slow components (e.g., hydrogen in metals, oxygen in oxides, and the transfer of molecules through membranes of different natures, including polymeric).

  10. Estimating side-chain order in methyl-protonated, perdeuterated proteins via multiple-quantum relaxation violated coherence transfer NMR spectroscopy

    International Nuclear Information System (INIS)

    Sun Hechao; Godoy-Ruiz, Raquel; Tugarinov, Vitali

    2012-01-01

    Relaxation violated coherence transfer NMR spectroscopy (Tugarinov et al. in J Am Chem Soc 129:1743–1750, 2007) is an established experimental tool for quantitative estimation of the amplitudes of side-chain motions in methyl-protonated, highly deuterated proteins. Relaxation violated coherence transfer experiments monitor the build-up of methyl proton multiple-quantum coherences that can be created in magnetically equivalent spin-systems as long as their transverse magnetization components relax with substantially different rates. The rate of this build-up is a reporter of the methyl-bearing side-chain mobility. Although the build-up of multiple-quantum 1 H coherences is monitored in these experiments, the decay of the methyl signal during relaxation delays occurs when methyl proton magnetization is in a single-quantum state. We describe a relaxation violated coherence transfer approach where the relaxation of multiple-quantum 1 H– 13 C methyl coherences during the relaxation delay period is quantified. The NMR experiment and the associated fitting procedure that models the time-dependence of the signal build-up, are applicable to the characterization of side-chain order in [ 13 CH 3 ]-methyl-labeled, highly deuterated protein systems up to ∼100 kDa in molecular weight. The feasibility of extracting reliable measures of side-chain order is experimentally verified on methyl-protonated, perdeuterated samples of an 8.5-kDa ubiquitin at 10°C and an 82-kDa Malate Synthase G at 37°C.

  11. Simulation of Cavity Flow by the Lattice Boltzmann Method using Multiple-Relaxation-Time scheme

    International Nuclear Information System (INIS)

    Ryu, Seung Yeob; Kang, Ha Nok; Seo, Jae Kwang; Yun, Ju Hyeon; Zee, Sung Quun

    2006-01-01

    Recently, the lattice Boltzmann method(LBM) has gained much attention for its ability to simulate fluid flows, and for its potential advantages over conventional CFD method. The key advantages of LBM are, (1) suitability for parallel computations, (2) absence of the need to solve the time-consuming Poisson equation for pressure, and (3) ease with multiphase flows, complex geometries and interfacial dynamics may be treated. The LBM using relaxation technique was introduced by Higuerea and Jimenez to overcome some drawbacks of lattice gas automata(LGA) such as large statistical noise, limited range of physical parameters, non- Galilean invariance, and implementation difficulty in three-dimensional problem. The simplest LBM is the lattice Bhatnager-Gross-Krook(LBGK) equation, which based on a single-relaxation-time(SRT) approximation. Due to its extreme simplicity, the lattice BGK(LBGK) equation has become the most popular lattice Boltzmann model in spite of its well-known deficiencies, for example, in simulating high-Reynolds numbers flow. The Multiple-Relaxation-Time(MRT) LBM was originally developed by D'Humieres. Lallemand and Luo suggests that the use of a Multiple-Relaxation-Time(MRT) models are much more stable than LBGK, because the different relaxation times can be individually tuned to achieve 'optimal' stability. A lid-driven cavity flow is selected as the test problem because it has geometrically singular points in the flow, but geometrically simple. Results are compared with those using SRT, MRT model in the LBGK method and previous simulation data using Navier-Stokes equations for the same flow conditions. In summary, LBM using MRT model introduces much less spatial oscillations near geometrical singular points, which is important for the successful simulation of higher Reynolds number flows

  12. TOMROP: a sequence for determining the longitudinal relaxation time T1 in NMR

    International Nuclear Information System (INIS)

    Graumann, R.; Barfuss, H.; Fischer, H.; Hentschel, D.; Oppelt, A.

    1987-01-01

    We developed the pulse sequence TOMROP (T One by Multiple Read Out Pulses) for determining precisely the spatial distribution of the longitudinal relaxation time T 1 in nuclear magnetic resonance (NMR): a series of small-angle selection pulses is used to read out longitudinal magnetization from its initial state till thermal equilibrium. Hence, one measurement will produce several images with different T 1 weightings whose pixel brilliance depends exponentially from read-out time. T 1 can be determined from these independent of initial magnetization and selection pulse angle. The measuring time corresponds to the time needed in multi-echo imaging for the determination of the transversal relaxation time T 2 . We demonstrate this new method using head images of volunteers produced with a 0.23 T test facility. (orig./HP) [de

  13. Isothermal structural relaxation of Fe40Ni40B20 metallic glass in the relaxation times spectrum model

    NARCIS (Netherlands)

    Csach, K; Haruyama, O; Kasardova, A; Ocelik, Vaclav

    1997-01-01

    The structural relaxation of amorphous as-quenched Fe40Ni40B20 sample was investigated during isothermal annealing at temperatures close to 400 degrees C by: (i) the residual electrical resistance measured at liquid N-2 temperature; (ii) the in-situ electrical resistance; and (iii) the length

  14. Relaxation of the vibrational distribution function in N2 time varying discharges

    International Nuclear Information System (INIS)

    Capitelli, M.; Gorse, C.; Ricard, A.

    1981-01-01

    Relaxation of the electron and vibrational distribution functions have been calculated in function of residence time in nitrogen electrical discharges and post-discharges. In the discharge the vibrational temperature get bigger with the residence time for t -2 s. In the post-discharge the vibrational distribution is evolving in such a manner that the high levels are overpopulated as the low vibrational level population is dropping

  15. T2 Relaxation Time Mapping of the Cartilage Cap of Osteochondromas

    OpenAIRE

    Kim, Hee Kyung; Horn, Paul; Dardzinski, Bernard J.; Kim, Dong Hoon; Laor, Tal

    2016-01-01

    Objective Our aim was to evaluate the cartilage cap of osteochondromas using T2 maps and to compare these values to those of normal patellar cartilage, from age and gender matched controls. Materials and Methods This study was approved by the Institutional Review Board and request for informed consent was waived. Eleven children (ages 5-17 years) with osteochondromas underwent MR imaging, which included T2-weighted fat suppressed and T2 relaxation time mapping (echo time = 9-99/repetition tim...

  16. Temperature dependence of 1H NMR relaxation time, T2, for intact and neoplastic plant tissues

    Science.gov (United States)

    Lewa, Czesław J.; Lewa, Maria

    Temperature dependences of the spin-spin proton relaxation time, T2, have been shown for normal and tumorous tissues collected from kalus culture Nicotiana tabacum and from the plant Kalanchoe daigremontiana. For neoplastic plant tissues, time T2 was increased compared to that for intact plants, a finding similar to that for animal and human tissues. The temperature dependences obtained were compared to analogous relations observed with animal tissues.

  17. Investigation of dielectric relaxation in systems with hierarchical organization: From time to frequency domain and back again

    Energy Technology Data Exchange (ETDEWEB)

    Yokoi, Koki [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI (United States); Raicu, Valerică, E-mail: vraicu@uwm.edu [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI (United States); Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI (United States)

    2017-06-28

    Relaxation in fractal structures was investigated theoretically starting from a simple model of a Cantorian tree and kinetic equations linking the change in the number of particles (e.g., electrical charges) populating each branch of the tree and their transfer to other branches or to the ground state. We numerically solved the system of differential equations obtained and determined the so-called cumulative distribution function of particles, which, in dielectric or mechanical relaxation parlance, is the same as the relaxation function of the system. As a physical application, we studied the relationship between the dielectric relaxation in time-domain and the dielectric dispersion in the frequency-domain. Upon choosing appropriate rate constants, our model described accurately well-known non-exponential and non-Debye time- and frequency-domain functions, such as stretched exponentials, Havrilliak–Negami, and frequency power law. Our approach opens the door to applying kinetic models to describe a wide array of relaxation processes, which traditionally have posed great challenges to theoretical modeling based on first principles. - Highlights: • Relaxation was investigated for a system of particles flowing through a Cantorian tree. • A set of kinetic equations was formulated and used to compute the relaxation function of the system. • The dispersion function of the system was computed from the relaxation function. • An analytical method was used to recover the original relaxation function from the dispersion function. • This formalism was used to study dielectric relaxation and dispersion in fractal structures.

  18. The Influence of the Relaxation Time on the Dynamic Hysteresis in Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Palici Alexandra

    2018-01-01

    Full Text Available We investigate the dynamic behavior of perovskite solar cells by focusing on the relaxation time τ, which corresponds to the slow de-polarization process from an initial bias pre-poled state. The dynamic electrical model (DEM is employed for simulating the J-V characteristics for different bias scan rates and pre-poling conditions. Depending on the sign of the initial polarization normal or inverted hysteresis may be induced. For fixed pre-poling conditions, the relaxation time, in relation to the bias scan rate, governs the magnitude of the dynamic hysteresis. In the limit of large τ the hysteretic effects are vanishing for the typical range of bias scan rates considered, while for very small τ the hysteresis is significant only when it is comparable with the measurement time interval.

  19. Measurement of short transverse relaxation times by pseudo-echo nutation experiments

    Science.gov (United States)

    Ferrari, Maude; Moyne, Christian; Canet, Daniel

    2018-07-01

    Very short NMR transverse relaxation times may be difficult to measure by conventional methods. Nutation experiments constitute an alternative approach. Nutation is, in the rotating frame, the equivalent of precession in the laboratory frame. It consists in monitoring the rotation of magnetization around the radio-frequency (rf) field when on-resonance conditions are fulfilled. Depending on the amplitude of the rf field, nutation may be sensitive to the two relaxation rates R1 and R2. A full theoretical development has been worked out for demonstrating how these two relaxation rates could be deduced from a simple nutation experiment, noticing however that inhomogeneity of the rf field may lead to erroneous results. This has led us to devise new experiments which are the equivalent of echo techniques in the rotating frame (pseudo spin-echo nutation experiment and pseudo gradient-echo experiment). Full equations of motion have been derived. Although complicated, they indicate that the sum of the two relaxation rates can be obtained very accurately and not altered by rf field inhomogeneity. This implies however an appropriate data processing accounting for the oscillations which are superposed to the echo decays and, anyway, theoretically predicted. A series of experiments has been carried out for different values of the rf field amplitude on samples of water doped with a paramagnetic compound at different concentrations. Pragmatically, as R1 can be easily measured by conventional methods, its value is entered in the data processing algorithm which then returns exclusively the value of the transverse relaxation time. Very consistent results are obtained that way.

  20. Menstrual variation of breast volume and T{sub 2} relaxation times in cyclical mastalgia

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Zainab [Department of Medical Imaging, University of Liverpool, Johnstone Building, Brownlow Hill, P.O. Box 147, Liverpool, Merseyside L69 3GB (United Kingdom); Magnetic Resonance and Image Analysis Research Centre, University of Liverpool, Johnstone Building, Brownlow Hill, P.O. Box 147, Liverpool, Merseyside L69 3GB (United Kingdom)], E-mail: zay@liverpool.ac.uk; Brooks, Jonathan [Magnetic Resonance and Image Analysis Research Centre, University of Liverpool, Johnstone Building, Brownlow Hill, P.O. Box 147, Liverpool, Merseyside L69 3GB (United Kingdom); Department of Human Anatomy and Genetics, University of Oxford, Oxford (United Kingdom); Percy, Dave [Centre for Operational Research and Applied Statistics, University of Salford, Salford, Greater Manchester M5 4WT (United Kingdom)

    2008-02-15

    Purpose: Hormonal activity causes breast volume to change during the menstrual cycle. One possible cause of this volume change is thought to be due to water retention or oedema within the tissues. We used magnetic resonance imaging (MRI) to study the variation in breast volume and {sup 1}H Magnetic Resonance Spectroscopy (MRS) to measure T{sub 2} relaxation times which are known to increase with increasing tissue water content. We hypothesised that an increase in breast volume will elevate T{sub 2} relaxation due to the presence of an increased water content within the breast. T{sub 2} Relaxation time and volume were studied in fifteen control subjects and in a cohort of eight patients with cyclical mastalgia in order to determine whether changes in breast volume and T{sub 2} relaxation times differed in controls and patients during menses, ovulation and premenses. Method: Breast volume was determined by the Cavalieri method in combination with point counting techniques on MR images and T{sub 2} relaxation times of the water and fat in a voxel of breast tissue were obtained using {sup 1}H Magnetic Resonance Spectroscopy (MRS). Results: Statistical analysis (ANOVA) demonstrated highly significant differences in breast volume between the three stages of the cycle (p < 0.0005) with breast volume being greatest premenstrually. Patients did not exhibit an increase in volume premenstrually, significantly above controls. T{sub 2} of fat or water did not depend on stage of cycle. T-tests demonstrated no significant differences in T{sub 2} of water or fat between patient and control groups. The average T{sub 2} relaxation time of water was lowest in the patient and control groups during ovulation and highest in the patient group during premenses. Conclusion: We have performed the first combined volumetric and spectroscopic study of women with cyclical mastalgia and demonstrated that the global changes in volumes and T{sub 2} were not significantly different from normal

  1. Using Dielectric Relaxation Spectroscopy to Characterize the Glass Transition Time of Polydextrose.

    Science.gov (United States)

    Buehler, Martin G; Kindle, Michael L; Carter, Brady P

    2015-06-01

    Dielectric relaxation spectroscopy was used to characterize the glass transition time, tg , of polydextrose, where the glass transition temperature, Tg , and water activity, aw (relative humidity), were held constant during polydextrose relaxation. The tg was determined from a shift in the peak frequency of the imaginary capacitance spectrum with time. It was found that when the peak frequency reaches 30 mHz, polydextrose undergoes glass transition. Glass transition time, tg , is the time for polydextrose to undergo glass transition at a specific Tg and aw . Results lead to a modified state diagram, where Tg is depressed with increasing aw . This curve forms a boundary: (a) below the boundary, polydextrose does not undergo glass transition and (b) above the boundary, polydextrose rapidly undergoes glass transition. As the boundary curve is specified by a tg value, it can assist in the selection of storage conditions. An important point on the boundary curve is at aw = 0, where Tg0 = 115 °C. The methodology can also be used to calculate the stress-relaxation viscosity of polydextrose as a function of Tg and aw , which is important when characterizing the flow properties of polydextrose initially in powder form. © 2015 Institute of Food Technologists®

  2. Deducting the temperature dependence of the structural relaxation time in equilibrium far below the nominal Tg by aging the decoupled conductivity relaxation to equilibrium.

    Science.gov (United States)

    Wojnarowska, Z; Ngai, K L; Paluch, M

    2014-05-07

    Using broadband dielectric spectroscopy we investigate the changes in the conductivity relaxation times τσ observed during the physical aging of the protic ionic conductor carvedilol dihydrogen phosphate (CP). Due to the large decoupling of ion diffusion from host molecule reorientation, the ion conductivity relaxation time τσ(Tage,tage) can be directly measured at temperatures Tage below Tg for exceedingly long aging times tage till τσ(Tage,tage) has reached the equilibrium value τσ(eq)(Tage). The dependence of τσ(Tage,tage) on tage is well described by the stretched exponential function, τσ(Tage, tage) = Aexp[-((tage)/(τage(Tage)))(β)] + τσ(eq)(Tage), where β is a constant and τage(Tage) can be taken as the structural α-relaxation time of the equilibrium liquid at T = Tage. The value of τσ(eq)(Tage) obtained after 63 days long annealing of CP, deviates from the Vogel-Fulcher-Tammann-Hesse (VFTHσ) dependence of τσ(T) determined from data taken above Tg and extrapolated down to Tage. Concurrently, τage(Tage) also deviates from the Vogel-Fulcher-Tammann-Hesse (VFTHα) dependence. The results help to answer the longstanding question of whether the VFTH dependence of τσ(T) as well as the structural α-relaxation time τα(T) holds or not in the equilibrium liquid state far below Tg.

  3. State of health assessment for lithium batteries based on voltage–time relaxation measure

    International Nuclear Information System (INIS)

    Baghdadi, Issam; Briat, Olivier; Gyan, Philippe; Vinassa, Jean Michel

    2016-01-01

    Highlights: • Calendar aging under different storage conditions for three different battery technologies studied. • Two scenarios of aging under power cycling at two different temperatures investigated for one battery technology. • Relaxation profile of battery voltage just after full charge is highly correlated to aging. • Linear dependence between just after charge open circuit voltage and remaining capacity demonstrated. • No computational method and direct prediction of battery state of health or remaining capacity. - Abstract: The performance of lithium batteries degrades over time. The degradation rate strongly depends on stress conditions during use and even at rest. Thus, accurate and rapid diagnosis of battery state of health (SOH) is necessary for electric vehicle manufacturers to manage their vehicle fleets and warranties. This paper demonstrates a simple method for assessing SOH related to battery energy capability (SOH E ). The presented method is based on the monitoring of U relax over aging. U relax is the open-circuit voltage of the battery measured after full charging and 30 min of rest. A linear dependence between U relax and remaining capacity is noted. This correlation is demonstrated for three different commercial battery technologies (different chemistries) aged under different calendar and power cycling aging conditions. It was determined that the difference between two U relax voltages measured at two different aging states is proportional to SOH E decay. The mean error of the linear model is less than 2% for certain cases. This method could also be a highly useful and rapid tool for a complete battery pack diagnosis.

  4. Nuclear magnetic resonance relaxation times for human lung cancer and lung tissues

    International Nuclear Information System (INIS)

    Matsuura, Yoshifumi; Shioya, Sumie; Kurita, Daisaku; Ohta, Takashi; Haida, Munetaka; Ohta, Yasuyo; Suda, Syuichi; Fukuzaki, Minoru.

    1994-01-01

    We investigated the nuclear magnetic resonance (NMR) relaxation times, T 1 and T 2 , for lung cancer tissue, and other samples of lung tissue obtained from surgical specimens. The samples were nine squamous cell carcinomas, five necrotic squamous cell carcinomas, 15 adenocarcinomas, two benign mesotheliomas, and 13 fibrotic lungs. The relaxation times were measured with a 90 MHz NMR spectrometer and the results were correlated with histological changes. The values of T 1 and T 2 for squamous cell carcinoma and mesothelioma were significantly longer than those of adenocarcinoma and fibrotic lung tissue. There were no significant differences in values of T 1 and T 2 between adenocarcinoma and lung tissue. The values of T 1 and T 2 for benign mesothelioma were similar to those of squamous cell carcinoma, which suggested that increases in T 1 and T 2 are not specific to malignant tissues. (author)

  5. Accuracy and Numerical Stabilty Analysis of Lattice Boltzmann Method with Multiple Relaxation Time for Incompressible Flows

    Science.gov (United States)

    Pradipto; Purqon, Acep

    2017-07-01

    Lattice Boltzmann Method (LBM) is the novel method for simulating fluid dynamics. Nowadays, the application of LBM ranges from the incompressible flow, flow in the porous medium, until microflows. The common collision model of LBM is the BGK with a constant single relaxation time τ. However, BGK suffers from numerical instabilities. These instabilities could be eliminated by implementing LBM with multiple relaxation time. Both of those scheme have implemented for incompressible 2 dimensions lid-driven cavity. The stability analysis has done by finding the maximum Reynolds number and velocity for converged simulations. The accuracy analysis is done by comparing the velocity profile with the benchmark results from Ghia, et al and calculating the net velocity flux. The tests concluded that LBM with MRT are more stable than BGK, and have a similar accuracy. The maximum Reynolds number that converges for BGK is 3200 and 7500 for MRT respectively.

  6. Dielectric Relaxation Studies of 2-Butoxyethanol with Aniline and Substituted Anilines Using Time Domain Reflectometry

    Directory of Open Access Journals (Sweden)

    P. Jeevanandham

    2014-01-01

    Full Text Available The complex dielectric spectra of 2-butoxyethanol with aniline and substituted anilines like aniline, o-chloroaniline, m-chloroaniline, o-anisidine and m-anisidine binary mixtures in the composition of different volumes of percent (0%, 25%, 50%, 75%, and 100% have been measured as a function of frequency between 10 MHz and 30 GHz at 298.15 K. The dielectric parameters like static dielectric constant ε0 and relaxation time τ have been obtained by using least square fit method. By using these parameters ε0,τ, effective Kirkwood correlation factor geff, corrective Kirkwood correlation factor gf, Bruggeman factor fB, excess dielectric constant εE, and excess inverse relaxation time 1/τE values are calculated and discussed to yield information on the dipolar alignment and molecular rotation of the binary liquid mixtures. From all the derived dielectric parameters, molecular interactions are interpreted through hydrogen bonding.

  7. Relaxation time of normal breast tissues. Changes with age and variations during the menstrual cycle

    International Nuclear Information System (INIS)

    Dean, K.I.; Majurin, M.L.; Komu, M.

    1994-01-01

    The influence of age on the relaxation times of normal breast parenchyma and its surrounding fatty tissue were evaluated, and the variations during a normal menstrual cycle were analyzed using an ultra low field 0.02 T imager. Thirty-nine healthy volunteers aged 21 to 59 years were examined to determine T1 and T2 relaxation times, and 8 of these volunteers were studied once weekly during one menstrual cycle. The only significant trend was an increase in the T2 of breast parenchyma with increasing age. During the menstrual cycle there was a slight but insignificant (p=0.10) increase in T1 of the breast parenchyma values during the latter half of the menstrual cycle, and a corresponding increase in T2 values between the 2nd and 3rd weeks of the menstrual cycle, which was significant. (orig.)

  8. Relaxation time of normal breast tissues. Changes with age and variations during the menstrual cycle

    Energy Technology Data Exchange (ETDEWEB)

    Dean, K.I. (University Central Hospital, Turku (Finland). Dept. of Diagnostic Radiology); Majurin, M.L. (University Central Hospital, Turku (Finland). Dept. of Diagnostic Radiology); Komu, M. (University Central Hospital, Turku (Finland). Dept. of Diagnostic Radiology)

    1994-05-01

    The influence of age on the relaxation times of normal breast parenchyma and its surrounding fatty tissue were evaluated, and the variations during a normal menstrual cycle were analyzed using an ultra low field 0.02 T imager. Thirty-nine healthy volunteers aged 21 to 59 years were examined to determine T1 and T2 relaxation times, and 8 of these volunteers were studied once weekly during one menstrual cycle. The only significant trend was an increase in the T2 of breast parenchyma with increasing age. During the menstrual cycle there was a slight but insignificant (p=0.10) increase in T1 of the breast parenchyma values during the latter half of the menstrual cycle, and a corresponding increase in T2 values between the 2nd and 3rd weeks of the menstrual cycle, which was significant. (orig.).

  9. Characterization of relaxation processes in interacting vortex matter through a time-dependent correlation length

    International Nuclear Information System (INIS)

    Pleimling, Michel; Täuber, Uwe C

    2015-01-01

    Vortex lines in type-II superconductors display complicated relaxation processes due to the intricate competition between their mutual repulsive interactions and pinning to attractive point or extended defects. We perform extensive Monte Carlo simulations for an interacting elastic line model with either point-like or columnar pinning centers. From measurements of the space- and time-dependent height-height correlation function for lateral flux line fluctuations, we extract a characteristic correlation length that we use to investigate different non-equilibrium relaxation regimes. The specific time dependence of this correlation length for different disorder configurations displays characteristic features that provide a novel diagnostic tool to distinguish between point-like pinning centers and extended columnar defects. (paper)

  10. Evaluation of relaxation time measurements by magnetic resonance imaging. A phantom study

    DEFF Research Database (Denmark)

    Kjaer, L; Thomsen, C; Henriksen, O

    1987-01-01

    Several circumstances may explain the great variation in reported proton T1 and T2 relaxation times usually seen. This study was designed to evaluate the accuracy of relaxation time measurements by magnetic resonance imaging (MRI) operating at 1.5 tesla. Using a phantom of nine boxes with different...... concentrations of CuSO4 and correlating the calculated T1 and T2 values with reference values obtained by two spectrometers (corrected to MRI-proton frequency = 64 MHz) we found a maximum deviation of about 10 per cent. Measurements performed on a large water phantom in order to evaluate the homogeneity...... in the imaging plane showed a variation of less than 10 per cent within 10 cm from the centre of the magnet in all three imaging planes. Changing the gradient field strength apparently had no influence on the T2 values recorded. Consequently diffusion processes seem without significance. It is concluded...

  11. Relaxation Behavior by Time-Salt and Time-Temperature Superpositions of Polyelectrolyte Complexes from Coacervate to Precipitate

    Directory of Open Access Journals (Sweden)

    Samim Ali

    2018-01-01

    Full Text Available Complexation between anionic and cationic polyelectrolytes results in solid-like precipitates or liquid-like coacervate depending on the added salt in the aqueous medium. However, the boundary between these polymer-rich phases is quite broad and the associated changes in the polymer relaxation in the complexes across the transition regime are poorly understood. In this work, the relaxation dynamics of complexes across this transition is probed over a wide timescale by measuring viscoelastic spectra and zero-shear viscosities at varying temperatures and salt concentrations for two different salt types. We find that the complexes exhibit time-temperature superposition (TTS at all salt concentrations, while the range of overlapped-frequencies for time-temperature-salt superposition (TTSS strongly depends on the salt concentration (Cs and gradually shifts to higher frequencies as Cs is decreased. The sticky-Rouse model describes the relaxation behavior at all Cs. However, collective relaxation of polyelectrolyte complexes gradually approaches a rubbery regime and eventually exhibits a gel-like response as Cs is decreased and limits the validity of TTSS.

  12. The modified relaxation time function: A novel analysis technique for relaxation processes. Application to high-temperature molybdenum internal friction peaks

    International Nuclear Information System (INIS)

    Matteo, C.L.; Lambri, O.A.; Zelada-Lambri, G.I.; Sorichetti, P.A.; Garcia, J.A.

    2008-01-01

    The modified relaxation time (MRT) function, which is based on a general linear viscoelastic formalism, has several important mathematical properties that greatly simplify the analysis of relaxation processes. In this work, the MRT is applied to the study of the relaxation damping peaks in deformed molybdenum at high temperatures. The dependence of experimental data from these relaxation processes with temperature are adequately described by a Havriliak-Negami (HN) function, and the MRT makes it possible to find a relation between the parameters of the HN function and the activation energy of the process. The analysis reveals that for the relaxation peak appearing at temperatures below 900 K, the physical mechanism is related to a vacancy-diffusion-controlled movement of dislocations. In contrast, when the peak appears at temperatures higher than 900 K, the damping is controlled by a mechanism of diffusion in the low-temperature tail of the peak, and in the high-temperature tail of the peak the creation plus diffusion of vacancies at the dislocation line occurs

  13. The water proton spin-lattice relaxation times in virus-infected cells

    International Nuclear Information System (INIS)

    Valensin, G.; Gaggelli, E.; Tiezzi, E.; Valensin, P.E.; Bianchi Bandinelli, M.L.

    1979-01-01

    The water proton spin-lattice relaxation times in HEp-2 cell cultures were determined immediately after 1 h of polio-virus adsorption. The shortening of the water T 1 was closely related to the multiplicity of infection, allowing direct inspections of the virus-cell interaction since the first steps of the infectious cycle. Virus-induced structural and conformational changes of cell constituents were suggested to be detectable by NMR investigation of cell water. (Auth.)

  14. Determining the structural relaxation times deep in the glassy state of the pharmaceutical Telmisartan

    Energy Technology Data Exchange (ETDEWEB)

    Adrjanowicz, K; Paluch, M [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Ngai, K L [Naval Research Laboratory, Washington, DC 20375-5320 (United States)

    2010-03-31

    By using the dielectric relaxation method proposed recently by Casalini and Roland (2009 Phys. Rev. Lett. 102 035701), we were able to determine the structural alpha-relaxation times deep in the glassy state of the pharmaceutical, Telmisartan. Normally, deep in the glassy state tau{sub a}lpha is so long that it cannot be measured but tau{sub b}eta, which is usually much shorter, can be directly determined. The method basically takes advantage of the connection between the alpha-relaxation and the secondary beta-relaxation of the Johari-Goldstein kind, including a relation between their relaxation times tau{sub a}lpha and tau{sub b}eta, respectively. Thus, tau{sub a}lpha of Telmisartan were determined by monitoring the change of the dielectric beta-loss, epsilon'', with physical aging time at temperatures well below the vitrification temperature. The values of tau{sub a}lpha were compared with those expected by the coupling model (CM). Unequivocal comparison cannot be made in the case of Telmisartan because its beta-loss peak is extremely broad, and the CM predicts only an order of magnitude agreement between the primitive relaxation frequency and the beta-peak frequency. We also made an attempt to analyze all isothermal and aging susceptibility data after transformation into the electric modulus representation. The tau{sub a}lpha found in the glass state by using the method of Casalini and Roland in the modulus representation are similar to those obtained in the susceptibility representation. However, it is remarkable that the stretching parameter beta{sub KWWM} = 0.51 in the electric modulus representation gives more precise fits to the aging data than in the susceptibility representation with beta{sub KWW} = 0.61. Our results suggest that the electric modulus representation may be useful as an alternative to analyze aging data, especially in the case of highly polar glassformers having a large ratio of low frequency and high frequency dielectric

  15. Two-relaxation-time lattice Boltzmann method and its application to advective-diffusive-reactive transport

    Science.gov (United States)

    Yan, Zhifeng; Yang, Xiaofan; Li, Siliang; Hilpert, Markus

    2017-11-01

    The lattice Boltzmann method (LBM) based on single-relaxation-time (SRT) or multiple-relaxation-time (MRT) collision operators is widely used in simulating flow and transport phenomena. The LBM based on two-relaxation-time (TRT) collision operators possesses strengths from the SRT and MRT LBMs, such as its simple implementation and good numerical stability, although tedious mathematical derivations and presentations of the TRT LBM hinder its application to a broad range of flow and transport phenomena. This paper describes the TRT LBM clearly and provides a pseudocode for easy implementation. Various transport phenomena were simulated using the TRT LBM to illustrate its applications in subsurface environments. These phenomena include advection-diffusion in uniform flow, Taylor dispersion in a pipe, solute transport in a packed column, reactive transport in uniform flow, and bacterial chemotaxis in porous media. The TRT LBM demonstrated good numerical performance in terms of accuracy and stability in predicting these transport phenomena. Therefore, the TRT LBM is a powerful tool to simulate various geophysical and biogeochemical processes in subsurface environments.

  16. Bulk viscosity of strongly interacting matter in the relaxation time approximation

    Science.gov (United States)

    Czajka, Alina; Hauksson, Sigtryggur; Shen, Chun; Jeon, Sangyong; Gale, Charles

    2018-04-01

    We show how thermal mean field effects can be incorporated consistently in the hydrodynamical modeling of heavy-ion collisions. The nonequilibrium correction to the distribution function resulting from a temperature-dependent mass is obtained in a procedure which automatically satisfies the Landau matching condition and is thermodynamically consistent. The physics of the bulk viscosity is studied here for Boltzmann and Bose-Einstein gases within the Chapman-Enskog and 14-moment approaches in the relaxation time approximation. Constant and temperature-dependent masses are considered in turn. It is shown that, in the small mass limit, both methods lead to the same value of the ratio of the bulk viscosity to its relaxation time. The inclusion of a temperature-dependent mass leads to the emergence of the βλ function in that ratio, and it is of the expected parametric form for the Boltzmann gas, while for the Bose-Einstein case it is affected by the infrared cutoff. This suggests that the relaxation time approximation may be too crude to obtain a reliable form of ζ /τR for gases obeying Bose-Einstein statistics.

  17. Pseudopotential multi-relaxation-time lattice Boltzmann model for cavitation bubble collapse with high density ratio

    International Nuclear Information System (INIS)

    Shan Ming-Lei; Zhu Chang-Ping; Yao Cheng; Yin Cheng; Jiang Xiao-Yan

    2016-01-01

    The dynamics of the cavitation bubble collapse is a fundamental issue for the bubble collapse application and prevention. In the present work, the modified forcing scheme for the pseudopotential multi-relaxation-time lattice Boltzmann model developed by Li Q et al. [Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301] is adopted to develop a cavitation bubble collapse model. In the respects of coexistence curves and Laplace law verification, the improved pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. It is found that the thermodynamic consistency and surface tension are independent of kinematic viscosity. By homogeneous and heterogeneous cavitation simulation, the ability of the present model to describe the cavitation bubble development as well as the cavitation inception is verified. The bubble collapse between two parallel walls is simulated. The dynamic process of a collapsing bubble is consistent with the results from experiments and simulations by other numerical methods. It is demonstrated that the present pseudopotential multi-relaxation-time lattice Boltzmann model is applicable and efficient, and the lattice Boltzmann method is an alternative tool for collapsing bubble modeling. (paper)

  18. Asymptotic description of two metastable processes of solidification for the case of large relaxation time

    International Nuclear Information System (INIS)

    Omel'yanov, G.A.

    1995-07-01

    The non-isothermal Cahn-Hilliard equations in the n-dimensional case (n = 2,3) are considered. The interaction length is proportional to a small parameter, and the relaxation time is proportional to a constant. The asymptotic solutions describing two metastable processes are constructed and justified. The soliton type solution describes the first stage of separation in alloy, when a set of ''superheated liquid'' appears inside the ''solid'' part. The Van der Waals type solution describes the free interface dynamics for large time. The smoothness of temperature is established for large time and the Mullins-Sekerka problem describing the free interface is derived. (author). 46 refs

  19. Relaxation dynamics and thermophysical properties of vegetable oils using time-domain reflectometry.

    Science.gov (United States)

    Sonkamble, Anil A; Sonsale, Rahul P; Kanshette, Mahesh S; Kabara, Komal B; Wananje, Kunal H; Kumbharkhane, Ashok C; Sarode, Arvind V

    2017-04-01

    Dielectric relaxation studies of vegetable oils are important for insights into their hydrogen bonding and intermolecular dynamics. The dielectric relaxation and thermo physical properties of triglycerides present in some vegetable oils have been measured over the frequency range of 10 MHz to 7 GHz in the temperature region 25 to 10 °C using a time-domain reflectometry approach. The frequency and temperature dependence of dielectric constants and dielectric loss factors were determined for coconut, peanut, soya bean, sunflower, palm, and olive oils. The dielectric permittivity spectra for each of the studied vegetable oils are explained using the Debye model with their complex dielectric permittivity analyzed using the Havriliak-Negami equation. The dielectric parameters static permittivity (ε 0 ), high-frequency limiting static permittivity (ε ∞ ), average relaxation time (τ 0 ), and thermodynamic parameters such as free energy (∆F τ ), enthalpy (∆H τ ), and entropy of activation (∆S τ ) were also measured. Calculation and analysis of these thermodynamic parameters agrees with the determined dielectric parameters, giving insights into the temperature dependence of the molecular dynamics of these systems.

  20. Estimates of expansion time scales

    International Nuclear Information System (INIS)

    Jones, E.M.

    1979-01-01

    Monte Carlo simulations of the expansion of a spacefaring civilization show that descendants of that civilization should be found near virtually every useful star in the Galaxy in a time much less than the current age of the Galaxy. Only extreme assumptions about local population growth rates, emigration rates, or ship ranges can slow or halt an expansion. The apparent absence of extraterrestrials from the solar system suggests that no such civilization has arisen in the Galaxy. 1 figure

  1. Magnetic resonance studies on the brain edema by the administration of the osmotic agents; Special references to the relaxation times

    Energy Technology Data Exchange (ETDEWEB)

    Niino, Masaki; Asakura, Tetsuhiko; Nakamura, Katsumi; Yatsushiro, Kazutaka; Kadota, Koki (Kagoshima Univ. (Japan). Faculty of Medicine); Sasahira, Masahiro; Fujimoto, Toshiro; Shimooki, Susumu

    1990-03-01

    Changes of proton relaxation times (T{sub 1} and T{sub 2}) and MR imaging of the brain edema by the administration of the osmotic agents (mannitol or glycerol) were studied. Subjects were 11 patients who were composed of 4 gliomas, 2 metastatic brain tumors, 2 meningiomas, 2 hypertensive intracerebral hematomas, and a C-P angle tumor. 20% mannitol or 10% glycerol 550 ml was rapidly injected intravenously. Scanning was done before injection, just after injection, and post injection until 2 hours with passing times. We regarded the peritumoral or perihemorrahgical low density area on the CT scan as the edema, and then, relaxation times of the edema was obtained from the ROI of the calculated images corresponding to the surrounding low density area on the CT scan. The results were as follows. (1) In general, relaxation times of the edema showed a tendency to decrease after injection of the osmotic agents. Normal white matter, in the same way, showed the decreasing tendency, but the degree of the decreasing was more clearly in the edematous areas than in the white matter. (2) The changes of relaxation times did not show a uniform pattern. In most cases, relaxation times decreased just after injection. But in a few cases, relaxation times increased just after injection, transiently. In some cases, decreased relaxation times continued more than 2 hours, in the other cases, relaxation times increased at 2 hours. (3) The changes of relaxation times thought to be varied by some factors, that is --kinds of the lesions causing edema, degree of malignancy of the lesions, or phase of edema (acute or chronic) etc. (4) Osmotic agents were supposed to dehydrate the edematous lesions. In the current MR systems, there are considerably large standard deviations and inequality in the magnetic field, therefore, further investigations should be done moreover. (author).

  2. Rapid simultaneous high-resolution mapping of myelin water fraction and relaxation times in human brain using BMC-mcDESPOT.

    Science.gov (United States)

    Bouhrara, Mustapha; Spencer, Richard G

    2017-02-15

    A number of central nervous system (CNS) diseases exhibit changes in myelin content and magnetic resonance longitudinal, T 1 , and transverse, T 2 , relaxation times, which therefore represent important biomarkers of CNS pathology. Among the methods applied for measurement of myelin water fraction (MWF) and relaxation times, the multicomponent driven equilibrium single pulse observation of T 1 and T 2 (mcDESPOT) approach is of particular interest. mcDESPOT permits whole brain mapping of multicomponent T 1 and T 2 , with data acquisition accomplished within a clinically realistic acquisition time. Unfortunately, previous studies have indicated the limited performance of mcDESPOT in the setting of the modest signal-to-noise range of high-resolution mapping, required for the depiction of small structures and to reduce partial volume effects. Recently, we showed that a new Bayesian Monte Carlo (BMC) analysis substantially improved determination of MWF from mcDESPOT imaging data. However, our previous study was limited in that it did not discuss determination of relaxation times. Here, we extend the BMC analysis to the simultaneous determination of whole-brain MWF and relaxation times using the two-component mcDESPOT signal model. Simulation analyses and in-vivo human brain studies indicate the overall greater performance of this approach compared to the stochastic region contraction (SRC) algorithm, conventionally used to derive parameter estimates from mcDESPOT data. SRC estimates of the transverse relaxation time of the long T 2 fraction, T 2,l , and the longitudinal relaxation time of the short T 1 fraction, T 1,s , clustered towards the lower and upper parameter search space limits, respectively, indicating failure of the fitting procedure. We demonstrate that this effect is absent in the BMC analysis. Our results also showed improved parameter estimation for BMC as compared to SRC for high-resolution mapping. Overall we find that the combination of BMC analysis

  3. Elastic models for the non-Arrhenius relaxation time of glass-forming liquids

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    We first review the phenomenology of viscous liquids and the standard models used for explaining the non-Arrhenius average relaxation time. Then the focus is turned to the so-called elastic models, arguing that these models are all equivalent in the Einstein approximation (where the short-time...... elastic properties are all determined by just one effective, temperature-dependent force constant). We finally discuss the connection between the elastic models and two well-established research fields of condensed-matter physics: point defects in crystals and solid-state diffusion....

  4. Elastic models for the Non-Arrhenius Relaxation Time of Glass-Forming Liquids

    DEFF Research Database (Denmark)

    Dyre, J. C.

    2006-01-01

    We first review the phenomenology of viscous liquids and the standard models used for explaining the non-Arrhenius average relaxation time. Then the focus is turned to the so-called elastic models, arguing that these models are all equivalent in the Einstein approximation (where the short-time...... elastic properties are all determined by just one effective, temperature-dependent force constant). We finally discuss the connection between the elastic models and two well-established research fields of condensed-matter physics: point defects in crystals and solid-state diffusion....

  5. T(2) relaxation time of hyaline cartilage in presence of different gadolinium-based contrast agents.

    Science.gov (United States)

    Wiener, Edzard; Settles, Marcus; Diederichs, Gerd

    2010-01-01

    The transverse relaxation time, T(2), of native cartilage is used to quantify cartilage degradation. T(2) is frequently measured after contrast administration, assuming that the impact of gadolinium-based contrast agents on cartilage T(2) is negligible. To verify this assumption the depth-dependent variation of T(2) in the presence of gadopentetate dimeglumine, gadobenate dimeglumine and gadoteridol was investigated. Furthermore, the r(2)/r(1) relaxivity ratios were quantified in different cartilage layers to demonstrate differences between T(2) and T(1) relaxation effects. Transverse high-spatial-resolution T(1)- and T(2)-maps were simultaneously acquired on a 1.5 T MR scanner before and after contrast administration in nine bovine patellae using a turbo-mixed sequence. The r(2)/r(1) ratios were calculated for each contrast agent in cartilage. Profiles of T(1), T(2) and r(2)/r(1) across cartilage thickness were generated in the absence and presence of contrast agent. The mean values in different cartilage layers were compared for global variance using the Kruskal-Wallis test and pairwise using the Mann-Whitney U-test. T(2) of unenhanced cartilage was 98 +/- 5 ms at 1 mm and 65 +/- 4 ms at 3 mm depth. Eleven hours after contrast administration significant differences (p cartilage thickness were close to 1.0 (range 0.9-1.3). At 1.5 T, T(2) decreased significantly in the presence of contrast agents, more pronounced in superficial than in deep cartilage. The change in T(2) relaxation rate was similar to the change in T(1). Cartilage T(2) measurements after contrast administration will lead to systematic errors in the quantification of cartilage degradation. 2010 John Wiley & Sons, Ltd.

  6. Consequences of Secondary Calibrations on Divergence Time Estimates.

    Directory of Open Access Journals (Sweden)

    John J Schenk

    Full Text Available Secondary calibrations (calibrations based on the results of previous molecular dating studies are commonly applied in divergence time analyses in groups that lack fossil data; however, the consequences of applying secondary calibrations in a relaxed-clock approach are not fully understood. I tested whether applying the posterior estimate from a primary study as a prior distribution in a secondary study results in consistent age and uncertainty estimates. I compared age estimates from simulations with 100 randomly replicated secondary trees. On average, the 95% credible intervals of node ages for secondary estimates were significantly younger and narrower than primary estimates. The primary and secondary age estimates were significantly different in 97% of the replicates after Bonferroni corrections. Greater error in magnitude was associated with deeper than shallower nodes, but the opposite was found when standardized by median node age, and a significant positive relationship was determined between the number of tips/age of secondary trees and the total amount of error. When two secondary calibrated nodes were analyzed, estimates remained significantly different, and although the minimum and median estimates were associated with less error, maximum age estimates and credible interval widths had greater error. The shape of the prior also influenced error, in which applying a normal, rather than uniform, prior distribution resulted in greater error. Secondary calibrations, in summary, lead to a false impression of precision and the distribution of age estimates shift away from those that would be inferred by the primary analysis. These results suggest that secondary calibrations should not be applied as the only source of calibration in divergence time analyses that test time-dependent hypotheses until the additional error associated with secondary calibrations is more properly modeled to take into account increased uncertainty in age estimates.

  7. Follow-up of regional myocardial T2 relaxation times in patients with myocardial infarction evaluated with magnetic resonance imaging

    International Nuclear Information System (INIS)

    Krauss, X.H.; Wall, E. van der; Laarse, A. van der; Dijkman, P.R.M. van; Bruschke, A.V.G.; Doornbos, J.; Roos, A. de; Voorthuisen, A.E. van

    1990-01-01

    Multi-echo spin-echo cardiac magnetic resonance imaging studies (echo times 30, 60, 90 and 120 ms) were performed in 19 patients with a 7-14-day (mean 10) old myocardial infarction and were repeated in 13 patients 4-7 months (mean 6) later. Also, 10 normal subjects were studied with magnetic resonance imaging. T2 relaxation times of certain left ventricular segments were calculated from the signal intensities at echo times of 30 and 90 ms. Compared to normal individuals, the mean T2 values on the early magnetic resonance images of the patients with inferior infarction showed significantly prolonged T2 times in the inferiorly localized segments, while on the follow-up magnetic resonance images the T2 times had almost returned to the normal range. Also the patients with anterior infarction showed significantly prolonged T2 times in the anteriorly localized segments on the early nuclear magnetic resonance images, but the T2 times remained prolonged at the follow-up magnetic resonance images. For every patient a myocardial damage score was determined, which was defined as the sum of the segmental T2 values in the patients minus the upper limit of normal T2 values obtained from the normal volunteers (= mean normal+2SD). The damage score on both the early and late magnetic resonance imaging study correlated well with the infarction size determined by myocardial enzyme release. Only the patients with an inferior infarction showed a significant decrease in damage score at follow-up magnetic resonance imaging. It is concluded that the regional T2 relaxation times are increased in infarcted myocardial regions and may remain prolonged for at least up to 7 months after the acute event, particularly in patients with an anterior infarction. These findings demonstrate the clinical potential of T2-weighted magnetic resonance imaging studies for detecting myocardial infarction, and estimating infarct size for an extended period after acute myocardial infarction. (author). 29 refs

  8. Parameter Estimation in Continuous Time Domain

    Directory of Open Access Journals (Sweden)

    Gabriela M. ATANASIU

    2016-12-01

    Full Text Available This paper will aim to presents the applications of a continuous-time parameter estimation method for estimating structural parameters of a real bridge structure. For the purpose of illustrating this method two case studies of a bridge pile located in a highly seismic risk area are considered, for which the structural parameters for the mass, damping and stiffness are estimated. The estimation process is followed by the validation of the analytical results and comparison with them to the measurement data. Further benefits and applications for the continuous-time parameter estimation method in civil engineering are presented in the final part of this paper.

  9. Global Population Density Grid Time Series Estimates

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Population Density Grid Time Series Estimates provide a back-cast time series of population density grids based on the year 2000 population grid from SEDAC's...

  10. Dynamic travel time estimation using regression trees.

    Science.gov (United States)

    2008-10-01

    This report presents a methodology for travel time estimation by using regression trees. The dissemination of travel time information has become crucial for effective traffic management, especially under congested road conditions. In the absence of c...

  11. Musculoskeletal MRI at 3.0 T and 7.0 T: a comparison of relaxation times and image contrast.

    Science.gov (United States)

    Jordan, Caroline D; Saranathan, Manojkumar; Bangerter, Neal K; Hargreaves, Brian A; Gold, Garry E

    2013-05-01

    The purpose of this study was to measure and compare the relaxation times of musculoskeletal tissues at 3.0 T and 7.0 T, and to use these measurements to select appropriate parameters for musculoskeletal protocols at 7.0 T. We measured the T₁ and T₂ relaxation times of cartilage, muscle, synovial fluid, bone marrow and subcutaneous fat at both 3.0 T and 7.0 T in the knees of five healthy volunteers. The T₁ relaxation times were measured using a spin-echo inversion recovery sequence with six inversion times. The T₂ relaxation times were measured using a spin-echo sequence with seven echo times. The accuracy of both the T₁ and T₂ measurement techniques was verified in phantoms at both magnetic field strengths. We used the measured relaxation times to help design 7.0 T musculoskeletal protocols that preserve the favorable contrast characteristics of our 3.0 T protocols, while achieving significantly higher resolution at higher SNR efficiency. The T₁ relaxation times in all tissues at 7.0 T were consistently higher than those measured at 3.0 T, while the T₂ relaxation times at 7.0 T were consistently lower than those measured at 3.0 T. The measured relaxation times were used to help develop high resolution 7.0 T protocols that had similar fluid-to-cartilage contrast to that of the standard clinical 3.0 T protocols for the following sequences: proton-density-weighted fast spin-echo (FSE), T₂-weighted FSE, and 3D-FSE-Cube. The T₁ and T₂ changes were within the expected ranges. Parameters for musculoskeletal protocols at 7.0 T can be optimized based on these values, yielding improved resolution in musculoskeletal imaging with similar contrast to that of standard 3.0 T clinical protocols. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Musculoskeletal MRI at 3.0 T and 7.0 T: A comparison of relaxation times and image contrast

    International Nuclear Information System (INIS)

    Jordan, Caroline D.; Saranathan, Manojkumar; Bangerter, Neal K.; Hargreaves, Brian A.; Gold, Garry E.

    2013-01-01

    Objective: The purpose of this study was to measure and compare the relaxation times of musculoskeletal tissues at 3.0 T and 7.0 T, and to use these measurements to select appropriate parameters for musculoskeletal protocols at 7.0 T. Materials and methods: We measured the T 1 and T 2 relaxation times of cartilage, muscle, synovial fluid, bone marrow and subcutaneous fat at both 3.0 T and 7.0 T in the knees of five healthy volunteers. The T 1 relaxation times were measured using a spin-echo inversion recovery sequence with six inversion times. The T 2 relaxation times were measured using a spin-echo sequence with seven echo times. The accuracy of both the T 1 and T 2 measurement techniques was verified in phantoms at both magnetic field strengths. We used the measured relaxation times to help design 7.0 T musculoskeletal protocols that preserve the favorable contrast characteristics of our 3.0 T protocols, while achieving significantly higher resolution at higher SNR efficiency. Results: The T 1 relaxation times in all tissues at 7.0 T were consistently higher than those measured at 3.0 T, while the T 2 relaxation times at 7.0 T were consistently lower than those measured at 3.0 T. The measured relaxation times were used to help develop high resolution 7.0 T protocols that had similar fluid-to-cartilage contrast to that of the standard clinical 3.0 T protocols for the following sequences: proton-density-weighted fast spin-echo (FSE), T 2 -weighted FSE, and 3D-FSE-Cube. Conclusion: The T 1 and T 2 changes were within the expected ranges. Parameters for musculoskeletal protocols at 7.0 T can be optimized based on these values, yielding improved resolution in musculoskeletal imaging with similar contrast to that of standard 3.0 T clinical protocols

  13. Radiation self-polarization of electrons moving in a magnetic field. [Vector spin operator, relaxation time

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V G; Dorofeev, O F; Sokolov, A A; Ternov, I M; Khalilov, V R [Moskovskij Gosudarstvennyj Univ. (USSR)

    1975-03-11

    When electrons move in a magnetic field, synchrotron radiation gives rise to transitions accompanied by the electron spin reorientation. In this case, it is essential that the transition probability depends on the spin orientation; as a result electron polarization takes place with the spin orientation being predominantly opposite to the direction of the magnetic field. This effect has been called ''radiative self-polarization of electrons''. The present work is concerned with the question how the choice of the spin operator will affect the self-polarization degree and relaxation time. The problem has been solved for a vector spin operator.

  14. One-Dimensional Problem of a Conducting Viscous Fluid with One Relaxation Time

    Directory of Open Access Journals (Sweden)

    Angail A. Samaan

    2011-01-01

    Full Text Available We introduce a magnetohydrodynamic model of boundary-layer equations for conducting viscous fluids. This model is applied to study the effects of free convection currents with thermal relaxation time on the flow of a viscous conducting fluid. The method of the matrix exponential formulation for these equations is introduced. The resulting formulation together with the Laplace transform technique is applied to a variety problems. The effects of a plane distribution of heat sources on the whole and semispace are studied. Numerical results are given and illustrated graphically for the problem.

  15. Application of Generalized Fractional Thermoelasticity Theory with Two Relaxation Times to an Electromagnetothermoelastic Thick Plate

    Directory of Open Access Journals (Sweden)

    A. M. Abd El-Latief

    2016-01-01

    Full Text Available The fractional mathematical model of Maxwell’s equations in an electromagnetic field and the fractional generalized thermoelastic theory associated with two relaxation times are applied to a 1D problem for a thick plate. Laplace transform is used. The solution in Laplace transform domain has been obtained using a direct method and its inversion is calculated numerically using a method based on Fourier series expansion technique. Finally, the effects of the two fractional parameters (thermo and magneto on variable fields distributions are made. Numerical results are represented graphically.

  16. Predicting how nanoconfinement changes the relaxation time of a supercooled liquid.

    Science.gov (United States)

    Ingebrigtsen, Trond S; Errington, Jeffrey R; Truskett, Thomas M; Dyre, Jeppe C

    2013-12-06

    The properties of nanoconfined fluids can be strikingly different from those of bulk liquids. A basic unanswered question is whether the equilibrium and dynamic consequences of confinement are related to each other in a simple way. We study this question by simulation of a liquid comprising asymmetric dumbbell-shaped molecules, which can be deeply supercooled without crystallizing. We find that the dimensionless structural relaxation times-spanning six decades as a function of temperature, density, and degree of confinement-collapse when plotted versus excess entropy. The data also collapse when plotted versus excess isochoric heat capacity, a behavior consistent with the existence of isomorphs in the bulk and confined states.

  17. Coupled kinetic equations for fermions and bosons in the relaxation-time approximation

    Science.gov (United States)

    Florkowski, Wojciech; Maksymiuk, Ewa; Ryblewski, Radoslaw

    2018-02-01

    Kinetic equations for fermions and bosons are solved numerically in the relaxation-time approximation for the case of one-dimensional boost-invariant geometry. Fermions are massive and carry baryon number, while bosons are massless. The conservation laws for the baryon number, energy, and momentum lead to two Landau matching conditions, which specify the coupling between the fermionic and bosonic sectors and determine the proper-time dependence of the effective temperature and baryon chemical potential of the system. The numerical results illustrate how a nonequilibrium mixture of fermions and bosons approaches hydrodynamic regime described by the Navier-Stokes equations with appropriate forms of the kinetic coefficients. The shear viscosity of a mixture is the sum of the shear viscosities of fermion and boson components, while the bulk viscosity is given by the formula known for a gas of fermions, however, with the thermodynamic variables characterising the mixture. Thus, we find that massless bosons contribute in a nontrivial way to the bulk viscosity of a mixture, provided fermions are massive. We further observe the hydrodynamization effect, which takes place earlier in the shear sector than in the bulk one. The numerical studies of the ratio of the longitudinal and transverse pressures show, to a good approximation, that it depends on the ratio of the relaxation and proper times only. This behavior is connected with the existence of an attractor solution for conformal systems.

