WorldWideScience

Sample records for relaxation microscopy strem

  1. Transient absorption microscopy studies of energy relaxation in graphene oxide thin film.

    Science.gov (United States)

    Murphy, Sean; Huang, Libai

    2013-04-10

    Spatial mapping of energy relaxation in graphene oxide (GO) thin films has been imaged using transient absorption microscopy (TAM). Correlated AFM images allow us to accurately determine the thickness of the GO films. In contrast to previous studies, correlated TAM-AFM allows determination of the effect of interactions of GO with the substrate and between stacked GO layers on the relaxation dynamics. Our results show that energy relaxation in GO flakes has little dependence on the substrate, number of stacked layers, and excitation intensity. This is in direct contrast to pristine graphene, where these factors have great consequences in energy relaxation. This suggests intrinsic factors rather than extrinsic ones dominate the excited state dynamics of GO films.

  2. Transient absorption microscopy studies of energy relaxation in graphene oxide thin film

    International Nuclear Information System (INIS)

    Murphy, Sean; Huang, Libai

    2013-01-01

    Spatial mapping of energy relaxation in graphene oxide (GO) thin films has been imaged using transient absorption microscopy (TAM). Correlated AFM images allow us to accurately determine the thickness of the GO films. In contrast to previous studies, correlated TAM–AFM allows determination of the effect of interactions of GO with the substrate and between stacked GO layers on the relaxation dynamics. Our results show that energy relaxation in GO flakes has little dependence on the substrate, number of stacked layers, and excitation intensity. This is in direct contrast to pristine graphene, where these factors have great consequences in energy relaxation. This suggests intrinsic factors rather than extrinsic ones dominate the excited state dynamics of GO films. (paper)

  3. Applications and limitations of electron correlation microscopy to study relaxation dynamics in supercooled liquids

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pei; He, Li [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States); Besser, Matthew F. [Materials Science and Engineering, Ames Laboratory, Iowa State University, Ames, IA 50011 (United States); Liu, Ze; Schroers, Jan [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06511 (United States); Kramer, Matthew J. [Materials Science and Engineering, Ames Laboratory, Iowa State University, Ames, IA 50011 (United States); Voyles, Paul M., E-mail: paul.voyles@wisc.edu [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2017-07-15

    Electron correlation microscopy (ECM) is a way to measure structural relaxation times, τ, of liquids with nanometer-scale spatial resolution using coherent electron scattering equivalent of photon correlation spectroscopy. We have applied ECM with a 3.5 nm diameter probe to Pt{sub 57.5}Cu{sub 14.7}Ni{sub 5.3}P{sub 22.5} amorphous nanorods and Pd{sub 40}Ni{sub 40}P{sub 20} bulk metallic glass (BMG) heated inside the STEM into the supercooled liquid region. These data demonstrate that the ECM technique is limited by the characteristics of the time series, which must be at least 40τ to obtain a well-converged correlation function g{sub 2}(t), and the time per frame, which must be less than 0.1τ to obtain sufficient sampling. A high-speed direct electron camera enables fast acquisition and affords reliable g{sub 2}(t) data even with low signal per frame. - Highlights: • Electron Correlation Microscopy (ECM) technique was applied to measure structural relaxation times of supercooled liquids in metallic glass. • In Pt{sub 57.5}Cu{sub 14.7}Ni{sub 5.3}P{sub 22.5} nanowire, τ and β decreases over the measured supercooled liquid regime. • In Pd{sub 40}Ni{sub 40}P{sub 20} bulk alloy, τ decreases from T{sub g}+28 °C to T{sub g}+48 °C, then increases as the temperature approaches T{sub x}. • ECM experiment requires a length of time series at least 40 times the characteristic relaxation time and a time per diffraction pattern at most 0.1 times the relaxation time.

  4. Comparison the Serum STREM1 Levels Between Children with Upper and Lower UTI.

    Science.gov (United States)

    Ehsanipour, Fahime; Noorbakhsh, Samileh; Zarabi, Vida; Movahedi, Zahra; Rahimzadeh, Nahid

    2017-01-01

    Pyelonephritis is the most common and important infection among Iranian pediatric population. Differentiation between upper and lower Urinary Tract Infection (UTI) is often difficult based on clinical data. Therefore, definite diagnosis is helpful for choosing appropriate antibiotic and decision for hospital admission. The main purpose of this study was todetermine the diagnostic value of serum STREM-1 level in children suspicious to UTI and differentiation of upper UTI and lower UTI. This prospective cross sectional study (2010-2011) was performed to evaluate and compare the serum level of STREM- 1 (pg. /ml) in 36 diagnosed UTI patients (24 upper and 12 lower UTI) with 25 normal children (without UTI) in Rasoul Akram hospital, Tehran, Iran. The mean age of studied children was 3.64 years; 24 male and 37 female. Urinary analysis and urine culture were performed for all UTI cases and only the positive cultured cases with the same microorganism were enrolled in the study. Distinguishing the upper from lower UTI was done on the basis of clinical manifestation and laboratory tests and confirmed by Imaging studies (ultra sonography /or DMSA scan). Blood sampling was taken from all children and centrifuged .The level of STREM-1 (pg /ml) in all sera was determined by Enzyme immunoassay technique (Human TREM-1 immunoassay Sandwich test, Quantikine, R&D systems, Minneapolis; USA). Cut-off levels for STREM-1 were illustrated by ROC curve. The pUTI (427.72pg/ml) and controls (124.24 pg. /ml; P =0.000) ; with cutoff point 111.5 pg./ml ; it had 83.3% sensitivity; and 60 % specificity to distinguish UTI from control. Serum STREM -1 level had no significantly difference between the upper and lower UTI (500pg/ml vs. 283 pg. /ml, P value=0.1) with cutoff point 132 pg./ml it had 83.3% sensitivity ; and 60 % specificity to distinguish upper UTI from lower UTI. Our study demonstrates that even low amount of serum STREM-1 (111.5 pg./ml) has 83.3% sensitivity ; and 60 % specificity to

  5. Determining oxygen relaxations at an interface: A comparative study between transmission electron microscopy techniques.

    Science.gov (United States)

    Gauquelin, N; van den Bos, K H W; Béché, A; Krause, F F; Lobato, I; Lazar, S; Rosenauer, A; Van Aert, S; Verbeeck, J

    2017-10-01

    Nowadays, aberration corrected transmission electron microscopy (TEM) is a popular method to characterise nanomaterials at the atomic scale. Here, atomically resolved images of nanomaterials are acquired, where the contrast depends on the illumination, imaging and detector conditions of the microscope. Visualization of light elements is possible when using low angle annular dark field (LAADF) STEM, annular bright field (ABF) STEM, integrated differential phase contrast (iDPC) STEM, negative spherical aberration imaging (NCSI) and imaging STEM (ISTEM). In this work, images of a NdGaO 3 -La 0.67 Sr 0.33 MnO 3 (NGO-LSMO) interface are quantitatively evaluated by using statistical parameter estimation theory. For imaging light elements, all techniques are providing reliable results, while the techniques based on interference contrast, NCSI and ISTEM, are less robust in terms of accuracy for extracting heavy column locations. In term of precision, sample drift and scan distortions mainly limits the STEM based techniques as compared to NCSI. Post processing techniques can, however, partially compensate for this. In order to provide an outlook to the future, simulated images of NGO, in which the unavoidable presence of Poisson noise is taken into account, are used to determine the ultimate precision. In this future counting noise limited scenario, NCSI and ISTEM imaging will provide more precise values as compared to the other techniques, which can be related to the mechanisms behind the image recording. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Measurement of in-plane magnetic relaxation in RE-123 coated conductors by use of scanning Hall probe microscopy

    International Nuclear Information System (INIS)

    Shiohara, K.; Higashikawa, K.; Inoue, M.; Kiss, T.; Iijima, Y.; Saitoh, T.; Yoshizumi, M.; Izumi, T.

    2013-01-01

    Highlights: ► We have investigated electric field criterion of in-plane critical current density. ► We could measure magnetic relaxation in a remanent state. ► The SHPM results show good agreement with the measurements by the 4-probe method. -- Abstract: We have investigated electric field criterion of in-plane critical current density in a coated conductor characterized by scanning Hall-probe microscopy (SHPM). From remanent field distribution and its relaxation measurements, we could obtain critical current distribution and induced electric field simultaneously by considering the Biot-Savart law and the Faraday’s law, respectively. These results lead us to evaluate a distribution of local critical current density and the corresponding criterion of electric field. As a result, it was found that the electric field criterion for the SHPM analysis was several orders lower than that used in the conventional 4-probe resistive method. However, the data point obtained by the SHPM shows good agreement with E–J curve analytically extended from the measurements by the 4-probe method. This means that we could characterize in-plane distribution of critical current density in a coated conductor at an electric field criterion quantitatively by this method in a nondestructive manner. These findings will be very important information since the uniformity of local critical current density in a coated conductor at extremely low electric fields is a key issue (1) especially for DC applications, (2) for quality control of coated conductors, and (3) for the standardization of the characterization of critical current among different methods

  7. The impact of structural relaxation on spin polarization and magnetization reversal of individual nano structures studied by spin-polarized scanning tunneling microscopy.

    Science.gov (United States)

    Sander, Dirk; Phark, Soo-Hyon; Corbetta, Marco; Fischer, Jeison A; Oka, Hirofumi; Kirschner, Jürgen

    2014-10-01

    The application of low temperature spin-polarized scanning tunneling microscopy and spectroscopy in magnetic fields for the quantitative characterization of spin polarization, magnetization reversal and magnetic anisotropy of individual nano structures is reviewed. We find that structural relaxation, spin polarization and magnetic anisotropy vary on the nm scale near the border of a bilayer Co island on Cu(1 1 1). This relaxation is lifted by perimetric decoration with Fe. We discuss the role of spatial variations of the spin-dependent electronic properties within and at the edge of a single nano structure for its magnetic properties.

  8. Diagnostic value of sTREM-1 in bronchoalveolar lavage fluid in ICU patients with bacterial lung infections: a bivariate meta-analysis.

    Science.gov (United States)

    Shi, Jia-Xin; Li, Jia-Shu; Hu, Rong; Li, Chun-Hua; Wen, Yan; Zheng, Hong; Zhang, Feng; Li, Qin

    2013-01-01

    The serum soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) is a useful biomarker in differentiating bacterial infections from others. However, the diagnostic value of sTREM-1 in bronchoalveolar lavage fluid (BALF) in lung infections has not been well established. We performed a meta-analysis to assess the accuracy of sTREM-1 in BALF for diagnosis of bacterial lung infections in intensive care unit (ICU) patients. We searched PUBMED, EMBASE and Web of Knowledge (from January 1966 to October 2012) databases for relevant studies that reported diagnostic accuracy data of BALF sTREM-1 in the diagnosis of bacterial lung infections in ICU patients. Pooled sensitivity, specificity, and positive and negative likelihood ratios were calculated by a bivariate regression analysis. Measures of accuracy and Q point value (Q*) were calculated using summary receiver operating characteristic (SROC) curve. The potential between-studies heterogeneity was explored by subgroup analysis. Nine studies were included in the present meta-analysis. Overall, the prevalence was 50.6%; the sensitivity was 0.87 (95% confidence interval (CI), 0.72-0.95); the specificity was 0.79 (95% CI, 0.56-0.92); the positive likelihood ratio (PLR) was 4.18 (95% CI, 1.78-9.86); the negative likelihood ratio (NLR) was 0.16 (95% CI, 0.07-0.36), and the diagnostic odds ratio (DOR) was 25.60 (95% CI, 7.28-89.93). The area under the SROC curve was 0.91 (95% CI, 0.88-0.93), with a Q* of 0.83. Subgroup analysis showed that the assay method and cutoff value influenced the diagnostic accuracy of sTREM-1. BALF sTREM-1 is a useful biomarker of bacterial lung infections in ICU patients. Further studies are needed to confirm the optimized cutoff value.

  9. The diagnostic value of CRP, IL-8, PCT, and sTREM-1 in the detection of bacterial infections in pediatric oncology patients with febrile neutropenia

    NARCIS (Netherlands)

    Miedema, Karin G. E.; de Bont, Eveline S. J. M.; Elferink, Rob F. M. Oude; van Vliet, Michel J.; Nijhuis, Claudi S. M. Oude; Kamps, Willem A.; Tissing, Wim J. E.

    2011-01-01

    In this study, we evaluated C-reactive protein (CRP), interleukin (IL)-8, procalcitonin (PCT), and soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) as predictors for bacterial infection in febrile neutropenia, plus their usefulness in febrile neutropenia during chemotherapy-induced

  10. Microscopy

    Science.gov (United States)

    Patricia A. Moss; Les Groom

    2001-01-01

    Microscopy is the study and interpretation of images produced by a microscope. "Interpretation" is the keyword, because the microscope enables one to see structures that are too small or too close together to be resolved by the unaided eye. (The human eye cannot separate two points or lines that are closer together than 0.1 mm.) it is important to...

  11. Two-photon excitation laser scanning microscopy of rabbit nasal septal cartilage following Nd:YAG-laser-mediated stress relaxation

    Science.gov (United States)

    Kim, Charlton C.; Wallace, Vincent P.; Coleno, Mariah L.; Dao, Xavier; Tromberg, Bruce J.; Wong, Brian J.

    2000-04-01

    Laser irradiation of hyaline cartilage result in stable shape changes due to temperature dependent stress relaxation. In this study, we determined the structural changes in chondrocytes within rabbit nasal septal cartilage tissue over a 12-day period using a two-photon laser scanning microscope (TPM) following Nd:YAG laser irradiation. During laser irradiation surface temperature, stress relaxation, and diffuse reflectance, were measured dynamically. Each specimen received one or two sequential laser exposures. The cartilage reached a peak surface temperature of about 61 degrees C during irradiation. Cartilage denatured in 50 percent EtOH was used as a positive control. TPM was performed to detect the fluorescence emission from the chondrocytes. Images of chondrocytes were obtained at depths up to 150 microns, immediately following laser exposure, and also following 12 days in culture. Few differences in the pattern or intensity of fluorescence was observed between controls and irradiated specimens imaged immediately following exposure, regardless of the number of laser pulses. However, following twelve days in tissue culture, the irradiated specimens increase, whereas the native tissue diminishes, in intensity and distribution of fluorescence in the cytoplasm. In contrast, the positive control shows only extracellular matrices and empty lacuna, feature consistent with cell membrane lysis.

  12. In Situ Scanning Tunneling Microscopy Topography Changes of Gold (111) in Aqueous Sulfuric Acid Produced by Electrochemical Surface Oxidation and Reduction and Relaxation Phenomena

    Science.gov (United States)

    Pasquale, M. A.; Nieto, F. J. Rodríguez; Arvia, A. J.

    The electrochemical formation and reduction of O-layers on gold (111) films in 1 m sulfuric acid under different potentiodynamic routines are investigated utilizing in situ scanning tunneling microscopy. The surface dynamics is interpreted considering the anodic and cathodic reaction pathways recently proposed complemented with concurrent relaxation phenomena occurring after gold (111) lattice mild disruption (one gold atom deep) and moderate disruption (several atoms deep). The dynamics of both oxidized and reduced gold topographies depends on the potentiodynamic routine utilized to form OH/O surface species. The topography resulting from a mild oxidative disruption is dominated by quasi-2D holes and hillocks of the order of 5 nm, involving about 500-600 gold atoms each, and their coalescence. A cooperative turnover process at the O-layer, in which the anion ad-layer and interfacial water play a key role, determines the oxidized surface topography. The reduction of these O-layers results in gold clusters, their features depending on the applied potential routine. A moderate oxidative disruption produces a surface topography of hillocks and holes several gold atoms high and deep, respectively. The subsequent reduction leads to a spinodal gold pattern. Concurrent coalescence appears to be the result of an Ostwald ripening that involves the surface diffusion of both gold atoms and clusters. These processes produce an increase in surface roughness and an incipient gold faceting. The dynamics of different topographies can be qualitatively explained employing the arguments from colloidal science theory. For 1.1 V ≤ E ≅ Epzc weak electrostatic repulsions favor gold atom/cluster coalescence, whereas for E < Epzc the attenuated electrostatic repulsions among gold surfaces stabilize small clusters over the substrate producing string-like patterns.

  13. In-situ transmission electron microscopy study of glissile grain boundary dislocation relaxation in a near Σ = 3 {1 1 1} grain boundary in copper

    International Nuclear Information System (INIS)

    Couzinie, J.P.; Decamps, B.; Boulanger, L.; Priester, L.

    2005-01-01

    An in-situ annealing experiment has been performed on an intergranular dislocation configuration composed only of glissile grain boundary dislocations observed in a near Σ = 3 {1 1 1} grain boundary in copper. Relaxation phenomena are not obvious than those predicted by theoretical models. Upon annealing, glissile intergranular dislocations are shown to overcome dislocation obstacles by node movement leading to a decrease of the total grain boundary energy

  14. Two-photon excitation laser scanning microscopy of porcine nasal septal cartilage following Nd:YAG laser-mediated stress relaxation

    Science.gov (United States)

    Kim, Charlton C.; Wallace, Vincent P.; Rasouli, Alexandre; Coleno, Mariah L.; Dao, Xavier; Tromberg, Bruce J.; Wong, Brian J.

    2000-05-01

    Laser irradiation of hyaline cartilage result in stable shape changes due to temperature dependent stress relaxation. In this study, we determined the structural changes in chondrocytes within porcine nasal septal cartilage tissue over a 4-day period using a two-photon laser scanning microscope (TPM) following Nd:YAG laser irradiation (lambda equals 1.32 micrometer) using parameters that result in mechanical stress relaxation (6.0 W, 5.4 mm spot diameter). TPM excitation (780 nm) result in induction of fluorescence from endogenous agents such as NADH, NADPH, and flavoproteins in the 400 - 500 nm spectral region. During laser irradiation diffuse reflectance (from a probe HeNe laser, (lambda) equals 632.8 nm), surface temperature, and stress relaxation were measured dynamically. Each specimen received one, two, or three sequential laser exposures (average irradiation times of 5, 6, and 8 seconds). The cartilage reached a peak surface temperature of about 70 degrees Celsius during irradiation. Cartilage denatured in 50% EtOH (20 minutes) was used as a positive control. TPM was performed using a mode-locked 780 nm Titanium:Sapphire (Ti:Al203) beam with a, 63X, 1.2 N.A. water immersion objective (working distance of 200 mm) to detect the fluorescence emission from the chondrocytes. Images of chondrocytes were obtained at depths up to 150 microns (lateral resolution equals 35 micrometer X 35 micrometer). Images were obtained immediately following laser exposure, and also after 4 days in culture. In both cases, the irradiated and non-irradiated specimens do not show any discernible difference in general shape or auto fluorescence. In contrast, positive controls (immersed in 50% ethanol), show markedly increased fluorescence relative to both the native and irradiated specimens, in the cytoplasmic region.

  15. Relaxation System

    Science.gov (United States)

    1987-01-01

    Environ Corporation's relaxation system is built around a body lounge, a kind of super easy chair that incorporates sensory devices. Computer controlled enclosure provides filtered ionized air to create a feeling of invigoration, enhanced by mood changing aromas. Occupant is also surrounded by multidimensional audio and the lighting is programmed to change colors, patterns, and intensity periodically. These and other sensory stimulators are designed to provide an environment in which the learning process is stimulated, because research has proven that while an individual is in a deep state of relaxation, the mind is more receptive to new information.

  16. Single-wavelength functional photoacoustic microscopy in biological tissue

    OpenAIRE

    Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin; Wang, Lihong V.

    2011-01-01

    Recently, we developed a reflection-mode relaxation photoacoustic microscope, based on saturation intensity, to measure picosecond relaxation times using a nanosecond laser. Here, using the different relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, the oxygen saturation was quantified in vivo with single-wavelength photoacoustic microscopy. All previous functional photoacoustic microscopy measurements required ima...

  17. Breathing and Relaxation

    Science.gov (United States)

    ... Find a Doctor Relaxation is the absence of tension in muscle groups and a minimum or absence ... Drill Meditation Progressive Muscle Relaxation Minimizing Shortness of Breath Visualization This information has been approved by Shelby ...

  18. Mechanical relaxation in glasses

    International Nuclear Information System (INIS)

    Hiki, Y.

    2004-01-01

    The basic properties of glasses and the characteristics of mechanical relaxation in glasses were briefly reviewed, and then our studies concerned were presented. Experimental methods adopted were viscosity, internal friction, ultrasonic attenuation, and Brillouin scattering measurements. The specimens used were several kinds of inorganic, organic, and metallic glasses. The measurements were mainly carried out from the room temperature up to the glass transition temperature, and the relaxation time was determined as a function of temperature. The 'double relaxation' composed of two Arrhenius-type relaxations was observed in many materials. In both relaxations, the 'compensation effect' showing a correlation of the pre-exponential factor and the activation energy was observed. These results were explained by considering the 'complex relaxation' due to cooperative motions of atoms or group of atoms. Values of activation energy near the glass transition determined by the various experimental methods were compared with each other

  19. Fluorescence microscopy.

    Science.gov (United States)

    Sanderson, Michael J; Smith, Ian; Parker, Ian; Bootman, Martin D

    2014-10-01

    Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. © 2014 Cold Spring Harbor Laboratory Press.

  20. Relaxation characteristics of hastelloy X

    International Nuclear Information System (INIS)

    Suzuki, Kazuhiko

    1980-02-01

    Relaxation diagrams of Hastelloy X (relaxation curves, relaxation design diagrams, etc.) were generated from the creep constitutive equation of Hastelloy X, using inelastic stress analysis code TEPICC-J. These data are in good agreement with experimental relaxation data of ORNL-5479. Three typical inelastic stress analyses were performed for various relaxation behaviors of the high-temperature structures. An attempt was also made to predict these relaxation behaviors by the relaxation curves. (author)

  1. TEACHING NEUROMUSCULAR RELAXATION.

    Science.gov (United States)

    NORRIS, JEANNE E.; STEINHAUS, ARTHUR H.

    THIS STUDY ATTEMPTED TO FIND OUT WHETHER (1) THE METHODS FOR ATTAINING NEUROMUSCULAR RELAXATION THAT HAVE PROVED FRUITFUL IN THE ONE-TO-ONE RELATIONSHIP OF THE CLINIC CAN BE SUCCESSFULLY ADAPTED TO THE TEACHER-CLASS RELATIONSHIP OF THE CLASSROOM AND GYMNASIUM, AND (2) NEUROMUSCULAR RELAXATION CAN BE TAUGHT SUCCESSFULLY BY AN APPROPRIATELY TRAINED…

  2. Relaxation of Anisotropic Glasses

    DEFF Research Database (Denmark)

    Deubener, Joachim; Martin, Birgit; Wondraczek, Lothar

    2004-01-01

    . When the load was removed at room temperature a permanent optical anisotropy (birefringence) was observed only perpendicular to cylinder axis and the pressure direction indicating complete elimination of thermal stresses. Relaxation of structural anisotropy was studied from reheating experiments using...... the energy release, thermo-mechanical and optical relaxation behaviour are drawn....

  3. Relaxation techniques for stress

    Science.gov (United States)

    ... raise your heart rate. This is called the stress response. Relaxation techniques can help your body relax and lower your blood pressure ... also many other types of breathing techniques you can learn. In many cases, you do not need much ... including those that cause stress. Meditation has been practiced for thousands of years, ...

  4. Electrochemical force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam F.; Rodriguez, Brian J.

    2017-01-10

    A system and method for electrochemical force microscopy are provided. The system and method are based on a multidimensional detection scheme that is sensitive to forces experienced by a biased electrode in a solution. The multidimensional approach allows separation of fast processes, such as double layer charging, and charge relaxation, and slow processes, such as diffusion and faradaic reactions, as well as capturing the bias dependence of the response. The time-resolved and bias measurements can also allow probing both linear (small bias range) and non-linear (large bias range) electrochemical regimes and potentially the de-convolution of charge dynamics and diffusion processes from steric effects and electrochemical reactivity.

  5. Relaxation Time of High-Density Amorphous Ice

    Science.gov (United States)

    Handle, Philip H.; Seidl, Markus; Loerting, Thomas

    2012-06-01

    Amorphous water plays a fundamental role in astrophysics, cryoelectron microscopy, hydration of matter, and our understanding of anomalous liquid water properties. Yet, the characteristics of the relaxation processes taking place in high-density amorphous ice (HDA) are unknown. We here reveal that the relaxation processes in HDA at 110-135 K at 0.1-0.2 GPa are of collective and global nature, resembling the alpha relaxation in glassy material. Measured relaxation times suggest liquid-like relaxation characteristics in the vicinity of the crystallization temperature at 145 K. By carefully relaxing pressurized HDA for several hours at 135 K, we produce a state that is closer to the ideal glass state than all HDA states discussed so far in literature.

  6. The relaxation time approximation

    International Nuclear Information System (INIS)

    Gairola, R.P.; Indu, B.D.

    1991-01-01

    A plausible approximation has been made to estimate the relaxation time from a knowledge of the transition probability of phonons from one state (r vector, q vector) to other state (r' vector, q' vector), as a result of collision. The relaxation time, thus obtained, shows a strong dependence on temperature and weak dependence on the wave vector. In view of this dependence, relaxation time has been expressed in terms of a temperature Taylor's series in the first Brillouin zone. Consequently, a simple model for estimating the thermal conductivity is suggested. the calculations become much easier than the Callaway model. (author). 14 refs

  7. Single-wavelength functional photoacoustic microscopy in biological tissue.

    Science.gov (United States)

    Danielli, Amos; Favazza, Christopher P; Maslov, Konstantin; Wang, Lihong V

    2011-03-01

    Recently, we developed a reflection-mode relaxation photoacoustic microscope, based on saturation intensity, to measure picosecond relaxation times using a nanosecond laser. Here, using the different relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, the oxygen saturation was quantified in vivo with single-wavelength photoacoustic microscopy. All previous functional photoacoustic microscopy measurements required imaging with multiple-laser-wavelength measurements to quantify oxygen saturation. Eliminating the need for multiwavelength measurements removes the influence of spectral properties on oxygenation calculations and improves the portability and cost-effectiveness of functional or molecular photoacoustic microscopy.

  8. Relaxed Binaural LCMV Beamforming

    NARCIS (Netherlands)

    Koutrouvelis, A.; Hendriks, R.C.; Heusdens, R.; Jensen, Jesper Rindom

    2017-01-01

    In this paper, we propose a new binaural beamforming technique, which can be seen as a relaxation of the linearly constrained minimum variance (LCMV) framework. The proposed method can achieve simultaneous noise reduction and exact binaural cue preservation of the target source, similar to the

  9. Hair Dye and Hair Relaxers

    Science.gov (United States)

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  10. Experiments in paramagnetic relaxation

    International Nuclear Information System (INIS)

    Lijphart, E.E.

    1976-01-01

    This thesis presents two attempts to improve the resolving power of the relaxation measurement technique. The first attempt reconsiders the old technique of steady state saturation. When used in conjunction with the pulse technique, it offers the possibility of obtaining additional information about the system in which all-time derivatives are zero; in addition, non-linear effects may be distinguished from each other. The second attempt involved a systematic study of only one system: Cu in the Tutton salts (K and Rb). The systematic approach, the high accuracy of the measurement and the sheer amount of experimental data for varying temperature, magnetic field and concentration made it possible in this case to separate the prevailing relaxation mechanisms reliably

  11. Relaxation from particle production

    Energy Technology Data Exchange (ETDEWEB)

    Hook, Anson; Marques-Tavares, Gustavo [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305 (United States)

    2016-12-20

    We consider using particle production as a friction force by which to implement a “Relaxion” solution to the electroweak hierarchy problem. Using this approach, we are able to avoid superplanckian field excursions and avoid any conflict with the strong CP problem. The relaxation mechanism can work before, during or after inflation allowing for inflationary dynamics to play an important role or to be completely decoupled.

  12. Magnetic relaxation in anisotropic magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1971-01-01

    The line shape and the kinematic and thermodynamic slowing down of the critical and paramagnetic relaxation in axially anisotropic materials are discussed. Kinematic slowing down occurs only in the longitudinal relaxation function. The thermodynamic slowing down occurs in either the transverse...... or longitudinal relaxation function depending on the sign of the axial anisotropy....

  13. Momentum constraint relaxation

    International Nuclear Information System (INIS)

    Marronetti, Pedro

    2006-01-01

    Full relativistic simulations in three dimensions invariably develop runaway modes that grow exponentially and are accompanied by violations of the Hamiltonian and momentum constraints. Recently, we introduced a numerical method (Hamiltonian relaxation) that greatly reduces the Hamiltonian constraint violation and helps improve the quality of the numerical model. We present here a method that controls the violation of the momentum constraint. The method is based on the addition of a longitudinal component to the traceless extrinsic curvature A ij -tilde, generated by a vector potential w i , as outlined by York. The components of w i are relaxed to solve approximately the momentum constraint equations, slowly pushing the evolution towards the space of solutions of the constraint equations. We test this method with simulations of binary neutron stars in circular orbits and show that it effectively controls the growth of the aforementioned violations. We also show that a full numerical enforcement of the constraints, as opposed to the gentle correction of the momentum relaxation scheme, results in the development of instabilities that stop the runs shortly

  14. Variational formulation of relaxed and multi-region relaxed magnetohydrodynamics

    Science.gov (United States)

    Dewar, R. L.; Yoshida, Z.; Bhattacharjee, A.; Hudson, S. R.

    2015-12-01

    > Ideal magnetohydrodynamics (IMHD) is strongly constrained by an infinite number of microscopic constraints expressing mass, entropy and magnetic flux conservation in each infinitesimal fluid element, the latter preventing magnetic reconnection. By contrast, in the Taylor relaxation model for formation of macroscopically self-organized plasma equilibrium states, all these constraints are relaxed save for the global magnetic fluxes and helicity. A Lagrangian variational principle is presented that leads to a new, fully dynamical, relaxed magnetohydrodynamics (RxMHD), such that all static solutions are Taylor states but also allows state with flow. By postulating that some long-lived macroscopic current sheets can act as barriers to relaxation, separating the plasma into multiple relaxation regions, a further generalization, multi-region relaxed magnetohydrodynamics (MRxMHD) is developed.

  15. Dynamics of relaxed inflation

    Science.gov (United States)

    Tangarife, Walter; Tobioka, Kohsaku; Ubaldi, Lorenzo; Volansky, Tomer

    2018-02-01

    The cosmological relaxation of the electroweak scale has been proposed as a mechanism to address the hierarchy problem of the Standard Model. A field, the relaxion, rolls down its potential and, in doing so, scans the squared mass parameter of the Higgs, relaxing it to a parametrically small value. In this work, we promote the relaxion to an inflaton. We couple it to Abelian gauge bosons, thereby introducing the necessary dissipation mechanism which slows down the field in the last stages. We describe a novel reheating mechanism, which relies on the gauge-boson production leading to strong electro-magnetic fields, and proceeds via the vacuum production of electron-positron pairs through the Schwinger effect. We refer to this mechanism as Schwinger reheating. We discuss the cosmological dynamics of the model and the phenomenological constraints from CMB and other experiments. We find that a cutoff close to the Planck scale may be achieved. In its minimal form, the model does not generate sufficient curvature perturbations and additional ingredients, such as a curvaton field, are needed.

  16. Spectroscopic Studies of the Super Relaxed State of Skeletal Muscle.

    Directory of Open Access Journals (Sweden)

    Leonardo Nogara

    Full Text Available In the super-relaxed state of myosin, ATPase activity is strongly inhibited by binding of the myosin heads to the core of the thick filament in a structure known as the interacting-heads motif. In the disordered relaxed state myosin heads are not bound to the core of the thick filament and have an ATPase rate that is 10 fold greater. In the interacting-heads motif the two regulatory light chains appear to bind to each other. We have made single cysteine mutants of the regulatory light chain, placed both paramagnetic and fluorescent probes on them, and exchanged them into skinned skeletal muscle fibers. Many of the labeled light chains tended to disrupt the stability of the super-relaxed state, and showed spectral changes in the transition from the disordered relaxed state to the super-relaxed state. These data support the putative interface between the two regulatory light chains identified by cryo electron microscopy and show that both the divalent cation bound to the regulatory light chain and the N-terminus of the regulatory light chain play a role in the stability of the super-relaxed state. One probe showed a shift to shorter wavelengths in the super-relaxed state such that a ratio of intensities at 440nm to that at 520nm provided a measure of the population of the super-relaxed state amenable for high throughput screens for finding potential pharmaceuticals. The results provide a proof of concept that small molecules that bind to this region can destabilize the super-relaxed state and provide a method to search for small molecules that do so leading to a potentially effective treatment for Type 2 diabetes and obesity.

  17. Caracterización de la expresión de nCD64 en neutrófilos y de los niveles de s-TREM-1 y HMGB-1 en pacientes con sospecha de infección admitidos en el departamento de emergencias

    Directory of Open Access Journals (Sweden)

    Sergio Velásquez

    2013-12-01

    Full Text Available Introducción. El receptor CD64, receptor soluble ‘desencadenador’ expresado en células mieloides (sTREM-1 y la proteína del grupo Box-1 de alta movilidad (HMGB-1, se han propuesto como mediadores en la sepsis. Objetivo. Evaluar el valor pronóstico de estos marcadores en pacientes con sospecha de infección, recientemente admitidos en un departamento de emergencias. Materiales y métodos. Se incluyeron en el estudio pacientes que consultaron al hospital con sospecha de infección. Se analizó la base de datos clínica, el puntaje SOFA, el puntaje APACHE II, los niveles de HMGB-1, los niveles de sTREM-1 y los niveles de nCD64. Se determinaron las concentraciones en suero de HMGB-1 y sTREM-1, usando kits de ELISA disponibles comercialmente, y la de CD64 se midió por citometría de flujo. Resultados. Se analizaron 579 pacientes con sospecha de infección al ingreso. La edad media fue de 50 años (rango intercuartílico=35-68, y 11,1 % (n=64 murieron durante el seguimiento de 28 días. El diagnóstico más frecuente en el momento del ingreso fue neumonía adquirida en la comunidad, en 23 % (n=133 de los pacientes, seguida de infección de tejidos blandos, en 16,6 % (n=96, e infección urinaria, en 15 % (n=87. Después de un análisis multivariado, no hubo asociación significativa entre ningún biomarcador y la mortalidad a los 28 días. Conclusión. Los resultados sugieren que en el contexto de un departamento de emergencias de tercer nivel de una ciudad latinoamericana típica, los tres marcadores evaluados no ofrecieron ninguna ventaja en el pronóstico de infección. La búsqueda de marcadores pronósticos más confiables en estadios tempranos de la infección aún continúa abierta.   doi: http://dx.doi.org/10.7705/biomedica.v33i4.805

  18. Relaxed states with plasma flow

    International Nuclear Information System (INIS)

    Avinash, K.; Taylor, J.B.

    1991-01-01

    In the theory of relaxation, a turbulent plasma reaches a state of minimum energy subject to constant magnetic helicity. In this state the plasma velocity is zero. Attempts have been made by introducing a number of different constraints, to obtain relaxed states with plasma flow. It is shown that these alternative constraints depend on two self-helicities, one for ions, and one for electrons. However, whereas there are strong arguments for the effective invariance of the original magnetic-helicity, these arguments do not apply to the self-helicities. Consequently the existence of relaxed states with flow remains in doubt. (author)

  19. Relaxed states of tokamak plasmas

    International Nuclear Information System (INIS)

    Kucinski, M.Y.; Okano, V.

    1993-01-01

    The relaxed states of tokamak plasmas are studied. It is assumed that the plasma relaxes to a quasi-steady state which is characterized by a minimum entropy production rate, compatible with a number of prescribed conditions and pressure balance. A poloidal current arises naturally due to the anisotropic resistivity. The minimum entropy production theory is applied, assuming the pressure equilibrium as fundamental constraint on the final state. (L.C.J.A.)

  20. Negative magnetic relaxation in superconductors

    Directory of Open Access Journals (Sweden)

    Krasnoperov E.P.

    2013-01-01

    Full Text Available It was observed that the trapped magnetic moment of HTS tablets or annuli increases in time (negative relaxation if they are not completely magnetized by a pulsed magnetic field. It is shown, in the framework of the Bean critical-state model, that the radial temperature gradient appearing in tablets or annuli during a pulsed field magnetization can explain the negative magnetic relaxation in the superconductor.

  1. Relaxation effects in ferrous complexes

    International Nuclear Information System (INIS)

    Nicolini, C.; Mathieu, J.P.; Chappert, J.

    1976-01-01

    The slow relaxation mechanism of the Fe 2+ ion in the tri-fluorinated TF(acac) and hexafluorinated HF(acac) complexes of Fe(II) acetylacetonate was investigated. The 300K and 77K Moessbauer spectra for TF(acac) consist in a slightly asymmetric quadrupole doublet. On the contrary, at 4.2K the higher energy line is strongly widened; that is typical of a slowing down in the electron relaxation frequency [fr

  2. Heavy-ion microscopy

    International Nuclear Information System (INIS)

    Kraft, G.; Yang, T.C.H.; Richards, T.; Tobias, C.A.

    1980-01-01

    This chapter briefly describes the techniques of optical microscopy, scanning and transmission electron microscopy, soft x-ray microscopy and compares these latter techniques with heavy-ion microscopy. The resolution obtained with these various types of microscopy are compared and the influence of the etching procedure on total resolution is discussed. Several micrographs of mammalian cells are included

  3. Peeling mode relaxation ELM model

    International Nuclear Information System (INIS)

    Gimblett, C. G.

    2006-01-01

    This paper discusses an approach to modelling Edge Localised Modes (ELMs) in which toroidal peeling modes are envisaged to initiate a constrained relaxation of the tokamak outer region plasma. Relaxation produces both a flattened edge current profile (which tends to further destabilise a peeling mode), and a plasma-vacuum negative current sheet which has a counteracting stabilising influence; the balance that is struck between these two effects determines the radial extent (rE) of the ELM relaxed region. The model is sensitive to the precise position of the mode rational surfaces to the plasma surface and hence there is a 'deterministic scatter' in the results that has an accord with experimental data. The toroidal peeling stability criterion involves the edge pressure, and using this in conjunction with predictions of rE allows us to evaluate the ELM energy losses and compare with experiment. Predictions of trends with the edge safety factor and collisionality are also made

  4. Relaxation properties in classical diamagnetism

    Science.gov (United States)

    Carati, A.; Benfenati, F.; Galgani, L.

    2011-06-01

    It is an old result of Bohr that, according to classical statistical mechanics, at equilibrium a system of electrons in a static magnetic field presents no magnetization. Thus a magnetization can occur only in an out of equilibrium state, such as that produced through the Foucault currents when a magnetic field is switched on. It was suggested by Bohr that, after the establishment of such a nonequilibrium state, the system of electrons would quickly relax back to equilibrium. In the present paper, we study numerically the relaxation to equilibrium in a modified Bohr model, which is mathematically equivalent to a billiard with obstacles, immersed in a magnetic field that is adiabatically switched on. We show that it is not guaranteed that equilibrium is attained within the typical time scales of microscopic dynamics. Depending on the values of the parameters, one has a relaxation either to equilibrium or to a diamagnetic (presumably metastable) state. The analogy with the relaxation properties in the Fermi Pasta Ulam problem is also pointed out.

  5. Onsager relaxation of toroidal plasmas

    International Nuclear Information System (INIS)

    Samain, A.; Nguyen, F.

    1997-01-01

    The slow relaxation of isolated toroidal plasmas towards their thermodynamical equilibrium is studied in an Onsager framework based on the entropy metric. The basic tool is a variational principle, equivalent to the kinetic equation, involving the profiles of density, temperature, electric potential, electric current. New minimization procedures are proposed to obtain entropy and entropy production rate functionals. (author)

  6. Anisotropic spin relaxation in graphene

    NARCIS (Netherlands)

    Tombros, N.; Tanabe, S.; Veligura, A.; Jozsa, C.; Popinciuc, M.; Jonkman, H. T.; van Wees, B. J.

    2008-01-01

    Spin relaxation in graphene is investigated in electrical graphene spin valve devices in the nonlocal geometry. Ferromagnetic electrodes with in-plane magnetizations inject spins parallel to the graphene layer. They are subject to Hanle spin precession under a magnetic field B applied perpendicular

  7. Stochastic and Chaotic Relaxation Oscillations

    NARCIS (Netherlands)

    Grasman, J.; Roerdink, J.B.T.M.

    1988-01-01

    For relaxation oscillators stochastic and chaotic dynamics are investigated. The effect of random perturbations upon the period is computed. For an extended system with additional state variables chaotic behavior can be expected. As an example, the Van der Pol oscillator is changed into a

  8. Tensions relaxation in Zircaloy-4

    International Nuclear Information System (INIS)

    Cuniberti, A.M.; Picasso, A.C.

    1990-01-01

    Traction and stress relaxation studies were performed on polycrystalline Zry-4 at room temperature. The effect of loading velocity on the plastic behaviour of the material is discussed, analysing log σ vs. log dε/dt at different deformation levels. The contribution introduced by the testing machine was taken into account in data evaluation. (Author). 7 refs., 3 figs., 3 tabs

  9. Correlated Light Microscopy and Electron Microscopy

    NARCIS (Netherlands)

    Sjollema, Klaas A.; Schnell, Ulrike; Kuipers, Jeroen; Kalicharan, Ruby; Giepmans, Ben N. G.; MullerReichert, T; Verkade, P

    2012-01-01

    Understanding where, when, and how biomolecules (inter)act is crucial to uncover fundamental mechanisms in cell biology. Recent developments in fluorescence light microscopy (FLM) allow protein imaging in living cells and at the near molecular level. However, fluorescence microscopy only reveals

  10. Excitation relaxation and structure of TPPS4 J-aggregates

    International Nuclear Information System (INIS)

    Kelbauskas, L.; Bagdonas, S.; Dietel, W.; Rotomskis, R.

    2003-01-01

    The energy relaxation kinetics and the structure of the J-aggregates of water-soluble porphyrin 5,10,15,20-tetrasulphonatophenyl porphine (TPPS 4 ) were investigated in aqueous medium by means of time-resolved fluorescence spectroscopy and confocal laser-scanning fluorescence microscopy. The excitation of the J-aggregates, at excitation intensities higher than ∼10 15 photons/cm 2 per pulse, results in a remarkable decrease of the fluorescence quantum yield and in the appearance of an additional, non-exponential energy relaxation channel with a decay constant that depends on the excitation intensity. This relaxation mechanism was attributed to the exciton single-singlet annihilation. The exciton lifetime in the absence of the annihilation was calculated to be ∼150 ps. Using exciton annihilation theory, the exciton migration within the J-aggregates could be characterized by determining the exciton diffusion constant (1.8±0.9) 10 -3 cm 2 /s and the hopping time (1.2±0.6) ps. Using the experimental data, the size of the J-aggregate could be evaluated and was seen to yield at least 20 TPPS 4 molecules per aggregate. It was shown by means of confocal fluorescence laser scanning microscopy that TPPS 4 does self-associate in polyvinyl alcohol (PVA) at acidic pH forming molecular macro-assemblies on a scale of ∼1 μm in PVA matrices

  11. Sleep, Stress & Relaxation: Rejuvenate Body & Mind

    Science.gov (United States)

    Sleep, Stress & Relaxation: Rejuvenate Body & Mind; Relieve Stress; best ways to relieve stress; best way to relieve stress; different ways to relieve stress; does smoking relieve stress; does tobacco relieve stress; how can I relieve stress; how can you relieve stress; how do I relieve stress; reduce stress; does smoking reduce stress; how can I reduce stress; how to reduce stress; reduce stress; reduce stress levels; reducing stress; smoking reduce stress; smoking reduces stress; stress reducing techniques; techniques to reduce stress; stress relief; best stress relief; natural stress relief; need stress relief; relief for stress; relief from stress; relief of stress; smoking and stress relief; smoking for stress relief; smoking stress relief; deal with stress; dealing with stress; dealing with anger; dealing with stress; different ways of dealing with stress; help dealing with stress; how to deal with anger; how to deal with stress; how to deal with stress when quitting smoking; stress management; free stress management; how can you manage stress; how do you manage stress; how to manage stress; manage stress; management of stress; management stress; managing stress; strategies for managing stress; coping with stress; cope with stress; copeing with stress; coping and stress; coping skills for stress; coping strategies for stress; coping strategies with stress; coping strategy for stress; coping with stress; coping with stress and anxiety; emotional health; emotional health; emotional health article; emotional health articles; deep relaxation; deep breathing relaxation techniques; deep muscle relaxation; deep relaxation; deep relaxation meditation; deep relaxation technique; deep relaxation techniques; meditation exercises; mindful exercises; mindful meditation exercises; online relaxation exercises; relaxation breathing exercises; relaxation exercise; relaxation exercises; stress relaxation; methods of relaxation for stress; relax stress; relax techniques stress

  12. Relaxation path of metastable nanoclusters in oxide dispersion strengthened materials

    Energy Technology Data Exchange (ETDEWEB)

    Ribis, J., E-mail: joel.ribis@cea.fr [DEN-Service de Recherches Métallurgiques Appliquées, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Thual, M.A. [LLB, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191, Gif-sur-Yvette (France); Guilbert, T.; Carlan, Y. de [DEN-Service de Recherches Métallurgiques Appliquées, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Legris, A. [UMET, CNRS/UMR 8207, Bât. C6, Univ. Lille 1, 59655 Villeneuve d’Ascq (France)

    2017-02-15

    ODS steels are a promising class of structural materials for sodium cooled fast reactor application. The ultra-high density of the strengthening nanoclusters dispersed within the ferritic matrix is responsible of the excellent creep properties of the alloy. Fine characterization of the nanoclusters has been conducted on a Fe-14Cr-0.3Ti-0.3Y{sub 2}O{sub 3} ODS material using High Resolution and Energy Filtered Transmission Electron Microscopy. The nanoclusters exhibit a cubic symmetry possibly identified as f.c.c and display a non-equilibrium YTiCrO chemical composition thought to be stabilized by a vacancy supersaturation. These nanoclusters undergo relaxation towards the Y{sub 2}Ti{sub 2}O{sub 7}-like state as they grow. A Cr shell is observed around the relaxed nano-oxides, this size-dependent shell may form after the release of Cr by the particles. The relaxation energy barrier appears to be higher for the smaller particles probably owing to a volume/surface ratio effect in reason to the full coherency of the nanoclusters. - Highlights: • The nanoclusters display a f.c.c. cubic symmetry and a non-equilibrium YTiCrO chemical composition. • During thermal annealing the coherent nanocluster transform into semi-coherent pyrochlore particles. • A Cr ring is observed around the relaxed pyrochlore type particles.

  13. Stress relaxation behavior and mechanism of AEREX350 and Waspaloy superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuzhou; Dong, Jianxin; Zhang, Maicang; Yao, Zhihao

    2016-12-15

    The relaxation properties of AEREX350 and Waspaloy were studied contrastively at temperatures ranging from 600 °C to 800 °C with the same initial stress 510 MPa. The relationship between the microstructure and relaxation properties was elucidated using scanning and transmission electron microscopy techniques. It was found that the relaxation limit and relaxation stability of the two alloys decreased obviously with the increase of temperature, but the relaxation stability of AEREX350 decreased more slowly compared with Waspaloy. Further investigations show that the relaxation behavior is mainly depended on both precipitate characteristics and its interaction with dislocations. The complex precipitates evolution of AEREX350 alloy leads to a higher relaxation limit at high temperature 800 °C, but more quantity of γ′ in Waspaloy results in a higher relaxation limit at the low temperature of 600 °C. Thus it is suggested that as fastener alloys, Waspaloy is more suitable for low temperature service while AEREX350 is the preferred choice for high temperature service.

  14. Microsphere imaging with confocal microscopy and two photon microscopy

    International Nuclear Information System (INIS)

    Chun, Hyung Su; An, Kyung Won; Lee, Jai Hyung

    2002-01-01

    We have acquired images of polystyrene and fused-silica microsphere by using conventional optical microscopy, confocal microscopy and two-photon microscopy, and performed comparative analysis of these images. Different from conventional optical microscopy, confocal and two-photon microscopy had good optical sectioning capability. In addition, confocal microscopy and two-photon microscopy had better lateral resolution than conventional optical microscopy. These results are attributed to confocality and nonlinearity of confocal microscopy and two photon microscopy, respectively.

  15. Relaxation Techniques to Manage IBS Symptoms

    Science.gov (United States)

    ... for 15–20 seconds and then begin again. Progressive Muscle Relaxation This method of relaxation focuses on ... helpful, please consider supporting IFFGD with a small tax- deductible donation. Make Donation Adapted from IFFGD Publication # ...

  16. Relaxation and Distraction in Experimental Desensitization.

    Science.gov (United States)

    Weir, R. O.; Marshall, W. L.

    1980-01-01

    Compared experimental desensitization with a procedure that replaced relaxation with a distraction task and with an approach that combined both relaxation and distraction. Desensitization generally was more effective than the other two procedures. (Author)

  17. Relaxation as a Factor in Semantic Desensitization

    Science.gov (United States)

    Bechtel, James E.; McNamara, J. Regis

    1975-01-01

    Relaxation and semantic desensitization were used to alleviate the fear of phobic females. Results showed that semantic desensitization, alone or in combination with relaxation, failed to modify the evaluative meanings evoked by the feared object. (SE)

  18. Electron microscopy for Engineers

    International Nuclear Information System (INIS)

    Jones, I P

    2009-01-01

    This paper reviews the application of (mainly) Transmission Electron Microscopy (TEM) in an engineering context. The first two sections are TEM and chemical in nature; the final three sections are more general and include aspects of Scanning Electron Microscopy (SEM).

  19. Plasmon-mediated energy relaxation in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ferry, D. K. [School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287-5706 (United States); Somphonsane, R. [Department of Physics, King Mongkut' s Institute of Technology, Ladkrabang, Bangkok 10520 (Thailand); Ramamoorthy, H.; Bird, J. P. [Department of Electrical Engineering, University at Buffalo, the State University of New York, Buffalo, New York 14260-1500 (United States)

    2015-12-28

    Energy relaxation of hot carriers in graphene is studied at low temperatures, where the loss rate may differ significantly from that predicted for electron-phonon interactions. We show here that plasmons, important in the relaxation of energetic carriers in bulk semiconductors, can also provide a pathway for energy relaxation in transport experiments in graphene. We obtain a total loss rate to plasmons that results in energy relaxation times whose dependence on temperature and density closely matches that found experimentally.

