WorldWideScience

Sample records for relaxation rate constants

  1. Stress relaxation of entangled polystyrene solution after constant-rate, uniaxial elongation

    DEFF Research Database (Denmark)

    Matsumiya, Yumi; Masubuchi, Yuichi; Watanabe, Hiroshi

    For an entangled solution of linear polystyrene (PS 545k; M = 545k) in dibutyl phthalate (DBP), the stress relaxation after constant-rate uniaxial elongation was examined with an extensional viscosity fixture mounted on ARES (TA Instruments). The PS concentration, c = 52 wt%, was chosen in a way...... that the entanglement density M/Me of the solution coincided with that of PS 290k melt (M = 290k). After the elongation at the Rouse-based Weissenberg number Wi(R) ~ 3 up to the Hencky strain of 3, the short time stress relaxation of the solution was accelerated by a factor of ~4, which was less significant compared...... and the lack of monotonic thinning observed for the semidilute solutions. Results for less concentrated solutions will be also presented on site....

  2. Relaxing a large cosmological constant

    International Nuclear Information System (INIS)

    Bauer, Florian; Sola, Joan; Stefancic, Hrvoje

    2009-01-01

    The cosmological constant (CC) problem is the biggest enigma of theoretical physics ever. In recent times, it has been rephrased as the dark energy (DE) problem in order to encompass a wider spectrum of possibilities. It is, in any case, a polyhedric puzzle with many faces, including the cosmic coincidence problem, i.e. why the density of matter ρ m is presently so close to the CC density ρ Λ . However, the oldest, toughest and most intriguing face of this polyhedron is the big CC problem, namely why the measured value of ρ Λ at present is so small as compared to any typical density scale existing in high energy physics, especially taking into account the many phase transitions that our Universe has undergone since the early times, including inflation. In this Letter, we propose to extend the field equations of General Relativity by including a class of invariant terms that automatically relax the value of the CC irrespective of the initial size of the vacuum energy in the early epochs. We show that, at late times, the Universe enters an eternal de Sitter stage mimicking a tiny positive cosmological constant. Thus, these models could be able to solve the big CC problem without fine-tuning and have also a bearing on the cosmic coincidence problem. Remarkably, they mimic the ΛCDM model to a large extent, but they still leave some characteristic imprints that should be testable in the next generation of experiments.

  3. A study on the influence of fast amide exchange on the accuracy of (15)N relaxation rate constants.

    Science.gov (United States)

    Jurt, Simon; Zerbe, Oliver

    2012-12-01

    (15)N relaxation rates of amide moieties provide insight both into global as well as local backbone dynamics of peptides and proteins. As the differences in the relaxation rates in general are small, their accurate determination is of prime importance. One potential source of error is fast amide exchange. It is well known that in its presence the effects of saturation transfer and H/D exchange may result in erroneous apparent relaxation rates R (1) and R (2). Here, the extent of these errors is rigorously examined. Theoretical considerations reveal that even when saturation effects are absent, H/D exchange will easily result in significant deviations from the true values. In particular overestimations of up to 10 % in R (1) and up to 5 % in R (2) are observed. An alternative scheme for fitting the relaxation data to the corresponding exponentials is presented that in the best cases not only delivers more accurate relaxation rates but also allows extracting estimates for the exchange rates. The theoretical computations were tested and verified for the case of ubiquitin.

  4. A study on the influence of fast amide exchange on the accuracy of 15N relaxation rate constants

    International Nuclear Information System (INIS)

    Jurt, Simon; Zerbe, Oliver

    2012-01-01

    15 N relaxation rates of amide moieties provide insight both into global as well as local backbone dynamics of peptides and proteins. As the differences in the relaxation rates in general are small, their accurate determination is of prime importance. One potential source of error is fast amide exchange. It is well known that in its presence the effects of saturation transfer and H/D exchange may result in erroneous apparent relaxation rates R 1 and R 2 . Here, the extent of these errors is rigorously examined. Theoretical considerations reveal that even when saturation effects are absent, H/D exchange will easily result in significant deviations from the true values. In particular overestimations of up to 10 % in R 1 and up to 5 % in R 2 are observed. An alternative scheme for fitting the relaxation data to the corresponding exponentials is presented that in the best cases not only delivers more accurate relaxation rates but also allows extracting estimates for the exchange rates. The theoretical computations were tested and verified for the case of ubiquitin.

  5. Time constant of logarithmic creep and relaxation

    CSIR Research Space (South Africa)

    Nabarro, FRN

    2001-07-15

    Full Text Available length and hardness which vary logarithmically with time. For dimensional reasons, a logarithmic variation must involve a time constant tau characteristic of the process, so that the deformation is proportional to ln(t/tau). Two distinct mechanisms...

  6. New N2(C 3Πu, v) collision quenching and vibrational relaxation rate constants: 2. PG emission diagnostics of high-pressure discharges

    International Nuclear Information System (INIS)

    Dilecce, G; Ambrico, P F; De Benedictis, S

    2007-01-01

    The present paper deals with the determination of discharge parameters using N 2 (C 3 Π u , v) populations deduced from 2.PG emission spectra, focusing on the influence of N 2 (C 3 Π u , v) collision rate coefficients on these determinations. In particular it is shown that the new set of quenching and vibrational relaxation rate coefficients of N 2 (C 3 Π u , v 0-4) vibronic levels recently measured by optical-optical double resonance laser induced fluorescence (LIF) have a large effect on discharge parameter determination in high-pressure discharges. In the present paper we explore this effect, evidencing the differences with respect to the old data set case, in both simulated and real cases of N 2 (C 3 Π u , v) vibrational distributions measured at high pressure in a dielectric barrier discharge. Finally we point out the improved potentiality of 2.PG spectroscopy as a diagnostic technique: with the new rate coefficients, and measurement of the N 2 (C 3 Π u , v) distribution up to at least v = 3, it is possible to have a quasi-independent evaluation of the electron temperature and of the first level vibrational temperature of the N 2 ground state

  7. Stress corrosion crack initiation of Zircaloy-4 cladding tubes in an iodine vapor environment during creep, relaxation, and constant strain rate tests

    Science.gov (United States)

    Jezequel, T.; Auzoux, Q.; Le Boulch, D.; Bono, M.; Andrieu, E.; Blanc, C.; Chabretou, V.; Mozzani, N.; Rautenberg, M.

    2018-02-01

    During accidental power transient conditions with Pellet Cladding Interaction (PCI), the synergistic effect of the stress and strain imposed on the cladding by thermal expansion of the fuel, and corrosion by iodine released as a fission product, may lead to cladding failure by Stress Corrosion Cracking (SCC). In this study, internal pressure tests were conducted on unirradiated cold-worked stress-relieved Zircaloy-4 cladding tubes in an iodine vapor environment. The goal was to investigate the influence of loading type (constant pressure tests, constant circumferential strain rate tests, or constant circumferential strain tests) and test temperature (320, 350, or 380 °C) on iodine-induced stress corrosion cracking (I-SCC). The experimental results obtained with different loading types were consistent with each other. The apparent threshold hoop stress for I-SCC was found to be independent of the test temperature. SEM micrographs of the tested samples showed many pits distributed over the inner surface, which tended to coalesce into large pits in which a microcrack could initiate. A model for the time-to-failure of a cladding tube was developed using finite element simulations of the viscoplastic mechanical behavior of the material and a modified Kachanov's damage growth model. The times-to-failure predicted by this model are consistent with the experimental data.

  8. Relaxed Poisson cure rate models.

    Science.gov (United States)

    Rodrigues, Josemar; Cordeiro, Gauss M; Cancho, Vicente G; Balakrishnan, N

    2016-03-01

    The purpose of this article is to make the standard promotion cure rate model (Yakovlev and Tsodikov, ) more flexible by assuming that the number of lesions or altered cells after a treatment follows a fractional Poisson distribution (Laskin, ). It is proved that the well-known Mittag-Leffler relaxation function (Berberan-Santos, ) is a simple way to obtain a new cure rate model that is a compromise between the promotion and geometric cure rate models allowing for superdispersion. So, the relaxed cure rate model developed here can be considered as a natural and less restrictive extension of the popular Poisson cure rate model at the cost of an additional parameter, but a competitor to negative-binomial cure rate models (Rodrigues et al., ). Some mathematical properties of a proper relaxed Poisson density are explored. A simulation study and an illustration of the proposed cure rate model from the Bayesian point of view are finally presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Relaxing the cosmological constant: a proof of concept

    Energy Technology Data Exchange (ETDEWEB)

    Alberte, Lasma [SISSA,Via Bonomea 265, 34136 Trieste (Italy); INFN - Sezione di Trieste,Via Valerio 2, 34127 Trieste (Italy); Creminelli, Paolo; Khmelnitsky, Andrei [Abdus Salam International Centre for Theoretical Physics (ICTP),Strada Costiera 11, 34151, Trieste (Italy); Pirtskhalava, David [Institute of Physics, École Polytechnique Fédérale de Lausanne,CH-1015, Lausanne (Switzerland); Trincherini, Enrico [Scuola Normale Superiore,Piazza dei Cavalieri 7, 56126, Pisa (Italy); INFN - Sezione di Pisa,56200, Pisa (Italy)

    2016-12-06

    We propose a technically natural scenario whereby an initially large cosmological constant (c.c.) is relaxed down to the observed value due to the dynamics of a scalar evolving on a very shallow potential. The model crucially relies on a sector that violates the null energy condition (NEC) and gets activated only when the Hubble rate becomes sufficiently small — of the order of the present one. As a result of NEC violation, this low-energy universe evolves into inflation, followed by reheating and the standard Big Bang cosmology. The symmetries of the theory force the c.c. to be the same before and after the NEC-violating phase, so that a late-time observer sees an effective c.c. of the correct magnitude. Importantly, our model allows neither for eternal inflation nor for a set of possible values of dark energy, the latter fixed by the parameters of the theory.

  10. Chemical exchange effects during refocusing pulses in constant-time CPMG relaxation dispersion experiments

    International Nuclear Information System (INIS)

    Myint, Wazo; Ishima, Rieko

    2009-01-01

    In the analysis of the constant-time Carr-Purcell-Meiboom-Gill (CT-CPMG) relaxation dispersion experiment, chemical exchange parameters, such as rate of exchange and population of the exchanging species, are typically optimized using equations that predict experimental relaxation rates recorded as a function of effective field strength. In this process, the effect of chemical exchange during the CPMG pulses is typically assumed to be the same as during the free-precession. This approximation may introduce systematic errors into the analysis of data because the number of CPMG pulses is incremented during the constant-time relaxation period, and the total pulse duration therefore varies as a function of the effective field strength. In order to estimate the size of such errors, we simulate the time-dependence of magnetization during the entire constant time period, explicitly taking into account the effect of the CPMG pulses on the spin relaxation rate. We show that in general the difference in the relaxation dispersion profile calculated using a practical pulse width from that calculated using an extremely short pulse width is small, but under certain circumstances can exceed 1 s -1 . The difference increases significantly when CPMG pulses are miscalibrated

  11. Arrhenius Rate: constant volume burn

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-06

    A constant volume burn occurs for an idealized initial state in which a large volume of reactants at rest is suddenly raised to a high temperature and begins to burn. Due to the uniform spatial state, there is no fluid motion and no heat conduction. This reduces the time evolu tion to an ODE for the reaction progress variable. With an Arrhenius reaction rate, two characteristics of thermal ignition are illustrated: induction time and thermal runaway. The Frank-Kamenetskii approximation then leads to a simple expression for the adiabatic induction time. For a first order reaction, the analytic solution is derived and used to illustrate the effect of varying the activation temperature; in particular, on the induction time. In general, the ODE can be solved numerically. This is used to illustrate the effect of varying the reaction order. We note that for a first order reaction, the time evolution of the reaction progress variable has an exponential tail. In contrast, for a reaction order less than one, the reaction completes in a nite time. The reaction order also affects the induction time.

  12. Dose rate constants for new dose quantities

    International Nuclear Information System (INIS)

    Tschurlovits, M.; Daverda, G.; Leitner, A.

    1992-01-01

    Conceptual changes and new quantities made is necessary to reassess dose rate quantities. Calculations of the dose rate constant were done for air kerma, ambient dose equivalent and directional dose equivalent. The number of radionuclides is more than 200. The threshold energy is selected as 20 keV for the dose equivalent constants. The dose rate constant for the photon equivalent dose as used mainly in German speaking countries as a temporary quantity is also included. (Author)

  13. Elongational flow of polymer melts at constant strain rate, constant stress and constant force

    Science.gov (United States)

    Wagner, Manfred H.; Rolón-Garrido, Víctor H.

    2013-04-01

    Characterization of polymer melts in elongational flow is typically performed at constant elongational rate or rarely at constant tensile stress conditions. One of the disadvantages of these deformation modes is that they are hampered by the onset of "necking" instabilities according to the Considère criterion. Experiments at constant tensile force have been performed even more rarely, in spite of the fact that this deformation mode is free from necking instabilities and is of considerable industrial relevance as it is the correct analogue of steady fiber spinning. It is the objective of the present contribution to present for the first time a full experimental characterization of a long-chain branched polyethylene melt in elongational flow. Experiments were performed at constant elongation rate, constant tensile stress and constant tensile force by use of a Sentmanat Extensional Rheometer (SER) in combination with an Anton Paar MCR301 rotational rheometer. The accessible experimental window and experimental limitations are discussed. The experimental data are modelled by using the Wagner I model. Predictions of the steady-start elongational viscosity in constant strain rate and creep experiments are found to be identical, albeit only by extrapolation of the experimental data to Hencky strains of the order of 6. For constant stress experiments, a minimum in the strain rate and a corresponding maximum in the elongational viscosity is found at a Hencky strain of the order of 3, which, although larger than the steady-state value, follows roughly the general trend of the steady-state elongational viscosity. The constitutive analysis also reveals that constant tensile force experiments indicate a larger strain hardening potential than seen in constant elongation rate or constant tensile stress experiments. This may be indicative of the effect of necking under constant elongation rate or constant tensile stress conditions according to the Considère criterion.

  14. Characteristics of Viscoelastic Crustal Deformation Following a Megathrust Earthquake: Discrepancy Between the Apparent and Intrinsic Relaxation Time Constants

    Science.gov (United States)

    Fukahata, Yukitoshi; Matsu'ura, Mitsuhiro

    2018-02-01

    The viscoelastic deformation of an elastic-viscoelastic composite system is significantly different from that of a simple viscoelastic medium. Here, we show that complicated transient deformation due to viscoelastic stress relaxation after a megathrust earthquake can occur even in a very simple situation, in which an elastic surface layer (lithosphere) is underlain by a viscoelastic substratum (asthenosphere) under gravity. Although the overall decay rate of the system is controlled by the intrinsic relaxation time constant of the asthenosphere, the apparent decay time constant at each observation point is significantly different from place to place and generally much longer than the intrinsic relaxation time constant of the asthenosphere. It is also not rare that the sense of displacement rate is reversed during the viscoelastic relaxation. If we do not bear these points in mind, we may draw false conclusions from observed deformation data. Such complicated transient behavior can be explained mathematically from the characteristics of viscoelastic solution: for an elastic-viscoelastic layered half-space, the viscoelastic solution is expressed as superposition of three decaying components with different relaxation time constants that depend on wavelength.

  15. Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat transfer problems

    Directory of Open Access Journals (Sweden)

    Yang Xiao-Jun

    2017-01-01

    Full Text Available In this paper, we address a class of the fractional derivatives of constant and variable orders for the first time. Fractional-order relaxation equations of constants and variable orders in the sense of Caputo type are modeled from mathematical view of point. The comparative results of the anomalous relaxation among the various fractional derivatives are also given. They are very efficient in description of the complex phenomenon arising in heat transfer.

  16. Inflation with a constant rate of roll

    International Nuclear Information System (INIS)

    Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi

    2015-01-01

    We consider an inflationary scenario where the rate of inflaton roll defined by ·· φ/H φ-dot remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs for unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime

  17. Relaxing neutrino mass bounds by a running cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, F.; Schrempp, L.

    2007-11-15

    We establish an indirect link between relic neutrinos and the dark energy sector which originates from the vacuum energy contributions of the neutrino quantum fields. Via renormalization group effects they induce a running of the cosmological constant with time which dynamically influences the evolution of the cosmic neutrino background. We demonstrate that the resulting reduction of the relic neutrino abundance allows to largely evade current cosmological neutrino mass bounds and discuss how the scenario might be probed by the help of future large scale structure surveys and Planck data. (orig.)

  18. Relaxing neutrino mass bounds by a running cosmological constant

    International Nuclear Information System (INIS)

    Bauer, F.; Schrempp, L.

    2007-11-01

    We establish an indirect link between relic neutrinos and the dark energy sector which originates from the vacuum energy contributions of the neutrino quantum fields. Via renormalization group effects they induce a running of the cosmological constant with time which dynamically influences the evolution of the cosmic neutrino background. We demonstrate that the resulting reduction of the relic neutrino abundance allows to largely evade current cosmological neutrino mass bounds and discuss how the scenario might be probed by the help of future large scale structure surveys and Planck data. (orig.)

  19. Dissociative electron attachment to ozone: rate constant

    International Nuclear Information System (INIS)

    Skalny, J.D.; Cicman, P.; Maerk, T.D.

    2002-01-01

    The rate constant for dissociative electron attachment to ozone has been derived over the energy range of 0-10 eV by using previously measured cross section data revisited here in regards to discrimination effect occurring during the extraction of ions. The obtained data for both possible channels exhibit the maximum at mean electron energies close to 1 eV. (author)

  20. The effect of solvent relaxation time constants on free energy gap law for ultrafast charge recombination following photoinduced charge separation.

    Science.gov (United States)

    Mikhailova, Valentina A; Malykhin, Roman E; Ivanov, Anatoly I

    2018-05-16

    To elucidate the regularities inherent in the kinetics of ultrafast charge recombination following photoinduced charge separation in donor-acceptor dyads in solutions, the simulations of the kinetics have been performed within the stochastic multichannel point-transition model. Increasing the solvent relaxation time scales has been shown to strongly vary the dependence of the charge recombination rate constant on the free energy gap. In slow relaxing solvents the non-equilibrium charge recombination occurring in parallel with solvent relaxation is very effective so that the charge recombination terminates at the non-equilibrium stage. This results in a crucial difference between the free energy gap laws for the ultrafast charge recombination and the thermal charge transfer. For the thermal reactions the well-known Marcus bell-shaped dependence of the rate constant on the free energy gap is realized while for the ultrafast charge recombination only a descending branch is predicted in the whole area of the free energy gap exceeding 0.2 eV. From the available experimental data on the population kinetics of the second and first excited states for a series of Zn-porphyrin-imide dyads in toluene and tetrahydrofuran solutions, an effective rate constant of the charge recombination into the first excited state has been calculated. The obtained rate constant being very high is nearly invariable in the area of the charge recombination free energy gap from 0.2 to 0.6 eV that supports the theoretical prediction.

  1. On determining dose rate constants spectroscopically

    International Nuclear Information System (INIS)

    Rodriguez, M.; Rogers, D. W. O.

    2013-01-01

    Purpose: To investigate several aspects of the Chen and Nath spectroscopic method of determining the dose rate constants of 125 I and 103 Pd seeds [Z. Chen and R. Nath, Phys. Med. Biol. 55, 6089–6104 (2010)] including the accuracy of using a line or dual-point source approximation as done in their method, and the accuracy of ignoring the effects of the scattered photons in the spectra. Additionally, the authors investigate the accuracy of the literature's many different spectra for bare, i.e., unencapsulated 125 I and 103 Pd sources. Methods: Spectra generated by 14 125 I and 6 103 Pd seeds were calculated in vacuo at 10 cm from the source in a 2.7 × 2.7 × 0.05 cm 3 voxel using the EGSnrc BrachyDose Monte Carlo code. Calculated spectra used the initial photon spectra recommended by AAPM's TG-43U1 and NCRP (National Council of Radiation Protection and Measurements) Report 58 for the 125 I seeds, or TG-43U1 and NNDC(2000) (National Nuclear Data Center, 2000) for 103 Pd seeds. The emitted spectra were treated as coming from a line or dual-point source in a Monte Carlo simulation to calculate the dose rate constant. The TG-43U1 definition of the dose rate constant was used. These calculations were performed using the full spectrum including scattered photons or using only the main peaks in the spectrum as done experimentally. Statistical uncertainties on the air kerma/history and the dose rate/history were ⩽0.2%. The dose rate constants were also calculated using Monte Carlo simulations of the full seed model. Results: The ratio of the intensity of the 31 keV line relative to that of the main peak in 125 I spectra is, on average, 6.8% higher when calculated with the NCRP Report 58 initial spectrum vs that calculated with TG-43U1 initial spectrum. The 103 Pd spectra exhibit an average 6.2% decrease in the 22.9 keV line relative to the main peak when calculated with the TG-43U1 rather than the NNDC(2000) initial spectrum. The measured values from three different

  2. Confronting the relaxation mechanism for a large cosmological constant with observations

    International Nuclear Information System (INIS)

    Basilakos, Spyros; Bauer, Florian; Solà, Joan

    2012-01-01

    In order to deal with a large cosmological constant a relaxation mechanism based on modified gravity has been proposed recently. By virtue of this mechanism the effect of the vacuum energy density of a given quantum field/string theory (no matter how big is its initial value in the early universe) can be neutralized dynamically, i.e. without fine tuning, and hence a Big Bang-like evolution of the cosmos becomes possible. Remarkably, a large class (F n m ) of models of this kind, namely capable of dynamically adjusting the vacuum energy irrespective of its value and size, has been identified. In this paper, we carefully put them to the experimental test. By performing a joint likelihood analysis we confront these models with the most recent observational data on type Ia supernovae (SNIa), the Cosmic Microwave Background (CMB), the Baryonic Acoustic Oscillations (BAO) and the high redshift data on the expansion rate, so as to determine which ones are the most favored by observations. We compare the optimal relaxation models F n m found by this method with the standard or concordance ΛCDM model, and find that some of these models may appear as almost indistinguishable from it. Interestingly enough, this shows that it is possible to construct viable solutions to the tough cosmological fine tuning problem with models that display the same basic phenomenological features as the concordance model

  3. Constant displacement rate testing at elevated temperatures

    International Nuclear Information System (INIS)

    Pepe, J.J.; Gonyea, D.C.

    1989-01-01

    A short time test has been developed which is capable of determining the long time notch sensitivity tendencies of CrMoV rotor forging materials. This test is based on Constant Displacement Rate (CDR) testing of a specific notch bar specimen at 1200 0 F at 2 mils/in/hour displacement rate. These data were correlated to conventional smooth and notch bar rupture behavior for a series of CrMoV materials with varying long time ductility tendencies. The purpose of this paper is to describe the details of this new test procedure and some of the relevant mechanics of material information generated during its development

  4. Wall relaxation rates for an optically pumped NA vapor

    International Nuclear Information System (INIS)

    Swenson, D.R.; Anderson, L.W.

    1986-01-01

    The wall relaxation rates for an optically pumped Na vapor have been measured for a variety of wall surfaces. We find that fluorocarbon rubber (Fluorel, Viton) and organosilicones (silicone rubber, dry film) at a temperature of 250 C have respectively relaxation rates that correspond on the average to 10 to 15 and 200 to 500 bounces before depolarization occurs. 7 refs., 3 figs

  5. Constraints on relaxation rates for N-level quantum systems

    International Nuclear Information System (INIS)

    Schirmer, S.G.; Solomon, A.I.

    2004-01-01

    We study the constraints imposed on the population and phase relaxation rates by the physical requirement of completely positive evolution for open N-level systems. The Lindblad operators that govern the evolution of the system are expressed in terms of observable relaxation rates, explicit formulas for the decoherence rates due to population relaxation are derived, and it is shown that there are additional, nontrivial constraints on the pure dephasing rates for N>2. Explicit, experimentally testable inequality constraints for the decoherence rates are derived for three- and four-level systems, and the implications of the results are discussed for generic ladder, Λ, and V systems and transitions between degenerate energy levels

  6. On computation of relaxation constant α in Landau–Lifshitz–Gilbert equation

    Energy Technology Data Exchange (ETDEWEB)

    Gladkov, Serguey, E-mail: sglad@newmail.ru; Bogdanova, Sofiya, E-mail: sonjaf@list.ru

    2014-11-15

    Due to the quasi-classical kinetic equation (QKE) for the magnon distribution function to calculate the velocity of the domain wall motion V in magnetic fields H>H{sub a}, where H{sub a}− magnetic anisotropy field. Based on the comparison of this formula for Vthe analytic expression of relaxation constant α in Landau–Lifshitz–Gilbert equation was found. We used the detected correlation between the system's entropy and the environment's resistance force, and obtained an expression for the spin-lattice braking force that is applied to the moving domain wall. We calculated the mobility ratio of the domain wall. - Highlights: • The resistance force acting on the domain wall was calculated. • Mobility coefficient of domain wall was calculated. • The strict calculation of relaxation constant in equation Landau-Lifshitz- Gilbert.

  7. Transport and relaxation properties of superfluid 3He. I. Kinetic equation and Bogoliubov quasiparticle relaxation rate

    International Nuclear Information System (INIS)

    Einzel, D.; Woelfle, P.

    1978-01-01

    The kinetic equation for Bogoliubov quasiparticles for both the A and B phases of superfluid 3 He is derived from the general matrix kinetic equation. A condensed expression for the exact spin-symmetric collision integral is given. The quasiparticle relaxation rate is calculated for the BW state using the s--p approximation for the quasiparticle scattering amplitude. By using the results for the quasiparticle relaxation rate, the mean free path of Bogoliubov quasiparticles is calculated for all temperatures

  8. Biased Brownian dynamics for rate constant calculation.

    OpenAIRE

    Zou, G; Skeel, R D; Subramaniam, S

    2000-01-01

    An enhanced sampling method-biased Brownian dynamics-is developed for the calculation of diffusion-limited biomolecular association reaction rates with high energy or entropy barriers. Biased Brownian dynamics introduces a biasing force in addition to the electrostatic force between the reactants, and it associates a probability weight with each trajectory. A simulation loses weight when movement is along the biasing force and gains weight when movement is against the biasing force. The sampl...

  9. ADSORPTION RATE CONSTANTS OF EOSIN IN HUMIN

    OpenAIRE

    anshar, andi muhammad

    2015-01-01

    Eosin is one of the dyes commonly used in the industry and has the potential to cause pollution of the water environment. The Eosin pollution treatment methods used in this study was the adsorption method using humin fraction obtained from the peat land comes from Kalimantan. From the research data showed that the adsorption of eosin in humin result of washing with HCl / HF optimum at pH 4 and a contact time of 60 minutes with the adsorption-order rate was 8,4 x 10-3 min-1

  10. Characterization of the transverse relaxation rates in lipid bilayers

    International Nuclear Information System (INIS)

    Watnick, P.I.; Dea, P.; Chan, S.I.

    1990-01-01

    The 2H NMR transverse relaxation rates of a deuterated phospholipid bilayer reflect slow motions in the bilayer membrane. A study of dimyristoyl lecithin specifically deuterated at several positions of the hydrocarbon chains indicates that these motions are cooperative and are confined to the hydrocarbon chains of the lipid bilayer. However, lipid head group interactions do play an important role in modulating the properties of the cooperative fluctuations of the hydrocarbon chains (director fluctuations), as evidenced by the effects of various lipid additives on the 2H NMR transverse relaxation rates of the dimyristoyl lecithin bilayer

  11. Correlated and uncorrelated heart rate fluctuations during relaxing visualization

    Science.gov (United States)

    Papasimakis, N.; Pallikari, F.

    2010-05-01

    The heart rate variability (HRV) of healthy subjects practicing relaxing visualization is studied by use of three multiscale analysis techniques: the detrended fluctuation analysis (DFA), the entropy in natural time (ENT) and the average wavelet (AWC) coefficient. The scaling exponent of normal interbeat interval increments exhibits characteristics of the presence of long-range correlations. During relaxing visualization the HRV dynamics change in the sense that two new features emerge independent of each other: a respiration-induced periodicity that often dominates the HRV at short scales (sleep.

  12. Vibrational energy transfer in selectively excited diatomic molecules. [Relaxation rates, self-relaxation, upper limits

    Energy Technology Data Exchange (ETDEWEB)

    Dasch, C.J.

    1978-09-01

    Single rovibrational states of HCl(v=2), HBr(v=2), DCl(v=2), and CO(v=2) were excited with a pulsed optical parametric oscillator (OPO). Total vibrational relaxation rates near - resonance quenchers were measured at 295/sup 0/K using time resolved infrared fluorescence. These rates are attributed primarily to V - V energy transfer, and they generally conform to a simple energy gap law. A small deviation was found for the CO(v) + DCl(v') relaxation rates. Upper limits for the self relaxation by V - R,T of HCl(v=2) and HBr(v=2) and for the two quantum exchange between HCl and HBr were determined. The HF dimer was detected at 295/sup 0/K and 30 torr HF pressure with an optoacoustic spectrometer using the OPO. Pulsed and chopped, resonant and non-resonant spectrophones are analyzed in detail. From experiments and first order perturbation theory, these V - V exchange rates appear to behave as a first order perturbation in the vibrational coordinates. The rotational dynamics are known to be complicated however, and the coupled rotational - vibrational dynamics were investigated theoreticaly in infinite order by the Dillon and Stephenson and the first Magnus approximations. Large ..delta..J transitions appear to be important, but these calculations differ by orders of magnitude on specific rovibrational transition rates. Integration of the time dependent semiclassical equations by a modified Gordon method and a rotationally distorted wave approximation are discussed as methods which would treat the rotational motion more accurately. 225 references.

  13. Determination of Biological Oxygen Demand Rate Constant and ...

    African Journals Online (AJOL)

    Determination of Biological Oxygen Demand Rate Constant and Ultimate Biological Oxygen Demand for Liquid Waste Generated from Student Cafeteria at Jimma University: A Tool for Development of Scientific Criteria to Protect Aquatic Health in the Region.

  14. Enhancement of relaxation rates in the normal state of superconductor PuRhGa5:NQR relaxation study

    International Nuclear Information System (INIS)

    Sakai, H.; Kambe, S.; Tokunaga, Y.; Fujimoto, T.; Walstedt, R.E.; Yasuoka, H.; Aoki, D.; Homma, Y.; Yamamoto, E.; Nakamura, A.; Shiokawa, Y.; Nakajima, K.; Arai, Y.; Matsuda, T.D.; Haga, Y.; Onuki, Y.

    2007-01-01

    The spin-lattice relaxation rates (1/T 1 ) have been measured under zero field using nuclear quadrupole resonance (NQR) lines in superconductor PuRhGa 5 and Pauli-paramagnet LuCoGa 5 . In the reference LuCoGa 5 with fully-occupied 4f shell, the 1/T 1 shows the constant behavior of (T 1 T) -1 =0.495+/-0.002(sK) -1 . On the other hand, in PuRhGa 5 , 1/T 1 is much larger than in LuCoGa 5 and the 1/T 1 ∝T behavior below ∼30K is seen, where its (T 1 T) -1 value is 3.27+/-0.005(sK) -1 . These results suggest a development of coherent Fermi liquid state incorporated with 5f electrons below ∼30K in PuRhGa 5

  15. Strain Rate Dependence of Compressive Yield and Relaxation in DGEBA Epoxies

    Science.gov (United States)

    Arechederra, Gabriel K.; Reprogle, Riley C.; Clarkson, Caitlyn M.; McCoy, John D.; Kropka, Jamie M.; Long, Kevin N.; Chambers, Robert S.

    2015-03-01

    The mechanical response in uniaxial compression of two diglycidyl ether of bisphenol-A epoxies were studied. These were 828DEA (Epon 828 cured with diethanolamine (DEA)) and 828T403 (Epon 828 cured with Jeffamine T-403). Two types of uniaxial compression tests were performed: A) constant strain rate compression and B) constant strain rate compression followed by a constant strain relaxation. The peak (yield) stress was analyzed as a function of strain rate from Eyring theory for activation volume. Runs at different temperatures permitted the construction of a mastercurve, and the resulting shift factors resulted in an activation energy. Strain and hold tests were performed for a low strain rate where a peak stress was lacking and for a higher strain rate where the peak stress was apparent. Relaxation from strains at different places along the stress-strain curve was tracked and compared. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Shear deformation and relaxed lattice constant of (Ga,Mn)As layers on GaAs(113)A

    Energy Technology Data Exchange (ETDEWEB)

    Dreher, Lukas; Daeubler, Joachim; Glunk, Michael; Schoch, Wladimir; Limmer, Wolfgang; Sauer, Rolf [Institut fuer Halbleiterphysik, Universitaet Ulm, D-89069 Ulm (Germany)

    2008-07-01

    The shear deformation and the relaxed lattice constant of compressively strained (Ga,Mn)As layers with Mn concentrations of up to 5%, pseudomorphically grown on GaAs(113)A and GaAs(001) substrates by low-temperature molecular-beam epitaxy, have been studied by high resolution X-ray diffraction (HRXRD) measurements. Rocking curves reveal a triclinic distortion of the (113)A layers with a shear direction towards the [001] crystallographic axis, whereas the (001) layers are tetragonally distorted along [001]. The relaxed lattice constants were derived from {omega}-2{theta} scans for the symmetric (113) and (004) Bragg reflections, taking the elastic anisotropy of the cubic system into account. The increase of the lattice constant with Mn content has been found to be smaller for the (113)A layers than for the (001) layers, presumably due to the enhanced amount of excess As in the (113)A layers.

  17. Rate constant for reaction of hydroxyl radicals with bicarbonate ions

    International Nuclear Information System (INIS)

    Buxton, G.V.; Elliot, A.J.

    1986-01-01

    The rate constant for reaction of hydroxyl radicals with the bicarbonate ion has been determined to be 8.5 x 10 6 dm 3 mol -1 s -1 . This value was calculated from: the measured rate of formation of the CO 3 - radical in pulsed electron irradiation of bicarbonate solutions over the pH range 7.0 to 9.4; the pK for the equilibrium HCO 3 - = CO 3 2- + H + ; and the rate constant for hydroxyl radicals reacting with the carbonate ion. (author)

  18. Rate constant for reaction of atomic hydrogen with germane

    Science.gov (United States)

    Nava, David F.; Payne, Walter A.; Marston, George; Stief, Louis J.

    1990-01-01

    Due to the interest in the chemistry of germane in the atmospheres of Jupiter and Saturn, and because previously reported kinetic reaction rate studies at 298 K gave results differing by a factor of 200, laboratory measurements were performed to determine the reaction rate constant for H + GeH4. Results of the study at 298 K, obtained via the direct technique of flash photolysis-resonance fluorescence, yield the reaction rate constant, k = (4.08 + or - 0.22) x 10(exp -12) cu cm/s.

  19. Sensitivity of molecular vibrational dynamics to energy exchange rate constants

    International Nuclear Information System (INIS)

    Billing, G D; Coletti, C; Kurnosov, A K; Napartovich, A P

    2003-01-01

    The sensitivity of molecular vibrational population dynamics, governing the CO laser operated in fundamental and overtone transitions, to vibration-to-vibration rate constants is investigated. With this aim, three rate constant sets have been used, differing in their completeness (i.e. accounting for single-quantum exchange only, or for multi-quantum exchange with a limited number of rate constants obtained by semiclassical calculations, and, finally, with an exhaustive set of rate constants including asymmetric exchange processes, as well) and in the employed interaction potential. The most complete set among these three is introduced in this paper. An existing earlier kinetic model was updated to include the latter new data. Comparison of data produced by kinetic modelling with the above mentioned sets of rate constants shows that the vibrational distribution function, and, in particular, the CO overtone laser characteristics, are very sensitive to the choice of the model. The most complete model predicts slower evolution of the vibrational distribution, in qualitative agreement with experiments

  20. Relaxation rates studies in an argon cylindrical plasma

    International Nuclear Information System (INIS)

    Hernandez, M.A.; Dengra, A.; Colomer, V.

    1986-01-01

    The single Langmuir probe method has been used to determine the relaxation rates of the electron density and temperature in an argon afterglow dc cylindrical plasma. The ion-electron recombination was found to be the fundamental mechanism of density decay during the early afterglow while the ambipolar diffusion controlles the density decay for later afterglow. Electron temperature cooling curves have been interpreted via electron-neutral collisons. Measurements of the electron-ion recombination and the ambipolar diffusion coefficients have been made, as well as of the electron-neutral collision frequency and the momentum transfer cross sections. Good agreement is obtained with previously published data. (author)

  1. Formation probabilities and relaxation rates of muon states in germanium

    International Nuclear Information System (INIS)

    Clawson, C.W.; Haller, E.E.; Crowe, K.M.; Rosenblum, S.S.; Brewer, J.H.; British Columbia Univ., Vancouver

    1981-01-01

    We report the first results of a study of the muonium states in ultra-pure germanium crystals grown under a variety of conditions at Lawrence Berkeley Laboratory. Among the variations studied are: 1) Hydrogen, deuterium, or nitrogen atmosphere during growth; 2) Dislocation-free vs. dislocated crystals; 3) Grown from quartz, graphite, and pyrolytic graphite coated quartz crucibles; 4) n-type vs. p-type. We report a significant difference in the muonium relaxation rate between the dislocated and non-dislocated crystals. (orig.)

  2. Accurate and approximate thermal rate constants for polyatomic chemical reactions

    International Nuclear Information System (INIS)

    Nyman, Gunnar

    2007-01-01

    In favourable cases it is possible to calculate thermal rate constants for polyatomic reactions to high accuracy from first principles. Here, we discuss the use of flux correlation functions combined with the multi-configurational time-dependent Hartree (MCTDH) approach to efficiently calculate cumulative reaction probabilities and thermal rate constants for polyatomic chemical reactions. Three isotopic variants of the H 2 + CH 3 → CH 4 + H reaction are used to illustrate the theory. There is good agreement with experimental results although the experimental rates generally are larger than the calculated ones, which are believed to be at least as accurate as the experimental rates. Approximations allowing evaluation of the thermal rate constant above 400 K are treated. It is also noted that for the treated reactions, transition state theory (TST) gives accurate rate constants above 500 K. TST theory also gives accurate results for kinetic isotope effects in cases where the mass of the transfered atom is unchanged. Due to neglect of tunnelling, TST however fails below 400 K if the mass of the transferred atom changes between the isotopic reactions

  3. Impact of Constant Rate Factor on Objective Video Quality Assessment

    Directory of Open Access Journals (Sweden)

    Juraj Bienik

    2017-01-01

    Full Text Available This paper deals with the impact of constant rate factor value on the objective video quality assessment using PSNR and SSIM metrics. Compression efficiency of H.264 and H.265 codecs defined by different Constant rate factor (CRF values was tested. The assessment was done for eight types of video sequences depending on content for High Definition (HD, Full HD (FHD and Ultra HD (UHD resolution. Finally, performance of both mentioned codecs with emphasis on compression ratio and efficiency of coding was compared.

  4. a comparative study of the drying rate constant, drying efficiency

    African Journals Online (AJOL)

    The drying rate constants for the solar dryer and open- air sun dried bitter leaf were 0.8 and ... of cost benefit but the poorest when other considerations ... J. I. Eze, National Centre for Energy Research and Development (NCERD), University of ...

  5. High-temperature rate constant measurements for OH+xylenes

    KAUST Repository

    Elwardani, Ahmed Elsaid; Badra, Jihad; Farooq, Aamir

    2015-01-01

    The overall rate constants for the reactions of hydroxyl (OH) radicals with o-xylene (k 1), m-xylene (k 2), and p-xylene (k 3) were measured behind reflected shock waves over 890-1406K at pressures of 1.3-1.8atm using OH laser absorption near 306

  6. VMATc: VMAT with constant gantry speed and dose rate

    International Nuclear Information System (INIS)

    Peng, Fei; Romeijn, H Edwin; Epelman, Marina A; Jiang, Steve B

    2015-01-01

    This article considers the treatment plan optimization problem for Volumetric Modulated Arc Therapy (VMAT) with constant gantry speed and dose rate (VMATc). In particular, we consider the simultaneous optimization of multi-leaf collimator leaf positions and a constant gantry speed and dose rate. We propose a heuristic framework for (approximately) solving this optimization problem that is based on hierarchical decomposition. Specifically, an iterative algorithm is used to heuristically optimize dose rate and gantry speed selection, where at every iteration a leaf position optimization subproblem is solved, also heuristically, to find a high-quality plan corresponding to a given dose rate and gantry speed. We apply our framework to clinical patient cases, and compare the resulting VMATc plans to idealized IMRT, as well as full VMAT plans. Our results suggest that VMATc is capable of producing treatment plans of comparable quality to VMAT, albeit at the expense of long computation time and generally higher total monitor units. (paper)

  7. NMR relaxation rate in quasi one-dimensional antiferromagnets

    Science.gov (United States)

    Capponi, Sylvain; Dupont, Maxime; Laflorencie, Nicolas; Sengupta, Pinaki; Shao, Hui; Sandvik, Anders W.

    We compare results of different numerical approaches to compute the NMR relaxation rate 1 /T1 in quasi one-dimensional (1d) antiferromagnets. In the purely 1d regime, recent numerical simulations using DMRG have provided the full crossover behavior from classical regime at high temperature to universal Tomonaga-Luttinger liquid at low-energy (in the gapless case) or activated behavior (in the gapped case). For quasi 1d models, we can use mean-field approaches to reduce the problem to a 1d one that can be studied using DMRG. But in some cases, we can also simulate the full microscopic model using quantum Monte-Carlo techniques. This allows to compute dynamical correlations in imaginary time and we will discuss recent advances to perform stochastic analytic continuation to get real frequency spectra. Finally, we connect our results to experiments on various quasi 1d materials.

  8. Semiclassical Calculation of Reaction Rate Constants for Homolytical Dissociations

    Science.gov (United States)

    Cardelino, Beatriz H.

    2002-01-01

    There is growing interest in extending organometallic chemical vapor deposition (OMCVD) to III-V materials that exhibit large thermal decomposition at their optimum growth temperature, such as indium nitride. The group III nitrides are candidate materials for light-emitting diodes and semiconductor lasers operating into the blue and ultraviolet regions. To overcome decomposition of the deposited compound, the reaction must be conducted at high pressures, which causes problems of uniformity. Microgravity may provide the venue for maintaining conditions of laminar flow under high pressure. Since the selection of optimized parameters becomes crucial when performing experiments in microgravity, efforts are presently geared to the development of computational OMCVD models that will couple the reactor fluid dynamics with its chemical kinetics. In the present study, we developed a method to calculate reaction rate constants for the homolytic dissociation of III-V compounds for modeling OMCVD. The method is validated by comparing calculations with experimental reaction rate constants.

  9. Critical Review of rate constants for reacitons of hydrated electrons

    International Nuclear Information System (INIS)

    Buxton, G.V.; Greenstock, C.L.; Phillips Helman, W.; Ross, A.B.

    1988-01-01

    Kinetic data for the radicals Hx and xOH in aqueous solution,and the corresponding radical anions, xO - and e/sub =/, have been critically reviewed. Reactions of the radicals in aqueous solution have been studied by pulse radiolysis, flash photolysis and other methods. Rate constants for over 3500 reaction are tabulated, including reaction with molecules, ions and other radicals derived from inorganic and organic solutes

  10. High-temperature rate constant measurements for OH+xylenes

    KAUST Repository

    Elwardani, Ahmed Elsaid

    2015-06-01

    The overall rate constants for the reactions of hydroxyl (OH) radicals with o-xylene (k 1), m-xylene (k 2), and p-xylene (k 3) were measured behind reflected shock waves over 890-1406K at pressures of 1.3-1.8atm using OH laser absorption near 306.7nm. Measurements were performed under pseudo-first-order conditions. The measured rate constants, inferred using a mechanism-fitting approach, can be expressed in Arrhenius form as:k1=2.93×1013exp(-1350.3/T)cm3mol-1s-1(890-1406K)k2=3.49×1013exp(-1449.3/T)cm3mol-1s-1(906-1391K)k3=3.5×1013exp(-1407.5/T)cm3mol-1s-1(908-1383K)This paper presents, to our knowledge, first high-temperature measurements of the rate constants of the reactions of xylene isomers with OH radicals. Low-temperature rate-constant measurements by Nicovich et al. (1981) were combined with the measurements in this study to obtain the following Arrhenius expressions, which are applicable over a wider temperature range:k1=2.64×1013exp(-1181.5/T)cm3mol-1s-1(508-1406K)k2=3.05×109exp(-400/T)cm3mol-1s-1(508-1391K)k3=3.0×109exp(-440/T)cm3mol-1s-1(526-1383K) © 2015 The Combustion Institute.

  11. Reaction rate constant for radiative association of CF{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Öström, Jonatan, E-mail: jonatan.ostrom@gmail.com; Gustafsson, Magnus, E-mail: magnus.gustafsson@ltu.se [Applied Physics, Division of Materials Science, Department of Engineering Science and Mathematics, Luleå University of Technology, 97187 Luleå (Sweden); Bezrukov, Dmitry S. [Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow, 119991 (Russian Federation); Nyman, Gunnar [Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg (Sweden)

    2016-01-28

    Reaction rate constants and cross sections are computed for the radiative association of carbon cations (C{sup +}) and fluorine atoms (F) in their ground states. We consider reactions through the electronic transition 1{sup 1}Π → X{sup 1}Σ{sup +} and rovibrational transitions on the X{sup 1}Σ{sup +} and a{sup 3}Π potentials. Semiclassical and classical methods are used for the direct contribution and Breit–Wigner theory for the resonance contribution. Quantum mechanical perturbation theory is used for comparison. A modified formulation of the classical method applicable to permanent dipoles of unequally charged reactants is implemented. The total rate constant is fitted to the Arrhenius–Kooij formula in five temperature intervals with a relative difference of <3%. The fit parameters will be added to the online database KIDA. For a temperature of 10–250 K, the rate constant is about 10{sup −21} cm{sup 3} s{sup −1}, rising toward 10{sup −16} cm{sup 3} s{sup −1} for a temperature of 30 000 K.

  12. Uniaxial tension test on Rubber at constant true strain rate

    Directory of Open Access Journals (Sweden)

    Sourne H.L.

    2012-08-01

    Full Text Available Elastomers are widely used for damping parts in different industrial contexts because of their remarkable dissipation properties. Indeed, they can undergo severe mechanical loading conditions, i.e., high strain rates and large strains. Nevertheless, the mechanical response of these materials can vary from purely rubber-like to glassy depending on the strain rate undergone. Classically, uniaxial tension tests are made in order to find a relation between the stress and the strain in the material at various strain rates. However, even if the strain rate is searched to be constant, it is the nominal strain rate that is considered. Here we develop a test at constant true strain rate, i.e. the strain rate that is experienced by the material. In order to do such a test, the displacement imposed by the machine is an exponential function of time. This test has been performed with a high speed hydraulic machine for strain rates between 0.01/s and 100/s. A specific specimen has been designed, yielding a uniform strain field (and so a uniform stress field. Furthermore, an instrumented aluminum bar has been used to take into account dynamic effects in the measurement of the applied force. A high speed camera enables the determination of strain in the sample using point tracking technique. Using this method, the stress-strain curve of a rubber-like material during a loading-unloading cycle has been determined, up to a stretch ratio λ = 2.5. The influence of the true strain rate both on stiffness and on dissipation of the material is then discussed.

  13. Divided Saddle Theory: A New Idea for Rate Constant Calculation.

    Science.gov (United States)

    Daru, János; Stirling, András

    2014-03-11

    We present a theory of rare events and derive an algorithm to obtain rates from postprocessing the numerical data of a free energy calculation and the corresponding committor analysis. The formalism is based on the division of the saddle region of the free energy profile of the rare event into two adjacent segments called saddle domains. The method is built on sampling the dynamics within these regions: auxiliary rate constants are defined for the saddle domains and the absolute forward and backward rates are obtained by proper reweighting. We call our approach divided saddle theory (DST). An important advantage of our approach is that it requires only standard computational techniques which are available in most molecular dynamics codes. We demonstrate the potential of DST numerically on two examples: rearrangement of alanine-dipeptide (CH3CO-Ala-NHCH3) conformers and the intramolecular Cope reaction of the fluxional barbaralane molecule.

  14. Dose rate constant and energy spectrum of interstitial brachytherapy sources

    International Nuclear Information System (INIS)

    Chen Zhe; Nath, Ravinder

    2001-01-01

    In the past two years, several new manufacturers have begun to market low-energy interstitial brachytherapy seeds containing 125 I and 103 Pd. Parallel to this development, the National Institute of Standards and Technology (NIST) has implemented a modification to the air-kerma strength (S K ) standard for 125 I seeds and has also established an S K standard for 103 Pd seeds. These events have generated a considerable number of investigations on the determination of the dose rate constants (Λ) of interstitial brachytherapy seeds. The aim of this work is to study the general properties underlying the determination of Λ and to develop a simple method for a quick and accurate estimation of Λ. As the dose rate constant of clinical seeds is defined at a fixed reference point, we postulated that Λ may be calculated by treating the seed as an effective point source when the seed's source strength is specified in S K and its source characteristics are specified by the photon energy spectrum measured in air at the reference point. Using a semi-analytic approach, an analytic expression for Λ was derived for point sources with known photon energy spectra. This approach enabled a systematic study of Λ as a function of energy. Using the measured energy spectra, the calculated Λ for 125 I model 6711 and 6702 seeds and for 192 Ir seed agreed with the AAPM recommended values within ±1%. For the 103 Pd model 200 seed, the agreement was 5% with a recently measured value (within the ±7% experimental uncertainty) and was within 1% with the Monte Carlo simulations. The analytic expression for Λ proposed here can be evaluated using a programmable calculator or a simple spreadsheet and it provides an efficient method for checking the measured dose rate constant for any interstitial brachytherapy seed once the energy spectrum of the seed is known

  15. Determination of rate constants for the oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Racz, A.; Walter, T.; Stimming, U. [Munich Technical Univ., Garching (Germany). Dept. of Physics

    2008-07-01

    The oxygen reduction reaction (ORR) in fuel cells is a complex and fundamental electrochemical reaction. However, greater insight is needed into this multi-electron reaction in order to develop efficient and innovative catalysts. The rotating ring disc electrode (RRDE) is a useful tool for studying reaction intermediates of the ORR and to better understand the reaction pathway. Carbon materials such as carbon nanofilaments-platelets (CNF-PL) have high electrical conductivity and may be considered for fuel cells. In particular Pt and RuSe{sub x}, deposited on CNF-PL materials could act as efficient catalysts in fuel cells. This study used the RRDE to evaluate the oxygen reduction kinetics of these catalysts in oxygen-saturated, diluted sulphuric acid at room temperature. Kinetic data and hydrogen peroxide formation were determined by depositing a thin-film of the catalyst on the Au disc. The values for the constants k1, k2 and k3 were obtained using diagnostic criteria and expressions to calculate the rate constants of the cathodic oxygen reduction reaction for RuSe on new carbon supports. A potential dependency of the constants k1 and k2 for RuSe{sub x}/CNF-PL was observed. The transition of the Tafel slopes for this catalyst was obtained. 4 refs., 1 fig.

  16. Recent developments in semiclassical mechanics: eigenvalues and reaction rate constants

    International Nuclear Information System (INIS)

    Miller, W.H.

    1976-04-01

    A semiclassical treatment of eigenvalues for a multidimensional non-separable potential function and of the rate constant for a chemical reaction with an activation barrier is presented. Both phenomena are seen to be described by essentially the same semiclassical formalism, which is based on a construction of the total Hamiltonian in terms of the complete set of ''good'' action variables (or adiabatic invariants) associated with the minimum in the potential energy surface for the eigenvalue case, or the saddle point in the potential energy surface for the case of chemical reaction

  17. Phototransformation rate constants of PAHs associated with soot particles

    International Nuclear Information System (INIS)

    Kim, Daekyun; Young, Thomas M.; Anastasio, Cort

    2013-01-01

    Photodegradation is a key process governing the residence time and fate of polycyclic aromatic hydrocarbons (PAHs) in particles, both in the atmosphere and after deposition. We have measured photodegradation rate constants of PAHs in bulk deposits of soot particles illuminated with simulated sunlight. The photodegradation rate constants at the surface (k p 0 ), the effective diffusion coefficients (D eff ), and the light penetration depths (z 0.5 ) for PAHs on soot layers of variable thickness were determined by fitting experimental data with a model of coupled photolysis and diffusion. The overall disappearance rates of irradiated low molecular weight PAHs (with 2–3 rings) on soot particles were influenced by fast photodegradation and fast diffusion kinetics, while those of high molecular weight PAHs (with 4 or more rings) were apparently controlled by either the combination of slow photodegradation and slow diffusion kinetics or by very slow diffusion kinetics alone. The value of z 0.5 is more sensitive to the soot layer thickness than the k p 0 value. As the thickness of the soot layer increases, the z 0.5 values increase, but the k p 0 values are almost constant. The effective diffusion coefficients calculated from dark experiments are generally higher than those from the model fitting method for illumination experiments. Due to the correlation between k p 0 and z 0.5 in thinner layers, D eff should be estimated by an independent method for better accuracy. Despite some limitations of the model used in this study, the fitted parameters were useful for describing empirical results of photodegradation of soot-associated PAHs. - Highlights: ► PAHs on soot were evaluated by a model of coupled photolysis and diffusion. ► Photodegradation rate at the surface, diffusion coefficient, and light penetration path were determined. ► Low MW PAHs were influenced by fast photodegradation and fast diffusion. ► High MW PAHs were controlled either by slow

  18. Studies on the catalytic rate constant of ribosomal peptidyltransferase.

    Science.gov (United States)

    Synetos, D; Coutsogeorgopoulos, C

    1987-02-20

    A detailed kinetic analysis of a model reaction for the ribosomal peptidyltransferase is described, using fMet-tRNA or Ac-Phe-tRNA as the peptidyl donor and puromycin as the acceptor. The initiation complex (fMet-tRNA X AUG X 70 S ribosome) or (Ac-Phe-tRNA X poly(U) X 70 S ribosome) (complex C) is isolated and then reacted with excess puromycin (S) to give fMet-puromycin or Ac-Phe-puromycin. This reaction (puromycin reaction) is first order at all concentrations of S tested. An important asset of this kinetic analysis is the fact that the relationship between the first order rate constant kobs and [S] shows hyperbolic saturation and that the value of kobs at saturating [S] is a measure of the catalytic rate constant (k cat) of peptidyltransferase in the puromycin reaction. With fMet-tRNA as the donor, this kcat of peptidyltransferase is 8.3 min-1 when the 0.5 M NH4Cl ribosomal wash is present, compared to 3.8 min-1 in its absence. The kcat of peptidyltransferase is 2.0 min-1 when Ac-Phe-tRNA replaces fMet-tRNA in the presence of the ribosomal wash and decreases to 0.8 min-1 in its absence. This kinetic procedure is the best method available for evaluating changes in the activity of peptidyltransferase in vitro. The results suggest that peptidyltransferase is subjected to activation by the binding of fMet-tRNA to the 70 S initiation complex.

  19. Empirical correlation for prediction of the elutriation rate constant

    Directory of Open Access Journals (Sweden)

    Stojkovski Valentino

    2003-01-01

    Full Text Available In vessels containing fluidized solids, the gas leaving carries some suspended particles. This flux of solids is called entrainment, E or carryover and the bulk density of solids on this leaving gas stream is called the holdup. For design we need to know the rate of this entrainment and the size distribution of these entrained particles Rim in relation to the size distribution in the bed, Rib, as well as the variation of both these quantities with gas and solids properties, gas flow rate, bed geometry and location of the leaving gas stream. Steady-state elutriation experiments have been done in a fluidized bed 0,2 m diameter by 2,94 m high freeboard with superficial gas velocities up to 1 m/s using solids ranging in mean size from 0,15 to 0,58 mm and with particle density 2660 kg/m3. When the fine and coarse particles were mixed, the total entrainment flux above the freeboard was increased. None of the published correlations for estimating the elutriation rate constant were useful. A new simple equation, which is developed on the base of experimental results and theory of dimensional analyses, is presented.

  20. Characterization of strain rate sensitivity and activation volume using the indentation relaxation test

    International Nuclear Information System (INIS)

    Xu Baoxing; Chen Xi; Yue Zhufeng

    2010-01-01

    We present the possibility of extracting the strain rate sensitivity, activation volume and Helmholtz free energy (for dislocation activation) using just one indentation stress relaxation test, and the approach is demonstrated with polycrystalline copper. The Helmholtz free energy measured from indentation relaxation agrees well with that from the conventional compression relaxation test, which validates the proposed approach. From the indentation relaxation test, the measured indentation strain rate sensitivity exponent is found to be slightly larger, and the indentation activation volume much smaller, than their counterparts from the compression test. The results indicate the involvement of multiple dislocation mechanisms in the indentation test.

  1. Addition and spin exchange rate constants by longitudinal field μSR: the Mu + NO reaction

    International Nuclear Information System (INIS)

    Senba, Masayoshi; Gonzalez, A.C.; Kempton, J.R.; Arseneau, D.J.; Pan, J.J.; Tempelmann, A.; Fleming, D.G.

    1991-01-01

    The addition reaction Mu + NO + M → MuNO + M and the spin exchange reaction Mu(↑) + NO(↓)→Mu(↓)+NO(↑) have been measured by longitudinal field μSR at room temperature in the presence of up to 58 atm of N 2 as inert collider. The pressure dependence of the longitudinal relaxation rate due to the addition reaction (λ c ) demonstrates that the system is still in the low pressure regime in this pressure range. The corresponding termolecular rate constant has been determined as k 0.Mu =(1.10±0.25)x10 -32 cm 6 molecules -2 s -1 , almost 4 times smaller than the corresponding H atom reaction k 0,H =3.90x10 -32 cm 6 molecules -2 s -1 . The average value of the spin exchange rate constants in the 2.5-58 atm pressure range, k SE = (3.16±0.06)x10 -10 cm 3 molecule -1 s -1 , is in good agreement with previous values obtained by transverse field μSR. (orig.)

  2. Accurate determination of rates from non-uniformly sampled relaxation data

    Energy Technology Data Exchange (ETDEWEB)

    Stetz, Matthew A.; Wand, A. Joshua, E-mail: wand@upenn.edu [University of Pennsylvania Perelman School of Medicine, Johnson Research Foundation and Department of Biochemistry and Biophysics (United States)

    2016-08-15

    The application of non-uniform sampling (NUS) to relaxation experiments traditionally used to characterize the fast internal motion of proteins is quantitatively examined. Experimentally acquired Poisson-gap sampled data reconstructed with iterative soft thresholding are compared to regular sequentially sampled (RSS) data. Using ubiquitin as a model system, it is shown that 25 % sampling is sufficient for the determination of quantitatively accurate relaxation rates. When the sampling density is fixed at 25 %, the accuracy of rates is shown to increase sharply with the total number of sampled points until eventually converging near the inherent reproducibility of the experiment. Perhaps contrary to some expectations, it is found that accurate peak height reconstruction is not required for the determination of accurate rates. Instead, inaccuracies in rates arise from inconsistencies in reconstruction across the relaxation series that primarily manifest as a non-linearity in the recovered peak height. This indicates that the performance of an NUS relaxation experiment cannot be predicted from comparison of peak heights using a single RSS reference spectrum. The generality of these findings was assessed using three alternative reconstruction algorithms, eight different relaxation measurements, and three additional proteins that exhibit varying degrees of spectral complexity. From these data, it is revealed that non-linearity in peak height reconstruction across the relaxation series is strongly correlated with errors in NUS-derived relaxation rates. Importantly, it is shown that this correlation can be exploited to reliably predict the performance of an NUS-relaxation experiment by using three or more RSS reference planes from the relaxation series. The RSS reference time points can also serve to provide estimates of the uncertainty of the sampled intensity, which for a typical relaxation times series incurs no penalty in total acquisition time.

  3. Relaxation rates of low-field gas-phase ^129Xe storage cells

    Science.gov (United States)

    Limes, Mark; Saam, Brian

    2010-10-01

    A study of longitudinal nuclear relaxation rates T1 of ^129Xe and Xe-N2 mixtures in a magnetic field of 3.8 mT is presented. In this regime, intrinsic spin relaxation is dominated by the intramolecular spin-rotation interaction due to persistent xenon dimers, a mechanism that can be quelled by introducing large amounts of N2 into the storage cell. Extrinsic spin relaxation is dominated by the wall-relaxation rate, which is the primary quantity of interest for the various low-field storage cells and coatings that we have tested. Previous group work has shown that extremely long gas-phase relaxation times T1 can be obtained, but only at large magnetic fields and low xenon densities. The current work is motivated by the practical benefits of retaining hyperpolarized ^129Xe for extended periods of time in a small magnetic field.

  4. Rate Constant and Temperature Dependence for the Reaction of Hydroxyl Radicals with 2-Flouropropane (FC-281ea) and Comparison with an Estimated Rate Constant

    Science.gov (United States)

    DeMore, W.; Wilson, E., Jr.

    1998-01-01

    Relative rate experiments were used to measure the rate constant and temperature dependence of the reaction of OH radicals with 2-fluoropropane (HFC-281ea), using ethane, propane, ethyl chloride as reference standards.

  5. Dual resonance approach to optical signal processing beyond the carrier relaxation rate

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Kristensen, Philip Trøst; Mørk, Jesper

    2014-01-01

    We propose using two optical cavities in a differential control scheme to increase the bandwidth of cavity-based semiconductor optical signal processing devices beyond the limit given by the slowest carrier relaxation rate of the medium.......We propose using two optical cavities in a differential control scheme to increase the bandwidth of cavity-based semiconductor optical signal processing devices beyond the limit given by the slowest carrier relaxation rate of the medium....

  6. Relaxation rates of gene expression kinetics reveal the feedback signs of autoregulatory gene networks

    Science.gov (United States)

    Jia, Chen; Qian, Hong; Chen, Min; Zhang, Michael Q.

    2018-03-01

    The transient response to a stimulus and subsequent recovery to a steady state are the fundamental characteristics of a living organism. Here we study the relaxation kinetics of autoregulatory gene networks based on the chemical master equation model of single-cell stochastic gene expression with nonlinear feedback regulation. We report a novel relation between the rate of relaxation, characterized by the spectral gap of the Markov model, and the feedback sign of the underlying gene circuit. When a network has no feedback, the relaxation rate is exactly the decaying rate of the protein. We further show that positive feedback always slows down the relaxation kinetics while negative feedback always speeds it up. Numerical simulations demonstrate that this relation provides a possible method to infer the feedback topology of autoregulatory gene networks by using time-series data of gene expression.

  7. Calculation of nuclear-spin-relaxation rate for spin-polarized atomic hydrogen

    International Nuclear Information System (INIS)

    Ahn, R.M.C.; Eijnde, J.P.H.W.V.; Verhaar, B.J.

    1983-01-01

    Approximations introduced in previous calculations of spin relaxation for spin-polarized atomic hydrogen are investigated by carrying out a more exact coupled-channel calculation. With the exception of the high-temperature approximation, the approximations turn out to be justified up to the 10 -3 level of accuracy. It is shown that at the lowest temperatures for which experimental data are available, the high-temperature limit underestimates relaxation rates by a factor of up to 2. For a comparison with experimental data it is also of interest to pay attention to the expression for the atomic hydrogen relaxation rates in terms of transition amplitudes for two-particle collisions. Discrepancies by a factor of 2 among previous derivations of relaxation rates are pointed out. To shed light on these discrepancies we present two alternative derivations in which special attention is paid to identical-particle aspects. Comparing with experiment, we find our theoretical volume relaxation rate to be in better agreement with measured values than that obtained by other groups. The theoretical surface relaxation rate, however, still shows a discrepancy with experiment by a factor of order 50

  8. Assessment of the analgesic potency of constant rate infusion of ...

    African Journals Online (AJOL)

    Parameters determined were heart and respiratory rates, blood glucose level, pain score and body weight. Results showed that mean heart rate, respiratory rate and body weight were not differed significantly (p > 0.05) within and among the groups. Mean blood glucose level of group 4 was significantly higher (p < 0.05) ...

  9. Combined Diffusion Tensor Imaging and Apparent Transverse Relaxation Rate Differentiate Parkinson Disease and Atypical Parkinsonism.

    Science.gov (United States)

    Du, G; Lewis, M M; Kanekar, S; Sterling, N W; He, L; Kong, L; Li, R; Huang, X

    2017-05-01

    Both diffusion tensor imaging and the apparent transverse relaxation rate have shown promise in differentiating Parkinson disease from atypical parkinsonism (particularly multiple system atrophy and progressive supranuclear palsy). The objective of the study was to assess the ability of DTI, the apparent transverse relaxation rate, and their combination for differentiating Parkinson disease, multiple system atrophy, progressive supranuclear palsy, and controls. A total of 106 subjects (36 controls, 35 patients with Parkinson disease, 16 with multiple system atrophy, and 19 with progressive supranuclear palsy) were included. DTI and the apparent transverse relaxation rate measures from the striatal, midbrain, limbic, and cerebellar regions were obtained and compared among groups. The discrimination performance of DTI and the apparent transverse relaxation rate among groups was assessed by using Elastic-Net machine learning and receiver operating characteristic curve analysis. Compared with controls, patients with Parkinson disease showed significant apparent transverse relaxation rate differences in the red nucleus. Compared to those with Parkinson disease, patients with both multiple system atrophy and progressive supranuclear palsy showed more widespread changes, extending from the midbrain to striatal and cerebellar structures. The pattern of changes, however, was different between the 2 groups. For instance, patients with multiple system atrophy showed decreased fractional anisotropy and an increased apparent transverse relaxation rate in the subthalamic nucleus, whereas patients with progressive supranuclear palsy showed an increased mean diffusivity in the hippocampus. Combined, DTI and the apparent transverse relaxation rate were significantly better than DTI or the apparent transverse relaxation rate alone in separating controls from those with Parkinson disease/multiple system atrophy/progressive supranuclear palsy; controls from those with Parkinson

  10. Spin relaxation rates in quantum dots: Role of the phonon modulated spin orbit interaction

    Science.gov (United States)

    Alcalde, A. M.; Romano, C. L.; Marques, G. E.

    2008-11-01

    We calculate the spin relaxation rates in InAs and GaAs parabolic quantum dots due to the interaction of spin carriers with acoustical phonons. We consider a spin relaxation mechanism completely intrinsic to the system, since it is based on the modulation of the spin-orbit interaction by the acoustic phonon potential, which is independent of any structural properties of the confinement potential. The electron-phonon deformation potential and the piezoelectric interaction are described by the Pavlov-Firsov spin-phonon Hamiltonian. Our results demonstrate that, for narrow-gap semiconductors, the deformation potential interaction becomes dominant. This behavior is not observed for wide or intermediate gap semiconductors, where the piezoelectric coupling, in general, governs the relaxation processes. We also demonstrate that the spin relaxation rates are particularly sensitive to values of the Landé g-factor, which depend strongly on the spatial shape of the confinement.

  11. Strange metal from Gutzwiller correlations in infinite dimensions: Transverse transport, optical response, and rise of two relaxation rates

    Science.gov (United States)

    Ding, Wenxin; Žitko, Rok; Shastry, B. Sriram

    2017-09-01

    Using two approaches to strongly correlated systems, the extremely correlated Fermi liquid theory and the dynamical mean field theory, we compute the transverse transport coefficients, namely, the Hall constants RH and Hall angles θH, and the longitudinal and transverse optical response of the U =∞ Hubbard model in the limit of infinite dimensions. We focus on two successive low-temperature regimes, the Gutzwiller-correlated Fermi liquid (GCFL) and the Gutzwiller-correlated strange metal (GCSM). We find that the Hall angle cotθH is proportional to T2 in the GCFL regime, while upon warming into the GCSM regime it first passes through a downward bend and then continues as T2. Equivalently, RH is weakly temperature dependent in the GCFL regime, but becomes strongly temperature dependent in the GCSM regime. Drude peaks are found for both the longitudinal optical conductivity σx x(ω ) and the optical Hall angles tanθH(ω ) below certain characteristic energy scales. By comparing the relaxation rates extracted from fitting to the Drude formula, we find that in the GCFL regime there is a single relaxation rate controlling both longitudinal and transverse transport, while in the GCSM regime two different relaxation rates emerge. We trace the origin of this behavior to the dynamical particle-hole asymmetry of the Dyson self-energy, arguably a generic feature of doped Mott insulators.

  12. Biodegradation testing of chemicals with high Henry’s constants – separating mass and effective concentration reveals higher rate constants

    DEFF Research Database (Denmark)

    Birch, Heidi; Andersen, Henrik Rasmus; Comber, Mike

    Microextraction (HS-SPME) was applied directly on the test systems to measure substrate depletion by biodegradation relative to abiotic controls. HS-SPME was also applied to determine air to water partitioning ratios. Water phase biodegradation rate constants, kwater, were up to 72 times higher than test system...

  13. Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes

    NARCIS (Netherlands)

    Tiwari, A.; Dubey, Swapnil; Sandhu, G.S.; Sodha, M.S.; Anwar, S.I.

    2009-01-01

    In this communication, an analytical expression for the water temperature of an integrated photovoltaic thermal solar (IPVTS) water heater under constant flow rate hot water withdrawal has been obtained. Analysis is based on basic energy balance for hybrid flat plate collector and storage tank,

  14. Reaction rate constant for uranium in water and water vapor

    Energy Technology Data Exchange (ETDEWEB)

    TRIMBLE, D.J.

    1998-11-09

    The literature on uranium oxidation in water and oxygen free water vapor was reviewed. Arrhenius rate equations were developed from the review data. These data and equations will be used as a baseline from which to compare reaction rates measured for K Basin fuel.

  15. Randomized controlled trial of relaxation music to reduce heart rate in patients undergoing cardiac CT.

    Science.gov (United States)

    Ng, Ming Yen; Karimzad, Yasser; Menezes, Ravi J; Wintersperger, Bernd J; Li, Qin; Forero, Julian; Paul, Narinder S; Nguyen, Elsie T

    2016-10-01

    To evaluate the heart rate lowering effect of relaxation music in patients undergoing coronary CT angiography (CCTA), pulmonary vein CT (PVCT) and coronary calcium score CT (CCS). Patients were randomised to a control group (i.e. standard of care protocol) or to a relaxation music group (ie. standard of care protocol with music). The groups were compared for heart rate, radiation dose, image quality and dose of IV metoprolol. Both groups completed State-Trait Anxiety Inventory anxiety questionnaires to assess patient experience. One hundred and ninety-seven patients were recruited (61.9 % males); mean age 56y (19-86 y); 127 CCTA, 17 PVCT, 53 CCS. No significant difference in heart rate, radiation dose, image quality, metoprolol dose and anxiety scores. 86 % of patients enjoyed the music. 90 % of patients in the music group expressed a strong preference to have music for future examinations. The patient cohort demonstrated low anxiety levels prior to CT. Relaxation music in CCTA, PVCT and CCS does not reduce heart rate or IV metoprolol use. Patients showed low levels of anxiety indicating that anxiolytics may not have a significant role in lowering heart rate. Music can be used in cardiac CT to improve patient experience. • Relaxation music does not reduce heart rate in cardiac CT • Relaxation music does not reduce beta-blocker use in cardiac CT • Relaxation music has no effect on cardiac CT image quality • Low levels of anxiety are present in patients prior to cardiac CT • Patients enjoyed the relaxation music and this results in improved patient experience.

  16. Reaction rate constants of HO2 + O3 in the temperature range 233-400 K

    Science.gov (United States)

    Wang, Xiuyan; Suto, Masako; Lee, L. C.