  18. Kubo formulae for the shear and bulk viscosity relaxation times and the scalar field theory shear $\\tau_\\pi$ calculation

    OpenAIRE

    Czajka, Alina; Jeon, Sangyong

    2017-01-01

    In this paper we provide a quantum field theoretical study on the shear and bulk relaxation times. First, we find Kubo formulas for the shear and the bulk relaxation times, respectively. They are found by examining response functions of the stress-energy tensor. We use general properties of correlation functions and the gravitational Ward identity to parametrize analytical structures of the Green functions describing both sound and diffusion mode. We find that the hydrodynamic limits of the r...

  19. Kubo formulas for the shear and bulk viscosity relaxation times and the scalar field theory shear τπ calculation

    Science.gov (United States)

    Czajka, Alina; Jeon, Sangyong

    2017-06-01

    In this paper we provide a quantum field theoretical study on the shear and bulk relaxation times. First, we find Kubo formulas for the shear and the bulk relaxation times, respectively. They are found by examining response functions of the stress-energy tensor. We use general properties of correlation functions and the gravitational Ward identity to parametrize analytical structures of the Green functions describing both sound and diffusion mode. We find that the hydrodynamic limits of the real parts of the respective energy-momentum tensor correlation functions provide us with the method of computing both the shear and bulk viscosity relaxation times. Next, we calculate the shear viscosity relaxation time using the diagrammatic approach in the Keldysh basis for the massless λ ϕ4 theory. We derive a respective integral equation which enables us to compute η τπ and then we extract the shear relaxation time. The relaxation time is shown to be inversely related to the thermal width as it should be.

  20. Microwave Amplitude Modulation Technique to Measure Spin-Lattice (T 1) and Spin-Spin (T 2) Relaxation Times

    Science.gov (United States)

    Misra, Sushil K.

    The measurement of very short spin-lattice, or longitudinal, relaxation (SLR) times (i.e., 10-10 Misra, 1998), and polymer resins doped with rare-earth ions (Pescia et al., 1999a; Pescia et al. 1999b). The ability to measure such fast SLR data on amorphous Si and copper-chromium-tin spinel led to an understanding of the role of exchange interaction in affecting spin-lattice relaxation, while the data on polymer resins doped with rare-earth ions provided evidence of spin-fracton relaxation (Pescia et al., 1999a, b). But such fast SLR times are not measurable by the most commonly used techniques of saturation- and inversion-recovery (Poole, 1982; Alger, 1968), which only measure spin-lattice relaxation times longer than 10-6 s. A summary of relevant experimental data is presented in Table 1.

  1. Accuracy of prehospital transport time estimation.

    Science.gov (United States)

    Wallace, David J; Kahn, Jeremy M; Angus, Derek C; Martin-Gill, Christian; Callaway, Clifton W; Rea, Thomas D; Chhatwal, Jagpreet; Kurland, Kristen; Seymour, Christopher W

    2014-01-01

    Estimates of prehospital transport times are an important part of emergency care system research and planning; however, the accuracy of these estimates is unknown. The authors examined the accuracy of three estimation methods against observed transport times in a large cohort of prehospital patient transports. This was a validation study using prehospital records in King County, Washington, and southwestern Pennsylvania from 2002 to 2006 and 2005 to 2011, respectively. Transport time estimates were generated using three methods: linear arc distance, Google Maps, and ArcGIS Network Analyst. Estimation error, defined as the absolute difference between observed and estimated transport time, was assessed, as well as the proportion of estimated times that were within specified error thresholds. Based on the primary results, a regression estimate was used that incorporated population density, time of day, and season to assess improved accuracy. Finally, hospital catchment areas were compared using each method with a fixed drive time. The authors analyzed 29,935 prehospital transports to 44 hospitals. The mean (± standard deviation [±SD]) absolute error was 4.8 (±7.3) minutes using linear arc, 3.5 (±5.4) minutes using Google Maps, and 4.4 (±5.7) minutes using ArcGIS. All pairwise comparisons were statistically significant (p Google Maps, and 11.6 [±10.9] minutes for ArcGIS). Estimates were within 5 minutes of observed transport time for 79% of linear arc estimates, 86.6% of Google Maps estimates, and 81.3% of ArcGIS estimates. The regression-based approach did not substantially improve estimation. There were large differences in hospital catchment areas estimated by each method. Route-based transport time estimates demonstrate moderate accuracy. These methods can be valuable for informing a host of decisions related to the system organization and patient access to emergency medical care; however, they should be employed with sensitivity to their limitations.

  2. Towards quantitative measurements of relaxation times and other parameters in the brain

    International Nuclear Information System (INIS)

    Tofts, P.S.; Du Boulay, E.P.G.H.

    1990-01-01

    The nature and physical significance of the relaxation times T1 and T2 and of proton density are described. Methods of measuring T1 and T2 are discussed with emphasis on the establishment of precision and the maintenance of accuracy. Reported standards of success are briefly reviewed. We expect sensitivities of the order of 1% to be achievable in serial studies. Although early hopes of disease diagnosis by tissue characterisation were not realised, strict scientific method and careful calibration have made it pracitcable to apply relaxation time measurement to research into disease process. Serial measurements in patients and correlation with similar studies in animal models, biopsy results and autopsy material taken together have provided new knowledge about cerebral oedema, water compartmentation, alcoholism and the natural history of multiple sclerosis. There are prospects of using measurement to monitor treatment in other diseases with diffuse brain abnormalities invisible on the usual images. Secondarily derived parameters and notably the quantification of blood-brain barrier defect after injection of Gadolinium-DTPA also offer prospects of valuable data. (orig.)

  3. Quasiparticle energy distribution and relaxation times in a tunnel-injected superconductor

    International Nuclear Information System (INIS)

    Kirtley, J.R.; Kent, D.S.; Langenberg, D.N.; Kaplan, S.B.; Chang, J.; Yang, C.

    1980-01-01

    Experiments are reported in which a nonequilibrium quasiparticle distribution was created in a dirty Al film by tunnel injection and probed using a second tunnel junction. The distribution was found to have the form of a quasithermal distribution characterized by an effective temperature greater than the ambient bath temperature and dependent on injection level, plus small sharp structures which originate in structures in the injected quasiparticle distribution due to gap-edge peaks in the quasiparticle density of states. A systematic theoretical analysis of these structures correctly predicts their shapes and relative amplitudes. The amplitudes show directly the presence of branch imbalance in the nonequilibrium quasiparticle distribution. Using the theoretical model, inelastic quasiparticle relaxation and elastic branch mixing times, as functions of energy and temperature, are extracted from the experimental data without need for phonon-trapping corrections. The qualitative and quantitative behavior of these times is in reasonable accord with theoretical expectations and the results of other experiments. Experiments of the type reported here are shown to provide a kind of spectroscopy of tunnel-injection and quasiparticle-relaxation processes in superconductors

  4. Evaluation of PHB/Clay nanocomposite by spin-lattice relaxation time

    Directory of Open Access Journals (Sweden)

    Mariana Bruno

    2008-12-01

    Full Text Available Poly(3-hydroxybutyrate (PHB based on nanocomposites containing different amounts of a commercial organically modified clay (viscogel B7 were prepared employing solution intercalation method. Three solvents, such as: CHCl3, dimethylchloride (DMC and tetrahydrofuran (THF were used. The relationship among the processing conditions; molecular structure and intermolecular interaction, between both nanocomposite components, were investigated using a nuclear magnetic resonance (NMR, as a part of characterization methodology, which has been used by Tavares et al. It involves the hydrogen spin-lattice relaxation time, T1H, by solid state nuclear magnetic resonance, employing low field NMR. X ray diffraction was also employed because it is a conventional technique, generally used to obtain the first information on nanocomposite formation. Changes in PHB crystallinity were observed after the organophilic nanoclay had been incorporated in the polymer matrix. These changes, in the microstructure, were detected by the variation of hydrogen nuclear relaxation time values and by X ray, which showed an increase in the clay interlamelar space due to the intercalation of the polymer in the clay between lamellae. It was also observed, for both techniques, that the solvents affect directly the organization of the crystalline region, promoting a better intercalation, considering that they behave like a plasticizer.

  5. Discuss the value of T2 relaxation time in the research of femorotibial joint biological tissue

    International Nuclear Information System (INIS)

    Zhong Jinglian; Song Lingling; Liang Biling; Ye Ruixin; Yun Wenjuan

    2009-01-01

    Objective: To discuss the value of T 2 relaxation time in the research of the biomechanics and function of cartilage of knee joint. Methods: Knees of 20 healthy adults and 19 osteoarthritis patients were examined with sagittal 8-echo sequence. The T 2 value of cartilage was calculated. The T 2 values in the superficial and deeper cartilage of femoral and tibial joint were compared, so did between the osteoarthritis patients and healthy adults. Results: The T 2 values in the superficial and the deeper tibital cartilage were (48.8±6.3) ms, (44.3±5.7) ms, respectively. The T 2 values in the superficial and deeper femoral cartilage were (52.1±5.7) ms, (47.7±5.3) ms, respectively. There was a significant difference between superficial and deeper femoral cartilage (t=3.148 and t=3.384, P 2 value in the tibial cartilage of osteoarthritis patients was (56.0±9.1) ms and was higher than that of healthy adults. There was a significant difference between osteoarthritis patients and healthy adults (t=-3.446, P 2 relaxation time can be used in the research of the biomechanics and function of cartilage and has a application value in clinical diagnosis. (authors)

  6. Accurate estimation of indoor travel times

    DEFF Research Database (Denmark)

    Prentow, Thor Siiger; Blunck, Henrik; Stisen, Allan

    2014-01-01

    The ability to accurately estimate indoor travel times is crucial for enabling improvements within application areas such as indoor navigation, logistics for mobile workers, and facility management. In this paper, we study the challenges inherent in indoor travel time estimation, and we propose...... the InTraTime method for accurately estimating indoor travel times via mining of historical and real-time indoor position traces. The method learns during operation both travel routes, travel times and their respective likelihood---both for routes traveled as well as for sub-routes thereof. InTraTime...... allows to specify temporal and other query parameters, such as time-of-day, day-of-week or the identity of the traveling individual. As input the method is designed to take generic position traces and is thus interoperable with a variety of indoor positioning systems. The method's advantages include...

  7. Anisotropy of the nuclear magnetic relaxation times induced in solid 3He by modulation of the dipolar interactions

    International Nuclear Information System (INIS)

    Deville, G.

    1976-01-01

    Anisotropic nuclear relaxation times have been measured in solid 3 He samples grown at constant pressure, in the Larmor frequency range 1.5MHz-5MHz where the main relaxation mechanism is the modulation of the dipolar interaction by exchange or by motion of the vacancies. The second order calculation made by Harris for the exchange induced relaxation regime is extended to the regime where vacancy motion dominates. The theory is further refined by considering the fourth moment anisotropy effect on the spectral densities. This latter calculation yields a frequency dependent anisotropic contribution to T 1 which agrees qualitatively with the data, unlike the simpler results by Harris [fr

  8. Fatigue life estimation of welded components considering welding residual stress relaxation and its mean stress effect

    International Nuclear Information System (INIS)

    Han, Seung Ho; Han, Jeong Woo; Shin, Byung Chun; Kim, Jae Hoon

    2003-01-01

    The fatigue life of welded joints is sensitive to welding residual stress and complexity of their geometric shapes. To predict the fatigue life more reasonably, the effects of welding residual stress and its relaxation on their fatigue strengths should be considered quantitatively, which are often regarded to be equivalent to the effects of mean stresses by external loads. The hot-spot stress concept should be also adopted which can reduce the dependence of fatigue strengths for various welding details. Considering the factors mentioned above, a fatigue life prediction model using the modified Goodman's diagram was proposed. In this model, an equivalent stress was introduced which is composed of the mean stress based on the hot-spot stress concept and the relaxed welding residual stress. From the verification of the proposed model to real welding details, it is proved that this model can be applied to predict reasonably their fatigue lives

  9. Time Estimation Deficits in Childhood Mathematics Difficulties

    Science.gov (United States)

    Hurks, Petra P. M.; van Loosbroek, Erik

    2014-01-01

    Time perception has not been comprehensively examined in mathematics difficulties (MD). Therefore, verbal time estimation, production, and reproduction were tested in 13 individuals with MD and 16 healthy controls, matched for age, sex, and intellectual skills. Individuals with MD performed comparably to controls in time reproduction, but showed a…

  10. Extracting energy and structure properties of glass-forming liquids from structural relaxation time.

    Science.gov (United States)

    Wang, Lianwen

    2012-04-18

    A comprehensive examination of the kinetic liquid model (Wang et al 2010 J. Phys.: Condens. Matter 22 455104) is carried out by fitting the structural relaxation time of 26 different glass-forming liquids in a wide temperature range, including most of the well-studied materials. Careful analysis of the compiled reported data reveals that experimental inaccuracies should not be overlooked in any 'benchmark test' of relating theories or models (e.g. in Lunkenheimer et al 2010 Phys. Rev. E 81 051504). The procedure, accuracy, ability, and efficiency of the kinetic liquid model are discussed in detail and in comparison with other available fitting methods. In general, the kinetic liquid model could be verified by 17 of the 26 compiled data sets and can serve as a meaningful approximative method for analyzing these liquids. Nonetheless, further experimental examinations in a wide temperature range are needed and are called for. Through fitting, the microscopic details of these liquids are extracted, namely, the enthalpy, entropy, and cooperativity in structural relaxation, which may facilitate further quantitative analysis to both the liquidus and glassy states of these materials.

  11. Multi-relaxation-time lattice Boltzmann modeling of the acoustic field generated by focused transducer

    Science.gov (United States)

    Shan, Feng; Guo, Xiasheng; Tu, Juan; Cheng, Jianchun; Zhang, Dong

    The high-intensity focused ultrasound (HIFU) has become an attractive therapeutic tool for the noninvasive tumor treatment. The ultrasonic transducer is the key component in HIFU treatment to generate the HIFU energy. The dimension of focal region generated by the transducer is closely relevant to the safety of HIFU treatment. Therefore, it is essential to numerically investigate the focal region of the transducer. Although the conventional acoustic wave equations have been used successfully to describe the acoustic field, there still exist some inherent drawbacks. In this work, we presented an axisymmetric isothermal multi-relaxation-time lattice Boltzmann method (MRT-LBM) model with the Bouzidi-Firdaouss-Lallemand (BFL) boundary condition in cylindrical coordinate system. With this model, some preliminary simulations were firstly conducted to determine a reasonable value of the relaxation parameter. Then, the validity of the model was examined by comparing the results obtained with the LBM results with the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and the Spheroidal beam equation (SBE) for the focused transducers with different aperture angles, respectively. In addition, the influences of the aperture angle on the focal region were investigated. The proposed model in this work will provide significant references for the parameter optimization of the focused transducer for applications in the HIFU treatment or other fields, and provide new insights into the conventional acoustic numerical simulations.

  12. Instrumentation problems in the measurement of relaxation time T1 in MRI

    International Nuclear Information System (INIS)

    Leroy-Willig, A.; Roucayrol, J.C.; Bittoun, J.; Courtieu, J.

    1986-01-01

    Longitudinal relaxation (T 1 ) of protons is a sensitive though non specific tool of tissue characterization. T 1 measurement from magnetic resonance images is unprecise, due to several phenomena that we review: time intervals shorter than in spectroscopic sequences; flip angle inhomogeneity; slice selection and spin echoes. In vivo the molecular inhomogeneity can prevent to measure a true T 1 ; motion and blood flow are important causes of errors. The relative effects of these factors are examined from in vitro and in vivo images acquired at 1.5 T. From a mono-echo single-slice saturation sequence reliable values of T 1 are obtained in vitro, the measurement time being compatible with clinical imaging. In vivo, problems due to various causes of motions are still unresolved [fr

  13. Three-dimensional simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model

    OpenAIRE

    Song-Gui Chen; Chuan-Hu Zhang; Yun-Tian Feng; Qi-Cheng Sun; Feng Jin

    2016-01-01

    This paper presents a three-dimensional (3D) parallel multiple-relaxation-time lattice Boltzmann model (MRT-LBM) for Bingham plastics which overcomes numerical instabilities in the simulation of non-Newtonian fluids for the Bhatnagar–Gross–Krook (BGK) model. The MRT-LBM and several related mathematical models are briefly described. Papanastasiou’s modified model is incorporated for better numerical stability. The impact of the relaxation parameters of the model is studied in detail. The MRT-L...

  14. estimating formwork striking time for concrete mixes estimating

    African Journals Online (AJOL)

    eobe

    In this study, we estimated the time for strength development in concrete cured up to 56 days. Water. In this .... regression analysis using MS Excel 2016 Software performed on the ..... [1] Abolfazl, K. R, Peroti S. and Rahemi L 'The Effect of.

  15. The Arrow of Time in the Collapse of Collisionless Self-gravitating Systems: Non-validity of the Vlasov-Poisson Equation during Violent Relaxation

    Science.gov (United States)

    Beraldo e Silva, Leandro; de Siqueira Pedra, Walter; Sodré, Laerte; Perico, Eder L. D.; Lima, Marcos

    2017-09-01

    The collapse of a collisionless self-gravitating system, with the fast achievement of a quasi-stationary state, is driven by violent relaxation, with a typical particle interacting with the time-changing collective potential. It is traditionally assumed that this evolution is governed by the Vlasov-Poisson equation, in which case entropy must be conserved. We run N-body simulations of isolated self-gravitating systems, using three simulation codes, NBODY-6 (direct summation without softening), NBODY-2 (direct summation with softening), and GADGET-2 (tree code with softening), for different numbers of particles and initial conditions. At each snapshot, we estimate the Shannon entropy of the distribution function with three different techniques: Kernel, Nearest Neighbor, and EnBiD. For all simulation codes and estimators, the entropy evolution converges to the same limit as N increases. During violent relaxation, the entropy has a fast increase followed by damping oscillations, indicating that violent relaxation must be described by a kinetic equation other than the Vlasov-Poisson equation, even for N as large as that of astronomical structures. This indicates that violent relaxation cannot be described by a time-reversible equation, shedding some light on the so-called “fundamental paradox of stellar dynamics.” The long-term evolution is well-described by the orbit-averaged Fokker-Planck model, with Coulomb logarithm values in the expected range 10{--}12. By means of NBODY-2, we also study the dependence of the two-body relaxation timescale on the softening length. The approach presented in the current work can potentially provide a general method for testing any kinetic equation intended to describe the macroscopic evolution of N-body systems.

  16. Entropic multiple-relaxation-time multirange pseudopotential lattice Boltzmann model for two-phase flow

    Science.gov (United States)

    Qin, Feifei; Mazloomi Moqaddam, Ali; Kang, Qinjun; Derome, Dominique; Carmeliet, Jan

    2018-03-01

    An entropic multiple-relaxation-time lattice Boltzmann approach is coupled to a multirange Shan-Chen pseudopotential model to study the two-phase flow. Compared with previous multiple-relaxation-time multiphase models, this model is stable and accurate for the simulation of a two-phase flow in a much wider range of viscosity and surface tension at a high liquid-vapor density ratio. A stationary droplet surrounded by equilibrium vapor is first simulated to validate this model using the coexistence curve and Laplace's law. Then, two series of droplet impact behavior, on a liquid film and a flat surface, are simulated in comparison with theoretical or experimental results. Droplet impact on a liquid film is simulated for different Reynolds numbers at high Weber numbers. With the increase of the Sommerfeld parameter, onset of splashing is observed and multiple secondary droplets occur. The droplet spreading ratio agrees well with the square root of time law and is found to be independent of Reynolds number. Moreover, shapes of simulated droplets impacting hydrophilic and superhydrophobic flat surfaces show good agreement with experimental observations through the entire dynamic process. The maximum spreading ratio of a droplet impacting the superhydrophobic flat surface is studied for a large range of Weber numbers. Results show that the rescaled maximum spreading ratios are in good agreement with a universal scaling law. This series of simulations demonstrates that the proposed model accurately captures the complex fluid-fluid and fluid-solid interfacial physical processes for a wide range of Reynolds and Weber numbers at high density ratios.

  17. Highway travel time estimation with data fusion

    CERN Document Server

    Soriguera Martí, Francesc

    2016-01-01

    This monograph presents a simple, innovative approach for the measurement and short-term prediction of highway travel times based on the fusion of inductive loop detector and toll ticket data. The methodology is generic and not technologically captive, allowing it to be easily generalized for other equivalent types of data. The book shows how Bayesian analysis can be used to obtain fused estimates that are more reliable than the original inputs, overcoming some of the drawbacks of travel-time estimations based on unique data sources. The developed methodology adds value and obtains the maximum (in terms of travel time estimation) from the available data, without recurrent and costly requirements for additional data. The application of the algorithms to empirical testing in the AP-7 toll highway in Barcelona proves that it is possible to develop an accurate real-time, travel-time information system on closed-toll highways with the existing surveillance equipment, suggesting that highway operators might provide...

  18. Time Delay Estimation Algoritms for Echo Cancellation

    Directory of Open Access Journals (Sweden)

    Kirill Sakhnov

    2011-01-01

    Full Text Available The following case study describes how to eliminate echo in a VoIP network using delay estimation algorithms. It is known that echo with long transmission delays becomes more noticeable to users. Thus, time delay estimation, as a part of echo cancellation, is an important topic during transmission of voice signals over packetswitching telecommunication systems. An echo delay problem associated with IP-based transport networks is discussed in the following text. The paper introduces the comparative study of time delay estimation algorithm, used for estimation of the true time delay between two speech signals. Experimental results of MATLab simulations that describe the performance of several methods based on cross-correlation, normalized crosscorrelation and generalized cross-correlation are also presented in the paper.

  19. ESTIMATION OF THERMAL PARAMETERS OF POWER BIPOLAR TRANSISTORS BY THE METHOD OF THERMAL RELAXATION DIFFERENTIAL SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    V. S. Niss

    2015-01-01

    Full Text Available Thermal performance of electronic devices determines the stability and reliability of the equipment. This leads to the need for a detailed thermal analysis of semiconductor devices. The goal of the work is evaluation of thermal parameters of high-power bipolar transistors in plastic packages TO-252 and TO-126 by a method of thermal relaxation differential spectrometry. Thermal constants of device elements and distribution structure of thermal resistance defined as discrete and continuous spectra using previously developed relaxation impedance spectrometer. Continuous spectrum, based on higher-order derivatives of the dynamic thermal impedance, follows the model of Foster, and discrete to model of Cauer. The structure of sample thermal resistance is presented in the form of siх-chain electro-thermal RC model. Analysis of the heat flow spreading in the studied structures is carried out on the basis of the concept of thermal diffusivity. For transistor structures the area and distribution of the heat flow cross-section are determined. On the basis of the measurements the thermal parameters of high-power bipolar transistors is evaluated, in particular, the structure of their thermal resistance. For all of the measured samples is obtained that the thermal resistance of the layer planting crystal makes a defining contribution to the internal thermal resistance of transistors. In the transition layer at the border of semiconductor-solder the thermal resistance increases due to changes in the mechanism of heat transfer. Defects in this area in the form of delamination of solder, voids and cracks lead to additional growth of thermal resistance caused by the reduction of the active square of the transition layer. Method of thermal relaxation differential spectrometry allows effectively control the distribution of heat flow in high-power semiconductor devices, which is important for improving the design, improve the quality of landing crystals of power

  20. Convex relaxations of spectral sparsity for robust super-resolution and line spectrum estimation

    Science.gov (United States)

    Chi, Yuejie

    2017-08-01

    We consider recovering the amplitudes and locations of spikes in a point source signal from its low-pass spectrum that may suffer from missing data and arbitrary outliers. We first review and provide a unified view of several recently proposed convex relaxations that characterize and capitalize the spectral sparsity of the point source signal without discretization under the framework of atomic norms. Next we propose a new algorithm when the spikes are known a priori to be positive, motivated by applications such as neural spike sorting and fluorescence microscopy imaging. Numerical experiments are provided to demonstrate the effectiveness of the proposed approach.

  1. Relaxation time T/sub 1/ and bound water fraction of muscle by NMR imager

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, N.; Ikehira, H.; Yamane, T.; Tateno, Y.; Torii, S.; Matsumura, K.

    1986-05-01

    In order to establish the efficacy of NMR-CT in the diagnostic investigation of muscle disorders, proton NMR-CT imaging was performed and muscle longitudinal relaxation (T1) times were measured in 20 Duchenne muscular dystrophy (DMD) patients and normal controls (NC). In addition, the bound water fraction (BWF) was calculated from the measured T1 value in appropriate cases. Results show that in DMD muscle T1 values were above normal in the early clinical stages, declined rapidly with progress of the disease, and reached the same low level as the subcutaneous fat. This decrease of T1 values was not uniform for all muscles, being most prominent in gluteus maximus and least in sartorius and gracilis. In NC muscle BWF increased with maturation under the age of 10 years, and became fixed beyond that. In the early stages of DMD, BWF was below normal.

  2. Study of relaxation times of nanocomposites of starch/montmorillonite employing low field NMR

    International Nuclear Information System (INIS)

    Brito, Luciana M.; Tavares, Maria Ines B.

    2011-01-01

    Due to its various applications and features, especially in therapies for controlled release of pharmaceuticals, polymers are among the most widely used excipients in pharmaceutical technology. One of the most promising nanocomposites is formed from organic polymer and inorganic clay minerals. Nanocomposites of starch/montmorillonite were prepared employing solution intercalation and characterized by proton spin-lattice relaxation time, through NMR relaxometry. The characterization of nanocomposites was done by X-ray diffraction and by nuclear magnetic resonance. The results showed that nanostructured films were obtained by intercalation from solution. Furthermore, the use of low field NMR, T1H, provided more precise information about the movement of materials, being complementary to the results obtained by X-ray diffraction. (author)

  3. T2 relaxation time in MR imaging of normal and abnormal lung parenchyma

    International Nuclear Information System (INIS)

    Mayo, J.R.; McKay, A.; Mueller, N.L.

    1990-01-01

    To measure the T2 relaxation times of normal and abnormal lung parenchyma and to evaluate the influence of field strength and lung inflation on T2. Five healthy volunteers and five patients with diffuse lung disease were imaged at 0.15 and 1.5 T. Excised normal pig lung was imaged at 0.15 and 1.5 T and analyzed in a spectrometer at 2.0 T. Single-echo (Hahn) pulse sequences (TR, 2,000 msec; TE, 20, 40, 60, 80, and 100 msec) were compared with multiecho trains (Carr-Purcell-Meiboom-Gill [CPMG] at 0.15 T (TR, 2,000 msec; TE, 20-40-60... 240 msec) and 2.0 T (TR, 2,000 msec; TE, 1, 2, 3,..., 10msec). T2 relaxation times calculated from single-echo sequences showed considerable variation between 0.15 and 2.0 T. T2 also changed with lung inflation. However, the T2 measurements on CPMG sequences did not change significantly (P > .05) with field strength and were only minimally affected by lung inflation. The mean ± SD T2 values for normal lung were 99 ± 8 and for abnormal lung were 84 ± 17. Lung parenchyma T2 measurements obtained with the use of conventional single-echo pulse sequences are variable and inaccurate because of inflation and field strength dependent magnetic susceptibility effects that lead to rapid nonrecoverable dephasing. The results indicate that multiecho sequences with appropriately short echo spacings yield more reproducible determinations of T2, which are independent of field strength and less dependent on lung inflation

  4. Estimation of magnetic relaxation property for CVD processed YBCO-coated conductors

    International Nuclear Information System (INIS)

    Takahashi, Y.; Kiuchi, M.; Otabe, E.S.; Matsushita, T.; Shikimachi, K.; Watanabe, T.; Kashima, N.; Nagaya, S.

    2010-01-01

    Ion Beam Assist Deposition/Chemical Vapor Deposition(IBAD/CVD)-processed YBCO-coated conductors with high critical current density J c at high magnetic fields are expected to be applied to superconducting equipments such as superconducting magnetic energy storage (SMES). For application to superconducting magnet in SMES one of the most important properties for superconductors is the relaxation property of superconducting current. In this paper, the relaxation property is investigated for IBAD/CVD-processed YBCO-coated conductors of the superconducting layer in the range of 0.18-0.90 μm. This property can be quantitatively characterized by the apparent pinning potential, U 0 *. It is found that U 0 * takes a smaller value due to the two-dimensional pinning mechanism at high magnetic fields for conductor with thinner superconducting layer. Although U 0 * decreases with increasing thickness at low magnetic fields at 20 K, it increases at high magnetic fields. The results are theoretically explained by the model of the flux creep and flow based on the dimensionality of flux pinning. Scaling analysis is examined for the dependence of U 0 * on the magnetic field, temperature and the layer thickness.

  5. An anisotropic linear thermo-viscoelastic constitutive law - Elastic relaxation and thermal expansion creep in the time domain

    Science.gov (United States)

    Pettermann, Heinz E.; DeSimone, Antonio

    2017-09-01

    A constitutive material law for linear thermo-viscoelasticity in the time domain is presented. The time-dependent relaxation formulation is given for full anisotropy, i.e., both the elastic and the viscous properties are anisotropic. Thereby, each element of the relaxation tensor is described by its own and independent Prony series expansion. Exceeding common viscoelasticity, time-dependent thermal expansion relaxation/creep is treated as inherent material behavior. The pertinent equations are derived and an incremental, implicit time integration scheme is presented. The developments are implemented into an implicit FEM software for orthotropic material symmetry under plane stress assumption. Even if this is a reduced problem, all essential features are present and allow for the entire verification and validation of the approach. Various simulations on isotropic and orthotropic problems are carried out to demonstrate the material behavior under investigation.

  6. Characteristics of Viscoelastic Crustal Deformation Following a Megathrust Earthquake: Discrepancy Between the Apparent and Intrinsic Relaxation Time Constants

    Science.gov (United States)

    Fukahata, Yukitoshi; Matsu'ura, Mitsuhiro

    2018-02-01

    The viscoelastic deformation of an elastic-viscoelastic composite system is significantly different from that of a simple viscoelastic medium. Here, we show that complicated transient deformation due to viscoelastic stress relaxation after a megathrust earthquake can occur even in a very simple situation, in which an elastic surface layer (lithosphere) is underlain by a viscoelastic substratum (asthenosphere) under gravity. Although the overall decay rate of the system is controlled by the intrinsic relaxation time constant of the asthenosphere, the apparent decay time constant at each observation point is significantly different from place to place and generally much longer than the intrinsic relaxation time constant of the asthenosphere. It is also not rare that the sense of displacement rate is reversed during the viscoelastic relaxation. If we do not bear these points in mind, we may draw false conclusions from observed deformation data. Such complicated transient behavior can be explained mathematically from the characteristics of viscoelastic solution: for an elastic-viscoelastic layered half-space, the viscoelastic solution is expressed as superposition of three decaying components with different relaxation time constants that depend on wavelength.

  7. Understanding generalized inversions of nuclear magnetic resonance transverse relaxation time in porous media

    Science.gov (United States)

    Mitchell, J.; Chandrasekera, T. C.

    2014-12-01

    The nuclear magnetic resonance transverse relaxation time T2, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T2 provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T2 distributions demands appropriate processing of the measured data since T2 is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form -ant_e^k (where n is the number and te the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T2 distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries.

  8. Direct measurements of relaxation times of phosphorus metabolites in the human myocardium

    International Nuclear Information System (INIS)

    Schindler, R.; Krahe, T.; Neubauer, S.; Hillenbrand, H.; Entzeroth, C.; Horn, M.; Lackner, K.; Ertl, G.

    1992-01-01

    The T 1 relaxation times of the phosphorus metabolites in human heart muscle measurable by 31 P-MR spectra were determined in 12 individuals using a 1.5 Tesla system. Several spectra were recorded consecutively with a pulse repetition time of 1.6s to 24 s. The T 1 times of creatine phosphate (CP), of γ-, α-, β-adenosintriphosphate (ATP), 2,3-diphosphoglycerate (2,3-DPG) together with anorganic phosphate) and phosphodiester (PDE) showed mean measurements of 6.1±0.5, 5.4±0.5, 5.0±0.5, 5.8±1.0, 7.6±1.0, and 5.0±1.0s (M±SE). The accuracy of the ISIS technique was tested with a special phantom. T 1 times were also measured in standard solutions (20mM CP, 10mM ATP); CP was 8.7±0.2s and γ-ATP was 9.9±0.7s. Corrections for partially saturated 31 P-MR spectra - at least for CP/ATP ratios - are relatively small. (orig.) [de

  9. The study of NMR relaxation time spectra multi-exponential inversion based on Lloyd–Max optimal quantization

    International Nuclear Information System (INIS)

    Li, Xuewei; Kong, Li; Cheng, Jingjing; Wu, Lei

    2015-01-01

    The multi-exponential inversion of a NMR relaxation signal plays a key role in core analysis and logging interpretation in the formation of porous media. To find an efficient metod of inverting high-resolution relaxation time spectra rapidly, this paper studies the effect of inversion which is based on the discretization of the original echo in a time domain by using a simulation model. This paper analyzes the ill-condition of discrete equations on the basis of the NMR inversion model and method, determines the appropriate number of discrete echoes and acquires the optimal distribution of discrete echo points by the Lloyd–Max optimal quantization method, in considering the inverse precision and computational complexity comprehensively. The result shows that this method can effectively improve the efficiency of the relaxation time spectra inversion while guaranteeing inversed accuracy. (paper)

  10. Long Spin-Relaxation Times in a Transition-Metal Atom in Direct Contact to a Metal Substrate.

    Science.gov (United States)

    Hermenau, Jan; Ternes, Markus; Steinbrecher, Manuel; Wiesendanger, Roland; Wiebe, Jens

    2018-03-14

    Long spin-relaxation times are a prerequisite for the use of spins in data storage or nanospintronics technologies. An atomic-scale solid-state realization of such a system is the spin of a transition-metal atom adsorbed on a suitable substrate. For the case of a metallic substrate, which enables the direct addressing of the spin by conduction electrons, the experimentally measured lifetimes reported to date are on the order of only hundreds of femtoseconds. Here, we show that the spin states of iron atoms adsorbed directly on a conductive platinum substrate have a surprisingly long spin-relaxation time in the nanosecond regime, which is comparable to that of a transition metal atom decoupled from the substrate electrons by a thin decoupling layer. The combination of long spin-relaxation times and strong coupling to conduction electrons implies the possibility to use flexible coupling schemes to process the spin information.

  11. Improve Image Quality of Transversal Relaxation Time PROPELLER and FLAIR on Magnetic Resonance Imaging

    Science.gov (United States)

    Rauf, N.; Alam, D. Y.; Jamaluddin, M.; Samad, B. A.

    2018-03-01

    The Magnetic Resonance Imaging (MRI) is a medical imaging technique that uses the interaction between the magnetic field and the nuclear spins. MRI can be used to show disparity of pathology by transversal relaxation time (T2) weighted images. Some techniques for producing T2-weighted images are Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction (PROPELLER) and Fluid Attenuated Inversion Recovery (FLAIR). A comparison of T2 PROPELLER and T2 FLAIR parameters in MRI image has been conducted. And improve Image Quality the image by using RadiAnt DICOM Viewer and ENVI software with method of image segmentation and Region of Interest (ROI). Brain images were randomly selected. The result of research showed that Time Repetition (TR) and Time Echo (TE) values in all types of images were not influenced by age. T2 FLAIR images had longer TR value (9000 ms), meanwhile T2 PROPELLER images had longer TE value (100.75 - 102.1 ms). Furthermore, areas with low and medium signal intensity appeared clearer by using T2 PROPELLER images (average coefficients of variation for low and medium signal intensity were 0.0431 and 0.0705, respectively). As for areas with high signal intensity appeared clearer by using T2 FLAIR images (average coefficient of variation was 0.0637).

  12. Nonadiabatic dynamics of electron transfer in solution: Explicit and implicit solvent treatments that include multiple relaxation time scales

    International Nuclear Information System (INIS)

    Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2014-01-01

    The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents for a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible

  13. Lineshape theory of pigment-protein complexes: How the finite relaxation time of nuclei influences the exciton relaxation-induced lifetime broadening

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Thanh-Chung; Renger, Thomas, E-mail: thomas.renger@jku.at [Institut für Theoretische Physik, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz (Austria)

    2016-07-21

    In pigment-protein complexes, often the excited states are partially delocalized and the exciton-vibrational coupling in the basis of delocalized states contains large diagonal and small off-diagonal elements. This inequality may be used to introduce potential energy surfaces (PESs) of exciton states and to treat the inter-PES coupling in Markov and secular approximations. The resulting lineshape function consists of a Lorentzian peak that is broadened by the finite lifetime of the exciton states caused by the inter-PES coupling and a vibrational sideband that results from the mutual displacement of the excitonic PESs with respect to that of the ground state. So far analytical expressions have been derived that relate the exciton relaxation-induced lifetime broadening to the Redfield [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)] or modified Redfield [M. Schröder, U. Kleinekathöfer, and M. Schreiber, J. Chem. Phys. 124, 084903 (2006)] rate constants of exciton relaxation, assuming that intra-PES nuclear relaxation is fast compared to inter-PES transfer. Here, we go beyond this approximation and provide an analytical expression, termed Non-equilibrium Modified Redfield (NeMoR) theory, for the lifetime broadening that takes into account the finite nuclear relaxation time. In an application of the theory to molecular dimers, we find that, for a widely used experimental spectral density of the exciton-vibrational coupling of pigment-protein complexes, the NeMoR spectrum at low-temperatures (T < 150 K) is better approximated by Redfield than by modified Redfield theory. At room temperature, the lifetime broadening obtained with Redfield theory underestimates the NeMoR broadening, whereas modified Redfield theory overestimates it by a similar amount. A fortuitous error compensation in Redfield theory is found to explain the good performance of this theory at low temperatures. Since steady state spectra of PPCs are often measured at low temperatures

  14. Nuclear magnetic resonance studies on brain edema. Time course of /sup 1/H-NMR relaxation times

    Energy Technology Data Exchange (ETDEWEB)

    Naruse, S; Horikawa, Y; Tanaka, C; Hirakawa, K; Nishikawa, H [Kyoto Prefectural Univ. of Medicine (Japan)

    1981-06-01

    1. The state of water in normal and edematous brain tissue was studied by measurement of proton longitudinal (T/sub 1/) and transverse (T/sub 2/) relaxation times using pulsed nuclear magnetic resonance (NMR) technique. 2. In control rats, T/sub 1/ and T/sub 2/ of water showed one component, which was more fast in white matter. Those values displayed 1.07 - 1.18 sec. of T/sub 1/ and 75 - 76 msec. of T/sub 2/. 3. When rat brain was injured by cold, T/sub 1/ was observed to become longer (1.18 - 1.27 sec.), and T/sub 2/ was observed be separated into two components, the faster T/sub 2/ (45 - 50 msec.) and slower T/sub 2/ (100 - 105 msec.), in both gray and white matter of the injured side. 4. In triethyltin (TET) induced brain edema, elongation of T/sub 1/ (1.2 sec.) and remarkable separation of T/sub 2/, faster T/sub 2/ (75 msec.) and slower T/sub 2/ (400 - 450 msec.), were observed in white matter. 5. In both cold and TET induced edema, slower T/sub 2/ fraction is suggested to be the extracellular space and faster T/sub 2/ fraction, intracellular. 6. T/sub 2/ changes precede the water content changes in cold injury, and parallel in TET induced edema. Those changes of relaxation times are reversible. 7. T/sub 2/ changes of water is more sensitive than the T/sub 1/ for the detection of production and disappearance of brain edema. 8. These results disclose the dynamic movements of water during the course of brain edema and offered significant information of the clinical application of NMR-CT.

  15. Real-Time Observation of Ultrafast Intraband Relaxation and Exciton Multiplication in PbS Quantum Dots

    KAUST Repository

    El-Ballouli, Ala’a O.

    2014-03-19

    We examine ultrafast intraconduction band relaxation and multiple-exciton generation (MEG) in PbS quantum dots (QDs) using transient absorption spectroscopy with 120 fs temporal resolution. The intraconduction band relaxation can be directly and excellently resolved spectrally and temporally by applying broadband pump-probe spectroscopy to excite and detect the wavelengths around the exciton absorption peak, which is located in the near-infrared region. The time-resolved data unambiguously demonstrate that the intraband relaxation time progressively increases as the pump-photon energy increases. Moreover, the relaxation time becomes much shorter as the size of the QDs decreases, indicating the crucial role of spatial confinement in the intraband relaxation process. Additionally, our results reveal the systematic scaling of the intraband relaxation time with both excess energy above the effective energy band gap and QD size. We also assess MEG in different sizes of the QDs. Under the condition of high-energy photon excitation, which is well above the MEG energy threshold, ultrafast bleach recovery due to the nonradiative Auger recombination of the multiple electron-hole pairs provides conclusive experimental evidence for the presence of MEG. For instance, we achieved quantum efficiencies of 159, 129 and 106% per single-absorbed photon at pump photoexcition of three times the band gap for QDs with band gaps of 880 nm (1.41 eV), 1000 nm (1.24 eV) and 1210 nm (1.0 eV), respectively. These findings demonstrate clearly that the efficiency of transferring excess photon energy to carrier multiplication is significantly increased in smaller QDs compared with larger ones. Finally, we discuss the Auger recombination dynamics of the multiple electron-hole pairs as a function of QD size.

  16. 31P spin-lattice relaxation time measurements in biological systems

    International Nuclear Information System (INIS)

    Suzuki, Eiji; Maeda, Munehiro; Kuki, Satoru; Tsukamoto, Kenji; Kawakami, Tsuyoshi; Seo, Yoshiteru; Murakami, Masataka; Watari, Hiroshi

    1989-01-01

    Spin-lattice relaxation time (T 1 ) of phosphorus compounds in the perfused heart, liver, kidney and erythrocytes of rats were measured by the DESPOT (Driven-equilibrium single-pulse observation of T 1 ) method at 8.45 T. This method is a rapid and accurate technique for the measurement of T 1 values. T 1 values of phosphomonoesters (PME), 2, 3-diphosphoglycerate (DPG), inorganic phosphate (Pi), phosphodiesters (PDE), phosphocreatine (PCr) and three phosphates of ATP were ranged from 0.15±0.02 sec (β-ATP in the liver) to 8.5±1.6 sec (PDE in the kidney). T 1 value of β-ATP in the liver was 1/4-1/5 of those in the mandibular gland, heart, erythrocytes and kidney. T 1 values obtained from biological materials are useful for selecting the optimal pulse repetition times and pulse angles to maximize the signal-to-noise ratio of 13 P spectra, and for correcting distortions of signal intensities in the spectra. (author)

  17. Two-relaxation-time lattice Boltzmann method for the anisotropic dispersive Henry problem

    Science.gov (United States)

    Servan-Camas, Borja; Tsai, Frank T.-C.

    2010-02-01

    This study develops a lattice Boltzmann method (LBM) with a two-relaxation-time collision operator (TRT) to cope with anisotropic heterogeneous hydraulic conductivity and anisotropic velocity-dependent hydrodynamic dispersion in the saltwater intrusion problem. The directional-speed-of-sound technique is further developed to address anisotropic hydraulic conductivity and dispersion tensors. Forcing terms are introduced in the LBM to correct numerical errors that arise during the recovery procedure and to describe the sink/source terms in the flow and transport equations. In order to facilitate the LBM implementation, the forcing terms are combined with the equilibrium distribution functions (EDFs) to create pseudo-EDFs. This study performs linear stability analysis and derives LBM stability domains to solve the anisotropic advection-dispersion equation. The stability domains are used to select the time step at which the lattice Boltzmann method provides stable solutions to the numerical examples. The LBM was implemented for the anisotropic dispersive Henry problem with high ratios of longitudinal to transverse dispersivities, and the results compared well to the solutions in the work of Abarca et al. (2007).

  18. Maximum likelihood window for time delay estimation

    International Nuclear Information System (INIS)

    Lee, Young Sup; Yoon, Dong Jin; Kim, Chi Yup

    2004-01-01

    Time delay estimation for the detection of leak location in underground pipelines is critically important. Because the exact leak location depends upon the precision of the time delay between sensor signals due to leak noise and the speed of elastic waves, the research on the estimation of time delay has been one of the key issues in leak lovating with the time arrival difference method. In this study, an optimal Maximum Likelihood window is considered to obtain a better estimation of the time delay. This method has been proved in experiments, which can provide much clearer and more precise peaks in cross-correlation functions of leak signals. The leak location error has been less than 1 % of the distance between sensors, for example the error was not greater than 3 m for 300 m long underground pipelines. Apart from the experiment, an intensive theoretical analysis in terms of signal processing has been described. The improved leak locating with the suggested method is due to the windowing effect in frequency domain, which offers a weighting in significant frequencies.

  19. Ab initio relaxation times and time-dependent Hamiltonians within the steepest-entropy-ascent quantum thermodynamic framework

    Science.gov (United States)

    Kim, Ilki; von Spakovsky, Michael R.

    2017-08-01

    Quantum systems driven by time-dependent Hamiltonians are considered here within the framework of steepest-entropy-ascent quantum thermodynamics (SEAQT) and used to study the thermodynamic characteristics of such systems. In doing so, a generalization of the SEAQT framework valid for all such systems is provided, leading to the development of an ab initio physically relevant expression for the intrarelaxation time, an important element of this framework and one that had as of yet not been uniquely determined as an integral part of the theory. The resulting expression for the relaxation time is valid as well for time-independent Hamiltonians as a special case and makes the description provided by the SEAQT framework more robust at the fundamental level. In addition, the SEAQT framework is used to help resolve a fundamental issue of thermodynamics in the quantum domain, namely, that concerning the unique definition of process-dependent work and heat functions. The developments presented lead to the conclusion that this framework is not just an alternative approach to thermodynamics in the quantum domain but instead one that uniquely sheds new light on various fundamental but as of yet not completely resolved questions of thermodynamics.

  20. Multiple-Relaxation-Time Lattice Boltzmann Approach to Richtmyer-Meshkov Instability

    International Nuclear Information System (INIS)

    Chen Feng; Li Yingjun; Xu Aiguo; Zhang Guangcai

    2011-01-01

    The aims of the present paper are twofold. At first, we further study the Multiple-Relaxation-Time (MRT) Lattice Boltzmann (LB) model proposed in [Europhys. Lett. 90 (2010) 54003]. We discuss the reason why the Gram-Schmidt orthogonalization procedure is not needed in the construction of transformation matrix M; point out a reason why the Kataoka-Tsutahara model [Phys. Rev. E 69 (2004) 035701 (R)] is only valid in subsonic flows. The von Neumann stability analysis is performed. Secondly, we carry out a preliminary quantitative study on the Richtmyer-Meshkov instability using the proposed MRT LB model. When a shock wave travels from a light medium to a heavy one, the simulated growth rate is in qualitative agreement with the perturbation model by Zhang-Sohn. It is about half of the predicted value by the impulsive model and is closer to the experimental result. When the shock wave travels from a heavy medium to a light one, our simulation results are also consistent with physical analysis. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  1. Experimental study of electric field influence on low temperature long-time relaxation in crystalline ferroelectrics

    International Nuclear Information System (INIS)

    Sahling, S.; Kolac, M.; Sahling, A.

    1987-01-01

    Calorimetric measurements with polycrystalline Pb 0.915 La 0.085 x(Zr 0.65 Ti 0.35 )O 3 were performed at helium temperatures in electric field E (0 ≤ E ≤ 4.3 kV/cm). Heat release after cooling from T 1 (1.3 K ≤ T 1 ≤ 35 K) to T 0 =1.3 K is very similar to that in amorphous metals and dielectrics. Experimental results disagree with the standard tunneling model. The observed release may be explained assuming the existence of a maximum energy is an element of f in the distribution function. The maximum relaxation time τ max was found as a function of T 1 . A similar heat release is observed after switching on or off the electric field. In dependent of T for 1.1 K ≤ T ≤ 3 K, proportional to E 2 with τ max ∼ E. No heat release was observed in the KH 2 PO 4 single crystal

  2. Comparative study of the sensitivity of ADC value and T{sub 2} relaxation time for early detection of Wallerian degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Fan [Department of Radiology, Nanjing Jinling Hospital, Clinical School of Medical College of Nanjing University, Nanjing 210002 (China); Lu Guangming, E-mail: cjr.luguangming@vip.163.com [Department of Radiology, Nanjing Jinling Hospital, Clinical School of Medical College of Nanjing University, Nanjing 210002 (China); Zee Chishing, E-mail: chishing@usc.edu [Department of Radiology, USC Keck School of Medicine (United States)

    2011-07-15

    Background and purpose: Wallerian degeneration (WD), the secondary degeneration of axons from cortical and subcortical injuries, is associated with poor neurological outcome. There is some quantitative MR imaging techniques used to estimate the biologic changes secondary to delayed neuronal and axonal losses. Our purpose is to assess the sensitivity of ADC value and T{sub 2} relaxation time for early detection of WD. Methods: Ten male Sprague-Dawley rats were used to establish in vivo Wallerian degeneration model of CNS by ipsilateral motor-sensory cortex ablation. 5 days after cortex ablation, multiecho-T{sub 2} relaxometry and multi-b value DWI were acquired by using a 7 T MR imaging scanner. ADC-map and T{sub 2}-map were reconstructed by post-processing. ROIs are selected according to pathway of corticospinal tract from cortex, internal capsule, cerebral peduncle, pons, medulla oblongata to upper cervical spinal cord to measure ADC value and T{sub 2} relaxation time of healthy side and affected side. The results were compared between the side with cortical ablation and the side without ablation. Results: Excluding ablated cortex, ADC values of the corticospinal tract were significantly increased (P < 0.05) in affected side compared to the unaffected, healthy side; no difference in T{sub 2} relaxation time was observed between the affected and healthy sides. Imaging findings were correlated with histological examinations. Conclusion: As shown in this animal experiment, ADC values could non-invasively demonstrate the secondary degeneration involving descending white matter tracts. ADC values are more sensitive indicators for detection of early WD than T{sub 2} relaxation time.

  3. On a two-relaxation-time D2Q9 lattice Boltzmann model for the Navier-Stokes equations

    Science.gov (United States)

    Zhao, Weifeng; Wang, Liang; Yong, Wen-An

    2018-02-01

    In this paper, we are concerned with the stability of some lattice kinetic schemes. First, we show that a recently proposed lattice kinetic scheme is a two-relaxation-time model different from those in the literature. Second, we analyze the stability of the model by verifying the Onsager-like relation. In addition, a necessary stability criterion for hyperbolic relaxation systems is adapted to the lattice Boltzmann method. As an application of this criterion, we find some necessary stability conditions for a previously proposed lattice kinetic scheme. Numerical experiments are conducted to validate the necessary stability conditions.

  4. Transverse magnetic field effects on the relaxation time of the magnetization in Mn12 measured by {sup 55}Mn-NMR

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Y.; Watanabe, K.; Kumagai, K.; Borsa, F.; Gatteschi, D

    2003-05-01

    The longitudinal (H{sub Z}) and transverse (H{sub T}) magnetic field dependence of the relaxation time of the magnetization in Mn12 in its S=10 ground state was measured by NMR. The minima in the relaxation time at the fields for level crossing are due to the quantum tunneling of the magnetization. The shortening of the relaxation time under the application of H{sub T} is shown to be due mainly to the reduction of the energy barrier.

  5. Time course of action and endotracheal intubating conditions of Org 9487, a new short-acting steroidal muscle relaxant; a comparison with succinylcholine

    NARCIS (Netherlands)

    Wierda, JMKH; van den Broek, L; Proost, JH; Verbaan, BW; Hennis, PJ

    In a randomized study, we evaluated lag time (time from the end of injection of muscle relaxant until the first depression of the train-of-four response [TOF]), onset time (time from the end of injection of muscle relaxant until the maximum depression of the first twitch of the TOF [T1]),

  6. Intraindividual comparison of T1 relaxation times after gadobutrol and Gd-DTPA administration for cardiac late enhancement imaging

    Energy Technology Data Exchange (ETDEWEB)

    Doeblin, Patrick, E-mail: Patrick.doeblin@charite.de [Department of Cardiology, Charité – Universitätsmedizin Berlin, Charité Campus Benjamin Franklin, Berlin (Germany); Schilling, Rene, E-mail: rene.schilling@charite.de [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); Wagner, Moritz, E-mail: moritz.wagner@charite.de [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); Luhur, Reny, E-mail: renyluhur@yahoo.com [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); Huppertz, Alexander, E-mail: alexander.huppertz@charite.de [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); Imaging Science Institute, Charité, Berlin (Germany); Hamm, Bernd, E-mail: bernd.hamm@charite.de [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); Taupitz, Matthias, E-mail: matthias.taupitz@harite.de [Department of Radiology, Charité – Universitätsmedizin Berlin, Charité Campus Mitte, Berlin (Germany); and others

    2014-04-15

    Purpose: To evaluate T1-relaxation times of chronic myocardial infarction (CMI) using gadobutrol and gadopentetate dimeglumine (Gd-DTPA) over time and to determine the optimal imaging window for late enhancement imaging with both contrast agents. Material and methods: Twelve patients with CMI were prospectively included and examined on a 1.5 T magnetic resonance (MR) system using relaxivity-adjusted doses of gadobutrol (0.15 mmol/kg) and Gd-DTPA (0.2 mmol/kg) in random order. T1-relaxation times of remote myocardium (RM), infarcted myocardium (IM), and left ventricular cavity (LVC) were assessed from short-axis TI scout imaging using the Look–Locker approach and compared intraindividually using a Wilcoxon paired signed-rank test (α < 0.05). Results: Within 3 min of contrast agent administration (CA), IM showed significantly lower T1-relaxation times than RM with both contrast agents, indicating beginning cardiac late enhancement. Differences between gadobutrol and Gd-DTPA in T1-relaxation times of IM and RM were statistically not significant through all time points. However, gadobutrol led to significantly higher T1-relaxation times of LVC than Gd-DTPA from 6 to 9 min (220 ± 15 ms vs. 195 ± 30 ms p < 0.01) onwards, resulting in a significantly greater ΔT1 of IM to LVC at 9–12 min (−20 ± 35 ms vs. 0 ± 35 ms, p < 0.05) and 12–15 min (−25 ± 45 ms vs. −10 ± 60 ms, p < 0.05). Using Gd-DTPA, comparable ΔT1 values were reached only after 25–35 min. Conclusion: This study indicates good delineation of IM to RM with both contrast agents as early as 3 min after administration. However, we found significant differences in T1 relaxation times with greater ΔT1 IM–LVC using 0.15 mmol/kg gadobutrol compared to 0.20 mmol/kg Gd-DTPA after 9–15 min post-CA suggesting earlier differentiability of IM and LVC using gadobutrol.