  20. Electron microscopy of surfaces

    International Nuclear Information System (INIS)

    Venables, J.A.

    1981-01-01

    Electron beam techniques used to study clean surfaces and surface processes on a microscopic scale are reviewed. Recent experimental examples and possible future developments are discussed. Special emphasis is given to (i) transmission diffraction and microscopy techniques, including atomic imaging; (ii) Auger microscopy on bulk and thin film samples; (iii) secondary electron microscopy, especially low energy secondaries for work-function imaging and photoelectron imaging; and (iv) reflection electron microscopy and diffraction. (orig.)

  1. Nonlinear Relaxation in Population Dynamics

    Science.gov (United States)

    Cirone, Markus A.; de Pasquale, Ferdinando; Spagnolo, Bernardo

    We analyze the nonlinear relaxation of a complex ecosystem composed of many interacting species. The ecological system is described by generalized Lotka-Volterra equations with a multiplicative noise. The transient dynamics is studied in the framework of the mean field theory and with random interaction between the species. We focus on the statistical properties of the asymptotic behaviour of the time integral of the ith population and on the distribution of the population and of the local field.

  2. Structural relaxation: low temperature properties

    International Nuclear Information System (INIS)

    Cruz, F. de la

    1984-01-01

    We discuss the changes in transport and superconducting properties of amorphous Zr 70 Cu 30 , induced by thermal relaxation. The experimental results are used to investigate the relation between the microscopic parameters and the observed physical properties. It is shown that the density of eletronic states determines the shift Tc as well as the variation of the electrical resistivity. It is necessary to assume strong hybridization between s and d bands to understand the eletrodynamic response of the superconductor. (Author) [pt

  3. Dictionary of Microscopy

    Science.gov (United States)

    Heath, Julian

    2005-10-01

    The past decade has seen huge advances in the application of microscopy in all areas of science. This welcome development in microscopy has been paralleled by an expansion of the vocabulary of technical terms used in microscopy: terms have been coined for new instruments and techniques and, as microscopes reach even higher resolution, the use of terms that relate to the optical and physical principles underpinning microscopy is now commonplace. The Dictionary of Microscopy was compiled to meet this challenge and provides concise definitions of over 2,500 terms used in the fields of light microscopy, electron microscopy, scanning probe microscopy, x-ray microscopy and related techniques. Written by Dr Julian P. Heath, Editor of Microscopy and Analysis, the dictionary is intended to provide easy navigation through the microscopy terminology and to be a first point of reference for definitions of new and established terms. The Dictionary of Microscopy is an essential, accessible resource for: students who are new to the field and are learning about microscopes equipment purchasers who want an explanation of the terms used in manufacturers' literature scientists who are considering using a new microscopical technique experienced microscopists as an aide mémoire or quick source of reference librarians, the press and marketing personnel who require definitions for technical reports.

  4. The Effects of Suggestibility on Relaxation.

    Science.gov (United States)

    Rickard, Henry C.; And Others

    1985-01-01

    Selected undergraduates (N=32) on the basis of Creative Imagination Scale scores and randomly assigned high and low suggestibility subjects to progressive relaxation (PR) and suggestions of relaxation (SR) training modes. Results revealed a significant pre-post relaxation effect, and main efffects for both suggestibility and training mode. (NRB)

  5. Relaxed Poisson cure rate models.

    Science.gov (United States)

    Rodrigues, Josemar; Cordeiro, Gauss M; Cancho, Vicente G; Balakrishnan, N

    2016-03-01

    The purpose of this article is to make the standard promotion cure rate model (Yakovlev and Tsodikov, ) more flexible by assuming that the number of lesions or altered cells after a treatment follows a fractional Poisson distribution (Laskin, ). It is proved that the well-known Mittag-Leffler relaxation function (Berberan-Santos, ) is a simple way to obtain a new cure rate model that is a compromise between the promotion and geometric cure rate models allowing for superdispersion. So, the relaxed cure rate model developed here can be considered as a natural and less restrictive extension of the popular Poisson cure rate model at the cost of an additional parameter, but a competitor to negative-binomial cure rate models (Rodrigues et al., ). Some mathematical properties of a proper relaxed Poisson density are explored. A simulation study and an illustration of the proposed cure rate model from the Bayesian point of view are finally presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Arresting relaxation in Pickering Emulsions

    Science.gov (United States)

    Atherton, Tim; Burke, Chris

    2015-03-01

    Pickering emulsions consist of droplets of one fluid dispersed in a host fluid and stabilized by colloidal particles absorbed at the fluid-fluid interface. Everyday materials such as crude oil and food products like salad dressing are examples of these materials. Particles can stabilize non spherical droplet shapes in these emulsions through the following sequence: first, an isolated droplet is deformed, e.g. by an electric field, increasing the surface area above the equilibrium value; additional particles are then adsorbed to the interface reducing the surface tension. The droplet is then allowed to relax toward a sphere. If more particles were adsorbed than can be accommodated by the surface area of the spherical ground state, relaxation of the droplet is arrested at some non-spherical shape. Because the energetic cost of removing adsorbed colloids exceeds the interfacial driving force, these configurations can remain stable over long timescales. In this presentation, we present a computational study of the ordering present in anisotropic droplets produced through the mechanism of arrested relaxation and discuss the interplay between the geometry of the droplet, the dynamical process that produced it, and the structure of the defects observed.

  7. Vibrational relaxation in OCS mixtures

    International Nuclear Information System (INIS)

    Simpson, C.J.S.M.; Gait, P.D.; Simmie, J.M.

    1976-01-01

    Experimental measurements are reported of vibrational relaxation times which may be used to show whether there is near resonant vibration-rotation energy transfer between OCS and H 2 , D 2 or HD. Vibrational relaxation times have been measured in OCS and OCS mixtures over the temperature range 360 to 1000 K using a shock tube and a laser schlieren system. The effectiveness of the additives in reducing the relaxation time of OCS is in the order 4 He 3 He 2 2 and HD. Along this series the effect of an increase in temperature changes from the case of speeding up the rate with 4 He to retarding it with D 2 , HD and H 2 . There is no measurable difference in the effectiveness of n-D 2 and o-D 2 and little, or no, difference between n-H 2 and p-H 2 . Thus the experimental results do not give clear evidence for rotational-vibration energy transfer between hydrogen and OCS. This contrasts with the situation for CO 2 + H 2 mixtures. (author)

  8. Relaxed plasma-vacuum systems

    International Nuclear Information System (INIS)

    Spies, G.O.; Lortz, D.; Kaiser, R.

    2001-01-01

    Taylor's theory of relaxed toroidal plasmas (states of lowest energy with fixed total magnetic helicity) is extended to include a vacuum between the plasma and the wall. In the extended variational problem, one prescribes, in addition to the helicity and the magnetic fluxes whose conservation follows from the perfect conductivity of the wall, the fluxes whose conservation follows from the assumption that the plasma-vacuum interface is also perfectly conducting (if the wall is a magnetic surface, then one has the toroidal and the poloidal flux in the vacuum). Vanishing of the first energy variation implies a pressureless free-boundary magnetohydrostatic equilibrium with a Beltrami magnetic field in the plasma, and in general with a surface current in the interface. Positivity of the second variation implies that the equilibrium is stable according to ideal magnetohydrodynamics, that it is a relaxed state according to Taylor's theory if the interface is replaced by a wall, and that the surface current is nonzero (at least if there are no closed magnetic field lines in the interface). The plane slab, with suitable boundary conditions to simulate a genuine torus, is investigated in detail. The relaxed state has the same double symmetry as the vessel if, and only if, the prescribed helicity is in an interval that depends on the prescribed fluxes. This interval is determined in the limit of a thin slab

  9. Regularized Label Relaxation Linear Regression.

    Science.gov (United States)

    Fang, Xiaozhao; Xu, Yong; Li, Xuelong; Lai, Zhihui; Wong, Wai Keung; Fang, Bingwu

    2018-04-01

    Linear regression (LR) and some of its variants have been widely used for classification problems. Most of these methods assume that during the learning phase, the training samples can be exactly transformed into a strict binary label matrix, which has too little freedom to fit the labels adequately. To address this problem, in this paper, we propose a novel regularized label relaxation LR method, which has the following notable characteristics. First, the proposed method relaxes the strict binary label matrix into a slack variable matrix by introducing a nonnegative label relaxation matrix into LR, which provides more freedom to fit the labels and simultaneously enlarges the margins between different classes as much as possible. Second, the proposed method constructs the class compactness graph based on manifold learning and uses it as the regularization item to avoid the problem of overfitting. The class compactness graph is used to ensure that the samples sharing the same labels can be kept close after they are transformed. Two different algorithms, which are, respectively, based on -norm and -norm loss functions are devised. These two algorithms have compact closed-form solutions in each iteration so that they are easily implemented. Extensive experiments show that these two algorithms outperform the state-of-the-art algorithms in terms of the classification accuracy and running time.

  10. Capturing molecular multimode relaxation processes in excitable gases based on decomposition of acoustic relaxation spectra

    Science.gov (United States)

    Zhu, Ming; Liu, Tingting; Wang, Shu; Zhang, Kesheng

    2017-08-01

    Existing two-frequency reconstructive methods can only capture primary (single) molecular relaxation processes in excitable gases. In this paper, we present a reconstructive method based on the novel decomposition of frequency-dependent acoustic relaxation spectra to capture the entire molecular multimode relaxation process. This decomposition of acoustic relaxation spectra is developed from the frequency-dependent effective specific heat, indicating that a multi-relaxation process is the sum of the interior single-relaxation processes. Based on this decomposition, we can reconstruct the entire multi-relaxation process by capturing the relaxation times and relaxation strengths of N interior single-relaxation processes, using the measurements of acoustic absorption and sound speed at 2N frequencies. Experimental data for the gas mixtures CO2-N2 and CO2-O2 validate our decomposition and reconstruction approach.

  11. Sandpile model for relaxation in complex systems

    International Nuclear Information System (INIS)

    Vazquez, A.; Sotolongo-Costa, O.; Brouers, F.

    1997-10-01

    The relaxation in complex systems is, in general, nonexponential. After an initial rapid decay the system relaxes slowly following a long time tail. In the present paper a sandpile moderation of the relaxation in complex systems is analysed. Complexity is introduced by a process of avalanches in the Bethe lattice and a feedback mechanism which leads to slower decay with increasing time. In this way, some features of relaxation in complex systems: long time tails relaxation, aging, and fractal distribution of characteristic times, are obtained by simple computer simulations. (author)

  12. Effect of substrate rotation on domain structure and magnetic relaxation in magnetic antidot lattice arrays

    International Nuclear Information System (INIS)

    Mallick, Sougata; Mallik, Srijani; Bedanta, Subhankar

    2015-01-01

    Microdimensional triangular magnetic antidot lattice arrays were prepared by varying the speed of substrate rotation. The pre-deposition patterning has been performed using photolithography technique followed by a post-deposition lift-off. Surface morphology taken by atomic force microscopy depicted that the growth mechanism of the grains changes from chain like formation to island structures due to the substrate rotation. Study of magnetization reversal via magneto optic Kerr effect based microscopy revealed reduction of uniaxial anisotropy and increase in domain size with substrate rotation. The relaxation measured under constant magnetic field becomes faster with rotation of the substrate during deposition. The nature of relaxation for the non-rotating sample can be described by a double exponential decay. However, the relaxation for the sample with substrate rotation is well described either by a double exponential or a Fatuzzo-Labrune like single exponential decay, which increases in applied field

  13. Connecting structural relaxation with the low frequency modes in a hard-sphere colloidal glass

    NARCIS (Netherlands)

    Ghosh, A.; Chikkadi, V.; Schall, P.; Bonn, D.

    2011-01-01

    Structural relaxation in hard-sphere colloidal glasses has been studied using confocal microscopy. The motion of individual particles is followed over long time scales to detect the rearranging regions in the system. We have used normal mode analysis to understand the origin of the rearranging

  14. The relationships between suggestibility, influenceability, and relaxability.

    Science.gov (United States)

    Polczyk, Romuald; Frey, Olga; Szpitalak, Malwina

    2013-01-01

    This research explores the relationships between relaxability and various aspects of suggestibility and influenceability. The Jacobson Progressive Muscle Relaxation procedure was used to induce relaxation. Tests of direct suggestibility, relating to the susceptibility of overt suggestions, and indirect suggestibility, referring to indirect hidden influence, as well as self-description questionnaires on suggestibility and the tendency to comply were used. Thayer's Activation-Deactivation Adjective Check List, measuring various kinds of activation and used as a pre- and posttest, determined the efficacy of the relaxation procedure. Indirect, direct, and self-measured suggestibility proved to be positively related to the ability to relax, measured by Thayer's subscales relating to emotions. Compliance was not related to relaxability. The results are discussed in terms of the aspects of relaxation training connected with suggestibility.

  15. Arctigenin exhibits relaxation effect on bronchus by affecting transmembrane flow of calcium.

    Science.gov (United States)

    Zhao, Zhenying; Yin, Yongqiang; Wang, Zengyong; Fang, Runping; Wu, Hong; Jiang, Min; Bai, Gang; Luo, Guo'an

    2013-12-01

    Arctigenin, a lignan extract from Arctium lappa (L.), exhibits anti-inflammation, antioxidation, vasodilator effects, etc. However, the effects of arctigenin on bronchus relaxation are not well investigated. This study aimed to investigate how arctigenin regulates bronchus tone and calcium ion (Ca(2+)) flow. Trachea strips of guinea pigs were prepared for testing the relaxation effect of arctigenin to acetylcholine, histamine, KCl, and CaCl2, respectively. Furthermore, L-type calcium channel currents were detected by patch-clamp, and intracellular Ca(2+) concentration was detected by confocal microscopy. The results showed that arctigenin exhibited relaxation effect on tracheae to different constrictors, and this was related to decreasing cytoplasmic Ca(2+) concentration by inhibiting Ca(2+) influx partly through L-type calcium channel as well as promoting Ca(2+) efflux. In summary, this study provides new insight into the mechanisms by which arctigenin exhibits relaxation effect on bronchus and suggests its potential use for airway disease therapy.

  16. Fully relaxed low-mismatched InAlAs layer on an InP substrate by using a two step buffer

    NARCIS (Netherlands)

    Plissard, S.R.; Coinon, C.; Androussi, Y.; Wallart, X.

    2010-01-01

    The strain relaxation in low mismatched InxAl1-xAs layers has been studied by triple axis x-ray diffraction, transmission electron microscopy, and photoluminescence. Using a two step buffer, a fully relaxed top layer has been grown by adapting the composition and thickness of a first "strained

  17. Compaction and relaxation of biofilms

    KAUST Repository

    Valladares Linares, R.

    2015-06-18

    Operation of membrane systems for water treatment can be seriously hampered by biofouling. A better characterization of biofilms in membrane systems and their impact on membrane performance may help to develop effective biofouling control strategies. The objective of this study was to determine the occurrence, extent and timescale of biofilm compaction and relaxation (decompaction), caused by permeate flux variations. The impact of permeate flux changes on biofilm thickness, structure and stiffness was investigated in situ and non-destructively with optical coherence tomography using membrane fouling monitors operated at a constant crossflow velocity of 0.1 m s−1 with permeate production. The permeate flux was varied sequentially from 20 to 60 and back to 20 L m−2 h−1. The study showed that the average biofilm thickness on the membrane decreased after elevating the permeate flux from 20 to 60 L m−2 h−1 while the biofilm thickness increased again after restoring the original flux of 20 L m−2 h−1, indicating the occurrence of biofilm compaction and relaxation. Within a few seconds after the flux change, the biofilm thickness was changed and stabilized, biofilm compaction occurred faster than the relaxation after restoring the original permeate flux. The initial biofilm parameters were not fully reinstated: the biofilm thickness was reduced by 21%, biofilm stiffness had increased and the hydraulic biofilm resistance was elevated by 16%. Biofilm thickness was related to the hydraulic biofilm resistance. Membrane performance losses are related to the biofilm thickness, density and morphology, which are influenced by (variations in) hydraulic conditions. A (temporarily) permeate flux increase caused biofilm compaction, together with membrane performance losses. The impact of biofilms on membrane performance can be influenced (increased and reduced) by operational parameters. The article shows that a (temporary) pressure increase leads to more

  18. New microscopy for nanoimaging

    CERN Document Server

    Kinjo, Y; Watanabe, M

    2002-01-01

    Two types of new microscopy, namely, X-ray contact microscopy (XRCM) in combination with atomic force microscopy (AFM) and X-ray projection microscopy (XRPM) using synchrotron radiation and zone plate optics were used to image the fine structures of human chromosomes. In the XRCM plus AFM system, location of X-ray images on a photoresist has become far easier than that with our previous method using transmission electron microscopy coupled with the replica method. In addition, the images obtained suggested that the conformation of chromatin fiber differs from the current textbook model regarding the architecture of a eukaryotic chromosome. X-ray images with high contrast of the specimens could be obtained with XRPM. The resolution of each microscopy was about 30 and 200-300 nm for XRCM plus AFM and XRPM, respectively. (author)

  19. Microscopy and Image Analysis.

    Science.gov (United States)

    McNamara, George; Difilippantonio, Michael; Ried, Thomas; Bieber, Frederick R

    2017-07-11

    This unit provides an overview of light microscopy, including objectives, light sources, filters, film, and color photography for fluorescence microscopy and fluorescence in situ hybridization (FISH). We believe there are excellent opportunities for cytogeneticists, pathologists, and other biomedical readers, to take advantage of specimen optical clearing techniques and expansion microscopy-we briefly point to these new opportunities. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  20. CARS microscopy for imaging

    International Nuclear Information System (INIS)

    Arzumanyan Grigory; Voskanyan Karine

    2013-01-01

    Optical microscopy grows in its importance with the development of modern nanotechnology, biotechnology, methods of diagnostics and treatment of most dangerous diseases for mankind. There are several important goals of optical microscopy for biomedical studies among which the next three may be distinguished: fast imaging with high lateral spatial resolution, 3-D sectioning capability and high contrast for chemical selectivity. To meet these specific requirements, various types of both linear and nonlinear optical microscopy were elaborated. (authors)

  1. Fluorescence (Multiwave) Confocal Microscopy.

    Science.gov (United States)

    Welzel, J; Kästle, Raphaela; Sattler, Elke C

    2016-10-01

    In addition to reflectance confocal microscopy, multiwave confocal microscopes with different laser wavelengths in combination with exogenous fluorophores allow fluorescence mode confocal microscopy in vivo and ex vivo. Fluorescence mode confocal microscopy improves the contrast between the epithelium and the surrounding soft tissue and allows the depiction of certain structures, like epithelial tumors, nerves, and glands. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Electron Microscopy Center (EMC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Electron Microscopy Center (EMC) at Argonne National Laboratory develops and maintains unique capabilities for electron beam characterization and applies those...

  3. Coherent light microscopy

    CERN Document Server

    Ferraro, Pietro; Zalevsky, Zeev

    2011-01-01

    This book deals with the latest achievements in the field of optical coherent microscopy. While many other books exist on microscopy and imaging, this book provides a unique resource dedicated solely to this subject. Similarly, many books describe applications of holography, interferometry and speckle to metrology but do not focus on their use for microscopy. The coherent light microscopy reference provided here does not focus on the experimental mechanics of such techniques but instead is meant to provide a users manual to illustrate the strengths and capabilities of developing techniques. Th

  4. Bridging fluorescence microscopy and electron microscopy

    NARCIS (Netherlands)

    Giepmans, Ben N. G.

    Development of new fluorescent probes and fluorescence microscopes has led to new ways to study cell biology. With the emergence of specialized microscopy units at most universities and research centers, the use of these techniques is well within reach for a broad research community. A major

  5. Ultrasonic relaxations in borate glasses

    International Nuclear Information System (INIS)

    D'Angelo, G.; Tripodo, G.; Carini, G.; Cosio, E.; Bartolotta, A.; Di Marco, G.

    2004-01-01

    The attenuation and velocity of ultrasonic waves of frequencies in the range from 10 to 70 MHz have been measured in M 2 O-B 2 O 3 borate glasses (M: Li or Ag) as a function of temperature between 15 and 350 K. The velocity of sound waves decreases with increasing temperature in all the glasses, the decrease as the temperature is increased is larger in glasses containing silver than in those with lithium. A broad relaxation peak characterises the attenuation behaviour of the lithium and silver borate glasses at temperatures below 100 K and is paralleled by a corresponding dispersive behaviour of the sound velocity. Above 100 K, the ultrasonic velocity shows a nearly linear behaviour regulated by the vibrational anharmonicity, which decreases with increasing content of modifier oxide and is smaller in lithium than in silver borates. These results suggest that the relaxation of structural defects and the anharmonicity of borate glasses are strongly affected by two parameters: the number of bridging bonds per network forming ion and the polarising power of network modifier ions which occupy sites in the existing interstices

  6. Statistical mechanics of violent relaxation

    International Nuclear Information System (INIS)

    Shu, F.H.

    1978-01-01

    We reexamine the foundations of Lynden-Bell's statistical mechanical discussion of violent relaxation in collisionless stellar systems. We argue that Lynden-Bell's formulation in terms of a continuum description introduces unnecessary complications, and we consider a more conventional formulation in terms of particles. We then find the exclusion principle discovered by Lynden-Bell to be quantitatively important only at phase densities where two-body encounters are no longer negligible. Since the edynamical basis for the exclusion principle vanishes in such cases anyway, Lynden-Bell statistics always reduces in practice to Maxwell-Boltzmann statistics when applied to stellar systems. Lynden-Bell also found the equilibrium distribution function generally to be a sum of Maxwellians with velocity dispersions dependent on the phase density at star formation. We show that this difficulty vanishes in the particulate description for an encounterless stellar system as long as stars of different masses are initially well mixed in phase space. Our methods also demonstrate the equivalence between Gibbs's formalism which uses the microcanonical ensemble and Boltzmann's formalism which uses a coarse-grained continuum description. In addition, we clarify the concept of irreversible behavior on a macroscopic scale for an encounterless stellar system. Finally, we comment on the use of unusual macroscopic constraints to simulate the effects of incomplete relaxation

  7. Paramagnetic relaxation effects in perturbed angular correlations for arbitrary electronic relaxation time

    International Nuclear Information System (INIS)

    Chopin, C.; Spanjaard, D.; Hartmann-Boutron, F.

    1975-01-01

    Previous perturbation treatments of paramagnetic relaxation effects in γγ PAC were limited to the case of very short electronic relaxation times. This limitation is circumvented by invoking a new perturbation theory recently elaborated by Hirst and others for handling relaxation effects in Moessbauer spectra. Under the assumption of spherical electronic relaxation the perturbation factors are computed as functions of certain relaxation parameters which are directly related to the microscopic relaxation Hamiltonian. The results are compared to those of the stochastic theory of Scherer and Blume [fr

  8. Cross relaxation in nitroxide spin labels

    DEFF Research Database (Denmark)

    Marsh, Derek

    2016-01-01

    Cross relaxation, and mI-dependence of the intrinsic electron spin-lattice relaxation rate We, are incorporated explicitly into the rate equations for the electron-spin population differences that govern the saturation behaviour of 14N- and 15N-nitroxide spin labels. Both prove important in spin......-label EPR and ELDOR, particularly for saturation recovery studies. Neither for saturation recovery, nor for CW-saturation EPR and CW-ELDOR, can cross relaxation be described simply by increasing the value of We, the intrinsic spin-lattice relaxation rate. Independence of the saturation recovery rates from...... the hyperfine line pumped or observed follows directly from solution of the rate equations including cross relaxation, even when the intrinsic spin-lattice relaxation rate We is mI-dependent....

  9. Structural relaxation in annealed hyperquenched basaltic glasses

    DEFF Research Database (Denmark)

    Guo, Xiaoju; Mauro, John C.; Potuzak, M.

    2012-01-01

    The enthalpy relaxation behavior of hyperquenched (HQ) and annealed hyperquenched (AHQ) basaltic glass is investigated through calorimetric measurements. The results reveal a common onset temperature of the glass transition for all the HQ and AHQ glasses under study, indicating that the primary...... relaxation is activated at the same temperature regardless of the initial departure from equilibrium. The analysis of secondary relaxation at different annealing temperatures provides insights into the enthalpy recovery of HQ glasses....

  10. Dielectric Relaxation of Water: Theory and Experiment

    International Nuclear Information System (INIS)

    Adhikari, Narayan Prasad; Paudyal, Harihar; Johri, Manoj

    2010-06-01

    We have studied the hydrogen bond dynamics and methods for evaluation of probability and relaxation time for hydrogen bond network. Further, dielectric relaxation time has been calculated by using a diagonalization procedure by obtaining eigen values (inverse of relaxation time) of a master equation framed on the basis of Fokker-Planck equations. Microwave cavity spectrometer has been described to make measurements of relaxation time. Slater's perturbation equations are given for the analysis of the data. A comparison of theoretical and experimental data shows that there is a need for improvements in the theoretical model and experimental techniques to provide exact information about structural properties of water. (author)

  11. Pair plasma relaxation time scales.

    Science.gov (United States)

    Aksenov, A G; Ruffini, R; Vereshchagin, G V

    2010-04-01

    By numerically solving the relativistic Boltzmann equations, we compute the time scale for relaxation to thermal equilibrium for an optically thick electron-positron plasma with baryon loading. We focus on the time scales of electromagnetic interactions. The collisional integrals are obtained directly from the corresponding QED matrix elements. Thermalization time scales are computed for a wide range of values of both the total-energy density (over 10 orders of magnitude) and of the baryonic loading parameter (over 6 orders of magnitude). This also allows us to study such interesting limiting cases as the almost purely electron-positron plasma or electron-proton plasma as well as intermediate cases. These results appear to be important both for laboratory experiments aimed at generating optically thick pair plasmas as well as for astrophysical models in which electron-positron pair plasmas play a relevant role.

  12. Relaxing Chosen-Ciphertext Security

    DEFF Research Database (Denmark)

    Canetti, Ran; Krawczyk, Hugo; Nielsen, Jesper Buus

    2003-01-01

    Security against adaptive chosen ciphertext attacks (or, CCA security) has been accepted as the standard requirement from encryption schemes that need to withstand active attacks. In particular, it is regarded as the appropriate security notion for encryption schemes used as components within...... general protocols and applications. Indeed, CCA security was shown to suffice in a large variety of contexts. However, CCA security often appears to be somewhat too strong: there exist encryption schemes (some of which come up naturally in practice) that are not CCA secure, but seem sufficiently secure...... “for most practical purposes.” We propose a relaxed variant of CCA security, called Replayable CCA (RCCA) security. RCCA security accepts as secure the non-CCA (yet arguably secure) schemes mentioned above; furthermore, it suffices for most existing applications of CCA security. We provide three...

  13. Enhanced relaxation of strained Ge{sub x}Si{sub 1-x} layers induced by Co/Ge{sub x}Si{sub 1-x} thermal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ridgway, M C; Elliman, R G; Rao, M R [Australian National Univ., Canberra, ACT (Australia); Baribeau, J M [National Research Council of Canada, Ottawa, ON (Canada)

    1994-12-31

    Enhanced relaxation of strained Ge{sub x}Si{sub l-x} layers during the formation of CoSi{sub 2} by Co/Ge{sub x}Si{sub 1-x} thermal reaction has been observed. Raman spectroscopy and transmission electron microscopy were used to monitor the extent of relaxation. Possible mechanisms responsible for the enhanced relaxation, including metal-induced dislocation nucleation, chemical and/or structural inhomogeneities at the reacted layer/Ge{sub x}Si{sub 1-x} interface and point defect injection due to silicide formation will be discussed. Also, methodologies for inhibiting relaxation will be presented. 11 refs., 1 fig.

  14. Enhanced relaxation of strained Ge{sub x}Si{sub 1-x} layers induced by Co/Ge{sub x}Si{sub 1-x} thermal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ridgway, M.C.; Elliman, R.G.; Rao, M.R. [Australian National Univ., Canberra, ACT (Australia); Baribeau, J.M. [National Research Council of Canada, Ottawa, ON (Canada)

    1993-12-31

    Enhanced relaxation of strained Ge{sub x}Si{sub l-x} layers during the formation of CoSi{sub 2} by Co/Ge{sub x}Si{sub 1-x} thermal reaction has been observed. Raman spectroscopy and transmission electron microscopy were used to monitor the extent of relaxation. Possible mechanisms responsible for the enhanced relaxation, including metal-induced dislocation nucleation, chemical and/or structural inhomogeneities at the reacted layer/Ge{sub x}Si{sub 1-x} interface and point defect injection due to silicide formation will be discussed. Also, methodologies for inhibiting relaxation will be presented. 11 refs., 1 fig.

  15. Confocal Raman microscopy

    CERN Document Server

    Dieing, Thomas; Hollricher, Olaf

    2018-01-01

    This second edition provides a cutting-edge overview of physical, technical and scientific aspects related to the widely used analytical method of confocal Raman microscopy. The book includes expanded background information and adds insights into how confocal Raman microscopy, especially 3D Raman imaging, can be integrated with other methods to produce a variety of correlative microscopy combinations. The benefits are then demonstrated and supported by numerous examples from the fields of materials science, 2D materials, the life sciences, pharmaceutical research and development, as well as the geosciences.

  16. The Effects of Progressive Relaxation and Music on Attention, Relaxation, and Stress Responses: An Investigation of the Cognitive-Behavioral Model of Relaxation

    National Research Council Canada - National Science Library

    Scheufele, Peter

    1999-01-01

    ...) suggested that stress management techniques have specific effects A compromise position suggests that the specific effects of relaxation techniques are superimposed upon a general relaxation response...

  17. Strain relaxation and ambipolar electrical transport in GaAs/InSb core-shell nanowires.

    Science.gov (United States)

    Rieger, Torsten; Zellekens, Patrick; Demarina, Natalia; Hassan, Ali Al; Hackemüller, Franz Josef; Lüth, Hans; Pietsch, Ullrich; Schäpers, Thomas; Grützmacher, Detlev; Lepsa, Mihail Ion

    2017-11-30

    The growth, crystal structure, strain relaxation and room temperature transport characteristics of GaAs/InSb core-shell nanowires grown using molecular beam epitaxy are investigated. Due to the large lattice mismatch between GaAs and InSb of 14%, a transition from island-based to layer-like growth occurs during the formation of the shell. High resolution transmission electron microscopy in combination with geometric phase analyses as well as X-ray diffraction with synchrotron radiation are used to investigate the strain relaxation and prove the existence of different dislocations relaxing the strain on zinc blende and wurtzite core-shell nanowire segments. While on the wurtzite phase only Frank partial dislocations are found, the strain on the zinc blende phase is relaxed by dislocations with perfect, Shockley partial and Frank partial dislocations. Even for ultrathin shells of about 2 nm thickness, the strain caused by the high lattice mismatch between GaAs and InSb is relaxed almost completely. Transfer characteristics of the core-shell nanowires show an ambipolar conductance behavior whose strength strongly depends on the dimensions of the nanowires. The interpretation is given based on an electronic band profile which is calculated for completely relaxed core/shell structures. The peculiarities of the band alignment in this situation implies simultaneously occupied electron and hole channels in the InSb shell. The ambipolar behavior is then explained by the change of carrier concentration in both channels by the gate voltage.

  18. Relaxation property of the fractional Brownian particle

    International Nuclear Information System (INIS)

    Wang Litan; Lung, C.W.

    1988-08-01

    Dynamic susceptibility of a diffusion system associated with the fractional Brownian motion (fBm) was examined for the fractal property of the Non-Debye relaxation process. The comparisons between fBm and other approaches were made. Anomalous diffusion and the Non-Debye relaxation processes were discussed with this approach. (author). 8 refs, 1 fig

  19. Lifshitz quasinormal modes and relaxation from holography

    NARCIS (Netherlands)

    Sybesma, Watse|info:eu-repo/dai/nl/369283074; Vandoren, Stefan|info:eu-repo/dai/nl/304830739

    2015-01-01

    We obtain relaxation times for field theories with Lifshitz scaling and with holographic duals Einstein-Maxwell-Dilaton gravity theories. This is done by computing quasinormal modes of a bulk scalar field in the presence of Lifshitz black branes. We determine the relation between relaxation time and

  20. Superparamagnetic relaxation of weakly interacting particles

    DEFF Research Database (Denmark)

    Mørup, Steen; Tronc, Elisabeth

    1994-01-01

    The influence of particle interactions on the superparamagnetic relaxation time has been studied by Mossbauer spectroscopy in samples of maghemite (gamma-Fe2O3) particles with different particle sizes and particle separations. It is found that the relaxation time decreases with decreasing particl...

  1. Models of Flux Tubes from Constrained Relaxation

    Indian Academy of Sciences (India)

    tribpo

    J. Astrophys. Astr. (2000) 21, 299 302. Models of Flux Tubes from Constrained Relaxation. Α. Mangalam* & V. Krishan†, Indian Institute of Astrophysics, Koramangala,. Bangalore 560 034, India. *e mail: mangalam @ iiap. ernet. in. † e mail: vinod@iiap.ernet.in. Abstract. We study the relaxation of a compressible plasma to ...

  2. Superparamagnetic relaxation in alpha-Fe particles

    DEFF Research Database (Denmark)

    Bødker, Franz; Mørup, Steen; Pedersen, Michael Stanley

    1998-01-01

    The superparamagnetic relaxation time of carbon-supported alpha-Fe particles with an average size of 3.0 Mm has been studied over a large temperature range by the use of Mossbauer spectroscopy combined with AC and DC magnetization measurements. It is found that the relaxation time varies...

  3. Baryogenesis via Elementary Goldstone Higgs Relaxation

    DEFF Research Database (Denmark)

    Gertov, Helene; Pearce, Lauren; Sannino, Francesco

    2016-01-01

    We extend the relaxation mechanism to the Elementary Goldstone Higgs framework. Besides studying the allowed parameter space of the theory we add the minimal ingredients needed for the framework to be phenomenologically viable. The very nature of the extended Higgs sector allows to consider very ...... but radiatively generated, it is possible to generate the observed matter-antimatter asymmetry via the relaxation mechanism....

  4. International Multidisciplinary Microscopy Congress

    CERN Document Server

    Oral, Ahmet; Ozer, Mehmet; InterM; INTERM2013

    2014-01-01

    The International Multidisciplinary Microscopy Congress (INTERM2013) was organized on October 10-13, 2013. The aim of the congress was to bring together scientists from various branches to discuss the latest advances in the field of microscopy. The contents of the congress have been broadened to a more "interdisciplinary" scope, so as to allow all scientists working on related subjects to participate and present their work. These proceedings include 39 peer-reviewed technical papers, submitted by leading academic and research institutions from over 12 countries and representing some of the most cutting-edge research available. The 39 papers are grouped into the following sections: - Applications of Microscopy in the Physical Sciences - Applications of Microscopy in the Biological Sciences

  5. Stress relaxation under cyclic electron irradiation

    International Nuclear Information System (INIS)

    Bystrov, L.N.; Reznitskij, M.E.

    1990-01-01

    The kinetics of deformation process in a relaxating sample under 2 MeV electron cyclic irradiation was studied experimentally. The Al-Mg alloys with controllable and different (in dislocation density precipitate presence and their character) structure were used in experiments. It was established that after the beam was switched on the deformation rate increased sharply and then, during prolonged irradiation, in a gradual manner. After the switching-off the relaxation rate decreases by jumps up to values close to extrapolated rates of pre-radiation relaxation. The exhibition of these effects with radiation switching-off and switchin-on is dependent on the initial rate of thermal relaxation, the test temperature, the preliminary cold deformation and the dominating deformation dislocation mechanism. The preliminary cold deformation and test temperature elevation slightly decrease the effect of instantaneous relaxation acceleration with the irradiation switch-on. 17 refs., 5 figs

  6. Relaxation dynamics following transition of solvated electrons

    International Nuclear Information System (INIS)

    Barnett, R.B.; Landman, U.; Nitzan, A.

    1989-01-01

    Relaxation dynamics following an electronic transition of an excess solvated electron in clusters and in bulk water is studied using an adiabatic simulation method. In this method the solvent evolves classically and the electron is constrained to a specified state. The coupling between the solvent and the excess electron is evaluated via the quantum expectation value of the electron--water molecule interaction potential. The relaxation following excitation (or deexcitation) is characterized by two time scales: (i) a very fast (/similar to/20--30 fs) one associated with molecular rotations in the first solvation shell about the electron, and (ii) a slower stage (/similar to/200 fs), which is of the order of the longitudinal dielectric relaxation time. The fast relaxation stage exhibits an isotope effect. The spectroscopical consequences of the relaxation dynamics are discussed

  7. Anomalous enthalpy relaxation in vitreous silica

    DEFF Research Database (Denmark)

    Yue, Yuanzheng

    2015-01-01

    scans. It is known that the liquid fragility (i.e., the speed of the viscous slow-down of a supercooled liquid at its Tg during cooling) has impact on enthalpy relaxation in glass. Here, we find that vitreous silica (as a strong system) exhibits striking anomalies in both glass transition and enthalpy...... relaxation compared to fragile oxide systems. The anomalous enthalpy relaxation of vitreous silica is discovered by performing the hyperquenching-annealing-calorimetry experiments. We argue that the strong systems like vitreous silica and vitreous Germania relax in a structurally cooperative manner, whereas...... the fragile ones do in a structurally independent fashion. We discuss the origin of the anomalous enthalpy relaxation in the HQ vitreous silica....

  8. Vibrational and Rotational Energy Relaxation in Liquids

    DEFF Research Database (Denmark)

    Petersen, Jakob

    Vibrational and rotational energy relaxation in liquids are studied by means of computer simulations. As a precursor for studying vibrational energy relaxation of a solute molecule subsequent to the formation of a chemical bond, the validity of the classical Bersohn-Zewail model for describing......, the vibrational energy relaxation of I2 subsequent to photodissociation and recombination in CCl4 is studied using classical Molecular Dynamics simulations. The vibrational relaxation times and the time-dependent I-I pair distribution function are compared to new experimental results, and a qualitative agreement...... is found in both cases. Furthermore, the rotational energy relaxation of H2O in liquid water is studied via simulations and a power-and-work analysis. The mechanism of the energy transfer from the rotationally excited H2O molecule to its water neighbors is elucidated, i.e. the energy-accepting degrees...

  9. Cross-relaxation solid state lasers

    International Nuclear Information System (INIS)

    Antipenko, B.M.

    1989-01-01

    Cross-relaxation functional diagrams provide a high quantum efficiency for pumping bands of solid state laser media and a low waste heat. A large number of the cross-relaxation mechanisms for decay rare earth excited states in crystals have been investigated. These investigations have been a starting-point for development of the cross-relaxation solid state lasers. For example, the cross-relaxation interactions, have been used for the laser action development of LiYF 4 :Gd-Tb. These interactions are important elements of the functional diagrams of the 2 μm Ho-doped media sensitized with Er and Tm and the 3 μm Er-doped media. Recently, new efficient 2 μm laser media with cross-relaxation pumping diagrams have been developed. Physical aspects of these media are the subject of this paper. A new concept of the Er-doped medium, sensitized with Yb, is illustrated

  10. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    International Nuclear Information System (INIS)

    Xu, Yuan; Cardell, Lars-Olaf

    2014-01-01

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B 2 receptor agonist) and des-Arg 9 -bradykinin- (selective B 1 receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE 2 . The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg 9 -bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B 2 receptors, but not those on B 1 . Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in some patients with asthma

  11. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuan, E-mail: yuan.xu@ki.se; Cardell, Lars-Olaf

    2014-02-15

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin- (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in

  12. Magnetic Resonance Fingerprinting with short relaxation intervals.

    Science.gov (United States)

    Amthor, Thomas; Doneva, Mariya; Koken, Peter; Sommer, Karsten; Meineke, Jakob; Börnert, Peter

    2017-09-01

    The aim of this study was to investigate a technique for improving the performance of Magnetic Resonance Fingerprinting (MRF) in repetitive sampling schemes, in particular for 3D MRF acquisition, by shortening relaxation intervals between MRF pulse train repetitions. A calculation method for MRF dictionaries adapted to short relaxation intervals and non-relaxed initial spin states is presented, based on the concept of stationary fingerprints. The method is applicable to many different k-space sampling schemes in 2D and 3D. For accuracy analysis, T 1 and T 2 values of a phantom are determined by single-slice Cartesian MRF for different relaxation intervals and are compared with quantitative reference measurements. The relevance of slice profile effects is also investigated in this case. To further illustrate the capabilities of the method, an application to in-vivo spiral 3D MRF measurements is demonstrated. The proposed computation method enables accurate parameter estimation even for the shortest relaxation intervals, as investigated for different sampling patterns in 2D and 3D. In 2D Cartesian measurements, we achieved a scan acceleration of more than a factor of two, while maintaining acceptable accuracy: The largest T 1 values of a sample set deviated from their reference values by 0.3% (longest relaxation interval) and 2.4% (shortest relaxation interval). The largest T 2 values showed systematic deviations of up to 10% for all relaxation intervals, which is discussed. The influence of slice profile effects for multislice acquisition is shown to become increasingly relevant for short relaxation intervals. In 3D spiral measurements, a scan time reduction of 36% was achieved, maintaining the quality of in-vivo T1 and T2 maps. Reducing the relaxation interval between MRF sequence repetitions using stationary fingerprint dictionaries is a feasible method to improve the scan efficiency of MRF sequences. The method enables fast implementations of 3D spatially

  13. Corroborative evidences of TV γ -scaling of the α-relaxation originating from the primitive relaxation/JG β relaxation

    Science.gov (United States)

    Ngai, K. L.; Paluch, M.

    2017-12-01

    Successful thermodynamic scaling of the structural alpha-relaxation time or transport coefficients of glass-forming liquids determined at various temperatures T and pressures P means the data conform to a single function of the product variable TVgamma, where V is the specific volume and gamma is a material specific constant. In the past two decades we have witnessed successful TVgamma-scaling in many molecular, polymeric, and even metallic glass-formers, and gamma is related to the slope of the repulsive part of the intermolecular potential. The advances made indicate TVgamma-scaling is an important aspect of the dynamic and thermodynamic properties of glass-formers. In this paper we show the origin of TVgamma-scaling is not from the structural alpha-relaxation time. Instead it comes from its precursor, the Johari-Goldstein beta-relaxation or the primitive relaxation of the Coupling Model and their relaxation times or tau_0 respectively. It is remarkable that all relaxation times are functions of TVgamma with the same gama, as well as the fractional exponent of the Kohlrausch correlation function of the structural alpha-relaxation. We arrive at this conclusion convincingly based on corroborative evidences from a number of experiments and molecular dynamics simulations performed on a wide variety of glass-formers and in conjunction with consistency with the predictions of the Coupling Model.

  14. Relaxing a large cosmological constant

    International Nuclear Information System (INIS)

    Bauer, Florian; Sola, Joan; Stefancic, Hrvoje

    2009-01-01

    The cosmological constant (CC) problem is the biggest enigma of theoretical physics ever. In recent times, it has been rephrased as the dark energy (DE) problem in order to encompass a wider spectrum of possibilities. It is, in any case, a polyhedric puzzle with many faces, including the cosmic coincidence problem, i.e. why the density of matter ρ m is presently so close to the CC density ρ Λ . However, the oldest, toughest and most intriguing face of this polyhedron is the big CC problem, namely why the measured value of ρ Λ at present is so small as compared to any typical density scale existing in high energy physics, especially taking into account the many phase transitions that our Universe has undergone since the early times, including inflation. In this Letter, we propose to extend the field equations of General Relativity by including a class of invariant terms that automatically relax the value of the CC irrespective of the initial size of the vacuum energy in the early epochs. We show that, at late times, the Universe enters an eternal de Sitter stage mimicking a tiny positive cosmological constant. Thus, these models could be able to solve the big CC problem without fine-tuning and have also a bearing on the cosmic coincidence problem. Remarkably, they mimic the ΛCDM model to a large extent, but they still leave some characteristic imprints that should be testable in the next generation of experiments.

  15. Analysis of the kinetics of the fragile fracture process in Mo monocrystals in quasi-relaxation

    International Nuclear Information System (INIS)

    Tamayo Meza, Pedro; Bautista Godinez, Eric Gustavo; Yermishkin, Viacheslav

    2008-01-01

    The method of quasi-relaxation, generally known as the force relaxation method, has been widely applied in the study of elementary dislocational processes. It is essential for the study and analysis of thermoactivated mechanisms, for the determination of the energy of interaction between dislocations and inclusions, in the definition of the dislocational constants, to predict the development of creep, and even for the study of fracture kinetics. For the first time the use of the quasi-relaxation method for evaluating the fragile fracture tendency was presented in the work. However, as usually carried out, the use of mass specimens and the development of a considerable plastic deformation in the vertex of the crack-notch sample limits the possibilities for this method. Many studies analyze the theoretical aspects of the fracture process, and the obtention of reliable quantitative information about the behavior of the dislocation based on an analytical description of the process, and how and when it influences the conditions under which the final catastrophic fracture occurs. This work proposes a new method to analyze the effect of a tension concentrator on the surface of Mo monocrystal specimens. The relaxation of the force and the increase in the crack opening is related to the development of the plastic zone in its vertex with the help of the Irwin correction. During the relaxation, the crack-groove grows until it attains the length of the plastic zone. Specimens with and without force concentrators were tested in quasi-relaxation. The cracks appearing under these conditions are analyzed using a scanning electron microscopy (SEM). The crack appearing in the specimens under load conditions, whose development produced heavy force relaxation, allowed the force relaxation value to be defined and compared in the specimens with and without tension concentrators (au)

  16. Multidimensional dynamic piezoresponse measurements. Unraveling local relaxation behavior in relaxor-ferroelectrics via big data

    International Nuclear Information System (INIS)

    Vasudevan, Rama K.; Zhang, Shujun; Okatan, Mahmut Baris; Jesse, Stephen; Kalinin, Sergei V.; Bassiri-Gharb, Nazanin

    2015-01-01

    Compositional and charge disorder in ferroelectric relaxors lies at the heart of the unusual properties of these systems, such as aging and non-ergodicity, polarization rotations, and a host of temperature and field-driven phase transitions. However, much information about the field-dynamics of the polarization in the prototypical ferroelectric relaxor (1-x)Pb(Mg 1/3 Nb 2/3 )O 3-x PbTiO 3 (PMN-xPT) remains unprobed at the mesoscopic level. We use a piezoresponse force microscopy-based dynamic multimodal relaxation spectroscopy technique, enabling the study of ferroelectric switching and polarization relaxation at mesoscopic length scales, and carry out measurements on a PMN-0.28PT sample with minimal polishing. Results indicate that beyond a threshold DC bias the average relaxation increases as the system attempts to relax to the previous state. Phenomenological fitting reveals the presence of mesoscale heterogeneity in relaxation amplitudes and clearly suggests the presence of two distinct amplitudes. Independent component analysis reveals the presence of a disorder component of the relaxation, which is found to be strongly anti-correlated with the maximum piezoresponse at that location, suggesting smaller disorder effects where the polarization reversal is large and vice versa. The disorder in the relaxation amplitudes is postulated to arise from rhombohedral and field-induced tetragonal phase in the crystal, with each phase associated with its own relaxation amplitude. As a result, these studies highlight the crucial importance of the mixture of ferroelectric phases in the compositions in proximity of the morphotropic phase boundary in governing the local response and further highlight the ability of PFM voltage and time spectroscopies, in conjunction with big-data multivariate analyses, to locally map disorder and correlate it with parameters governing the dynamic behavior

  17. Time, stress, and temperature-dependent deformation in nanostructured copper: Stress relaxation tests and simulations

    International Nuclear Information System (INIS)

    Yang, Xu-Sheng; Wang, Yun-Jiang; Wang, Guo-Yong; Zhai, Hui-Ru; Dai, L.H.; Zhang, Tong-Yi

    2016-01-01

    In the present work, stress relaxation tests, high-resolution transmission electron microscopy (HRTEM), and molecular dynamics (MD) simulations were conducted on coarse-grained (cg), nanograined (ng), and nanotwinned (nt) copper at temperatures of 22 °C (RT), 30 °C, 40 °C, 50 °C, and 75 °C. The comprehensive investigations provide sufficient information for the building-up of a formula to describe the time, stress, and temperature-dependent deformation and clarify the relationship among the strain rate sensitivity parameter, stress exponent, and activation volume. The typically experimental curves of logarithmic plastic strain rate versus stress exhibited a three staged relaxation process from a linear high stress relaxation region to a subsequent nonlinear stress relaxation region and finally to a linear low stress relaxation region, which only showed-up at the test temperatures higher than 22 °C, 22 °C, and 30 °C, respectively, in the tested cg-, ng-, and nt-Cu specimens. The values of stress exponent, stress-independent activation energy, and activation volume were determined from the experimental data in the two linear regions. The determined activation parameters, HRTEM images, and MD simulations consistently suggest that dislocation-mediated plastic deformation is predominant in all tested cg-, ng-, and nt-Cu specimens in the initial linear high stress relaxation region at the five relaxation temperatures, whereas in the linear low stress relaxation region, the grain boundary (GB) diffusion-associated deformation is dominant in the ng- and cg-Cu specimens, while twin boundary (TB) migration, i.e., twinning and detwinning with parallel partial dislocations, governs the time, stress, and temperature-dependent deformation in the nt-Cu specimens.

  18. Nonpolar ZnO film growth and mechanism for anisotropic in-plane strain relaxation

    International Nuclear Information System (INIS)

    Pant, P.; Budai, J.D.; Narayan, J.