    1988-01-01

    The reaction rate constants of HO2 + O3 were measured in the temperature range 233-400 K using a discharge flow system with photofragment emission detection. In the range 233-253 K, the constants are approximately a constant value, and then increase with increasing temperature. This result suggests that the reaction may have two different channels. An expression representing the reaction rate constants is presented.

  17. A model for turbulent dissipation rate in a constant pressure ...

    Indian Academy of Sciences (India)

    J Dey

    the logarithmic region. However, measurement of the. Taylor microscale remains a difficult task, as it involves correlation function [1]. Consequently, an appreciation of the Taylor microscale, dissipation rate, etc., is lacking in practice due to complexity involved in estimating these quantities. Segalini et al [2] have proposed a ...

  18. Constant temperatures and the rate of seed germination in maize ...

    African Journals Online (AJOL)

    The rate of germination of the NEM cultivar was faster than that of the QPM cultivar at all temperatures. The thermal times for median germination were 46 for QPM and 40.7 oCd for the NEM cultivar. The cardinal temperatures (base, Tb, optimum, To and ceiling, Tc) for the NEM cultivar were Tb: 7, To: 30 and Tc: 48.2 oC.

  19. Concentration dependence of fluorine impurity spin-lattice relaxation rate in bone mineral

    International Nuclear Information System (INIS)

    Code, R.F.; Armstrong, R.L.; Cheng, P.-T.

    1992-01-01

    The concentration dependence of the fluoride ion spin-lattice relaxation rate has been observed by nuclear magnetic resonance experiments on samples of defatted and dried bone. The 19 F spin-lattice relaxation rates increased linearly with bone fluoride concentration. Different results were obtained from trabecular than from cortical bone. For the same macroscopic fluoride content per gram of bone calcium, relaxation rate is significantly faster in cortical bone. Relaxation rates in cortical bone samples prepared from rats and dogs were apparently controlled by the same species-independent processes. For samples from beagle dogs, bulk fluoride concentrations measured by neutron activation analysis were 3.1±0.3 times greater in trabecular bone than in corresponding cortical bone. The beagle spin-lattice relaxation data suggest that microscopic fluoride concentrations in bone mineral were 1.8±0.4 times greater in trabecular bone than in cortical bone. It is concluded that accumulation of fluoride impurities in bone mineral is non-uniform. (author)

  20. The effect of relaxing music on heart rate and heart rate variability during ECG GATED-myocardial perfusion scintigraphy.

    Science.gov (United States)

    Tan, Yusuf Ziya; Ozdemir, Semra; Temiz, Ahmet; Celik, Fatmanur

    2015-05-01

    The positive changes in human behavior caused by relaxing music demonstrate the psychological effect of music on human body. A meta-analytical study has shown that relaxing music affects blood pressure and heart rate in coronary heart patients and cancer patients. The aim of our study is to research whether there is a significant effect on heart rate and heart rate variability due to listening to relaxing music during ECG GATED MPS imaging under gamma camera. The music group (n = 50 patients) could choose from 15 different musical types including folk music (no lyric). The other 50 patients were placed in a "no music group" and did not get headphones or any music. There was a statistically significant reduction in the heart rate of patients in the music group compared to those in the control group. Relaxing music provides great benefits to both patient and clinician. There is close relationship between relaxing music and health procedure, can use every area of the health noninvasiv, safe, cheap and is a method don't have side effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Frequency and Temperature Dependence of Anharmonic Phonon Relaxation Rate in Carbon Nanotubes

    International Nuclear Information System (INIS)

    Hepplestone, S P; Srivastava, G P

    2007-01-01

    The relaxation rate of phonon modes in the (10, 10) single wall carbon nanotube undergoing three-phonon interactions at various temperatures has been studied using both qualitative and quantitative approaches based upon Fermi's Golden Rule and a quasi-elastic continuum model for the anharmonic potential. For the quantitative calculations, dispersion relations for the phonon modes were obtained from analytic expressions developed by Zhang et al. The qualitative expressions were derived using simple linear phonon dispersions relations. We show that in the high temperature regime the relaxation rate varies linearly with temperature and with the square of the frequency. In the low temperature regime we show that the relaxation rate varies exponentially with the inverse of temperature. These results have some very interesting implifications for effects for mean free path and thermal conductivity calculations

  2. The benefit of heart rate variability biofeedback and relaxation training in reducing trait anxiety†

    Science.gov (United States)

    Lee, Jieun; Kim, Jung K; Wachholtz, Amy

    2016-01-01

    Previous research studies have indicated that biofeedback treatment and relaxation techniques are effective in reducing psychological and physical symptoms (Hammond, 2005; Manzoni, G. M., Pagnini, F., Castelnuovo, G., & Molinari, E., 2008). However, dearth of studies has compared heart rate variability (HRV) biofeedback treatment and relaxation training to reduce trait anxiety. The objective of this study was to determine the effect of HRV biofeedback treatment and relaxation training in reducing trait anxiety compared to control group without any treatment using students in a science and engineering university of South Korea. For the present study, a total of 15 graduate students with moderate level of trait anxiety were recruited for 4 individual sessions every two weeks. They were randomly assigned into three groups: biofeedback treatment (n = 5), relaxation training (n = 5), and no treatment control group (n = 5). Our results revealed significant difference in change score of trait anxiety between the HRV biofeedback treatment and the no treatment control group. However, no significant difference was found between the relaxation training group and the no treatment control group. In addition, there was no significant difference between the HRV biofeedback treatment and the relaxation training. Results of the present study indicate that there is potential benefit in utilizing HRV biofeedback treatment for stress management programs and/or anxiety reduction treatment PMID:27099546

  3. Time-Dependent Behaviors of Granite: Loading-Rate Dependence, Creep, and Relaxation

    Science.gov (United States)

    Hashiba, K.; Fukui, K.

    2016-07-01

    To assess the long-term stability of underground structures, it is important to understand the time-dependent behaviors of rocks, such as their loading-rate dependence, creep, and relaxation. However, there have been fewer studies on crystalline rocks than on tuff, mudstone, and rock salt, because the high strength of crystalline rocks makes the detection of their time-dependent behaviors much more difficult. Moreover, studies on the relaxation, temporal change of stress and strain (TCSS) conditions, and relations between various time-dependent behaviors are scarce for not only granites, but also other rocks. In this study, previous reports on the time-dependent behaviors of granites were reviewed and various laboratory tests were conducted using Toki granite. These tests included an alternating-loading-rate test, creep test, relaxation test, and TCSS test. The results showed that the degree of time dependence of Toki granite is similar to other granites, and that the TCSS resembles the stress-relaxation curve and creep-strain curve. A viscoelastic constitutive model, proposed in a previous study, was modified to investigate the relations between the time-dependent behaviors in the pre- and post-peak regions. The modified model reproduced the stress-strain curve, creep, relaxation, and the results of the TCSS test. Based on a comparison of the results of the laboratory tests and numerical simulations, close relations between the time-dependent behaviors were revealed quantitatively.

  4. Constant strain rate experiments and constitutive modeling for a class of bitumen

    Science.gov (United States)

    Reddy, Kommidi Santosh; Umakanthan, S.; Krishnan, J. Murali

    2012-08-01

    The mechanical properties of bitumen vary with the nature of the crude source and the processing methods employed. To understand the role of the processing conditions played in the mechanical properties, bitumen samples derived from the same crude source but processed differently (blown and blended) are investigated. The samples are subjected to constant strain rate experiments in a parallel plate rheometer. The torque applied to realize the prescribed angular velocity for the top plate and the normal force applied to maintain the gap between the top and bottom plate are measured. It is found that when the top plate is held stationary, the time taken by the torque to be reduced by a certain percentage of its maximum value is different from the time taken by the normal force to decrease by the same percentage of its maximum value. Further, the time at which the maximum torque occurs is different from the time at which the maximum normal force occurs. Since the existing constitutive relations for bitumen cannot capture the difference in the relaxation times for the torque and normal force, a new rate type constitutive model, incorporating this response, is proposed. Although the blended and blown bitumen samples used in this study correspond to the same grade, the mechanical responses of the two samples are not the same. This is also reflected in the difference in the values of the material parameters in the model proposed. The differences in the mechanical properties between the differently processed bitumen samples increase further with aging. This has implications for the long-term performance of the pavement.

  5. Phonon conductivity and relaxation rate in solids with disturbances by the Green function method

    International Nuclear Information System (INIS)

    Singh, M.

    1980-09-01

    In this present article we have established an expression for the temperature dependence of the lattice thermal conductivity of solids with harmonic disturbances. The relaxation rate for scattering of phonons with point defect is also derived. We will apply the Kubo-correlation function formalism for the thermal conductivity, and the double time temperature dependent Green function technique for the evaluation of correlation functions

  6. Constrained least squares methods for estimating reaction rate constants from spectroscopic data

    NARCIS (Netherlands)

    Bijlsma, S.; Boelens, H.F.M.; Hoefsloot, H.C.J.; Smilde, A.K.

    2002-01-01

    Model errors, experimental errors and instrumental noise influence the accuracy of reaction rate constant estimates obtained from spectral data recorded in time during a chemical reaction. In order to improve the accuracy, which can be divided into the precision and bias of reaction rate constant

  7. Estimating reaction rate constants: comparison between traditional curve fitting and curve resolution

    NARCIS (Netherlands)

    Bijlsma, S.; Boelens, H. F. M.; Hoefsloot, H. C. J.; Smilde, A. K.

    2000-01-01

    A traditional curve fitting (TCF) algorithm is compared with a classical curve resolution (CCR) approach for estimating reaction rate constants from spectral data obtained in time of a chemical reaction. In the TCF algorithm, reaction rate constants an estimated from the absorbance versus time data

  8. Rate constants for some electrophilic reactions of benzyl, benzhydryl, and trityl cations in solution

    International Nuclear Information System (INIS)

    Ujdak, R.J.; Jones, R.L.; Dorfman, L.M.

    1976-01-01

    Absolute rate constants have been determined by the pulse radiolysis technique for several electrophilic reactions of the benzyl, the benzhydryl, and the trityl cation in 1,2-dichloroethane solution. The rate constants for the reactions of these carbonium ions with chloride ion, with bromide ion, and with iodide ion are all very nearly the same, namely 6 x 10 10 M -1 s -1 at 24 0 C. The values very likely represent the diffusion controlled limit for the ion combination reactions. The rate constants for the reactions with triethylamine, tri-n-propylamine, and tri-n-butylamine range from 2.0 x 10 9 to 7 x 10 6 M -1 s -1 at 24 0 C. With increasing phenyl substitution, the decreasing trend in the magnitude of the rate constant is consistent with the combined electronic and steric effects. With increasing size of the amine, the decrease in the value of the rate constant seems to indicate that the steric effect predominates. The values of the rate constants for reactions of benzyl and benzhydryl cation with methanol, ethanol, and 2-propanol indicate the following. The rate constant is higher for reaction with the alcohol dimer in solution than with alcohol monomer. The rate constants for reaction with alcohol monomer have values of 1 x 10 8 M -1 s -1 or lower

  9. Rate constants for the reaction of OH radicals with 1-chloroalkanes at 295 K

    DEFF Research Database (Denmark)

    Markert, F.; Nielsen, O.J.

    1992-01-01

    The rate constants for the reaction of OH radicals with a series of 1-chloroalkanes were measured at 295 K and at a total pressure of 1 atm. The rate constants were obtained by using the absolute technique of pulse radiolysis combined with kinetic UV-spectroscopy. The results are discussed in terms...

  10. Reaction rate constants of H-abstraction by OH from large ketones: Measurements and site-specific rate rules

    KAUST Repository

    Badra, Jihad; Elwardani, Ahmed Elsaid; Farooq, Aamir

    2014-01-01

    -pentanone, and 4-methl-2-pentanone. Rate constants are measured under pseudo-first-order kinetics at temperatures ranging from 866 K to 1375 K and pressures near 1.5 atm. The reported high-temperature rate constant measurements are the first direct

  11. Cross-correlated relaxation rates between protein backbone H–X dipolar interactions

    International Nuclear Information System (INIS)

    Vögeli, Beat

    2017-01-01

    The relaxation interference between dipole–dipole interactions of two separate spin pairs carries structural and dynamics information. In particular, when compared to individual dynamic behavior of those spin pairs, such cross-correlated relaxation (CCR) rates report on the correlation between the spin pairs. We have recently mapped out correlated motion along the backbone of the protein GB3, using CCR rates among and between consecutive H N –N and H α –C α dipole–dipole interactions. Here, we provide a detailed account of the measurement of the four types of CCR rates. All rates were obtained from at least two different pulse sequences, of which the yet unpublished ones are presented. Detailed comparisons between the different methods and corrections for unwanted pathways demonstrate that the averaged CCR rates are highly accurate and precise with errors of 1.5–3% of the entire value ranges.

  12. Cross-correlated relaxation rates between protein backbone H–X dipolar interactions

    Energy Technology Data Exchange (ETDEWEB)

    Vögeli, Beat, E-mail: beat.vogeli@ucdenver.edu [University of Colorado Denver, Department of Biochemistry and Molecular Genetics (United States)

    2017-03-15

    The relaxation interference between dipole–dipole interactions of two separate spin pairs carries structural and dynamics information. In particular, when compared to individual dynamic behavior of those spin pairs, such cross-correlated relaxation (CCR) rates report on the correlation between the spin pairs. We have recently mapped out correlated motion along the backbone of the protein GB3, using CCR rates among and between consecutive H{sup N}–N and H{sup α}–C{sup α} dipole–dipole interactions. Here, we provide a detailed account of the measurement of the four types of CCR rates. All rates were obtained from at least two different pulse sequences, of which the yet unpublished ones are presented. Detailed comparisons between the different methods and corrections for unwanted pathways demonstrate that the averaged CCR rates are highly accurate and precise with errors of 1.5–3% of the entire value ranges.

  13. Rate Constants for the Reactions of Hydroxyl Radical with Several Alkanes, Cycloalkanes, and Dimethyl Ether

    Science.gov (United States)

    DeMore, W.; Bayes, K.

    1998-01-01

    Relative rate experiements were used to measure rate constants and temperature denpendencies of the reactions of OH with propane, n-butane, n-pentane, n-hexane, cyclopropane, cyclobutane, cyclopentane, and dimethyl ether.

  14. NMR relaxation rates and Knight shifts in the alloy Mg1-xAlxB2

    International Nuclear Information System (INIS)

    Serventi, S; Allodi, G; Bucci, C; Renzi, R De; Guidi, G; Pavarini, E; Manfrinetti, P; Palenzona, A

    2003-01-01

    We measured the 27 Al and 11 B NMR spin lattice relaxation rates and the isotropic Knight shifts in powder samples of Mg 1-x Al x B 2 , as a function of the Al concentration, x. The temperature independence of the Knight shifts and the linear temperature dependence of the relaxation are verified throughout the compositions explored. The variation with x of the measured quantities is discussed in terms of the projected densities of states at the Fermi energy, finding good qualitative as well as quantitative agreement with recent band structure calculations

  15. Low-Dimensional Nanoparticle Clustering in Polymer Micelles and Their Transverse Relaxivity Rates

    Science.gov (United States)

    Hickey, Robert J.; Meng, Xin; Zhang, Peijun; Park, So-Jung

    2015-01-01

    One- or two-dimensional arrays of iron oxide nanoparticles were formed in colloidal assemblies of amphiphilic polymers. Electron tomography imaging revealed that nanoparticles are arranged into one-dimensional strings in magneto-micelles or two-dimensional sheets in magneto-core/shell assemblies. The distinct directional assembly behavior was attributed to the interparticle interaction relative to the nanoparticle–polymer interaction, which was modulated by varying the cosolvent used for the solution phase self-assembly. Magneto-core/shell assemblies with varying structural parameters were formed with a range of different sized as-synthesized nanoparticles. The transverse magnetic relaxivity rates (r2) of a series of different assemblies were determined to examine the effect of nanoparticle arrangement on the magnetic relaxivity for their potential applications in MRI. The results indicated that the assembly structure of nanoparticles in polymer micelles significantly affects the r2 of surrounding water, providing a way to control magnetic relaxivity. PMID:23731021

  16. A calculation of the surface recombination rate constant for hydrogen isotopes on metals

    International Nuclear Information System (INIS)

    Baskes, M.J.

    1980-01-01

    The surface recombination rate constant for hydrogen isotopes on a metal has been calculated using a simple model whose parameters may be determined by direct experimental measurements. Using the experimental values for hydrogen diffusivity, solubility, and sticking coefficient at zero surface coverage a reasonable prediction of the surface recombination constant may be made. The calculated recombination constant is in excellent agreement with experiment for bcc iron. A heuristic argument is developed which, along with the rate constant calculation, shows that surface recombination is important in those metals in which hydrogen has an exothermic heat of solution. (orig.)

  17. Randomized controlled trial of relaxation music to reduce heart rate in patients undergoing cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Ming Yen [University of Toronto, Department of Medical Imaging, Toronto General Hospital, Toronto, ON (Canada); The University of Hong Kong, Queen Mary Hospital, Department of Diagnostic Radiology, Hong Kong (China); Karimzad, Yasser; Menezes, Ravi J.; Wintersperger, Bernd J.; Li, Qin; Forero, Julian; Paul, Narinder S.; Nguyen, Elsie T. [University of Toronto, Department of Medical Imaging, Toronto General Hospital, Toronto, ON (Canada)

    2016-10-15

    To evaluate the heart rate lowering effect of relaxation music in patients undergoing coronary CT angiography (CCTA), pulmonary vein CT (PVCT) and coronary calcium score CT (CCS). Patients were randomised to a control group (i.e. standard of care protocol) or to a relaxation music group (ie. standard of care protocol with music). The groups were compared for heart rate, radiation dose, image quality and dose of IV metoprolol. Both groups completed State-Trait Anxiety Inventory anxiety questionnaires to assess patient experience. One hundred and ninety-seven patients were recruited (61.9 % males); mean age 56y (19-86 y); 127 CCTA, 17 PVCT, 53 CCS. No significant difference in heart rate, radiation dose, image quality, metoprolol dose and anxiety scores. 86 % of patients enjoyed the music. 90 % of patients in the music group expressed a strong preference to have music for future examinations. The patient cohort demonstrated low anxiety levels prior to CT. Relaxation music in CCTA, PVCT and CCS does not reduce heart rate or IV metoprolol use. Patients showed low levels of anxiety indicating that anxiolytics may not have a significant role in lowering heart rate. Music can be used in cardiac CT to improve patient experience. (orig.)

  18. Randomized controlled trial of relaxation music to reduce heart rate in patients undergoing cardiac CT

    International Nuclear Information System (INIS)

    Ng, Ming Yen; Karimzad, Yasser; Menezes, Ravi J.; Wintersperger, Bernd J.; Li, Qin; Forero, Julian; Paul, Narinder S.; Nguyen, Elsie T.

    2016-01-01

    To evaluate the heart rate lowering effect of relaxation music in patients undergoing coronary CT angiography (CCTA), pulmonary vein CT (PVCT) and coronary calcium score CT (CCS). Patients were randomised to a control group (i.e. standard of care protocol) or to a relaxation music group (ie. standard of care protocol with music). The groups were compared for heart rate, radiation dose, image quality and dose of IV metoprolol. Both groups completed State-Trait Anxiety Inventory anxiety questionnaires to assess patient experience. One hundred and ninety-seven patients were recruited (61.9 % males); mean age 56y (19-86 y); 127 CCTA, 17 PVCT, 53 CCS. No significant difference in heart rate, radiation dose, image quality, metoprolol dose and anxiety scores. 86 % of patients enjoyed the music. 90 % of patients in the music group expressed a strong preference to have music for future examinations. The patient cohort demonstrated low anxiety levels prior to CT. Relaxation music in CCTA, PVCT and CCS does not reduce heart rate or IV metoprolol use. Patients showed low levels of anxiety indicating that anxiolytics may not have a significant role in lowering heart rate. Music can be used in cardiac CT to improve patient experience. (orig.)

  19. The laser second threshold: Its exact analytical dependence on detuning and relaxation rates

    International Nuclear Information System (INIS)

    Bakasov, A.A.; Abraham, N.B.

    1992-11-01

    An exact analysis has been carried out for general analytical expressions for the second threshold of a single-mode homogeneously broadened laser and for the initial pulsation frequency at the second threshold for arbitrary physical values of the relaxation rates, and at arbitrary detuning between the cavity frequency and the atomic resonance frequency. These expressions also give correspondingly exact forms for asymptotic cases that have previously studied with some approximations. Earlier approximate results are partly confirmed and partly improved by these more general expressions. The physical status of various expressions and approximations is re-considered and specified more clearly, including an analysis of which reasonably can be attained in lasers or masers. A general analytical proof is given that for larger detuning of the laser cavity from resonance a higher value of the laser excitation is required to destabilize the steady state solution (the second threshold). We also present results for the minimum value of the second threshold at fixed detuning as a function of the other parameters of the system and on the dependence of the ratio of the second threshold to the first threshold as a function of detuning. Minima of the second threshold and of the threshold ratio occur only if the population relaxation rate is equal to zero. The minima of the threshold ratio are shown to be bounded from above as well as from below (as functions of the relaxation rates, so long as the second threshold exists). The upper bound on the threshold ratio is equal to 17. The variation of the second threshold in the semi-infinite parameter space of the decay rates is shown at various detunings in plots with a finite domain by normalizing the material relaxation rates to the cavity decay rate. (author). 53 refs, 22 figs, 3 tabs

  20. The time dependence of rate constants of esub(aq)sup(-) reactions

    International Nuclear Information System (INIS)

    Burcl, R.; Byakov, V.M.; Grafutin, V.I.

    1982-01-01

    Published data about the time dependence of rate constants k(esub(aq)sup(-)+Ac) of esub(aq)sup(-) reactions with the acceptor Ac are analyzed, using the results of rate constant k(Ps+Ac) measurements for positronium reactions. It is shown that neither esub(aq)sup(-) nor Ps reaction rate constants depend on time in the observable range. Experimentally found concentration dependence of k(esub(aq)sup(-)+Ac) is due to other factors, connected with the existence of electric charge of esub(aq)sup(-), e.g. ionic strength, tunnelling effect etc. (author)

  1. Simple expressions of the nuclear relaxation rate enhancement due to quadrupole nuclei in slowly tumbling molecules

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Pascal H., E-mail: pascal-h.fries@cea.fr [Université Grenoble Alpes, INAC-SCIB, RICC, F-38000 Grenoble (France); CEA, INAC-SCIB, RICC, F-38000 Grenoble (France); Belorizky, Elie [Université Grenoble Alpes, LIPHY, F-38000 Grenoble (France); CEA, Leti-Clinatec, F-38000 Grenoble (France)

    2015-07-28

    For slowly tumbling entities or quasi-rigid lattices, we derive very simple analytical expressions of the quadrupole relaxation enhancement (QRE) of the longitudinal relaxation rate R{sub 1} of nuclear spins I due to their intramolecular magnetic dipolar coupling with quadrupole nuclei of arbitrary spins S ≥ 1. These expressions are obtained by using the adiabatic approximation for evaluating the time evolution operator of the quantum states of the quadrupole nuclei S. They are valid when the gyromagnetic ratio of the spin S is much smaller than that of the spin I. The theory predicts quadrupole resonant peaks in the dispersion curve of R{sub 1} vs magnetic field. The number, positions, relative intensities, Lorentzian shapes, and widths of these peaks are explained in terms of the following properties: the magnitude of the quadrupole Hamiltonian and the asymmetry parameter of the electric field gradient (EFG) acting on the spin S, the S-I inter-spin orientation with respect to the EFG principal axes, the rotational correlation time of the entity carrying the S–I pair, and/or the proper relaxation time of the spin S. The theory is first applied to protein amide protons undergoing dipolar coupling with fast-relaxing quadrupole {sup 14}N nuclei and mediating the QRE to the observed bulk water protons. The theoretical QRE agrees well with its experimental counterpart for various systems such as bovine pancreatic trypsin inhibitor and cartilages. The anomalous behaviour of the relaxation rate of protons in synthetic aluminium silicate imogolite nano-tubes due to the QRE of {sup 27}Al (S = 5/2) nuclei is also explained.

  2. PROGRESSIVE MUSCLE RELAXATION INCREASE PEAK EXPIRATORY FLOW RATE ON CHRONIC OBSTRUCTIVE PULMONARY DISEASE PATIENTS

    Directory of Open Access Journals (Sweden)

    Tintin Sukartini

    2017-07-01

    Full Text Available Introduction: Limited progressive air flow in Chronic Obstructive Pulmonary Disease (COPD can caused by small airway disease (bronchiolitis obstructive and loss of elasticity of the lung (emphysema. Further it can be decreasing the quality of life in COPD patients because dyspnea and uncomfortable in activity. Progressive muscle relaxation (PMR is one of the relaxation technique that can repair pulmonary ventilation by decreasing chronic constriction of the respiratory muscles. The objective of this study was to analyze the effect of progressive muscle relaxation on raised peak expiratory flow rate (PEFR. Method: A pre-experimental one group pre-post test design was used in this study. Population was all of the COPD patients at Pulmonary Specialist Polyclinic Dr Mohamad Soewandhie Surabaya. There were 8 respondents taken by using purposive sampling. PEFR was counted by using peak flow meter every six day. Data were analyzed by using Paired t-Test with significance level  p≤0.05. Result: The result showed that PMR had significance level on increasing of PEFR (p=0.012. Discussion: It can be concluded that PMR has an effect on raise PEFR. Further studies are recommended to measure the effect of PMR on respiratory rate (RR, heart rate (HR subjective dyspnoe symptoms, forced expiration volume on the first minute (FEV1 and mid maximum flow rate (MMFR in COPD patients.

  3. On the estimate of the rate constant in the homogeneous dissolution model

    Czech Academy of Sciences Publication Activity Database

    Čupera, Jakub; Lánský, Petr

    2013-01-01

    Roč. 39, č. 10 (2013), s. 1555-1561 ISSN 0363-9045 Institutional support: RVO:67985823 Keywords : dissolution * estimation * rate constant Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 2.006, year: 2013

  4. Postearthquake relaxation after the 2004 M6 Parkfield, California, earthquake and rate-and-state friction

    Science.gov (United States)

    Savage, J.C.; Langbein, J.

    2008-01-01

    An unusually complete set of measurements (including rapid rate GPS over the first 10 days) of postseismic deformation is available at 12 continuous GPS stations located close to the epicenter of the 2004 M6.0 Parkfield earthquake. The principal component modes for the relaxation of the ensemble of those 12 GPS stations were determined. The first mode alone furnishes an adequate approximation to the data. Thus, the relaxation at all stations can be represented by the product of a common temporal function and distinct amplitudes for each component (north or east) of relaxation at each station. The distribution in space of the amplitudes indicates that the relaxation is dominantly strike slip. The temporal function, which spans times from about 5 min to 900 days postearthquake, can be fit by a superposition of three creep terms, each of the form ??l loge(1 + t/??l), with characteristic times ??, = 4.06, 0.11, and 0.0001 days. It seems likely that what is actually involved is a broad spectrum of characteristic times, the individual components of which arise from afterslip on different fault patches. Perfettini and Avouac (2004) have shown that an individual creep term can be explained by the spring-slider model with rate-dependent (no state variable) friction. The observed temporal function can also be explained using a single spring-slider model (i.e., single fault patch) that includes rate-and-state-dependent friction, a single-state variable, and either of the two commonly used (aging and slip) state evolution laws. In the latter fits, the rate-and-state friction parameter b is negative.

  5. Measuring Protein Synthesis Rate In Living Object Using Flooding Dose And Constant Infusion Methods

    OpenAIRE

    Ulyarti, Ulyarti

    2018-01-01

    Constant infusion is a method used for measuring protein synthesis rate in living object which uses low concentration of amino acid tracers. Flooding dose method is another technique used to measure the rate of protein synthesis which uses labelled amino acid together with large amount of unlabelled amino acid.  The latter method was firstly developed to solve the problem in determination of precursor pool arise from constant infusion method.  The objective of this writing is to com...

  6. The correlation schemes in calculations of the rate constants of some radiation chemical reactions

    International Nuclear Information System (INIS)

    Zagorets, P.A.; Shostenko, A.G.; Kim, V.

    1983-01-01

    The various correlation relationships of the evaluation of the rate constants of radiation chemical reactions of addition, abstraction and isomerization were considered. It was shown that neglection of the influence of solvent can result in errors in calculations of rate constants equalling two orders in magnitude. Several examples of isokinetic relationship are given. The methods of calculation of transmission coefficient of reaction addition have been discussed. (author)

  7. In vivo estimation of transverse relaxation time constant (T2 ) of 17 human brain metabolites at 3T.

    Science.gov (United States)

    Wyss, Patrik O; Bianchini, Claudio; Scheidegger, Milan; Giapitzakis, Ioannis A; Hock, Andreas; Fuchs, Alexander; Henning, Anke

    2018-08-01

    The transverse relaxation times T 2 of 17 metabolites in vivo at 3T is reported and region specific differences are addressed. An echo-time series protocol was applied to one, two, or three volumes of interest with different fraction of white and gray matter including a total number of 106 healthy volunteers and acquiring a total number of 128 spectra. The data were fitted with the 2D fitting tool ProFit2, which included individual line shape modeling for all metabolites and allowed the T 2 calculation of 28 moieties of 17 metabolites. The T 2 of 10 metabolites and their moieties have been reported for the first time. Region specific T 2 differences in white and gray matter enriched tissue occur in 16 of 17 metabolites examined including single resonance lines and coupled spin systems. The relaxation time T 2 is regions specific and has to be considered when applying tissue composition correction for internal water referencing. Magn Reson Med 80:452-461, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  8. Realization of a scenario with two relaxation rates in the Hubbard Falicov-Kimball model

    Science.gov (United States)

    Barman, H.; Laad, M. S.; Hassan, S. R.

    2018-02-01

    A single transport relaxation rate governs the decay of both longitudinal and Hall currents in Landau Fermi liquids (FL). Breakdown of this fundamental feature, first observed in two-dimensional cuprates and subsequently in other three-dimensional correlated systems close to the Mott metal-insulator transition, played a pivotal role in emergence of a non-FL (NFL) paradigm in higher dimensions D (>1 ) . Motivated hereby, we explore the emergence of this "two relaxation rates" scenario in the Hubbard Falicov-Kimball model (HFKM) using the dynamical mean-field theory (DMFT). Specializing to D =3 , we find, beyond a critical Falicov-Kimball (FK) interaction, that two distinct relaxation rates governing distinct temperature (T ) dependence of the longitudinal and Hall currents naturally emerges in the NFL metal. Our results show good accord with the experiment in V2 -yO3 near the metal-to-insulator transition (MIT). We rationalize this surprising finding by an analytical analysis of the structure of charge and spin Hamiltonians in the underlying impurity problem, specifically through a bosonization method applied to the Wolff model and connecting it to the x-ray edge problem.

  9. Glucose consumption and rate constants for sup 18 F-fluorodeoxyglucose in human gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Masatsune; Kikuchi, Haruhiko; Nagata, Izumi; Yamagata, Sen; Taki, Waro; Yonekura, Yoshiharu; Nishizawa, Sadahiko; Iwasaki, Yasushi; Mukai, Takao [Kyoto Univ. (Japan). Faculty of Medicine

    1990-06-01

    To investigate the value of direct measurement of the rate constants by performing {sup 18}F-labeled fluorodeoxyglucose (FDG) studies of glucose consumption in human gliomas in vivo, a kinetic method with 3- and 4-parameter rate constant models for FDG uptake was used to analyze data from dynamic scans obtained by positron emission tomography after injection of FDG into 14 patients with glioma. The results were compared with those obtained by the autoradiographic method using 3- and 4-parameter rate constant models. There were no significant differences in the glucose consumption calculated by the four different methods both in the gliomas and in the contralateral intact cortex. It was found that the rate constant k4 could be neglected in calculation of glucose consumption in gliomas as well as in the contralateral intact cortex. The rate constant k3, an index of hexokinase function, was higher in malignant gliomas than in benign gliomas and was close to that in the contralateral cortex. This study indicates that the 3-parameter autoradiographic method, which is the most common one used in clinical practice, is reliable for the calculation of glucose consumption in human gliomas. Furthermore, direct measurement of the regional rate constants for FDG by the kinetic method was found to be useful for evaluation of the biochemical and physiological characteristics of human gliomas in vivo. (author).

  10. Selected hydraulic test analysis techniques for constant-rate discharge tests

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.

    1993-03-01

    The constant-rate discharge test is the principal field method used in hydrogeologic investigations for characterizing the hydraulic properties of aquifers. To implement this test, the aquifer is stressed by withdrawing ground water from a well, by using a downhole pump. Discharge during the withdrawal period is regulated and maintained at a constant rate. Water-level response within the well is monitored during the active pumping phase (i.e., drawdown) and during the subsequent recovery phase following termination of pumping. The analysis of drawdown and recovery response within the stress well (and any monitored, nearby observation wells) provides a means for estimating the hydraulic properties of the tested aquifer, as well as discerning formational and nonformational flow conditions (e.g., wellbore storage, wellbore damage, presence of boundaries, etc.). Standard analytical methods that are used for constant-rate pumping tests include both log-log type-curve matching and semi-log straight-line methods. This report presents a current ''state of the art'' review of selected transient analysis procedures for constant-rate discharge tests. Specific topics examined include: analytical methods for constant-rate discharge tests conducted within confined and unconfined aquifers; effects of various nonideal formation factors (e.g., anisotropy, hydrologic boundaries) and well construction conditions (e.g., partial penetration, wellbore storage) on constant-rate test response; and the use of pressure derivatives in diagnostic analysis for the identification of specific formation, well construction, and boundary conditions

  11. Glucose consumption and rate constants for 18F-fluorodeoxyglucose in human gliomas

    International Nuclear Information System (INIS)

    Ishikawa, Masatsune; Kikuchi, Haruhiko; Nagata, Izumi; Yamagata, Sen; Taki, Waro; Yonekura, Yoshiharu; Nishizawa, Sadahiko; Iwasaki, Yasushi; Mukai, Takao

    1990-01-01

    To investigate the value of direct measurement of the rate constants by performing 18 F-labeled fluorodeoxyglucose (FDG) studies of glucose consumption in human gliomas in vivo, a kinetic method with 3- and 4-parameter rate constant models for FDG uptake was used to analyze data from dynamic scans obtained by positron emission tomography after injection of FDG into 14 patients with glioma. The results were compared with those obtained by the autoradiographic method using 3- and 4-parameter rate constant models. There were no significant differences in the glucose consumption calculated by the four different methods both in the gliomas and in the contralateral intact cortex. It was found that the rate constant k4 could be neglected in calculation of glucose consumption in gliomas as well as in the contralateral intact cortex. The rate constant k3, an index of hexokinase function, was higher in malignant gliomas than in benign gliomas and was close to that in the contralateral cortex. This study indicates that the 3-parameter autoradiographic method, which is the most common one used in clinical practice, is reliable for the calculation of glucose consumption in human gliomas. Furthermore, direct measurement of the regional rate constants for FDG by the kinetic method was found to be useful for evaluation of the biochemical and physiological characteristics of human gliomas in vivo. (author)

  12. Higher success rate with transcranial electrical stimulation of motor-evoked potentials using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery.

    Science.gov (United States)

    Shigematsu, Hideki; Kawaguchi, Masahiko; Hayashi, Hironobu; Takatani, Tsunenori; Iwata, Eiichiro; Tanaka, Masato; Okuda, Akinori; Morimoto, Yasuhiko; Masuda, Keisuke; Tanaka, Yuu; Tanaka, Yasuhito

    2017-10-01

    During spine surgery, the spinal cord is electrophysiologically monitored via transcranial electrical stimulation of motor-evoked potentials (TES-MEPs) to prevent injury. Transcranial electrical stimulation of motor-evoked potential involves the use of either constant-current or constant-voltage stimulation; however, there are few comparative data available regarding their ability to adequately elicit compound motor action potentials. We hypothesized that the success rates of TES-MEP recordings would be similar between constant-current and constant-voltage stimulations in patients undergoing spine surgery. The objective of this study was to compare the success rates of TES-MEP recordings between constant-current and constant-voltage stimulation. This is a prospective, within-subject study. Data from 100 patients undergoing spinal surgery at the cervical, thoracic, or lumbar level were analyzed. The success rates of the TES-MEP recordings from each muscle were examined. Transcranial electrical stimulation with constant-current and constant-voltage stimulations at the C3 and C4 electrode positions (international "10-20" system) was applied to each patient. Compound muscle action potentials were bilaterally recorded from the abductor pollicis brevis (APB), deltoid (Del), abductor hallucis (AH), tibialis anterior (TA), gastrocnemius (GC), and quadriceps (Quad) muscles. The success rates of the TES-MEP recordings from the right Del, right APB, bilateral Quad, right TA, right GC, and bilateral AH muscles were significantly higher using constant-voltage stimulation than those using constant-current stimulation. The overall success rates with constant-voltage and constant-current stimulations were 86.3% and 68.8%, respectively (risk ratio 1.25 [95% confidence interval: 1.20-1.31]). The success rates of TES-MEP recordings were higher using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery. Copyright © 2017

  13. Quantitative comparison of errors in 15N transverse relaxation rates measured using various CPMG phasing schemes

    International Nuclear Information System (INIS)

    Myint Wazo; Cai Yufeng; Schiffer, Celia A.; Ishima, Rieko

    2012-01-01

    Nitrogen-15 Carr-Purcell-Meiboom-Gill (CPMG) transverse relaxation experiment are widely used to characterize protein backbone dynamics and chemical exchange parameters. Although an accurate value of the transverse relaxation rate, R 2 , is needed for accurate characterization of dynamics, the uncertainty in the R 2 value depends on the experimental settings and the details of the data analysis itself. Here, we present an analysis of the impact of CPMG pulse phase alternation on the accuracy of the 15 N CPMG R 2 . Our simulations show that R 2 can be obtained accurately for a relatively wide spectral width, either using the conventional phase cycle or using phase alternation when the r.f. pulse power is accurately calibrated. However, when the r.f. pulse is miscalibrated, the conventional CPMG experiment exhibits more significant uncertainties in R 2 caused by the off-resonance effect than does the phase alternation experiment. Our experiments show that this effect becomes manifest under the circumstance that the systematic error exceeds that arising from experimental noise. Furthermore, our results provide the means to estimate practical parameter settings that yield accurate values of 15 N transverse relaxation rates in the both CPMG experiments.

  14. A comparison of methods for calculating NMR cross-relaxation rates (NOESY and ROESY intensities) in small peptides

    NARCIS (Netherlands)

    Feenstra, K Anton; Peter, Christine; Scheek, Ruud M; van Gunsteren, Wilfred F; Mark, Alan E

    Three methods for calculating nuclear magnetic resonance cross-relaxation rates from molecular dynamics simulations of small flexible molecules have been compared in terms of their ability to reproduce relaxation data obtained experimentally and to produce consistent descriptions of the system. The

  15. [Effects of Monochord Music on Heart Rate Variability and Self-Reports of Relaxation in Healthy Adults].

    Science.gov (United States)

    Gäbel, Christine; Garrido, Natalia; Koenig, Julian; Hillecke, Thomas Karl; Warth, Marco

    Music-based interventions are considered an effective and low-cost treatment option for stress-related symptoms. The present study aimed to examine the trajectories of the psychophysiological response in apparently healthy participants during a music-based relaxation intervention compared to a verbal relaxation exercise. 70 participants were assigned to either receptive live music (experimental group) or a prerecorded verbal relaxation exercise (control group). Self-ratings of relaxation were assessed before and after each intervention on visual analogue scales and the Relaxation Inventory (RI). The heart rate variability (HRV) was continuously recorded throughout the sessions. Statistical analysis focused on HRV parameters indicative of parasympathetic cardiovascular outflow. We found significant quadratic main effects for time on the mean R-R interval (heart rate), the high-frequency power of HRV (indicative of parasympathetic activity), and the self-ratings of relaxation in both groups. A significant group × time interaction was observed for the cognitive tension subscale of the RI. Participants in both groups showed psychophysiological changes indicative of greater relaxation over the course of the interventions. However, differences between groups were only marginal. Music might be effective in relieving stress and promoting relaxation by altering the autonomic nervous system function. Future studies need to explore the long-term outcomes of such interventions. © 2017 S. Karger GmbH, Freiburg.

  16. Reaction rate constants of H-abstraction by OH from large ketones: measurements and site-specific rate rules.

    Science.gov (United States)

    Badra, Jihad; Elwardany, Ahmed E; Farooq, Aamir

    2014-06-28

    Reaction rate constants of the reaction of four large ketones with hydroxyl (OH) are investigated behind reflected shock waves using OH laser absorption. The studied ketones are isomers of hexanone and include 2-hexanone, 3-hexanone, 3-methyl-2-pentanone, and 4-methl-2-pentanone. Rate constants are measured under pseudo-first-order kinetics at temperatures ranging from 866 K to 1375 K and pressures near 1.5 atm. The reported high-temperature rate constant measurements are the first direct measurements for these ketones under combustion-relevant conditions. The effects of the position of the carbonyl group (C=O) and methyl (CH3) branching on the overall rate constant with OH are examined. Using previously published data, rate constant expressions covering, low-to-high temperatures, are developed for acetone, 2-butanone, 3-pentanone, and the hexanone isomers studied here. These Arrhenius expressions are used to devise rate rules for H-abstraction from various sites. Specifically, the current scheme is applied with good success to H-abstraction by OH from a series of n-ketones. Finally, general expressions for primary and secondary site-specific H-abstraction by OH from ketones are proposed as follows (the subscript numbers indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon atom, the subscript CO indicates that the abstraction is from a site next to the carbonyl group (C=O), and the prime is used to differentiate different neighboring environments of a methylene group):

  17. Convergence analysis of Chauvin's PCA learning algorithm with a constant learning rate

    International Nuclear Information System (INIS)

    Lv Jiancheng; Yi Zhang

    2007-01-01

    The convergence of Chauvin's PCA learning algorithm with a constant learning rate is studied in this paper by using a DDT method (deterministic discrete-time system method). Different from the DCT method (deterministic continuous-time system method), the DDT method does not require that the learning rate converges to zero. An invariant set of Chauvin's algorithm with a constant learning rate is obtained so that the non-divergence of this algorithm can be guaranteed. Rigorous mathematic proofs are provided to prove the local convergence of this algorithm

  18. Convergence analysis of Chauvin's PCA learning algorithm with a constant learning rate

    Energy Technology Data Exchange (ETDEWEB)

    Lv Jiancheng [Computational Intelligence Laboratory, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054 (China); Yi Zhang [Computational Intelligence Laboratory, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054 (China)]. E-mail: zhangyi@uestc.edu.cn

    2007-05-15

    The convergence of Chauvin's PCA learning algorithm with a constant learning rate is studied in this paper by using a DDT method (deterministic discrete-time system method). Different from the DCT method (deterministic continuous-time system method), the DDT method does not require that the learning rate converges to zero. An invariant set of Chauvin's algorithm with a constant learning rate is obtained so that the non-divergence of this algorithm can be guaranteed. Rigorous mathematic proofs are provided to prove the local convergence of this algorithm.

  19. Reaction mechanisms and rate constants of waste degradation in landfill bioreactor systems with enzymatic-enhancement.

    Science.gov (United States)

    Jayasinghe, P A; Hettiaratchi, J P A; Mehrotra, A K; Kumar, S

    2014-06-01

    Augmenting leachate before recirculation with peroxidase enzymes is a novel method to increase the available carbon, and therefore the food supply to microorganisms at the declining phase of the anaerobic landfill bioreactor operation. In order to optimize the enzyme-catalyzed leachate recirculation process, it is necessary to identify the reaction mechanisms and determine rate constants. This paper presents a kinetic model developed to ascertain the reaction mechanisms and determine the rate constants for enzyme catalyzed anaerobic waste degradation. The maximum rate of reaction (Vmax) for MnP enzyme-catalyzed reactors was 0.076 g(TOC)/g(DS).day. The catalytic turnover number (k(cat)) of the MnP enzyme-catalyzed was 506.7 per day while the rate constant (k) of the un-catalyzed reaction was 0.012 per day. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Rate constant and reaction coordinate of Trp-cage folding in explicit water

    NARCIS (Netherlands)

    Juraszek, J.; Bolhuis, P.G.

    2008-01-01

    We report rate constant calculations and a reaction coordinate analysis of the rate-limiting folding and unfolding process of the Trp-cage mini-protein in explicit solvent using transition interface sampling. Previous transition path sampling simulations revealed that in this (un)folding process the

  1. Microscopic Rate Constants of Crystal Growth from Molecular Dynamic Simulations Combined with Metadynamics

    Directory of Open Access Journals (Sweden)

    Dániel Kozma

    2012-01-01

    Full Text Available Atomistic simulation of crystal growth can be decomposed into two steps: the determination of the microscopic rate constants and a mesoscopic kinetic Monte Carlo simulation. We proposed a method to determine kinetic rate constants of crystal growth. We performed classical molecular dynamics on the equilibrium liquid/crystal interface of argon. Metadynamics was used to explore the free energy surface of crystal growth. A crystalline atom was selected at the interface, and it was displaced to the liquid phase by adding repulsive Gaussian potentials. The activation free energy of this process was calculated as the maximal potential energy density of the Gaussian potentials. We calculated the rate constants at different interfacial structures using the transition state theory. In order to mimic real crystallization, we applied a temperature difference in the calculations of the two opposite rate constants, and they were applied in kinetic Monte Carlo simulation. The novelty of our technique is that it can be used for slow crystallization processes, while the simple following of trajectories can be applied only for fast reactions. Our method is a possibility for determination of elementary rate constants of crystal growth that seems to be necessary for the long-time goal of computer-aided crystal design.

  2. Extraction of elementary rate constants from global network analysis of E. coli central metabolism

    Directory of Open Access Journals (Sweden)

    Broderick Gordon

    2008-05-01

    Full Text Available Abstract Background As computational performance steadily increases, so does interest in extending one-particle-per-molecule models to larger physiological problems. Such models however require elementary rate constants to calculate time-dependent rate coefficients under physiological conditions. Unfortunately, even when in vivo kinetic data is available, it is often in the form of aggregated rate laws (ARL that do not specify the required elementary rate constants corresponding to mass-action rate laws (MRL. There is therefore a need to develop a method which is capable of automatically transforming ARL kinetic information into more detailed MRL rate constants. Results By incorporating proteomic data related to enzyme abundance into an MRL modelling framework, here we present an efficient method operating at a global network level for extracting elementary rate constants from experiment-based aggregated rate law (ARL models. The method combines two techniques that can be used to overcome the difficult properties in parameterization. The first, a hybrid MRL/ARL modelling technique, is used to divide the parameter estimation problem into sub-problems, so that the parameters of the mass action rate laws for each enzyme are estimated in separate steps. This reduces the number of parameters that have to be optimized simultaneously. The second, a hybrid algebraic-numerical simulation and optimization approach, is used to render some rate constants identifiable, as well as to greatly narrow the bounds of the other rate constants that remain unidentifiable. This is done by incorporating equality constraints derived from the King-Altman and Cleland method into the simulated annealing algorithm. We apply these two techniques to estimate the rate constants of a model of E. coli glycolytic pathways. The simulation and statistical results show that our innovative method performs well in dealing with the issues of high computation cost, stiffness, local

  3. Extraction of elementary rate constants from global network analysis of E. coli central metabolism

    Science.gov (United States)

    Zhao, Jiao; Ridgway, Douglas; Broderick, Gordon; Kovalenko, Andriy; Ellison, Michael

    2008-01-01

    Background As computational performance steadily increases, so does interest in extending one-particle-per-molecule models to larger physiological problems. Such models however require elementary rate constants to calculate time-dependent rate coefficients under physiological conditions. Unfortunately, even when in vivo kinetic data is available, it is often in the form of aggregated rate laws (ARL) that do not specify the required elementary rate constants corresponding to mass-action rate laws (MRL). There is therefore a need to develop a method which is capable of automatically transforming ARL kinetic information into more detailed MRL rate constants. Results By incorporating proteomic data related to enzyme abundance into an MRL modelling framework, here we present an efficient method operating at a global network level for extracting elementary rate constants from experiment-based aggregated rate law (ARL) models. The method combines two techniques that can be used to overcome the difficult properties in parameterization. The first, a hybrid MRL/ARL modelling technique, is used to divide the parameter estimation problem into sub-problems, so that the parameters of the mass action rate laws for each enzyme are estimated in separate steps. This reduces the number of parameters that have to be optimized simultaneously. The second, a hybrid algebraic-numerical simulation and optimization approach, is used to render some rate constants identifiable, as well as to greatly narrow the bounds of the other rate constants that remain unidentifiable. This is done by incorporating equality constraints derived from the King-Altman and Cleland method into the simulated annealing algorithm. We apply these two techniques to estimate the rate constants of a model of E. coli glycolytic pathways. The simulation and statistical results show that our innovative method performs well in dealing with the issues of high computation cost, stiffness, local minima and uncertainty

  4. Big bang nucleosynthesis with a varying fine structure constant and nonstandard expansion rate

    International Nuclear Information System (INIS)

    Ichikawa, Kazuhide; Kawasaki, Masahiro

    2004-01-01

    We calculate the primordial abundances of light elements produced during big bang nucleosynthesis when the fine structure constant and/or the cosmic expansion rate take nonstandard values. We compare them with the recent values of observed D, 4 He, and 7 Li abundances, which show a slight inconsistency among themselves in the standard big bang nucleosynthesis scenario. This inconsistency is not solved by considering either a varying fine structure constant or a nonstandard expansion rate separately but solutions are found by their simultaneous existence

  5. An Empirical Rate Constant Based Model to Study Capacity Fading in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Srivatsan Ramesh

    2015-01-01

    Full Text Available A one-dimensional model based on solvent diffusion and kinetics to study the formation of the SEI (solid electrolyte interphase layer and its impact on the capacity of a lithium ion battery is developed. The model uses the earlier work on silicon oxidation but studies the kinetic limitations of the SEI growth process. The rate constant of the SEI formation reaction at the anode is seen to play a major role in film formation. The kinetics of the reactions for capacity fading for various battery systems are studied and the rate constants are evaluated. The model is used to fit the capacity fade in different battery systems.

  6. Reaction rate constant of HO2+O3 measured by detecting HO2 from photofragment fluorescence

    Science.gov (United States)

    Manzanares, E. R.; Suto, Masako; Lee, Long C.; Coffey, Dewitt, Jr.

    1986-01-01

    A room-temperature discharge-flow system investigation of the rate constant for the reaction 'HO2 + O3 yields OH + 2O2' has detected HO2 through the OH(A-X) fluorescence produced by photodissociative excitation of HO2 at 147 nm. A reaction rate constant of 1.9 + or - 0.3 x 10 to the -15th cu cm/molecule per sec is obtained from first-order decay of HO2 in excess O3; this agrees well with published data.

  7. Impact of uncertainties in inorganic chemical rate constants on tropospheric composition and ozone radiative forcing

    Directory of Open Access Journals (Sweden)

    B. Newsome

    2017-12-01

    Full Text Available Chemical rate constants determine the composition of the atmosphere and how this composition has changed over time. They are central to our understanding of climate change and air quality degradation. Atmospheric chemistry models, whether online or offline, box, regional or global, use these rate constants. Expert panels evaluate laboratory measurements, making recommendations for the rate constants that should be used. This results in very similar or identical rate constants being used by all models. The inherent uncertainties in these recommendations are, in general, therefore ignored. We explore the impact of these uncertainties on the composition of the troposphere using the GEOS-Chem chemistry transport model. Based on the Jet Propulsion Laboratory (JPL and International Union of Pure and Applied Chemistry (IUPAC evaluations we assess the influence of 50 mainly inorganic rate constants and 10 photolysis rates on tropospheric composition through the use of the GEOS-Chem chemistry transport model. We assess the impact on four standard metrics: annual mean tropospheric ozone burden, surface ozone and tropospheric OH concentrations, and tropospheric methane lifetime. Uncertainty in the rate constants for NO2 + OH →M  HNO3 and O3 + NO  →  NO2 + O2 are the two largest sources of uncertainty in these metrics. The absolute magnitude of the change in the metrics is similar if rate constants are increased or decreased by their σ values. We investigate two methods of assessing these uncertainties, addition in quadrature and a Monte Carlo approach, and conclude they give similar outcomes. Combining the uncertainties across the 60 reactions gives overall uncertainties on the annual mean tropospheric ozone burden, surface ozone and tropospheric OH concentrations, and tropospheric methane lifetime of 10, 11, 16 and 16 %, respectively. These are larger than the spread between models in recent model intercomparisons. Remote

  8. Determination of reaction rate constants for alkylation of 4-(p-nitrobenzyl) pyridine by different alkylating agents.

    Science.gov (United States)

    Walles, S A

    1980-02-01

    The rate constants have been determined for the reaction between some different alkylating agents and 4-(p-nitrobenzyl) pyridine (NBP) in methanol. These constants have been compared with those for alkylation of aniline in water. All the constants were lower in methanol than in water but in different degrees. The rate constants of the different alkylating agents have been calculated at a nucleophilic strength n=2. The genetic risk defined as the degree of alkylation of a nucleophile (n=2) is equivalent to the rate constant kn=2 and the target dose. The dependence of the genetic risk on the rate constant (kn=2) is discussed.

  9. Free energy correlation of rate constants for electron transfer between organic systems in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Meisel, D

    1975-07-15

    Recent experimental data concerning the rate constants for electron transfer reactions of organic systems in aqueous solutions and their equilibrium constants is examined for possible correlation. The data is correlated quite well by the Marcus theory, if a reorganization parameter, lambda, of 18 kcal/mole is used. Assuming that the only contribution to lambda is the free energy of rearrangement of the water molecules, an effective radius of 5 A for the reacting entities is estimated. For the zero free energy change reaction, i.e., electron exchange between a radical ion and its parent molecule, a rate constant of about 5 X 10/sup 7/ M/sup -1/ s/sup -1/ is predicted. (auth)

  10. Vogel-Fulcher dependence of relaxation rates in a nematic monomer and elastomer

    Science.gov (United States)

    Shenoy, D.; Filippov, S.; Aliev, F.; Keller, P.; Thomsen, D.; Ratna, B.

    2000-12-01

    Dielectric relaxation spectroscopy is used to study the relaxation processes in a nematic monomer and the corresponding cross-linked polymer nematic liquid crystal (elastomer). In the frequency window 10 mHz to 2 GHz the monomer liquid crystal shows a single relaxation whereas the polymer exhibits three relaxation processes, two of which are quantitatively analyzed. The temperature dependence of relaxation times in both the monomer and polymer follows a Vogel-Fulcher behavior. The relaxation processes are identified with specific molecular motions and activation energies are calculated in a linear approximation for comparison with literature data.

  11. Application of accelerated evaluation method of alteration temperature and constant dose rate irradiation on bipolar linear regulator LM317

    International Nuclear Information System (INIS)

    Deng Wei; Wu Xue; Wang Xin; Zhang Jinxin; Zhang Xiaofu; Zheng Qiwen; Ma Wuying; Lu Wu; Guo Qi; He Chengfa

    2014-01-01

    With different irradiation methods including high dose rate irradiation, low dose rate irradiation, alteration temperature and constant dose rate irradiation, and US military standard constant high temperature and constant dose rate irradiation, the ionizing radiation responses of bipolar linear regulator LM317 from three different companies were investigated under the operating and zero biases. The results show that compared with constant high temperature and constant dose rate irradiation method, the alteration temperature and constant dose rate irradiation method can not only very rapidly and accurately evaluate the dose rate effect of three bipolar linear regulators, but also well simulate the damage of low dose rate irradiation. Experiment results make the alteration temperature and constant dose rate irradiation method successfully apply to bipolar linear regulator. (authors)

  12. Spin fluctuations in iron based superconductors probed by NMR relaxation rate

    Energy Technology Data Exchange (ETDEWEB)

    Graefe, Uwe; Kuehne, Tim; Wurmehl, Sabine; Buechner, Bernd; Grafe, Hans-Joachim [IFW Dresden, Institute for Solid State Research, PF 270116, 01171 Dresden (Germany); Hammerath, Franziska [IFW Dresden, Institute for Solid State Research, PF 270116, 01171 Dresden (Germany); Department of Physics ' ' A. Volta' ' , University of Pavia-CNISM, I-27100 Pavia (Italy); Lang, Guillaume [3LPEM-UPR5, CNRS, ESPCI Paris Tech, 10 Rue Vauquelin, 75005 Paris (France)

    2013-07-01

    We present {sup 75}As nuclear magnetic resonance (NMR) results in F doped LaOFeAs iron pnictides. In the underdoped superconducting samples, pronounced spin fluctuations lead to a peak in the NMR spin lattice relaxation rate, (T{sub 1}T){sup -1}. The peak shows a typical field dependence that indicates a critical slowing of spin fluctuations: it is reduced in height and shifted to higher temperatures. In contrast, a similar peak in the underdoped magnetic samples at the ordering temperature of the spin density wave does not show such a field dependence. Furthermore, the peak is absent in optimally and overdoped samples, suggesting the absence of strong spin fluctuations. Our results indicate a glassy magnetic ordering in the underdoped samples that is in contrast to the often reported Curie Weiss like increase of spin fluctuations towards T{sub c}. Additional measurements of the linewidth and the spin spin relaxation rate are in agreement with such a glassy magnetic ordering that is most likely competing with superconductivity. Our results will be compared to Co doped BaFe{sub 2}As{sub 2}, where a similar peak in (T{sub 1}T){sup -1} has been observed.

  13. Separating the effect of respiration from the heart rate variability for cases of constant harmonic breathing

    Directory of Open Access Journals (Sweden)

    Kircher Michael

    2015-09-01

    Full Text Available Heart Rate Variability studies are a known measure for the autonomous control of the heart rate. In special situations, its interpretation can be ambiguous, since the respiration has a major influence on the heart rate variability. For this reason it has often been proposed to measure Heart Rate Variability, while the subjects are breathing at a constant respiration rate. That way the spectral influence of the respiration is known. In this work we propose to remove this constant respiratory influence from the heart rate and the Heart Rate Variability parameters to gain respiration free autonomous controlled heart rate signal. The spectral respiratory component in the heart rate signal is detected and characterized. Subsequently the respiratory effect on Heart Rate Variability is removed using spectral filtering approaches, such as the Notch filter or the Raised Cosine filter. As a result new decoupled Heart Variability parameters are gained, which could lead to new additional interpretations of the autonomous control of the heart rate.

  14. Some chaotic behaviors in a MCA learning algorithm with a constant learning rate

    International Nuclear Information System (INIS)

    Lv Jiancheng; Yi Zhang

    2007-01-01

    Douglas's minor component analysis algorithm with a constant learning rate has both stability and chaotic dynamical behavior under some conditions. The paper explores such dynamical behavior of this algorithm. Certain stability and chaos of this algorithm are derived. Waveform plots, Lyapunov exponents and bifurcation diagrams are presented to illustrate the existence of chaotic behavior

  15. Theoretical and Shock Tube Study of the Rate Constants for Hydrogen Abstraction Reactions of Ethyl Formate

    KAUST Repository

    Wu, Junjun; Khaled, Fathi; Ning, Hongbo; Ma, Liuhao; Farooq, Aamir; Ren, Wei

    2017-01-01

    We report a systematic chemical kinetics study of the H-atom abstractions from ethyl formate (EF) by H, O(3P), CH3, OH, and HO2 radicals. The geometry optimization and frequency calculation of all the species were conducted using the M06 method and the cc-pVTZ basis set. The one-dimensional hindered rotor treatment of the reactants and transition states and the intrinsic reaction coordinate analysis were also performed at the M06/cc-pVTZ level of theory. The relative electronic energies were calculated at the CCSD(T)/cc-pVXZ (where X = D, T) level of theory and further extrapolated to the complete basis set limit. Rate constants for the tittle reactions were calculated over the temperature range of 500‒2500 K by the transition state theory (TST) in conjunction with asymmetric Eckart tunneling effect. In addition, the rate constants of H-abstraction by hydroxyl radical were measured in shock tube experiments at 900‒1321 K and 1.4‒2.0 atm. Our theoretical rate constants of OH + EF → Products agree well with the experimental results within 15% over the experimental temperature range of 900‒1321 K. Branching ratios for the five types of H-abstraction reactions were also determined from their individual site-specific rate constants.

  16. Determination of rate constants in second-order kinetics using UV-visible spectroscopy

    NARCIS (Netherlands)

    Bijlsma, S.; Boelens, H. F. M.; Smilde, A. R.

    2001-01-01

    A general method for estimating reaction rate constants of chemical reactions using ultraviolet-visible (UV-vis) spectroscopy is presented. The only requirement is that some of the chemical components involved be spectroscopically active. The method uses the combination of spectroscopic measurements

  17. The ruin probability of a discrete time risk model under constant interest rate with heavy tails

    NARCIS (Netherlands)

    Tang, Q.

    2004-01-01

    This paper investigates the ultimate ruin probability of a discrete time risk model with a positive constant interest rate. Under the assumption that the gross loss of the company within one year is subexponentially distributed, a simple asymptotic relation for the ruin probability is derived and

  18. Constant savings rates and quasi-arithmetic population growth under exhaustible resource constraints

    NARCIS (Netherlands)

    Asheim, G.B.; Buchholz, W.; Hartwick, J.M.; Mitra, T.; Withagen, C.A.A.M.

    2007-01-01

    In the Dasgupta–Heal–Solow–Stiglitz (DHSS) model of capital accumulation and resource depletion we show the following equivalence: if an efficient path has constant (gross and net of population growth) savings rates, then population growth must be quasi-arithmetic and the path is a maximin or a

  19. Theoretical and Shock Tube Study of the Rate Constants for Hydrogen Abstraction Reactions of Ethyl Formate

    KAUST Repository

    Wu, Junjun

    2017-08-03

    We report a systematic chemical kinetics study of the H-atom abstractions from ethyl formate (EF) by H, O(3P), CH3, OH, and HO2 radicals. The geometry optimization and frequency calculation of all the species were conducted using the M06 method and the cc-pVTZ basis set. The one-dimensional hindered rotor treatment of the reactants and transition states and the intrinsic reaction coordinate analysis were also performed at the M06/cc-pVTZ level of theory. The relative electronic energies were calculated at the CCSD(T)/cc-pVXZ (where X = D, T) level of theory and further extrapolated to the complete basis set limit. Rate constants for the tittle reactions were calculated over the temperature range of 500‒2500 K by the transition state theory (TST) in conjunction with asymmetric Eckart tunneling effect. In addition, the rate constants of H-abstraction by hydroxyl radical were measured in shock tube experiments at 900‒1321 K and 1.4‒2.0 atm. Our theoretical rate constants of OH + EF → Products agree well with the experimental results within 15% over the experimental temperature range of 900‒1321 K. Branching ratios for the five types of H-abstraction reactions were also determined from their individual site-specific rate constants.

  20. USE OF ROUGH SETS AND SPECTRAL DATA FOR BUILDING PREDICTIVE MODELS OF REACTION RATE CONSTANTS

    Science.gov (United States)

    A model for predicting the log of the rate constants for alkaline hydrolysis of organic esters has been developed with the use of gas-phase min-infrared library spectra and a rule-building software system based on the mathematical theory of rough sets. A diverse set of 41 esters ...

  1. Competitive kinetics as a tool to determine rate constants for reduction of ferrylmyoglobin by food components

    DEFF Research Database (Denmark)

    Jongberg, Sisse; Lund, Marianne Nissen; Pattison, David I.

    2016-01-01

    Competitive kinetics were applied as a tool to determine apparent rate constants for the reduction of hypervalent haem pigment ferrylmyoglobin (MbFe(IV)=O) by proteins and phenols in aqueous solution of pH 7.4 and I = 1.0 at 25 °C. Reduction of MbFe(IV)=O by a myofibrillar protein isolate (MPI) f...

  2. Neural estimation of kinetic rate constants from dynamic PET-scans

    DEFF Research Database (Denmark)

    Fog, Torben L.; Nielsen, Lars Hupfeldt; Hansen, Lars Kai

    1994-01-01

    A feedforward neural net is trained to invert a simple three compartment model describing the tracer kinetics involved in the metabolism of [18F]fluorodeoxyglucose in the human brain. The network can estimate rate constants from positron emission tomography sequences and is about 50 times faster ...

  3. T1 relaxation time constants, influence of oxygen, and the oxygen transfer function of the human lung at 1.5 T—A meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Olaf, E-mail: od@dtrx.net [Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich (Germany); Gaass, Thomas [Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich (Germany); Comprehensive Pneumology Center, German Center for Lung Research, Munich (Germany); Reiser, Maximilian F. [Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich (Germany)

    2017-01-15

    Purpose: To pool and summarize published data from magnetic resonance longitudinal relaxation measurements of the human lung at 1.5 T to provide a reliable basis of T{sub 1} relaxation time constants of healthy lung tissue both under respiration of room air and of pure oxygen. In particular, the oxygen-induced shortening of T{sub 1} was evaluated. Materials and methods: The PubMed database was comprehensively searched up to June 2016 for original publications in English containing quantitative T{sub 1} data (at least mean values and standard deviations) of the lung parenchyma of healthy subjects (minimum subject number: 3) at 1.5 T. From all included publications, T{sub 1} values of the lung of healthy subjects were extracted (inhaling room air and, if available, inhaling pure oxygen). Weighted mean values and standard deviations of all extracted data and the oxygen transfer function (OTF) were calculated. Results: 22 publications were included with a total number of 188 examined healthy subjects. 103 of these subjects (from 13 studies) were examined while breathing pure oxygen and room air; 85 subjects were examined only under room-air conditions. The weighted mean value (weighted sample standard deviation) of the room-air T{sub 1} values over all 22 studies was 1196 ms (152 ms). Based on studies with room-air and oxygen results, the mean T{sub 1} value at room-air conditions was 1172 ms (161 ms); breathing pure oxygen, the mean T{sub 1} value was reduced to 1054 ms (138 ms). This corresponds to a mean T{sub 1} reduction by 118 ms (35 ms) or 10.0 % (2.3 %) and to a mean OTF value of 1.22 (0.32) × 10{sup −3} s{sup −1}/(%O{sub 2}). Conclusion: This meta-analysis with data from 188 subjects indicates that the average T{sub 1} relaxation time constant of healthy lung tissue at 1.5 T is distributed around 1200 ms with a standard deviation of about 150 ms; breathing pure oxygen reduces this value significantly by 10 % to about 1050 ms.

  4. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    Science.gov (United States)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  5. Efficient quantum-classical method for computing thermal rate constant of recombination: application to ozone formation.

    Science.gov (United States)

    Ivanov, Mikhail V; Babikov, Dmitri

    2012-05-14

    Efficient method is proposed for computing thermal rate constant of recombination reaction that proceeds according to the energy transfer mechanism, when an energized molecule is formed from reactants first, and is stabilized later by collision with quencher. The mixed quantum-classical theory for the collisional energy transfer and the ro-vibrational energy flow [M. Ivanov and D. Babikov, J. Chem. Phys. 134, 144107 (2011)] is employed to treat the dynamics of molecule + quencher collision. Efficiency is achieved by sampling simultaneously (i) the thermal collision energy, (ii) the impact parameter, and (iii) the incident direction of quencher, as well as (iv) the rotational state of energized molecule. This approach is applied to calculate third-order rate constant of the recombination reaction that forms the (16)O(18)O(16)O isotopomer of ozone. Comparison of the predicted rate vs. experimental result is presented.

  6. Constant rate natural gas production from a well in a hydrate reservoir

    International Nuclear Information System (INIS)

    Ji Chuang; Ahmadi, Goodarz; Smith, Duane H.

    2003-01-01

    Using a computational model, production of natural gas at a constant rate from a well that is drilled into a confined methane hydrate reservoir is studied. It is assumed that the pores in the reservoir are partially saturated with hydrate. A linearized model for an axisymmetric condition with a fixed well output is used in the analysis. For different reservoir temperatures and various well outputs, time evolutions of temperature and pressure profiles, as well as the gas flow rate in the hydrate zone and the gas region, are evaluated. The distance of the decomposition front from the well as a function of time is also computed. It is shown that to maintain a constant natural gas production rate, the well pressure must be decreased with time. A constant low production rate can be sustained for a long duration of time, but a high production rate demands unrealistically low pressure at the well after a relatively short production time. The simulation results show that the process of natural gas production in a hydrate reservoir is a sensitive function of reservoir temperature and hydrate zone permeability

  7. Temperature dependence of the NMR spin-lattice relaxation rate for spin-1/2 chains

    Science.gov (United States)

    Coira, E.; Barmettler, P.; Giamarchi, T.; Kollath, C.

    2016-10-01

    We use recent developments in the framework of a time-dependent matrix product state method to compute the nuclear magnetic resonance relaxation rate 1 /T1 for spin-1/2 chains under magnetic field and for different Hamiltonians (XXX, XXZ, isotropically dimerized). We compute numerically the temperature dependence of the 1 /T1 . We consider both gapped and gapless phases, and also the proximity of quantum critical points. At temperatures much lower than the typical exchange energy scale, our results are in excellent agreement with analytical results, such as the ones derived from the Tomonaga-Luttinger liquid (TLL) theory and bosonization, which are valid in this regime. We also cover the regime for which the temperature T is comparable to the exchange coupling. In this case analytical theories are not appropriate, but this regime is relevant for various new compounds with exchange couplings in the range of tens of Kelvin. For the gapped phases, either the fully polarized phase for spin chains or the low-magnetic-field phase for the dimerized systems, we find an exponential decrease in Δ /(kBT ) of the relaxation time and can compute the gap Δ . Close to the quantum critical point our results are in good agreement with the scaling behavior based on the existence of free excitations.

  8. The Rate Constant for the Reaction H + C2H5 at T = 295 - 150K

    Science.gov (United States)

    Pimentel, Andre S.; Payne, Walter A.; Nesbitt, Fred L.; Cody, Regina J.; Stief, Louis J.

    2004-01-01

    The reaction between the hydrogen atom and the ethyl (C2H3) radical is predicted by photochemical modeling to be the most important loss process for C2H5 radicals in the atmospheres of Jupiter and Saturn. This reaction is also one of the major sources for the methyl radicals in these atmospheres. These two simplest hydrocarbon radicals are the initial species for the synthesis of larger hydrocarbons. Previous measurements of the rate constant for the H + C2H5 reaction varied by a factor of five at room temperature, and some studies showed a dependence upon temperature while others showed no such dependence. In addition, the previous studies were at higher temperatures and generally higher pressures than that needed for use in planetary atmospheric models. The rate constant for the reaction H + C2H5 has been measured directly at T = 150, 202 and 295 K and at P = 1.0 Torr He for all temperatures and additionally at P = 0.5 and 2.0 Torr He at T = 202 K. The measurements were performed in a discharge - fast flow system. The decay of the C2H5 radical in the presence of excess hydrogen was monitored by low-energy electron impact mass spectrometry under pseudo-first order conditions. H atoms and C2H5 radicals were generated rapidly and simultaneously by the reaction of fluorine atoms with H2 and C2H6, respectively. The total rate constant was found to be temperature and pressure independent. The measured total rate constant at each temperature are: k(sub 1)(295K) = (1.02+/-0.24)x10(exp -10), k(sub 1)(202K) = (1.02+/-0.22)x10(exp -10) and k(sub 1)(150K) = (0.93+/-0.21)x10(exp -10), all in units of cu cm/molecule/s. The total rate constant derived from all the combined measurements is k(sub 1) = (l.03+/-0.17)x10(exp -10) cu cm/molecule/s. At room temperature our results are about a factor of two higher than the recommended rate constant and a factor of three lower than the most recently published study.