  7. The influence of temperature, viscosity and pH on the relaxation time T1 in flowing liquids

    International Nuclear Information System (INIS)

    Toczylowska, B.

    1995-01-01

    The designed and constructed at the Institute of Biocybernetics and Biomedical Engineering facility for the relaxation time (T 1 ) measurements of liquids flow has been presented. The influence of temperature, viscosity and pH has been determined for several liquids, especially physiological fluids

  8. Interaction study of polyisobutylene with paraffins by NMR using the evaluation of spin-lattice relaxation times for hydrogen nuclei

    International Nuclear Information System (INIS)

    Marques, Rosana G.G.; Tavares, Maria I.B.

    2001-01-01

    The evaluation of spin-lattice relaxation times of 1 H for polyisobutylene/paraffin systems, were obtained using the classic inversion recovery technique, and also through Cross Polarization Magic Angle Spinning (CP/MAS) techniques varying the contact time and also by the delayed contact time pulse sequence. NMR results showed that the polyisobutylene/paraffin systems in which high molecular weight paraffins were used, is heterogeneous. However, for paraffins with low molecular weight, the system presents good homogeneity. (author)

  9. In-vivo measurement of proton relaxation time (T1 and T2) in paediatric brain by MRI

    International Nuclear Information System (INIS)

    Masumura, Michio

    1986-01-01

    The clinical application of MRI led to the detailed imaging of the three-dimentional structure of the brain. Thus, significant information has been obtained with respect to the diagnosis of various diseases, rating severity, evaluation of curative effects, etc. On the other hand, the proportion of the comparative length of the relaxation time to the signal intensity of the images (especially the Spin-Echo image) was not necessarily linear. Consquently, the evaluation of severity was not easy to make. However, if we can obtain T 1 and T 2 precisely as the parameters costituting the images, it will be possible to overcome the above-mentioned difficulties. Further, the usefulness of MRI in activities such as determining the water metabolism of the brain is expected to increase even more. By means of VISTA-MR (0.15 Tesla, resistive magnet ; Picker International Co.) we measured the proton relaxation time (spin-lattice relaxation time (T 1 ) and spin-spin relaxation time (T 2 )) of various intracerebral lesions in paediatric cases. As the control group, 43 children, 4 adolescents and 6 adults were used. The T 1 and T 2 in the normal infantile cases prolonged significantly as compared with adult case. Thereafter, they become shortened by aging. In the age of two or three years, they reach the normal level of adult case. In the cases of degenerative disease, brain tumor, and cerebral contusion, the remarkable prolongation of both T 1 and T 2 , compared with normal value of the same age was observed. In the cases of brain atrophy and epilepsy, T 1 and T 2 were slightly short or within normal value of the same age. In the cases of intracerebral hemorrhage, T 1 was shortened. The in-vivo proton relaxation time obtained by MRI have various limits, but they can be a noninvasive and useful index in evaluation of severity or curative effects in various cerebral diseases. (author)

  10. Thermal behaviour of the ESR Relaxation time in slightly dirty superconductors

    International Nuclear Information System (INIS)

    Schwachheim, G.; Machado, S.F.; Tsallis, C.

    1978-07-01

    The thermal behaviour of the ESR relaxation rate in slightly dirty superconductors is discussed for both exchange and spin-orbit interactions between the conduction electrons and the impurities. The sensibility to the electronic density of states is exhibited by using, in a modified BCS framework, an heuristic analytic form which avoids two of three defects of a previous similar treatment. The sudden increase (decrease) of the relaxation rate immediately below the critical temperature for the exchange (spin-orbit) case is confirmed. Reasonable agreement with experimental data in LaRu 2 ; Gd is obtained [pt

  11. Simulation of turbulent flow over staggered tube bundles using multi-relaxation time lattice Boltzmann method

    International Nuclear Information System (INIS)

    Park, Jong Woon; Choi, Hyun Gyung

    2014-01-01

    A turbulent fluid flow over staggered tube bundles is of great interest in many engineering fields including nuclear fuel rods, heat exchangers and especially a gas cooled reactor lower plenum. Computational methods have evolved for the simulation of such flow for decades and lattice Boltzmann method (LBM) is one of the attractive methods due to its sound physical basis and ease of computerization including parallelization. In this study to find computational performance of the LBM in turbulent flows over staggered tubes, a fluid flow analysis code employing multi-relaxation time lattice Boltzmann method (MRT-LBM) is developed based on a 2-dimensional D2Q9 lattice model and classical sub-grid eddy viscosity model of Smagorinsky. As a first step, fundamental performance MRT-LBM is investigated against a standard problem of a flow past a cylinder at low Reynolds number in terms of drag forces. As a major step, benchmarking of the MRT-LBM is performed over a turbulent flow through staggered tube bundles at Reynolds number of 18,000. For a flow past a single cylinder, the accuracy is validated against existing experimental data and previous computations in terms of drag forces on the cylinder. Mainly, the MRT-LBM computation for a flow through staggered tube bundles is performed and compared with experimental data and general purpose computational fluid dynamic (CFD) analyses with standard k-ω turbulence and large eddy simulation (LES) equipped with turbulence closures of Smagrinsky-Lilly and wall-adapting local eddy-viscosity (WALE) model. The agreement between the experimental and the computational results from the present MRT-LBM is found to be reasonably acceptable and even comparable to the LES whereas the computational efficiency is superior. (orig.)

  12. Simulation of turbulent flow over staggered tube bundles using multi-relaxation time lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Woon; Choi, Hyun Gyung [Dongguk Univ., Gyeongju (Korea, Republic of). Nuclear and Energy Engineering Dept.

    2014-02-15

    A turbulent fluid flow over staggered tube bundles is of great interest in many engineering fields including nuclear fuel rods, heat exchangers and especially a gas cooled reactor lower plenum. Computational methods have evolved for the simulation of such flow for decades and lattice Boltzmann method (LBM) is one of the attractive methods due to its sound physical basis and ease of computerization including parallelization. In this study to find computational performance of the LBM in turbulent flows over staggered tubes, a fluid flow analysis code employing multi-relaxation time lattice Boltzmann method (MRT-LBM) is developed based on a 2-dimensional D2Q9 lattice model and classical sub-grid eddy viscosity model of Smagorinsky. As a first step, fundamental performance MRT-LBM is investigated against a standard problem of a flow past a cylinder at low Reynolds number in terms of drag forces. As a major step, benchmarking of the MRT-LBM is performed over a turbulent flow through staggered tube bundles at Reynolds number of 18,000. For a flow past a single cylinder, the accuracy is validated against existing experimental data and previous computations in terms of drag forces on the cylinder. Mainly, the MRT-LBM computation for a flow through staggered tube bundles is performed and compared with experimental data and general purpose computational fluid dynamic (CFD) analyses with standard k-ω turbulence and large eddy simulation (LES) equipped with turbulence closures of Smagrinsky-Lilly and wall-adapting local eddy-viscosity (WALE) model. The agreement between the experimental and the computational results from the present MRT-LBM is found to be reasonably acceptable and even comparable to the LES whereas the computational efficiency is superior. (orig.)

  13. Harsh corporal punishment is associated with increased T2 relaxation time in dopamine-rich regions.

    Science.gov (United States)

    Sheu, Yi-Shin; Polcari, Ann; Anderson, Carl M; Teicher, Martin H

    2010-11-01

    Harsh corporal punishment (HCP) was defined as frequent parental administration of corporal punishment (CP) for discipline, with occasional use of objects such as straps, or paddles. CP is linked to increased risk for depression and substance abuse. We examine whether long-term exposure to HCP acts as sub-traumatic stressor that contributes to brain alterations, particularly in dopaminergic pathways, which may mediate their increased vulnerability to drug and alcohol abuse. Nineteen young adults who experienced early HCP but no other forms of maltreatment and twenty-three comparable controls were studied. T2 relaxation time (T2-RT) measurements were performed with an echo planar imaging TE stepping technique and T2 maps were calculated and analyzed voxel-by-voxel to locate regional T2-RT differences between groups. Previous studies indicated that T2-RT provides an indirect index of resting cerebral blood volume. Region of interest (ROI) analyses were also conducted in caudate, putamen, nucleus accumbens, anterior cingulate cortex, dorsolateral prefrontal cortex, thalamus, globus pallidus and cerebellar hemispheres. Voxel-based relaxometry showed that HCP was associated with increased T2-RT in right caudate and putamen. ROI analyses also revealed increased T2-RT in dorsolateral prefrontal cortex, substantia nigra, thalamus and accumbens but not globus pallidus or cerebellum. There were significant associations between T2-RT measures in dopamine target regions and use of drugs and alcohol, and memory performance. Alteration in the paramagnetic or hemodynamic properties of dopaminergic cell body and projection regions were observed in subjects with HCP, and these findings may relate to their increased risk for drug and alcohol abuse. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Binding and relaxation behavior of Coumarin-153 in lecithin-taurocholate mixed micelles: A time resolved fluorescence spectroscopic study

    Science.gov (United States)

    Chakrabarty, Debdeep; Chakraborty, Anjan; Seth, Debabrata; Hazra, Partha; Sarkar, Nilmoni

    2005-09-01

    The microenvironment of the bile salt-lecithin mixed aggregates has been investigated using steady state and picosecond time resolved fluorescence spectroscopy. The steady state spectra show that the polarity of the bile salt is higher compared to lecithin vesicles or the mixed aggregates. We have observed slow solvent relaxation in bile salt micelles and lecithin vesicles. The solvation time is gradually slowed down due to gradual addition of the bile salt in lecithin vesicles. Addition of bile salt leads to the tighter head group packing in lecithin. Thus, mobility of the water molecules becomes slower and consequently the solvation time is also retarded. We have observed bimodal slow rotational relaxation time in all these systems.

  15. A study on magnetic relaxation times of various organs and body fluids using superconducting magnetic resonance imaging system part I: measurement of relative signal intensity and T2 relaxation time in various portions of brain and cerebrospinal fluid

    International Nuclear Information System (INIS)

    Chang, Kee Hyun; Lee, Ghi Jai; Han, Moon Hee; Kim, Jae Ho; Han, Man Chang; Kim, Chu Wan

    1988-01-01

    This study was undertake to determine if routine clinical magnetic resonance imaging sequences using only two different repetition times (TRs) and with only two sequential echo times (TEs) can be used to measure reproducible relative signal intensity and T2 relaxation time for normal brain tissues and cerebrospinal fluid using a 2.0T superconducting system. In 47 patients 6 different anatomic sites were measured. For each anatomic location, the mean and standard deviation of these values were determined. On T1-weighted (SE 500msec/30msec) images, in globus pallidus and thalamus, of the CSF, cortical gray matter and retrobulbar fat tissue varied more, with a standard deviation of 11-14% on T1-weighted images. On T2-weighted (SE 3000msec/30msec and 3000msec/80msec) images, the relative signal intensity of all anatomic regions varied more than on T1-weighted images. The standard deviation of T2 relaxation times also varied from 10% (fat tissue) to 18% (CSF). These variations might be due to partial volume averaging, signal alteration of CSF secondary to CSF pulsatile motion, etc. Knowing that relative signal intensity and T2 relaxation times calculated from routine imaging sequences are reproducible in only limited area, these normal ranges can be used to investigate changes occurring in disease states of the limited regions.

  16. REAL TIME SPEED ESTIMATION FROM MONOCULAR VIDEO

    Directory of Open Access Journals (Sweden)

    M. S. Temiz

    2012-07-01

    Full Text Available In this paper, detailed studies have been performed for developing a real time system to be used for surveillance of the traffic flow by using monocular video cameras to find speeds of the vehicles for secure travelling are presented. We assume that the studied road segment is planar and straight, the camera is tilted downward a bridge and the length of one line segment in the image is known. In order to estimate the speed of a moving vehicle from a video camera, rectification of video images is performed to eliminate the perspective effects and then the interest region namely the ROI is determined for tracking the vehicles. Velocity vectors of a sufficient number of reference points are identified on the image of the vehicle from each video frame. For this purpose sufficient number of points from the vehicle is selected, and these points must be accurately tracked on at least two successive video frames. In the second step, by using the displacement vectors of the tracked points and passed time, the velocity vectors of those points are computed. Computed velocity vectors are defined in the video image coordinate system and displacement vectors are measured by the means of pixel units. Then the magnitudes of the computed vectors in the image space are transformed to the object space to find the absolute values of these magnitudes. The accuracy of the estimated speed is approximately ±1 – 2 km/h. In order to solve the real time speed estimation problem, the authors have written a software system in C++ programming language. This software system has been used for all of the computations and test applications.

  17. Escape time, relaxation, and sticky states of a softened Henon-Heiles model: Low-frequency vibrational mode effects and glass relaxation

    Science.gov (United States)

    Toledo-Marín, J. Quetzalcóatl; Naumis, Gerardo G.

    2018-04-01

    Here we study the relaxation of a chain consisting of three masses joined by nonlinear springs and periodic conditions when the stiffness is weakened. This system, when expressed in their normal coordinates, yields a softened Henon-Heiles system. By reducing the stiffness of one low-frequency vibrational mode, a faster relaxation is enabled. This is due to a reduction of the energy barrier heights along the softened normal mode as well as for a widening of the opening channels of the energy landscape in configurational space. The relaxation is for the most part exponential, and can be explained by a simple flux equation. Yet, for some initial conditions the relaxation follows as a power law, and in many cases there is a regime change from exponential to power-law decay. We pinpoint the initial conditions for the power-law decay, finding two regions of sticky states. For such states, quasiperiodic orbits are found since almost for all components of the initial momentum orientation, the system is trapped inside two pockets of configurational space. The softened Henon-Heiles model presented here is intended as the simplest model in order to understand the interplay of rigidity, nonlinear interactions and relaxation for nonequilibrium systems such as glass-forming melts or soft matter. Our softened system can be applied to model β relaxation in glasses and suggest that local reorientational jumps can have an exponential and a nonexponential contribution for relaxation, the latter due to asymmetric molecules sticking in cages for certain orientations.

  18. Monte Carlo computation of correlation times of independent relaxation modes at criticality

    NARCIS (Netherlands)

    Bloete, H.W.J.; Nightingale, M.P.

    2000-01-01

    We investigate aspects of universality of Glauber critical dynamics in two dimensions. We compute the critical exponent $z$ and numerically corroborate its universality for three different models in the static Ising universality class and for five independent relaxation modes. We also present

  19. Travel Time Estimation on Urban Street Segment

    Directory of Open Access Journals (Sweden)

    Jelena Kajalić

    2018-02-01

    Full Text Available Level of service (LOS is used as the main indicator of transport quality on urban roads and it is estimated based on the travel speed. The main objective of this study is to determine which of the existing models for travel speed calculation is most suitable for local conditions. The study uses actual data gathered in travel time survey on urban streets, recorded by applying second by second GPS data. The survey is limited to traffic flow in saturated conditions. The RMSE method (Root Mean Square Error is used for research results comparison with relevant models: Akcelik, HCM (Highway Capacity Manual, Singapore model and modified BPR (the Bureau of Public Roads function (Dowling - Skabardonis. The lowest deviation in local conditions for urban streets with standardized intersection distance (400-500 m is demonstrated by Akcelik model. However, for streets with lower signal density (<1 signal/km the correlation between speed and degree of saturation is best presented by HCM and Singapore model. According to test results, Akcelik model was adopted for travel speed estimation which can be the basis for determining the level of service in urban streets with standardized intersection distance and coordinated signal timing under local conditions.

  20. Whole brain MP2RAGE-based mapping of the longitudinal relaxation time at 9.4T.

    Science.gov (United States)

    Hagberg, G E; Bause, J; Ethofer, T; Ehses, P; Dresler, T; Herbert, C; Pohmann, R; Shajan, G; Fallgatter, A; Pavlova, M A; Scheffler, K

    2017-01-01

    Mapping of the longitudinal relaxation time (T 1 ) with high accuracy and precision is central for neuroscientific and clinical research, since it opens up the possibility to obtain accurate brain tissue segmentation and gain myelin-related information. An ideal, quantitative method should enable whole brain coverage within a limited scan time yet allow for detailed sampling with sub-millimeter voxel sizes. The use of ultra-high magnetic fields is well suited for this purpose, however the inhomogeneous transmit field potentially hampers its use. In the present work, we conducted whole brain T 1 mapping based on the MP2RAGE sequence at 9.4T and explored potential pitfalls for automated tissue classification compared with 3T. Data accuracy and T 2 -dependent variation of the adiabatic inversion efficiency were investigated by single slice T 1 mapping with inversion recovery EPI measurements, quantitative T 2 mapping using multi-echo techniques and simulations of the Bloch equations. We found that the prominent spatial variation of the transmit field at 9.4T (yielding flip angles between 20% and 180% of nominal values) profoundly affected the result of image segmentation and T 1 mapping. These effects could be mitigated by correcting for both flip angle and inversion efficiency deviations. Based on the corrected T 1 maps, new, 'flattened', MP2RAGE contrast images were generated, that were no longer affected by variations of the transmit field. Unlike the uncorrected MP2RAGE contrast images acquired at 9.4T, these flattened images yielded image segmentations comparable to 3T, making bias-field correction prior to image segmentation and tissue classification unnecessary. In terms of the T 1 estimates at high field, the proposed correction methods resulted in an improved precision, with test-retest variability below 1% and a coefficient-of-variation across 25 subjects below 3%. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Estimated time of arrival and debiasing the time saving bias.

    Science.gov (United States)

    Eriksson, Gabriella; Patten, Christopher J D; Svenson, Ola; Eriksson, Lars

    2015-01-01

    The time saving bias predicts that the time saved when increasing speed from a high speed is overestimated, and underestimated when increasing speed from a slow speed. In a questionnaire, time saving judgements were investigated when information of estimated time to arrival was provided. In an active driving task, an alternative meter indicating the inverted speed was used to debias judgements. The simulated task was to first drive a distance at a given speed, and then drive the same distance again at the speed the driver judged was required to gain exactly 3 min in travel time compared with the first drive. A control group performed the same task with a speedometer and saved less than the targeted 3 min when increasing speed from a high speed, and more than 3 min when increasing from a low speed. Participants in the alternative meter condition were closer to the target. The two studies corroborate a time saving bias and show that biased intuitive judgements can be debiased by displaying the inverted speed. Practitioner Summary: Previous studies have shown a cognitive bias in judgements of the time saved by increasing speed. This simulator study aims to improve driver judgements by introducing a speedometer indicating the inverted speed in active driving. The results show that the bias can be reduced by presenting the inverted speed and this finding can be used when designing in-car information systems.

  2. DEVICE FOR MEASURMENT OF RELAXATION TIME OF THE BLEACHED STATE OF OPTICAL MATERIALS BY THE «PUMP-PROBE» METHOD IN SUB-ΜS TIME DOMAIN

    Directory of Open Access Journals (Sweden)

    I. V. Glazunov

    2016-01-01

    Full Text Available The use of passive shutters to control the duration of the light pulses is an important aspect in the miniature and microchip lasers. One of the key spectroscopic characteristics which determine the properties of the material, which can be used as a passive shutter is relaxation time of its bleached state.We describe a device for determination of relaxation time of the bleached state in optical materials by the «pump-probe» method in the sub-μs time domain. This device allows one to determine relaxation times for materials which absorb at the light wavelength of 1.5 μm, e.g., materials doped with cobalt ions Co2+. The results of test examinations of the device are described, and the relaxation time of the bleached state of Co2+ ions is measured for a novel material – transparent glass-ceramics with Co2+:Ga2 O3 nanophase – amounting to 190 ± 6 ns. 

  3. T2 Relaxation Time Mapping of Proximal Tibiofibular Cartilage by 3-Tesla Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Kwack, Kyu-Sung; Cho, Jae Hyun; Kim, Jun Man; Kim, Sun Yong; Min, Byoung-Hyun; Yoon, Seung-Hyun

    2009-01-01

    Background: The proximal tibiofibular joint (PTFJ) can be considered the fourth compartment of the knee joint. However, there have been no studies of the T2 values (T2 relaxation time) of PTFJ cartilage. Purpose: To assess the T2 values of PTFJ cartilage at 3T magnetic resonance imaging (MRI), and to show the clinical utility of T2 values of PTFJ cartilage for the diagnosis of osteoarthritis (OA). Material and Methods: 118 patients who had knee MR imaging and knee radiography were enrolled. MRI was performed using a 3T MRI scanner, and T2 maps were calculated from a sagittal multi-echo acquisition. Two regions of interest (ROIs) were positioned within PTFJ cartilage and medial femoral condyle (MFC) cartilage. The average T2 value and standard deviation (SD) of each ROI were recorded. Using PTFJ cartilage as a standard reference, the T2 index ((MFC/PTFJ)x100) and T2SD index ((MFCSD/PTFJSD)x100) were calculated. A paired t test was performed to compare the mean and SD of ROIs within PTFJ and MFC cartilage. Correlation analyses were performed among the parameters age, Kellgren-Lawrence (KL) score, means and SDs of ROIs within PTFJ and MFC cartilage, T2 index, and T2SD index. Results: PTFJ cartilage had a significantly shorter T2 value than did MFC cartilage (P<0.0001). ROIs within PTFJ cartilage showed significantly smaller SDs than did those within MFC cartilage (P<0.0001). The average T2 value and SD of MFC and the T2SD index showed a positive correlation to the KL score (P<0.05). The correlation coefficients for the average T2 value, SD, and T2SD index of MFC were R=0.203, 0.254, and 0.268, respectively. However, there was no significant correlation between T2 values of PTFJ cartilage and KL score (P=0.643). Conclusion: PTFJ cartilage showed shorter and more homogeneous T2 values with a small SD than did MFC cartilage, regardless of the degree of OA at femorotibial compartments. PTFJ cartilage may be a useful internal standard reference to diagnose OA and would be

  4. T2 Relaxation Time Mapping of Proximal Tibiofibular Cartilage by 3-Tesla Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kwack, Kyu-Sung; Cho, Jae Hyun; Kim, Jun Man; Kim, Sun Yong (Dept. of Radiology, Ajou Univ. Medical Center, Suwon (Korea)); Min, Byoung-Hyun; Yoon, Seung-Hyun (Cartilage Regeneration Center, Ajou Univ. Medical Center, Suwon (Korea))

    2009-11-15

    Background: The proximal tibiofibular joint (PTFJ) can be considered the fourth compartment of the knee joint. However, there have been no studies of the T2 values (T2 relaxation time) of PTFJ cartilage. Purpose: To assess the T2 values of PTFJ cartilage at 3T magnetic resonance imaging (MRI), and to show the clinical utility of T2 values of PTFJ cartilage for the diagnosis of osteoarthritis (OA). Material and Methods: 118 patients who had knee MR imaging and knee radiography were enrolled. MRI was performed using a 3T MRI scanner, and T2 maps were calculated from a sagittal multi-echo acquisition. Two regions of interest (ROIs) were positioned within PTFJ cartilage and medial femoral condyle (MFC) cartilage. The average T2 value and standard deviation (SD) of each ROI were recorded. Using PTFJ cartilage as a standard reference, the T2 index ((MFC/PTFJ)x100) and T2SD index ((MFCSD/PTFJSD)x100) were calculated. A paired t test was performed to compare the mean and SD of ROIs within PTFJ and MFC cartilage. Correlation analyses were performed among the parameters age, Kellgren-Lawrence (KL) score, means and SDs of ROIs within PTFJ and MFC cartilage, T2 index, and T2SD index. Results: PTFJ cartilage had a significantly shorter T2 value than did MFC cartilage (P<0.0001). ROIs within PTFJ cartilage showed significantly smaller SDs than did those within MFC cartilage (P<0.0001). The average T2 value and SD of MFC and the T2SD index showed a positive correlation to the KL score (P<0.05). The correlation coefficients for the average T2 value, SD, and T2SD index of MFC were R=0.203, 0.254, and 0.268, respectively. However, there was no significant correlation between T2 values of PTFJ cartilage and KL score (P=0.643). Conclusion: PTFJ cartilage showed shorter and more homogeneous T2 values with a small SD than did MFC cartilage, regardless of the degree of OA at femorotibial compartments. PTFJ cartilage may be a useful internal standard reference to diagnose OA and would be

  5. The application of T1 and T2 relaxation time and magnetization transfer ratios to the early diagnosis of patellar cartilage osteoarthritis

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Weiwu; Qu, Nan; Lu, Zhihua; Yang, Shixun [Shanghai Jiaotong University, Department of Radiology, Shanghai (China)

    2009-11-15

    We compare the T1 and T2 relaxation times and magnetization transfer ratios (MTRs) of normal subjects and patients with osteoarthritis (OA) to evaluate the ability of these techniques to aid in the early diagnosis and treatment of OA. The knee joints in 11 normal volunteers and 40 patients with OA were prospectively evaluated using T1 relaxation times as measured using delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), T2 relaxation times (multiple spin-echo sequence, T2 mapping), and MTRs. The OA patients were further categorized into mild, moderate, and severe OA. The mean T1 relaxation times of the four groups (normal, mild OA, moderate OA, and severe OA) were: 487.3{+-}27.7, 458.0{+-}55.9, 405.9{+-}57.3, and 357.9{+-}36.7 respectively (p<0.001). The mean T2 relaxation times of the four groups were: 37.8{+-}3.3, 44.0{+-}8.5, 50.9{+-}9.5, and 57.4{+-}4.8 respectively (p<0.001). T1 relaxation time decreased and T2 relaxation time increased with worsening degeneration of patellar cartilage. The result of the covariance analysis showed that the covariate age had a significant influence on T2 relaxation time (p<0.001). No significant differences between the normal and OA groups using MTR were noted. T1 and T2 relaxation times are relatively sensitive to early degenerative changes in the patellar cartilage, whereas the MTR may have some limitations with regard to early detection of OA. In addition, The T1 and T2 relaxation times negatively correlate with each other, which is a novel finding. (orig.)

  6. A general model to calculate the spin-lattice (T1) relaxation time of blood, accounting for haematocrit, oxygen saturation and magnetic field strength.

    Science.gov (United States)

    Hales, Patrick W; Kirkham, Fenella J; Clark, Christopher A

    2016-02-01

    Many MRI techniques require prior knowledge of the T1-relaxation time of blood (T1bl). An assumed/fixed value is often used; however, T1bl is sensitive to magnetic field (B0), haematocrit (Hct), and oxygen saturation (Y). We aimed to combine data from previous in vitro measurements into a mathematical model, to estimate T1bl as a function of B0, Hct, and Y. The model was shown to predict T1bl from in vivo studies with a good accuracy (± 87 ms). This model allows for improved estimation of T1bl between 1.5-7.0 T while accounting for variations in Hct and Y, leading to improved accuracy of MRI-derived perfusion measurements. © The Author(s) 2015.

  7. In vivo relaxation time measurements on a murine tumor model--prolongation of T1 after photodynamic therapy.

    Science.gov (United States)

    Liu, Y H; Hawk, R M; Ramaprasad, S

    1995-01-01

    RIF tumors implanted on mice feet were investigated for changes in relaxation times (T1 and T2) after photodynamic therapy (PDT). Photodynamic therapy was performed using Photofrin II as the photosensitizer and laser light at 630 nm. A home-built proton solenoid coil in the balanced configuration was used to accommodate the tumors, and the relaxation times were measured before, immediately after, and up to several hours after therapy. Several control experiments were performed untreated tumors, tumors treated with Photofrin II alone, or tumors treated with laser light alone. Significant increases in T1s of water protons were observed after PDT treatment. In all experiments, 31P spectra were recorded before and after the therapy to study the tumor status and to confirm the onset of PDT. These studies show significant prolongation of T1s after the PDT treatment. The spin-spin relaxation measurements, on the other hand, did not show such prolongation in T2 values after PDT treatment.

  8. Topographical Variation of Human Femoral Articular Cartilage Thickness, T1rho and T2 Relaxation Times Is Related to Local Loading during Walking.

    Science.gov (United States)

    Van Rossom, Sam; Wesseling, Mariska; Van Assche, Dieter; Jonkers, Ilse

    2018-01-01

    Objective Early detection of degenerative changes in the cartilage matrix composition is essential for evaluating early interventions that slow down osteoarthritis (OA) initiation. T1rho and T2 relaxation times were found to be effective for detecting early changes in proteoglycan and collagen content. To use these magnetic resonance imaging (MRI) methods, it is important to document the topographical variation in cartilage thickness, T1rho and T2 relaxation times in a healthy population. As OA is partially mechanically driven, the relation between these MRI-based parameters and localized mechanical loading during walking was investigated. Design MR images were acquired in 14 healthy adults and cartilage thickness and T1rho and T2 relaxation times were determined. Experimental gait data was collected and processed using musculoskeletal modeling to identify weight-bearing zones and estimate the contact force impulse during gait. Variation of the cartilage properties (i.e., thickness, T1rho, and T2) over the femoral cartilage was analyzed and compared between the weight-bearing and non-weight-bearing zone of the medial and lateral condyle as well as the trochlea. Results Medial condyle cartilage thickness was correlated to the contact force impulse ( r = 0.78). Lower T1rho, indicating increased proteoglycan content, was found in the medial weight-bearing zone. T2 was higher in all weight-bearing zones compared with the non-weight-bearing zones, indicating lower relative collagen content. Conclusions The current results suggest that medial condyle cartilage is adapted as a long-term protective response to localized loading during a frequently performed task and that the weight-bearing zone of the medial condyle has superior weight bearing capacities compared with the non-weight-bearing zones.

  9. Associated relaxation time and the correlation function for a tumor cell growth system subjected to color noises

    International Nuclear Information System (INIS)

    Wang Canjun; Wei Qun; Mei Dongcheng

    2008-01-01

    The associated relaxation time T c and the normalized correlation function C(s) for a tumor cell growth system subjected to color noises are investigated. Using the Novikov theorem and Fox approach, the steady probability distribution is obtained. Based on them, the expressions of T c and C(s) are derived by means of projection operator method, in which the effects of the memory kernels of the correlation function are taken into account. Performing the numerical computations, it is found: (1) With the cross-correlation intensity |λ|, the additive noise intensity α and the multiplicative noise self-correlation time τ 1 increasing, the tumor cell numbers can be restrained; And the cross-correlation time τ 3 , the multiplicative noise intensity D can induce the tumor cell numbers increasing; However, the additive noise self-correlation time τ 2 cannot affect the tumor cell numbers; The relaxation time T c is a stochastic resonant phenomenon, and the distribution curves exhibit a single-maximum structure with D increasing. (2) The cross-correlation strength λ weakens the related activity between two states of the tumor cell numbers at different time, and enhances the stability of the tumor cell growth system in the steady state; On the contrast, τ 1 and τ 3 enhance the related activity between two states at different time; However, τ 2 has no effect on the related activity between two states at different time

  10. Associated relaxation time and the correlation function for a tumor cell growth system subjected to color noises

    Science.gov (United States)

    Wang, Can-Jun; Wei, Qun; Mei, Dong-Cheng

    2008-03-01

    The associated relaxation time T and the normalized correlation function C(s) for a tumor cell growth system subjected to color noises are investigated. Using the Novikov theorem and Fox approach, the steady probability distribution is obtained. Based on them, the expressions of T and C(s) are derived by means of projection operator method, in which the effects of the memory kernels of the correlation function are taken into account. Performing the numerical computations, it is found: (1) With the cross-correlation intensity |λ|, the additive noise intensity α and the multiplicative noise self-correlation time τ increasing, the tumor cell numbers can be restrained; And the cross-correlation time τ, the multiplicative noise intensity D can induce the tumor cell numbers increasing; However, the additive noise self-correlation time τ cannot affect the tumor cell numbers; The relaxation time T is a stochastic resonant phenomenon, and the distribution curves exhibit a single-maximum structure with D increasing. (2) The cross-correlation strength λ weakens the related activity between two states of the tumor cell numbers at different time, and enhances the stability of the tumor cell growth system in the steady state; On the contrast, τ and τ enhance the related activity between two states at different time; However, τ has no effect on the related activity between two states at different time.

  11. Predicting How Nanoconfinement Changes the Relaxation Time of a Supercooled Liquid

    DEFF Research Database (Denmark)

    Ingebrigtsen, Trond; Errington, Jeff; Truskett, Tom

    2013-01-01

    The properties of nanoconfined fluids can be strikingly different from those of bulk liquids. A basic unanswered question is whether the equilibrium and dynamic consequences of confinement are related to each other in a simple way. We study this question by simulation of a liquid comprising...... asymmetric dumbbell-shaped molecules, which can be deeply supercooled without crystallizing. We find that the dimensionless structural relaxation times—spanning six decades as a function of temperature, density, and degree of confinement—collapse when plotted versus excess entropy. The data also collapse...

  12. Surface-NMR measurements of the longitudinal relaxation time T1 in a homogeneous sandy aquifer in Skive, Denmark

    Science.gov (United States)

    Walbrecker, J.; Behroozmand, A.

    2011-12-01

    Efficient groundwater management requires reliable means of characterizing shallow groundwater aquifers. One key parameter in this respect is hydraulic conductivity. Surface nuclear magnetic resonance (NMR) is a geophysical exploration technique that can potentially provide this type of information in a noninvasive, cost-effective way. The technique is based on measuring the precession of nuclear spins of protons in groundwater molecules. It involves large loop antennas deployed on Earth's surface to generate electromagnetic pulses tuned to specifically excite and detect groundwater proton spins. Naturally, the excited state of spins is transitory - once excited, spins relax back to their equilibrium state. This relaxation process is strongly influenced by the spin environment, which, in the case of groundwater, is defined by the aquifer. By employing empirical relations, changes in relaxation behavior can be used to identify changes in aquifer hydraulic conductivity, making the NMR relaxation signal a very important piece of information. Particularly, efforts are made to record the longitudinal relaxation parameter T1, because it is known from laboratory studies that it often reliably correlates with hydraulic conductivity, even in the presence of magnetic species. In surface NMR, T1 data are collected by recording the NMR signal amplitude following two sequential excitation pulses as a function of the delay time τ between the two pulses. In conventional acquisition, the two pulses have a mutual phase shift of π. Based on theoretical arguments it was recently shown that T1 times acquired according to this conventional surface-NMR scheme are systematically biased. It was proposed that the bias can be minimized by cycling the phase of the two pulses between π and zero in subsequent double-pulse experiments, and subtracting the resulting signal amplitudes (phase-cycled pseudosaturation recovery scheme, pcPSR). We present the first surface-NMR T1 data set recorded

  13. The effect of solvent relaxation time constants on free energy gap law for ultrafast charge recombination following photoinduced charge separation.

    Science.gov (United States)

    Mikhailova, Valentina A; Malykhin, Roman E; Ivanov, Anatoly I

    2018-05-16

    To elucidate the regularities inherent in the kinetics of ultrafast charge recombination following photoinduced charge separation in donor-acceptor dyads in solutions, the simulations of the kinetics have been performed within the stochastic multichannel point-transition model. Increasing the solvent relaxation time scales has been shown to strongly vary the dependence of the charge recombination rate constant on the free energy gap. In slow relaxing solvents the non-equilibrium charge recombination occurring in parallel with solvent relaxation is very effective so that the charge recombination terminates at the non-equilibrium stage. This results in a crucial difference between the free energy gap laws for the ultrafast charge recombination and the thermal charge transfer. For the thermal reactions the well-known Marcus bell-shaped dependence of the rate constant on the free energy gap is realized while for the ultrafast charge recombination only a descending branch is predicted in the whole area of the free energy gap exceeding 0.2 eV. From the available experimental data on the population kinetics of the second and first excited states for a series of Zn-porphyrin-imide dyads in toluene and tetrahydrofuran solutions, an effective rate constant of the charge recombination into the first excited state has been calculated. The obtained rate constant being very high is nearly invariable in the area of the charge recombination free energy gap from 0.2 to 0.6 eV that supports the theoretical prediction.

  14. Time-domain simulation of constitutive relations for nonlinear acoustics including relaxation for frequency power law attenuation media modeling

    Science.gov (United States)

    Jiménez, Noé; Camarena, Francisco; Redondo, Javier; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.

    2015-10-01

    We report a numerical method for solving the constitutive relations of nonlinear acoustics, where multiple relaxation processes are included in a generalized formulation that allows the time-domain numerical solution by an explicit finite differences scheme. Thus, the proposed physical model overcomes the limitations of the one-way Khokhlov-Zabolotskaya-Kuznetsov (KZK) type models and, due to the Lagrangian density is implicitly included in the calculation, the proposed method also overcomes the limitations of Westervelt equation in complex configurations for medical ultrasound. In order to model frequency power law attenuation and dispersion, such as observed in biological media, the relaxation parameters are fitted to both exact frequency power law attenuation/dispersion media and also empirically measured attenuation of a variety of tissues that does not fit an exact power law. Finally, a computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the finite difference scheme, and, on the other hand, improve stability trough artificial attenuation when shock waves are present. This technique avoids the use of high-order finite-differences schemes leading to fast calculations. The present algorithm is especially suited for practical configuration where spatial discontinuities are present in the domain (e.g. axisymmetric domains or zero normal velocity boundary conditions in general). The accuracy of the method is discussed by comparing the proposed simulation solutions to one dimensional analytical and k-space numerical solutions.

  15. Quantifying protein dynamics in the ps–ns time regime by NMR relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, Griselda; LeMaster, David M., E-mail: david.lemaster@health.ny.gov [University at Albany - SUNY, Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, School of Public Health (United States)

    2016-11-15

    Both {sup 15}N chemical shift anisotropy (CSA) and sufficiently rapid exchange linebroadening transitions exhibit relaxation contributions that are proportional to the square of the magnetic field. Deconvoluting these contributions is further complicated by residue-dependent variations in protein amide {sup 15}N CSA values which have proven difficult to accurately measure. Exploiting recently reported improvements for the implementation of T{sub 1} and T{sub 1ρ} experiments, field strength-dependent studies have been carried out on the B3 domain of protein G (GB3) as well as on the immunophilin FKBP12 and a H87V variant of that protein in which the major conformational exchange linebroadening transition is suppressed. By applying a zero frequency spectral density rescaling analysis to the relaxation data collected at magnetic fields from 500 to 900 MHz {sup 1}H, differential residue-specific {sup 15}N CSA values have been obtained for GB3 which correlate with those derived from solid state and liquid crystalline NMR measurements to a level similar to the correlation among those previously reported studies. Application of this analysis protocol to FKBP12 demonstrated an efficient quantitation of both weak exchange linebroadening contributions and differential residue-specific {sup 15}N CSA values. Experimental access to such differential residue-specific {sup 15}N CSA values should significantly facilitate more accurate comparisons with molecular dynamics simulations of protein motion that occurs within the timeframe of global molecular tumbling.

  16. Energy and Momentum Relaxation Times of 2D Electrons Due to Near Surface Deformation Potential Scattering

    Science.gov (United States)

    Pipa, Viktor; Vasko, Fedor; Mitin, Vladimir

    1997-03-01

    The low temperature energy and momentum relaxation rates of 2D electron gas placed near the free or clamped surface of a semi-infinit sample are calculated. To describe the electron-acoustic phonon interaction with allowance of the surface effect the method of elasticity theory Green functions was used. This method allows to take into account the reflection of acoustic waves from the surface and related mutual conversion of LA and TA waves. It is shown that the strength of the deformation potential scattering at low temperatures substantially depends on the mechanical conditions at the surface: relaxation rates are suppressed for the free surface while for the rigid one the rates are enhanced. The dependence of the conductivity on the distance between the 2D layer and the surface is discussed. The effect is most pronounced in the range of temperatures 2 sl pF < T < (2 hbar s_l)/d, where pF is the Fermi momentum, sl is the velocity of LA waves, d is the width of the quantum well.

  17. Quantification of glutathione transverse relaxation time T2 using echo time extension with variable refocusing selectivity and symmetry in the human brain at 7 Tesla

    Science.gov (United States)

    Swanberg, Kelley M.; Prinsen, Hetty; Coman, Daniel; de Graaf, Robin A.; Juchem, Christoph

    2018-05-01

    Glutathione (GSH) is an endogenous antioxidant implicated in numerous biological processes, including those associated with multiple sclerosis, aging, and cancer. Spectral editing techniques have greatly facilitated the acquisition of glutathione signal in living humans via proton magnetic resonance spectroscopy, but signal quantification at 7 Tesla is still hampered by uncertainty about the glutathione transverse decay rate T2 relative to those of commonly employed quantitative references like N-acetyl aspartate (NAA), total creatine, or water. While the T2 of uncoupled singlets can be derived in a straightforward manner from exponential signal decay as a function of echo time, similar estimation of signal decay in GSH is complicated by a spin system that involves both weak and strong J-couplings as well as resonances that overlap those of several other metabolites and macromolecules. Here, we extend a previously published method for quantifying the T2 of GABA, a weakly coupled system, to quantify T2 of the strongly coupled spin system glutathione in the human brain at 7 Tesla. Using full density matrix simulation of glutathione signal behavior, we selected an array of eight optimized echo times between 72 and 322 ms for glutathione signal acquisition by J-difference editing (JDE). We varied the selectivity and symmetry parameters of the inversion pulses used for echo time extension to further optimize the intensity, simplicity, and distinctiveness of glutathione signals at chosen echo times. Pairs of selective adiabatic inversion pulses replaced nonselective pulses at three extended echo times, and symmetry of the time intervals between the two extension pulses was adjusted at one extended echo time to compensate for J-modulation, thereby resulting in appreciable signal-to-noise ratio and quantifiable signal shapes at all measured points. Glutathione signal across all echo times fit smooth monoexponential curves over ten scans of occipital cortex voxels in nine

  18. Properties of the relaxation time distribution underlying the Kohlrausch-Williams-Watts photoionization of the DX centers in Cd1-xMnxTe mixed crystals

    International Nuclear Information System (INIS)

    Trzmiel, J; Weron, K; Placzek-Popko, E; Janczura, J

    2009-01-01

    In this paper we clarify the relationship between the relaxation rate and relaxation time distributions underlying the Kohlrausch-Williams-Watts (KWW) photoconductivity build-ups in indium- and gallium-doped Cd 1-x Mn x Te mixed crystals. We discuss the role of asymptotic properties of the corresponding probability density functions. We show that the relaxation rate distribution, as a completely asymmetric α-stable distribution, leads to an infinite mean value of the effective relaxation rate. In contrast, the relaxation time distribution related to it leads to a finite mean value of the effective relaxation time. It follows from the experimental data analysis that for all the investigated samples the KWW exponent α decreases linearly with increasing photon flux in the range of (0.6-0.99) and its values are more spread in the case of gallium-doped material. We also observe a linear dependence of the mean relaxation time on the characteristic material time constant, which is consistent with the theoretical model.

  19. Covariance matrix estimation for stationary time series

    OpenAIRE

    Xiao, Han; Wu, Wei Biao

    2011-01-01

    We obtain a sharp convergence rate for banded covariance matrix estimates of stationary processes. A precise order of magnitude is derived for spectral radius of sample covariance matrices. We also consider a thresholded covariance matrix estimator that can better characterize sparsity if the true covariance matrix is sparse. As our main tool, we implement Toeplitz [Math. Ann. 70 (1911) 351–376] idea and relate eigenvalues of covariance matrices to the spectral densities or Fourier transforms...

  20. The effect of timing of intravenous muscle relaxant on the quality of double-contrast barium enema

    International Nuclear Information System (INIS)

    Elson, E.M.; Elson, E.M.; Campbell, D.M.; Halligan, S.; Shaikh, I.; Davitt, S.; Bartram, C.I.

    2000-01-01

    AIM: To determine whether the timing of buscopan administration during double-contrast barium enema examination (DCBE) affects diagnostic quality. MATERIALS AND METHODS: In a prospective setting, 100 consecutive adult out-patients referred for DCBE received 20 mg buscopan (hyoscine-N-butylbromide) intravenously, either before infusion of barium suspension (Group A) or after barium infusion and gas insufflation (Group B). A subjective assessment of ease of contrast medium infusion was made at the time of examination and the films subsequently analysed by two radiologists unaware of the mode of relaxant administration, who noted the quality of mucosal coating and made subjective and objective measurements of segmental distension. RESULTS: There was no significant difference in screening times, infusion difficulty or colonic contrast medium coating between the two groups. Subjective assessment of distension of the caecum, ascending colon, transverse colon and rectum were not significantly different. Patients receiving intravenous relaxant after barium and gas infusion had less subjective descending (P = 0.05) and sigmoid (P = 0.04) colon distension, but there was no significant difference with respect to maximal bowel diameter in any of the segments measured. CONCLUSION: The timing of intravenous administration during DCBE is likely to have no significant effect on the diagnostic quality of the study. Elson, E.M. (2000)

  1. Quantum process tomography with informational incomplete data of two J-coupled heterogeneous spins relaxation in a time window much greater than T1

    Science.gov (United States)

    Maciel, Thiago O.; Vianna, Reinaldo O.; Sarthour, Roberto S.; Oliveira, Ivan S.

    2015-11-01

    We reconstruct the time dependent quantum map corresponding to the relaxation process of a two-spin system in liquid-state NMR at room temperature. By means of quantum tomography techniques that handle informational incomplete data, we show how to properly post-process and normalize the measurements data for the simulation of quantum information processing, overcoming the unknown number of molecules prepared in a non-equilibrium magnetization state (Nj) by an initial sequence of radiofrequency pulses. From the reconstructed quantum map, we infer both longitudinal (T1) and transversal (T2) relaxation times, and introduce the J-coupling relaxation times ({T}1J,{T}2J), which are relevant for quantum information processing simulations. We show that the map associated to the relaxation process cannot be assumed approximated unital and trace-preserving for times greater than {T}2J.

  2. T2 relaxation time in patellar cartilage - global and regional reproducibility at 1.5 Tesla and 3 Tesla

    International Nuclear Information System (INIS)

    Glaser, C.; Horng, A.; Mendlik, T.; Weckbach, S.; Hoffmann, R.T.; Wagner, S.; Raya, J.G.; Reiser, M.; Horger, W.

    2007-01-01

    Purpose: Evaluation of the global and regional reproducibility of T2 relaxation time in patellar cartilage at 1.5 T and 3 T. Materials and Methods: 6 left patellae of 6 healthy volunteers (aged 25-30, 3 female, 3 male) were examined using a fat-saturated multiecho sequence and a T1-w 3D-FLASH sequence with water excitation at 1.5 Tesla and 3 Tesla. Three consecutive data sets were acquired within one MRI session with the examined knee being repositioned in the coil and scanner between each data set. The segmented cartilage (FLASH sequence) was overlaid on the multiecho data and T2 values were calculated for the total cartilage, 3 horizontal layers consisting of a superficial, intermedial and deep layer, 3 facets consisting of a medial, median (ridge) and lateral facet (global T2 values) and 27 ROIs/MRI slices (regional T2 value). The reproducibility (precision error) was calculated as the root mean square average of the individual standard deviations [ms] and coefficients of variation (COV) [%]. Results: The mean global reproducibility error for T2 was 3.53% (±0.38%) at 1.5 Tesla and 3.25% (±0.61%) at 3 Tesla. The mean regional reproducibility error for T2 was 8.62% (±2.61%) at 1.5 Tesla and 9.66% (±3.37%) at 3 Tesla. There was no significant difference with respect to absolute reproducibility errors between 1.5 Tesla and 3 Tesla at a constant spatial resolution. However, different reproducibility errors were found between the cartilage layers. One third of the data variability could be attributed to the influence of the different cartilage layers, and another 10% to the influence of the separate MRI slices. Conclusion: Our data provides an estimation of the global and regional reproducibility errors of T2 in healthy cartilage. In the analysis of small subregions, an increase in the regional reproducibility error must be accepted. The data may serve as a basis for sample size calculations of study populations and may contribute to the decision regarding the

  3. Relationship between aging and T1 relaxation time in deep gray matter: A voxel-based analysis.

    Science.gov (United States)

    Okubo, Gosuke; Okada, Tomohisa; Yamamoto, Akira; Fushimi, Yasutaka; Okada, Tsutomu; Murata, Katsutoshi; Togashi, Kaori

    2017-09-01

    To investigate age-related changes in T 1 relaxation time in deep gray matter structures in healthy volunteers using magnetization-prepared 2 rapid acquisition gradient echoes (MP2RAGE). In all, 70 healthy volunteers (aged 20-76, mean age 42.6 years) were scanned at 3T magnetic resonance imaging (MRI). A MP2RAGE sequence was employed to quantify T 1 relaxation times. After the spatial normalization of T 1 maps with the diffeomorphic anatomical registration using the exponentiated Lie algebra algorithm, voxel-based regression analysis was conducted. In addition, linear and quadratic regression analyses of regions of interest (ROIs) were also performed. With aging, voxel-based analysis (VBA) revealed significant T 1 value decreases in the ventral-inferior putamen, nucleus accumbens, and amygdala, whereas T 1 values significantly increased in the thalamus and white matter as well (P time vary by location in deep gray matter. 2 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:724-731. © 2017 International Society for Magnetic Resonance in Medicine.

  4. An analysis of the NMR-CT image by the measurement of proton-relaxation times in tissue

    International Nuclear Information System (INIS)

    Naruse, Shoji; Horikawa, Yoshiharu; Tanaka, Chuzo; Hirakawa, Kimiyoshi; Nishikawa, Hiroyasu; Shimizu, Koji; Kiri, Motosada.

    1984-01-01

    NMR-CT images were analyzed by measuring the proton-relaxation times in tissues. The NMR-CT images were obtained in 10 normal volunteers and 16 patients with brain tumors with a prototype superconducting magnet (Shimadzu Corp., Japan) operating at 0.2 T and 0.375 T. A smooth T 1 relaxation curve was obtained in each part of the brain and the brain tumor by the use of the data of the NMR-CT image; consequently, the in vivo T 1 value was proved to be reliable. The in vivo T 1 value showed the specific value corresponding to each region of the normal brain in all cases. Cerebral gray matter normally had the longest T 1 value, followed by the medulla oblongata, the pons, and white matter. The T 1 value of each region of the brain varied to the same degree in proportion to the strength of the static magnetic field. The in vivo T 1 values of the brain tumor varied with the histological type. All were longer than any part of the brain parenchyma, being between 480 and 780 msec at 0.2 T. The prolongation of the T 1 value does not always correspond to the degree of the malignancy in a tumor. The in vitro T 1 and T 2 values were also prolonged in all tumors. Although the absolute value of T 1 did not coincide between the in vitro and in vivo data, the tendency of the prolongation was the same between them. This result indicated that the NMR-CT images could be analysed by the use of the data of the in vitro T 1 and T 2 values in the tumor tissues. It is important to analyse the NMR-CT image by both in vivo and in vitro examinations of the relaxation times. (J.P.N.)

  5. Contact problem for a solid indenter and a viscoelastic half-space described by the spectrum of relaxation and retardation times

    Science.gov (United States)

    Stepanov, F. I.

    2018-04-01

    The mechanical properties of a material which is modeled by an exponential creep kernel characterized by a spectrum of relaxation and retardation times are studied. The research is carried out considering a contact problem for a solid indenter sliding over a viscoelastic half-space. The contact pressure, indentation depth of the indenter, and the deformation component of the friction coefficient are analyzed with respect to the case of half-space material modeled by single relaxation and retardation times.

  6. System and method for traffic signal timing estimation

    KAUST Repository

    Dumazert, Julien; Claudel, Christian G.

    2015-01-01

    A method and system for estimating traffic signals. The method and system can include constructing trajectories of probe vehicles from GPS data emitted by the probe vehicles, estimating traffic signal cycles, combining the estimates, and computing the traffic signal timing by maximizing a scoring function based on the estimates. Estimating traffic signal cycles can be based on transition times of the probe vehicles starting after a traffic signal turns green.

  7. System and method for traffic signal timing estimation

    KAUST Repository

    Dumazert, Julien

    2015-12-30

    A method and system for estimating traffic signals. The method and system can include constructing trajectories of probe vehicles from GPS data emitted by the probe vehicles, estimating traffic signal cycles, combining the estimates, and computing the traffic signal timing by maximizing a scoring function based on the estimates. Estimating traffic signal cycles can be based on transition times of the probe vehicles starting after a traffic signal turns green.

  8. Relaxation dynamics of the conductive processes for PbNb2O6 ferroelectric ceramics in the frequency and time domain

    International Nuclear Information System (INIS)

    Gonzalez, R L; Leyet, Y; Guerrero, F; Guerra, J de Los S; Venet, M; Eiras, J A

    2007-01-01

    The relaxation dynamics of the conductive process present in PbNb 2 O 6 piezoelectric ceramics was investigated. A relaxation function in the time domain, Φ(t), was found from the frequency dependence of the dielectric modulus (imaginary component, M'') by using a relaxation function in the frequency domain, F*(ω). The best relaxation function, F*(ω), was found to be a Cole-Cole distribution function, in which relaxation characteristic parameters, such as α and τ CC , are involved. On the other hand, the relaxation function, Φ(t), obtained by the time domain method, was found to be a Kohlrausch-Williams-Watts (KWW) function type. The thermal evolution of the characteristics parameters of the KWW function (β and τ*) was analysed. The values of the activation energy (E a ), obtained in the whole investigated temperature interval, suggest the existence of a relaxation mechanism (a conductive process), which may be interpreted by an ion hopping between neighbouring sites within the crystalline lattice. The results are corroborated with the formalism of the AC conductivity

  9. Effects of Liver Fibrosis Progression on Tissue Relaxation Times in Different Mouse Models Assessed by Ultrahigh Field Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Andreas Müller

    2017-01-01

    Full Text Available Recently, clinical studies demonstrated that magnetic resonance relaxometry with determination of relaxation times T1 and T2⁎ may aid in staging and management of liver fibrosis in patients suffering from viral hepatitis and steatohepatitis. In the present study we investigated T1 and T2⁎ in different models of liver fibrosis to compare alternate pathophysiologies in their effects on relaxation times and to further develop noninvasive quantification methods of liver fibrosis. MRI was performed with a fast spin echo sequence for measurement of T1 and a multigradient echo sequence for determination of T2⁎. Toxic liver fibrosis was induced by injections of carbon tetrachloride (1.4 mL CCl4 per kg bodyweight and week, for 3 or 6 weeks in BALB/cJ mice. Chronic sclerosing cholangitis was mimicked using the ATP-binding cassette transporter B4 knockout (Abcb4 -/- mouse model. Untreated BALB/cJ mice served as controls. To assess hepatic fibrosis, we ascertained collagen contents and fibrosis scores after Sirius red staining. T1 and T2⁎ correlate differently to disease severity and etiology of liver fibrosis. T2⁎ shows significant decrease correlating with fibrosis in CCl4 treated animals, while demonstrating significant increase with disease severity in Abcb4 -/- mice. Measurements of T1 and T2⁎ may therefore facilitate discrimination between different stages and causes of liver fibrosis.