    2010-01-01

    Using high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction, we investigated the strain relaxation mechanisms for nonpolar (1 1 -2 0) a-plane ZnO epitaxy on (1 -1 0 2) r-plane sapphire, where the in-plane misfit ranges from -1.5% for the [0 0 0 1]ZnO-parallel [1 -1 0 -1]sapphire to -18.3% for the [-1 1 0 0]ZnO-parallel [-1 -1 2 0]sapphire direction. For the large misfit [-1 1 0 0]ZnO direction the misfit strains are fully relaxed at the growth temperature, and only thermal misfit and defect strains, which cannot be relaxed fully by slip dislocations, remain on cooling. For the small misfit direction, lattice misfit is not fully relaxed at the growth temperature. As a result, additive unrelaxed lattice and thermal misfit and defect strains contribute to the measured strain. Our X-ray diffraction measurements of lattice parameters show that the anisotropic in-plane biaxial strain leads to a distortion of the hexagonal symmetry of the ZnO basal plane. Based on the anisotropic strain relaxation observed along the orthogonal in-plane [-1 1 0 0] and [0 0 0 1]ZnO stress directions and our HRTEM investigations of the interface, we show that the plastic relaxation occurring in the small misfit direction [0 0 0 1]ZnO by dislocation nucleation is incomplete. These results are consistent with the domain-matching paradigm of a complete strain relaxation for large misfits and a difficulty in relaxing the film strain for small misfits.

  19. The effects of progressive muscle relaxation and autogenic relaxation on young soccer players' mood states.

    Science.gov (United States)

    Hashim, Hairul Anuar; Hanafi Ahmad Yusof, Hazwani

    2011-06-01

    This study was designed to compare the effects of two different relaxation techniques, namely progressive muscle relaxation (PMR) and autogenic relaxation (AGR) on moods of young soccer players. sixteen adolescent athletes (mean age: 14.1 ± 1.3) received either PMR or AGR training. Using Profile of Mood States- Adolescents, their mood states were measured one week before relaxation training, before the first relaxation session, and after the twelfth relaxation session. Mixed ANOVA revealed no significant interaction effects and no significant main effects in any of the subscales. However, significant main effects for testing sessions were found for confusion, depression, fatigue, and tension subscales. Post hoc tests revealed post-intervention reductions in the confusion, depression, fatigue, and tension subscale scores. These two relaxation techniques induce equivalent mood responses and may be used to regulate young soccer players' mood states.

  20. The Effects of Progressive Muscle Relaxation and Autogenic Relaxation on Young Soccer Players’ Mood States

    Science.gov (United States)

    Hashim, Hairul Anuar; Hanafi@Ahmad Yusof, Hazwani

    2011-01-01

    Purpose This study was designed to compare the effects of two different relaxation techniques, namely progressive muscle relaxation (PMR) and autogenic relaxation (AGR) on moods of young soccer players. Methods Sixteen adolescent athletes (mean age: 14.1 ± 1.3) received either PMR or AGR training. Using Profile of Mood States- Adolescents, their mood states were measured one week before relaxation training, before the first relaxation session, and after the twelfth relaxation session. Results Mixed ANOVA revealed no significant interaction effects and no significant main effects in any of the subscales. However, significant main effects for testing sessions were found for confusion, depression, fatigue, and tension subscales. Post hoc tests revealed post-intervention reductions in the confusion, depression, fatigue, and tension subscale scores. Conclusion These two relaxation techniques induce equivalent mood responses and may be used to regulate young soccer players’ mood states. PMID:22375225

  1. Metastability and relaxation in tensile SiGe on Ge(001) virtual substrates

    International Nuclear Information System (INIS)

    Frigerio, Jacopo; Lodari, Mario; Chrastina, Daniel; Mondiali, Valeria; Isella, Giovanni; Bollani, Monica

    2014-01-01

    We systematically study the heteroepitaxy of SiGe alloys on Ge virtual substrates in order to understand strain relaxation processes and maximize the tensile strain in the SiGe layer. The degree of relaxation is measured by high-resolution x-ray diffraction, and surface morphology is characterized by atomic force microscopy. The results are analyzed in terms of a numerical model, which considers dislocation nucleation, multiplication, thermally activated glide, and strain-dependent blocking. Relaxation is found to be sensitive to growth rate and substrate temperature as well as epilayer misfit and thickness, and growth parameters are found which allow a SiGe film with over 4 GPa of tensile stress to be obtained.

  2. Inhomogeneous Relaxation of a Molecular Layer on an Insulator due to Compressive Stress

    Science.gov (United States)

    Bocquet, F.; Nony, L.; Mannsfeld, S. C. B.; Oison, V.; Pawlak, R.; Porte, L.; Loppacher, Ch.

    2012-05-01

    We discuss the inhomogeneous stress relaxation of a monolayer of hexahydroxytriphenylene (HHTP) which adopts the rare line-on-line (LOL) coincidence on KCl(001) and forms moiré patterns. The fact that the hexagonal HHTP layer is uniaxially compressed along the LOL makes this system an ideal candidate to discuss the influence of inhomogeneous stress relaxation. Our work is a combination of noncontact atomic force microscopy experiments, density functional theory and potential energy calculations, and a thorough interpretation by means of the Frenkel-Kontorova model. We show that the assumption of a homogeneous molecular layer is not valid for this organic-inorganic heteroepitaxial system since the best calculated energy configuration correlates with the experimental data only if inhomogeneous relaxations of the layer are taken into account.

  3. Relaxation of polarized nuclei in superconducting rhodium

    DEFF Research Database (Denmark)

    Knuuttila, T.A.; Tuoriniemi, J.T.; Lefmann, K.

    2000-01-01

    Nuclear spin lattice relaxation rates were measured in normal and superconducting (sc) rhodium with nuclear polarizations up to p = 0.55. This was sufficient to influence the sc state of Rh, whose T, and B-c, are exceptionally low. Because B-c ... is unchanged, the nuclear spin entropy was fully sustained across the sc transition. The relaxation in the sc state was slower at all temperatures without the coherence enhancement close to T-c. Nonzero nuclear polarization strongly reduced the difference between the relaxation rates in the sc and normal...

  4. Spin relaxation in nanowires by hyperfine coupling

    International Nuclear Information System (INIS)

    Echeverria-Arrondo, C.; Sherman, E.Ya.

    2012-01-01

    Hyperfine interactions establish limits on spin dynamics and relaxation rates in ensembles of semiconductor quantum dots. It is the confinement of electrons which determines nonzero hyperfine coupling and leads to the spin relaxation. As a result, in nanowires one would expect the vanishing of this effect due to extended electron states. However, even for relatively clean wires, disorder plays a crucial role and makes electron localization sufficient to cause spin relaxation on the time scale of the order of 10 ns. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Le Chatelier's principle with multiple relaxation channels

    Science.gov (United States)

    Gilmore, R.; Levine, R. D.

    1986-05-01

    Le Chatelier's principle is discussed within the constrained variational approach to thermodynamics. The formulation is general enough to encompass systems not in thermal (or chemical) equilibrium. Particular attention is given to systems with multiple constraints which can be relaxed. The moderation of the initial perturbation increases as additional constraints are removed. This result is studied in particular when the (coupled) relaxation channels have widely different time scales. A series of inequalities is derived which describes the successive moderation as each successive relaxation channel opens up. These inequalities are interpreted within the metric-geometry representation of thermodynamics.

  6. Universal Mechanism of Spin Relaxation in Solids

    Science.gov (United States)

    Chudnovsky, Eugene

    2006-03-01

    Conventional elastic theory ignores internal local twists and torques. Meantime, spin-lattice relaxation is inherently coupled with local elastic twists through conservation of the total angular momentum (spin + lattice). This coupling gives universal lower bound (free of fitting parameters) on the relaxation of the atomic or molecular spin in a solid [1] and on the relaxation of the electron spin in a quantum dot [2]. [1] E. M. Chudnovsky, D. A. Garanin, and R. Schilling, Phys. Rev. B 72, 094426 (2005). [2] C. Calero, E. M. Chudnovsky, and D. A. Garanin, Phys. Rev. Lett. 95, 166603 (2005).

  7. Collisional relaxation of electron tail distribution

    International Nuclear Information System (INIS)

    Yamagiwa, Mitsuru; Okamoto, Masao.

    1985-05-01

    Relaxation due to the Coulomb collisions of the electron velocity distribution function with a high energy tail is investigated in detail. In the course of the relaxation, a 'saddle' point can be created in velocity space owing to upsilon -3 dependence of the deflection rate and a positive slope or a 'dip' appears in the tail direction. The time evolution of the electron tail is studied analytically. A comparison is made with numerical results by using a Fokker-Planck code. Also discussed is the kinetic instability concerned with the positive slope during the relaxation. (author)

  8. Nuclear magnetic resonance relaxation in multiple sclerosis

    DEFF Research Database (Denmark)

    Larsson, H B; Barker, G J; MacKay, A

    1998-01-01

    OBJECTIVES: The theory of relaxation processes and their measurements are described. An overview is presented of the literature on relaxation time measurements in the normal and the developing brain, in experimental diseases in animals, and in patients with multiple sclerosis. RESULTS...... AND CONCLUSION: Relaxation time measurements provide insight into development of multiple sclerosis plaques, especially the occurrence of oedema, demyelination, and gliosis. There is also evidence that normal appearing white matter in patients with multiple sclerosis is affected. What is now needed are fast...

  9. Stress Relaxation in Entangled Polymer Melts

    DEFF Research Database (Denmark)

    Hou, Ji-Xuan; Svaneborg, Carsten; Everaers, Ralf

    2010-01-01

    We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements...... and into the terminal relaxation regime for Z=10. Using the known (Rouse) mobility of unentangled chains and the melt entanglement length determined via the primitive path analysis of the microscopic topological state of our systems, we have performed parameter-free tests of several different tube models. We find...

  10. Slow relaxation in weakly open rational polygons.

    Science.gov (United States)

    Kokshenev, Valery B; Vicentini, Eduardo

    2003-07-01

    The interplay between the regular (piecewise-linear) and irregular (vertex-angle) boundary effects in nonintegrable rational polygonal billiards (of m equal sides) is discussed. Decay dynamics in polygons (of perimeter P(m) and small opening Delta) is analyzed through the late-time survival probability S(m) approximately equal t(-delta). Two distinct slow relaxation channels are established. The primary universal channel exhibits relaxation of regular sliding orbits, with delta=1. The secondary channel is given by delta>1 and becomes open when m>P(m)/Delta. It originates from vertex order-disorder dual effects and is due to relaxation of chaoticlike excitations.

  11. [A study on Korean concepts of relaxation].

    Science.gov (United States)

    Park, J S

    1992-01-01

    Relaxation technique is an independent nursing intervention used in various stressful situations. The concept of relaxation must be explored for the meaning given by the people in their traditional thought and philosophy. Korean relaxation technique, wanting to become culturally acceptable and effective, is learning to recognize and develop Korean concepts, experiences, and musics of relaxation. This study was aimed at discovering Korean concepts, experiences and musics of relaxation and contributing the development of the relaxation technique for Korean people. The subjects were 59 nursing students, 39 hospitalized patients, 61 housewives, 21 rural residents and 16 researchers. Data were collected from September 4th to October 24th, 1991 by interviews or questionnaires. The data analysis was done by qualitative research method, and validity assured by conformation of the concept and category by 2 nursing scientists who had written a Master's thesis on the relaxation technique. The results of the study were summarized as follows; 1. The meaning of the relaxation concept; From 298 statements, 107 concepts were extracted and then 5 categories "Physical domain", "Psychological domain", "Complex domain", "Situation", and "environment" were organized. 'Don't have discomforts, 'don't have muscle tension', 'don't have energy (him in Korean)', 'don't have activities' subcategories were included in "Physical domain". 'Don't have anxiety', 'feel good', 'emotional stability', 'don't have wordly thoughts', 'feel one's brain muddled', 'loss of desire' subcategories were included in "physical domain" 'Comfort body and mind', 'don't have tension of body and mind', 'be sagged' 'liveliness of thoughts' subcategories were included in "Complex domain". 'Rest', 'sleep', 'others' subcategories were included in "Situation domain". And 'quite environment' & 'comfortable environment' subcategories were included in "Environmental domain". 2. The experiences of the relaxation; From 151

  12. Confocal Raman Microscopy

    CERN Document Server

    Dieing, Thomas; Toporski, Jan

    2011-01-01

    Confocal Raman Microscopy is a relatively new technique that allows chemical imaging without specific sample preparation. By integrating a sensitive Raman spectrometer within a state-of-the-art microscope, Raman microscopy with a spatial resolution down to 200nm laterally and 500nm vertically can be achieved using visible light excitation. Recent developments in detector and computer technology as well as optimized instrument design have reduced integration times of Raman spectra by orders of magnitude, so that complete images consisting of tens of thousands of Raman spectra can be acquired in seconds or minutes rather than hours, which used to be standard just one decade ago. The purpose of this book is to provide the reader a comprehensive overview of the rapidly developing field of Confocal Raman Microscopy and its applications.

  13. Confocal scanning microscopy

    DEFF Research Database (Denmark)

    Bariani, Paolo

    This report is based on a metrological investigation on confocal microscopy technique carried out by Uffe Rolf Arlø Theilade and Paolo Bariani. The purpose of the experimental activity was twofold a metrological instrument characterization and application to assessment of rough PP injection moulded...... replicated topography. Confocal microscopy is seen to be a promising technique in metrology of microstructures. Some limitations with respect to surface metrology were found during the experiments. The experiments were carried out using a Zeiss LSM 5 Pascal microscope owned by the Danish Polymer Centre...

  14. Leakage radiation interference microscopy.

    Science.gov (United States)

    Descrovi, Emiliano; Barakat, Elsie; Angelini, Angelo; Munzert, Peter; De Leo, Natascia; Boarino, Luca; Giorgis, Fabrizio; Herzig, Hans Peter

    2013-09-01

    We present a proof of principle for a new imaging technique combining leakage radiation microscopy with high-resolution interference microscopy. By using oil immersion optics it is demonstrated that amplitude and phase can be retrieved from optical fields, which are evanescent in air. This technique is illustratively applied for mapping a surface mode propagating onto a planar dielectric multilayer on a thin glass substrate. The surface mode propagation constant estimated after Fourier transformation of the measured complex field is well matched with an independent measurement based on back focal plane imaging.

  15. Relaxation processes during amorphous metal alloys heating

    International Nuclear Information System (INIS)

    Malinochka, E.Ya.; Durachenko, A.M.; Borisov, V.T.

    1982-01-01

    Behaviour of Te+15 at.%Ge and Fe+13 at.%P+7 at.%C amorphous metal alloys during heating has been studied using the method of differential scanning calorimetry (DSC) as the most convenient one for determination of the value of heat effects, activation energies, temperature ranges of relaxation processes. Thermal effects corresponding to high-temperature relaxation processes taking place during amorphous metal alloys (AMA) heating are detected. The change of ratio of relaxation peaks values on DSC curves as a result of AMA heat treatment can be explained by the presence of a number of levels of inner energy in amorphous system, separated with potential barriers, the heights of which correspond to certain activation energies of relaxation processes

  16. The relaxation of plasmas with dust particles

    International Nuclear Information System (INIS)

    Chutov, Yu.I.; Kravchenko, A.Yu.; Schram, P.P.J.M.

    1997-01-01

    Various parameters of relaxing plasmas with dust particles including the electron and ion energy distributions function are numerically simulated at various parameters of the dust particles using the PIC method and taking into account the dynamics of the dust particle charge without the assumption about the equilibrium of electrons and ions. Coulomb collisions are taken into account in the framework of the method of stochastic differential equations. The relaxation of bounded plasma clouds expanding into a vacuum as well as the relaxation of a uniform plasma, in which dust particles appear at some initial time, are investigated. The obtained results show that the relaxation of plasmas can be accompanied by a deviation of the ion distribution function from equilibrium as well as a change of the mean energy of electrons and ions because of the dependence of the collection of electrons and ions by dust particles on their energy. (author)

  17. Multiscale dipole relaxation in dielectric materials

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt

    2016-01-01

    Dipole relaxation from thermally induced perturbations is investigated on different length scales for dielectric materials. From the continuum dynamical equations for the polarisation, expressions for the transverse and longitudinal dipole autocorrelation functions are derived in the limit where ...

  18. Generalized approach to non-exponential relaxation

    Indian Academy of Sciences (India)

    Non-exponential relaxation is a universal feature of systems as diverse as glasses, spin ... which changes from a simple exponential to a stretched exponential and a power law by increasing the constraints in the system. ... Current Issue

  19. Oxygen-17 relaxation in aqueous agarose gels

    International Nuclear Information System (INIS)

    Ablett, S.; Lillford, P.J.

    1977-01-01

    Nuclear magnetic relaxation of oxygen-17 in H 2 17 O enriched agarose gels shows that existing explanations of water behaviour are oversimplified. Satisfactory models must include at least three proton phases, two of which involve water molecules. (Auth.)

  20. Connecting structural relaxation with the low frequency modes in a hard-sphere colloidal glass.

    Science.gov (United States)

    Ghosh, Antina; Chikkadi, Vijayakumar; Schall, Peter; Bonn, Daniel

    2011-10-28

    Structural relaxation in hard-sphere colloidal glasses has been studied using confocal microscopy. The motion of individual particles is followed over long time scales to detect the rearranging regions in the system. We have used normal mode analysis to understand the origin of the rearranging regions. The low-frequency modes, obtained over short time scales, show strong spatial correlation with the rearrangements that happen on long time scales.

  1. Ion-induced stress relaxation during the growth of cubic boron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Abendroth, B.E.

    2004-08-01

    in this thesis the deposition of cubic boron nitride films by magnetron sputtering is described. The deposition process is analyzed by Langmuir-probe measurement and energy resolved mass spectroscopy. the films are studied by stress measurement, spectroscopic ellipsometry, infrared spectroscopy, elastic recoil detection analysis, Rutherford backscattering spectroscopy, X-ray absorption near edge spectroscopy, X-ray diffraction, and transmission electron microscopy. Discussed are the stress relaxation and the microstructure and bonding characteristics together with the effects of ion bombardement. (HSI)

  2. Relaxation and hypnosis in pediatric dental patients.

    Science.gov (United States)

    Peretz, B

    1996-01-01

    Relaxation and hypnosis are methods which, may solve the problem of extreme dental anxiety, when all other methods, behavioral or pharmacological may not be used. A simple definition of hypnosis is suggestion and repetition. Suggestion is the process whereby an individual accepts a proposition put to him by another, without having the slightest logical reason for doing so. Relaxation is one method of inducing hypnosis. A case of using hypnosis on an 11-year-old boy is described.

  3. Ghost lines in Moessbauer relaxation spectra

    International Nuclear Information System (INIS)

    Price, D.C.

    1985-01-01

    The appearance in Moessbauer relaxation spectra of 'ghost' lines, which are narrow lines that do not correspond to transitions between real hyperfine energy levels of the resonant system, is examined. It is shown that in many cases of interest, the appearance of these 'ghost' lines can be interpreted in terms of the relaxational averaging of one or more of the static interactions of the ion. (orig.)

  4. Dynamics of helicity transport and Taylor relaxation

    International Nuclear Information System (INIS)

    Diamond, P.H.; Malkov, M.

    2003-01-01

    A simple model of the dynamics of Taylor relaxation is derived using symmetry principles alone. No statistical closure approximations are invoked or detailed plasma model properties assumed. Notably, the model predicts several classes of nondiffusive helicity transport phenomena, including traveling nonlinear waves and superdiffusive turbulent pulses. A universal expression for the scaling of the effective magnetic Reynolds number of a system undergoing Taylor relaxation is derived. Some basic properties of intermittency in helicity transport are examined

  5. Regularities of intermediate adsorption complex relaxation

    International Nuclear Information System (INIS)

    Manukova, L.A.

    1982-01-01

    The experimental data, characterizing the regularities of intermediate adsorption complex relaxation in the polycrystalline Mo-N 2 system at 77 K are given. The method of molecular beam has been used in the investigation. The analytical expressions of change regularity in the relaxation process of full and specific rates - of transition from intermediate state into ''non-reversible'', of desorption into the gas phase and accumUlation of the particles in the intermediate state are obtained

  6. Fluorescence confocal polarizing microscopy

    Indian Academy of Sciences (India)

    Much of the modern understanding of orientational order in liquid crystals (LCs) is based on polarizing microscopy (PM). A PM image bears only two-dimensional (2D) information, integrating the 3D pattern of optical birefringence over the path of light. Recently, we proposed a technique to image 3D director patterns by ...

  7. Ballistic hole magnetic microscopy

    NARCIS (Netherlands)

    Haq, E.; Banerjee, T.; Siekman, M.H.; Lodder, J.C.; Jansen, R.

    2005-01-01

    A technique to study nanoscale spin transport of holes is presented: ballistic hole magnetic microscopy. The tip of a scanning tunneling microscope is used to inject hot electrons into a ferromagnetic heterostructure, where inelastic decay creates a distribution of electron-hole pairs.

  8. Relaxation of synchronization on complex networks.

    Science.gov (United States)

    Son, Seung-Woo; Jeong, Hawoong; Hong, Hyunsuk

    2008-07-01

    We study collective synchronization in a large number of coupled oscillators on various complex networks. In particular, we focus on the relaxation dynamics of the synchronization, which is important from the viewpoint of information transfer or the dynamics of system recovery from a perturbation. We measure the relaxation time tau that is required to establish global synchronization by varying the structural properties of the networks. It is found that the relaxation time in a strong-coupling regime (K>Kc) logarithmically increases with network size N , which is attributed to the initial random phase fluctuation given by O(N-1/2) . After elimination of the initial-phase fluctuation, the relaxation time is found to be independent of the system size; this implies that the local interaction that depends on the structural connectivity is irrelevant in the relaxation dynamics of the synchronization in the strong-coupling regime. The relaxation dynamics is analytically derived in a form independent of the system size, and it exhibits good consistency with numerical simulations. As an application, we also explore the recovery dynamics of the oscillators when perturbations enter the system.

  9. Stress relaxation in viscous soft spheres.

    Science.gov (United States)

    Boschan, Julia; Vasudevan, Siddarth A; Boukany, Pouyan E; Somfai, Ellák; Tighe, Brian P

    2017-10-04

    We report the results of molecular dynamics simulations of stress relaxation tests in athermal viscous soft sphere packings close to their unjamming transition. By systematically and simultaneously varying both the amplitude of the applied strain step and the pressure of the initial condition, we access both linear and nonlinear response regimes and control the distance to jamming. Stress relaxation in viscoelastic solids is characterized by a relaxation time τ* that separates short time scales, where viscous loss is substantial, from long time scales, where elastic storage dominates and the response is essentially quasistatic. We identify two distinct plateaus in the strain dependence of the relaxation time, one each in the linear and nonlinear regimes. The height of both plateaus scales as an inverse power law with the distance to jamming. By probing the time evolution of particle velocities during relaxation, we further identify a correlation between mechanical relaxation in the bulk and the degree of non-affinity in the particle velocities on the micro scale.

  10. Relaxation strain measurements in cellular dislocation structures

    International Nuclear Information System (INIS)

    Tsai, C.Y.; Quesnel, D.J.

    1984-01-01

    The conventional picture of what happens during a stress relaxation usually involves imagining the response of a single dislocation to a steadily decreasing stress. The velocity of this dislocation decreases with decreasing stress in such a way that we can measure the stress dependence of the dislocation velocity. Analysis of the data from a different viewpoint enables us to calculate the apparent activation volume for the motion of the dislocation under the assumption of thermally activated glie. Conventional thinking about stress relaxation, however, does not consider the eventual fate of this dislocation. If the stress relaxes to a low enough level, it is clear that the dislocation must stop. This is consistent with the idea that we can determine the stress dependence of the dislocation velocity from relaxation data only for those cases where the dislocation's velocity is allowed to approach zero asymptotically, in short, for those cases where the dislocation never stops. This conflict poses a dilemma for the experimentalist. In real crystals, however, obstacles impede the dislocation's progress so that those dislocations which are stopped at a given stress will probably never resume motion under the influence of the steadily declining stress present during relaxation. Thus one could envision stress relaxation as a process of exhaustion of mobile dislocations, rather than a process of decreasing dislocation velocity. Clearly both points of view have merit and in reality both mechanisms contribute to the phenomena

  11. Advanced Microscopy of Microbial Cells

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Regenberg, Birgitte; Sternberg, Claus

    2011-01-01

    microscopy, super-resolution optical microscopy (STED, SIM, PALM) as well as atomic force microscopy and Raman spectroscopy. Using examples of bistability in microbial populations as well as biofilm development and differentiation in bacterial and yeast consortia, we demonstrate the importance of microscopy...

  12. Effect of extender oils on the stress relaxation behavior of thermoplastic vulcanizates

    Directory of Open Access Journals (Sweden)

    2008-11-01

    Full Text Available The long term mechanical behavior of oil extended thermoplastic vulcanizates (TPV based on polypropylene (PP and acrylonitrile-butadiene rubber (NBR has been characterized by means of stress relaxation experiments. The morphology of TPV and the phase specific oil distribution which depend on the content and type of oil as well as on the mixing regime have been characterized by means of Atomic Force Microscopy (AFM, Dynamic Mechanical Thermal Analysis (DMTA and Differential Scanning Calorimetrie (DSC. The discussion of the stress relaxation behavior was carried out using the two-component model, which allows splitting the initial stress into two components: a thermal activated stress component and an athermal one. A master curve was created by shifting the relaxation curves vertically and horizontally towards the reference curve. The vertical shift factor bT is a function of the temperature dependence of the athermal stress components. It was found that the oil distribution strongly affects the athermal stress component which is related to the contribution of the structural changes, e.g. crystallinity of the PP phase and the average molecular weight between the crosslinks of the NBR phase. From the temperature dependence of the horizontal shift factor aT the main viscoelastic relaxation process was determined as the α-relaxation process of the crystalline PP phase. It is not dependent on the polarity and content of the oil as well as the mixing regime.

  13. Polarized Light Microscopy

    Science.gov (United States)

    Frandsen, Athela F.

    2016-01-01

    Polarized light microscopy (PLM) is a technique which employs the use of polarizing filters to obtain substantial optical property information about the material which is being observed. This information can be combined with other microscopy techniques to confirm or elucidate the identity of an unknown material, determine whether a particular contaminant is present (as with asbestos analysis), or to provide important information that can be used to refine a manufacturing or chemical process. PLM was the major microscopy technique in use for identification of materials for nearly a century since its introduction in 1834 by William Fox Talbot, as other techniques such as SEM (Scanning Electron Microscopy), FTIR (Fourier Transform Infrared spectroscopy), XPD (X-ray Powder Diffraction), and TEM (Transmission Electron Microscopy) had not yet been developed. Today, it is still the only technique approved by the Environmental Protection Agency (EPA) for asbestos analysis, and is often the technique first applied for identification of unknown materials. PLM uses different configurations in order to determine different material properties. With each configuration additional clues can be gathered, leading to a conclusion of material identity. With no polarizing filter, the microscope can be used just as a stereo optical microscope, and view qualities such as morphology, size, and number of phases. With a single polarizing filter (single polars), additional properties can be established, such as pleochroism, individual refractive indices, and dispersion staining. With two polarizing filters (crossed polars), even more can be deduced: isotropy vs. anisotropy, extinction angle, birefringence/degree of birefringence, sign of elongation, and anomalous polarization colors, among others. With the use of PLM many of these properties can be determined in a matter of seconds, even for those who are not highly trained. McCrone, a leader in the field of polarized light microscopy, often

  14. Electron microscopy in metallurgy

    International Nuclear Information System (INIS)

    Loretto, M.H.

    1980-01-01

    The aim of this paper is to review briefly the contribution which (TEM) transmission electron microscopy (including high voltage electron microscopy (HVEM)) has made to metallurgy. Since it is straightforward with modern electron microscopes to extract the crystallographic information which provides the basis for any interpretation, the major problem in most metallurgical work lies in assessing how the structure (which TEM has characterised) has arisen and which properties of the specimen can be understood in terms of this structure. Radiation damage, quenching, phase transformations, grain boundaries and plastic deformation have been the main fields in which TEM has contributed significantly. After briefly summarising the role of TEM in each field, examples of recent work will be used to indicate current TEM activity in physical metallurgy. (author)

  15. Second harmonic generation microscopy

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline; Brewer, Jonathan R.; Risbo, Jens

    2010-01-01

    Myofibers and collagen show non-linear optical properties enabling imaging using second harmonic generation (SHG) microscopy. The technique is evaluated for use as a tool for real-time studies of thermally induced changes in thin samples of unfixed and unstained pork. The forward and the backward...... scattered SHG light reveal complementary features of the structures of myofibers and collagen fibers. Upon heating the myofibers show no structural changes before reaching a temperature of 53 °C. At this temperature the SHG signal becomes extinct. The extinction of the SHG at 53 °C coincides with a low......-temperature endotherm peak observable in the differential scanning calorimetry (DSC) thermograms. DSC analysis of epimysium, the connective tissue layer that enfold skeletal muscles, produces one large endotherm starting at 57 °C and peaking at 59.5 °C. SHG microscopy of collagen fibers reveals a variability of thermal...

  16. Electron microscopy and diffraction

    International Nuclear Information System (INIS)

    Gjoennes, J.; Olsen, A.

    1986-01-01

    This report is a description of research activities and plans at the electron microscopy laboratorium, Physics Department, University of Oslo. Since the first electron microscope was installed in 1968, the research has covered inorganic structures, physical metallurgy, as well as theory of electron scattering and the development of methods in this field. The current plans involve efforts in the development of crystallographic and spectroscopic methods

  17. Use of relaxation skills in differentially skilled athletes.

    OpenAIRE

    Kudlackova, K.; Eccles, D. W.; Dieffenbach, K.

    2013-01-01

    Objectives: To examine the use of relaxation skills by differentially skilled athletes in relation to the deliberate practice framework. Design: Differentially skilled athletes completed a survey about their use of relaxation skills. Method: 150 athletes representing three skill levels (recreational, college, and professional) completed the deliberate relaxation for sport survey, which assessed relaxation on three deliberate practice dimensions (relevancy, concentration, and ...

  18. The use of (double) relaxation oscillation SQUIDs as a sensor

    NARCIS (Netherlands)

    van Duuren, M.J.; Brons, G.C.S.; Kattouw, H.; Flokstra, Jakob; Rogalla, Horst

    1997-01-01

    Relaxation Oscillation SQUIDs (ROSs) and Double Relaxation Oscillation SQUIDs (DROSs) are based on relaxation oscillations that are induced in hysteretic dc SQUIDs by an external L-R shunt. The relaxation frequency of a ROS varies with the applied flux Φ, whereas the output of a DROS is a dc

  19. Deep Learning Microscopy

    KAUST Repository

    Rivenson, Yair

    2017-05-12

    We demonstrate that a deep neural network can significantly improve optical microscopy, enhancing its spatial resolution over a large field-of-view and depth-of-field. After its training, the only input to this network is an image acquired using a regular optical microscope, without any changes to its design. We blindly tested this deep learning approach using various tissue samples that are imaged with low-resolution and wide-field systems, where the network rapidly outputs an image with remarkably better resolution, matching the performance of higher numerical aperture lenses, also significantly surpassing their limited field-of-view and depth-of-field. These results are transformative for various fields that use microscopy tools, including e.g., life sciences, where optical microscopy is considered as one of the most widely used and deployed techniques. Beyond such applications, our presented approach is broadly applicable to other imaging modalities, also spanning different parts of the electromagnetic spectrum, and can be used to design computational imagers that get better and better as they continue to image specimen and establish new transformations among different modes of imaging.

  20. Mozart versus new age music: relaxation states, stress, and ABC relaxation theory.

    Science.gov (United States)

    Smith, Jonathan C; Joyce, Carol A

    2004-01-01

    Smith's (2001) Attentional Behavioral Cognitive (ABC) relaxation theory proposes that all approaches to relaxation (including music) have the potential for evoking one or more of 15 factor-analytically derived relaxation states, or "R-States" (Sleepiness, Disengagement, Rested / Refreshed, Energized, Physical Relaxation, At Ease/Peace, Joy, Mental Quiet, Childlike Innocence, Thankfulness and Love, Mystery, Awe and Wonder, Prayerfulness, Timeless/Boundless/Infinite, and Aware). The present study investigated R-States and stress symptom-patterns associated with listening to Mozart versus New Age music. Students (N = 63) were divided into three relaxation groups based on previously determined preferences. Fourteen listened to a 28-minute tape recording of Mozart's Eine Kleine Nachtmusik and 14 listened to a 28-minute tape of Steven Halpern's New Age Serenity Suite. Others (n = 35) did not want music and instead chose a set of popular recreational magazines. Participants engaged in their relaxation activity at home for three consecutive days for 28 minutes a session. Before and after each session, each person completed the Smith Relaxation States Inventory (Smith, 2001), a comprehensive questionnaire tapping 15 R-States as well as the stress states of somatic stress, worry, and negative emotion. Results revealed no differences at Session 1. At Session 2, those who listened to Mozart reported higher levels of At Ease/Peace and lower levels of Negative Emotion. Pronounced differences emerged at Session 3. Mozart listeners uniquely reported substantially higher levels of Mental Quiet, Awe and Wonder, and Mystery. Mozart listeners reported higher levels, and New Age listeners slightly elevated levels, of At Ease/Peace and Rested/Refreshed. Both Mozart and New Age listeners reported higher levels of Thankfulness and Love. In summary, those who listened to Mozart's Eine Kleine Nachtmusik reported more psychological relaxation and less stress than either those who listened to

  1. Asymptotic representation of relaxation oscillations in lasers

    CERN Document Server

    Grigorieva, Elena V

    2017-01-01

    In this book we analyze relaxation oscillations in models of lasers with nonlinear elements controlling light dynamics. The models are based on rate equations taking into account periodic modulation of parameters, optoelectronic delayed feedback, mutual coupling between lasers, intermodal interaction and other factors. With the aim to study relaxation oscillations we present the special asymptotic method of integration for ordinary differential equations and differential-difference equations. As a result, they are reduced to discrete maps. Analyzing the maps we describe analytically such nonlinear phenomena in lasers as multistability of large-amplitude relaxation cycles, bifurcations of cycles, controlled switching of regimes, phase synchronization in an ensemble of coupled systems and others. The book can be fruitful for students and technicians in nonlinear laser dynamics and in differential equations.

  2. Relaxation of the magnetization in magnetic molecules

    Science.gov (United States)

    Carretta, S.; Bianchi, A.; Liviotti, E.; Santini, P.; Amoretti, G.

    2006-04-01

    Several mechanisms characterize the relaxation dynamics in magnetic molecules. We investigate two of them, spin-lattice coupling and incoherent quantum tunneling. The effect of the phonon heat bath is studied by analyzing the exponential time decay of the autocorrelation of the magnetization. We show that in ferromagnetic (Cu6) and antiferromagnetic (Fe6) molecular rings this decay is characterized by a single characteristic time. At very low temperature, relaxation through incoherent quantum tunneling may occur in nanomagnets such as Fe8 or Ni4. The mixing between levels with different values of the total spin (S mixing) greatly influences this mechanism. In particular, we demonstrate that a fourth-order anisotropy term O44, required to interpret experimental electron paramagnetic resonance and relaxation data in Ni4, naturally arises when S mixing is considered in calculations.

  3. Excited-state relaxation of some aminoquinolines

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available The absorption and fluorescence spectra, fluorescence quantum yields and lifetimes, and fluorescence rate constants ( k f of 2-amino-3-( 2 ′ -benzoxazolylquinoline (I, 2-amino-3-( 2 ′ -benzothiazolylquinoline (II, 2-amino-3-( 2 ′ -methoxybenzothiazolyl-quinoline (III, 2-amino-3-( 2 ′ -benzothiazolylbenzoquinoline (IV at different temperatures have been measured. The shortwavelength shift of fluorescence spectra of compounds studied (23–49 nm in ethanol as the temperature decreases (the solvent viscosity increases points out that the excited-state relaxation process takes place. The rate of this process depends essentially on the solvent viscosity, but not the solvent polarity. The essential increasing of fluorescence rate constant k f (up to about 7 times as the solvent viscosity increases proves the existence of excited-state structural relaxation consisting in the mutual internal rotation of molecular fragments of aminoquinolines studied, followed by the solvent orientational relaxation.

  4. Relaxation oscillation logic in Josephson junction circuits

    International Nuclear Information System (INIS)

    Fulton, T.A.

    1981-01-01

    A dc powered, self-resetting Josephson junction logic circuit relying on relaxation oscillations is described. A pair of Josephson junction gates are connected in series, a first shunt is connected in parallel with one of the gates, and a second shunt is connected in parallel with the series combination of gates. The resistance of the shunts and the dc bias current bias the gates so that they are capable of undergoing relaxation oscillations. The first shunt forms an output line whereas the second shunt forms a control loop. The bias current is applied to the gates so that, in the quiescent state, the gate in parallel with the second shunt is at V O, and the other gate is undergoing relaxation oscillations. By controlling the state of the first gate with the current in the output loop of another identical circuit, the invert function is performed

  5. Muon spin relaxation in ferromagnets. Pt. 1

    International Nuclear Information System (INIS)

    Lovesey, S.W.; Karlsson, E.B.

    1991-04-01

    Expressions for the dipolar and hyperfine contributions to the relaxation rate of muons implanted in a ferromagnet are presented and analysed using the Heisenberg model of spin-waves including dipolar and Zeeman energies. Calculations for EuO indicate that relaxation is likely to be dominated by the hyperfine mechanism, even if the ratio of the hyperfine and dipolar coupling constants is small. The hyperfine mechanism is sensitive to the dipolar energy of the atomic spins, whereas the dipolar mechanisms depend essentially on the exchange energy. For both mechanisms there is an almost quadratic dependence on temperature, throughout much of the ordered magnetic phase, which reflects two-spin-wave difference events from the Raman-type relaxation processes. (author)

  6. Improved memristor-based relaxation oscillator

    KAUST Repository

    Mosad, Ahmed G.

    2013-09-01

    This paper presents an improved memristor-based relaxation oscillator which offers higher frequency and wider tunning range than the existing reactance-less oscillators. It also has the capability of operating on two positive supplies or alternatively a positive and negative supply. Furthermore, it has the advantage that it can be fully integrated on-chip providing an area-efficient solution. On the other hand, The oscillation concept is discussed then a complete mathematical analysis of the proposed oscillator is introduced. Furthermore, the power consumption of the new relaxation circuit is discussed and validated by the PSPICE circuit simulations showing an excellent agreement. MATLAB results are also introduced to demonstrate the resistance range and the corresponding frequency range which can be obtained from the proposed relaxation oscillator. © 2013 Elsevier Ltd.

  7. Relaxation and Diffusion in Complex Systems

    CERN Document Server

    Ngai, K L

    2011-01-01

    Relaxation and Diffusion in Complex Systems comprehensively presents a variety of experimental evidences of universal relaxation and diffusion properties in complex materials and systems. The materials discussed include liquids, glasses, colloids, polymers, rubbers, plastic crystals and aqueous mixtures, as well as carbohydrates, biomolecules, bioprotectants and pharmaceuticals. Due to the abundance of experimental data, emphasis is placed on glass-formers and the glass transition problem, a still unsolved problem in condensed matter physics and chemistry. The evidence for universal properties of relaxation and diffusion dynamics suggests that a fundamental physical law is at work. The origin of the universal properties is traced to the many-body effects of the interaction, rigorous theory of which does not exist at the present time. However, using solutions of simplified models as guides, key quantities have been identified and predictions of the universal properties generated. These predictions from Ngai’...

  8. Electron relaxation properties of Ar magnetron plasmas

    Science.gov (United States)

    Xinjing, CAI; Xinxin, WANG; Xiaobing, ZOU

    2018-03-01

    An understanding of electron relaxation properties in plasmas is of importance in the application of magnetrons. An improved multi-term approximation of the Boltzmann equation is employed to study electron transport and relaxation properties in plasmas. Elastic, inelastic and nonconservative collisions between electrons and neutral particles are considered. The expressions for the transport coefficients are obtained using the expansion coefficients and the collision operator term. Numerical solutions of the matrix equations for the expansion coefficients are also investigated. Benchmark calculations of the Reid model are presented to demonstrate the accuracy of the improved multi-term approximation. It is shown that the two-term approximation is generally not accurate enough and the magnetic fields can reduce the anisotropy of the velocity distribution function. The electron relaxation properties of Ar plasmas in magnetrons for various magnetic fields are studied. It is demonstrated that the energy parameters change more slowly than the momentum parameters.

  9. Studying the Adhesion Force and Glass Transition of Thin Polystyrene Films by Atomic Force Microscopy

    DEFF Research Database (Denmark)

    Kang, Hua; Qian, Xiaoqin; Guan, Li

    2018-01-01

    microscopy (AFM)-based forcedistance curve to study the relaxation dynamics and the film thickness dependence of glass transition temperature (T-g) for normal thin polystyrene (PS) films supported on silicon substrate. The adhesion force (F-ad) between AFM tip and normal thin PS film surfaces...

  10. Abrupt relaxation in high-spin molecules

    International Nuclear Information System (INIS)

    Chang, C.-R.; Cheng, T.C.

    2000-01-01

    Mean-field model suggests that the rate of resonant quantum tunneling in high-spin molecules is not only field-dependent but also time-dependent. The relaxation-assisted resonant tunneling in high-spin molecules produces an abrupt magnetization change during relaxation. When the applied field is very close to the resonant field, a time-dependent interaction field gradually shifts the energies of different collective spin states, and magnetization tunneling is observed as two energies of the spin states coincide

  11. Relaxed plasmas in external magnetic fields

    International Nuclear Information System (INIS)

    Spies, G.O.; Li, J.

    1991-08-01

    The well-known theory of relaxed plasmas (Taylor states) is extended to external magnetic fields whose field lines intersect the conducting toroidal boundary. Application to an axially symmetric, large-aspect-ratio torus with circular cross section shows that the maximum pinch ratio, and hence the phenomenon of current saturation, is independent of the external field. The relaxed state is explicitly given for an external octupole field. In this case, field reversal is inhibited near parts of the boundary if the octupole generates magnetic x-points within the plasma. (orig.)

  12. Spin transport and relaxation in graphene

    International Nuclear Information System (INIS)

    Han Wei; McCreary, K.M.; Pi, K.; Wang, W.H.; Li Yan; Wen, H.; Chen, J.R.; Kawakami, R.K.

    2012-01-01

    We review our recent work on spin injection, transport and relaxation in graphene. The spin injection and transport in single layer graphene (SLG) were investigated using nonlocal magnetoresistance (MR) measurements. Spin injection was performed using either transparent contacts (Co/SLG) or tunneling contacts (Co/MgO/SLG). With tunneling contacts, the nonlocal MR was increased by a factor of ∼1000 and the spin injection/detection efficiency was greatly enhanced from ∼1% (transparent contacts) to ∼30%. Spin relaxation was investigated on graphene spin valves using nonlocal Hanle measurements. For transparent contacts, the spin lifetime was in the range of 50-100 ps. The effects of surface chemical doping showed that for spin lifetimes in the order of 100 ps, charged impurity scattering (Au) was not the dominant mechanism for spin relaxation. While using tunneling contacts to suppress the contact-induced spin relaxation, we observed the spin lifetimes as long as 771 ps at room temperature, 1.2 ns at 4 K in SLG, and 6.2 ns at 20 K in bilayer graphene (BLG). Furthermore, contrasting spin relaxation behaviors were observed in SLG and BLG. We found that Elliot-Yafet spin relaxation dominated in SLG at low temperatures whereas Dyakonov-Perel spin relaxation dominated in BLG at low temperatures. Gate tunable spin transport was studied using the SLG property of gate tunable conductivity and incorporating different types of contacts (transparent and tunneling contacts). Consistent with theoretical predictions, the nonlocal MR was proportional to the SLG conductivity for transparent contacts and varied inversely with the SLG conductivity for tunneling contacts. Finally, bipolar spin transport in SLG was studied and an electron-hole asymmetry was observed for SLG spin valves with transparent contacts, in which nonlocal MR was roughly independent of DC bias current for electrons, but varied significantly with DC bias current for holes. These results are very important for

  13. Nonlocal and collective relaxation in stellar systems

    Science.gov (United States)

    Weinberg, Martin D.

    1993-01-01

    The modal response of stellar systems to fluctuations at large scales is presently investigated by means of analytic theory and n-body simulation; the stochastic excitation of these modes is shown to increase the relaxation rate even for a system which is moderately far from instability. The n-body simulations, when designed to suppress relaxation at small scales, clearly show the effects of large-scale fluctuations. It is predicted that large-scale fluctuations will be largest for such marginally bound systems as forming star clusters and associations.

  14. NMR relaxation times of natural rubber latex

    International Nuclear Information System (INIS)

    Harun, S.; Aziz, H.; Basir, Z.

    1994-01-01

    NMR relaxation times T sub 1 and T sub 2 of natural rubber latex have been measured at 25 degree C on a pulsed NMR spectrometer. The work focuses on the variation of the relaxation times with the amount of water content from 0% to 50%. The water content was adjusted by centrifuging and removing a certain amount of water from the sample. The data were analysed using a biexponential fitting procedure which yields simultaneously either T sub 1a and T sub 1b or T sub 2a and T sub 2b. The amount of solid was compared with the known amount of dry rubber content

  15. Green--Kubo formula for collisional relaxation

    International Nuclear Information System (INIS)

    Visscher, P.B.

    1988-01-01

    In this paper we generalize the Green--Kubo method (usually used for obtaining formulas for transport coefficients involving conserved densities) to relaxation processes occurring during collisions, such as the transfer of energy from vibrational to translational modes in a molecular fluid. We show that the relaxation rate can be calculated without evaluating time correlation functions over long times, and can in fact be written as a sum over collisions which makes the relation between the Green--Kubo method and approximate independent-collision models much clearer

  16. Exciton-relaxation dynamics in lead halides

    International Nuclear Information System (INIS)

    Iwanaga, Masanobu; Hayashi, Tetsusuke

    2003-01-01

    We survey recent comprehensive studies of exciton relaxation in the crystals of lead halides. The luminescence and electron-spin-resonance studies have revealed that excitons in lead bromide spontaneously dissociate and both electrons and holes get self-trapped individually. Similar relaxation has been also clarified in lead chloride. The electron-hole separation is ascribed to repulsive correlation via acoustic phonons. Besides, on the basis of the temperature profiles of self-trapped states, we discuss the origin of luminescence components which are mainly induced under one-photon excitation into the exciton band in lead fluoride, lead chloride, and lead bromide

  17. Point defect relaxation volumes for copper

    International Nuclear Information System (INIS)

    Miller, K.M.

    1979-11-01

    The methods used for the determination of point defect relaxation volumes are discussed and it is shown that a previous interatomic potential derived for copper is inaccurate and results obtained using it are invalid. A new interatomic potential has been produced for copper and a computer simulation of point and planar defects carried out. A vacancy relaxation volume of -0.33 atomic volumes has been found with interstitial values in the range 1.7 to 2.0 atomic volumes. It is shown that these values in current theories of irradiation induced swelling lead to an anomalously high value for dislocation bias compared with that determined experimentally. (author)

  18. Fourier plane imaging microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, Daniel, E-mail: daniel.dominguez@ttu.edu; Peralta, Luis Grave de [Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States); Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 (United States); Alharbi, Nouf; Alhusain, Mdhaoui [Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States); Bernussi, Ayrton A. [Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 (United States); Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2014-09-14

    We show how the image of an unresolved photonic crystal can be reconstructed using a single Fourier plane (FP) image obtained with a second camera that was added to a traditional compound microscope. We discuss how Fourier plane imaging microscopy is an application of a remarkable property of the obtained FP images: they contain more information about the photonic crystals than the images recorded by the camera commonly placed at the real plane of the microscope. We argue that the experimental results support the hypothesis that surface waves, contributing to enhanced resolution abilities, were optically excited in the studied photonic crystals.

  19. Correlative Stochastic Optical Reconstruction Microscopy and Electron Microscopy

    Science.gov (United States)

    Kim, Doory; Deerinck, Thomas J.; Sigal, Yaron M.; Babcock, Hazen P.; Ellisman, Mark H.; Zhuang, Xiaowei

    2015-01-01

    Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM) and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets. PMID:25874453

  20. Nonmaxwell relaxation in disordered media: Physical mechanisms and fractional relaxation equations

    International Nuclear Information System (INIS)

    Arkhincheev, V.E.

    2004-12-01

    The problem of charge relaxation in disordered systems has been solved. It is shown, that due to the inhomogeneity of the medium the charge relaxation has a non-Maxwell character. The two physical mechanisms of a such behavior have been founded. The first one is connected with the 'fractality' of conducting ways. The second mechanism of nonexponential non-Maxwell behavior is connected with the frequency dispersion of effective conductivity of heterogeneous medium, initially consisting of conducting phases without dispersion. The new generalized relaxation equations in the form of fractional temporal integro-differential equations are deduced. (author)

  1. Dynamical relaxation in 2HDM models

    Science.gov (United States)

    Lalak, Zygmunt; Markiewicz, Adam

    2018-03-01

    Dynamical relaxation provides an interesting solution to the hierarchy problem in face of the missing signatures of any new physics in recent experiments. Through a dynamical process taking place in the inflationary phase of the Universe it manages to achieve a small electroweak scale without introducing new states observable in current experiments. Appropriate approximation makes it possible to derive an explicit formula for the final vevs in the double-scanning scenario extended to a model with two Higgs doublets (2HDM). Analysis of the relaxation in the 2HDM confirms that in a general case it is impossible to keep vevs of both scalars small, unless fine-tuning is present or additional symmetries are cast upon the Lagrangian. Within the slightly constrained variant of the 2HDM, where odd powers of the fields’ expectation values are not present (which can be easily enforced by requiring that the doublets have different gauge transformations or by imposing a global symmetry) it is shown that the difference between the vevs of two scalars tends to be proportional to the cutoff. The analysis of the relaxation in 2HDM indicates that in a general case the relaxation would be stopped by the first doublet that gains a vev, with the other one remaining vevless with a mass of the order of the cutoff. This happens to conform with the inert doublet model.

  2. Relaxation of coupled nuclear spin systems

    International Nuclear Information System (INIS)

    Koenigsberger, E.