  9. Determination of Methane and Carbon Dioxide Formation Rate Constants for Semi-Continuously Fed Anaerobic Digesters

    Directory of Open Access Journals (Sweden)

    Jan Moestedt

    2015-01-01

    Full Text Available To optimize commercial-scale biogas production, it is important to evaluate the performance of each microbial step in the anaerobic process. Hydrolysis and methanogenesis are usually the rate-limiting steps during digestion of organic waste and by-products. By measuring biogas production and methane concentrations on-line in a semi-continuously fed reactor, gas kinetics can be evaluated. In this study, the rate constants of the fermentative hydrolysis step (kc and the methanogenesis step (km were determined and evaluated in a continuously stirred tank laboratory-scale reactor treating food and slaughterhouse waste and glycerin. A process additive containing Fe2+, Co2+ and Ni2+ was supplied until day 89, after which Ni2+ was omitted. The omission resulted in a rapid decline in the methanogenesis rate constant (km to 70% of the level observed when Ni2+ was present, while kc remained unaffected. This suggests that Ni2+ mainly affects the methanogenic rather than the hydrolytic microorganisms in the system. However, no effect was initially observed when using conventional process monitoring parameters such as biogas yield and volatile fatty acid concentration. Hence, formation rate constants can reveal additional information on process performance and km can be used as a complement to conventional process monitoring tools for semi-continuously fed anaerobic digesters.

  10. Rate constant for the reaction SO + BrO yields SO2 + Br

    Science.gov (United States)

    Brunning, J.; Stief, L.

    1986-01-01

    The rate of the radical-radical reaction SO + BrO yields SO2 + Br has been determined at 298 K in a discharge flow system near 1 torr pressure with detection of SO and BrO via collision-free sampling mass spectrometry. The rate constant was determined using two different methods: measuring the decay of SO radicals in the presence of an excess of BrO and measuring the decay of BrO radicals in excess SO. The results from the two methods are in reasonable agreement and the simple mean of the two values gives the recommended rate constant at 298 K, k = (5.7 + or - 2.0) x 10 to the -11th cu cm/s. This represents the first determination of this rate constant and it is consistent with a previously derived lower limit based on SO2 formation. Comparison is made with other radical-radical reactions involving SO or BrO. The reaction SO + BrO yields SO2 + Br is of interest for models of the upper atmosphere of the earth and provides a potential coupling between atmospheric sulfur and bromine chemistry.

  11. Low-Temperature Experimental and Theoretical Rate Constants for the O(1D) + H2 Reaction.

    Science.gov (United States)

    Hickson, Kevin M; Suleimanov, Yury V

    2017-03-09

    In the present joint experimental and theoretical study, we report thermal rate constants for the O( 1 D) + H 2 reaction within the 50-300 K temperature range. Experimental kinetics measurements were performed using a continuous supersonic flow reactor coupled with pulsed laser photolysis for O( 1 D) production and pulsed laser-induced fluorescence in the vacuum ultraviolet wavelength range (VUV LIF) for O( 1 D) detection. Theoretical rate constants were obtained using the ring polymer molecular dynamics (RPMD) approach over the two lowest potential energy surfaces 1 1 A' and 1 1 A″, which possess barrierless and thermally activated energy profiles, respectively. Both the experimental and theoretical rate constants exhibit a weak temperature dependence. The theoretical results show the dominant role of the 1 1 A' ground state and that contribution of the 1 1 A″ excited state to the total thermal rate decreases dramatically at lower temperature. Agreement between the experimental and theoretical results is good, and the discrepancy does not exceed 25%. It is argued that these differences are likely to be due to nonadiabatic couplings between the 1 1 A' and 2 1 A' surfaces.

  12. Rate constants for the reaction of CF3O radicals with hydrocarbons at 298 K

    DEFF Research Database (Denmark)

    Kelly, C.; Treacy, J.; Sidebottom, H.W.

    1993-01-01

    Rate constant ratios of the reactions of CF3O radicals with a number of hydrocarbons have been determined at 298 +/- 2 K and atmospheric pressure using a relative rate method. Using a previously determined value k(CF30 + C2H6) = 1.2 x 10(-12) cm3 molecule-1 s-1 these rate constant ratios provide...... estimates of the rate constants: k(CF3O + CH4) = (1.2 +/- 0.1) x 10(-14), k(CF3O + c-C3H6) = (3.6 +/- 0.2) x 10(-13), k(CF3O + C3H8) = (4.7 +/- 0.7) x 10(-12), k(CF3O + (CH3)3CH) = (7.2 +/- 0.5) x 10(-12), k(CF3O + C2H4) = (3.0 +/- 0.1) x 10(-11) and k(CF3O + C6H6) = (3.6 +/- 0.1) x 10(-11) cm3 molecule-1 s......-1. The importance of the reactions of CF3O radicals with hydrocarbons under atmospheric conditions is discussed....

  13. Effects of the anion salt nature on the rate constants of the aqueous proton exchange reactions.

    Science.gov (United States)

    Paredes, Jose M; Garzon, Andres; Crovetto, Luis; Orte, Angel; Lopez, Sergio G; Alvarez-Pez, Jose M

    2012-04-28

    The proton-transfer ground-state rate constants of the xanthenic dye 9-[1-(2-methyl-4-methoxyphenyl)]-6-hydroxy-3H-xanthen-3-one (TG-II), recovered by Fluorescence Lifetime Correlation Spectroscopy (FLCS), have proven to be useful to quantitatively reflect specific cation effects in aqueous solutions (J. M. Paredes, L. Crovetto, A. Orte, J. M. Alvarez-Pez and E. M. Talavera, Phys. Chem. Chem. Phys., 2011, 13, 1685-1694). Since these phenomena are more sensitive to anions than to cations, in this paper we have accounted for the influence of salts with the sodium cation in common, and the anion classified according to the empirical Hofmeister series, on the proton transfer rate constants of TG-II. We demonstrate that the presence of ions accelerates the rate of the ground-state proton-exchange reaction in the same order than ions that affect ion solvation in water. The combination of FLCS with a fluorophore undergoing proton transfer reactions in the ground state, along with the desirable feature of a pseudo-dark state when the dye is protonated, allows one unique direct determination of kinetic rate constants of the proton exchange chemical reaction. This journal is © the Owner Societies 2012

  14. Likelihood inference of non-constant diversification rates with incomplete taxon sampling.

    Science.gov (United States)

    Höhna, Sebastian

    2014-01-01

    Large-scale phylogenies provide a valuable source to study background diversification rates and investigate if the rates have changed over time. Unfortunately most large-scale, dated phylogenies are sparsely sampled (fewer than 5% of the described species) and taxon sampling is not uniform. Instead, taxa are frequently sampled to obtain at least one representative per subgroup (e.g. family) and thus to maximize diversity (diversified sampling). So far, such complications have been ignored, potentially biasing the conclusions that have been reached. In this study I derive the likelihood of a birth-death process with non-constant (time-dependent) diversification rates and diversified taxon sampling. Using simulations I test if the true parameters and the sampling method can be recovered when the trees are small or medium sized (fewer than 200 taxa). The results show that the diversification rates can be inferred and the estimates are unbiased for large trees but are biased for small trees (fewer than 50 taxa). Furthermore, model selection by means of Akaike's Information Criterion favors the true model if the true rates differ sufficiently from alternative models (e.g. the birth-death model is recovered if the extinction rate is large and compared to a pure-birth model). Finally, I applied six different diversification rate models--ranging from a constant-rate pure birth process to a decreasing speciation rate birth-death process but excluding any rate shift models--on three large-scale empirical phylogenies (ants, mammals and snakes with respectively 149, 164 and 41 sampled species). All three phylogenies were constructed by diversified taxon sampling, as stated by the authors. However only the snake phylogeny supported diversified taxon sampling. Moreover, a parametric bootstrap test revealed that none of the tested models provided a good fit to the observed data. The model assumptions, such as homogeneous rates across species or no rate shifts, appear to be

  15. Likelihood inference of non-constant diversification rates with incomplete taxon sampling.

    Directory of Open Access Journals (Sweden)

    Sebastian Höhna

    Full Text Available Large-scale phylogenies provide a valuable source to study background diversification rates and investigate if the rates have changed over time. Unfortunately most large-scale, dated phylogenies are sparsely sampled (fewer than 5% of the described species and taxon sampling is not uniform. Instead, taxa are frequently sampled to obtain at least one representative per subgroup (e.g. family and thus to maximize diversity (diversified sampling. So far, such complications have been ignored, potentially biasing the conclusions that have been reached. In this study I derive the likelihood of a birth-death process with non-constant (time-dependent diversification rates and diversified taxon sampling. Using simulations I test if the true parameters and the sampling method can be recovered when the trees are small or medium sized (fewer than 200 taxa. The results show that the diversification rates can be inferred and the estimates are unbiased for large trees but are biased for small trees (fewer than 50 taxa. Furthermore, model selection by means of Akaike's Information Criterion favors the true model if the true rates differ sufficiently from alternative models (e.g. the birth-death model is recovered if the extinction rate is large and compared to a pure-birth model. Finally, I applied six different diversification rate models--ranging from a constant-rate pure birth process to a decreasing speciation rate birth-death process but excluding any rate shift models--on three large-scale empirical phylogenies (ants, mammals and snakes with respectively 149, 164 and 41 sampled species. All three phylogenies were constructed by diversified taxon sampling, as stated by the authors. However only the snake phylogeny supported diversified taxon sampling. Moreover, a parametric bootstrap test revealed that none of the tested models provided a good fit to the observed data. The model assumptions, such as homogeneous rates across species or no rate shifts, appear

  16. Frost heave susceptibility of saturated soil under constant rate of freezing

    Science.gov (United States)

    Ryokai, K.; Iguro, M.; Yoneyama, K.

    Introduced are the results of experiments carried out to quantitatively obtain the frost heave pressure and displacement of soil subjected to artificial freezing or freezing around in-ground liquefied natural gas storage tanks. This experiment is conducted to evaluate the frost heave susceptibility of saturated soil under overconsolidation. In other words, this experiment was carried out to obtain the relation of the over-burden pressure and freezing rate to the frost heave ratio by observing the frost heave displacement and freezing time of specimens by freezing the specimens at a constant freezing rate under a constant overburden pressure, while letting water freely flow in and out of the system. Introduced are the procedures for frost heave test required to quantitatively obtain the frost heave displacement and pressure of soil. Furthermore, the relation between the frost heave susceptibility and physical properties of soil obtained by this test is reported.

  17. Electron attachment rate constant measurement by photoemission electron attachment ion mobility spectrometry (PE-EA-IMS)

    International Nuclear Information System (INIS)

    Su, Desheng; Niu, Wenqi; Liu, Sheng; Shen, Chengyin; Huang, Chaoqun; Wang, Hongmei; Jiang, Haihe; Chu, Yannan

    2012-01-01

    Photoemission electron attachment ion mobility spectrometry (PE-EA-IMS), with a source of photoelectrons induced by vacuum ultraviolet radiation on a metal surface, has been developed to study electron attachment reaction at atmospheric pressure using nitrogen as the buffer gas. Based on the negative ion mobility spectra, the rate constants for electron attachment to tetrachloromethane and chloroform were measured at ambient temperature as a function of the average electron energy in the range from 0.29 to 0.96 eV. The experimental results are in good agreement with the data reported in the literature. - Highlights: ► Photoemission electron attachment ion mobility spectrometry (PE-EA-IMS) was developed to study electron attachment reaction. ► The rate constants of electron attachment to CCl 4 and CHCl 3 were determined. ► The present experimental results are in good agreement with the previously reported data.

  18. Rate constant for the reaction of O(3P) with diacetylene from 210 to 423 K

    Science.gov (United States)

    Mitchell, M. B.; Nava, D. F.; Stief, L. J.

    1986-01-01

    The absolute rate constant for the reaction of O(3P) with diacetylene (C4H2) has been measured as a function of pressure and temperature by the flash-photolysis/resonance-fluorescence method. At 298 K and below, no pressure dependence of the rate constant was observed, but at 423 K a moderate (factor-of-2) increase was detected in the range 3 to 75 torr Ar.Results at or near the high-pressure limit are represented by an Arrhenius expression over the temperature range 210 to 423 K. The results are compared with previous determinations, all of which employed the discharge-flow/mass-spectrometry technique. The mechanism of the reaction is considered, including both primary and secondary processes. The heats of formation of the reactants, adducts, and products for the O(3P) + C4H2 reaction are discussed and contrasted with those for O(3P) + C2H2.

  19. Investigation of the Temperature Dependence of the Acceptor Center Relaxation Rate in Silicon by the mu^-SR-Method

    CERN Document Server

    Mamedov, T N; Stojkov, A V; Andrianov, D G; Gerlach, D; Zimmermann, U; Gorelkin, V N; Kormann, O; Major, J V; Shevchik, M

    2000-01-01

    Results on the temperature dependence of the residual polarization of negative muons in silicon with phosphorus (3.2 cdot 10^12, 2.3 cdot 10^15 and 4.5 cdot 10^18 cm^-3) and aluminium (2 cdot 10^14 and 2.4 cdot 10^18 cm^-3) impurities are presented. The measurements were carried out in a transverse to the direction of the muon spin magnetic field of 2000 Oe in the temperature range 4.2-300 K. The temperature dependence of the relaxation rate of the magnetic moment of the Al shallow acceptor centre in undeformed silicon is determined for the first time. The constant of the hyperfine interaction between the magnetic moment of the muon and that of the electron shell of the muonic atom A_hf/2pi approx 3 cdot 10^7 s^-1) and the coefficient for capture of free electrons by a neutral aluminium atom in silicon (beta (Al^0) approx 7 cdot 10^-14 cm^3 s^-1 at 30 K) are estimated.

  20. The rate constant for the CO + H2O2 reaction

    DEFF Research Database (Denmark)

    Glarborg, Peter; Marshall, Paul

    2009-01-01

    The rate constant for the reaction CO + H2O2 -> HOCO + OH (R1) at 713 K is determined based on the batch reactor experiments of Baldwin et al. [ R. R. Baldwin, R. W. Walker, S. J. Webster, Combust. Flame 15 (1970) 167] on decomposition of H2O2 sensitized by CO. The value, k(1) (713 K) = 8.1 x 10...

  1. A photon spectrometric dose-rate constant determination for the Advantage™ Pd-103 brachytherapy source

    OpenAIRE

    Chen, Zhe Jay; Bongiorni, Paul; Nath, Ravinder

    2010-01-01

    Purpose: Although several dosimetric characterizations using Monte Carlo simulation and thermoluminescent dosimetry (TLD) have been reported for the new Advantage™ Pd-103 source (IsoAid, LLC, Port Richey, FL), no AAPM consensus value has been established for the dosimetric parameters of the source. The aim of this work was to perform an additional dose-rate constant (Λ) determination using a recently established photon spectrometry technique (PST) that is independent of the published TLD and ...

  2. Rate constant of free electrons and holes recombination in thin films CdSe

    International Nuclear Information System (INIS)

    Radychev, N.A.; Novikov, G.F.

    2006-01-01

    Destruction kinetics of electrons generated in thin films CdSe by laser impulse (wave length is 337 nm, period of impulse - 8 nc) is studied by the method of microwave photoconductivity (36 GHz) at 295 K. Model of the process was suggested using the analysis of kinetics of photo-responses decay, and it allowed determination of rate constant of recombination of free electrons and holes in cadmium selenide - (4-6)x10 -11 cm 3 s -1 [ru

  3. Biotransformation of trace organic chemicals during groundwater recharge: How useful are first-order rate constants?

    KAUST Repository

    Regnery, J.

    2015-05-29

    This study developed relationships between the attenuation of emerging trace organic chemicals (TOrC) during managed aquifer recharge (MAR) as a function of retention time, system characteristics, and operating conditions using controlled laboratory-scale soil column experiments simulating MAR. The results revealed that MAR performance in terms of TOrC attenuation is primarily determined by key environmental parameters (i.e. redox, primary substrate). Soil columns with suboxic and anoxic conditions performed poorly (i.e. less than 30% attenuation of moderately degradable TOrC) in comparison to oxic conditions (on average between 70-100% attenuation for the same compounds) within a residence time of three days. Given this dependency on redox conditions, it was investigated if key parameter-dependent rate constants are more suitable for contaminant transport modeling to properly capture the dynamic TOrC attenuation under field-scale conditions. Laboratory-derived first-order removal kinetics were determined for 19 TOrC under three different redox conditions and rate constants were applied to MAR field data. Our findings suggest that simplified first-order rate constants will most likely not provide any meaningful results if the target compounds exhibit redox dependent biotransformation behavior or if the intention is to exactly capture the decline in concentration over time and distance at field-scale MAR. However, if the intention is to calculate the percent removal after an extended time period and subsurface travel distance, simplified first-order rate constants seem to be sufficient to provide a first estimate on TOrC attenuation during MAR.

  4. Biotransformation of trace organic chemicals during groundwater recharge: How useful are first-order rate constants?

    Science.gov (United States)

    Regnery, J; Wing, A D; Alidina, M; Drewes, J E

    2015-08-01

    This study developed relationships between the attenuation of emerging trace organic chemicals (TOrC) during managed aquifer recharge (MAR) as a function of retention time, system characteristics, and operating conditions using controlled laboratory-scale soil column experiments simulating MAR. The results revealed that MAR performance in terms of TOrC attenuation is primarily determined by key environmental parameters (i.e., redox, primary substrate). Soil columns with suboxic and anoxic conditions performed poorly (i.e., less than 30% attenuation of moderately degradable TOrC) in comparison to oxic conditions (on average between 70-100% attenuation for the same compounds) within a residence time of three days. Given this dependency on redox conditions, it was investigated if key parameter-dependent rate constants are more suitable for contaminant transport modeling to properly capture the dynamic TOrC attenuation under field-scale conditions. Laboratory-derived first-order removal kinetics were determined for 19 TOrC under three different redox conditions and rate constants were applied to MAR field data. Our findings suggest that simplified first-order rate constants will most likely not provide any meaningful results if the target compounds exhibit redox dependent biotransformation behavior or if the intention is to exactly capture the decline in concentration over time and distance at field-scale MAR. However, if the intention is to calculate the percent removal after an extended time period and subsurface travel distance, simplified first-order rate constants seem to be sufficient to provide a first estimate on TOrC attenuation during MAR. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Constant Growth Rate Can Be Supported by Decreasing Energy Flux and Increasing Aerobic Glycolysis

    Directory of Open Access Journals (Sweden)

    Nikolai Slavov

    2014-05-01

    Full Text Available Fermenting glucose in the presence of enough oxygen to support respiration, known as aerobic glycolysis, is believed to maximize growth rate. We observed increasing aerobic glycolysis during exponential growth, suggesting additional physiological roles for aerobic glycolysis. We investigated such roles in yeast batch cultures by quantifying O2 consumption, CO2 production, amino acids, mRNAs, proteins, posttranslational modifications, and stress sensitivity in the course of nine doublings at constant rate. During this course, the cells support a constant biomass-production rate with decreasing rates of respiration and ATP production but also decrease their stress resistance. As the respiration rate decreases, so do the levels of enzymes catalyzing rate-determining reactions of the tricarboxylic-acid cycle (providing NADH for respiration and of mitochondrial folate-mediated NADPH production (required for oxidative defense. The findings demonstrate that exponential growth can represent not a single metabolic/physiological state but a continuum of changing states and that aerobic glycolysis can reduce the energy demands associated with respiratory metabolism and stress survival.

  6. Prediction of ozone tropospheric degradation rate constant of organic compounds by using artificial neural networks

    International Nuclear Information System (INIS)

    Fatemi, M.H.

    2006-01-01

    Ozone tropospheric degradation of organic compound is very important in environmental chemistry. The lifetime of organic chemicals in the atmosphere can be calculated from the knowledge of the rate constant of their reaction with free radicals such as OH and NO 3 or O 3 . In the present work, the rate constant for the tropospheric degradation of 137 organic compounds by reaction with ozone, the least widely and successfully modeled degradation process, are predicted by quantitative structure activity relationships modeling based on a variety of theoretical descriptors, which screened and selected by genetic algorithm variable subset selection procedure. These descriptors which can be used as inputs for generated artificial neural networks are; HOMO-LUMO gap, number of double bonds, number of single bonds, maximum net charge on C atom, minimum (>0.1) bond order of C atom and Minimum e-e repulsion of H atom. After generation, optimization and training of artificial neural network, network was used for the prediction of log KO 3 for the validation set. The root mean square error for the neural network calculated log KO 3 for training, prediction and validation set are 0.357, 0.460 and 0.481, respectively, which are smaller than those obtained by multiple linear regressions model (1.217, 0.870 and 0.968, respectively). Results obtained reveal the reliability and good predictivity of neural network model for the prediction of ozone tropospheric degradations rate constant of organic compounds

  7. Reaction rate constants of H-abstraction by OH from large ketones: Measurements and site-specific rate rules

    KAUST Repository

    Badra, Jihad

    2014-01-01

    Reaction rate constants of the reaction of four large ketones with hydroxyl (OH) are investigated behind reflected shock waves using OH laser absorption. The studied ketones are isomers of hexanone and include 2-hexanone, 3-hexanone, 3-methyl-2-pentanone, and 4-methl-2-pentanone. Rate constants are measured under pseudo-first-order kinetics at temperatures ranging from 866 K to 1375 K and pressures near 1.5 atm. The reported high-temperature rate constant measurements are the first direct measurements for these ketones under combustion-relevant conditions. The effects of the position of the carbonyl group (CO) and methyl (CH3) branching on the overall rate constant with OH are examined. Using previously published data, rate constant expressions covering, low-to-high temperatures, are developed for acetone, 2-butanone, 3-pentanone, and the hexanone isomers studied here. These Arrhenius expressions are used to devise rate rules for H-abstraction from various sites. Specifically, the current scheme is applied with good success to H-abstraction by OH from a series of n-ketones. Finally, general expressions for primary and secondary site-specific H-abstraction by OH from ketones are proposed as follows (the subscript numbers indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon atom, the subscript CO indicates that the abstraction is from a site next to the carbonyl group (CO), and the prime is used to differentiate different neighboring environments of a methylene group):P1,CO = 7.38 × 10-14 exp(-274 K/T) + 9.17 × 10-12 exp(-2499 K/T) (285-1355 K)S10,CO = 1.20 × 10-11 exp(-2046 K/T) + 2.20 × 10-13 exp(160 K/T) (222-1464 K)S11,CO = 4.50 × 10-11 exp(-3000 K/T) + 8.50 × 10-15 exp(1440 K/T) (248-1302 K)S11′,CO = 3.80 × 10-11 exp(-2500 K/T) + 8.50 × 10-15 exp(1550 K/T) (263-1370 K)S 21,CO = 5.00 × 10-11 exp(-2500 K/T) + 4.00 × 10-13 exp(775 K/T) (297-1376 K) © 2014 the Partner Organisations.

  8. Extrapolation of rate constants of reactions producing H2 and O2 in radiolysis of water at high temperatures

    International Nuclear Information System (INIS)

    Leblanc, R.; Ghandi, K.; Hackman, B.; Liu, G.

    2014-01-01

    One target of our research is to extrapolate known data on the rate constants of reactions and add corrections to estimate the rate constants at the higher temperatures reached by the SCWR reactors. The focus of this work was to extrapolate known data on the rate constants of reactions that produce Hydrogen or Oxygen with a rate constant below 10 10 mol -1 s -1 at room temperature. The extrapolation is done taking into account the change in the diffusion rate of the interacting species and the cage effect with thermodynamic conditions. The extrapolations are done over a wide temperature range and under isobaric conditions. (author)

  9. Propargyl Recombination: Estimation of the High Temperature, Low Pressure Rate Constant from Flame Measurements

    DEFF Research Database (Denmark)

    Rasmussen, Christian Lund; Skjøth-Rasmussen, Martin Skov; Jensen, Anker

    2005-01-01

    The most important cyclization reaction in hydrocarbon flames is probably recombination of propargyl radicals. This reaction may, depending on reaction conditions, form benzene, phenyl or fulvene, as well as a range of linear products. A number of rate measurements have been reported for C3H3 + C3H......3 at temperatures below 1000 K, while data at high temperature and low pressure only can be obtained from flames. In the present work, an estimate of the rate constant for the reaction at 1400 +/- 50 K and 20 Torr is obtained from analysis of the fuel-rich acetylene flame of Westmoreland, Howard...

  10. Gas-phase reaction rate constants for atmospheric pressure ionization in ion-mobility spectrometry

    International Nuclear Information System (INIS)

    Vandiver, V.J.

    1987-01-01

    Ion-mobility spectrometry (IMS) is an instrumental technique in which gaseous ions are formed from neutral molecules by proton and charge transfer from reactant ions through collisional ionization. An abbreviated rate theory has been proposed for atmospheric pressure ionization (API) in IMS, but supporting experimental measurements have not been reported. The objectives of this thesis were (1) assessment of existing API rate theory using positive and negative product ions in IMS, (2) measurement of API equilibria and kinetics for binary mixtures, and (3) investigating of cross-ionizations with multiple-product ions in API reactions. Although IMS measurements and predictions from rate theory were comparable, shapes and slopes of response curves for both proton transfer and electron capture were not described exactly by existing theory. In particular, terms that are needed for calculation of absolute rate constants were unsuitable in the existing theory. These included recombination coefficients,initial number of reactant ions, and opposing ion densities

  11. Shock tube measurements of the rate constants for seven large alkanes+OH

    KAUST Repository

    Badra, Jihad

    2015-01-01

    Reaction rate constants for seven large alkanes + hydroxyl (OH) radicals were measured behind reflected shock waves using OH laser absorption. The alkanes, n-hexane, 2-methyl-pentane, 3-methyl-pentane, 2,2-dimethyl-butane, 2,3-dimethyl-butane, 2-methyl-heptane, and 4-methyl-heptane, were selected to investigate the rates of site-specific H-abstraction by OH at secondary and tertiary carbons. Hydroxyl radicals were monitored using narrow-line-width ring-dye laser absorption of the R1(5) transition of the OH spectrum near 306.7 nm. The high sensitivity of the diagnostic enabled the use of low reactant concentrations and pseudo-first-order kinetics. Rate constants were measured at temperatures ranging from 880 K to 1440 K and pressures near 1.5 atm. High-temperature measurements of the rate constants for OH + n-hexane and OH + 2,2-dimethyl-butane are in agreement with earlier studies, and the rate constants of the five other alkanes with OH, we believe, are the first direct measurements at combustion temperatures. Using these measurements and the site-specific H-abstraction measurements of Sivaramakrishnan and Michael (2009) [1,2], general expressions for three secondary and two tertiary abstraction rates were determined as follows (the subscripts indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon): S20=1.58×10-11exp(-1550K/T)cm3molecule-1s-1(887-1327K)S30=2.37×10-11exp(-1850K/T)cm3molecule-1s-1(887-1327K)S21=4.5×10-12exp(-793.7K/T)cm3molecule-1s-1(833-1440K)T100=2.85×10-11exp(-1138.3K/T)cm3molecule-1s-1(878-1375K)T101=7.16×10-12exp(-993K/T)cm3molecule-1s-1(883-1362K) © 2014 The Combustion Institute.

  12. Yoga Nidra relaxation increases heart rate variability and is unaffected by a prior bout of Hatha yoga.

    Science.gov (United States)

    Markil, Nina; Whitehurst, Michael; Jacobs, Patrick L; Zoeller, Robert F

    2012-10-01

    The measurement of heart rate variability (HRV) is often applied as an index of autonomic nervous system (ANS) balance and, therefore, myocardial stability. Previous studies have suggested that relaxation or mind-body exercise can influence ANS balance positively as measured by HRV but may act via different mechanisms. No studies, to the authors' knowledge, have examined the acute response in HRV to interventions combining relaxation and mind-body exercise. The objective of this study was to compare the acute HRV responses to Yoga Nidra relaxation alone versus Yoga Nidra relaxation preceded by Hatha yoga. This was a randomized counter-balanced trial. The trial was conducted in a university exercise physiology laboratory. Subjects included 20 women and men (29.15±6.98 years of age, with a range of 18-47 years). Participants completed a yoga plus relaxation (YR) session and a relaxation only (R) session. The YR condition produced significant changes from baseline in heart rate (HR; beats per minute [bpm], pheart rate (bpm, p<0.001) as well as indices of HRV: R-R (ms, p<0.001), HF (ms(2), p=0.004), LF (%, p=0.005), HF (%, p=0.008) and LF:HF ratio (%, p=0.008). There were no significant differences between conditions at baseline nor for the changes from baseline for any of the variables. These changes demonstrate a favorable shift in autonomic balance to the parasympathetic branch of the ANS for both conditions, and that Yoga Nidra relaxation produces favorable changes in measures of HRV whether alone or preceded by a bout of Hatha yoga.

  13. Laser Measurements of the H Atom + Ozone Rate Constant at Atmospheric Temperatures

    Science.gov (United States)

    Liu, Y.; Smith, G. P.; Peng, J.; Reppert, K. J.; Callahan, S. L.

    2015-12-01

    The exothermic H + O3 reaction produces OH(v) Meinel band emissions, used to derive mesospheric H concentrations and chemical heating rates. We have remeasured its rate constant to reduce resulting uncertainties and the measurement extend to lower mesospheric temperatures using modern laser techniques. H atoms are produced by pulsed ultraviolet laser trace photolysis of O3, followed by reaction of O(D) with added H2. A second, delayed, frequency-mixed dye laser measures the reaction decay rate with the remaining ozone by laser induced fluorescence. We monitor either the H atom decay by 2 photon excitation at 205 nm and detection of red fluorescence, or the OH(v=9) product time evolution with excitation of the B-X (0,9) band at 237 nm and emission in blue B-A bands. By cooling the enclosed low pressure flow cell we obtained measurements from 146-305 K. Small kinetic modeling corrections are made for secondary regeneration of H atoms. The results fully confirm the current NASA JPL recommendation for this rate constant, and establish its extrapolation down to the lower temperatures of the mesosphere. This work was supported by the NSF Aeronomy Program and an NSF Physics summer REU student grant.

  14. Atmospheric fate of a series of carbonyl nitrates: photolysis frequencies and OH-oxidation rate constants.

    Science.gov (United States)

    Suarez-Bertoa, R; Picquet-Varrault, B; Tamas, W; Pangui, E; Doussin, J-F

    2012-11-20

    Multifunctional organic nitrates are potential NO(x) reservoirs whose atmospheric chemistry is somewhat little known. They could play an important role in the spatial distribution of reactive nitrogen species and consequently in ozone formation and distribution in remote areas. In this work, the rate constants for the reaction with OH radical and the photolysis frequencies of α-nitrooxyacetone, 3-nitrooxy-2-butanone, and 3-methyl-3-nitrooxy-2-butanone have been determined at room temperature at 1000 mbar total pressure of synthetic air. The rate constants for the OH oxidation were measured using the relative rate technique, with methanol as reference compound. The following rate constants were obtained for the reaction with OH: k(OH) = (6.7 ± 2.5) × 10(-13) cm(3) molecule(-1) s(-1) for α-nitrooxyacetone, (10.6 ± 4.1) × 10(-13) cm(3) molecule(-1) s(-1) for 3-nitrooxy-2-butanone, and (2.6 ± 0.9) × 10(-13) cm(3) molecule(-1) s(-1) for 3-methyl-3-nitrooxy-2-butanone. The corresponding photolysis frequencies extrapolated to typical atmospheric conditions for July first at noon at 40° latitude North were (4.8 ± 0.3) × 10(-5) s(-1), (5.7 ± 0.3) × 10(-5) s(-1), and (7.4 ± 0.2) × 10(-5) s(-1), respectively. The data show that photolysis is a major atmospheric sink for these organic nitrates.

  15. The effects of short-term relaxation therapy on indices of heart rate variability and blood pressure in young adults.

    Science.gov (United States)

    Pal, Gopal Krushna; Ganesh, Venkata; Karthik, Shanmugavel; Nanda, Nivedita; Pal, Pravati

    2014-01-01

    Assessment of short-term practice of relaxation therapy on autonomic and cardiovascular functions in first-year medical students. Case-control, interventional study. Medical college laboratory. Sixty-seven medical students, divided into two groups: study group (n = 35) and control group (n = 32). Study group subjects practiced relaxation therapy (shavasana with a soothing background music) daily 1 hour for 6 weeks. Control group did not practice relaxation techniques. Cardiovascular parameters and spectral indices of heart rate variability (HRV) were recorded before and after the 6-week practice of relaxation therapy. The data between the groups and the data before and after practice of relaxation techniques were analyzed by one-way analysis of variance and Student t-test. In the study group, prediction of low-frequency to high-frequency ratio (LF-HF) of HRV, the marker of sympathovagal balance, to blood pressure (BP) status was assessed by logistic regression. In the study group, there was significant reduction in heart rate (p = .0001), systolic (p = .0010) and diastolic (p = .0021) pressure, and rate pressure product (p linked to BP status in these individuals.

  16. Investigations of effect of phase change mass transfer rate on cavitation process with homogeneous relaxation model

    Energy Technology Data Exchange (ETDEWEB)

    He, Zhixia; Zhang, Liang; Saha, Kaushik; Som, Sibendu; Duan, Lian; Wang, Qian

    2017-12-01

    The super high fuel injection pressure and micro size of nozzle orifice has been an important development trend for the fuel injection system. Accordingly, cavitation transient process, fuel compressibility, amount of noncondensable gas in the fuel and cavitation erosion have attracted more attention. Based on the fact of cavitation in itself is a kind of thermodynamic phase change process, this paper takes the perspective of the cavitation phase change mass transfer process to analyze above mentioned phenomenon. The two-phase cavitating turbulent flow simulations with VOF approach coupled with HRM cavitation model and U-RANS of standard k-ε turbulence model were performed for investigations of cavitation phase change mass transfer process. It is concluded the mass transfer time scale coefficient in the Homogenous Relaxation Model (HRM) representing mass transfer rate should tend to be as small as possible in a condition that ensured the solver stable. At very fast mass transfer rate, the phase change occurs at very thin interface between liquid and vapor phase and condensation occurs more focused and then will contribute predictably to a more serious cavitation erosion. Both the initial non-condensable gas in fuel and the fuel compressibility can accelerate the cavitation mass transfer process.

  17. Ozonation of norfloxacin and levofloxacin in water: Specific reaction rate constants and defluorination reaction.

    Science.gov (United States)

    Ling, Wencui; Ben, Weiwei; Xu, Ke; Zhang, Yu; Yang, Min; Qiang, Zhimin

    2018-03-01

    The degradation kinetics and mechanism of two typical fluoroquinolones (FQs), norfloxacin (NF) and levofloxacin (LOF), by ozone in water were investigated. Semi-continuous mode and competition kinetics mode experiments were conducted to determine the reaction rate constants of target FQs with ozone and OH, separately. Results indicate that both NF and LOF were highly reactive toward ozone, and the reactivity was strongly impacted by the solution pH. The specific reaction rate constants of the diprotonated, monoprotonated and deprotonated species were determined to be 7.20 × 10 2 , 8.59 × 10 3 , 4.54 × 10 5  M -1  s -1 respectively for NF and 1.30 × 10 3 , 1.40 × 10 4 , 1.33 × 10 6  M -1  s -1 respectively for LOF. The reaction rate constants of target FQs toward OH were measured to be (4.81-7.41) × 10 9  M -1  s -1 in the pH range of 6.3-8.3. Furthermore, NF was selected as a model compound to clarify the degradation pathways, with a particular focus on the defluorination reaction. The significant release of F - ions and the formation of three F-free organic byproducts indicated that defluorination was a prevalent pathway in ozonation of FQs, while six F-containing organic byproducts indicated that ozone also attacked the piperazinyl and quinolone moieties. Escherichia coli growth inhibition tests revealed that ozonation could effectively eliminate the antibacterial activity of target FQ solutions, and the residual antibacterial activity had a negative linear correlation with the released F - concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Rate Constant of the Reaction between CH3O2 Radicals and OH Radicals Revisited.

    Science.gov (United States)

    Assaf, Emmanuel; Song, Bo; Tomas, Alexandre; Schoemaecker, Coralie; Fittschen, Christa

    2016-11-17

    The reaction between CH 3 O 2 and OH radicals has been studied in a laser photolysis cell using the reaction of F atoms with CH 4 and H 2 O for the simultaneous generation of both radicals, with F atoms generated through 248 nm photolysis of XeF 2 . An experimental setup combining cw-Cavity Ring Down Spectroscopy (cw-CRDS) and high repetition rate laser-induced fluorescence (LIF) to a laser photolysis cell has been used. The absolute concentration of CH 3 O 2 was measured by cw-CRDS, while the relative concentration of OH(v = 0) radicals was determined by LIF. To remove dubiety from the quantification of CH 3 O 2 by cw-CRDS in the near-infrared, its absorption cross section has been determined at 7489.16 cm -1 using two different methods. A rate constant of k 1 = (1.60 ± 0.4) × 10 -10 cm 3 s -1 has been determined at 295 K, nearly a factor of 2 lower than an earlier determination from our group ((2.8 ± 1.4) × 10 -10 cm 3 s -1 ) using CH 3 I photolysis as a precursor. Quenching of electronically excited I atoms (from CH 3 I photolysis) in collision with OH(v = 0) is suspected to be responsible for a bias in the earlier, fast rate constant.

  19. Alternative approach to estimate the hydrolysis rate constant of particulate material from batch data

    International Nuclear Information System (INIS)

    Koch, Konrad; Drewes, Jörg E.

    2014-01-01

    Highlights: • An alternative to the commonly used first-order approach is presented. • A relationship between k h and the 1% criterion of the VDI 4630 is deduced. • Equation is proposed to directly calculate k h without the need for data fitting. • Hydrolysis constant k h can then easily be read-off from a table. - Abstract: As anaerobic batch tests are easy to conduct, they are commonly used to assess the effects of different operational factors on the anaerobic digestion process. Hydrolysis of particulate material is often assumed to be the rate limiting step in anaerobic digestion. Its velocity is often estimated by data fitting from batch tests. In this study, a Monod-type alternative to the commonly used first-order approach is presented. The approach was adapted from balancing a continuously stirred-tank reactor and better accommodates the fact that even after a long incubation time, some of the methane potential of the substrate remains untapped in the digestate. In addition, an equation is proposed to directly calculate the hydrolysis constant from the time when the daily gas production is less than 1% of the total gas production. The hydrolysis constant can then easily be read-off from a table when the batch test duration is known

  20. Rate constant computation on some elementary reactions of Hg during combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qing; Yang, Bo-wen; Bai, Jing-ru [Northeast Dianli Univ., Jilin (China). Inst. of Energy and Power Engineering

    2013-07-01

    The geometry optimizations of reactants, products and transition states were made by the quantum chemistry MP2 method at the SDD basis function level for Hg, and 6-311++G(3df, 3pd) for others. The properties of stable minimums were validated by vibration frequencies analysis. Furthermore, the microcosmic chemical reaction mechanisms of reactions were investigated by ab initio calculations of quantum chemistry. On the basis of the geometry optimization, reaction rate constants within 298-2,000 K are calculated neither from experimental data nor by estimated, but directly from Quantum Chemistry software-Khimera.

  1. Power consumption analysis of constant bit rate data transmission over 3G mobile wireless networks

    DEFF Research Database (Denmark)

    Wang, Le; Ukhanova, Ann; Belyaev, Evgeny

    2011-01-01

    This paper presents the analysis of the power consumption of data transmission with constant bit rate over 3G mobile wireless networks. Our work includes the description of the transition state machine in 3G networks, followed by the detailed energy consumption analysis and measurement results...... of the radio link power consumption. Based on these description and analysis, we propose power consumption model. The power model was evaluated on the smartphone Nokia N900, which follows a 3GPP Release 5 and 6 supporting HSDPA/HSPA data bearers. Further we propose method of parameters selection for 3GPP...... transition state machine that allows to decrease power consumption on the mobile device....

  2. Pseudo-extravasation rate constant of dynamic susceptibility contrast-MRI determined from pharmacokinetic first principles.

    Science.gov (United States)

    Li, Xin; Varallyay, Csanad G; Gahramanov, Seymur; Fu, Rongwei; Rooney, William D; Neuwelt, Edward A

    2017-11-01

    Dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI) is widely used to obtain informative perfusion imaging biomarkers, such as the relative cerebral blood volume (rCBV). The related post-processing software packages for DSC-MRI are available from major MRI instrument manufacturers and third-party vendors. One unique aspect of DSC-MRI with low-molecular-weight gadolinium (Gd)-based contrast reagent (CR) is that CR molecules leak into the interstitium space and therefore confound the DSC signal detected. Several approaches to correct this leakage effect have been proposed throughout the years. Amongst the most popular is the Boxerman-Schmainda-Weisskoff (BSW) K 2 leakage correction approach, in which the K 2 pseudo-first-order rate constant quantifies the leakage. In this work, we propose a new method for the BSW leakage correction approach. Based on the pharmacokinetic interpretation of the data, the commonly adopted R 2 * expression accounting for contributions from both intravascular and extravasating CR components is transformed using a method mathematically similar to Gjedde-Patlak linearization. Then, the leakage rate constant (K L ) can be determined as the slope of the linear portion of a plot of the transformed data. Using the DSC data of high-molecular-weight (~750 kDa), iron-based, intravascular Ferumoxytol (FeO), the pharmacokinetic interpretation of the new paradigm is empirically validated. The primary objective of this work is to empirically demonstrate that a linear portion often exists in the graph of the transformed data. This linear portion provides a clear definition of the Gd CR pseudo-leakage rate constant, which equals the slope derived from the linear segment. A secondary objective is to demonstrate that transformed points from the initial transient period during the CR wash-in often deviate from the linear trend of the linearized graph. The inclusion of these points will have a negative impact on the accuracy of the leakage

  3. Methane combustion kinetic rate constants determination: an ill-posed inverse problem analysis

    Directory of Open Access Journals (Sweden)

    Bárbara D. L. Ferreira

    2013-01-01

    Full Text Available Methane combustion was studied by the Westbrook and Dryer model. This well-established simplified mechanism is very useful in combustion science, for computational effort can be notably reduced. In the inversion procedure to be studied, rate constants are obtained from [CO] concentration data. However, when inherent experimental errors in chemical concentrations are considered, an ill-conditioned inverse problem must be solved for which appropriate mathematical algorithms are needed. A recurrent neural network was chosen due to its numerical stability and robustness. The proposed methodology was compared against Simplex and Levenberg-Marquardt, the most used methods for optimization problems.

  4. Rate Constants for Reactions of Radiation-Produced Transients in Aqueous Solutions of Actinides

    International Nuclear Information System (INIS)

    Gordon, S.; Sullivan, J.C.; Ross, A.B.

    1986-01-01

    Rate constants have been critically compiled for reactions of ions of the actinides Am, Cf, Cm, Np, Pu, Th, and U, as well as the element Tc, in different oxidation states with various chemical species in aqueous solution. The reactants include products of the radiolysis of water (hydrated electrons, hydrogen atoms, hydroxyl radicals, hydrogen peroxide) and transient species derived from other solutes (e.g., carbonate radical). The data are useful in the estimation of migration properties of actinides, which are relevant to waste management studies

  5. Rapid estimation of glucosinolate thermal degradation rate constants in leaves of Chinese kale and broccoli (Brassica oleracea) in two seasons.

    Science.gov (United States)

    Hennig, Kristin; Verkerk, Ruud; Bonnema, Guusje; Dekker, Matthijs

    2012-08-15

    Kinetic modeling was used as a tool to quantitatively estimate glucosinolate thermal degradation rate constants. Literature shows that thermal degradation rates differ in different vegetables. Well-characterized plant material, leaves of broccoli and Chinese kale plants grown in two seasons, was used in the study. It was shown that a first-order reaction is appropriate to model glucosinolate degradation independent from the season. No difference in degradation rate constants of structurally identical glucosinolates was found between broccoli and Chinese kale leaves when grown in the same season. However, glucosinolate degradation rate constants were highly affected by the season (20-80% increase in spring compared to autumn). These results suggest that differences in glucosinolate degradation rate constants can be due to variation in environmental as well as genetic factors. Furthermore, a methodology to estimate rate constants rapidly is provided to enable the analysis of high sample numbers for future studies.

  6. Quantitative evaluation of degenerative lumbar intervertebral disc applying an equivalent cross-relaxation rate using MRI

    International Nuclear Information System (INIS)

    Obata, Hideaki; Inaba, Tadashi; Kato, Takaya; Tokuda, Masataka; Matsushima, Shigeru; Yamada, Michiaki; Kinosada, Yasutomi

    2004-01-01

    The equivalent cross-relaxation rate (ECR) is a measurement method to evaluate a change in organizational structure quantitatively utilizing MRI. The objectives of this study are to understand the characteristics related to water contents in degenerative lumbar intervertebral discs, and to investigate the usefulness of quantitative evaluation using ECR in order to find as early as possible disordered discs. Seven normal volunteers and four asymptomatic volunteers with degeneration in lumbar intervertebral discs, 21 to 26 years of age, were studied using a SIGNA model of GE Medical Systems equipped with a 1.5 T clinical scanner and spine coil. The ECR values were defined as the percentage of signal loss between unsaturated and saturated images. The results showed that the ECR value of annulus fibrosus in an intervertebral disc was higher than nucleus pulposus. Furthermore, it was found that the ECR value of nucleus pulposus (L5-S1) with degeneration was significantly higher than that without degeneration. It was considered that this result reflected an increase of water contents in the degenerative nucleus. This study suggests that the ECR value of a nucleus could be an effective parameter to diagnosis of degenerated discs or grades of disorder. (author)

  7. Evaluation of brain tissue applying equivalent cross-relaxation rate using MRI

    International Nuclear Information System (INIS)

    Obata, Hideaki; Inaba, Tadashi; Tokuda, Masataka; Matsushima, Shigeru; Kinosada, Yasutomi

    2003-01-01

    The equivalent cross-relaxation rate (ECR) is a measurement method that can evaluate a change in organization structure quantitatively utilizing MRI. The goal of this study is to discover a parameter that we can use to evaluate aging of the human brain using ECR. Fourteen patients diagnosed with diseases other than those located in the cranium were imaged using a SIGNA model of GE Medical Systems equipped with a 1.5 T clinical scanner. The ECR values were defined as the percentage of signal loss between unsaturated and saturated images. It was found that the ECR value of gray matter was lower than subcortical white matter. At ages under 70 years old, the mean of ECR values of subcortical white matter showed stable values with insignificant variance. Furthermore, there was no correlation between age and ECR value of every region calculated. On the other hand, it was found that there was a negative correlation for the ECR values of subcortical white matter and gray matter at ages slightly over 70 years old. It is possible that the reduction in ECR value shows demyelination by aging in the senium. When the offset frequency is near the water resonance frequency, the ECR values mean information about neurocytes. Accordingly, the ECR (320)/ECR (1200) value probably shows that information is related to the amount or activity of neurons. (author)

  8. Basic study on relationship between estimated rate constants and noise in FDG kinetic analysis

    International Nuclear Information System (INIS)

    Kimura, Yuichi; Toyama, Hinako; Senda, Michio.

    1996-01-01

    For accurate estimation of the rate constants in 18 F-FDG dynamic study, the shape of the estimation function (Φ) is crucial. In this investigation, the relationship between the noise level in tissue time activity curve and the shape of the least squared estimation function which is the sum of squared error between a function of model parameters and a measured data is calculated in 3 parameter model of 18 F-FDG. In the first simulation, by using actual plasma time activity curve, the true tissue curve was generated from known sets of rate constants ranging 0.05≤k 1 ≤0.15, 0.1≤k 2 ≤0.2 and 0.01≤k 3 ≤0.1 in 0.01 step. This procedure was repeated under various noise levels in the tissue time activity curve from 1 to 8% of the maximum value in the tissue activity. In the second simulation, plasma and tissue time activity curves from clinical 18 F-FDG dynamic study were used to calculate the Φ. In the noise-free case, because the global minima is separated from neighboring local minimums, it was easy to find out the optimum point. However, with increasing noise level, the optimum point was buried in many neighboring local minima. Making it difficult to find out the optimum point. The optimum point was found within 20% of the convergence point by standard non-linear optimization method. The shape of Φ for the clinical data was similar to that with the noise level of 3 or 5% in the first simulation. Therefore direct search within the area extending 20% from the result of usual non-linear curve fitting procedure is recommended for accurate estimation of the constants. (author)

  9. Rate constants of chemical reactions from semiclassical transition state theory in full and one dimension

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Samuel M., E-mail: samuel.greene@chem.ox.ac.uk; Shan, Xiao, E-mail: xiao.shan@chem.ox.ac.uk; Clary, David C., E-mail: david.clary@chem.ox.ac.u [Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ (United Kingdom)

    2016-06-28

    Semiclassical Transition State Theory (SCTST), a method for calculating rate constants of chemical reactions, offers gains in computational efficiency relative to more accurate quantum scattering methods. In full-dimensional (FD) SCTST, reaction probabilities are calculated from third and fourth potential derivatives along all vibrational degrees of freedom. However, the computational cost of FD SCTST scales unfavorably with system size, which prohibits its application to larger systems. In this study, the accuracy and efficiency of 1-D SCTST, in which only third and fourth derivatives along the reaction mode are used, are investigated in comparison to those of FD SCTST. Potential derivatives are obtained from numerical ab initio Hessian matrix calculations at the MP2/cc-pVTZ level of theory, and Richardson extrapolation is applied to improve the accuracy of these derivatives. Reaction barriers are calculated at the CCSD(T)/cc-pVTZ level. Results from FD SCTST agree with results from previous theoretical and experimental studies when Richardson extrapolation is applied. Results from our implementation of 1-D SCTST, which uses only 4 single-point MP2/cc-pVTZ energy calculations in addition to those for conventional TST, agree with FD results to within a factor of 5 at 250 K. This degree of agreement and the efficiency of the 1-D method suggest its potential as a means of approximating rate constants for systems too large for existing quantum scattering methods.

  10. The Reaction Mechanism and Rate Constants in the Radiolysis of Fe2+-Cu2+ Solutions

    DEFF Research Database (Denmark)

    Bjergbakke, Erling; Sehested, Knud; Rasmussen, O. Lang

    1976-01-01

    Pulse radiolysis and gamma radiolysis have been used to study the reaction mechanism in the radiolysis of aqueous solutions of Fe2+ and Cu2+. A reaction scheme has been developed and confirmed by computation of the corresponding complete set of differential equations. The rate constants for some ...... 10^{8}$ and $1.3\\times 10^{8}\\ {\\rm mol}^{-1}\\ {\\rm sec}^{-1}$ in pH 2.1 H2 SO4 and HClO4, respectively.......Pulse radiolysis and gamma radiolysis have been used to study the reaction mechanism in the radiolysis of aqueous solutions of Fe2+ and Cu2+. A reaction scheme has been developed and confirmed by computation of the corresponding complete set of differential equations. The rate constants for some...... of the reactions have been determined at different pH's. $k_{{\\rm Cu}^{+}+{\\rm O}_{2}}=4.6\\times 10^{5}$ and $1.0\\times 10^{6}\\ {\\rm mol}^{-1}\\ {\\rm sec}^{-1}$, $k_{{\\rm Cu}^{+}+{\\rm Fe}^{3+}}=5.5\\times 10^{6}$ and $1.3\\times 10^{7}\\ {\\rm mol}^{-1}\\ {\\rm sec}^{-1}$, $k_{{\\rm Cu}({\\rm III)}+{\\rm Fe}^{2+}}=3.3\\times...

  11. Estimation of Anaerobic Debromination Rate Constants of PBDE Pathways Using an Anaerobic Dehalogenation Model.

    Science.gov (United States)

    Karakas, Filiz; Imamoglu, Ipek

    2017-04-01

    This study aims to estimate anaerobic debromination rate constants (k m ) of PBDE pathways using previously reported laboratory soil data. k m values of pathways are estimated by modifying a previously developed model as Anaerobic Dehalogenation Model. Debromination activities published in the literature in terms of bromine substitutions as well as specific microorganisms and their combinations are used for identification of pathways. The range of estimated k m values is between 0.0003 and 0.0241 d -1 . The median and maximum of k m values are found to be comparable to the few available biologically confirmed rate constants published in the literature. The estimated k m values can be used as input to numerical fate and transport models for a better and more detailed investigation of the fate of individual PBDEs in contaminated sediments. Various remediation scenarios such as monitored natural attenuation or bioremediation with bioaugmentation can be handled in a more quantitative manner with the help of k m estimated in this study.

  12. Estimation of rate constants of PCB dechlorination reactions using an anaerobic dehalogenation model.

    Science.gov (United States)

    Karakas, Filiz; Imamoglu, Ipek

    2017-02-15

    This study aims to estimate anaerobic dechlorination rate constants (k m ) of reactions of individual PCB congeners using data from four laboratory microcosms set up using sediment from Baltimore Harbor. Pathway k m values are estimated by modifying a previously developed model as Anaerobic Dehalogenation Model (ADM) which can be applied to any halogenated hydrophobic organic (HOC). Improvements such as handling multiple dechlorination activities (DAs) and co-elution of congeners, incorporating constraints, using new goodness of fit evaluation led to an increase in accuracy, speed and flexibility of ADM. DAs published in the literature in terms of chlorine substitutions as well as specific microorganisms and their combinations are used for identification of pathways. The best fit explaining the congener pattern changes was found for pathways of Phylotype DEH10, which has the ability to remove doubly flanked chlorines in meta and para positions, para flanked chlorines in meta position. The range of estimated k m values is between 0.0001-0.133d -1 , the median of which is found to be comparable to the few available published biologically confirmed rate constants. Compound specific modelling studies such as that performed by ADM can enable monitoring and prediction of concentration changes as well as toxicity during bioremediation. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Computational study of the rate constants and free energies of intramolecular radical addition to substituted anilines

    Directory of Open Access Journals (Sweden)

    Andreas Gansäuer

    2013-08-01

    Full Text Available The intramolecular radical addition to aniline derivatives was investigated by DFT calculations. The computational methods were benchmarked by comparing the calculated values of the rate constant for the 5-exo cyclization of the hexenyl radical with the experimental values. The dispersion-corrected PW6B95-D3 functional provided very good results with deviations for the free activation barrier compared to the experimental values of only about 0.5 kcal mol−1 and was therefore employed in further calculations. Corrections for intramolecular London dispersion and solvation effects in the quantum chemical treatment are essential to obtain consistent and accurate theoretical data. For the investigated radical addition reaction it turned out that the polarity of the molecules is important and that a combination of electrophilic radicals with preferably nucleophilic arenes results in the highest rate constants. This is opposite to the Minisci reaction where the radical acts as nucleophile and the arene as electrophile. The substitution at the N-atom of the aniline is crucial. Methyl substitution leads to slower addition than phenyl substitution. Carbamates as substituents are suitable only when the radical center is not too electrophilic. No correlations between free reaction barriers and energies (ΔG‡ and ΔGR are found. Addition reactions leading to indanes or dihydrobenzofurans are too slow to be useful synthetically.

  14. Reaction of H2 with O2 in Excited Electronic States: Reaction Pathways and Rate Constants.

    Science.gov (United States)

    Pelevkin, Alexey V; Loukhovitski, Boris I; Sharipov, Alexander S

    2017-12-21

    Comprehensive quantum chemical analysis with the use of the multireference state-averaged complete active space self-consistent field approach was carried out to study the reactions of H 2 with O 2 in a 1 Δ g , b 1 Σ g + , c 1 Σ u - , and A' 3 Δ u electronically excited states. The energetically favorable reaction pathways and possible intersystem crossings have been revealed. The energy barriers were refined employing the extended multiconfiguration quasi-degenerate second-order perturbation theory. It has been shown that the interaction of O 2 (a 1 Δ g ) and O 2 (A' 3 Δ u ) with H 2 occurs through the H-abstraction process with relatively low activation barriers that resulted in the formation of the HO 2 molecule in A″ and A' electronic states, respectively. Meanwhile, molecular oxygen in singlet sigma states (b 1 Σ g + and c 1 Σ u - ) was proved to be nonreactive with respect to the molecular hydrogen. Appropriate rate constants for revealed reaction and quenching channels have been estimated using variational transition-state theory including corrections for the tunneling effect, possible nonadiabatic transitions, and anharmonicity of vibrations for transition states and reactants. It was demonstrated that the calculated reaction rate constant for the H 2 + O 2 (a 1 Δ g ) process is in reasonable agreement with known experimental data. The Arrhenius approximations for these processes have been proposed for the temperature range T = 300-3000 K.

  15. Effects of Water Molecule on CO Oxidation by OH: Reaction Pathways, Kinetic Barriers, and Rate Constants.

    Science.gov (United States)

    Zhang, Linyao; Yang, Li; Zhao, Yijun; Zhang, Jiaxu; Feng, Dongdong; Sun, Shaozeng

    2017-07-06

    The water dilute oxy-fuel combustion is a clean combustion technology for near-zero emission power; and the presence of water molecule could have both kinetic and dynamic effects on combustion reactions. The reaction OH + CO → CO 2 + H, one of the most important elementary reactions, has been investigated by extensive electronic structure calculations. And the effects of a single water molecule on CO oxidation have been studied by considering the preformed OH(H 2 O) complex reacts with CO. The results show little change in the reaction pathways, but the additional water molecule actually increases the vibrationally adiabatic energy barriers (V a G ). Further thermal rate constant calculations in the temperature range of 200 to 2000 K demonstrate that the total low-pressure limit rate constant for the water assisted OH(H 2 O) + CO → CO 2 + H 2 O + H reaction is 1-2 orders lower than that of the water unassisted one, which is consistent with the change of V a G . Therefore, the hydrated radical OH(H 2 O) would actually slow down the oxidation of CO. Meanwhile, comparisons show that the M06-2X/aug-cc-pVDZ method gives a much better estimation in energy and thus is recommended to be employed for direct dynamics simulations.

  16. Bimolecular Rate Constants for FAD-Dependent Glucose Dehydrogenase from Aspergillus terreus and Organic Electron Acceptors.

    Science.gov (United States)

    Tsuruoka, Nozomu; Sadakane, Takuya; Hayashi, Rika; Tsujimura, Seiya

    2017-03-10

    The flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) from Aspergillus species require suitable redox mediators to transfer electrons from the enzyme to the electrode surface for the application of bioelectrical devices. Although several mediators for FAD-GDH are already in use, they are still far from optimum in view of potential, kinetics, sustainability, and cost-effectiveness. Herein, we investigated the efficiency of various phenothiazines and quinones in the electrochemical oxidation of FAD-GDH from Aspergillus terreus . At pH 7.0, the logarithm of the bimolecular oxidation rate constants appeared to depend on the redox potentials of all the mediators tested. Notably, the rate constant of each molecule for FAD-GDH was approximately 2.5 orders of magnitude higher than that for glucose oxidase from Aspergillus sp. The results suggest that the electron transfer kinetics is mainly determined by the formal potential of the mediator, the driving force of electron transfer, and the electron transfer distance between the redox active site of the mediator and the FAD, affected by the steric or chemical interactions. Higher k ₂ values were found for ortho-quinones than for para-quinones in the reactions with FAD-GDH and glucose oxidase, which was likely due to less steric hindrance in the active site in the case of the ortho-quinones.

  17. Bimolecular Rate Constants for FAD-Dependent Glucose Dehydrogenase from Aspergillus terreus and Organic Electron Acceptors

    Directory of Open Access Journals (Sweden)

    Nozomu Tsuruoka

    2017-03-01

    Full Text Available The flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH from Aspergillus species require suitable redox mediators to transfer electrons from the enzyme to the electrode surface for the application of bioelectrical devices. Although several mediators for FAD-GDH are already in use, they are still far from optimum in view of potential, kinetics, sustainability, and cost-effectiveness. Herein, we investigated the efficiency of various phenothiazines and quinones in the electrochemical oxidation of FAD-GDH from Aspergillus terreus. At pH 7.0, the logarithm of the bimolecular oxidation rate constants appeared to depend on the redox potentials of all the mediators tested. Notably, the rate constant of each molecule for FAD-GDH was approximately 2.5 orders of magnitude higher than that for glucose oxidase from Aspergillus sp. The results suggest that the electron transfer kinetics is mainly determined by the formal potential of the mediator, the driving force of electron transfer, and the electron transfer distance between the redox active site of the mediator and the FAD, affected by the steric or chemical interactions. Higher k2 values were found for ortho-quinones than for para-quinones in the reactions with FAD-GDH and glucose oxidase, which was likely due to less steric hindrance in the active site in the case of the ortho-quinones.

  18. Constant strain accumulation rate between major earthquakes on the North Anatolian Fault.

    Science.gov (United States)

    Hussain, Ekbal; Wright, Tim J; Walters, Richard J; Bekaert, David P S; Lloyd, Ryan; Hooper, Andrew

    2018-04-11

    Earthquakes are caused by the release of tectonic strain accumulated between events. Recent advances in satellite geodesy mean we can now measure this interseismic strain accumulation with a high degree of accuracy. But it remains unclear how to interpret short-term geodetic observations, measured over decades, when estimating the seismic hazard of faults accumulating strain over centuries. Here, we show that strain accumulation rates calculated from geodetic measurements around a major transform fault are constant for its entire 250-year interseismic period, except in the ~10 years following an earthquake. The shear strain rate history requires a weak fault zone embedded within a strong lower crust with viscosity greater than ~10 20  Pa s. The results support the notion that short-term geodetic observations can directly contribute to long-term seismic hazard assessment and suggest that lower-crustal viscosities derived from postseismic studies are not representative of the lower crust at all spatial and temporal scales.

  19. Dynamic Monte Carlo rate constants for magnetic Hamiltonians coupled to a phonon bath

    Science.gov (United States)

    Solomon, Lazarus; Novotny, Mark

    2007-03-01

    For quantitative comparisons between experimental time- dependent measurements and dynamic Monte Carlo simulations, a relation between the time constant in the simulation and real time is necessary. We calculate the transition rate for spin S system using the lattice frame method for a rigid spin cluster in an elastic medium [1]. We compare this with the transition rate for an Ising spin 12 system using the quantum- mechanical density-matrix method [2] with the results of ref [1,3]. These transition probabilities are different from those of either the Glauber or the Metropolis dynamics, and reflect the properties of the bosonic bath. Comparison with recent experiments [4] will be discussed. [1] E. M. Chudnovsky, D. A. Garanin, and R. Schilling (PRB 72, 2006) [2] K. Park, M. A. Novotny, and P. A. Rikvold (PRE 66, 2002) [3] K Saito, S. Takesue, and S. Miyashita, (PRE 61, 2002) [4] T. Meunier et al (Condensed Matter, 2006)

  20. Rate constant for the reaction of atomic oxygen with phosphine at 298 K

    Science.gov (United States)

    Stief, L. J.; Payne, W. A.; Nava, D. F.

    1987-01-01

    The rate constant for the reaction of atomic oxygen with phosphine has been measured at 298 K using flash photolysis combined with time-resolved detection of O(3P) via resonance fluorescence. Atomic oxygen was produced by flash photolysis of N2O or NO highly diluted in argon. The results were shown to be independent of (PH3), (O), total pressure and the source of O(3P). The mean value of all the experiments is k1 = (3.6 + or -0.8) x 10 to the -11th cu cm/s (1 sigma). Two previous measurements of k1 differed by more than an order of magnitude, and the results support the higher value obtained in a discharge flow-mass spectrometry study. A comparison with rate data for other atomic and free radical reactions with phosphine is presented, and the role of these reactions in the aeronomy or photochemistry of Jupiter and Saturn is briefly considered.

  1. Dual-resonances approach to broadband cavity-assisted optical signal processing beyond the carrier relaxation rate

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Kristensen, Philip Trøst; Mørk, Jesper

    2014-01-01

    We propose and analyze a differential control scheme for cavity-enhanced optical signal processing devices based on carrier nonlinearities. The scheme relies on two optical cavities to increase the bandwidth beyond the limit given by the slowest carrier relaxation rate of the medium. Practical...

  2. Temperature effect on the rates of isometric force development and relaxation in the fresh and fatigued human adductor pollicis muscle

    NARCIS (Netherlands)

    de Ruiter, C J; Jones, D A; Sargeant, A J; de Haan, A

    1999-01-01

    The purpose of the present study was to investigate the effect of temperature on the rates of isometric force development and relaxation in electrically activated fresh and fatigued human adductor pollicis muscle. Following immersion of the lower arm for 20 min in water baths of four different

  3. Sun glitter imaging of submarine sand waves on the Taiwan Banks: Determination of the relaxation rate of short waves

    Science.gov (United States)

    Shao, Hao; Li, Yan; Li, Li

    2011-06-01

    Above sand waves on the seafloor, surface short waves, which are responsible for the radiance distribution in remote sensing imagery, are modulated gradually by the submarine topography. The relaxation rate μr characterizes the rate at which the short waves reach their saturation range after being disturbed. It is a key parameter in the weak hydrodynamic interaction theory and is also a most important parameter in the imaging mechanism used for mapping submarine bottom topography. In this study, a robust expression containing intensity and phase (advection effect) modulations of the perturbed action spectrum of short waves was deduced, by using the first-order weak hydrodynamic interaction theory. On the basis of the phase modulation, a method was developed to determine the relaxation rate in the Sun glitter imaging mechanism. The relaxation rates were estimated using in situ data measured on a cruise over the sand waves of the Taiwan Banks, a sea area between the East China Sea and the South China Sea, on 28-29 August 2006. Results showed that, under a wind speed of 5.0 m s-1, the relaxation rate of short waves was about 0.055 s-1 in response to current variations and about 0.025 s-1 equivalently in response to sea bottom topographic variations. The former value could be applied to interpret the amplitude of submarine topography by using satellite imagery, while the latter one (equivalent relaxation rate μ'r) could help to more accurately calibrate the spatial position of the retrieved sea bottom topography.

  4. Endo- and exocytic rate constants for spontaneous and protein kinase C-activated T cell receptor cycling

    DEFF Research Database (Denmark)

    Menné, Charlotte; Møller Sørensen, Tine; Siersma, Volkert

    2002-01-01

    To determine the rate constants of spontaneous and activated TCR cycling, we examined TCR endo- and exocytosis in the human T cell line Jurkat by three different methods. Using a simple kinetic model for TCR cycling and non-linear regression analyses, we found that the spontaneous endocytic rate...... constant of the TCR was low (approximately 0.012 min(-1)) whereas the spontaneous exocytic rate constant was similar to that of other cycling receptors (approximately 0.055 min(-1)). Following protein kinase C activation (PKC) the endocytic rate constant was increased tenfold (to approximately 0.128 min(-1......)) whereas the exocytic rate constant was unaffected. Thus, the TCR becomes a rapidly cycling receptor with kinetics similar to classical cycling receptors subsequent to PKC activation. This results in a reduction of the half-life of cell surface expressed TCR from approximately 58 to 6 min and allows rapid...