  10. The Abridgment and Relaxation Time for a Linear Multi-Scale Model Based on Multiple Site Phosphorylation.

    Directory of Open Access Journals (Sweden)

    Shuo Wang

    Full Text Available Random effect in cellular systems is an important topic in systems biology and often simulated with Gillespie's stochastic simulation algorithm (SSA. Abridgment refers to model reduction that approximates a group of reactions by a smaller group with fewer species and reactions. This paper presents a theoretical analysis, based on comparison of the first exit time, for the abridgment on a linear chain reaction model motivated by systems with multiple phosphorylation sites. The analysis shows that if the relaxation time of the fast subsystem is much smaller than the mean firing time of the slow reactions, the abridgment can be applied with little error. This analysis is further verified with numerical experiments for models of bistable switch and oscillations in which linear chain system plays a critical role.

  11. Estimating evolutionary rates using time-structured data: a general comparison of phylogenetic methods.

    Science.gov (United States)

    Duchêne, Sebastián; Geoghegan, Jemma L; Holmes, Edward C; Ho, Simon Y W

    2016-11-15

    In rapidly evolving pathogens, including viruses and some bacteria, genetic change can accumulate over short time-frames. Accordingly, their sampling times can be used to calibrate molecular clocks, allowing estimation of evolutionary rates. Methods for estimating rates from time-structured data vary in how they treat phylogenetic uncertainty and rate variation among lineages. We compiled 81 virus data sets and estimated nucleotide substitution rates using root-to-tip regression, least-squares dating and Bayesian inference. Although estimates from these three methods were often congruent, this largely relied on the choice of clock model. In particular, relaxed-clock models tended to produce higher rate estimates than methods that assume constant rates. Discrepancies in rate estimates were also associated with high among-lineage rate variation, and phylogenetic and temporal clustering. These results provide insights into the factors that affect the reliability of rate estimates from time-structured sequence data, emphasizing the importance of clock-model testing. sduchene@unimelb.edu.au or garzonsebastian@hotmail.comSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Lag space estimation in time series modelling

    DEFF Research Database (Denmark)

    Goutte, Cyril

    1997-01-01

    The purpose of this article is to investigate some techniques for finding the relevant lag-space, i.e. input information, for time series modelling. This is an important aspect of time series modelling, as it conditions the design of the model through the regressor vector a.k.a. the input layer...

  13. Time-Distance Helioseismology: Noise Estimation

    Science.gov (United States)

    Gizon, L.; Birch, A. C.

    2004-10-01

    As in global helioseismology, the dominant source of noise in time-distance helioseismology measurements is realization noise due to the stochastic nature of the excitation mechanism of solar oscillations. Characterizing noise is important for the interpretation and inversion of time-distance measurements. In this paper we introduce a robust definition of travel time that can be applied to very noisy data. We then derive a simple model for the full covariance matrix of the travel-time measurements. This model depends only on the expectation value of the filtered power spectrum and assumes that solar oscillations are stationary and homogeneous on the solar surface. The validity of the model is confirmed through comparison with SOHO MDI measurements in a quiet-Sun region. We show that the correlation length of the noise in the travel times is about half the dominant wavelength of the filtered power spectrum. We also show that the signal-to-noise ratio in quiet-Sun travel-time maps increases roughly as the square root of the observation time and is at maximum for a distance near half the length scale of supergranulation.

  14. Multidimensional scaling of musical time estimations.

    Science.gov (United States)

    Cocenas-Silva, Raquel; Bueno, José Lino Oliveira; Molin, Paul; Bigand, Emmanuel

    2011-06-01

    The aim of this study was to identify the psycho-musical factors that govern time evaluation in Western music from baroque, classic, romantic, and modern repertoires. The excerpts were previously found to represent variability in musical properties and to induce four main categories of emotions. 48 participants (musicians and nonmusicians) freely listened to 16 musical excerpts (lasting 20 sec. each) and grouped those that seemed to have the same duration. Then, participants associated each group of excerpts to one of a set of sine wave tones varying in duration from 16 to 24 sec. Multidimensional scaling analysis generated a two-dimensional solution for these time judgments. Musical excerpts with high arousal produced an overestimation of time, and affective valence had little influence on time perception. The duration was also overestimated when tempo and loudness were higher, and to a lesser extent, timbre density. In contrast, musical tension had little influence.

  15. Dielectric dispersion, relaxation dynamics and thermodynamic studies of Beta-Alanine in aqueous solutions using picoseconds time domain reflectometry

    Science.gov (United States)

    Vinoth, K.; Ganesh, T.; Senthilkumar, P.; Sylvester, M. Maria; Karunakaran, D. J. S. Anand; Hudge, Praveen; Kumbharkhane, A. C.

    2017-09-01

    The aqueous solution of beta-alanine characterised and studied by their dispersive dielectric properties and relaxation process in the frequency domain of 10×106 Hz to 30×109 Hz with varying concentration in mole fractions and temperatures. The molecular interaction and dielectric parameters are discussed in terms of counter-ion concentration theory. The static permittivity (ε0), high frequency dielectric permittivity (ε∞) and excess dielectric parameters are accomplished by frequency depended physical properties and relaxation time (τ). Molecular orientation, ordering and correlation factors are reported as confirmation of intermolecular interactions. Ionic conductivity and thermo dynamical properties are concluded with the behaviour of the mixture constituents. Solute-solvent, solute-solute interaction, structure making and breaking abilities of the solute in aqueous medium are interpreted. Fourier Transform Infrared (FTIR) spectra of beta- alanine single crystal and liquid state have been studied. The 13C Nuclear Magnetic Resonance (NMR) spectral studies give the signature for resonating frequencies and chemical shifts of beta-alanine.

  16. Three-dimensional simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model

    Directory of Open Access Journals (Sweden)

    Song-Gui Chen

    2016-01-01

    Full Text Available This paper presents a three-dimensional (3D parallel multiple-relaxation-time lattice Boltzmann model (MRT-LBM for Bingham plastics which overcomes numerical instabilities in the simulation of non-Newtonian fluids for the Bhatnagar–Gross–Krook (BGK model. The MRT-LBM and several related mathematical models are briefly described. Papanastasiou’s modified model is incorporated for better numerical stability. The impact of the relaxation parameters of the model is studied in detail. The MRT-LBM is then validated through a benchmark problem: a 3D steady Poiseuille flow. The results from the numerical simulations are consistent with those derived analytically which indicates that the MRT-LBM effectively simulates Bingham fluids but with better stability. A parallel MRT-LBM framework is introduced, and the parallel efficiency is tested through a simple case. The MRT-LBM is shown to be appropriate for parallel implementation and to have high efficiency. Finally, a Bingham fluid flowing past a square-based prism with a fixed sphere is simulated. It is found the drag coefficient is a function of both Reynolds number (Re and Bingham number (Bn. These results reveal the flow behavior of Bingham plastics.

  17. Time estimation in mild Alzheimer's disease patients

    Directory of Open Access Journals (Sweden)

    Nichelli Paolo

    2009-07-01

    Full Text Available Abstract Background Time information processing relies on memory, which greatly supports the operations of hypothetical internal timekeepers. Scalar Expectancy Theory (SET postulates the existence of a memory component that is functionally separated from an internal clock and other processing stages. SET has devised several experimental procedures to map these cognitive stages onto cerebral regions and neurotransmitter systems. One of these, the time bisection procedure, has provided support for a dissociation between the clock stage, controlled by dopaminergic systems, and the memory stage, mainly supported by cholinergic neuronal networks. This study aimed at linking the specific memory processes predicted by SET to brain mechanisms, by submitting time bisection tasks to patients with probable Alzheimer's disease (AD, that are known to present substantial degeneration of the fronto-temporal regions underpinning memory. Methods Twelve mild AD patients were required to make temporal judgments about intervals either ranging from 100 to 600 ms (short time bisection task or from 1000 to 3000 ms (long time bisection task. Their performance was compared with that of a group of aged-matched control participants and a group of young control subjects. Results Long time bisection scores of AD patients were not significantly different from those of the two control groups. In contrast, AD patients showed increased variability (as indexed by increased WR values in timing millisecond durations and a generalized inconsistency of responses over the same interval in both the short and long bisection tasks. A similar, though milder, decreased millisecond interval sensitivity was found for elderly subjects. Conclusion The present results, that are consistent with those of previous timing studies in AD, are interpreted within the SET framework as not selectively dependent on working or reference memory disruptions but as possibly due to distortions in different

  18. Mechanical relaxation in glasses

    International Nuclear Information System (INIS)

    Hiki, Y.

    2004-01-01

    The basic properties of glasses and the characteristics of mechanical relaxation in glasses were briefly reviewed, and then our studies concerned were presented. Experimental methods adopted were viscosity, internal friction, ultrasonic attenuation, and Brillouin scattering measurements. The specimens used were several kinds of inorganic, organic, and metallic glasses. The measurements were mainly carried out from the room temperature up to the glass transition temperature, and the relaxation time was determined as a function of temperature. The 'double relaxation' composed of two Arrhenius-type relaxations was observed in many materials. In both relaxations, the 'compensation effect' showing a correlation of the pre-exponential factor and the activation energy was observed. These results were explained by considering the 'complex relaxation' due to cooperative motions of atoms or group of atoms. Values of activation energy near the glass transition determined by the various experimental methods were compared with each other

  19. Real T1 relaxation time measurement and diurnal variation analysis of intervertebral discs in a healthy population of 50 volunteers

    International Nuclear Information System (INIS)

    Galley, J.; Maestretti, G.; Koch, G.; Hoogewoud, H-M.

    2017-01-01

    Purpose: To measure the real T1 relaxation time of the lumbar intervertebral discs in a young and healthy population, using different inversion recovery times, and assess diurnal variation. Material and methods: Intervertebral discs from D12 to S1 of 50 healthy volunteers from 18 to 25 years old were evaluated twice the same day, in the morning and in the late afternoon. Dedicated MRI sequences with different inversion recovery times (from 100 to 2500 ms) were used to calculate the real T1 relaxation time. Three regions of interest (ROIs) were defined in each disc, the middle representing the nucleus pulposus (NP) and the outer parts the annulus fibrosus (AF) anterior and posterior. Diurnal variation and differences between each disc level were analyzed. Results: T1 mean values in the NP were 1142 ± 12 ms in the morning and 1085 ± 13 ms in the afternoon, showing a highly significant decrease of 57 ms (p < 0.001). A highly significant difference between the levels of the spine was found. The mean T1 of the anterior part of the AF was 577 ± 9 ms in the morning and 554 ± 8 ms in the afternoon. For the posterior part, the mean values were 633 ± 8 ms in the morning and 581 ± 7 ms in the evening. It shows a highly significant decrease of 23 ms for the anterior part and 51 ms for the posterior part (all p < 0.001). Conclusion: T1 mapping is a promising method of intervertebral disc evaluation. Significant diurnal variation and difference between levels of the lumbar spine were demonstrated. A potential use for longitudinal study in post-operative follow up or sport medicine needs to be evaluated.

  20. Real T1 relaxation time measurement and diurnal variation analysis of intervertebral discs in a healthy population of 50 volunteers

    Energy Technology Data Exchange (ETDEWEB)

    Galley, J., E-mail: galleyjulien@gmail.com [Department of Radiology, HFR Fribourg, Hôpital Cantonal (Switzerland); Maestretti, G. [Department of Orthopedic Surgery, HFR Fribourg, Hôpital Cantonal (Switzerland); Koch, G.; Hoogewoud, H-M. [Department of Radiology, HFR Fribourg, Hôpital Cantonal (Switzerland)

    2017-02-15

    Purpose: To measure the real T1 relaxation time of the lumbar intervertebral discs in a young and healthy population, using different inversion recovery times, and assess diurnal variation. Material and methods: Intervertebral discs from D12 to S1 of 50 healthy volunteers from 18 to 25 years old were evaluated twice the same day, in the morning and in the late afternoon. Dedicated MRI sequences with different inversion recovery times (from 100 to 2500 ms) were used to calculate the real T1 relaxation time. Three regions of interest (ROIs) were defined in each disc, the middle representing the nucleus pulposus (NP) and the outer parts the annulus fibrosus (AF) anterior and posterior. Diurnal variation and differences between each disc level were analyzed. Results: T1 mean values in the NP were 1142 ± 12 ms in the morning and 1085 ± 13 ms in the afternoon, showing a highly significant decrease of 57 ms (p < 0.001). A highly significant difference between the levels of the spine was found. The mean T1 of the anterior part of the AF was 577 ± 9 ms in the morning and 554 ± 8 ms in the afternoon. For the posterior part, the mean values were 633 ± 8 ms in the morning and 581 ± 7 ms in the evening. It shows a highly significant decrease of 23 ms for the anterior part and 51 ms for the posterior part (all p < 0.001). Conclusion: T1 mapping is a promising method of intervertebral disc evaluation. Significant diurnal variation and difference between levels of the lumbar spine were demonstrated. A potential use for longitudinal study in post-operative follow up or sport medicine needs to be evaluated.

  1. The clock that times us : Electromagnetic signatures of time estimation

    NARCIS (Netherlands)

    Kononowicz, Tadeusz Władysław

    2015-01-01

    As time is a fundamental dimension of our existence, perceiving the flow of time is an ubiquitous experience of our everyday life. This so-called sense of time is utilized in our everyday activities, for example, when we expect some events to happen, but it also prevents us from taking a morning

  2. Algorithms for Brownian first-passage-time estimation

    Science.gov (United States)

    Adib, Artur B.

    2009-09-01

    A class of algorithms in discrete space and continuous time for Brownian first-passage-time estimation is considered. A simple algorithm is derived that yields exact mean first-passage times (MFPTs) for linear potentials in one dimension, regardless of the lattice spacing. When applied to nonlinear potentials and/or higher spatial dimensions, numerical evidence suggests that this algorithm yields MFPT estimates that either outperform or rival Langevin-based (discrete time and continuous space) estimates.

  3. Freeway travel-time estimation and forecasting.

    Science.gov (United States)

    2013-03-01

    Real-time traffic information provided by GDOT has proven invaluable for commuters in the : Georgia freeway network. The increasing number of Variable Message Signs, addition of : services such as My-NaviGAtor, NaviGAtor-to-go etc. and the advancemen...

  4. Time dependence of volcano inflation: mass influx or viscoelastic relaxation? Insights from Grímsvötn volcano, Iceland

    Science.gov (United States)

    Segall, P.

    2017-12-01

    Distinguishing magma chamber pressurization from relaxation of a viscoelastic aureole surrounding the chamber based on geodetic measurements has remained challenging. Elastic models with mass inflow proportional to the pressure difference between the chamber and a deep reservoir predict exponentially decaying flux. For a spherical chamber surrounded by a Maxwell viscoelastic shell with pressure dependent recharge, the surface deformation is the sum of two exponentials (Segall, 2016). GPS displacements following eruptions of Grímsvötn, Iceland in 2004 and 2011 exhibit rapid post-eruptive inflation (time scale of 0.1 yr), followed by inflation with a much longer time constant. Markov Chain Monte Carlo inversion with the viscoelastic model shows the GPS time series can be fit with viscosity of 2e16 Pa-s, and a relatively incompressible magma, B = beta_c/ (beta_m + beta_c) > 0.6, where beta_m and beta_c are chamber and magma compressibility. The latter appears to conflict with the ratio of erupted volume to geodetically inferred source volume change, rv 10, obtained for the best fitting spherical (Mogi ) source (Hreinsdóttir, 2014). Since rv = 1/B, this implies a relatively compressible melt, B 0.1. Reexamination of the co-eruptive GPS and tilt data with the more general ellipsoidal model of Cervelli (2013), reveals that the best fitting sources are oblate (b/a 3), deeper, and with larger volume changes, rv 3, relative to spherical models. Oblate magma chambers are consistent with seismic tomography. FEM calculations including free surface effects lead to even larger co-eruptive volume changes, smaller rv and hence larger B. I conclude that the data are consistent with rapid post-eruptive inflation driven by viscoelastic relaxation with a relatively incompressible magma, although other interpretations will be discussed.

  5. Estimating bus passenger waiting times from incomplete bus arrivals data

    OpenAIRE

    McLeod, F.N.

    2007-01-01

    This paper considers the problem of estimating bus passenger waiting times at bus stops using incomplete bus arrivals data. This is of importance to bus operators and regulators as passenger waiting time is a key performance measure. Average waiting times are usually estimated from bus headways, that is, time gaps between buses. It is both time-consuming and expensive to measure bus arrival times manually so methods using automatic vehicle location systems are attractive; however, these syste...

  6. Estimating High-Dimensional Time Series Models

    DEFF Research Database (Denmark)

    Medeiros, Marcelo C.; Mendes, Eduardo F.

    We study the asymptotic properties of the Adaptive LASSO (adaLASSO) in sparse, high-dimensional, linear time-series models. We assume both the number of covariates in the model and candidate variables can increase with the number of observations and the number of candidate variables is, possibly......, larger than the number of observations. We show the adaLASSO consistently chooses the relevant variables as the number of observations increases (model selection consistency), and has the oracle property, even when the errors are non-Gaussian and conditionally heteroskedastic. A simulation study shows...

  7. Spin relaxation of iron in mixed state hemoproteins

    International Nuclear Information System (INIS)

    Wajnberg, E.; Kalinowski, H.J.; Bemski, G.; Helman, J.S.

    1984-01-01

    In pure states hemoproteins the relaxation of iron depends on its spin state. It is found that in both mixed state met-hemoglobin and met-myoglobin, the low and high spin states relax through an Orbach-like process. Also, very short (approx. 1 ns) and temperature independent transverse relaxation times T 2 were estimated. This peculiar behaviour of the relaxation may result from the unusual electronic structure of mixed state hemoproteins that allows thermal equilibrium and interconversion of the spin states. (Author) [pt

  8. Characterization of anomalous relaxation using the time-fractional Bloch equation and multiple echo T2 *-weighted magnetic resonance imaging at 7 T.

    Science.gov (United States)

    Qin, Shanlin; Liu, Fawang; Turner, Ian W; Yu, Qiang; Yang, Qianqian; Vegh, Viktor

    2017-04-01

    To study the utility of fractional calculus in modeling gradient-recalled echo MRI signal decay in the normal human brain. We solved analytically the extended time-fractional Bloch equations resulting in five model parameters, namely, the amplitude, relaxation rate, order of the time-fractional derivative, frequency shift, and constant offset. Voxel-level temporal fitting of the MRI signal was performed using the classical monoexponential model, a previously developed anomalous relaxation model, and using our extended time-fractional relaxation model. Nine brain regions segmented from multiple echo gradient-recalled echo 7 Tesla MRI data acquired from five participants were then used to investigate the characteristics of the extended time-fractional model parameters. We found that the extended time-fractional model is able to fit the experimental data with smaller mean squared error than the classical monoexponential relaxation model and the anomalous relaxation model, which do not account for frequency shift. We were able to fit multiple echo time MRI data with high accuracy using the developed model. Parameters of the model likely capture information on microstructural and susceptibility-induced changes in the human brain. Magn Reson Med 77:1485-1494, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  9. A weighted multiple-relaxation-time lattice Boltzmann method for multiphase flows and its application to partial coalescence cascades

    Science.gov (United States)

    Fakhari, Abbas; Bolster, Diogo; Luo, Li-Shi

    2017-07-01

    We present a lattice Boltzmann method (LBM) with a weighted multiple-relaxation-time (WMRT) collision model and an adaptive mesh refinement (AMR) algorithm for direct numerical simulation of two-phase flows in three dimensions. The proposed WMRT model enhances the numerical stability of the LBM for immiscible fluids at high density ratios, particularly on the D3Q27 lattice. The effectiveness and efficiency of the proposed WMRT-LBM-AMR is validated through simulations of (a) buoyancy-driven motion and deformation of a gas bubble rising in a viscous liquid; (b) the bag-breakup mechanism of a falling drop; (c) crown splashing of a droplet on a wet surface; and (d) the partial coalescence mechanism of a liquid drop at a liquid-liquid interface. The numerical simulations agree well with available experimental data and theoretical approximations where applicable.

  10. Multi-relaxation-time Lattice Boltzman model for uniform-shear flow over a rotating circular cylinder

    Directory of Open Access Journals (Sweden)

    Nemati Hasan

    2011-01-01

    Full Text Available A numerical investigation of the two-dimensional laminar flow and heat transfer a rotating circular cylinder with uniform planar shear, where the free-stream velocity varies linearly across the cylinder using Multi-Relaxation-Time Lattice Boltzmann method is conducted. The effects of variation of Reynolds number, rotational speed ratio at shear rate 0.1, blockage ratio 0.1 and Prandtl number 0.71 are studied. The Reynolds number changing from 50 to 160 for three rotational speed ratios of 0, 0.5, 1 is investigated. Results show that flow and heat transfer depends significantly on the rotational speed ratio as well as the Reynolds number. The effect of Reynolds number on the vortex-shedding frequency and period-surface Nusselt numbers is overall very strong compared with rotational speed ratio. Flow and heat conditions characteristics such as lift and drag coefficients, Strouhal number and Nusselt numbers are studied.

  11. Three-dimensional multi-relaxation-time lattice Boltzmann front-tracking method for two-phase flow

    International Nuclear Information System (INIS)

    Xie Hai-Qiong; Zeng Zhong; Zhang Liang-Qi

    2016-01-01

    We developed a three-dimensional multi-relaxation-time lattice Boltzmann method for incompressible and immiscible two-phase flow by coupling with a front-tracking technique. The flow field was simulated by using an Eulerian grid, an adaptive unstructured triangular Lagrangian grid was applied to track explicitly the motion of the two-fluid interface, and an indicator function was introduced to update accurately the fluid properties. The surface tension was computed directly on a triangular Lagrangian grid, and then the surface tension was distributed to the background Eulerian grid. Three benchmarks of two-phase flow, including the Laplace law for a stationary drop, the oscillation of a three-dimensional ellipsoidal drop, and the drop deformation in a shear flow, were simulated to validate the present model. (paper)

  12. Duchenne muscular dystrophy carriers. Proton spin-lattice relaxation times of skeletal muscles on magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, K.; Nakano, I. (Shimoshizu National Hospital, Chiba (Japan). Dept. of Neurology); Fukuda, N.; Ikehira, H.; Tateno, Y. (National Inst. of Radiological Sciences, Chiba (Japan). Div. of Clinical Research); Aoki, Y. (National Inst. of Radiological Sciences, Chiba (Japan))

    1989-11-01

    By means of magnetic resonance imaging (MRI), the proton spin-lattice relaxation times (T1 values) of the skeletal muscles were measured in Duchenne muscular dystrophy (DMD) carriers and normal controls. The bound water fraction (BWF) was calculated from the T1 values obtained, according to the fast proton diffusion model. In the DMD carriers, T1 values of the gluteus maximus and quadriceps femoris muscles were significantly higher, and BWFs of these muscles were significantly lower than in normal control. Degenerative muscular changes accompanied by interstitial edema were presumed responsible for this abnormality. No correlation was observed between the muscle T1 and serum creatine kinase values. The present study showed that MRI could be a useful method for studying the dynamic state of water in both normal and pathological skeletal muscles. Its possible utility for DMD carrier detection was discussed briefly. (orig.).

  13. Measurement of solute proton spin-lattice relaxation times in water using the 1,3,3,1 sequence

    International Nuclear Information System (INIS)

    Sankar, S.S.; Mole, P.A.; Coulson, R.L.

    1986-01-01

    1 H NMR spin-lattice relaxation times (T1) of the N-CH3 proton resonances of phosphocreatine (PCr) and creatine (Cr) in water solutions were obtained using the 1,3,3,1 pulse sequence. These T1 values were equivalent to those obtained in D 2 O and water using either the conventional inversion-recovery experiment or the 1,3,3,1 pulse sequence. Thus, the 1,3,3,1 sequence of proton NMR can provide an independent means along with phosphorous NMR for assess PCr and for the study of the creatine kinase reaction (PCr + ADP in equilibrium ATP + Cr) in aqueous solutions and perhaps in biological preparations

  14. In vivo field dependence of proton relaxation times in human brain, liver and skeletal muscle: a multicenter study

    DEFF Research Database (Denmark)

    Henriksen, O; de Certaines, J D; Spisni, A

    1993-01-01

    and MRS, the in vivo field dispersion of T1 and T2 has been measured in order to evaluate whether ex vivo data are representative for the in vivo situation. Brain, skeletal muscle, and liver of healthy human volunteers were studied. Fifteen MR units with a field strength ranging from 0.08 T to 1.5 T took......T1 and T2 relaxation times are fundamental parameters for signal contrast behaviour in MRI. A number of ex vivo relaxometry studies have dealt with the magnetic field dispersion of T1. By means of multicenter study within the frame of the COMAC BME Concerted Action on Tissue Characterization by MRI......, whereas no significant variations were seen for T2. Our in vivo data were generally in reasonable agreement with proposed models based on ex vivo measurements....

  15. Truncation of the many body hierarchy and relaxation times in the McKean model

    International Nuclear Information System (INIS)

    Schmitt, K.J.

    1987-01-01

    In the McKean model the BBGKY-hierarchy is equivalent to a simple hierarchy of coupled equations for the p-particle correlation functions. Truncation effects and the convergence of the one-particle distribution towards its exact shape have been studied. In the long time limit the equations can be solved in a closed form. It turns out that the p-particle correlation decays p-times faster than the non-equilibrium one-particle distribution

  16. TRUNCATION OF THE MANY BODY HIERARCHY AND RELAXATION TIMES IN THE McKEAN MODEL

    OpenAIRE

    Schmitt , K.-J.

    1987-01-01

    In the McKean model the BBGKY-hierarchy is equivalent to a simple hierarchy of coupled equations for the p-particle correlation functions. Truncation effects and the convergence of the one-particle distribution towards its exact shape have been studied. In the long time limit the equations can be solved in a closed form. It turns out that the p-particle correlation decays p-times faster than the non-equilibrium one-particle distribution.

  17. Magnetic Resonance Fingerprinting with short relaxation intervals.

    Science.gov (United States)

    Amthor, Thomas; Doneva, Mariya; Koken, Peter; Sommer, Karsten; Meineke, Jakob; Börnert, Peter

    2017-09-01

    The aim of this study was to investigate a technique for improving the performance of Magnetic Resonance Fingerprinting (MRF) in repetitive sampling schemes, in particular for 3D MRF acquisition, by shortening relaxation intervals between MRF pulse train repetitions. A calculation method for MRF dictionaries adapted to short relaxation intervals and non-relaxed initial spin states is presented, based on the concept of stationary fingerprints. The method is applicable to many different k-space sampling schemes in 2D and 3D. For accuracy analysis, T 1 and T 2 values of a phantom are determined by single-slice Cartesian MRF for different relaxation intervals and are compared with quantitative reference measurements. The relevance of slice profile effects is also investigated in this case. To further illustrate the capabilities of the method, an application to in-vivo spiral 3D MRF measurements is demonstrated. The proposed computation method enables accurate parameter estimation even for the shortest relaxation intervals, as investigated for different sampling patterns in 2D and 3D. In 2D Cartesian measurements, we achieved a scan acceleration of more than a factor of two, while maintaining acceptable accuracy: The largest T 1 values of a sample set deviated from their reference values by 0.3% (longest relaxation interval) and 2.4% (shortest relaxation interval). The largest T 2 values showed systematic deviations of up to 10% for all relaxation intervals, which is discussed. The influence of slice profile effects for multislice acquisition is shown to become increasingly relevant for short relaxation intervals. In 3D spiral measurements, a scan time reduction of 36% was achieved, maintaining the quality of in-vivo T1 and T2 maps. Reducing the relaxation interval between MRF sequence repetitions using stationary fingerprint dictionaries is a feasible method to improve the scan efficiency of MRF sequences. The method enables fast implementations of 3D spatially

  18. Inferring Saving in Training Time From Effect Size Estimates

    National Research Council Canada - National Science Library

    Burright, Burke

    2000-01-01

    .... Students' time saving represents a major potential benefit of using them. This paper fills a methodology gap in estimating the students' timesaving benefit of asynchronous training technologies...

  19. Patellofemoral instability in children: T2 relaxation times of the patellar cartilage in patients with and without patellofemoral instability and correlation with morphological grading of cartilage damage.

    Science.gov (United States)

    Kang, Chang Ho; Kim, Hee Kyung; Shiraj, Sahar; Anton, Christopher; Kim, Dong Hoon; Horn, Paul S

    2016-07-01

    Patellofemoral instability is one of the most common causes of cartilage damage in teenagers. To quantitatively evaluate the patellar cartilage in patients with patellofemoral instability using T2 relaxation time maps (T2 maps), compare the values to those in patients without patellofemoral instability and correlate them with morphological grades in patients with patellofemoral instability. Fifty-three patients with patellofemoral instability (mean age: 15.9 ± 2.4 years) and 53 age- and gender-matched patients without patellofemoral instability were included. Knee MR with axial T2 map was performed. Mean T2 relaxation times were obtained at the medial, central and lateral zones of the patellar cartilage and compared between the two groups. In the patellofemoral instability group, morphological grading of the patellar cartilage (0-4) was performed and correlated with T2 relaxation times. Mean T2 relaxation times were significantly longer in the group with patellofemoral instability as compared to those of the control group across the patellar cartilage (Student's t-test, Ppatellofemoral instability, patellar cartilage damage occurs across the entire cartilage with the highest T2 values at the apex. T2 relaxation times directly reflect the severity in low-grade cartilage damage, which implies an important role for T2 maps in differentiating between normal and low-grade cartilage damage.

  20. Quantitative Assessment of the T2 Relaxation Time of the Gluteus Muscles in Children with Duchenne Muscular Dystrophy: a Comparative Study Before and After Steroid Treatment

    International Nuclear Information System (INIS)

    Kim, Hee Kyung; Laor, Tal; Wong, Brenda; Horn, Paul S.

    2010-01-01

    To determine the feasibility of using T2 mapping as a quantitative method to longitudinally follow the disease activity in children with Duchenne muscular dystrophy (DMD) who are treated with steroids. Eleven boys with DMD (age range: 5-14 years) underwent evaluation with the clinical functional score (CFS), and conventional pelvic MRI and T2 mapping before and during steroid therapy. The gluteus muscle inflammation and fatty infiltration were evaluated on conventional MRI. The histograms and mean T2 relaxation times were obtained from the T2 maps. The CFS, the conventional MRI findings and the T2 values were compared before and during steroid therapy. None of the patients showed interval change of their CFSs. On conventional MRI, none of the images showed muscle inflammation. During steroid treatment, two boys showed increased fatty infiltration on conventional MRI, and both had an increase of the mean T2 relaxation time (p < 0.05). The remaining nine boys had no increase in fatty infiltration. Of these, three showed an increased mean T2 relaxation time (p < 0.05), two showed no change and four showed a decreased mean T2 relaxation time (p < 0.05). T2 mapping is a feasible technique to evaluate the longitudinal muscle changes in those children who receive steroid therapy for DMD. The differences of the mean T2 relaxation time may reflect alterations in disease activity, and even when the conventional MRI and CFS remain stable

  1. Quantitative Assessment of the T2 Relaxation Time of the Gluteus Muscles in Children with Duchenne Muscular Dystrophy: a Comparative Study Before and After Steroid Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Kyung; Laor, Tal; Wong, Brenda [Cincinnati Children' s Hospital Medical Center, Cincinnati (United States); Horn, Paul S. [University of Cincinnati, Cincinnati (United States)

    2010-06-15

    To determine the feasibility of using T2 mapping as a quantitative method to longitudinally follow the disease activity in children with Duchenne muscular dystrophy (DMD) who are treated with steroids. Eleven boys with DMD (age range: 5-14 years) underwent evaluation with the clinical functional score (CFS), and conventional pelvic MRI and T2 mapping before and during steroid therapy. The gluteus muscle inflammation and fatty infiltration were evaluated on conventional MRI. The histograms and mean T2 relaxation times were obtained from the T2 maps. The CFS, the conventional MRI findings and the T2 values were compared before and during steroid therapy. None of the patients showed interval change of their CFSs. On conventional MRI, none of the images showed muscle inflammation. During steroid treatment, two boys showed increased fatty infiltration on conventional MRI, and both had an increase of the mean T2 relaxation time (p < 0.05). The remaining nine boys had no increase in fatty infiltration. Of these, three showed an increased mean T2 relaxation time (p < 0.05), two showed no change and four showed a decreased mean T2 relaxation time (p < 0.05). T2 mapping is a feasible technique to evaluate the longitudinal muscle changes in those children who receive steroid therapy for DMD. The differences of the mean T2 relaxation time may reflect alterations in disease activity, and even when the conventional MRI and CFS remain stable.

  2. Non-invasive evaluation of blood oxygen saturation and hematocrit from T1 and T2 relaxation times: In-vitro validation in fetal blood.

    Science.gov (United States)

    Portnoy, Sharon; Seed, Mike; Sled, John G; Macgowan, Christopher K

    2017-12-01

    We propose an analytical method for calculating blood hematocrit (Hct) and oxygen saturation (sO 2 ) from measurements of its T 1 and T 2 relaxation times. Through algebraic substitution, established two-compartment relationships describing R1=T1-1 and R2=T2-1 as a function of hematocrit and oxygen saturation were rearranged to solve for Hct and sO 2 in terms of R 1 and R 2 . Resulting solutions for Hct and sO 2 are the roots of cubic polynomials. Feasibility of the method was established by comparison of Hct and sO 2 estimates obtained from relaxometry measurements (at 1.5 Tesla) in cord blood specimens to ground-truth values obtained by blood gas analysis. Monte Carlo simulations were also conducted to assess the effect of T 1 , T 2 measurement uncertainty on precision of Hct and sO 2 estimates. Good agreement was observed between estimated and ground-truth blood properties (bias = 0.01; 95% limits of agreement = ±0.13 for Hct and sO 2 ). Considering the combined effects of biological variability and random measurement noise, we estimate a typical uncertainty of ±0.1 for Hct, sO 2 estimates. Results demonstrate accurate quantification of Hct and sO 2 from T 1 and T 2 . This method is applicable to noninvasive fetal vessel oximetry-an application where existing oximetry devices are unusable or require risky blood-sampling procedures. Magn Reson Med 78:2352-2359, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  3. Real Time Seismic Loss Estimation in Italy

    Science.gov (United States)

    Goretti, A.; Sabetta, F.

    2009-04-01

    By more than 15 years the Seismic Risk Office is able to perform a real-time evaluation of the earthquake potential loss in any part of Italy. Once the epicentre and the magnitude of the earthquake are made available by the National Institute for Geophysiscs and Volca-nology, the model, based on the Italian Geographic Information Sys-tems, is able to evaluate the extent of the damaged area and the consequences on the built environment. In recent years the model has been significantly improved with new methodologies able to conditioning the uncertainties using observa-tions coming from the fields during the first days after the event. However it is reputed that the main challenges in loss analysis are related to the input data, more than to methodologies. Unlike the ur-ban scenario, where the missing data can be collected with enough accuracy, the country-wise analysis requires the use of existing data bases, often collected for other purposed than seismic scenario evaluation, and hence in some way lacking of completeness and homogeneity. Soil properties, building inventory and population dis-tribution are the main input data that are to be known in any site of the whole Italian territory. To this end the National Census on Popu-lation and Dwellings has provided information on the residential building types and the population that lives in that building types. The critical buildings, such as Hospital, Fire Brigade Stations, Schools, are not included in the inventory, since the national plan for seismic risk assessment of critical buildings is still under way. The choice of a proper soil motion parameter, its attenuation with distance and the building type fragility are important ingredients of the model as well. The presentation will focus on the above mentioned issues, highlight-ing the different data sets used and their accuracy, and comparing the model, input data and results when geographical areas with dif-ferent extent are considered: from the urban scenarios

  4. Process of advective diffusive enrichment using differential gradients and the effects of variations in relaxation times

    International Nuclear Information System (INIS)

    Suarez Antola R.; Bernasconi, G.; Bertolotti, Angel

    1995-01-01

    A multicomponent solution is considered in advective diffusion chambers between two half-permeable barriers. A mathematical model is developed to calculate the concentration fields in the chamber. A new enrichment process is proposed and assessed using a digital simulation of space-time dynamics, based on the analytical solution of the model

  5. The time-local view of nonequilibrium statistical mechanics. I. Linear theory of transport and relaxation

    Science.gov (United States)

    der, R.

    1987-01-01

    The various approaches to nonequilibrium statistical mechanics may be subdivided into convolution and convolutionless (time-local) ones. While the former, put forward by Zwanzig, Mori, and others, are used most commonly, the latter are less well developed, but have proven very useful in recent applications. The aim of the present series of papers is to develop the time-local picture (TLP) of nonequilibrium statistical mechanics on a new footing and to consider its physical implications for topics such as the formulation of irreversible thermodynamics. The most natural approach to TLP is seen to derive from the Fourier-Laplace transformwidetilde{C}(z)) of pertinent time correlation functions, which on the physical sheet typically displays an essential singularity at z=∞ and a number of macroscopic and microscopic poles in the lower half-plane corresponding to long- and short-lived modes, respectively, the former giving rise to the autonomous macrodynamics, whereas the latter are interpreted as doorway modes mediating the transfer of information from relevant to irrelevant channels. Possible implications of this doorway mode concept for socalled extended irreversible thermodynamics are briefly discussed. The pole structure is used for deriving new kinds of generalized Green-Kubo relations expressing macroscopic quantities, transport coefficients, e.g., by contour integrals over current-current correlation functions obeying Hamiltonian dynamics, the contour integration replacing projection. The conventional Green-Kubo relations valid for conserved quantities only are rederived for illustration. Moreover,widetilde{C}(z) may be expressed by a Laurent series expansion in positive and negative powers of z, from which a rigorous, general, and straightforward method is developed for extracting all macroscopic quantities from so-called secularly divergent expansions ofwidetilde{C}(z) as obtained from the application of conventional many-body techniques to the calculation

  6. Patellofemoral instability in children: T2 relaxation times of the patellar cartilage in patients with and without patellofemoral instability and correlation with morphological grading of cartilage damage

    International Nuclear Information System (INIS)

    Kang, Chang Ho; Kim, Hee Kyung; Shiraj, Sahar; Anton, Christopher; Kim, Dong Hoon; Horn, Paul S.

    2016-01-01

    Patellofemoral instability is one of the most common causes of cartilage damage in teenagers. To quantitatively evaluate the patellar cartilage in patients with patellofemoral instability using T2 relaxation time maps (T2 maps), compare the values to those in patients without patellofemoral instability and correlate them with morphological grades in patients with patellofemoral instability. Fifty-three patients with patellofemoral instability (mean age: 15.9 ± 2.4 years) and 53 age- and gender-matched patients without patellofemoral instability were included. Knee MR with axial T2 map was performed. Mean T2 relaxation times were obtained at the medial, central and lateral zones of the patellar cartilage and compared between the two groups. In the patellofemoral instability group, morphological grading of the patellar cartilage (0-4) was performed and correlated with T2 relaxation times. Mean T2 relaxation times were significantly longer in the group with patellofemoral instability as compared to those of the control group across the patellar cartilage (Student's t-test, P<0.05) with the longest time at the central area. Positive correlation was seen between mean T2 relaxation time and morphological grading (Pearson correlation coefficiency, P<0.001). T2 increased with severity of morphological grading from 0 to 3 (mixed model, P<0.001), but no statistical difference was seen between grades 3 and 4. In patellofemoral instability, patellar cartilage damage occurs across the entire cartilage with the highest T2 values at the apex. T2 relaxation times directly reflect the severity in low-grade cartilage damage, which implies an important role for T2 maps in differentiating between normal and low-grade cartilage damage. (orig.)

  7. Time-dependent entropy evolution in microscopic and macroscopic electromagnetic relaxation

    International Nuclear Information System (INIS)

    Baker-Jarvis, James

    2005-01-01

    This paper is a study of entropy and its evolution in the time and frequency domains upon application of electromagnetic fields to materials. An understanding of entropy and its evolution in electromagnetic interactions bridges the boundaries between electromagnetism and thermodynamics. The approach used here is a Liouville-based statistical-mechanical theory. I show that the microscopic entropy is reversible and the macroscopic entropy satisfies an H theorem. The spectral entropy development can be very useful for studying the frequency response of materials. Using a projection-operator based nonequilibrium entropy, different equations are derived for the entropy and entropy production and are applied to the polarization, magnetization, and macroscopic fields. I begin by proving an exact H theorem for the entropy, progress to application of time-dependent entropy in electromagnetics, and then apply the theory to relevant applications in electromagnetics. The paper concludes with a discussion of the relationship of the frequency-domain form of the entropy to the permittivity, permeability, and impedance

  8. Nonparametric volatility density estimation for discrete time models

    NARCIS (Netherlands)

    Es, van Bert; Spreij, P.J.C.; Zanten, van J.H.

    2005-01-01

    We consider discrete time models for asset prices with a stationary volatility process. We aim at estimating the multivariate density of this process at a set of consecutive time instants. A Fourier-type deconvolution kernel density estimator based on the logarithm of the squared process is proposed

  9. Hyaline articular cartilage: relaxation times, pulse-sequence parameters and MR appearance at 1.5 T

    Energy Technology Data Exchange (ETDEWEB)

    Chalkias, S.M. [Dept. of Radiology, A.H.E.P.A. General Hospital of the Aristotelian Univ., Thessaloniki (Greece); Pozzi-Mucelli, R.S. [Dept. of Radiology, Univ. of Trieste (Italy); Pozzi-Mucelli, M. [Orthopaedic Clinic, Univ. of Trieste (Italy); Frezza, F. [Dept. of Radiology, Univ. of Trieste (Italy); Longo, R. [Dept. of Radiology, Univ. of Trieste (Italy)

    1994-08-01

    In order to optimize the parameters for the best visualization of the internal architecture of the hyaline articular cartilage a study both ex vivo and in vivo was performed. Accurate T1 and T2 relaxation times of articular cartilage were obtained with a particular mixed sequence and then used for the creation of isocontrast intensity graphs. These graphs subsequently allowed in all pulse sequences (spin echo, SE and gradient echo, GRE) the best combination of repetition time (TR), echo time (TE) and flip angle (FA) for optimization of signal differences between MR cartilage zones. For SE sequences maximum contrast between cartilage zones can be obtained by using a long TR (> 1,500 ms) with a short TE (< 30 ms), whereas for GRE sequences maximum contrast is obtained with the shortest TE (< 15 ms) combined with a relatively long TR (> 400 ms) and an FA greater than 40 . A trilaminar appearance was demonstrated with a superficial and deep hypointense zone in all sequences and an intermediate zone that was moderately hyperintense on SE T1-weighted images, slightly more hyperintense on proton density Rho and SE T2-weighted images and even more hyperintense on GRE images. (orig.)

  10. Simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model

    Science.gov (United States)

    Chen, SongGui; Sun, QiCheng; Jin, Feng; Liu, JianGuo

    2014-03-01

    Fresh cement mortar is a type of workable paste, which can be well approximated as a Bingham plastic and whose flow behavior is of major concern in engineering. In this paper, Papanastasiou's model for Bingham fluids is solved by using the multiplerelaxation-time lattice Boltzmann model (MRT-LB). Analysis of the stress growth exponent m in Bingham fluid flow simulations shows that Papanastasiou's model provides a good approximation of realistic Bingham plastics for values of m > 108. For lower values of m, Papanastasiou's model is valid for fluids between Bingham and Newtonian fluids. The MRT-LB model is validated by two benchmark problems: 2D steady Poiseuille flows and lid-driven cavity flows. Comparing the numerical results of the velocity distributions with corresponding analytical solutions shows that the MRT-LB model is appropriate for studying Bingham fluids while also providing better numerical stability. We further apply the MRT-LB model to simulate flow through a sudden expansion channel and the flow surrounding a round particle. Besides the rich flow structures obtained in this work, the dynamics fluid force on the round particle is calculated. Results show that both the Reynolds number Re and the Bingham number Bn affect the drag coefficients C D , and a drag coefficient with Re and Bn being taken into account is proposed. The relationship of Bn and the ratio of unyielded zone thickness to particle diameter is also analyzed. Finally, the Bingham fluid flowing around a set of randomly dispersed particles is simulated to obtain the apparent viscosity and velocity fields. These results help simulation of fresh concrete flowing in porous media.

  11. A Dynamic Travel Time Estimation Model Based on Connected Vehicles

    Directory of Open Access Journals (Sweden)

    Daxin Tian

    2015-01-01

    Full Text Available With advances in connected vehicle technology, dynamic vehicle route guidance models gradually become indispensable equipment for drivers. Traditional route guidance models are designed to direct a vehicle along the shortest path from the origin to the destination without considering the dynamic traffic information. In this paper a dynamic travel time estimation model is presented which can collect and distribute traffic data based on the connected vehicles. To estimate the real-time travel time more accurately, a road link dynamic dividing algorithm is proposed. The efficiency of the model is confirmed by simulations, and the experiment results prove the effectiveness of the travel time estimation method.

  12. Accuracy of Travel Time Estimation using Bluetooth Technology

    DEFF Research Database (Denmark)

    Araghi, Bahar Namaki; Skoven Pedersen, Kristian; Tørholm Christensen, Lars

    2012-01-01

    Short-term travel time information plays a critical role in Advanced Traffic Information Systems (ATIS) and Advanced Traffic Management Systems (ATMS). In this context, the need for accurate and reliable travel time information sources is becoming increasingly important. Bluetooth Technology (BT......) has been used as a relatively new cost-effective source of travel time estimation. However, due to low sampling rate of BT compared to other sensor technologies, existence of outliers may significantly affect the accuracy and reliability of the travel time estimates obtained using BT. In this study......, the concept of outliers and corresponding impacts on travel time accuracy are discussed. Four different estimators named Min-BT, Max-BT, Med-BT and Avg-BT with different outlier detection logic are presented in this paper. These methods are used to estimate travel times using a BT derived dataset. In order...

  13. Fuzzy logic estimator of rotor time constant in induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Alminoja, J. [Tampere University of Technology (Finland). Control Engineering Laboratory; Koivo, H. [Helsinki University of Technology, Otaniemi (Finland). Control Engineering Laboratory

    1997-12-31

    Vector control of AC machines is a well-known and widely used technique in induction machine control. It offers an exact method for speed control of induction motors, but it is also sensitive to the changes in machine parameters. E.g. rotor time constant has a strong dependence on temperature. In this paper a fuzzy logic estimator is developed, with which the rotor time constant can be estimated when the machine has a load. It is more simple than the estimators proposed in the literature. The fuzzy estimator is tested by simulation when step-wise abrupt changes and slow drifting occurs. (orig.) 7 refs.

  14. Magnetic resonance fingerprinting using echo-planar imaging: Joint quantification of T1 and T2∗ relaxation times.

    Science.gov (United States)

    Rieger, Benedikt; Zimmer, Fabian; Zapp, Jascha; Weingärtner, Sebastian; Schad, Lothar R

    2017-11-01

    To develop an implementation of the magnetic resonance fingerprinting (MRF) paradigm for quantitative imaging using echo-planar imaging (EPI) for simultaneous assessment of T 1 and T2∗. The proposed MRF method (MRF-EPI) is based on the acquisition of 160 gradient-spoiled EPI images with rapid, parallel-imaging accelerated, Cartesian readout and a measurement time of 10 s per slice. Contrast variation is induced using an initial inversion pulse, and varying the flip angles, echo times, and repetition times throughout the sequence. Joint quantification of T 1 and T2∗ is performed using dictionary matching with integrated B1+ correction. The quantification accuracy of the method was validated in phantom scans and in vivo in 6 healthy subjects. Joint T 1 and T2∗ parameter maps acquired with MRF-EPI in phantoms are in good agreement with reference measurements, showing deviations under 5% and 4% for T 1 and T2∗, respectively. In vivo baseline images were visually free of artifacts. In vivo relaxation times are in good agreement with gold-standard techniques (deviation T 1 : 4 ± 2%, T2∗: 4 ± 5%). The visual quality was comparable to the in vivo gold standard, despite substantially shortened scan times. The proposed MRF-EPI method provides fast and accurate T 1 and T2∗ quantification. This approach offers a rapid supplement to the non-Cartesian MRF portfolio, with potentially increased usability and robustness. Magn Reson Med 78:1724-1733, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  15. Empirical Study of Travel Time Estimation and Reliability

    OpenAIRE

    Li, Ruimin; Chai, Huajun; Tang, Jin

    2013-01-01

    This paper explores the travel time distribution of different types of urban roads, the link and path average travel time, and variance estimation methods by analyzing the large-scale travel time dataset detected from automatic number plate readers installed throughout Beijing. The results show that the best-fitting travel time distribution for different road links in 15 min time intervals differs for different traffic congestion levels. The average travel time for all links on all days can b...

  16. Mode choice endogeneity in value of travel time estimation

    DEFF Research Database (Denmark)

    Mabit, Stefan Lindhard; Fosgerau, Mogens

    The current way to estimate value of travel time is to use a mode-specific sample and hence to estimate mode-specific value of travel times. This approach raises certain questions concerning how to generalise the values to a population. A problem would be if there is an uncontrolled sample...... selection mechanism. This is the case if there is correlation between mode choice and the value of travel time that is not controlled for by explanatory variables. What could confuse the estimated values is the difficulty to separate mode effects from user effect. An example would be the effect of income...... of travel time we use a stated choice dataset. These data include binary choice within mode for car and bus. The first approach is to use a probit model to model mode choice using instruments and then use this in the estimation of the value of travel time. The second approach is based on the use of a very...

  17. Real-Time Head Pose Estimation on Mobile Platforms

    Directory of Open Access Journals (Sweden)

    Jianfeng Ren

    2010-06-01

    Full Text Available Many computer vision applications such as augmented reality require head pose estimation. As far as the real-time implementation of head pose estimation on relatively resource limited mobile platforms is concerned, it is required to satisfy real-time constraints while maintaining reasonable head pose estimation accuracy. The introduced head pose estimation approach in this paper is an attempt to meet this objective. The approach consists of the following components: Viola-Jones face detection, color-based face tracking using an online calibration procedure, and head pose estimation using Hu moment features and Fisher linear discriminant. Experimental results running on an actual mobile device are reported exhibiting both the real- time and accuracy aspects of the developed approach.

  18. Estimating a population cumulative incidence under calendar time trends

    DEFF Research Database (Denmark)

    Hansen, Stefan N; Overgaard, Morten; Andersen, Per K

    2017-01-01

    BACKGROUND: The risk of a disease or psychiatric disorder is frequently measured by the age-specific cumulative incidence. Cumulative incidence estimates are often derived in cohort studies with individuals recruited over calendar time and with the end of follow-up governed by a specific date...... by calendar time trends, the total sample Kaplan-Meier and Aalen-Johansen estimators do not provide useful estimates of the general risk in the target population. We present some alternatives to this type of analysis. RESULTS: We show how a proportional hazards model may be used to extrapolate disease risk...... estimates if proportionality is a reasonable assumption. If not reasonable, we instead advocate that a more useful description of the disease risk lies in the age-specific cumulative incidence curves across strata given by time of entry or perhaps just the end of follow-up estimates across all strata...

  19. Diastolic Function in Normal Sinus Rhythm vs. Chronic Atrial Fibrillation: Comparison by Fractionation of E-wave Deceleration Time into Stiffness and Relaxation Components.

    Science.gov (United States)

    Mossahebi, Sina; Kovács, Sándor J

    2014-01-01

    Although the electrophysiologic derangement responsible for atrial fibrillation (AF) has been elucidated, how AF remodels the ventricular chamber and affects diastolic function (DF) has not been fully characterized. The previously validated Parametrized Diastolic Filling (PDF) formalism models suction-initiated filling kinematically and generates error-minimized fits to E-wave contours using unique load (x o ), relaxation (c), and stiffness (k) parameters. It predicts that E-wave deceleration time (DT) is a function of both stiffness and relaxation. Ascribing DT s to stiffness and DTr to relaxation such that DT=DT s +DT r is legitimate because of causality and their predicted and observed high correlation (r=0.82 and r=0.94) with simultaneous (diastatic) chamber stiffness (dP/dV) and isovolumic relaxation (tau), respectively. We analyzed simultaneous echocardiography-cardiac catheterization data and compared 16 age matched, chronic AF subjects to 16, normal sinus rhythm (NSR) subjects (650 beats). All subjects had diastatic intervals. Conventional DF parameters (DT, AT, E peak , E dur , E-VTI, E/E') and E-wave derived PDF parameters (c, k, DT s , DT r ) were compared. Total DT and DT s , DT r in AF were shorter than in NSR (pwave DT in AF is due to stiffness compared to NSR. By trending individual subjects, this method can elucidate and characterize the beneficial or adverse long-term effects on chamber remodeling due to alternative therapies in terms of chamber stiffness and relaxation.