    1985-05-01

    The subject of the present work is the relaxation behaviour of scalarly coupled spin-1/2 systems. In the theoretical part the semiclassical Redfield equations are used. Dipolar (D), Chemical Shift Anisotropy (CSA) and Random Field (RF) interactions are considered as relaxation mechanisms. Cross correlations of dipolar interactions of different nuclei pairs and those between the D and the CSA mechanisms are important. The model of anisotropic molecular rotational relaxation and the extreme narrowing approximation are used to obtain the spectral density functions. The longitudinal relaxation data are analyzed into normal modes following Werbelow and Grant. The time evolution of normal modes is derived for the AX system with D-CSA cross terms. In the experimental part the hypothesis of dimerization in the cinnamic acid and the methyl cinnamate - AMX systems with DD cross terms - is corroborated by T 1 -time measurements and a calculation of the diffusion constants. In pentachlorobenzene - an AX system - taking into account of D-CSA cross terms enables the complete determination of movements anosotropy and the determination of the sign of the indirect coupling constant 1 Jsub(CH). (G.Q.)

  3. Quantization by stochastic relaxation processes and supersymmetry

    International Nuclear Information System (INIS)

    Kirschner, R.

    1984-01-01

    We show the supersymmetry mechanism resposible for the quantization by stochastic relaxation processes and for the effective cancellation of the additional time dimension against the two Grassmann dimensions. We give a non-perturbative proof of the validity of this quantization procedure. (author)

  4. Charge Relaxation Dynamics of an Electrolytic Nanocapacitor

    Science.gov (United States)

    2015-01-01

    Understanding ion relaxation dynamics in overlapping electric double layers (EDLs) is critical for the development of efficient nanotechnology-based electrochemical energy storage, electrochemomechanical energy conversion, and bioelectrochemical sensing devices as well as the controlled synthesis of nanostructured materials. Here, a lattice Boltzmann (LB) method is employed to simulate an electrolytic nanocapacitor subjected to a step potential at t = 0 for various degrees of EDL overlap, solvent viscosities, ratios of cation-to-anion diffusivity, and electrode separations. The use of a novel continuously varying and Galilean-invariant molecular-speed-dependent relaxation time (MSDRT) with the LB equation recovers a correct microscopic description of the molecular-collision phenomena and enhances the stability of the LB algorithm. Results for large EDL overlaps indicated oscillatory behavior for the ionic current density, in contrast to monotonic relaxation to equilibrium for low EDL overlaps. Further, at low solvent viscosities and large EDL overlaps, anomalous plasmalike spatial oscillations of the electric field were observed that appeared to be purely an effect of nanoscale confinement. Employing MSDRT in our simulations enabled modeling of the fundamental physics of the transient charge relaxation dynamics in electrochemical systems operating away from equilibrium wherein Nernst–Einstein relation is known to be violated. PMID:25678941

  5. Relaxation dynamics of multilayer triangular Husimi cacti

    Science.gov (United States)

    Galiceanu, Mircea; Jurjiu, Aurel

    2016-09-01

    We focus on the relaxation dynamics of multilayer polymer structures having, as underlying topology, the Husimi cactus. The relaxation dynamics of the multilayer structures is investigated in the framework of generalized Gaussian structures model using both Rouse and Zimm approaches. In the Rouse type-approach, we determine analytically the complete eigenvalues spectrum and based on it we calculate the mechanical relaxation moduli (storage and loss modulus) and the average monomer displacement. First, we monitor these physical quantities for structures with a fixed generation number and we increase the number of layers, such that the linear topology will smoothly come into play. Second, we keep constant the size of the structures, varying simultaneously two parameters: the generation number of the main layer, G, and the number of layers, c. This fact allows us to study in detail the crossover from a pure Husimi cactus behavior to a predominately linear chain behavior. The most interesting situation is found when the two limiting topologies cancel each other. For this case, we encounter in the intermediate frequency/time domain regions of constant slope for different values of the parameter set (G, c) and we show that the number of layers follows an exponential-law of G. In the Zimm-type approach, which includes the hydrodynamic interactions, the quantities that describe the mechanical relaxation dynamics do not show scaling behavior as in the Rouse model, except the limiting case, namely, a very high number of layers and low generation number.

  6. Waveform relaxation methods for implicit differential equations

    NARCIS (Netherlands)

    P.J. van der Houwen; W.A. van der Veen

    1996-01-01

    textabstractWe apply a Runge-Kutta-based waveform relaxation method to initial-value problems for implicit differential equations. In the implementation of such methods, a sequence of nonlinear systems has to be solved iteratively in each step of the integration process. The size of these systems

  7. Collection Development: Relaxation & Meditation, September 1, 2010

    Science.gov (United States)

    Lettus, Dodi

    2010-01-01

    One of the first books to document the relationship between stress and physical and emotional health was "The Relaxation Response" by Herbert Benson, M.D., with Miriam Z. Klipper. Originally published in 1975, the book grew out of Benson's observations as a cardiologist and his research as a fellow at Harvard Medical School. Benson's study of…

  8. Relaxation time in confined disordered systems

    International Nuclear Information System (INIS)

    Chamati, H.; Korutcheva, E.

    2006-05-01

    The dynamic critical behavior of a quenched hypercubic sample of linear size L is considered within the 'random T c ' field theoretical model with purely relaxation dynamic (Model A). The dynamic finite size scaling behavior is established and analyzed when the system is quenched from a homogeneous phase towards its critical temperature. The obtained results are compared to those reported in the literature. (author)

  9. Stretched Exponential relaxation in pure Se glass

    Science.gov (United States)

    Dash, S.; Ravindren, S.; Boolchand, P.

    A universal feature of glasses is the stretched exponential relaxation, f (t) = exp[ - t / τ ] β . The model of diffusion of excitations to randomly distributed traps in a glass by Phillips1 yields the stretched exponent β = d[d +2] where d, the effective dimensionality. We have measured the enthalpy of relaxation ΔHnr (tw) at Tg of Se glass in modulated DSC experiments as glasses age at 300K and find β = 0.43(2) for tw in the 0 relaxation is a narrowing of the glass transition width from 7.1°C to 1.4°C, and the ΔHnr term increasing from 0.21 cal/gm to 0.92 cal/gm. In bulk GexSe100-x glasses as x increases to 20%, the length of the polymeric Sen chains between the Ge-crosslinks decreases to n = 2. and the striking relaxation effects nearly vanish. J.C. Phillips, Rep.Prog.Phys. 59 , 1133 (1996). Supported by NSF Grant DMR 08-53957.

  10. Structural relaxation monitored by instantaneous shear modulus

    DEFF Research Database (Denmark)

    Olsen, Niels Boye; Dyre, Jeppe; Christensen, Tage Emil

    1998-01-01

    time definition based on a recently proposed expression for the relaxation time, where G [infinity] reflects the fictive temperature. All parameters entering the reduced time were determined from independent measurements of the frequency-dependent shear modulus of the equilibrium liquid....

  11. Advanced Microscopy of Microbial Cells

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Regenberg, Birgitte; Sternberg, Claus

    2011-01-01

    Growing awareness of heterogeneity in cells of microbial populations has emphasized the importance of advanced microscopy for visualization and understanding of the molecular mechanisms underlying cell-to-cell variation. In this review, we highlight some of the recent advances in confocal...... microscopy, super-resolution optical microscopy (STED, SIM, PALM) as well as atomic force microscopy and Raman spectroscopy. Using examples of bistability in microbial populations as well as biofilm development and differentiation in bacterial and yeast consortia, we demonstrate the importance of microscopy...

  12. Electron spin-lattice relaxation in fractals

    International Nuclear Information System (INIS)

    Shrivastava, K.N.

    1986-08-01

    We have developed the theory of the spin-fracton interaction for paramagnetic ions in fractal structures. The interaction is exponentially damped by the self-similarity length of the fractal and by the range dimensionality d Φ . The relaxation time of the spin due to the absorption and emission of the fracton has been calculated for a general dimensionality called the Raman dimensionality d R , which for the fractons differs from the Hausdorff (fractal) dimensionality, D, as well as from the Euclidean dimensionality, d. The exponent of the energy level separation in the relaxation rate varies with d R d Φ /D. We have calculated the spin relaxation rate due to a new type of Raman process in which one fracton is absorbed to affect a spin transition from one electronic level to another and later another fracton is emitted along with a spin transition such that the difference in the energies of the two fractons is equal to the electronic energy level separation. The temperature and the dimensionality dependence of such a process has been found in several approximations. In one of the approximations where the van Vleck relaxation rate for a spin in a crystal is known to vary with temperature as T 9 , our calculated variation for fractals turns out to be T 6.6 , whereas the experimental value for Fe 3+ in frozen solutions of myoglobin azide is T 6.3 . Since we used d R =4/3 and the fracton range dimensionality d Φ =D/1.8, we expect to measure the dimensionalities of the problem by measuring the temperature dependence of the relaxation times. We have also calculated the shift of the paramagnetic resonance transition for a spin in a fractal for general dimensionalities. (author)

  13. Hyperspectral light sheet microscopy

    Science.gov (United States)

    Jahr, Wiebke; Schmid, Benjamin; Schmied, Christopher; Fahrbach, Florian O.; Huisken, Jan

    2015-09-01

    To study the development and interactions of cells and tissues, multiple fluorescent markers need to be imaged efficiently in a single living organism. Instead of acquiring individual colours sequentially with filters, we created a platform based on line-scanning light sheet microscopy to record the entire spectrum for each pixel in a three-dimensional volume. We evaluated data sets with varying spectral sampling and determined the optimal channel width to be around 5 nm. With the help of these data sets, we show that our setup outperforms filter-based approaches with regard to image quality and discrimination of fluorophores. By spectral unmixing we resolved overlapping fluorophores with up to nanometre resolution and removed autofluorescence in zebrafish and fruit fly embryos.

  14. Transport and relaxation properties of superfluid 3He. I. Kinetic equation and Bogoliubov quasiparticle relaxation rate

    International Nuclear Information System (INIS)

    Einzel, D.; Woelfle, P.

    1978-01-01

    The kinetic equation for Bogoliubov quasiparticles for both the A and B phases of superfluid 3 He is derived from the general matrix kinetic equation. A condensed expression for the exact spin-symmetric collision integral is given. The quasiparticle relaxation rate is calculated for the BW state using the s--p approximation for the quasiparticle scattering amplitude. By using the results for the quasiparticle relaxation rate, the mean free path of Bogoliubov quasiparticles is calculated for all temperatures

  15. Progress in the Correlative Atomic Force Microscopy and Optical Microscopy

    Directory of Open Access Journals (Sweden)

    Lulu Zhou

    2017-04-01

    Full Text Available Atomic force microscopy (AFM has evolved from the originally morphological imaging technique to a powerful and multifunctional technique for manipulating and detecting the interactions between molecules at nanometer resolution. However, AFM cannot provide the precise information of synchronized molecular groups and has many shortcomings in the aspects of determining the mechanism of the interactions and the elaborate structure due to the limitations of the technology, itself, such as non-specificity and low imaging speed. To overcome the technical limitations, it is necessary to combine AFM with other complementary techniques, such as fluorescence microscopy. The combination of several complementary techniques in one instrument has increasingly become a vital approach to investigate the details of the interactions among molecules and molecular dynamics. In this review, we reported the principles of AFM and optical microscopy, such as confocal microscopy and single-molecule localization microscopy, and focused on the development and use of correlative AFM and optical microscopy.

  16. Growth and relaxation processes in Ge nanocrystals on free-standing Si(001) nanopillars.

    Science.gov (United States)

    Kozlowski, G; Zaumseil, P; Schubert, M A; Yamamoto, Y; Bauer, J; Schülli, T U; Tillack, B; Schroeder, T

    2012-03-23

    We study the growth and relaxation processes of Ge crystals selectively grown by chemical vapour deposition on free-standing 90 nm wide Si(001) nanopillars. Epi-Ge with thickness ranging from 4 to 80 nm was characterized by synchrotron based x-ray diffraction and transmission electron microscopy. We found that the strain in Ge nanostructures is plastically released by nucleation of misfit dislocations, leading to degrees of relaxation ranging from 50 to 100%. The growth of Ge nanocrystals follows the equilibrium crystal shape terminated by low surface energy (001) and {113} facets. Although the volumes of Ge nanocrystals are homogeneous, their shape is not uniform and the crystal quality is limited by volume defects on {111} planes. This is not the case for the Ge/Si nanostructures subjected to thermal treatment. Here, improved structure quality together with high levels of uniformity of the size and shape is observed.

  17. Vibrational Energy Relaxation in Water-Acetonitrile Mixtures

    NARCIS (Netherlands)

    Cringus, Dan; Yeremenko, Sergey; Pshenichnikov, Maxim S.; Wiersma, Douwe A.; Kobayashi, Takayoshi; Kobayashi, Tetsuro; Nelson, Keith A.; Okada, Tadashi; Silvestri, Sandro De

    2004-01-01

    IR pump-probe spectroscopy is used to study the effect of hydrogen bonding on the vibrational energy relaxation pathways. Hydrogen bonding accelerates the population relaxation from 12ps in diluted acetonitrile solution to 700fs in bulk water.

  18. Exploiting Sparsity in SDP Relaxation for Sensor Network Localization

    NARCIS (Netherlands)

    S. Kim (Sunyoung); M. Kojima; H. Waki (Hayato)

    2008-01-01

    htmlabstract A sensor network localization problem can be formulated as a quadratic optimization problem (QOP). For quadratic optimization problems, semidefinite programming (SDP) relaxation by Lasserre with relaxation order 1 for general polynomial optimization problems (POPs) is known to be

  19. Exploiting Sparsity in SDP Relaxation for Sensor Network Localization

    NARCIS (Netherlands)

    S. Kim (Sunyoung); M. Kojima; H. Waki (Hayato)

    2009-01-01

    htmlabstract A sensor network localization problem can be formulated as a quadratic optimization problem (QOP). For quadratic optimization problems, semidefinite programming (SDP) relaxation by Lasserre with relaxation order 1 for general polynomial optimization problems (POPs) is known to be

  20. Multi-region relaxed magnetohydrodynamics with flow

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, G. R., E-mail: graham.dennis@anu.edu.au; Dewar, R. L.; Hole, M. J. [Research School of Physics and Engineering, Australian National University, ACT 0200 (Australia); Hudson, S. R. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)

    2014-04-15

    We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes plasma flow. This new model is a generalization of Woltjer's model of relaxed magnetohydrodynamics equilibria with flow. We prove that as the number of plasma regions becomes infinite, our extension of MRxMHD reduces to ideal MHD with flow. We also prove that some solutions to MRxMHD with flow are not time-independent in the laboratory frame, and instead have 3D structure which rotates in the toroidal direction with fixed angular velocity. This capability gives MRxMHD potential application to describing rotating 3D MHD structures such as 'snakes' and long-lived modes.

  1. Dissipation and the relaxation to equilibrium

    International Nuclear Information System (INIS)

    Evans, Denis J; Williams, Stephen R; Searles, Debra J

    2009-01-01

    Using the recently derived dissipation theorem and a corollary of the transient fluctuation theorem (TFT), namely the second-law inequality, we derive the unique time independent, equilibrium phase space distribution function for an ergodic Hamiltonian system in contact with a remote heat bath. We prove under very general conditions that any deviation from this equilibrium distribution breaks the time independence of the distribution. Provided temporal correlations decay, we show that any nonequilibrium distribution that is an even function of the momenta eventually relaxes (not necessarily monotonically) to the equilibrium distribution. Finally we prove that the negative logarithm of the microscopic partition function is equal to the thermodynamic Helmholtz free energy divided by the thermodynamic temperature and Boltzmann's constant. Our results complement and extend the findings of modern ergodic theory and show the importance of dissipation in the process of relaxation towards equilibrium

  2. Active nematic gels as active relaxing solids

    Science.gov (United States)

    Turzi, Stefano S.

    2017-11-01

    I propose a continuum theory for active nematic gels, defined as fluids or suspensions of orientable rodlike objects endowed with active dynamics, that is based on symmetry arguments and compatibility with thermodynamics. The starting point is our recent theory that models (passive) nematic liquid crystals as relaxing nematic elastomers. The interplay between viscoelastic response and active dynamics of the microscopic constituents is naturally taken into account. By contrast with standard theories, activity is not introduced as an additional term of the stress tensor, but it is added as an external remodeling force that competes with the passive relaxation dynamics and drags the system out of equilibrium. In a simple one-dimensional channel geometry, we show that the interaction between nonuniform nematic order and activity results in either a spontaneous flow of particles or a self-organization into subchannels flowing in opposite directions.

  3. Relaxation in the XX quantum chain

    International Nuclear Information System (INIS)

    Platini, Thierry; Karevski, Dragi

    2007-01-01

    We present the results obtained on the magnetization relaxation properties of an XX quantum chain in a transverse magnetic field. We first consider an initial thermal kink-like state where half of the chain is initially thermalized at a very high temperature T b while the remaining half, called the system, is put at a lower temperature T s . From this initial state, we derive analytically the Green function associated with the dynamical behaviour of the transverse magnetization. Depending on the strength of the magnetic field and on the temperature of the system, different regimes are obtained for the magnetic relaxation. In particular, with an initial droplet-like state, that is a cold subsystem of the finite size in contact at both ends with an infinite temperature environment, we derive analytically the behaviour of the time-dependent system magnetization

  4. Stress relaxation of thermally bowed fuel pins

    International Nuclear Information System (INIS)

    Crossland, I.G.; Speight, M.V.

    1983-01-01

    The presence of cross-pin temperature gradients in nuclear reactor fuel pins produces differential thermal expansion which, in turn, causes the fuel pin to bow elastically. If the pin is restrained in any way, such thermal bowing causes the pin to be stressed. At high temperatures these stresses can relax by creep and it is shown here that this causes the pin to suffer an additional permanent deflection, so that when the cross-pin temperature difference is removed the pin remains bowed. By representing the cylindrical pin by an equivalent I-beam, the present work examines this effect when it takes place by secondary creep. Two restraint systems are considered, and it is demonstrated that the rate of relaxation depends mainly upon the creep equation, and hence the temperature, and also the magnitude of the initial stresses. (author)

  5. Relaxation mechanism of the hydrated electron.

    Science.gov (United States)

    Elkins, Madeline H; Williams, Holly L; Shreve, Alexander T; Neumark, Daniel M

    2013-12-20

    The relaxation dynamics of the photoexcited hydrated electron have been subject to conflicting interpretations. Here, we report time-resolved photoelectron spectra of hydrated electrons in a liquid microjet with the aim of clarifying ambiguities from previous experiments. A sequence of three ultrashort laser pulses (~100 femtosecond duration) successively created hydrated electrons by charge-transfer-to-solvent excitation of dissolved anions, electronically excited these electrons via the s→p transition, and then ejected them into vacuum. Two distinct transient signals were observed. One was assigned to the initially excited p-state with a lifetime of ~75 femtoseconds, and the other, with a lifetime of ~400 femtoseconds, was attributed to s-state electrons just after internal conversion in a nonequilibrated solvent environment. These assignments support the nonadiabatic relaxation model.

  6. Creep and relaxation behavior of Inconel-617

    International Nuclear Information System (INIS)

    Osthoff, W.; Ennis, P.J.; Nickel, H.; Schuster, H.

    1984-01-01

    The static and dynamic creep behavior of Inconel alloy 617 has been determined in constant load creep tests, relaxation tests, and stress reduction tests in the temperature range 1023 to 1273 K. The results have been interpreted using the internal stress concept: The dependence of the internal stress on the applied stress and test temperature was determined. In a few experiments, the influence of cold deformation prior to the creep test on the magnitude of the internal stress was also investigated. It was found that the experimentally observed relaxation behavior could be more satisfactorily described using the Norton creep equation modified by incorporation of the internal stress than by the conventional Norton creep equation

  7. Effective temperature in relaxation of Coulomb glasses.

    Science.gov (United States)

    Somoza, A M; Ortuño, M; Caravaca, M; Pollak, M

    2008-08-01

    We study relaxation in two-dimensional Coulomb glasses up to macroscopic times. We use a kinetic Monte Carlo algorithm especially designed to escape efficiently from deep valleys around metastable states. We find that, during the relaxation process, the site occupancy follows a Fermi-Dirac distribution with an effective temperature much higher than the real temperature T. Long electron-hole excitations are characterized by T(eff), while short ones are thermalized at T. We argue that the density of states at the Fermi level is proportional to T(eff) and is a good thermometer to measure it. T(eff) decreases extremely slowly, roughly as the inverse of the logarithm of time, and it should affect hopping conductance in many experimental circumstances.

  8. Microplastic relaxations of single and polycrystalline molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Pichl, W.; Weiss, B. [Wien Univ. (Austria). Inst. fuer Materialphysik; Chen, D.L.

    1998-05-01

    The microplasticity of high-purity molybdenum single crystals and of Mo polycrystals of technical purity has been investigated by relaxation step tests in uniaxial compression. A new model for the evaluation of relaxation tests in the microplastic range of b.c.c metals is presented which takes into account the decrease of the mobile dislocation density due to exhaustion of non-screw dislocations. The model allows an independent determination of the activation volume and of the microstructure parameters controlling dislocation exhaustion. The results indicate that in the high-purity single crystals the deformation rate is controlled by interactions of non-screw dislocations with the grown-in network. In the polycrystals additional interactions with impurity atoms seem to occur. In the single crystals the activity and subsequent exhaustion of two different glide systems was observed, followed by a gradual onset of screw dislocation motion. (orig.) 26 refs.

  9. Limiting conditions for operation relaxation program

    International Nuclear Information System (INIS)

    Merz, J.F.

    1985-01-01

    The purpose of this effort was to assess the impact of system maintenance unavailability on plant risk to provide technical justification for the relaxation of system limiting conditions for operation from three to seven days. The primary goal of the relaxation program is to allow for more thorough equipment maintenance. A potential increase in out-of-service time for a particular outage caused by the performance of more effective repairs will be counterbalanced by a probable decrease in the frequency in the outage rate of a component. Benefits resulting from an increase in allowed outage time include: (a) a potential reduction in total system out-of-service time, (b) a minimization of challenges to plant systems, and (c) a reduction in the number of emergency technical specification change requests. This program therefore offers an opportunity to more effectively manage plant maintenance and operation

  10. Modern problems of relaxation gas dynamics

    International Nuclear Information System (INIS)

    Losev, S.A.; Osipov, A.I.

    1985-01-01

    Some of the dynamical characteristics of relaxation processes are studied. Unfortunately, many dynamical characteristics of relaxation processes, necessary for the solution of important scientific and applied problems, are not known. These problems require further development of experimental methods of the study of nonequilibrium gas. It is known, that gas systems are shifted from the equilibrium by different methods: by acoustic and shock wav es, by means of gas expansion in nozzles and jets, by powerful radiations (laser, first of all), by electric discharges, in burning and combustion devices, etc. Non-equilibrium gas is produced in installations of continuum, impulse and periodic regime. Molecular beams, shock tubes (especially with nozzles), flow and jet installations, aerodynamical tubes, plasmatrons, vessels with a gas, influenced by the strong radiation, burners and combustion devices, where the study of non-euilibrium gas is helpful to solve the problems of the determination of kinetic equations and constants of physico-chemical kinetics

  11. Electron microscopy (nonbiological)

    International Nuclear Information System (INIS)

    Cowley, J.M.

    1986-01-01

    The period 1982-1985, which is covered by this review, has seen major advances in the capabilities of the commercially available instruments. The new electron microscopes operating in the range of 300-400 keV have provided important improvements in the resolution available and in the possibilities for microanalysis of very small specimen areas. Correspondingly there has been a broadening in the range of possible applications of the techniques. Electron microscopy has become a much more powerful tool for studies of semiconductors and catalysts, for example, and offers promise of a major revolution in surface science. The major industrial laboratories, in particular, are investing in million-dollar instruments and in the highly skilled scientists needed to run them because the capabilities of the new instruments are seen to have immediate practical applications to current industrial research. Unfortunately all of the new instruments and most of the skilled users come from overseas. The American instrument industry, although showing some limited signs of life, is not yet in a position to compete in this lucrative market and the training of electron optics specialists in this country is far from meeting the demand. The increased sophistication required for both the operation of the instruments and the interpretation of the observation requires that the quality as well as the quantity of trainees must be improved. 62 references

  12. Ultrafast scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Botkin, D.A. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

    1995-09-01

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  13. Superconductivity and electron microscopy

    International Nuclear Information System (INIS)

    Hawkes, P.W.; Valdre, U.

    1977-01-01

    In this review article, two aspects of the role of superconductivity in electron microscopy are examined: (i) the development of superconducting devices (mainly lenses) and their incorporation in electron microscopes; (ii) the development of electron microscope techniques for studying fundamental and technological problems associated with superconductivity. The first part opens with a brief account of the relevant properties of conventional lenses, after which the various types of superconducting lenses are described and their properties compared. The relative merits and inconveniences of superconducting and conventional lenses are examined, particular attention being paid to the spherical and chromatic aberration coefficients at accelerating voltages above a megavolt. This part closes with a survey of the various microscope designs that have been built or proposed, incorporating superconducting components. In the second part, some methods that have been or might be used in the study of superconductivity in the electron microscope are described. A brief account of the types of application for which they are suitable is given. (author)

  14. Transmission acoustic microscopy investigation

    Science.gov (United States)

    Maev, Roman; Kolosov, Oleg; Levin, Vadim; Lobkis, Oleg

    The nature of acoustic contrast, i.e. the connection of the amplitude and phase of the output signal of the acoustic microscope with the local values of the acoustic parameters of the sample (density, elasticity, viscosity) is a central problem of acoustic microscopy. A considerable number of studies have been devoted to the formation of the output signal of the reflection scanning acoustic microscope. For the transmission acoustic microscope (TAM) this problem has remained almost unstudied. Experimental investigation of the confocal system of the TAM was carried out on an independently manufactured laboratory mockup of the TAM with the working frequency of the 420 MHz. Acoustic lenses with the radius of curvature of about 500 microns and aperture angle of 45 deg were polished out in the end faces of two cylindrical sound conductors made from Al2O3 single crystals with an axis parallel to the axis C of the crystal (the length of the sound conductor is 20 mm; diameter, 6 mm). At the end faces of the sound conductor, opposite to the lenses, CdS transducers with a diameter of 2 mm were disposed. The electric channel of the TAM provided a possibility for registering the amplitude of the microscope output signal in the case of the dynamic range of the 50 dB.

  15. Innovative Strategies for Clinical Microscopy Instruction: Virtual Versus Light Microscopy.

    Science.gov (United States)

    McDaniel, M Jane; Russell, Gregory B; Crandall, Sonia J

    2018-06-01

    The purpose of the study was to compare virtual microscopy with light microscopy to determine differences in learning outcomes and learner attitudes in teaching clinical microscopy to physician assistant (PA) students. A prospective, randomized, crossover design study was conducted with a convenience sample of 67 first-year PA students randomized to 2 groups. One group used light microscopes to find microscopic structures, whereas the other group used instructor-directed video streaming of microscopic elements. At the midpoint of the study, the groups switched instructional strategies. Learning outcomes were assessed via posttest after each section of the study, with comparison of final practical examination results to previous cohorts. Attitudes about the 2 educational strategies were assessed through a postcourse questionnaire with a Likert scale. Analysis of the first posttest demonstrated that students in the video-streamed group had significantly better learning outcomes than those in the light microscopy group (P = .004; Cohen's d = 0.74). Analysis of the posttest after crossover showed no differences between the 2 groups (P = .48). Between the 2 posttests, students first assigned to the light microscopy group scored a 6.6 mean point increase (±10.4 SD; p = .0011), whereas students first assigned to the virtual microscopy group scored a 1.3 mean point increase (±7.1 SD; p = .29). The light microscopy group improved more than the virtual microscopy group (P = .019). Analysis of practical examination data revealed higher scores for the study group compared with 5 previous cohorts of first-year students (P virtual microscopy to traditional light microscopy. Virtual microscopy is an effective educational strategy, and students prefer this method when learning to interpret images of clinical specimens.

  16. Impulsive relaxation process in MHD driven reconnection

    International Nuclear Information System (INIS)

    Kitabata, H.; Hayashi, T.; Sato, T.

    1997-01-01

    Compressible magnetohydrodynamic (MHD) simulation is carried out in order to investigate energy relaxation process of the driven magnetic reconnection in an open finite system through a long time calculation. It is found that a very impulsive energy release occurs in an intermittent fashion through magnetic reconnection for a continuous magnetic flux injection on the boundary. We focus our attention on the detailed process in the impulsive phase, which is the reconnection rate is remarkably enhanced up. (author)

  17. Current relaxation time scales in toroidal plasmas

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.

    1987-02-01

    An approximate normal mode analysis of plasma current diffusion in tokamaks is presented. The work is based on numerical solutions of the current diffusion equation in cylindrical geometry. Eigenvalues and eigenfunctions are shown for a broad range of plasma conductivity profile shapes. Three classes of solutions are considered which correspond to three types of tokamak operation. Convenient approximations to the three lowest eigenvalues in each class are presented and simple formulae for the current relaxation time scales are given

  18. On real statistics of relaxation in gases

    Science.gov (United States)

    Kuzovlev, Yu. E.

    2016-02-01

    By example of a particle interacting with ideal gas, it is shown that the statistics of collisions in statistical mechanics at any value of the gas rarefaction parameter qualitatively differ from that conjugated with Boltzmann's hypothetical molecular chaos and kinetic equation. In reality, the probability of collisions of the particle in itself is random. Because of that, the relaxation of particle velocity acquires a power-law asymptotic behavior. An estimate of its exponent is suggested on the basis of simple kinematic reasons.

  19. Relaxation and kinetics in scalar field theories

    International Nuclear Information System (INIS)

    Boyanovsky, D.; Lawrie, I.D.; Lee, D.

    1996-01-01

    A new approach to the dynamics of relaxation and kinetics of thermalization in a scalar field theory is presented that incorporates the relevant time scales through the resummation of hard thermal loops. An alternative derivation of the kinetic equations for the open-quote open-quote quasiparticle close-quote close-quote distribution functions is obtained that allows a clear understanding of the different open-quote open-quote coarse-graining close-quote close-quote approximations usually involved in a kinetic description. This method leads to a systematic perturbative expansion to obtain the kinetic equations including hard thermal loop resummation and to an improvement including renormalization, off-shell effects, and contributions that change chemical equilibrium on short time scales. As a by-product of these methods we establish the equivalence between the relaxation time scale in the linearized equation of motion of the quasiparticles and the thermalization time scale of the quasiparticle distribution function in the open-quote open-quote relaxation time approximation close-quote close-quote including hard thermal loop effects. Hard thermal loop resummation dramatically modifies the scattering rate for long wavelength modes as compared to the usual (semi)classical estimate. Relaxation and kinetics are studied both in the unbroken and broken symmetry phases of the theory. The broken symmetry phase also provides the setting to obtain the contribution to the kinetic equations from processes that involve decay of a heavy scalar into light scalar particles in the medium. copyright 1996 The American Physical Society

  20. Muon spin relaxation in random spin systems

    International Nuclear Information System (INIS)

    Toshimitsu Yamazaki

    1981-01-01

    The longitudinal relaxation function Gsub(z)(t) of the positive muon can reflect dynamical characters of local field in a unique way even when the correlation time is longer than the Larmor period of local field. This method has been applied to studies of spin dynamics in spin glass systems, revealing sharp but continuous temperature dependence of the correlation time. Its principle and applications are reviewed. (author)

  1. Structural relaxation and thermal conductivity coefficient of liquids

    International Nuclear Information System (INIS)

    Abdurasulov, A.

    1992-01-01

    Present article is devoted to structural relaxation and thermal conductivity coefficient of liquids. The thermoelastic properties of liquids were studied taking into account the contribution of translational and structural relaxation. The results of determination of dynamic coefficient of thermal conductivity of liquids taking into account the contribution of translational and structural relaxation are presented.

  2. The Efficacy of Relaxation Training in Treating Anxiety

    Science.gov (United States)

    Francesco, Pagnini; Mauro, Manzoni Gian; Gianluca, Castelnuovo; Enrico, Molinari

    2009-01-01

    This paper provides a review of scientific literature about relaxation training and its effects on anxiety. Research investigating progressive relaxation, meditation, applied relaxation and autogenic training were considered. All these methods proved to be effective in reducing anxiety in all kind of samples, affected or not by physical or…

  3. Ideal relaxation of the Hopf fibration

    Science.gov (United States)

    Smiet, Christopher Berg; Candelaresi, Simon; Bouwmeester, Dirk

    2017-07-01

    Ideal magnetohydrodynamics relaxation is the topology-conserving reconfiguration of a magnetic field into a lower energy state where the net force is zero. This is achieved by modeling the plasma as perfectly conducting viscous fluid. It is an important tool for investigating plasma equilibria and is often used to study the magnetic configurations in fusion devices and astrophysical plasmas. We study the equilibrium reached by a localized magnetic field through the topology conserving relaxation of a magnetic field based on the Hopf fibration in which magnetic field lines are closed circles that are all linked with one another. Magnetic fields with this topology have recently been shown to occur in non-ideal numerical simulations. Our results show that any localized field can only attain equilibrium if there is a finite external pressure, and that for such a field a Taylor state is unattainable. We find an equilibrium plasma configuration that is characterized by a lowered pressure in a toroidal region, with field lines lying on surfaces of constant pressure. Therefore, the field is in a Grad-Shafranov equilibrium. Localized helical magnetic fields are found when plasma is ejected from astrophysical bodies and subsequently relaxes against the background plasma, as well as on earth in plasmoids generated by, e.g., a Marshall gun. This work shows under which conditions an equilibrium can be reached and identifies a toroidal depression as the characteristic feature of such a configuration.

  4. Tension and relaxation in the individual.

    Science.gov (United States)

    Newbury, C R

    1979-06-01

    Increasing materialism in society is resulting in more wide spread nervous tension in all age groups. While some degree of nervous tension is necessary in everyday living, its adverse effects require that we must learn to bring it under control. Total tension is shown to have two components: a controllable element arising from factors in the environment and the inbuilt uncontrollable residue which is basic in the individual temperament. The effects of excessive or uncontrolled stress can be classified as 1) emotional reactions such as neurotic behaviour (anxiety hypochondria, hysteria, phobia, depression obsessions and compulsions) or psychotic behaviour and 2) psychosomatic reactions (nervous asthma, headache, insomnia, heart attack). Nervous energy can be wastefully expended by such factors as loss of temper, wrong attitudes to work, job frustration and marital strains. Relaxation is the only positive way to control undesirable nervous tension and its techniques require to be learned. A number of techniques (progressive relaxation, differential relaxation, hypnosis, the use of biofeedback, Yoga and Transcendental Meditation) are described and their application to dental practice is discussed.

  5. Proton NMR relaxation in hydrous melts

    International Nuclear Information System (INIS)

    Braunstein, J.; Bacarella, A.L.; Benjamin, B.M.; Brown, L.L.; Girard, C.

    1976-01-01

    Pulse and continuous wave NMR measurements are reported for protons in hydrous melts of calcium nitrate at temperatures between -4 and 120 0 C. Although measured in different temperature ranges, spin-lattice (T 1 ) and spin-spin (T 2 ) relaxation times appear to be nearly equal to each other and proportional to the self-diffusion coefficients of solute metal cations such as Cd 2+ . At temperatures near 50 0 C, mean Arrhenius coefficients Δ H/sub T 1 / (kcal/mol) are 7.9, 7.3, and 4.8, respectively, for melts containing 2.8, 4.0, and 8.0 moles of water per mole of calcium nitrate, compared to 4.6 kcal/mol for pure water. Temperature dependence of T 1 and T 2 in Ca(NO 3 ) 2 -2.8 H 2 O between -4 and 120 0 C are non-Arrhenius and can be represented by a Fulcher-type equation with a ''zero mobility temperature'' (T 0 ) of 225 0 K, close to the value of T 0 for solute diffusion, electrical conductance and viscosity. Resolution of the relaxation rates into correlation times for intramolecular (rotational) and intermolecular (translational) diffusional motion is discussed in terms of the Bloembergen-Purcell-Pound and more recent models for dipolar relaxation

  6. NDE Acoustic Microscopy Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to develop advanced, more effective high-resolution micro-NDE materials characterization methods using scanning acoustic microscopy. The laboratory's...

  7. Magnetic Resonance Force Microscopy System

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetic Resonance Force Microscopy (MRFM) system, developed by ARL, is the world's most sensitive nuclear magnetic resonance (NMR) spectroscopic analysis tool,...

  8. Convex relaxations of spectral sparsity for robust super-resolution and line spectrum estimation

    Science.gov (United States)

    Chi, Yuejie

    2017-08-01

    We consider recovering the amplitudes and locations of spikes in a point source signal from its low-pass spectrum that may suffer from missing data and arbitrary outliers. We first review and provide a unified view of several recently proposed convex relaxations that characterize and capitalize the spectral sparsity of the point source signal without discretization under the framework of atomic norms. Next we propose a new algorithm when the spikes are known a priori to be positive, motivated by applications such as neural spike sorting and fluorescence microscopy imaging. Numerical experiments are provided to demonstrate the effectiveness of the proposed approach.

  9. Relaxation plastique d'un film mince par émission de dislocations filantes vis

    Science.gov (United States)

    Bonnet, Roland; Youssef, Sami; Neily, Salem; Gutakowskii, A. K.

    2008-03-01

    The system formed by a thin film coherent with a crystalline substrate can relax its internal energy by annealing. Threading dislocations emitted after ten minutes annealing at 350 °C of the Si 0.68Ge 0.32/Si(001) heterostructure are observed in transmission electron microscopy, and then identified by comparison to simulated images of angular dislocations placed in a semi infinite medium. They are of screw character, which explains the rapid coverage of the interface by 60° dislocations oriented . To cite this article: R. Bonnet et al., C. R. Physique 9 (2008).

  10. Charge carrier relaxation model in disordered organic semiconductors

    International Nuclear Information System (INIS)

    Lu, Nianduan; Li, Ling; Sun, Pengxiao; Liu, Ming

    2013-01-01

    The relaxation phenomena of charge carrier in disordered organic semiconductors have been demonstrated and investigated theoretically. An analytical model describing the charge carrier relaxation is proposed based on the pure hopping transport theory. The relation between the material disorder, electric field and temperature and the relaxation phenomena has been discussed in detail, respectively. The calculated results reveal that the increase of electric field and temperature can promote the relaxation effect in disordered organic semiconductors, while the increase of material disorder will weaken the relaxation. The proposed model can explain well the stretched-exponential law by adopting the appropriate parameters. The calculation shows a good agreement with the experimental data for organic semiconductors

  11. Relaxations in spin glasses: Similarities and differences from ordinary glasses

    International Nuclear Information System (INIS)

    Ngai, K.L.; Rajagopal, A.K.; Huang, C.Y.

    1984-01-01

    Relaxation phenomena have become a major concern in the physics of spin glasses. There are certain resemblances of these relaxation properties to those of ordinary glasses. In this work, we compare the relaxation properties of spin glasses near the freezing temperature with those of glasses near the glass transition temperature. There are similarities between the two types of glasses. Moreover, the relaxation properties of many glasses and spin glasses are in conformity with two coupled ''universality'' relations predicted by a recent model of relaxations in condensed matter

  12. Electronic Blending in Virtual Microscopy

    Science.gov (United States)

    Maybury, Terrence S.; Farah, Camile S.

    2010-01-01

    Virtual microscopy (VM) is a relatively new technology that transforms the computer into a microscope. In essence, VM allows for the scanning and transfer of glass slides from light microscopy technology to the digital environment of the computer. This transition is also a function of the change from print knowledge to electronic knowledge, or as…

  13. Magneto-dependent stress relaxation of magnetorheological gels

    KAUST Repository

    Xu, Yangguang; Liu, Taixiang; Liao, G J; Lubineau, Gilles

    2017-01-01

    The stress relaxation behaviors of magnetorheological (MR) gels under stepwise shear loading are systematically investigated. The particle-enhanced effect, the magneto-induced effect, and the temperature-enhanced effect on the stress relaxation of MR gels are discussed. For further analysis of the magneto-induced stress relaxation mechanism in MR gels, a phenomenological model is established to describe the stress relaxation behavior of the matrix and the magnetic particle chains. All characteristic parameters introduced in the model, i.e. relaxation time, instantaneous modulus, and stable modulus, have well-defined physical meanings and are fitted based on the experimental results. The influence of each parameter on the macroscopic response is discussed and it is found that the relaxation stress induced by the magneto-mechanical coupling effect plays an important role in the stress relaxation process of MR gels.

  14. Magneto-dependent stress relaxation of magnetorheological gels

    KAUST Repository

    Xu, Yangguang

    2017-09-01

    The stress relaxation behaviors of magnetorheological (MR) gels under stepwise shear loading are systematically investigated. The particle-enhanced effect, the magneto-induced effect, and the temperature-enhanced effect on the stress relaxation of MR gels are discussed. For further analysis of the magneto-induced stress relaxation mechanism in MR gels, a phenomenological model is established to describe the stress relaxation behavior of the matrix and the magnetic particle chains. All characteristic parameters introduced in the model, i.e. relaxation time, instantaneous modulus, and stable modulus, have well-defined physical meanings and are fitted based on the experimental results. The influence of each parameter on the macroscopic response is discussed and it is found that the relaxation stress induced by the magneto-mechanical coupling effect plays an important role in the stress relaxation process of MR gels.

  15. Stress relaxation of bi-disperse polystyrene melts

    DEFF Research Database (Denmark)

    Hengeller, Ludovica; Huang, Qian; Dorokhin, Andriy

    2016-01-01

    We present start-up of uniaxial extension followed by stress relaxation experiments of a bi-disperse 50 % by weight blend of 95k and 545k molecular weight polystyrene. We also show, for comparison, stress relaxation measurements of the polystyrene melts with molecular weight 95k and 545k, which...... are the components of the bi-disperse melt. The measurements show three separated relaxation regimes: a fast regime, a transition regime, and a slow regime. In the fast regime, the orientation of the long chains is frozen and the stress relaxation is due to stretch relaxation of the short chains primarily....... Conversely in the slow regime, the long chains have retracted and undergo relaxation of orientation in fully relaxed short chains....

  16. The Peculiarities of Strain Relaxation in GaN/AlN Superlattices Grown on Vicinal GaN (0001) Substrate: Comparative XRD and AFM Study.

    Science.gov (United States)

    Kuchuk, Andrian V; Kryvyi, Serhii; Lytvyn, Petro M; Li, Shibin; Kladko, Vasyl P; Ware, Morgan E; Mazur, Yuriy I; Safryuk, Nadiia V; Stanchu, Hryhorii V; Belyaev, Alexander E; Salamo, Gregory J

    2016-12-01

    Superlattices (SLs) consisting of symmetric layers of GaN and AlN have been investigated. Detailed X-ray diffraction and reflectivity measurements demonstrate that the relaxation of built-up strain in the films generally increases with an increasing number of repetitions; however, an apparent relaxation for subcritical thickness SLs is explained through the accumulation of Nagai tilt at each interface of the SL. Additional atomic force microscopy measurements reveal surface pit densities which appear to correlate with the amount of residual strain in the films along with the appearance of cracks for SLs which have exceeded the critical thickness for plastic relaxation. These results indicate a total SL thickness beyond which growth may be limited for the formation of high-quality coherent crystal structures; however, they may indicate a growth window for the reduction of threading dislocations by controlled relaxation of the epilayers.

  17. Relaxed Operational Semantics of Concurrent Programming Languages

    Directory of Open Access Journals (Sweden)

    Gustavo Petri

    2012-08-01

    Full Text Available We propose a novel, operational framework to formally describe the semantics of concurrent programs running within the context of a relaxed memory model. Our framework features a "temporary store" where the memory operations issued by the threads are recorded, in program order. A memory model then specifies the conditions under which a pending operation from this sequence is allowed to be globally performed, possibly out of order. The memory model also involves a "write grain," accounting for architectures where a thread may read a write that is not yet globally visible. Our formal model is supported by a software simulator, allowing us to run litmus tests in our semantics.

  18. Reflexogenic relaxation gastroduodenography by the acupuncture method

    Energy Technology Data Exchange (ETDEWEB)

    Rabkin, I.Kh.; Tsibulyak, V.N.; Mnatsakyan, K.A.; Kondorskaya, I.L.; Galkina, T.V.

    The communication is based upon the results of x-ray examination of the stomach and duodenum in 63 patients with stenoses of the pyloroduodenal zone, cicatrical deformities of the duodenal bulb, bulbar ulcer, duodenal organic lesions, and functional stenosis of the loop. First a routine X-ray examination of the stomach and duodenum was performed using barium-water mixture, then followed acupuncture aimed at hypotension in the definite points of the floor of the auricle where branches of the vagus innervating the stomach and duodenum are located. As distinct from pharmacological relaxation this method produces a purpose-oriented selective effect.

  19. Reflexogenic relaxation gastroduodenography by the acupuncture method

    International Nuclear Information System (INIS)

    Rabkin, I.Kh.; Tsibulyak, V.N.; Mnatsakyan, K.A.; Kondorskaya, I.L.; Galkina, T.V.

    1985-01-01

    The communication is based upon the results of x-ray examination of the stomach and duodenum in 63 patients with stenoses of the pyloroduodenal zone, cicatrical deformities of the duodenal bulb, bulbar ulcer, duodenal organic lesions, and functional stenosis of the loop. First a routine X-ray examination of the stomach and duodenum was performed using barium-water mixture, than followed acupuncture aimed at hypotension in the definite points of the floor of the auricle where branches of the vagus innervating the stomach and duodenum are located. As distinct from pharmacological relaxation this method produces a purpose-oriented selective effect

  20. Relaxation Processes and Time Scale Transformation.

    Science.gov (United States)

    1982-03-01

    the response function may be immediately recognized as being 14 of the Kubo - Green type in the classical regime. Given this general framework, it is now...b as a function of temperature is 24 equivalent to the Vogel-Beuche-Fulcher empirical law for viscosity or the Williams-Landel-Ferry empirical law...relaxation times. With the weighted sum in the form of an integral , one can write exp(-(t/T)b ] = f dT’g(r’) exp[-(t/T’)], O

  1. Image charge relaxation in electrophoretic displays

    International Nuclear Information System (INIS)

    1981-01-01

    A novel improvement to a real time imaging system for use in electrostatic imaging is described. Present systems produce ten separate images per second and the image must be erased in preparation for the next exposure and image formation. The new design of electrostatic imaging chamber can take one of several forms which are discussed in detail; both organic and inorganic materials may be used as the photoconductor material in the discharging control layer and suitable examples are given. Values for the resistivity and the relaxation time of the discharging control layer are given. (U.K.)

  2. STRUCTURAL STRESS RELAXATION IN STAINLESS INSTABILITY STEEL

    Directory of Open Access Journals (Sweden)

    S. Lyabuk

    2017-06-01

    Full Text Available The approach to the description of conditions of martensitic transformation in austenitic steel is advanced. Transformation induced hardening is the result of Le Chatelier principle in instability alloys. The phase transformation in austenitic instability stainless steel is the cause of reduction of grain refining and increase of strength. It was experimentally shown that physical-mechanical characteristics of the prepared materials were defined by the structure and inhomogeneous distribution of the hardening phase within a grain. The reasons for high thermal stability of inverse austenitic were established. The factors determining the inverse austenitic relaxation resistibility and resources for its increasing were revealed.

  3. Ultra-fast relaxation kinetics in semiconductors

    International Nuclear Information System (INIS)

    Luzzi, R.

    1983-01-01

    It is presented a brief description of relaxation processes in highly excited semiconductor plasmas (HESP). Comparison with experimental data obtained by means of ultra-fast laser light spectroscopy (UFLS) is made. Some aspects of response funtion theory in systems far-from-equilibrium are reviewed in Section II. In Section III we present some comments on the question of nonequilibrium thermodynamics relevant to the problem to be considered. In last section we present a brief summary of the different aspects of the subject. (author) [pt

  4. Charge imbalance: its relaxation, diffusion and oscillation

    International Nuclear Information System (INIS)

    Pethick, C.J.

    1981-01-01

    In this article, the authors use a model for charge density based on two charge components: the normal quasiparticle component and the superfluid/condensate component. Based on the quasiparticle Boltzmann equation, this two-component model, when used in nonequilibrium contexts, is fruitful in describing a variety of charge-imbalance phenomena in superconductors. The authors discuss various methods of generating charge-imbalances, charge-imbalance relaxation processes (such as phonons, impurity scattering and magnetic impurities) and applications of the two-component model of charge imbalance to spatially inhomogeneous conditions

  5. Modelling Creep (Relaxation of the Urinary Bladder

    Directory of Open Access Journals (Sweden)

    Zdravkovic Nebojsa

    2017-12-01

    Full Text Available We first present the results of an experiment in which the passive properties of the urinary bladder were investigated using strips of rabbit bladder. Under the assumption that the urinary bladder had orthopaedic characteristics, the strips were taken in the longitudinal and in the circumferential directions. The material was subjected to uniaxial tension, and stress-stretch curves were generated for various rates of deformation. We found that the rates did not have a significantly effect on the passive response of the material. Additionally, the stress-stretch dependence during relaxation of the material when exposed to isometric conditions was determined experimentally.

  6. Ultra-fast relaxation kinetics in semiconductors

    International Nuclear Information System (INIS)

    Luzzi, R.

    1983-01-01

    It is presented a brief description of relaxation processes in highly excited semiconductor plasmas (HESP). Comparison with experimental data obtained by means of ultra-fast laser light spectroscopy (UFLS) is made. Some aspects of response function theory in systems far-from-equilibrium are reviewed in Section II. In Section III some comments on the question of nonequilibrium thermodynamics relevant to the problem to be considered are presented. In last Section a brief summary of the different aspects of the subject is also presented. (Author) [pt

  7. Deformation relaxation in heavy-ion collisions

    International Nuclear Information System (INIS)

    Yu, L.; Gan, Z.G.; Zhang, Z.Y.; Zhang, H.F.; Li, J.Q.

    2014-01-01

    In deeply inelastic heavy-ion collisions, the quadrupole deformations of both fragments are taken as stochastic independent dynamical variables governed by the Fokker–Planck equation (FPE) under the corresponding driving potential. The mean values, variances and covariance of the fragments are analytically expressed by solving the FPE in head on collisions. The characteristics and mechanism of the deformation are discussed. It is found that both the internal structures and interactions of the colliding partners are critical for the deformation relaxation in deeply inelastic collisions.

  8. Idiosyncratic reality claims, relaxation dispositions, and ABC relaxation theory: happiness, literal christianity, miraculous powers, metaphysics, and the paranormal.