  5. Estimation in adults of the glomerular filtration rate in [99mTc] DTPA renography - the rate constant method

    International Nuclear Information System (INIS)

    Carlsen, Ove

    2004-01-01

    The purpose of this study was to design an alternative and robust method for estimation of glomerular filtration rate (GFR) in [ 99 mTc]-diethylenetriaminepentaacetic acid ([ 99 mTc] -DTPA renography with a reliability not significantly lower than that of the conventional Gates' method. Methods: The method is based on renographies lasting 40 min in which regions of interest (ROIs) are manually created over selected parts of certain blood pools (e.g. heart, lungs, spleen, and liver). For each ROI the corresponding time-activity curve (TAC) was generated, decay corrected and exposed to a monoexponential fit in the time interval 10 to 40 min postinjection. The rate constant in min-1 of the monoexponential fit was denoted BETA. Following an iterative procedure comprising usually 5-10 manually created ROIs, the monoexponential fit with the maximum rate constant (BETA max ) was used for estimation of GFR. Results: In a patient material of 54 adult subjects in whom GFR was determined with multiple or one sample techniques with [ 51 Cr]-ethylenediaminetetraacetic acid ([ 51 Cr]-EDTA) the regression curve of standard GFR (GFR std ) (i.e. GFR adjusted to 1.73 m 2 body surface area) showed a close, non-linear relationship with BETA max with a correlation coefficient of 95%. The standard errors of estimate (SEE) were 6.6, 10.6 and 16.8 for GFR std equal to 30, 60, and 120 ml/(min .73 m 2 ), respectively. The corresponding SEE values for almost the same patient material using Gates' method were 8.4, 11.9, and 16.8 ml/(min 1.73 m 2 ). Conclusions: The alternative rate constant method yields estimates of GFR std with SEE values equal to or slightly smaller than in Gates' method. The two methods provide statistically uncorrelated estimates of GFR std . Therefore, pooled estimates of GFR std can be calculated with SEE values approximately 1.41 times smaller than those mentioned above. The reliabilities of the pooled estimate of GFR std separately and of the multiple samples method

  6. Extension of the master sintering curve for constant heating rate modeling

    Science.gov (United States)

    McCoy, Tammy Michelle

    The purpose of this work is to extend the functionality of the Master Sintering Curve (MSC) such that it can be used as a practical tool for predicting sintering schemes that combine both a constant heating rate and an isothermal hold. Rather than just being able to predict a final density for the object of interest, the extension to the MSC will actually be able to model a sintering run from start to finish. Because the Johnson model does not incorporate this capability, the work presented is an extension of what has already been shown in literature to be a valuable resource in many sintering situations. A predicted sintering curve that incorporates a combination of constant heating rate and an isothermal hold is more indicative of what is found in real-life sintering operations. This research offers the possibility of predicting the sintering schedule for a material, thereby having advanced information about the extent of sintering, the time schedule for sintering, and the sintering temperature with a high degree of accuracy and repeatability. The research conducted in this thesis focuses on the development of a working model for predicting the sintering schedules of several stabilized zirconia powders having the compositions YSZ (HSY8), 10Sc1CeSZ, 10Sc1YSZ, and 11ScSZ1A. The compositions of the four powders are first verified using x-ray diffraction (XRD) and the particle size and surface area are verified using a particle size analyzer and BET analysis, respectively. The sintering studies were conducted on powder compacts using a double pushrod dilatometer. Density measurements are obtained both geometrically and using the Archimedes method. Each of the four powders is pressed into ¼" diameter pellets using a manual press with no additives, such as a binder or lubricant. Using a double push-rod dilatometer, shrinkage data for the pellets is obtained over several different heating rates. The shrinkage data is then converted to reflect the change in relative

  7. A study of the effect of relaxing music on heart rate recovery after exercise among healthy students.

    Science.gov (United States)

    Tan, Fuitze; Tengah, Asrin; Nee, Lo Yah; Fredericks, Salim

    2014-05-01

    Music has been employed in various clinical settings to reduce anxiety. However, meta-analysis has shown music to have little influence on haemodynamic parameters. This study aimed at investigating the effect of relaxing music on heart rate recovery after exercise. Twenty-three student volunteers underwent treadmill exercise and were assessed for heart rate recovery and saliva analysis; comparing exposure to sedative music with exposure to silence during the recovery period immediately following exercise. No differences were found between music and non-music exposure regarding: heart rate recovery, resting pulse rate, and salivary cortisol. Music was no different to silence in affecting these physiological measures, which are all associated with anxiety. Relaxing music unaccompanied by meditation techniques or other such interventions may not have a major role in reducing anxiety in certain experimental settings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A photon spectrometric dose-rate constant determination for the Advantage Pd-103 brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhe Jay; Bongiorni, Paul; Nath, Ravinder [Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520 (United States)

    2010-02-15

    Purpose: Although several dosimetric characterizations using Monte Carlo simulation and thermoluminescent dosimetry (TLD) have been reported for the new Advantage Pd-103 source (IsoAid, LLC, Port Richey, FL), no AAPM consensus value has been established for the dosimetric parameters of the source. The aim of this work was to perform an additional dose-rate constant ({Lambda}) determination using a recently established photon spectrometry technique (PST) that is independent of the published TLD and Monte Carlo techniques. Methods: Three Model IAPD-103A Advantage Pd-103 sources were used in this study. The relative photon energy spectrum emitted by each source along the transverse axis was measured using a high-resolution germanium spectrometer designed for low-energy photons. For each source, the dose-rate constant was determined from its emitted energy spectrum. The PST-determined dose-rate constant ({sub PST}{Lambda}) was then compared to those determined by TLD ({sub TLD}{Lambda}) and Monte Carlo ({sub MC}{Lambda}) techniques. A likely consensus {Lambda} value was estimated as the arithmetic mean of the average {Lambda} values determined by each of three different techniques. Results: The average {sub PST}{Lambda} value for the three Advantage sources was found to be (0.676{+-}0.026) cGyh{sup -1} U{sup -1}. Intersource variation in {sub PST}{Lambda} was less than 0.01%. The {sub PST}{Lambda} was within 2% of the reported {sub MC}{Lambda} values determined by PTRAN, EGSnrc, and MCNP5 codes. It was 3.4% lower than the reported {sub TLD}{Lambda}. A likely consensus {Lambda} value was estimated to be (0.688{+-}0.026) cGyh{sup -1} U{sup -1}, similar to the AAPM consensus values recommended currently for the Theragenics (Buford, GA) Model 200 (0.686{+-}0.033) cGyh{sup -1} U{sup -1}, the NASI (Chatsworth, CA) Model MED3633 (0.688{+-}0.033) cGyh{sup -1} U{sup -1}, and the Best Medical (Springfield, VA) Model 2335 (0.685{+-}0.033) cGyh{sup -1} U{sup -1} {sup 103}Pd

  9. A photon spectrometric dose-rate constant determination for the Advantage Pd-103 brachytherapy source

    International Nuclear Information System (INIS)

    Chen, Zhe Jay; Bongiorni, Paul; Nath, Ravinder

    2010-01-01

    Purpose: Although several dosimetric characterizations using Monte Carlo simulation and thermoluminescent dosimetry (TLD) have been reported for the new Advantage Pd-103 source (IsoAid, LLC, Port Richey, FL), no AAPM consensus value has been established for the dosimetric parameters of the source. The aim of this work was to perform an additional dose-rate constant (Λ) determination using a recently established photon spectrometry technique (PST) that is independent of the published TLD and Monte Carlo techniques. Methods: Three Model IAPD-103A Advantage Pd-103 sources were used in this study. The relative photon energy spectrum emitted by each source along the transverse axis was measured using a high-resolution germanium spectrometer designed for low-energy photons. For each source, the dose-rate constant was determined from its emitted energy spectrum. The PST-determined dose-rate constant ( PST Λ) was then compared to those determined by TLD ( TLD Λ) and Monte Carlo ( MC Λ) techniques. A likely consensus Λ value was estimated as the arithmetic mean of the average Λ values determined by each of three different techniques. Results: The average PST Λ value for the three Advantage sources was found to be (0.676±0.026) cGyh -1 U -1 . Intersource variation in PST Λ was less than 0.01%. The PST Λ was within 2% of the reported MC Λ values determined by PTRAN, EGSnrc, and MCNP5 codes. It was 3.4% lower than the reported TLD Λ. A likely consensus Λ value was estimated to be (0.688±0.026) cGyh -1 U -1 , similar to the AAPM consensus values recommended currently for the Theragenics (Buford, GA) Model 200 (0.686±0.033) cGyh -1 U -1 , the NASI (Chatsworth, CA) Model MED3633 (0.688±0.033) cGyh -1 U -1 , and the Best Medical (Springfield, VA) Model 2335 (0.685±0.033) cGyh -1 U -1 103 Pd sources. Conclusions: An independent Λ determination has been performed for the Advantage Pd-103 source. The PST Λ obtained in this work provides additional information

  10. Rate constants and mechanisms for the crystallization of Al nano-goethite under environmentally relevant conditions

    Science.gov (United States)

    Bazilevskaya, Ekaterina; Archibald, Douglas D.; Martínez, Carmen Enid

    2012-07-01

    Mobile inorganic and organic nanocolloidal particles originate-from and interact-with bulk solid phases in soil and sediment environments, and as such, they contribute to the dynamic properties of environmental systems. In particular, ferrihydrite and (nano)goethite are the most abundant of nanocolloidal Fe oxy(hydr)oxides in these environments. We therefore investigated the ferrihydrite to goethite phase transformation using experimental reaction conditions that mimicked environmental conditions where the formation of nanocolloidal Fe oxy(hydr)oxides may occur: slow titration of dilute solutions to pH 5 at 25 °C with and without 2 mol% Al. Subsequently, the rate constants from 54-d nano-goethite aging/crystallization experiments at 50 °C were determined using aliquots pulled for vibrational spectroscopy (including multivariate curve resolution, MCR, analyses of infrared spectra) and synchrotron-based X-ray diffraction (XRD). We also present a mechanistic model that accounts for the nano-goethite crystallization observed by the aforementioned techniques, and particle structural characteristics observed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In contrast to the common assumption that metastable ferrihydrite precipitates first, before it transforms to goethite, the presence of characteristic infrared bands in freshly synthesized nanoparticle suspensions indicate goethite can precipitate directly from solution under environmentally relevant conditions: low Fe concentration, ambient temperature, and pH maintained at 5. However, the presence of 2 mol% Al prevented direct goethite precipitation. Rate constants obtained by fitting the contributions from the MCR-derived goethite-like component to the OH-stretching region were (7.4 ± 1.1) × 10-7 s-1 for 0% Al and (4.2 ± 0.4) × 10-7 s-1 for 2 mol% Al suspensions. Rate constants derived from intensities of OH-bending infrared vibrations (795 and 895 cm-1) showed similar values

  11. Uptake rate constants and partition coefficients for vapor phase organic chemicals using semipermeable membrane devices (SPMDs)

    Science.gov (United States)

    Cranor, W.L.; Alvarez, D.A.; Huckins, J.N.; Petty, J.D.

    2009-01-01

    To fully utilize semipermeable membrane devices (SPMDs) as passive samplers in air monitoring, data are required to accurately estimate airborne concentrations of environmental contaminants. Limited uptake rate constants (kua) and no SPMD air partitioning coefficient (Ksa) existed for vapor-phase contaminants. This research was conducted to expand the existing body of kinetic data for SPMD air sampling by determining kua and Ksa for a number of airborne contaminants including the chemical classes: polycyclic aromatic hydrocarbons, organochlorine pesticides, brominated diphenyl ethers, phthalate esters, synthetic pyrethroids, and organophosphate/organosulfur pesticides. The kuas were obtained for 48 of 50 chemicals investigated and ranged from 0.03 to 3.07??m3??g-1??d-1. In cases where uptake was approaching equilibrium, Ksas were approximated. Ksa values (no units) were determined or estimated for 48 of the chemicals investigated and ranging from 3.84E+5 to 7.34E+7. This research utilized a test system (United States Patent 6,877,724 B1) which afforded the capability to generate and maintain constant concentrations of vapor-phase chemical mixtures. The test system and experimental design employed gave reproducible results during experimental runs spanning more than two years. This reproducibility was shown by obtaining mean kua values (n??=??3) of anthracene and p,p???-DDE at 0.96 and 1.57??m3??g-1??d-1 with relative standard deviations of 8.4% and 8.6% respectively.

  12. Rate constants for the slow Mu + propane abstraction reaction at 300 K by diamagnetic RF resonance.

    Science.gov (United States)

    Fleming, Donald G; Cottrell, Stephen P; McKenzie, Iain; Ghandi, Khashayar

    2015-08-14

    The study of kinetic isotope effects for H-atom abstraction rates by incident H-atoms from the homologous series of lower mass alkanes (CH4, C2H6 and, here, C3H8) provides important tests of reaction rate theory on polyatomic systems. With a mass of only 0.114 amu, the most sensitive test is provided by the rates of the Mu atom. Abstraction of H by Mu can be highly endoergic, due to the large zero-point energy shift in the MuH bond formed, which also gives rise to high activation energies from similar zero-point energy corrections at the transition state. Rates are then far too slow near 300 K to be measured by conventional TF-μSR techniques that follow the disappearance of the spin-polarised Mu atom with time. Reported here is the first measurement of a slow Mu reaction rate in the gas phase by the technique of diamagnetic radio frequency (RF) resonance, where the amplitude of the MuH product formed in the Mu + C3H8 reaction is followed with time. The measured rate constant, kMu = (6.8 ± 0.5) × 10(-16) cm(3) s(-1) at 300 K, is surprisingly only about a factor of three slower than that expected for H + C3H8, indicating a dominant contribution from quantum tunneling in the Mu reaction, consistent with elementary transition state theory calculations of the kMu/kH kinetic isotope effect.

  13. Consideration of demand rate in overall equipment effetiveness (OEE on equipment with constant process time

    Directory of Open Access Journals (Sweden)

    Perumal Puvanasvaran

    2013-06-01

    research should be conducted to test the possibility and to verify the definition of such performance ratio including Takt time on those processes of which its operating time is possibly to be reduced, especially those are not constant and fixed. This piece of research is temporarily done on the process where its operating time is constant from time to time and there is no ideal cycle time possible.Practical implications: The awareness of the overproduction should be emphasized and raised in the intention of pursuing higher OEE value. As the definition proposed such, the process with constant cycle time could even be defined in different performance ratio from time to time regarding to the customer demands and corresponding production rate. These two variables can be adjusted and balanced to increase the OEE value through optimization of average cycle time. Over this, optimization of average cycle time on equipment with constant operating time can be achieved through the optimization of loading number per each processing.Originality/value: The novelty of the paper is the inclusion of customer demand in obtaining OEE value of any particular equipment. Besides that, the equipment without ideal cycle time, which means those processes carried out in constant cycle time are possibly to be evaluated with performance ratio. As consequence of that, the machine utilization and capability used could be quantified and visualized using the performance ratio data of the OEE proposed.

  14. Hysteresis behaviour of silver sputtered in different plasma atmospheres at constant flow rates

    International Nuclear Information System (INIS)

    Rizk, A.; Makar, L.N.; Rizk, N.S.; Shinoda, R.

    1990-01-01

    The effects of ion bombardment on sputtering behaviour of pure silver targets in inert and active gas atmospheres were investigated, using a dc planar magnetron sputtering system. The obtained current-voltage characteristics showed the formation of hysteresis loops without noticeable sharp transitions. Redeposited layers of silver nitride or silver oxide on the target surface when using nitrogen or oxygen in the glow discharge, residual ionization when using dry argon atmosphere were considered the main reasons for the occurrence of these loops. The results indicate that films of AgN x and AgO x can be deposited with controlled x in the range 0 ≤ x ≤ 1 using voltage control at constant gas flow rates. (author)

  15. Power consumption analysis of constant bit rate video transmission over 3G networks

    DEFF Research Database (Denmark)

    Ukhanova, Ann; Belyaev, Evgeny; Wang, Le

    2012-01-01

    This paper presents an analysis of the power consumption of video data transmission with constant bit rate over 3G mobile wireless networks. The work includes the description of the radio resource control transition state machine in 3G networks, followed by a detailed power consumption analysis...... and measurements of the radio link power consumption. Based on this description and analysis, we propose our power consumption model. The power model was evaluated on a smartphone Nokia N900, which follows 3GPP Release 5 and 6 supporting HSDPA/HSUPA data bearers. We also propose a method for parameter selection...... for the 3GPP transition state machine that allows to decrease power consumption on a mobile device taking signaling traffic, buffer size and latency restrictions into account. Furthermore, we discuss the gain in power consumption vs. PSNR for transmitted video and show the possibility of performing power...

  16. Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds

    DEFF Research Database (Denmark)

    Pattison, D I; Davies, Michael Jonathan

    2001-01-01

    , absolute second-order rate constants for the reactions of HOCl with protein side chains, model compounds, and backbone amide (peptide) bonds have been determined at physiological pH values. The reactivity of HOCl with potential reactive sites in proteins is summarized by the series: Met (3.8 x 10(7) M(-1......Hypochlorous acid (HOCl) is a potent oxidant, which is produced in vivo by activated phagocytes. This compound is an important antibacterial agent, but excessive or misplaced production has been implicated in a number of human diseases, including atherosclerosis, arthritis, and some cancers....... Proteins are major targets for this oxidant, and such reaction results in side-chain modification, backbone fragmentation, and cross-linking. Despite a wealth of qualitative data for such reactions, little absolute kinetic data is available to rationalize the in vitro and in vivo data. In this study...

  17. Determination of rate constants of N-alkylation of primary amines by 1H NMR spectroscopy.

    Science.gov (United States)

    Li, Chenghong

    2013-09-05

    Macromolecules containing N-diazeniumdiolates of secondary amines are proposed scaffolds for controlled nitrogen oxide (NO) release medical applications. Preparation of these compounds often involves converting primary amine groups to secondary amine groups through N-alkylation. However, N-alkylation results in not only secondary amines but tertiary amines as well. Only N-diazeniumdiolates of secondary amines are suitable for controlled NO release; therefore, the yield of secondary amines is crucial to the total NO load of the carrier. In this paper, (1)H NMR spectroscopy was used to estimate the rate constants for formation of secondary amine (k1) and tertiary amine (k2) for alkylation reagents such as propylene oxide (PO), methyl acrylate (MA), and acrylonitrile (ACN). At room temperature, the ratio of k2/k1 for the three reactions was found to be around 0.50, 0.026, and 0.0072.

  18. Constant extension rate testing of Type 304L stainless steel in simulated waste tank environments

    International Nuclear Information System (INIS)

    Wiersma, B.J.

    1992-01-01

    New tanks for storage of low level radioactive wastes will be constructed at the Savannah River Site (SRS) of AISI Type 304L stainless steel (304L). The presence of chlorides and fluorides in the wastes may induce Stress Corrosion Cracking (SCC) in 304L. Constant Extension Rate Tests (CERT) were performed to determine the susceptibility of 304L to SCC in simulated wastes. In five of the six tests conducted thus far 304L was not susceptible to SCC in the simulated waste environments. Conflicting results were obtained in the final test and will be resolved by further tests. For comparison purposes the CERT tests were also performed with A537 carbon steel, a material similar to that utilized for the existing nuclear waste storage tanks at SRS

  19. A constant velocity Moessbauer spectrometer free of long-term instrumental drifts in the count rate

    International Nuclear Information System (INIS)

    Sarma, P.R.; Sharma, A.K.; Tripathi, K.C.

    1979-01-01

    Two new control circuits to be used with a constant velocity Moessbauer spectrometer with a loud-speaker drive have been described. The wave-forms generated in the circuits are of the stair-case type instead of the usual square wave-form, so that in each oscillation of the source it remains stationary for a fraction of the time-period. The gamma-rays counted during this period are monitored along with the positive and negative velocity counts and are used to correct any fluctuation in the count rate by feeding these pulses into the timer. The associated logic circuits have been described and the statistical errors involved in the circuits have been computed. (auth.)

  20. Surface hopping, transition state theory, and decoherence. II. Thermal rate constants and detailed balance

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Amber; Subotnik, Joseph E., E-mail: subotnik@sas.upenn.edu [Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104 (United States)

    2015-10-07

    We investigate a simple approach to compute a non-adiabatic thermal rate constant using the fewest switches surface hopping (FSSH) dynamics. We study the effects of both decoherence (using our augmented-FSSH (A-FSSH) algorithm) and forbidden hops over a large range of parameters, including high and low friction regimes, and weak and strong electronic coupling regimes. Furthermore, when possible, we benchmark our results against exact hierarchy equations of motion results, where we usually find a maximum error of roughly a factor of two (at reasonably large temperatures). In agreement with Hammes-Schiffer and Tully, we find that a merger of transition state theory and surface hopping can be both accurate and efficient when performed correctly. We further show that detailed balance is followed approximately by A-FSSH dynamics.

  1. Investigations of Relaxation Dynamics and Observation of Nearly Constant Loss Phenomena in PEO_2_0-LiCF_3SO_3-ZrO_2 Based Polymer Nano-Composite Electrolyte

    International Nuclear Information System (INIS)

    Dam, Tapabrata; Tripathy, Satya N.; Paluch, Marian; Jena, Sidhartha S.; Pradhan, Dillip K.

    2016-01-01

    Highlights: • Ion conduction mechanism is studied using broad band dielectric spectroscopy. • Existence and cause of Nearly Constant Loss is explored. • The crossover between UDR to NCL phenomena is investigated. • Effect of filler concentration on ion transport using scaling approach is discussed. - Abstract: The conduction mechanism of polymer nano-composite electrolytes are studied using broadband dielectric spectroscopy over a wide range of frequency and temperature. The polymer nano-composites consisting of polyethylene oxide as polymer host, lithium trifluoromethanesulfonate as salt, and nano-crystalline zirconia as filler are prepared using solution casting method. Formation of polymer salt complex and nano-composites are confirmed from x-ray diffraction studies. The electrical conductivity and relaxation phenomena of the polymer salt complex as well as the composites are studied using broadband dielectric spectroscopy. At room temperature, the dc conductivity of the polymer nano-composites are found higher by two orders of magnitude than that of corresponding polymer salt complex. Temperature dependence of dc conductivity is following Vogel-Tamman-Fulcher trend, suggesting strong coupling between ionic conductivity and segmental relaxation in polymer electrolytes. Relaxation phenomena are studied with dielectric and modulus formalism. Frequency dependent ac conductivity show universal dielectric response and nearly constant loss features at high and low temperature regions respectively. The origin of universal dielectric response and nearly constant loss are analysed and discussed using different approaches. Kramer - Krönig approach suggests the origin of nearly constant loss is due to caged ion dynamics feature.

  2. Sedative and cardiorespiratory effects of detomidine constant rate infusion in sheep.

    Science.gov (United States)

    de Moura, Rauane Sousa; Bittar, Isabela Plazza; da Silva, Luiz Henrique; Villela, Ana Carolina Vasquez; Dos Santos Júnior, Marcelo Borges; Borges, Naida Cristina; Franco, Leandro Guimarães

    2018-02-01

    The use of sheep in experiments is widespread and is increasing worldwide, and so is the need to develop species-specific anaesthetic techniques to ensure animal safety. Previous studies have mentioned several protocols involving the administration of alpha-2 adrenergic agonists in sheep; however, assessment of the efficacy and safety of these infusion techniques is still relatively new. Thus, the aim of the present study is to assess the effectiveness of detomidine constant rate infusion (CRI) in sheep by measuring the cardiovascular and respiratory parameters, blood gas variables and sedation scores. Eight adult female Santa Inês sheep received 20 µg/kg of detomidine hydrochloride intravenously as a bolus loading dose, followed by an infusion rate of 60 µg/kg/h. The heart rates and respiratory rates changed continuously during the CRI period. No arrhythmias were observed. The reduction in arterial partial pressure of oxygen (PaO 2 ) was not significant, but one animal showed signs of hypoxaemia (minimum PaO 2 of 66.9 mmHg). The arterial partial pressure of carbon dioxide (PaCO 2 ) increased, but the animals did not become hypercapnic. The bicarbonate (HCO 3- ), pH and base excess (BE) tended towards metabolic alkalosis. The cardiac output (CO), stroke volume (SV), cardiac index (CI) and ejection fraction (EF%) showed no significant changes. The fractional shortening (FS%) decreased slightly, starting at T 45min . Sedation scores varied between 3 (0/10) after sedation and during recovery and 7 (0/10) during CRI. We concluded that administering detomidine at an infusion rate of 60 µg/kg/h in Santa Inês sheep is a simple technique that produces satisfactory sedation for minimally invasive procedures.

  3. Density-dependent lines of one- and two-electron ions in diagnostics of laboratory plasma. I. The rates of collision relaxation of excited levels

    Energy Technology Data Exchange (ETDEWEB)

    Shevelko, V P; Skobelev, I Yu; Vinogradov, A V [Lebedev Physical Institute, Academy of Sciences of the USSR, Moscow, USSR

    1977-01-01

    Plasma devices with inertial plasma confinement such as laser produced plasmas, exploding wires, plasma focus, etc., which have been rapidly developed during recent years., appear to be very intensive sources of spectral line radiation in far UV and X-ray regions. Analysis of this radiation provides a good tool for plasma diagnostics with very high electron densities up to 10/sup 22/cm/sup -3/. In this work, consisting of two parts, the authors consider the mechanism of the formation of spectral lines in hot and dense plasma. The key point for density diagnostics is the fact that for some ion levels the rate of collisional relaxation has the same order of magnitude as the radiative decay. Thus the intensities of spectral lines arising from these levels show a strong dependence on electron density which makes diagnostics possible. In this paper, emphasis is laid on the calculation of rates of transition between close ion levels induced by electron or ion impact, which usually gives the main contribution to the collisional relaxation constants. The influence of plasma polarization effects on the collision frequency in a dense plasma is also considered.

  4. A Unified Kinetics and Equilibrium Experiment: Rate Law, Activation Energy, and Equilibrium Constant for the Dissociation of Ferroin

    Science.gov (United States)

    Sattar, Simeen

    2011-01-01

    Tris(1,10-phenanthroline)iron(II) is the basis of a suite of four experiments spanning 5 weeks. Students determine the rate law, activation energy, and equilibrium constant for the dissociation of the complex ion in acid solution and base dissociation constant for phenanthroline. The focus on one chemical system simplifies a daunting set of…

  5. Assessment of volumetric-modulated arc therapy for constant and variable dose rates

    Directory of Open Access Journals (Sweden)

    Mariluz De Ornelas-Couto

    2017-01-01

    Full Text Available Purpose: The aim of this study is to compare the effects of dose rate on volumetric-modulated arc therapy plans to determine optimal dose rates for prostate and head and neck (HN cases. Materials and Methods: Ten prostate and ten HN cases were retrospectively studied. For each case, seven plans were generated: one variable dose rate (VDR and six constant dose rate (CDR (100–600 monitor units [MUs]/min plans. Prescription doses were: 80 Gy to planning target volume (PTV for the prostate cases, and 70, 60, and 54 Gy to PTV1, PTV2, and PTV3, respectively, for HN cases. Plans were normalized to 95% of the PTV and PTV1, respectively, with the prescription dose. Plans were assessed using Dose-Volume-Histogram metrics, homogeneity index, conformity index, MUs, and delivery time. Results: For the prostate cases, significant differences were found for rectum D35 between VDR and all CDR plans, except CDR500. Furthermore, VDR was significantly different than CDR100 and 200 for bladder D50. Delivery time for all CDR plans and MUs for CDR400–600 were significantly higher when compared to VDR. HN cases showed significant differences between VDR and CDR100, 500 and 600 for D2 to the cord and brainstem. Significant differences were found for delivery time and MUs for all CDR plans, except CDR100 for number of MUs. Conclusion: The most significant differences were observed in delivery time and number of MUs. All-in-all, the best CDR for prostate cases was found to be 300 MUs/min and 200 or 300 MUs/min for HN cases. However, VDR plans are still the choice in terms of MU efficiency and plan quality.

  6. An exclusion process on a tree with constant aggregate hopping rate

    International Nuclear Information System (INIS)

    Mottishaw, Peter; Waclaw, Bartlomiej; Evans, Martin R

    2013-01-01

    We introduce a model of a totally asymmetric simple exclusion process (TASEP) on a tree network where the aggregate hopping rate is constant from level to level. With this choice for hopping rates the model shows the same phase diagram as the one-dimensional case. The potential applications of our model are in the area of distribution networks, where a single large source supplies material to a large number of small sinks via a hierarchical network. We show that mean-field theory (MFT) for our model is identical to that of the one-dimensional TASEP and that this MFT is exact for the TASEP on a tree in the limit of large branching ratio, b (or equivalently large coordination number). We then present an exact solution for the two level tree (or star network) that allows the computation of any correlation function and confirm how mean-field results are recovered as b → ∞. As an example we compute the steady-state current as a function of branching ratio. We present simulation results that confirm these results and indicate that the convergence to MFT with large branching ratio is quite rapid. (paper)

  7. The Pringle maneuver reduces the infusion rate of rocuronium required to maintain surgical muscle relaxation during hepatectomy.

    Science.gov (United States)

    Kajiura, Akira; Nagata, Osamu; Sanui, Masamitsu

    2018-04-27

    We investigated the continuous infusion rates of rocuronium necessary to obtain the surgical muscle relaxation before, during, and after the Pringle maneuver on patients who underwent hepatectomy. Fifteen patients were induced by total intravenous anesthesia with propofol. After obtaining the calibration of acceleromyography, the patient was intubated with rocuronium 0.6 mg/kg. Fifteen minutes after initial rocuronium injection, the continuous infusion was started at 7.5 µg/kg/min. The infusion rate was adjusted every 15 min so that the first twitch height (% T1) might become from 3 to 10% of control. The infusion rates at the time when the state of surgical muscle relaxation was achieved for more than 15 min were recorded before, during and after the Pringle maneuver. The 25% recovery time was measured after discontinuing the continuous infusion. The infusion rate of rocuronium before, during, and after the Pringle maneuver was 7.2 ± 1.8, 4.2 ± 1.4, and 4.7 ± 1.5 µg/kg/min (mean ± SD), respectively. The rocuronium infusion rate during the Pringle maneuver was decreased about 40% compared to that before this maneuver, and that after completion of the Pringle maneuver was not recovered to that before the Pringle maneuver. The 25% recovery time was 20 ± 7 min. In case of continuous administration of rocuronium during surgery performing the Pringle maneuver, it was considered necessary to regulate the administration of rocuronium using muscle relaxant monitoring in order to deal with the decrease in muscle relaxant requirement by the Pringle maneuver.

  8. Determination of hydroxyl rate constants by a high-throughput fluorimetric assay: towards a unified reactivity scale for antioxidants

    International Nuclear Information System (INIS)

    Louit, G.; Renault, J.P.; Pin, S.; Coffigny, H.; Hanedanian, M.; Taran, F.; Renault, J.P.; Pin, S.

    2009-01-01

    We describe in this article the development of a new method for the determination of rate constants of reaction of the hydroxyl radical, generated by radiolysis of water, with almost any possible molecule. It has been designed to provide a fast and reliable screening of antioxidant banks using microplates. Our particular approach is based on the use of the coumarin molecule as a competitor against the tested molecules: after a fast pulse of low dose irradiation, the fluorescence of 7-hydroxycoumarin produced by the oxidation of coumarin is measured and is inversely proportional to the scavenging ability of the tested antioxidant. We have validated our protocol using 32 molecules whose rate constants with HO . had already been evaluated and found a good agreement between our rate constants and the latter ones. The scopes and limitations of our method, as well as those of other rate constant determination methods, are discussed. (authors)

  9. NMR relaxation rates and Knight shifts in MgB2 and AlB2: theory versus experiments

    International Nuclear Information System (INIS)

    Pavarini, E; Baek, S H; Suh, B J; Borsa, F; Bud'ko, S L; Canfield, P C

    2003-01-01

    We have performed 11 B NMR measurements in 11 B enriched MgB 2 powder sample in the normal phase. The Knight shift was accurately determined by using the magic angle spinning technique. Results for 11 B and 27 Al Knight shifts (K) and relaxation rates (1/T 1 ) are also reported for AlB 2 . The data show a dramatic decrease of both K and 1/T 1 for 11 B in AlB 2 with respect to MgB 2 . We compare experimental results with ab initio calculated NMR relaxation rates and Knight shifts. The experimental values for 1/T 1 and K are in most cases in good agreement with the theoretical results. We show that the decrease of K and 1/T 1 for 11 B is consistent with a drastic drop of the density of states at the boron site in AlB 2 with respect to MgB 2

  10. Enhancement and degradation of the R2* relaxation rate resulting from the encapsulation of magnetic particles with hydrophilic coatings.

    Science.gov (United States)

    de Haan, Hendrick W; Paquet, Chantal

    2011-12-01

    The effects of including a hydrophilic coating around the particles are studied across a wide range of particle sizes by performing Monte Carlo simulations of protons diffusing through a system of magnetic particles. A physically realistic methodology of implementing the coating by cross boundary jump scaling and transition probabilities at the coating surface is developed. Using this formulation, the coating has three distinct impacts on the relaxation rate: an enhancement at small particle sizes, a degradation at intermediate particle sizes, and no effect at large particles sizes. These varied effects are reconciled with the underlying dephasing mechanisms by using the concept of a full dephasing zone to present a physical picture of the dephasing process with and without the coating for all sizes. The enhancement at small particle sizes is studied systemically to demonstrate the existence of an optimal ratio of diffusion coefficients inside/outside the coating to achieve maximal increase in the relaxation rate. Copyright © 2011 Wiley Periodicals, Inc.

  11. Theoretical growth rates, periods, and pulsation constants for long-period variables

    International Nuclear Information System (INIS)

    Fox, M.W.; Wood, P.R.

    1982-01-01

    Theoretical values of the growth rate, period, and pulsation constant for the first three radial pulsation modes in red giants (Population II and galactic disk) and supergiants have been derived in the linear, nonadiabatic approximation. The effects of altering the surface boundary conditions, the effective temperature (or mixing length), and the opacity in the outer layers have been explored. In the standard models, the Q-value for the first overtone can be much larger (Q 1 1 roughly-equal0.04); in addition, the Q-value for the fundamental mode is reduced from previous values, as is the period ratio P 0 /P 1 . The growth rate for the fundamental mode is found to increase with luminosity on the giant branch while the growth rate for the first overtone decreases. Dynamical instabilities found in previous adiabatic models of extreme red giants do not occur when nonadiabatic effects are included in the models. In some massive, luminous models, period ratios P 0 /P 1 approx.7 occur when P 0 approx.2000--5000 days; it is suggested that the massive galactic supergiants and carbon stars which have secondary periods Papprox.2000--7000 days and primary periods Papprox.300--700 days are first-overtone pulsators in which the long secondary periods are due to excitation of the fundamental mode. Some other consequences of the present results are briefly discussed, with particular emphasis on the mode of pulsation of the Mira variables. Subject headings: stars: long-period variables: stars: pulsation: stars: supergiants

  12. Experimental determination of the high-temperature rate constant for the reaction of OH with sec-butanol.

    Science.gov (United States)

    Pang, Genny A; Hanson, Ronald K; Golden, David M; Bowman, Craig T

    2012-10-04

    The overall rate constant for the reaction of OH with sec-butanol [CH(3)CH(OH)CH(2)CH(3)] was determined from measurements of the near-first-order OH decay in shock-heated mixtures of tert-butylhydroperoxide (as a fast source of OH) with sec-butanol in excess. Three kinetic mechanisms from the literature describing sec-butanol combustion were used to examine the sensitivity of the rate constant determination to secondary kinetics. The overall rate constant determined can be described by the Arrhenius expression 6.97 × 10(-11) exp(-1550/T[K]) cm(3) molecule(-1) s(-1), valid over the temperature range of 888-1178 K. Uncertainty bounds of ±30% were found to adequately account for the uncertainty in secondary kinetics. To our knowledge, the current data represent the first efforts toward an experimentally determined rate constant for the overall reaction of OH with sec-butanol at combustion-relevant temperatures. A rate constant predicted using a structure-activity relationship from the literature was compared to the current data and previous rate constant measurements for the title reaction at atmospheric-relevant temperatures. The structure-activity relationship was found to be unable to correctly predict the measured rate constant at all temperatures where experimental data exist. We found that the three-parameter fit of 4.95 × 10(-20)T(2.66) exp(+1123/T[K]) cm(3) molecule(-1) s(-1) better describes the overall rate constant for the reaction of OH with sec-butanol from 263 to 1178 K.

  13. Multi-target QSPR modeling for simultaneous prediction of multiple gas-phase kinetic rate constants of diverse chemicals

    Science.gov (United States)

    Basant, Nikita; Gupta, Shikha

    2018-03-01

    The reactions of molecular ozone (O3), hydroxyl (•OH) and nitrate (NO3) radicals are among the major pathways of removal of volatile organic compounds (VOCs) in the atmospheric environment. The gas-phase kinetic rate constants (kO3, kOH, kNO3) are thus, important in assessing the ultimate fate and exposure risk of atmospheric VOCs. Experimental data for rate constants are not available for many emerging VOCs and the computational methods reported so far address a single target modeling only. In this study, we have developed a multi-target (mt) QSPR model for simultaneous prediction of multiple kinetic rate constants (kO3, kOH, kNO3) of diverse organic chemicals considering an experimental data set of VOCs for which values of all the three rate constants are available. The mt-QSPR model identified and used five descriptors related to the molecular size, degree of saturation and electron density in a molecule, which were mechanistically interpretable. These descriptors successfully predicted three rate constants simultaneously. The model yielded high correlations (R2 = 0.874-0.924) between the experimental and simultaneously predicted endpoint rate constant (kO3, kOH, kNO3) values in test arrays for all the three systems. The model also passed all the stringent statistical validation tests for external predictivity. The proposed multi-target QSPR model can be successfully used for predicting reactivity of new VOCs simultaneously for their exposure risk assessment.

  14. Theoretical relaxation rates of dipole orientation around an excess electron in liquid alcohols

    International Nuclear Information System (INIS)

    Fueki, K.; Feng, D.F.; Kevan, L.

    1975-01-01

    A method was developed for calculation of relaxation times for dipole orientation in liquid alcohols induced by localized excess electrons. A microscopic model is used which utilizes quantities calculated from the Fueki, Feng, Kevan semicontinuum model of solvated electron energy levels. Given the semicontinuum model results, the relaxation times are calculated as functions of temperature with no adjustable parameters. Calculated results for methanol, ethanol and 1-propanol agree well with the limited experimental data available from Hunt, Baxendale and Wardman, and Thomas and Beck. The calculated results agree best for propanol and imply that the theoretical model is most applicable to larger molecule solvents. The impressive agreement between experiment and theory suggest that simple dipole orientation is the mechanism of rapid electron solvation in polar liquids. (auth)

  15. Theoretical relaxation rates of dipole orientation around an excess electron in liquid alcohols

    International Nuclear Information System (INIS)

    Fueki, K.; Feng, D.F.; Kevan, L.

    1975-01-01

    A method is developed for calculation of relaxation times for dipole orientation in liquid alcohols induced by localized excess electrons. A microscopic model is used which utilizes quantities calculated from the Fueki, Feng, Kevan semicontinuum model of solvated electron energy levels. Given the semicontinuum model results, the relaxation times are calculated as functions of temperature with no adjustable parameters. Calculated results for methanol, ethanol and 1-propanol agree well with the limited experimental data available from Hunt, Baxendale and Wardman, and Thomas and Beck. The calculated results agree best for propanol and imply that the theoretical model is most applicable to larger molecule solvents. The impressive agreement between experiment and theory suggest that simple dipole orientation is the mechanism of rapid electron solvation in polar liquids. (author)

  16. Luther-Emery liquid in the NMR relaxation rate of carbon nanotubes

    International Nuclear Information System (INIS)

    Gulacsi, Miklos; Simon, Ferenc; Wzietek, Pawel; Kuzmany, Hans; Dora, Balazs

    2008-01-01

    We analyze a recent NMR experiments by Singer et al.[Singer et al. Phys. Rev. Lett. 95, 236403 (2005).], which showed a deviation from Fermi-liquid behavior in carbon nanotubes with an energy gap evident at low temperatures. A comprehensive theory for the magnetic field and temperature dependent NMR 13 C spin-lattice relaxation is given in the framework of the Luther-Emery and Luttinger liquids. The low temperature properties are governed by a gapped relaxation due to a spin gap (∝30 K), described by the Luther-Emery liquid picture, which crosses over smoothly to the Luttinger liquid behaviour with increasing temperature. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Determination of the rate constant for neuronal and extra-neuronal monoamine oxidase

    International Nuclear Information System (INIS)

    Cassis, L.; Ludwig, J.; Trendelenburg, U.

    1986-01-01

    In the rat vas deferens, neuronal deamination of 3 H-(-) noradrenaline ( 3 H-NA) to 3 H-dihydroxyphenethylglycol ( 3 HDOPEG) cannot be inhibited by pretreatment with a monoamine oxidase (MAO) inhibitor. However, in the extraneuronal compartment of the rat heart, inhibition of MAO abolishes the formation of 3 HDOPEG. To clarify this discrepancy, the authors determined the rate constant for MAO (/sup k/mao/) neuronally (rat vas deferens) and extraneuronally (rat heart). For neuronal /sup k/mao, vasa deferentia were incubated with 3 HNA for 300 minutes, and the cumulative formation of 3 HDOPEG measured. The delay in time before 3 HDOPEG achieves steady state (/sup tau/system), is inversely proportional to /sup k/mao. Because /sup tau/system is very short for neuronal MAO, an appreciable delay was only achieved after partial inhibition of MAO with various parglyline concentrations. To relate to the uninhibited enzyme, the percentage inhibition by pargyline was then determined in homogenate preparations. For extraneuronal MAO, a similar procedure was performed in perfused rat hearts. Results show a significantly greater /sup k/mao of neuronal origin, (/sup k/mao = .57min - 1) which when related to the fractional size of the neuronal compartment suggests a very high activity of neuronal MAO

  18. Application of the constant rate of pressure change method to improve jet pump performance

    International Nuclear Information System (INIS)

    Long, X P; Yang, X L

    2012-01-01

    This paper adopts a new method named the constant rate of pressure change (CRPC) to improve the jet pump performance. The main contribution of this method is that the diffuser generates uniform pressure gradient. The performance of the jet pump with new diffusers designed by the CRPC method, obtained by CFD methods, was compared with that of the jet pump with traditional conical diffusers. It is found that the CRPC diffuser produces a linear pressure increase indeed. The higher friction loss and the separation decrease the CRPC diffuser efficiency and then lower the pump efficiency. The pump with shorter throats has higher efficiency at small flow ratio while its efficiency is lower than the original pump at lager flow ratio and the peak efficiency of the pumps with the throat length of 5-6 Dt is higher than that of the pumps with other throat length. When the throat length is less than 4 Dt, the CRPC diffuser efficiency is higher than the conical diffuser. The CRPC method could also be used to design the nozzle and other situations needing the pressure change gradually.

  19. Detection of exudates in fundus imagery using a constant false-alarm rate (CFAR) detector

    Science.gov (United States)

    Khanna, Manish; Kapoor, Elina

    2014-05-01

    Diabetic retinopathy is the leading cause of blindness in adults in the United States. The presence of exudates in fundus imagery is the early sign of diabetic retinopathy so detection of these lesions is essential in preventing further ocular damage. In this paper we present a novel technique to automatically detect exudates in fundus imagery that is robust against spatial and temporal variations of background noise. The detection threshold is adjusted dynamically, based on the local noise statics around the pixel under test in order to maintain a pre-determined, constant false alarm rate (CFAR). The CFAR detector is often used to detect bright targets in radar imagery where the background clutter can vary considerably from scene to scene and with angle to the scene. Similarly, the CFAR detector addresses the challenge of detecting exudate lesions in RGB and multispectral fundus imagery where the background clutter often exhibits variations in brightness and texture. These variations present a challenge to common, global thresholding detection algorithms and other methods. Performance of the CFAR algorithm is tested against a publicly available, annotated, diabetic retinopathy database and preliminary testing suggests that performance of the CFAR detector proves to be superior to techniques such as Otsu thresholding.

  20. Quantum chemical and conventional TST calculations of rate constants for the OH + alkane reaction

    International Nuclear Information System (INIS)

    Bravo-Perez, Graciela; Alvarez-Idaboy, J. Raul; Jimenez, Annia Galano; Cruz-Torres, Armando

    2005-01-01

    Reactions of OH with methane, ethane, propane, i-butane, and n-butane have been modeled using ab initio (MP2) and hybrid DFT (BHandHLYP) methods, and the 6-311G(d,p) basis set. Furthermore, single-point calculations at the CCSD(T) level were carried out at the optimized geometries. The rate constants have been calculated using the conventional transition-state theory (CTST). Arrhenius equations are proposed in the temperature range of 250-650 K. Hindered Internal Rotation partition functions calculations were explicitly carried out and included in the total partition functions. These corrections showed to be relevant in the determination of the pre-exponential parameters, although not so important as in the NO 3 + alkane reactions [G. Bravo-Perez, J.R. Alvarez-Idaboy, A. Cruz-Torres, M.E. Ruiz, J. Phys. Chem. A 106 (2002) 4645]. The explicit participation of the tunnel effect has been taken into account. The calculated rate coefficients provide a very good agreement with the experimental data. The best agreement for the overall alkane + OH reactions seemed to occur when the BHandHLYP geometries and partition functions are used. For propane and i-butane, in addition to the respective secondary and tertiary H-abstraction channels, the primary one has been considered. These pathways are confirmed to be significant in spite of the large differences in activation energies between primary and secondary or primary and tertiary channels, respectively of propane and i-butane reactions and should not be disregarded

  1. Rate constant measurements for the overall reaction of OH + 1-butanol → products from 900 to 1200 K.

    Science.gov (United States)

    Pang, Genny A; Hanson, Ronald K; Golden, David M; Bowman, Craig T

    2012-03-15

    The rate constant for the overall reaction OH + 1-butanol → products was determined in the temperature range 900 to 1200 K from measurements of OH concentration time histories in reflected shock wave experiments of tert-butyl hydroperoxide (TBHP) as a fast source of OH radicals with 1-butanol in excess. Narrow-linewidth laser absorption was employed for the quantitative OH concentration measurement. A detailed kinetic mechanism was constructed that includes updated rate constants for 1-butanol and TBHP kinetics that influence the near-first-order OH concentration decay under the present experimental conditions, and this mechanism was used to facilitate the rate constant determination. The current work improves upon previous experimental studies of the title rate constant by utilizing a rigorously generated kinetic model to describe secondary reactions. Additionally, the current work extends the temperature range of experimental data in the literature for the title reaction under combustion-relevant conditions, presenting the first measurements from 900 to 1000 K. Over the entire temperature range studied, the overall rate constant can be expressed in Arrhenius form as 3.24 × 10(-10) exp(-2505/T [K]) cm(3) molecule(-1) s(-1). The influence of secondary reactions on the overall OH decay rate is discussed, and a detailed uncertainty analysis is performed yielding an overall uncertainty in the measured rate constant of ±20% at 1197 K and ±23% at 925 K. The results are compared with previous experimental and theoretical studies on the rate constant for the title reaction and reasonable agreement is found when the earlier experimental data were reinterpreted.

  2. Effect of selecting a fixed dephosphorylation rate on the estimation of rate constants and rCMRGlu from dynamic [18F] fluorodeoxyglucose/PET data

    International Nuclear Information System (INIS)

    Dhawan, V.; Moeller, J.R.; Strother, S.C.; Evans, A.C.; Rottenberg, D.A.

    1989-01-01

    Several publications have discussed the estimation and physiologic significance of regional [ 18 F]fluorodeoxyglucose (FDG) rate constants and metabolic rates. Most of these studies analyzed dynamic data collected over 45-60 min; three rate constants (k1-k3) and blood volume (Vb) were estimated and the regional cerebral metabolic rate for glucose (rCMRGlu) was subsequently derived using the measured blood glucose value and a regionally invariant value of the lumped constant (LC). The dephosphorylation rate constant (k4) was either neglected, or a fixed value was used in the estimation procedure to obtain the remaining parameters. To compare the rate constants obtained by different authors using different values of k4 is impossible without knowledge of the effect of selecting different fixed values of k4 (including zero) on the estimated rate constants and rCMRGlu. Based on our analysis of FDG/PET data from nine normal volunteer subjects, we conclude that inclusion of a fixed value for k4, in spite of a scaling effect on the absolute values of model parameters, has no effect on the coefficient of variation (CV) of within- and between-subject parameter estimates and glucose metabolic rates

  3. The dissolution rate constant of magnetite in water at different temperatures and pH conditions

    International Nuclear Information System (INIS)

    Mohajery, Khatereh; Deydier de Pierrefeu, Laurent; Lister, Derek H.

    2012-09-01

    Under the nominal conditions of power system coolants, the corrosion of components made of carbon steel is limited by the magnetite films that develop on surfaces. In some situations, the magnetite film loses much of its protective ability and corrosion and loss of iron to the system are exacerbated. Common examples of such situations occur when the system is non-isothermal so that temperature gradients cause differences in magnetite solubility around the circuit; the resulting areas of under-saturation in iron give rise to dissolution of normally protective films. Condensing steam in two-phase systems may also promote oxide dissolution. When the turbulence in the system is high, oxide degradation is aggravated and flow-accelerated corrosion (FAC) results. The subsequent increased loading of systems with iron leads to fouling of flow passages and heat transfer surfaces and in reactor primary coolants to rising radiation fields, while FAC can have disastrous results in terms of pipe wall thinning and eventual rupture. Magnetite dissolution is clearly a key contributor to these processes. Thus, the conventional mechanistic description of FAC postulates magnetite dissolution in series with mass transfer of iron from the film to the bulk coolant. In the resulting equations, if the dissolution rate constant is considerably less than the mass transfer coefficient for a particular situation, dissolution will control and flow should have no effect. This is clearly untenable for FAC, so it is often assumed that mass transfer controls and the contribution from oxide dissolution is ignored - on occasion when data on dissolution kinetics are available and sometimes when those data show that dissolution should control. In most cases, however, dissolution rate constants for magnetite are not available. At UNB Nuclear we have a research program using a high-temperature loop to measure dissolution rates of magnetite in water under various conditions of flow, temperature and

  4. Three-minute constant rate step test for detecting exertional dyspnea relief after bronchodilation in COPD

    Directory of Open Access Journals (Sweden)

    Borel B

    2016-11-01

    Full Text Available Benoit Borel,1,2 Courtney A Wilkinson-Maitland,3 Alan Hamilton,4 Jean Bourbeau,5 Hélène Perrault,6 Dennis Jensen,3,5,7 François Maltais2 1Laboratoire HAVAE, Université de Limoges, Limoges, France; 2Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, 3Clinical Exercise and Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, McGill University, Montréal, QC, 4Boehringer Ingelheim (Canada Limited, Burlington, ON, 5Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute, McGill University Health Center, Montreal, QC, 6Faculty of Health Sciences, University of Ottawa, Ottawa, ON, 7Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada Background: The aim of this study was to evaluate the responsiveness of the 3-minute constant rate step test (3-MST to detect the relief of exertional dyspnea (respiratory discomfort after acute bronchodilation in COPD patients. Patients and methods: A total of 40 patients with moderate-to-severe COPD (mean forced expiratory volume in 1 second: 45.7 (±14.7, % predicted performed four 3-MSTs at randomly assigned stepping rates of 14, 16, 20 and 24 steps/min after inhalation of nebulized ipratropium bromide (500 µg/salbutamol (2.5 mg and saline placebo, which were randomized to order. Patients rated their intensity of perceived dyspnea at the end of each 3-MST using Borg 0–10 category ratio scale. Results: A total of 37 (92.5%, 36 (90%, 34 (85% and 27 (67.5% patients completed all 3 minutes of exercise at 14, 16, 20 and 24 steps/min under both treatment conditions, respectively. Compared with placebo, ipratropium bromide/salbutamol significantly decreased dyspnea at the end of the third minute of exercise at 14 steps/min (by 0.6±1.0 Borg 0–10 scale units, P<0.01 and 16 steps/min (by 0.7±1.3 Borg 0–10 scale

  5. Application of an Artificial Neural Network to the Prediction of OH Radical Reaction Rate Constants for Evaluating Global Warming Potential.

    Science.gov (United States)

    Allison, Thomas C

    2016-03-03

    Rate constants for reactions of chemical compounds with hydroxyl radical are a key quantity used in evaluating the global warming potential of a substance. Experimental determination of these rate constants is essential, but it can also be difficult and time-consuming to produce. High-level quantum chemistry predictions of the rate constant can suffer from the same issues. Therefore, it is valuable to devise estimation schemes that can give reasonable results on a variety of chemical compounds. In this article, the construction and training of an artificial neural network (ANN) for the prediction of rate constants at 298 K for reactions of hydroxyl radical with a diverse set of molecules is described. Input to the ANN consists of counts of the chemical bonds and bends present in the target molecule. The ANN is trained using 792 (•)OH reaction rate constants taken from the NIST Chemical Kinetics Database. The mean unsigned percent error (MUPE) for the training set is 12%, and the MUPE of the testing set is 51%. It is shown that the present methodology yields rate constants of reasonable accuracy for a diverse set of inputs. The results are compared to high-quality literature values and to another estimation scheme. This ANN methodology is expected to be of use in a wide range of applications for which (•)OH reaction rate constants are required. The model uses only information that can be gathered from a 2D representation of the molecule, making the present approach particularly appealing, especially for screening applications.

  6. On the ambiguity of the reaction rate constants in multivariate curve resolution for reversible first-order reaction systems.

    Science.gov (United States)

    Schröder, Henning; Sawall, Mathias; Kubis, Christoph; Selent, Detlef; Hess, Dieter; Franke, Robert; Börner, Armin; Neymeyr, Klaus

    2016-07-13

    If for a chemical reaction with a known reaction mechanism the concentration profiles are accessible only for certain species, e.g. only for the main product, then often the reaction rate constants cannot uniquely be determined from the concentration data. This is a well-known fact which includes the so-called slow-fast ambiguity. This work combines the question of unique or non-unique reaction rate constants with factor analytic methods of chemometrics. The idea is to reduce the rotational ambiguity of pure component factorizations by considering only those concentration factors which are possible solutions of the kinetic equations for a properly adapted set of reaction rate constants. The resulting set of reaction rate constants corresponds to those solutions of the rate equations which appear as feasible factors in a pure component factorization. The new analysis of the ambiguity of reaction rate constants extends recent research activities on the Area of Feasible Solutions (AFS). The consistency with a given chemical reaction scheme is shown to be a valuable tool in order to reduce the AFS. The new methods are applied to model and experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Study of supersonic flow in a constant rate of momentum change (CRMC) ejector with frictional effects

    International Nuclear Information System (INIS)

    Kumar, Virendra; Singhal, Gaurav; Subbarao, P.M.V.

    2013-01-01

    The constant rate of momentum change (CRMC) is a new approach towards design of supersonic ejectors. CRMC methodology was first proposed by Eames [1] in a study which was primarily based on isentropic flow inside the diffusing region of a supersonic ejector. The prime benefit that accrues from employing a CRMC ejector is that it can effectively eliminate the irreversibility associated with occurrence of thermodynamic shock process. The present study examines the supersonic flow in a CRMC ejector from the perspective of an adiabatic flow with frictional effects inside the variable cross-section of supersonic ejector, which is apparently more realistic. An analytical model has been discussed for the prediction of flow parameter variation in a space marching formulation taking into account change in localized frictional coefficient due to corresponding changes at each step. The analytical results have been validated by conducting a computational study based on 2-D axi-symmetric viscous compressible flow formulation with turbulence in FLUENT. The results are in good agreement at on-design conditions. The predictions especially for the recovered pressure made through the analytical formulation incorporating friction are found to be in significantly better agreement than the isentropic approach. The experimental validation for the approach has also been presented with the results being in close agreement with analytically predicted values. -- Highlights: • CRMC ejector eliminates the irreversibility due to occurrence of thermodynamic shock. • Frictional effect based apparently present more realistic solution for ejector. • Static pressure variation between proposed model and numerical study is nearly 2.29%. • Static pressure variation between analytical and experimental values is nearly 4%. • Experimentally observed entrainment ratio shows 3% variation w.r.t. design point value

  8. Analysis of the backbone dynamics of capsicein using 15N NMR relaxation rate measurements

    International Nuclear Information System (INIS)

    Van Heijenoort, C.; Bouaziz, S.; Guittet, E.

    1994-01-01

    15 N relaxation times T 1 and T 1ρ , and heteronuclear steady state nOes, were measured on capsicein, a 98 residue protein. The classical analysis of these data using directly the Lipari and Szabo formalism was shown to give incoherent results, probably due to the presence of a slow exchange along the whole protein. This global exchange broadening made the usual preliminary evaluation of the overall correlation time of capsicein using the Lipari and Szabo expression for the spectral densities impossible. (authors). 2 figs., 23 refs

  9. A new variable interval schedule with constant hazard rate and finite time range.

    Science.gov (United States)

    Bugallo, Mehdi; Machado, Armando; Vasconcelos, Marco

    2018-05-27

    We propose a new variable interval (VI) schedule that achieves constant probability of reinforcement in time while using a bounded range of intervals. By sampling each trial duration from a uniform distribution ranging from 0 to 2 T seconds, and then applying a reinforcement rule that depends linearly on trial duration, the schedule alternates reinforced and unreinforced trials, each less than 2 T seconds, while preserving a constant hazard function. © 2018 Society for the Experimental Analysis of Behavior.

  10. Site-specific reaction rate constant measurements for various secondary and tertiary H-abstraction by OH radicals

    KAUST Repository

    Badra, Jihad; Farooq, Aamir

    2015-01-01

    absorption of the R1(5) transition of OH spectrum near 306.69nm.Previous low-temperature rate constant measurements are added to the current data to generate three-parameter rate expressions that successfully represent the available direct measurements over a

  11. Kinetics analysis for development of a rate constant estimation model for ultrasonic degradation reaction of methylene blue.

    Science.gov (United States)

    Kobayashi, Daisuke; Honma, Chiemi; Matsumoto, Hideyuki; Takahashi, Tomoki; Kuroda, Chiaki; Otake, Katsuto; Shono, Atsushi

    2014-07-01

    Ultrasound has been used as an advanced oxidation method for wastewater treatment. Sonochemical degradation of organic compounds in aqueous solution occurs by pyrolysis and/or reaction with hydroxyl radicals. Moreover, kinetics of sonochemical degradation has been proposed. However, the effect of ultrasonic frequency on degradation rate has not been investigated. In our previous study, a simple model for estimating the apparent degradation rate of methylene blue was proposed. In this study, sonochemical degradation of methylene blue was performed at various frequencies. Apparent degradation rate constant was evaluated assuming that sonochemical degradation of methylene blue was a first-order reaction. Specifically, we focused on effects of ultrasonic frequency and power on rate constant, and the applicability of our proposed model was demonstrated. Using this approach, maximum sonochemical degradation rate was observed at 490 kHz, which agrees with a previous investigation into the effect of frequency on the sonochemical efficiency value evaluated by KI oxidation dosimetry. Degradation rate increased with ultrasonic power at every frequency. It was also observed that threshold power must be reached for the degradation reaction to progress. The initial methylene blue concentration and the apparent degradation rate constant have a relation of an inverse proportion. Our proposed model for estimating the apparent degradation rate constant using ultrasonic power and sonochemical efficiency value can apply to this study which extended the frequency and initial concentration range. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. A first-passage scheme for determination of overall rate constants for non-diffusion-limited suspensions

    Science.gov (United States)

    Lu, Shih-Yuan; Yen, Yi-Ming

    2002-02-01

    A first-passage scheme is devised to determine the overall rate constant of suspensions under the non-diffusion-limited condition. The original first-passage scheme developed for diffusion-limited processes is modified to account for the finite incorporation rate at the inclusion surface by using a concept of the nonzero survival probability of the diffusing entity at entity-inclusion encounters. This nonzero survival probability is obtained from solving a relevant boundary value problem. The new first-passage scheme is validated by an excellent agreement between overall rate constant results from the present development and from an accurate boundary collocation calculation for the three common spherical arrays [J. Chem. Phys. 109, 4985 (1998)], namely simple cubic, body-centered cubic, and face-centered cubic arrays, for a wide range of P and f. Here, P is a dimensionless quantity characterizing the relative rate of diffusion versus surface incorporation, and f is the volume fraction of the inclusion. The scheme is further applied to random spherical suspensions and to investigate the effect of inclusion coagulation on overall rate constants. It is found that randomness in inclusion arrangement tends to lower the overall rate constant for f up to the near close-packing value of the regular arrays because of the inclusion screening effect. This screening effect turns stronger for regular arrays when f is near and above the close-packing value of the regular arrays, and consequently the overall rate constant of the random array exceeds that of the regular array. Inclusion coagulation too induces the inclusion screening effect, and leads to lower overall rate constants.

  13. Linear free energy relationships between aqueous phase hydroxyl radical reaction rate constants and free energy of activation.

    Science.gov (United States)

    Minakata, Daisuke; Crittenden, John

    2011-04-15

    The hydroxyl radical (HO(•)) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). Computer based kinetic modeling requires a reaction pathway generator and predictions of associated reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions for aliphatic compounds. For the reaction rate constant predictor, we develop linear free energy relationships (LFERs) between aqueous phase literature-reported HO(•) reaction rate constants and theoretically calculated free energies of activation for H-atom abstraction from a C-H bond and HO(•) addition to alkenes. The theoretical method uses ab initio quantum mechanical calculations, Gaussian 1-3, for gas phase reactions and a solvation method, COSMO-RS theory, to estimate the impact of water. Theoretically calculated free energies of activation are found to be within approximately ±3 kcal/mol of experimental values. Considering errors that arise from quantum mechanical calculations and experiments, this should be within the acceptable errors. The established LFERs are used to predict the HO(•) reaction rate constants within a factor of 5 from the experimental values. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for kinetic modeling of AOPs.

  14. QSARs for phenols and phenolates: oxidation potential as a predictor of reaction rate constants with photochemically produced oxidants.

    Science.gov (United States)

    Arnold, William A; Oueis, Yan; O'Connor, Meghan; Rinaman, Johanna E; Taggart, Miranda G; McCarthy, Rachel E; Foster, Kimberley A; Latch, Douglas E

    2017-03-22

    Quantitative structure-activity relationships (QSARs) for prediction of the reaction rate constants of phenols and phenolates with three photochemically produced oxidants, singlet oxygen, carbonate radical, and triplet excited state sensitizers/organic matter, are developed. The predictive variable is the one-electron oxidation potential (E 1 ), which is calculated for each species using density functional theory. The reaction rate constants are obtained from the literature, and for singlet oxygen, are augmented with new experimental data. Calculated E 1 values have a mean unsigned error compared to literature values of 0.04-0.06 V. For singlet oxygen, a single linear QSAR that includes both phenols and phenolates is developed that predicts experimental rate constants, on average, to within a factor of three. Predictions for only 6 out of 87 compounds are off by more than a factor of 10. A more limited data set for carbonate radical reactions with phenols and phenolates also gives a single linear QSAR with prediction of rate constant being accurate to within a factor of three. The data for the reactions of phenols with triplet state sensitizers demonstrate that two sensitizers, 2-acetonaphthone and methylene blue, most closely predict the reactivity trend of triplet excited state organic matter with phenols. Using sensitizers with stronger reduction potentials could lead to overestimation of rate constants and thus underestimation of phenolic pollutant persistence.

  15. Evaluation of iron deposits in the reticuloendothelial system using T2-relaxation rate of MRI. Relation with serum ferritin and Fe concentration

    International Nuclear Information System (INIS)

    Ootsuka, Kae; Togami, Izumi; Kitagawa, Takahiro

    1996-01-01

    MR imaging is a useful non-invasive technique to detect iron deposits in many organs, but it is difficult to evaluate quantitatively. This study was performed to determine the possibility whether T2 relaxation rate (1/T2) could quantify iron deposits in the reticuloendothelial system (liver, spleen and bone marrow) of 11 patients and four normal volunteers. A moderate correlation was obtained between T2-relaxation rate and the serum ferritin level. These results suggest that T2-relaxation rate may provide useful information for the repeated quantitative evaluation of patients with iron-overload-syndromes. (author)

  16. Endo- vs. exogenous shocks and relaxation rates in book and music “sales”

    Science.gov (United States)

    Lambiotte, R.; Ausloos, M.

    2006-04-01

    In this paper, we analyse the response of music and book sales to an external field and a buyer herding. We distinguish endogenous and exogenous shocks. We focus on some case studies, whose data have been collected from ranking on amazon.com. We show that an ensemble of equivalent systems quantitatively respond in a same way to a similar “external shock”, indicating roads to universality features. In contrast to Sornette et al. [Phys. Rev. Lett. 93 (2004) 228701] who seemed to find power-law behaviours, in particular at long times, a law interpreted in terms of an epidemic activity, we observe that the relaxation process can be as well seen as an exponential one that saturates toward an asymptotic state, itself different from the pre-shock state. By studying an ensemble of 111 shocks, on books or records, we show that exogenous and endogenous shocks are discriminated by their short-time behaviour: the relaxation time seems to be twice shorter in endogenous shocks than in exogenous ones. We interpret the finding through a simple thermodynamic model with a dissipative force.

  17. Isotopic and chemical dilution effects on the vibrational relaxation rate of some totally symmetric motions of liquid acetonitrile

    International Nuclear Information System (INIS)

    Marri, E.; Morresi, A.; Paliani, G.; Cataliotti, R.S.; Giorgini, M.G.

    1999-01-01

    The vibrational dephasing of the ν 1 (C-H, C-D stretching) and ν 3 (C-H, C-D bending) symmetric motions of liquid acetonitrile in its light and fully deuterated forms has been studied in the frame of the vibrational time correlation functions obtained as Fourier transforms of the isotropic Raman spectral distributions and interpreted within the Kubo theory. In addition, the experimental isotropic profiles have been analysed within the bandshape approach formulated by analytical Fourier transformation of the Kubo vibrational time correlation functions in order to derive the relaxation parameters in the frequency domain. The effects of the isotopic (CH 3 CN/CD 3 CN and vice versa) and chemical (CCl 4 ) dilution on the bandshapes and on the vibrational relaxation parameters have been studied. It was observed that the decay rate of ν 1 mode is insensitive to the isotopic dilution but varies appreciably with chemical (CCl 4 ) dilution. The vibrational dephasing of ν 3 mode is qualitatively, but not quantitatively, affected in the same way by chemical dilution and shows a slower modulation regime than that exhibited by the stretching mode. Unlikely from the latter, the ν 3 mode results are slightly affected by the isotopic dilution. Phase relaxation mechanisms of these two motions of acetonitrile in the liquid state are proposed on the basis of these data, and a comparison is made with the results earlier published. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  18. Variable dose rate single-arc IMAT delivered with a constant dose rate and variable angular spacing

    International Nuclear Information System (INIS)

    Tang, Grace; Earl, Matthew A; Yu, Cedric X

    2009-01-01

    Single-arc intensity-modulated arc therapy (IMAT) has gained worldwide interest in both research and clinical implementation due to its superior plan quality and delivery efficiency. Single-arc IMAT techniques such as the Varian RapidArc(TM) deliver conformal dose distributions to the target in one single gantry rotation, resulting in a delivery time in the order of 2 min. The segments in these techniques are evenly distributed within an arc and are allowed to have different monitor unit (MU) weightings. Therefore, a variable dose-rate (VDR) is required for delivery. Because the VDR requirement complicates the control hardware and software of the linear accelerators (linacs) and prevents most existing linacs from delivering IMAT, we propose an alternative planning approach for IMAT using constant dose-rate (CDR) delivery with variable angular spacing. We prove the equivalence by converting VDR-optimized RapidArc plans to CDR plans, where the evenly spaced beams in the VDR plan are redistributed to uneven spacing such that the segments with larger MU weighting occupy a greater angular interval. To minimize perturbation in the optimized dose distribution, the angular deviation of the segments was restricted to ≤± 5 deg. This restriction requires the treatment arc to be broken into multiple sectors such that the local MU fluctuation within each sector is reduced, thereby lowering the angular deviation of the segments during redistribution. The converted CDR plans were delivered with a single gantry sweep as in the VDR plans but each sector was delivered with a different value of CDR. For four patient cases, including two head-and-neck, one brain and one prostate, all CDR plans developed with the variable spacing scheme produced similar dose distributions to the original VDR plans. For plans with complex angular MU distributions, the number of sectors increased up to four in the CDR plans in order to maintain the original plan quality. Since each sector was

  19. Tempo of Diversification of Global Amphibians: One-Constant Rate, One-Continuous Shift or Multiple-Discrete Shifts?

    OpenAIRE

    Youhua Chen

    2014-01-01

    In this brief report, alternative time-varying diversification rate models were fitted onto the phylogeny of global amphibians by considering one-constant-rate (OCR), one-continuous-shift (OCS) and multiplediscrete- shifts (MDS) situations. The OCS diversification model was rejected by γ statistic (γ=-5.556, p⁄ 0.001), implying the existence of shifting diversification rates for global amphibian phylogeny. Through model selection, MDS diversification model outperformed OCS and OCR...

  20. Carbon-13 magnetic relaxation rates or iron (III) complexes of some biogenic amines and parent compounds in aqueous solutions

    International Nuclear Information System (INIS)

    Lai, A.; Monduzzi, M.; Saba, G.

    1980-01-01

    Spin-lattice relaxation rates (R 1 ) from naturally occuring C-13 F.T. N.M.R. spectra of some catecholamines and parent compounds with Iron(III) at pD = 4 were determined in order to elucidate the molecular mechanism underlying their association in aqueous solutions. Complexation was observed only for catecholic ligands. The R 1 values were used to calculate iron-carbon scaled distances, and two complexation models were proposed where the catecholic function binds Fe(III) in the first and second coordination spheres respectively. The latter case was shown to be the consistent with the molecular geometries. (orig.)

  1. Attenuation of nuclear orientation of .sup.127./sup.In in GD and the InGDKorringa spin-lattice relaxation time constant

    Czech Academy of Sciences Publication Activity Database

    Stone, J.; Ohya, S.; Rikovska, J.; Woehr, A.; Betts, P.; Dupák, Jan; Fogelberg, B.; Jacobsson, L.

    č. 133 (2001), s. 111 - 115 ISSN 0304-3843 Institutional research plan: CEZ:AV0Z2065902 Keywords : nuclear orientation * Korringa constant Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.634, year: 2001

  2. Comments to "Analysis of constant rate period of spray drying of slurry" by Liang et al., 2001

    DEFF Research Database (Denmark)

    Jørgensen, Kåre; Jensen, Anker Degn; Sloth, Jakob

    2006-01-01

    In the study by Liang et al. [2001. Analysis of constant rate period of spray drying of slurry. Chemical Engineering Science 56, 2205-2213] the Darcy flow of liquid through a pore system of primary particles to the surface of a slurry droplet was applied for the constant rate period. Steep primary...... particle concentration gradients inside -25 mu m droplets with a primary particle size of 0.2 mu m were observed. Unfortunately, the boundary condition at the droplet surface for the parabolic second-order PDE did not conserve the solid mass in the droplet, and the plots for the primary particle...

  3. Rate constants for the reactions of free radicals with oxygen in solution

    International Nuclear Information System (INIS)

    Maillard, B.; Ingold, K.U.; Scaiano, J.C.

    1983-01-01

    The kinetics of the rections of several free radicals with oxygen have been examined in solution at 300 K using laser flash photolysis techniques. The reactions of resonance-stabilized radicals are only slightly slower than those of nonstabilized radicals: for example, for tert-butyl (in cyclohexane), 4.93 x 10 9 ; benzyl, 2.36 x 10 9 (in cyclohexane); cyclohexadienyl (in benzene), 1.64 x 10 9 M -1 s -1 . The reaction of butyl-tin (n-Bu 3 Sn.) radicals is unusually fast (7.5 x 10 9 M -1 s -1 ), a fact that has been tentatively attributed to a relaxation of spin selection rules due to heavy atom effects. 1 table

  4. A new analytical method for estimating lumped parameter constants of linear viscoelastic models from strain rate tests

    Science.gov (United States)

    Mattei, G.; Ahluwalia, A.

    2018-04-01

    We introduce a new function, the apparent elastic modulus strain-rate spectrum, E_{app} ( \\dot{ɛ} ), for the derivation of lumped parameter constants for Generalized Maxwell (GM) linear viscoelastic models from stress-strain data obtained at various compressive strain rates ( \\dot{ɛ}). The E_{app} ( \\dot{ɛ} ) function was derived using the tangent modulus function obtained from the GM model stress-strain response to a constant \\dot{ɛ} input. Material viscoelastic parameters can be rapidly derived by fitting experimental E_{app} data obtained at different strain rates to the E_{app} ( \\dot{ɛ} ) function. This single-curve fitting returns similar viscoelastic constants as the original epsilon dot method based on a multi-curve global fitting procedure with shared parameters. Its low computational cost permits quick and robust identification of viscoelastic constants even when a large number of strain rates or replicates per strain rate are considered. This method is particularly suited for the analysis of bulk compression and nano-indentation data of soft (bio)materials.

  5. Excited-state relaxation of some aminoquinolines

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available The absorption and fluorescence spectra, fluorescence quantum yields and lifetimes, and fluorescence rate constants ( k f of 2-amino-3-( 2 ′ -benzoxazolylquinoline (I, 2-amino-3-( 2 ′ -benzothiazolylquinoline (II, 2-amino-3-( 2 ′ -methoxybenzothiazolyl-quinoline (III, 2-amino-3-( 2 ′ -benzothiazolylbenzoquinoline (IV at different temperatures have been measured. The shortwavelength shift of fluorescence spectra of compounds studied (23–49 nm in ethanol as the temperature decreases (the solvent viscosity increases points out that the excited-state relaxation process takes place. The rate of this process depends essentially on the solvent viscosity, but not the solvent polarity. The essential increasing of fluorescence rate constant k f (up to about 7 times as the solvent viscosity increases proves the existence of excited-state structural relaxation consisting in the mutual internal rotation of molecular fragments of aminoquinolines studied, followed by the solvent orientational relaxation.

  6. Rate constant for reaction of vitamin C with protein radicals in γ-irradiated aqueous albumin solution at 295K

    International Nuclear Information System (INIS)

    Miyazaki, Tetsuo; Yoshimura, Toru; Mita, Kazuya; Suzuki, Keiji; Watanabe, Masami

    1995-01-01

    When an aqueous solution of albumin (0.1 kg dm -3 ) is irradiated by γ-rays at 295 K, albumin radicals with a long lifetime are observed by ESR. The reaction of vitamin C with the albumin radicals has been studied at 295 K in the albumin solution, which is considered as a model of cells. The rate constant for the reaction of vitamin C with the albumin radicals was measured as 0.014 dm 3 mol -1 S -1 , which is much smaller than the reported constants (10 6 -10 10 dm 3 mol -1 s -1 ) for the reaction of vitamin C with radicals in a dilute aqueous solution. The small rate constant for the reaction of vitamin C is ascribed to the reaction in polymer coils in the albumin solution, since vitamin C and albumin radicals diffuse very slowly in the coils. (author)

  7. EFRT M-12 Issue Resolution: Caustic Leach Rate Constants from PEP and Laboratory-Scale Tests

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, Lenna A.; Rassat, Scot D.; Eslinger, Paul W.; Aaberg, Rosanne L.; Aker, Pamela M.; Golovich, Elizabeth C.; Hanson, Brady D.; Hausmann, Tom S.; Huckaby, James L.; Kurath, Dean E.; Minette, Michael J.; Sundaram, S. K.; Yokuda, Satoru T.

    2009-08-14

    concentrated to nominally 20 wt% solids using cross-flow ultrafiltration before adding caustic. The work described in this report addresses the kinetics of caustic leach under WTP conditions, based on tests performed with a Hanford waste simulant. The tests were completed at the lab-scale and in the PEP, which is a 1/4.5-scale mock-up of key PTF process equipment. The purpose of this report is to summarize the results from both scales that are related to caustic leach chemistry to support a scale-up factor for the submodels to be used in the G2 model, which predicts WTP operating performance. The scale-up factor will take the form of an adjustment factor for the rate constant in the boehmite leach kinetic equation in the G2 model.