  20. Numerical simulation of convection and heat transfer in Czochralski crystal growth by multiple-relaxation-time LBM

    Science.gov (United States)

    Liu, Ding; Huang, Weichao; Zhang, Ni

    2017-07-01

    A two-dimensional axisymmetric swirling model based on the lattice Boltzmann method (LBM) in a pseudo Cartesian coordinate system is posited to simulate Czochralski (Cz) crystal growth in this paper. Specifically, the multiple-relaxation-time LBM (MRT-LBM) combined with the finite difference method (FDM) is used to analyze the melt convection and heat transfer in the process of Cz crystal growth. An incompressible axisymmetric swirling MRT-LB D2Q9 model is applied to solve for the axial and radial velocities by inserting thermal buoyancy and rotational inertial force into the two-dimensional lattice Boltzmann equation. In addition, the melt temperature and the azimuthal velocity are solved by MRT-LB D2Q5 models, and the crystal temperature is solved by FDM. The comparison results of stream functions values of different methods demonstrate that our hybrid model can be used to simulate the fluid-thermal coupling in the axisymmetric swirling model correctly and effectively. Furthermore, numerical simulations of melt convection and heat transfer are conducted under the conditions of high Grashof (Gr) numbers, within the range of 105 ˜ 107, and different high Reynolds (Re) numbers. The experimental results show our hybrid model can obtain the exact solution of complex crystal-growth models and analyze the fluid-thermal coupling effectively under the combined action of natural convection and forced convection.

  1. Estimating Time-to-Collision with Retinitis Pigmentosa

    Science.gov (United States)

    Jones, Tim

    2006-01-01

    This article reports on the ability of observers who are sighted and those with low vision to make time-to-collision (TTC) estimations using video. The TTC estimations made by the observers with low vision were comparable to those made by the sighted observers, and both groups made underestimation errors that were similar to those that were…

  2. Time Skew Estimator for Dual-Polarization QAM Transmitters

    DEFF Research Database (Denmark)

    Medeiros Diniz, Júlio César; Da Ros, Francesco; Jones, Rasmus Thomas

    2017-01-01

    A simple method for joint estimation of transmitter’s in-phase/quadrature and inter-polarization time skew is proposed and experimentally demonstrated. The method is based on clock tone extraction of a photodetected signal and genetic algorithm. The maximum estimation error was 0.5 ps....

  3. Energy relaxation and separation of a hot electron-hole pair in organic aggregates from a time-dependent wavepacket diffusion method

    International Nuclear Information System (INIS)

    Han, Lu; Liang, WanZhen; Zhao, Yi; Zhong, Xinxin

    2014-01-01

    The time-dependent wavepacket diffusive method [X. Zhong and Y. Zhao, J. Chem. Phys. 138, 014111 (2013)] is extended to investigate the energy relaxation and separation of a hot electron-hole pair in organic aggregates with incorporation of Coulomb interaction and electron-phonon coupling. The pair initial condition generated by laser pulse is represented by a Gaussian wavepacket with a central momentum. The results reveal that the hot electron energy relaxation is very well described by two rate processes with the fast rate much larger than the slow one, consistent with experimental observations, and an efficient electron-hole separation is accomplished accompanying the fast energy relaxation. Furthermore, although the extra energy indeed helps the separation by overcoming the Coulomb interaction, the width of initial wavepacket is much sensitive to the separation efficiency and the narrower wavepacket generates the more separated charges. This behavior may be useful to understand the experimental controversy of the hot carrier effect on charge separation

  4. SU-E-T-95: Delivery Time Estimator

    International Nuclear Information System (INIS)

    Kantor, M; Balter, P; Ohrt, J

    2014-01-01

    Purpose: The development and testing of a tool for the inclusion of delivery time as a parameter in plan optimization. Methods: We developed an algorithm that estimates the time required for the machine and personnel movements required to deliver a treatment plan on a linear accelerator. We included dose rate, leaf motion, collimator motion, gantry motion, and couch motions (including time to enter the room to rotate the couch safely). Vault-specific parameters to account for time to enter and perform couch angle adjustments were also included. This algorithm works for static, step and shoot IMRT, and VMAT beams photon beams and for fixed electron beams. This was implemented as a script in our treatment planning system. We validated the estimator against actual recorded delivery time from our R and V system as well as recorded times from our IMRT QA delivery. Results: Data was collected (Figure 1) for 12 treatment plans by examining the R and V beam start times, and by manually timing the QA treatment for a reference, but the QA measurements were only significant to the nearest minute. The average difference between the estimated and R and V times was 15%, and 11% when excluding the major outliers. Outliers arose due to respiratory aides and gating techniques which could not be accounted for in the estimator. Conclusion: Non-mechanical factors such as the time a therapist needs to walk in and out of the room to adjust the couch needed to be fine-tuned and cycled back into the algorithm to improve the estimate. The algorithm has been demonstrated to provide reasonable and useful estimates for delivery time. This estimate has provided a useful additional input for clinical decision-making when comparing several potential radiation treatment options

  5. Relationship between thermodynamic parameter and thermodynamic scaling parameter for orientational relaxation time for flip-flop motion of nematic liquid crystals.

    Science.gov (United States)

    Satoh, Katsuhiko

    2013-03-07

    Thermodynamic parameter Γ and thermodynamic scaling parameter γ for low-frequency relaxation time, which characterize flip-flop motion in a nematic phase, were verified by molecular dynamics simulation with a simple potential based on the Maier-Saupe theory. The parameter Γ, which is the slope of the logarithm for temperature and volume, was evaluated under various conditions at a wide range of temperatures, pressures, and volumes. To simulate thermodynamic scaling so that experimental data at isobaric, isothermal, and isochoric conditions can be rescaled onto a master curve with the parameters for some liquid crystal (LC) compounds, the relaxation time was evaluated from the first-rank orientational correlation function in the simulations, and thermodynamic scaling was verified with the simple potential representing small clusters. A possibility of an equivalence relationship between Γ and γ determined from the relaxation time in the simulation was assessed with available data from the experiments and simulations. In addition, an argument was proposed for the discrepancy between Γ and γ for some LCs in experiments: the discrepancy arises from disagreement of the value of the order parameter P2 rather than the constancy of relaxation time τ1(*) on pressure.

  6. The age dependence of T2 relaxation times of N-acetyl aspartate, creatine and choline in the human brain at 3 and 4T

    Czech Academy of Sciences Publication Activity Database

    Jirů, F.; Škoch, A.; Wágnerová, D.; Dezortová, M.; Visková, J.; Profant, Oliver; Syka, Josef; Hájek, M.

    2016-01-01

    Roč. 29, č. 3 (2016), s. 284-292 ISSN 0952-3480 Institutional support: RVO:68378041 Keywords : MRS * T2 relaxation times of metabolites * age dependence of T2 Subject RIV: FH - Neurology Impact factor: 2.872, year: 2016

  7. Estimating spatial travel times using automatic vehicle identification data

    Science.gov (United States)

    2001-01-01

    Prepared ca. 2001. The paper describes an algorithm that was developed for estimating reliable and accurate average roadway link travel times using Automatic Vehicle Identification (AVI) data. The algorithm presented is unique in two aspects. First, ...

  8. Robust Fault Estimation Design for Discrete-Time Nonlinear Systems via A Modified Fuzzy Fault Estimation Observer.

    Science.gov (United States)

    Xie, Xiang-Peng; Yue, Dong; Park, Ju H

    2018-02-01

    The paper provides relaxed designs of fault estimation observer for nonlinear dynamical plants in the Takagi-Sugeno form. Compared with previous theoretical achievements, a modified version of fuzzy fault estimation observer is implemented with the aid of the so-called maximum-priority-based switching law. Given each activated switching status, the appropriate group of designed matrices can be provided so as to explore certain key properties of the considered plants by means of introducing a set of matrix-valued variables. Owing to the reason that more abundant information of the considered plants can be updated in due course and effectively exploited for each time instant, the conservatism of the obtained result is less than previous theoretical achievements and thus the main defect of those existing methods can be overcome to some extent in practice. Finally, comparative simulation studies on the classical nonlinear truck-trailer model are given to certify the benefits of the theoretic achievement which is obtained in our study. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Rotational and translational dynamics and their relation to hydrogen bond lifetimes in an ionic liquid by means of NMR relaxation time experiments and molecular dynamics simulation

    Science.gov (United States)

    Strate, Anne; Neumann, Jan; Overbeck, Viviane; Bonsa, Anne-Marie; Michalik, Dirk; Paschek, Dietmar; Ludwig, Ralf

    2018-05-01

    We report a concerted theoretical and experimental effort to determine the reorientational dynamics as well as hydrogen bond lifetimes for the doubly ionic hydrogen bond +OH⋯O- in the ionic liquid (2-hydroxyethyl)trimethylammonium bis(trifluoromethylsulfonyl)imide [Ch][NTf2] by using a combination of NMR relaxation time experiments, density functional theory (DFT) calculations, and molecular dynamics (MD) simulations. Due to fast proton exchange, the determination of rotational correlation times is challenging. For molecular liquids, 17O-enhanced proton relaxation time experiments have been used to determine the rotational correlation times for the OH vectors in water or alcohols. As an alternative to those expensive isotopic substitution experiments, we employed a recently introduced approach which is providing access to the rotational dynamics from a single NMR deuteron quadrupolar relaxation time experiment. Here, the deuteron quadrupole coupling constants (DQCCs) are obtained from a relation between the DQCC and the δ1H proton chemical shifts determined from a set of DFT calculated clusters in combination with experimentally determined proton chemical shifts. The NMR-obtained rotational correlation times were compared to those obtained from MD simulations and then related to viscosities for testing the applicability of popular hydrodynamic models. In addition, hydrogen bond lifetimes were derived, using hydrogen bond population correlation functions computed from MD simulations. Here, two different time domains were observed: The short-time contributions to the hydrogen lifetimes and the reorientational correlation times have roughly the same size and are located in the picosecond range, whereas the long-time contributions decay with relaxation times in the nanosecond regime and are related to rather slow diffusion processes. The computed average hydrogen bond lifetime is dominated by the long-time process, highlighting the importance and longevity of

  10. Resimulation of noise: a precision estimator for least square error curve-fitting tested for axial strain time constant imaging

    Science.gov (United States)

    Nair, S. P.; Righetti, R.

    2015-05-01

    Recent elastography techniques focus on imaging information on properties of materials which can be modeled as viscoelastic or poroelastic. These techniques often require the fitting of temporal strain data, acquired from either a creep or stress-relaxation experiment to a mathematical model using least square error (LSE) parameter estimation. It is known that the strain versus time relationships for tissues undergoing creep compression have a non-linear relationship. In non-linear cases, devising a measure of estimate reliability can be challenging. In this article, we have developed and tested a method to provide non linear LSE parameter estimate reliability: which we called Resimulation of Noise (RoN). RoN provides a measure of reliability by estimating the spread of parameter estimates from a single experiment realization. We have tested RoN specifically for the case of axial strain time constant parameter estimation in poroelastic media. Our tests show that the RoN estimated precision has a linear relationship to the actual precision of the LSE estimator. We have also compared results from the RoN derived measure of reliability against a commonly used reliability measure: the correlation coefficient (CorrCoeff). Our results show that CorrCoeff is a poor measure of estimate reliability for non-linear LSE parameter estimation. While the RoN is specifically tested only for axial strain time constant imaging, a general algorithm is provided for use in all LSE parameter estimation.

  11. Limitations of the time slide method of background estimation

    International Nuclear Information System (INIS)

    Was, Michal; Bizouard, Marie-Anne; Brisson, Violette; Cavalier, Fabien; Davier, Michel; Hello, Patrice; Leroy, Nicolas; Robinet, Florent; Vavoulidis, Miltiadis

    2010-01-01

    Time shifting the output of gravitational wave detectors operating in coincidence is a convenient way of estimating the background in a search for short-duration signals. In this paper, we show how non-stationary data affect the background estimation precision. We present a method of measuring the fluctuations of the data and computing its effects on a coincident search. In particular, we show that for fluctuations of moderate amplitude, time slides larger than the fluctuation time scales can be used. We also recall how the false alarm variance saturates with the number of time shifts.

  12. Limitations of the time slide method of background estimation

    Energy Technology Data Exchange (ETDEWEB)

    Was, Michal; Bizouard, Marie-Anne; Brisson, Violette; Cavalier, Fabien; Davier, Michel; Hello, Patrice; Leroy, Nicolas; Robinet, Florent; Vavoulidis, Miltiadis, E-mail: mwas@lal.in2p3.f [LAL, Universite Paris-Sud, CNRS/IN2P3, Orsay (France)

    2010-10-07

    Time shifting the output of gravitational wave detectors operating in coincidence is a convenient way of estimating the background in a search for short-duration signals. In this paper, we show how non-stationary data affect the background estimation precision. We present a method of measuring the fluctuations of the data and computing its effects on a coincident search. In particular, we show that for fluctuations of moderate amplitude, time slides larger than the fluctuation time scales can be used. We also recall how the false alarm variance saturates with the number of time shifts.

  13. Picosecond buildup and relaxation of intense stimulated emission in GaAs

    International Nuclear Information System (INIS)

    Ageeva, N. N.; Bronevoi, I. L.; Zabegaev, D. N.; Krivonosov, A. N.

    2013-01-01

    In support of the idea developed previously based on circumstantial evidence, we have found that stimulated emission emerges in GaAs and its intensity increases with a picosecond delay relative to the front of powerful picosecond optical pumping that produced a dense electron-hole plasma. The emission intensity relaxes with decreasing pumping with a characteristic time of ∼10 ps. We have derived the dependences of the delay time, the relaxation time, and the duration of the picosecond emission pulse on its photon energy. The estimates based on the fact that the relaxation of emission is determined by electron-hole plasma cooling correspond to the measured relaxation time.

  14. Heteronuclear relaxation in time-dependent spin systems: 15N-T1ρ dispersion during adiabatic fast passage

    International Nuclear Information System (INIS)

    Konrat, Robert; Tollinger, Martin

    1999-01-01

    A novel NMR experiment comprising adiabatic fast passage techniques for the measurement of heteronuclear self-relaxation rates in fully 15N-enriched proteins is described. Heteronuclear self-relaxation is monitored by performing adiabatic fast passage (AFP) experiments at variable adiabaticity (e.g., variation of RF spin-lock field intensity). The experiment encompasses gradient- selection and sensitivity-enhancement. It is shown that transverse relaxation rates derived with this method are in good agreement with the ones measured by the classical Carr-Purcell-Meiboom-Gill (CPMG) sequences. An application of this method to the study of the carboxyl-terminal LIM domain of quail cysteine and glycine-rich protein qCRP2(LIM2) is presented

  15. Relaxation System

    Science.gov (United States)

    1987-01-01

    Environ Corporation's relaxation system is built around a body lounge, a kind of super easy chair that incorporates sensory devices. Computer controlled enclosure provides filtered ionized air to create a feeling of invigoration, enhanced by mood changing aromas. Occupant is also surrounded by multidimensional audio and the lighting is programmed to change colors, patterns, and intensity periodically. These and other sensory stimulators are designed to provide an environment in which the learning process is stimulated, because research has proven that while an individual is in a deep state of relaxation, the mind is more receptive to new information.

  16. Multiple Estimation Architecture in Discrete-Time Adaptive Mixing Control

    Directory of Open Access Journals (Sweden)

    Simone Baldi

    2013-05-01

    Full Text Available Adaptive mixing control (AMC is a recently developed control scheme for uncertain plants, where the control action coming from a bank of precomputed controller is mixed based on the parameter estimates generated by an on-line parameter estimator. Even if the stability of the control scheme, also in the presence of modeling errors and disturbances, has been shown analytically, its transient performance might be sensitive to the initial conditions of the parameter estimator. In particular, for some initial conditions, transient oscillations may not be acceptable in practical applications. In order to account for such a possible phenomenon and to improve the learning capability of the adaptive scheme, in this paper a new mixing architecture is developed, involving the use of parallel parameter estimators, or multi-estimators, each one working on a small subset of the uncertainty set. A supervisory logic, using performance signals based on the past and present estimation error, selects the parameter estimate to determine the mixing of the controllers. The stability and robustness properties of the resulting approach, referred to as multi-estimator adaptive mixing control (Multi-AMC, are analytically established. Besides, extensive simulations demonstrate that the scheme improves the transient performance of the original AMC with a single estimator. The control scheme and the analysis are carried out in a discrete-time framework, for easier implementation of the method in digital control.

  17. Joint Estimation and Decoding of Space-Time Trellis Codes

    Directory of Open Access Journals (Sweden)

    Zhang Jianqiu

    2002-01-01

    Full Text Available We explore the possibility of using an emerging tool in statistical signal processing, sequential importance sampling (SIS, for joint estimation and decoding of space-time trellis codes (STTC. First, we provide background on SIS, and then we discuss its application to space-time trellis code (STTC systems. It is shown through simulations that SIS is suitable for joint estimation and decoding of STTC with time-varying flat-fading channels when phase ambiguity is avoided. We used a design criterion for STTCs and temporally correlated channels that combats phase ambiguity without pilot signaling. We have shown by simulations that the design is valid.

  18. Time improvement of photoelectric effect calculation for absorbed dose estimation

    International Nuclear Information System (INIS)

    Massa, J M; Wainschenker, R S; Doorn, J H; Caselli, E E

    2007-01-01

    Ionizing radiation therapy is a very useful tool in cancer treatment. It is very important to determine absorbed dose in human tissue to accomplish an effective treatment. A mathematical model based on affected areas is the most suitable tool to estimate the absorbed dose. Lately, Monte Carlo based techniques have become the most reliable, but they are time expensive. Absorbed dose calculating programs using different strategies have to choose between estimation quality and calculating time. This paper describes an optimized method for the photoelectron polar angle calculation in photoelectric effect, which is significant to estimate deposited energy in human tissue. In the case studies, time cost reduction nearly reached 86%, meaning that the time needed to do the calculation is approximately 1/7 th of the non optimized approach. This has been done keeping precision invariant

  19. Reliability of Bluetooth Technology for Travel Time Estimation

    DEFF Research Database (Denmark)

    Araghi, Bahar Namaki; Olesen, Jonas Hammershøj; Krishnan, Rajesh

    2015-01-01

    . However, their corresponding impacts on accuracy and reliability of estimated travel time have not been evaluated. In this study, a controlled field experiment is conducted to collect both Bluetooth and GPS data for 1000 trips to be used as the basis for evaluation. Data obtained by GPS logger is used...... to calculate actual travel time, referred to as ground truth, and to geo-code the Bluetooth detection events. In this setting, reliability is defined as the percentage of devices captured per trip during the experiment. It is found that, on average, Bluetooth-enabled devices will be detected 80% of the time......-range antennae detect Bluetooth-enabled devices in a closer location to the sensor, thus providing a more accurate travel time estimate. However, the smaller the size of the detection zone, the lower the penetration rate, which could itself influence the accuracy of estimates. Therefore, there has to be a trade...

  20. Towards Real-Time Maneuver Detection: Automatic State and Dynamics Estimation with the Adaptive Optimal Control Based Estimator

    Science.gov (United States)

    Lubey, D.; Scheeres, D.

    control policy is zero for all times). In this paper, we relax this assumption on the nominal trajectory in order to allow for controlled nominal trajectories. This allows the estimator to be iterated to obtain a more accurate nonlinear solution for both the state and control estimates. Beyond these developments to the estimator, this paper also introduces a modified distance metric for maneuver detection. The original metric used in the OCBE only accounted for the estimated control and its uncertainty. This new metric accounts for measurement deviation and a priori state deviations, such that it accounts for all three major forms of uncertainty in orbit determination. This allows the user to understand the contributions of each source of uncertainty toward the total system mismodeling so that the user can properly account for them. Together these developments create an accurate orbit determination algorithm that is automated, robust to mismodeling, and capable of detecting and reconstructing the presence of mismodeling. These qualities make this algorithm a good foundation from which to approach the problem of real-time maneuver detection and reconstruction for Space Situational Awareness applications. This is further strengthened by the algorithm's general formulation that allows it to be applied to problems with an arbitrary target and observer.

  1. Time of arrival based location estimation for cooperative relay networks

    KAUST Repository

    Çelebi, Hasari Burak

    2010-09-01

    In this paper, we investigate the performance of a cooperative relay network performing location estimation through time of arrival (TOA). We derive Cramer-Rao lower bound (CRLB) for the location estimates using the relay network. The analysis is extended to obtain average CRLB considering the signal fluctuations in both relay and direct links. The effects of the channel fading of both relay and direct links and amplification factor and location of the relay node on average CRLB are investigated. Simulation results show that the channel fading of both relay and direct links and amplification factor and location of relay node affect the accuracy of TOA based location estimation. ©2010 IEEE.

  2. Time of arrival based location estimation for cooperative relay networks

    KAUST Repository

    Ç elebi, Hasari Burak; Abdallah, Mohamed M.; Hussain, Syed Imtiaz; Qaraqe, Khalid A.; Alouini, Mohamed-Slim

    2010-01-01

    In this paper, we investigate the performance of a cooperative relay network performing location estimation through time of arrival (TOA). We derive Cramer-Rao lower bound (CRLB) for the location estimates using the relay network. The analysis is extended to obtain average CRLB considering the signal fluctuations in both relay and direct links. The effects of the channel fading of both relay and direct links and amplification factor and location of the relay node on average CRLB are investigated. Simulation results show that the channel fading of both relay and direct links and amplification factor and location of relay node affect the accuracy of TOA based location estimation. ©2010 IEEE.

  3. Estimating a population cumulative incidence under calendar time trends

    DEFF Research Database (Denmark)

    Hansen, Stefan N; Overgaard, Morten; Andersen, Per K

    2017-01-01

    BACKGROUND: The risk of a disease or psychiatric disorder is frequently measured by the age-specific cumulative incidence. Cumulative incidence estimates are often derived in cohort studies with individuals recruited over calendar time and with the end of follow-up governed by a specific date....... It is common practice to apply the Kaplan-Meier or Aalen-Johansen estimator to the total sample and report either the estimated cumulative incidence curve or just a single point on the curve as a description of the disease risk. METHODS: We argue that, whenever the disease or disorder of interest is influenced...

  4. Analytical representation of time correlation functions and application to relaxation problems; Representation analytique des fonctions de correlation temporelle et application a des problemes de relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Dupuis, M [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires, departement de physico-chimie, services des isotopes stables

    1971-07-01

    Two analytical representations of the Laplace transform of the time autocorrelation of a dynamical variable, namely the moment expansion and Mori's continued fraction expansion, are investigated from the point of view of structure and convergence properties, and the relation between them is established. The general theory is applied first to a dynamical model exactly solvable, the isotopic impurity in a linear chain of coupled harmonic oscillators, and then to two stochastic models recently introduced by Gordon for the rotational diffusion of molecules. In the latter case, the continued fraction expansion yields simple analytical expressions for the infrared absorption band shapes, showing that these models contain all the features of observed shapes in compressed gases, liquids and solutions. (author) [French] Deux representations analytiques de la transformee de Laplace de la fonction d'autocorrelation temporelle d'une variable dynamique, le developpement en moments et le developpement en fraction continue recemment introduit par Mori, sont etudiees du point de vue de leurs proprietes de structure et de convergence, en meme temps que la relation qui existe entre elles est etablie. La theorie generale est appliquee, d'une part, a un modele dynamique exactement soluble, celui d'une particule isotopique dans une chaine lineaire d'oscillateurs harmoniques couples, et, d'autre part, a deux modeles stochastiques recemment proposes par Gordon pour la diffusion rotationnelle des molecules. Dans ce dernier cas, la voie de la fraction continue fournit des expressions analytiques simples pour les formes de bande d'absorption infrarouge, montrant que ces modeles possedent les caracteristiques des formes observees dans les gaz comprimes, les liquides ou les solutions. (auteur)

  5. Similarity estimators for irregular and age uncertain time series

    Science.gov (United States)

    Rehfeld, K.; Kurths, J.

    2013-09-01

    Paleoclimate time series are often irregularly sampled and age uncertain, which is an important technical challenge to overcome for successful reconstruction of past climate variability and dynamics. Visual comparison and interpolation-based linear correlation approaches have been used to infer dependencies from such proxy time series. While the first is subjective, not measurable and not suitable for the comparison of many datasets at a time, the latter introduces interpolation bias, and both face difficulties if the underlying dependencies are nonlinear. In this paper we investigate similarity estimators that could be suitable for the quantitative investigation of dependencies in irregular and age uncertain time series. We compare the Gaussian-kernel based cross correlation (gXCF, Rehfeld et al., 2011) and mutual information (gMI, Rehfeld et al., 2013) against their interpolation-based counterparts and the new event synchronization function (ESF). We test the efficiency of the methods in estimating coupling strength and coupling lag numerically, using ensembles of synthetic stalagmites with short, autocorrelated, linear and nonlinearly coupled proxy time series, and in the application to real stalagmite time series. In the linear test case coupling strength increases are identified consistently for all estimators, while in the nonlinear test case the correlation-based approaches fail. The lag at which the time series are coupled is identified correctly as the maximum of the similarity functions in around 60-55% (in the linear case) to 53-42% (for the nonlinear processes) of the cases when the dating of the synthetic stalagmite is perfectly precise. If the age uncertainty increases beyond 5% of the time series length, however, the true coupling lag is not identified more often than the others for which the similarity function was estimated. Age uncertainty contributes up to half of the uncertainty in the similarity estimation process. Time series irregularity

  6. Similarity estimators for irregular and age-uncertain time series

    Science.gov (United States)

    Rehfeld, K.; Kurths, J.

    2014-01-01

    Paleoclimate time series are often irregularly sampled and age uncertain, which is an important technical challenge to overcome for successful reconstruction of past climate variability and dynamics. Visual comparison and interpolation-based linear correlation approaches have been used to infer dependencies from such proxy time series. While the first is subjective, not measurable and not suitable for the comparison of many data sets at a time, the latter introduces interpolation bias, and both face difficulties if the underlying dependencies are nonlinear. In this paper we investigate similarity estimators that could be suitable for the quantitative investigation of dependencies in irregular and age-uncertain time series. We compare the Gaussian-kernel-based cross-correlation (gXCF, Rehfeld et al., 2011) and mutual information (gMI, Rehfeld et al., 2013) against their interpolation-based counterparts and the new event synchronization function (ESF). We test the efficiency of the methods in estimating coupling strength and coupling lag numerically, using ensembles of synthetic stalagmites with short, autocorrelated, linear and nonlinearly coupled proxy time series, and in the application to real stalagmite time series. In the linear test case, coupling strength increases are identified consistently for all estimators, while in the nonlinear test case the correlation-based approaches fail. The lag at which the time series are coupled is identified correctly as the maximum of the similarity functions in around 60-55% (in the linear case) to 53-42% (for the nonlinear processes) of the cases when the dating of the synthetic stalagmite is perfectly precise. If the age uncertainty increases beyond 5% of the time series length, however, the true coupling lag is not identified more often than the others for which the similarity function was estimated. Age uncertainty contributes up to half of the uncertainty in the similarity estimation process. Time series irregularity

  7. The contrasting roles of creep and stress relaxation in the time-dependent deformation during in-situ cooling of a nickel-base single crystal superalloy.

    Science.gov (United States)

    Panwisawas, Chinnapat; D'Souza, Neil; Collins, David M; Bhowmik, Ayan

    2017-09-11

    Time dependent plastic deformation in a single crystal nickel-base superalloy during cooling from casting relevant temperatures has been studied using a combination of in-situ neutron diffraction, transmission electron microscopy and modelling. Visco-plastic deformation during cooling was found to be dependent on the stress and constraints imposed to component contraction during cooling, which mechanistically comprises creep and stress relaxation. Creep results in progressive work hardening with dislocations shearing the γ' precipitates, a high dislocation density in the γ channels and near the γ/γ' interface and precipitate shearing. When macroscopic contraction is restricted, relaxation dominates. This leads to work softening from a decreased dislocation density and the presence of long segment stacking faults in γ phase. Changes in lattice strains occur to a similar magnitude in both the γ and γ' phases during stress relaxation, while in creep there is no clear monotonic trend in lattice strain in the γ phase, but only a marginal increase in the γ' precipitates. Using a visco-plastic law derived from in-situ experiments, the experimentally measured and calculated stresses during cooling show a good agreement when creep predominates. However, when stress relaxation dominates accounting for the decrease in dislocation density during cooling is essential.

  8. High-field transport of electrons and radiative effects using coupled force-balance and Fokker-Planck equations beyond the relaxation-time approximation

    International Nuclear Information System (INIS)

    Huang, Danhong; Apostolova, T.; Alsing, P.M.; Cardimona, D.A.

    2004-01-01

    The dynamics of a many-electron system under both dc and infrared fields is separated into a center-of-mass and a relative motion. The first-order force-balance equation is employed for the slow center-of-mass motion of electrons, and the Fokker-Planck equation is used for the ultrafast relative scattering motion of degenerate electrons. This approach allows us to include the anisotropic energy-relaxation process which has been neglected in the energy-balance equation in the past. It also leads us to include the anisotropic coupling to the incident infrared field with different polarizations. Based on this model, the transport of electrons is explored under strong dc and infrared fields by going beyond the relaxation-time approximation. The anisotropic dependence of the electron distribution function on the parallel and perpendicular kinetic energies of electrons is displayed with respect to the dc field direction, and the effect of anisotropic coupling to an incident infrared field with polarizations parallel and perpendicular to the applied dc electric field is shown. The heating of electrons is more accurately described beyond the energy-balance equation with the inclusion of an anisotropic coupling to the infrared field. The drift velocity of electrons is found to increase with the amplitude of the infrared field due to a suppressed momentum-relaxation process (or frictional force) under parallel polarization but decreases with the amplitude due to an enhanced momentum-relaxation process under perpendicular polarization

  9. Estimating anesthesia and surgical procedure times from medicare anesthesia claims.

    Science.gov (United States)

    Silber, Jeffrey H; Rosenbaum, Paul R; Zhang, Xuemei; Even-Shoshan, Orit

    2007-02-01

    Procedure times are important variables that often are included in studies of quality and efficiency. However, due to the need for costly chart review, most studies are limited to single-institution analyses. In this article, the authors describe how well the anesthesia claim from Medicare can estimate chart times. The authors abstracted information on time of induction and entrance to the recovery room ("anesthesia chart time") from the charts of 1,931 patients who underwent general and orthopedic surgical procedures in Pennsylvania. The authors then merged the associated bills from claims data supplied from Medicare (Part B data) that included a variable denoting the time in minutes for the anesthesia service. The authors also investigated the time from incision to closure ("surgical chart time") on a subset of 1,888 patients. Anesthesia claim time from Medicare was highly predictive of anesthesia chart time (Kendall's rank correlation tau = 0.85, P < 0.0001, median absolute error = 5.1 min) but somewhat less predictive of surgical chart time (Kendall's tau = 0.73, P < 0.0001, median absolute error = 13.8 min). When predicting chart time from Medicare bills, variables reflecting procedure type, comorbidities, and hospital type did not significantly improve the prediction, suggesting that errors in predicting the chart time from the anesthesia bill time are not related to these factors; however, the individual hospital did have some influence on these estimates. Anesthesia chart time can be well estimated using Medicare claims, thereby facilitating studies with vastly larger sample sizes and much lower costs of data collection.

  10. Gd-EOB-DTPA-Enhanced MR Imaging of the Liver: The Effect on T2 Relaxation Times and Apparent Diffusion Coefficient (ADC)

    International Nuclear Information System (INIS)

    Cieszanowski, Andrzej; Podgórska, Joanna; Rosiak, Grzegorz; Maj, Edyta; Grudziński, Ireneusz P.; Kaczyński, Bartosz; Szeszkowski, Wojciech; Milczarek, Krzysztof; Rowiński, Olgierd

    2016-01-01

    To investigate the effect of gadoxetic acid disodium (Gd-EOB-DTPA) on T2 relaxation times and apparent diffusion coefficient (ADC) values of the liver and focal liver lesions on a 1.5-T system. Magnetic resonance (MR) studies of 50 patients with 35 liver lesions were retrospectively analyzed. All examinations were performed at 1.5T and included T2-weighted turbo spin-echo (TSE) and diffusion-weighted (DW) images acquired before and after intravenous administration of Gd-EOB-DTPA. To assess the effect of this hepatobiliary contrast agent on T2-weighted TSE images and DW images T2 relaxation times and ADC values of the liver and FLLs were calculated and compared pre- and post-injection. The mean T2 relaxation times of the liver and focal hepatic lesions were lower on enhanced than on unenhanced T2-weighted TSE images (decrease of 2.7% and 3.6% respectively), although these differences were not statistically significant. The mean ADC values of the liver showed statistically significant decrease (of 4.6%) on contrast-enhanced DW images, compared to unenhanced images (P>0.05). The mean ADC value of liver lesions was lower on enhanced than on unenhanced DW images, but this difference (of 2.9%) did not reach statistical significance. The mean T2 relaxation times of the liver and focal liver lesions as well as the mean ADC values of liver lesions were not significantly different before and after administration of Gd-EOB-DTPA. Therefore, acquisition of T2-weighted and DW images between the dynamic contrast-enhanced examination and hepatobiliary phase is feasible and time-saving

  11. Smooth time-dependent receiver operating characteristic curve estimators.

    Science.gov (United States)

    Martínez-Camblor, Pablo; Pardo-Fernández, Juan Carlos

    2018-03-01

    The receiver operating characteristic curve is a popular graphical method often used to study the diagnostic capacity of continuous (bio)markers. When the considered outcome is a time-dependent variable, two main extensions have been proposed: the cumulative/dynamic receiver operating characteristic curve and the incident/dynamic receiver operating characteristic curve. In both cases, the main problem for developing appropriate estimators is the estimation of the joint distribution of the variables time-to-event and marker. As usual, different approximations lead to different estimators. In this article, the authors explore the use of a bivariate kernel density estimator which accounts for censored observations in the sample and produces smooth estimators of the time-dependent receiver operating characteristic curves. The performance of the resulting cumulative/dynamic and incident/dynamic receiver operating characteristic curves is studied by means of Monte Carlo simulations. Additionally, the influence of the choice of the required smoothing parameters is explored. Finally, two real-applications are considered. An R package is also provided as a complement to this article.

  12. Determination of intra-axial brain tumors cellularity through the analysis of T2 Relaxation time of brain tumors before surgery using MATLAB software.

    Science.gov (United States)

    Abdolmohammadi, Jamil; Shafiee, Mohsen; Faeghi, Fariborz; Arefan, Douman; Zali, Alireza; Motiei-Langroudi, Rouzbeh; Farshidfar, Zahra; Nazarlou, Ali Kiani; Tavakkoli, Ali; Yarham, Mohammad

    2016-08-01

    Timely diagnosis of brain tumors could considerably affect the process of patient treatment. To do so, para-clinical methods, particularly MRI, cannot be ignored. MRI has so far answered significant questions regarding tumor characteristics, as well as helping neurosurgeons. In order to detect the tumor cellularity, neuro-surgeons currently have to sample specimens by biopsy and then send them to the pathology unit. The aim of this study is to determine the tumor cellularity in the brain. In this cross-sectional study, 32 patients (18 males and 14 females from 18-77 y/o) were admitted to the neurosurgery department of Shohada-E Tajrish Hospital in Tehran, Iran from April 2012 to February 2014. In addition to routine pulse sequences, T2W Multi echo pulse sequences were taken and the images were analyzed using the MATLAB software to determine the brain tumor cellularity, compared with the biopsy. These findings illustrate the need for more T2 relaxation time decreases, the higher classes of tumors will stand out in the designed table. In this study, the results show T2 relaxation time with a 85% diagnostic weight, compared with the biopsy, to determine the brain tumor cellularity (p<0.05). Our results indicate that the T2 relaxation time feature is the best method to distinguish and present the degree of intra-axial brain tumors cellularity (85% accuracy compared to biopsy). The use of more data is recommended in order to increase the percent accuracy of this techniques.

  13. Slip-flow in complex porous media as determined by a multi-relaxation-time lattice Boltzmann model

    Science.gov (United States)

    Landry, C. J.; Prodanovic, M.; Eichhubl, P.

    2014-12-01

    The pores and throats of shales and mudrocks are predominantly found within a range of 1-100 nm, within this size range the flow of gas at reservoir conditions will fall within the slip-flow and low transition-flow regime (0.001 clays). Molecular dynamics (MD) simulations can be used to predict slip-flow in complex geometries, but due to prohibitive computational demand are generally limited to small volumes (one to several pores). Here we present a multi-relaxation-time lattice Boltzmann model (LBM) parameterized for slip-flow (Guo et al. 2008) and adapted here to complex geometries. LBMs are inherently parallelizable, such that flow in complex geometries of significant (near REV-scale) volumes can be readily simulated at a fraction of the computational cost of MD simulations. At the macroscopic-scale the LBM is parameterized with local effective viscosities at each node to capture the variance of the mean-free-path of gas molecules in a bounded system. The corrected mean-free-path for each lattice node is determined using the mean distance of the node to the pore-wall and Stop's correction for mean-free-paths in an infinite parallel-plate geometry. At the microscopic-scale, a combined bounce-back specular-reflection boundary condition is applied to the pore-wall nodes to capture Maxwellian-slip. The LBM simulation results are first validated in simple tube and channel geometries, where good agreement is found for Knudsen numbers below 0.1, and fair agreement is found for Knudsen numbers between 0.1 and 0.5. More complex geometries are then examined including triangular-ducts and ellipsoid-ducts, both with constant and tapering/expanding cross-sections, as well as a clay pore-network imaged from a hydrocarbon producing shale by sequential focused ion-beam scanning electron microscopy. These results are analyzed to determine grid-independent resolutions, and used to explore the relationship between effective permeability and Knudsen number in complex geometries.

  14. Estimated time spent on preventive services by primary care physicians

    Directory of Open Access Journals (Sweden)

    Gradison Margaret

    2008-12-01

    Full Text Available Abstract Background Delivery of preventive health services in primary care is lacking. One of the main barriers is lack of time. We estimated the amount of time primary care physicians spend on important preventive health services. Methods We analyzed a large dataset of primary care (family and internal medicine visits using the National Ambulatory Medical Care Survey (2001–4; analyses were conducted 2007–8. Multiple linear regression was used to estimate the amount of time spent delivering each preventive service, controlling for demographic covariates. Results Preventive visits were longer than chronic care visits (M = 22.4, SD = 11.8, M = 18.9, SD = 9.2, respectively. New patients required more time from physicians. Services on which physicians spent relatively more time were prostate specific antigen (PSA, cholesterol, Papanicolaou (Pap smear, mammography, exercise counseling, and blood pressure. Physicians spent less time than recommended on two "A" rated ("good evidence" services, tobacco cessation and Pap smear (in preventive visits, and one "B" rated ("at least fair evidence" service, nutrition counseling. Physicians spent substantial time on two services that have an "I" rating ("inconclusive evidence of effectiveness", PSA and exercise counseling. Conclusion Even with limited time, physicians address many of the "A" rated services adequately. However, they may be spending less time than recommended for important services, especially smoking cessation, Pap smear, and nutrition counseling. Future research is needed to understand how physicians decide how to allocate their time to address preventive health.

  15. Relaxation time and impurity effects on linear and nonlinear refractive index changes in (In,Ga)N–GaN spherical QD

    Energy Technology Data Exchange (ETDEWEB)

    El Ghazi, Haddou, E-mail: hadghazi@gmail.com [LPS, Faculty of Science, Dhar El Mehrez, BP 1796 Fes-Atlas (Morocco); Special Mathematics, CPGE My Youssef, Rabat (Morocco); Jorio, Anouar [LPS, Faculty of Science, Dhar El Mehrez, BP 1796 Fes-Atlas (Morocco)

    2014-10-01

    By means of a combination of Quantum Genetic Algorithm and Hartree–Fock–Roothaan method, the changes in linear, third-order nonlinear and total refractive index associated with intra-conduction band transition are investigated with and without shallow-donor impurity in wurtzite (In,Ga)N–GaN spherical quantum dot. For both cases with and without impurity, the calculation is performed within the framework of single band effective-mass and parabolic band approximations. Impurity's position and relaxation time effects are investigated. It is found that the modulation of the refractive index changes, suitable for good performance optical modulators and various infra-red optical device applications can be easily obtained by tailoring the relaxation time and the position of the impurity.

  16. In situ real-time x-ray reciprocal space mapping during InGaAs/GaAs growth for understanding strain relaxation mechanisms

    International Nuclear Information System (INIS)

    Sasaki, Takuo; Suzuki, Hidetoshi; Sai, Akihisa; Lee, Jong-Han; Kamiya, Itaru; Ohshita, Yoshio; Yamaguchi, Masafumi; Takahashi, Masamitsu; Fujikawa, Seiji; Arafune, Koji

    2009-01-01

    In situ real-time X-ray diffraction measurements during In 0.12 Ga 0.88 As/GaAs(001) epitaxial growth are performed for the first time to understand the strain relaxation mechanisms in a lattice-mismatched system. The high resolution reciprocal space maps of 004 diffraction obtained at interval of 6.2 nm thickness enable transient behavior of residual strain and crystal quality to be observed simultaneously as a function of InGaAs film thickness. From the evolution of these data, five thickness ranges with different relaxation processes and these transition points are determined quantitatively, and the dominant dislocation behavior in each phase is deduced. (author)

  17. Relaxation time and impurity effects on linear and nonlinear refractive index changes in (In,Ga)N–GaN spherical QD

    International Nuclear Information System (INIS)

    El Ghazi, Haddou; Jorio, Anouar

    2014-01-01

    By means of a combination of Quantum Genetic Algorithm and Hartree–Fock–Roothaan method, the changes in linear, third-order nonlinear and total refractive index associated with intra-conduction band transition are investigated with and without shallow-donor impurity in wurtzite (In,Ga)N–GaN spherical quantum dot. For both cases with and without impurity, the calculation is performed within the framework of single band effective-mass and parabolic band approximations. Impurity's position and relaxation time effects are investigated. It is found that the modulation of the refractive index changes, suitable for good performance optical modulators and various infra-red optical device applications can be easily obtained by tailoring the relaxation time and the position of the impurity

  18. Template-Based Estimation of Time-Varying Tempo

    Directory of Open Access Journals (Sweden)

    Peeters Geoffroy

    2007-01-01

    Full Text Available We present a novel approach to automatic estimation of tempo over time. This method aims at detecting tempo at the tactus level for percussive and nonpercussive audio. The front-end of our system is based on a proposed reassigned spectral energy flux for the detection of musical events. The dominant periodicities of this flux are estimated by a proposed combination of discrete Fourier transform and frequency-mapped autocorrelation function. The most likely meter, beat, and tatum over time are then estimated jointly using proposed meter/beat subdivision templates and a Viterbi decoding algorithm. The performances of our system have been evaluated on four different test sets among which three were used during the ISMIR 2004 tempo induction contest. The performances obtained are close to the best results of this contest.

  19. Nonparametric autocovariance estimation from censored time series by Gaussian imputation.

    Science.gov (United States)

    Park, Jung Wook; Genton, Marc G; Ghosh, Sujit K

    2009-02-01

    One of the most frequently used methods to model the autocovariance function of a second-order stationary time series is to use the parametric framework of autoregressive and moving average models developed by Box and Jenkins. However, such parametric models, though very flexible, may not always be adequate to model autocovariance functions with sharp changes. Furthermore, if the data do not follow the parametric model and are censored at a certain value, the estimation results may not be reliable. We develop a Gaussian imputation method to estimate an autocovariance structure via nonparametric estimation of the autocovariance function in order to address both censoring and incorrect model specification. We demonstrate the effectiveness of the technique in terms of bias and efficiency with simulations under various rates of censoring and underlying models. We describe its application to a time series of silicon concentrations in the Arctic.

  20. Time estimation in Parkinson's disease and degenerative cerebellar disease

    NARCIS (Netherlands)

    Beudel, Martijin; Galama, Sjoukje; Leenders, Klaus L.; de Jong, Bauke M.

    2008-01-01

    With functional MRI, we recently identified fronto-cerebellar activations in predicting time to reach a target and basal ganglia activation in velocity estimation, that is, small interval assessment. We now tested these functions in patients with Parkinson's disease (PD) and degenerative cerebellar

  1. On algebraic time-derivative estimation and deadbeat state reconstruction

    DEFF Research Database (Denmark)

    Reger, Johann; Jouffroy, Jerome

    2009-01-01

    This paper places into perspective the so-called algebraic time-derivative estimation method recently introduced by Fliess and co-authors with standard results from linear statespace theory for control systems. In particular, it is shown that the algebraic method can essentially be seen...

  2. Bayesian Nonparametric Model for Estimating Multistate Travel Time Distribution

    Directory of Open Access Journals (Sweden)

    Emmanuel Kidando

    2017-01-01

    Full Text Available Multistate models, that is, models with more than two distributions, are preferred over single-state probability models in modeling the distribution of travel time. Literature review indicated that the finite multistate modeling of travel time using lognormal distribution is superior to other probability functions. In this study, we extend the finite multistate lognormal model of estimating the travel time distribution to unbounded lognormal distribution. In particular, a nonparametric Dirichlet Process Mixture Model (DPMM with stick-breaking process representation was used. The strength of the DPMM is that it can choose the number of components dynamically as part of the algorithm during parameter estimation. To reduce computational complexity, the modeling process was limited to a maximum of six components. Then, the Markov Chain Monte Carlo (MCMC sampling technique was employed to estimate the parameters’ posterior distribution. Speed data from nine links of a freeway corridor, aggregated on a 5-minute basis, were used to calculate the corridor travel time. The results demonstrated that this model offers significant flexibility in modeling to account for complex mixture distributions of the travel time without specifying the number of components. The DPMM modeling further revealed that freeway travel time is characterized by multistate or single-state models depending on the inclusion of onset and offset of congestion periods.

  3. Animal experimental studies on the influence of fatty infiltration of the liver on tissue relaxation times and signal changes in MRT

    International Nuclear Information System (INIS)

    Kreft, B.; Stark, D.; Schild, H.

    1995-01-01

    Using a spectrometer (n=60) in vitro and MRT imaging (n=8) in vivo, we studied the influence of fatty changes of liver cells on the relaxation times of the liver (two animal models of fatty liver disease/orotic acid, L-ethionine). Induction of fatty degeneration of the liver by means of an orotic acid diet resulted in pure deposition of fat in the liver without any histological or serological proof of inflammatory changes. Although accumulation of triglyceride in the liver reduced the T 1 relaxation time only relatively slightly (-15%), there was good correlation (r=0.88) between fat content and T 1 . There was also good correlation (r=0.92) between T 2 and histological fat content. Inflammatory changes besides fatty deposition were seen both serologically and histologically in the L-ethionine model, so that the fatty content did not correlate with T 1 . In-vivo MRT imaging showed that spin-echo sequences are inappropriate for diagnosing fatty infiltration of the liver despite the relaxation time changes produced by the fatty deposition. On the other hand, chemical-shift imaging sequences are very sensitive to identify fatty deposits, and are also independent of any additionally existing inflammatory changes. (orig.) [de

  4. Comparison of T2* relaxation times of articular cartilage of the knee in elite professional football players and age-and BMI-matched amateur athletes

    Energy Technology Data Exchange (ETDEWEB)

    Behzadi, C., E-mail: c.behzadi@uke.de [Department of Diagnostic and Interventional Radiology and Nuclearmedicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246 (Germany); Welsch, G.H. [Department of Sports Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246 (Germany); Laqmani, A.; Henes, F.O.; Kaul, M.G. [Department of Diagnostic and Interventional Radiology and Nuclearmedicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246 (Germany); Schoen, G. [Department of Medical Biometry and Epidemiology, University Medical Center, Hamburg-Eppendorf, Hamburg, 20246 (Germany); Adam, G.; Regier, M. [Department of Diagnostic and Interventional Radiology and Nuclearmedicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246 (Germany)

    2017-01-15

    Objective: Recent investigation has underlined the potential of quantitative MR imaging to be used as a complementary tool for the diagnosis of cartilage degeneration at an early state. The presented study analyses T2* relaxation times of articular cartilage of the knee in professional athletes and compares the results to age- and BMI (Body Mass Index)-matched healthy amateur athletes. Materials and methods: 22 professional football players and 22 age- and BMI-matched individuals were underwent knee Magnetic Resonance Imaging (MRI) at 3T including qualitative and quantitative analysis. Qualitative analysis included e.g. meniscal tears, joint effusion and bone edema. For quantitative analysis T2* (22 ET: 4.6-53.6 ms) measurements in 3D data acquisition were performed. Deep and superficial layers of 22 predefined cartilage segments were analysed. All data sets were postprocessed using a dedicated software tool. Statistical analysis included Student t-test, confidence intervals and a random effects model. Results: In both groups, T2* relaxation times were significantly higher in the superficial compared to the deep layers (p < 0.001). Professional athletes had significantly higher relaxation times in eight superficial and three deep cartilage layers in the predefined cartilage segments (p < 0.05). Highly significant differences were found in the weight-bearing segments of the lateral superficial femoral condyle (p < 0.001). Conclusion: Elevated T2* values in cartilage layers of professional football players compared to amateur athletes were noted. The effects seem to predominate in superficial cartilage layers.

  5. Comparison of T2* relaxation times of articular cartilage of the knee in elite professional football players and age-and BMI-matched amateur athletes

    International Nuclear Information System (INIS)

    Behzadi, C.; Welsch, G.H.; Laqmani, A.; Henes, F.O.; Kaul, M.G.; Schoen, G.; Adam, G.; Regier, M.

    2017-01-01

    Objective: Recent investigation has underlined the potential of quantitative MR imaging to be used as a complementary tool for the diagnosis of cartilage degeneration at an early state. The presented study analyses T2* relaxation times of articular cartilage of the knee in professional athletes and compares the results to age- and BMI (Body Mass Index)-matched healthy amateur athletes. Materials and methods: 22 professional football players and 22 age- and BMI-matched individuals were underwent knee Magnetic Resonance Imaging (MRI) at 3T including qualitative and quantitative analysis. Qualitative analysis included e.g. meniscal tears, joint effusion and bone edema. For quantitative analysis T2* (22 ET: 4.6-53.6 ms) measurements in 3D data acquisition were performed. Deep and superficial layers of 22 predefined cartilage segments were analysed. All data sets were postprocessed using a dedicated software tool. Statistical analysis included Student t-test, confidence intervals and a random effects model. Results: In both groups, T2* relaxation times were significantly higher in the superficial compared to the deep layers (p < 0.001). Professional athletes had significantly higher relaxation times in eight superficial and three deep cartilage layers in the predefined cartilage segments (p < 0.05). Highly significant differences were found in the weight-bearing segments of the lateral superficial femoral condyle (p < 0.001). Conclusion: Elevated T2* values in cartilage layers of professional football players compared to amateur athletes were noted. The effects seem to predominate in superficial cartilage layers.

  6. Quantitative assessment of the T2 relaxation time of the gluteus muscles in children with Duchenne muscular dystrophy: a comparative study before and after steroid treatment.

    Science.gov (United States)

    Kim, Hee Kyung; Laor, Tal; Horn, Paul S; Wong, Brenda

    2010-01-01

    To determine the feasibility of using T2 mapping as a quantitative method to longitudinally follow the disease activity in children with Duchenne muscular dystrophy (DMD) who are treated with steroids. ELEVEN BOYS WITH DMD (AGE RANGE: 5-14 years) underwent evaluation with the clinical functional score (CFS), and conventional pelvic MRI and T2 mapping before and during steroid therapy. The gluteus muscle inflammation and fatty infiltration were evaluated on conventional MRI. The histograms and mean T2 relaxation times were obtained from the T2 maps. The CFS, the conventional MRI findings and the T2 values were compared before and during steroid therapy. None of the patients showed interval change of their CFSs. On conventional MRI, none of the images showed muscle inflammation. During steroid treatment, two boys showed increased fatty infiltration on conventional MRI, and both had an increase of the mean T2 relaxation time (p muscle changes in those children who receive steroid therapy for DMD. The differences of the mean T2 relaxation time may reflect alterations in disease activity, and even when the conventional MRI and CFS remain stable.

  7. Aircraft Fault Detection Using Real-Time Frequency Response Estimation

    Science.gov (United States)

    Grauer, Jared A.

    2016-01-01

    A real-time method for estimating time-varying aircraft frequency responses from input and output measurements was demonstrated. The Bat-4 subscale airplane was used with NASA Langley Research Center's AirSTAR unmanned aerial flight test facility to conduct flight tests and collect data for dynamic modeling. Orthogonal phase-optimized multisine inputs, summed with pilot stick and pedal inputs, were used to excite the responses. The aircraft was tested in its normal configuration and with emulated failures, which included a stuck left ruddervator and an increased command path latency. No prior knowledge of a dynamic model was used or available for the estimation. The longitudinal short period dynamics were investigated in this work. Time-varying frequency responses and stability margins were tracked well using a 20 second sliding window of data, as compared to a post-flight analysis using output error parameter estimation and a low-order equivalent system model. This method could be used in a real-time fault detection system, or for other applications of dynamic modeling such as real-time verification of stability margins during envelope expansion tests.

  8. Estimate of Passive Time Reversal Communication Performance in Shallow Water

    Directory of Open Access Journals (Sweden)

    Sunhyo Kim

    2017-12-01

    Full Text Available Time reversal processes have been used to improve communication performance in the severe underwater communication environment characterized by significant multipath channels by reducing inter-symbol interference and increasing signal-to-noise ratio. In general, the performance of the time reversal is strongly related to the behavior of the q -function, which is estimated by a sum of the autocorrelation of the channel impulse response for each channel in the receiver array. The q -function depends on the complexity of the communication channel, the number of channel elements and their spacing. A q -function with a high side-lobe level and a main-lobe width wider than the symbol duration creates a residual ISI (inter-symbol interference, which makes communication difficult even after time reversal is applied. In this paper, we propose a new parameter, E q , to describe the performance of time reversal communication. E q is an estimate of how much of the q -function lies within one symbol duration. The values of E q were estimated using communication data acquired at two different sites: one in which the sound speed ratio of sediment to water was less than unity and one where the ratio was higher than unity. Finally, the parameter E q was compared to the bit error rate and the output signal-to-noise ratio obtained after the time reversal operation. The results show that these parameters are strongly correlated to the parameter E q .