    Science.gov (United States)

    Smith, Jonathan C; Karmin, Aaron D

    2002-12-01

    This study examined idiosyncratic reality claims, that is, irrational or paranormal beliefs often claimed to enhance relaxation and happiness and reduce stress. The Smith Idiosyncratic Reality Claims Inventory and the Smith Relaxation Dispositions Inventory (which measures relaxation and stress dispositions, or enduring states of mind frequently associated with relaxation or stress) were given to 310 junior college student volunteers. Principal components factor analysis with varimax rotation identified five idiosyncratic reality claim factors: belief in Literal Christianity; Magic; Space Aliens: After Death experiences; and Miraculous Powers of Meditation, Prayer, and Belief. No factor correlated with increased relaxation dispositions Peace, Energy, or Joy, or reduced dispositional somatic stress, worry, or negative emotion on the Smith Relaxation Dispositions Inventory. It was concluded that idiosyncratic reality claims may not be associated with reported relaxation, happiness, or stress. In contrast, previous research strongly supported self-affirming beliefs with few paranormal assumptions display such an association.

  9. Microscopy techniques in flavivirus research.

    Science.gov (United States)

    Chong, Mun Keat; Chua, Anthony Jin Shun; Tan, Terence Tze Tong; Tan, Suat Hoon; Ng, Mah Lee

    2014-04-01

    The Flavivirus genus is composed of many medically important viruses that cause high morbidity and mortality, which include Dengue and West Nile viruses. Various molecular and biochemical techniques have been developed in the endeavour to study flaviviruses. However, microscopy techniques still have irreplaceable roles in the identification of novel virus pathogens and characterization of morphological changes in virus-infected cells. Fluorescence microscopy contributes greatly in understanding the fundamental viral protein localizations and virus-host protein interactions during infection. Electron microscopy remains the gold standard for visualizing ultra-structural features of virus particles and infected cells. New imaging techniques and combinatory applications are continuously being developed to push the limit of resolution and extract more quantitative data. Currently, correlative live cell imaging and high resolution three-dimensional imaging have already been achieved through the tandem use of optical and electron microscopy in analyzing biological specimens. Microscopy techniques are also used to measure protein binding affinities and determine the mobility pattern of proteins in cells. This chapter will consolidate on the applications of various well-established microscopy techniques in flavivirus research, and discuss how recently developed microscopy techniques can potentially help advance our understanding in these membrane viruses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Fluorescence confocal microscopy for pathologists.

    Science.gov (United States)

    Ragazzi, Moira; Piana, Simonetta; Longo, Caterina; Castagnetti, Fabio; Foroni, Monica; Ferrari, Guglielmo; Gardini, Giorgio; Pellacani, Giovanni

    2014-03-01

    Confocal microscopy is a non-invasive method of optical imaging that may provide microscopic images of untreated tissue that correspond almost perfectly to hematoxylin- and eosin-stained slides. Nowadays, following two confocal imaging systems are available: (1) reflectance confocal microscopy, based on the natural differences in refractive indices of subcellular structures within the tissues; (2) fluorescence confocal microscopy, based on the use of fluorochromes, such as acridine orange, to increase the contrast epithelium-stroma. In clinical practice to date, confocal microscopy has been used with the goal of obviating the need for excision biopsies, thereby reducing the need for pathological examination. The aim of our study was to test fluorescence confocal microscopy on different types of surgical specimens, specifically breast, lymph node, thyroid, and colon. The confocal images were correlated to the corresponding histological sections in order to provide a morphologic parallel and to highlight current limitations and possible applications of this technology for surgical pathology practice. As a result, neoplastic tissues were easily distinguishable from normal structures and reactive processes such as fibrosis; the use of fluorescence enhanced contrast and image quality in confocal microscopy without compromising final histologic evaluation. Finally, the fluorescence confocal microscopy images of the adipose tissue were as accurate as those of conventional histology and were devoid of the frozen-section-related artefacts that can compromise intraoperative evaluation. Despite some limitations mainly related to black/white images, which require training in imaging interpretation, this study confirms that fluorescence confocal microscopy may represent an alternative to frozen sections in the assessment of margin status in selected settings or when the conservation of the specimen is crucial. This is the first study to employ fluorescent confocal microscopy on

  11. Thermal relaxation of charm in hadronic matter

    Energy Technology Data Exchange (ETDEWEB)

    He Min, E-mail: mhe@comp.tamu.edu [Cyclotron Institute and Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Fries, Rainer J. [Cyclotron Institute and Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); RIKEN/BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rapp, Ralf [Cyclotron Institute and Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States)

    2011-07-18

    The thermal relaxation rate of open-charm (D) mesons in hot and dense hadronic matter is calculated using empirical elastic scattering amplitudes. D-meson interactions with thermal pions are approximated by D{sup *} resonances, while scattering off other hadrons (K, {eta}, {rho}, {omega}, K{sup *}, N, {Delta}) is evaluated using vacuum scattering amplitudes as available in the literature based on effective Lagrangians and constrained by realistic spectroscopy. The thermal relaxation time of D-mesons in a hot {pi} gas is found to be around 25-50 fm/c for temperatures T=150-180 MeV, which reduces to 10-25 fm/c in a hadron-resonance gas. The latter values, argued to be conservative estimates, imply significant modifications of D-meson spectra in heavy-ion collisions. Close to the critical temperature (T{sub c}), the spatial diffusion coefficient (D{sub s}) is surprisingly similar to recent calculations for charm quarks in the Quark-Gluon Plasma using non-perturbative T-matrix interactions. This suggests a possibly continuous minimum structure of D{sub s} around T{sub c}.

  12. Relaxation methods for gauge field equilibrium equations

    International Nuclear Information System (INIS)

    Adler, S.L.; Piran, T.

    1984-01-01

    This article gives a pedagogical introduction to relaxation methods for the numerical solution of elliptic partial differential equations, with particular emphasis on treating nonlinear problems with delta-function source terms and axial symmetry, which arise in the context of effective Lagrangian approximations to the dynamics of quantized gauge fields. The authors present a detailed theoretical analysis of three models which are used as numerical examples: the classical Abelian Higgs model (illustrating charge screening), the semiclassical leading logarithm model (illustrating flux confinement within a free boundary or ''bag''), and the axially symmetric Bogomol'nyi-Prasad-Sommerfield monopoles (illustrating the occurrence of p topological quantum numbers in non-Abelian gauge fields). They then proceed to a self-contained introduction to the theory of relaxation methods and allied iterative numerical methods and to the practical aspects of their implementation, with attention to general issues which arise in the three examples. The authors conclude with a brief discussion of details of the numerical solution of the models, presenting sample numerical results

  13. Relaxed metrics and indistinguishability operators: the relationship

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.

    2017-07-01

    In 1982, the notion of indistinguishability operator was introduced by E. Trillas in order to fuzzify the crisp notion of equivalence relation (/cite{Trillas}). In the study of such a class of operators, an outstanding property must be pointed out. Concretely, there exists a duality relationship between indistinguishability operators and metrics. The aforesaid relationship was deeply studied by several authors that introduced a few techniques to generate metrics from indistinguishability operators and vice-versa (see, for instance, /cite{BaetsMesiar,BaetsMesiar2}). In the last years a new generalization of the metric notion has been introduced in the literature with the purpose of developing mathematical tools for quantitative models in Computer Science and Artificial Intelligence (/cite{BKMatthews,Ma}). The aforementioned generalized metrics are known as relaxed metrics. The main target of this talk is to present a study of the duality relationship between indistinguishability operators and relaxed metrics in such a way that the aforementioned classical techniques to generate both concepts, one from the other, can be extended to the new framework. (Author)

  14. Relaxation creep model of impending earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Morgounov, V. A. [Russian Academy of Sciences, Institute of Physics of the Earth, Moscow (Russian Federation)

    2001-04-01

    The alternative view of the current status and perspective of seismic prediction studies is discussed. In the problem of the ascertainment of the uncertainty relation Cognoscibility-Unpredictability of Earthquakes, priorities of works on short-term earthquake prediction are defined due to the advantage that the final stage of nucleation of earthquake is characterized by a substantial activation of the process while its strain rate increases by the orders of magnitude and considerably increased signal-to-noise ratio. Based on the creep phenomenon under stress relaxation conditions, a model is proposed to explain different images of precursors of impending tectonic earthquakes. The onset of tertiary creep appears to correspond to the onset of instability and inevitably fails unless it unloaded. At this stage, the process acquires the self-regulating character to the greatest extent the property of irreversibility, one of the important components of prediction reliability. Data in situ suggest a principal possibility to diagnose the process of preparation by ground measurements of acoustic and electromagnetic emission in the rocks under constant strain in the condition of self-relaxed stress until the moment of fracture are discussed in context. It was obtained that electromagnetic emission precedes but does not accompany the phase of macrocrak development.

  15. Hydrodynamic relaxations in dissipative particle dynamics

    Science.gov (United States)

    Hansen, J. S.; Greenfield, Michael L.; Dyre, Jeppe C.

    2018-01-01

    This paper studies the dynamics of relaxation phenomena in the standard dissipative particle dynamics (DPD) model [R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423 (1997)]. Using fluctuating hydrodynamics as the framework of the investigation, we focus on the collective transverse and longitudinal dynamics. It is shown that classical hydrodynamic theory predicts the transverse dynamics at relatively low temperatures very well when compared to simulation data; however, the theory predictions are, on the same length scale, less accurate for higher temperatures. The agreement with hydrodynamics depends on the definition of the viscosity, and here we find that the transverse dynamics are independent of the dissipative and random shear force contributions to the stress. For high temperatures, the spectrum for the longitudinal dynamics is dominated by the Brillouin peak for large length scales and the relaxation is therefore governed by sound wave propagation and is athermal. This contrasts the results at lower temperatures and small length scale, where the thermal process is clearly present in the spectra. The DPD model, at least qualitatively, re-captures the underlying hydrodynamical mechanisms, and quantitative agreement is excellent at intermediate temperatures for the transverse dynamics.

  16. A Microstructural Study of Load Distribution in Cartilage: A Comparison of Stress Relaxation versus Creep Loading

    Directory of Open Access Journals (Sweden)

    Ashvin Thambyah

    2015-01-01

    Full Text Available The compressive response of articular cartilage has been extensively investigated and most studies have focussed largely on the directly loaded matrix. However, especially in relation to the tissue microstructure, less is known about load distribution mechanisms operating outside the directly loaded region. We have addressed this issue by using channel indentation and DIC microscopy techniques that provide visualisation of the matrix microstructural response across the regions of both direct and nondirect loading. We hypothesise that, by comparing the microstructural response following stress relaxation and creep compression, new insights can be revealed concerning the complex mechanisms of load bearing. Our results indicate that, with stress relaxation, the initial mode of stress decay appears to primarily involve relaxation of the surface layer. In the creep loading protocol, the main mode of stress release is a lateral distribution of load via the mid matrix. While these two modes of stress redistribution have a complex relationship with the zonally differentiated tissue microstructure and the depth of strain, four mechanostructural mechanisms are proposed to describe succinctly the load responses observed.

  17. From plastic to elastic stress relaxation in highly mismatched SiGe/Si heterostructures

    International Nuclear Information System (INIS)

    Isa, Fabio; Salvalaglio, Marco; Dasilva, Yadira Arroyo Rojas; Jung, Arik; Isella, Giovanni; Erni, Rolf; Niedermann, Philippe; Gröning, Pierangelo; Montalenti, Francesco; Känel, Hans von

    2016-01-01

    We present a detailed experimental and theoretical analysis of the epitaxial stress relaxation process in micro-structured compositionally graded alloys. We focus on the pivotal SiGe/Si(001) system employing patterned Si substrates at the micrometre-size scale to address the distribution of threading and misfit dislocations within the heterostructures. SiGe alloys with linearly increasing Ge content were deposited by low energy plasma enhanced chemical vapour deposition resulting in isolated, tens of micrometre tall 3D crystals. We demonstrate that complete elastic relaxation is achieved by appropriate choice of the Ge compositional grading rate and Si pillar width. We investigate the nature and distribution of dislocations along the [001] growth direction in SiGe crystals by transmission electron microscopy, chemical defect etching and etch pit counting. We show that for 3 μm wide Si pillars and a Ge grading rate of 1.5% μm −1 , only misfit dislocations are present while their fraction is reduced for higher Ge grading rates and larger structures due to dislocation interactions. The experimental results are interpreted with the help of theoretical calculations based on linear elasticity theory describing the competition between purely elastic and plastic stress relaxation with increasing crystal width and Ge compositional grading rate.

  18. Scanning Tunneling Microscopy - image interpretation

    International Nuclear Information System (INIS)

    Maca, F.

    1998-01-01

    The basic ideas of image interpretation in Scanning Tunneling Microscopy are presented using simple quantum-mechanical models and supplied with examples of successful application. The importance is stressed of a correct interpretation of this brilliant experimental surface technique

  19. Parameterization of NMR relaxation curves in terms of logarithmic moments of the relaxation time distribution.

    Science.gov (United States)

    Petrov, Oleg V; Stapf, Siegfried

    2017-06-01

    This work addresses the problem of a compact and easily comparable representation of multi-exponential relaxation data. It is often convenient to describe such data in a few parameters, all being of physical significance and easy to interpret, and in such a way that enables a model-free comparison between different groups of samples. Logarithmic moments (LMs) of the relaxation time constitute a set of parameters which are related to the characteristic relaxation time on the log-scale, the width and the asymmetry of an underlying distribution of exponentials. On the other hand, the calculation of LMs does not require knowing the actual distribution function and is reduced to a numerical integration of original data. The performance of this method has been tested on both synthetic and experimental NMR relaxation data which differ in a signal-to-noise ratio, the sampling range and the sampling rate. The calculation of two lower-order LMs, the log-mean time and the log-variance, has proved robust against deficiencies of the experiment such as scattered data point and incomplete sampling. One may consider using them as such to monitor formation of a heterogeneous structure, e.g., in phase separation, vitrification, polymerization, hydration, aging, contrast agent propagation processes. It may also assist in interpreting frequency and temperature dependences of relaxation, revealing a crossover from slow to fast exchange between populations. The third LM was found to be a less reliable quantity due to its susceptibility to the noise and must be used with caution. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Parameterization of NMR relaxation curves in terms of logarithmic moments of the relaxation time distribution

    Science.gov (United States)

    Petrov, Oleg V.; Stapf, Siegfried

    2017-06-01

    This work addresses the problem of a compact and easily comparable representation of multi-exponential relaxation data. It is often convenient to describe such data in a few parameters, all being of physical significance and easy to interpret, and in such a way that enables a model-free comparison between different groups of samples. Logarithmic moments (LMs) of the relaxation time constitute a set of parameters which are related to the characteristic relaxation time on the log-scale, the width and the asymmetry of an underlying distribution of exponentials. On the other hand, the calculation of LMs does not require knowing the actual distribution function and is reduced to a numerical integration of original data. The performance of this method has been tested on both synthetic and experimental NMR relaxation data which differ in a signal-to-noise ratio, the sampling range and the sampling rate. The calculation of two lower-order LMs, the log-mean time and the log-variance, has proved robust against deficiencies of the experiment such as scattered data point and incomplete sampling. One may consider using them as such to monitor formation of a heterogeneous structure, e.g., in phase separation, vitrification, polymerization, hydration, aging, contrast agent propagation processes. It may also assist in interpreting frequency and temperature dependences of relaxation, revealing a crossover from slow to fast exchange between populations. The third LM was found to be a less reliable quantity due to its susceptibility to the noise and must be used with caution.

  1. X-ray grazing incidence study of inhomogeneous strain relaxation in Si/SiGe wires

    International Nuclear Information System (INIS)

    Hesse, A.; Zhuang, Y.; Holy, V.; Stangl, J.; Zerlauth, S.; Schaeffler, F.; Bauer, G.; Darowski, N.; Pietsch, U.

    2003-01-01

    The elastic strain relaxation in a series of dry-etched periodic multilayer Si/SiGe wire samples with different etching depths was investigated systematically by means of grazing incidence diffraction (GID). The samples were patterned by holographic lithography and reactive ion etching from a Si/SiGe superlattice grown by molecular beam epitaxy. Scanning electron microscopy and atomic force microscopy were employed to obtain information on the shape of the wires. The inhomogeneous strain distribution in the etched wires and in the non-etched part of the multilayers was derived by means of finite element calculations which were used as an input for simulations of the scattered X-ray intensities in depth dependent GID. The theoretical calculations for the scattered intensities are based on distorted-wave Born approximation. The unperturbed scattering potential was chosen with a reduced optical density corresponding to the ratio of wire width and wire period, in order to reflect the main interaction between the incident X-rays and the patterned samples. The calculations are in good agreement with the experimental data demonstrating the variation of strain relaxation with depth

  2. Twins and strain relaxation in zinc-blende GaAs nanowires grown on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Piñero, J.C., E-mail: josecarlos.pinero@uca.es [Dpto. Ciencias de los Materiales, Universidad de Cádiz, 11510, Puerto Real, Cádiz (Spain); Araújo, D.; Pastore, C.E.; Gutierrez, M. [Dpto. Ciencias de los Materiales, Universidad de Cádiz, 11510, Puerto Real, Cádiz (Spain); Frigeri, C. [Istituto CNR-IMEM Parco Area delle Scienze 37/A, Fontanini, 43010, Parma (Italy); Benali, A.; Lelièvre, J.F.; Gendry, M. [INL-Institut des Nanotechnologies de Lyon, UMR 5270 Ecole Centrale de Lyon 36, Avenue Guy de Collongue, 69134, Ecully Cedex (France)

    2017-02-15

    Highlights: • A TEM-HREM study of GaAs nanowires, growth over Si, is presented. • Misfit dislocations are detected in the Si/GaAs magma interface. • The study demonstrates strain relaxation through twin formation in some nanowires. - Abstract: To integrate materials with large lattice mismatch as GaAs on silicon (Si) substrate, one possible approach, to improve the GaAs crystalline quality, is to use nanowires (NWs) technology. In the present contribution, NWs are grown on <111> oriented Si substrates by molecular beam epitaxy (MBE) using vapor-liquid-solid (VLS) method. Transmission electron microscopy (TEM) analyses show that NWs are mainly grown alternating wurtzite and zinc blend (ZB) phases, and only few are purely ZB. On the latter, High Resolution Electron Microscopy (HREM) evidences the presence of twins near the surface of the NW showing limited concordance with the calculations of Yuan (2013) [1], where {111} twin planes in a <111>-oriented GaAs NW attain attractive interactions mediated by surface strain. In addition, such twins allow slight strain relaxation and are probably induced by the local huge elastic strain observed by HREM in the lattice between the twin and the surface. The latter is attributed to some slight bending of the NW as shown by the inversion of the strain from one side to the other side of the NW.

  3. Structural relaxation dynamics and annealing effects of sodium silicate glass.

    Science.gov (United States)

    Naji, Mohamed; Piazza, Francesco; Guimbretière, Guillaume; Canizarès, Aurélien; Vaills, Yann

    2013-05-09

    Here we report high-precision measurements of structural relaxation dynamics in the glass transition range at the intermediate and short length scale for a strong sodium silicate glass during long annealing times. We evidence for the first time the heterogeneous dynamics at the intermediate range order by probing the acoustic longitudinal frequency in the GHz region by Brillouin light scattering spectroscopy. Or, from in-situ Raman measurements, we show that relaxation is indeed homogeneous at the interatomic length scale. Our results show that the dynamics at the intermediate range order contains two distinct relaxation time scales, a fast and a slow component, differing by about a 10-fold factor below Tg and approaching to one another past the glass transition. The slow relaxation time agrees with the shear relaxation time, proving that Si-O bond breaking constitutes the primary control of structural relaxation at the intermediate range order.

  4. Anisotropic temperature relaxation of plasmas in an external magnetic field

    International Nuclear Information System (INIS)

    Hassan, M.H.A.

    1977-01-01

    The magnetized kinetic equation derived in an earlier paper (Hassan and Watson, 1977) is used to study the problem of relaxation of anisotropic electron and ion temperatures in a magnetized plasma. In the case of anisotropic electron temperature relaxation, it is shown that for small anisotropies the exchange of energy within the electrons between the components parallel and perpendicular to the magnetic field direction determine the relaxation rate. For anisotropic ion temperature relaxation it is shown that the essential mechanism for relaxation is provided by energy transfer between ions and electrons, and that the expression for the relaxation rate perpendicular to the magnetic field contains a significant term proportional to ln eta 0 ln (msub(e)/msub(i)) (where eta 0 = Ωsub(e)/ksub(D)Vsub(e perpendicular to)), in addition to the term proportional to the Coulomb logarithm. (author)

  5. Hyperfine relaxation of an optically pumped cesium vapor

    International Nuclear Information System (INIS)

    Tornos, J.; Amare, J.C.

    1986-01-01

    The relaxation of hyperfine orientation indirectly induced by optical pumping with a σ-polarized D 1 -light in a cesium vapor in the presence of Ar is experimentally studied. The detection technique ensures the absence of quadrupole relaxation contributions in the relaxation signals. The results from the dependences of the hyperfine relaxation rate on the temperature and argon pressure are: diffusion coefficient of Cs in Ar, D 0 = 0.101 +- 0.010 cm 2 s -1 at 0 0 C and 760 Torr; relaxation cross section by Cs-Ar collisions, σ/sub c/ = (104 +- 5) x 10 -23 cm 2 ; relaxation cross section by Cs-Cs (spin exchange) collisions, σ/sub e//sub x/ = (1.63 +- 0.13) x 10 -14 cm 2

  6. Cross-relaxation in multiple pulse NQR spin-locking

    Energy Technology Data Exchange (ETDEWEB)

    Beltjukov, P. A.; Kibrik, G. E. [Perm State University, Physics Department (Russian Federation); Furman, G. B., E-mail: gregoryf@bgu.ac.il; Goren, S. D. [Ben Gurion University, Physics Department (Israel)

    2008-01-15

    The experimental and theoretical NQR multiple-pulse spin locking study of cross-relaxation process in solids containing nuclei of two different sorts I > 1/2 and S = 1/2 coupled by the dipole-dipole interactions and influenced by an external magnetic field. Two coupled equations for the inverse spin temperatures of the both spin systems describing the mutual spin lattice relaxation and the cross-relaxation were obtained using the method of the nonequilibrium state operator. It is shown that the relaxation process is realized with non-exponential time dependence describing by a sum of two exponents. The cross relaxation time is calculated as a function of the multiple-pulse field parameters which agree with the experimental data. The calculated magnetization cross relaxation time vs the strength of the applied magnetic field agrees well with the obtained experimental data.

  7. Relaxation techniques for pain management in labour.

    Science.gov (United States)

    Smith, Caroline A; Levett, Kate M; Collins, Carmel T; Armour, Mike; Dahlen, Hannah G; Suganuma, Machiko

    2018-03-28

    Many women would like to avoid pharmacological or invasive methods of pain management in labour and this may contribute to the popularity of complementary methods of pain management. This review examined currently available evidence on the use of relaxation therapies for pain management in labour. This is an update of a review first published in 2011. To examine the effects of mind-body relaxation techniques for pain management in labour on maternal and neonatal well-being during and after labour. We searched Cochrane Pregnancy and Childbirth's Trials Register (9 May 2017), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, Issue 5 2017), MEDLINE (1966 to 24 May 2017), CINAHL (1980 to 24 May 2017), the Australian New Zealand Clinical Trials Registry (18 May 2017), ClinicalTrials.gov (18 May 2017), the ISRCTN Register (18 May 2017), the WHO International Clinical Trials Registry Platform (ICTRP) (18 May 2017), and reference lists of retrieved studies. Randomised controlled trials (including quasi randomised and cluster trials) comparing relaxation methods with standard care, no treatment, other non-pharmacological forms of pain management in labour or placebo. Two review authors independently assessed trials for inclusion and risk of bias, extracted data and checked them for accuracy. We attempted to contact study authors for additional information. We assessed evidence quality with GRADE methodology. This review update includes 19 studies (2519 women), 15 of which (1731 women) contribute data. Interventions examined included relaxation, yoga, music and mindfulness. Approximately half of the studies had a low risk of bias for random sequence generation and attrition bias. The majority of studies had a high risk of bias for performance and detection bias, and unclear risk of bias for, allocation concealment, reporting bias and other bias. We assessed the evidence from these studies as ranging from low to very low quality, and

  8. Picosecond absorption relaxation measured with nanosecond laser photoacoustics

    OpenAIRE

    Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin; Wang, Lihong V.

    2010-01-01

    Picosecond absorption relaxation—central to many disciplines—is typically measured by ultrafast (femtosecond or picosecond) pump-probe techniques, which however are restricted to optically thin and weakly scattering materials or require artificial sample preparation. Here, we developed a reflection-mode relaxation photoacoustic microscope based on a nanosecond laser and measured picosecond absorption relaxation times. The relaxation times of oxygenated and deoxygenated hemoglobin molecules, b...

  9. Momentum and mass relaxation in heavy-ion collisions

    International Nuclear Information System (INIS)

    Gregoire, C.; Scheuter, F.; Remaud, B.; Sebille, F.

    1984-01-01

    The momentum and mass relaxation are shown to be described by transport equations. The momentum relaxation, which can be studied in the intermediate energy regime by the particle emissions, refers to a microscopic slowing down and diffusion process in the momentum space. The mass relaxation refers to the coupling of the collective mass asymmetry degree of freedom and the intrinsic system. It can be illustrated by the fast fission of light and very heavy systems

  10. Relaxation of quadrupole orientation in an optically pumped alkali vapour

    Energy Technology Data Exchange (ETDEWEB)

    Bernabeu, E; Tornos, J

    1985-04-01

    The relaxation of quadrupole orientation (alignment) in an optically pumped alkali vapour is theoretically studied by taking into account the relaxation processes by alkali-buffer gas, alkali-alkali with spin exchange and alkali-cell wall (diffusion process) collisions. The relaxation transients of the quadrupole orientation are obtained by introducing a first-order weak-pumping approximation (intermediate pumping) less restrictive than the usually considered (zeroth order) one.

  11. Relaxation resistance of heat resisting alloys with cobalt

    International Nuclear Information System (INIS)

    Borzdyka, A.M.

    1977-01-01

    Relaxation resistance of refractory nickel-chromium alloys containing 5 to 14 % cobalt is under study. The tests involve the use of circular samples at 800 deg to 850 deg C. It is shown that an alloy containing 14% cobalt possesses the best relaxation resistance exceeding that of nickel-chromium alloys without any cobalt by a factor of 1.5 to 2. The relaxation resistance of an alloy with 5% cobalt can be increased by hardening at repeated loading

  12. Multilayer Relaxation and Surface Energies of Metallic Surfaces

    Science.gov (United States)

    Bozzolo, Guillermo; Rodriguez, Agustin M.; Ferrante, John

    1994-01-01

    The perpendicular and parallel multilayer relaxations of fcc (210) surfaces are studied using equivalent crystal theory (ECT). A comparison with experimental and theoretical results is made for AI(210). The effect of uncertainties in the input parameters on the magnitudes and ordering of surface relaxations for this semiempirical method is estimated. A new measure of surface roughness is proposed. Predictions for the multilayer relaxations and surface energies of the (210) face of Cu and Ni are also included.

  13. Relaxations to Sparse Optimization Problems and Applications

    Science.gov (United States)

    Skau, Erik West

    Parsimony is a fundamental property that is applied to many characteristics in a variety of fields. Of particular interest are optimization problems that apply rank, dimensionality, or support in a parsimonious manner. In this thesis we study some optimization problems and their relaxations, and focus on properties and qualities of the solutions of these problems. The Gramian tensor decomposition problem attempts to decompose a symmetric tensor as a sum of rank one tensors.We approach the Gramian tensor decomposition problem with a relaxation to a semidefinite program. We study conditions which ensure that the solution of the relaxed semidefinite problem gives the minimal Gramian rank decomposition. Sparse representations with learned dictionaries are one of the leading image modeling techniques for image restoration. When learning these dictionaries from a set of training images, the sparsity parameter of the dictionary learning algorithm strongly influences the content of the dictionary atoms.We describe geometrically the content of trained dictionaries and how it changes with the sparsity parameter.We use statistical analysis to characterize how the different content is used in sparse representations. Finally, a method to control the structure of the dictionaries is demonstrated, allowing us to learn a dictionary which can later be tailored for specific applications. Variations of dictionary learning can be broadly applied to a variety of applications.We explore a pansharpening problem with a triple factorization variant of coupled dictionary learning. Another application of dictionary learning is computer vision. Computer vision relies heavily on object detection, which we explore with a hierarchical convolutional dictionary learning model. Data fusion of disparate modalities is a growing topic of interest.We do a case study to demonstrate the benefit of using social media data with satellite imagery to estimate hazard extents. In this case study analysis we

  14. Simulation study of stepwise relaxation in a spheromak plasma

    International Nuclear Information System (INIS)

    Horiuchi, Ritoku; Uchida, Masaya; Sato, Tetsuya.

    1991-10-01

    The energy relaxation process of a spheromak plasma in a flux conserver is investigated by means of a three-dimensional magnetohydrodynamic simulation. The resistive decay of an initial force-free profile brings the spheromak plasma to an m = 1/n = 2 ideal kink unstable region. It is found that the energy relaxation takes place in two steps; namely, the relaxation consists of two physically distinguished phases, and there exists an intermediate phase in between, during which the relaxation becomes inactive temporarily. The first relaxation corresponds to the transition from an axially symmetric force-free state to a helically symmetric one with an n = 2 crescent magnetic island structure via the helical kink instability. The n = 2 helical structure is nonlinearly sustained in the intermediate phase. The helical twisting of the flux tube creates a reconnection current in the vicinity of the geometrical axis. The second relaxation is triggered by the rapid growth of the n = 1 mode when the reconnection current exceeds a critical value. The helical twisting relaxes through magnetic reconnection toward an axially symmetric force-free state. It is also found that the poloidal flux reduces during the helical twisting in the first relaxation and the generation of the toroidal flux occurs through the magnetic reconnection process in the second relaxation. (author)

  15. Universal relaxation times for electron and nucleon gases

    OpenAIRE

    Pelc, M.; Marciak-Kozlowska, J.; Kozlowski, M.

    2007-01-01

    In this paper we calculate the universal relaxation times for electron and nucleon fermionic gases. We argue that the universal relaxation time tau(i) is equal tau(i)=h/m square v(i) where v(i)=alpha(i)c and alpha(1)=0.15 for nucleon gas and alpha(2)=1/137 for electron gas, c=light velocity. With the universal relaxation time we formulate the thermal Proca equation for fermionic gases. Key words: universal relaxation time, thermal universal Proca equation.

  16. Picosecond absorption relaxation measured with nanosecond laser photoacoustics.

    Science.gov (United States)

    Danielli, Amos; Favazza, Christopher P; Maslov, Konstantin; Wang, Lihong V

    2010-10-18

    Picosecond absorption relaxation-central to many disciplines-is typically measured by ultrafast (femtosecond or picosecond) pump-probe techniques, which however are restricted to optically thin and weakly scattering materials or require artificial sample preparation. Here, we developed a reflection-mode relaxation photoacoustic microscope based on a nanosecond laser and measured picosecond absorption relaxation times. The relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, were measured at 576 nm. The added advantages in dispersion susceptibility, laser-wavelength availability, reflection sensing, and expense foster the study of natural-including strongly scattering and nonfluorescent-materials.

  17. Spin relaxation of iron in mixed state hemoproteins

    International Nuclear Information System (INIS)

    Wajnberg, E.; Kalinowski, H.J.; Bemski, G.; Helman, J.S.

    1984-01-01

    In pure states hemoproteins the relaxation of iron depends on its spin state. It is found that in both mixed state met-hemoglobin and met-myoglobin, the low and high spin states relax through an Orbach-like process. Also, very short (approx. 1 ns) and temperature independent transverse relaxation times T 2 were estimated. This peculiar behaviour of the relaxation may result from the unusual electronic structure of mixed state hemoproteins that allows thermal equilibrium and interconversion of the spin states. (Author) [pt

  18. Anomalous relaxation and self-organization in nonequilibrium processes

    International Nuclear Information System (INIS)

    Fatkullin, Ibrahim; Kladko, Konstantin; Mitkov, Igor; Bishop, A. R.

    2001-01-01

    We study thermal relaxation in ordered arrays of coupled nonlinear elements with external driving. We find that our model exhibits dynamic self-organization manifested in a universal stretched-exponential form of relaxation. We identify two types of self-organization, cooperative and anticooperative, which lead to fast and slow relaxation, respectively. We give a qualitative explanation for the behavior of the stretched exponent in different parameter ranges. We emphasize that this is a system exhibiting stretched-exponential relaxation without explicit disorder or frustration

  19. Relaxation training after stroke: potential to reduce anxiety.

    Science.gov (United States)

    Kneebone, Ian; Walker-Samuel, Natalie; Swanston, Jennifer; Otto, Elisabeth

    2014-01-01

    To consider the feasibility of setting up a relaxation group to treat symptoms of post stroke anxiety in an in-patient post-acute setting; and to explore the effectiveness of relaxation training in reducing self-reported tension. A relaxation group protocol was developed in consultation with a multidisciplinary team and a user group. Over a period of 24 months, 55 stroke patients attended group autogenic relaxation training on a rehabilitation ward. Attendance ranged between one and eleven sessions. Self-reported tension was assessed pre and post relaxation training using the Tension Rating Circles (TRCs). The TRCs identified a significant reduction in self-reported tension from pre to post training, irrespective of the number of sessions attended; z = -3.656, p training. The TRCs proved acceptable to group members, but should be validated against standard anxiety measures. Further exploration of the application of relaxation techniques in clinical practice is desirable. Implications for Rehabilitation Anxiety is prevalent after stroke and likely affects rehabilitation outcomes. Relaxation training is a well proven treatment for anxiety in the non-stroke population. A significant within session reduction in tension, a hallmark symptom of anxiety, was evidenced via group relaxation training delivered in a post-acute, in-patient stroke unit setting. Relaxation training a shows promise as a treatment for anxiety after stroke.

  20. Relaxation oscillations in stimulated Raman scattering

    International Nuclear Information System (INIS)

    Kachen, G.I.; Lowdermilk, W.H.

    1977-01-01

    Light pulses created by stimulated Raman scattering having been found to exhibit a complex time dependence which resembles relaxation oscillations. A focused laser pulse generated both forward and backward Raman emissions which appeared as a series of pulses with durations much shorter than the incident laser pulse. Time dependence of the Raman emission was observed directly by use of a streak camera. The number of observed pulses increased with the intensity of the incident pulse, while separation of the pulses in time depended on the length of the focal region. Beam focusing was incorporated in the coupled wave equations for stimulated Raman scattering. These rate equations were then solved numerically, and the results are in good qualitative agreement with the experimental observations. The short Raman pulses are created by a process associated with depletion of the incident laser pulse. This process occurs under a broad range of conditions

  1. Motional spin relaxation in photoexcited triplet states

    International Nuclear Information System (INIS)

    Harryvan, D.; Faassen, E. van

    1997-01-01

    Transient EPR experiments were performed on photoexcited spin triplet states of the luminescent dye EOSIN-Y in diluted (order of 1 nMol) frozen propane-1-ol solutions at various temperatures. Photoexcitation was achieved by irradiation with intense, short laser pulses. The details of the spin relaxation, in particular the dependence on time, magnetic field and microwave field strength are all reproduced by a model which computes the total magnetization in a population of photoexcited triplet states undergoing random reorientational motion. Using this model, we estimated the motional correlation times to be around a microsecond. This timescale is two orders of magnitude slower than the phase memory time of the triplets. (author)

  2. Collisionless relaxation in spiral galaxy models

    Science.gov (United States)

    Hohl, F.

    1974-01-01

    The increase in random kinetic energy of stars by rapidly fluctuating gravitational fields (collisionless or violent relaxation) in disk galaxy models is investigated for three interaction potentials of the stars corresponding to (1) point stars, (2) rod stars of length 2 kpc, and (3) uniform density spherical stars of radius 2 kpc. To stabilize the galaxy against the large scale bar forming instability, a fixed field corresponding to a central core or halo component of stars was added with the stars containing at most 20 percent of the total mass of the galaxy. Considerable heating occurred for both the point stars and the rod stars, whereas the use of spherical stars resulted in a very low heating rate. The use of spherical stars with the resulting low heating rate will be desirable for the study of large scale galactic stability or density wave propagation, since collective heating effects will no longer mask the phenomena under study.

  3. Energy relaxation and transfer in excitonic trimer

    International Nuclear Information System (INIS)

    Herman, Pavel; Barvik, Ivan; Urbanec, Martin

    2004-01-01

    Two models describing exciton relaxation and transfer (the Redfield model in the secular approximation and Capek's model) are compared for a simple example - a symmetric trimer coupled to a phonon bath. Energy transfer within the trimer occurs via resonance interactions and coupling between the trimer and the bath occurs via modulation of the monomer energies by phonons. Two initial conditions are adopted: (1) one of higher eigenstates of the trimer is initially occupied and (2) one local site of the trimer is initially occupied. The diagonal exciton density matrix elements in the representation of eigenstates are found to be the same for both models, but this is not so for the off-diagonal density matrix elements. Only if the off-diagonal density matrix elements vanish initially (initial condition (1)), they then vanish at arbitrary times in both models. If the initial excitation is local, the off-diagonal matrix elements essentially differ

  4. gamma. -relaxation process in crystallizable polymers

    Energy Technology Data Exchange (ETDEWEB)

    Mindiyarov, Kh G; Zelenev, Yu V; Bartenev, G M [Birskij Gosudarstvennyj Pedagogicheskij Inst. (USSR)

    1975-07-01

    In the present paper, with the aid of radiothermoluminescence technique ..gamma..-relaxation processes are investigated, which are conditioned by molecular mobility and are associated with defects in the crystalline structure of polymers PEh, PP, and elastomers PIB, NK, SKD, SKI exposed to ..gamma..-rays of Co/sup 60/ at a dose rate of 1 Mrad. The shape of the thermoluminescence curve, i.e. the luminescence intensity in the ..cap alpha.. - ..gamma..-maxima, their relationship, position with respect to temperature are strongly dependent on the degree of crystallinity, on the thermal and mechanical prehistory. In highly crystalline samples of PEh and PP ..cap alpha..-maximum may be absent. Dependence has been studied of the luminescence intensity in the ..cap alpha..- and ..gamma..-maxima (Isub(..cap alpha..)/Isub(..gamma..)) on the crystallization temperature; the curve passes through the minimum when the crystallization rate is maximum. The relationship Isub(..gamma..)re of crystallinity degree.

  5. Scalar Similarity for Relaxed Eddy Accumulation Methods

    Science.gov (United States)

    Ruppert, Johannes; Thomas, Christoph; Foken, Thomas

    2006-07-01

    The relaxed eddy accumulation (REA) method allows the measurement of trace gas fluxes when no fast sensors are available for eddy covariance measurements. The flux parameterisation used in REA is based on the assumption of scalar similarity, i.e., similarity of the turbulent exchange of two scalar quantities. In this study changes in scalar similarity between carbon dioxide, sonic temperature and water vapour were assessed using scalar correlation coefficients and spectral analysis. The influence on REA measurements was assessed by simulation. The evaluation is based on observations over grassland, irrigated cotton plantation and spruce forest. Scalar similarity between carbon dioxide, sonic temperature and water vapour showed a distinct diurnal pattern and change within the day. Poor scalar similarity was found to be linked to dissimilarities in the energy contained in the low frequency part of the turbulent spectra ( definition.

  6. Occupational stress, relaxation therapies, exercise and biofeedback.

    Science.gov (United States)

    Stein, Franklin

    2001-01-01

    Occupational stress is a widespread occurrence in the United States. It is a contributing factor to absenteeism, disease, injury and lowered productivity. In general stress management programs in the work place that include relaxation therapies, exercise, and biofeedback have been shown to reduce the physiological symptoms such as hypertension, and increase job satisfaction and job performance. Strategies to implement a successful stress management program include incorporating the coping activities into one's daily schedule, monitoring one's symptoms and stressors, and being realistic in setting up a schedule that is relevant and attainable. A short form of meditation, daily exercise program and the use of heart rate or thermal biofeedback can be helpful to a worker experiencing occupational stress.

  7. Pre-relaxation in weakly interacting models

    Science.gov (United States)

    Bertini, Bruno; Fagotti, Maurizio

    2015-07-01

    We consider time evolution in models close to integrable points with hidden symmetries that generate infinitely many local conservation laws that do not commute with one another. The system is expected to (locally) relax to a thermal ensemble if integrability is broken, or to a so-called generalised Gibbs ensemble if unbroken. In some circumstances expectation values exhibit quasi-stationary behaviour long before their typical relaxation time. For integrability-breaking perturbations, these are also called pre-thermalisation plateaux, and emerge e.g. in the strong coupling limit of the Bose-Hubbard model. As a result of the hidden symmetries, quasi-stationarity appears also in integrable models, for example in the Ising limit of the XXZ model. We investigate a weak coupling limit, identify a time window in which the effects of the perturbations become significant and solve the time evolution through a mean-field mapping. As an explicit example we study the XYZ spin-\\frac{1}{2} chain with additional perturbations that break integrability. One of the most intriguing results of the analysis is the appearance of persistent oscillatory behaviour. To unravel its origin, we study in detail a toy model: the transverse-field Ising chain with an additional nonlocal interaction proportional to the square of the transverse spin per unit length (2013 Phys. Rev. Lett. 111 197203). Despite being nonlocal, this belongs to a class of models that emerge as intermediate steps of the mean-field mapping and shares many dynamical properties with the weakly interacting models under consideration.

  8. Temperature relaxation in collisional non equilibrium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Potapenko, I.F.; Bobylev, A.V.; Azevedo, C.A.; Assis, A.S. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica

    1997-12-31

    Full text. We study the relaxation of a space uniform plasma composed of electrons and one species of ions. To simplified the consideration, standard approach is usually accepted: the distribution functions are considered to be a Maxwellian with time dependent electron T{sub e}(t) and ion T{sub i}(t) temperatures. This approach imposes a severe restriction on the electron/ion distributions that could be very far from the equilibrium. In the present work the problem is investigated on the basis of the nonlinear kinetic Fokker - Planck equation, which is widely used for the description of collisional plasmas. This equation has many applications in plasma physics as an intrinsic part of physical models, both analytical and numerical. A new detailed description of this classical problem of the collisional plasma kinetic theory is given. A deeper examination of the problem shows that the unusual perturbation theory can not be used. The part of the perturbation of the electron distribution has the character of a boundary layer in the neighborhood of small velocities. In this work the boundary layer is thoroughly studied. The correct distribution electron function is given. Nonmonotonic character of the distribution relaxation in the tail region is observed. The corrected formula for temperature equalization is obtained. The comparison of the calculation results with the asymptotic approach is made. We should stress the important role of the completely conservative different scheme used here, which keeps the symmetric properties of the nonlinear exact equation. This allows us to make calculations without numerical error accumulations, except for machine errors. (author)

  9. Myosin Va Plays a Role in Nitrergic Smooth Muscle Relaxation in Gastric Fundus and Corpora Cavernosa of Penis

    Science.gov (United States)

    Carew, Josephine A.; Goyal, Raj K.; Sullivan, Maryrose P.

    2014-01-01

    The intracellular motor protein myosin Va is involved in nitrergic neurotransmission possibly by trafficking of neuronal nitric oxide synthase (nNOS) within the nerve terminals. In this study, we examined the role of myosin Va in the stomach and penis, proto-typical smooth muscle organs in which nitric oxide (NO) mediated relaxation is critical for function. We used confocal microscopy and co-immunoprecipitation of tissue from the gastric fundus (GF) and penile corpus cavernosum (CCP) to localize myosin Va with nNOS and demonstrate their molecular interaction. We utilized in vitro mechanical studies to test whether smooth muscle relaxations during nitrergic neuromuscular neurotransmission is altered in DBA (dilute, brown, non-agouti) mice which lack functional myosin Va. Myosin Va was localized in nNOS-positive nerve terminals and was co-immunoprecipitated with nNOS in both GF and CCP. In comparison to C57BL/6J wild type (WT) mice, electrical field stimulation (EFS) of precontracted smooth muscles of GF and CCP from DBA animals showed significant impairment of nitrergic relaxation. An NO donor, Sodium nitroprusside (SNP), caused comparable levels of relaxation in smooth muscles of WT and DBA mice. These normal postjunctional responses to SNP in DBA tissues suggest that impairment of smooth muscle relaxation resulted from inhibition of NO synthesis in prejunctional nerve terminals. Our results suggest that normal physiological processes of relaxation of gastric and cavernosal smooth muscles that facilitate food accommodation and penile erection, respectively, may be disrupted under conditions of myosin Va deficiency, resulting in complications like gastroparesis and erectile dysfunction. PMID:24516539

  10. Increased transverse relaxivity in ultrasmall superparamagnetic iron oxide nanoparticles used as MRI contrast agent for biomedical imaging.

    Science.gov (United States)

    Mishra, Sushanta Kumar; Kumar, B S Hemanth; Khushu, Subash; Tripathi, Rajendra P; Gangenahalli, Gurudutta

    2016-09-01

    Synthesis of a contrast agent for biomedical imaging is of great interest where magnetic nanoparticles are concerned, because of the strong influence of particle size on transverse relaxivity. In the present study, biocompatible magnetic iron oxide nanoparticles were synthesized by co-precipitation of Fe 2+ and Fe 3+ salts, followed by surface adsorption with reduced dextran. The synthesized nanoparticles were spherical in shape, and 12 ± 2 nm in size as measured using transmission electron microscopy; this was corroborated with results from X-ray diffraction and dynamic light scattering studies. The nanoparticles exhibited superparamagnetic behavior, superior T 2 relaxation rate and high relaxivities (r 1  = 18.4 ± 0.3, r 2  = 90.5 ± 0.8 s -1 mM -1 , at 7 T). MR image analysis of animals before and after magnetic nanoparticle administration revealed that the signal intensity of tumor imaging, specific organ imaging and whole body imaging can be clearly distinguished, due to the strong relaxation properties of these nanoparticles. Very low concentrations (3.0 mg Fe/kg body weight) of iron oxides are sufficient for early detection of tumors, and also have a clear distinction in pre- and post-enhancement of contrast in organs and body imaging. Many investigators have demonstrated high relaxivities of magnetic nanoparticles at superparamagnetic iron oxide level above 50 nm, but this investigation presents a satisfactory, ultrasmall, superparamagnetic and high transverse relaxivity negative contrast agent for diagnosis in pre-clinical studies. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. An electron microscopy appraisal of tensile fracture in metallic glasses

    International Nuclear Information System (INIS)

    Matthews, D.T.A.; Ocelik, V.; Bronsveld, P.M.; De Hosson, J.Th.M.

    2008-01-01

    Three glass-forming alloy compositions were chosen for ribbon production and subsequent electron microscopy studies. In situ tensile testing with transmission electron microscopy (TEM), followed by ex situ TEM and ex situ scanning electron microscopy (SEM), allowed the deformation processes in tensile fracture of metallic glasses to be analysed. In situ shear band propagation was found to be jump-like, with the jump sites correlating with the formation of secondary shear bands. The effect of structural relaxation by in situ heating is also discussed. Nanocrystallization near the fracture surface was observed; however, no crystallization was also reported in the same sample and the reasons for this are discussed. Both the TEM and the SEM observations confirmed the presence of a liquid-like layer on or near the fracture surface of the ribbons. The formation of a liquid-like layer was characterized by the vein geometries and vein densities on the fracture surfaces and its dependence on shear displacement, δ, is discussed. A simple model is adapted to relate the temperature rise during shear banding to the glass transition and melting temperatures and this is used to explain the variety of fracture surfaces which are developed for macroscopically identical tensile testing of metallic glasses together with features which exhibit local melting

  12. Dielectric relaxation of barium strontium titanate and application to thin films for DRAM capacitors

    Science.gov (United States)

    Baniecki, John David

    expression, and BSTO thin film electrical characteristics, the charge loss due to dielectric relaxation is estimated to be 6--12% of the initial charge stored on the capacitor plates for MOCVD BSTO thin films with Pt electrodes after a post top electrode anneal in oxygen. In contrast, it is shown that the charge loss due to steady state leakage is only 0.0125--0.125% of the initial charge stored on the capacitor plates. Charge retention is shown to depend strongly on the annealing conditions. Annealing MOCVD BSTO thin films with Pt electrodes in forming gas (95% Ar 5% H2) increases charge loss due to dielectric relaxation to as much as 60%. Ion implantation is used to dope BSTO thin films with Mn. X-ray diffraction and transmission electron microscopy (TEM) shows ion implantation significantly damages the film leaving only short-range order, but post-implant annealing heals the damage. Capacitance recovery after post-implant annealing is as high as 94% for 15 nm BSTO films. At low implant doses, the Mn doped films have substantially lower leakage (up to a factor of ten lower) and only slightly higher relaxation currents and dielectric loss indicating that ion implantation may be a potentially viable way of introducing dopants into high dielectric constant thin films for future DRAM applications.