  8. EFRT M-12 Issue Resolution: Caustic Leach Rate Constants from PEP and Laboratory-Scale Tests

    International Nuclear Information System (INIS)

    Mahoney, Lenna A.; Rassat, Scot D.; Eslinger, Paul W.; Aaberg, Rosanne L.; Aker, Pamela M.; Golovich, Elizabeth C.; Hanson, Brady D.; Hausmann, Tom S.; Huckaby, James L.; Kurath, Dean E.; Minette, Michael J.; Sundaram, S. K.; Yokuda, Satoru T.

    2009-01-01

    to nominally 20 wt% solids using cross-flow ultrafiltration before adding caustic. The work described in this report addresses the kinetics of caustic leach under WTP conditions, based on tests performed with a Hanford waste simulant. The tests were completed at the lab-scale and in the PEP, which is a 1/4.5-scale mock-up of key PTF process equipment. The purpose of this report is to summarize the results from both scales that are related to caustic leach chemistry to support a scale-up factor for the submodels to be used in the G2 model, which predicts WTP operating performance. The scale-up factor will take the form of an adjustment factor for the rate constant in the boehmite leach kinetic equation in the G2 model

  9. How does relaxing the algorithm for autism affect DSM-V prevalence rates?

    Science.gov (United States)

    Matson, Johnny L; Hattier, Megan A; Williams, Lindsey W

    2012-08-01

    Although it is still unclear what causes autism spectrum disorders (ASDs), over time researchers and clinicians have become more precise with detecting and diagnosing ASD. Many diagnoses, however, are based on the criteria established within the Diagnostic and Statistical Manual of Mental Disorders (DSM); thus, any change in these diagnostic criteria can have a great effect upon children with ASD and their families. It is predicted that the prevalence of ASD diagnoses will dramatically decrease with the adoption of the proposed DSM-5 criteria in 2013. The aim of this current study was to inspect the changes in prevalence first using a diagnostic criteria set which was modified slightly from the DSM-5 criteria (Modified-1 criteria) and again using a set of criteria which was relaxed even a bit more (Modified-2 criteria). Modified-1 resulted in 33.77 % fewer toddlers being diagnosed with ASD compared to the DSM-IV, while Modified-2 resulted in only a 17.98 % decrease in ASD diagnoses. Children diagnosed with the DSM-5 criteria exhibited the greatest levels of autism symptomatology, but the Mod-1, Mod-2, and DSM-IV groups still demonstrated significant impairments. Implications of these findings are discussed.

  10. The constant failure rate model for fault tree evaluation as a tool for unit protection reliability assessment

    International Nuclear Information System (INIS)

    Vichev, S.; Bogdanov, D.

    2000-01-01

    The purpose of this paper is to introduce the fault tree analysis method as a tool for unit protection reliability estimation. The constant failure rate model applies for making reliability assessment, and especially availability assessment. For that purpose an example for unit primary equipment structure and fault tree example for simplified unit protection system is presented (author)

  11. Bibliographies on radiation chemistry: Pt. 12; Rate constants for reactions of nonmetallic inorganic radicals in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Helman, W P; Ross, A B [Notre Dame Univ., IN (USA). Radiation Chemistry Data Center

    1990-01-01

    Rate constants have been determined by pulse radiolysis, flash photolysis, and other methods, for a wide variety of reactions involving transient radicals in aqueous solution. Reliable rate constants have been established for reactions of radicals from water (e{sub aq}{sup -}, {center dot}H, {center dot}OH/{center dot}O{sup -}) and the data have been tabulated (Buxton, 1988) through 1986. Kinetic data for HO{sub 2}{center dot}/O{sub 2}{center dot}{sup -} were tabulated. (Bielski, 1985) from papers published through 1983. A compilation of rate constants, from the literature through Mid-1987, for other nonmetallic inorganic radicals has also appeared recently (Neta, 1988). Together, these compilations contain rate constants for more than 6,000 different reactions, reported in about 2,000 references. The present bibliography provides a list of relevant references which have been collected since the publication of the above-mentioned compilations. The list contains references received through the end of December, 1989. (author).

  12. Variational transition-state theory study of the rate constant of the DMS·OH scavenging reaction by O2.

    Science.gov (United States)

    Ramírez-Anguita, Juan M; González-Lafont, Àngels; Lluch, José M

    2011-07-30

    The chemical tropospheric dimethyl sulfide (DMS, CH3SCH3) degradation involves several steps highly dependent on the environmental conditions. So, intensive efforts have been devoted during the last years to enhance the understanding of the DMS oxidation mechanism under different conditions. The reaction of DMS with OH is considered to be the most relevant process that initiates the whole oxidation process. The experimental observations have been explained by a two-channel mechanism consisting of a H-abstraction process leading to CH3S(O)CH3 and HO2 and an addition reaction leading to the DMS·OH adduct. In the presence of O2, the DMS·OH adduct is competitively scavenged increasing the contribution of the addition channel to the overall DMS oxidation. Recent experimental measurements have determined from a global fit that the rate constant of this scavenging process is independent of pressure and temperature but this rate constant cannot be directly measured. In this article, a variational transition-state theory calculation of the low- and high-pressure rate constants for the reaction between DMS·OH and O2 has been carried out as a function of temperature. Our proposal is that the slight temperature dependence of the scavenging rate constant can only be explained if the H-abstraction bottleneck is preceded by a dynamical bottleneck corresponding to the association process between the DMS·OH adduct and the O2 molecule. The agreement between the low-pressure and high-pressure rate constants confirms the experimental observations. Copyright © 2011 Wiley Periodicals, Inc.

  13. Correlation of heart rate and radionuclide index of left ventricular contraction and relaxation

    International Nuclear Information System (INIS)

    Adachi, Haruhiko; Sugihara, Hiroki; Nakagawa, Hiroaki; Inagaki, Suetsugu; Kubota, Yasushi; Nakagawa, Masao

    1990-01-01

    Since the cardiac function indices derived from radionuclide ventriculography (RNV) are considered to depend on the heart rate, we studied the relationship between systolic or diastolic indices and heart rates in patients with normal RNV and devised a method of correcting these indices according to the heart rate. For the systolic indices, the heart rate showed significant correlation with ET (r=-0.640), PER (r=0.791) and TPE (r=-0.401) but not with EF, 1/3 EF, MNSER or 1/3 MNSER. For the diastolic indices, the heart rate correlated well with FT (r=-0.938), RFT (r=-0.736), SFT (r=-0.803), 1/3 FF (r=-0.758), PFR (r=0.759), 1/3 PFR (r=0.742) and TPF (r=-0.389) but not with AFT, 1/3 MNDFR or AFF. These results indicate that many systolic and diastolic indices derived from RNV are affected by the heart rate, So when cardiac function is evaluated with the use of radionuclide indices, those which are independent of the heart rate should be used, or they should be corrected for the heart rate. As a method of correction, we proposed a rotating method obtained by manipulation of the regression equation of heart rates and indices. This new method is certain and easier to use when the correcting equations are set into a computer program. (author)

  14. Photon spectrometry for the determination of the dose-rate constant of low-energy photon-emitting brachytherapy sources

    International Nuclear Information System (INIS)

    Chen, Zhe Jay; Nath, Ravinder

    2007-01-01

    Accurate determination of dose-rate constant (Λ) for interstitial brachytherapy sources emitting low-energy photons (<50 keV) has remained a challenge in radiation dosimetry because of the lack of a suitable absolute dosimeter for accurate measurement of the dose rates near these sources. Indeed, a consensus value of Λ taken as the arithmetic mean of the dose-rate constants determined by different research groups and dosimetry techniques has to be used at present for each source model in order to minimize the uncertainties associated with individual determinations of Λ. Because the dosimetric properties of a source are fundamentally determined by the characteristics of the photons emitted by the source, a new technique based on photon spectrometry was developed in this work for the determination of dose-rate constant. The photon spectrometry technique utilized a high-resolution gamma-ray spectrometer to measure source-specific photon characteristics emitted by the low-energy sources and determine their dose-rate constants based on the measured photon-energy spectra and known dose-deposition properties of mono-energetic photons in water. This technique eliminates many of the difficulties arising from detector size, the energy dependence of detector sensitivity, and the use of non-water-equivalent solid phantoms in absolute dose rate measurements. It also circumvents the uncertainties that might be associated with the source modeling in Monte Carlo simulation techniques. It was shown that the estimated overall uncertainty of the photon spectrometry technique was less than 4%, which is significantly smaller than the reported 8-10% uncertainty associated with the current thermo-luminescent dosimetry technique. In addition, the photon spectrometry technique was found to be stable and quick in Λ determination after initial setup and calibration. A dose-rate constant can be determined in less than two hours for each source. These features make it ideal to determine

  15. Flowing afterglow: construction of an apparatus, measurement of rate constants, and consideration of the diffusive behavior of charges

    International Nuclear Information System (INIS)

    Matsuoka, Shingo; Nakamura, Hirone; Tamura, Takaaki; Fujii, Toshihiro.

    1984-01-01

    A flowing afterglow apparatus was constructed and the operation of the afterglow system including data analysis was tested by measuring the rate constants for the reactions N + + NO, N 2 + + NO, He + + N 2 , and SF 6 + e; the results were 5.8 x 10 -10 , 3.9 x 10 -10 , 1.20 x 10 -9 , and 2.1 x 10 -7 cm 3 s -1 respectively. In the measurements an extraction voltage for ion sampling was not applied to the nose cone in order not to introduce an electric field into the reaction region. A ''non-ambipolar'' model developed by us was used for the data analysis of the ion/molecule reactions. For the data analysis of the electron attachment, a typical curve fit mehtod to the product ion signal was used. However, no theoretical curves fit the experimental points. This disagreement is attributed to a change of the ion-sampling efficiency through the nose-cone aperture arising from a change of the electron-dominated plasma to a negative-ion-dominated plasma with an increasing flow rate of SF 6 . Nevertheless, the attachment rate could be determined by fitting the theoretical and experimantal curves in the limited region of the SF 6 flow rate where the negative-ion-dominated plasma is established at the sampling aperture. All the rate constants obtained here agree reasonably well with literature values. Next, errors in the positive ion/molecule reaction rate constants, which would occur if the diffusion coefficients of the ions and neutrals each have a + 10 % error were calculated for the flow model to be -0.4 and +1.2 % respectively, demonstrating that these parameters are not important in the analysis of data. This insensitivity explains why the nose-cone voltage applied in a typical flowing afterglow operation has not caused a significant error in the published rate constants although it disturbs the ion diffusive behavior. (author)

  16. Site-specific reaction rate constant measurements for various secondary and tertiary H-abstraction by OH radicals

    KAUST Repository

    Badra, Jihad

    2015-02-01

    Reaction rate constants for nine site-specific hydrogen atom (H) abstraction by hydroxyl radicals (OH) have been determined using experimental measurements of the rate constants of Alkane+OH→Products reactions. Seven secondary (S 20, S 21, S 22, S 30, S 31, S 32, and S 33) and two tertiary (T 100 and T 101) site-specific rate constants, where the subscripts refer to the number of carbon atoms (C) connected to the next-nearest-neighbor (N-N-N) C atom, were obtained for a wide temperature range (250-1450K). This was done by measuring the reaction rate constants for H abstraction by OH from a series of carefully selected large branched alkanes. The rate constant of OH with four different alkanes, namely 2,2-dimethyl-pentane, 2,4-dimethyl-pentane, 2,2,4-trimethyl-pentane (iso-octane), and 2,2,4,4-tetramethyl-pentane were measured at high temperatures (822-1367K) using a shock tube and OH absorption diagnostic. Hydroxyl radicals were detected using the narrow-line-width ring-dye laser absorption of the R1(5) transition of OH spectrum near 306.69nm.Previous low-temperature rate constant measurements are added to the current data to generate three-parameter rate expressions that successfully represent the available direct measurements over a wide temperature range (250-1450. K). Similarly, literature values of the low-temperature rate constants for the reaction of OH with seven normal and branched alkanes are combined with the recently measured high-temperature rate constants from our group [1]. Subsequent to that, site-specific rate constants for abstractions from various types of secondary and tertiary H atoms by OH radicals are derived and have the following modified Arrhenius expressions:. S20=8.49×10-17T1.52exp(73.4K/T)cm3molecule-1s-1(250-1450K) S21=1.07×10-15T1.07exp(208.3K/T)cm3molecule-1s-1(296-1440K) S22=2.88×10-13T0.41exp(-291.5K/T)cm3molecule-1s-1(272-1311K) S30=3.35×10-18T1.97exp(323.1K/T)cm3molecule-1s-1(250-1366K) S31=1.60×10-18T2.0exp(500.0K/T)cm3

  17. A Constant Rate of Spontaneous Mutation in DNA-Based Microbes

    Science.gov (United States)

    Drake, John W.

    1991-08-01

    In terms of evolution and fitness, the most significant spontaneous mutation rate is likely to be that for the entire genome (or its nonfrivolous fraction). Information is now available to calculate this rate for several DNA-based haploid microbes, including bacteriophages with single- or double-stranded DNA, a bacterium, a yeast, and a filamentous fungus. Their genome sizes vary by ≈6500-fold. Their average mutation rates per base pair vary by ≈16,000-fold, whereas their mutation rates per genome vary by only ≈2.5-fold, apparently randomly, around a mean value of 0.0033 per DNA replication. The average mutation rate per base pair is inversely proportional to genome size. Therefore, a nearly invariant microbial mutation rate appears to have evolved. Because this rate is uniform in such diverse organisms, it is likely to be determined by deep general forces, perhaps by a balance between the usually deleterious effects of mutation and the physiological costs of further reducing mutation rates.

  18. Habitat fragmentation and extinction rates within freshwater fish communities : a faunal relaxation approach

    OpenAIRE

    Hugueny, Bernard; Movellan, A.; Belliard, J.

    2011-01-01

    Aim To estimate population extinction rates within freshwater fish communities since the fragmentation of palaeo-rivers due to sea level rise at the end of the Pleistocene; to combine this information with rates estimated by other approaches (population surveys, fossil records); and to build an empirical extinction-area relationship. Location Temperate rivers from the Northern Hemisphere, with a special focus on rivers discharging into the English Channel, in north-western France. Methods (1)...

  19. Constant growth rate can be supported by decreasing energy flux and increasing aerobic glycolysis

    NARCIS (Netherlands)

    Slavov, Nikolai; Budnik, Bogdan A; Schwab, David; Airoldi, Edoardo M; van Oudenaarden, Alexander

    2014-01-01

    Fermenting glucose in the presence of enough oxygen to support respiration, known as aerobic glycolysis, is believed to maximize growth rate. We observed increasing aerobic glycolysis during exponential growth, suggesting additional physiological roles for aerobic glycolysis. We investigated such

  20. Measurement of the relaxation rate of the magnetization in Mn12O12-acetate using proton NMR echo

    Science.gov (United States)

    Jang; Lascialfari; Borsa; Gatteschi

    2000-03-27

    We present a novel method to measure the relaxation rate W of the magnetization of Mn 12O (12)-acetate (Mn12) magnetic molecular cluster in its S = 10 ground state at low T. It is based on the observation of an exponential growth in time of the proton NMR signal during the thermal equilibration of the magnetization of the molecules. We can explain the novel effect with a simple model which relates the intensity of the proton echo signal to the microscopic reversal of the magnetization of each individual Mn12 molecule during the equilibration process. The method should find wide application in the study of magnetic molecular clusters in off-equilibrium conditions.

  1. Measurement of the Relaxation Rate of the Magnetization in Mn12O12 -Acetate Using Proton NMR Echo

    International Nuclear Information System (INIS)

    Jang, Z. H.; Lascialfari, A.; Borsa, F.; Gatteschi, D.

    2000-01-01

    We present a novel method to measure the relaxation rate W of the magnetization of Mn 12 O 12 -acetate (Mn12) magnetic molecular cluster in its S=10 ground state at low T . It is based on the observation of an exponential growth in time of the proton NMR signal during the thermal equilibration of the magnetization of the molecules. We can explain the novel effect with a simple model which relates the intensity of the proton echo signal to the microscopic reversal of the magnetization of each individual Mn12 molecule during the equilibration process. The method should find wide application in the study of magnetic molecular clusters in off-equilibrium conditions. (c) 2000 The American Physical Society

  2. In situ and laboratory determined first-order degradation rate constants of specific organic compounds in an aerobic aquifer

    DEFF Research Database (Denmark)

    Nielsen, P.H.; Bjerg, P.L.; Nielsen, P.

    1996-01-01

    In situ microcosms (ISM) and laboratory batch microcosms (LBM) were used for determination of the first-order degradation rate constants of benzene, toluene, o-xylene, nitrobenzene, naphthalene, biphenyl, o- and p-dichlorobenzene, 1,1,1 -trichloroethane, tetrachlorometane, trichloroethene......, tetrachloroethene, phenol, o-cresol, 2,4- and 2,6-dichlorophenol, 4,6-o-dichlorocresol, and o- and p-nitrophenol in an aerobic aquifer, All aromatic hydrocarbons were degraded in ISM and LBM experiments. The phenolic hydrocarbons were ail degraded in ISM experiments, but some failed to degrade in LBM experiments....... Chlorinated aliphatic hydrocarbons were degraded neither in ISM nor LBM experiments. Degradation rate constants were determined by a model accounting for kinetic sorption (bicontinuum model), lag phases, and first-order degradation. With a few exceptions, lag phases were less than 2 weeks in both ISM and LBM...

  3. First-Principles Computed Rate Constant for the O + O2 Isotopic Exchange Reaction Now Matches Experiment.

    Science.gov (United States)

    Guillon, Grégoire; Honvault, Pascal; Kochanov, Roman; Tyuterev, Vladimir

    2018-04-19

    We show, by performing exact time-independent quantum molecular scattering calculations, that the quality of the ground electronic state global potential energy surface appears to be of utmost importance in accurately obtaining even as strongly averaged quantities as kinetic rate constants. The oxygen isotope exchange reaction, 18 O + 32 O 2 , motivated by the understanding of a complex long-standing problem of isotopic ozone anomalies in the stratosphere and laboratory experiments, is explored in this context. The thermal rate constant for this key reaction is now in quantitative agreement with all experimental data available to date. A significant recent progress at the frontier of three research domains, advanced electronic structure calculations, ultrasensitive spectroscopy, and quantum scattering calculations, has therefore permitted a breakthrough in the theoretical modeling of this crucial collision process from first principles.

  4. Absolute rate constants for the reaction of NO with a series of peroxy radicals in the gas at 295 K

    DEFF Research Database (Denmark)

    Sehested, J.; Nielsen, O.J.; Wallington, T.J.

    1993-01-01

    The rate constants for the reaction of NO with a series of peroxy radicals: CH3O2, C2H5O2, (CH3)3CCH2O2, (CH3)3CC(CH3)2CH2O2, CH2FO2, CH2ClO2, CH2BrO2, CHF2O2, CF2ClO2, CHF2CF2O2, CF3CF2O2, CFCl2CH2O2 and CF2ClCH2O2 were measured at 298 K and a total pressure of 1 atm. The rate constants were...

  5. Rate constant and thermochemistry for K + O2 + N2 = KO2 + N2

    DEFF Research Database (Denmark)

    Sorvajärvi, Tapio; Viljanen, Jan; Toivonen, Juha

    2015-01-01

    in the form of double exponential decays of [K], which yielded both kR1 and the equilibrium constant for KO2 formation. kR1 can be summarized as 1.07 × 10-30(T/1000 K)-0.733 cm6 molecule-2 s-1. Combination with literature values leads to a recommended kR1 of 5.5 × 10-26T-1.55 exp(-10/T) cm6 molecule-2 s-1...... over 250-1320 K, with an error limit of a factor of 1.5. A vant Hoff analysis constrained to fit the computed ΔS298 yields a K-O2 bond dissociation enthalpy of 184.2 ± 4.0 kJ mol-1 at 298 K and ΔfH298(KO2) = -95.2 ± 4.1 kJ mol-1. The corresponding D0 is 181.5 ± 4.0 kJ mol-1. This value compares well...

  6. Regional Distribution of Epifascial Swelling and Epifascial Lymph Drainage Rate Constants in Breast Cancer-Related Lymphedema

    OpenAIRE

    MODI, STEPHANIE; STANTON, ANTHONY W. B.; MELLOR, RUSSELL H.; MICHAEL PETERS, A.; RODNEY LEVICK, J.; MORTIMER, PETER S.

    2005-01-01

    Background: The view that breast cancer-related lymphedema (BCRL) is a simple, direct mechanical result of axillary lymphatic obstruction (‘stopcock’ mechanism) appears incomplete, because parts of the swollen limb (e.g., hand) can remain nonswollen. The lymph drainage rate constant (k) falls in the swollen forearm but not in the spared hand, indicating regional differences in lymphatic function. Here the generality of the hypothesis that regional epifascial lymphatic failure underlies region...

  7. Interaction of hydrated electron with dietary flavonoids and phenolic acids. Rate constants and transient spectra studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Cai, Zhongli; Li, Xifeng; Katsumura, Yosuke

    2000-01-01

    The reaction rate constants and transient spectra of 11 flavonoids and 4 phenolic acids reacting with e aq - at neutral pH were measured. The results suggest that C 4 keto group is the active site for e aq - to attack on flavonoids and phenolic acids, while the o-dihydroxy structure in B-ring, the C 2,3 double bond, the C 3 -OH group and glycosylation have little effects on the e aq - scavenging activities. (author)

  8. Rate constants for a mechanism including intermediates in the interconversion of ternary complexes by horse liver alcohol dehydrogenase

    International Nuclear Information System (INIS)

    Sekhar, V.C.; Plapp, B.V.

    1990-01-01

    Transient kinetic data for partial reactions of alcohol dehydrogenase and simulations of progress curves have led to estimates of rate constants for the following mechanism, at pH 8.0 and 25 degrees C: E in equilibrium E-NAD+ in equilibrium *E-NAD+ in equilibrium E-NAD(+)-RCH2OH in equilibrium E-NAD+-RCH2O- in equilibrium *E-NADH-RCHO in equilibrium E-NADH-RCHO in equilibrium E-NADH in equilibrium E. Previous results show that the E-NAD+ complex isomerizes with a forward rate constant of 620 s-1. The enzyme-NAD(+)-alcohol complex has a pK value of 7.2 and loses a proton rapidly (greater than 1000 s-1). The transient oxidation of ethanol is 2-fold faster in D 2 O, and proton inventory results suggest that the transition state has a charge of -0.3 on the substrate oxygen. Rate constants for hydride ion transfer in the forward or reverse reactions were similar for short-chain aliphatic substrates (400-600 s-1). A small deuterium isotope effect for transient oxidation of longer chain alcohols is apparently due to the isomerization of the E-NAD+ complex. The transient reduction of aliphatic aldehydes showed no primary deuterium isotope effect; thus, an isomerization of the E-NADH-aldehyde complex is postulated, as isomerization of the E-NADH complex was too fast to be detected. The estimated microscopic rate constants show that the observed transient reactions are controlled by multiple steps

  9. Rate constants for the reaction of e-aq with EDTA and some metal EDTA-complexes

    International Nuclear Information System (INIS)

    Buitenhuis, R.; Bakker, C.M.N.; Stock, F.R.; Louwrier, P.W.F.

    1977-01-01

    The rate constants for the reaction e - aq + EDTA were measured as a function of the pH by the pulse-radiolysis technique. Between pH = 6and pH = 10 this rate constant can be represented by the equation k = 4.7 x 10 6 x (fraction of HEDTA 3- )+1.0 x 10 8 x (fraction H 2 EDTA 2 -)M -1 s -1 . Also the rate constants for reactions of e - aq with the following metal-EDTA complexes were measured: CuEDTA 2- , HgEDTA 2- , CoEDTA 2- , InEDTA - , NiEDTA 2- , GaEDTA - , MnEDTA 2- , ZnEDTA 2- , CdEDTA 2- , PbEDTA 2- . Ionic strength variation indicates that the reacting ions are not hydrolized to an appreciable amount at pH = 11.5. It is found that some of the products show light absorption in the region between 300 and 400 nm. (orig.) [de

  10. The dissolution rate constant of magnetite in water at different temperatures and neutral or ammoniated chemistry conditions

    International Nuclear Information System (INIS)

    Mohajery, K.; Lister, D.H.

    2012-01-01

    In this study, the dissolution rate constants of magnetite were measured at various water chemistry conditions and different temperatures, corresponding to several feedwater conditions of water-cooled reactors. Sintered magnetite pellets were used as the dissolving material and these were mounted in a jet-impingement apparatus in a recirculating water loop. Exposures were carried out at temperatures of 25, 55 and 140 o C and pHs of neutral and 9.2 in which many FAC (Flow Accelerated Corrosion) studies have been conducted. Average dissolution rate constants were estimated by measuring the volume of lost material with a profilometry technique. The excellent correspondent between the calculated value of dissolution rate constant of 2.20 mm/s for the synthesized magnetite and 2.05 mm/s for the single crystal of magnetite at neutral condition shows that the particle removal from the synthesized pellets is not an obstruction in this technique. Also, good agreement between the values calculated in duplicated runs at neutral condition at room temperature supports the accuracy of the method. (author)

  11. Rate Constant Change of Photo Reaction of Bacteriorhodopsin Observed in Trimeric Molecular System.

    Science.gov (United States)

    Tsujiuchi, Yutaka; Masumoto, Hiroshi; Goto, Takashi

    2016-04-01

    To elucidate the time evolution of photo reaction of bacteriorhodopsin in glycerol mixed purple membrane at around 196 K under irradiation by red light, a kinetic model was constructed. The change of absorption with irradiation at times of 560 nm and 412 nm was analyzed for the purpose of determining reaction rates of photo reaction of bacteriorhodopsin and its product M intermediate. In this study it is shown that reaction rates of conversion from bacteriorhodopsin to the M intermediate can be explained by a set of linear differential equations. This model analysis concludes that bacteriorhodopsin in which constitutes a trimer unit with other two bacteriorhodopsin molecules changes into M intermediates in the 1.73 of reaction rate, in the initial step, and according to the number of M intermediate in a trimer unit, from three to one, the reaction rate of bacteriorhodopsin into M intermediates smaller as 1.73, 0.80, 0.19 which caused by influence of inter-molecular interaction between bacteriorhodopsin.

  12. Non-Constant Learning Rates in Retrospective Experience Curve Analyses and their Correlation to Deployment Programs

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Smith, Sarah J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sohn, Michael D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-07-16

    A key challenge for policy-makers and technology market forecasters is to estimate future technology costs and in particular the rate of cost reduction versus production volume. A related, critical question is what role should state and federal governments have in advancing energy efficient and renewable energy technologies? This work provides retrospective experience curves and learning rates for several energy-related technologies, each of which have a known history of federal and state deployment programs. We derive learning rates for eight technologies including energy efficient lighting technologies, stationary fuel cell systems, and residential solar photovoltaics, and provide an overview and timeline of historical deployment programs such as state and federal standards and state and national incentive programs for each technology. Piecewise linear regimes are observed in a range of technology experience curves, and public investments or deployment programs are found to be strongly correlated to an increase in learning rate across multiple technologies. A downward bend in the experience curve is found in 5 out of the 8 energy-related technologies presented here (electronic ballasts, magnetic ballasts, compact fluorescent lighting, general service fluorescent lighting, and the installed cost of solar PV). In each of the five downward-bending experience curves, we believe that an increase in the learning rate can be linked to deployment programs to some degree. This work sheds light on the endogenous versus exogenous contributions to technological innovation and highlights the impact of exogenous government sponsored deployment programs. This work can inform future policy investment direction and can shed light on market transformation and technology learning behavior.

  13. Rate Constants and Activation Energies for Gas-Phase Reactions of Three Cyclic Volatile Methyl Siloxanes with the Hydroxyl Radical.

    Science.gov (United States)

    Safron, Andreas; Strandell, Michael; Kierkegaard, Amelie; Macleod, Matthew

    2015-07-01

    Reaction with hydroxyl radicals (OH) is the major pathway for removal of cyclic volatile methyl siloxanes (cVMS) from air. We present new measurements of second-order rate constants for reactions of the cVMS octamethylcyclotetrasiloxane (D 4 ), decamethylcyclopentasiloxane (D 5 ), and dodecamethylcyclohexasiloxane (D 6 ) with OH determined at temperatures between 313 and 353 K. Our measurements were made using the method of relative rates with cyclohexane as a reference substance and were conducted in a 140-mL gas-phase reaction chamber with online mass spectrometry analysis. When extrapolated to 298 K, our measured reaction rate constants of D 4 and D 5 with the OH radical are 1.9 × 10 -12 (95% confidence interval (CI): (1.7-2.2) × 10 -12 ) and 2.6 × 10 -12 (CI: (2.3-2.9) × 10 -12 ) cm 3 molecule -1 s -1 , respectively, which are 1.9× and 1.7× faster than previous measurements. Our measured rate constant for D 6 is 2.8 × 10 -12 (CI: (2.5-3.2) × 10 -12 ) cm 3 molecule -1 s -1 and to our knowledge there are no comparable laboratory measurements in the literature. Reaction rates for D 5 were 33% higher than for D 4 (CI: 30-37%), whereas the rates for D 6 were only 8% higher than for D 5 (CI: 5-10%). The activation energies of the reactions of D 4 , D 5 , and D 6 with OH were not statistically different and had a value of 4300 ± 2800 J/mol.

  14. Rate Constants and Activation Energies for Gas‐Phase Reactions of Three Cyclic Volatile Methyl Siloxanes with the Hydroxyl Radical

    Science.gov (United States)

    Safron, Andreas; Strandell, Michael; Kierkegaard, Amelie

    2015-01-01

    ABSTRACT Reaction with hydroxyl radicals (OH) is the major pathway for removal of cyclic volatile methyl siloxanes (cVMS) from air. We present new measurements of second‐order rate constants for reactions of the cVMS octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) with OH determined at temperatures between 313 and 353 K. Our measurements were made using the method of relative rates with cyclohexane as a reference substance and were conducted in a 140‐mL gas‐phase reaction chamber with online mass spectrometry analysis. When extrapolated to 298 K, our measured reaction rate constants of D4 and D5 with the OH radical are 1.9 × 10−12 (95% confidence interval (CI): (1.7–2.2) × 10−12) and 2.6 × 10−12 (CI: (2.3–2.9) × 10−12) cm3 molecule−1 s−1, respectively, which are 1.9× and 1.7× faster than previous measurements. Our measured rate constant for D6 is 2.8 × 10−12 (CI: (2.5–3.2) × 10−12) cm3 molecule−1 s−1 and to our knowledge there are no comparable laboratory measurements in the literature. Reaction rates for D5 were 33% higher than for D4 (CI: 30–37%), whereas the rates for D6 were only 8% higher than for D5 (CI: 5–10%). The activation energies of the reactions of D4, D5, and D6 with OH were not statistically different and had a value of 4300 ± 2800 J/mol. PMID:27708500

  15. Extrapolation of rate constants of reactions producing H{sub 2} and O{sub 2} in radiolysis of water at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Leblanc, R.; Ghandi, K.; Hackman, B.; Liu, G. [Mount Allison Univ., Sackville, NB (Canada)

    2014-07-01

    One target of our research is to extrapolate known data on the rate constants of reactions and add corrections to estimate the rate constants at the higher temperatures reached by the SCWR reactors. The focus of this work was to extrapolate known data on the rate constants of reactions that produce Hydrogen or Oxygen with a rate constant below 10{sup 10} mol{sup -1} s{sup -1} at room temperature. The extrapolation is done taking into account the change in the diffusion rate of the interacting species and the cage effect with thermodynamic conditions. The extrapolations are done over a wide temperature range and under isobaric conditions. (author)

  16. Estimation of uptake rate constants for PCB congeners accumulated by semipermeable membrane devices and brown treat (Salmo trutta)

    Science.gov (United States)

    Meadows, J.C.; Echols, K.R.; Huckins, J.N.; Borsuk, F.A.; Carline, R.F.; Tillitt, D.E.

    1998-01-01

    The triolein-filled semipermeable membrane device (SPMD) is a simple and effective method of assessing the presence of waterborne hydrophobic chemicals. Uptake rate constants for individual chemicals are needed to accurately relate the amounts of chemicals accumulated by the SPMD to dissolved water concentrations. Brown trout and SPMDs were exposed to PCB- contaminated groundwater in a spring for 28 days to calculate and compare uptake rates of specific PCB congeners by the two matrixes. Total PCB congener concentrations in water samples from the spring were assessed and corrected for estimated total organic carbon (TOC) sorption to estimate total dissolved concentrations. Whole and dissolved concentrations averaged 4.9 and 3.7 ??g/L, respectively, during the exposure. Total concentrations of PCBs in fish rose from 0.06 to 118.3 ??g/g during the 28-day exposure, while concentrations in the SPMD rose from 0.03 to 203.4 ??g/ g. Uptake rate constants (k1) estimated for SPMDs and brown trout were very similar, with k1 values for SPMDs ranging from one to two times those of the fish. The pattern of congener uptake by the fish and SPMDs was also similar. The rates of uptake generally increased or decreased with increasing K(ow), depending on the assumption of presence or absence of TOC.The triolein-filled semipermeable membrane device (SPMD) is a simple and effective method of assessing the presence of waterborne hydrophobic chemicals. Uptake rate constants for individual chemicals are needed to accurately relate the amounts of chemicals accumulated by the SPMB to dissolved water concentrations. Brown trout and SPMDs were exposed to PCB-contaminated groundwater in a spring for 28 days to calculate and compare uptake rates of specific PCB congeners by the two matrixes. Total PCB congener concentrations in water samples from the spring were assessed and corrected for estimated total organic carbon (TOC) sorption to estimate total dissolved concentrations. Whole and

  17. Direct quantum mechanical calculation of the F + H{sub 2} {yields} HF + H thermal rate constant

    Energy Technology Data Exchange (ETDEWEB)

    Moix, Marc [Computer Simulation and Modeling (COSMO) Lab, Parc Cientific de Barcelona, Josep Samitier 5, 08028 Barcelona (Spain); Institut de Quimica Teorica i Computacional de la UB (IQTCUB), Universitat de Barcelona (Spain); Huarte-Larranaga, Fermin [Computer Simulation and Modeling (COSMO) Lab, Parc Cientific de Barcelona, Josep Samitier 5, 08028 Barcelona (Spain); Institut de Quimica Teorica i Computacional de la UB (IQTCUB), Universitat de Barcelona (Spain)], E-mail: fhuarte@pcb.ub.es

    2008-07-03

    Accurate full-dimensional quantum mechanical thermal rate constant values have been calculated for the F+H{sub 2}{yields}HF+H reaction on the Stark-Werner ab initio potential energy surface. These calculations are based on a flux correlation functions and employ a rigorous statistical sampling scheme to account for the overall rotation and the MCTDH scheme for the wave packet propagation. Our results shed some light on discrepancies on the thermal rate found for previous flux correlation based calculations with respect to accurate reactive scattering results. The resonance pattern of the all-J cumulative reaction probability is analyzed in terms of the partial wave contributions.

  18. Slopes, nearly constant loss, universality, and hopping rates for dispersive ionic conduction

    International Nuclear Information System (INIS)

    Macdonald, J Ross; Ahmad, Mohamad M

    2007-01-01

    The title topics are investigated, discussed, and new insights provided by considering isothermal frequency response data for seven different materials having quite different conductivity spans and involving different electrode polarization effects and temperatures. These data sets were fitted using several different models, including the Kohlrausch-related K0 and K1 ones derived from stretched-exponential response in the temporal domain. The quasi-universal UN model, the K1 with its shape parameter, β 1 , fixed at 1/3, fitted most of the data very well, and its fits of such data were used to compare its predictions for hopping rate with those derived from fitting with the conventional 'universal dynamic response' Almond-West real-part-of-conductivity model. The K1-model theoretical hopping rate, involving the mean waiting time for a hop and derived from microscopic stochastic analysis, was roughly twice as large as the empirical Almond-West rate for most of the materials considered and should be used in place of it. Its use in a generalized Nernst-Einstein equation led to comparison of estimates of the concentration of fully dissociated mobile charge carriers in superionic PbSnF 4 with earlier estimates of Ahmad using an Almond-West hopping rate value. Agreement with an independent structure-derived value was relatively poor. Fitting results obtained using the K0 model, for Na 2 SO 4 data sets for two different polycrystalline material phases, and involving severely limited conductivity variation, were far superior to those obtained using the K1 model. The estimated values of the K0 shape parameter, β 0 , were close to 1/3 for both phases, strongly suggesting that the charge motion was one dimensional for each phase, even though they involved different crystalline structures

  19. Determination of photoformation rates and scavenging rate constants of hydroxyl radicals in natural waters using an automatic light irradiation and injection system

    International Nuclear Information System (INIS)

    Nakatani, Nobutake; Hashimoto, Norichika; Shindo, Hirotaka; Yamamoto, Masatoshi; Kikkawa, Megumi; Sakugawa, Hiroshi

    2007-01-01

    Photoformation rates and scavenging rate constants of hydroxyl radicals (·OH) in natural water samples were determined by an automatic determination system. After addition of benzene as a chemical probe to a water sample in a reaction cell, light irradiation and injection of irradiated water samples into an HPLC as a function of time were performed automatically. Phenol produced by the reaction between ·OH and the benzene added to the water sample was determined to quantify the ·OH formation rate. The rate constants of ·OH formation from the photolysis of nitrate ions, nitrite ions and hydrogen peroxide were comparable with those obtained in previous studies. The percent of expected ·OH photoformation rate from added nitrate ion were high in drinking water (97.4%) and river water (99.3%). On the other hand, the low percent (65.0%) was observed in seawater due to the reaction of ·OH with the high concentrations of chloride and bromide ions. For the automatic system, the coefficient of variance for the determination of the ·OH formation rate was less than 5.0%, which is smaller than that in the previous report. When the complete time sequence of analytical cycle was 40 min for one sample, the detection limit of the photoformation rate and the sample throughput were 8 x 10 -13 M s -1 and 20 samples per day, respectively. The automatic system successfully determined the photoformation rates and scavenging rate constants of ·OH in commercial drinking water and the major source and sink of ·OH were identified as nitrate and bicarbonate ions, respectively

  20. Increased CEST specificity for amide and fast-exchanging amine protons using exchange-dependent relaxation rate.

    Science.gov (United States)

    Zhang, Xiao-Yong; Wang, Feng; Xu, Junzhong; Gochberg, Daniel F; Gore, John C; Zu, Zhongliang

    2018-02-01

    Chemical exchange saturation transfer (CEST) imaging of amides at 3.5 ppm and fast-exchanging amines at 3 ppm provides a unique means to enhance the sensitivity of detection of, for example, proteins/peptides and neurotransmitters, respectively, and hence can provide important information on molecular composition. However, despite the high sensitivity relative to conventional magnetic resonance spectroscopy (MRS), in practice, CEST often has relatively poor specificity. For example, CEST signals are typically influenced by several confounding effects, including direct water saturation (DS), semi-solid non-specific magnetization transfer (MT), the influence of water relaxation times (T 1w ) and nearby overlapping CEST signals. Although several editing techniques have been developed to increase the specificity by removing DS, semi-solid MT and T 1w influences, it is still challenging to remove overlapping CEST signals from different exchanging sites. For instance, the amide proton transfer (APT) signal could be contaminated by CEST effects from fast-exchanging amines at 3 ppm and intermediate-exchanging amines at 2 ppm. The current work applies an exchange-dependent relaxation rate (R ex ) to address this problem. Simulations demonstrate that: (1) slowly exchanging amides and fast-exchanging amines have distinct dependences on irradiation powers; and (2) R ex serves as a resonance frequency high-pass filter to selectively reduce CEST signals with resonance frequencies closer to water. These characteristics of R ex provide a means to isolate the APT signal from amines. In addition, previous studies have shown that CEST signals from fast-exchanging amines have no distinct features around their resonance frequencies. However, R ex gives Lorentzian lineshapes centered at their resonance frequencies for fast-exchanging amines and thus can significantly increase the specificity of CEST imaging for amides and fast-exchanging amines. Copyright © 2017 John Wiley & Sons

  1. Simple analytical approximation for rotationally inelastic rate constants based on the energy corrected sudden scaling law

    International Nuclear Information System (INIS)

    Smith, N.; Pritchard, D.E.

    1981-01-01

    We have recently demonstrated that the energy corrected sudden (ECS) scaling law of De Pristo et al. when conbined with the power law assumption for the basis rates k/sub l/→0proportional[l(l+1)]/sup -g/ can accurately fit a wide body of rotational energy transfer data. We develop a simple and accurate approximation to this fitting law, and in addition mathematically show the connection between it and our earlier proposed energy based law which also has been successful in describing both theoretical and experimental data on rotationally inelastic collisions

  2. The effect of solvation on the radiation damage rate constants for adenine

    DEFF Research Database (Denmark)

    Milhøj, Birgitte Olai; Sauer, Stephan P. A.

    2016-01-01

    in calculations of Gibbs free energies and reaction rates for the reaction between the OH radical and the DNA nucleobase adenine using Density Functional Theory at the ωB97X-D/6-311++G(2df,2pd) level with the Eckart tunneling correction. The solvent, water, has been included through either the implicit...... polarizable continuum model (PCM) or through explicit modelling of micro-solvation by a single water molecule at the site of reaction as well as the combination of both. Scrutiny of the thermodynamics and kinetics of the individual sub-reactions suggests that the qualitative differences introduced...

  3. Bioaccessibility of metal cations in soil is linearly related to its water exchange rate constant.

    Science.gov (United States)

    Laird, Brian D; Peak, Derek; Siciliano, Steven D

    2011-05-01

    Site-specific risk assessments often incorporate the concepts of bioaccessibility (i.e., contaminant fraction released into gastrointestinal fluids) or bioavailability (i.e., contaminant fraction absorbed into systemic circulation) into the calculation of ingestion exposure. We evaluated total and bioaccessible metal concentrations for 19 soil samples under simulated stomach and duodenal conditions using an in vitro gastrointestinal model. We demonstrated that the median bioaccessibility of 23 metals ranged between exchange rates of metal cations (k(H₂O)) indicated that desorption kinetics may influence if not control metal bioaccessibility.

  4. Is meditation always relaxing? Investigating heart rate, heart rate variability, experienced effort and likeability during training of three types of meditation.

    Science.gov (United States)

    Lumma, Anna-Lena; Kok, Bethany E; Singer, Tania

    2015-07-01

    Meditation is often associated with a relaxed state of the body. However, meditation can also be regarded as a type of mental task and training, associated with mental effort and physiological arousal. The cardiovascular effects of meditation may vary depending on the type of meditation, degree of mental effort, and amount of training. In the current study we assessed heart rate (HR), high-frequency heart rate variability (HF-HRV) and subjective ratings of effort and likeability during three types of meditation varying in their cognitive and attentional requirements, namely breathing meditation, loving-kindness meditation and observing-thoughts meditation. In the context of the ReSource project, a one-year longitudinal mental training study, participants practiced each meditation exercise on a daily basis for 3 months. As expected HR and effort were higher during loving-kindness meditation and observing-thoughts meditation compared to breathing meditation. With training over time HR and likeability increased, while HF-HRV and the subjective experience of effort decreased. The increase in HR and decrease in HF-HRV over training was higher for loving-kindness meditation and observing-thoughts meditation compared to breathing meditation. In contrast to implicit beliefs that meditation is always relaxing and associated with low arousal, the current results show that core meditations aiming at improving compassion and meta-cognitive skills require effort and are associated with physiological arousal compared to breathing meditation. Overall these findings can be useful in making more specific suggestions about which type of meditation is most adaptive for a given context and population. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Tempo of Diversification of Global Amphibians: One-Constant Rate, One-Continuous Shift or Multiple-Discrete Shifts?

    Directory of Open Access Journals (Sweden)

    Youhua Chen

    2014-01-01

    Full Text Available In this brief report, alternative time-varying diversification rate models were fitted onto the phylogeny of global amphibians by considering one-constant-rate (OCR, one-continuous-shift (OCS and multiplediscrete- shifts (MDS situations. The OCS diversification model was rejected by γ statistic (γ=-5.556, p⁄ 0.001, implying the existence of shifting diversification rates for global amphibian phylogeny. Through model selection, MDS diversification model outperformed OCS and OCR models using “laser” package under R environment. Moreover, MDS models, implemented using another R package “MEDUSA”, indicated that there were sixteen shifts over the internal nodes for amphibian phylogeny. Conclusively, both OCS and MDS models are recommended to compare so as to better quantify rate-shifting trends of species diversification. MDS diversification models should be preferential for large phylogenies using “MEDUSA” package in which any arbitrary numbers of shifts are allowed to model.

  6. Constant strain rate test and SCC-behaviour of stainless steels

    International Nuclear Information System (INIS)

    Krauss, H.; Speckhardt, H.

    1979-01-01

    In the present work, the stress corrosion cracking behaviour in boiling aqueous 35% magnesium chloride solution under conditions of no external current was investigated as a function of the defined extension rates for the two austenitic steels X 2 CrNi 189 and X 2 CrNiSi 1815, as well as for both ferritic austenitic steels X 6 CrNiMoCu 217 and X 2 CrNiMoN 225. The endurance time found until cracking, the maximum tensile stress, the sample stretching up to cracking and the relative rupture energy were determined for the evaluation, as well as metallographic investigations to describe the crack picture, test surface appearance and attack picture carried out. (orig.) 891 RW/orig. 892 BRE [de

  7. Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br

    Science.gov (United States)

    Hsu, K.-J.; Demore, W. B.

    1994-01-01

    Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br have been measured by a relative rate technique in which the reaction rate of each compound was compared to that of HFC-152a (CH3CHF2) and (for CH2Cl2) HFC-161 (CH3CH2F). Using absolute rate constants for HFC-152a and HFC-161, which we have determined relative to those for CH4, CH3CCl3, and C2H6, temperature dependent rate constants of both compounds were derived. The derived rate constant for CH3Br is in good agreement with recent absolute measurements. However, for the chloromethanes all the rate constants are lower at atmospheric temperatures than previously reported, especially for CH2Cl2 where the present rate constant is about a factor of 1.6 below the JPL 92-20 value. The new rate constant appears to resolve a discrepancy between the observed atmospheric concentrations and those calculated from the previous rate constant and estimated release rates.

  8. Measuring in-stream retention of copper by means of constant-rate additions.

    Science.gov (United States)

    Serra, A; Guasch, H; Martí, E; Geiszinger, A

    2009-06-01

    Human practices entail inputs of nutrients and toxicants such as heavy metals to the fluvial ecosystems. While nutrient dynamics in fluvial ecosystems have been widely studied for over three decades, dynamics of toxicants still remain unclear. In this investigation, the nutrient spiraling concept and associated methodologies to quantify nutrient retention in streams were applied to study copper (Cu) dynamics in streams. The present study aimed to quantify total dissolved Cu retention using a simplified system of indoor channels colonized with fluvial biofilms. Cu retention was studied at sub-toxic concentrations to avoid negative/lethal effects on biota. In addition, Cu retention was compared with retention estimates of a macronutrient, phosphate (PO(4)(3-)), which has been widely studied within the context of the nutrient spiraling concept. The methodology used allowed a successful quantification of Cu and PO(4)(3-) retention. The results showed higher retention efficiency for PO(4)(3-) than for Cu. The biofilm played a key role in retaining both solutes. Although retention efficiency for both solutes was higher in the experiments with colonized substrata compared to uncolonized substrata, we found a positive relationship between uptake rate and chlorophyll-a only for PO(4)(3-). Finally, retention efficiency for both solutes was influenced by water discharge, showing lower retention efficiencies under higher flow conditions. These results suggest that the fate and toxic effects of copper on stream biota may be strongly influenced by the prevailing environmental conditions. Our results indicate that the experimental approach considered can provide new insights into the investigation of retention of toxic compounds in fluvial systems and their controlling mechanisms.

  9. Variational RRKM calculation of thermal rate constant for C–H bond fission reaction of nitro methane

    Directory of Open Access Journals (Sweden)

    Afshin Taghva Manesh

    2017-02-01

    Full Text Available The present work provides quantitative results for the rate constants of unimolecular C–H bond fission reactions in the nitro methane at elevated temperatures up to 2000 K. In fact, there are three different hydrogen atoms in the nitro methane. The potential energy surface for each C–H bond fission reaction of nitro methane was investigated by ab initio calculations. The geometry and vibrational frequencies of the species involved in this process were optimized at the MP2 level of theory, using the cc-pvdz basis set. Since C–H bond fission channel is a barrierless reaction, we have used variational RRKM theory to predict rate coefficients. By means of calculated rate coefficients at different temperatures, the Arrhenius expression of the channel over the temperature range of 100–2000 K is k(T = 5.9E19∗exp(−56274.6/T.

  10. Evaluation of Chemical Kinetic for Mathematics Model Reduction of Cadmium Reaction Rate, Constant and Reaction Orde in to Electrochemical Process

    International Nuclear Information System (INIS)

    Prayitno

    2007-01-01

    The experiment was reduction of cadmium rate with electrochemical influenced by time process, concentration, current strength and type of electrode plate. The aim of the experiment was to know the influence, mathematic model reduction of cadmium the reaction rate, reaction rate constant and reaction orde influenced by time process, concentration, current strength and type of electrode plate. Result of research indicate the time processing if using plate of copper electrode is during 30 minutes and using plate of aluminium electrode is during 20 minutes. Condition of strong current that used in process of electrochemical is only 0.8 ampere and concentration effective is 5.23 mg/l. The most effective type Al of electrode plate for reduction from waste and the efficiency of reduction is 98 %. (author)

  11. Modeling the downward transport of 210Pb in Peatlands: Initial Penetration‐Constant Rate of Supply (IP-CRS) model

    International Nuclear Information System (INIS)

    Olid, Carolina; Diego, David; Garcia-Orellana, Jordi; Cortizas, Antonio Martínez; Klaminder, Jonatan

    2016-01-01

    The vertical distribution of 210 Pb is commonly used to date peat deposits accumulated over the last 100–150 years. However, several studies have questioned this method because of an apparent post-depositional mobility of 210 Pb within some peat profiles. In this study, we introduce the Initial Penetration–Constant Rate of Supply (IP-CRS) model for calculating ages derived from 210 Pb profiles that are altered by an initial migration of the radionuclide. This new, two-phased, model describes the distribution of atmospheric-derived 210 Pb ( 210 Pb xs ) in peat taking into account both incorporation of 210 Pb into the accumulating peat matrix as well as an initial flushing of 210 Pb through the uppermost peat layers. The validity of the IP-CRS model is tested in four anomalous 210 Pb peat records that showed some deviations from the typical exponential decay profile not explained by variations in peat accumulation rates. Unlike the most commonly used 210 Pb-dating model (Constant Rate of Supply (CRS)), the IP-CRS model estimates peat accumulation rates consistent with typical growth rates for peatlands from the same areas. Confidence in the IP-CRS chronology is also provided by the good agreement with independent chronological markers (i.e. 241 Am and 137 Cs). Our results showed that the IP-CRS can provide chronologies from peat records where 210 Pb mobility is evident, being a valuable tool for studies reconstructing past environmental changes using peat archives during the Anthropocene. - Highlights: • Accurate age dating of peat and sediment cores is critical for evaluating change. • A new 210 Pb dating model that includes vertical transport of 210 Pb was developed. • The IP-CRS model provided consistent peat accumulation rates. • The IP-CRS ages were consistent with independent chronological markers. • The IP-CRS model derives peat ages where downward 210 Pb transport is evidenced.

  12. Direct Dynamics Simulation of the Thermal 3CH2 + 3O2 Reaction. Rate Constant and Product Branching Ratios.

    Science.gov (United States)

    Lakshmanan, Sandhiya; Pratihar, Subha; Machado, Francisco Bolivar Correto; Hase, William Louis

    2018-04-26

    The reaction of 3CH2 with 3O2 is of fundamental importance in combustion and the reaction is complex as a result of multiple extremely exothermic product channels. In the present study, direct dynamics simulations were performed to study the reaction on both the singlet and triplet potential energy surfaces (PESs). The simulations were performed at the UM06/6-311++G(d,p) level of theory. Trajectories were calculated at a temperature of 300 K and all reactive trajectories proceeded through the carbonyl oxide Criegee intermediate, CH2OO, on both the singlet and triplet PESs. The triplet surface leads to only one product channel, H2CO + O(3P), while the singlet surface leads to 8 product channels with their relative importance as: CO + H2O > CO + OH + H ~ H2CO + O(1D) > HCO + OH ~ CO2 + H2 ~ CO + H2 + O(1D) > CO2 + H + H > HCO + O(1D) + H. Reaction on the singlet PES is barrierless, consistent with experiment and the total rate constant on the singlet surface is 0.93 ± 0.22 x 10-12 cm3molecule-1s-1 in comparison to the recommended experimental rate constant of 3.3 x 10-12 cm3molecule-1s-1. The simulation product yields for the singlet PES are compared with experiment and the most significant differences are for H, CO2, and H2O. Reaction on the triplet surface is also barrierless, inconsistent with experiment. A discussion is given of the need for future calculations to address the: (1) barrier on the triplet PES for 3CH2 + 3O2 → 3CH2OO; (2) temperature dependence of the 3CH2 + 3O2 reaction rate constant and product branching ratios; and (3) possible non-RRKM dynamics of the 1CH2OO Criegee intermediate.

  13. Creatine kinase rate constant in the human heart measured with 3D‐localization at 7 tesla

    Science.gov (United States)

    Robson, Matthew D.; Neubauer, Stefan; Rodgers, Christopher T.

    2016-01-01

    Purpose We present a new Bloch‐Siegert four Angle Saturation Transfer (BOAST) method for measuring the creatine kinase (CK) first‐order effective rate constant kf in human myocardium at 7 tesla (T). BOAST combines a variant of the four‐angle saturation transfer (FAST) method using amplitude‐modulated radiofrequency pulses, phosphorus Bloch‐Siegert B1+‐mapping to determine the per‐voxel flip angles, and nonlinear fitting to Bloch simulations for postprocessing. Methods Optimal flip angles and repetition time parameters were determined from Monte Carlo simulations. BOAST was validated in the calf muscle of two volunteers at 3T and 7T. The myocardial CK forward rate constant was then measured in 10 volunteers at 7T in 82 min (after 1H localization). Results BOAST kfCK values were 0.281 ± 0.002 s−1 in the calf and 0.35 ± 0.05 s−1 in myocardium. These are consistent with literature values from lower fields. Using a literature values for adenosine triphosphate concentration, we computed CK flux values of 4.55 ± 1.52 mmol kg−1 s−1. The sensitive volume for BOAST depends on the B1 inhomogeneity of the transmit coil. Conclusion BOAST enables measurement of the CK rate constant in the human heart at 7T, with spatial localization in three dimensions to 5.6 mL voxels, using a 10‐cm loop coil. Magn Reson Med 78:20–32, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:27579566

  14. The D(+) + H2 reaction: differential and integral cross sections at low energy and rate constants at low temperature.

    Science.gov (United States)

    González-Lezana, Tomás; Scribano, Yohann; Honvault, Pascal

    2014-08-21

    The D(+) + H2 reaction is investigated by means of a time independent quantum mechanical (TIQM) and statistical quantum mechanical (SQM) methods. Differential cross sections and product rotational distributions obtained with these two theoretical approaches for collision energies between 1 meV and 0.1 eV are compared to analyze the dynamics of the process. The agreement observed between the TIQM differential cross sections and the SQM predictions as the energy increases revealed the role played by the complex-forming mechanism. The importance of a good description of the asymptotic regions is also investigated by calculating rate constants for the title reaction at low temperature.

  15. A Simulation Analysis of Errors in the Measurement of Standard Electrochemical Rate Constants from Phase-Selective Impedance Data.

    Science.gov (United States)

    1987-09-30

    RESTRICTIVE MARKINGSC Unclassif ied 2a SECURIly CLASSIFICATION ALIIMOA4TY 3 DIS1RSBj~jiOAVAILAB.I1Y OF RkPORI _________________________________ Approved...of the AC current, including the time dependence at a growing DME, at a given fixed potential either in the presence or the absence of an...the relative error in k b(app) is ob relatively small for ks (true) : 0.5 cm s-, and increases rapidly for ob larger rate constants as kob reaches the

  16. A survey of the reaction rate constants for the thermal dissociation and recombination of nitrogen and oxygen

    Science.gov (United States)

    Marraffa, Lionel; Dulikravich, George S.; Keeney, Timothy C.; Deiwert, George S.

    1988-01-01

    The objective of the present report is to survey the various values of forward and backward reaction rate constants used by investigators in the field of high-temperature (T greater than 2000 K) gas reactions involving nitrogen and oxygen only. The objective is to find those values that correlate well so that they can be used for the studies of hypersonic flow and supersonic combustion with reasonable confidence. Relatively good agreement among these various values is observed for temperatures lower than 10,000 K.

  17. Interaction of hydrated electron with dietary flavonoids and phenolic acids. Rate constants and transient spectra studied by pulse radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Zhongli; Li, Xifeng; Katsumura, Yosuke [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab

    2000-03-01

    The reaction rate constants and transient spectra of 11 flavonoids and 4 phenolic acids reacting with e{sub aq}{sup -} at neutral pH were measured. The results suggest that C{sub 4} keto group is the active site for e{sub aq}{sup -} to attack on flavonoids and phenolic acids, while the o-dihydroxy structure in B-ring, the C{sub 2,3} double bond, the C{sub 3}-OH group and glycosylation have little effects on the e{sub aq}{sup -} scavenging activities. (author)

  18. An optimal policy for deteriorating items with time-proportional deterioration rate and constant and time-dependent linear demand rate

    Science.gov (United States)

    Singh, Trailokyanath; Mishra, Pandit Jagatananda; Pattanayak, Hadibandhu

    2017-12-01

    In this paper, an economic order quantity (EOQ) inventory model for a deteriorating item is developed with the following characteristics: (i) The demand rate is deterministic and two-staged, i.e., it is constant in first part of the cycle and linear function of time in the second part. (ii) Deterioration rate is time-proportional. (iii) Shortages are not allowed to occur. The optimal cycle time and the optimal order quantity have been derived by minimizing the total average cost. A simple solution procedure is provided to illustrate the proposed model. The article concludes with a numerical example and sensitivity analysis of various parameters as illustrations of the theoretical results.

  19. The WiggleZ Dark Energy Survey: constraining the evolution of Newton's constant using the growth rate of structure

    International Nuclear Information System (INIS)

    Nesseris, Savvas; Blake, Chris; Davis, Tamara; Parkinson, David

    2011-01-01

    We constrain the evolution of Newton's constant using the growth rate of large-scale structure measured by the WiggleZ Dark Energy Survey in the redshift range 0.1 m (assuming General Relativity), and use this to construct a diagnostic to detect the presence of an evolving Newton's constant. Secondly we directly measure the evolution of Newton's constant, G eff , that appears in Modified Gravity theories, without assuming General Relativity to be true. The novelty of these approaches are that, contrary to other methods, they do not require knowledge of the expansion history of the Universe, H(z), making them model independent tests. Our constraints for the second derivative of Newton's constant at the present day, assuming it is slowly evolving as suggested by Big Bang Nucleosynthesis constraints, using the WiggleZ data is G double-dot eff (t 0 ) = −1.19 ± 0.95·10 −20 h 2 yr −2 , where h is defined via H 0 = 100 h km s −1 Mpc −1 , while using both the WiggleZ and the Sloan Digital Sky Survey Luminous Red Galaxy (SDSS LRG) data is G double-dot eff (t 0 ) = −3.6 ± 6.8·10 −21 h 2 yr −2 , both being consistent with General Relativity. Finally, our constraint for the rms mass fluctuation σ 8 using the WiggleZ data is σ 8 = 0.75 ± 0.08, while using both the WiggleZ and the SDSS LRG data σ 8 = 0.77 ± 0.07, both in good agreement with the latest measurements from the Cosmic Microwave Background radiation

  20. Rate constants for the reactions of OH with HFC-134a (CF3CH2F) and HFC-134 (CHF2CHF2)

    Science.gov (United States)

    Demore, W. B.

    1993-01-01

    Measurements of rate constants for HFC-134 (CF2HCF2H) relative to CH3CCl3, HFC-125, and HFC-134a are reported. The measurements were made in a slow-flow, temperature controlled photochemical reactor, and were based on relative rates of disappearance of the parent compounds as measured by FTIR spectroscopy. Hydroxyl radicals were generated by 254-nm photolysis of O3 in the presence of water vapor. NASA/JPL rate constants for the reference compounds are used to derive temperature-dependent rate constants of both compounds. Rate constants obtained from the different reference compounds are in excellent agreement. The presently recommended rate constant for HFC-134a is about 25 percent too high.

  1. Measurement of nucleotide exchange rate constants in single rabbit soleus myofibrils during shortening and lengthening using a fluorescent ATP analog.

    Science.gov (United States)

    Shirakawa, I; Chaen, S; Bagshaw, C R; Sugi, H

    2000-02-01

    The kinetics of displacement of a fluorescent nucleotide, 2'(3')-O-[N[2-[[Cy3]amido]ethyl]carbamoyl]-adenosine 5'-triphosphate (Cy3-EDA-ATP), bound to rabbit soleus muscle myofibrils were studied using flash photolysis of caged ATP. Use of myofibrils from this slow twitch muscle allowed better resolution of the kinetics of nucleotide exchange than previous studies with psoas muscle myofibrils (, Biophys. J. 73:2033-2042). Soleus myofibrils in the presence of Cy3-EDA-nucleotides (Cy3-EDA-ATP or Cy3-EDA-ADP) showed selective fluorescence staining of the A-band. The K(m) for Cy3-EDA-ATP and the K(d) for Cy3-EDA-ADP binding to the myofibril A-band were 1.9 microM and 3.8 microM, respectively, indicating stronger binding of nucleotide to soleus cross-bridges compared to psoas cross-bridges (2.6 microM and 50 microM, respectively). After flash photolysis of caged ATP, the A-band fluorescence of the myofibril in the Cy3-EDA-ATP solution under isometric conditions decayed exponentially with a rate constant of 0.045 +/- 0.007 s(-1) (n = 32) at 10 degrees C, which was about seven times slower than that for psoas myofibrils. When a myofibril was allowed to shorten with a constant velocity, the nucleotide displacement rate constant increased from 0.066 s(-1) (isometric) to 0.14 s(-1) at 20 degrees C with increasing shortening velocity up to 0.1 myofibril length/s (V(max), the shortening velocity under no load was approximately 0. 2 myofibril lengths/s). The rate constant was not significantly affected by an isovelocity stretch of up to 0.1 myofibril lengths/s. These results suggest that the cross-bridge kinetics are not significantly affected at higher strain during lengthening but depend on the lower strain during shortening. These data also indicate that the interaction distance between a cross-bridge and the actin filament is at least 16 nm for a single cycle of the ATPase.

  2. Temperature dependence of the rate constant for reactions of hydrated electrons with H, OH and H2O2

    DEFF Research Database (Denmark)

    Christensen, H.; Sehested, K.; Løgager, T.

    1994-01-01

    The temperature dependence of the rate constants, for the reactions of hydrated electrons with H atoms, OH radicals and H2O2 has been determined. The reaction with H atoms, studied in the temperature range 20-250-degrees-C gives k(20-degrees-C) = 2.4 x 10(10) M-1 s-1 and the activation energy E......-1 and E(A) = 15.6 kJ mol-1 (3.7 kcal mol-1) measured from 5-150-degrees-C. Thus, the activation energy for all three fast reactions is close to that expected for diffusion controlled reactions. As phosphates were used as buffer system, the rate constant and activation energy for the reaction......(A) = 14.0 kJ mol-1 (3.3 kcal mol-1). For reaction with OH radicals the corresponding values are, k(20-degrees-C) = 3.1 x 10(10) M-1 s-1 and E(A) = 14.7 kJ mol-1 (3.5 kcal mol-1) determined in the temperature range 5-175-degrees-C. For reaction with H2O2 the values are, k(20-degrees-C) = 1.2 x 10(10) M-1 s...

  3. Determination of the stability constants of a number of metal fluoride complexes and their rates of formation

    International Nuclear Information System (INIS)

    Hammer, R.R.

    1979-08-01

    The stability constants of the fluoride complexes of Al +3 , H 3 BO 3 , Cr +3 , Cr +6 , Fe +3 , Gd +3 , Nb +5 , UO 2 +2 , and Zr +4 were determined in 0.96 and 2.88 M HNO 3 solutions in the temperature range 25 to 60 0 C with a fluoride specific ion electrode. These data can be used to calculate the concentration of chemical species in solution and will be used to correlate solution properties with solution composition. The solubilities of some fluoride precipitates were also measured in nitric acid solutions. The rates of formation of the fluoborates, aluminum fluoride, and zirconium fluoride complexes were measured with a fluoride specific ion electrode at 25, 35, and 45 0 C. The rates of formation of all complexes, except BF 4 - , AlF +2 , and a fluoride complex with aluminum containing more than three fluorides associated with it, were too fast to measure with the instrumentation used

  4. Determination of constant of chemical reaction rate in the process of steel treatment in the endothermal atmosphere

    International Nuclear Information System (INIS)

    Gyulikhandanov, E.L.; Kislenkov, V.V.

    1978-01-01

    The high-temperature method was applied to measuring a relative variation in the electrical resistance of a thin steel foil prepared from the 12KhN3A, 18Kh2N4VA, 20KhGNR, and 20Kh3MVF steels during its carburization and decarburization, and determined was the temperature dependence of the reaction rate of the interaction of the endothermal atmosphere of different compositions with the analloyed γ-Fe. A connection has been established between the reaction rate constant and the thermodynamic activity of carbon in the alloyed austenite at the temperature of about 925 deg C, corresponding to the cementation temperature. This provides the quantitative estimation of the above value for any alloyed steels and with the presence of numerical values of diffusion coefficients; this also enables one to carry out an accurate calculation of the distribution of carbon throughout the depth of a layer when effecting the cementation in the endothermal atmosphere

  5. Tissue vitamin concentrations are maintained constant by changing the urinary excretion rate of vitamins in rats' restricted food intake.

    Science.gov (United States)

    Shibata, Katsumi; Fukuwatari, Tsutomu

    2014-01-01

    We previously reported that mild food restriction induces a reduction in tryptophan-nicotinamide conversion, which helps to explain why death secondary to pellagra is pandemic during the hungry season. In this study, we investigated the levels of B-group vitamins in the liver, kidney, blood, and urine in rats that underwent gradual restriction of food intake (80, 60, 40, and 20% restriction vs. ad libitum food intake). No significant differences in the B-group vitamin concentrations (mol/g tissue) in the liver and kidney were observed at any level of food restriction. However, the urine excretion rates exhibited some characteristic phenomena that differed by vitamin. These results show that the tissue concentrations of B-group vitamins were kept constant by changing the urinary elimination rates of vitamins under various levels of food restriction. Only vitamin B12 was the only (exception).

  6. Constant strain rate and peri-implant bone modeling: an in vivo longitudinal micro-CT analysis.

    Science.gov (United States)

    De Smet, Els; Jaecques, Siegfried V N; Wevers, Martine; Sloten, Jos Vander; Naert, Ignace E

    2013-06-01

    Strain, frequency, loading time, and strain rate, among others, determine mechanical parameters in osteogenic loading. We showed a significant osteogenic effect on bone mass (BM) by daily peri-implant loading at 1.600µε.s(-1) after 4 weeks. To study the peri-implant osteogenic effect of frequency and strain in the guinea pig tibia by in vivo longitudinal micro-computed tomography (CT) analysis. One week after implant installation in both hind limb tibiae, one implant was loaded daily for 10' during 4 weeks, while the other served as control. Frequencies (3, 10, and 30Hz) and strains varied alike in the three series to keep the strain rate constant at 1.600µε.s(-1) . In vivo micro-CT scans were taken of both tibiae: 1 week after implantation but before loading (v1) and after 2 (v2) and 4 weeks (v3) of loading as well as postmortem (pm). BM (BM (%) bone-occupied area fraction) was calculated as well as the difference between test and control sides (delta BM) RESULTS: All implants (n=78) were clinically stable at 4 weeks. Significant increase in BM was measured between v1 and v2 (pimplant marrow 500 Region of Interest already 2 weeks after loading (p=.01) and was significantly larger (11%) in series 1 compared with series 2 (p=.006) and 3 (p=.016). Within the constraints of constant loading time and strain rate, the effect of early implant loading on the peri-implant bone is strongly dependent on strain and frequency. This cortical bone model has shown to be most sensitive for high force loading at low frequency. © 2011 Wiley Periodicals, Inc.

  7. Creatine kinase rate constant in the human heart measured with 3D-localization at 7 tesla.

    Science.gov (United States)

    Clarke, William T; Robson, Matthew D; Neubauer, Stefan; Rodgers, Christopher T

    2017-07-01

    We present a new Bloch-Siegert four Angle Saturation Transfer (BOAST) method for measuring the creatine kinase (CK) first-order effective rate constant k f in human myocardium at 7 tesla (T). BOAST combines a variant of the four-angle saturation transfer (FAST) method using amplitude-modulated radiofrequency pulses, phosphorus Bloch-Siegert B1+-mapping to determine the per-voxel flip angles, and nonlinear fitting to Bloch simulations for postprocessing. Optimal flip angles and repetition time parameters were determined from Monte Carlo simulations. BOAST was validated in the calf muscle of two volunteers at 3T and 7T. The myocardial CK forward rate constant was then measured in 10 volunteers at 7T in 82 min (after 1 H localization). BOAST kfCK values were 0.281 ± 0.002 s -1 in the calf and 0.35 ± 0.05 s -1 in myocardium. These are consistent with literature values from lower fields. Using a literature values for adenosine triphosphate concentration, we computed CK flux values of 4.55 ± 1.52 mmol kg -1 s -1 . The sensitive volume for BOAST depends on the B 1 inhomogeneity of the transmit coil. BOAST enables measurement of the CK rate constant in the human heart at 7T, with spatial localization in three dimensions to 5.6 mL voxels, using a 10-cm loop coil. Magn Reson Med 78:20-32, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  8. SU-G-201-06: Directional Low-Dose Rate Brachytherapy: Determination of the TG-43 Dose-Rate Constant Analog for a New Pd-103 Source

    Energy Technology Data Exchange (ETDEWEB)

    Aima, M; Culberson, W; Hammer, C; Micka, J; DeWerd, L [Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI (United States)

    2016-06-15

    Purpose: The aim of this work is to determine the TG-43 dose-rate constant analog for a new directional low-dose rate brachytherapy source based on experimental methods and comparison to Monte Carlo simulations. The CivaSheet™ is a new commercially available planar source array comprised of a variable number of discrete directional source elements called “CivaDots”. Given the directional nature and non-conventional design of the source, modifications to the AAPM TG-43 protocol for dosimetry are required. As a result, various parameters of the TG-43 dosimetric formalism have to be adapted to accommodate this source. This work focuses on the dose-rate constant analog determination for a CivaDot. Methods: Dose to water measurements of the CivaDot were performed in a polymethyl methacrylate phantom (20×20×12 cm{sup 3}) using thermoluminescent dosimeters (TLDs) and Gafchromic EBT3 film. The source was placed in the center of the phantom, and nine TLD micro-cubes were irradiated along its central axis at a distance of 1 cm. For the film measurements, the TLDs were substituted by a (3×3) cm{sup 2} EBT3 film. Primary air-kerma strength measurements of the source were performed using a variable-aperture free-air chamber. Finally, the source was modeled using the Monte Carlo N-Particle Transport Code 6. Results: Dose-rate constant analog observed for a total of eight CivaDots using TLDs and five CivaDots using EBT3 film was within ±7.0% and ±2.9% of the Monte Carlo predicted value respectively. The average difference observed was −4.8% and −0.1% with a standard deviation of 1.7% and 2.1% for the TLD and the film measurements respectively, which are both within the comparison uncertainty. Conclusion: A preliminary investigation to determine the doserate constant analog for a CivaDot was conducted successfully with good agreement between experimental and Monte Carlo based methods. This work will aid in the eventual realization of a clinically-viable dosimetric

  9. Calculated Third Order Rate Constants for Interpreting the Mechanisms of Hydrolyses of Chloroformates, Carboxylic Acid Halides, Sulfonyl Chlorides and Phosphorochloridates

    Directory of Open Access Journals (Sweden)

    T. William Bentley

    2015-05-01

    Full Text Available Hydrolyses of acid derivatives (e.g., carboxylic acid chlorides and fluorides, fluoro- and chloroformates, sulfonyl chlorides, phosphorochloridates, anhydrides exhibit pseudo-first order kinetics. Reaction mechanisms vary from those involving a cationic intermediate (SN1 to concerted SN2 processes, and further to third order reactions, in which one solvent molecule acts as the attacking nucleophile and a second molecule acts as a general base catalyst. A unified framework is discussed, in which there are two reaction channels—an SN1-SN2 spectrum and an SN2-SN3 spectrum. Third order rate constants (k3 are calculated for solvolytic reactions in a wide range of compositions of acetone-water mixtures, and are shown to be either approximately constant or correlated with the Grunwald-Winstein Y parameter. These data and kinetic solvent isotope effects, provide the experimental evidence for the SN2-SN3 spectrum (e.g., for chloro- and fluoroformates, chloroacetyl chloride, p-nitrobenzoyl p-toluenesulfonate, sulfonyl chlorides. Deviations from linearity lead to U- or V-shaped plots, which assist in the identification of the point at which the reaction channel changes from SN2-SN3 to SN1-SN2 (e.g., for benzoyl chloride.