  9. Influence of aging time of oleate precursor on the magnetic relaxation of cobalt ferrite nanoparticles synthesized by the thermal decomposition method

    International Nuclear Information System (INIS)

    Herrera, Adriana P.; Polo-Corrales, Liliana; Chavez, Ermides; Cabarcas-Bolivar, Jari; Uwakweh, Oswald N.C.; Rinaldi, Carlos

    2013-01-01

    Cobalt ferrite nanoparticles are of interest because of their room temperature coercivity and high magnetic anisotropy constant, which make them attractive in applications such as sensors based on the Brownian relaxation mechanism and probes to determine the mechanical properties of complex fluids at the nanoscale. These nanoparticles can be synthesized with a narrow size distribution by the thermal decomposition of an iron–cobalt oleate precursor in a high boiling point solvent. We studied the influence of aging time of the iron–cobalt oleate precursor on the structure, chemical composition, size, and magnetic relaxation of cobalt ferrite nanoparticles synthesized by the thermal decomposition method. The structure and thermal behavior of the iron–cobalt oleate was studied during the aging process. Infrared spectra indicated a shift in the coordination state of the oleate and iron/cobalt ions from bidentate to bridging coordination. Aging seemed to influence the thermal decomposition of the iron–cobalt oleate as determined from thermogravimmetric analysis and differential scanning calorimetry, where shifts in the temperatures corresponding to decomposition events and a narrowing of the endotherms associated with these events were observed. Aging promoted formation of the spinel crystal structure, as determined from X-ray diffraction, and influenced the nanoparticle magnetic properties, resulting in an increase in blocking temperature and magnetocrystalline anisotropy. Mossbauer spectra also indicated changes in the magnetic properties resulting from aging of the precursor oleate. Although all samples exhibited some degree of Brownian relaxation, as determined from complex susceptibility measurements in a liquid medium, aging of the iron–cobalt oleate precursor resulted in crossing of the in-phase χ′and out-of-phase χ″ components of the complex susceptibility at the frequency of the Brownian magnetic relaxation peak, as expected for nanoparticles

  10. Time Series Decomposition into Oscillation Components and Phase Estimation.

    Science.gov (United States)

    Matsuda, Takeru; Komaki, Fumiyasu

    2017-02-01

    Many time series are naturally considered as a superposition of several oscillation components. For example, electroencephalogram (EEG) time series include oscillation components such as alpha, beta, and gamma. We propose a method for decomposing time series into such oscillation components using state-space models. Based on the concept of random frequency modulation, gaussian linear state-space models for oscillation components are developed. In this model, the frequency of an oscillator fluctuates by noise. Time series decomposition is accomplished by this model like the Bayesian seasonal adjustment method. Since the model parameters are estimated from data by the empirical Bayes' method, the amplitudes and the frequencies of oscillation components are determined in a data-driven manner. Also, the appropriate number of oscillation components is determined with the Akaike information criterion (AIC). In this way, the proposed method provides a natural decomposition of the given time series into oscillation components. In neuroscience, the phase of neural time series plays an important role in neural information processing. The proposed method can be used to estimate the phase of each oscillation component and has several advantages over a conventional method based on the Hilbert transform. Thus, the proposed method enables an investigation of the phase dynamics of time series. Numerical results show that the proposed method succeeds in extracting intermittent oscillations like ripples and detecting the phase reset phenomena. We apply the proposed method to real data from various fields such as astronomy, ecology, tidology, and neuroscience.

  11. H∞ state estimation for discrete-time memristive recurrent neural networks with stochastic time-delays

    Science.gov (United States)

    Liu, Hongjian; Wang, Zidong; Shen, Bo; Alsaadi, Fuad E.

    2016-07-01

    This paper deals with the robust H∞ state estimation problem for a class of memristive recurrent neural networks with stochastic time-delays. The stochastic time-delays under consideration are governed by a Bernoulli-distributed stochastic sequence. The purpose of the addressed problem is to design the robust state estimator such that the dynamics of the estimation error is exponentially stable in the mean square, and the prescribed ? performance constraint is met. By utilizing the difference inclusion theory and choosing a proper Lyapunov-Krasovskii functional, the existence condition of the desired estimator is derived. Based on it, the explicit expression of the estimator gain is given in terms of the solution to a linear matrix inequality. Finally, a numerical example is employed to demonstrate the effectiveness and applicability of the proposed estimation approach.

  12. Effect of Au{sup 8+} irradiation on Ni/n-GaP Schottky diode: Its influence on interface state density and relaxation time

    Energy Technology Data Exchange (ETDEWEB)

    Shiwakoti, N.; Bobby, A. [Department of Applied Physics, Indian Institute of Technology (ISM) Dhanbad, Jharkhand 826004 (India); Asokan, K. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Antony, Bobby, E-mail: bka.ism@gmail.com [Department of Applied Physics, Indian Institute of Technology (ISM) Dhanbad, Jharkhand 826004 (India)

    2017-01-01

    The in-situ capacitance-frequency and conductance-frequency measurements of 100 MeV Au{sup 8+} swift heavy ion irradiated Ni/n-GaP Schottky structure at a constant bias voltage have been carried out in the frequency range 1 kHz–1 MHz at room temperature. The interface states density and the relaxation time of the charge carriers have been calculated from Nicollian and Brews method. Various dielectric parameters such as dielectric constant, dielectric loss, loss tangent, series resistance, ac conductivity, real and imaginary parts of electric modulus have been extracted and analyzed under complex permittivity and complex electric modulus formalisms. The capacitance and conductance characteristics are found to exhibit complex behaviors at lower frequency region (1–20 kHz) for all the samples. The observed peaks and dips at low frequency region are attributed to the relaxation mechanisms of charge carriers and the interface or dipolar polarization at the interface. The dielectric properties are found to be effectively changed by the ion fluence which is attributed to the variation in interface states density and their relaxation time.

  13. T1rho and T2 relaxation times of the normal adult knee meniscus at 3T: analysis of zonal differences.

    Science.gov (United States)

    Takao, Shoichiro; Nguyen, Tan B; Yu, Hon J; Hagiwara, Shigeo; Kaneko, Yasuhito; Nozaki, Taiki; Iwamoto, Seiji; Otomo, Maki; Schwarzkopf, Ran; Yoshioka, Hiroshi

    2017-05-18

    Prior studies describe histological and immunohistochemical differences in collagen and proteoglycan content in different meniscal zones. The aim of this study is to evaluate horizontal and vertical zonal differentiation of T1rho and T2 relaxation times of the entire meniscus from volunteers without symptom and imaging abnormality. Twenty volunteers age between 19 and 38 who have no knee-related clinical symptoms, and no history of prior knee surgeries were enrolled in this study. Two T1rho mapping (b-FFE T1rho and SPGR T1rho) and T2 mapping images were acquired with a 3.0-T MR scanner. Each meniscus was divided manually into superficial and deep zones for horizontal zonal analysis. The anterior and posterior horns of each meniscus were divided manually into white, red-white and red zones for vertical zonal analysis. Zonal differences of average relaxation times among each zone, and both inter- and intra-observer reproducibility were statistically analyzed. In horizontal zonal analysis, T1rho relaxation times of the superficial zone tended to be higher than those of the deep zone, and this difference was statistically significant in the medial meniscal segments (84.3 ms vs 76.0 ms on b-FFE, p meniscus (88.4 ms vs 77.1 ms on b-FFE, p meniscus, p = 0.011). T2 relaxation times of the white zone were significantly higher than those of the red zone in the medial meniscus posterior horn (96.8 ms vs 84.3 ms, p meniscus anterior horn (104.6 ms vs 84.2 ms, p 0.74) or good (0.60-0.74) in all meniscal segments on both horizontal and vertical zonal analysis, except for inter-class correlation coefficients of the lateral meniscus on SPGR. Compared with SPGR T1rho images, b-FFE T1rho images demonstrated more significant zonal differentiation with higher inter- and intra-observer reproducibility. There are zonal differences in T1rho and T2 relaxation times of the normal meniscus.

  14. Soft sensor for real-time cement fineness estimation.

    Science.gov (United States)

    Stanišić, Darko; Jorgovanović, Nikola; Popov, Nikola; Čongradac, Velimir

    2015-03-01

    This paper describes the design and implementation of soft sensors to estimate cement fineness. Soft sensors are mathematical models that use available data to provide real-time information on process variables when the information, for whatever reason, is not available by direct measurement. In this application, soft sensors are used to provide information on process variable normally provided by off-line laboratory tests performed at large time intervals. Cement fineness is one of the crucial parameters that define the quality of produced cement. Providing real-time information on cement fineness using soft sensors can overcome limitations and problems that originate from a lack of information between two laboratory tests. The model inputs were selected from candidate process variables using an information theoretic approach. Models based on multi-layer perceptrons were developed, and their ability to estimate cement fineness of laboratory samples was analyzed. Models that had the best performance, and capacity to adopt changes in the cement grinding circuit were selected to implement soft sensors. Soft sensors were tested using data from a continuous cement production to demonstrate their use in real-time fineness estimation. Their performance was highly satisfactory, and the sensors proved to be capable of providing valuable information on cement grinding circuit performance. After successful off-line tests, soft sensors were implemented and installed in the control room of a cement factory. Results on the site confirm results obtained by tests conducted during soft sensor development. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Efficient Implementation of a Symbol Timing Estimator for Broadband PLC.

    Science.gov (United States)

    Nombela, Francisco; García, Enrique; Mateos, Raúl; Hernández, Álvaro

    2015-08-21

    Broadband Power Line Communications (PLC) have taken advantage of the research advances in multi-carrier modulations to mitigate frequency selective fading, and their adoption opens up a myriad of applications in the field of sensory and automation systems, multimedia connectivity or smart spaces. Nonetheless, the use of these multi-carrier modulations, such as Wavelet-OFDM, requires a highly accurate symbol timing estimation for reliably recovering of transmitted data. Furthermore, the PLC channel presents some particularities that prevent the direct use of previous synchronization algorithms proposed in wireless communication systems. Therefore more research effort should be involved in the design and implementation of novel and robust synchronization algorithms for PLC, thus enabling real-time synchronization. This paper proposes a symbol timing estimator for broadband PLC based on cross-correlation with multilevel complementary sequences or Zadoff-Chu sequences and its efficient implementation in a FPGA; the obtained results show a 90% of success rate in symbol timing estimation for a certain PLC channel model and a reduced resource consumption for its implementation in a Xilinx Kyntex FPGA.

  16. Efficient Implementation of a Symbol Timing Estimator for Broadband PLC

    Directory of Open Access Journals (Sweden)

    Francisco Nombela

    2015-08-01

    Full Text Available Broadband Power Line Communications (PLC have taken advantage of the research advances in multi-carrier modulations to mitigate frequency selective fading, and their adoption opens up a myriad of applications in the field of sensory and automation systems, multimedia connectivity or smart spaces. Nonetheless, the use of these multi-carrier modulations, such as Wavelet-OFDM, requires a highly accurate symbol timing estimation for reliably recovering of transmitted data. Furthermore, the PLC channel presents some particularities that prevent the direct use of previous synchronization algorithms proposed in wireless communication systems. Therefore more research effort should be involved in the design and implementation of novel and robust synchronization algorithms for PLC, thus enabling real-time synchronization. This paper proposes a symbol timing estimator for broadband PLC based on cross-correlation with multilevel complementary sequences or Zadoff-Chu sequences and its efficient implementation in a FPGA; the obtained results show a 90% of success rate in symbol timing estimation for a certain PLC channel model and a reduced resource consumption for its implementation in a Xilinx Kyntex FPGA.

  17. Time-to-contact estimation modulated by implied friction.

    Science.gov (United States)

    Yamada, Yuki; Sasaki, Kyoshiro; Miura, Kayo

    2014-01-01

    The present study demonstrated that friction cues for target motion affect time-to-contact (TTC) estimation. A circular target moved in a linear path with a constant velocity and was gradually occluded by a static rectangle. The target moved with forward and backward spins or without spin. Observers were asked to respond at the time when the moving target appeared to pass the occluder. The results showed that TTC was significantly longer in the backward spin condition than in the forward and without-spin conditions. Moreover, similar results were obtained when a sound was used to imply friction. Our findings indicate that the observer's experiential knowledge of motion coupled with friction intuitively modulated their TTC estimation.

  18. Seasonal adjustment methods and real time trend-cycle estimation

    CERN Document Server

    Bee Dagum, Estela

    2016-01-01

    This book explores widely used seasonal adjustment methods and recent developments in real time trend-cycle estimation. It discusses in detail the properties and limitations of X12ARIMA, TRAMO-SEATS and STAMP - the main seasonal adjustment methods used by statistical agencies. Several real-world cases illustrate each method and real data examples can be followed throughout the text. The trend-cycle estimation is presented using nonparametric techniques based on moving averages, linear filters and reproducing kernel Hilbert spaces, taking recent advances into account. The book provides a systematical treatment of results that to date have been scattered throughout the literature. Seasonal adjustment and real time trend-cycle prediction play an essential part at all levels of activity in modern economies. They are used by governments to counteract cyclical recessions, by central banks to control inflation, by decision makers for better modeling and planning and by hospitals, manufacturers, builders, transportat...

  19. Time Delay Estimation in Room Acoustic Environments: An Overview

    Directory of Open Access Journals (Sweden)

    Benesty Jacob

    2006-01-01

    Full Text Available Time delay estimation has been a research topic of significant practical importance in many fields (radar, sonar, seismology, geophysics, ultrasonics, hands-free communications, etc.. It is a first stage that feeds into subsequent processing blocks for identifying, localizing, and tracking radiating sources. This area has made remarkable advances in the past few decades, and is continuing to progress, with an aim to create processors that are tolerant to both noise and reverberation. This paper presents a systematic overview of the state-of-the-art of time-delay-estimation algorithms ranging from the simple cross-correlation method to the advanced blind channel identification based techniques. We discuss the pros and cons of each individual algorithm, and outline their inherent relationships. We also provide experimental results to illustrate their performance differences in room acoustic environments where reverberation and noise are commonly encountered.

  20. Schroedinger operators - geometric estimates in terms of the occupation time

    International Nuclear Information System (INIS)

    Demuth, M.; Kirsch, W.; McGillivray, I.

    1995-01-01

    The difference of Schroedinger and Dirichlet semigroups is expressed in terms of the Laplace transform of the Brownian motion occupation time. This implies quantitative upper and lower bounds for the operator norms of the corresponding resolvent differences. One spectral theoretical consequence is an estimate for the eigenfunction for a Schroedinger operator in a ball where the potential is given as a cone indicator function. 12 refs

  1. Estimation of Continuous Time Models in Economics: an Overview

    OpenAIRE

    Clifford R. Wymer

    2009-01-01

    The dynamics of economic behaviour is often developed in theory as a continuous time system. Rigorous estimation and testing of such systems, and the analysis of some aspects of their properties, is of particular importance in distinguishing between competing hypotheses and the resulting models. The consequences for the international economy during the past eighteen months of failures in the financial sector, and particularly the banking sector, make it essential that the dynamics of financia...

  2. Tsunami Amplitude Estimation from Real-Time GNSS.

    Science.gov (United States)

    Jeffries, C.; MacInnes, B. T.; Melbourne, T. I.

    2017-12-01

    Tsunami early warning systems currently comprise modeling of observations from the global seismic network, deep-ocean DART buoys, and a global distribution of tide gauges. While these tools work well for tsunamis traveling teleseismic distances, saturation of seismic magnitude estimation in the near field can result in significant underestimation of tsunami excitation for local warning. Moreover, DART buoy and tide gauge observations cannot be used to rectify the underestimation in the available time, typically 10-20 minutes, before local runup occurs. Real-time GNSS measurements of coseismic offsets may be used to estimate finite faulting within 1-2 minutes and, in turn, tsunami excitation for local warning purposes. We describe here a tsunami amplitude estimation algorithm; implemented for the Cascadia subduction zone, that uses continuous GNSS position streams to estimate finite faulting. The system is based on a time-domain convolution of fault slip that uses a pre-computed catalog of hydrodynamic Green's functions generated with the GeoClaw shallow-water wave simulation software and maps seismic slip along each section of the fault to points located off the Cascadia coast in 20m of water depth and relies on the principle of the linearity in tsunami wave propagation. The system draws continuous slip estimates from a message broker, convolves the slip with appropriate Green's functions which are then superimposed to produce wave amplitude at each coastal location. The maximum amplitude and its arrival time are then passed into a database for subsequent monitoring and display. We plan on testing this system using a suite of synthetic earthquakes calculated for Cascadia whose ground motions are simulated at 500 existing Cascadia GPS sites, as well as real earthquakes for which we have continuous GNSS time series and surveyed runup heights, including Maule, Chile 2010 and Tohoku, Japan 2011. This system has been implemented in the CWU Geodesy Lab for the Cascadia

  3. Minimum Distance Estimation on Time Series Analysis With Little Data

    National Research Council Canada - National Science Library

    Tekin, Hakan

    2001-01-01

    .... Minimum distance estimation has been demonstrated better standard approaches, including maximum likelihood estimators and least squares, in estimating statistical distribution parameters with very small data sets...

  4. Diagnostic value of T1 and T2 * relaxation times and off-resonance saturation effects in the evaluation of Achilles tendinopathy by MRI at 3T.

    Science.gov (United States)

    Grosse, Ulrich; Syha, Roland; Hein, Tobias; Gatidis, Sergios; Grözinger, Gerd; Schabel, Christoph; Martirosian, Petros; Schick, Fritz; Springer, Fabian

    2015-04-01

    To evaluate and compare the diagnostic value of T1 , T2 * relaxation times and off-resonance saturation ratios (OSR) in healthy controls and patients with different clinical and morphological stages of Achilles tendinopathy. Forty-two healthy Achilles tendons and 34 tendons of 17 patients with symptomatic and asymptomatic tendinopathy were investigated clinically with conventional magnetic resonance imaging (MRI) sequences on a 3T whole-body MR scanner and a dynamic ultrasound examination. In addition, T1 and T2 * relaxation times were assessed using an ultrashort echo time (UTE) imaging sequence with flip angle and echo time variation. For the calculation of OSR values a Gaussian off-resonance saturation pulse (frequency offset: 750-5000 Hz) was used. The diagnostic value of the derived MR values was assessed and compared using receiver operating characteristic (ROC) curves. ROC curves demonstrate the highest overall test performance for OSR values at 2000 Hz off-resonance in differentiating slightly (OSR-2000 [AUC: 0.930] > T2 * [AUC: 0.884] > T1 [AUC: 0.737]) and more severe pathologically altered tendon areas (OSR-2000 [AUC: 0.964] > T2 * [AUC: 0.917] > T1 [AUC: 0.819]) from healthy ones. OSR values at a frequency offset of 2000 Hz demonstrated a better sensitivity and specificity for detecting mild and severe stages of tendinopathy compared to T2 * and particularly when compared to T1 relaxation times. © 2014 Wiley Periodicals, Inc.

  5. Quantitative MRI T2 relaxation time evaluation of knee cartilage: comparison of meniscus-intact and -injured knees after anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Li, Hong; Chen, Shuang; Tao, Hongyue; Chen, Shiyi

    2015-04-01

    Associated meniscal injury is well recognized at anterior cruciate ligament (ACL) reconstruction, and it is a known risk factor for osteoarthritis. To evaluate and characterize the postoperative appearance of articular cartilage after different meniscal treatment in ACL-reconstructed knees using T2 relaxation time evaluation on MRI. Cohort study; Level of evidence, 3. A total of 62 consecutive patients who under ACL reconstruction were recruited in this study, including 23 patients undergoing partial meniscectomy (MS group), 21 patients undergoing meniscal repair (MR group), and 18 patients with intact menisci (MI group) at time of surgery. Clinical evaluation, including subjective functional scores and physical examination, was performed on the same day as the MRI examination and at follow-up times ranging from 2 to 4.2 years. The MRI multiecho sagittal images were segmented to determine the T2 relaxation time value of each meniscus and articular cartilage plate. Differences in each measurement were compared among groups. No patient had joint-line tenderness or reported pain or clicking on McMurray test or instability. There were also no statistically significant differences in functional scores or medial or lateral meniscus T2 values among the 3 groups (P > .05 for both). There was a significantly higher articular cartilage T2 value in the medial femorotibial articular cartilage for the MS group (P T2 value between the MS and MR groups (P > .05) in each articular cartilage plate. The medial tibial articular cartilage T2 value had a significant positive correlation with medial meniscus T2 value (r = 0.287; P = .024) CONCLUSION: This study demonstrates that knees with meniscectomy or meniscal repair had articular cartilage degeneration at 2 to 4 years postoperatively, with higher articular cartilage T2 relaxation time values compared with the knees with an intact meniscus. © 2015 The Author(s).

  6. Real-time estimation of differential piston at the LBT

    Science.gov (United States)

    Böhm, Michael; Pott, Jörg-Uwe; Sawodny, Oliver; Herbst, Tom; Kürster, Martin

    2014-07-01

    In this paper, we present and compare different strategies to minimize the effects of telescope vibrations to the differential piston (OPD) for LINC/NIRVANA at the LBT using an accelerometer feedforward compensation approach. We summarize why this technology is of importance for LINC/NIRVANA, but also for future telescopes and instruments. We outline the estimation problem in general and its specifics at the LBT. Model based estimation and broadband filtering techniques can be used to solve the estimation task, each having its own advantages and disadvantages, which will be discussed. Simulation results and measurements at the LBT are shown to motivate and support our choice of the estimation algorithm for the instrument LINC/NIRVANA. We explain our laboratory setup aimed at imitating the vibration behaviour at the LBT in general, and the M2 as main contributor in particular, and we demonstrate the controller's ability to suppress vibrations in the frequency range of 8 Hz to 60 Hz. In this range, telescope vibrations are the most dominant disturbance to the optical path. For our measurements, we introduce a disturbance time series which has a frequency spectrum comparable to what can be measured at the LBT on a typical night. We show promising experimental results, indicating the ability to suppress differential piston induced by telescope vibrations by a factor of about 5 (RMS), which is significantly better than any currently commissioned system.

  7. Investigation of metabolites for estimating blood deposition time.

    Science.gov (United States)

    Lech, Karolina; Liu, Fan; Davies, Sarah K; Ackermann, Katrin; Ang, Joo Ern; Middleton, Benita; Revell, Victoria L; Raynaud, Florence J; Hoveijn, Igor; Hut, Roelof A; Skene, Debra J; Kayser, Manfred

    2018-01-01

    Trace deposition timing reflects a novel concept in forensic molecular biology involving the use of rhythmic biomarkers for estimating the time within a 24-h day/night cycle a human biological sample was left at the crime scene, which in principle allows verifying a sample donor's alibi. Previously, we introduced two circadian hormones for trace deposition timing and recently demonstrated that messenger RNA (mRNA) biomarkers significantly improve time prediction accuracy. Here, we investigate the suitability of metabolites measured using a targeted metabolomics approach, for trace deposition timing. Analysis of 171 plasma metabolites collected around the clock at 2-h intervals for 36 h from 12 male participants under controlled laboratory conditions identified 56 metabolites showing statistically significant oscillations, with peak times falling into three day/night time categories: morning/noon, afternoon/evening and night/early morning. Time prediction modelling identified 10 independently contributing metabolite biomarkers, which together achieved prediction accuracies expressed as AUC of 0.81, 0.86 and 0.90 for these three time categories respectively. Combining metabolites with previously established hormone and mRNA biomarkers in time prediction modelling resulted in an improved prediction accuracy reaching AUCs of 0.85, 0.89 and 0.96 respectively. The additional impact of metabolite biomarkers, however, was rather minor as the previously established model with melatonin, cortisol and three mRNA biomarkers achieved AUC values of 0.88, 0.88 and 0.95 for the same three time categories respectively. Nevertheless, the selected metabolites could become practically useful in scenarios where RNA marker information is unavailable such as due to RNA degradation. This is the first metabolomics study investigating circulating metabolites for trace deposition timing, and more work is needed to fully establish their usefulness for this forensic purpose.

  8. Fast mapping of the T2 relaxation time of cerebral metabolites using proton echo-planar spectroscopic imaging (PEPSI).

    Science.gov (United States)

    Tsai, Shang-Yueh; Posse, Stefan; Lin, Yi-Ru; Ko, Cheng-Wen; Otazo, Ricardo; Chung, Hsiao-Wen; Lin, Fa-Hsuan

    2007-05-01

    Metabolite T2 is necessary for accurate quantification of the absolute concentration of metabolites using long-echo-time (TE) acquisition schemes. However, lengthy data acquisition times pose a major challenge to mapping metabolite T2. In this study we used proton echo-planar spectroscopic imaging (PEPSI) at 3T to obtain fast T2 maps of three major cerebral metabolites: N-acetyl-aspartate (NAA), creatine (Cre), and choline (Cho). We showed that PEPSI spectra matched T2 values obtained using single-voxel spectroscopy (SVS). Data acquisition for 2D metabolite maps with a voxel volume of 0.95 ml (32 x 32 image matrix) can be completed in 25 min using five TEs and eight averages. A sufficient spectral signal-to-noise ratio (SNR) for T2 estimation was validated by high Pearson's correlation coefficients between logarithmic MR signals and TEs (R2 = 0.98, 0.97, and 0.95 for NAA, Cre, and Cho, respectively). In agreement with previous studies, we found that the T2 values of NAA, but not Cre and Cho, were significantly different between gray matter (GM) and white matter (WM; P PEPSI and SVS scans was less than 9%. Consistent spatial distributions of T2 were found in six healthy subjects, and disagreement among subjects was less than 10%. In summary, the PEPSI technique is a robust method to obtain fast mapping of metabolite T2. (c) 2007 Wiley-Liss, Inc.

  9. Religious affiliation at time of death - Global estimates and projections.

    Science.gov (United States)

    Skirbekk, Vegard; Todd, Megan; Stonawski, Marcin

    2018-03-01

    Religious affiliation influences societal practices regarding death and dying, including palliative care, religiously acceptable health service procedures, funeral rites and beliefs about an afterlife. We aimed to estimate and project religious affiliation at the time of death globally, as this information has been lacking. We compiled data on demographic information and religious affiliation from more than 2500 surveys, registers and censuses covering 198 nations/territories. We present estimates of religious affiliation at the time of death as of 2010, projections up to and including 2060, taking into account trends in mortality, religious conversion, intergenerational transmission of religion, differential fertility, and gross migration flows, by age and sex. We find that Christianity continues to be the most common religion at death, although its share will fall from 37% to 31% of global deaths between 2010 and 2060. The share of individuals identifying as Muslim at the time of death increases from 21% to 24%. The share of religiously unaffiliated will peak at 17% in 2035 followed by a slight decline thereafter. In specific regions, such as Europe, the unaffiliated share will continue to rises from 14% to 21% throughout the period. Religious affiliation at the time of death is changing globally, with distinct regional patterns. This could affect spatial variation in healthcare and social customs relating to death and dying.

  10. Real-time gaze estimation via pupil center tracking

    Directory of Open Access Journals (Sweden)

    Cazzato Dario

    2018-02-01

    Full Text Available Automatic gaze estimation not based on commercial and expensive eye tracking hardware solutions can enable several applications in the fields of human computer interaction (HCI and human behavior analysis. It is therefore not surprising that several related techniques and methods have been investigated in recent years. However, very few camera-based systems proposed in the literature are both real-time and robust. In this work, we propose a real-time user-calibration-free gaze estimation system that does not need person-dependent calibration, can deal with illumination changes and head pose variations, and can work with a wide range of distances from the camera. Our solution is based on a 3-D appearance-based method that processes the images from a built-in laptop camera. Real-time performance is obtained by combining head pose information with geometrical eye features to train a machine learning algorithm. Our method has been validated on a data set of images of users in natural environments, and shows promising results. The possibility of a real-time implementation, combined with the good quality of gaze tracking, make this system suitable for various HCI applications.

  11. Estimation of dynamic flux profiles from metabolic time series data

    Directory of Open Access Journals (Sweden)

    Chou I-Chun

    2012-07-01

    Full Text Available Abstract Background Advances in modern high-throughput techniques of molecular biology have enabled top-down approaches for the estimation of parameter values in metabolic systems, based on time series data. Special among them is the recent method of dynamic flux estimation (DFE, which uses such data not only for parameter estimation but also for the identification of functional forms of the processes governing a metabolic system. DFE furthermore provides diagnostic tools for the evaluation of model validity and of the quality of a model fit beyond residual errors. Unfortunately, DFE works only when the data are more or less complete and the system contains as many independent fluxes as metabolites. These drawbacks may be ameliorated with other types of estimation and information. However, such supplementations incur their own limitations. In particular, assumptions must be made regarding the functional forms of some processes and detailed kinetic information must be available, in addition to the time series data. Results The authors propose here a systematic approach that supplements DFE and overcomes some of its shortcomings. Like DFE, the approach is model-free and requires only minimal assumptions. If sufficient time series data are available, the approach allows the determination of a subset of fluxes that enables the subsequent applicability of DFE to the rest of the flux system. The authors demonstrate the procedure with three artificial pathway systems exhibiting distinct characteristics and with actual data of the trehalose pathway in Saccharomyces cerevisiae. Conclusions The results demonstrate that the proposed method successfully complements DFE under various situations and without a priori assumptions regarding the model representation. The proposed method also permits an examination of whether at all, to what degree, or within what range the available time series data can be validly represented in a particular functional format of

  12. Properties of the relaxation time distribution underlying the Kohlrausch-Williams-Watts photoionization of the DX centers in Cd{sub 1-x}Mn{sub x}Te mixed crystals

    Energy Technology Data Exchange (ETDEWEB)

    Trzmiel, J; Weron, K; Placzek-Popko, E [Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Janczura, J [Hugo Steinhaus Center for Stochastic Methods and Institute of Mathematics and Computer Science, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2009-08-26

    In this paper we clarify the relationship between the relaxation rate and relaxation time distributions underlying the Kohlrausch-Williams-Watts (KWW) photoconductivity build-ups in indium- and gallium-doped Cd{sub 1-x}Mn{sub x}Te mixed crystals. We discuss the role of asymptotic properties of the corresponding probability density functions. We show that the relaxation rate distribution, as a completely asymmetric alpha-stable distribution, leads to an infinite mean value of the effective relaxation rate. In contrast, the relaxation time distribution related to it leads to a finite mean value of the effective relaxation time. It follows from the experimental data analysis that for all the investigated samples the KWW exponent alpha decreases linearly with increasing photon flux in the range of (0.6-0.99) and its values are more spread in the case of gallium-doped material. We also observe a linear dependence of the mean relaxation time on the characteristic material time constant, which is consistent with the theoretical model.

  13. Parametric estimation of time varying baselines in airborne interferometric SAR

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Madsen, Søren Nørvang

    1996-01-01

    A method for estimation of time varying spatial baselines in airborne interferometric synthetic aperture radar (SAR) is described. The range and azimuth distortions between two images acquired with a non-linear baseline are derived. A parametric model of the baseline is then, in a least square...... sense, estimated from image shifts obtained by cross correlation of numerous small patches throughout the image. The method has been applied to airborne EMISAR imagery from the 1995 campaign over the Storstrommen Glacier in North East Greenland conducted by the Danish Center for Remote Sensing. This has...... reduced the baseline uncertainties from several meters to the centimeter level in a 36 km scene. Though developed for airborne SAR the method can easily be adopted to satellite data...

  14. Statistical methods of parameter estimation for deterministically chaotic time series

    Science.gov (United States)

    Pisarenko, V. F.; Sornette, D.

    2004-03-01

    We discuss the possibility of applying some standard statistical methods (the least-square method, the maximum likelihood method, and the method of statistical moments for estimation of parameters) to deterministically chaotic low-dimensional dynamic system (the logistic map) containing an observational noise. A “segmentation fitting” maximum likelihood (ML) method is suggested to estimate the structural parameter of the logistic map along with the initial value x1 considered as an additional unknown parameter. The segmentation fitting method, called “piece-wise” ML, is similar in spirit but simpler and has smaller bias than the “multiple shooting” previously proposed. Comparisons with different previously proposed techniques on simulated numerical examples give favorable results (at least, for the investigated combinations of sample size N and noise level). Besides, unlike some suggested techniques, our method does not require the a priori knowledge of the noise variance. We also clarify the nature of the inherent difficulties in the statistical analysis of deterministically chaotic time series and the status of previously proposed Bayesian approaches. We note the trade off between the need of using a large number of data points in the ML analysis to decrease the bias (to guarantee consistency of the estimation) and the unstable nature of dynamical trajectories with exponentially fast loss of memory of the initial condition. The method of statistical moments for the estimation of the parameter of the logistic map is discussed. This method seems to be the unique method whose consistency for deterministically chaotic time series is proved so far theoretically (not only numerically).

  15. Continuous Fine-Fault Estimation with Real-Time GNSS

    Science.gov (United States)

    Norford, B. B.; Melbourne, T. I.; Szeliga, W. M.; Santillan, V. M.; Scrivner, C.; Senko, J.; Larsen, D.

    2017-12-01

    Thousands of real-time telemetered GNSS stations operate throughout the circum-Pacific that may be used for rapid earthquake characterization and estimation of local tsunami excitation. We report on the development of a GNSS-based finite-fault inversion system that continuously estimates slip using real-time GNSS position streams from the Cascadia subduction zone and which is being expanded throughout the circum-Pacific. The system uses 1 Hz precise point position streams computed in the ITRF14 reference frame using clock and satellite orbit corrections from the IGS. The software is implemented as seven independent modules that filter time series using Kalman filters, trigger and estimate coseismic offsets, invert for slip using a non-negative least squares method developed by Lawson and Hanson (1974) and elastic half-space Green's Functions developed by Okada (1985), smooth the results temporally and spatially, and write the resulting streams of time-dependent slip to a RabbitMQ messaging server for use by downstream modules such as tsunami excitation modules. Additional fault models can be easily added to the system for other circum-Pacific subduction zones as additional real-time GNSS data become available. The system is currently being tested using data from well-recorded earthquakes including the 2011 Tohoku earthquake, the 2010 Maule earthquake, the 2015 Illapel earthquake, the 2003 Tokachi-oki earthquake, the 2014 Iquique earthquake, the 2010 Mentawai earthquake, the 2016 Kaikoura earthquake, the 2016 Ecuador earthquake, the 2015 Gorkha earthquake, and others. Test data will be fed to the system and the resultant earthquake characterizations will be compared with published earthquake parameters. Seismic events will be assumed to occur on major faults, so, for example, only the San Andreas fault will be considered in Southern California, while the hundreds of other faults in the region will be ignored. Rake will be constrained along each subfault to be

  16. Advances in Time Estimation Methods for Molecular Data.

    Science.gov (United States)

    Kumar, Sudhir; Hedges, S Blair

    2016-04-01

    Molecular dating has become central to placing a temporal dimension on the tree of life. Methods for estimating divergence times have been developed for over 50 years, beginning with the proposal of molecular clock in 1962. We categorize the chronological development of these methods into four generations based on the timing of their origin. In the first generation approaches (1960s-1980s), a strict molecular clock was assumed to date divergences. In the second generation approaches (1990s), the equality of evolutionary rates between species was first tested and then a strict molecular clock applied to estimate divergence times. The third generation approaches (since ∼2000) account for differences in evolutionary rates across the tree by using a statistical model, obviating the need to assume a clock or to test the equality of evolutionary rates among species. Bayesian methods in the third generation require a specific or uniform prior on the speciation-process and enable the inclusion of uncertainty in clock calibrations. The fourth generation approaches (since 2012) allow rates to vary from branch to branch, but do not need prior selection of a statistical model to describe the rate variation or the specification of speciation model. With high accuracy, comparable to Bayesian approaches, and speeds that are orders of magnitude faster, fourth generation methods are able to produce reliable timetrees of thousands of species using genome scale data. We found that early time estimates from second generation studies are similar to those of third and fourth generation studies, indicating that methodological advances have not fundamentally altered the timetree of life, but rather have facilitated time estimation by enabling the inclusion of more species. Nonetheless, we feel an urgent need for testing the accuracy and precision of third and fourth generation methods, including their robustness to misspecification of priors in the analysis of large phylogenies and data

  17. Empirical estimation of the arrival time of ICME Shocks

    Science.gov (United States)

    Shaltout, Mosalam

    Empirical estimation of the arrival time of ICME Shocks Mosalam Shaltout1 ,M.Youssef 1and R.Mawad2 1 National Research Institute of Astronomy and Geophysics (NRIAG) ,Helwan -Cairo-Egypt Email: mosalamshaltout@hotmail.com 2 Faculty of Science-Monifiia University-Physics Department-Shiben Al-Koum -Monifiia-Egypt We are got the Data of the SSC events from Preliminary Reports of the ISGI (Institut de Physique du Globe, France) .Also we are selected the same CME interval 1996-2005 from SOHO/LASCO/C2.We have estimated the arrival time of ICME shocks during solar cycle 23rd (1996-2005), we take the Sudden storm commencement SSC as a indicator of the arrival of CMEs at the Earth's Magnetosphere (ICME).Under our model ,we selected 203 ICME shock-SSC associated events, we got an imperial relation between CME velocity and their travel time, from which we obtained high correlation between them, R=0.75.

  18. Estimation of vegetation cover resilience from satellite time series

    Directory of Open Access Journals (Sweden)

    T. Simoniello

    2008-07-01

    Full Text Available Resilience is a fundamental concept for understanding vegetation as a dynamic component of the climate system. It expresses the ability of ecosystems to tolerate disturbances and to recover their initial state. Recovery times are basic parameters of the vegetation's response to forcing and, therefore, are essential for describing realistic vegetation within dynamical models. Healthy vegetation tends to rapidly recover from shock and to persist in growth and expansion. On the contrary, climatic and anthropic stress can reduce resilience thus favouring persistent decrease in vegetation activity.

    In order to characterize resilience, we analyzed the time series 1982–2003 of 8 km GIMMS AVHRR-NDVI maps of the Italian territory. Persistence probability of negative and positive trends was estimated according to the vegetation cover class, altitude, and climate. Generally, mean recovery times from negative trends were shorter than those estimated for positive trends, as expected for vegetation of healthy status. Some signatures of inefficient resilience were found in high-level mountainous areas and in the Mediterranean sub-tropical ones. This analysis was refined by aggregating pixels according to phenology. This multitemporal clustering synthesized information on vegetation cover, climate, and orography rather well. The consequent persistence estimations confirmed and detailed hints obtained from the previous analyses. Under the same climatic regime, different vegetation resilience levels were found. In particular, within the Mediterranean sub-tropical climate, clustering was able to identify features with different persistence levels in areas that are liable to different levels of anthropic pressure. Moreover, it was capable of enhancing reduced vegetation resilience also in the southern areas under Warm Temperate sub-continental climate. The general consistency of the obtained results showed that, with the help of suited analysis

  19. Multiple-relaxation-time lattice Boltzmann model for incompressible miscible flow with large viscosity ratio and high Péclet number

    Science.gov (United States)

    Meng, Xuhui; Guo, Zhaoli

    2015-10-01

    A lattice Boltzmann model with a multiple-relaxation-time (MRT) collision operator is proposed for incompressible miscible flow with a large viscosity ratio as well as a high Péclet number in this paper. The equilibria in the present model are motivated by the lattice kinetic scheme previously developed by Inamuro et al. [Philos. Trans. R. Soc. London, Ser. A 360, 477 (2002), 10.1098/rsta.2001.0942]. The fluid viscosity and diffusion coefficient depend on both the corresponding relaxation times and additional adjustable parameters in this model. As a result, the corresponding relaxation times can be adjusted in proper ranges to enhance the performance of the model. Numerical validations of the Poiseuille flow and a diffusion-reaction problem demonstrate that the proposed model has second-order accuracy in space. Thereafter, the model is used to simulate flow through a porous medium, and the results show that the proposed model has the advantage to obtain a viscosity-independent permeability, which makes it a robust method for simulating flow in porous media. Finally, a set of simulations are conducted on the viscous miscible displacement between two parallel plates. The results reveal that the present model can be used to simulate, to a high level of accuracy, flows with large viscosity ratios and/or high Péclet numbers. Moreover, the present model is shown to provide superior stability in the limit of high kinematic viscosity. In summary, the numerical results indicate that the present lattice Boltzmann model is an ideal numerical tool for simulating flow with a large viscosity ratio and/or a high Péclet number.

  20. Real-time observation of formation and relaxation dynamics of NH4 in (CH3OH)m(NH3)n clusters.

    Science.gov (United States)

    Yamada, Yuji; Nishino, Yoko; Fujihara, Akimasa; Ishikawa, Haruki; Fuke, Kiyokazu

    2009-03-26

    The formation and relaxation dynamics of NH4(CH3OH)m(NH3)n clusters produced by photolysis of ammonia-methanol mixed clusters has been observed by a time-resolved pump-probe method with femtosecond pulse lasers. From the detailed analysis of the time evolutions of the protonated cluster ions, NH4(+)(CH3OH)m(NH3)n, the kinetic model has been constructed, which consists of sequential three-step reaction: ultrafast hydrogen-atom transfer producing the radical pair (NH4-NH2)*, the relaxation process of radical-pair clusters, and dissociation of the solvated NH4 clusters. The initial hydrogen transfer hardly occurs between ammonia and methanol, implying the unfavorable formation of radical pair, (CH3OH2-NH2)*. The remarkable dependence of the time constants in each step on the number and composition of solvents has been explained by the following factors: hydrogen delocalization within the clusters, the internal conversion of the excited-state radical pair, and the stabilization of NH4 by solvation. The dependence of the time profiles on the probe wavelength is attributed to the different ionization efficiency of the NH4(CH3OH)m(NH3)n clusters.

  1. Estimation of modal parameters using bilinear joint time frequency distributions

    Science.gov (United States)

    Roshan-Ghias, A.; Shamsollahi, M. B.; Mobed, M.; Behzad, M.

    2007-07-01

    In this paper, a new method is proposed for modal parameter estimation using time-frequency representations. Smoothed Pseudo Wigner-Ville distribution which is a member of the Cohen's class distributions is used to decouple vibration modes completely in order to study each mode separately. This distribution reduces cross-terms which are troublesome in Wigner-Ville distribution and retains the resolution as well. The method was applied to highly damped systems, and results were superior to those obtained via other conventional methods.

  2. Time-to-impact estimation in passive missile warning systems

    Science.gov (United States)

    Şahıngıl, Mehmet Cihan

    2017-05-01

    A missile warning system can detect the incoming missile threat(s) and automatically cue the other Electronic Attack (EA) systems in the suit, such as Directed Infrared Counter Measure (DIRCM) system and/or Counter Measure Dispensing System (CMDS). Most missile warning systems are currently based on passive sensor technology operating in either Solar Blind Ultraviolet (SBUV) or Midwave Infrared (MWIR) bands on which there is an intensive emission from the exhaust plume of the threatening missile. Although passive missile warning systems have some clear advantages over pulse-Doppler radar (PDR) based active missile warning systems, they show poorer performance in terms of time-to-impact (TTI) estimation which is critical for optimizing the countermeasures and also "passive kill assessment". In this paper, we consider this problem, namely, TTI estimation from passive measurements and present a TTI estimation scheme which can be used in passive missile warning systems. Our problem formulation is based on Extended Kalman Filter (EKF). The algorithm uses the area parameter of the threat plume which is derived from the used image frame.

  3. Divergence time estimates and the evolution of major lineages in the florideophyte red algae

    Science.gov (United States)

    Yang, Eun Chan; Boo, Sung Min; Bhattacharya, Debashish; Saunders, Gary W.; Knoll, Andrew H.; Fredericq, Suzanne; Graf, Louis; Yoon, Hwan Su

    2016-01-01

    The Florideophyceae is the most abundant and taxonomically diverse class of red algae (Rhodophyta). However, many aspects of the systematics and divergence times of the group remain unresolved. Using a seven-gene concatenated dataset (nuclear EF2, LSU and SSU rRNAs, mitochondrial cox1, and plastid rbcL, psaA and psbA genes), we generated a robust phylogeny of red algae to provide an evolutionary timeline for florideophyte diversification. Our relaxed molecular clock analysis suggests that the Florideophyceae diverged approximately 943 (817–1,049) million years ago (Ma). The major divergences in this class involved the emergence of Hildenbrandiophycidae [ca. 781 (681–879) Ma], Nemaliophycidae [ca. 661 (597–736) Ma], Corallinophycidae [ca. 579 (543–617) Ma], and the split of Ahnfeltiophycidae and Rhodymeniophycidae [ca. 508 (442–580) Ma]. Within these clades, extant diversity reflects largely Phanerozoic diversification. Divergences within Florideophyceae were accompanied by evolutionary changes in the carposporophyte stage, leading to a successful strategy for maximizing spore production from each fertilization event. Our research provides robust estimates for the divergence times of major lineages within the Florideophyceae. This timeline was used to interpret the emergence of key morphological innovations that characterize these multicellular red algae. PMID:26892537

  4. The simulation of a two-dimensional (2D) transport problem in a rectangular region with Lattice Boltzmann method with two-relaxation-time

    Science.gov (United States)

    Sugiyanto, S.; Hardyanto, W.; Marwoto, P.

    2018-03-01

    Transport phenomena are found in many problems in many engineering and industrial sectors. We analyzed a Lattice Boltzmann method with Two-Relaxation Time (LTRT) collision operators for simulation of pollutant moving through the medium as a two-dimensional (2D) transport problem in a rectangular region model. This model consists of a 2D rectangular region with 54 length (x), 27 width (y), and it has isotropic homogeneous medium. Initially, the concentration is zero and is distributed evenly throughout the region of interest. A concentration of 1 is maintained at 9 < y < 18, whereas the concentration of zero is maintained at 0 < y < 9 and 18 < y < 27. A specific discharge (Darcy velocity) of 1.006 is assumed. A diffusion coefficient of 0.8333 is distributed uniformly with a uniform porosity of 0.35. A computer program is written in MATLAB to compute the concentration of pollutant at any specified place and time. The program shows that LTRT solution with quadratic equilibrium distribution functions (EDFs) and relaxation time τa=1.0 are in good agreement result with other numerical solutions methods such as 3DLEWASTE (Hybrid Three-dimensional Lagrangian-Eulerian Finite Element Model of Waste Transport Through Saturated-Unsaturated Media) obtained by Yeh and 3DFEMWATER-LHS (Three-dimensional Finite Element Model of Water Flow Through Saturated-Unsaturated Media with Latin Hypercube Sampling) obtained by Hardyanto.

  5. Sandpile model for relaxation in complex systems

    International Nuclear Information System (INIS)

    Vazquez, A.; Sotolongo-Costa, O.; Brouers, F.

    1997-10-01

    The relaxation in complex systems is, in general, nonexponential. After an initial rapid decay the system relaxes slowly following a long time tail. In the present paper a sandpile moderation of the relaxation in complex systems is analysed. Complexity is introduced by a process of avalanches in the Bethe lattice and a feedback mechanism which leads to slower decay with increasing time. In this way, some features of relaxation in complex systems: long time tails relaxation, aging, and fractal distribution of characteristic times, are obtained by simple computer simulations. (author)

  6. Capturing molecular multimode relaxation processes in excitable gases based on decomposition of acoustic relaxation spectra

    Science.gov (United States)

    Zhu, Ming; Liu, Tingting; Wang, Shu; Zhang, Kesheng

    2017-08-01

    Existing two-frequency reconstructive methods can only capture primary (single) molecular relaxation processes in excitable gases. In this paper, we present a reconstructive method based on the novel decomposition of frequency-dependent acoustic relaxation spectra to capture the entire molecular multimode relaxation process. This decomposition of acoustic relaxation spectra is developed from the frequency-dependent effective specific heat, indicating that a multi-relaxation process is the sum of the interior single-relaxation processes. Based on this decomposition, we can reconstruct the entire multi-relaxation process by capturing the relaxation times and relaxation strengths of N interior single-relaxation processes, using the measurements of acoustic absorption and sound speed at 2N frequencies. Experimental data for the gas mixtures CO2-N2 and CO2-O2 validate our decomposition and reconstruction approach.

  7. Challenges in automated estimation of capillary refill time in dogs

    Science.gov (United States)

    Cugmas, Blaž; Spigulis, Janis

    2018-02-01

    Capillary refill time (CRT) is a part of the cardiorespiratory examination in dogs. Changes in CRT can reflect pathological conditions like shock or anemia. Visual CRT estimation has low repeatability; therefore, optical systems for automated estimation have recently appeared. Since existing systems are unsuitable for use in dogs, we designed a simple, small and portable device, which could be easily used at veterinary clinic. The device was preliminarily tested on several measurement sites in two dogs. Not all measurement sites were suitable for CRT measurements due to underlying tissue optical and mechanical properties. The CRT measurements were possible on the labial mucosa, above the sternum and on the digit where CRT was in the range of values, retrieved from the color video of the visual CRT measurement. It seems that light penetration predominantly governs tissue optical response when the pressure is applied. Therefore, it is important to select a proper light, which reaches only superficial capillaries and does not penetrate deeper. Blue or green light is probably suitable for light skin or mucosa, on the other hand, red or near-infrared might be used for skin with pigmented or thick epidermis. Additionally, further improvements of the device design are considered, like adding a calibrated spring, which would insure application of consistent pressure.

  8. Real-time yield estimation based on deep learning

    Science.gov (United States)

    Rahnemoonfar, Maryam; Sheppard, Clay

    2017-05-01

    Crop yield estimation is an important task in product management and marketing. Accurate yield prediction helps farmers to make better decision on cultivation practices, plant disease prevention, and the size of harvest labor force. The current practice of yield estimation based on the manual counting of fruits is very time consuming and expensive process and it is not practical for big fields. Robotic systems including Unmanned Aerial Vehicles (UAV) and Unmanned Ground Vehicles (UGV), provide an efficient, cost-effective, flexible, and scalable solution for product management and yield prediction. Recently huge data has been gathered from agricultural field, however efficient analysis of those data is still a challenging task. Computer vision approaches currently face diffident challenges in automatic counting of fruits or flowers including occlusion caused by leaves, branches or other fruits, variance in natural illumination, and scale. In this paper a novel deep convolutional network algorithm was developed to facilitate the accurate yield prediction and automatic counting of fruits and vegetables on the images. Our method is robust to occlusion, shadow, uneven illumination and scale. Experimental results in comparison to the state-of-the art show the effectiveness of our algorithm.

  9. Plasmon-mediated energy relaxation in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ferry, D. K. [School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287-5706 (United States); Somphonsane, R. [Department of Physics, King Mongkut' s Institute of Technology, Ladkrabang, Bangkok 10520 (Thailand); Ramamoorthy, H.; Bird, J. P. [Department of Electrical Engineering, University at Buffalo, the State University of New York, Buffalo, New York 14260-1500 (United States)

    2015-12-28

    Energy relaxation of hot carriers in graphene is studied at low temperatures, where the loss rate may differ significantly from that predicted for electron-phonon interactions. We show here that plasmons, important in the relaxation of energetic carriers in bulk semiconductors, can also provide a pathway for energy relaxation in transport experiments in graphene. We obtain a total loss rate to plasmons that results in energy relaxation times whose dependence on temperature and density closely matches that found experimentally.

  10. Estimating negative binomial parameters from occurrence data with detection times.

    Science.gov (United States)

    Hwang, Wen-Han; Huggins, Richard; Stoklosa, Jakub

    2016-11-01

    The negative binomial distribution is a common model for the analysis of count data in biology and ecology. In many applications, we may not observe the complete frequency count in a quadrat but only that a species occurred in the quadrat. If only occurrence data are available then the two parameters of the negative binomial distribution, the aggregation index and the mean, are not identifiable. This can be overcome by data augmentation or through modeling the dependence between quadrat occupancies. Here, we propose to record the (first) detection time while collecting occurrence data in a quadrat. We show that under what we call proportionate sampling, where the time to survey a region is proportional to the area of the region, that both negative binomial parameters are estimable. When the mean parameter is larger than two, our proposed approach is more efficient than the data augmentation method developed by Solow and Smith (, Am. Nat. 176, 96-98), and in general is cheaper to conduct. We also investigate the effect of misidentification when collecting negative binomially distributed data, and conclude that, in general, the effect can be simply adjusted for provided that the mean and variance of misidentification probabilities are known. The results are demonstrated in a simulation study and illustrated in several real examples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The Time Is Up: Compression of Visual Time Interval Estimations of Bimodal Aperiodic Patterns

    Science.gov (United States)

    Duarte, Fabiola; Lemus, Luis

    2017-01-01

    The ability to estimate time intervals subserves many of our behaviors and perceptual experiences. However, it is not clear how aperiodic (AP) stimuli affect our perception of time intervals across sensory modalities. To address this question, we evaluated the human capacity to discriminate between two acoustic (A), visual (V) or audiovisual (AV) time intervals of trains of scattered pulses. We first measured the periodicity of those stimuli and then sought for correlations with the accuracy and reaction times (RTs) of the subjects. We found that, for all time intervals tested in our experiment, the visual system consistently perceived AP stimuli as being shorter than the periodic (P) ones. In contrast, such a compression phenomenon was not apparent during auditory trials. Our conclusions are: first, the subjects exposed to P stimuli are more likely to measure their durations accurately. Second, perceptual time compression occurs for AP visual stimuli. Lastly, AV discriminations are determined by A dominance rather than by AV enhancement. PMID:28848406

  12. The Hubble constant estimation using 18 gravitational lensing time delays

    Science.gov (United States)

    Jaelani, Anton T.; Premadi, Premana W.

    2014-03-01

    Gravitational lens time delay method has been used to estimate the rate of cosmological expansion, called the Hubble constant, H0, independently of the standard candle method. This gravitational lensing method requires a good knowledge of the lens mass distribution, reconstructed using the lens image properties. The observed positions of the images, and the redshifts of the lens and the images serve as strong constraints to the lens equations, which are then solved as a set of simultaneous linear equations. Here we made use of a non-parametric technique to reconstruct the lens mass distribution, which is manifested in a linear equations solver named PixeLens. Input for the calculation is chosen based on prior known parameters obtained from analyzed result of the lens case observations, including time-delay, position angles of the images and the lens, and their redshifts. In this project, 18 fairly well studied lens cases are further grouped according to a number of common properties to examine how each property affects the character of the data, and therefore affects the calculation of H0. The considered lens case properties are lens morphology, number of image, completeness of time delays, and symmetry of lens mass distribution. Analysis of simulation shows that paucity of constraints on mass distribution of a lens yields wide range value of H0, which reflects the uniqueness of each lens system. Nonetheless, gravitational lens method still yields H0 within an acceptable range of value when compared to those determined by many other methods. Grouping the cases in the above manner allowed us to assess the robustness of PixeLens and thereby use it selectively. In addition, we use glafic, a parametric mass reconstruction solver, to refine the mass distribution of one lens case, as a comparison.