  13. Dynamics and relaxation in confined medium. Application to 129Xe magnetic relaxation in Vycor

    International Nuclear Information System (INIS)

    Pasquier, Virginie

    1995-01-01

    Porous media morphology and topology drive the exploration of pore space by fluid. So, analysis of transport process, associated with relaxation mechanism, allows indirect study of pore geometry. The purpose of this work is to understand better the relation between geometry and transport. This study involves two parts: a modelization and prediction step is followed by an experimental application of magnetic relaxation. Numerical simulations and analytical models allow to quantify the influence on the solid interface of the dynamical behavior of confined gas in disordered porous media (granular structure and porous network) or in common geometry (cylindrical and lamellar interfaces). The formalism of diffusion propagator is a powerful tool to quantify the influence of the pore geometry on the diffusion of confined gas. The propagator holds all dynamical information on the system; it also predicts the temporal evolution of the autocorrelation functions of the Hamiltonian describing local coupling. In an intermediate time scale, magnetic relaxation shows complex diffusional regime: the autocorrelation functions decrease in a power law with a exponent smaller than d/2 (where d is the Euclidian dimension of the system). This behavior is analogous to dynamic in low-dimensional space, but here arises from surface correlations of the porous media. The long-time behavior of the autocorrelation functions retrieves the asymptotic decrease t -d/2 . Moreover, atypical behavior is observed for the Knudsen diffusion between infinite planes. It turns out that 129 Xe NMR is a appropriate technique to characterize organization and diffusion of gas confined in Vycor. Systematic studies of temperature and pressure effect on the 129 Xe chemical shift allow to specify the Xe/solid interaction. The analysis of the relaxation measurements, thanks to the numerical development, confirms conclusions arising from the study of diffusion propagator. (author) [fr

  14. Light microscopy - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2011-11-01

    Full Text Available The first part of the book (six chapters is devoted to some selected applications of bright-field microscopy while the second part (eight chapters to some fluorescence microscopy studies. Both animal and plant biology investigations are presented covering multiple fields like immunology, cell signaling, cancer biology and, surprisingly to me, ecology. This chapter is titled: Light microscopy in aquatic ecology: Methods for plankton communities studies and it is due to Maria Carolina S. Soares and colleagues from the Laboratory of Aquatic Ecology, Dept. of Biology, Federal University of Juiz de Fora (Brazil. Here they present methods to quantify the different component of planktonic communities in a step-by-step manner so that virus, bacteria, algae and animals pertaining to different taxa can be recognized and the contribution they made to the plankton composition evaluated. It descends that even how the plankton composition is changing due to environmental variations can be accurately determined....

  15. Multiphoton Microscopy for Ophthalmic Imaging

    Directory of Open Access Journals (Sweden)

    Emily A. Gibson

    2011-01-01

    Full Text Available We review multiphoton microscopy (MPM including two-photon autofluorescence (2PAF, second harmonic generation (SHG, third harmonic generation (THG, fluorescence lifetime (FLIM, and coherent anti-Stokes Raman Scattering (CARS with relevance to clinical applications in ophthalmology. The different imaging modalities are discussed highlighting the particular strength that each has for functional tissue imaging. MPM is compared with current clinical ophthalmological imaging techniques such as reflectance confocal microscopy, optical coherence tomography, and fluorescence imaging. In addition, we discuss the future prospects for MPM in disease detection and clinical monitoring of disease progression, understanding fundamental disease mechanisms, and real-time monitoring of drug delivery.

  16. Nanoscale Laser Terahertz Emission Microscopy

    DEFF Research Database (Denmark)

    Klarskov, Pernille; Kim, Hyewon; Colvin, Vicki L.

    2017-01-01

    Laser terahertz emission microscopy (LTEM) has become a powerful tool for studying ultrafast dynamics and local fields in many different types of materials. This technique, which relies on acceleration of charge carriers in a material upon femtosecond excitation, can provide insight into the phys......Laser terahertz emission microscopy (LTEM) has become a powerful tool for studying ultrafast dynamics and local fields in many different types of materials. This technique, which relies on acceleration of charge carriers in a material upon femtosecond excitation, can provide insight...

  17. Illuminating Electron Microscopy of Photocatalysts

    DEFF Research Database (Denmark)

    Cavalca, Filippo

    .1% of the surface of the planet with a device that converts solar energy into a useable form at 10% efficiency would give more than the present worldwide consumption of fossil energy. Photocatalysts are of fundamental interest for sustainable energy research because they provide a viable route for converting solar...... energy into chemical bonds. By means of Transmission Electron Microscopy (TEM) it is possible to gain insight in the fundamentals of their reaction mechanisms, chemical behaviour, structure and morphology before, during and after reaction using in situ investigations. In particular, the environmental TEM...... the microscope that allows electron microscopy under nonconventional TEM conditions and new kinds of in situ spectroscopy....

  18. Dielectric Relaxation Studies of Alkyl Methacrylate–Phenol Mixtures ...

    African Journals Online (AJOL)

    The Kirkwood correlation factor and the excess inverse relaxation time were determined and they yield information on the molecular interactions occurring in the systems. The values of the static permittivity and the relaxation time increase with an increase in the percentage of phenol in the mixtures. KEYWORDS: Dielectric ...

  19. Evolving fuzzy rules for relaxed-criteria negotiation.

    Science.gov (United States)

    Sim, Kwang Mong

    2008-12-01

    In the literature on automated negotiation, very few negotiation agents are designed with the flexibility to slightly relax their negotiation criteria to reach a consensus more rapidly and with more certainty. Furthermore, these relaxed-criteria negotiation agents were not equipped with the ability to enhance their performance by learning and evolving their relaxed-criteria negotiation rules. The impetus of this work is designing market-driven negotiation agents (MDAs) that not only have the flexibility of relaxing bargaining criteria using fuzzy rules, but can also evolve their structures by learning new relaxed-criteria fuzzy rules to improve their negotiation outcomes as they participate in negotiations in more e-markets. To this end, an evolutionary algorithm for adapting and evolving relaxed-criteria fuzzy rules was developed. Implementing the idea in a testbed, two kinds of experiments for evaluating and comparing EvEMDAs (MDAs with relaxed-criteria rules that are evolved using the evolutionary algorithm) and EMDAs (MDAs with relaxed-criteria rules that are manually constructed) were carried out through stochastic simulations. Empirical results show that: 1) EvEMDAs generally outperformed EMDAs in different types of e-markets and 2) the negotiation outcomes of EvEMDAs generally improved as they negotiated in more e-markets.

  20. The infinite interface limit of multiple-region relaxed magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, G. R.; Dewar, R. L.; Hole, M. J. [Research School of Physics and Engineering, Australian National University, ACT 0200 (Australia); Hudson, S. R. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States)

    2013-03-15

    We show the stepped-pressure equilibria that are obtained from a generalization of Taylor relaxation known as multi-region, relaxed magnetohydrodynamics (MRXMHD) are also generalizations of ideal magnetohydrodynamics (ideal MHD). We show this by proving that as the number of plasma regions becomes infinite, MRXMHD reduces to ideal MHD. Numerical convergence studies illustrating this limit are presented.

  1. Models for multiple relaxation processes in collagen fiber

    Indian Academy of Sciences (India)

    ... originate from stress strain induced changes in hydrogen bond network whereas the other seems to be more strongly coupled to salt like bridges and electrostatic interactions. Urea alters the activation energy for one relaxation step while pH and solvent dielectric constant alter the relaxation behavior one set of processes.

  2. Plasma relaxation of cold electrons and hot ions

    International Nuclear Information System (INIS)

    Potapenko, I.F.; Sakanaka, P.H.

    1996-01-01

    The relaxation process of a space uniform plasma composed of cold electrons and one species of hot ions studied numerically. Special attention has been paid to the deviation of relaxation from the classical picture which is characterized by a weakly non-isothermic situation. (author). 6 refs., 2 figs

  3. Accelerating convergence of molecular dynamics-based structural relaxation

    DEFF Research Database (Denmark)

    Christensen, Asbjørn

    2005-01-01

    We describe strategies to accelerate the terminal stage of molecular dynamics (MD)based relaxation algorithms, where a large fraction of the computational resources are used. First, we analyze the qualitative and quantitative behavior of the QuickMin family of MD relaxation algorithms and explore...

  4. On integral representation, relaxation and homogenization for unbounded functionals

    International Nuclear Information System (INIS)

    Carbone, L.; De Arcangelis, R.

    1997-01-01

    A theory of integral representation, relaxation and homogenization for some types of variational functionals taking extended real values and possibly being not finite also on large classes of regular functions is presented. Some applications to gradient constrained relaxation and homogenization problems are given

  5. 5 Things To Know About Relaxation Techniques for Stress

    Science.gov (United States)

    ... Techniques for Stress Share: When you’re under stress, your body reacts by releasing hormones that produce the “fight- ... relaxation techniques could counteract the negative effects of stress. ... the body's natural relaxation response, characterized by slower breathing, lower ...

  6. Optimal relaxed causal sampler using sampled-date system theory

    NARCIS (Netherlands)

    Shekhawat, Hanumant; Meinsma, Gjerrit

    This paper studies the design of an optimal relaxed causal sampler using sampled data system theory. A lifted frequency domain approach is used to obtain the existence conditions and the optimal sampler. A state space formulation of the results is also provided. The resulting optimal relaxed causal

  7. Wall relaxation rates for an optically pumped NA vapor

    International Nuclear Information System (INIS)

    Swenson, D.R.; Anderson, L.W.

    1986-01-01

    The wall relaxation rates for an optically pumped Na vapor have been measured for a variety of wall surfaces. We find that fluorocarbon rubber (Fluorel, Viton) and organosilicones (silicone rubber, dry film) at a temperature of 250 C have respectively relaxation rates that correspond on the average to 10 to 15 and 200 to 500 bounces before depolarization occurs. 7 refs., 3 figs

  8. Improving the Performance of Poor Readers through Autogenic Relaxation Training.

    Science.gov (United States)

    Frey, Herbert

    1980-01-01

    Reports that the addition of 15 minutes of relaxation training to weekly remedial reading periods for disabled readers throughout a school year raised concentration levels and decreased anxiety, neuroticism, and number of reading errors. Describes a few types of relaxation exercises that may be helpful. (ET)

  9. Communication: Relaxation-limited electronic currents in extended reservoir simulations

    Science.gov (United States)

    Gruss, Daniel; Smolyanitsky, Alex; Zwolak, Michael

    2017-10-01

    Open-system approaches are gaining traction in the simulation of charge transport in nanoscale and molecular electronic devices. In particular, "extended reservoir" simulations, where explicit reservoir degrees of freedom are present, allow for the computation of both real-time and steady-state properties but require relaxation of the extended reservoirs. The strength of this relaxation, γ, influences the conductance, giving rise to a "turnover" behavior analogous to Kramers turnover in chemical reaction rates. We derive explicit, general expressions for the weak and strong relaxation limits. For weak relaxation, the conductance increases linearly with γ and every electronic state of the total explicit system contributes to the electronic current according to its "reduced" weight in the two extended reservoir regions. Essentially, this represents two conductors in series—one at each interface with the implicit reservoirs that provide the relaxation. For strong relaxation, a "dual" expression-one with the same functional form-results, except now proportional to 1/γ and dependent on the system of interest's electronic states, reflecting that the strong relaxation is localizing electrons in the extended reservoirs. Higher order behavior (e.g., γ2 or 1/γ2) can occur when there is a gap in the frequency spectrum. Moreover, inhomogeneity in the frequency spacing can give rise to a pseudo-plateau regime. These findings yield a physically motivated approach to diagnosing numerical simulations and understanding the influence of relaxation, and we examine their occurrence in both simple models and a realistic, fluctuating graphene nanoribbon.

  10. Irradiation creep, stress relaxation and a mechanical equation of state

    International Nuclear Information System (INIS)

    Foster, J.P.

    1976-01-01

    Irradiation creep and stress relaxation data are available from the United Kingdom for 20 percent CW M316, 20 percent CW FV 548 and FHT PE16 using pure torsion in the absence of swelling at 300 0 C. Irradiation creep models were used to calculate the relaxation and permanent deflection of the stress relaxation tests. Two relationships between irradiation creep and stress relaxation were assessed by comparing the measured and calculated stress relaxation and permanent deflection. The results show that for M316 and FV548, the stress relaxation and deflection may be calculated using irradiation creep models when the stress rate term arising from the irradiation creep model is set equal to zero. In the case of PE16, the inability to calculate the stress relaxation and permanent deflection from the irradiation creep data was attributed to differences in creep behavior arising from lot-to-lot variations in alloying elements and impurity content. A modification of the FV548 and PE16 irradiation creep coefficients was necessary in order to calculate the stress relaxation and deflection. The modifications in FV548 and PE16 irradiation creep properties reduces the large variation in the transient or incubation parameter predicted by irradiation creep tests for M316, FV548 and PE16

  11. Noninteracting control of nonlinear systems based on relaxed control

    NARCIS (Netherlands)

    Jayawardhana, B.

    2010-01-01

    In this paper, we propose methodology to solve noninteracting control problem for general nonlinear systems based on the relaxed control technique proposed by Artstein. For a class of nonlinear systems which cannot be stabilized by smooth feedback, a state-feedback relaxed control can be designed to

  12. Relaxation in x-space magnetic particle imaging.

    Science.gov (United States)

    Croft, Laura R; Goodwill, Patrick W; Conolly, Steven M

    2012-12-01

    Magnetic particle imaging (MPI) is a new imaging modality that noninvasively images the spatial distribution of superparamagnetic iron oxide nanoparticles (SPIOs). MPI has demonstrated high contrast and zero attenuation with depth, and MPI promises superior safety compared to current angiography methods, X-ray, computed tomography, and magnetic resonance imaging angiography. Nanoparticle relaxation can delay the SPIO magnetization, and in this work we investigate the open problem of the role relaxation plays in MPI scanning and its effect on the image. We begin by amending the x-space theory of MPI to include nanoparticle relaxation effects. We then validate the amended theory with experiments from a Berkeley x-space relaxometer and a Berkeley x-space projection MPI scanner. Our theory and experimental data indicate that relaxation reduces SNR and asymmetrically blurs the image in the scanning direction. While relaxation effects can have deleterious effects on the MPI scan, we show theoretically and experimentally that x-space reconstruction remains robust in the presence of relaxation. Furthermore, the role of relaxation in x-space theory provides guidance as we develop methods to minimize relaxation-induced blurring. This will be an important future area of research for the MPI community.

  13. Effectiveness of relaxation techniques before diagnostic screening of cancer patients

    Directory of Open Access Journals (Sweden)

    Montserrat Aiger

    2016-07-01

    Full Text Available Psychophysiological arousal was observed in cancer patients during the application of relaxation techniques prior to a diagnostic scan (PET-CT. The aim of the study is twofold: firstly, it is sought to establish whether such techniques can minimize patient arousal before diagnostic screening begins, and secondly to measure which of them are most effective. The dependent variable is electrodermal activity, recording the attentional level and emotional response, and the independent variable comprises the relaxation techniques used, namely Jacobson, breathing and visualization. The 39 patients were split into experimental groups to whom the relaxation techniques (Jacobson, breathing exercises, and visualization were applied before they went for the PET-CT. An activity-module procedure was applied to track electrodermal activity during the relaxation sessions, consisting of instructions, timeout; wait, task; relaxation and end of the recording session. The control group received no relaxation techniques before the PET-CT. Session-end results show that patients who perform relaxation techniques achieve greater attentional focus using Jacobson's technique (M = .212 and enhanced emotional containment using visualization (M = .206. It is concluded that relaxation techniques minimize the state of activation during the waiting period before a diagnostic scan.

  14. Structural relaxation of Ni-Si-B amorphous ribbon

    NARCIS (Netherlands)

    Jurikova, A.; Csach, K.; Miskuf, J.; Ocelik, V.

    The structural relaxation of the Ni-Si-B amorphous ribbon was studied by means of differential scanning calorimetry and thermomechanical analysis. It was shown that considerable length changes associated with reversible structural relaxation were revealed after a previous creep applied at higher

  15. Dielectric relaxation phenomena of rigid polar liquid molecules ...

    Indian Academy of Sciences (India)

    The probability of showing double relaxation is ... liquids can, however, be inferred from the measured relaxation time τ by Cole–Cole [3], ... A graphical method [13] was, soon employed from Fr¨ohlich's distribution function [14] to ...... tive to choose a few data for some systems for which chi-square values were adjusted to.

  16. Strengthening and stress relaxation of Opalinus Clay

    International Nuclear Information System (INIS)

    Schulze, Otto

    2010-01-01

    undisturbed far-field for the long lasting periods of geological times. Consequently, demands on concepts for backfilling and closure of a repository in a clay-stone formation as well as model calculations for safety analyses generally do not take into account convergence by viscous deformation, which would result from stress re-distribution at underground openings. Although there is some doubt, whether Opalinus Clay is creeping at all, some very long lasting laboratory tests were performed on this item in the author's laboratory. A nearly linear dependence of the long-term creep rate on the deviatoric stress was found. In recent work, the technique of stress-relaxation was used. For this, strengthening by strain rate controlled deformation was stopped, i.e. the strain was kept constant for a long time, and the relaxation of the stress was measured. In course of this technique, the deformability which may result from artefacts is ruled out as far as possible by compaction and strengthening. Then, the stress relaxation - if any - will be maintained by true long-term deformation processes which should be active and responsible for any convergence in an at least only partly backfilled mine. In this contribution, the results of the laboratory work and their discussion will be presented. (authors)

  17. Epitaxial strain and its relaxation at the LaAlO{sub 3}/SrTiO{sub 3} interface

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guozhen, E-mail: guozhen.liu@hotmail.com [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States); Research Center for Solid State Physics and Materials, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009 (China); Lei, Qingyu; Wolak, Matthäus A.; Xi, Xiaoxing [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States); Li, Qun [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, Long-Qing [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Winkler, Christopher; Sloppy, Jennifer; Taheri, Mitra L. [Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104 (United States)

    2016-08-28

    A series of LaAlO{sub 3} thin films with different thicknesses were deposited by pulsed laser deposition at temperatures from 720 °C to 800 °C. The results from grazing incidence x-ray diffraction and reciprocal space mapping indicate that a thin layer of LaAlO{sub 3} adjacent to the SrTiO{sub 3} substrate remains almost coherently strained to the substrate, while the top layer starts to relax quickly above a certain critical thickness, followed by a gradual relaxation at larger film thickness when they are grown at lower temperatures. The atomic force microscopy results show that the fast relaxation is accompanied by the formation of cracks on the film surface. This can be ascribed to the larger energy release rate when compared with the resistance of LaAlO{sub 3} to cracking, according to calculations from the Griffith fracture theory. For films grown at 720 °C, a drop in sheet resistance by two orders of magnitude is observed when the top layer starts to relax, indicating a relationship between the strain and the conductivity of the two-dimensional electron gas at the LaAlO{sub 3}/SrTiO{sub 3} interface. The strain engineered by growth temperature provides a useful tool for the manipulation of the electronic properties of oxide heterointerfaces.

  18. Structure, interface abruptness and strain relaxation in self-assisted grown InAs/GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Frigeri, Cesare, E-mail: frigeri@imem.cnr.it [CNR-IMEM Institute, Parma (Italy); Scarpellini, David [L–NESS and Dept. Materials Science, University of Milano Bicocca, Milano (Italy); Department of Industrial Engineering University of Rome Tor Vergata, Rome (Italy); Fedorov, Alexey [LNESS and CNR-IFN, Como (Italy); Bietti, Sergio; Somaschini, Claudio [L–NESS and Dept. Materials Science, University of Milano Bicocca, Milano (Italy); Grillo, Vincenzo [CNR-IMEM Institute, Parma (Italy); CNR-S3-NANO Center, Modena (Italy); Esposito, Luca; Salvalaglio, Marco; Marzegalli, Anna; Montalenti, Francesco [L–NESS and Dept. Materials Science, University of Milano Bicocca, Milano (Italy); Sanguinetti, Stefano [L–NESS and Dept. Materials Science, University of Milano Bicocca, Milano (Italy); LNESS and CNR-IFN, Como (Italy)

    2017-02-15

    Highlights: • We study 2 critical issues (interface abruptness and strain release) in InAs/GaAs NWs. • Structural and chemical interface sharpness ≤1.5 nm, better than in previous reports. • Simultaneous elastic and plastic relaxation is shown that agrees with FEM simulations. • Structural, chemical and strain release investigations were performed by STEM. • New MBE self-seeded method whereby InAs is grown by splitting In and As depositions. - Abstract: The structure, interface abruptness and strain relaxation in InAs/GaAs nanowires grown by molecular beam epitaxy in the Ga self-catalysed mode on (111) Si have been investigated by transmission electron microscopy. The nanowires had the zincblende phase. The InAs/GaAs interface was atomically and chemically sharp with a width around 1.5 nm, i.e. significantly smaller than previously reported values. This was achieved by the consumption of the Ga droplet and formation of a flat top facet of the GaAs followed by the growth of InAs by splitting the depositions of In and As. Both elastic and plastic strain relaxation took place simultaneously. Experimental TEM results about strain relaxation very well agree with linear elasticity theory calculations by the finite element methods.

  19. Structure, interface abruptness and strain relaxation in self-assisted grown InAs/GaAs nanowires

    International Nuclear Information System (INIS)

    Frigeri, Cesare; Scarpellini, David; Fedorov, Alexey; Bietti, Sergio; Somaschini, Claudio; Grillo, Vincenzo; Esposito, Luca; Salvalaglio, Marco; Marzegalli, Anna; Montalenti, Francesco; Sanguinetti, Stefano

    2017-01-01

    Highlights: • We study 2 critical issues (interface abruptness and strain release) in InAs/GaAs NWs. • Structural and chemical interface sharpness ≤1.5 nm, better than in previous reports. • Simultaneous elastic and plastic relaxation is shown that agrees with FEM simulations. • Structural, chemical and strain release investigations were performed by STEM. • New MBE self-seeded method whereby InAs is grown by splitting In and As depositions. - Abstract: The structure, interface abruptness and strain relaxation in InAs/GaAs nanowires grown by molecular beam epitaxy in the Ga self-catalysed mode on (111) Si have been investigated by transmission electron microscopy. The nanowires had the zincblende phase. The InAs/GaAs interface was atomically and chemically sharp with a width around 1.5 nm, i.e. significantly smaller than previously reported values. This was achieved by the consumption of the Ga droplet and formation of a flat top facet of the GaAs followed by the growth of InAs by splitting the depositions of In and As. Both elastic and plastic strain relaxation took place simultaneously. Experimental TEM results about strain relaxation very well agree with linear elasticity theory calculations by the finite element methods.

  20. Delayed plastic relaxation limit in SiGe islands grown by Ge diffusion from a local source

    Energy Technology Data Exchange (ETDEWEB)

    Vanacore, G. M.; Zani, M.; Tagliaferri, A., E-mail: alberto.tagliaferri@polimi.it [CNISM-Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Nicotra, G. [IMM-CNR, Stradale Primosole 50, I-95121 Catania (Italy); Bollani, M. [CNR-IFN, LNESS, Via Anzani 42, I-22100 Como (Italy); Bonera, E.; Montalenti, F.; Picco, A.; Boioli, F. [Dipartimento di Scienza dei Materiali and L-NESS, Università Milano-Bicocca, via Cozzi 53, I-20125 Milano (Italy); Capellini, G. [Department of Sciences at the Università Roma Tre, Via Vasca Navale 79, 00146 Roma (Italy); Isella, G. [CNISM, LNESS, Dipartimento di Fisica, Politecnico di Milano (Polo di Como), Via Anzani 42, I-22100 Como (Italy); Osmond, J. [ICFO–The Institute of Photonic Sciences, Av. Carl Friedrich Gauss, 3, E-08860 Castelldefels (Barcelona) (Spain)

    2015-03-14

    The hetero-epitaxial strain relaxation in nano-scale systems plays a fundamental role in shaping their properties. Here, the elastic and plastic relaxation of self-assembled SiGe islands grown by surface-thermal-diffusion from a local Ge solid source on Si(100) are studied by atomic force and transmission electron microscopies, enabling the simultaneous investigation of the strain relaxation in different dynamical regimes. Islands grown by this technique remain dislocation-free and preserve a structural coherence with the substrate for a base width as large as 350 nm. The results indicate that a delay of the plastic relaxation is promoted by an enhanced Si-Ge intermixing, induced by the surface-thermal-diffusion, which takes place already in the SiGe overlayer before the formation of a critical nucleus. The local entropy of mixing dominates, leading the system toward a thermodynamic equilibrium, where non-dislocated, shallow islands with a low residual stress are energetically stable. These findings elucidate the role of the interface dynamics in modulating the lattice distortion at the nano-scale, and highlight the potential use of our growth strategy to create composition and strain-controlled nano-structures for new-generation devices.

  1. Magnetic relaxation in analytical, coordination and bioinorganic chemistry

    International Nuclear Information System (INIS)

    Mikhajlov, O.

    1982-01-01

    Nuclear magnetic relaxation is a special type of nuclear magnetic resonance in which the rate is measured of energy transfer between the excited nuclei and their molecular medium (spin-lattice relaxation) or the whole nuclear spin system (spin-spin relaxation). Nuclear magnetic relaxation relates to nuclei with a spin of 1/2, primarily H 1 1 , and is mainly measured in water solutions. It is suitable for (1) analytical chemistry because the relaxation time rapidly reduces in the presence of paramagnetic ions, (2) the study of complex compounds, (3) the study of biochemical reactions in the presence of different metal ions. It is also suitable for testing the composition of a flowing liquid. Its disadvantage is that it requires complex and expensive equipment. (Ha)

  2. Mechanism of nuclear cross-relaxation in magnetically ordered media

    Energy Technology Data Exchange (ETDEWEB)

    Buishvili, L L; Volzhan, E B; Giorgadze, N P [AN Gruzinskoj SSR, Tbilisi. Inst. Fiziki

    1975-09-01

    A mechanism of two-step nuclear relaxation in magnetic ordered dielectrics is proposed. The case is considered where the energy conservation in the cross relaxation (CR) process is ensured by the lattice itself without spin-spin interactions. Expressions have been obtained describing the temperature dependence of the CR rate. For a nonuniform broadened NMR line it has been shown that the spin-lattice relaxation time for a spin packet taken out from the equilibrium may be determined by the CR time owing to the mechanism suggested. When the quantization axes for electron and nuclear spins coincide, the spin-lattice relaxation is due to the three-magnon mechanism. The cross-relaxation stage has been shown to play a significant role in the range of low temperatures (T<10 deg K) and to become negligible with a temperature increase.

  3. Stress relaxation and hillock growth in thin films

    International Nuclear Information System (INIS)

    Jackson, M.S.; Li, C.Y.

    1978-01-01

    The relaxation of thermal stress in a thin film adhering to a substrate of differing expansion coefficient is discussed. Good agreement is found between literature data on relaxation during isothermal anneals of Pb films at up to 350 0 K and model calculations based on a state variable description of plastic flow. The stress system during relaxation is explored, and the absence of diffusional creep is explained. The plasticity-dominated relaxation process suggested by this analysis is shown to be in good qualitative agreement with data on rapid relaxation over the course of a cycle between room and cryogenic temperatures. The implications of this for long-range material transport in the film are discussed. It is shown that hillock volume should increase over the course of a temperature cycle. Finally, a mechanism for hillock nucleation based on grain boundary sliding is suggested

  4. Milrinone relaxes pulmonary veins in guinea pigs and humans.

    Directory of Open Access Journals (Sweden)

    Annette D Rieg

    Full Text Available INTRODUCTION: The phosphodiesterase-III inhibitor milrinone improves ventricular contractility, relaxes pulmonary arteries and reduces right ventricular afterload. Thus, it is used to treat heart failure and pulmonary hypertension (PH. However, its action on pulmonary veins (PVs is not defined, although particularly PH due to left heart disease primarily affects the pulmonary venous bed. We examined milrinone-induced relaxation in PVs from guinea pigs (GPs and humans. MATERIAL AND METHODS: Precision-cut lung slices (PCLS were prepared from GPs or from patients undergoing lobectomy. Milrinone-induced relaxation was studied by videomicroscopy in naïve PVs and in PVs pre-constricted with the ETA-receptor agonist BP0104. Baseline luminal area was defined as 100%. Intracellular cAMP was measured by ELISA and milrinone-induced changes of segmental vascular resistances were studied in the GP isolated perfused lung (IPL. RESULTS: In the IPL (GP, milrinone (10 µM lowered the postcapillary resistance of pre-constricted vessels. In PCLS (GP, milrinone relaxed naïve and pre-constricted PVs (120% and this relaxation was attenuated by inhibition of protein kinase G (KT 5823, adenyl cyclase (SQ 22536 and protein kinase A (KT 5720, but not by inhibition of NO-synthesis (L-NAME. In addition, milrinone-induced relaxation was dependent on the activation of K ATP-, BK Ca (2+- and Kv-channels. Human PVs also relaxed to milrinone (121%, however only if pre-constricted. DISCUSSION: Milrinone relaxes PVs from GPs and humans. In GPs, milrinone-induced relaxation is based on K ATP-, BK Ca (2+- and Kv-channel-activation and on cAMP/PKA/PKG. The relaxant properties of milrinone on PVs lead to reduced postcapillary resistance and hydrostatic pressures. Hence they alleviate pulmonary edema and suggest beneficial effects of milrinone in PH due to left heart disease.

  5. Milrinone relaxes pulmonary veins in guinea pigs and humans.

    Science.gov (United States)

    Rieg, Annette D; Suleiman, Said; Perez-Bouza, Alberto; Braunschweig, Till; Spillner, Jan W; Schröder, Thomas; Verjans, Eva; Schälte, Gereon; Rossaint, Rolf; Uhlig, Stefan; Martin, Christian

    2014-01-01

    The phosphodiesterase-III inhibitor milrinone improves ventricular contractility, relaxes pulmonary arteries and reduces right ventricular afterload. Thus, it is used to treat heart failure and pulmonary hypertension (PH). However, its action on pulmonary veins (PVs) is not defined, although particularly PH due to left heart disease primarily affects the pulmonary venous bed. We examined milrinone-induced relaxation in PVs from guinea pigs (GPs) and humans. Precision-cut lung slices (PCLS) were prepared from GPs or from patients undergoing lobectomy. Milrinone-induced relaxation was studied by videomicroscopy in naïve PVs and in PVs pre-constricted with the ETA-receptor agonist BP0104. Baseline luminal area was defined as 100%. Intracellular cAMP was measured by ELISA and milrinone-induced changes of segmental vascular resistances were studied in the GP isolated perfused lung (IPL). In the IPL (GP), milrinone (10 µM) lowered the postcapillary resistance of pre-constricted vessels. In PCLS (GP), milrinone relaxed naïve and pre-constricted PVs (120%) and this relaxation was attenuated by inhibition of protein kinase G (KT 5823), adenyl cyclase (SQ 22536) and protein kinase A (KT 5720), but not by inhibition of NO-synthesis (L-NAME). In addition, milrinone-induced relaxation was dependent on the activation of K ATP-, BK Ca (2+)- and Kv-channels. Human PVs also relaxed to milrinone (121%), however only if pre-constricted. Milrinone relaxes PVs from GPs and humans. In GPs, milrinone-induced relaxation is based on K ATP-, BK Ca (2+)- and Kv-channel-activation and on cAMP/PKA/PKG. The relaxant properties of milrinone on PVs lead to reduced postcapillary resistance and hydrostatic pressures. Hence they alleviate pulmonary edema and suggest beneficial effects of milrinone in PH due to left heart disease.

  6. High Resolution Scanning Ion Microscopy

    NARCIS (Netherlands)

    Castaldo, V.

    2011-01-01

    The structure of the thesis is the following. The first chapter is an introduction to scanning microscopy, where the path that led to the Focused Ion Beam (FIB) is described and the main differences between electrons and ion beams are highlighted. Chapter 2 is what is normally referred to (which I

  7. Illuminating Electron Microscopy of Photocatalysts

    DEFF Research Database (Denmark)

    Cavalca, Filippo

    Photocatalysts are of fundamental interest for sustainable energy research because of their wide range of applications and great potential for state of the art and future usages [1]. By means of Transmission Electron Microscopy (TEM) it is possible to give a deep insight in the structure, composi...

  8. Light Microscopy at Maximal Precision

    Directory of Open Access Journals (Sweden)

    Matthew Bierbaum

    2017-10-01

    Full Text Available Microscopy is the workhorse of the physical and life sciences, producing crisp images of everything from atoms to cells well beyond the capabilities of the human eye. However, the analysis of these images is frequently little more accurate than manual marking. Here, we revolutionize the analysis of microscopy images, extracting all the useful information theoretically contained in a complex microscope image. Using a generic, methodological approach, we extract the information by fitting experimental images with a detailed optical model of the microscope, a method we call parameter extraction from reconstructing images (PERI. As a proof of principle, we demonstrate this approach with a confocal image of colloidal spheres, improving measurements of particle positions and radii by 10–100 times over current methods and attaining the maximum possible accuracy. With this unprecedented accuracy, we measure nanometer-scale colloidal interactions in dense suspensions solely with light microscopy, a previously impossible feat. Our approach is generic and applicable to imaging methods from brightfield to electron microscopy, where we expect accuracies of 1 nm and 0.1 pm, respectively.

  9. Mechanics in Steels through Microscopy

    NARCIS (Netherlands)

    Tirumalasetty, G.K.

    2013-01-01

    The goal of the study consolidated in this thesis is to understand the mechanics in steels using microscopy. In particular, the mechanical response of Transformation Induced Plasticity (TRIP) steels is correlated with their microstructures. Chapter 1 introduces the current state of the art of TRIP

  10. Light Microscopy at Maximal Precision

    Science.gov (United States)

    Bierbaum, Matthew; Leahy, Brian D.; Alemi, Alexander A.; Cohen, Itai; Sethna, James P.

    2017-10-01

    Microscopy is the workhorse of the physical and life sciences, producing crisp images of everything from atoms to cells well beyond the capabilities of the human eye. However, the analysis of these images is frequently little more accurate than manual marking. Here, we revolutionize the analysis of microscopy images, extracting all the useful information theoretically contained in a complex microscope image. Using a generic, methodological approach, we extract the information by fitting experimental images with a detailed optical model of the microscope, a method we call parameter extraction from reconstructing images (PERI). As a proof of principle, we demonstrate this approach with a confocal image of colloidal spheres, improving measurements of particle positions and radii by 10-100 times over current methods and attaining the maximum possible accuracy. With this unprecedented accuracy, we measure nanometer-scale colloidal interactions in dense suspensions solely with light microscopy, a previously impossible feat. Our approach is generic and applicable to imaging methods from brightfield to electron microscopy, where we expect accuracies of 1 nm and 0.1 pm, respectively.

  11. Stochastic Optical Reconstruction Microscopy (STORM).

    Science.gov (United States)

    Xu, Jianquan; Ma, Hongqiang; Liu, Yang

    2017-07-05

    Super-resolution (SR) fluorescence microscopy, a class of optical microscopy techniques at a spatial resolution below the diffraction limit, has revolutionized the way we study biology, as recognized by the Nobel Prize in Chemistry in 2014. Stochastic optical reconstruction microscopy (STORM), a widely used SR technique, is based on the principle of single molecule localization. STORM routinely achieves a spatial resolution of 20 to 30 nm, a ten-fold improvement compared to conventional optical microscopy. Among all SR techniques, STORM offers a high spatial resolution with simple optical instrumentation and standard organic fluorescent dyes, but it is also prone to image artifacts and degraded image resolution due to improper sample preparation or imaging conditions. It requires careful optimization of all three aspects-sample preparation, image acquisition, and image reconstruction-to ensure a high-quality STORM image, which will be extensively discussed in this unit. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  12. Transmission electron microscopy of bone

    NARCIS (Netherlands)

    Everts, Vincent; Niehof, Anneke; Tigchelaar-Gutter, Wikky; Beertsen, Wouter

    2012-01-01

    This chapter describes procedures to process mineralized tissues obtained from different sources for transmission electron microscopy (TEM). Methods for fixation, resin embedding, staining of semi-thin sections and ultrathin sections are presented. In addition, attention will be paid to processing

  13. Turbulent Magnetic Relaxation in Pulsar Wind Nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Zrake, Jonathan [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Arons, Jonathan [Astronomy Department and Theoretical Astrophysics Center, University of California, Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States)

    2017-09-20

    We present a model for magnetic energy dissipation in a pulsar wind nebula. A better understanding of this process is required to assess the likelihood that certain astrophysical transients may be powered by the spin-down of a “millisecond magnetar.” Examples include superluminous supernovae, gamma-ray bursts, and anticipated electromagnetic counterparts to gravitational wave detections of binary neutron star coalescence. Our model leverages recent progress in the theory of turbulent magnetic relaxation to specify a dissipative closure of the stationary magnetohydrodynamic (MHD) wind equations, yielding predictions of the magnetic energy dissipation rate throughout the nebula. Synchrotron losses are self-consistently treated. To demonstrate the model’s efficacy, we show that it can reproduce many features of the Crab Nebula, including its expansion speed, radiative efficiency, peak photon energy, and mean magnetic field strength. Unlike ideal MHD models of the Crab (which lead to the so-called σ -problem), our model accounts for the transition from ultra to weakly magnetized plasma flow and for the associated heating of relativistic electrons. We discuss how the predicted heating rates may be utilized to improve upon models of particle transport and acceleration in pulsar wind nebulae. We also discuss implications for the Crab Nebula’s γ -ray flares, and point out potential modifications to models of astrophysical transients invoking the spin-down of a millisecond magnetar.

  14. Vertical dimonsion changes after muscle relaxation

    Directory of Open Access Journals (Sweden)

    Shahroodi MH

    1998-09-01

    Full Text Available In this study, 116 edentulous patients in the age group 37-90 yrs were selected. Out of the above,"n12 patients had visited the dept. Of prosthodontics for the first time for treatment. Other 34 of them were"npatients of the dental school and the rest were from Kahrizak and Nikan sanatoriums."nInitially, the V.D. of rest was measured as usual for all the patients. After subjecting them to the excercises of completely opening and closing of the mouth for 15 no. of times, the rest position was measured again. Results show that the changes in V.D.R. after, excercises, relaxing the elevator and depressor muscles and the duration of usage of prosthesis, the following conclusions are obtained."n1. There is an increase in V.D.R. after tiring out the elevator and depressor muscles of the jaws."n2. There is a direct co - relation between the increased V.D.R. and duration of use of prosthesis after excercises."n3. Change in the V.D.R. after excercise is notably more in women."n4. No definite conclusion is obtained in the relationship between changes in V.D.R. after excercises and use of prosthesis during sleep."n5. As above no conclusions as yet can be deduced between changes in V.D.R. and different operators.

  15. NMR relaxation studies with MnDPDP

    International Nuclear Information System (INIS)

    Southon, T.E.; Grant, D.; Bjoernerud, A.; Moen, O.M.; Spilling, B.; Martinsen, I.; Refsum, H.

    1997-01-01

    Purpose: Our studies were designed to compare the efficacy of mangafodipir trisodium (MnDPDP, Teslascan) as a tissue-specific MR agent with that of manganese chloride (MnCl 2 ), to compare the efficacy of different doses and rates of administration of MnDPDP, and to collect the data needed for predicting optimum pulse sequences. Material and Methods: The dose response for the relaxation rates R1 and R2 at 0.47 T, and the manganese (Mn) concentrations in rat liver and in the liver, pancreas, heart and adrenals of pigs was determined for both MnDPDP and MnCl 2 administered i.v. Computer simulations were carried out to model the effects of different tissue Mn concentrations and TR on signal intensities and contrast-to-noise ratios. Results: In rat liver and pig organs both compounds produced a positive dose-response in R1 and tissue Mn concentration, and only small or no response in R2. The Mn concentration in rat liver was positively correlated with R1, regardless of the form in which Mn was given, or the rate of administration. Optimal imaging parametes are therefore expected to be different pre- and post-MnDPDP administration. (orig./AJ)

  16. Turbulent Magnetic Relaxation in Pulsar Wind Nebulae

    Science.gov (United States)

    Zrake, Jonathan; Arons, Jonathan

    2017-09-01

    We present a model for magnetic energy dissipation in a pulsar wind nebula. A better understanding of this process is required to assess the likelihood that certain astrophysical transients may be powered by the spin-down of a “millisecond magnetar.” Examples include superluminous supernovae, gamma-ray bursts, and anticipated electromagnetic counterparts to gravitational wave detections of binary neutron star coalescence. Our model leverages recent progress in the theory of turbulent magnetic relaxation to specify a dissipative closure of the stationary magnetohydrodynamic (MHD) wind equations, yielding predictions of the magnetic energy dissipation rate throughout the nebula. Synchrotron losses are self-consistently treated. To demonstrate the model’s efficacy, we show that it can reproduce many features of the Crab Nebula, including its expansion speed, radiative efficiency, peak photon energy, and mean magnetic field strength. Unlike ideal MHD models of the Crab (which lead to the so-called σ-problem), our model accounts for the transition from ultra to weakly magnetized plasma flow and for the associated heating of relativistic electrons. We discuss how the predicted heating rates may be utilized to improve upon models of particle transport and acceleration in pulsar wind nebulae. We also discuss implications for the Crab Nebula’s γ-ray flares, and point out potential modifications to models of astrophysical transients invoking the spin-down of a millisecond magnetar.

  17. Mixing, ergodicity and slow relaxation phenomena

    Science.gov (United States)

    Costa, I. V. L.; Vainstein, M. H.; Lapas, L. C.; Batista, A. A.; Oliveira, F. A.

    2006-11-01

    Investigations on diffusion in systems with memory [I.V.L. Costa, R. Morgado, M.V.B.T. Lima, F.A. Oliveira, Europhys. Lett. 63 (2003) 173] have established a hierarchical connection between mixing, ergodicity, and the fluctuation-dissipation theorem (FDT). This hierarchy means that ergodicity is a necessary condition for the validity of the FDT, and mixing is a necessary condition for ergodicity. In this work, we compare those results with recent investigations using the Lee recurrence relations method [M.H. Lee, Phys. Rev. B 26 (1982) 2547; M.H. Lee, Phys. Rev. Lett. 87 (2001) 250601; M.H. Lee, J. Phys. A: Math. Gen. 39 (2006) 4651]. Lee shows that ergodicity is violated in the dynamics of the electron gas [M.H. Lee, J. Phys. A: Math. Gen. 39 (2006) 4651]. This reinforces both works and implies that the results of [I.V.L. Costa, R. Morgado, M.V.B.T. Lima, F.A. Oliveira, Europhys. Lett. 63 (2003) 173] are more general than the framework in which they were obtained. Some applications to slow relaxation phenomena are discussed.

  18. Tracheal epithelium cell volume responses to hyperosmolar, isosmolar and hypoosmolar solutions: relation to epithelium-derived relaxing factor (EpDRF effects

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Fedan

    2013-10-01

    Full Text Available In asthmatic patients, inhalation of hyperosmolar saline or D-mannitol (D-M elicits bronchoconstriction, but in healthy subjects exercise causes bronchodilation. Hyperventilation causes drying of airway surface liquid (ASL and increases its osmolarity. Hyperosmolar challenge of airway epithelium releases epithelium-derived relaxing factor (EpDRF, which relaxes the airway smooth muscle. This pathway could be involved in exercise-induced bronchodilation. Little is known of ASL hyperosmolarity effects on epithelial function. We investigated the effects of osmolar challenge maneuvers on dispersed and adherent guinea-pig tracheal epithelial cells to examine the hypothesis that EpDRF-mediated relaxation is associated with epithelial cell shrinkage. Enzymatically-dispersed cells shrank when challenged with ≥10 mOsM added D M, urea or NaCl with a concentration-dependence that mimics relaxation of the of isolated, perfused tracheas (IPT. Cells shrank when incubated in isosmolar N-methyl-D-glucamine (NMDG chloride, Na gluconate (Glu, NMDG-Glu, K-Glu and K2SO4, and swelled in isosmolar KBr and KCl. However, isosmolar challenge is not a strong stimulus of relaxation in IPTs. In previous studies amiloride and 4,4' diisothiocyano 2,2' stilbenedisulfonic acid (DIDS inhibited relaxation of IPT to hyperosmolar challenge, but had little effect on shrinkage of dispersed cells. Confocal microscopy in tracheal segments showed that adherent epithelium is refractory to low hyperosmolar concentrations that induce dispersed cell shrinkage and relaxation of IPT. Except for gadolinium and erythro 9 (2 hydroxy 3 nonyladenine (EHNA, actin and microtubule inhibitors and membrane permeabilizing agents did not affect on ion transport by adherent epithelium or shrinkage responses of dispersed cells. Our studies dissociate relaxation of IPT from cell shrinkage after hyperosmolar challenge of airway epithelium .

  19. Vibrational energy transfer in selectively excited diatomic molecules. [Relaxation rates, self-relaxation, upper limits

    Energy Technology Data Exchange (ETDEWEB)

    Dasch, C.J.

    1978-09-01

    Single rovibrational states of HCl(v=2), HBr(v=2), DCl(v=2), and CO(v=2) were excited with a pulsed optical parametric oscillator (OPO). Total vibrational relaxation rates near - resonance quenchers were measured at 295/sup 0/K using time resolved infrared fluorescence. These rates are attributed primarily to V - V energy transfer, and they generally conform to a simple energy gap law. A small deviation was found for the CO(v) + DCl(v') relaxation rates. Upper limits for the self relaxation by V - R,T of HCl(v=2) and HBr(v=2) and for the two quantum exchange between HCl and HBr were determined. The HF dimer was detected at 295/sup 0/K and 30 torr HF pressure with an optoacoustic spectrometer using the OPO. Pulsed and chopped, resonant and non-resonant spectrophones are analyzed in detail. From experiments and first order perturbation theory, these V - V exchange rates appear to behave as a first order perturbation in the vibrational coordinates. The rotational dynamics are known to be complicated however, and the coupled rotational - vibrational dynamics were investigated theoreticaly in infinite order by the Dillon and Stephenson and the first Magnus approximations. Large ..delta..J transitions appear to be important, but these calculations differ by orders of magnitude on specific rovibrational transition rates. Integration of the time dependent semiclassical equations by a modified Gordon method and a rotationally distorted wave approximation are discussed as methods which would treat the rotational motion more accurately. 225 references.

  20. On aggregation of relaxed T-indistinguishability operators

    Energy Technology Data Exchange (ETDEWEB)

    Fuster-Parra, P.

    2017-07-01

    The notion of T -indistinguishability operator was introduced by E. Trillas in [7] with the aim of fuzzifying the classical (crisp) notion of equivalence relation. Relaxed metrics and indistinguishability operators are closely related. Indeed, in [1] it has been stated that the logical counterpart for relaxed metrics is, in some sense, a generalized indistinguishability operator (relaxed T -indistinguishability operator). Notice that the notion of T -indistinguishability operator is retrieved as a particular case of relaxed T -indistinguishability operator whenever the relaxed T - indistinguishability operator satisfies also the reflexivity. In fact, a relaxed indistinguishability operator is a indistinguishability operator if and only if it holds the reflexivity. The same occurs when we consider T -indistinguishability operator that separates points. Several authors have studied the aggregation of some classes of fuzzy relations (see [3, 4, 5, 6]), where it is stated that transitivity is one of the most important properties of a fuzzy relation. In [5] a study of aggregation of T-indistinguishability operators is presented, motivated by this work the aim of this study is to analyze the case of aggregating relaxed T-indistinguishability operators. (Author)

  1. Relaxed Bell inequalities and Kochen-Specker theorems

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Michael J. W. [Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2011-08-15

    The combination of various physically plausible properties, such as no signaling, determinism, and experimental free will, is known to be incompatible with quantum correlations. Hence, these properties must be individually or jointly relaxed in any model of such correlations. The necessary degrees of relaxation are quantified here via natural distance and information-theoretic measures. This allows quantitative comparisons between different models in terms of the resources, such as the number of bits of randomness, communication, and/or correlation, that they require. For example, measurement dependence is a relatively strong resource for modeling singlet-state correlations, with only 1/15 of one bit of correlation required between measurement settings and the underlying variable. It is shown how various ''relaxed'' Bell inequalities may be obtained, which precisely specify the complementary degrees of relaxation required to model any given violation of a standard Bell inequality. The robustness of a class of Kochen-Specker theorems, to relaxation of measurement independence, is also investigated. It is shown that a theorem of Mermin remains valid unless measurement independence is relaxed by 1/3. The Conway-Kochen ''free will'' theorem and a result of Hardy are less robust, failing if measurement independence is relaxed by only 6.5% and 4.5%, respectively. An appendix shows that existence of an outcome-independent model is equivalent to existence of a deterministic model.

  2. On the Volterra integral equation relating creep and relaxation

    International Nuclear Information System (INIS)

    Anderssen, R S; De Hoog, F R; Davies, A R

    2008-01-01

    The evolving stress–strain response of a material to an applied deformation is causal. If the current response depends on the earlier history of the stress–strain dynamics of the material (i.e. the material has memory), then Volterra integral equations become the natural framework within which to model the response. For viscoelastic materials, when the response is linear, the dual linear Boltzmann causal integral equations are the appropriate model. The choice of one rather than the other depends on whether the applied deformation is a stress or a strain, and the associated response is, respectively, a creep or a relaxation. The duality between creep and relaxation is known explicitly and is referred to as the 'interconversion equation'. Rheologically, its importance relates to the fact that it allows the creep to be determined from knowledge of the relaxation and vice versa. Computationally, it has been known for some time that the recovery of the relaxation from the creep is more problematic than the creep from the relaxation. Recent research, using discrete models for the creep and relaxation, has confirmed that this is an essential feature of interconversion. In this paper, the corresponding result is generalized for continuous models of the creep and relaxation

  3. State resolved vibrational relaxation modeling for strongly nonequilibrium flows

    Science.gov (United States)

    Boyd, Iain D.; Josyula, Eswar

    2011-05-01

    Vibrational relaxation is an important physical process in hypersonic flows. Activation of the vibrational mode affects the fundamental thermodynamic properties and finite rate relaxation can reduce the degree of dissociation of a gas. Low fidelity models of vibrational activation employ a relaxation time to capture the process at a macroscopic level. High fidelity, state-resolved models have been developed for use in continuum gas dynamics simulations based on computational fluid dynamics (CFD). By comparison, such models are not as common for use with the direct simulation Monte Carlo (DSMC) method. In this study, a high fidelity, state-resolved vibrational relaxation model is developed for the DSMC technique. The model is based on the forced harmonic oscillator approach in which multi-quantum transitions may become dominant at high temperature. Results obtained for integrated rate coefficients from the DSMC model are consistent with the corresponding CFD model. Comparison of relaxation results obtained with the high-fidelity DSMC model shows significantly less excitation of upper vibrational levels in comparison to the standard, lower fidelity DSMC vibrational relaxation model. Application of the new DSMC model to a Mach 7 normal shock wave in carbon monoxide provides better agreement with experimental measurements than the standard DSMC relaxation model.