  10. [Quantitative magnetic resonance imaging of brain iron deposition: comparison between quantitative susceptibility mapping and transverse relaxation rate (R2*) mapping].

    Science.gov (United States)

    Guan, Ji-Jing; Feng, Yan-Qiu

    2018-03-20

    To evaluate the accuracy and sensitivity of quantitative susceptibility mapping (QSM) and transverse relaxation rate (R2*) mapping in the measurement of brain iron deposition. Super paramagnetic iron oxide (SPIO) phantoms and mouse models of Parkinson's disease (PD) related to iron deposition in the substantia nigra (SN) underwent 7.0 T magnetic resonance (MR) scans (Bruker, 70/16) with a multi-echo 3D gradient echo sequence, and the acquired data were processed to obtain QSM and R2*. Linear regression analysis was performed for susceptibility and R2* in the SPIO phantoms containing 5 SPIO concentrations (30, 15, 7.5, 3.75 and 1.875 µg/mL) to evaluate the accuracy of QSM and R2* in quantitative iron analysis. The sensitivities of QSM and R2* mapping in quantitative detection of brain iron deposition were assessed using mouse models of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahy-dropyridine (MPTP) in comparison with the control mice. In SPIO phantoms, QSM provided a higher accuracy than R2* mapping and their goodness-of-fit coefficients (R 2 ) were 0.98 and 0.89, respectively. In the mouse models of PD and control mice, the susceptibility of the SN was significantly higher in the PD models (5.19∓1.58 vs 2.98∓0.88, n=5; Pbrain iron deposition than R2*, and the susceptibility derived by QSM can be a potentially useful biomarker for studying PD.

  11. The effect of surfaces on AGR coolant chemistry: critical assessment of gas-phase rate constants relevant to ethane pyrolysis

    International Nuclear Information System (INIS)

    Gonzales, M.D.U.; Norfolk, D.J.

    1988-02-01

    Previous work has shown the ability of a chemical kinetic model, applied using the FACSIMILE computer code, to predict the thermal decomposition of ethane in a silica flow reactor. To optimise the performance of the model, the present report reviews the literature data on the twenty reactions which it incorporates. Critical assessment has shown some discrepancies in the previously used rate constants, especially those leading to ethyne formation. Table 2 of the report gives the kinetic data which, as a result of the present evaluation, are recommended for future work. Use of these data gives significantly improved agreement between the model and the experimental results, particularly for ethyne formation, which had previously been underestimated. (author)

  12. Reaction paths and rate constants of the reaction of hydroxyl radicals with environmental species under tropospheric conditions

    International Nuclear Information System (INIS)

    Leonard, C.; Wahner, A.; Zetzsch, C.

    1987-01-01

    The uv-laser absorption technique in a multipath cell (with excimer-laser photolysis for radical production) is used to investigate the rate constants of the reaction of OH with carbon monoxide. The pressure dependence and the influence of collision partners (measurements in pure oxygen up to one atmosphere) of this important atmospheric chemical reaction are determined. In the kinetic measurements detection limits of 10 7 OH cm -3 are reached with millisecond time resolution. Furthermore the application of the cw-Laser for stationary OH measurements (for example in smog chambers or the free troposphere) is described. The possibilities and limits of different detection methods are discussed with respect to of noise spectra. Modifications of the apparatus with a frequency modulation technique are presented, with an extrapolated detection limit of 10 5 OH cm -3 . (orig.) With 43 refs., 16 figs [de

  13. Relaxation techniques for stress

    Science.gov (United States)

    ... raise your heart rate. This is called the stress response. Relaxation techniques can help your body relax and lower your blood pressure ... also many other types of breathing techniques you can learn. In many cases, you do not need much ... including those that cause stress. Meditation has been practiced for thousands of years, ...

  14. Water Exchange Rate Constant as a Biomarker of Treatment Efficacy in Patients With Brain Metastases Undergoing Stereotactic Radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Mehrabian, Hatef, E-mail: hatef.mehrabian@sri.utoronto.ca [Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario (Canada); Desmond, Kimberly L. [Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario (Canada); Chavez, Sofia [Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario (Canada); Bailey, Colleen [Computer Science Department, University College London, London (United Kingdom); Rola, Radoslaw [Neurosurgery and Pediatric Neurosurgery, Medical University, Lublin (Poland); Sahgal, Arjun [Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario (Canada); Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Czarnota, Gregory J. [Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario (Canada); Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Soliman, Hany [Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Martel, Anne L. [Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario (Canada); Stanisz, Greg J. [Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario (Canada); Neurosurgery and Pediatric Neurosurgery, Medical University, Lublin (Poland)

    2017-05-01

    Purpose: This study was designed to evaluate whether changes in metastatic brain tumors after stereotactic radiosurgery (SRS) can be seen with quantitative MRI early after treatment. Methods and Materials: Using contrast-enhanced MRI, a 3-water-compartment tissue model consisting of intracellular (I), extracellular-extravascular (E), and vascular (V) compartments was used to assess the intra–extracellular water exchange rate constant (k{sub IE}), efflux rate constant (k{sub ep}), and water compartment volume fractions (M{sub 0,I}, M{sub 0,E}, M{sub 0,V}). In this prospective study, 19 patients were MRI-scanned before treatment and 1 week and 1 month after SRS. The change in model parameters between the pretreatment and 1-week posttreatment scans was correlated to the change in tumor volume between pretreatment and 1-month posttreatment scans. Results: At 1 week k{sub IE} differentiated (P<.001) tumors that had partial response from tumors with stable and progressive disease, and a high correlation (R=−0.76, P<.001) was observed between early changes in the k{sub IE} and tumor volume change 1 month after treatment. Other model parameters had lower correlation (M{sub 0,E}) or no correlation (k{sub ep}, M{sub 0,V}). Conclusions: This is the first study that measured k{sub IE} early after SRS, and it found that early changes in k{sub IE} (1 week after treatment) highly correlated with long-term tumor response and could predict the extent of tumor shrinkage at 1 month after SRS.

  15. Water Exchange Rate Constant as a Biomarker of Treatment Efficacy in Patients With Brain Metastases Undergoing Stereotactic Radiosurgery

    International Nuclear Information System (INIS)

    Mehrabian, Hatef; Desmond, Kimberly L.; Chavez, Sofia; Bailey, Colleen; Rola, Radoslaw; Sahgal, Arjun; Czarnota, Gregory J.; Soliman, Hany; Martel, Anne L.; Stanisz, Greg J.

    2017-01-01

    Purpose: This study was designed to evaluate whether changes in metastatic brain tumors after stereotactic radiosurgery (SRS) can be seen with quantitative MRI early after treatment. Methods and Materials: Using contrast-enhanced MRI, a 3-water-compartment tissue model consisting of intracellular (I), extracellular-extravascular (E), and vascular (V) compartments was used to assess the intra–extracellular water exchange rate constant (k IE ), efflux rate constant (k ep ), and water compartment volume fractions (M 0,I , M 0,E , M 0,V ). In this prospective study, 19 patients were MRI-scanned before treatment and 1 week and 1 month after SRS. The change in model parameters between the pretreatment and 1-week posttreatment scans was correlated to the change in tumor volume between pretreatment and 1-month posttreatment scans. Results: At 1 week k IE differentiated (P<.001) tumors that had partial response from tumors with stable and progressive disease, and a high correlation (R=−0.76, P<.001) was observed between early changes in the k IE and tumor volume change 1 month after treatment. Other model parameters had lower correlation (M 0,E ) or no correlation (k ep , M 0,V ). Conclusions: This is the first study that measured k IE early after SRS, and it found that early changes in k IE (1 week after treatment) highly correlated with long-term tumor response and could predict the extent of tumor shrinkage at 1 month after SRS.

  16. Combination of poroelasticity theory and constant strain rate test in modelling land subsidence due to groundwater extraction

    Science.gov (United States)

    Pham, Tien Hung; Rühaak, Wolfram; Sass, Ingo

    2017-04-01

    Extensive groundwater extraction leads to a drawdown of the ground water table. Consequently, soil effective stress increases and can cause land subsidence. Analysis of land subsidence generally requires a numerical model based on poroelasticity theory, which was first proposed by Biot (1941). In the review of regional land subsidence accompanying groundwater extraction, Galloway and Burbey (2011) stated that more research and application is needed in coupling of stress-dependent land subsidence process. In geotechnical field, the constant rate of strain tests (CRS) was first introduced in 1969 (Smith and Wahls 1969) and was standardized in 1982 through the designation D4186-82 by American Society for Testing and Materials. From the reading values of CRS tests, the stress-dependent parameters of poroelasticity model can be calculated. So far, there is no research to link poroelasticity theory with CRS tests in modelling land subsidence due to groundwater extraction. One dimensional CRS tests using conventional compression cell and three dimension CRS tests using Rowe cell were performed. The tests were also modelled by using finite element method with mixed elements. Back analysis technique is used to find the suitable values of hydraulic conductivity and bulk modulus that depend on the stress or void ratio. Finally, the obtained results are used in land subsidence models. Biot, M. A. (1941). "General theory of three-dimensional consolidation." Journal of applied physics 12(2): 155-164. Galloway, D. L. and T. J. Burbey (2011). "Review: Regional land subsidence accompanying groundwater extraction." Hydrogeology Journal 19(8): 1459-1486. Smith, R. E. and H. E. Wahls (1969). "Consolidation under constant rates of strain." Journal of Soil Mechanics & Foundations Div.

  17. Predicting the Rate Constant of Electron Tunneling Reactions at the CdSe-TiO2 Interface.

    Science.gov (United States)

    Hines, Douglas A; Forrest, Ryan P; Corcelli, Steven A; Kamat, Prashant V

    2015-06-18

    Current interest in quantum dot solar cells (QDSCs) motivates an understanding of the electron transfer dynamics at the quantum dot (QD)-metal oxide (MO) interface. Employing transient absorption spectroscopy, we have monitored the electron transfer rate (ket) at this interface as a function of the bridge molecules that link QDs to TiO2. Using mercaptoacetic acid, 3-mercaptopropionic acid, 8-mercaptooctanoic acid, and 16-mercaptohexadecanoic acid, we observe an exponential attenuation of ket with increasing linker length, and attribute this to the tunneling of the electron through the insulating linker molecule. We model the electron transfer reaction using both rectangular and trapezoidal barrier models that have been discussed in the literature. The one-electron reduction potential (equivalent to the lowest unoccupied molecular orbital) of each molecule as determined by cyclic voltammetry (CV) was used to estimate the effective barrier height presented by each ligand at the CdSe-TiO2 interface. The electron transfer rate (ket) calculated for each CdSe-ligand-TiO2 interface using both models showed the results in agreement with the experimentally determined trend. This demonstrates that electron transfer between CdSe and TiO2 can be viewed as electron tunneling through a layer of linking molecules and provides a useful method for predicting electron transfer rate constants.

  18. NMR quantification of diffusional exchange in cell suspensions with relaxation rate differences between intra and extracellular compartments.

    Science.gov (United States)

    Eriksson, Stefanie; Elbing, Karin; Söderman, Olle; Lindkvist-Petersson, Karin; Topgaard, Daniel; Lasič, Samo

    2017-01-01

    Water transport across cell membranes can be measured non-invasively with diffusion NMR. We present a method to quantify the intracellular lifetime of water in cell suspensions with short transverse relaxation times, T2, and also circumvent the confounding effect of different T2 values in the intra- and extracellular compartments. Filter exchange spectroscopy (FEXSY) is specifically sensitive to exchange between compartments with different apparent diffusivities. Our investigation shows that FEXSY could yield significantly biased results if differences in T2 are not accounted for. To mitigate this problem, we propose combining FEXSY with diffusion-relaxation correlation experiment, which can quantify differences in T2 values in compartments with different diffusivities. Our analysis uses a joint constrained fitting of the two datasets and considers the effects of diffusion, relaxation and exchange in both experiments. The method is demonstrated on yeast cells with and without human aquaporins.

  19. Effects of a constant rate infusion of detomidine on cardiovascular function, isoflurane requirements and recovery quality in horses.

    Science.gov (United States)

    Schauvliege, Stijn; Marcilla, Miguel Gozalo; Verryken, Kirsten; Duchateau, Luc; Devisscher, Lindsey; Gasthuys, Frank

    2011-11-01

    To examine the influence of a detomidine constant rate infusion (CRI) on cardiovascular function, isoflurane requirements and recovery quality in horses undergoing elective surgery. Prospective, randomized, blinded, clinical trial. Twenty adult healthy horses. After sedation (detomidine, 10 μg kg(-1) intravenously [IV]) and induction of anaesthesia (midazolam 0.06 mg kg(-1) , ketamine 2.2 mg kg(-1) IV), anaesthesia was maintained with isoflurane in oxygen/air (inspiratory oxygen fraction 55%). When indicated, the lungs were mechanically ventilated. Dobutamine was administered when MAPdetomidine (5 μg kg(-1)  hour(-1) ) (D) or saline (S) CRI, with the anaesthetist unaware of the treatment. Monitoring included end-tidal isoflurane concentration, arterial pH, PaCO(2) , PaO(2) , dobutamine administration rate, heart rate (HR), arterial pressure, cardiac index (CI), systemic vascular resistance (SVR), stroke index and oxygen delivery index (ḊO(2) I). For recovery from anaesthesia, all horses received 2.5 μg kg(-1) detomidine IV. Recovery quality and duration were recorded in each horse. For statistical analysis, anova, Pearson chi-square and Wilcoxon rank sum tests were used as relevant. Heart rate (p=0.0176) and ḊO(2) I (p= 0.0084) were lower and SVR higher (p=0.0126) in group D, compared to group S. Heart rate (p=0.0011) and pH (p=0.0187) increased over time. Significant differences in isoflurane requirements were not detected. Recovery quality and duration were comparable between treatments. A detomidine CRI produced cardiovascular effects typical for α(2) -agonists, without affecting isoflurane requirements, recovery duration or recovery quality. © 2011 The Authors. Veterinary Anaesthesia and Analgesia. © 2011 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesiologists.

  20. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion.

    Science.gov (United States)

    Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2015-11-21

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  1. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

    International Nuclear Information System (INIS)

    Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2015-01-01

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  2. Acceleration and sensitivity analysis of lattice kinetic Monte Carlo simulations using parallel processing and rate constant rescaling.

    Science.gov (United States)

    Núñez, M; Robie, T; Vlachos, D G

    2017-10-28

    Kinetic Monte Carlo (KMC) simulation provides insights into catalytic reactions unobtainable with either experiments or mean-field microkinetic models. Sensitivity analysis of KMC models assesses the robustness of the predictions to parametric perturbations and identifies rate determining steps in a chemical reaction network. Stiffness in the chemical reaction network, a ubiquitous feature, demands lengthy run times for KMC models and renders efficient sensitivity analysis based on the likelihood ratio method unusable. We address the challenge of efficiently conducting KMC simulations and performing accurate sensitivity analysis in systems with unknown time scales by employing two acceleration techniques: rate constant rescaling and parallel processing. We develop statistical criteria that ensure sufficient sampling of non-equilibrium steady state conditions. Our approach provides the twofold benefit of accelerating the simulation itself and enabling likelihood ratio sensitivity analysis, which provides further speedup relative to finite difference sensitivity analysis. As a result, the likelihood ratio method can be applied to real chemistry. We apply our methodology to the water-gas shift reaction on Pt(111).

  3. Energy dependence of the reaction rate constants of Ar+, Ar++ and N2+ ions with Cl2

    International Nuclear Information System (INIS)

    Lukac, P.; Holubcik, L.; Morva, I.; Lindinger, W.

    2002-01-01

    Dry etching processes using low temperature plasmas in Cl 2 and in Cl 2 -noble gas or nitrogen mixtures are common in the manufacture of semiconductor devices, but their chemical mechanisms are often poorly understood. Results are given for the reaction rate constant measurements of Ar + , Ar ++ , N 2 + ions with chlorine as a function of mean relative kinetic energy. The experiments were performed by using the innsbruck flow drift tube (IFDT) apparatus. Measurements were done at various E/N values, where E is the electric field strength and N the buffer gas density in the drift section. The mean relative kinetic energy KE CM between the ions and the neutral chlorine Cl 2 was calculated using the Wanniers formula. It was found that The N 2 + , Ar + and Ar ++ positive ions react with chlorine Cl 2 very fast and the corresponding reaction rate coefficients depend on the mean relative kinetic energy. For the reaction of Ar - with Cl 2 , its reaction coefficient depends also on the buffer gas. It can imply the enhancement of Cl 2 + ions during etching of Si in the Ar/Cl 2 mixtures. (nevyjel)

  4. Muon spin relaxation in ferromagnets. Pt. 1

    International Nuclear Information System (INIS)

    Lovesey, S.W.; Karlsson, E.B.

    1991-04-01

    Expressions for the dipolar and hyperfine contributions to the relaxation rate of muons implanted in a ferromagnet are presented and analysed using the Heisenberg model of spin-waves including dipolar and Zeeman energies. Calculations for EuO indicate that relaxation is likely to be dominated by the hyperfine mechanism, even if the ratio of the hyperfine and dipolar coupling constants is small. The hyperfine mechanism is sensitive to the dipolar energy of the atomic spins, whereas the dipolar mechanisms depend essentially on the exchange energy. For both mechanisms there is an almost quadratic dependence on temperature, throughout much of the ordered magnetic phase, which reflects two-spin-wave difference events from the Raman-type relaxation processes. (author)

  5. A study of spin-lattice relaxation rates of glucose, fructose, sucrose and cherries using high-T c SQUID-based NMR in ultralow magnetic fields

    Science.gov (United States)

    Liao, Shu-Hsien; Wu, Pei-Che

    2017-08-01

    We study the concentration dependence of spin-lattice relaxation rates, T 1 -1, of glucose, fructose, sucrose and cherries by using high-T c SQUID-based NMR at magnetic fields of ˜97 μT. The detected NMR signal, Sy (T Bp), is fitted to [1 - exp(-T Bp/T 1)] to derive T 1 -1, where Sy (T Bp) is the strength of the NMR signal, T Bp is the duration of pre-polarization and T 1 -1 is the spin-lattice relaxation rate. It was found that T 1 -1 increases as the sugar concentrations increase. The increased T 1 -1 is due to the presence of more molecules in the surroundings, which increases the spin-lattice interaction and in turn enhances T 1 -1. The T 1 -1 versus degrees Brix curve provides a basis for determining unknown Brix values for cherries as well as other fruits.

  6. Dynamics of chest wall volume regulation during constant work rate exercise in patients with chronic obstructive pulmonary disease

    Energy Technology Data Exchange (ETDEWEB)

    Takara, L.S.; Cunha, T.M.; Barbosa, P.; Rodrigues, M.K.; Oliveira, M.F.; Nery, L.E. [Setor de Função Pulmonar e Fisiologia Clínica do Exercício, Disciplina de Pneumologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Neder, J.A. [Setor de Função Pulmonar e Fisiologia Clínica do Exercício, Disciplina de Pneumologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Division of Respiratory and Critical Care Medicine, Department of Medicine, Queen' s University, Kingston, ON (Canada)

    2012-10-15

    This study evaluated the dynamic behavior of total and compartmental chest wall volumes [(V{sub CW}) = rib cage (V{sub RC}) + abdomen (V{sub AB})] as measured breath-by-breath by optoelectronic plethysmography during constant-load exercise in patients with stable chronic obstructive pulmonary disease. Thirty males (GOLD stages II-III) underwent a cardiopulmonary exercise test to the limit of tolerance (Tlim) at 75% of peak work rate on an electronically braked cycle ergometer. Exercise-induced dynamic hyperinflation was considered to be present when end-expiratory (EE) V{sub CW} increased in relation to resting values. There was a noticeable heterogeneity in the patterns of V{sub CW} regulation as EEV{sub CW} increased non-linearly in 17/30 “hyperinflators” and decreased in 13/30 “non-hyperinflators” (P < 0.05). EEV{sub AB} decreased slightly in 8 of the “hyperinflators”, thereby reducing and slowing the rate of increase in end-inspiratory (EI) V{sub CW} (P < 0.05). In contrast, decreases in EEV{sub CW} in the “non-hyperinflators” were due to the combination of stable EEV{sub RC} with marked reductions in EEV{sub AB}. These patients showed lower EIV{sub CW} and end-exercise dyspnea scores but longer Tlim than their counterparts (P < 0.05). Dyspnea increased and Tlim decreased non-linearly with a faster rate of increase in EIV{sub CW} regardless of the presence or absence of dynamic hyperinflation (P < 0.001). However, no significant between-group differences were observed in metabolic, pulmonary gas exchange and cardiovascular responses to exercise. Chest wall volumes are continuously regulated during exercise in order to postpone (or even avoid) their migration to higher operating volumes in patients with COPD, a dynamic process that is strongly dependent on the behavior of the abdominal compartment.

  7. SU-E-T-421: Feasibility Study of Volumetric Modulated Arc Therapy with Constant Dose Rate for Endometrial Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, R; Wang, J [Peking University Third Hospital, Beijing, Beijing (China)

    2014-06-01

    Purpose: To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. Methods: The nine-Field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry Run was performed to assess the dosimetric accuracy with MatriXX from IBA. Results: Compared with IMRT, the VMAT-CDR plans delivered a slightly greater V20 of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs Decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. Conclusion: VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability. This work is supported by the grant project, National Natural; Science Foundation of China (No. 81071237)

  8. Ion-neutral gas reactions in a collision/reaction cell in inductively coupled plasma mass spectrometry: Correlation of ion signal decrease to kinetic rate constants

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Patrick J. [Trace Element Research Laboratory, School of Earth Sciences, The Ohio State University, 125 S. Oval Mall, Columbus, OH 43210 (United States); Department of Chemistry, The Ohio State University, 120 18th Avenue, Columbus, OH 43210 (United States); Olesik, John W., E-mail: olesik.2@osu.edu [Trace Element Research Laboratory, School of Earth Sciences, The Ohio State University, 125 S. Oval Mall, Columbus, OH 43210 (United States)

    2015-03-01

    Reaction gas flow rate dependent Ar{sub 2}{sup +} and Ar{sup +} signals are correlated to fundamental kinetic rate coefficients. A simple calculation, assuming that gas exits the reaction cell due only to effusion, is described to estimate the gas pressure in the reaction cell. The value of the product of the kinetic rate constant and the ion residence time in the reaction cell can be determined from experimental measurement of the decrease in an ion signal as a function of reaction gas flow rate. New kinetic rate constants are determined for the reaction of CH{sub 3}F with Ar{sup +} and Ar{sub 2}{sup +}. - Highlights: • How to determine pressure and the product of the kinetic rate constant times the ion residence time in reaction cell • Relate measured ICP-DRC-MS signals versus gas flow rate to kinetic rate constants measured previously using SIFT-MS • Describe how to determine previously unmeasured kinetic rate constants using ICP-DRC-MS.

  9. Theory of vibrational relaxation in mixtures of ortho- and para-hydrogen

    International Nuclear Information System (INIS)

    Moise, A.; Pritchard, H.O.

    1981-01-01

    A numerical study of the vibrational relaxation at 500 K of a mixture of ortho-H 2 and para-H 2 is described. The required state-to-state rate constants were calculated and missing pieces of data were estimated by interpolation. It is concluded that only one relaxation time will be observed in any mixture of orth-H 2 and para-H 2 and that (except at very high dilutions in a third inert gas) the relaxation rate constant will be close to the mean of the individual rate constants for relaxation, weighted according to the respective mole fractions of ortho-H 2 and para-H 2 present in the mixture. The relaxation process can be modelled as an electrical RC network, whose time constants can be written down as sums of the appropriate microscopic rate constants. By using this model the conditions required for a mixture of two gases to exhibit two distinct vibrational relaxation times can be explored

  10. Atmospheric reaction of Cl + methacrolein: a theoretical study on the mechanism, and pressure- and temperature-dependent rate constants.

    Science.gov (United States)

    Sun, Cuihong; Xu, Baoen; Zhang, Shaowen

    2014-05-22

    Methacrolein is a major degradation product of isoprene, the reaction of methacrolein with Cl atoms may play some roles in the degradation of isoprene where these species are relatively abundant. However, the energetics and kinetics of this reaction, which govern the reaction branching, are still not well understood so far. In the present study, two-dimensional potential energy surfaces were constructed to analyze the minimum energy path of the barrierless addition process between Cl and the C═C double bond of methacrolein, which reveals that the terminal addition intermediate is directly formed from the addition reaction. The terminal addition intermediate can further yield different products among which the reaction paths abstracting the aldehyde hydrogen atom and the methyl hydrogen atom are dominant reaction exits. The minimum reaction path for the direct aldehydic hydrogen atom abstraction is also obtained. The reaction kinetics was calculated by the variational transition state theory in conjunction with the master equation method. From the theoretical model we predicted that the overall rate constant of the Cl + methacrolein reaction at 297 K and atmospheric pressure is koverall = 2.3× 10(-10) cm(3) molecule(-1) s(-1), and the branching ratio of the aldehydic hydrogen abstraction is about 12%. The reaction is pressure dependent at P pressure limit at about 100 Torr. The calculated results could well account for the experimental observations.

  11. First-principles method for calculating the rate constants of internal-conversion and intersystem-crossing transitions.

    Science.gov (United States)

    Valiev, R R; Cherepanov, V N; Baryshnikov, G V; Sundholm, D

    2018-02-28

    A method for calculating the rate constants for internal-conversion (k IC ) and intersystem-crossing (k ISC ) processes within the adiabatic and Franck-Condon (FC) approximations is proposed. The applicability of the method is demonstrated by calculation of k IC and k ISC for a set of organic and organometallic compounds with experimentally known spectroscopic properties. The studied molecules were pyrromethene-567 dye, psoralene, hetero[8]circulenes, free-base porphyrin, naphthalene, and larger polyacenes. We also studied fac-Alq 3 and fac-Ir(ppy) 3 , which are important molecules in organic light emitting diodes (OLEDs). The excitation energies were calculated at the multi-configuration quasi-degenerate second-order perturbation theory (XMC-QDPT2) level, which is found to yield excitation energies in good agreement with experimental data. Spin-orbit coupling matrix elements, non-adiabatic coupling matrix elements, Huang-Rhys factors, and vibrational energies were calculated at the time-dependent density functional theory (TDDFT) and complete active space self-consistent field (CASSCF) levels. The computed fluorescence quantum yields for the pyrromethene-567 dye, psoralene, hetero[8]circulenes, fac-Alq 3 and fac-Ir(ppy) 3 agree well with experimental data, whereas for the free-base porphyrin, naphthalene, and the polyacenes, the obtained quantum yields significantly differ from the experimental values, because the FC and adiabatic approximations are not accurate for these molecules.

  12. Th isotopes in the Santa Monica basin: temporal variation, long-term mass balance and model rate constants

    International Nuclear Information System (INIS)

    Huh, Chih-An

    1995-01-01

    Distribution and flux of 234 Th, 232 Th and 230 Th in the water column of central Santa Monica basin observed over a period of seven years show seasonal and interannual variabilities. A steady-state model is applied to the integrated data to calculate long term average flux and model rate constants of Th isotopes. Mass balance calculations show that the basin acts like a closed system for short-lived 234 Th, but not for the long-lived isotopes 230 Th and 232 Th. Most 230 Th in the basin is transported from elsewhere. Of the incoming Th, 40-55% of the 230 Th and 14-26% of the 232 Th enter the surface water in dissolved form. In the upper 100m, the residence time of dissolved Th with respect to adsorption onto suspended particulates, 70-80 days, is about one order of magnitude higher than the residence time of suspended particles with respect to aggregation into sinking particles, 7-10 days. (author)

  13. Three Rate-Constant Kinetic Model for Permanganate Reactions Autocatalyzed by Colloidal Manganese Dioxide: The Oxidation of L-Phenylalanine.

    Science.gov (United States)

    Perez-Benito, Joaquin F; Ferrando, Jordi

    2014-12-26

    The reduction of permanganate ion to MnO(2)-Mn(2)O(3) soluble colloidal mixed oxide by l-phenylalanine in aqueous phosphate-buffered neutral solutions has been followed by a spectrophotometric method, monitoring the decay of permanganate ion at 525 nm and the formation of the colloidal oxide at 420 nm. The reaction is autocatalyzed by the manganese product, and three rate constants have been required to fit the experimental absorbance-time kinetic data. The reaction shows base catalysis, and the values of the activation parameters at different pHs have been determined. A mechanism including both the nonautocatalytic and the autocatalytic reaction pathways, and in agreement with the available experimental data, has been proposed. Some key features of this mechanism are the following: (i) of the two predominant forms of the amino acid, the anionic form exhibits a stronger reducing power than the zwitterionic form; (ii) the nonautocatalytic reaction pathway starts with the transfer of the hydrogen atom in the α position of the amino acid to permanganate ion; and (iii) the autocatalytic reaction pathway involves the reduction of Mn(IV) to Mn(II) by the amino acid and the posterior reoxidation of Mn(II) to Mn(IV) by permanganate ion.

  14. Dose rate constants for the quantity H{sub p}(3) for frequently used radionuclides in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Szermerski, Bastian; Bruchmann, Iris; Geworski, Lilli [Medical School Hannover (Germany). Dept. for Radiation Protection and Medical Physics; Behrens, Rolf [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany)

    2016-07-01

    According to recent studies, the human eye lens is more sensitive to ionising radiation than previously assumed. Therefore, the dose limit for personnel occupationally exposed to ionising radiation will be lowered from currently 150 mSv to 20 mSv per year. Currently, no data base for a reliable estimation of the dose to the lens of the eye is available for nuclear medicine. Furthermore, the dose is usually not monitored. The aim of this work was to determine dose rate constants for the quantity H{sub p}(3), which is supposed to estimate the dose to the lens of the eye. For this, H{sub p}(3)-dosemeters were fixed to an Alderson Phantom at different positions. The dosemeters were exposed to radiation from nuclides typically used in nuclear medicine in their geometries analog to their application in nuclear medicine, e.g. syringe or vial. The results show that the handling of high-energy beta (i.e. electron or positron) emitters may lead to a relevant dose to the lens of the eye. For low-energy beta emitters and gamma emitters, an exceeding of the lowered dose limit seems to be unlikely.

  15. Benthic Uptake Rate due to Hyporheic Exchange: The Effects of Streambed Morphology for Constant and Sinusoidally Varying Nutrient Loads

    Directory of Open Access Journals (Sweden)

    Daniele Tonina

    2015-01-01

    Full Text Available Hyporheic exchange carries reactive solutes, which may include biological oxygen demand (BOD, dissolved oxygen (DO and reactive dissolved inorganic nitrogen (Nr, into the sediment, where biochemical reactions consume DO. Here, we study the impact of streambed morphology, stream-reactive solute loads and their diel oscillations on the DO benthic uptake rate (BUR due to hyporheic processes. Our model solves the hyporheic flow field and the solute transport equations analytically, within a Lagrangian framework, considering advection, longitudinal diffusion and reactions modeled as first order kinetics. The application of the model to DO field measurements over a gravel bar-pool sequence shows a good match with measured DO concentrations with an overall agreement of 58% and a kappa index of 0.46. We apply the model to investigate the effects of daily constant and sinusoidally time varying stream BOD, DO and Nr loads and of the morphodynamic parameters on BUR. Our modeling results show that BUR varies as a function of bedform size and of nutrient loads and that the hyporheic zone may consume up to 0.06% of the stream DO at the pool-riffle bedform scale. Daily oscillations of stream BOD and DO loads have small effects on BUR, but may have an important influence on local hyporheic processes and organisms’ distribution.

  16. Reversible conformational transition gives rise to 'zig-zag' temperature dependence of the rate constant of irreversible thermoinactivation of enzymes.

    Science.gov (United States)

    Levitsky VYu; Melik-Nubarov, N S; Siksnis, V A; Grinberg VYa; Burova, T V; Levashov, A V; Mozhaev, V V

    1994-01-15

    We have obtained unusual 'zig-zag' temperature dependencies of the rate constant of irreversible thermoinactivation (k(in)) of enzymes (alpha-chymotrypsin, covalently modified alpha-chymotrypsin, and ribonuclease) in a plot of log k(in) versus reciprocal temperature (Arrhenius plot). These dependencies are characterized by the presence of both ascending and descending linear portions which have positive and negative values of the effective activation energy (Ea), respectively. A kinetic scheme has been suggested that fits best for a description of these zig-zag dependencies. A key element of this scheme is the temperature-dependent reversible conformational transition of enzyme from the 'low-temperature' native state to a 'high-temperature' denatured form; the latter form is significantly more stable against irreversible thermoinactivation than the native enzyme. A possible explanation for a difference in thermal stabilities is that low-temperature and high-temperature forms are inactivated according to different mechanisms. Existence of the suggested conformational transition was proved by the methods of fluorescence spectroscopy and differential scanning calorimetry. The values of delta H and delta S for this transition, determined from calorimetric experiments, are highly positive; this fact underlies a conclusion that this heat-induced transition is caused by an unfolding of the protein molecule. Surprisingly, in the unfolded high-temperature conformation, alpha-chymotrypsin has a pronounced proteolytic activity, although this activity is much smaller than that of the native enzyme.

  17. Relaxation Dynamics of a Granular Pile on a Vertically Vibrating Plate

    Science.gov (United States)

    Tsuji, Daisuke; Otsuki, Michio; Katsuragi, Hiroaki

    2018-03-01

    Nonlinear relaxation dynamics of a vertically vibrated granular pile is experimentally studied. In the experiment, the flux and slope on the relaxing pile are measured by using a high-speed laser profiler. The relation of these quantities can be modeled by the nonlinear transport law assuming the uniform vibrofluidization of an entire pile. The fitting parameter in this model is only the relaxation efficiency, which characterizes the energy conversion rate from vertical vibration into horizontal transport. We demonstrate that this value is a constant independent of experimental conditions. The actual relaxation is successfully reproduced by the continuity equation with the proposed model. Finally, its specific applicability toward an astrophysical phenomenon is shown.

  18. Effect of high pressure on the relaxation dynamics of glass-forming liquids

    Energy Technology Data Exchange (ETDEWEB)

    Paluch, M; Grzybowska, K; Grzybowski, A [Institute of Physics, Silesian University, ulica Uniwersytecka 4, 40-007 Katowice (Poland)

    2007-05-23

    A glass is usually formed by cooling a liquid at a rate sufficient to avoid crystallization. In the vicinity of the glass transition the structural relaxation time increases with lowering temperature in a non-Arrhenius fashion and the structural relaxation function reveals a non-Debye behaviour. However, liquid can be also vitrified by keeping it at a constant temperature and increasing the pressure. This pressure-induced transition to the glassy state is also accompanied by dramatic changes in the relaxation dynamics. Herein we discuss the behaviour of the structural relaxation times of glass-forming liquids and polymer melts under high pressure.

  19. Differential multiple quantum relaxation caused by chemical exchange outside the fast exchange limit

    International Nuclear Information System (INIS)

    Wang Chunyu; Palmer, Arthur G.

    2002-01-01

    Differential relaxation of multiple quantum coherences is a signature for chemical exchange processes in proteins. Previous analyses of experimental data have used theoretical descriptions applicable only in the limit of fast exchange. Theoretical expressions for differential relaxation rate constants that are accurate outside fast exchange are presented for two-spin-system subject to two-site chemical exchange. The theoretical expressions are validated using experimental results for 15 N- 1 H relaxation in basic pancreatic trypsin inhibitor. The new theoretical expression is valuable for identification and characterization of exchange processes in proteins using differential relaxation of multiple quantum coherences

  20. Effect of high pressure on the relaxation dynamics of glass-forming liquids

    International Nuclear Information System (INIS)

    Paluch, M; Grzybowska, K; Grzybowski, A

    2007-01-01

    A glass is usually formed by cooling a liquid at a rate sufficient to avoid crystallization. In the vicinity of the glass transition the structural relaxation time increases with lowering temperature in a non-Arrhenius fashion and the structural relaxation function reveals a non-Debye behaviour. However, liquid can be also vitrified by keeping it at a constant temperature and increasing the pressure. This pressure-induced transition to the glassy state is also accompanied by dramatic changes in the relaxation dynamics. Herein we discuss the behaviour of the structural relaxation times of glass-forming liquids and polymer melts under high pressure

  1. Application of Constant Rate of Supply model (CRS) in dating of Guanabara Bay sediments using 210Pb measures

    International Nuclear Information System (INIS)

    Braganca, Maura Julia Camara da Silva

    1992-09-01

    A geochronological study of the Guanabara Bay (Rio de Janeiro, Brazil) based on 210P b dating technique to determine sedimentation rates and using the Constant Rate of Supply model (CRS) is presented in this work. Sediment samples were collected from river-head of Estrela, Sao Joao de Meriti, Guapimirim, Guaxindiba e Imbuacu. A low energy gamma spectrometry ( 210P b, samples taken from the Estrela and Sao Joao de Meriti rivers. Radiochemical method was applied to determine the amount of 210P b in samples collected near Guapimirim, Guaxindiba and Imbuacu Rivers. Atomic absorption spectrometry with air-acetylene flame technique was used to determine the amount of copper in all these samples. Experimental data shown the following variation in the concentration levels of copper and 210P b: (i) copper; from 2.5 μg/g to 37.1 μg/g (Imbuacu River); from 3.6 to 228.1 μg/g (Estrela River); from 11.6 to 73.4 μg/g (Guapimirim River); from 12.0 to 52.9 μg/g (Guaxindiba River) and from 90.8 to to 237.7 μg/g (Sao Joao de Meriti River), (ti) 210P b; from 2.0 Bq/kg to 27.0 Bq/kg (Imbuacu River); from 25.2 to 136.6 Bq/kg (Estrela River); from 40.0 to 90.0 Bq/kg (Sao Joao de Meriti River); from 7.0 to 70.0 Bq/kg (Guapimirim River); from 10.0 to 48.0 Bq/kg (Guaxindiba River). The sedimentation rates ranged from 0.30 cm/y in the Imbuacu River for a depth below of 35 cm to 1.3 cm/y for 0-30 cm depth in Guaxindiba River. It was concluded that the experimental data found in this work are consistent with those published in the scientific literature and that they can be predicted by the CRS model. (author)

  2. THE PARTICIPATION OF THE NITRERGIC PATHWAY IN INCREASED RATE OF TRANSITORY RELAXATION OF LOWER ESOPHAGEAL SPHINCTER INDUCED BY RECTAL DISTENSION IN DOGS

    Directory of Open Access Journals (Sweden)

    Michel Santos PALHETA

    2014-04-01

    Full Text Available Context The rectal distension in dogs increases the rate of transitory lower esophageal sphincter relaxation considered the main factor causing gastroesophageal reflux. Objectives The aim of this study was evaluate the participation of the nitrergic pathway in the increased transitory lower esophageal sphincter relaxation rate induced by rectal distension in anesthetized dogs. Methods Male mongrel dogs (n = 21, weighing 10-15 kg, were fasted for 12 hours, with water ad libitum. Thereafter, they were anesthetized (ketamine 10 mg.Kg-1 + xylazine 20 mg.Kg-1, so as to carry out the esophageal motility evaluation protocol during 120 min. After a 30-minute basal period, the animals were randomly intravenous treated whith: saline solution 0.15M (1ml.Kg-1, L-NAME (3 mg.Kg-1, L-NAME (3 mg.Kg-1 + L-Arginine (200 mg.Kg-1, glibenclamide (1 mg.Kg-1 or methylene blue (3 mg.Kg-1. Forty-five min after these pre-treatments, the rectum was distended (rectal distension, 5 mL.Kg-1 or not (control with a latex balloon, with changes in the esophageal motility recorded over 45 min. Data were analyzed using ANOVA followed by Student Newman-Keuls test. Results In comparison to the respective control group, rectal distension induces an increase in transitory lower esophageal sphincter relaxation. Pre-treatment with L-NAME or methylene blue prevents (P<0.05 this phenomenon, which is reversible by L-Arginine plus L-NAME. However, pretreating with glibenclamide failed to abolish this process. Conclusions Therefore, these experiments suggested, that rectal distension increases transitory lower esophageal sphincter relaxation in dogs via through nitrergic pathways.

  3. Direct measurements of methoxy removal rate constants for collisions with CH4, Ar, N2, Xe, and CF4 in the temperature range 673--973K

    International Nuclear Information System (INIS)

    Wantuck, P.J.; Oldenborg, R.C.; Baugchum, S.L.; Winn, K.R.

    1988-01-01

    Removal rate constants for CH 3 O by CH 4 , Ar, N 2 , Xe, and CF 4 were measured over a 400K temperature range using a laser photolysis/laser-induced fluorescence technique. Rapid methoxy removal rates are observed for the non-reactive collision partners (Ar, N 2 , Xe, and CF 4 ) at elevated temperatures showing that the dissociation and isomerization channels for CH 3 O are indeed important. The total removal rate constant (reaction /plus/ dissociation and/or isomerization) for CH 4 exhibits a linear dependence on temperature and has a removal rate constant, k/sub r/ /equals/ (1.2 +- 0.6) /times/ 10/sup /minus/8/exp[(/minus/101070 +- 350)/T]cm 3 molecule/sup /minus/1/s/sup /minus/1/. Assuming that the removal rate constant due to dissociation and/or isomerization are similar for CH 4 and CF 4 , the reaction rate constant for CH 3 O /plus/ CH 4 is equal to (1.7 +- 1.0) /times/ 10/sup /minus/10/exp[(/minus/7480 +- 1100)/T]cm 3 molecule/sup /minus/1/s/sup /minus/1/. 7 refs., 4 figs

  4. Effect of detomidine or romifidine constant rate infusion on plasma lactate concentration and inhalant requirements during isoflurane anaesthesia in horses.

    Science.gov (United States)

    Niimura Del Barrio, M C; Bennett, Rachel C; Hughes, J M Lynne

    2017-05-01

    Influence of detomidine or romifidine constant rate infusion (CRI) on plasma lactate concentration and isoflurane requirements in horses undergoing elective surgery. Prospective, randomised, blinded, clinical trial. A total of 24 adult healthy horses. All horses were administered intramuscular acepromazine (0.02 mg kg -1 ) and either intravenous detomidine (0.02 mg kg -1 ) (group D), romifidine (0.08 mg kg -1 ) (group R) or xylazine (1.0 mg kg -1 ) (group C) prior to anaesthesia. Group D was administered detomidine CRI (10 μg kg -1 hour -1 ) in lactated Ringer's solution (LRS), group R romifidine CRI (40 μg kg -1 hour -1 ) in LRS and group C an equivalent amount of LRS intraoperatively. Anaesthesia was induced with ketamine and diazepam and maintained with isoflurane in oxygen. Plasma lactate samples were taken prior to anaesthesia (baseline), intraoperatively (three samples at 30 minute intervals) and in recovery (at 10 minutes, once standing and 3 hours after end of anaesthesia). End-tidal isoflurane percentage (Fe'Iso) was analysed by allocating values into three periods: Prep (15 minutes after the start anaesthesia-start surgery); Surgery 1 (start surgery-30 minutes later); and Surgery 2 (end Surgery 1-end anaesthesia). A linear mixed model was used to analyse the data. A value of pdetomidine or romifidine CRI in horses did not result in a clinically significant increase in plasma lactate compared with control group. Detomidine and romifidine infusions decreased isoflurane requirements during surgery. Copyright © 2017 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd. All rights reserved.

  5. Comparison of Physiological and Psychological Relaxation Using Measurements of Heart Rate Variability, Prefrontal Cortex Activity, and Subjective Indexes after Completing Tasks with and without Foliage Plants.

    Science.gov (United States)

    Park, Sin-Ae; Song, Chorong; Oh, Yun-Ah; Miyazaki, Yoshifumi; Son, Ki-Cheol

    2017-09-20

    The objective of this study was to compare physiological and psychological relaxation by assessing heart rate variability (HRV), prefrontal cortex activity, and subjective indexes while subjects performed a task with and without foliage plants. In a crossover experimental design, 24 university students performed a task transferring pots with and without a foliage plant for 3 min. HRV and oxyhemoglobin (oxy-Hb) concentration in the prefrontal cortex were continuously measured. Immediately thereafter, subjective evaluation of emotions was performed using a modified semantic differential (SD) method and a profile of mood state questionnaire (POMS). Results showed that the natural logarithmic (ln) ratio of low frequency/high frequency, as an estimate of sympathetic nerve activity, was significantly lower while performing the task with foliage plants for the average 3 min measurement interval. Oxy-Hb concentration in the left prefrontal cortex showed a tendency to decrease in the 2-3 min interval in the task with foliage plants compared to the task without plants. Moreover, significant psychological relaxation according to POMS score and SD was demonstrated when the task involved foliage plants. In conclusion, the task involving foliage plants led to more physiological and psychological relaxation compared with the task without foliage plants.

  6. Comparison of Physiological and Psychological Relaxation Using Measurements of Heart Rate Variability, Prefrontal Cortex Activity, and Subjective Indexes after Completing Tasks with and without Foliage Plants

    Directory of Open Access Journals (Sweden)

    Sin-Ae Park

    2017-09-01

    Full Text Available The objective of this study was to compare physiological and psychological relaxation by assessing heart rate variability (HRV, prefrontal cortex activity, and subjective indexes while subjects performed a task with and without foliage plants. In a crossover experimental design, 24 university students performed a task transferring pots with and without a foliage plant for 3 min. HRV and oxyhemoglobin (oxy-Hb concentration in the prefrontal cortex were continuously measured. Immediately thereafter, subjective evaluation of emotions was performed using a modified semantic differential (SD method and a profile of mood state questionnaire (POMS. Results showed that the natural logarithmic (ln ratio of low frequency/high frequency, as an estimate of sympathetic nerve activity, was significantly lower while performing the task with foliage plants for the average 3 min measurement interval. Oxy-Hb concentration in the left prefrontal cortex showed a tendency to decrease in the 2–3 min interval in the task with foliage plants compared to the task without plants. Moreover, significant psychological relaxation according to POMS score and SD was demonstrated when the task involved foliage plants. In conclusion, the task involving foliage plants led to more physiological and psychological relaxation compared with the task without foliage plants.

  7. Comparison of three continuous positive airway pressure (CPAP) interfaces in healthy Beagle dogs during medetomidine-propofol constant rate infusions.

    Science.gov (United States)

    Meira, Carolina; Joerger, Fabiola B; Kutter, Annette P N; Waldmann, Andreas; Ringer, Simone K; Böehm, Stephan H; Iff, Samuel; Mosing, Martina

    2018-03-01

    To compare the efficacy of three continuous positive airway pressure (CPAP) interfaces in dogs on gas exchange, lung volumes, amount of leak during CPAP and rebreathing in case of equipment failure or disconnection. Randomized, prospective, crossover, experimental trial. Ten purpose-bred Beagle dogs. Dogs were in dorsal recumbency during medetomidine-propofol constant rate infusions, breathing room air. Three interfaces were tested in each dog in a consecutive random order: custom-made mask (M), conical face mask (FM) and helmet (H). End-expiratory lung impedance (EELI) measured by electrical impedance tomography was assessed with no interface (baseline), with the interface only (No-CPAP for 3 minutes) and at 15 minutes of 7 cmH 2 O CPAP (CPAP-delivery). PaO 2 was assessed at No-CPAP and CPAP-delivery, partial pressure of inspired carbon dioxide (PICO 2 ; rebreathing assessment) at No-CPAP and the interface leak (ΔP leak ) at CPAP-delivery. Mixed-effects linear regression models were used for statistical analysis (pCPAP-delivery, all interfaces increased EELI by 7% (pCPAP, less rebreathing occurred with M (0.5 kPa, 4 mmHg) than with FM (1.8 kPa, 14 mmHg) and with H (1.4 kPa, 11 mmHg), but also lower PaO 2 was measured with M (9.3 kPa, 70 mmHg) than with H (11.9 kPa, 90 mmHg) and FM (10.8 kPa, 81 mmHg). All three interfaces can be used to provide adequate CPAP in dogs. The leak during CPAP-delivery and the risk of rebreathing and hypoxaemia, when CPAP is not maintained, can be significant. Therefore, animals should always be supervised during administration of CPAP with any of the three interfaces. The performance of the custom-made M was not superior to the other interfaces. Copyright © 2017 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd. All rights reserved.

  8. Dielectric relaxation studies of dilute solutions of amides

    Energy Technology Data Exchange (ETDEWEB)

    Malathi, M.; Sabesan, R.; Krishnan, S

    2003-11-15

    The dielectric constants and dielectric losses of formamide, acetamide, N-methyl acetamide, acetanilide and N,N-dimethyl acetamide in dilute solutions of 1,4-dioxan/benzene have been measured at 308 K using 9.37 GHz, dielectric relaxation set up. The relaxation time for the over all rotation {tau}{sub (1)} and that for the group rotation {tau}{sub (2)} of (the molecules were determined using Higasi's method. The activation energies for the processes of dielectric relaxation and viscous flow were determined by using Eyring's rate theory. From relaxation time behaviour of amides in non-polar solvent, solute-solvent and solute-solute type of molecular association is proposed.

  9. Perturbation of longitudinal relaxation rate in rotating frame (PLRF) analysis for quantification of chemical exchange saturation transfer signal in a transient state.

    Science.gov (United States)

    Wang, Yi; Zhang, Yaoyu; Zhao, Xuna; Wu, Bing; Gao, Jia-Hong

    2017-11-01

    To develop a novel analytical method for quantification of chemical exchange saturation transfer (CEST) in the transient state. The proposed method aims to reduce the effects of non-chemical-exchange (non-CE) parameters on the CEST signal, emphasizing the effect of chemical exchange. The difference in the longitudinal relaxation rate in the rotating frame ( ΔR1ρ) was calculated based on perturbation of the Z-value by R1ρ, and a saturation-pulse-amplitude-compensated exchange-dependent relaxation rate (SPACER) was determined with a high-exchange-rate approximation. In both phantom and human subject experiments, MTRasym (representative of the traditional CEST index), ΔR1ρ, and SPACER were measured, evaluated, and compared by altering the non-CE parameters in a transient-state continuous-wave CEST sequence. In line with the theoretical expectation, our experimental data demonstrate that the effects of the non-CE parameters can be more effectively reduced using the proposed indices (  ΔR1ρ and SPACER) than using the traditional CEST index ( MTRasym). The proposed method allows for the chemical exchange weight to be better emphasized in the transient-state CEST signal, which is beneficial, in practice, for quantifying the CEST signal. Magn Reson Med 78:1711-1723, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  10. Effect of improved TLD dosimetry on the determination of dose rate constants for 125I and 103Pd brachytherapy seeds

    International Nuclear Information System (INIS)

    Rodriguez, M.; Rogers, D. W. O.

    2014-01-01

    Purpose: To more accurately account for the relative intrinsic energy dependence and relative absorbed-dose energy dependence of TLDs when used to measure dose rate constants (DRCs) for 125 I and 103 Pd brachytherapy seeds, to thereby establish revised “measured values” for all seeds and compare the revised values with Monte Carlo and consensus values. Methods: The relative absorbed-dose energy dependence, f rel , for TLDs and the phantom correction, P phant , are calculated for 125 I and 103 Pd seeds using the EGSnrc BrachyDose and DOSXYZnrc codes. The original energy dependence and phantom corrections applied to DRC measurements are replaced by calculated (f rel ) −1 and P phant values for 24 different seed models. By comparing the modified measured DRCs to the MC values, an appropriate relative intrinsic energy dependence, k bq rel , is determined. The new P phant values and relative absorbed-dose sensitivities, S AD rel , calculated as the product of (f rel ) −1 and (k bq rel ) −1 , are used to individually revise the measured DRCs for comparison with Monte Carlo calculated values and TG-43U1 or TG-43U1S1 consensus values. Results: In general, f rel is sensitive to the energy spectra and models of the brachytherapy seeds. Values may vary up to 8.4% among 125 I and 103 Pd seed models and common TLD shapes. P phant values depend primarily on the isotope used. Deduced (k bq rel ) −1 values are 1.074 ± 0.015 and 1.084 ± 0.026 for 125 I and 103 Pd seeds, respectively. For (1 mm) 3 chips, this implies an overall absorbed-dose sensitivity relative to 60 Co or 6 MV calibrations of 1.51 ± 1% and 1.47 ± 2% for 125 I and 103 Pd seeds, respectively, as opposed to the widely used value of 1.41. Values of P phant calculated here have much lower statistical uncertainties than literature values, but systematic uncertainties from density and composition uncertainties are significant. Using these revised values with the literature’s DRC measurements, the

  11. Colossal dielectric constant and Maxwell-Wagner relaxation in $Pb(Fe_{1/2}Nb_{1/2})O_{3-x}PbTiO_3$ single crystals

    OpenAIRE

    Liu, K.; Zhang, X. Y.

    2008-01-01

    Recently, materials exhibiting colossal dielectric constant ($CDC$) have attracted significant attention because of their high dielectric constant and potential applications in electronic devices, such as high dielectric capacitors, capacitor sensors, random access memories and so on.

  12. An Adaptive, Multi-Rate Linear Quadratic Regulator for a Shipboard MVDC Distribution System with Constant Power Loads

    Science.gov (United States)

    2017-09-01

    investigation into the factors which most strongly influence ROA size would be instructive. The genetic algorithm could be modified to assess ROA size and an...DISTRIBUTION SYSTEM WITH CONSTANT POWER LOADS 5. FUNDING NUMBERS REL95 REK4K 6. AUTHOR(S) Adam J. Mills 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS...ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME(S) AND

  13. The change of longitudinal relaxation rate in oxygen enhanced pulmonary MRI depends on age and BMI but not diffusing capacity of carbon monoxide in healthy never-smokers.

    Directory of Open Access Journals (Sweden)

    Simon Sven Ivan Kindvall

    Full Text Available Oxygen enhanced pulmonary MRI is a promising modality for functional lung studies and has been applied to a wide range of pulmonary conditions. The purpose of this study was to characterize the oxygen enhancement effect in the lungs of healthy, never-smokers, in light of a previously established relationship between oxygen enhancement and diffusing capacity of carbon monoxide in the lung (DL,CO in patients with lung disease.In 30 healthy never-smoking volunteers, an inversion recovery with gradient echo read-out (Snapshot-FLASH was used to quantify the difference in longitudinal relaxation rate, while breathing air and 100% oxygen, ΔR1, at 1.5 Tesla. Measurements were performed under multiple tidal inspiration breath-holds.In single parameter linear models, ΔR1 exhibit a significant correlation with age (p = 0.003 and BMI (p = 0.0004, but not DL,CO (p = 0.33. Stepwise linear regression of ΔR1 yields an optimized model including an age-BMI interaction term.In this healthy, never-smoking cohort, age and BMI are both predictors of the change in MRI longitudinal relaxation rate when breathing oxygen. However, DL,CO does not show a significant correlation with the oxygen enhancement. This is possibly because oxygen transfer in the lung is not diffusion limited at rest in healthy individuals. This work stresses the importance of using a physiological model to understand results from oxygen enhanced MRI.

  14. Approximation for the Finite-Time Ruin Probability of a General Risk Model with Constant Interest Rate and Extended Negatively Dependent Heavy-Tailed Claims

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2011-01-01

    Full Text Available We propose a general continuous-time risk model with a constant interest rate. In this model, claims arrive according to an arbitrary counting process, while their sizes have dominantly varying tails and fulfill an extended negative dependence structure. We obtain an asymptotic formula for the finite-time ruin probability, which extends a corresponding result of Wang (2008.

  15. Determination of first order rate constants by natural logarithm of the slope plot exemplified by analysis of Aspergillus niger in batch culture

    NARCIS (Netherlands)

    Poulsen, B.R.; Ruiter, G.; Visser, J.; Iversen, J.J.L.

    2003-01-01

    Finding rate constants from experimental data is often difficult because of offset and noise. A computer program was developed to average experimental data points, reducing the effect of noise, and to produce a loge of slope plot - a plot of the natural logarithm of the slope of a curve -

  16. QSAR models for oxidation of organic micropollutants in water based on ozone and hydroxyl radical rate constants and their chemical classification

    KAUST Repository

    Sudhakaran, Sairam; Amy, Gary L.

    2013-01-01

    . In this study, quantitative structure activity relationships (QSAR) models for O3 and AOP processes were developed, and rate constants, kOH and kO3, were predicted based on target compound properties. The kO3 and kOH values ranged from 5 * 10-4 to 105 M-1s-1

  17. Determination of H-atom reaction rate constants by the competition kinetic technique using riboflavin as a standard solute [Paper No. RD-7

    International Nuclear Information System (INIS)

    Kishore, Kamal; Moorthy, P.N.; Rao, K.N.

    1982-01-01

    Riboflavin has been used as a standard solute to evaluate H-atom rate constants of other solutes by steady state radiolytic competition kinetic method. The bleaching of absorbance of riboflavin at 445 nm as a result of its reaction with H-atoms is made use of in estimating its decomposition. The merits and demerits of this method are discussed. (author)

  18. Room-temperature and temperature-dependent QSRR modelling for predicting the nitrate radical reaction rate constants of organic chemicals using ensemble learning methods.

    Science.gov (United States)

    Gupta, S; Basant, N; Mohan, D; Singh, K P

    2016-07-01

    Experimental determinations of the rate constants of the reaction of NO3 with a large number of organic chemicals are tedious, and time and resource intensive; and the development of computational methods has widely been advocated. In this study, we have developed room-temperature (298 K) and temperature-dependent quantitative structure-reactivity relationship (QSRR) models based on the ensemble learning approaches (decision tree forest (DTF) and decision treeboost (DTB)) for predicting the rate constant of the reaction of NO3 radicals with diverse organic chemicals, under OECD guidelines. Predictive powers of the developed models were established in terms of statistical coefficients. In the test phase, the QSRR models yielded a correlation (r(2)) of >0.94 between experimental and predicted rate constants. The applicability domains of the constructed models were determined. An attempt has been made to provide the mechanistic interpretation of the selected features for QSRR development. The proposed QSRR models outperformed the previous reports, and the temperature-dependent models offered a much wider applicability domain. This is the first report presenting a temperature-dependent QSRR model for predicting the nitrate radical reaction rate constant at different temperatures. The proposed models can be useful tools in predicting the reactivities of chemicals towards NO3 radicals in the atmosphere, hence, their persistence and exposure risk assessment.

  19. Estimating reaction rate constants from a two-step reaction: a comparison between two-way and three-way methods

    NARCIS (Netherlands)

    Bijlsma, S.; Smilde, A. K.

    2000-01-01

    In this paper, two different spectral datasets are used in order to estimate reaction rate constants using different algorithms. Dataset 1 consists of short-wavelength near-infrared (SW NIR) spectra taken in time of the two-step epoxidation of 2,5-di-tert-butyl-1,4-benzoquinone using tert-butyl

  20. USING IN VIVO GAS UPDATE STUDIES TO ESTIMATE METABOLIC RATE CONSTANTS FOR CCL CHEMICALS: 1,1-DICHLOROPROPANE AND 2,2-DICHLOROPROPANE

    Science.gov (United States)

    USING IN VIVO GAS UPTAKE STUDIES TO ESTIMATE METABOLIC RATE CONSTANTS FOR CCL CHEMICALS: 1,1-DICHLOROPROPENE AND 2,2-DICHLOROPROPANE. Mitchell, C T, Evans, M V, Kenyon, E M. NHEERL, U.S. EPA, ORD, ETD, RTP, NC The Safe Drinking Water Act Amendments of 1996 required ...

  1. Relaxation System

    Science.gov (United States)

    1987-01-01

    Environ Corporation's relaxation system is built around a body lounge, a kind of super easy chair that incorporates sensory devices. Computer controlled enclosure provides filtered ionized air to create a feeling of invigoration, enhanced by mood changing aromas. Occupant is also surrounded by multidimensional audio and the lighting is programmed to change colors, patterns, and intensity periodically. These and other sensory stimulators are designed to provide an environment in which the learning process is stimulated, because research has proven that while an individual is in a deep state of relaxation, the mind is more receptive to new information.

  2. Fitting the elementary rate constants of the P-gp transporter network in the hMDR1-MDCK confluent cell monolayer using a particle swarm algorithm.

    Directory of Open Access Journals (Sweden)

    Deep Agnani

    Full Text Available P-glycoprotein, a human multidrug resistance transporter, has been extensively studied due to its importance to human health and disease. In order to understand transport kinetics via P-gp, confluent cell monolayers overexpressing P-gp are widely used. The purpose of this study is to obtain the mass action elementary rate constants for P-gp's transport and to functionally characterize members of P-gp's network, i.e., other transporters that transport P-gp substrates in hMDR1-MDCKII confluent cell monolayers and are essential to the net substrate flux. Transport of a range of concentrations of amprenavir, loperamide, quinidine and digoxin across the confluent monolayer of cells was measured in both directions, apical to basolateral and basolateral to apical. We developed a global optimization algorithm using the Particle Swarm method that can simultaneously fit all datasets to yield accurate and exhaustive fits of these elementary rate constants. The statistical sensitivity of the fitted values was determined by using 24 identical replicate fits, yielding simple averages and standard deviations for all of the kinetic parameters, including the efflux active P-gp surface density. Digoxin required additional basolateral and apical transporters, while loperamide required just a basolateral tranporter. The data were better fit by assuming bidirectional transporters, rather than active importers, suggesting that they are not MRP or active OATP transporters. The P-gp efflux rate constants for quinidine and digoxin were about 3-fold smaller than reported ATP hydrolysis rate constants from P-gp proteoliposomes. This suggests a roughly 3∶1 stoichiometry between ATP hydrolysis and P-gp transport for these two drugs. The fitted values of the elementary rate constants for these P-gp substrates support the hypotheses that the selective pressures on P-gp are to maintain a broad substrate range and to keep xenobiotics out of the cytosol, but not out of the

  3. Ratiometric analysis in hyperpolarized NMR (I): test of the two-site exchange model and the quantification of reaction rate constants.

    Science.gov (United States)

    Li, Lin Z; Kadlececk, Stephen; Xu, He N; Daye, Dania; Pullinger, Benjamin; Profka, Harrilla; Chodosh, Lewis; Rizi, Rahim

    2013-10-01

    Conventional methods for the analysis of in vivo hyperpolarized (13) C NMR data from the lactate dehydrogenase (LDH) reaction usually make assumptions on the stability of rate constants and/or the validity of the two-site exchange model. In this study, we developed a framework to test the validity of the assumption of stable reaction rate constants and the two-site exchange model in vivo via ratiometric fitting of the time courses of the signal ratio L(t)/P(t). Our analysis provided evidence that the LDH enzymatic kinetics observed by hyperpolarized NMR are in near-equilibrium and satisfy the two-site exchange model for only a specific time window. In addition, we quantified both the forward and reverse exchange rate constants of the LDH reaction for the transgenic and mouse xenograft models of breast cancer using the ratio fitting method developed, which includes only two modeling parameters and is less sensitive to the influence of instrument settings/protocols, such as flip angles, degree of polarization and tracer dosage. We further compared the ratio fitting method with a conventional two-site exchange modeling method, i.e. the differential equation fitting method, using both the experimental and simulated hyperpolarized NMR data. The ratio fitting method appeared to fit better than the differential equation fitting method for the reverse rate constant on the mouse tumor data, with less relative errors on average, whereas the differential equation fitting method also resulted in a negative reverse rate constant for one tumor. The simulation results indicated that the accuracy of both methods depends on the width of the transport function, noise level and rate constant ratio; one method may be more accurate than the other based on the experimental/biological conditions aforementioned. We were able to categorize our tumor models into specific conditions of the computer simulation and to estimate the errors of rate quantification. We also discussed possible

  4. Relaxed states with plasma flow

    International Nuclear Information System (INIS)

    Avinash, K.; Taylor, J.B.

    1991-01-01

    In the theory of relaxation, a turbulent plasma reaches a state of minimum energy subject to constant magnetic helicity. In this state the plasma velocity is zero. Attempts have been made by introducing a number of different constraints, to obtain relaxed states with plasma flow. It is shown that these alternative constraints depend on two self-helicities, one for ions, and one for electrons. However, whereas there are strong arguments for the effective invariance of the original magnetic-helicity, these arguments do not apply to the self-helicities. Consequently the existence of relaxed states with flow remains in doubt. (author)

  5. Determination of rate constants and branching ratios for TCE degradation by zero-valent iron using a chain decay multispecies model.

    Science.gov (United States)

    Hwang, Hyoun-Tae; Jeen, Sung-Wook; Sudicky, Edward A; Illman, Walter A

    2015-01-01

    The applicability of a newly-developed chain-decay multispecies model (CMM) was validated by obtaining kinetic rate constants and branching ratios along the reaction pathways of trichloroethene (TCE) reduction by zero-valent iron (ZVI) from column experiments. Changes in rate constants and branching ratios for individual reactions for degradation products over time for two columns under different geochemical conditions were examined to provide ranges of those parameters expected over the long-term. As compared to the column receiving deionized water, the column receiving dissolved CaCO3 showed higher mean degradation rates for TCE and all of its degradation products. However, the column experienced faster reactivity loss toward TCE degradation due to precipitation of secondary carbonate minerals, as indicated by a higher value for the ratio of maximum to minimum TCE degradation rate observed over time. From the calculated branching ratios, it was found that TCE and cis-dichloroethene (cis-DCE) were dominantly dechlorinated to chloroacetylene and acetylene, respectively, through reductive elimination for both columns. The CMM model, validated by the column test data in this study, provides a convenient tool to determine simultaneously the critical design parameters for permeable reactive barriers and natural attenuation such as rate constants and branching ratios. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Local NMR relaxation rates T1-1 and T2-1 depending on the d -vector symmetry in the vortex state of chiral and helical p -wave superconductors

    Science.gov (United States)

    Tanaka, Kenta K.; Ichioka, Masanori; Onari, Seiichiro

    2018-04-01

    Local NMR relaxation rates in the vortex state of chiral and helical p -wave superconductors are investigated by the quasiclassical Eilenberger theory. We calculate the spatial and resonance frequency dependences of the local NMR spin-lattice relaxation rate T1-1 and spin-spin relaxation rate T2-1. Depending on the relation between the NMR relaxation direction and the d -vector symmetry, the local T1-1 and T2-1 in the vortex core region show different behaviors. When the NMR relaxation direction is parallel to the d -vector component, the local NMR relaxation rate is anomalously suppressed by the negative coherence effect due to the spin dependence of the odd-frequency s -wave spin-triplet Cooper pairs. The difference between the local T1-1 and T2-1 in the site-selective NMR measurement is expected to be a method to examine the d -vector symmetry of candidate materials for spin-triplet superconductors.

  7. Measurement of sample temperatures under magic-angle spinning from the chemical shift and spin-lattice relaxation rate of 79Br in KBr powder.

    Science.gov (United States)

    Thurber, Kent R; Tycko, Robert

    2009-01-01

    Accurate determination of sample temperatures in solid state nuclear magnetic resonance (NMR) with magic-angle spinning (MAS) can be problematic, particularly because frictional heating and heating by radio-frequency irradiation can make the internal sample temperature significantly different from the temperature outside the MAS rotor. This paper demonstrates the use of (79)Br chemical shifts and spin-lattice relaxation rates in KBr powder as temperature-dependent parameters for the determination of internal sample temperatures. Advantages of this method include high signal-to-noise, proximity of the (79)Br NMR frequency to that of (13)C, applicability from 20 K to 320 K or higher, and simultaneity with adjustment of the MAS axis direction. We show that spin-lattice relaxation in KBr is driven by a quadrupolar mechanism. We demonstrate a simple approach to including KBr powder in hydrated samples, such as biological membrane samples, hydrated amyloid fibrils, and hydrated microcrystalline proteins, that allows direct assessment of the effects of frictional and radio-frequency heating under experimentally relevant conditions.

  8. Nuclear quadrupole relaxation and viscosity in liquid metals

    International Nuclear Information System (INIS)

    Schirmacher, W.

    1976-01-01

    It is shown that the nuclear quadrupole relaxation rate due to the molecular motions in liquid metals is related to the shear and bulk viscosity and hence to the absorption coefficient of ultrasound. Application of the 'extended liquid phonon' model of Ortoleva and Nelkin - which is the third of a series of continued-fraction-approximations for the van Hove neutron scattering function - gives a relation to the self diffusion constant. The predictions of the theory concerning the temperature dependence are compared with quadrupole relaxation measurements of Riegel et al. and Kerlin et al. in liquid gallium. Agreement is found only with the data of Riegel et al. (orig.) [de

  9. Field dependence of the electron spin relaxation in quantum dots.

    Science.gov (United States)

    Calero, Carlos; Chudnovsky, E M; Garanin, D A

    2005-10-14

    The interaction of the electron spin with local elastic twists due to transverse phonons is studied. The universal dependence of the spin-relaxation rate on the strength and direction of the magnetic field is obtained in terms of the electron gyromagnetic tensor and macroscopic elastic constants of the solid. The theory contains no unknown parameters and it can be easily tested in experiment. At high magnetic field it provides a parameter-free lower bound on the electron spin relaxation in quantum dots.

  10. Radionuclide mass transfer rates from a pinhole in a waste container for an inventory-limited and a constant concentration source

    International Nuclear Information System (INIS)

    LeNeveu, D.M.

    1996-03-01

    Analytical solutions for transient and steady state diffusive mass transfer rates from a pinhole in a waste container are developed for constant concentration and inventory-limited source conditions. Mass transport in three media are considered, inside the pinhole (medium 2), outside the container (medium 3) and inside the container (medium 1). Simple equations are developed for radionuclide mass transfer rates from a pinhole. It is shown that the medium with the largest mass transfer resistance need only be considered to provide a conservative estimate of mass transfer rates. (author) 11 refs., 3 figs

  11. The effect of addition of primary positive salts, complex salt, on the ionic strength and rate constant at various temperatures by reaction kinetics

    Science.gov (United States)

    Kurade, S. S.; Ramteke, A. A.