  13. The dependence of the ultrafast relaxation kinetics of the S2 and S1 states in β-carotene homologs and lycopene on conjugation length studied by femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies

    Science.gov (United States)

    Kosumi, Daisuke; Fujiwara, Masazumi; Fujii, Ritsuko; Cogdell, Richard J.; Hashimoto, Hideki; Yoshizawa, Masayuki

    2009-06-01

    The ultrafast relaxation kinetics of all-trans-β-carotene homologs with varying numbers of conjugated double bonds n(n =7-15) and lycopene (n =11) has been investigated using femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies, both carried out under identical excitation conditions. The nonradiative relaxation rates of the optically allowed S2(1Bu+1) state were precisely determined by the time-resolved fluorescence. The kinetics of the optically forbidden S1(2Ag-1) state were observed by the time-resolved absorption measurements. The dependence of the S1 relaxation rates upon the conjugation length is adequately described by application of the energy gap law. In contrast to this, the nonradiative relaxation rates of S2 have a minimum at n =9 and show a reverse energy gap law dependence for values of n above 11. This anomalous behavior of the S2 relaxation rates can be explained by the presence of an intermediate state (here called the Sx state) located between the S2 and S1 states at large values of n (such as n =11). The presence of such an intermediate state would then result in the following sequential relaxation pathway S2→Sx→S1→S0. A model based on conical intersections between the potential energy curves of these excited singlet states can readily explain the measured relationships between the decay rates and the energy gaps.

  14. Relaxation times T1, T2, and T2* of apples, pears, citrus fruits, and potatoes with a comparison to human tissues

    International Nuclear Information System (INIS)

    Werz, Karin; Braun, Hans; Vitha, Dominik; Bruno, Graziano; Martirosian, Petros; Steidle, Guenter; Schick, Fritz

    2011-01-01

    The aim of the project was a systematic assessment of relaxation times of different fruits and vegetables and a comparison to values of human tissues. Results provide an improved basis for selection of plant phantoms for development of new MR techniques and sequences. Vessels filled with agar gel are mostly used for this purpose, preparation of which is effortful and time-consuming. In the presented study apples, (malus, 8 species), pears, (pyrus, 2 species), citrus fruits (citrus, 5 species) and uncooked potatoes (solanum tuberosum, 8 species) from the supermarket were examined which are easily available nearly all-the-year. T1, T2 and T2 * relaxation times of these nature products were measured on a 1.5 Tesla MR system with adapted examination protocols and mono-exponential fitting, and compared to literature data of human parenchyma tissues, fatty tissue and body fluid (cerebrospinal fluid). Resulting values were as follows: apples: T1: 1486 - 1874 ms, T2: 163 - 281 ms, T2 * : 2,3 - 3,2 ms; pears: T1: 1631 - 1969 ms, T2: 119 - 133 ms, T2 * : 10,1 - 10,6 ms, citrus fruits (pulp) T1: 2055 - 2632 ms, T2: 497 - 998 ms, T2 * : 151 - 182 ms; citrus fruits (skin) T1: 561 - 1669 ms, T2: 93 - 119 ms; potatoes: T1: 1011 - 1459 ms, T2: 166 - 210 ms, T2 * : 20 - 30 ms. All T1-values of the examined objects (except for potatoes and skins of citrus fruits) were longer than T1 values of human tissues. Also T2 values (except for pears and skins of citrus fruits) of the fruits and the potatoes tended to be longer. T2 * values of apples, pears and potatoes were shorter than in healthy human tissue. Results show relaxation values of many fruits to be not exactly fitting to human tissue, but with suitable selection of the fruits and optionally with an adaption of measurement parameters one can achieve suitable contrast and signal characteristics for some purposes. (orig.)

  15. Preliminary study for differential diagnosis of intracranial tumors using in vivo quantitative proton MR spectroscopy with correction for T2 relaxation time

    International Nuclear Information System (INIS)

    Isobe, Tomonori; Yamamoto, Tetsuya; Akutsu, Hiroyoshi; Shiigai, Masanari; Shibata, Yasushi; Takada, Kenta; Masumoto, Tomohiko; Anno, Izumi; Matsumura, Akira

    2015-01-01

    Introduction: The intent of this study was to differentiate intracranial tumors using the metabolite concentrations obtained by quantification with correction for T2 relaxation time, and to analyze whether the spectrum peak was generated by the existence of metabolites in proton magnetic resonance spectroscopy (MRS). Methods: All proton MRS studies were performed on a clinical 1.5T MR system. 7 normal volunteers and 57 patients (gliomas, metastases, meningiomas, acoustic neuromas, and pituitary adenomas) underwent single voxel proton MRS with different echo times (TE: 68, 136, 272 ms) for T2 correction of signal derived from metabolites and tissue water. With tissue water employed as an internal reference, the concentrations of metabolite (i.e. N-acetylaspartate (NAA), total creatine (t-Cr) and choline-containing compounds (Cho)) were calculated. Moreover, proton MRS data of previously published typical literatures were critically reviewed and compared with our data. Results: Extramedullary tumors were characterized by absence of NAA compared with intramedullary tumors. High-grade glioma differed from low-grade glioma by lower t-Cr concentrations. Metastasis differed from cystic glioblastoma by higher Cho concentrations, lower t-Cr concentrations, an absence of NAA, and a prominent Lipids peak. Based on these results and review of previous reports, we suggest a clinical pathway for the differentiation of intracranial tumors. Conclusion: The metabolite concentrations obtained by quantification with correction for T2 relaxation time, and to analyze whether the spectrum peak was generated by the existence of metabolites in proton MRS is useful for the diagnosis of the intracranial tumors

  16. Experiments in paramagnetic relaxation

    International Nuclear Information System (INIS)

    Lijphart, E.E.

    1976-01-01

    This thesis presents two attempts to improve the resolving power of the relaxation measurement technique. The first attempt reconsiders the old technique of steady state saturation. When used in conjunction with the pulse technique, it offers the possibility of obtaining additional information about the system in which all-time derivatives are zero; in addition, non-linear effects may be distinguished from each other. The second attempt involved a systematic study of only one system: Cu in the Tutton salts (K and Rb). The systematic approach, the high accuracy of the measurement and the sheer amount of experimental data for varying temperature, magnetic field and concentration made it possible in this case to separate the prevailing relaxation mechanisms reliably

  17. Relaxation and kinetics in scalar field theories

    International Nuclear Information System (INIS)

    Boyanovsky, D.; Lawrie, I.D.; Lee, D.

    1996-01-01

    A new approach to the dynamics of relaxation and kinetics of thermalization in a scalar field theory is presented that incorporates the relevant time scales through the resummation of hard thermal loops. An alternative derivation of the kinetic equations for the open-quote open-quote quasiparticle close-quote close-quote distribution functions is obtained that allows a clear understanding of the different open-quote open-quote coarse-graining close-quote close-quote approximations usually involved in a kinetic description. This method leads to a systematic perturbative expansion to obtain the kinetic equations including hard thermal loop resummation and to an improvement including renormalization, off-shell effects, and contributions that change chemical equilibrium on short time scales. As a by-product of these methods we establish the equivalence between the relaxation time scale in the linearized equation of motion of the quasiparticles and the thermalization time scale of the quasiparticle distribution function in the open-quote open-quote relaxation time approximation close-quote close-quote including hard thermal loop effects. Hard thermal loop resummation dramatically modifies the scattering rate for long wavelength modes as compared to the usual (semi)classical estimate. Relaxation and kinetics are studied both in the unbroken and broken symmetry phases of the theory. The broken symmetry phase also provides the setting to obtain the contribution to the kinetic equations from processes that involve decay of a heavy scalar into light scalar particles in the medium. copyright 1996 The American Physical Society

  18. T1 relaxation time constants, influence of oxygen, and the oxygen transfer function of the human lung at 1.5 T—A meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Olaf, E-mail: od@dtrx.net [Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich (Germany); Gaass, Thomas [Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich (Germany); Comprehensive Pneumology Center, German Center for Lung Research, Munich (Germany); Reiser, Maximilian F. [Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich (Germany)

    2017-01-15

    Purpose: To pool and summarize published data from magnetic resonance longitudinal relaxation measurements of the human lung at 1.5 T to provide a reliable basis of T{sub 1} relaxation time constants of healthy lung tissue both under respiration of room air and of pure oxygen. In particular, the oxygen-induced shortening of T{sub 1} was evaluated. Materials and methods: The PubMed database was comprehensively searched up to June 2016 for original publications in English containing quantitative T{sub 1} data (at least mean values and standard deviations) of the lung parenchyma of healthy subjects (minimum subject number: 3) at 1.5 T. From all included publications, T{sub 1} values of the lung of healthy subjects were extracted (inhaling room air and, if available, inhaling pure oxygen). Weighted mean values and standard deviations of all extracted data and the oxygen transfer function (OTF) were calculated. Results: 22 publications were included with a total number of 188 examined healthy subjects. 103 of these subjects (from 13 studies) were examined while breathing pure oxygen and room air; 85 subjects were examined only under room-air conditions. The weighted mean value (weighted sample standard deviation) of the room-air T{sub 1} values over all 22 studies was 1196 ms (152 ms). Based on studies with room-air and oxygen results, the mean T{sub 1} value at room-air conditions was 1172 ms (161 ms); breathing pure oxygen, the mean T{sub 1} value was reduced to 1054 ms (138 ms). This corresponds to a mean T{sub 1} reduction by 118 ms (35 ms) or 10.0 % (2.3 %) and to a mean OTF value of 1.22 (0.32) × 10{sup −3} s{sup −1}/(%O{sub 2}). Conclusion: This meta-analysis with data from 188 subjects indicates that the average T{sub 1} relaxation time constant of healthy lung tissue at 1.5 T is distributed around 1200 ms with a standard deviation of about 150 ms; breathing pure oxygen reduces this value significantly by 10 % to about 1050 ms.

  19. Short-time relaxation of the critical current in oriented grained YBa2Cu3Ox and granular (Bi,Pb)2 Sr2Ca2Cu3Ox

    International Nuclear Information System (INIS)

    Kuepfer, H.; Keller, C.; Meier-Hirmer, R.; Wiech, U.; Salama, K.; Selvamanickam, V.; Green, S.M.; Luo, H.L.; Politis, C.

    1990-01-01

    The time-dependent behavior of the critical current density j c is investigated by ac inductive measurements. The variation of db/dt of the ac field between 0.1 and 3 T/s reveals a short-time relaxation in the millisecond regime before j c exhibits the familiar logarithmic decay. At fields above the irreversibility line only this short-time relaxation is observed. Our experimental time scale allows us to obtain the unrelaxed critical current density j c0 at certain fields and temperatures

  20. Minimization of spin-lattice relaxation time with highly viscous solvents for acquisition of natural abundance nitrogen-15 and silicon-29 nuclear magnetic resonance spectra

    International Nuclear Information System (INIS)

    Bammel, B.P.; Evilia, R.F.

    1982-01-01

    The use of high viscosity solution conditions to decrease T 1 of 15 N and 29 Si nuclei so that natural abundance NMR spectra can be acquired in reasonable times is illustrated. Significant T 1 decreases with negligible increases in peak width are observed. No spectral shifts are observed in any of the cases studied. Highly viscous solutions are produced by using glycerol as a solvent for water-soluble molecules and a mixed solvent consisting of toluene saturated with polystyrene for organic-soluble molecules. The microviscosity in the latter solvent is found to be much less than the observed macroviscosity. Hydrogen bonding of glycerol to the NH 2 of 2-aminopyridine results in a greater than predicted decrease in T 1 for this nitrogen. The technique appears to be a useful alternative to paramagnetic relaxation reagents

  1. Effect of magnetic coupling on non-radiative relaxation time of Fe3+ sites on LaAl1-xFexO3 pigments

    Science.gov (United States)

    Novatski, A.; Somer, A.; Maranha, F. G.; de Souza, E. C. F.; Andrade, A. V. C.; Antunes, S. R. M.; Borges, C. P. F.; Dias, D. T.; Medina, A. N.; Astrath, N. G. C.

    2018-02-01

    Inorganic pigments of the system LaAl1-xFexO3 were prepared by the Pechini and the Solid State Reaction (SSR) methods. Magnetic interactions and non-radiative relaxation time were analyzed by means of phase-resolved photoacoustic spectroscopy and electron paramagnetic resonance (EPR) techniques. EPR results show a change in the magnetic behavior from paramagnetic (x = 0.2 and 0.4) to antiferromagnetic (x = 1.0), which is believed to be a result of the SSR preparation method. Trends in the optical absorption bands of the Fe3+ are attributed to their electronic transitions, and the increase in the band's intensity at 480 and 550 nm was assigned to the increase in the magnetic coupling between Fe-Fe. The phase-resolved method is capable of distinguishing between the two preparation methods, and it is possible to infer that SSR modifies the magnetic coupling of Fe-Fe with x.

  2. Negative magnetic relaxation in superconductors

    Directory of Open Access Journals (Sweden)

    Krasnoperov E.P.

    2013-01-01

    Full Text Available It was observed that the trapped magnetic moment of HTS tablets or annuli increases in time (negative relaxation if they are not completely magnetized by a pulsed magnetic field. It is shown, in the framework of the Bean critical-state model, that the radial temperature gradient appearing in tablets or annuli during a pulsed field magnetization can explain the negative magnetic relaxation in the superconductor.

  3. Stability over Time of Different Methods of Estimating School Performance

    Science.gov (United States)

    Dumay, Xavier; Coe, Rob; Anumendem, Dickson Nkafu

    2014-01-01

    This paper aims to investigate how stability varies with the approach used in estimating school performance in a large sample of English primary schools. The results show that (a) raw performance is considerably more stable than adjusted performance, which in turn is slightly more stable than growth model estimates; (b) schools' performance…

  4. Detection probabilities for time-domain velocity estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1991-01-01

    programs, it is demonstrated that the probability of correct estimation depends on the signal-to-noise ratio, transducer bandwidth, number of A-lines and number of samples used in the correlation estimate. The influence of applying a stationary echo-canceler is explained. The echo canceling can be modeled...

  5. Spatial characterization of T1 and T2 relaxation times and the water apparent diffusion coefficient in rabbit Achilles tendon subjected to tensile loading.

    Science.gov (United States)

    Wellen, J; Helmer, K G; Grigg, P; Sotak, C H

    2005-03-01

    Tendons exhibit viscoelastic mechanical behavior under tensile loading. The elasticity arises from the collagen chains that form fibrils, while the viscous response arises from the interaction of the water with the solid matrix. Therefore, an understanding of the behavior of water in response to the application of a load is crucial to the understanding of the origin of the viscous response. Three-dimensional MRI mapping of rabbit Achilles tendons was performed at 2.0 T to characterize the response of T(1) and T(2) relaxation times and the apparent diffusion coefficient (ADC) of water to tensile loading. The ADC was measured in directions both parallel (ADC( parallel)) and perpendicular (ADC( perpendicular)) to the long axis of the tendon. At a short diffusion time (5.8 ms) MR parameter maps showed the existence of two regions, here termed "core" and "rim", that exhibited statistically significant differences in T(1), T(2), and ADC( perpendicular) under the baseline loading condition. MR parameter maps were also generated at a second loading condition of approximately 1 MPa. At a diffusion time of 5.8 ms, there was a statistically significant increase in the rim region for both ADC( perpendicular) (57.5%) and ADC( parallel) (20.5%) upon tensile loading. The changes in core ADC(( perpendicular), ( parallel)), as well as the relaxation parameters in both core and rim regions, were not statistically significant. The effect of diffusion time on the ADC(( perpendicular), ( parallel)) values was investigated by creating maps at three additional diffusion times (50.0, 125.0, 250.0 ms) using a diffusion-weighted, stimulated-echo (DW-STE) pulse sequence. At longer diffusion times, ADC(( perpendicular), ( parallel)) values increased rather than approaching a constant value. This observation was attributed to T(1) spin-editing during the DW-STE pulse sequence, which resulted in the loss of short-T(1) components (with correspondingly lower ADCs) at longer diffusion times

  6. Estimation Accuracy on Execution Time of Run-Time Tasks in a Heterogeneous Distributed Environment

    Directory of Open Access Journals (Sweden)

    Qi Liu

    2016-08-01

    Full Text Available Distributed Computing has achieved tremendous development since cloud computing was proposed in 2006, and played a vital role promoting rapid growth of data collecting and analysis models, e.g., Internet of things, Cyber-Physical Systems, Big Data Analytics, etc. Hadoop has become a data convergence platform for sensor networks. As one of the core components, MapReduce facilitates allocating, processing and mining of collected large-scale data, where speculative execution strategies help solve straggler problems. However, there is still no efficient solution for accurate estimation on execution time of run-time tasks, which can affect task allocation and distribution in MapReduce. In this paper, task execution data have been collected and employed for the estimation. A two-phase regression (TPR method is proposed to predict the finishing time of each task accurately. Detailed data of each task have drawn interests with detailed analysis report being made. According to the results, the prediction accuracy of concurrent tasks’ execution time can be improved, in particular for some regular jobs.

  7. Time Domain Frequency Stability Estimation Based On FFT Measurements

    National Research Council Canada - National Science Library

    Chang, P

    2004-01-01

    .... In this paper, the biases of the Fast Fourier transform (FFT) spectral estimate with Hanning window are checked and the resulting unbiased spectral density are used to calculate the Allan variance...

  8. Selective modification of NMR relaxation time in human colorectal carcinoma by using gadolinium-diethylenetriaminepentaacetic acid conjugated with monoclonal antibody 19-9.

    Science.gov (United States)

    Curtet, C; Tellier, C; Bohy, J; Conti, M L; Saccavini, J C; Thedrez, P; Douillard, J Y; Chatal, J F; Koprowski, H

    1986-01-01

    Monoclonal antibody 19-9 (mAb 19-9) against human colon adenocarcinoma was conjugated with gadolinium X diethylenetriaminepentaacetic acid (Gd X DTPA) and used as a contrast agent in nuclear magnetic resonance (NMR) in an effort to improve tumor target selectivity in nude mice. The data indicate that Gd X DTPA-mAb 19-9 in solution decreased the T1 relaxation of water protons at 90 MHz in direct proportion to the gadolinium concentration, and this effect was greater than in Gd X DTPA solutions. T1 relaxation time at 90 MHz, measured in tumors removed from nude mice 24 hr after injection of Gd X DTPA-mAb 19-9 (Gd, 20 mumol/kg; 16 DTPA molecules per mAb molecule), was significantly decreased (by 15%) as compared with the control group. Similar results were obtained in tumors from mice injected with Gd X DTPA-mAb 19-9 solutions in which Gd was used at 2, 6, or 10 mumol/kg (16 DTPA molecules per mAb molecule). These doses are lower than those commonly used for Gd X DTPA (10-100 mumol/kg) as contrast agent. Tumor localization by the Gd X DTPA-mAb 19-9 complex containing radioactive Gd (0.3 microCi/microgram of 153Gd) to confirm scintigraphy revealed significant concentrations of the complex (5% of the injected dose per gram of tissue) in the tumor. Scan images recorded in planar scintigraphy at day 5 showed good visualization of tumors. Images PMID:3459174

  9. Dielectric Relaxation of Water: Theory and Experiment

    International Nuclear Information System (INIS)

    Adhikari, Narayan Prasad; Paudyal, Harihar; Johri, Manoj

    2010-06-01

    We have studied the hydrogen bond dynamics and methods for evaluation of probability and relaxation time for hydrogen bond network. Further, dielectric relaxation time has been calculated by using a diagonalization procedure by obtaining eigen values (inverse of relaxation time) of a master equation framed on the basis of Fokker-Planck equations. Microwave cavity spectrometer has been described to make measurements of relaxation time. Slater's perturbation equations are given for the analysis of the data. A comparison of theoretical and experimental data shows that there is a need for improvements in the theoretical model and experimental techniques to provide exact information about structural properties of water. (author)

  10. Estimation of time averages from irregularly spaced observations - With application to coastal zone color scanner estimates of chlorophyll concentration

    Science.gov (United States)

    Chelton, Dudley B.; Schlax, Michael G.

    1991-01-01

    The sampling error of an arbitrary linear estimate of a time-averaged quantity constructed from a time series of irregularly spaced observations at a fixed located is quantified through a formalism. The method is applied to satellite observations of chlorophyll from the coastal zone color scanner. The two specific linear estimates under consideration are the composite average formed from the simple average of all observations within the averaging period and the optimal estimate formed by minimizing the mean squared error of the temporal average based on all the observations in the time series. The resulting suboptimal estimates are shown to be more accurate than composite averages. Suboptimal estimates are also found to be nearly as accurate as optimal estimates using the correct signal and measurement error variances and correlation functions for realistic ranges of these parameters, which makes it a viable practical alternative to the composite average method generally employed at present.

  11. H infinity Integrated Fault Estimation and Fault Tolerant Control of Discrete-time Piecewise Linear Systems

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Bak, Thomas

    2012-01-01

    In this paper we consider the problem of fault estimation and accommodation for discrete time piecewise linear systems. A robust fault estimator is designed to estimate the fault such that the estimation error converges to zero and H∞ performance of the fault estimation is minimized. Then, the es...

  12. Deepwater Horizon - Estimating surface oil volume distribution in real time

    Science.gov (United States)

    Lehr, B.; Simecek-Beatty, D.; Leifer, I.

    2011-12-01

    Spill responders to the Deepwater Horizon (DWH) oil spill required both the relative spatial distribution and total oil volume of the surface oil. The former was needed on a daily basis to plan and direct local surface recovery and treatment operations. The latter was needed less frequently to provide information for strategic response planning. Unfortunately, the standard spill observation methods were inadequate for an oil spill this size, and new, experimental, methods, were not ready to meet the operational demands of near real-time results. Traditional surface oil estimation tools for large spills include satellite-based sensors to define the spatial extent (but not thickness) of the oil, complemented with trained observers in small aircraft, sometimes supplemented by active or passive remote sensing equipment, to determine surface percent coverage of the 'thick' part of the slick, where the vast majority of the surface oil exists. These tools were also applied to DWH in the early days of the spill but the shear size of the spill prevented synoptic information of the surface slick through the use small aircraft. Also, satellite images of the spill, while large in number, varied considerably in image quality, requiring skilled interpretation of them to identify oil and eliminate false positives. Qualified staff to perform this task were soon in short supply. However, large spills are often events that overcome organizational inertia to the use of new technology. Two prime examples in DWH were the application of hyper-spectral scans from a high-altitude aircraft and more traditional fixed-wing aircraft using multi-spectral scans processed by use of a neural network to determine, respectively, absolute or relative oil thickness. But, with new technology, come new challenges. The hyper-spectral instrument required special viewing conditions that were not present on a daily basis and analysis infrastructure to process the data that was not available at the command

  13. On the validity of time-dependent AUC estimators.

    Science.gov (United States)

    Schmid, Matthias; Kestler, Hans A; Potapov, Sergej

    2015-01-01

    Recent developments in molecular biology have led to the massive discovery of new marker candidates for the prediction of patient survival. To evaluate the predictive value of these markers, statistical tools for measuring the performance of survival models are needed. We consider estimators of discrimination measures, which are a popular approach to evaluate survival predictions in biomarker studies. Estimators of discrimination measures are usually based on regularity assumptions such as the proportional hazards assumption. Based on two sets of molecular data and a simulation study, we show that violations of the regularity assumptions may lead to over-optimistic estimates of prediction accuracy and may therefore result in biased conclusions regarding the clinical utility of new biomarkers. In particular, we demonstrate that biased medical decision making is possible even if statistical checks indicate that all regularity assumptions are satisfied. © The Author 2013. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  14. Combined Fat Imaging/Look Locker for mapping of lipid spin-lattice (T1) relaxation time

    Science.gov (United States)

    Jihyun Park, Annie; Yung, Andrew; Kozlowski, Piotr; Reinsberg, Stefan

    2012-10-01

    Tumor hypoxia is a main problem arising in the treatment of cancer due to its resistance to cytotoxic therapy such as radiation and chemotherapy, and selection for more aggressive tumor phenotypes. Attempts to improve and quantify tumor oxygenation are in development and tools to assess the success of such schemes are required. Monitoring oxygen level with MRI using T1 based method (where oxygen acts as T1 shortening agent) is a dynamic and noninvasive way to study tumor characteristics. The method's sensitivity to oxygen is higher in lipids than in water due to higher oxygen solubility in lipid. Our study aims to develop a time-efficient method to spatially map T1 of fat inside the tumor. We are combining two techniques: Fat/Water imaging and Look Locker (a rapid T1 measurement technique). Fat/Water Imaging is done with either Dixon or Direct Phase Encoding (DPE) method. The combination of these techniques poses new challenges that are tackled using spin dynamics simulations as well as experiments in vitro and in vivo.

  15. Estimation Of Young’s Modulus Of Elesticity By The Form Finding Of Grid Shell Structures By The Dynamic Relaxation Method

    Directory of Open Access Journals (Sweden)

    Grančičová Ivana

    2015-12-01

    Full Text Available The paper is basically focused on the process of form finding by the dynamic relaxation method (DRM with the aid of computational tools that enable us to make many calculations with different inputs. There are many important input values with a significant impact on the course of the calculations and the resulting displacement of a structure. One of these values is Young’s modulus of elasticity. This value has a considerable impact on the final displacement of a grid shell structure and the resulting internal forces.

  16. Real-time Loudspeaker Distance Estimation with Stereo Audio

    DEFF Research Database (Denmark)

    Nielsen, Jesper Kjær; Gaubitch, Nikolay; Heusdens, Richard

    2015-01-01

    Knowledge on how a number of loudspeakers are positioned relative to a listening position can be used to enhance the listening experience. Usually, these loudspeaker positions are estimated using calibration signals, either audible or psycho-acoustically hidden inside the desired audio signal...

  17. On the fast estimation of transit times application to BWR simulated data

    International Nuclear Information System (INIS)

    Antonopoulos-Domis, M.; Marseguerra, M.; Padovani, E.

    1996-01-01

    Real time estimators of transit times are proposed. BWR noise is simulated including a global component due to rod vibration. The time obtained form the simulation is used to investigate the robustness and noise immunity of the estimators. It is found that, in presence of a coincident (global) signal, the cross-correlation function is the worst estimator. (authors)

  18. Estimation of time-delayed mutual information and bias for irregularly and sparsely sampled time-series

    International Nuclear Information System (INIS)

    Albers, D.J.; Hripcsak, George

    2012-01-01

    Highlights: ► Time-delayed mutual information for irregularly sampled time-series. ► Estimation bias for the time-delayed mutual information calculation. ► Fast, simple, PDF estimator independent, time-delayed mutual information bias estimate. ► Quantification of data-set-size limits of the time-delayed mutual calculation. - Abstract: A method to estimate the time-dependent correlation via an empirical bias estimate of the time-delayed mutual information for a time-series is proposed. In particular, the bias of the time-delayed mutual information is shown to often be equivalent to the mutual information between two distributions of points from the same system separated by infinite time. Thus intuitively, estimation of the bias is reduced to estimation of the mutual information between distributions of data points separated by large time intervals. The proposed bias estimation techniques are shown to work for Lorenz equations data and glucose time series data of three patients from the Columbia University Medical Center database.

  19. Magnetic-relaxation method of analysis of inorganic substances

    International Nuclear Information System (INIS)

    Popel', A.A.

    1978-01-01

    The magnetic-relaxation method is considered of the quantitative analysis of inorganic substances based on time dependence of magnetic nuclei relaxation on the quantity of paramagnetic centres in a solution. The characteristic is given of some methods of measuring nuclear magnetic relaxation times: method of weak oscillation generator and pulse methods. The effect of temperature, general solution viscosity, diamagnetic salt concentration, medium acidity on nuclear relaxation velocity is described. The determination sensitivity is estimated and the means of its increase definable concentration intervals and method selectivity are considered. The method application when studying complexing in the solution is described. A particular attention is given to the investigation of heteroligand homocentre, heterocentre and protonated complexes as well as to the problems of particle exchange of the first coordination sphere with particles from the mass of solution. The equations for equilibrium constant calculation in different systems are given. Possibilities of determining diamagnetic ions by the magnetic-relaxation method using paramagnetic indicators are confirmed by the quantitative analysis of indium, gallium, thorium and scandium in their salt solutions

  20. Ultrashort Echo Time Magnetic Resonance Imaging of the Lung Using a High-Relaxivity T1 Blood-Pool Contrast Agent

    Directory of Open Access Journals (Sweden)

    Joris Tchouala Nofiele

    2014-10-01

    Full Text Available The lung remains one of the most challenging organs to image using magnetic resonance imaging (MRI due to intrinsic rapid signal decay. However, unlike conventional modalities such as computed tomography, MRI does not involve radiation and can provide functional and morphologic information on a regional basis. Here we demonstrate proof of concept for a new MRI approach to achieve substantial gains in a signal to noise ratio (SNR in the lung parenchyma: contrast-enhanced ultrashort echo time (UTE imaging following intravenous injection of a high-relaxivity blood-pool manganese porphyrin T1 contrast agent. The new contrast agent increased relative enhancement of the lung parenchyma by over 10-fold compared to gadolinium diethylene triamine pentaacetic acid (Gd-DTPA, and the use of UTE boosted the SNR by a factor of 4 over conventional T1-weighted gradient echo acquisitions. The new agent also maintains steady enhancement over at least 60 minutes, thus providing a long time window for obtaining high-resolution, high-quality images and the ability to measure a number of physiologic parameters.

  1. Breathing and Relaxation

    Science.gov (United States)

    ... Find a Doctor Relaxation is the absence of tension in muscle groups and a minimum or absence ... Drill Meditation Progressive Muscle Relaxation Minimizing Shortness of Breath Visualization This information has been approved by Shelby ...

  2. Estimation of time-dependent input from neuronal membrane potential

    Czech Academy of Sciences Publication Activity Database

    Kobayashi, R.; Shinomoto, S.; Lánský, Petr

    2011-01-01

    Roč. 23, č. 12 (2011), s. 3070-3093 ISSN 0899-7667 R&D Projects: GA MŠk(CZ) LC554; GA ČR(CZ) GAP103/11/0282 Institutional research plan: CEZ:AV0Z50110509 Keywords : neuronal coding * statistical estimation * Bayes method Subject RIV: JD - Computer Applications, Robotics Impact factor: 1.884, year: 2011

  3. An Analysis of Variance Approach for the Estimation of Response Time Distributions in Tests

    Science.gov (United States)

    Attali, Yigal

    2010-01-01

    Generalizability theory and analysis of variance methods are employed, together with the concept of objective time pressure, to estimate response time distributions and the degree of time pressure in timed tests. By estimating response time variance components due to person, item, and their interaction, and fixed effects due to item types and…

  4. Splitting Travel Time Based on AFC Data: Estimating Walking, Waiting, Transfer, and In-Vehicle Travel Times in Metro System

    Directory of Open Access Journals (Sweden)

    Yong-Sheng Zhang

    2015-01-01

    Full Text Available The walking, waiting, transfer, and delayed in-vehicle travel times mainly contribute to route’s travel time reliability in the metro system. The automatic fare collection (AFC system provides huge amounts of smart card records which can be used to estimate all these times distributions. A new estimation model based on Bayesian inference formulation is proposed in this paper by integrating the probability measurement of the OD pair with only one effective route, in which all kinds of times follow the truncated normal distributions. Then, Markov Chain Monte Carlo method is designed to estimate all parameters endogenously. Finally, based on AFC data in Guangzhou Metro, the estimations show that all parameters can be estimated endogenously and identifiably. Meanwhile, the truncated property of the travel time is significant and the threshold tested by the surveyed data is reliable. Furthermore, the superiority of the proposed model over the existing model in estimation and forecasting accuracy is also demonstrated.

  5. Rapid parametric mapping of the longitudinal relaxation time T1 using two-dimensional variable flip angle magnetic resonance imaging at 1.5 Tesla, 3 Tesla, and 7 Tesla.

    Science.gov (United States)

    Dieringer, Matthias A; Deimling, Michael; Santoro, Davide; Wuerfel, Jens; Madai, Vince I; Sobesky, Jan; von Knobelsdorff-Brenkenhoff, Florian; Schulz-Menger, Jeanette; Niendorf, Thoralf

    2014-01-01

    Visual but subjective reading of longitudinal relaxation time (T1) weighted magnetic resonance images is commonly used for the detection of brain pathologies. For this non-quantitative measure, diagnostic quality depends on hardware configuration, imaging parameters, radio frequency transmission field (B1+) uniformity, as well as observer experience. Parametric quantification of the tissue T1 relaxation parameter offsets the propensity for these effects, but is typically time consuming. For this reason, this study examines the feasibility of rapid 2D T1 quantification using a variable flip angles (VFA) approach at magnetic field strengths of 1.5 Tesla, 3 Tesla, and 7 Tesla. These efforts include validation in phantom experiments and application for brain T1 mapping. T1 quantification included simulations of the Bloch equations to correct for slice profile imperfections, and a correction for B1+. Fast gradient echo acquisitions were conducted using three adjusted flip angles for the proposed T1 quantification approach that was benchmarked against slice profile uncorrected 2D VFA and an inversion-recovery spin-echo based reference method. Brain T1 mapping was performed in six healthy subjects, one multiple sclerosis patient, and one stroke patient. Phantom experiments showed a mean T1 estimation error of (-63±1.5)% for slice profile uncorrected 2D VFA and (0.2±1.4)% for the proposed approach compared to the reference method. Scan time for single slice T1 mapping including B1+ mapping could be reduced to 5 seconds using an in-plane resolution of (2×2) mm2, which equals a scan time reduction of more than 99% compared to the reference method. Our results demonstrate that rapid 2D T1 quantification using a variable flip angle approach is feasible at 1.5T/3T/7T. It represents a valuable alternative for rapid T1 mapping due to the gain in speed versus conventional approaches. This progress may serve to enhance the capabilities of parametric MR based lesion detection and

  6. Estimating time-dependent connectivity in marine systems

    Science.gov (United States)

    Defne, Zafer; Ganju, Neil K.; Aretxabaleta, Alfredo

    2016-01-01

    Hydrodynamic connectivity describes the sources and destinations of water parcels within a domain over a given time. When combined with biological models, it can be a powerful concept to explain the patterns of constituent dispersal within marine ecosystems. However, providing connectivity metrics for a given domain is a three-dimensional problem: two dimensions in space to define the sources and destinations and a time dimension to evaluate connectivity at varying temporal scales. If the time scale of interest is not predefined, then a general approach is required to describe connectivity over different time scales. For this purpose, we have introduced the concept of a “retention clock” that highlights the change in connectivity through time. Using the example of connectivity between protected areas within Barnegat Bay, New Jersey, we show that a retention clock matrix is an informative tool for multitemporal analysis of connectivity.

  7. Overcoming equifinality: Leveraging long time series for stream metabolism estimation

    Science.gov (United States)

    Appling, Alison; Hall, Robert O.; Yackulic, Charles B.; Arroita, Maite

    2018-01-01

    The foundational ecosystem processes of gross primary production (GPP) and ecosystem respiration (ER) cannot be measured directly but can be modeled in aquatic ecosystems from subdaily patterns of oxygen (O2) concentrations. Because rivers and streams constantly exchange O2 with the atmosphere, models must either use empirical estimates of the gas exchange rate coefficient (K600) or solve for all three parameters (GPP, ER, and K600) simultaneously. Empirical measurements of K600 require substantial field work and can still be inaccurate. Three-parameter models have suffered from equifinality, where good fits to O2 data are achieved by many different parameter values, some unrealistic. We developed a new three-parameter, multiday model that ensures similar values for K600 among days with similar physical conditions (e.g., discharge). Our new model overcomes the equifinality problem by (1) flexibly relating K600 to discharge while permitting moderate daily deviations and (2) avoiding the oft-violated assumption that residuals in O2 predictions are uncorrelated. We implemented this hierarchical state-space model and several competitor models in an open-source R package, streamMetabolizer. We then tested the models against both simulated and field data. Our new model reduces error by as much as 70% in daily estimates of K600, GPP, and ER. Further, accuracy benefits of multiday data sets require as few as 3 days of data. This approach facilitates more accurate metabolism estimates for more streams and days, enabling researchers to better quantify carbon fluxes, compare streams by their metabolic regimes, and investigate controls on aquatic activity.

  8. CdZnTe quantum dots study: energy and phase relaxation process

    International Nuclear Information System (INIS)

    Viale, Yannick

    2004-01-01

    We present a study of the electron-hole pair energy and phase relaxation processes in a CdTe/ZnTe heterostructure, in which quantum dots are embedded. CdZnTe quantum wells with a high Zinc concentration, separated by ZnTe barriers, contain islands with a high cadmium concentration. In photoluminescence excitation spectroscopy experiments, we evidence two types of electron hole pair relaxation processes. After being excited in the CdZnTe quantum well, the pairs relax their energy by emitting a cascade of longitudinal optical phonons until they are trapped in the quantum dots. Before their radiative recombination follows an intra-dot relaxation, which is attributed to a lattice polarization mechanism of the quantum dots. It is related to the coupling between the electronic and the vibrational states. Both relaxation mechanisms are reinforced by the strong polar character of the chemical bond in II-VI compounds. Time resolved measurements of transmission variations in a pump-probe configuration allowed us to investigate the population dynamics of the electron-hole pairs during the relaxation process. We observe a relaxation time of about 2 ps for the longitudinal phonon emission cascade in the quantum well before a saturation of the quantum dot transition. We also measured an intra-box relaxation time of 25 ps. The comparison of various cascades allows us to estimate the emission time of a longitudinal optical phonon in the quantum well to be about 100 fs. In four waves mixing experiments, we observe oscillations that we attribute to quantum beats between excitonic and bi-excitonic transitions. The dephasing times that we measure as function of the density of photons shows that excitons are strongly localized in the quantum dots. The excitonic dephasing time is much shorter than the radiative lifetime and is thus controlled by the intra-dot relaxation time. (author) [fr

  9. Estimates of methyl 13C and 1H CSA values (Δσ) in proteins from cross-correlated spin relaxation

    International Nuclear Information System (INIS)

    Tugarinov, Vitali; Scheurer, Christoph; Brueschweiler, Rafael; Kay, Lewis E.

    2004-01-01

    Simple pulse schemes are presented for the measurement of methyl 13 C and 1 H CSA values from 1 H- 13 C dipole/ 13 C CSA and 1 H- 13 C dipole/ 1 H CSA cross-correlated relaxation. The methodology is applied to protein L and malate synthase G. Average 13 C CSA values are considerably smaller for Ile than Leu/Val (17 vs 25 ppm) and are in good agreement with previous solid state NMR studies of powders of amino acids and dipeptides and in reasonable agreement with quantum-chemical DFT calculations of methyl carbon CSA values in peptide fragments. Small averaged 1 H CSA values on the order of 1 ppm are measured, consistent with a solid state NMR determination of the methyl group 1 H CSA in dimethylmalonic acid

  10. Transition from Arrhenius to non-Arrhenius temperature dependence of structural relaxation time in glass-forming liquids: continuous versus discontinuous scenario.

    Science.gov (United States)

    Popova, V A; Surovtsev, N V

    2014-09-01

    The temperature dependences of α relaxation time τ(α)(T) of three glass-forming liquids (salol, o-terphenyl, and α-picoline) were investigated by a depolarized light scattering technique. A detailed description of τ(α)(T) near T(A), the temperature of the transition from the Arrhenius law at high temperatures to a non-Arrhenius behavior of τ(α)(T) at lower temperatures, was done. It was found that this transition is quite sharp. If the transition is described as switching from the Arrhenius law to the Vogel-Fulcher-Tammann law, it occurs within the temperature range of about 15 K or less. Most of the known expressions for τ(α)(T) cannot describe this sharp transition. Our analysis revealed that this transition can be described either as a discontinuous transition in the spirit of the frustration-limited domain theory [D. Kivelson, G. Tarjus, X. Zhao, and S. A. Kivelson, Phys. Rev. E 53, 751 (1996)], implying a phase transition, or by a phenomenological expression recently suggested [B. Schmidtke, N. Petzold, R. Kahlau, M. Hofmann, and E. A. Rössler, Phys. Rev. E 86, 041507 (2012)], where the activation energy includes the term depending exponentially on temperature.

  11. Magneto-optical measurement of spin-lattice relaxation time in KBr and in the Na and Cs halogenetes and Co++ ion magnetic circular dichroism study in KCl

    International Nuclear Information System (INIS)

    Carvalho, R.A.

    1977-01-01

    A magnetic circular dicroism spectrometer is described, which was used in the following experiments: 1) The spin-lattice relaxation time (T 1 ) for F centers in NaCl, NaBr, CsBr and CsCl, at 1,8 0 K in magnetic fields up to 15000Gs is described. The suitability of the theory of ref. (08) to explain the differences observed for halides of differents alkali ions as well as for different structures is verified proves that the hyperfine interaction is the most important mechanism for this kind of centers. It is also verified that, for temperatures between 6 0 K and 15 0 K, T 1 experimental values fits the theory of ref. (21) reasonably well, for F centers in KBr. This theory us an extension of that of ref. (8). 2) The MCD spectra for KCl:Co ++ and Caf 2 :Co ++ in different magnetic fields up to 56KGs, and in temperature range between 1,8 0 K and 4,2 0 K is obtained. The results are consistent with the assumption that Co ++ centers are intersticial in KCl lattice [pt

  12. Anisotropy of the proton spin--lattice relaxation time in the superconducting intercalation complex TaS2(NH3): Structural and bonding implications

    International Nuclear Information System (INIS)

    Gamble, F.R.; Silbernagel, B.G.

    1975-01-01

    The nature of the interaction responsible for the formation of molecular intercalation complexes between Lewis bases and layered transition metal dichalcogenides is not well understood. To some extent this is due to a lack of structural information. A prototype of these complexes is TaS 2 (NH 3 ), in which monolayers of ammonia are inserted between the metallic, superconducting layers of TaS 2 . The compound is crystalline and stoichiometric. Measurement of the anisotropy of the proton spin--lattice relaxation time at 300 degreeK indicates that the molecular threefold symmetry axis is not perpendicular to the disulfide layers as suggested by other workers, but is parallel to the layers. This orientation precludes direct interaction between the molecular lone pair orbital and the transition metal atoms. The interactions governing the structure of this complex may be similar to those obtaining in the intercalation complexes between TaS 2 and a number of substituted pyridines, in which complexes the axis of the lone pair orbital is also parallel to the layers

  13. Lifshitz quasinormal modes and relaxation from holography

    NARCIS (Netherlands)

    Sybesma, Watse|info:eu-repo/dai/nl/369283074; Vandoren, Stefan|info:eu-repo/dai/nl/304830739

    2015-01-01

    We obtain relaxation times for field theories with Lifshitz scaling and with holographic duals Einstein-Maxwell-Dilaton gravity theories. This is done by computing quasinormal modes of a bulk scalar field in the presence of Lifshitz black branes. We determine the relation between relaxation time and

  14. Superparamagnetic relaxation of weakly interacting particles

    DEFF Research Database (Denmark)

    Mørup, Steen; Tronc, Elisabeth

    1994-01-01

    The influence of particle interactions on the superparamagnetic relaxation time has been studied by Mossbauer spectroscopy in samples of maghemite (gamma-Fe2O3) particles with different particle sizes and particle separations. It is found that the relaxation time decreases with decreasing particl...

  15. Superparamagnetic relaxation in alpha-Fe particles

    DEFF Research Database (Denmark)

    Bødker, Franz; Mørup, Steen; Pedersen, Michael Stanley

    1998-01-01

    The superparamagnetic relaxation time of carbon-supported alpha-Fe particles with an average size of 3.0 Mm has been studied over a large temperature range by the use of Mossbauer spectroscopy combined with AC and DC magnetization measurements. It is found that the relaxation time varies...

  16. Tuning of the hole spin relaxation time in single self-assembled In{sub 1−x}Ga{sub x}As/GaAs quantum dots by electric field

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Hai; Guo, Guang-Can; He, Lixin, E-mail: helx@ustc.edu.cn [Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026 (China)

    2014-11-28

    We investigate the electric field tuning of the phonon-assisted hole spin relaxation in single self-assembled In{sub 1−x}Ga{sub x}As/GaAs quantum dots (QDs), using an atomistic empirical pseudopotential method. We find that the electric field along the growth direction can tune the hole spin relaxation time for more than one order of magnitude. The electric field can prolong or shorten the hole spin lifetime and the tuning shows an asymmetry in terms of the field direction. The asymmetry is more pronounced for the taller dot. The results show that the electric field is an effective way to tune the hole spin-relaxation in self-assembled QDs.

  17. Real-Time Tropospheric Delay Estimation using IGS Products

    Science.gov (United States)

    Stürze, Andrea; Liu, Sha; Söhne, Wolfgang

    2014-05-01

    The Federal Agency for Cartography and Geodesy (BKG) routinely provides zenith tropospheric delay (ZTD) parameter for the assimilation in numerical weather models since more than 10 years. Up to now the results flowing into the EUREF Permanent Network (EPN) or E-GVAP (EUMETNET EIG GNSS water vapour programme) analysis are based on batch processing of GPS+GLONASS observations in differential network mode. For the recently started COST Action ES1206 about "Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate" (GNSS4SWEC), however, rapid updates in the analysis of the atmospheric state for nowcasting applications require changing the processing strategy towards real-time. In the RTCM SC104 (Radio Technical Commission for Maritime Services, Special Committee 104) a format combining the advantages of Precise Point Positioning (PPP) and Real-Time Kinematic (RTK) is under development. The so-called State Space Representation approach is defining corrections, which will be transferred in real-time to the user e.g. via NTRIP (Network Transport of RTCM via Internet Protocol). Meanwhile messages for precise orbits, satellite clocks and code biases compatible to the basic PPP mode using IGS products are defined. Consequently, the IGS Real-Time Service (RTS) was launched in 2013 in order to extend the well-known precise orbit and clock products by a real-time component. Further messages e.g. with respect to ionosphere or phase biases are foreseen. Depending on the level of refinement, so different accuracies up to the RTK level shall be reachable. In co-operation of BKG and the Technical University of Darmstadt the real-time software GEMon (GREF EUREF Monitoring) is under development. GEMon is able to process GPS and GLONASS observation and RTS product data streams in PPP mode. Furthermore, several state-of-the-art troposphere models, for example based on numerical weather prediction data, are implemented. Hence, it

  18. Accurate determination of rates from non-uniformly sampled relaxation data

    Energy Technology Data Exchange (ETDEWEB)

    Stetz, Matthew A.; Wand, A. Joshua, E-mail: wand@upenn.edu [University of Pennsylvania Perelman School of Medicine, Johnson Research Foundation and Department of Biochemistry and Biophysics (United States)

    2016-08-15

    The application of non-uniform sampling (NUS) to relaxation experiments traditionally used to characterize the fast internal motion of proteins is quantitatively examined. Experimentally acquired Poisson-gap sampled data reconstructed with iterative soft thresholding are compared to regular sequentially sampled (RSS) data. Using ubiquitin as a model system, it is shown that 25 % sampling is sufficient for the determination of quantitatively accurate relaxation rates. When the sampling density is fixed at 25 %, the accuracy of rates is shown to increase sharply with the total number of sampled points until eventually converging near the inherent reproducibility of the experiment. Perhaps contrary to some expectations, it is found that accurate peak height reconstruction is not required for the determination of accurate rates. Instead, inaccuracies in rates arise from inconsistencies in reconstruction across the relaxation series that primarily manifest as a non-linearity in the recovered peak height. This indicates that the performance of an NUS relaxation experiment cannot be predicted from comparison of peak heights using a single RSS reference spectrum. The generality of these findings was assessed using three alternative reconstruction algorithms, eight different relaxation measurements, and three additional proteins that exhibit varying degrees of spectral complexity. From these data, it is revealed that non-linearity in peak height reconstruction across the relaxation series is strongly correlated with errors in NUS-derived relaxation rates. Importantly, it is shown that this correlation can be exploited to reliably predict the performance of an NUS-relaxation experiment by using three or more RSS reference planes from the relaxation series. The RSS reference time points can also serve to provide estimates of the uncertainty of the sampled intensity, which for a typical relaxation times series incurs no penalty in total acquisition time.

  19. Beyond Newton's Law of Cooling--Estimation of Time since Death

    Science.gov (United States)

    Leinbach, Carl

    2011-01-01

    The estimate of the time since death and, thus, the time of death is strictly that, an estimate. However, the time of death can be an important piece of information in some coroner's cases, especially those that involve criminal or insurance investigations. It has been known almost from the beginning of time that bodies cool after the internal…

  20. time of arrival 3-d position estimation using minimum ads-b receiver ...

    African Journals Online (AJOL)

    HOD

    The location from which a signal is transmitted can be estimated using the time it takes to be detected at a receiver. The difference between transmission time and the detection time is known as time of arrival (TOA). In this work, an algorithm for 3-dimensional (3-D) position estimation (PE) of an emitter using the minimum ...

  1. The generalized correlation method for estimation of time delay in power plants

    International Nuclear Information System (INIS)

    Kostic, Lj.

    1981-01-01

    The generalized correlation estimation is developed for determining time delay between signals received at two spatially separated sensors in the presence of uncorrelated noise in a power plant. This estimator can be realized as a pair of receiver prefilters followed by a cross correlator. The time argument at which the correlator achieves a maximum is the delay estimate. (author)

  2. Estimation of functional preparedness of young handballers in setup time

    Directory of Open Access Journals (Sweden)

    Favoritоv V.N.

    2012-11-01

    Full Text Available The dynamics of level of functional preparedness of young handballers in setup time is shown. It was foreseen to make alteration in educational-training process with the purpose of optimization of their functional preparedness. 11 youths were plugged in research, calendar age 14 - 15 years. For determination of level of their functional preparedness the computer program "SVSM" was applied. It is set that at the beginning of setup time of 18,18% of all respondent functional preparedness is characterized by a "middle" level, 27,27% - below the "average", 54,54% - "above" the average. At the end of setup time among sportsmen representatives prevailed with the level of functional preparedness "above" average - 63,63%, with level "high" - 27,27%, sportsmen with level below the average were not observed. Efficiency of the offered system of trainings employments for optimization of functional preparedness of young handballers is well-proven.

  3. Time and space variability of spectral estimates of atmospheric pressure

    Science.gov (United States)

    Canavero, Flavio G.; Einaudi, Franco

    1987-01-01

    The temporal and spatial behaviors of atmospheric pressure spectra over the northern Italy and the Alpine massif were analyzed using data on surface pressure measurements carried out at two microbarograph stations in the Po Valley, one 50 km south of the Alps, the other in the foothills of the Dolomites. The first 15 days of the study overlapped with the Alpex Intensive Observation Period. The pressure records were found to be intrinsically nonstationary and were found to display substantial time variability, implying that the statistical moments depend on time. The shape and the energy content of spectra depended on different time segments. In addition, important differences existed between spectra obtained at the two stations, indicating a substantial effect of topography, particularly for periods less than 40 min.

  4. Effect of iodine impurity on relaxation of photoexcited silver chloride

    International Nuclear Information System (INIS)

    Vostrikova, Yu. V.; Klyuev, V. G.

    2008-01-01

    The time and temperature dependences of relaxation of excited AgCl and AgCl:I crystals is studied by the method of photostimulated flash of luminescence. The presence of iodine impurity in silver chloride gives rise to hole recombination (luminescence) centers and hole traps in the band gap. It is shown that the main contribution to the decrease in the concentration of electrons localized at deep traps is made by the recombination of electrons with holes released thermally from shallow localization levels (iodine-related centers). Estimation of activation energy for the relaxation process showed that these energies for the AgCl and AgCl:I samples under study are the same within the experimental error and are equal to E rel1 = 0.01 ± 0.0005 eV for the initial stage of relaxation and E rel2 = 0.09 ± 0.005 eV for the final state. This fact indicates that the majority of hole traps involved in the relaxation process in AgCl are related to iodine impurity. In the course of thermal relaxation in AgCl, relocalization of nonequilibrium charge carriers from shallow levels to deep levels is observed. The depth of the corresponding trap is E arl = 0.174 ± 0.03 eV.

  5. F19 relaxation in non-magnetic hexafluorides

    International Nuclear Information System (INIS)

    Rigny, P.

    1969-01-01

    The interesting properties of the fluorine magnetic resonance in the hexafluorides of molybdenum, tungsten and uranium, are very much due to large anisotropies of the chemical shift tensors. In the solid phases these anisotropies, the values of which are deduced from line shape studies, allow one to show that the molecules undergo hindered rotations about the metal atom. The temperature and frequency dependence of the fluorine longitudinal relaxation times shows that the relaxation is due to the molecular motion. The dynamical parameters of this motion are then deduced from the complete study of the fluorine relaxation in the rotating frame. In the liquid phases, the existence of anisotropies allows an estimation of the different contributions to the relaxation. In particular, the frequency and temperature dependence of the relaxation shows it to be dominated by the spin-rotation interaction. We have shown that the strength of this interaction can be deduced from the chemical shifts, and the angle through which the molecule rotates quasi-freely can be determined. In the hexafluorides, this angle is roughly one radian at 70 C, and with the help of this value, the friction coefficients which describe the intermolecular interactions are discussed. (author) [fr

  6. Real-time Wind Profile Estimation using Airborne Sensors

    NARCIS (Netherlands)

    In 't Veld, A.C.; De Jong, P.M.A.; Van Paassen, M.M.; Mulder, M.