  4. Relaxing music counters heightened consolidation of emotional memory.

    Science.gov (United States)

    Rickard, Nikki S; Wong, Wendy Wing; Velik, Lauren

    2012-02-01

    Emotional events tend to be retained more strongly than other everyday occurrences, a phenomenon partially regulated by the neuromodulatory effects of arousal. Two experiments demonstrated the use of relaxing music as a means of reducing arousal levels, thereby challenging heightened long-term recall of an emotional story. In Experiment 1, participants (N=84) viewed a slideshow, during which they listened to either an emotional or neutral narration, and were exposed to relaxing or no music. Retention was tested 1 week later via a forced choice recognition test. Retention for both the emotional content (Phase 2 of the story) and material presented immediately after the emotional content (Phase 3) was enhanced, when compared with retention for the neutral story. Relaxing music prevented the enhancement for material presented after the emotional content (Phase 3). Experiment 2 (N=159) provided further support to the neuromodulatory effect of music by post-event presentation of both relaxing music and non-relaxing auditory stimuli (arousing music/background sound). Free recall of the story was assessed immediately afterwards and 1 week later. Relaxing music significantly reduced recall of the emotional story (Phase 2). The findings provide further insight into the capacity of relaxing music to attenuate the strength of emotional memory, offering support for the therapeutic use of music for such purposes. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Nuclear spin-lattice relaxation in carbon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Panich, A.M., E-mail: pan@bgu.ac.i [Department of Physics, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel); Sergeev, N.A. [Institute of Physics, University of Szczecin, 70-451 Szczecin (Poland)

    2010-04-15

    Interpretation of nuclear spin-lattice relaxation data in the carbon nanostructures is usually based on the analysis of fluctuations of dipole-dipole interactions of nuclear spins and anisotropic electron-nuclear interactions responsible for chemical shielding, which are caused by molecular dynamics. However, many nanocarbon systems such as fullerene and nanotube derivatives, nanodiamonds and carbon onions reveal noticeable amount of paramagnetic defects with unpaired electrons originating from dangling bonds. The interaction between nuclear and electron spins strongly influences the nuclear spin-lattice relaxation, but usually is not taken into account, thus the relaxation data are not correctly interpreted. Here we report on the temperature dependent NMR spectra and spin-lattice relaxation measurements of intercalated fullerenes C{sub 60}(MF{sub 6}){sub 2} (M=As and Sb), where nuclear relaxation is caused by both molecular rotation and interaction between nuclei and unpaired electron spins. We present a detailed theoretical analysis of the spin-lattice relaxation data taking into account both these contributions. Good agreement between the experimental data and calculations is obtained. The developed approach would be useful in interpreting the NMR relaxation data in different nanostructures and their intercalation compounds.

  6. High-resolution intravital microscopy.

    Directory of Open Access Journals (Sweden)

    Volker Andresen

    Full Text Available Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy--the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and

  7. High-Resolution Intravital Microscopy

    Science.gov (United States)

    Andresen, Volker; Pollok, Karolin; Rinnenthal, Jan-Leo; Oehme, Laura; Günther, Robert; Spiecker, Heinrich; Radbruch, Helena; Gerhard, Jenny; Sporbert, Anje; Cseresnyes, Zoltan; Hauser, Anja E.; Niesner, Raluca

    2012-01-01

    Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy - the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning) while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs) of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and developmental biology

  8. Relaxivity of blood pool contrast agent depends on the host tissue as suggested by semianalytical simulations

    DEFF Research Database (Denmark)

    Jensen, Birgitte Fuglsang; Østergaard, Leif; Kiselev, Valerij G

    Concentration of MRI contrast agents (CA) is commonly determined indirectly using their relaxation effect. In quantitative perfusion studies, the change in the relaxation following a bolus passage is converted into concentrations assuming identical relaxivities for tissue and blood. Simulations...

  9. Non-monotonic behaviour in relaxation dynamics of image restoration

    International Nuclear Information System (INIS)

    Ozeki, Tomoko; Okada, Masato

    2003-01-01

    We have investigated the relaxation dynamics of image restoration through a Bayesian approach. The relaxation dynamics is much faster at zero temperature than at the Nishimori temperature where the pixel-wise error rate is minimized in equilibrium. At low temperature, we observed non-monotonic development of the overlap. We suggest that the optimal performance is realized through premature termination in the relaxation processes in the case of the infinite-range model. We also performed Markov chain Monte Carlo simulations to clarify the underlying mechanism of non-trivial behaviour at low temperature by checking the local field distributions of each pixel

  10. Contractive relaxation systems and interacting particles for scalar conservation laws

    International Nuclear Information System (INIS)

    Katsoulakis, M.A.; Tzavaras, A.E.

    1996-01-01

    We consider a class of semi linear hyperbolic systems with relaxation that are contractive in the L 1 -norm and admit invariant regions. We show that, as the relaxation parameter ξ goes to zero, their solutions converge to a weak solution of the scalar multidimensional conversation law that satisfies the Kruzhkov conditions. In the case of one space dimension, we propose certain interacting particle systems, whose mesoscopic limit is the systems with relaxation and their macroscopic dynamics is described by entropy solutions of a scalar conservation law. (author)

  11. Relaxation peak near 200 K in NiTi alloy

    Science.gov (United States)

    Zhu, J. S.; Schaller, R.; Benoit, W.

    1989-10-01

    Internal friction (IF), frequency ( f), electrical resistance ( R) and zero point movement of the torsion pendulum (ɛ) have been measured in near equi-atomic NiTi alloy in order to clarify the mechanism for the relaxation peak near 200 K. The height of the relaxation peak decreases successively with thermal cycling and settles down to a lower stable value in running 15 cycles. However, the electrical resistance of the sample shows a variation in contrast with the internal friction. Both of them will return to the initial state after a single annealing at 773 K for 1 h. The probable mechanism of this relaxation peak was discussed.

  12. Stress relaxation characteristics of type 304 stainless steel

    International Nuclear Information System (INIS)

    Manjoine, M.J.

    1975-01-01

    The stress relaxation of type 304 stainless steel below 900 0 F (482 0 C) is practically time independent after 100 h and has a maximum of about 18 per cent. The per cent relaxation decreases with increasing degree of cold work and with decreasing stress. Above 900 0 F the per cent relaxation increases with time, temperature, and cold work. The initial stress can also be increased for cold work materials so that the remaining stress can be maintained at a higher value even up to 1200 0 F (649 0 C). Time-temperature parameters are practical to correlate and extrapolate the data in the higher temperature range. (author)

  13. Strain Relaxation and Vacancy Creation in Thin Platinum Films

    International Nuclear Information System (INIS)

    Gruber, W.; Chakravarty, S.; Schmidt, H.; Baehtz, C.; Leitenberger, W.; Bruns, M.; Kobler, A.; Kuebel, C.

    2011-01-01

    Synchrotron based combined in situ x-ray diffractometry and reflectometry is used to investigate the role of vacancies for the relaxation of residual stress in thin metallic Pt films. From the experimentally determined relative changes of the lattice parameter a and of the film thickness L the modification of vacancy concentration and residual strain was derived as a function of annealing time at 130 deg. C. The results indicate that relaxation of strain resulting from compressive stress is accompanied by the creation of vacancies at the free film surface. This proves experimentally the postulated dominant role of vacancies for stress relaxation in thin metal films close to room temperature.

  14. Calorimetric and relaxation properties of xylitol-water mixtures

    Science.gov (United States)

    Elamin, Khalid; Sjöström, Johan; Jansson, Helén; Swenson, Jan

    2012-03-01

    We present the first broadband dielectric spectroscopy (BDS) and differential scanning calorimetry study of supercooled xylitol-water mixtures in the whole concentration range and in wide frequency (10-2-106 Hz) and temperature (120-365 K) ranges. The calorimetric glass transition, Tg, decreases from 247 K for pure xylitol to about 181 K at a water concentration of approximately 37 wt. %. At water concentrations in the range 29-35 wt. % a plentiful calorimetric behaviour is observed. In addition to the glass transition, almost simultaneous crystallization and melting events occurring around 230-240 K. At higher water concentrations ice is formed during cooling and the glass transition temperature increases to a steady value of about 200 K for all higher water concentrations. This Tg corresponds to an unfrozen xylitol-water solution containing 20 wt. % water. In addition to the true glass transition we also observed a glass transition-like feature at 220 K for all the ice containing samples. However, this feature is more likely due to ice dissolution [A. Inaba and O. Andersson, Thermochim. Acta, 461, 44 (2007)]. In the case of the BDS measurements the presence of water clearly has an effect on both the cooperative α-relaxation and the secondary β-relaxation. The α-relaxation shows a non-Arrhenius temperature dependence and becomes faster with increasing concentration of water. The fragility of the solutions, determined by the temperature dependence of the α-relaxation close to the dynamic glass transition, decreases with increasing water content up to about 26 wt. % water, where ice starts to form. This decrease in fragility with increasing water content is most likely caused by the increasing density of hydrogen bonds, forming a network-like structure in the deeply supercooled regime. The intensity of the secondary β-relaxation of xylitol decreases noticeably already at a water content of 2 wt. %, and at a water content above 5 wt. % it has been replaced by a

  15. The ultrasonic relaxation spectra for furfural molecules undergoing conformational changes

    International Nuclear Information System (INIS)

    Mirzaev, S. Z.; Telyaev, S. Q.; Egamberdiev, K.

    2011-01-01

    The acoustic spectra of liquid furfural have been investigated in the frequency range from 0.1MHz to 150 MHz and at the temperatures from 303.15 K to 333.15 K. The ultrasonic spectra of pure furfural show two relaxation processes. One relaxation process is located in the frequency range ∼0.2 MHz, and the second in the frequency range ∼2 MHz. The process with the lower relaxation frequency has been assigned to the 'X0-cis and X0-trans' internal rotation of furfural molecules. (authors)

  16. A Linearized Relaxing Algorithm for the Specific Nonlinear Optimization Problem

    Directory of Open Access Journals (Sweden)

    Mio Horai

    2016-01-01

    Full Text Available We propose a new method for the specific nonlinear and nonconvex global optimization problem by using a linear relaxation technique. To simplify the specific nonlinear and nonconvex optimization problem, we transform the problem to the lower linear relaxation form, and we solve the linear relaxation optimization problem by the Branch and Bound Algorithm. Under some reasonable assumptions, the global convergence of the algorithm is certified for the problem. Numerical results show that this method is more efficient than the previous methods.

  17. Constraints on relaxation rates for N-level quantum systems

    International Nuclear Information System (INIS)

    Schirmer, S.G.; Solomon, A.I.

    2004-01-01

    We study the constraints imposed on the population and phase relaxation rates by the physical requirement of completely positive evolution for open N-level systems. The Lindblad operators that govern the evolution of the system are expressed in terms of observable relaxation rates, explicit formulas for the decoherence rates due to population relaxation are derived, and it is shown that there are additional, nontrivial constraints on the pure dephasing rates for N>2. Explicit, experimentally testable inequality constraints for the decoherence rates are derived for three- and four-level systems, and the implications of the results are discussed for generic ladder, Λ, and V systems and transitions between degenerate energy levels

  18. Relaxation towards phase-locked dynamics in long Josephson junctions

    DEFF Research Database (Denmark)

    Salerno, M.; Grønbech-Jensen, Niels; Samuelsen, Mogens Rugholm

    1995-01-01

    We study the relaxation phenomenon towards phase-locked dynamics in long Josephson junctions. In particular the dependence of the relaxation frequency for the equal time of flight solution on the junction parameters is derived. The analysis is based on a phase-locked map and is compared with direct...... numerical experiments performed both on the map and on the perturbed sine-Gordon equation. As an interesting result we find that very close to a bifurcation the relaxation frequency is exactly equal to the half of the step frequency, i.e., the frequency characterizing the period-one solution....

  19. Contact microscopy with synchrotron radiation

    International Nuclear Information System (INIS)

    Panessa-Warren, B.J.

    1985-10-01

    Soft x-ray contact microscopy with synchrotron radiation offers the biologist and especially the microscopist, a way to morphologically study specimens that could not be imaged by conventional TEM, STEM or SEM methods (i.e. hydrated samples, samples easily damaged by an electron beam, electron dense samples, thick specimens, unstained low contrast specimens) at spatial resolutions approaching those of the TEM, with the additional possibility to obtain compositional (elemental) information about the sample as well. Although flash x-ray sources offer faster exposure times, synchrotron radiation provides a highly collimated, intense radiation that can be tuned to select specific discrete ranges of x-ray wavelengths or specific individual wavelengths which optimize imaging or microanalysis of a specific sample. This paper presents an overview of the applications of x-ray contact microscopy to biological research and some current research results using monochromatic synchrotron radiation to image biological samples. 24 refs., 10 figs

  20. QUANTITATIVE CONFOCAL LASER SCANNING MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Merete Krog Raarup

    2011-05-01

    Full Text Available This paper discusses recent advances in confocal laser scanning microscopy (CLSM for imaging of 3D structure as well as quantitative characterization of biomolecular interactions and diffusion behaviour by means of one- and two-photon excitation. The use of CLSM for improved stereological length estimation in thick (up to 0.5 mm tissue is proposed. The techniques of FRET (Fluorescence Resonance Energy Transfer, FLIM (Fluorescence Lifetime Imaging Microscopy, FCS (Fluorescence Correlation Spectroscopy and FRAP (Fluorescence Recovery After Photobleaching are introduced and their applicability for quantitative imaging of biomolecular (co-localization and trafficking in live cells described. The advantage of two-photon versus one-photon excitation in relation to these techniques is discussed.

  1. Selective sensitivity in Kerr microscopy.

    Science.gov (United States)

    Soldatov, I V; Schäfer, R

    2017-07-01

    A new technique for contrast separation in wide-field magneto-optical Kerr microscopy is introduced. Utilizing the light from eight light emitting diodes, guided to the microscope by glass fibers and being switched synchronously with the camera exposure, domain images with orthogonal in-plane sensitivity can be displayed simultaneously at real-time, and images with pure in-plane or polar contrast can be obtained. The benefit of this new method of contrast separation is demonstrated for Permalloy films, a NdFeB sinter magnet, and a cobalt crystal. Moreover, the new technique is shown to strongly enhance the sensitivity of Kerr microscopy by eliminating parasitic contrast contributions occurring in conventional setups. A doubling of the in-plane domain contrast and a sensitivity to Kerr rotations as low as 0.6 mdeg is demonstrated.

  2. Selective sensitivity in Kerr microscopy

    Science.gov (United States)

    Soldatov, I. V.; Schäfer, R.

    2017-07-01

    A new technique for contrast separation in wide-field magneto-optical Kerr microscopy is introduced. Utilizing the light from eight light emitting diodes, guided to the microscope by glass fibers and being switched synchronously with the camera exposure, domain images with orthogonal in-plane sensitivity can be displayed simultaneously at real-time, and images with pure in-plane or polar contrast can be obtained. The benefit of this new method of contrast separation is demonstrated for Permalloy films, a NdFeB sinter magnet, and a cobalt crystal. Moreover, the new technique is shown to strongly enhance the sensitivity of Kerr microscopy by eliminating parasitic contrast contributions occurring in conventional setups. A doubling of the in-plane domain contrast and a sensitivity to Kerr rotations as low as 0.6 mdeg is demonstrated.

  3. Limits to magnetic resonance microscopy

    International Nuclear Information System (INIS)

    Glover, Paul; Mansfield, Peter

    2002-01-01

    The last quarter of the twentieth century saw the development of magnetic resonance imaging (MRI) grow from a laboratory demonstration to a multi-billion dollar worldwide industry. There is a clinical body scanner in almost every hospital of the developed nations. The field of magnetic resonance microscopy (MRM), after mostly being abandoned by researchers in the first decade of MRI, has become an established branch of the science. This paper reviews the development of MRM over the last decade with an emphasis on the current state of the art. The fundamental principles of imaging and signal detection are examined to determine the physical principles which limit the available resolution. The limits are discussed with reference to liquid, solid and gas phase microscopy. In each area, the novel approaches employed by researchers to push back the limits of resolution are discussed. Although the limits to resolution are well known, the developments and applications of MRM have not reached their limit. (author)

  4. High-resolution electron microscopy

    CERN Document Server

    Spence, John C H

    2013-01-01

    This new fourth edition of the standard text on atomic-resolution transmission electron microscopy (TEM) retains previous material on the fundamentals of electron optics and aberration correction, linear imaging theory (including wave aberrations to fifth order) with partial coherence, and multiple-scattering theory. Also preserved are updated earlier sections on practical methods, with detailed step-by-step accounts of the procedures needed to obtain the highest quality images of atoms and molecules using a modern TEM or STEM electron microscope. Applications sections have been updated - these include the semiconductor industry, superconductor research, solid state chemistry and nanoscience, and metallurgy, mineralogy, condensed matter physics, materials science and material on cryo-electron microscopy for structural biology. New or expanded sections have been added on electron holography, aberration correction, field-emission guns, imaging filters, super-resolution methods, Ptychography, Ronchigrams, tomogr...

  5. Computers in field ion microscopy

    International Nuclear Information System (INIS)

    Suvorov, A.L.; Razinkova, T.L.; Sokolov, A.G.

    1980-01-01

    A review is presented of computer applications in field ion microscopy (FIM). The following topics are discussed in detail: (1) modeling field ion images in perfect crystals, (2) a general scheme of modeling, (3) modeling of the process of field evaporation, (4) crystal structure defects, (5) alloys, and (6) automation of FIM experiments and computer-assisted processing of real images. 146 references are given

  6. CNNs for electron microscopy segmentation

    OpenAIRE

    García-Amorena García, Pablo

    2013-01-01

    In the framework of Biomedicine, mitochondria are known to play an important role in neural function. Recent studies show mitochondrial morphology to be crucial to cellular physiology and synaptic function, and a link between mitochondrial defects and neuro-degenerative diseases is strongly suspected. Electron microscopy (EM), with its very high resolution in all three directions, is one of the key tools to look more closely into these tissues, but the huge amounts of data it produces m...

  7. Paleomagnetic Analysis Using SQUID Microscopy

    Science.gov (United States)

    Weiss, Benjamin P.; Lima, Eduardo A.; Fong, Luis E.; Baudenbacher, Franz J.

    2007-01-01

    Superconducting quantum interference device (SQUID) microscopes are a new generation of instruments that map magnetic fields with unprecedented spatial resolution and moment sensitivity. Unlike standard rock magnetometers, SQUID microscopes map magnetic fields rather than measuring magnetic moments such that the sample magnetization pattern must be retrieved from source model fits to the measured field data. In this paper, we presented the first direct comparison between paleomagnetic analyses on natural samples using joint measurements from SQUID microscopy and moment magnetometry. We demonstrated that in combination with apriori geologic and petrographic data, SQUID microscopy can accurately characterize the magnetization of lunar glass spherules and Hawaiian basalt. The bulk moment magnitude and direction of these samples inferred from inversions of SQUID microscopy data match direct measurements on the same samples using moment magnetometry. In addition, these inversions provide unique constraints on the magnetization distribution within the sample. These measurements are among the most sensitive and highest resolution quantitative paleomagnetic studies of natural remanent magnetization to date. We expect that this technique will be able to extend many other standard paleomagnetic techniques to previously inaccessible microscale samples.

  8. Relationship between Structural and Stress Relaxation in a Block-Copolymer Melt

    International Nuclear Information System (INIS)

    Patel, Amish J.; Narayanan, Suresh; Sandy, Alec; Mochrie, Simon G. J.; Garetz, Bruce A.; Watanabe, Hiroshi; Balsara, Nitash P.

    2006-01-01

    The relationship between structural relaxation on molecular length scales and macroscopic stress relaxation was explored in a disordered block-copolymer melt. Experiments show that the structural relaxation time, measured by x-ray photon correlation spectroscopy is larger than the terminal stress relaxation time, measured by rheology, by factors as large as 100. We demonstrate that the structural relaxation data are dominated by the diffusion of intact micelles while the stress relaxation data are dominated by contributions due to disordered concentration fluctuations

  9. Dynamics of the α-relaxation in glass-forming polymers. Study by neutron scattering and relaxation techniques

    Science.gov (United States)

    Colmenero, J.

    1993-12-01

    The dynamics of the α-relaxation in three different polymeric systems, poly(vinyl methyl ether) (PVME), poly(vinyl chloride) (PVC) and poly(bisphenol A, 2-hydroxypropylether) (PH) has been studied by means of relaxation techniques and quasielastic neutron scattering (backscattering spectrometers IN10 and IN13 at the ILL-Grenoble). By using these techniques we have covered a wide time scale ranging from mesoscopic to macroscopic times (10 -10 -10 1 s). For analyzing the experimental data we have developed a phenomenological procedure in the frequency domain based on the Havriliak-Negami relaxation function, which in fact implies a Kohlrausch-Williams-Watts relaxation function in the time domain. The results obtained indicate that the dynamics of the α-relaxation in a wide time scale shows a clear non-Debye behaviour. The shape of the relaxation functions is found to be similar for the different techniques used and independent of temperature and momentum transfer ( Q). Moreover, the characteristic relaxation times deduced from the fitting of the experimental data can also be described using only one Vogel-Fulcher functional form. Besides we found that the Q-dependence of the relaxation times obtained by QENS is given by a power law, τ( Q) ∞ Q- n ( n>2), n being dependent on the system, and that the Q-behaviour and the non-Debye behaviour are directly correlated. In the case of PVC, time of flight (TOF) neutron scattering experiments confirm these results in a shorter time scale (2×10 -11 -2× 10 -12 s). Moreover, TOF results also suggest the possibility of interpreting the “fast process” usually detected in glass-forming systems as a Debye-like short regime of the α-relaxation.

  10. Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles.

    Science.gov (United States)

    Zhan, Qiuqiang; Liu, Haichun; Wang, Baoju; Wu, Qiusheng; Pu, Rui; Zhou, Chao; Huang, Bingru; Peng, Xingyun; Ågren, Hans; He, Sailing

    2017-10-20

    Stimulated emission depletion microscopy provides a powerful sub-diffraction imaging modality for life science studies. Conventionally, stimulated emission depletion requires a relatively high light intensity to obtain an adequate depletion efficiency through only light-matter interaction. Here we show efficient emission depletion for a class of lanthanide-doped upconversion nanoparticles with the assistance of interionic cross relaxation, which significantly lowers the laser intensity requirements of optical depletion. We demonstrate two-color super-resolution imaging using upconversion nanoparticles (resolution ~ 66 nm) with a single pair of excitation/depletion beams. In addition, we show super-resolution imaging of immunostained cytoskeleton structures of fixed cells (resolution ~ 82 nm) using upconversion nanoparticles. These achievements provide a new perspective for the development of photoswitchable luminescent probes and will broaden the applications of lanthanide-doped nanoparticles for sub-diffraction microscopic imaging.

  11. Multi-region relaxed Hall magnetohydrodynamics with flow

    Energy Technology Data Exchange (ETDEWEB)

    Lingam, Manasvi, E-mail: mlingam@princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States); Abdelhamid, Hamdi M., E-mail: hamdi@ppl.k.u-tokyo.ac.jp [Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Physics Department, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt); Hudson, Stuart R., E-mail: shudson@pppl.gov [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)

    2016-08-15

    The recent formulations of multi-region relaxed magnetohydrodynamics (MRxMHD) have generalized the famous Woltjer-Taylor states by incorporating a collection of “ideal barriers” that prevent global relaxation and flow. In this paper, we generalize MRxMHD with flow to include Hall effects, and thereby obtain the partially relaxed counterparts of the famous double Beltrami states as a special subset. The physical and mathematical consequences arising from the introduction of the Hall term are also presented. We demonstrate that our results (in the ideal MHD limit) constitute an important subset of ideal MHD equilibria, and we compare our approach against other variational principles proposed for deriving the partially relaxed states.

  12. On the relaxation of cold electrons and hot ions

    International Nuclear Information System (INIS)

    Potapenko, I.F.; Bobylev, A.V.; Azevedo, C.A. de; Sakanaka, P.H.; Assis, A.S. de

    1998-01-01

    The relaxation process of a space uniform plasma composed of cold electrons and one species of hot ions is studied numerically using one- and two-dimensional Landau - Fokker - Planck codes. Relaxation of a monoenergetic ion beam is considered in possibly extreme temperature regimes. Special attention is paid to the deviation of the relaxation process from the classical picture, which is characterized by the close initial temperatures T e >(m e /m i ) 1/3 T i . The present results give quite a clear idea of the relaxation picture for any initial temperatures also in extreme temperature regimes. A difference scheme, preserving the number of particles and the energy, gives the possibility of solving the problem numerically without error accumulation, except for machine errors. copyright 1998 American Institute of Physics

  13. Ber analysis of the box relaxation for BPSK signal recovery

    KAUST Repository

    Thrampoulidis, Christos; Abbasi, Ehsan; Xu, Weiyu; Hassibi, Babak

    2016-01-01

    We study the problem of recovering an n-dimensional BPSK signal from m linear noise-corrupted measurements using the box relaxation method which relaxes the discrete set {±1}n to the convex set [-1,1]n to obtain a convex optimization algorithm followed by hard thresholding. When the noise and measurement matrix have iid standard normal entries, we obtain an exact expression for the bit-wise probability of error Pe in the limit of n and m growing and m/n fixed. At high SNR our result shows that the Pe of box relaxation is within 3dB of the matched filter bound (MFB) for square systems, and that it approaches the (MFB) as m grows large compared to n. Our results also indicate that as m, n → ∞, for any fixed set of size k, the error events of the corresponding k bits in the box relaxation method are independent.

  14. Strain relaxation of germanium-tin (GeSn) fins

    Science.gov (United States)

    Kang, Yuye; Huang, Yi-Chiau; Lee, Kwang Hong; Bao, Shuyu; Wang, Wei; Lei, Dian; Masudy-Panah, Saeid; Dong, Yuan; Wu, Ying; Xu, Shengqiang; Tan, Chuan Seng; Gong, Xiao; Yeo, Yee-Chia

    2018-02-01

    Strain relaxation of biaxially strained Ge1-xSnx layer when it is patterned into Ge1-xSnx fin structures is studied. Ge1-xSnx-on-insulator (GeSnOI) substrate was realized using a direct wafer bonding (DWB) technique and Ge1-xSnx fin structures were formed by electron beam lithography (EBL) patterning and dry etching. The strain in the Ge1-xSnx fins having fin widths (WFin) ranging from 1 μm down to 80 nm was characterized using micro-Raman spectroscopy. Raman measurements show that the strain relaxation increases with decreasing WFin. Finite element (FE) simulation shows that the strain component in the transverse direction relaxes with decreasing WFin, while the strain component along the fin direction remains unchanged. For various Ge1-xSnx fin widths, transverse strain relaxation was further extracted using micro-Raman spectroscopy, which is consistent with the simulation results.

  15. Relaxation-phenomena in LiAl/FeS-cells

    Science.gov (United States)

    Borger, W.; Kappus, W.; Panesar, H. S.

    A theoretical model of the capacity of strongly relaxing electrochemical systems is applied to the LiAl/FeS system. Relaxation phenomena in LiAl and FeS electrodes can be described by this model. Experimental relaxation data indicate that lithium transport through the alpha-LiAl layer to the particle surface is the capacity limiting process at high discharge current density in the LiAl electrode in LiCl-KCl and LiF-LiCl-LiBr mixtures. Strong relaxation is observed in the FeS electrode with LiCl-KCl electrolyte caused by lithium concentration gradients and precipitation of KCl in the pores.

  16. Levitation force relaxation under reloading in a HTS Maglev system

    International Nuclear Information System (INIS)

    He Qingyong; Wang Jiasu; Wang Suyu; Wang Jiansi; Dong Hao; Wang Yuxin; Shao Senhao

    2009-01-01

    The loading capacity of the high-temperature superconducting (HTS) Maglev vehicle is an important parameter in the practical application. It is closely related to the levitation force of the HTS bulk. Many papers reported that the levitation force showed the relaxation characteristic. Because different loads cause different levitation gaps and different applied magnetic fields, the levitation force relaxations under the different loads are not the same. In terms of cylindrical YBCO bulk levitated over the permanent magnetic guideway, the relationship between the levitation force relaxation and the reloading is investigated experimentally in this paper. The decrement, the decrement rate and the relaxation rate of the levitation force are calculated, respectively. This work might be helpful for studying the loading capacity of the HTS Maglev vehicle

  17. Density dependence of relaxation dynamics in glass formers, and ...

    Indian Academy of Sciences (India)

    Anshul D S Parmar

    formers, we study the variation of relaxation dynamics with density, rather than temperature, as a control ... stronger behaviour, the use of scaled variables involving temperature and ... of the temperature dependence of B as written defines.

  18. Methodologic aspects of acetylcholine-evoked relaxation of rabbit aorta

    DEFF Research Database (Denmark)

    Larsen, Kirsten Vendelbo; Nedergaard, Ove A.

    1999-01-01

    The acetylcholine-evoked relaxation of rabbit isolated thoracic aorta precontracted by phenylephrine was studied. Phenylephrine caused a steady contraction that was maintained for 6 h. In the presence of calcium disodium ethylenediaminetetraacetate (EDTA) and ascorbic acid the contraction decreased...

  19. Relaxation behaviour of gasketed joints during assembly using finite ...

    Indian Academy of Sciences (India)

    Faculty of Mechanical Engineering, Ghulam Ishaq Khan (GIK) Institute of ... Bolt scatter, bolt bending, joint relaxation and gasket stress variation are concluded the main .... In the present work, following two ..... American Society of Mech.

  20. Levitation force relaxation under reloading in a HTS Maglev system

    Energy Technology Data Exchange (ETDEWEB)

    He Qingyong [Applied Superconductivity Laboratory, M/S 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)], E-mail: hedoubling@gmail.com; Wang Jiasu; Wang Suyu; Wang Jiansi; Dong Hao; Wang Yuxin; Shao Senhao [Applied Superconductivity Laboratory, M/S 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2009-02-01

    The loading capacity of the high-temperature superconducting (HTS) Maglev vehicle is an important parameter in the practical application. It is closely related to the levitation force of the HTS bulk. Many papers reported that the levitation force showed the relaxation characteristic. Because different loads cause different levitation gaps and different applied magnetic fields, the levitation force relaxations under the different loads are not the same. In terms of cylindrical YBCO bulk levitated over the permanent magnetic guideway, the relationship between the levitation force relaxation and the reloading is investigated experimentally in this paper. The decrement, the decrement rate and the relaxation rate of the levitation force are calculated, respectively. This work might be helpful for studying the loading capacity of the HTS Maglev vehicle.

  1. Ber analysis of the box relaxation for BPSK signal recovery

    KAUST Repository

    Thrampoulidis, Christos

    2016-06-24

    We study the problem of recovering an n-dimensional BPSK signal from m linear noise-corrupted measurements using the box relaxation method which relaxes the discrete set {±1}n to the convex set [-1,1]n to obtain a convex optimization algorithm followed by hard thresholding. When the noise and measurement matrix have iid standard normal entries, we obtain an exact expression for the bit-wise probability of error Pe in the limit of n and m growing and m/n fixed. At high SNR our result shows that the Pe of box relaxation is within 3dB of the matched filter bound (MFB) for square systems, and that it approaches the (MFB) as m grows large compared to n. Our results also indicate that as m, n → ∞, for any fixed set of size k, the error events of the corresponding k bits in the box relaxation method are independent.

  2. Slow logarithmic relaxation in models with hierarchically constrained dynamics

    OpenAIRE

    Brey, J. J.; Prados, A.

    2000-01-01

    A general kind of models with hierarchically constrained dynamics is shown to exhibit logarithmic anomalous relaxation, similarly to a variety of complex strongly interacting materials. The logarithmic behavior describes most of the decay of the response function.

  3. Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation

    DEFF Research Database (Denmark)

    Kjølby, Birgitte Fuglsang; Østergaard, Leif; Kiselev, Valerij G

    2006-01-01

    The concentration of MRI tracers cannot be measured directly by MRI and is commonly evaluated indirectly using their relaxation effect. This study develops a comprehensive theoretical model to describe the transverse relaxation in perfused tissue caused by intravascular tracers. The model takes...... into account a number of individual compartments. The signal dephasing is simulated in a semianalytical way by embedding Monte Carlo simulations in the framework of analytical theory. This approach yields a tool for fast, realistic simulation of the change in the transverse relaxation. The results indicate...... with bulk blood. The enhancement of relaxation in tissue is due to the contrast in magnetic susceptibility between blood vessels and parenchyma induced by the presence of paramagnetic tracer. Beyond the perfusion measurements, the results can be applied to quantitation of functional MRI and to vessel size...

  4. Dielectric relaxation studies of dilute solutions of amides

    Energy Technology Data Exchange (ETDEWEB)

    Malathi, M.; Sabesan, R.; Krishnan, S

    2003-11-15

    The dielectric constants and dielectric losses of formamide, acetamide, N-methyl acetamide, acetanilide and N,N-dimethyl acetamide in dilute solutions of 1,4-dioxan/benzene have been measured at 308 K using 9.37 GHz, dielectric relaxation set up. The relaxation time for the over all rotation {tau}{sub (1)} and that for the group rotation {tau}{sub (2)} of (the molecules were determined using Higasi's method. The activation energies for the processes of dielectric relaxation and viscous flow were determined by using Eyring's rate theory. From relaxation time behaviour of amides in non-polar solvent, solute-solvent and solute-solute type of molecular association is proposed.

  5. 129 Xe NMR Relaxation-Based Macromolecular Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Muller D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Dao, Phuong [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Jeong, Keunhong [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Slack, Clancy C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Vassiliou, Christophoros C. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Finbloom, Joel A. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Francis, Matthew B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Wemmer, David E. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Biosciences Division; Pines, Alexander [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    2016-07-29

    A 129Xe NMR relaxation-based sensing approach is reported on that exploits changes in the bulk xenon relaxation rate induced by slowed tumbling of a cryptophane-based sensor upon target binding. The amplification afforded by detection of the bulk dissolved xenon allows sensitive detection of targets. The sensor comprises a xenon-binding cryptophane cage, a target interaction element, and a metal chelating agent. Xenon associated with the target-bound cryptophane cage is rapidly relaxed and then detected after exchange with the bulk. Here we show that large macromolecular targets increase the rotational correlation time of xenon, increasing its relaxation rate. Upon binding of a biotin-containing sensor to avidin at 1.5 μM concentration, the free xenon T2 is reduced by a factor of 4.

  6. Mechanical properties of plant cell walls probed by relaxation spectra

    DEFF Research Database (Denmark)

    Hansen, Steen Laugesen; Ray, Peter Martin; Karlsson, Anders Ola

    2011-01-01

    Relax, that deduces relaxation spectra from appropriate rheological measurements is presented and made accessible through a Web interface. BayesRelax models the cell wall as a continuum of relaxing elements, and the ability of the method to resolve small differences in cell wall mechanical properties is demonstrated......Transformants and mutants with altered cell wall composition are expected to display a biomechanical phenotype due to the structural role of the cell wall. It is often quite difficult, however, to distinguish the mechanical behavior of a mutant's or transformant's cell walls from that of the wild...... type. This may be due to the plant’s ability to compensate for the wall modification or because the biophysical method that is often employed, determination of simple elastic modulus and breakstrength, lacks the resolving power necessary for detecting subtle mechanical phenotypes. Here, we apply...

  7. Relaxation Dynamics of Nanoparticle-Tethered Polymer Chains

    KAUST Repository

    Kim, Sung A; Mangal, Rahul; Archer, Lynden A.

    2015-01-01

    © 2015 American Chemical Society. Relaxation dynamics of nanoparticle-tethered cis-1,4-polyisoprene (PI) are investigated using dielectric spectroscopy and rheometry. A model system composed of polymer chains densely grafted to spherical SiO2

  8. Electron spin relaxation in cryptochrome-based magnetoreception

    DEFF Research Database (Denmark)

    Kattnig, Daniel R; Solov'yov, Ilia A; Hore, P J

    2016-01-01

    The magnetic compass sense of migratory birds is thought to rely on magnetically sensitive radical pairs formed photochemically in cryptochrome proteins in the retina. An important requirement of this hypothesis is that electron spin relaxation is slow enough for the Earth's magnetic field to have...... this question for a structurally characterized model cryptochrome expected to share many properties with the putative avian receptor protein. To this end we combine all-atom molecular dynamics simulations, Bloch-Redfield relaxation theory and spin dynamics calculations to assess the effects of spin relaxation...... on the performance of the protein as a compass sensor. Both flavin-tryptophan and flavin-Z˙ radical pairs are studied (Z˙ is a radical with no hyperfine interactions). Relaxation is considered to arise from modulation of hyperfine interactions by librational motions of the radicals and fluctuations in certain...

  9. Acquired relaxation of the right half of the diaphragm

    International Nuclear Information System (INIS)

    Tolmachev, V.V.; Romadanov, A.A.

    1997-01-01

    Case is described of the development of complete relaxation of the right half of diaphragm following inflammatory respiratory disease accompanied by infections neuritis involving right phrenic nerve. Results of biomedical radiography and computerized tomography in dynamics are presented

  10. Stress relaxation of shear in metals during shock loading

    International Nuclear Information System (INIS)

    Glazyrin, V.P.; Platova, T.M.

    1988-01-01

    Constructed determining equation, taking into account stress relaxation of shear, was used to calculate the evolution of plane shock waves of primary and secondary compression in metals. Values of shear stress and viscosity coefficient were

  11. Viscoelastic sliding and diffusive relaxation along grain boundaries in polycrystalline boron nitride

    International Nuclear Information System (INIS)

    Pezzotti, G.; Nishida, Toshihiko; Kleebe, H.J.; Ota, Kenichi

    1997-01-01

    Dense hexagonal boron nitride (BN) materials were prepared via two different processing routes: (1) hot-pressing with the addition of a Ca/B-containing glass and (2) chemical vapor deposition (CVD). The resulting microstructure of both materials was studied by scanning and transmission electron microscopy. While the hot-pressed BN material shows, apart from large BN matrix grains, an inhomogeneous distribution of residual glass at room temperature, the CVD deposition yields a homogeneous fine grained microstructure with no amorphous residue detectable. Internal-friction experiments were performed to study the micromechanical response of the materials when exposed to high temperatures. The CVD material revealed no relaxation peak during testing up to 2,300 C, while the glass-doped sample showed a pronounced relaxation peak at a peak-top temperature of about 600 C. This temperature corresponds to the softening temperature known for bulk Ca/B-glasses and it is, therefore, concluded that the glass homogeneously wets the BN grains at elevated temperatures. The results presented are seen as the first clear evidence that the internal friction peak monitored for various glass-containing ceramics is indeed related to a viscous sliding process along grain boundaries

  12. Strain relaxation in epitaxial GaAs/Si (0 0 1) nanostructures

    Science.gov (United States)

    Kozak, Roksolana; Prieto, Ivan; Arroyo Rojas Dasilva, Yadira; Erni, Rolf; Skibitzki, Oliver; Capellini, Giovanni; Schroeder, Thomas; von Känel, Hans; Rossell, Marta D.

    2017-11-01

    Crystal defects, present in 100 nm GaAs nanocrystals grown by metal organic vapour phase epitaxy on top of (0 0 1)-oriented Si nanotips (with a tip opening 50-90 nm), have been studied by means of high-resolution aberration-corrected high-angle annular dark-field scanning transmission electron microscopy. The role of 60° perfect, 30° and 90° Shockley partial misfit dislocations (MDs) in the plastic strain relaxation of GaAs on Si is discussed. Formation conditions of stair-rod dislocations and coherent twin boundaries in the GaAs nanocrystals are explained. Also, although stacking faults are commonly observed, we show here that synthesis of GaAs nanocrystals with a minimum number of these defects is possible. On the other hand, from the number of MDs, we have to conclude that the GaAs nanoparticles are fully relaxed plastically, such that for the present tip sizes no substrate compliance can be observed.

  13. Electrical Properties and Dipole Relaxation Behavior of Zinc-Substituted Cobalt Ferrite

    Science.gov (United States)

    Supriya, Sweety; Kumar, Sunil; Kar, Manoranjan

    2017-12-01

    Co1- x Zn x Fe2O4 ceramics with x = 0.00, 0.05, 0.10, 0.15 and 0.20 were synthesized by a modified citric acid sol-gel method. The crystalline phase of the samples was characterized by the powder x-ray diffraction technique (XRD) and the Rietveld analysis of the XRD patterns. The morphology and particle size were studied using field emission scanning electron microscopy. Fourier transform infrared spectroscopy studies were consistent with the XRD results. The impedance measurements were carried out from 100 Hz to 10 MHz at different temperatures from 40°C to 300°C. The frequency dispersion of dielectric was analyzed with a modified Debye equation. The activation energy derived from the dielectric constant and the impedance follows the Arrhenius law and are comparable with each other. The dielectric relaxation and impedance relaxation are correlated in terms of activation energy, show a good temperature stability of the dielectrics and are useful for their applications in microelectronic devices such as filters, capacitors, resonators, etc.

  14. X-ray microscopy in Aarhus

    International Nuclear Information System (INIS)

    Uggerhoej, Erik; Abraham-Peskir, Joanna V.

    2000-01-01

    The Aarhus imaging soft X-ray microscope is now a busy multi-user facility. The optical set-up will be described and project highlights discussed. a) Metal-induced structural changes in whole cells in solution. The effects of aluminum, copper, nickel and zinc on protozoa investigated by using a combination of light microscopy, confocal scanning laser microscopy and X-ray microscopy. b) Botanical studies by X-ray microscopy used to compliment electron microscopy studies. c) Sludge morphology and iron precipitation in Danish freshwater plants by combining X-ray, scanning electron and transmission electron microscopy

  15. French Society of Microscopy, 10. conference

    International Nuclear Information System (INIS)

    Thibault-Penisson, J.; Cremer, Ch.; Susini, J.; Kirklanda, A.I.; Rigneault, H.; Renault, O.; Bailly, A.; Zagonel, L.F.; Barrett, N.; Bogner, A.; Gauthier, C.; Jouneau, P.H.; Thollet, G.; Fuchs, G.; Basset, D.; Deconihout, B.; Vurpillot, F.; Vella, A.; Matthieu, G.; Cadel, E.; Bostel, A.; Blavette, D.; Baumeister, W.; Usson, Y.; Zaefferer, St.; Laffont, L.; Weyland, M.; Thomas, J.M.; Midgley, P.; Benlekbir, S.; Epicier, Th.; Diop, B.N.; Roux, St.; Ou, M.; Perriat, P.; Bausach, M.; Aouine, M.; Berhault, G.; Idrissi, H.; Cottevieille, M.; Jonic, S.; Larquet, E.; Svergun, D.; Vannoni, M.A.; Boisset, N.; Ersena, O.; Werckmann, J.; Ulhaq, C.; Hirlimann, Ch.; Tihay, F.; Cuong, Pham-Huu; Crucifix, C.; Schultz, P.; Jornsanoha, P.; Thollet, G.; Masenelli-Varlot, K.; Gauthier, C.; Ludwig, W.; King, A.; Johnson, G.; Gonzalves-Hoennicke, M.; Reischig, P.; Messaoudi, C.; Ibrahim, R.; Marco, S.; Klie, R.F.; Zhao, Y.; Yang, G.; Zhu, Y.; Hue, F.; Hytch, M.; Hartmann, J.M.; Bogumilowicz, Y.; Claverie, A.; Klein, H.; Alloyeau, D.; Ricolleau, C.; Langlois, C.; Le Bouar, Y.; Loiseau, A.; Colliex, C.; Stephan, O.; Kociak, M.; Tence, M.; Gloter, A.; Imhoff, D.; Walls, M.; Nelayah, J.; March, K.; Couillard, M.; Ailliot, C.; Bertin, F.; Cooper, D.; Rivallin, P.; Dumelie, N.; Benhayoune, H.; Balossier, G.; Cheynet, M.; Pokrant, S.; Tichelaar, F.; Rouviere, J.L.; Cooper, D.; Truche, R.; Chabli, A.; Debili, M.Y.; Houdellier, F.; Warot-Fonrose, B.; Hytch, M.J.; Snoeck, E.; Calmels, L.; Serin, V.; Schattschneider, P.; Jacob, D.; Cordier, P.

    2007-01-01

    This document gathers the resumes of some of the presentations made at this conference whose aim was to present the last developments and achievements of the 3 complementary microscopies: optical microscopy, electron microscopy and X-ray microscopy. The contributions have been organized around the following 12 topics: 1) new technical developments, 2) 3-dimensional imaging, 3) quantitative microscopy, 4) technical progress in photon microscopy, 5) synchrotron radiation, 6) measurements of patterns, deformations and strains, 7) materials for energy and transports, 8) nano-structures, 9) virus: structure and infection mechanisms, 10) 3-dimensional imaging for molecules, cells and cellular tissues, 11) nano-particles and colloids, and 12) liquid crystals

  16. A Block-Asynchronous Relaxation Method for Graphics Processing Units

    OpenAIRE

    Anzt, H.; Dongarra, J.; Heuveline, Vincent; Tomov, S.

    2011-01-01

    In this paper, we analyze the potential of asynchronous relaxation methods on Graphics Processing Units (GPUs). For this purpose, we developed a set of asynchronous iteration algorithms in CUDA and compared them with a parallel implementation of synchronous relaxation methods on CPU-based systems. For a set of test matrices taken from the University of Florida Matrix Collection we monitor the convergence behavior, the average iteration time and the total time-to-solution time. Analyzing the r...

  17. Relaxation effect of abacavir on rat basilar arteries.

    Directory of Open Access Journals (Sweden)

    Rachel Wai Sum Li

    Full Text Available The use of abacavir has been linked with increased cardiovascular risk in patients with human immunodeficiency virus infection; however, the mechanism involved remains unclear. We hypothesize that abacavir may impair endothelial function. In addition, based on the structural similarity between abacavir and adenosine, we propose that abacavir may affect vascular contractility through endogenous adenosine release or adenosine receptors in blood vessels.The relaxation effect of abacavir on rat basilar arteries was studied using the myograph technique. Cyclic GMP and AMP levels were measured by immunoassay. The effects of abacavir on nucleoside transporters were studied using radiolabeled nucleoside uptake experiments. Ecto-5' nucleotidase activity was determined by measuring the generation of inorganic phosphate using adenosine monophosphate as the substrate.Abacavir induced the relaxation of rat basilar arteries in a concentration-dependent manner. This relaxation was abolished when endothelium was removed. In addition, the relaxation was diminished by the nitric oxide synthase inhibitor, L-NAME, the guanylyl cyclase inhibitor, ODQ, and the protein kinase G inhibitor, KT5820. Abacavir also increased the cGMP level in rat basilar arteries. Abacavir-induced relaxation was also abolished by adenosine A2 receptor blockers. However, abacavir had no effect on ecto-5' nucleotidase and nucleoside transporters. Short-term and long-term treatment of abacavir did not affect acetylcholine-induced relaxation in rat basilar arteries.Abacavir induces acute endothelium-dependent relaxation of rat basilar arteries, probably through the activation of adenosine A2 receptors in endothelial cells, which subsequently leads to the release of nitric oxide, resulting in activation of the cyclic guanosine monophosphate/protein kinase G-dependent pathway in vascular smooth muscle cells. It is speculated that abacavir-induced cardiovascular risk may not be related to

  18. A moving mesh method with variable relaxation time

    OpenAIRE

    Soheili, Ali Reza; Stockie, John M.

    2006-01-01

    We propose a moving mesh adaptive approach for solving time-dependent partial differential equations. The motion of spatial grid points is governed by a moving mesh PDE (MMPDE) in which a mesh relaxation time \\tau is employed as a regularization parameter. Previously reported results on MMPDEs have invariably employed a constant value of the parameter \\tau. We extend this standard approach by incorporating a variable relaxation time that is calculated adaptively alongside the solution in orde...

  19. Fetal responses to induced maternal relaxation during pregnancy

    OpenAIRE

    DiPietro, Janet A.; Costigan, Kathleen A.; Nelson, Priscilla; Gurewitsch, Edith D.; Laudenslager, Mark L.

    2007-01-01

    Fetal responses to induced maternal relaxation during the 32nd week of pregnancy were recorded in 100 maternal-fetal pairs using a digitized data collection system. The 18-minute guided imagery relaxation manipulation generated significant changes in maternal heart rate, skin conductance, respiration period, and respiratory sinus arrhythmia. Significant alterations in fetal neurobehavior were observed, including decreased fetal heart rate (FHR), increased FHR variability, suppression of fetal...

  20. Immersed Boundary-Lattice Boltzmann Method Using Two Relaxation Times

    Directory of Open Access Journals (Sweden)

    Kosuke Hayashi

    2012-06-01

    Full Text Available An immersed boundary-lattice Boltzmann method (IB-LBM using a two-relaxation time model (TRT is proposed. The collision operator in the lattice Boltzmann equation is modeled using two relaxation times. One of them is used to set the fluid viscosity and the other is for numerical stability and accuracy. A direct-forcing method is utilized for treatment of immersed boundary. A multi-direct forcing method is also implemented to precisely satisfy the boundary conditions at the immersed boundary. Circular Couette flows between a stationary cylinder and a rotating cylinder are simulated for validation of the proposed method. The method is also validated through simulations of circular and spherical falling particles. Effects of the functional forms of the direct-forcing term and the smoothed-delta function, which interpolates the fluid velocity to the immersed boundary and distributes the forcing term to fixed Eulerian grid points, are also examined. As a result, the following conclusions are obtained: (1 the proposed method does not cause non-physical velocity distribution in circular Couette flows even at high relaxation times, whereas the single-relaxation time (SRT model causes a large non-physical velocity distortion at a high relaxation time, (2 the multi-direct forcing reduces the errors in the velocity profile of a circular Couette flow at a high relaxation time, (3 the two-point delta function is better than the four-point delta function at low relaxation times, but worse at high relaxation times, (4 the functional form of the direct-forcing term does not affect predictions, and (5 circular and spherical particles falling in liquids are well predicted by using the proposed method both for two-dimensional and three-dimensional cases.

  1. Nuclear relaxation in semiconductors doped with magnetic impurities

    International Nuclear Information System (INIS)

    Mel'nichuk, S.V.; Tovstyuk, N.K.

    1984-01-01

    The temperature and concentration dependences are investigated of the nuclear spin-lattice relaxation time with account of spin diffusion for degenerated and non-degenerated semicon- ductors doped with magnetic impurities. In case of the non-degenerated semiconductor the time is shown to grow with temperature, while in case of degenerated semiconductor it is practically independent of temperature. The impurity concentration growth results in decreasing the spin-lattice relaxation time

  2. Relaxation of Thick-Walled Cylinders and Spheres

    DEFF Research Database (Denmark)

    Saabye Ottosen, N.