    2018-05-01

    In this work, we have investigated the rate of reaction by using ionic strength at different temperatures. The main goal of this experiment is to determine the relation between ionic strength with reaction rate, reaction time and rate constant with temperature. It is observed that the addition of positive salt indicate the increasing ionic strength with increase in run time at various temperatures. Thus the temperature affects the speed of reaction and mechanism by which chemical reaction occurs and time variable plays vital role in the progress of reaction at different temperatures.

  12. Measurement of the Relaxation Rate of the Magnetization in Mn{sub 12}O{sub 12} -Acetate Using Proton NMR Echo

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Z. H. [Department of Physics and Astronomy, Ames Laboratory, Iowa State University, Ames, Iowa 50011 (United States); Lascialfari, A. [Dipartimento di Fisica ' ' A. Volta' ' e Unita' , INFM di Pavia, Via Bassi 6, 27100 Pavia, (Italy); Borsa, F. [Department of Physics and Astronomy, Ames Laboratory, Iowa State University, Ames, Iowa 50011 (United States); Dipartimento di Fisica ' ' A. Volta' ' e Unita' , INFM di Pavia, Via Bassi 6, 27100 Pavia, (Italy); Gatteschi, D. [Department of Chemistry, University of Florence, Via Maragliano 77, 50144 Firenze, (Italy)

    2000-03-27

    We present a novel method to measure the relaxation rate W of the magnetization of Mn{sub 12}O {sub 12} -acetate (Mn12) magnetic molecular cluster in its S=10 ground state at low T . It is based on the observation of an exponential growth in time of the proton NMR signal during the thermal equilibration of the magnetization of the molecules. We can explain the novel effect with a simple model which relates the intensity of the proton echo signal to the microscopic reversal of the magnetization of each individual Mn12 molecule during the equilibration process. The method should find wide application in the study of magnetic molecular clusters in off-equilibrium conditions. (c) 2000 The American Physical Society.

  13. The chemistry of bromine in the stratosphere: Influence of a new rate constant for the reaction BrO + HO2

    Science.gov (United States)

    Pirre, Michel; Marceau, Francois J.; Lebras, Georges; Maguin, Francoise; Poulet, Gille; Ramaroson, Radiela

    1994-01-01

    The impact of new laboratory data for the reaction BrO + HO2 yields HOBr + O2 in the depletion of global stratospheric ozone has been estimated using a one-dimensional photochemical model taking into account the heterogeneous reaction on sulphate aerosols which converts N2O5 into HNO3. Assuring an aerosol loading 2 times as large as the 'background' and a reaction probability of 0.1 for the above heterogeneous reaction, the 6 fold increase in the measured rate constant for the reaction of BrO with HO2 increases the computed depletion of global ozone produced by 20 ppt of total bromine from 2.01 percent to 2.36 percent. The use of the higher rate constant increases the HOBr mixing ratio and makes the bromine partitioning and the ozone depletion very sensitive to the branching ratio of the potential channel forming HBr in the BrO + HO2 reaction.

  14. Two-dimensional analytical solutions for chemical transport in aquifers. Part 1. Simplified solutions for sources with constant concentration. Part 2. Exact solutions for sources with constant flux rate

    International Nuclear Information System (INIS)

    Shan, C.; Javandel, I.

    1996-05-01

    Analytical solutions are developed for modeling solute transport in a vertical section of a homogeneous aquifer. Part 1 of the series presents a simplified analytical solution for cases in which a constant-concentration source is located at the top (or the bottom) of the aquifer. The following transport mechanisms have been considered: advection (in the horizontal direction), transverse dispersion (in the vertical direction), adsorption, and biodegradation. In the simplified solution, however, longitudinal dispersion is assumed to be relatively insignificant with respect to advection, and has been neglected. Example calculations are given to show the movement of the contamination front, the development of concentration profiles, the mass transfer rate, and an application to determine the vertical dispersivity. The analytical solution developed in this study can be a useful tool in designing an appropriate monitoring system and an effective groundwater remediation method

  15. Rate constants and temperature effects for reactions of Cl2sm-bullet- with unsaturated alcohols and hydrocarbons in aqueous and acetonitrile/water solutions

    International Nuclear Information System (INIS)

    Padmaja, S.; Neta, P.; Huie, R.E.

    1992-01-01

    Absolute rate constants for reactions of the dichlorine radical anion, Cl 2 sm-bullet- , with unsaturated alcohols and hydrocarbons have been measured at various temperatures. The alcohol reactions were measured in aqueous solutions and the hydrocarbon reactions in 1:1 aqueous acetonitirle (ACN) solutions. The rate constants for two alcohols and one hydrocarbon were also examined as a function of solvent composition. The room temperature rate constants varied between 10 6 and 10 9 M -1 s -1 . The pre-exponential factors, A, were about (1-5) x 10 9 M -1 s -1 for the alcohols in aqueous solutions and about (0.1-1) x 10 9 M -1 s -1 for the hydrocarbons in aqueous ACN solutions. The activation energies, E a , varied considerably, between 4 and 12 kJ mol -1 for the alcohols and between 2 and 8 kJ mol -1 for the hydrocarbons. The rate constants, k 298 , decrease with increasing ionization potential (IP) of the unsaturated compound, in agreement with an electrophilic addition mechanism. The activation energies for the unsaturated alcohols decrease when the IP decreases from 9.7 to 9.1 eV but appear to level off at lower IP. Most alkenes studied had IP a . Upon addition of ACN to the aqueous solution, the values of log k 298 decreased linearly by more than 1 order of magnitude with increasing ACN mole fraction. This decrease appears to result from a combination of changes in the activation energy and in the pre-exponential factor. The reason for these changes may lie in changes in the solvation shell of the Cl 2 sm-bullet- radical, which will affect the A factor, in combination with changes in solvation of Cl - , which will affect the energetics of the reactions as well. 20 refs., 7 figs., 6 tabs

  16. Absolute rate constants for the reaction of CF3O2 and CF3O radicals with NO at 295 K

    DEFF Research Database (Denmark)

    Sehested, J.; Nielsen, O.J.

    1993-01-01

    Using a pulse radiolysis UV absorption technique and subsequent simulations of experimental NO2 and FNO absorption transients, rate constants for reaction between CF3O and CF3O2 radicals with NO were determined, CF3O2+NO-->CF3O+NO2 (3), CF3O+NO-->CF2O+FNO (5). k3 was derived to be (1.68+/-0.26)x10...

  17. Simultaneous measurement of glucose blood–brain transport constants and metabolic rate in rat brain using in-vivo 1H MRS

    Science.gov (United States)

    Du, Fei; Zhang, Yi; Zhu, Xiao-Hong; Chen, Wei

    2012-01-01

    Cerebral glucose consumption and glucose transport across the blood–brain barrier are crucial to brain function since glucose is the major energy fuel for supporting intense electrophysiological activity associated with neuronal firing and signaling. Therefore, the development of noninvasive methods to measure the cerebral metabolic rate of glucose (CMRglc) and glucose transport constants (KT: half-saturation constant; Tmax: maximum transport rate) are of importance for understanding glucose transport mechanism and neuroenergetics under various physiological and pathological conditions. In this study, a novel approach able to simultaneously measure CMRglc, KT, and Tmax via monitoring the dynamic glucose concentration changes in the brain tissue using in-vivo 1H magnetic resonance spectroscopy (MRS) and in plasma after a brief glucose infusion was proposed and tested using an animal model. The values of CMRglc, Tmax, and KT were determined to be 0.44±0.17 μmol/g per minute, 1.35±0.47 μmol/g per minute, and 13.4±6.8 mmol/L in the rat brain anesthetized with 2% isoflurane. The Monte-Carlo simulations suggest that the measurements of CMRglc and Tmax are more reliable than that of KT. The overall results indicate that the new approach is robust and reliable for in-vivo measurements of both brain glucose metabolic rate and transport constants, and has potential for human application. PMID:22714049

  18. Parametric imaging of the rate constant K[sub i] using 18Fluoro-L-dopa positron emission tomography in progressive supranuclear palsy

    Energy Technology Data Exchange (ETDEWEB)

    Cordes, M. (Neurodegenerative Disorders Centre, Univ. Hospital, Univ. of British Columbia, Vancouver, BC (Canada) Strahlenklinik und Poliklinik, Universitaetsklinikum Rudolf-Virchow, Berlin (Germany)); Snow, B.J. (Neurodegenerative Disorders Centre, Univ. Hospital, Univ. of British Columbia, Vancouver, BC (Canada)); Morrison, S. (TRIUMF, Univ. of British Columbia, Vancouver, BC (Canada)); Sossi, V. (TRIUMF, Univ. of British Columbia, Vancouver, BC (Canada)); Ruth, T.J. (TRIUMF, Univ. of British Columbia, Vancouver, BC (Canada)); Calne, D.B. (Neurodegenerative Disorders Centre, Univ. Hospital, Univ. of British Columbia, Vancouver, BC (Canada))

    1993-01-01

    Positron emission tomography (PET) studies using 18F-L-dopa were carried out in 9 patients with supranuclear palsy and 13 controls. For quantification of PET data a rate constant K[sub i] was calculated for the radiotracer using a graphical method. Corrections for nonspecific activity were performed in both arterial plasma and brain tissue. The purpose of this study was to test the hypothesis that parametric images of the rate constant K mapping can be obtained on a pixel-by-pixel basis using an appropriate mathematical algorithm. K[sub i] values from these parametric images and the graphical approach were compared. Both correlated closely, with y=0.013+0.947[sup *]x, r=0.992 and y=-0.052+1.048[sup *]x, r=0.965 in patients and controls, respectively. Contrast measurements were also performed and showed a striking increase in contrast on parametric images. K mapping offers several advantages over the graphical approach, since parametric images are time-independent, i.e. one image represents the quantitative result of the study. In addition, parmetric images of the rate constant are normalized to arterial plasma radioactivity and corrected for tissue metabolites. Thus, parametric images of K[sub i] in different individuals can be compared directly without further processing in order to assess the nigrostriatal integrity. (orig.)

  19. QSAR models for oxidation of organic micropollutants in water based on ozone and hydroxyl radical rate constants and their chemical classification

    KAUST Repository

    Sudhakaran, Sairam

    2013-03-01

    Ozonation is an oxidation process for the removal of organic micropollutants (OMPs) from water and the chemical reaction is governed by second-order kinetics. An advanced oxidation process (AOP), wherein the hydroxyl radicals (OH radicals) are generated, is more effective in removing a wider range of OMPs from water than direct ozonation. Second-order rate constants (kOH and kO3) are good indices to estimate the oxidation efficiency, where higher rate constants indicate more rapid oxidation. In this study, quantitative structure activity relationships (QSAR) models for O3 and AOP processes were developed, and rate constants, kOH and kO3, were predicted based on target compound properties. The kO3 and kOH values ranged from 5 * 10-4 to 105 M-1s-1 and 0.04 to 18 * (109) M-1 s-1, respectively. Several molecular descriptors which potentially influence O3 and OH radical oxidation were identified and studied. The QSAR-defining descriptors were double bond equivalence (DBE), ionisation potential (IP), electron-affinity (EA) and weakly-polar component of solvent accessible surface area (WPSA), and the chemical and statistical significance of these descriptors was discussed. Multiple linear regression was used to build the QSAR models, resulting in high goodness-of-fit, r2 (>0.75). The models were validated by internal and external validation along with residual plots. © 2012 Elsevier Ltd.

  20. Radiative lifetimes and two-body collisional deactivation rate constants in argon for Kr(4p 55p) and Kr(4p 55p') states

    International Nuclear Information System (INIS)

    Chang, R.S.F.; Horiguchi, H.; Setser, D.W.

    1980-01-01

    The radiative lifetimes and collisional deactivation rate constants, in argon, of eight Kr(4p 5 [ 2 P/sub 1/2/]5p and [ 2 P/sub 3/2/]5p) levels have been measured by a time-resolved laser-induced fluorescence technique in a flowing afterglow apparatus. The measured radiative lifetimes are compared with other experimental values and with theoretical calculations. Radiative branching ratios of these excited states also were measured in order to assign the absolute transition probabilities of the Kr(5p,5p'--5s, 5s') transition array from the radiative lifetimes. In addition to the total deactivation rate constants, product states from two-body collisions between Kr(5p and 5p') atoms and ground state argon atoms were identified from the laser-induced emission spectra, and product formation rate constants were assigned. Two-body intermultiplet transfer from Kr(4p 5 [ 2 P/sub 1/2/]5p) to the Kr(4p 5 [ 2 P/sub 3/2/]4d) levels occurs with ease. Intermultiplet transfer from the lowest level in the (4p 5 5p) configuration to the Kr(4p 5 5s and 5s') manifold was fast despite the large energy defect. However, this was the only Kr(5p) level that gave appreciable transfer to the Kr(5s or 5s') manifold. Generally the favored product states are within a few kT of the entrance channel

  1. Ab initio calculation of the transition-state properties and addition rate constants for H + C2H2 and selected isotopic analogues

    International Nuclear Information System (INIS)

    Harding, L.B.; Wagner, A.F.; Bowman, J.M.; Schatz, G.C.; Christoffel, K.

    1982-01-01

    GVB-POL-CI ab initio calculations of the geometries, energetics, and normal mode frequencies of C 2 H 2 , C 2 H 3 , and the transition state for the addition reaction of H + C 2 H 2 are presented. In addition, normal mode frequencies for the isotopic variants D + C 2 D 2 , D + C 2 H 2 , and H + C 2 D 2 are preented. These results are compared to experimental values for C 2 H 2 and to ab initio values of Hagase and Kern, and semiempirical values of Keil, Lynch, Cowfer, and Michael. The results are also used to calculate the apparent bimolecular addition rate constant using conventional RRKM theory for chemical activation. The calculated rate constants and their isotopic variants are compared as a function of temperature and pressure to available experimental information. The agreement is little different from that obtained by Keil et al. with a similar calculation using semiempirical values for acetylene, transition-state, and vinyl radical properties. In particular, the calculated high-pressure limit of the rate constant appears to be at least 1 order of magnitude higher than the experimental limit. Several possible reasons for this discrepancy are discussed

  2. Rate constant for the H˙ + H2O → ˙OH + H2 reaction at elevated temperatures measured by pulse radiolysis.

    Science.gov (United States)

    Muroya, Y; Yamashita, S; Lertnaisat, P; Sanguanmith, S; Meesungnoen, J; Jay-Gerin, J-P; Katsumura, Y

    2017-11-22

    Maintaining the structural integrity of materials in nuclear power plants is an essential issue associated with safe operation. Hydrogen (H 2 ) addition or injection to coolants is a powerful technique that has been widely applied such that the reducing conditions in the coolant water avoid corrosion and stress corrosion cracking (SCC). Because the radiation-induced reaction of ˙OH + H 2 → H˙ + H 2 O plays a crucial role in these systems, the rate constant has been measured at operation temperatures of the reactors (285-300 °C) by pulse radiolysis, generating sufficient data for analysis. The reverse reaction H˙ + H 2 O → ˙OH + H 2 is negligibly slow at ambient temperature; however, it accelerates considerably quickly at elevated temperatures. Although the reverse reaction reduces the effectiveness of H 2 addition, reliable rate constants have not yet been measured. In this study, the rate constants have been determined in a temperature range of 250-350 °C by pulse radiolysis in an aqueous I - solution.

  3. Dynamic stress relaxation due to cyclic variation of strain at elevated temperature

    International Nuclear Information System (INIS)

    Suzuki, F.

    1975-01-01

    The relaxation of stress which occurs when low amplitude alternating strains are superimposed on constant mean total strains is studied in this paper. Experiments were carried out on a 0.16 per cent carbon steel and an AISI 347 stainless steel at 450 0 C and 650 0 C respectively in which the decrease of axial mean stress was measured as a function of time. When even a low amplitude alternating strain was applied, the rate of stress relaxation was observed to increase. Analytical predictions based on creep and static relaxation data show fairly good agreement with experiments in the period corresponding to transient creep. (author)

  4. Investigation of the Flow Rate Effect Upstream of the Constant-Geometry Throttle on the Gas Mass Flow

    Directory of Open Access Journals (Sweden)

    Yu. M. Timofeev

    2016-01-01

    Full Text Available The turbulent-flow throttles are used in pneumatic systems and gas-supply ones to restrict or measure gas mass flow. It is customary to install the throttles in joints of pipelines (in teejoints and cross tees or in joints of pipelines with pneumatic automation devices Presently, in designing the pneumatic systems and gas-supply ones a gas mass flow through a throttle is calculated by a known equation derived from the Saint-Venant-Vantсel formula for the adiabatic flow of ideal gas through a nozzle from an unrestrictedly high capacity tank. Neglect of gas velocity at the throttle inlet is one of the assumptions taken in the development of the above equation. As may be seen in practice, in actual systems the diameters of the throttle and the pipe wherein it is mounted can be commensurable. Neglect of the inlet velocity therewith can result in an error when determining the required throttle diameter in design calculation and a flow rate in checking calculation, as well as when measuring a flow rate in the course of the test. The theoretical study has revealed that the flow velocity at the throttle inlet is responsible for two parameter values: the outlet flow velocity and the critical pressure ratio, which in turn determine the gas mass flow value. To calculate the gas mass flow, the dependencies are given in the paper, which allow taking into account the flow rate at the throttle inlet. The analysis of obtained dependencies has revealed that the degree of influence of inlet flow rate upon the mass flow is defined by two parameters: pressure ratio at the throttle and open area ratio of the throttle and the pipe wherein it is mounted. An analytical investigation has been pursued to evaluate the extent to which the gas mass flow through the throttle is affected by the inlet flow rate. The findings of the investigation and the indications for using the present dependencies are given in this paper. By and large the investigation allowed the

  5. Absolute rate constants for the reaction of NO3 radicals with a series of dienes at 295 K

    DEFF Research Database (Denmark)

    Ellermann, T.; Nielsen, O.J.; Skov, H.

    1992-01-01

    The rate constants for the reaction of NO3 radicals with a series of 7 dienes, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, trans-1,3-pentadiene, cis-1,3-pentadiene, trans,trans-2,4-hexadiene, and 1,3-cyclohexadiene, were measured at 295 K and at a total pressure of 1 atm. The rate consta...... were obtained using the absolute technique of pulse radiolysis combined with kinetic UV-VIS spectroscopy. The results are discussed in terms of reactivity trends and previous literature data....

  6. Relaxation dispersion in MRI induced by fictitious magnetic fields.

    Science.gov (United States)

    Liimatainen, Timo; Mangia, Silvia; Ling, Wen; Ellermann, Jutta; Sorce, Dennis J; Garwood, Michael; Michaeli, Shalom

    2011-04-01

    A new method entitled Relaxation Along a Fictitious Field (RAFF) was recently introduced for investigating relaxations in rotating frames of rank ≥ 2. RAFF generates a fictitious field (E) by applying frequency-swept pulses with sine and cosine amplitude and frequency modulation operating in a sub-adiabatic regime. In the present work, MRI contrast is created by varying the orientation of E, i.e. the angle ε between E and the z″ axis of the second rotating frame. When ε > 45°, the amplitude of the fictitious field E generated during RAFF is significantly larger than the RF field amplitude used for transmitting the sine/cosine pulses. Relaxation during RAFF was investigated using an invariant-trajectory approach and the Bloch-McConnell formalism. Dipole-dipole interactions between identical (like) spins and anisochronous exchange (e.g., exchange between spins with different chemical shifts) in the fast exchange regime were considered. Experimental verifications were performed in vivo in human and mouse brain. Theoretical and experimental results demonstrated that changes in ε induced a dispersion of the relaxation rate constants. The fastest relaxation was achieved at ε ≈ 56°, where the averaged contributions from transverse components during the pulse are maximal and the contribution from longitudinal components are minimal. RAFF relaxation dispersion was compared with the relaxation dispersion achieved with off-resonance spin lock T(₁ρ) experiments. As compared with the off-resonance spin lock T(₁ρ) method, a slower rotating frame relaxation rate was observed with RAFF, which under certain experimental conditions is desirable. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Plasmon-mediated energy relaxation in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ferry, D. K. [School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287-5706 (United States); Somphonsane, R. [Department of Physics, King Mongkut' s Institute of Technology, Ladkrabang, Bangkok 10520 (Thailand); Ramamoorthy, H.; Bird, J. P. [Department of Electrical Engineering, University at Buffalo, the State University of New York, Buffalo, New York 14260-1500 (United States)

    2015-12-28

    Energy relaxation of hot carriers in graphene is studied at low temperatures, where the loss rate may differ significantly from that predicted for electron-phonon interactions. We show here that plasmons, important in the relaxation of energetic carriers in bulk semiconductors, can also provide a pathway for energy relaxation in transport experiments in graphene. We obtain a total loss rate to plasmons that results in energy relaxation times whose dependence on temperature and density closely matches that found experimentally.

  8. Study on Relaxation Damage Properties of High Viscosity Asphalt Sand under Uniaxial Compression

    Directory of Open Access Journals (Sweden)

    Yazhen Sun

    2018-01-01

    Full Text Available Laboratory investigations of relaxation damage properties of high viscosity asphalt sand (HVAS by uniaxial compression tests and modified generalized Maxwell model (GMM to simulate viscoelastic characteristics coupling damage were carried out. A series of uniaxial compression relaxation tests were performed on HVAS specimens at different temperatures, loading rates, and constant levels of input strain. The results of the tests show that the peak point of relaxation modulus is highly influenced by the loading rate in the first half of an L-shaped curve, while the relaxation modulus is almost constant in the second half of the curve. It is suggested that for the HVAS relaxation tests, the temperature should be no less than −15°C. The GMM is used to determine the viscoelastic responses, the Weibull distribution function is used to characterize the damage of the HVAS and its evolution, and the modified GMM is a coupling of the two models. In this paper, the modified GMM is implemented through a secondary development with the USDFLD subroutine to analyze the relaxation damage process and improve the linear viscoelastic model in ABAQUS. Results show that the numerical method of coupling damage provides a better approximation of the test curve over almost the whole range. The results also show that the USDFLD subroutine can effectively predict the relaxation damage process of HVAS and can provide a theoretical support for crack control of asphalt pavements.

  9. A mathematical analysis of Prx2-STAT3 disulfide exchange rate constants for a bimolecular reaction mechanism.

    Science.gov (United States)

    Langford, Troy F; Deen, William M; Sikes, Hadley D

    2018-03-22

    Appreciation of peroxiredoxins as the major regulators of H 2 O 2 concentrations in human cells has led to a new understanding of redox signaling. In addition to their status as the primary reducers of H 2 O 2 to water, the oxidized peroxiredoxin byproduct of this reaction has recently been shown capable of participation in H 2 O 2 -mediated signaling pathways through disulfide exchange reactions with the transcription factor STAT3. The dynamics of peroxidase-transcription factor disulfide exchange reactions have not yet been considered in detail with respect to how these reactions fit into the larger network of competing reactions in human cells. In this study, we used a kinetic model of oxidation and reduction reactions related to H 2 O 2 metabolism in the cytosol of human cells to study the dynamics of peroxiredoxin-2 mediated oxidation of the redox-regulated transcription factor STAT3. In combination with previously reported experimental data, the model was used to estimate the rate coefficient of a biomolecular reaction between Prx2 and STAT3 for two sets of assumptions that constitute lower and upper bound cases. Using these estimates, we calculated the relative rates of the reaction of oxidized peroxiredoxin-2 and STAT3 and other competing reactions in the cytosol. These calculations revealed that peroxiredoxin-2-mediated oxidation of STAT3 likely occurs at a much slower rate than competing reactions in the cytosol. This analysis suggests the existence of more complex mechanisms, potentially involving currently unknown protein-protein recognition partners, which facilitate disulfide exchange reactions between peroxiredoxin-2 and STAT3. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Nuclear constants

    International Nuclear Information System (INIS)

    Foos, J.

    1999-01-01

    This paper is written in two tables. The first one describes the different particles (bosons and fermions). The second one gives the isotopes nuclear constants of the different elements, for Z = 1 to 56. (A.L.B.)

  11. Nuclear constants

    International Nuclear Information System (INIS)

    Foos, J.

    2000-01-01

    This paper is written in two tables. The first one describes the different particles (bosons and fermions). The second one gives the isotopes nuclear constants of the different elements, for Z = 56 to 68. (A.L.B.)

  12. Nuclear constants

    International Nuclear Information System (INIS)

    Foos, J.

    1998-01-01

    This paper is made of two tables. The first table describes the different particles (bosons and fermions) while the second one gives the nuclear constants of isotopes from the different elements with Z = 1 to 25. (J.S.)

  13. Nuclear constants

    International Nuclear Information System (INIS)

    Foos, J.

    1999-01-01

    This paper is written in two tables. The first one describes the different particles (bosons and fermions). The second one gives the isotopes nuclear constants of the different elements, for Z = 56 to 68. (A.L.B.)

  14. Surface displacements and energy release rates for constant stress drop slip zones in joined elastic quarter spaces

    Science.gov (United States)

    Rodgers, Michael J.; Wen, Shengmin; Keer, Leon M.

    2000-08-01

    A three-dimensional quasi-static model of faulting in an elastic half-space with a horizontal change of material properties (i.e., joined elastic quarter spaces) is considered. A boundary element method is used with a stress drop slip zone approach so that the fault surface relative displacements as well as the free surface displacements are approximated in elements over their respective domains. Stress intensity factors and free surface displacements are calculated for a variety of cases to show the phenomenological behavior of faulting in such a medium. These calculations showed that the behavior could be distinguished from a uniform half-space. Slip in a stiffer material increases, while slip in a softer material decreases the energy release rate and the free surface displacements. Also, the 1989 Kalapana earthquake was located on the basis of a series of forward searches using this method and leveling data. The located depth is 8 km, which is the closer to the seismically inferred depth than that determined from other models. Finally, the energy release rate, which can be used as a fracture criterion for fracture at this depth, is calculated to be 11.1×106 J m-2.

  15. Do Insect Populations Die at Constant Rates as They Become Older? Contrasting Demographic Failure Kinetics with Respect to Temperature According to the Weibull Model.

    Directory of Open Access Journals (Sweden)

    Petros Damos

    Full Text Available Temperature implies contrasting biological causes of demographic aging in poikilotherms. In this work, we used the reliability theory to describe the consistency of mortality with age in moth populations and to show that differentiation in hazard rates is related to extrinsic environmental causes such as temperature. Moreover, experiments that manipulate extrinsic mortality were used to distinguish temperature-related death rates and the pertinence of the Weibull aging model. The Newton-Raphson optimization method was applied to calculate parameters for small samples of ages at death by estimating the maximum likelihoods surfaces using scored gradient vectors and the Hessian matrix. The study reveals for the first time that the Weibull function is able to describe contrasting biological causes of demographic aging for moth populations maintained at different temperature regimes. We demonstrate that at favourable conditions the insect death rate accelerates as age advances, in contrast to the extreme temperatures in which each individual drifts toward death in a linear fashion and has a constant chance of passing away. Moreover, slope of hazard rates shifts towards a constant initial rate which is a pattern demonstrated by systems which are not wearing out (e.g. non-aging since the failure, or death, is a random event independent of time. This finding may appear surprising, because, traditionally, it was mostly thought as rule that in aging population force of mortality increases exponentially until all individuals have died. Moreover, in relation to other studies, we have not observed any typical decelerating aging patterns at late life (mortality leveling-off, but rather, accelerated hazard rates at optimum temperatures and a stabilized increase at the extremes.In most cases, the increase in aging-related mortality was simulated reasonably well according to the Weibull survivorship model that is applied. Moreover, semi log- probability hazard

  16. Differentiating inflamed and normal lungs by the apparent reaction rate constants of lactate dehydrogenase probed by hyperpolarized (13)C labeled pyruvate.

    Science.gov (United States)

    Xu, He N; Kadlececk, Stephen; Shaghaghi, Hoora; Zhao, Huaqing; Profka, Harilla; Pourfathi, Mehrdad; Rizi, Rahim; Li, Lin Z

    2016-02-01

    Clinically translatable hyperpolarized (HP) (13)C-NMR can probe in vivo enzymatic reactions, e.g., lactate dehydrogenase (LDH)-catalyzed reaction by injecting HP (13)C-pyruvate into the subject, which is converted to (13)C labeled lactate by the enzyme. Parameters such as (13)C-lactate signals and lactate-to-pyruvate signal ratio are commonly used for analyzing the HP (13)C-NMR data. However, the biochemical/biological meaning of these parameters remains either unclear or dependent on experimental settings. It is preferable to quantify the reaction rate constants with a clearer physical meaning. Here we report the extraction of the kinetic parameters of the LDH reaction from HP (13)C-NMR data and investigate if they can be potential predictors of lung inflammation. Male Sprague-Dawley rats (12 controls, 14 treated) were used. One dose of bleomycin (2.5 U/kg) was administered intratracheally to the treatment group. The lungs were removed, perfused, and observed by the HP-NMR technique, where a HyperSense dynamic nuclear polarization system was used to generate the HP (13)C-pyruvate for injecting into the lungs. A 20 mm (1)H/(13)C dual-tuned coil in a 9.4-T Varian vertical bore NMR spectrometer was employed to acquire the (13)C spectral data every 1 s over a time period of 300 s using a non-selective, 15-degree radiofrequency pulse. The apparent rate constants of the LDH reaction and their ratio were quantified by applying ratiometric fitting analysis to the time series data of (13)C labeled pyruvate and lactate. The apparent forward rate constant kp =(3.67±3.31)×10(-4) s(-1), reverse rate constant kl =(4.95±2.90)×10(-2) s(-1), rate constant ratio kp /kl =(7.53±5.75)×10(-3) for the control lungs; kp =(11.71±4.35)×10(-4) s(-1), kl =(9.89±3.89)×10(-2) s(-1), and kp /kl =(12.39±4.18)×10(-3) for the inflamed lungs at the 7(th) day post treatment. Wilcoxon rank-sum test showed that the medians of these kinetic parameters of the 7-day cohort were significantly

  17. Are fundamental constants really constant

    International Nuclear Information System (INIS)

    Norman, E.B.

    1986-01-01

    Reasons for suspecting that fundamental constants might change with time are reviewed. Possible consequences of such variations are examined. The present status of experimental tests of these ideas is discussed

  18. Standard Glbbs Energy of Formation of the Hydroxyl Radical in Aqueous Solution. Rate Constants for the Reaction C102- -t O3 S 03- -t CIO,

    DEFF Research Database (Denmark)

    Klaning, U. K.; Sehested, Knud; Holcman, J.

    1985-01-01

    The rate constants of the following reactions were determined by pulse radiolysis and stopped-flow experiments: C102- + O3 + C102 + 03-(k f= (4 f 1) X lo6 dm3 mol-' s-', k, = (1.8 f 0.2) X lo5 dm3 mol-' s-]); C102 + OH - C103- + H+ (k = (4.0 * 0.4) X lo9 dm3 mol-' s-l); C102 + 0- - C103- (k = (2.......7 * 0.4) X lo9 dm3 mol-' s-l); and O3 + C102 - C103 + O2 (k = (1.05 f 0.10) X lo3 dm3 mol-l s-'), where kf is the forward rate of reaction and k, is the reverse rate of reaction. The standard Gibbs energy of formation of OH in aqueous solution A&O,,(OH) and the corresponding standard oxidation potential...

  19. Rates and equilibrium constants of the ligand-induced conformational transition of an HCN ion channel protein domain determined by DEER spectroscopy.

    Science.gov (United States)

    Collauto, Alberto; DeBerg, Hannah A; Kaufmann, Royi; Zagotta, William N; Stoll, Stefan; Goldfarb, Daniella

    2017-06-14

    Ligand binding can induce significant conformational changes in proteins. The mechanism of this process couples equilibria associated with the ligand binding event and the conformational change. Here we show that by combining the application of W-band double electron-electron resonance (DEER) spectroscopy with microfluidic rapid freeze quench (μRFQ) it is possible to resolve these processes and obtain both equilibrium constants and reaction rates. We studied the conformational transition of the nitroxide labeled, isolated carboxy-terminal cyclic-nucleotide binding domain (CNBD) of the HCN2 ion channel upon binding of the ligand 3',5'-cyclic adenosine monophosphate (cAMP). Using model-based global analysis, the time-resolved data of the μRFQ DEER experiments directly provide fractional populations of the open and closed conformations as a function of time. We modeled the ligand-induced conformational change in the protein using a four-state model: apo/open (AO), apo/closed (AC), bound/open (BO), bound/closed (BC). These species interconvert according to AC + L ⇌ AO + L ⇌ BO ⇌ BC. By analyzing the concentration dependence of the relative contributions of the closed and open conformations at equilibrium, we estimated the equilibrium constants for the two conformational equilibria and the open-state ligand dissociation constant. Analysis of the time-resolved μRFQ DEER data gave estimates for the intrinsic rates of ligand binding and unbinding as well as the rates of the conformational change. This demonstrates that DEER can quantitatively resolve both the thermodynamics and the kinetics of ligand binding and the associated conformational change.

  20. Direct measurements of the total rate constant of the reaction NCN + H and implications for the product branching ratio and the enthalpy of formation of NCN.

    Science.gov (United States)

    Fassheber, Nancy; Dammeier, Johannes; Friedrichs, Gernot

    2014-06-21

    The overall rate constant of the reaction (2), NCN + H, which plays a key role in prompt-NO formation in flames, has been directly measured at temperatures 962 K rate constants are best represented by the combination of two Arrhenius expressions, k2/(cm(3) mol(-1) s(-1)) = 3.49 × 10(14) exp(-33.3 kJ mol(-1)/RT) + 1.07 × 10(13) exp(+10.0 kJ mol(-1)/RT), with a small uncertainty of ±20% at T = 1600 K and ±30% at the upper and lower experimental temperature limits.The two Arrhenius terms basically can be attributed to the contributions of reaction channel (2a) yielding CH + N2 and channel (2b) yielding HCN + N as the products. A more refined analysis taking into account experimental and theoretical literature data provided a consistent rate constant set for k2a, its reverse reaction k1a (CH + N2 → NCN + H), k2b as well as a value for the controversial enthalpy of formation of NCN, ΔfH = 450 kJ mol(-1). The analysis verifies the expected strong temperature dependence of the branching fraction ϕ = k2b/k2 with reaction channel (2b) dominating at the experimental high-temperature limit. In contrast, reaction (2a) dominates at the low-temperature limit with a possible minor contribution of the HNCN forming recombination channel (2d) at T < 1150 K.

  1. Nonmonotonic Temperature Dependence of the Pressure-Dependent Reaction Rate Constant and Kinetic Isotope Effect of Hydrogen Radical Reaction with Benzene Calculated by Variational Transition-State Theory.

    Science.gov (United States)

    Zhang, Hui; Zhang, Xin; Truhlar, Donald G; Xu, Xuefei

    2017-11-30

    The reaction between H and benzene is a prototype for reactions of radicals with aromatic hydrocarbons. Here we report calculations of the reaction rate constants and the branching ratios of the two channels of the reaction (H addition and H abstraction) over a wide temperature and pressure range. Our calculations, obtained with an accurate potential energy surface, are based on variational transition-state theory for the high-pressure limit of the addition reaction and for the abstraction reaction and on system-specific quantum Rice-Ramsperger-Kassel theory calibrated by variational transition-state theory for pressure effects on the addition reaction. The latter is a very convenient way to include variational effects, corner-cutting tunneling, and anharmonicity in falloff calculations. Our results are in very good agreement with the limited experimental data and show the importance of including pressure effects in the temperature interval where the mechanism changes from addition to abstraction. We found a negative temperature effect of the total reaction rate constants at 1 atm pressure in the temperature region where experimental data are missing and accurate theoretical data were previously missing as well. We also calculated the H + C 6 H 6 /C 6 D 6 and D + C 6 H 6 /C 6 D 6 kinetic isotope effects, and we compared our H + C 6 H 6 results to previous theoretical data for H + toluene. We report a very novel nonmonotonic dependence of the kinetic isotope effect on temperature. A particularly striking effect is the prediction of a negative temperature dependence of the total rate constant over 300-500 K wide temperature ranges, depending on the pressure but generally in the range from 600 to 1700 K, which includes the temperature range of ignition in gasoline engines, which is important because aromatics are important components of common fuels.

  2. Reaction F + C2H4: Rate Constant and Yields of the Reaction Products as a Function of Temperature over 298-950 K.

    Science.gov (United States)

    Bedjanian, Yuri

    2018-03-29

    The kinetics and products of the reaction of F + C 2 H 4 have been studied in a discharge flow reactor combined with an electron impact ionization mass spectrometer at nearly 2 Torr total pressure of helium in the temperature range 298-950 K. The total rate constant of the reaction, k 1 = (1.78 ± 0.30) × 10 -10 cm 3 molecule -1 s -1 , determined under pseudo-first-order conditions, monitoring the kinetics of F atom consumption in excess of C 2 H 4 , was found to be temperature independent in the temperature range used. H, C 2 H 3 F, and HF were identified as the reaction products. Absolute measurements of the yields of these species allowed to determine the branching ratios, k 1b / k 1 = (0.73 ± 0.07) exp(-(425 ± 45)/ T) and k 1a / k 1 = 1 - (0.73 ± 0.07) exp(-(425 ± 45)/ T) and partial rate constants for addition-elimination (H + C 2 H 3 F) and H atom abstraction (HF + C 2 H 3 ) pathways of the title reaction: k 1a = (0.80 ± 0.07) × 10 -10 exp(189 ± 37/ T) and k 1b = (1.26 ± 0.13) × 10 -10 exp(-414 ± 45/ T) cm 3 molecule -1 s -1 , respectively, at T = 298-950 K and with 2σ quoted uncertainties. The overall reaction rate constant can be adequately described by both the temperature independent value and as a sum of k 1a and k 1b . The kinetic and mechanistic data from the present study are discussed in comparison with previous absolute and relative measurements and theoretical calculations.

  3. Time-Dependent Quantum Wave Packet Study of the Si + OH → SiO + H Reaction: Cross Sections and Rate Constants.

    Science.gov (United States)

    Rivero Santamaría, Alejandro; Dayou, Fabrice; Rubayo-Soneira, Jesus; Monnerville, Maurice

    2017-03-02

    The dynamics of the Si( 3 P) + OH(X 2 Π) → SiO(X 1 Σ + ) + H( 2 S) reaction is investigated by means of the time-dependent wave packet (TDWP) approach using an ab initio potential energy surface recently developed by Dayou et al. ( J. Chem. Phys. 2013 , 139 , 204305 ) for the ground X 2 A' electronic state. Total reaction probabilities have been calculated for the first 15 rotational states j = 0-14 of OH(v=0,j) at a total angular momentum J = 0 up to a collision energy of 1 eV. Integral cross sections and state-selected rate constants for the temperature range 10-500 K were obtained within the J-shifting approximation. The reaction probabilities display highly oscillatory structures indicating the contribution of long-lived quasibound states supported by the deep SiOH/HSiO wells. The cross sections behave with collision energies as expected for a barrierless reaction and are slightly sensitive to the initial rotational excitation of OH. The thermal rate constants show a marked temperature dependence below 200 K with a maximum value around 15 K. The TDWP results globally agree with the results of earlier quasi-classical trajectory (QCT) calculations carried out by Rivero-Santamaria et al. ( Chem. Phys. Lett. 2014 , 610-611 , 335 - 340 ) with the same potential energy surface. In particular, the thermal rate constants display a similar temperature dependence, with TDWP values smaller than the QCT ones over the whole temperature range.

  4. Geochronological study of the Guanabara Bay (Rio de Janeiro State, Brazil) using 2'10 Pb dating technique and the constant rate of supply model

    International Nuclear Information System (INIS)

    Silva Braganca, Maura Julia Camara da; Oliveira Godoy, Jose Marcos de

    1995-01-01

    A geochronological study of the Guanabara Bay (RJ, Brazil) based on 210 Pb dating technique using the Constant Rate of Supply Model CRS is presented. A low energy gamma spectrometry ( 210 Pb for samples collected from Estrela and Sao Joao de Meriti rivers. Radiochemical method was applied to determine the amount of 210 Pb in samples from Guapimirim, Guaxindiba and Imbuacu rivers. Atomic absorption spectrometry with air-acetylene flame technique was used to determine the amount of copper in all the samples. The CRS model showed adequate in this estuarine system. (author). 19 refs., 5 figs., 6 tabs

  5. Theoretical study and rate constant calculation for the reactions of SH (SD) with Cl2, Br2, and BrCl.

    Science.gov (United States)

    Wang, Li; Liu, Jing-Yao; Li, Ze-Sheng; Sun, Chia-Chung

    2005-01-30

    The mechanisms of the SH (SD) radicals with Cl2 (R1), Br2 (R2), and BrCl (R3) are investigated theoretically, and the rate constants are calculated using a dual-level direct dynamics method. The optimized geometries and frequencies of the stationary points are calculated at the MP2/6-311G(d,p) and MPW1K/6-311G(d,p) levels. Higher-level energies are obtained at the approximate QCISD(T)/6-311++G(3df, 2pd) level using the MP2 geometries as well as by the multicoefficient correlation method based on QCISD (MC-QCISD) using the MPW1K geometries. Complexes with energies less than those of the reactants or products are located at the entrance or the exit channels of these reactions, which indicate that the reactions may proceed via an indirect mechanism. The enthalpies of formation for the species XSH/XSD (X = Cl and Br) are evaluated using hydrogenation working reactions method. By canonical variational transition-state theory (CVT), the rate constants of SH and SD radicals with Cl2, Br2, and BrCl are calculated over a wide temperature range of 200-2000 K at the a-QCISD(T)/6-311++G(3df, 2pd)//MP2/6-311G(d, p) level. Good agreement between the calculated and experimental rate constants is obtained in the measured temperature range. Our calculations show that for SH (SD) + BrCl reaction bromine abstraction (R3a or R3a') leading to the formation of BrSH (BrSD) + Cl in a barrierless process dominants the reaction with the branching ratios for channels 3a and 3a' of 99% at 298 K, which is quite different from the experimental result of k3a'/k3' = 54 +/- 10%. Negative activation energies are found at the higher level for the SH + Br2 and SH + BrCl (Br-abstraction) reactions; as a result, the rate constants show a slightly negative temperature dependence, which is consistent with the determination in the literature. The kinetic isotope effects for the three reactions are "inverse". The values of kH/kD are 0.88, 0.91, and 0.69 at room temperature, respectively, and they increase

  6. Site-Specific Rate Constant Measurements for Primary and Secondary H- and D-Abstraction by OH Radicals: Propane and n -Butane

    KAUST Repository

    Badra, Jihad; Nasir, Ehson F.; Farooq, Aamir

    2014-01-01

    Site-specific rate constants for hydrogen (H) and deuterium (D) abstraction by hydroxyl (OH) radicals were determined experimentally by monitoring the reaction of OH with two normal and six deuterated alkanes. The studied alkanes include propane (C3H8), propane 2,2 D2 (CH 3CD2CH3), propane 1,1,1-3,3,3 D6 (CD 3CH2CD3), propane D8 (C3D 8), n-butane (n-C4H10), butane 2,2-3,3 D4 (CH3CD2CD2CH3), butane 1,1,1-4,4,4 D6 (CD3CH2CH2CD3), and butane D10 (C4D10). Rate constant measurements were carried out over 840-1470 K and 1.2-2.1 atm using a shock tube and OH laser absorption. Previous low-temperature data were combined with the current high-temperature measurements to generate three-parameter fits which were then used to determine the site-specific rate constants. Two primary (P1,H and P 1,D) and four secondary (S00,H, S00,D, S 01,H, and S01,D) H- and D-abstraction rate constants, in which the subscripts refer to the number of C atoms connected to the next-nearest-neighbor C atom, are obtained. The modified Arrhenius expressions for the six site-specific abstractions by OH radicals are P1,H = 1.90 × 10-18T2.00 exp(-340.87 K/T) cm 3molecule-1s-1 (210-1294 K); P1,D= 2.72 × 10-17 T1.60 exp(-895.57 K/T) cm 3molecule-1s-1 (295-1317 K); S00,H = 4.40 × 10-18 T1.93 exp(121.50 K/T) cm 3molecule-1s-1 (210-1294 K); S00,D = 1.45 × 10-20 T2.69 exp(282.36 K/T) cm 3molecule-1s-1 (295-1341 K); S01,H = 4.65 × 10-17 T1.60 exp(-236.98 K/T) cm 3molecule-1s-1 (235-1407 K); S01,D = 1.26 × 10-18 T2.07 exp(-77.00 K/T) cm 3molecule-1s-1 (294-1412 K). © 2014 American Chemical Society.

  7. Determination of the absolute second-order rate constant for the reaction Na + O3 → NaO + O2

    International Nuclear Information System (INIS)

    Husain, David; Marshall, Paul; Plane, J.M.C.

    1985-01-01

    The absolute second-order rate constant for the reaction Na + O 3 -> NaO + O 2 (k 1 ) has been determined by time-resolved atomic resonance absorption spectroscopy at lambda = 589 nm [Na(3 2 Psub(j)) 2 Ssub(1/2))] following pulsed irradiation, coupled with monitoring of O 3 by light absorption in the ultra-violet; this yields k 1 (500 K) = 4(+4,-2) x 10 -10 cm 3 molecule -1 s -1 , resolving large differences for various estimates of this important quantity used in modelling the sodium layer in the mesosphere. (author)

  8. Direct determination of the rate constant of propagation by pseudo-stationary polymerization technique: screening investigation for the (implicit) penultimate effect

    International Nuclear Information System (INIS)

    Schnoll-Bitai, I.; Friedrich Olaj, O.; Liu Song Yu

    1999-01-01

    The systems styrene-p-methylstyrene, styrene-p-chlorostyrene, methyl methacrylate-p-methylstyrene and methyl methacrylate-p-chlorostyrene were polymerized under pseudo-stationary conditions (rotating sector or pulsed laser) at 25 degree C, 40 degree C and 50 degree C. The respective molecular weight distributions measured by GPC were analysed in order to derive directly the phenomenological rate constant of propagation, κ sub ρ. Copolymer compositions as a function of monomer feed could be described by the terminal model, whereas the kinetic results could only be interpreted in terms of the restricted penultimate model

  9. Virtual Instrument for Determining Rate Constant of Second-Order Reaction by pX Based on LabVIEW 8.0.

    Science.gov (United States)

    Meng, Hu; Li, Jiang-Yuan; Tang, Yong-Huai

    2009-01-01

    The virtual instrument system based on LabVIEW 8.0 for ion analyzer which can measure and analyze ion concentrations in solution is developed and comprises homemade conditioning circuit, data acquiring board, and computer. It can calibrate slope, temperature, and positioning automatically. When applied to determine the reaction rate constant by pX, it achieved live acquiring, real-time displaying, automatical processing of testing data, generating the report of results; and other functions. This method simplifies the experimental operation greatly, avoids complicated procedures of manual processing data and personal error, and improves veracity and repeatability of the experiment results.

  10. Possibility of reconstructing the mechanism and rate constants of elementary processes in the gas-discharge plasma of a rapid-flow laser

    International Nuclear Information System (INIS)

    Gontar, V.G.; Pashkin, S.V.; Surguchenko, S.A.

    1982-01-01

    The procedure is given for reconstructing the mechanism of elementary processes in the plasma of a gas-discharge laser on the basis of a statistical analysis of the experimental data. The method of writing the initial equations described here permits automation of the procedure for constructing a mathematical model of the discharge. A new iteration procedure for estimating the rate constants of the elementary processes by the method of least squares is proposed which has a wide region of convergence. The proposed methods are analyzed on test problems

  11. Site-Specific Rate Constant Measurements for Primary and Secondary H- and D-Abstraction by OH Radicals: Propane and n -Butane

    KAUST Repository

    Badra, Jihad

    2014-07-03

    Site-specific rate constants for hydrogen (H) and deuterium (D) abstraction by hydroxyl (OH) radicals were determined experimentally by monitoring the reaction of OH with two normal and six deuterated alkanes. The studied alkanes include propane (C3H8), propane 2,2 D2 (CH 3CD2CH3), propane 1,1,1-3,3,3 D6 (CD 3CH2CD3), propane D8 (C3D 8), n-butane (n-C4H10), butane 2,2-3,3 D4 (CH3CD2CD2CH3), butane 1,1,1-4,4,4 D6 (CD3CH2CH2CD3), and butane D10 (C4D10). Rate constant measurements were carried out over 840-1470 K and 1.2-2.1 atm using a shock tube and OH laser absorption. Previous low-temperature data were combined with the current high-temperature measurements to generate three-parameter fits which were then used to determine the site-specific rate constants. Two primary (P1,H and P 1,D) and four secondary (S00,H, S00,D, S 01,H, and S01,D) H- and D-abstraction rate constants, in which the subscripts refer to the number of C atoms connected to the next-nearest-neighbor C atom, are obtained. The modified Arrhenius expressions for the six site-specific abstractions by OH radicals are P1,H = 1.90 × 10-18T2.00 exp(-340.87 K/T) cm 3molecule-1s-1 (210-1294 K); P1,D= 2.72 × 10-17 T1.60 exp(-895.57 K/T) cm 3molecule-1s-1 (295-1317 K); S00,H = 4.40 × 10-18 T1.93 exp(121.50 K/T) cm 3molecule-1s-1 (210-1294 K); S00,D = 1.45 × 10-20 T2.69 exp(282.36 K/T) cm 3molecule-1s-1 (295-1341 K); S01,H = 4.65 × 10-17 T1.60 exp(-236.98 K/T) cm 3molecule-1s-1 (235-1407 K); S01,D = 1.26 × 10-18 T2.07 exp(-77.00 K/T) cm 3molecule-1s-1 (294-1412 K). © 2014 American Chemical Society.

  12. Relaxation of the electron spin in quantum dots via one- and two-phonon processes

    International Nuclear Information System (INIS)

    Calero, C.; Chudnovsky, E.M.; Garanin, D.A.

    2007-01-01

    We have studied direct and Raman processes of the decay of electron spin states in a quantum dot via radiation of phonons corresponding to elastic twists. Universal dependence of the spin relaxation rate on the strength and direction of the magnetic field has been obtained in terms of the electron gyromagnetic tensor and macroscopic elastic constants of the solid

  13. Relaxation of the electron spin in quantum dots via one- and two-phonon processes

    Energy Technology Data Exchange (ETDEWEB)

    Calero, C. [Department of Physics and Astronomy, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468-1589 (United States)]. E-mail: carlos.calero-borrallo@lehman.cuny.edu; Chudnovsky, E.M. [Department of Physics and Astronomy, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468-1589 (United States); Garanin, D.A. [Department of Physics and Astronomy, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468-1589 (United States)

    2007-09-15

    We have studied direct and Raman processes of the decay of electron spin states in a quantum dot via radiation of phonons corresponding to elastic twists. Universal dependence of the spin relaxation rate on the strength and direction of the magnetic field has been obtained in terms of the electron gyromagnetic tensor and macroscopic elastic constants of the solid.

  14. Measurement of the ferric diffusion coefficient in agarose and gelatine gels by utilization of the evolution of a radiation induced edge as reflected in relaxation rate images

    International Nuclear Information System (INIS)

    Pedersen, Torje V.; Olsen, Dag R.; Skretting, Arne

    1997-01-01

    A method has been developed to determine the diffusion coefficients of ferric ions in ferrous sulphate doped gels. A radiation induced edge was created in the gel, and two spin-echo sequences were used to acquire a pair of images of the gel at different points of time. For each of these image pairs, a longitudinal relaxation rate image was derived. From profiles through these images, the standard deviations of the Gaussian functions that characterize diffusion were determined. These data provided the basis for the determination of the ferric diffusion coefficients by two different methods. Simulations indicate that the use of single spin-echo images in this procedure may in some cases lead to a significant underestimation of the diffusion coefficient. The technique was applied to different agarose and gelatine gels that were prepared, irradiated and imaged simultaneously. The results indicate that the diffusion coefficient is lower in a gelatine gel than in an agarose gel. Addition of xylenol orange to a gelatine gel lowers the diffusion coefficient from 1.45 to 0.81 mm 2 h -1 , at the cost of significantly lower R 1 sensitivity. The addition of benzoic acid to the latter gel did not increase the R 1 sensitivity. (author) OK

  15. Quantum mechanical calculations of state-to-state cross sections and rate constants for the F + DCl → Cl + DF reaction.

    Science.gov (United States)

    Bulut, Niyazi; Kłos, Jacek; Roncero, Octavio

    2015-06-07

    We present accurate state-to-state quantum wave packet calculations of integral cross sections and rate constants for the title reaction. Calculations are carried out on the best available ground 1(2)A' global adiabatic potential energy surface of Deskevich et al. [J. Chem. Phys. 124, 224303 (2006)]. Converged state-to-state reaction cross sections have been calculated for collision energies up to 0.5 eV and different initial rotational and vibrational excitations, DCl(v = 0, j = 0 - 1; v = 1, j = 0). Also, initial-state resolved rate constants of the title reaction have been calculated in a temperature range of 100-400 K. It is found that the initial rotational excitation of the DCl molecule does not enhance reactivity, in contract to the reaction with the isotopologue HCl in which initial rotational excitation produces an important enhancement. These differences between the isotopologue reactions are analyzed in detail and attributed to the presence of resonances for HCl(v = 0, j), absent in the case of DCl(v = 0, j). For vibrational excited DCl(v = 1, j), however, the reaction cross section increases noticeably, what is also explained by another resonance.

  16. Electron exchange by hexakis(tert-butyl-isocyanide)- and hexakis(cyclohexyl isocyanide)manganese(I,II). Solvent effect on the rate constant and the volume of activation

    International Nuclear Information System (INIS)

    Stebler, M.; Nielson, R.M.; Siems, W.F.; Hunt, J.P.; Dodgen, H.W.; Wherland, H.W.

    1988-01-01

    The rate of electron self-exchange of Mn(CNC(CH 3 ) 3 ) 6 +/2+ and Mn(CNC 6 H 11 ) 6 +/2+ as the BF 4 - salts has been measured by 55 Mn NMR line broadening as a function of pressure, temperature, and concentration in acetonitrile, bromobenzene, benzonitrile, acetone, diethyl ketone, methanol, ethanol, methylene chloride, and trimethyl phosphate, and various binary mixtures of methylene chloride, bromobenzene, and acetonitrile. The values of ΔV double dagger obtained are negative and cover a range of ca. 12 cm 3 /mol, which is limited by ion pairing in the solvents of lower dielectric constant. The variation of the ambient pressure rate constant with solvent is qualitatively different for Mn(CNC(CH 3 ) 3 ) 6 +/2+ reaction than was observed for the Mn(CNC 6 H 11 ) 6 +/2+ reaction. This is taken as further evidence for a significant influence of rather subtle differences in solvation on the molecular level that are not approximated by dielectric continuum models. 30 references, 3 tables

  17. Investigation of dielectric relaxation in systems with hierarchical organization: From time to frequency domain and back again

    Energy Technology Data Exchange (ETDEWEB)

    Yokoi, Koki [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI (United States); Raicu, Valerică, E-mail: vraicu@uwm.edu [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI (United States); Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI (United States)

    2017-06-28

    Relaxation in fractal structures was investigated theoretically starting from a simple model of a Cantorian tree and kinetic equations linking the change in the number of particles (e.g., electrical charges) populating each branch of the tree and their transfer to other branches or to the ground state. We numerically solved the system of differential equations obtained and determined the so-called cumulative distribution function of particles, which, in dielectric or mechanical relaxation parlance, is the same as the relaxation function of the system. As a physical application, we studied the relationship between the dielectric relaxation in time-domain and the dielectric dispersion in the frequency-domain. Upon choosing appropriate rate constants, our model described accurately well-known non-exponential and non-Debye time- and frequency-domain functions, such as stretched exponentials, Havrilliak–Negami, and frequency power law. Our approach opens the door to applying kinetic models to describe a wide array of relaxation processes, which traditionally have posed great challenges to theoretical modeling based on first principles. - Highlights: • Relaxation was investigated for a system of particles flowing through a Cantorian tree. • A set of kinetic equations was formulated and used to compute the relaxation function of the system. • The dispersion function of the system was computed from the relaxation function. • An analytical method was used to recover the original relaxation function from the dispersion function. • This formalism was used to study dielectric relaxation and dispersion in fractal structures.

  18. 13C spin relaxation measurements in RNA: Sensitivity and resolution improvement using spin-state selective correlation experiments

    International Nuclear Information System (INIS)

    Boisbouvier, Jerome; Brutscher, Bernhard; Simorre, Jean-Pierre; Marion, Dominique

    1999-01-01

    A set of new NMR pulse sequences has been designed for the measurement of 13 C relaxation rate constants in RNA and DNA bases: the spin-lattice relaxation rate constant R(C z ), the spin-spin relaxation rate constant R(C + ), and the CSA-dipolar cross-correlated relaxation rate constant Γ C,CH xy . The use of spin-state selective correlation techniques provides increased sensitivity and spectral resolution. Sensitivity optimised C-C filters are included in the pulse schemes for the suppression of signals originating from undesired carbon isotopomers. The experiments are applied to a 15% 13 C-labelled 33-mer RNA-theophylline complex. The measured R(C + )/Γ C,CH xy ratios indicate that 13 C CSA tensors do not vary significantly for the same type of carbon (C 2 , C 6 , C 8 ), but that they differ from one type to another. In addition, conformational exchange effects in the RNA bases are detected as a change in the relaxation decay of the narrow 13 C doublet component when varying the spacing of a CPMG pulse train. This new approach allows the detection of small exchange effects with a higher precision compared to conventional techniques

  19. On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer. V. Comparison and Properties of Electrochemical and Chemical Rate Constants

    Science.gov (United States)

    Marcus, R. A.

    1962-01-01

    Using a theory of electron transfers which takes cognizance of reorganization of the medium outside the inner coordination shell and of changes of bond lengths inside it, relations between electrochemical and related chemical rate constants are deduced and compared with the experimental data. A correlation is found, without the use of arbitrary parameters. Effects of weak complexes with added electrolytes are included under specified conditions. The deductions offer a way of coordinating a variety of data in the two fields, internally as well as with each those in another. For example, the rate of oxidation or reduction of a series of related reactants by one reagent is correlated with that of another and with that of the corresponding electrochemical oxidation-reduction reaction, under certain specified conditions. These correlations may also provide a test for distinguishing an electron from an atom transfer mechanism. (auth)

  20. The reaction of atomic hydrogen with germane - Temperature dependence of the rate constant and implications for germane photochemistry in the atmospheres of Jupiter and Saturn

    Science.gov (United States)

    Nava, David F.; Payne, Walter A.; Marston, George; Stief, Louis J.

    1993-01-01

    Studies of the formation and loss processes for GeH4 are required in order to provide data to help determine the major chemical form in which germanium exists in the atmospheres of Jupiter and Saturn. The reaction of hydrogen atoms with germane is one of the most important of these reactions. The absolute rate constant for this reaction as a function of temperature and pressure is studied. Flash photolysis of dilute mixtures of GeH4 in argon, combined with time-resolved detection of H atoms via Lyman alpha resonance fluorescence, is employed to measure the reaction rate. The reaction is shown to be moderately rapid, independent of total pressure, but possessing a positive temperature dependence.

  1. Rate Constants of PSII Photoinhibition and its Repair, and PSII Fluorescence Parameters in Field Plants in Relation to their Growth Light Environments.

    Science.gov (United States)

    Miyata, Kazunori; Ikeda, Hiroshi; Nakaji, Masayoshi; Kanel, Dhana Raj; Terashima, Ichiro

    2015-09-01

    The extent of photoinhibition of PSII is determined by a balance between the rate of photodamage to PSII and that of repair of the damaged PSII. It has already been indicated that the rate constants of photodamage (kpi) and repair (krec) of the leaves differ depending on their growth light environment. However, there are no studies using plants in the field. We examined these rate constants and fluorescence parameters of several field-grown plants to determine inter-relationships between these values and the growth environment. The kpi values were strongly related to the excess energy, EY, of the puddle model and non-regulated energy dissipation, Y(NO), of the lake model, both multiplied by the photosynthetically active photon flux density (PPFD) level during the photoinhibitory treatment. In contrast, the krec values corrected against in situ air temperature were very strongly related to the daily PPFD level. The plants from the fields showed higher NPQ than the chamber-grown plants, probably because these field plants acclimated to stronger lightflecks than the averaged growth PPFD. Comparing chamber-grown plants and the field plants, we showed that kpi is determined by the incident light level and the photosynthetic capacities such as in situ rate of PSII electron transport and non-photochemical quenching (NPQ) [e.g. Y(NO)×PPFD] and that krec is mostly determined by the growth light and temperature levels. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Cross relaxation in nitroxide spin labels

    DEFF Research Database (Denmark)

    Marsh, Derek

    2016-01-01

    Cross relaxation, and mI-dependence of the intrinsic electron spin-lattice relaxation rate We, are incorporated explicitly into the rate equations for the electron-spin population differences that govern the saturation behaviour of 14N- and 15N-nitroxide spin labels. Both prove important in spin......-label EPR and ELDOR, particularly for saturation recovery studies. Neither for saturation recovery, nor for CW-saturation EPR and CW-ELDOR, can cross relaxation be described simply by increasing the value of We, the intrinsic spin-lattice relaxation rate. Independence of the saturation recovery rates from...... the hyperfine line pumped or observed follows directly from solution of the rate equations including cross relaxation, even when the intrinsic spin-lattice relaxation rate We is mI-dependent....

  3. Constant Fault Slip-Rates Over Hundreds of Millenia Constrained By Deformed Quaternary Palaeoshorelines: the Vibo and Capo D'Orlando Faults, Southern Italy.

    Science.gov (United States)

    Meschis, M.; Roberts, G.; Robertson, J.; Houghton, S.; Briant, R. M.

    2017-12-01

    Whether slip-rates on active faults accumulated over multiple seismic events is constant or varying over tens to hundreds of millenia timescales is an open question that can be addressed through study of deformed Quaternary palaeoshorelines. It is important to know the answer so that one can judge whether shorter timescale measurements (e.g. Holocene palaeoseismology or decadal geodesy) are suitable for determining earthquake recurrence intervals for Probabilistic Seismic Hazard Assessment or more suitable for studying temporal earthquake clustering. We present results from the Vibo Fault and the Capo D'Orlando Fault, that lie within the deforming Calabrian Arc, which has experienced damaging seismic events such as the 1908 Messina Strait earthquake ( Mw 7) and the 1905 Capo Vaticano earthquake ( Mw 7). These normal faults deform uplifted Late Quaternary palaeoshorelines, which outcrop mainly within their hangingwalls, but also partially in their footwalls, showing that a regional subduction and mantle-related uplift outpaces local fault-related subsidence. Through (1) field and DEM-based mapping of palaeoshorelines, both up flights of successively higher, older inner edges, and along the strike of the faults, and (2) utilisation of synchronous correlation of non-uniformly-spaced inner edge elevations with non-uniformly spaced sea-level highstand ages, we show that slip-rates decrease towards fault tips and that slip-rates have remained constant since 340 ka (given the time resolution we obtain). The slip-rates for the Capo D'Orlando Fault and Vibo Fault are 0.61mm/yr and 1mm/yr respectively. We show that the along-strike gradients in slip-rate towards fault tips differ for the two faults hinting at fault interaction and also discuss this in terms of other regions of extension like the Gulf of Corinth, Greece, where slip-rate has been shown to change through time through the Quaternary. We make the point that slip-rates may change through time as fault systems grow

  4. Rate constant for the reaction of OH with CH3CCl2F (HCFC-141b) determined by relative rate measurements with CH4 and CH3CCl3

    Science.gov (United States)

    Huder, Karin; Demore, William B.

    1993-01-01

    Determination of accurate rate constants for OH abstraction is of great importance for the calculation of lifetimes for HCFCs and their impact on the atmosphere. For HCFC-141b there has been some disagreement in the literature for absolute measurements of this rate constant. In the present work rate constant ratios for HCFC-141b were measured at atmospheric pressure in the temperature range of 298-358 K, with CH4 and CH3CCl3 as reference gases. Ozone was photolyzed at 254 nm in the presence of water vapor to produce OH radicals. Relative depletions of 141b and the reference gases were measured by FTIR. Arrhenius expressions for 141b were derived from each reference gas and found to be in good agreement with each other. The combined expression for HCFC-141b which we recommend is 1.4 x 10 exp -12 exp(-1630/T) with k at 298 K being 5.9 x 10 exp -15 cu cm/molec-s. This value is in excellent agreement with the JPL 92-20 recommendation.

  5. Dose rate constants for 125I, 103Pd, 192Ir and 169Yb brachytherapy sources: an EGS4 Monte Carlo study

    International Nuclear Information System (INIS)

    Mainegra, Ernesto; Capote, Roberto; Lopez, Ernesto

    1998-01-01

    An exhaustive revision of dosimetry data for 192 Ir, 125 I, 103 Pd and 169 Yb brachytherapy sources has been performed by means of the EGS4 simulation system. The DLC-136/PHOTX cross section library, water molecular form factors, bound Compton scattering and Doppler broadening of the Compton-scattered photon energy were considered in the calculations. The absorbed dose rate per unit contained activity in a medium at 1 cm in water and air-kerma strength per unit contained activity for each seed model were calculated, allowing the dose rate constant (DRC) Λ to be estimated. The influence of the calibration procedure on source strength for low-energy brachytherapy seeds is discussed. Conversion factors for 125 I and 103 Pd seeds to obtain the dose rate in liquid water from the dose rate measured in a solid water phantom with a detector calibrated for dose to water were calculated. A theoretical estimate of the DRC for a 103 Pd model 200 seed equal to 0.669±0.002 cGy h -1 U -1 is obtained. Comparison of obtained DRCs with measured and calculated published results shows agreement within 1.5% for 192 Ir, 169 Yb and 125 I sources. (author)

  6. The reaction O((3)P) + HOBr: Temperature dependence of the rate constant and importance of the reaction as an HOBr stratospheric loss process

    Science.gov (United States)

    Nesbitt, F. L.; Monks, P. S.; Payne, W. A.; Stief, L. J.; Toumi, R.

    1995-01-01

    The absolute rate constant for the reaction O((3)P) + HOBr has been measured between T = 233K and 423K using the discharge-flow kinetic technique coupled to mass spectrometric detection. The value of the rate coefficient at room temperature is (2.5 +/- 0.6) x 10(exp -11)cu cm/molecule/s and the derived Arrhenius expression is (1.4 +/- 0.5) x 10(exp -10) exp((-430 +/- 260)/T)cu cm/molecule/s. From these rate data the atmospheric lifetime of HOBr with respect to reaction with O((3)P) is about 0.6h at z = 25 km which is comparable to the photolysis lifetime based on recent measurements of the UV cross section for HOBr. Implications for HOBr loss in the stratosphere have been tested using a 1D photochemical box model. With the inclusion of the rate parameters and products for the O + HOBr reaction, calculated concentration profiles of BrO increase by up to 33% around z = 35 km. This result indicates that the inclusion of the O + HOBr reaction in global atmospheric chemistry models may have an impact on bromine partitioning in the middle atmosphere.

  7. Modeling the downward transport of {sup 210}Pb in Peatlands: Initial Penetration‐Constant Rate of Supply (IP-CRS) model

    Energy Technology Data Exchange (ETDEWEB)

    Olid, Carolina, E-mail: olid.carolina@gmail.com [Department of Ecology and Environmental Science, Umeå University, SE-90187, Umeå (Sweden); Diego, David [Department of Earth Science, University of Bergen, NO-5020 Bergen (Norway); Garcia-Orellana, Jordi [Departament de Física, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Spain); Institut de Ciència i Tecnologia Ambientals (ICTA), Universitat Autònoma de Barcelona, E-08193 Bellaterra (Spain); Cortizas, Antonio Martínez [Departamento de Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Klaminder, Jonatan [Department of Ecology and Environmental Science, Umeå University, SE-90187, Umeå (Sweden)

    2016-01-15

    The vertical distribution of {sup 210}Pb is commonly used to date peat deposits accumulated over the last 100–150 years. However, several studies have questioned this method because of an apparent post-depositional mobility of {sup 210}Pb within some peat profiles. In this study, we introduce the Initial Penetration–Constant Rate of Supply (IP-CRS) model for calculating ages derived from {sup 210}Pb profiles that are altered by an initial migration of the radionuclide. This new, two-phased, model describes the distribution of atmospheric-derived {sup 210}Pb ({sup 210}Pb{sub xs}) in peat taking into account both incorporation of {sup 210}Pb into the accumulating peat matrix as well as an initial flushing of {sup 210}Pb through the uppermost peat layers. The validity of the IP-CRS model is tested in four anomalous {sup 210}Pb peat records that showed some deviations from the typical exponential decay profile not explained by variations in peat accumulation rates. Unlike the most commonly used {sup 210}Pb-dating model (Constant Rate of Supply (CRS)), the IP-CRS model estimates peat accumulation rates consistent with typical growth rates for peatlands from the same areas. Confidence in the IP-CRS chronology is also provided by the good agreement with independent chronological markers (i.e. {sup 241}Am and {sup 137}Cs). Our results showed that the IP-CRS can provide chronologies from peat records where {sup 210}Pb mobility is evident, being a valuable tool for studies reconstructing past environmental changes using peat archives during the Anthropocene. - Highlights: • Accurate age dating of peat and sediment cores is critical for evaluating change. • A new {sup 210}Pb dating model that includes vertical transport of {sup 210}Pb was developed. • The IP-CRS model provided consistent peat accumulation rates. • The IP-CRS ages were consistent with independent chronological markers. • The IP-CRS model derives peat ages where downward {sup 210}Pb transport is

  8. Ab initio calculation of transition state normal mode properties and rate constants for the H(T)+CH4(CD4) abstraction and exchange reactions

    International Nuclear Information System (INIS)

    Schatz, G.C.; Walch, S.P.; Wagner, A.F.

    1980-01-01

    We present ab initio (GVB--POL--CI) calculations for enough of the region about the abstraction and exchange saddle points for H(T)+CH 4 (CD 4 ) to perform a full normal mode analysis of the transition states. The resulting normal mode frequencies are compared to four other published surfaces: an ab initio UHF--SCF calculation by Carsky and Zahradnik, a semiempirical surface by Raff, and two semiempirical surfaces by Kurylo, Hollinden, and Timmons. Significant quantitative and qualitative differences exist between the POL--CI results and those of the other surfaces. Transition state theory rate constants and vibrationally adiabatic reaction threshold energies were computed for all surfaces and compared to available experimental values. For abstraction, the POL--CI rates are in good agreement with experimental rates and in better agreement than are the rates of any of the other surfaces. For exchange, uncertainties in the experimental values and in the importance of vibrationally nonadiabatic effects cloud the comparison of theory to experiment. Tentative conclusions are that the POL--CI barrier is too low by several kcal. Unless vibrationaly nonadiabatic effects are severe, the POL--CI surface is still in better agreement with experiment than are the other surfaces. The rates for a simple 3-atom transition state theory model (where CH 3 is treated as an atom) are compared to the rates for the full 6-atom model. The kinetic energy coupling of reaction coordinate modes to methyl group modes is identified as being of primary importance in determining the accuracy of the 3-atom model for this system. Substantial coupling in abstraction, but not exchange, causes the model to fail for abstraction but succeed for exchange

  9. Relaxed states of tokamak plasmas

    International Nuclear Information System (INIS)

    Kucinski, M.Y.; Okano, V.

    1993-01-01

    The relaxed states of tokamak plasmas are studied. It is assumed that the plasma relaxes to a quasi-steady state which is characterized by a minimum entropy production rate, compatible with a number of prescribed conditions and pressure balance. A poloidal current arises naturally due to the anisotropic resistivity. The minimum entropy production theory is applied, assuming the pressure equilibrium as fundamental constraint on the final state. (L.C.J.A.)