    2011-01-01

    Wind is one of the major contributors to uncertainty in continuous descent approach operations. Especially when aircraft that are flying low or idle thrust approaches are issued a required time of arrival over the runway threshold, as is foreseen in some of the future ATC scenarios, the on-board

  7. Estimating epidemic arrival times using linear spreading theory

    Science.gov (United States)

    Chen, Lawrence M.; Holzer, Matt; Shapiro, Anne

    2018-01-01

    We study the dynamics of a spatially structured model of worldwide epidemics and formulate predictions for arrival times of the disease at any city in the network. The model is composed of a system of ordinary differential equations describing a meta-population susceptible-infected-recovered compartmental model defined on a network where each node represents a city and the edges represent the flight paths connecting cities. Making use of the linear determinacy of the system, we consider spreading speeds and arrival times in the system linearized about the unstable disease free state and compare these to arrival times in the nonlinear system. Two predictions are presented. The first is based upon expansion of the heat kernel for the linearized system. The second assumes that the dominant transmission pathway between any two cities can be approximated by a one dimensional lattice or a homogeneous tree and gives a uniform prediction for arrival times independent of the specific network features. We test these predictions on a real network describing worldwide airline traffic.

  8. A simple data fusion method for instantaneous travel time estimation

    NARCIS (Netherlands)

    Do, Michael; Pueboobpaphan, R.; Miska, Marc; Kuwahara, Masao; van Arem, Bart; Viegas, J.M.; Macario, R.

    2010-01-01

    Travel time is one of the most understandable parameters to describe traffic condition and an important input to many intelligent transportation systems applications. Direct measurement from Electronic Toll Collection (ETC) system is promising but the data arrives too late, only after the vehicles

  9. Interaction study of polyisobutylene with paraffins by NMR using the evaluation of spin-lattice relaxation times for hydrogen nuclei; Estudo da interacao do poliisobutileno com parafinas por RMN no estado solido

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Rosana G.G. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas - CENPES]. E-mail: garrido@cenpes.petrobras.com.br; Tavares, Maria I.B. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas]. E-mail: mibt@ima.ufrj.br

    2001-07-01

    The evaluation of spin-lattice relaxation times of {sup 1}H for polyisobutylene/paraffin systems, were obtained using the classic inversion recovery technique, and also through Cross Polarization Magic Angle Spinning (CP/MAS) techniques varying the contact time and also by the delayed contact time pulse sequence. NMR results showed that the polyisobutylene/paraffin systems in which high molecular weight paraffins were used, is heterogeneous. However, for paraffins with low molecular weight, the system presents good homogeneity. (author)

  10. Estimation of unemployment rates using small area estimation model by combining time series and cross-sectional data

    Science.gov (United States)

    Muchlisoh, Siti; Kurnia, Anang; Notodiputro, Khairil Anwar; Mangku, I. Wayan

    2016-02-01

    Labor force surveys conducted over time by the rotating panel design have been carried out in many countries, including Indonesia. Labor force survey in Indonesia is regularly conducted by Statistics Indonesia (Badan Pusat Statistik-BPS) and has been known as the National Labor Force Survey (Sakernas). The main purpose of Sakernas is to obtain information about unemployment rates and its changes over time. Sakernas is a quarterly survey. The quarterly survey is designed only for estimating the parameters at the provincial level. The quarterly unemployment rate published by BPS (official statistics) is calculated based on only cross-sectional methods, despite the fact that the data is collected under rotating panel design. The study purpose to estimate a quarterly unemployment rate at the district level used small area estimation (SAE) model by combining time series and cross-sectional data. The study focused on the application and comparison between the Rao-Yu model and dynamic model in context estimating the unemployment rate based on a rotating panel survey. The goodness of fit of both models was almost similar. Both models produced an almost similar estimation and better than direct estimation, but the dynamic model was more capable than the Rao-Yu model to capture a heterogeneity across area, although it was reduced over time.

  11. Estimating retention potential of headwater catchment using Tritium time series

    Science.gov (United States)

    Hofmann, Harald; Cartwright, Ian; Morgenstern, Uwe

    2018-06-01

    Headwater catchments provide substantial streamflow to rivers even during long periods of drought. Documenting the mean transit times (MTT) of stream water in headwater catchments and therefore the retention capacities of these catchments is crucial for water management. This study uses time series of 3H activities in combination with major ion concentrations, stable isotope ratios and radon activities (222Rn) in the Lyrebird Creek catchment in Victoria, Australia to provide a unique insight into the mean transit time distributions and flow systems of this small temperate headwater catchment. At all streamflows, the stream has 3H activities (water in the stream is derived from stores with long transit times. If the water in the catchment can be represented by a single store with a continuum of ages, mean transit times of the stream water range from ∼6 up to 40 years, which indicates the large retention potential for this catchment. Alternatively, variations of 3H activities, stable isotopes and major ions can be explained by mixing between of young recent recharge and older water stored in the catchment. While surface runoff is negligible, the variation in stable isotope ratios, major ion concentrations and radon activities during most of the year is minimal (±12%) and only occurs during major storm events. This suggests that different subsurface water stores are activated during the storm events and that these cease to provide water to the stream within a few days or weeks after storm events. The stores comprise micro and macropore flow in the soils and saprolite as well as the boundary between the saprolite and the fractured bed rock. Hydrograph separations from three major storm events using Tritium, electrical conductivity and selected major ions as well a δ18O suggest a minimum of 50% baseflow at most flow conditions. We demonstrate that headwater catchments can have a significant storage capacity and that the relationship between long-water stores and

  12. The immediate effect of long-distance running on T2 and T2* relaxation times of articular cartilage of the knee in young healthy adults at 3.0 T MR imaging.

    Science.gov (United States)

    Behzadi, Cyrus; Welsch, Goetz H; Laqmani, Azien; Henes, Frank O; Kaul, Michael G; Schoen, Gerhard; Adam, Gerhard; Regier, Marc

    2016-08-01

    To quantitatively assess the immediate effect of long-distance running on T2 and T2* relaxation times of the articular cartilage of the knee at 3.0 T in young healthy adults. 30 healthy male adults (18-31 years) who perform sports at an amateur level underwent an initial MRI at 3.0 T with T2 weighted [16 echo times (TEs): 9.7-154.6 ms] and T2* weighted (24 TEs: 4.6-53.6 ms) relaxation measurements. Thereafter, all participants performed a 45-min run. After the run, all individuals were immediately re-examined. Data sets were post-processed using dedicated software (ImageJ; National Institute of Health, Bethesda, MD). 22 regions of interest were manually drawn in segmented areas of the femoral, tibial and patellar cartilage. For statistical evaluation, Pearson product-moment correlation coefficients and confidence intervals were computed. Mean initial values were 35.7 ms for T2 and 25.1 ms for T2*. After the run, a significant decrease in the mean T2 and T2* relaxation times was observed for all segments in all participants. A mean decrease of relaxation time was observed for T2 with 4.6 ms (±3.6 ms) and for T2* with 3.6 ms (±5.1 ms) after running. A significant decrease could be observed in all cartilage segments for both biomarkers. Both quantitative techniques, T2 and T2*, seem to be valuable parameters in the evaluation of immediate changes in the cartilage ultrastructure after running. This is the first direct comparison of immediate changes in T2 and T2* relaxation times after running in healthy adults.

  13. What is the most suitable MR signal index for quantitative evaluation of placental function using Half-Fourier acquisition single-shot turbo spin-echo compared with T2-relaxation time?

    Science.gov (United States)

    Kameyama, Kyoko Nakao; Kido, Aki; Himoto, Yuki; Moribata, Yusaku; Minamiguchi, Sachiko; Konishi, Ikuo; Togashi, Kaori

    2018-06-01

    Background Half-Fourier acquisition single-shot turbo spin-echo (HASTE) imaging is now widely used for placental and fetal imaging because of its rapidity and low sensitivity to fetal movement. If placental dysfunction is also predicted by quantitative value obtained from HASTE image, then it might be beneficial for evaluating placental wellbeing. Purpose To ascertain the most suitable magnetic resonance (MR) signal indexes reflecting placental function using HASTE imaging. Material and Methods This retrospective study included 37 consequent patients who had given informed consent to MR imaging (MRI) examinations. All had undergone MRI examinations between February 2014 and June 2015. First, the correlation between T2-relaxation time of normal placenta and gestational age (GA) was examined. Second, correlation between signal intensity ratios (SIRs) using HASTE imaging and placental T2-relaxation time were assessed. The SIRs were calculated using placental signal intensity (SI) relative to the SI of the amniotic fluid, fetal ocular globes, gastric fluid, bladder, maternal psoas major muscles, and abdominal subcutaneous adipose tissue. Results Among the 37 patients, the correlation between T2-relaxation time of the 25 normal placentas and GA showed a moderately strong correlation (Spearman rho = -0.447, P = 0.0250). The most significant correlation with placental T2-relaxation time was observed with the placental SIR relative to the maternal psoas major muscles (SIR pl./psoas muscle ) (Spearman rho = -0.531, P = 0.0007). Conclusion This study revealed that SIR pl./psoas muscle showed the best correlation to placental T2-relaxation time. Results show that SIR pl./psoas muscle might be optimal as a clinically available quantitative index of placental function.

  14. Application of stress relaxation testing in evaluation of creep strength of a tungsten-alloyed 10% Cr cast steel

    International Nuclear Information System (INIS)

    Raghavender Rao, G.; Gupta, O.P.; Pradhan, B.

    2011-01-01

    Uniaxial isothermal stress relaxation tests (SRT) were performed on a tungsten-alloyed 10% Cr cast steel (G-X12Cr Mo W V Nb N 10 1 1) at temperatures of 580, 600 and 620 o C and initial strain levels of 0.2, 0.5 and 0.8%. Inelastic strain rates for different stresses were estimated from the stress versus time data generated from the tests. Conventional creep tests were also conducted on the same material at 580, 600 and 620 o C and at different stress levels. The strain rate data estimated from SRT were compared with minimum creep rates derived from the creep tests; the strain rates estimated from SRT with 0.8% initial strain level are in better agreement than those estimated from SRT with 0.2 and 0.5% initial strain levels. In order to ascertain the technique, stress relaxation behaviour was estimated from creep test data and compared with the stress relaxation curves obtained from SRT at corresponding temperatures. The stress relaxation curves obtained from SRT with 0.8% initial strain level are in good agreement with the stress relaxation curves estimated from the creep tests. It is concluded that the stress relaxation test with initial strain level of 0.8% could be considered as an appropriate short-term test technique for estimation of creep strength of newly developed materials.

  15. Estimating Time To Complete for ATLAS data transfers

    CERN Document Server

    Bogado Garcia, Joaquin Ignacio; The ATLAS collaboration; Monticelli, Fernando

    2018-01-01

    Transfer Time To Complete (T³C) is a new extension for the data management system Rucio that allows to make predictions about the duration of a file transfer. The extension has a modular architecture which allows to make predictions based on simple to more sophisticated models, depending on available data and computation power. The ability to predict file transfer times with reasonable accuracy provides a tool for better transfer scheduling  and thus reduces both the load on storage systems and the associated networks. The accuracy of the model requires fine tuning for its parameters on a link basis. As the underlying infrastructure varies depending on the source and destination of the transfer, the parameters modelling the network between these sites will also be studied.

  16. Estimation of Curve Tracing Time in Supercapacitor based PV Characterization

    Science.gov (United States)

    Basu Pal, Sudipta; Das Bhattacharya, Konika; Mukherjee, Dipankar; Paul, Debkalyan

    2017-08-01

    Smooth and noise-free characterisation of photovoltaic (PV) generators have been revisited with renewed interest in view of large size PV arrays making inroads into the urban sector of major developing countries. Such practice has recently been observed to be confronted by the use of a suitable data acquisition system and also the lack of a supporting theoretical analysis to justify the accuracy of curve tracing. However, the use of a selected bank of supercapacitors can mitigate the said problems to a large extent. Assuming a piecewise linear analysis of the V-I characteristics of a PV generator, an accurate analysis of curve plotting time has been possible. The analysis has been extended to consider the effect of equivalent series resistance of the supercapacitor leading to increased accuracy (90-95%) of curve plotting times.

  17. Estimation of Hurst Exponent for the Financial Time Series

    Science.gov (United States)

    Kumar, J.; Manchanda, P.

    2009-07-01

    Till recently statistical methods and Fourier analysis were employed to study fluctuations in stock markets in general and Indian stock market in particular. However current trend is to apply the concepts of wavelet methodology and Hurst exponent, see for example the work of Manchanda, J. Kumar and Siddiqi, Journal of the Frankline Institute 144 (2007), 613-636 and paper of Cajueiro and B. M. Tabak. Cajueiro and Tabak, Physica A, 2003, have checked the efficiency of emerging markets by computing Hurst component over a time window of 4 years of data. Our goal in the present paper is to understand the dynamics of the Indian stock market. We look for the persistency in the stock market through Hurst exponent and fractal dimension of time series data of BSE 100 and NIFTY 50.

  18. Real-time estimation of wildfire perimeters from curated crowdsourcing

    Science.gov (United States)

    Zhong, Xu; Duckham, Matt; Chong, Derek; Tolhurst, Kevin

    2016-04-01

    Real-time information about the spatial extents of evolving natural disasters, such as wildfire or flood perimeters, can assist both emergency responders and the general public during an emergency. However, authoritative information sources can suffer from bottlenecks and delays, while user-generated social media data usually lacks the necessary structure and trustworthiness for reliable automated processing. This paper describes and evaluates an automated technique for real-time tracking of wildfire perimeters based on publicly available “curated” crowdsourced data about telephone calls to the emergency services. Our technique is based on established data mining tools, and can be adjusted using a small number of intuitive parameters. Experiments using data from the devastating Black Saturday wildfires (2009) in Victoria, Australia, demonstrate the potential for the technique to detect and track wildfire perimeters automatically, in real time, and with moderate accuracy. Accuracy can be further increased through combination with other authoritative demographic and environmental information, such as population density and dynamic wind fields. These results are also independently validated against data from the more recent 2014 Mickleham-Dalrymple wildfires.

  19. Improving The Accuracy Of Bluetooth Based Travel Time Estimation Using Low-Level Sensor Data

    DEFF Research Database (Denmark)

    Araghi, Bahar Namaki; Tørholm Christensen, Lars; Krishnan, Rajesh

    2013-01-01

    triggered by a single device. This could lead to location ambiguity and reduced accuracy of travel time estimation. Therefore, the accuracy of travel time estimations by Bluetooth Technology (BT) depends upon how location ambiguity is handled by the estimation method. The issue of multiple detection events...... in the context of travel time estimation by BT has been considered by various researchers. However, treatment of this issue has remained simplistic so far. Most previous studies simply used the first detection event (Enter-Enter) as the best estimate. No systematic analysis for exploring the most accurate method...... of estimating travel time using multiple detection events has been conducted. In this study different aspects of BT detection zone, including size and its impact on the accuracy of travel time estimation, are discussed. Moreover, four alternative methods are applied; namely, Enter-Enter, Leave-Leave, Peak...

  20. Iterative Bayesian Estimation of Travel Times on Urban Arterials: Fusing Loop Detector and Probe Vehicle Data.

    Science.gov (United States)

    Liu, Kai; Cui, Meng-Ying; Cao, Peng; Wang, Jiang-Bo

    2016-01-01

    On urban arterials, travel time estimation is challenging especially from various data sources. Typically, fusing loop detector data and probe vehicle data to estimate travel time is a troublesome issue while considering the data issue of uncertain, imprecise and even conflicting. In this paper, we propose an improved data fusing methodology for link travel time estimation. Link travel times are simultaneously pre-estimated using loop detector data and probe vehicle data, based on which Bayesian fusion is then applied to fuse the estimated travel times. Next, Iterative Bayesian estimation is proposed to improve Bayesian fusion by incorporating two strategies: 1) substitution strategy which replaces the lower accurate travel time estimation from one sensor with the current fused travel time; and 2) specially-designed conditions for convergence which restrict the estimated travel time in a reasonable range. The estimation results show that, the proposed method outperforms probe vehicle data based method, loop detector based method and single Bayesian fusion, and the mean absolute percentage error is reduced to 4.8%. Additionally, iterative Bayesian estimation performs better for lighter traffic flows when the variability of travel time is practically higher than other periods.

  1. Timing Metrics of Joint Timing and Carrier-Frequency Offset Estimation Algorithms for TDD-based OFDM systems

    NARCIS (Netherlands)

    Hoeksema, F.W.; Srinivasan, R.; Schiphorst, Roelof; Slump, Cornelis H.

    2004-01-01

    In joint timing and carrier offset estimation algorithms for Time Division Duplexing (TDD) OFDM systems, different timing metrics are proposed to determine the beginning of a burst or symbol. In this contribution we investigated the different timing metrics in order to establish their impact on the

  2. [Phylogeny and divergence time estimation of Schizothoracinae fishes in Xinjiang].

    Science.gov (United States)

    Ayelhan, Haysa; Guo, Yan; Meng, Wei; Yang, Tianyan; Ma, Yanwu

    2014-10-01

    Based on combined data of mitochondrial COI, ND4 and 16S RNA genes, molecular phylogeny of 4 genera, 10 species or subspecies of Schizothoracinae fishes distributed in Xinjiang were analyzed. The molecular clock was calibrated by divergence time of Cyprininae and geological segregation event between the upper Yellow River and Qinghai Lake. Divergence time of Schizothoracinae fishes was calculated, and its relationship with the major geological events and the climate changes in surrounding areas of Tarim Basin was discussed. The results showed that genus Aspiorhynchus did not form an independent clade, but clustered with Schizothorax biddulphi and S. irregularis. Kimura 2-parameter model was used to calculate the genetic distance of COI gene, the genetic distance between genus Aspiorhynchus and Schizothorax did not reach genus level, and Aspiorhynchus laticeps might be a specialized species of genus Schizothorax. Cluster analysis showed a different result with morphological classification method, and it did not support the subgenus division of Schizothorax fishes. Divergence of two groups of primitive Schizothoracinae (8.18Ma) and divergence of Gymnodiptychus dybowskii and Diptychus maculates (7.67Ma) occurred in late Miocene, which might be related with the separation of Kunlun Mountain and north Tianshan Mountain River system that was caused by the uplift of Qinghai-Tibet Plateau and Tianshan Mountain, and the aridification of Tarim Basin. The terrain of Tarim Basin that was affected by Quaternary Himalayan movement was high in west but low in east, as a result, Lop Nor became the center of surrounding mountain rivers in Tarim Basin, which shaped the distribution pattern of genus Schizothorax.

  3. Estimating time to pregnancy from current durations in a cross-sectional sample

    DEFF Research Database (Denmark)

    Keiding, Niels; Kvist, Kajsa; Hartvig, Helle

    2002-01-01

    A new design for estimating the distribution of time to pregnancy is proposed and investigated. The design is based on recording current durations in a cross-sectional sample of women, leading to statistical problems similar to estimating renewal time distributions from backward recurrence times....

  4. Improving the Dominating-Set Routing over Delay-Tolerant Mobile Ad-Hoc Networks via Estimating Node Intermeeting Times

    Directory of Open Access Journals (Sweden)

    Preiss Bruno

    2011-01-01

    Full Text Available With limited coverage of wireless networks and frequent roaming of mobile users, providing a seamless communication service poses a technical challenge. In our previous research, we presented a supernode system architecture that employs the delay-tolerant network (DTN concept to provide seamless communications for roaming users over interconnected heterogeneous wireless networks. Mobile ad hoc networks (MANETs are considered a key component of the supernode system for services over an area not covered by other wireless networks. Within the super node system, a dominating-set routing technique is proposed to improve message delivery over MANETs and to achieve better resource utilization. The performance of the dominating-set routing technique depends on estimation accuracy of the probability of a future contact between nodes. This paper studies how node mobility can be modeled and used to better estimate the probability of a contact. We derive a distribution for the node-to-node intermeeting time and present numerical results to demonstrate that the distribution can be used to improve the dominating-set routing technique performance. Moreover, we investigate how the distribution can be employed to relax the constraints of selecting the dominating-set members in order to improve the system resource utilization.

  5. Anomalous carrier life-time relaxation mediated by head group interaction in surface anchored MnSe quantum dots conjugated with albumin proteins

    Energy Technology Data Exchange (ETDEWEB)

    Sarma, Runjun; Mohanta, Dambarudhar, E-mail: best@tezu.ernet.in

    2017-02-01

    We report on the radiative emission decay dynamics of a less known, γ-phase manganese selenide quantum dot system (MnSe QDs) subjected to bio-functionalization. A short-ligand thioglycolic acid (TGA), and a long-chain sodium dodecyl sulfate (SDS) surfactants were used as surface anchors prior bioconjugation with albumin proteins (BSA). Time resolved photoluminescence (TR-PL) spectra of the QDs have revealed bi-exponential decay trends with the fast (τ{sub 1}) and slow (τ{sub 2}) decay parameters assigned to the core state recombination and surface trapped excitons; respectively. The average lifetime (τ{sub avg}) was found to get shortened from a value of ∼0.87 ns–0.72 ns in unconjugated and BSA conjugated MnSe-TGA QDs; respectively. Conversely, MnSe-SDS QDs with BSA conjugation exhibited nearly four-fold enhancement of τ{sub avg} with respect to its unconjugated counterpart. Moreover, a considerable amount of Förster resonance energy transfer (FRET) was found to occur from the TGA coated MnSe QDs to BSA and with an ensuing efficiency of ∼61%. The origin of anomalous carrier life-time relaxation features has also been encountered through a simplified model as regards head group interaction experienced by the MnSe QDs with different surfactant types. Exploiting luminescence decay characteristics of a magneto-fluorescent candidate could find immense scope in diverse biological applications including assays, labeling and imaging. - Highlights: • Surface anchored manganese selenide quantum dots (MnSe QDs) have been synthesized via a physico-chemical reduction route. • Time resolved luminescence spectra of the QDs have displayed bi-exponential decay trend. • Thioglycolic acid (TGA) coated QDs exhibited shorter lifetime as compared to sodium dodecyl sulfo-succinate (SDS) coated ones. • Upon BSA conjugation, the average life time is four-fold enhanced in MnSe-SDS QDs. • An efficient FRET process has been revealed in BSA conjugated TGA coated MnSe QDs.

  6. Investigation of the spectroscopy and relaxation dynamics of benzaldehyde using molecular orbital calculations and laser ionization time-of-flight mass spectroscopy

    Science.gov (United States)

    da Silva, Maria Cristina Rodrigues

    1998-11-01

    Molecular orbital methods and laser ionization mass spectrometry measurements are used to investigate the spectroscopy and relaxation dynamics of benzaldehyde following excitation to its S2(/pi/pi/sp/*) state. Energies, equilibrium geometries and vibrational frequencies of ground and low-lying excited states of benzaldehyde neutral and cation determined by ab initio calculations provide a theoretical description of the electronic spectroscopy of benzaldehyde and of the changes occurring on excitation and ionization. The S2(/pi/pi/sp/*)[/gets]S0 excitation spectrum of jet-cooled benzaldehyde acquired using two-color laser ionization mass spectrometry techniques is interpreted with the aid of these calculations. The spectrum is dominated by the origin band and by transitions involving some of the ring modes consistent with the results of the molecular orbital calculations that indicate that the major geometric changes on excitation to S2 are located in the aromatic ring. Ten fundamental vibrations of the S2(/pi/pi/sp/*) state are assigned. The dissociation dynamics of benzaldehyde into benzene and carbon monoxide following excitation to its S2(/pi/pi/sp/*) state are investigated under jet- cooled conditions by two-color laser ionization mass spectrometry using a pump-probe technique. This experimental arrangement allows monitoring the benzaldehyde reactant and the benzene product ion signals as a function of the time delay between the excitation and ionization steps. A kinetic model is proposed to explain the observed biexponential decay of the benzaldehyde signal and the single exponential growth of the benzene product signal in terms of a sequential decay of two excited states of benzaldehyde, one of which leads to formation of benzene molecules in its lowest triplet state. Reactant disappearance and product appearance rates are determined for a number of vibronic transitions of the S2 state. They are found to increase with excitation energy without any indication

  7. Objective measurement of minimal fat in normal skeletal muscles of healthy children using T2 relaxation time mapping (T2 maps) and MR spectroscopy.

    Science.gov (United States)

    Kim, Hee Kyung; Serai, Suraj; Merrow, Arnold C; Wang, Lily; Horn, Paul S; Laor, Tal

    2014-02-01

    Various skeletal muscle diseases result in fatty infiltration, making it important to develop noninvasive biomarkers to objectively measure muscular fat. We compared T2 relaxation time mapping (T2 maps) and magnetic resonance spectroscopy (MRS) with physical characteristics previously correlated with intramuscular fat to validate T2 maps and MRS as objective measures of skeletal muscle fat. We evaluated gluteus maximus muscles in 30 healthy boys (ages 5-19 years) at 3 T with T1-weighted images, T2-W images with fat saturation, T2 maps with and without fat saturation, and MR spectroscopy. We calculated body surface area (BSA), body mass index (BMI) and BMI percentile (BMI %). We performed fat and inflammation grading on T1-W imaging and fat-saturated T2-W imaging, respectively. Mean T2 values from T2 maps with fat saturation were subtracted from T2 maps without fat saturation to determine T2 fat values. We obtained lipid-to-water ratios by MR spectroscopy. Pearson correlation was used to assess relationships between BSA, BMI, BMI %, T2 fat values, and lipid-to-water ratios for each boy. Twenty-four boys completed all exams; 21 showed minimal and 3 showed no fatty infiltration. None showed muscle inflammation. There was correlation between BSA, BMI, and BMI %, and T2 fat values (P values and lipid-to-water ratios (P skeletal muscles, even in microscopic amounts, and validate each other. Both techniques might enable detection of minimal pathological fatty infiltration in children with skeletal muscle disorders.

  8. Motional spin relaxation in photoexcited triplet states

    International Nuclear Information System (INIS)

    Harryvan, D.; Faassen, E. van

    1997-01-01

    Transient EPR experiments were performed on photoexcited spin triplet states of the luminescent dye EOSIN-Y in diluted (order of 1 nMol) frozen propane-1-ol solutions at various temperatures. Photoexcitation was achieved by irradiation with intense, short laser pulses. The details of the spin relaxation, in particular the dependence on time, magnetic field and microwave field strength are all reproduced by a model which computes the total magnetization in a population of photoexcited triplet states undergoing random reorientational motion. Using this model, we estimated the motional correlation times to be around a microsecond. This timescale is two orders of magnitude slower than the phase memory time of the triplets. (author)

  9. A theory of timing in scintillation counters based on maximum likelihood estimation

    International Nuclear Information System (INIS)

    Tomitani, Takehiro

    1982-01-01

    A theory of timing in scintillation counters based on the maximum likelihood estimation is presented. An optimum filter that minimizes the variance of timing is described. A simple formula to estimate the variance of timing is presented as a function of photoelectron number, scintillation decay constant and the single electron transit time spread in the photomultiplier. The present method was compared with the theory by E. Gatti and V. Svelto. The proposed method was applied to two simple models and rough estimations of potential time resolution of several scintillators are given. The proposed method is applicable to the timing in Cerenkov counters and semiconductor detectors as well. (author)

  10. Anomalous reduction in the long-time flux creep relaxation in superconducting Ca10(Pt4As8)((Fe1‑x Pt x )2As2)5 (x ≈ 0.05) single crystals

    Science.gov (United States)

    Haberkorn, N.; Huang, Silu; Jin, R.

    2018-06-01

    We report the vortex dynamics of superconducting a Ca10(Pt4As8)((Fe1‑x Pt x )2As2)5 (x ≈ 0.05) single crystal with T c = 26 K investigated by performing magnetic measurements. The field dependence of the magnetization displays a second peak (SPM), typically related to a crossover between elastic and plastic vortex relaxation in a weak pinning scenario. Long-time flux creep relaxation measurements for fields smaller that of the SPM show that the vortex dynamics can be separated in two different regions. For magnetic fields smaller than the lower end of the SPM, glassy relaxation (with a characteristic glassy exponent μ) is observed. For magnetic fields between the lower end and the SPM, the flux creep rate decreases systematically to values below to the ones predicted by the collective theory. This effect can be understood by considering a stable vortex lattice configuration. As the field position of the SPM can be adjusted by modifying the quenched potential, our results suggest that extremely low flux creep relaxation rate may be tuned in many other superconducting materials.

  11. Relaxation characteristics of hastelloy X

    International Nuclear Information System (INIS)

    Suzuki, Kazuhiko

    1980-02-01

    Relaxation diagrams of Hastelloy X (relaxation curves, relaxation design diagrams, etc.) were generated from the creep constitutive equation of Hastelloy X, using inelastic stress analysis code TEPICC-J. These data are in good agreement with experimental relaxation data of ORNL-5479. Three typical inelastic stress analyses were performed for various relaxation behaviors of the high-temperature structures. An attempt was also made to predict these relaxation behaviors by the relaxation curves. (author)

  12. Face to phase: pitfalls in time delay estimation from coherency phase

    NARCIS (Netherlands)

    Campfens, S.F.; van der Kooij, Herman; Schouten, Alfred Christiaan

    2014-01-01

    Coherency phase is often interpreted as a time delay reflecting a transmission delay between spatially separated neural populations. However, time delays estimated from corticomuscular coherency are conflicting and often shorter than expected physiologically. Recent work suggests that

  13. Freeway travel time estimation using existing fixed traffic sensors : phase 2.

    Science.gov (United States)

    2015-03-01

    Travel time, one of the most important freeway performance metrics, can be easily estimated using the : data collected from fixed traffic sensors, avoiding the need to install additional travel time data collectors. : This project is aimed at fully u...

  14. DOTD support for UTC project : travel time estimation using bluetooth, [research project capsule].

    Science.gov (United States)

    2013-10-01

    Travel time estimates are useful tools for measuring congestion in an urban area. Current : practice involves using probe vehicles or video cameras to measure travel time, but this is a laborintensive and expensive means of obtaining the information....

  15. Improving value of travel time savings estimation for more effective transportation project evaluation.

    Science.gov (United States)

    2012-12-01

    Estimates of value of time (VOT) and value of travel time savings (VTTS) are critical elements in benefitcost : analyses of transportation projects and in developing congestion pricing policies. In addition, : differences in VTTS among various modes ...

  16. Methodology for Time-Domain Estimation of Storm-Time Electric Fields Using the 3D Earth Impedance

    Science.gov (United States)

    Kelbert, A.; Balch, C. C.; Pulkkinen, A. A.; Egbert, G. D.; Love, J. J.; Rigler, E. J.; Fujii, I.

    2016-12-01

    Magnetic storms can induce geoelectric fields in the Earth's electrically conducting interior, interfering with the operations of electric-power grid industry. The ability to estimate these electric fields at Earth's surface in close to real-time and to provide local short-term predictions would improve the ability of the industry to protect their operations. At any given time, the electric field at the Earth's surface is a function of the time-variant magnetic activity (driven by the solar wind), and the local electrical conductivity structure of the Earth's crust and mantle. For this reason, implementation of an operational electric field estimation service requires an interdisciplinary, collaborative effort between space science, real-time space weather operations, and solid Earth geophysics. We highlight in this talk an ongoing collaboration between USGS, NOAA, NASA, Oregon State University, and the Japan Meteorological Agency, to develop algorithms that can be used for scenario analyses and which might be implemented in a real-time, operational setting. We discuss the development of a time domain algorithm that employs discrete time domain representation of the impedance tensor for a realistic 3D Earth, known as the discrete time impulse response (DTIR), convolved with the local magnetic field time series, to estimate the local electric field disturbances. The algorithm is validated against measured storm-time electric field data collected in the United States and Japan. We also discuss our plans for operational real-time electric field estimation using 3D Earth impedances.

  17. Relaxation dynamics following transition of solvated electrons

    International Nuclear Information System (INIS)

    Barnett, R.B.; Landman, U.; Nitzan, A.

    1989-01-01

    Relaxation dynamics following an electronic transition of an excess solvated electron in clusters and in bulk water is studied using an adiabatic simulation method. In this method the solvent evolves classically and the electron is constrained to a specified state. The coupling between the solvent and the excess electron is evaluated via the quantum expectation value of the electron--water molecule interaction potential. The relaxation following excitation (or deexcitation) is characterized by two time scales: (i) a very fast (/similar to/20--30 fs) one associated with molecular rotations in the first solvation shell about the electron, and (ii) a slower stage (/similar to/200 fs), which is of the order of the longitudinal dielectric relaxation time. The fast relaxation stage exhibits an isotope effect. The spectroscopical consequences of the relaxation dynamics are discussed

  18. Vibrational and Rotational Energy Relaxation in Liquids

    DEFF Research Database (Denmark)

    Petersen, Jakob

    Vibrational and rotational energy relaxation in liquids are studied by means of computer simulations. As a precursor for studying vibrational energy relaxation of a solute molecule subsequent to the formation of a chemical bond, the validity of the classical Bersohn-Zewail model for describing......, the vibrational energy relaxation of I2 subsequent to photodissociation and recombination in CCl4 is studied using classical Molecular Dynamics simulations. The vibrational relaxation times and the time-dependent I-I pair distribution function are compared to new experimental results, and a qualitative agreement...... is found in both cases. Furthermore, the rotational energy relaxation of H2O in liquid water is studied via simulations and a power-and-work analysis. The mechanism of the energy transfer from the rotationally excited H2O molecule to its water neighbors is elucidated, i.e. the energy-accepting degrees...

  19. Cardiac MRI. Estimation of changes in normalized myocardial gadolinium accumulation over time after contrast injection in patients with acute myocarditis and healthy volunteers

    International Nuclear Information System (INIS)

    Breuckmann, F.; Buhr, C.; Maderwald, S.; Bruder, O.; Schlosser, T.; Nassenstein, K.; Erbel, R.; Barkhausen, J.

    2011-01-01

    An increased normalized gadolinium accumulation (NGA) in the myocardium during early washout has been used for the diagnosis of acute myocarditis (AM). Due to the fact that the pharmacokinetics of contrast agents are complex, time-related changes in NGA after contrast injection are likely. Because knowledge about time-related changes of NGA may improve the diagnostic accuracy of MR, our study aimed to estimate the time course of NGA after contrast injection in patients as well as in healthy volunteers. An ECG-triggered inversion recovery SSFP sequence with incrementally increasing inversion times was repetitively acquired over the 15 minutes after injection of 0.2 Gd-DTPA per kg body weight in a 4-chamber view in 15 patients with AM and 20 volunteers. The T 1relaxation times and the longitudinal relaxation rates (R1) of the myocardium and skeletal musculature were calculated for each point in time after contrast injection. The time course of NGA was estimated based on the linear relationship between R 1 and tissue Gd concentration. NGA decreased over time in the form of a negative power function in patients with AM and in healthy controls. NGA in AM tended to be higher than in controls (p > 0.05). NGA rapidly changes after contrast injection, which must be considered when measuring NGA. Although we observed a trend towards higher NGA values in patients with AM with a maximum difference one minute after contrast injection, NGA did not allow us to differentiate patients with AM from healthy volunteers, because the observed differences did not reach a level of significance. (orig.)

  20. A test of alternative estimators for volume at time 1 from remeasured point samples

    Science.gov (United States)

    Francis A. Roesch; Edwin J. Green; Charles T. Scott

    1993-01-01

    Two estimators for volume at time 1 for use with permanent horizontal point samples are evaluated. One estimator, used traditionally, uses only the trees sampled at time 1, while the second estimator, originally presented by Roesch and coauthors (F.A. Roesch, Jr., E.J. Green, and C.T. Scott. 1989. For. Sci. 35(2):281-293). takes advantage of additional sample...

  1. Ab initio quantum-enhanced optical phase estimation using real-time feedback control

    DEFF Research Database (Denmark)

    Berni, Adriano; Gehring, Tobias; Nielsen, Bo Melholt

    2015-01-01

    of a quantum-enhanced and fully deterministic ab initio phase estimation protocol based on real-time feedback control. Using robust squeezed states of light combined with a real-time Bayesian adaptive estimation algorithm, we demonstrate deterministic phase estimation with a precision beyond the quantum shot...... noise limit. The demonstrated protocol opens up new opportunities for quantum microscopy, quantum metrology and quantum information processing....

  2. Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids

    Energy Technology Data Exchange (ETDEWEB)

    Sachleben, Joseph Robert [Lawrence Berkeley Lab., CA (United States); California Univ., Berkeley, CA (United States). Dept. of Chemistry

    1993-09-01

    Semiconductor nanocrystals, small biomolecules, and 13C enriched solids were studied through the relaxation in NMR spectra. Surface structure of semiconductor nanocrystals (CdS) was deduced from high resolution 1H and 13C liquid state spectra of thiophenol ligands on the nanocrystal surfaces. The surface coverage by thiophenol was found to be low, being 5.6 and 26% for nanocrystal radii of 11.8 and 19.2 Å. Internal motion is estimated to be slow with a correlation time > 10-8 s-1. The surface thiophenol ligands react to form a dithiophenol when the nanocrystals were subjected to O2 and ultraviolet. A method for measuring 14N-1H J-couplings is demonstrated on pyridine and the peptide oxytocin; selective 2D T1 and T2 experiments are presented for measuring relaxation times in crowded spectra with overlapping peaks in 1D, but relaxation effects interfere. Possibility of carbon-carbon cross relaxation in 13C enriched solids is demonstrated by experiments on zinc acetate and L-alanine.

  3. Estimation of train dwell time at short stops based on track occupation event data

    NARCIS (Netherlands)

    Li, D.; Daamen, W.; Goverde, R.M.P.

    2015-01-01

    Train dwell time is one of the most unpredictable components of railway operations mainly due to the varying volumes of alighting and boarding passengers. For reliable estimations of train running times and route conflicts on main lines it is however necessary to obtain accurate estimations of dwell

  4. Time Estimation in Alzheimer's Disease and the Role of the Central Executive

    Science.gov (United States)

    Papagno, Costanza; Allegra, Adele; Cardaci, Maurizio

    2004-01-01

    The aim of this study was to evaluate the role of short-term memory and attention in time estimation. For this purpose we studied prospective time verbal estimation in 21 patients with Alzheimer's disease (AD), and compared their performance with that of 21 matched normal controls in two different conditions: during a digit span task and during an…

  5. Access to destinations : arterial data acquisition and network-wide travel time estimation (phase II).

    Science.gov (United States)

    2010-03-01

    The objectives of this project were to (a) produce historic estimates of travel times on Twin-Cities arterials : for 1995 and 2005, and (b) develop an initial architecture and database that could, in the future, produce timely : estimates of arterial...

  6. TEACHING NEUROMUSCULAR RELAXATION.

    Science.gov (United States)

    NORRIS, JEANNE E.; STEINHAUS, ARTHUR H.

    THIS STUDY ATTEMPTED TO FIND OUT WHETHER (1) THE METHODS FOR ATTAINING NEUROMUSCULAR RELAXATION THAT HAVE PROVED FRUITFUL IN THE ONE-TO-ONE RELATIONSHIP OF THE CLINIC CAN BE SUCCESSFULLY ADAPTED TO THE TEACHER-CLASS RELATIONSHIP OF THE CLASSROOM AND GYMNASIUM, AND (2) NEUROMUSCULAR RELAXATION CAN BE TAUGHT SUCCESSFULLY BY AN APPROPRIATELY TRAINED…

  7. Relaxation of Anisotropic Glasses

    DEFF Research Database (Denmark)

    Deubener, Joachim; Martin, Birgit; Wondraczek, Lothar

    2004-01-01

    . When the load was removed at room temperature a permanent optical anisotropy (birefringence) was observed only perpendicular to cylinder axis and the pressure direction indicating complete elimination of thermal stresses. Relaxation of structural anisotropy was studied from reheating experiments using...... the energy release, thermo-mechanical and optical relaxation behaviour are drawn....

  8. Relaxation techniques for stress

    Science.gov (United States)

    ... raise your heart rate. This is called the stress response. Relaxation techniques can help your body relax and lower your blood pressure ... also many other types of breathing techniques you can learn. In many cases, you do not need much ... including those that cause stress. Meditation has been practiced for thousands of years, ...

  9. Accurate Lithium-ion battery parameter estimation with continuous-time system identification methods

    International Nuclear Information System (INIS)

    Xia, Bing; Zhao, Xin; Callafon, Raymond de; Garnier, Hugues; Nguyen, Truong; Mi, Chris

    2016-01-01

    Highlights: • Continuous-time system identification is applied in Lithium-ion battery modeling. • Continuous-time and discrete-time identification methods are compared in detail. • The instrumental variable method is employed to further improve the estimation. • Simulations and experiments validate the advantages of continuous-time methods. - Abstract: The modeling of Lithium-ion batteries usually utilizes discrete-time system identification methods to estimate parameters of discrete models. However, in real applications, there is a fundamental limitation of the discrete-time methods in dealing with sensitivity when the system is stiff and the storage resolutions are limited. To overcome this problem, this paper adopts direct continuous-time system identification methods to estimate the parameters of equivalent circuit models for Lithium-ion batteries. Compared with discrete-time system identification methods, the continuous-time system identification methods provide more accurate estimates to both fast and slow dynamics in battery systems and are less sensitive to disturbances. A case of a 2"n"d-order equivalent circuit model is studied which shows that the continuous-time estimates are more robust to high sampling rates, measurement noises and rounding errors. In addition, the estimation by the conventional continuous-time least squares method is further improved in the case of noisy output measurement by introducing the instrumental variable method. Simulation and experiment results validate the analysis and demonstrate the advantages of the continuous-time system identification methods in battery applications.

  10. Bayesian Nonparametric Mixture Estimation for Time-Indexed Functional Data in R

    Directory of Open Access Journals (Sweden)

    Terrance D. Savitsky

    2016-08-01

    Full Text Available We present growfunctions for R that offers Bayesian nonparametric estimation models for analysis of dependent, noisy time series data indexed by a collection of domains. This data structure arises from combining periodically published government survey statistics, such as are reported in the Current Population Study (CPS. The CPS publishes monthly, by-state estimates of employment levels, where each state expresses a noisy time series. Published state-level estimates from the CPS are composed from household survey responses in a model-free manner and express high levels of volatility due to insufficient sample sizes. Existing software solutions borrow information over a modeled time-based dependence to extract a de-noised time series for each domain. These solutions, however, ignore the dependence among the domains that may be additionally leveraged to improve estimation efficiency. The growfunctions package offers two fully nonparametric mixture models that simultaneously estimate both a time and domain-indexed dependence structure for a collection of time series: (1 A Gaussian process (GP construction, which is parameterized through the covariance matrix, estimates a latent function for each domain. The covariance parameters of the latent functions are indexed by domain under a Dirichlet process prior that permits estimation of the dependence among functions across the domains: (2 An intrinsic Gaussian Markov random field prior construction provides an alternative to the GP that expresses different computation and estimation properties. In addition to performing denoised estimation of latent functions from published domain estimates, growfunctions allows estimation of collections of functions for observation units (e.g., households, rather than aggregated domains, by accounting for an informative sampling design under which the probabilities for inclusion of observation units are related to the response variable. growfunctions includes plot

  11. Estimating the level of dynamical noise in time series by using fractal dimensions

    International Nuclear Information System (INIS)

    Sase, Takumi; Ramírez, Jonatán Peña; Kitajo, Keiichi; Aihara, Kazuyuki; Hirata, Yoshito

    2016-01-01

    We present a method for estimating the dynamical noise level of a ‘short’ time series even if the dynamical system is unknown. The proposed method estimates the level of dynamical noise by calculating the fractal dimensions of the time series. Additionally, the method is applied to EEG data to demonstrate its possible effectiveness as an indicator of temporal changes in the level of dynamical noise. - Highlights: • A dynamical noise level estimator for time series is proposed. • The estimator does not need any information about the dynamics generating the time series. • The estimator is based on a novel definition of time series dimension (TSD). • It is demonstrated that there exists a monotonic relationship between the • TSD and the level of dynamical noise. • We apply the proposed method to human electroencephalographic data.

  12. Estimating the level of dynamical noise in time series by using fractal dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Sase, Takumi, E-mail: sase@sat.t.u-tokyo.ac.jp [Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 153-8505 (Japan); Ramírez, Jonatán Peña [CONACYT Research Fellow, Center for Scientific Research and Higher Education at Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California (Mexico); Kitajo, Keiichi [BSI-Toyota Collaboration Center, RIKEN Brain Science Institute, Wako, Saitama 351-0198 (Japan); Aihara, Kazuyuki; Hirata, Yoshito [Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 153-8505 (Japan); Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505 (Japan)

    2016-03-11

    We present a method for estimating the dynamical noise level of a ‘short’ time series even if the dynamical system is unknown. The proposed method estimates the level of dynamical noise by calculating the fractal dimensions of the time series. Additionally, the method is applied to EEG data to demonstrate its possible effectiveness as an indicator of temporal changes in the level of dynamical noise. - Highlights: • A dynamical noise level estimator for time series is proposed. • The estimator does not need any information about the dynamics generating the time series. • The estimator is based on a novel definition of time series dimension (TSD). • It is demonstrated that there exists a monotonic relationship between the • TSD and the level of dynamical noise. • We apply the proposed method to human electroencephalographic data.

  13. Corroborative evidences of TV γ -scaling of the α-relaxation originating from the primitive relaxation/JG β relaxation

    Science.gov (United States)

    Ngai, K. L.; Paluch, M.

    2017-12-01

    Successful thermodynamic scaling of the structural alpha-relaxation time or transport coefficients of glass-forming liquids determined at various temperatures T and pressures P means the data conform to a single function of the product variable TVgamma, where V is the specific volume and gamma is a material specific constant. In the past two decades we have witnessed successful TVgamma-scaling in many molecular, polymeric, and even metallic glass-formers, and gamma is related to the slope of the repulsive part of the intermolecular potential. The advances made indicate TVgamma-scaling is an important aspect of the dynamic and thermodynamic properties of glass-formers. In this paper we show the origin of TVgamma-scaling is not from the structural alpha-relaxation time. Instead it comes from its precursor, the Johari-Goldstein beta-relaxation or the primitive relaxation of the Coupling Model and their relaxation times or tau_0 respectively. It is remarkable that all relaxation times are functions of TVgamma with the same gama, as well as the fractional exponent of the Kohlrausch correlation function of the structural alpha-relaxation. We arrive at this conclusion convincingly based on corroborative evidences from a number of experiments and molecular dynamics simulations performed on a wide variety of glass-formers and in conjunction with consistency with the predictions of the Coupling Model.

  14. Simultaneous MR quantification of hepatic fat content, fatty acid composition, transverse relaxation time and magnetic susceptibility for the diagnosis of non-alcoholic steatohepatitis.

    Science.gov (United States)

    Leporq, B; Lambert, S A; Ronot, M; Vilgrain, V; Van Beers, B E

    2017-10-01

    Non-alcoholic steatohepatitis (NASH) is characterized at histology by steatosis, hepatocyte ballooning and inflammatory infiltrates, with or without fibrosis. Although diamagnetic material in fibrosis and inflammation can be detected with quantitative susceptibility imaging, fatty acid composition changes in NASH relative to simple steatosis have also been reported. Therefore, our aim was to develop a single magnetic resonance (MR) acquisition and post-processing scheme for the diagnosis of steatohepatitis by the simultaneous quantification of hepatic fat content, fatty acid composition, T 2 * transverse relaxation time and magnetic susceptibility in patients with non-alcoholic fatty liver disease. MR acquisition was performed at 3.0 T using a three-dimensional, multi-echo, spoiled gradient echo sequence. Phase images were unwrapped to compute the B 0 field inhomogeneity (ΔB 0 ) map. The ΔB 0 -demodulated real part images were used for fat-water separation, T 2 * and fatty acid composition quantification. The external and internal fields were separated with the projection onto dipole field method. Susceptibility maps were obtained after dipole inversion from the internal field map with single-orientation Bayesian regularization including spatial priors. Method validation was performed in 32 patients with biopsy-proven, non-alcoholic fatty liver disease from which 12 had simple steatosis and 20 NASH. Liver fat fraction and T 2 * did not change significantly between patients with simple steatosis and NASH. In contrast, the saturated fatty acid fraction increased in patients with NASH relative to patients with simple steatosis (48 ± 2% versus 44 ± 4%; p magnetic susceptibility decreased (-0.30 ± 0.27 ppm versus 0.10 ± 0.14 ppm; p magnetic susceptibility as NASH marker was 0.91 (95% CI: 0.79-1.0). Simultaneous MR quantification of fat content, fatty acid composition, T 2 * and magnetic susceptibility is feasible in the liver. Our preliminary results

  15. Application of Relaxed Eddy Accumulation (REA) method to estimate CO2 and CH4 surface fluxes in the city of Krakow, southern Poland.

    Science.gov (United States)

    Zimnoch, Miroslaw; Gorczyca, Zbigniew; Pieniazek, Katarzyna; Jasek, Alina; Chmura, Lukasz; Rozanski, Kazimierz

    2013-04-01

    There is a growing interest in the recent years in studies aimed at quantifying carbon cycling in urban centres. Worldwide migration of human population from rural to urban areas and corresponding growth of extensive urban agglomerations and megacities leads to intensification of anthropogenic emissions of carbon and strong disruption of natural carbon cycle on these areas. Therefore, a deeper understanding of the carbon "metabolism" of such regions is required. Apart of better quantification of surface carbon fluxes, also a thorough understanding of the functioning of biosphere under strong anthropogenic influence is needed. Nowadays, covariance methods are widely applied for studying gas exchange between the atmosphere and the Earth's surface. Relaxed Eddy Accumulation method (REA), combined with the CO2 and CH4 CRDS analyser allows simultaneous measurements of surface fluxes of carbon dioxide and methane within the chosen footprint of the detection system, thus making possible thorough characterisation of the overall exchange of those gases between the atmosphere and the urban surface across diverse spatial and temporal scales. Here we present preliminary results of the study aimed at quantifying surface fluxes of CO2 and CH4 in Krakow, southern Poland. The REA system for CO2 and CH4 flux measurements has been installed on top of a 20m high tower mounted on the roof of the faculty building, close to the city centre of Krakow. The sensors were installed ca 42 m above the local ground. Gill Windmaster-Pro sonic anemometer was coupled with self-made system, designed by the Poznan University of Life Sciences, Poland, for collecting air samples in two pairs of 10-liter Tedlar bags, and with Picarro G2101-i CRDS analyser. The air was collected in 30-min intervals. The CO2 and CH4 mixing ratios in these cumulative downdraft and updraft air samples were determined by the CRDS analyser after each sampling interval. Based on the measured mixing ratios difference and the

  16. Using linear time-invariant system theory to estimate kinetic parameters directly from projection measurements

    International Nuclear Information System (INIS)

    Zeng, G.L.; Gullberg, G.T.

    1995-01-01

    It is common practice to estimate kinetic parameters from dynamically acquired tomographic data by first reconstructing a dynamic sequence of three-dimensional reconstructions and then fitting the parameters to time activity curves generated from the time-varying reconstructed images. However, in SPECT, the pharmaceutical distribution can change during the acquisition of a complete tomographic data set, which can bias the estimated kinetic parameters. It is hypothesized that more accurate estimates of the kinetic parameters can be obtained by fitting to the projection measurements instead of the reconstructed time sequence. Estimation from projections requires the knowledge of their relationship between the tissue regions of interest or voxels with particular kinetic parameters and the project measurements, which results in a complicated nonlinear estimation problem with a series of exponential factors with multiplicative coefficients. A technique is presented in this paper where the exponential decay parameters are estimated separately using linear time-invariant system theory. Once the exponential factors are known, the coefficients of the exponentials can be estimated using linear estimation techniques. Computer simulations demonstrate that estimation of the kinetic parameters directly from the projections is more accurate than the estimation from the reconstructed images

  17. Estimating time-varying RSA to examine psychophysiological linkage of marital dyads.

    Science.gov (United States)

    Gates, Kathleen M; Gatzke-Kopp, Lisa M; Sandsten, Maria; Blandon, Alysia Y

    2015-08-01

    One of the primary tenets of polyvagal theory dictates that parasympathetic influence on heart rate, often estimated by respiratory sinus arrhythmia (RSA), shifts rapidly in response to changing environmental demands. The current standard analytic approach of aggregating RSA estimates across time to arrive at one value fails to capture this dynamic property within individuals. By utilizing recent methodological developments that enable precise RSA estimates at smaller time intervals, we demonstrate the utility of computing time-varying RSA for assessing psychophysiological linkage (or synchrony) in husband-wife dyads using time-locked data collected in a naturalistic setting. © 2015 Society for Psychophysiological Research.

  18. Relationship between Structural and Stress Relaxation in a Block-Copolymer Melt

    International Nuclear Information System (INIS)

    Patel, Amish J.; Narayanan, Suresh; Sandy, Alec; Mochrie, Simon G. J.; Garetz, Bruce A.; Watanabe, Hiroshi; Balsara, Nitash P.

    2006-01-01

    The relationship between structural relaxation on molecular length scales and macroscopic stress relaxation was explored in a disordered block-copolymer melt. Experiments show that the structural relaxation time, measured by x-ray photon correlation spectroscopy is larger than the terminal stress relaxation time, measured by rheology, by factors as large as 100. We demonstrate that the structural relaxation data are dominated by the diffusion of intact micelles while the stress relaxation data are dominated by contributions due to disordered concentration fluctuations

  19. Wireless data collection system for real-time arterial travel time estimates.

    Science.gov (United States)

    2011-03-01

    This project pursued several objectives conducive to the implementation and testing of a Bluetooth (BT) based system to collect travel time data, including the deployment of a BT-based travel time data collection system to perform comprehensive testi...

  20. Relaxation properties in classical diamagnetism

    Science.gov (United States)

    Carati, A.; Benfenati, F.; Galgani, L.

    2011-06-01

    It is an old result of Bohr that, according to classical statistical mechanics, at equilibrium a system of electrons in a static magnetic field presents no magnetization. Thus a magnetization can occur only in an out of equilibrium state, such as that produced through the Foucault currents when a magnetic field is switched on. It was suggested by Bohr that, after the establishment of such a nonequilibrium state, the system of electrons would quickly relax back to equilibrium. In the present paper, we study numerically the relaxation to equilibrium in a modified Bohr model, which is mathematically equivalent to a billiard with obstacles, immersed in a magnetic field that is adiabatically switched on. We show that it is not guaranteed that equilibrium is attained within the typical time scales of microscopic dynamics. Depending on the values of the parameters, one has a relaxation either to equilibrium or to a diamagnetic (presumably metastable) state. The analogy with the relaxation properties in the Fermi Pasta Ulam problem is also pointed out.