  10. Reduced white matter MRI transverse relaxation rate in cognitively normal H63D-HFE human carriers and H67D-HFE mice.

    Science.gov (United States)

    Meadowcroft, Mark D; Wang, Jianli; Purnell, Carson J; Peters, Douglas G; Eslinger, Paul J; Neely, Elizabeth B; Gill, David J; Vasavada, Megha; Ali-Rahmani, Fatima; Yang, Qing X; Connor, James R

    2016-12-01

    Mutations within the HFE protein gene sequence have been associated with increased risk of developing a number of neurodegenerative disorders. To this effect, an animal model has been created which incorporates the mouse homologue to the human H63D-HFE mutation: the H67D-HFE knock-in mouse. These mice exhibit alterations in iron management proteins, have increased neuronal oxidative stress, and a disruption in cholesterol regulation. However, it remains undetermined how these differences translate to human H63D carriers in regards to white matter (WM) integrity. To this endeavor, MRI transverse relaxation rate (R 2 ) parametrics were employed to test the hypothesis that WM alterations are present in H63D human carriers and are recapitulated in the H67D mice. H63D carriers exhibit widespread reductions in brain R 2 compared to non-carriers within white matter association fibers in the brain. Similar R 2 decreases within white matter tracts were observed in the H67D mouse brain. Additionally, an exacerbation of age-related R 2 decrease is found in the H67D animal model in white matter regions of interest. The decrease in R 2 within white matter tracts of both species is speculated to be multifaceted. The R 2 changes are hypothesized to be due to alterations in axonal biochemical tissue composition. The R 2 changes observed in both the human-H63D and mouse-H67D data suggest that modified white matter myelination is occurring in subjects with HFE mutations, potentially increasing vulnerability to neurodegenerative disorders.

  11. Heart rate and autonomic response to stress after experimental induction of worry versus relaxation in healthy, high-worry, and generalized anxiety disorder individuals.

    Science.gov (United States)

    Fisher, Aaron J; Newman, Michelle G

    2013-04-01

    Generalized anxiety disorder (GAD) is the most commonly occurring anxiety disorder and has been related to cardiovascular morbidity such as cardiac ischemia, sudden cardiac death, and myocardial infarction. Both GAD and its cardinal symptom - worry - have been shown to promote muted physiological reactivity in response to laboratory and ecological stressors. Importantly, no study to date has examined the concurrent and relative contributions of trait and state worry within healthy controls, (non-clinical) high trait-worry controls, and GAD participants. The present study examined heart rate (HR), respiratory sinus arrhythmia (RSA), and salivary alpha-amylase (sAA) responses to laboratory stress during and following the experimental induction of worry versus relaxation in healthy controls (n=42), high trait worriers (n=33) and participants with GAD (n=76). All groups exhibited increased HR and decreased RSA in response to the stressor, with no differences by condition. Baseline sAA significantly moderated HR and RSA reactivity, such that higher sAA predicted greater increases in HR and decreases in RSA. There was a significant group by baseline sAA interaction such that in GAD, higher baseline sAA predicted decreased change in sAA during stress, whereas higher baseline sAA predicted greater sAA change in healthy controls. High-worry controls fell non-significantly between these groups. The present study provides additional evidence for the effect of worry on diminished HR stress response and points to possible suppression of adrenergic sympathetic stress responses in GAD. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Detailing magnetic field strength dependence and segmental artifact distribution of myocardial effective transverse relaxation rate at 1.5, 3.0, and 7.0 T.

    Science.gov (United States)

    Meloni, Antonella; Hezel, Fabian; Positano, Vincenzo; Keilberg, Petra; Pepe, Alessia; Lombardi, Massimo; Niendorf, Thoralf

    2014-06-01

    Realizing the challenges and opportunities of effective transverse relaxation rate (R2 *) mapping at high and ultrahigh fields, this work examines magnetic field strength (B0 ) dependence and segmental artifact distribution of myocardial R2 * at 1.5, 3.0, and 7.0 T. Healthy subjects were considered. Three short-axis views of the left ventricle were examined. R2 * was calculated for 16 standard myocardial segments. Global and mid-septum R2 * were determined. For each segment, an artifactual factor was estimated as the deviation of segmental from global R2 * value. The global artifactual factor was significantly enlarged at 7.0 T versus 1.5 T (P = 0.010) but not versus 3.0 T. At 7.0 T, the most severe susceptibility artifacts were detected in the inferior lateral wall. The mid-septum showed minor artifactual factors at 7.0 T, similar to those at 1.5 and 3.0 T. Mean R2 * increased linearly with the field strength, with larger changes for global heart R2 * values. At 7.0 T, segmental heart R2 * analysis is challenging due to macroscopic susceptibility artifacts induced by the heart-lung interface and the posterior vein. Myocardial R2 * depends linearly on the magnetic field strength. The increased R2 * sensitivity at 7.0 T might offer means for susceptibility-weighted and oxygenation level-dependent MR imaging of the myocardium. Copyright © 2013 Wiley Periodicals, Inc.

  13. Development of a kinetic model, including rate constant estimations, on iodine and caesium behaviour in the primary circuit of LWR's under accident conditions

    International Nuclear Information System (INIS)

    Alonso, A.; Buron, J.M.; Fernandez, S.

    1991-07-01

    In this report, a kinetic model has been developed with the aim to try to reproduce the chemical phenomena that take place in a flowing system containing steam, hydrogen and iodine and caesium vapours. The work is divided into two different parts. The first part consists in the estimation, through the Activited Complex Theory, of the reaction rate constants, for the chosen reactions, and the development of the kinetic model based on the concept of ideal tubular chemical reactor. The second part deals with the application of such model to several cases, which were taken from the Phase B 'Scoping Calculations' of the Phebus-FP Project (sequence AB) and the SFD-ST and SFD1.1 experiments. The main conclusion obtained from this work is that the assumption of instantaneous equilibrium could be inacurrate in order to estimate the iodine and caesium species distribution under severe accidents conditions

  14. Absolute rate constants for the reaction of O(3P) atoms with ethylene, propylene, and propylene-d6 over the temperature range 258--861 K

    International Nuclear Information System (INIS)

    Perry, R.A.

    1984-01-01

    Absolute rate constants for the reaction of O( 3 P) with ethylene, propylene, and propylene-d6 were determined over the temperature range 258--861 K using a laser photolysis-chemiluminescence technique. The following empirical expressions are the best fits to the data: k/sub ethylene/ = 2.12 x 10 -13 T -63 e -1370 /sup ///sup R//sup T/, k/sub propylene/ = 3.40 x 10 -19 T/sup 2.56/e/sup 1130/RT/, and k/sub propylene-d/6 = 3.40 x 10 -19 T/sup 2.53/ e/sup 1210/R/T cm 3 molecule -1 s -1 . A simple transition state theory model is shown to provide a reasonable explanation for non-Arrhenius temperature behavior

  15. A systematic evaluation of the dose-rate constant determined by photon spectrometry for 21 different models of low-energy photon-emitting brachytherapy sources.

    Science.gov (United States)

    Chen, Zhe Jay; Nath, Ravinder

    2010-10-21

    The aim of this study was to perform a systematic comparison of the dose-rate constant (Λ) determined by the photon spectrometry technique (PST) with the consensus value ((CON)Λ) recommended by the American Association of Physicists in Medicine (AAPM) for 21 low-energy photon-emitting interstitial brachytherapy sources. A total of 63 interstitial brachytherapy sources (21 different models with 3 sources per model) containing either (125)I (14 models), (103)Pd (6 models) or (131)Cs (1 model) were included in this study. A PST described by Chen and Nath (2007 Med. Phys. 34 1412-30) was used to determine the dose-rate constant ((PST)Λ) for each source model. Source-dependent variations in (PST)Λ were analyzed systematically against the spectral characteristics of the emitted photons and the consensus values recommended by the AAPM brachytherapy subcommittee. The values of (PST)Λ for the encapsulated sources of (103)Pd, (125)I and (131)Cs varied from 0.661 to 0.678 cGyh(-1) U(-1), 0.959 to 1.024 cGyh(-1)U(-1) and 1.066 to 1.073 cGyh(-1)U(-1), respectively. The relative variation in (PST)Λ among the six (103)Pd source models, caused by variations in photon attenuation and in spatial distributions of radioactivity among the source models, was less than 3%. Greater variations in (PST)Λ were observed among the 14 (125)I source models; the maximum relative difference was over 6%. These variations were caused primarily by the presence of silver in some (125)I source models and, to a lesser degree, by the variations in photon attenuation and in spatial distribution of radioactivity among the source models. The presence of silver generates additional fluorescent x-rays with lower photon energies which caused the (PST)Λ value to vary from 0.959 to 1.019 cGyh(-1)U(-1) depending on the amount of silver used by a given source model. For those (125)I sources that contain no silver, their (PST)Λ was less variable and had values within 1% of 1.024 cGyh(-1)U(-1). For the 16

  16. Time since death and decay rate constants of Norway spruce and European larch deadwood in subalpine forests determined using dendrochronology and radiocarbon dating

    Science.gov (United States)

    Petrillo, M.; Cherubini, P.; Fravolini, G.; Ascher, J.; Schärer, M.; Synal, H.-A.; Bertoldi, D.; Camin, F.; Larcher, R.; Egli, M.

    2015-09-01

    Due to the large size and highly heterogeneous spatial distribution of deadwood, the time scales involved in the coarse woody debris (CWD) decay of Picea abies (L.) Karst. and Larix decidua Mill. in Alpine forests have been poorly investigated and are largely unknown. We investigated the CWD decay dynamics in an Alpine valley in Italy using the five-decay class system commonly employed for forest surveys, based on a macromorphological and visual assessment. For the decay classes 1 to 3, most of the dendrochronological samples were cross-dated to assess the time that had elapsed since tree death, but for decay classes 4 and 5 (poorly preserved tree rings) and some others not having enough tree rings, radiocarbon dating was used. In addition, density, cellulose and lignin data were measured for the dated CWD. The decay rate constants for spruce and larch were estimated on the basis of the density loss using a single negative exponential model. In the decay classes 1 to 3, the ages of the CWD were similar varying between 1 and 54 years for spruce and 3 and 40 years for larch with no significant differences between the classes; classes 1-3 are therefore not indicative for deadwood age. We found, however, distinct tree species-specific differences in decay classes 4 and 5, with larch CWD reaching an average age of 210 years in class 5 and spruce only 77 years. The mean CWD rate constants were 0.012 to 0.018 yr-1 for spruce and 0.005 to 0.012 yr-1 for larch. Cellulose and lignin time trends half-lives (using a multiple-exponential model) could be derived on the basis of the ages of the CWD. The half-lives for cellulose were 21 yr for spruce and 50 yr for larch. The half-life of lignin is considerably higher and may be more than 100 years in larch CWD.

  17. Density functional theory study on aqueous aluminum-fluoride complexes: exploration of the intrinsic relationship between water-exchange rate constants and structural parameters for monomer aluminum complexes.

    Science.gov (United States)

    Jin, Xiaoyan; Qian, Zhaosheng; Lu, Bangmei; Yang, Wenjing; Bi, Shuping

    2011-01-01

    Density functional theory (DFT) calculation is carried out to investigate the structures, (19)F and (27)Al NMR chemical shifts of aqueous Al-F complexes and their water-exchange reactions. The following investigations are performed in this paper: (1) the microscopic properties of typical aqueous Al-F complexes are obtained at the level of B3LYP/6-311+G**. Al-OH(2) bond lengths increase with F(-) replacing inner-sphere H(2)O progressively, indicating labilizing effect of F(-) ligand. The Al-OH(2) distance trans to fluoride is longer than other Al-OH(2) distance, accounting for trans effect of F(-) ligand. (19)F and (27)Al NMR chemical shifts are calculated using GIAO method at the HF/6-311+G** level relative to F(H(2)O)(6)(-) and Al(H(2)O)(6)(3+) references, respectively. The results are consistent with available experimental values; (2) the dissociative (D) activated mechanism is observed by modeling water-exchange reaction for [Al(H(2)O)(6-i)F(i)]((3-i)+) (i = 1-4). The activation energy barriers are found to decrease with increasing F(-) substitution, which is in line with experimental rate constants (k(ex)). The log k(ex) of AlF(3)(H(2)O)(3)(0) and AlF(4)(H(2)O)(2)(-) are predicted by three ways. The results indicate that the correlation between log k(ex) and Al-O bond length as well as the given transmission coefficient allows experimental rate constants to be predicted, whereas the correlation between log k(ex) and activation free energy is poor; (3) the environmental significance of this work is elucidated by the extension toward three fields, that is, polyaluminum system, monomer Al-organic system and other metal ions system with high charge-to-radius ratio.

  18. The rate constant of the reaction NCN + H2 and its role in NCN and NO modeling in low pressure CH4/O2/N2-flames.

    Science.gov (United States)

    Faßheber, Nancy; Lamoureux, Nathalie; Friedrichs, Gernot

    2015-06-28

    Bimolecular reactions of the NCN radical play a key role in modeling prompt-NO formation in hydrocarbon flames. The rate constant of the so-far neglected reaction NCN + H2 has been experimentally determined behind shock waves under pseudo-first order conditions with H2 as the excess component. NCN3 thermal decomposition has been used as a quantitative high temperature source of NCN radicals, which have been sensitively detected by difference UV laser absorption spectroscopy at [small nu, Greek, tilde] = 30383.11 cm(-1). The experiments were performed at two different total densities of ρ≈ 4.1 × 10(-6) mol cm(-3) and ρ≈ 7.4 × 10(-6) mol cm(-3) (corresponding to pressures between p = 324 mbar and p = 1665 mbar) and revealed a pressure independent reaction. In the temperature range 1057 K rate constant can be represented by the Arrhenius expression k/(cm(3) mol(-1) s(-1)) = 4.1 × 10(13) exp(-101 kJ mol(-1)/RT) (Δlog k = ±0.11). The pressure independent reaction as well as the measured activation energy is consistent with a dominating H abstracting reaction channel yielding the products HNCN + H. The reaction NCN + H2 has been implemented together with a set of reactions for subsequent HNCN and HNC chemistry into the detailed GDFkin3.0_NCN mechanism for NOx flame modeling. Two fuel-rich low-pressure CH4/O2/N2-flames served as examples to quantify the impact of the additional chemical pathways. Although the overall NCN consumption by H2 remains small, significant differences have been observed for NO yields with the updated mechanism. A detailed flux analysis revealed that HNC, mainly arising from HCN/HNC isomerization, plays a decisive role and enhances NO formation through a new HNC → HNCO → NH2→ NH → NO pathway.

  19. Cinética de sinterização para sistemas à base de SnO2 por taxa de aquecimento constante Sintering kinetics for SnO2-based systems by constant heating rate

    Directory of Open Access Journals (Sweden)

    S. M. Tebcheran

    2003-04-01

    in small concentrations as densifying aids for this oxide. In the present study the sintering kinetics of tin oxide was studied considering the effect of sintering atmosphere and of the MnO2 concentration. SnO2-MnO2 systems were prepared from the polymeric precursors method and the obtained powders were characterized by surface area by the BET method. SnO2 powders with varied MnO2 concentrations were pressed in cylindrical shape, and sintered in a dilatometer furnace with constant heating rate and controlled atmospheres. Sintered samples were characterized by scanning electron microscopy. The influence of atmosphere (argon, air or CO2 as well as of the MnO2 concentrations on the sintering kinetics was determined. The kinetics data of linear shrinkage were analyzed in terms of kinetic models for the initial stage of sintering (Woolfrey and Bannister as well as for the global sintering (Su e Johnson allowing the determination of the apparent activation energy. Following the determination of the master sintering curve the apparent activation energy of all sintering process were determined as well as its dependence with the atmosphere and manganese concentrations. Based on these values and on the n exponent, determined by the classical grain growth equation, it was concluded that the most probable sintering mechanism is grain boundary diffusion with surface redistribution controlling the kinetics.

  20. Calculation of magnetic hyperfine constants

    International Nuclear Information System (INIS)

    Bufaical, R.F.; Maffeo, B.; Brandi, H.S.

    1975-01-01

    The magnetic hyperfine constants of the V sub(K) center in CaF 2 , SrF 2 and BaF 2 have been calculated assuming a phenomenological model, based on the F 2 - 'central molucule', to describe the wavefunction of the defect. Calculations have shown that introduction of a small degree of covalence, between this central molecule and neighboring ions, is necessary to improve the electronic structure description of the defect. It was also shown that the results for the hyperfine constants are strongly dependent on the relaxations of the ions neighboring the central molecule; these relaxations have been determined by fitting the experimental data. The present results are compared with other previous calculations where similar and different theoretical methods have been used

  1. Rate Constant and RRKM Product Study for the Reaction Between CH3 and C2H3 at T = 298K

    Science.gov (United States)

    Thorn, R. Peyton, Jr.; Payne, Walter A., Jr.; Chillier, Xavier D. F.; Stief, Louis J.; Nesbitt, Fred L.; Tardy, D. C.

    2000-01-01

    The total rate constant k1 has been determined at P = 1 Torr nominal pressure (He) and at T = 298 K for the vinyl-methyl cross-radical reaction CH3 + C2H3 yields products. The measurements were performed in a discharge flow system coupled with collision-free sampling to a mass spectrometer operated at low electron energies. Vinyl and methyl radicals were generated by the reactions of F with C2H4 and CH4, respectively. The kinetic studies were performed by monitoring the decay of C2H3 with methyl in excess, 6 rate coefficient was determined to be k1(298 K) = (1.02 +/- 0.53)x10(exp -10) cubic cm/molecule/s with the quoted uncertainty representing total errors. Numerical modeling was required to correct for secondary vinyl consumption by reactions such as C2H3 + H and C2H3 + C2H3. The present result for k1 at T = 298 K is compared to two previous studies at high pressure (100-300 Torr He) and to a very recent study at low pressure (0.9-3.7 Torr He). Comparison is also made with the rate constant for the similar reaction CH3 + C2H5 and with a value for k1 estimated by the geometric mean rule employing values for k(CH3 + CH3) and k(C2H3 + C2H3). Qualitative product studies at T = 298 K and 200 K indicated formation of C3H6, C2H2, and C2H5 as products of the combination-stabilization, disproportionation, and combination-decomposition channels, respectively, of the CH3 + C2H3 reaction. We also observed the secondary C4H8 product of the subsequent reaction of C3H5 with excess CH3; this observation provides convincing evidence for the combination-decomposition channel yielding C3H5 + H. RRKM calculations with helium as the deactivator support the present and very recent experimental observations that allylic C-H bond rupture is an important path in the combination reaction. The pressure and temperature dependencies of the branching fractions are also predicted.

  2. Time since death and decay rate constants of Norway spruce and European larch deadwood in subalpine forests determined using dendrochronology and radiocarbon dating

    Science.gov (United States)

    Petrillo, Marta; Cherubini, Paolo; Fravolini, Giulia; Marchetti, Marco; Ascher-Jenull, Judith; Schärer, Michael; Synal, Hans-Arno; Bertoldi, Daniela; Camin, Federica; Larcher, Roberto; Egli, Markus

    2016-03-01

    Due to the large size (e.g. sections of tree trunks) and highly heterogeneous spatial distribution of deadwood, the timescales involved in the coarse woody debris (CWD) decay of Picea abies (L.) Karst. and Larix decidua Mill. in Alpine forests are largely unknown. We investigated the CWD decay dynamics in an Alpine valley in Italy using the chronosequence approach and the five-decay class system that is based on a macromorphological assessment. For the decay classes 1-3, most of the dendrochronological samples were cross-dated to assess the time that had elapsed since tree death, but for decay classes 4 and 5 (poorly preserved tree rings) radiocarbon dating was used. In addition, density, cellulose, and lignin data were measured for the dated CWD. The decay rate constants for spruce and larch were estimated on the basis of the density loss using a single negative exponential model, a regression approach, and the stage-based matrix model. In the decay classes 1-3, the ages of the CWD were similar and varied between 1 and 54 years for spruce and 3 and 40 years for larch, with no significant differences between the classes; classes 1-3 are therefore not indicative of deadwood age. This seems to be due to a time lag between the death of a standing tree and its contact with the soil. We found distinct tree-species-specific differences in decay classes 4 and 5, with larch CWD reaching an average age of 210 years in class 5 and spruce only 77 years. The mean CWD rate constants were estimated to be in the range 0.018 to 0.022 y-1 for spruce and to about 0.012 y-1 for larch. Snapshot sampling (chronosequences) may overestimate the age and mean residence time of CWD. No sampling bias was, however, detectable using the stage-based matrix model. Cellulose and lignin time trends could be derived on the basis of the ages of the CWD. The half-lives for cellulose were 21 years for spruce and 50 years for larch. The half-life of lignin is considerably higher and may be more than

  3. Toward elimination of discrepancies between theory and experiment: The rate constant of the atmospheric conversion of SO3 to H2SO4

    Science.gov (United States)

    Loerting, Thomas; Liedl, Klaus R.

    2000-01-01

    The hydration rate constant of sulfur trioxide to sulfuric acid is shown to depend sensitively on water vapor pressure. In the 1:1 SO3-H2O complex, the rate is predicted to be slower by about 25 orders of magnitude compared with laboratory results [Lovejoy, E. R., Hanson, D. R. & Huey, L. G. (1996) J. Phys. Chem. 100, 19911–19916; Jayne, J. T., Pöschl, U., Chen, Y.-m., Dai, D., Molina, L. T., Worsnop, D. R., Kolb, C. E. & Molina, M. J. (1997) J. Phys. Chem. A 101, 10000–10011]. This discrepancy is removed mostly by allowing a second and third water molecule to participate. An asynchronous water-mediated double proton transfer concerted with the nucleophilic attack and a double proton transfer accompanied by a transient H3O+ rotation are predicted to be the fastest reaction mechanisms. Comparison of the predicted negative apparent “activation” energies with the experimental finding indicates that in our atmosphere, different reaction paths involving two and three water molecules are taken in the process of forming sulfate aerosols and consequently acid rain. PMID:10922048

  4. The use of digital simulation to improve the cyclic voltammetric determination of rate constants for homogeneous chemical reactions following charge transfers

    International Nuclear Information System (INIS)

    Mozo, J.D.; Carbajo, J.; Sturm, J.C.; Nunez-Vergara, L.J.; Moscoso, R.; Squella, J.A.

    2011-01-01

    Cyclic voltammetry (CV) is a very useful electrochemical tool used to study reaction systems that include chemical steps that are coupled to electron transfers. This type of system generally involves the chemical reaction of an electrochemically generated free radical. Published methods exist that are used to determine the kinetics of electrochemically initiated chemical reactions from the measurements of the peak current ratio (i pa /i pc ) of a cyclic voltammogram. The published method requires working curves to relate a kinetic parameter to the peak current ratio. In the presented work, a digital simulation package was used to obtain improved working curves for specific working conditions. The curves were compared with the published results for the first- and second-order chemical reactions following the charge transfer step mechanisms. According to the presented results, the previously published working curve is reliable for a mechanism with a first-order chemical reaction; however, a change in the switching potential requires a recalculation of the curve. In the case of mechanisms with a second-order step (dimerisation and disproportionation), several different views exist on how the second-order chemical term should be expressed so that different values of the constant are obtained. Parameters such as electrode type, electrode area, electroactive species concentration, switching potential, scan rate and method for peak current ratio calculation modify the working curves and must always be specified. We propose a standardised method to obtain the most reliable kinetic constant values. The results of this work will permit researchers who handle simulation software to construct their own working curves. Additionally, those who do not have the simulation software could use the working curves described here. The revelations of the presented experiments may be useful to a broad chemistry audience because this study presents a simple and low-cost procedure for the

  5. A comparison of methods to estimate anaerobic capacity: Accumulated oxygen deficit and W' during constant and all-out work-rate profiles.

    Science.gov (United States)

    Muniz-Pumares, Daniel; Pedlar, Charles; Godfrey, Richard; Glaister, Mark

    2017-12-01

    This study investigated (i) whether the accumulated oxygen deficit (AOD) and curvature constant of the power-duration relationship (W') are different during constant work-rate to exhaustion (CWR) and 3-min all-out (3MT) tests and (ii) the relationship between AOD and W' during CWR and 3MT. Twenty-one male cyclists (age: 40 ± 6 years; maximal oxygen uptake [V̇O 2max ]: 58 ± 7 ml · kg -1 · min -1 ) completed preliminary tests to determine the V̇O 2 -power output relationship and V̇O 2max . Subsequently, AOD and W' were determined as the difference between oxygen demand and oxygen uptake and work completed above critical power, respectively, in CWR and 3MT. There were no differences between tests for duration, work, or average power output (P ≥ 0.05). AOD was greater in the CWR test (4.18 ± 0.95 vs. 3.68 ± 0.98 L; P = 0.004), whereas W' was greater in 3MT (9.55 ± 4.00 vs. 11.37 ± 3.84 kJ; P = 0.010). AOD and W' were significantly correlated in both CWR (P W' in CWR and 3MT, between-test differences in the magnitude of AOD and W', suggest that both measures have different underpinning mechanisms.

  6. Modeling the pH and temperature dependence of aqueousphase hydroxyl radical reaction rate constants of organic micropollutants using QSPR approach.

    Science.gov (United States)

    Gupta, Shikha; Basant, Nikita

    2017-11-01

    Designing of advanced oxidation process (AOP) requires knowledge of the aqueous phase hydroxyl radical ( ● OH) reactions rate constants (k OH ), which are strictly dependent upon the pH and temperature of the medium. In this study, pH- and temperature-dependent quantitative structure-property relationship (QSPR) models based on the decision tree boost (DTB) approach were developed for the prediction of k OH of diverse organic contaminants following the OECD guidelines. Experimental datasets (n = 958) pertaining to the k OH values of aqueous phase reactions at different pH (n = 470; 1.4 × 10 6 to 3.8 × 10 10  M -1  s -1 ) and temperature (n = 171; 1.0 × 10 7 to 2.6 × 10 10  M -1  s -1 ) were considered and molecular descriptors of the compounds were derived. The Sanderson scale electronegativity, topological polar surface area, number of double bonds, and halogen atoms in the molecule, in addition to the pH and temperature, were found to be the relevant predictors. The models were validated and their external predictivity was evaluated in terms of most stringent criteria parameters derived on the test data. High values of the coefficient of determination (R 2 ) and small root mean squared error (RMSE) in respective training (> 0.972, ≤ 0.12) and test (≥ 0.936, ≤ 0.16) sets indicated high generalization and predictivity of the developed QSPR model. Other statistical parameters derived from the training and test data also supported the robustness of the models and their suitability for screening new chemicals within the defined chemical space. The developed QSPR models provide a valuable tool for predicting the ● OH reaction rate constants of emerging new water contaminants for their susceptibility to AOPs.

  7. Rate Constants for the Reactions of OH with CH(sub 3)Cl, CH(sub 2) C1(sub 2), CHC1(sub 3)and CH(sub 3)Br

    Science.gov (United States)

    Hsu, H-J.; DeMore, W.

    1994-01-01

    Rate constants for the reactions of OH with CH3C1, CH2Cl2, CHCl3 and CH3Br have been measured by a relative rate technique in which the reaction rate of each compound was compared to that of HFC-152a (CH3CHF2)and for CH2Cl2, HFC-161 (CH3CH2F).

  8. Reduction of the hydraulic retention time at constant high organic loading rate to reach the microbial limits of anaerobic digestion in various reactor systems.

    Science.gov (United States)

    Ziganshin, Ayrat M; Schmidt, Thomas; Lv, Zuopeng; Liebetrau, Jan; Richnow, Hans Hermann; Kleinsteuber, Sabine; Nikolausz, Marcell

    2016-10-01

    The effects of hydraulic retention time (HRT) reduction at constant high organic loading rate on the activity of hydrogen-producing bacteria and methanogens were investigated in reactors digesting thin stillage. Stable isotope fingerprinting was additionally applied to assess methanogenic pathways. Based on hydA gene transcripts, Clostridiales was the most active hydrogen-producing order in continuous stirred tank reactor (CSTR), fixed-bed reactor (FBR) and anaerobic sequencing batch reactor (ASBR), but shorter HRT stimulated the activity of Spirochaetales. Further decreasing HRT diminished Spirochaetales activity in systems with biomass retention. Based on mcrA gene transcripts, Methanoculleus and Methanosarcina were the predominantly active in CSTR and ASBR, whereas Methanosaeta and Methanospirillum activity was more significant in stably performing FBR. Isotope values indicated the predominance of aceticlastic pathway in FBR. Interestingly, an increased activity of Methanosaeta was observed during shortening HRT in CSTR and ASBR despite high organic acids concentrations, what was supported by stable isotope data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Convergence of high order memory kernels in the Nakajima-Zwanzig generalized master equation and rate constants: Case study of the spin-boson model

    Science.gov (United States)

    Xu, Meng; Yan, Yaming; Liu, Yanying; Shi, Qiang

    2018-04-01

    The Nakajima-Zwanzig generalized master equation provides a formally exact framework to simulate quantum dynamics in condensed phases. Yet, the exact memory kernel is hard to obtain and calculations based on perturbative expansions are often employed. By using the spin-boson model as an example, we assess the convergence of high order memory kernels in the Nakajima-Zwanzig generalized master equation. The exact memory kernels are calculated by combining the hierarchical equation of motion approach and the Dyson expansion of the exact memory kernel. High order expansions of the memory kernels are obtained by extending our previous work to calculate perturbative expansions of open system quantum dynamics [M. Xu et al., J. Chem. Phys. 146, 064102 (2017)]. It is found that the high order expansions do not necessarily converge in certain parameter regimes where the exact kernel show a long memory time, especially in cases of slow bath, weak system-bath coupling, and low temperature. Effectiveness of the Padé and Landau-Zener resummation approaches is tested, and the convergence of higher order rate constants beyond Fermi's golden rule is investigated.

  10. Rate Constants and H-Atom Product Yields for the Reactions of O(1D) Atoms with Ethane and Acetylene from 50 to 296 K.

    Science.gov (United States)

    Nunez-Reyes, Dianailys; Hickson, Kevin M

    2018-05-01

    The gas phase reactions of atomic oxygen in its first excited state with ethane and acetylene have been investigated in a continuous supersonic flow reactor over the temperature range 50 K to 296 K. O(1D) atoms were produced by pulsed laser photolysis of ozone at 266 nm. Two different types of experiments, kinetics measurements and H-atom product yield determinations, were performed by detecting O(1D) atoms and H(2S) atoms respectively by vacuum ultraviolet laser induced fluorescence. The measured rate constants are in agreement with previous work at room temperature and little or no temperature dependence was observed as the temperature is decreased to 50 K. H-atoms yields were found to be independent of temperature for the reaction of O(1D) with ethane. These product yields are discussed in the context of earlier dynamics measurements at higher temperature. Due to the influence of secondary reactions, no H-atom yields could be obtained for the reaction of O(1D) with acetylene.

  11. Comparison of constant-rate pumping test and slug interference test results at the Hanford Site B pond multilevel test facility

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.; Thorne, P.D.

    1995-10-01

    Pacific Northwest Laboratory (PNL), as part of the Hanford Site Ground-Water Surveillance Project, is responsible for monitoring the movement and fate of contamination within the unconfined aquifer to ensure that public health and the environment are protected. To support the monitoring and assessment of contamination migration on the Hanford Site, a sitewide 3-dimensional groundwater flow model is being developed. Providing quantitative hydrologic property data is instrumental in development of the 3-dimensional model. Multilevel monitoring facilities have been installed to provide detailed, vertically distributed hydrologic characterization information for the Hanford Site unconfined aquifer. In previous reports, vertically distributed water-level and hydrochemical data obtained over time from these multi-level monitoring facilities have been evaluated and reported. This report describes the B pond facility in Section 2.0. It also provides analysis results for a constant-rate pumping test (Section 3.0) and slug interference test (Section 4.0) that were conducted at a multilevel test facility located near B Pond (see Figure 1. 1) in the central part of the Hanford Site. A hydraulic test summary (Section 5.0) that focuses on the comparison of hydraulic property estimates obtained using the two test methods is also presented. Reference materials are listed in Section 6.0

  12. Calculations with spectroscopic accuracy for energies, transition rates, hyperfine interaction constants, and Landé gJ-factors in nitrogen-like Kr XXX

    Science.gov (United States)

    Wang, K.; Li, S.; Jönsson, P.; Fu, N.; Dang, W.; Guo, X. L.; Chen, C. Y.; Yan, J.; Chen, Z. B.; Si, R.

    2017-01-01

    Extensive self-consistent multi-configuration Dirac-Fock (MCDF) calculations and second-order many-body perturbation theory (MBPT) calculations are performed for the lowest 272 states belonging to the 2s22p3, 2s2p4, 2p5, 2s22p23l, and 2s2p33l (l=s, p, d) configurations of N-like Kr XXX. Complete and consistent data sets of level energies, wavelengths, line strengths, oscillator strengths, lifetimes, AJ, BJ hyperfine interaction constants, Landé gJ-factors, and electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), magnetic quadrupole (M2) transition rates among all these levels are given. The present MCDF and MBPT results are compared with each other and with other available experimental and theoretical results. The mean relative difference between our two sets of level energies is only about 0.003% for these 272 levels. The accuracy of the present calculations are high enough to facilitate identification of many observed spectral lines. These accurate data can be served as benchmark for other calculations and can be useful for fusion plasma research and astrophysical applications.

  13. Concentration and chemical status of arsenic in the blood of pregnant hamsters during critical embryogenesis. 1. Subchronic exposure to arsenate utilizing constant rate administration

    Energy Technology Data Exchange (ETDEWEB)

    Hanlon, D.P.; Ferm, V.H.

    1986-08-01

    The concentration, availability, and chemical status of radiolabeled arsenic has been determined in the blood of pregnant hamsters at the beginning (morning of Day 8) and the end (morning of Day 9) of the critical period of embryogenesis. Hamster dams were exposed to teratogenic doses of arsenate by means of osmotic minipumps implanted on the morning of Day 6 of the gestation period. Whole blood arsenic concentrations were the same for 48 and 72 hr postimplant. The arsenic concentration of plasma equaled that of red cells. Plasma arsenic was not bound to macromolecules and had the same chemical status 48 and 72 hr postimplant. Arsenate was the dominant form (67% of the total). However, the presence of dimethylarsinic acid and arsenite indicates that the pentavalent species was metabolized. Red cell arsenic was bound to macromolecules in the cell sap. Seventy percent of red cell sap arsenic was dialyzable 48 hr postimplant, but only 56% 72 hr postimplant. Arsenate was the dominant dialyzable red cell species on Day 8 and arsenite was the major dialyzable form on Day 9. The authors findings demonstrate a relationship between the maternal blood concentration and chemical status of arsenic and the presence of malformations resulting from a constant rate exposure of pregnant hamsters to arsenate via the osmotic minipump.

  14. Concentration and chemical status of arsenic in the blood of pregnant hamsters during critical embryogenesis. 1. Subchronic exposure to arsenate utilizing constant rate administration

    International Nuclear Information System (INIS)

    Hanlon, D.P.; Ferm, V.H.

    1986-01-01

    The concentration, availability, and chemical status of radiolabeled arsenic has been determined in the blood of pregnant hamsters at the beginning (morning of Day 8) and the end (morning of Day 9) of the critical period of embryogenesis. Hamster dams were exposed to teratogenic doses of arsenate by means of osmotic minipumps implanted on the morning of Day 6 of the gestation period. Whole blood arsenic concentrations were the same for 48 and 72 hr postimplant. The arsenic concentration of plasma equaled that of red cells. Plasma arsenic was not bound to macromolecules and had the same chemical status 48 and 72 hr postimplant. Arsenate was the dominant form (67% of the total). However, the presence of dimethylarsinic acid and arsenite indicates that the pentavalent species was metabolized. Red cell arsenic was bound to macromolecules in the cell sap. Seventy percent of red cell sap arsenic was dialyzable 48 hr postimplant, but only 56% 72 hr postimplant. Arsenate was the dominant dialyzable red cell species on Day 8 and arsenite was the major dialyzable form on Day 9. The authors findings demonstrate a relationship between the maternal blood concentration and chemical status of arsenic and the presence of malformations resulting from a constant rate exposure of pregnant hamsters to arsenate via the osmotic minipump

  15. Energy matrices evaluation and exergoeconomic analysis of series connected N partially covered (glass to glass PV module) concentrated-photovoltaic thermal collector: At constant flow rate mode

    International Nuclear Information System (INIS)

    Tripathi, Rohit; Tiwari, G.N.; Dwivedi, V.K.

    2017-01-01

    Highlights: • Fluid, other than water has been chosen for achieving higher outlet temperature. • Mass flow rate and number of collector have been optimized. • Three PVT systems have been compared for evaluating annual energy and exergy. • Life cycle cost analysis has been evaluated to obtain exergetic cost. • Proposed PVT systems have been compared on the basis of energy matrices. - Abstract: In present analysis, a comparative study has been carried out to evaluate the annual performances of three systems or cases at constant flow rate, namely: case (i): partially covered (25% PV module) N concentrated photovoltaic thermal collectors connected in series, case (ii): fully covered (100% PV module) N concentrated photovoltaic thermal collectors in series and case (iii): N (0% PV module) convectional compound parabolic concentrator collector connected in series. Comparison for three cases has also been carried out by considering fluid namely: ethylene glycol for higher outlet temperature and better thermal performance which can be applicable for heating and steaming or small industry purpose. The embodied energy, energy matrices, uniform annual cost, exergetic cost and carbon credits are also evaluated for same systems. The energy payback time is found to be 5.58 years and energy production factor is to be 0.17 on energy basis for case (iii) which is maximum. The exergetic cost has computed as 17.85 Rs/kW h for 30 years of life time of the system. It is observed that N conventional compound parabolic concentrator collector [case (iii)] is most suitable for steam cooking or space heating but not self-sustainable to run the dc power motor due to unavailability of electrical power.

  16. Sexual dimorphism of extensor carpi radialis muscle size, isometric force, relaxation rate and stamina during the breeding season of the frog Rana temporaria Linnaeus 1758.

    Science.gov (United States)

    Navas, Carlos A; James, Rob S

    2007-02-01

    Mating success of individual male frogs within explosive breeding species can depend on their ability to compete for a mate and to hold onto that mate during amplexus. Such importance of amplexus has resulted in the evolution of sexual dimorphism in the morphology and contractile characteristics of the anuran forelimb muscles used during amplexus. The aims of our study were to use an explosive breeding frog (Rana temporaria) during the breeding season to compare extensor carpi radialis (ECR) muscle length, mass, isometric activation times, relaxation times, absolute force, relative force (stress) and fatigue between male and female frogs. We found that ECR muscle mass and length were greater (tenfold and 1.4-fold, respectively), absolute tetanic muscle force and relative tetanic force (stress) were greater (16-fold and 2.2-fold, respectively) and relaxation times were slower in males than in females. Male ECR muscles incompletely relaxed during fatigue tests and showed less fatigue than female muscles. These sex differences are likely to be beneficial to the male frogs in allowing them to produce relatively high absolute muscle forces for prolonged periods of time to hold onto their mate during amplexus.

  17. Reaction kinetics aspect of U3O8 kernel with gas H2 on the characteristics of activation energy, reaction rate constant and O/U ratio of UO2 kernel

    International Nuclear Information System (INIS)

    Damunir

    2007-01-01

    The reaction kinetics aspect of U 3 O 8 kernel with gas H 2 on the characteristics of activation energy, reaction rate constant and O/U ratio of UO 2 kernel had been studied. U 3 O 8 kernel was reacted with gas H 2 in a reduction furnace at varied reaction time and temperature. The reaction temperature was varied at 600, 700, 750 and 850 °C with a pressure of 50 mmHg for 3 hours in gas N 2 atmosphere. The reation time was varied at 1, 2, 3 and 4 hours at a temperature of 750 °C using similar conditions. The reaction product was UO 2 kernel. The reaction kinetic aspect between U 3 O 8 and gas H 2 comprised the minimum activation energy (ΔE), the reaction rate constant and the O/U ratio of UO 2 kernel. The minimum activation energy was determined from a straight line slope of equation ln [{D b . R o {(1 - (1 - X b ) ⅓ } / (b.t.Cg)] = -3.9406 x 10 3 / T + 4.044. By multiplying with the straight line slope -3.9406 x 10 3 , the ideal gas constant (R) 1.985 cal/mol and the molarity difference of reaction coefficient 2, a minimum activation energy of 15.644 kcal/mol was obtained. The reaction rate constant was determined from first-order chemical reaction control and Arrhenius equation. The O/U ratio of UO 2 kernel was obtained using gravimetric method. The analysis result of reaction rate constant with chemical reaction control equation yielded reaction rate constants of 0.745 - 1.671 s -1 and the Arrhenius equation at temperatures of 650 - 850 °C yielded reaction rate constants of 0.637 - 2.914 s -1 . The O/U ratios of UO 2 kernel at the respective reaction rate constants were 2.013 - 2.014 and the O/U ratios at reaction time 1 - 4 hours were 2.04 - 2.011. The experiment results indicated that the minimum activation energy influenced the rate constant of first-order reaction and the O/U ratio of UO 2 kernel. The optimum condition was obtained at reaction rate constant of 1.43 s -1 , O/U ratio of UO 2 kernel of 2.01 at temperature of 750 °C and reaction time of 3

  18. Is volumetric modulated arc therapy with constant dose rate a valid option in radiation therapy for head and neck cancer patients?

    Science.gov (United States)

    Didona, Annamaria; Lancellotta, Valentina; Zucchetti, Claudio; Panizza, Bianca Moira; Frattegiani, Alessandro; Iacco, Martina; Di Pilato, Anna Concetta; Saldi, Simonetta; Aristei, Cynthia

    2018-01-01

    Intensity-modulated radiotherapy (IMRT) improves dose distribution in head and neck (HN) radiation therapy. Volumetric-modulated arc therapy (VMAT), a new form of IMRT, delivers radiation in single or multiple arcs, varying dose rates (VDR-VMAT) and gantry speeds, has gained considerable attention. Constant dose rate VMAT (CDR-VMAT) associated with a fixed gantry speed does not require a dedicated linear accelerator like VDR-VMAT. The present study explored the feasibility, efficiency and delivery accuracy of CDR-VMAT, by comparing it with IMRT and VDR-VMAT in treatment planning for HN cancer. Step and shoot IMRT (SS-IMRT), CDR-VMAT and VDR-VMAT plans were created for 15 HN cancer patients and were generated by Pinnacle 3 TPS (v 9.8) using 6 MV photon energy. Three PTVs were defined to receive respectively prescribed doses of 66 Gy, 60 Gy and 54 Gy, in 30 fractions. Organs at risk (OARs) included the mandible, spinal cord, brain stem, parotids, salivary glands, esophagus, larynx and thyroid. SS-IMRT plans were based on 7 co-planar beams at fixed gantry angles. CDR-VMAT and VDR-VMAT plans, generated by the SmartArc module, used a 2-arc technique: one clockwise from 182° to 178° and the other one anti-clockwise from 178° to 182°. Comparison parameters included dose distribution to PTVs ( D mean , D 2% , D 50% , D 95% , D 98% and Homogeneity Index), maximum or mean doses to OARs, specific dose-volume data, the monitor units and treatment delivery times. Compared with SS-IMRT, CDR-VMAT significantly reduced the maximum doses to PTV1 and PTV2 and significantly improved all PTV3 parameters, except D 98% and D 95% . It significantly spared parotid and submandibular glands and was associated with a lower D mean to the larynx. Compared with VDR-VMAT, CDR-VMAT was linked to a significantly better D mean , to the PTV3 but results were worse for the parotids, left submandibular gland, esophagus and mandible. Furthermore, the D mean to the larynx was also worse

  19. Flow and volume dependence of rat airway resistance during constant flow inflation and deflation.

    Science.gov (United States)

    Rubini, Alessandro; Carniel, Emanuele Luigi; Parmagnani, Andrea; Natali, Arturo Nicola

    2011-12-01

    The aim of this study was to measure the flow and volume dependence of both the ohmic and the viscoelastic pressure dissipations of the normal rat respiratory system separately during inflation and deflation. The study was conducted in the Respiratory Physiology Laboratory in our institution. Measurements were obtained for Seven albino Wistar rats of both sexes by using the flow interruption method during constant flow inflations and deflations. Measurements included anesthesia induction, tracheostomy and positioning of a tracheal cannula, positive pressure ventilation, constant flow respiratory system inflations and deflations at two different volumes and flows. The ohmic resistance exhibited volume and flow dependence, decreasing with lung volume and increasing with flow rate, during both inflation and deflation. The stress relaxation-related viscoelastic resistance also exhibited volume and flow dependence. It decreased with the flow rate at a constant lung volume during both inflation and deflation, but exhibited a different behavior with the lung volume at a constant flow rate (i.e., increased during inflations and decreased during deflations). Thus, stress relaxation in the rat lungs exhibited a hysteretic behavior. The observed flow and volume dependence of respiratory system resistance may be predicted by an equation derived from a model of the respiratory system that consists of two distinct compartments. The equation agrees well with the experimental data and indicates that the loading time is the critical parameter on which stress relaxation depends, during both lung inflation and deflation.

  20. Stress relaxation under cyclic electron irradiation

    International Nuclear Information System (INIS)

    Bystrov, L.N.; Reznitskij, M.E.

    1990-01-01

    The kinetics of deformation process in a relaxating sample under 2 MeV electron cyclic irradiation was studied experimentally. The Al-Mg alloys with controllable and different (in dislocation density precipitate presence and their character) structure were used in experiments. It was established that after the beam was switched on the deformation rate increased sharply and then, during prolonged irradiation, in a gradual manner. After the switching-off the relaxation rate decreases by jumps up to values close to extrapolated rates of pre-radiation relaxation. The exhibition of these effects with radiation switching-off and switchin-on is dependent on the initial rate of thermal relaxation, the test temperature, the preliminary cold deformation and the dominating deformation dislocation mechanism. The preliminary cold deformation and test temperature elevation slightly decrease the effect of instantaneous relaxation acceleration with the irradiation switch-on. 17 refs., 5 figs

  1. Relaxation creep model of impending earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Morgounov, V. A. [Russian Academy of Sciences, Institute of Physics of the Earth, Moscow (Russian Federation)

    2001-04-01

    The alternative view of the current status and perspective of seismic prediction studies is discussed. In the problem of the ascertainment of the uncertainty relation Cognoscibility-Unpredictability of Earthquakes, priorities of works on short-term earthquake prediction are defined due to the advantage that the final stage of nucleation of earthquake is characterized by a substantial activation of the process while its strain rate increases by the orders of magnitude and considerably increased signal-to-noise ratio. Based on the creep phenomenon under stress relaxation conditions, a model is proposed to explain different images of precursors of impending tectonic earthquakes. The onset of tertiary creep appears to correspond to the onset of instability and inevitably fails unless it unloaded. At this stage, the process acquires the self-regulating character to the greatest extent the property of irreversibility, one of the important components of prediction reliability. Data in situ suggest a principal possibility to diagnose the process of preparation by ground measurements of acoustic and electromagnetic emission in the rocks under constant strain in the condition of self-relaxed stress until the moment of fracture are discussed in context. It was obtained that electromagnetic emission precedes but does not accompany the phase of macrocrak development.

  2. Breathing and Relaxation

    Science.gov (United States)

    ... Find a Doctor Relaxation is the absence of tension in muscle groups and a minimum or absence ... Drill Meditation Progressive Muscle Relaxation Minimizing Shortness of Breath Visualization This information has been approved by Shelby ...

  3. Muon spin relaxation by electronic excitations moving in one dimension

    International Nuclear Information System (INIS)

    Jestaedt, Th.; Sivia, D.S.; Cox, S.F.J.

    1997-01-01

    The manner in which an electronic spin, executing a linear random walk, e.g. along a polymer chain, depolarizes a muon (or proton) probe spin, is investigated by computer simulation. The essential features of the model are the assumptions of a contact hyperfine interaction with limited range and of loss of coherence between successive encounters. The low dimensionality of the motion is reflected in the shape of the relaxation functions generated, which depart significantly from simple exponentials. Fits to various functional forms are examined for different combinations of hop rate and chain length, hyperfine constant and applied magnetic field

  4. Non Lyapunov stability of the constant spatially developing 1-D gas flow in presence of solutions having strictly positive exponential growth rate

    Science.gov (United States)

    Balint, Stefan; Balint, Agneta M.

    2017-01-01

    Different types of stabilities (global, local) and instabilities (global absolute, local convective) of the constant spatially developing 1-D gas flow are analyzed in the phase space of continuously differentiable functions, endowed with the usual algebraic operations and the topology generated by the uniform convergence on the real axis. For this purpose the Euler equations linearized at the constant flow are used. The Lyapunov stability analysis was presented in [1] and this paper is a continuation of [1].

  5. RATE CONSTANTS FOR THE REACTIONS OF OH RADICALS AND CL ATOMS WITH DI-N-PROPYL ETHER AND DI-N-BUTYL ETHER AND THEIR DEUTERATED ANALOGS. (R825252)

    Science.gov (United States)

    Using relative rate methods, rate constants for the gas-phase reactions of OH radicals and Cl atoms with di-n-propyl ether, di-n-propyl ether-d14, di-n-butyl ether and di-n-butyl ether-d18 have been measured at 296 ? 2 K and atmos...

  6. Onsager relaxation of toroidal plasmas

    International Nuclear Information System (INIS)

    Samain, A.; Nguyen, F.

    1997-01-01

    The slow relaxation of isolated toroidal plasmas towards their thermodynamical equilibrium is studied in an Onsager framework based on the entropy metric. The basic tool is a variational principle, equivalent to the kinetic equation, involving the profiles of density, temperature, electric potential, electric current. New minimization procedures are proposed to obtain entropy and entropy production rate functionals. (author)

  7. Heteronuclear Adiabatic Relaxation Dispersion (HARD) for quantitative analysis of conformational dynamics in proteins.

    Science.gov (United States)

    Traaseth, Nathaniel J; Chao, Fa-An; Masterson, Larry R; Mangia, Silvia; Garwood, Michael; Michaeli, Shalom; Seelig, Burckhard; Veglia, Gianluigi

    2012-06-01

    NMR relaxation methods probe biomolecular motions over a wide range of timescales. In particular, the rotating frame spin-lock R(1ρ) and Carr-Purcell-Meiboom-Gill (CPMG) R(2) experiments are commonly used to characterize μs to ms dynamics, which play a critical role in enzyme folding and catalysis. In an effort to complement these approaches, we introduced the Heteronuclear Adiabatic Relaxation Dispersion (HARD) method, where dispersion in rotating frame relaxation rate constants (longitudinal R(1ρ) and transverse R(2ρ)) is created by modulating the shape and duration of adiabatic full passage (AFP) pulses. Previously, we showed the ability of the HARD method to detect chemical exchange dynamics in the fast exchange regime (k(ex)∼10(4)-10(5) s(-1)). In this article, we show the sensitivity of the HARD method to slower exchange processes by measuring R(1ρ) and R(2ρ) relaxation rates for two soluble proteins (ubiquitin and 10C RNA ligase). One advantage of the HARD method is its nominal dependence on the applied radio frequency field, which can be leveraged to modulate the dispersion in the relaxation rate constants. In addition, we also include product operator simulations to define the dynamic range of adiabatic R(1ρ) and R(2ρ) that is valid under all exchange regimes. We conclude from both experimental observations and simulations that this method is complementary to CPMG-based and rotating frame spin-lock R(1ρ) experiments to probe conformational exchange dynamics for biomolecules. Finally, this approach is germane to several NMR-active nuclei, where relaxation rates are frequency-offset independent. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Real-time observation of cascaded electronic relaxation processes in p-Fluorotoluene

    Science.gov (United States)

    Hao, Qiaoli; Deng, Xulan; Long, Jinyou; Wang, Yanmei; Abulimiti, Bumaliya; Zhang, Bing

    2017-08-01

    Ultrafast electronic relaxation processes following two photoexcitation of 400 nm in p-Fluorotoluene (pFT) have been investigated utilizing time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. Cascaded electronic relaxation processes started from the electronically excited S2 state are directly imaged in real time and well characterized by two distinct time constants of 85 ± 10 fs and 2.4 ± 0.3 ps. The rapid component corresponds to the lifetime of the initially excited S2 state, including the structure relaxation from the Franck-Condon region to the conical intersection of S2/S1 and the subsequent internal conversion to the highly excited S1 state. While, the slower relaxation constant is attributed to the further internal conversion to the high levels of S0 from the secondarily populated S1 locating in the channel three region. Moreover, dynamical differences with benzene and toluene of analogous structures, including, specifically, the slightly slower relaxation rate of S2 and the evidently faster decay of S1, are also presented and tentatively interpreted as the substituent effects. In addition, photoelectron kinetic energy and angular distributions reveal the feature of accidental resonances with low-lying Rydberg states (the 3p, 4s and 4p states) during the multi-photon ionization process, providing totally unexpected but very interesting information for pFT.

  9. Optimizing Water Exchange Rates and Rotational Mobility for High-Relaxivity of a Novel Gd-DO3A Derivative Complex Conjugated to Inulin as Macromolecular Contrast Agents for MRI.

    Science.gov (United States)

    Granato, Luigi; Vander Elst, Luce; Henoumont, Celine; Muller, Robert N; Laurent, Sophie

    2018-02-01

    Thanks to the understanding of the relationships between the residence lifetime τ M of the coordinated water molecules to macrocyclic Gd-complexes and the rotational mobility τ R of these structures, and according to the theory for paramagnetic relaxation, it is now possible to design macromolecular contrast agents with enhanced relaxivities by optimizing these two parameters through ligand structural modification. We succeeded in accelerating the water exchange rate by inducing steric compression around the water binding site, and by removing the amide function from the DOTA-AA ligand [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid mono(p-aminoanilide)] (L) previously designed. This new ligand 10[2(1-oxo-1-p-propylthioureidophenylpropyl]-1,4,7,10-tetraazacyclodecane-1,4,7-tetraacetic acid (L 1 ) was then covalently conjugated to API [O-(aminopropyl)inulin] to get the complex API-(GdL 1 )x with intent to slow down the rotational correlation time (τ R ) of the macromolecular complex. The evaluation of the longitudinal relaxivity at different magnetic fields and the study of the 17 O-NMR at variable temperature of the low-molecular-weight compound (GdL 1 ) showed a slight decrease of the τ M value (τM310 = 331 ns vs. τM310 = 450 ns for the GdL complex). Consequently to the increase of the size of the API-(GdL 1 )x complex, the rotational correlation time becomes about 360 times longer compared to the monomeric GdL 1 complex (τ R  = 33,700 ps), which results in an enhanced proton relaxivity. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  10. Comparison of the rate constants for energy transfer in the light-harvesting protein, C-phycocyanin, calculated from Foerster`s theory and experimentally measured by time-resolved fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Debreczeny, Martin Paul [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    We have measured and assigned rate constants for energy transfer between chromophores in the light-harvesting protein C-phycocyanin (PC), in the monomeric and trimeric aggregation states, isolated from Synechococcus sp. PCC 7002. In order to compare the measured rate constants with those predicted by Fdrster`s theory of inductive resonance in the weak coupling limit, we have experimentally resolved several properties of the three chromophore types ({beta}{sub 155} {alpha}{sub 84}, {beta}{sub 84}) found in PC monomers, including absorption and fluorescence spectra, extinction coefficients, fluorescence quantum yields, and fluorescence lifetimes. The cpcB/C155S mutant, whose PC is missing the {beta}{sub 155} chromophore, was, useful in effecting the resolution of the chromophore properties and in assigning the experimentally observed rate constants for energy transfer to specific pathways.

  11. SU-E-P-55: The Reaserch of Cervical Cancer Delivered with Constant Dose Rate and Gantry Speed Arc Therapy(CDR-CAS-IMAT) On Conventional Linac

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R; Bai, W; Chi, Z; Gao, C; Xiaomei, F [The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei (China); Gao, Y [Hebei General Hospital, Shijiazhuang, Hebei (China)

    2015-06-15

    Purpose: Postoperative cervical cancer patients with large target volume and the target shape is concave, treatmented with static intensity-modulated radiotherapy (IMRT) is time consuming. The purpose of this study is to investigate using constant dose rate and gantry speed arc therapy(CDR-CAS-IMAT) on conventional linear accelrator, by comparing with the IMRT technology to evaluate the performance of CDR-CAS-IMAT on postoperative cervical cancer patients. Methods: 18 cervical cancer patients treated with IMRT on Varian 23IX were replanted using CDR-CAS-IMAT. The plans were generated on Oncentra v4.1 planning system, PTV was prescribed to 50.4 Gy in 28 fractions. Plans were evaluated based on the ability to meet the dose volume histogram. The homogeneity index (HI), conformity index (CI) of target volume, the dose of organs at risk, radiation delivery time and monitor units were also compared. SPSS 19.0 software paired T-test analysis was carried out on the two sets of data. Results: Compared with the IMRT plans PTV’s CI (t= 3.85, P =0.001), CTV’s CI, HI, D90, D95, D98, V95, V98, V100 (t=4.21, −3.18, 2.13, 4.65, 7.79, 2.29, 6.00, 2.13, p=0.001, 0.005, 0.049, 0.000, 0.000, 0.035, 0.000, 0.049), and cord D2 and rectum V40 (t=−2.65, −2.47, p= P =0.017, 0.025), and treatment time and MU (t=−36.0, −6.26, P =0.000, 0.000) were better than that of IMRT group. But the IMRT plans in terms of decreasing bladder V50, bowel V30 (t=2.14, 3.00, P =0.048, 0.008) and low dose irradiation volume were superior to that of CDR-CAS-IMAT plans. There were no significant differences in other statistical index. Conclusion: Cervical cancer patients with CDR-CAS-IMAT on Varian Clinical 23IX can get equivalent or superior dose distribution compared with the IMRT technology. IMAT have much less treatment time and MU can reduce the uncertainty factor and patient discomfort in treatment. This work was supported by the Medical Science Foundation of the health department of Hebei

  12. Full-dimensional analytical potential energy surface describing the gas-phase Cl + C2H6 reaction and kinetics study of rate constants and kinetic isotope effects.

    Science.gov (United States)

    Rangel, Cipriano; Espinosa-Garcia, Joaquin

    2018-02-07

    Within the Born-Oppenheimer approximation a full-dimensional analytical potential energy surface, PES-2017, was developed for the gas-phase hydrogen abstraction reaction between the chlorine atom and ethane, which is a nine body system. This surface presents a valence-bond/molecular mechanics functional form dependent on 60 parameters and is fitted to high-level ab initio calculations. This reaction presents little exothermicity, -2.30 kcal mol -1 , with a low height barrier, 2.44 kcal mol -1 , and intermediate complexes in the entrance and exit channels. We found that the energetic description was strongly dependent on the ab initio level used and it presented a very flat topology in the entrance channel, which represents a theoretical challenge in the fitting process. In general, PES-2017 reproduces the ab initio information used as input, which is merely a test of self-consistency. As a first test of the quality of the PES-2017, a theoretical kinetics study was performed in the temperature range 200-1400 K using two approaches, i.e. the variational transition-state theory and quasi-classical trajectory calculations, with spin-orbit effects. The rate constants show reasonable agreement with experiments in the whole temperature range, with the largest differences at the lowest temperatures, and this behaviour agrees with previous theoretical studies, thus indicating the inherent difficulties in the theoretical simulation of the kinetics of the title reaction. Different sources of error were analysed, such as the limitations of the PES and theoretical methods, recrossing effects, and the tunnelling effect, which is negligible in this reaction, and the manner in which the spin-orbit effects were included in this non-relativistic study. We found that the variation of spin-orbit coupling along the reaction path, and the influence of the reactivity of the excited Cl( 2 P 1/2 ) state, have relative importance, but do not explain the whole discrepancy. Finally, the

  13. Rate constants of hydroxyl radical oxidation of polychlorinated biphenyls in the gas phase: A single−descriptor based QSAR and DFT study

    International Nuclear Information System (INIS)

    Yang, Zhihui; Luo, Shuang; Wei, Zongsu; Ye, Tiantian; Spinney, Richard; Chen, Dong; Xiao, Ruiyang

    2016-01-01

    The second‒order rate constants (k) of hydroxyl radical (·OH) with polychlorinated biphenyls (PCBs) in the gas phase are of scientific and regulatory importance for assessing their global distribution and fate in the atmosphere. Due to the limited number of measured k values, there is a need to model the k values for unknown PCBs congeners. In the present study, we developed a quantitative structure–activity relationship (QSAR) model with quantum chemical descriptors using a sequential approach, including correlation analysis, principal component analysis, multi−linear regression, validation, and estimation of applicability domain. The result indicates that the single descriptor, polarizability (α), plays an important role in determining the reactivity with a global standardized function of lnk = −0.054 × α ‒ 19.49 at 298 K. In order to validate the QSAR predicted k values and expand the current k value database for PCBs congeners, an independent method, density functional theory (DFT), was employed to calculate the kinetics and thermodynamics of the gas‒phase ·OH oxidation of 2,4′,5-trichlorobiphenyl (PCB31), 2,2′,4,4′-tetrachlorobiphenyl (PCB47), 2,3,4,5,6-pentachlorobiphenyl (PCB116), 3,3′,4,4′,5,5′-hexachlorobiphenyl (PCB169), and 2,3,3′,4,5,5′,6-heptachlorobiphenyl (PCB192) at 298 K at B3LYP/6–311++G**//B3LYP/6–31 + G** level of theory. The QSAR predicted and DFT calculated k values for ·OH oxidation of these PCB congeners exhibit excellent agreement with the experimental k values, indicating the robustness and predictive power of the single–descriptor based QSAR model we developed. - Highlights: • We developed a single−descriptor based QSAR model for ·OH oxidation of PCBs. • We independently validated the QSAR predicted k values of five PCB congeners with the DFT method. • The QSAR predicted and DFT calculated k for the five PCB congeners exhibit excellent agreement. - We developed a single

  14. Corroborative evidences of TV γ -scaling of the α-relaxation originating from the primitive relaxation/JG β relaxation

    Science.gov (United States)

    Ngai, K. L.; Paluch, M.

    2017-12-01

    Successful thermodynamic scaling of the structural alpha-relaxation time or transport coefficients of glass-forming liquids determined at various temperatures T and pressures P means the data conform to a single function of the product variable TVgamma, where V is the specific volume and gamma is a material specific constant. In the past two decades we have witnessed successful TVgamma-scaling in many molecular, polymeric, and even metallic glass-formers, and gamma is related to the slope of the repulsive part of the intermolecular potential. The advances made indicate TVgamma-scaling is an important aspect of the dynamic and thermodynamic properties of glass-formers. In this paper we show the origin of TVgamma-scaling is not from the structural alpha-relaxation time. Instead it comes from its precursor, the Johari-Goldstein beta-relaxation or the primitive relaxation of the Coupling Model and their relaxation times or tau_0 respectively. It is remarkable that all relaxation times are functions of TVgamma with the same gama, as well as the fractional exponent of the Kohlrausch correlation function of the structural alpha-relaxation. We arrive at this conclusion convincingly based on corroborative evidences from a number of experiments and molecular dynamics simulations performed on a wide variety of glass-formers and in conjunction with consistency with the predictions of the Coupling Model.

  15. A hierarchy of functionally important relaxations within myoglobin based on solvent effects, mutations and kinetic model.

    Science.gov (United States)

    Dantsker, David; Samuni, Uri; Friedman, Joel M; Agmon, Noam

    2005-06-01

    Geminate CO rebinding in myoglobin is studied for two viscous solvents, trehalose and sol-gel (bathed in 100% glycerol) at several temperatures. Mutations in key distal hemepocket residues are used to eliminate or enhance specific relaxation modes. The time-resolved data are analyzed with a modified Agmon-Hopfield model which is capable of providing excellent fits in cases where a single relaxation mode is dominant. Using this approach, we determine the relaxation rate constants of specific functionally important modes, obtaining also their Arrhenius activation energies. We find a hierarchy of distal pocket modes controlling the rebinding kinetics. The "heme access mode" (HAM) is responsible for the major slow-down in rebinding. It is a solvent-coupled cooperative mode which restricts ligand return from the xenon cavities. Bulky side-chains, like those His64 and Trp29 (in the L29W mutant), operate like overdamped pendulums which move over and block the binding site. They may be either unslaved (His64) or moderately slaved (Trp29) to the solvent. Small side-chain relaxations, most notably of leucines, are revealed in some mutants (V68L, V68A). They are conjectured to facilitate inter-cavity ligand motion. When all relaxations are arrested (H64L in trehalose), we observe pure inhomogeneous kinetics with no temperature dependence, suggesting that proximal relaxation is not a factor on the investigated timescale.

  16. Molecular order and T1-relaxation, cross-relaxation in nitroxide spin labels

    Science.gov (United States)

    Marsh, Derek

    2018-05-01

    Interpretation of saturation-recovery EPR experiments on nitroxide spin labels whose angular rotation is restricted by the orienting potential of the environment (e.g., membranes) currently concentrates on the influence of rotational rates and not of molecular order. Here, I consider the dependence on molecular ordering of contributions to the rates of electron spin-lattice relaxation and cross relaxation from modulation of N-hyperfine and Zeeman anisotropies. These are determined by the averages and , where θ is the angle between the nitroxide z-axis and the static magnetic field, which in turn depends on the angles that these two directions make with the director of uniaxial ordering. For saturation-recovery EPR at 9 GHz, the recovery rate constant is predicted to decrease with increasing order for the magnetic field oriented parallel to the director, and to increase slightly for the perpendicular field orientation. The latter situation corresponds to the usual experimental protocol and is consistent with the dependence on chain-labelling position in lipid bilayer membranes. An altered dependence on order parameter is predicted for saturation-recovery EPR at high field (94 GHz) that is not entirely consistent with observation. Comparisons with experiment are complicated by contributions from slow-motional components, and an unexplained background recovery rate that most probably is independent of order parameter. In general, this analysis supports the interpretation that recovery rates are determined principally by rotational diffusion rates, but experiments at other spectral positions/field orientations could increase the sensitivity to order parameter.

  17. Four-dimensional dose distributions of step-and-shoot IMRT delivered with real-time tumor tracking for patients with irregular breathing: Constant dose rate vs dose rate regulation

    International Nuclear Information System (INIS)

    Yang Xiaocheng; Han-Oh, Sarah; Gui Minzhi; Niu Ying; Yu, Cedric X.; Yi Byongyong

    2012-01-01

    Purpose: Dose-rate-regulated tracking (DRRT) is a tumor tracking strategy that programs the MLC to track the tumor under regular breathing and adapts to breathing irregularities during delivery using dose rate regulation. Constant-dose-rate tracking (CDRT) is a strategy that dynamically repositions the beam to account for intrafractional 3D target motion according to real-time information of target location obtained from an independent position monitoring system. The purpose of this study is to illustrate the differences in the effectiveness and delivery accuracy between these two tracking methods in the presence of breathing irregularities. Methods: Step-and-shoot IMRT plans optimized at a reference phase were extended to remaining phases to generate 10-phased 4D-IMRT plans using segment aperture morphing (SAM) algorithm, where both tumor displacement and deformation were considered. A SAM-based 4D plan has been demonstrated to provide better plan quality than plans not considering target deformation. However, delivering such a plan requires preprogramming of the MLC aperture sequence. Deliveries of the 4D plans using DRRT and CDRT tracking approaches were simulated assuming the breathing period is either shorter or longer than the planning day, for 4 IMRT cases: two lung and two pancreatic cases with maximum GTV centroid motion greater than 1 cm were selected. In DRRT, dose rate was regulated to speed up or slow down delivery as needed such that each planned segment is delivered at the planned breathing phase. In CDRT, MLC is separately controlled to follow the tumor motion, but dose rate was kept constant. In addition to breathing period change, effect of breathing amplitude variation on target and critical tissue dose distribution is also evaluated. Results: Delivery of preprogrammed 4D plans by the CDRT method resulted in an average of 5% increase in target dose and noticeable increase in organs at risk (OAR) dose when patient breathing is either 10% faster or

  18. Discovery of a Significant Acetone•Hydroperoxy Adduct Chaperone Effect and Its Impact on the Determination of Room Temperature Rate Constants for Acetonylperoxy/Hydroperoxy Self-Reactions and Cross Reaction Via Infrared Kinetic Spectroscopy.

    Science.gov (United States)

    Grieman, F. J.; Hui, A. O.; Okumura, M.; Sander, S. P.

    2017-12-01

    In order to model the upper troposphere/lower stratosphere in regions containing acetone properly, the kinetics of the acetonylperoxy/hydroperoxy self-reactions and cross reaction have been studied over a wide temperature range using Infrared Kinetic Spectroscopy. We report here the determination of different rate constants for the acetonylperoxy chemistry that we obtained at 298 K compared to currently accepted values. A considerable increase in the observed HO2 self-reaction rate constant due to rate enhancement via the chaperone effect from the reaction between HO2 and the (CH3)2CO•HO2 hydrogen-bonded adduct, even at room temperature, was discovered that was previously ignored. Correct determination of the acetonylperoxy and hydroperoxy kinetics must include this dependence of the HO2 self-reaction rate on acetone concentration. Via excimer laser flash photolysis to create the radical reactants, HO2 absorption was monitored in the infrared by diode laser wavelength modulation detection simultaneously with CH3C(O)CH2O2absorption monitored in the ultraviolet at 300 nm as a function of time. Resulting decay curves were fit concurrently first over a short time scale to obtain the rate constants minimizing subsequent product reactions. Modeling/fitting with a complete reaction scheme was then performed to refine the rate constants and test their veracity. Experiments were carried out over a variety of concentrations of acetone and methanol. Although no effect due to methanol concentration was found at room temperature, the rate constant for the hydroperoxy self-reaction was found to increase linearly with acetone concentration which is interpreted as the adduct being formed and resulting in a chaperone mechanism that enhances the self-reaction rate: (CH3)2CO·HO2 + HO2 → H2O2 + O2 + (CH3)2CO Including this effect, the resulting room temperature rate constants for the cross reaction and the acetonylperoxy self-reaction were found to be 2-3 times smaller than

  19. A modified homogeneous relaxation model for CO2 two-phase flow in vapour ejector

    International Nuclear Information System (INIS)

    Haida, M.; Palacz, M.; Smolka, J.; Nowak, A. J.; Hafner, A.; Banasiak, K.

    2016-01-01

    In this study, the homogenous relaxation model (HRM) for CO 2 flow in a two-phase ejector was modified in order to increase the accuracy of the numerical simulations The two- phase flow model was implemented on the effective computational tool called ejectorPL for fully automated and systematic computations of various ejector shapes and operating conditions. The modification of the HRM was performed by a change of the relaxation time and the constants included in the relaxation time equation based on the experimental result under the operating conditions typical for the supermarket refrigeration system. The modified HRM was compared to the HEM results, which were performed based on the comparison of motive nozzle and suction nozzle mass flow rates. (paper)

  20. A modified homogeneous relaxation model for CO2 two-phase flow in vapour ejector

    Science.gov (United States)

    Haida, M.; Palacz, M.; Smolka, J.; Nowak, A. J.; Hafner, A.; Banasiak, K.

    2016-09-01

    In this study, the homogenous relaxation model (HRM) for CO2 flow in a two-phase ejector was modified in order to increase the accuracy of the numerical simulations The two- phase flow model was implemented on the effective computational tool called ejectorPL for fully automated and systematic computations of various ejector shapes and operating conditions. The modification of the HRM was performed by a change of the relaxation time and the constants included in the relaxation time equation based on the experimental result under the operating conditions typical for the supermarket refrigeration system. The modified HRM was compared to the HEM results, which were performed based on the comparison of motive nozzle and suction nozzle mass flow rates.