    1982-01-01

    Using the nonlinear creep law proposed by Soderberg, (1936) closed-form solutions are derived for the relaxation of incompressible thick-walled spheres and cylinders in plane strain. These solutions involve series expressions which, however, converge very quickly. By simply ignoring these series...... expressions, extremely simple approximate solutions are obtained. Despite their simplicity these approximations possess an accuracy that is superior to approximations currently in use. Finally, several physical aspects related to the relaxation of cylinders and spheres are discussed...

  3. Relaxation dispersion in MRI induced by fictitious magnetic fields.

    Science.gov (United States)

    Liimatainen, Timo; Mangia, Silvia; Ling, Wen; Ellermann, Jutta; Sorce, Dennis J; Garwood, Michael; Michaeli, Shalom

    2011-04-01

    A new method entitled Relaxation Along a Fictitious Field (RAFF) was recently introduced for investigating relaxations in rotating frames of rank ≥ 2. RAFF generates a fictitious field (E) by applying frequency-swept pulses with sine and cosine amplitude and frequency modulation operating in a sub-adiabatic regime. In the present work, MRI contrast is created by varying the orientation of E, i.e. the angle ε between E and the z″ axis of the second rotating frame. When ε > 45°, the amplitude of the fictitious field E generated during RAFF is significantly larger than the RF field amplitude used for transmitting the sine/cosine pulses. Relaxation during RAFF was investigated using an invariant-trajectory approach and the Bloch-McConnell formalism. Dipole-dipole interactions between identical (like) spins and anisochronous exchange (e.g., exchange between spins with different chemical shifts) in the fast exchange regime were considered. Experimental verifications were performed in vivo in human and mouse brain. Theoretical and experimental results demonstrated that changes in ε induced a dispersion of the relaxation rate constants. The fastest relaxation was achieved at ε ≈ 56°, where the averaged contributions from transverse components during the pulse are maximal and the contribution from longitudinal components are minimal. RAFF relaxation dispersion was compared with the relaxation dispersion achieved with off-resonance spin lock T(₁ρ) experiments. As compared with the off-resonance spin lock T(₁ρ) method, a slower rotating frame relaxation rate was observed with RAFF, which under certain experimental conditions is desirable. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Spin-polarized scanning tunneling microscopy: breakthroughs and highlights.

    Science.gov (United States)

    Bode, Matthias

    2012-01-01

    The principle of scanning tunneling microscopy, an imaging method with atomic resolution capability invented by Binnig and Rohrer in 1982, can be adapted for surface magnetism studies by using magnetic probe tips. The contrast mechanism of this so-called spin-polarized scanning tunneling microscopy, or SP-STM, relies on the tunneling magneto-resistance effect, i.e. the tip-sample distance as well as the differential conductance depend on the relative magnetic orientation of tip and sample. To illustrate the working principle and the unique capabilities of SP-STM, this compilation presents some key experiments which have been performed on various magnetic surfaces, such as the topological antiferromagnet Cr(001), a double-layer of Fe which exhibits a stripe- domain pattern with about 50 nm periodicity, and the Mn monolayer on W(110), where the combination of experiment and theory reveal an antiferromagnetic spin cycloid. Recent experimental results also demonstrate the suitability of SP-STM for studies of dynamic properties, such as the spin relaxation time of single magnetic nanostructures.

  5. Application of spectroscopy and super-resolution microscopy: Excited state

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Ujjal [Iowa State Univ., Ames, IA (United States)

    2016-02-19

    Photophysics of inorganic materials and organic molecules in complex systems have been extensively studied with absorption and emission spectroscopy.1-4 Steady-state and time-resolved fluorescence studies are commonly carried out to characterize excited-state properties of fluorophores. Although steady-state fluorescence measurements are widely used for analytical applications, time-resolved fluorescence measurements provide more detailed information about excited-state properties and the environment in the vicinity of the fluorophore. Many photophysical processes, such as photoinduced electron transfer (PET), rotational reorientation, solvent relaxation, and energy transfer, occur on a nanosecond (10-9 s) timescale, thus affecting the lifetime of the fluorophores. Moreover, time-resolved microscopy methods, such as lifetimeimaging, combine the benefits of the microscopic measurement and information-rich, timeresolved data. Thus, time-resolved fluorescence spectroscopy combined with microscopy can be used to quantify these processes and to obtain a deeper understanding of the chemical surroundings of the fluorophore in a small area under investigation. This thesis discusses various photophysical and super-resolution microscopic studies of organic and inorganic materials, which have been outlined below.

  6. Topology Synthesis of Structures Using Parameter Relaxation and Geometric Refinement

    Science.gov (United States)

    Hull, P. V.; Tinker, M. L.

    2007-01-01

    Typically, structural topology optimization problems undergo relaxation of certain design parameters to allow the existence of intermediate variable optimum topologies. Relaxation permits the use of a variety of gradient-based search techniques and has been shown to guarantee the existence of optimal solutions and eliminate mesh dependencies. This Technical Publication (TP) will demonstrate the application of relaxation to a control point discretization of the design workspace for the structural topology optimization process. The control point parameterization with subdivision has been offered as an alternative to the traditional method of discretized finite element design domain. The principle of relaxation demonstrates the increased utility of the control point parameterization. One of the significant results of the relaxation process offered in this TP is that direct manufacturability of the optimized design will be maintained without the need for designer intervention or translation. In addition, it will be shown that relaxation of certain parameters may extend the range of problems that can be addressed; e.g., in permitting limited out-of-plane motion to be included in a path generation problem.

  7. STAR FORMATION AND RELAXATION IN 379 NEARBY GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A.

    2015-01-01

    We investigate the relationship between star formation (SF) and level of relaxation in a sample of 379 galaxy clusters at z < 0.2. We use data from the Sloan Digital Sky Survey to measure cluster membership and level of relaxation, and to select star-forming galaxies based on mid-infrared emission detected with the Wide-Field Infrared Survey Explorer. For galaxies with absolute magnitudes M r < −19.5, we find an inverse correlation between SF fraction and cluster relaxation: as a cluster becomes less relaxed, its SF fraction increases. Furthermore, in general, the subtracted SF fraction in all unrelaxed clusters (0.117 ± 0.003) is higher than that in all relaxed clusters (0.097 ± 0.005). We verify the validity of our SF calculation methods and membership criteria through analysis of previous work. Our results agree with previous findings that a weak correlation exists between cluster SF and dynamical state, possibly because unrelaxed clusters are less evolved relative to relaxed clusters

  8. Relaxation cracking in the process industry, an underestimated problem

    Energy Technology Data Exchange (ETDEWEB)

    Wortel, J.C. van [TNO Institute of Industrial Technology, Apeldoorn (Netherlands)

    1998-12-31

    Austenitic components, operating between 500 and 750 deg C, can fail within 1 year service while the ordinary mechanical properties after failure are still within the code requirements. The intergranular brittle failures are situated in the welded or cold deformed areas. This type of cracking has many names, showing the uncertainty concerning the mechanism for the (catastrophical) failures. A just finished investigation showed that it is a relaxation crack problem, introduced by manufacturing processes, especially welding and cold rolling. Cracking/failures can be expected after only 0.1- 0.2 % relaxation strain. These low strain values can already be generated during relaxation of the welding stresses. Especially coarse grained `age hardening` materials are susceptible. Stabilising and Postweld Heat Treatments are very effective to avoid relaxation crack problems during operation. After these heat treatments the components can withstand more than 2 % relaxation strain. At temperatures between 500 and 750 deg C relaxation cracking is the predominant factor for the safety and lifetime of welded austenitic components. (orig.) 12 refs.

  9. Thermal relaxation of molecular oxygen in collisions with nitrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Andrienko, Daniil A., E-mail: daniila@umich.edu; Boyd, Iain D. [Department of Aerospace Engineering, University of Michigan, 1320 Beal Ave., Ann Arbor, Michigan 48108 (United States)

    2016-07-07

    Investigation of O{sub 2}–N collisions is performed by means of the quasi-classical trajectory method on the two lowest ab initio potential energy surfaces at temperatures relevant to hypersonic flows. A complete set of bound–bound and bound–free transition rates is obtained for each precollisional rovibrational state. Special attention is paid to the vibrational and rotational relaxations of oxygen as a result of chemically non-reactive interaction with nitrogen atoms. The vibrational relaxation of oxygen partially occurs via the formation of an intermediate NO{sub 2} complex. The efficient energy randomization results in rapid vibrational relaxation at low temperatures, compared to other molecular systems with a purely repulsive potential. The vibrational relaxation time, computed by means of master equation studies, is nearly an order of magnitude lower than the relaxation time in N{sub 2}–O collisions. The rotational nonequilibrium starts to play a significant effect at translational temperatures above 8000 K. The present work provides convenient relations for the vibrational and rotational relaxation times as well as for the quasi-steady dissociation rate coefficient and thus fills a gap in data due to a lack of experimental measurements for this system.

  10. Relaxation cracking in the process industry, an underestimated problem

    Energy Technology Data Exchange (ETDEWEB)

    Wortel, J.C. van [TNO Institute of Industrial Technology, Apeldoorn (Netherlands)

    1999-12-31

    Austenitic components, operating between 500 and 750 deg C, can fail within 1 year service while the ordinary mechanical properties after failure are still within the code requirements. The intergranular brittle failures are situated in the welded or cold deformed areas. This type of cracking has many names, showing the uncertainty concerning the mechanism for the (catastrophical) failures. A just finished investigation showed that it is a relaxation crack problem, introduced by manufacturing processes, especially welding and cold rolling. Cracking/failures can be expected after only 0.1- 0.2 % relaxation strain. These low strain values can already be generated during relaxation of the welding stresses. Especially coarse grained `age hardening` materials are susceptible. Stabilising and Postweld Heat Treatments are very effective to avoid relaxation crack problems during operation. After these heat treatments the components can withstand more than 2 % relaxation strain. At temperatures between 500 and 750 deg C relaxation cracking is the predominant factor for the safety and lifetime of welded austenitic components. (orig.) 12 refs.

  11. Interrelation of creep and relaxation: a modeling approach for ligaments.

    Science.gov (United States)

    Lakes, R S; Vanderby, R

    1999-12-01

    Experimental data (Thornton et al., 1997) show that relaxation proceeds more rapidly (a greater slope on a log-log scale) than creep in ligament, a fact not explained by linear viscoelasticity. An interrelation between creep and relaxation is therefore developed for ligaments based on a single-integral nonlinear superposition model. This interrelation differs from the convolution relation obtained by Laplace transforms for linear materials. We demonstrate via continuum concepts of nonlinear viscoelasticity that such a difference in rate between creep and relaxation phenomenologically occurs when the nonlinearity is of a strain-stiffening type, i.e., the stress-strain curve is concave up as observed in ligament. We also show that it is inconsistent to assume a Fung-type constitutive law (Fung, 1972) for both creep and relaxation. Using the published data of Thornton et al. (1997), the nonlinear interrelation developed herein predicts creep behavior from relaxation data well (R > or = 0.998). Although data are limited and the causal mechanisms associated with viscoelastic tissue behavior are complex, continuum concepts demonstrated here appear capable of interrelating creep and relaxation with fidelity.

  12. Visual-servoing optical microscopy

    Science.gov (United States)

    Callahan, Daniel E.; Parvin, Bahram

    2009-06-09

    The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time: quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

  13. Electron Microscopy of Intracellular Protozoa

    Science.gov (United States)

    1988-12-20

    Classification) " ELECTRON MICROSCOPY OF INTRACELLULAR PROTOZOA 12. PERSONAL AUTHOR(S) Aikawa, Masamichi 13a. TYPE OF REPORT I13b. TIME COVERED 114...authors suggest that anti-CS protein antibody is important in reducing the prevalence of malaria with increasing age among persons in such areas and... Hygine 33, 220-226. 0Giudice, G.D., Engers, H.D., Tougne, C., Biro, S.S., Weiss, N., Verdini, A.S., Pessi, A., Degremont, A.A., Freyvogel, T.A., Lambert

  14. NICHD Microscopy and Imaging Core (MIC)

    Data.gov (United States)

    Federal Laboratory Consortium — The NICHD Microscopy and Imaging Core (MIC) is designed as a multi-user research facility providing training and instrumentation for high resolution microscopy and...

  15. Concepts in Light Microscopy of Viruses

    Science.gov (United States)

    Witte, Robert; Georgi, Fanny

    2018-01-01

    Viruses threaten humans, livestock, and plants, and are difficult to combat. Imaging of viruses by light microscopy is key to uncover the nature of known and emerging viruses in the quest for finding new ways to treat viral disease and deepening the understanding of virus–host interactions. Here, we provide an overview of recent technology for imaging cells and viruses by light microscopy, in particular fluorescence microscopy in static and live-cell modes. The review lays out guidelines for how novel fluorescent chemical probes and proteins can be used in light microscopy to illuminate cells, and how they can be used to study virus infections. We discuss advantages and opportunities of confocal and multi-photon microscopy, selective plane illumination microscopy, and super-resolution microscopy. We emphasize the prevalent concepts in image processing and data analyses, and provide an outlook into label-free digital holographic microscopy for virus research. PMID:29670029

  16. Relaxed and partially relaxed magnetic equilibria in tight-aspect-ratio tori

    International Nuclear Information System (INIS)

    Browning, P.K.; Clegg, J.R.; Duck, R.C.; Rusbridge, M.G.

    1993-01-01

    Force-free equilibrium magnetic fields in tight-aspect-ratio toroidal configurations are investigated. The study is mainly directed to modelling field configurations in the 'rodomak', a modification to the SPHEX gun-injected spheromak in which a current-carrying rod is inserted along the geometric axis. A family of analytical relaxed states (∇ x B = μB, μ constant) is presented for a torus of rectangular cross section, with boundary conditions allowing for flux embedded in the walls, representing the gun. Numerically calculated fields in SPHEX geometry, with μ profiles relevant to the driven phase of operation, are also given. The dependence of the field configurations and global quantities such as energy, helicity and toroidal current on the controlling parameters (gun flux, gun current and rod current) and geometry is discussed. (author)

  17. Molecular order and T1-relaxation, cross-relaxation in nitroxide spin labels

    Science.gov (United States)

    Marsh, Derek

    2018-05-01

    Interpretation of saturation-recovery EPR experiments on nitroxide spin labels whose angular rotation is restricted by the orienting potential of the environment (e.g., membranes) currently concentrates on the influence of rotational rates and not of molecular order. Here, I consider the dependence on molecular ordering of contributions to the rates of electron spin-lattice relaxation and cross relaxation from modulation of N-hyperfine and Zeeman anisotropies. These are determined by the averages and , where θ is the angle between the nitroxide z-axis and the static magnetic field, which in turn depends on the angles that these two directions make with the director of uniaxial ordering. For saturation-recovery EPR at 9 GHz, the recovery rate constant is predicted to decrease with increasing order for the magnetic field oriented parallel to the director, and to increase slightly for the perpendicular field orientation. The latter situation corresponds to the usual experimental protocol and is consistent with the dependence on chain-labelling position in lipid bilayer membranes. An altered dependence on order parameter is predicted for saturation-recovery EPR at high field (94 GHz) that is not entirely consistent with observation. Comparisons with experiment are complicated by contributions from slow-motional components, and an unexplained background recovery rate that most probably is independent of order parameter. In general, this analysis supports the interpretation that recovery rates are determined principally by rotational diffusion rates, but experiments at other spectral positions/field orientations could increase the sensitivity to order parameter.

  18. Manifestations of strain–relaxation in the structure of nano-sized Co-2 × 2 islands grown on Ag/Ge(111)-√3 × √3 surface

    International Nuclear Information System (INIS)

    Huang, Xiao-Lan; Tomaszewska, Agnieszka; Lin, Chun-Liang; Tsay, Sung-Lin; Chou, Chi-Hao; Fu, Tsu-Yi

    2012-01-01

    We have examined strain–relaxation of Co-2 × 2 islands grown on the Ag/Ge(111)-√3 × √3 surface by analyzing scanning tunneling microscopy images. We have found that the Co-2 × 2 islands commonly adopt a more compact arrangement as compared to that of the Ge(111) substrate, however they differ in a degree of an atomic compactness. We have not found a distinct relation between strain–relaxation and the island height. Three groups of islands have been identified upon analyzing a correspondence between strain–relaxation and the island size: (i) small islands (not bigger than 80 nm 2 ) with a high atomic compactness, displaying fixed inter-row distances, (ii) small islands with unfixed distances between atomic rows, and (iii) big islands (bigger than 80 nm 2 ) with fixed inter-row distances, but with a less compact atomic arrangement compared to that of the first two groups. We propose a model to account for the relation between the relaxation and the island size. - Highlights: ► We examine strain–relaxation of Co-2 × 2 islands grown on Ag/Ge(111)-√3 × √3 surface. ► The Co-2 × 2 islands are more compact as compared to the substrate. ► No relation between the relaxation and the island height. ► Atomic compactness and atomic order as manifestations of strain–relaxation.

  19. Electron Microscopy Society of Southern Africa : proceedings

    International Nuclear Information System (INIS)

    Snyman, H.C.; Coetzee, J.; Coubrough, R.I.

    1987-01-01

    The proceedings of the 26th annual conference of the Electron Microscopy Society of Southern Africa are presented. Papers were presented on the following topics: techniques and instrumentation used in electron microscopy, and applications of electron microscopy in the life sciences, including applications in medicine, zoology, botany and microbiology. The use of electron microscopy in the physical sciences was also discussed. Separate abstracts were prepared for seven of the papers presented. The remaining papers were considered outside the subject scope of INIS

  20. Magnetic resonance microscopy for monitoring osteogenesis in tissue-engineered construct in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Xu Huihui [Bioengineering Department (MC 063), University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607-7052 (United States); Othman, Shadi F [Bioengineering Department (MC 063), University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607-7052 (United States); Hong Liu [Bioengineering Department (MC 063), University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607-7052 (United States); Peptan, Ioana A [Bioengineering Department (MC 063), University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607-7052 (United States); Magin, Richard L [Bioengineering Department (MC 063), University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607-7052 (United States)

    2006-02-07

    Magnetic resonance microscopy (MRM) is used to monitor osteogenesis in tissue-engineered constructs. Measurements of the developing tissue's MR relaxation times (T{sub 1} and T{sub 2}), apparent diffusion coefficient (ADC) and elastic shear modulus were conducted over a 4-week growth period using an 11.74 T Bruker spectrometer with an imaging probe adapted for MR elastography (MRE). Both the relaxation times and the ADC show a statistically significant decrease after only one week of tissue development while the tissue stiffness increases progressively during the first two weeks of in vitro growth. The measured MR parameters are correlated with histologically monitored osteogenic tissue development. This study shows that MRM can provide quantitative data with which to characterize the growth and development of tissue-engineered bone.

  1. Photoluminescence quenching and enhanced spin relaxation in Fe doped ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ovhal, Manoj M.; Santhosh Kumar, A. [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India); Khullar, Prerna [School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Kumar, Manjeet [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India); Abhyankar, A.C., E-mail: ashutoshabhyankar@gmail.com [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India)

    2017-07-01

    Cost-effective ultrasonically assisted precipitation method is utilized to synthesize Zinc oxide (ZnO) nanoparticles (NPs) at room temperature and the effect of Iron (Fe) doping on structural, optical and spin relaxation properties also presented. As-synthesized pure and Fe doped ZnO NPs possess a perfect hexagonal growth habit of wurtzite zinc oxide, along the (101) direction of preference. With Fe doping, ‘c/a’ ratio and compressive lattice strain in ZnO NPs are found to reduce and increase, respectively. Raman studies demonstrate that the E{sub 1} longitudinal optical (LO) vibrational mode is very weak in pure which remarkably enhanced with Fe doping into ZnO NPs. The direct band gap energy (E{sub g}) of the ZnO NPs has been increased from 3.02 eV to 3.11 eV with Fe doping. A slight red-shift observed with strong green emission band, in photoluminescence spectra, is strongly quenched in 6 wt.% Fe doped ZnO NPs. The field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) reveals spherical shape of ZnO NPs with 60–70 nm, which reduces substantially on Fe doping. The energy dispersive X-ray spectrum and elemental mapping confirms the homogeneous distribution of Fe in ZnO NPs. Moreover, the specific relaxation rate (R{sub 2sp} = 1/T{sub 2}) has been measured using Carr-Purcell-Meiboom-Gill (CPMG) method and found to be maximum in 6 wt.% Fe doped ZnO NPs. Further, the correlation of structural, optical and dynamic properties is proposed. - Highlights: • Pure ZnO and Fe doped ZnO NPs were successfully prepared by cost effective ultrasonically assisted precipitation method. • The optical band gap of ZnO has been enhanced form 3.02–3.11 eV with Fe doping. • PL quenching behaviour has been observed with Fe{sup 3+} ions substitution in ZnO lattice. • Specific relaxation rate (R{sub 2sp} = 1/T{sub 2}) has been varied with Fe doping and found to be maximum in 6 wt.% Fe doped ZnO NPs.

  2. Plasmonics Enhanced Smartphone Fluorescence Microscopy

    KAUST Repository

    Wei, Qingshan; Acuna, Guillermo; Kim, Seungkyeum; Vietz, Carolin; Tseng, Derek; Chae, Jongjae; Shir, Daniel; Luo, Wei; Tinnefeld, Philip; Ozcan, Aydogan

    2017-01-01

    Smartphone fluorescence microscopy has various applications in point-of-care (POC) testing and diagnostics, ranging from e.g., quantification of immunoassays, detection of microorganisms, to sensing of viruses. An important need in smartphone-based microscopy and sensing techniques is to improve the detection sensitivity to enable quantification of extremely low concentrations of target molecules. Here, we demonstrate a general strategy to enhance the detection sensitivity of a smartphone-based fluorescence microscope by using surface-enhanced fluorescence (SEF) created by a thin metal-film. In this plasmonic design, the samples are placed on a silver-coated glass slide with a thin spacer, and excited by a laser-diode from the backside through a glass hemisphere, generating surface plasmon polaritons. We optimized this mobile SEF system by tuning the metal-film thickness, spacer distance, excitation angle and polarization, and achieved ~10-fold enhancement in fluorescence intensity compared to a bare glass substrate, which enabled us to image single fluorescent particles as small as 50 nm in diameter and single quantum-dots. Furthermore, we quantified the detection limit of this platform by using DNA origami-based brightness standards, demonstrating that ~80 fluorophores per diffraction-limited spot can be readily detected by our mobile microscope, which opens up new opportunities for POC diagnostics and sensing applications in resource-limited-settings.

  3. Multifunctional scanning ion conductance microscopy

    Science.gov (United States)

    Page, Ashley; Unwin, Patrick R.

    2017-01-01

    Scanning ion conductance microscopy (SICM) is a nanopipette-based technique that has traditionally been used to image topography or to deliver species to an interface, particularly in a biological setting. This article highlights the recent blossoming of SICM into a technique with a much greater diversity of applications and capability that can be used either standalone, with advanced control (potential–time) functions, or in tandem with other methods. SICM can be used to elucidate functional information about interfaces, such as surface charge density or electrochemical activity (ion fluxes). Using a multi-barrel probe format, SICM-related techniques can be employed to deposit nanoscale three-dimensional structures and further functionality is realized when SICM is combined with scanning electrochemical microscopy (SECM), with simultaneous measurements from a single probe opening up considerable prospects for multifunctional imaging. SICM studies are greatly enhanced by finite-element method modelling for quantitative treatment of issues such as resolution, surface charge and (tip) geometry effects. SICM is particularly applicable to the study of living systems, notably single cells, although applications extend to materials characterization and to new methods of printing and nanofabrication. A more thorough understanding of the electrochemical principles and properties of SICM provides a foundation for significant applications of SICM in electrochemistry and interfacial science. PMID:28484332

  4. Plasmonics Enhanced Smartphone Fluorescence Microscopy

    KAUST Repository

    Wei, Qingshan

    2017-05-12

    Smartphone fluorescence microscopy has various applications in point-of-care (POC) testing and diagnostics, ranging from e.g., quantification of immunoassays, detection of microorganisms, to sensing of viruses. An important need in smartphone-based microscopy and sensing techniques is to improve the detection sensitivity to enable quantification of extremely low concentrations of target molecules. Here, we demonstrate a general strategy to enhance the detection sensitivity of a smartphone-based fluorescence microscope by using surface-enhanced fluorescence (SEF) created by a thin metal-film. In this plasmonic design, the samples are placed on a silver-coated glass slide with a thin spacer, and excited by a laser-diode from the backside through a glass hemisphere, generating surface plasmon polaritons. We optimized this mobile SEF system by tuning the metal-film thickness, spacer distance, excitation angle and polarization, and achieved ~10-fold enhancement in fluorescence intensity compared to a bare glass substrate, which enabled us to image single fluorescent particles as small as 50 nm in diameter and single quantum-dots. Furthermore, we quantified the detection limit of this platform by using DNA origami-based brightness standards, demonstrating that ~80 fluorophores per diffraction-limited spot can be readily detected by our mobile microscope, which opens up new opportunities for POC diagnostics and sensing applications in resource-limited-settings.

  5. Kelvin probe force microscopy in liquid using electrochemical force microscopy

    Directory of Open Access Journals (Sweden)

    Liam Collins

    2015-01-01

    Full Text Available Conventional closed loop-Kelvin probe force microscopy (KPFM has emerged as a powerful technique for probing electric and transport phenomena at the solid–gas interface. The extension of KPFM capabilities to probe electrostatic and electrochemical phenomena at the solid–liquid interface is of interest for a broad range of applications from energy storage to biological systems. However, the operation of KPFM implicitly relies on the presence of a linear lossless dielectric in the probe–sample gap, a condition which is violated for ionically-active liquids (e.g., when diffuse charge dynamics are present. Here, electrostatic and electrochemical measurements are demonstrated in ionically-active (polar isopropanol, milli-Q water and aqueous NaCl and ionically-inactive (non-polar decane liquids by electrochemical force microscopy (EcFM, a multidimensional (i.e., bias- and time-resolved spectroscopy method. In the absence of mobile charges (ambient and non-polar liquids, KPFM and EcFM are both feasible, yielding comparable contact potential difference (CPD values. In ionically-active liquids, KPFM is not possible and EcFM can be used to measure the dynamic CPD and a rich spectrum of information pertaining to charge screening, ion diffusion, and electrochemical processes (e.g., Faradaic reactions. EcFM measurements conducted in isopropanol and milli-Q water over Au and highly ordered pyrolytic graphite electrodes demonstrate both sample- and solvent-dependent features. Finally, the feasibility of using EcFM as a local force-based mapping technique of material-dependent electrostatic and electrochemical response is investigated. The resultant high dimensional dataset is visualized using a purely statistical approach that does not require a priori physical models, allowing for qualitative mapping of electrostatic and electrochemical material properties at the solid–liquid interface.

  6. Study on the crystallization of the metal glass with the ferromagnetic resonance and transmission electron microscopy techniques

    International Nuclear Information System (INIS)

    Biasi, R.S. de; Rodrigues, R.W.D.; Pascual, R.; Pessoa, C.S.

    1983-01-01

    The crystallization of the metal glass METGLAS 2826A has been studied with the ferromagnetic resonance and electron transmission microscopy techniques. The first-derivative linewidth of the absorption curve was measured for several times of isothermal treatments at 375 0 C. After an initial decrease, attributed to stress relaxation, the linewidth increases linearly with the transformed fraction of the first crystallization phase. Comparison with the electron microscopy results shows that the ferromagnetic resonance technique is particularly useful for short and medium aging times. (Author) [pt

  7. Fetal response to abbreviated relaxation techniques. A randomized controlled study.

    Science.gov (United States)

    Fink, Nadine S; Urech, Corinne; Isabel, Fornaro; Meyer, Andrea; Hoesli, Irène; Bitzer, Johannes; Alder, Judith

    2011-02-01

    stress during pregnancy can have adverse effects on the course of pregnancy and on fetal development. There are few studies investigating the outcome of stress reduction interventions on maternal well-being and obstetric outcome. this study aims (1) to obtain fetal behavioral states (quiet/active sleep, quiet/active wakefulness), (2) to investigate the effects of maternal relaxation on fetal behavior as well as on uterine activity, and (3) to investigate maternal physiological and endocrine parameters as potential underlying mechanisms for maternal-fetal relaxation-transferral. the behavior of 33 fetuses was analyzed during laboratory relaxation/quiet rest (control group, CG) and controlled for baseline fetal behavior. Potential associations between relaxation/quiet rest and fetal behavior (fetal heart rate (FHR), FHR variation, FHR acceleration, and body movements) and uterine activity were studied, using a computerized cardiotocogram (CTG) system. Maternal heart rate, blood pressure, cortisol, and norepinephrine were measured. intervention (progressive muscle relaxation, PMR, and guided imagery, GI) showed changes in fetal behavior. The intervention groups had higher long-term variation during and after relaxation compared to the CG (p=.039). CG fetuses had more FHR acceleration, especially during and after quiet rest (p=.027). Women in the PMR group had significantly more uterine activity than women in the GI group (p=.011) and than CG women. Maternal heart rate, blood pressure, and stress hormones were not associated with fetal behavior. this study indicates that the fetus might participate in maternal relaxation and suggests that GI is superior to PMR. This could especially be true for women who tend to direct their attention to body sensations such as abdominal activity. 2010 Elsevier Ltd. All rights reserved.

  8. A new method for studying the structure relaxation of amorphous matters

    International Nuclear Information System (INIS)

    Cao Xiaowen

    1989-11-01

    A new method for studying the structure relaxation of amorphous matters by Hall effect is proposed. The structure relaxation of the metal-type amorphous InSb has been experimentally studied. The experimental results show that this method is highly sensitive to the structure relaxation, and the mechanism of structure relaxation can be observed

  9. Interstitial relaxations due to hydrostatic stress in niobium--oxygen alloys

    International Nuclear Information System (INIS)

    Tewari, S.N.

    1974-01-01

    Experimental investigations of the anelastic relaxation induced by hydrostatic stress in the range from ambient to 81 ksi were made for niobium--oxygen alloys. The anelastic responses, both for the pressurization and the pressure release experiments, were followed by measuring the relative length change between the oxygenated niobium sample and a pure niobium frame with a precision of about 2 A. The relaxation spectrum observed was shown to be made up of three distinct relaxations with unique relaxation times and strengths. The pressure dependence of the relaxation times gave the apparent activation volume for these relaxations of the order of 4 cm 3 /mole. The relaxations were observed to have relaxation strengths of the order of 10 -4 which were found to be independent of pressure up to 81 ksi. The relaxation times for these relaxations were found to occur in the same general temperature range as those for the Snoek relaxations of oxygen clusters in niobium. The temperature dependence of the relaxation times, however, gave activation energies of about 11 to 15 kcal/mole, as compared with roughly 27 to 29 kcal/mole for the Snoek relaxation of oxygen clusters in niobium. Several possible models for these relaxations were developed, however, none could predict the observed temperature dependence. The best interpretation of the data is that due to some anomalous competing relaxation the actual temperature dependence of these relaxations could not be observed. A completely self-consistent analysis is found which is based upon this assumption. (U.S.)

  10. Effect of the growth conditions on the anisotropy, domain structures and the relaxation in Co thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, Srijani; Mallick, Sougata; Bedanta, Subhankar, E-mail: sbedanta@niser.ac.in

    2017-04-15

    We report a systematic study on the anisotropy symmetry, magnetic domains and magnetic relaxation behavior in Co thin films deposited on MgO (001) substrate by varying (i) the pre-annealing condition and (ii) the speed of substrate rotation during deposition. Substrate annealing prior to deposition leads to the formation of textured thin films. On contrary Co films prepared without substrate pre-annealing exhibit polycrystalline nature. Surface topography imaged by atomic force microscopy (AFM) depicts a profound effect of growth condition on grain size and its distribution. Magnetic hysteresis measurement along with simultaneous domain imaging has been performed by magneto optic Kerr effect (MOKE) based microscope by varying the angle (ϕ) between the easy axis and the direction of applied magnetic field. We observed the existence of cubic and uniaxial anisotropy due to the presence of substrate annealing and oblique angular deposition, respectively. Along the easy axis, magnetization reversal is governed by 180° domain wall motion via branched domains. However, for easy axis<ϕrelaxation behavior under constant magnetic field strongly depends on the size and distribution of the grains. - Highlights: • This article provides a systematic study of textured growth of Co on MgO(001) substrate. • The structure has clear implication on the magnetic properties. • The magnetic relaxation has been studied for both textured and polycrystalline films.

  11. SiGe/Si layers-early stages of plastic relaxation

    International Nuclear Information System (INIS)

    Koehler, R; Raidt, H; Neumann, W; Pfeiffer, J-U; Schaefer, H; Richter, U

    2005-01-01

    The plastic relaxation of SiGe/Si is closely related to the nucleation of misfit dislocations at early stages. We have investigated the very early stages at annealing temperatures ranging from 520 deg. C to 670 deg. C by means of x-ray topography (XRT), atomic force microscopy (AFM) and transmission electron microscopy. At misfit dislocation densities within the range accessible by XRT, i.e. up to about 1000 cm -1 , dislocations bundles predominate. This is verified by AFM and is explained by heterogeneous nucleation. The fewer the dislocations that are contained within dislocation bundles the rarer the blocking and cross slip that are observed. It is demonstrated that laser heating increases the number of nucleation centres drastically and is well suited to induce nucleation at selected sites. Furthermore, these nucleation centres provide dislocation bundles containing only a few dislocations. In contrast to this, implantation can produce defects that stop dislocation propagation quite effectively at the comparatively low temperatures used in our experiments

  12. Experimental model of human corpus cavernosum smooth muscle relaxation

    Directory of Open Access Journals (Sweden)

    Rommel P. Regadas

    2010-08-01

    Full Text Available PURPOSE: To describe a technique for en bloc harvesting of the corpus cavernosum, cavernous artery and urethra from transplant organ donors and contraction-relaxation experiments with corpus cavernosum smooth muscle. MATERIALS AND METHODS: The corpus cavernosum was dissected to the point of attachment with the crus penis. A 3 cm segment (corpus cavernosum and urethra was isolated and placed in ice-cold sterile transportation buffer. Under magnification, the cavernous artery was dissected. Thus, 2 cm fragments of cavernous artery and corpus cavernosum were obtained. Strips measuring 3 x 3 x 8 mm3 were then mounted vertically in an isolated organ bath device. Contractions were measured isometrically with a Narco-Biosystems force displacement transducer (model F-60, Narco-Biosystems, Houston, TX, USA and recorded on a 4-channel Narco-Biosystems desk model polygraph. RESULTS: Phenylephrine (1µM was used to induce tonic contractions in the corpus cavernosum (3 - 5 g tension and cavernous artery (0.5 - 1g tension until reaching a plateau. After precontraction, smooth muscle relaxants were used to produce relaxation-response curves (10-12M to 10-4 M. Sodium nitroprusside was used as a relaxation control. CONCLUSION: The harvesting technique and the smooth muscle contraction-relaxation model described in this study were shown to be useful instruments in the search for new drugs for the treatment of human erectile dysfunction.

  13. Holographic grating relaxation technique for soft matter science

    Energy Technology Data Exchange (ETDEWEB)

    Lesnichii, Vasilii, E-mail: vasilii.lesnichii@physchem.uni-freiburg.de [Institute of Physical Chemistry, Albertstraße 21, Institute of Macromolecular Chemistry, Stefan-Meier-Str. 31, Albert-Ludwigs Universität, Freiburg im Breisgau 79104 (Germany); ITMO University, Kronverksky prospekt 49, Saint-Petersburg 197101 (Russian Federation); Kiessling, Andy [Institute of Physical Chemistry, Albertstraße 21, Institute of Macromolecular Chemistry, Stefan-Meier-Str. 31, Albert-Ludwigs Universität, Freiburg im Breisgau 79104 (Germany); Current address: Illinois Institute of Technology, 10 West 33rd Street, Chicago,IL60616 (United States); Bartsch, Eckhard [Institute of Physical Chemistry, Albertstraße 21, Institute of Macromolecular Chemistry, Stefan-Meier-Str. 31, Albert-Ludwigs Universität, Freiburg im Breisgau 79104 (Germany); Veniaminov, Andrey, E-mail: veniaminov@phoi.ifmo.ru [ITMO University, Kronverksky prospekt 49, Saint-Petersburg 197101 (Russian Federation)

    2016-06-17

    The holographic grating relaxation technique also known as forced Rayleigh scattering consists basically in writing a holographic grating in the specimen of interest and monitoring its diffraction efficiency as a function of time, from which valuable information on mass or heat transfer and photoinduced transformations can be extracted. In a more detailed view, the shape of the relaxation curve and the relaxation rate as a function of the grating period were found to be affected by the architecture of diffusing species (molecular probes) that constitute the grating, as well as that of the environment they diffuse in, thus making it possible to access and study spatial heterogeneity of materials and different modes of e.g., polymer motion. Minimum displacements and spatial domains approachable by the technique are in nanometer range, well below spatial periods of holographic gratings. In the present paper, several cases of holographic relaxation in heterogeneous media and complex motions are exemplified. Nano- to micro-structures or inhomogeneities comparable in spatial scale with holographic gratings manifest themselves in relaxation experiments via non-exponential decay (stepwise or stretched), spatial-period-dependent apparent diffusion coefficient, or unusual dependence of diffusion coefficient on molecular volume of diffusing probes.

  14. Characterization of structural relaxation in inorganic glasses using length dilatometry

    Science.gov (United States)

    Koontz, Erick

    The processes that govern how a glass relaxes towards its thermodynamic quasi-equilibrium state are major factors in understanding glass behavior near the glass transition region, as characterized by the glass transition temperature (Tg). Intrinsic glass properties such as specific volume, enthalpy, entropy, density, etc. are used to map the behavior of the glass network below in and near the transition region. The question of whether a true thermodynamic second order phase transition takes place in the glass transition region is another pending question. Linking viscosity behavior to entropy, or viewing the glass configuration as an energy landscape are just a couple of the most prevalent methods used for attempting to understand the glass transition. The structural relaxation behavior of inorganic glasses is important for more than scientific reasons, many commercial glass processing operations including glass melting and certain forms of optical fabrication include significant time spent in the glass transition region. For this reason knowledge of structural relaxation processes can, at a minimum, provide information for annealing duration of melt-quenched glasses. The development of a predictive model for annealing time prescription has the potential to save glass manufacturers significant time and money as well as increasing volume throughput. In optical hot forming processes such as precision glass molding, molded optical components can significantly change in shape upon cooling through the glass transition. This change in shape is not scientifically predictable as of yet though manufacturers typically use empirical rules developed in house. The classification of glass behavior in the glass transition region would allow molds to be accurately designed and save money for the producers. The work discussed in this dissertation is comprised of the development of a dilatometric measurement and characterization method of structural relaxation. The measurement and

  15. [Neurophysiologic and respiratory changes during the practice of relaxation technics].

    Science.gov (United States)

    Gallois, P

    1984-01-01

    A polygraphic study, of 40 minutes duration, among 10 subjects who practiced autogenic training (TA) and 10 subjects who practiced transcendental meditation (MT), compared to 10 control subjects, gave the following results: rarity of the number of sleeping episodes during relaxation, cardiac rhythm, significantly decreased in the TM group, increased stability of the E.D.G. during and after relaxation, respiratory rate decreased to a value of 33% of the initial rate, respiratory suspensions were frequent in the TM group, reaching a maximal duration of 50 seconds. The absence of compensatory hypercapnia and hyperpnea is an argument in favor of their central origin, lastly, the simple reaction time after relaxation is slightly decreased, whereas it is increased in the controls, this aerobic hypometabolic state, the stability of the autonomic nervous system and the maintenance of the vigilance, induced by deep relaxation, seems to be the opposite of the state which is induced by stress; therefore deep relaxation may play a role in a psycho-somatic approach to treating a variety of disease states.

  16. Effect of iodine impurity on relaxation of photoexcited silver chloride

    International Nuclear Information System (INIS)

    Vostrikova, Yu. V.; Klyuev, V. G.

    2008-01-01

    The time and temperature dependences of relaxation of excited AgCl and AgCl:I crystals is studied by the method of photostimulated flash of luminescence. The presence of iodine impurity in silver chloride gives rise to hole recombination (luminescence) centers and hole traps in the band gap. It is shown that the main contribution to the decrease in the concentration of electrons localized at deep traps is made by the recombination of electrons with holes released thermally from shallow localization levels (iodine-related centers). Estimation of activation energy for the relaxation process showed that these energies for the AgCl and AgCl:I samples under study are the same within the experimental error and are equal to E rel1 = 0.01 ± 0.0005 eV for the initial stage of relaxation and E rel2 = 0.09 ± 0.005 eV for the final state. This fact indicates that the majority of hole traps involved in the relaxation process in AgCl are related to iodine impurity. In the course of thermal relaxation in AgCl, relocalization of nonequilibrium charge carriers from shallow levels to deep levels is observed. The depth of the corresponding trap is E arl = 0.174 ± 0.03 eV.

  17. F19 relaxation in non-magnetic hexafluorides

    International Nuclear Information System (INIS)

    Rigny, P.

    1969-01-01

    The interesting properties of the fluorine magnetic resonance in the hexafluorides of molybdenum, tungsten and uranium, are very much due to large anisotropies of the chemical shift tensors. In the solid phases these anisotropies, the values of which are deduced from line shape studies, allow one to show that the molecules undergo hindered rotations about the metal atom. The temperature and frequency dependence of the fluorine longitudinal relaxation times shows that the relaxation is due to the molecular motion. The dynamical parameters of this motion are then deduced from the complete study of the fluorine relaxation in the rotating frame. In the liquid phases, the existence of anisotropies allows an estimation of the different contributions to the relaxation. In particular, the frequency and temperature dependence of the relaxation shows it to be dominated by the spin-rotation interaction. We have shown that the strength of this interaction can be deduced from the chemical shifts, and the angle through which the molecule rotates quasi-freely can be determined. In the hexafluorides, this angle is roughly one radian at 70 C, and with the help of this value, the friction coefficients which describe the intermolecular interactions are discussed. (author) [fr

  18. Thermally induced magnetic relaxation in square artificial spin ice

    Science.gov (United States)

    Andersson, M. S.; Pappas, S. D.; Stopfel, H.; Östman, E.; Stein, A.; Nordblad, P.; Mathieu, R.; Hjörvarsson, B.; Kapaklis, V.

    2016-11-01

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system - square artificial spin ice - we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Using time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.

  19. Evolutionary Pseudo-Relaxation Learning Algorithm for Bidirectional Associative Memory

    Institute of Scientific and Technical Information of China (English)

    Sheng-Zhi Du; Zeng-Qiang Chen; Zhu-Zhi Yuan

    2005-01-01

    This paper analyzes the sensitivity to noise in BAM (Bidirectional Associative Memory), and then proves the noise immunity of BAM relates not only to the minimum absolute value of net inputs (MAV) but also to the variance of weights associated with synapse connections. In fact, it is a positive monotonically increasing function of the quotient of MAV divided by the variance of weights. Besides, the performance of pseudo-relaxation method depends on learning parameters (λ and ζ), but the relation of them is not linear. So it is hard to find a best combination of λ and ζ which leads to the best BAM performance. And it is obvious that pseudo-relaxation is a kind of local optimization method, so it cannot guarantee to get the global optimal solution. In this paper, a novel learning algorithm EPRBAM (evolutionary psendo-relaxation learning algorithm for bidirectional association memory) employing genetic algorithm and pseudo-relaxation method is proposed to get feasible solution of BAM weight matrix. This algorithm uses the quotient as the fitness of each individual and employs pseudo-relaxation method to adjust individual solution when it does not satisfy constraining condition any more after genetic operation. Experimental results show this algorithm improves noise immunity of BAM greatly. At the same time, EPRBAM does not depend on learning parameters and can get global optimal solution.

  20. Universal binding energy relation for cleaved and structurally relaxed surfaces

    International Nuclear Information System (INIS)

    Srirangarajan, Aarti; Datta, Aditi; Gandi, Appala Naidu; Ramamurty, U; Waghmare, U V

    2014-01-01

    The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress–displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements. (paper)

  1. Nuclear magnetic relaxation of methyl group in liquids

    International Nuclear Information System (INIS)

    Blicharska, B.

    1986-01-01

    The theoretical description of the relaxation process of methyl group in liquids and some results of the measurements of relaxation function and relaxation times for cryoprotective solutions are presented. Starting from the application of the operator formalism the general equation for spin operators e.g. components of the nuclear spin and magnetization is founded. Next, the spin Hamiltonian is presented as contraction of the symmetry adapted spherical tensors as well as the correlation functions and spectral densities. On the basis of extended and modified Woessner model of motion the correlation functions and spectral densities are calculated for methyl group in liquids. Using these functions the relaxation matrix elements, the spin-spin and spin-lattice relaxation times can be expressed. The prediction of the theory agrees with author's previous experiments on cryoprotective solutions. The observed dependence on temperature, frequency and isotopic dilution in methanol-water, methanol-dimethyl sulfoxide (DMSO) and DMSO-water solutions is in a satisfactory agreement with theoretical equations. 34 refs. (author)

  2. Magnetic-relaxation method of analysis of inorganic substances

    International Nuclear Information System (INIS)

    Popel', A.A.

    1978-01-01

    The magnetic-relaxation method is considered of the quantitative analysis of inorganic substances based on time dependence of magnetic nuclei relaxation on the quantity of paramagnetic centres in a solution. The characteristic is given of some methods of measuring nuclear magnetic relaxation times: method of weak oscillation generator and pulse methods. The effect of temperature, general solution viscosity, diamagnetic salt concentration, medium acidity on nuclear relaxation velocity is described. The determination sensitivity is estimated and the means of its increase definable concentration intervals and method selectivity are considered. The method application when studying complexing in the solution is described. A particular attention is given to the investigation of heteroligand homocentre, heterocentre and protonated complexes as well as to the problems of particle exchange of the first coordination sphere with particles from the mass of solution. The equations for equilibrium constant calculation in different systems are given. Possibilities of determining diamagnetic ions by the magnetic-relaxation method using paramagnetic indicators are confirmed by the quantitative analysis of indium, gallium, thorium and scandium in their salt solutions

  3. Universal binding energy relation for cleaved and structurally relaxed surfaces.

    Science.gov (United States)

    Srirangarajan, Aarti; Datta, Aditi; Gandi, Appala Naidu; Ramamurty, U; Waghmare, U V

    2014-02-05

    The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress-displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements.

  4. Ore microscopy applied to beneficiation

    International Nuclear Information System (INIS)

    Hagni, R.D.

    1978-01-01

    Ore microscopy can be an important adjunct to beneficiation, because it can be used not only to predict mill problems of undeveloped ore deposits but to identify the causes for the loss of minerals in the products of operating mines and mills. Mineral distribution among various mill products can be determined by examining polished sections prepared from samples obtained from each step of the beneficiation process. The degree of liberation of each mineral can be quantitatively determined for each mill product by counting locked vs. free particles. For many beneficiation problems, the preparation of a few polished sections of carefully selected mill products can yield useful information, which the mill dressing engineer can effectively use to alleviate those problems

  5. Lensfree microscopy on a cellphone

    Science.gov (United States)

    Tseng, Derek; Mudanyali, Onur; Oztoprak, Cetin; Isikman, Serhan O.; Sencan, Ikbal; Yaglidere, Oguzhan; Ozcan, Aydogan

    2010-01-01

    We demonstrate lensfree digital microscopy on a cellphone. This compact and light-weight holographic microscope installed on a cellphone does not utilize any lenses, lasers or other bulky optical components and it may offer a cost-effective tool for telemedicine applications to address various global health challenges. Weighing ~38 grams (cellphone where the samples are loaded from the side, and are vertically illuminated by a simple light-emitting diode (LED). This incoherent LED light is then scattered from each micro-object to coherently interfere with the background light, creating the lensfree hologram of each object on the detector array of the cellphone. These holographic signatures captured by the cellphone permit reconstruction of microscopic images of the objects through rapid digital processing. We report the performance of this lensfree cellphone microscope by imaging various sized micro-particles, as well as red blood cells, white blood cells, platelets and a waterborne parasite (Giardia lamblia). PMID:20445943

  6. Superresolution microscopy with transient binding.

    Science.gov (United States)

    Molle, Julia; Raab, Mario; Holzmeister, Susanne; Schmitt-Monreal, Daniel; Grohmann, Dina; He, Zhike; Tinnefeld, Philip

    2016-06-01

    For single-molecule localization based superresolution, the concentration of fluorescent labels has to be thinned out. This is commonly achieved by photophysically or photochemically deactivating subsets of molecules. Alternatively, apparent switching of molecules can be achieved by transient binding of fluorescent labels. Here, a diffusing dye yields bright fluorescent spots when binding to the structure of interest. As the binding interaction is weak, the labeling is reversible and the dye ligand construct diffuses back into solution. This approach of achieving superresolution by transient binding (STB) is reviewed in this manuscript. Different realizations of STB are discussed and compared to other localization-based superresolution modalities. We propose the development of labeling strategies that will make STB a highly versatile tool for superresolution microscopy at highest resolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Electron holography for polymer microscopy

    International Nuclear Information System (INIS)

    Joy, D.C.

    1992-01-01

    Electron holography provides a radically new approach to the problem of imaging objects such as macromolecules, which exhibit little or no contrast when viewed in the conventional transmission electron microscope (TEM). This is overcome in electron holography by using the macromolecule as a phase object. Computer reconstruction of the hologram then allows the phase to be viewed as an image, and amplified. Holography requires a TEM with a field emission gun, and with an electro-static biprism to produce the interference pattern. The hologram requires a similar radiation dose to conventional microscopy but many different images (e.g. a through focal series) can be extracted from the same hologram. Further developments of the technique promise to combine high contrast imaging of the bulk of the macromolecule together with high spatial resolution imaging of surface detail

  8. Resolution enhancement techniques in microscopy

    Science.gov (United States)

    Cremer, Christoph; Masters, Barry R.

    2013-05-01

    We survey the history of resolution enhancement techniques in microscopy and their impact on current research in biomedicine. Often these techniques are labeled superresolution, or enhanced resolution microscopy, or light-optical nanoscopy. First, we introduce the development of diffraction theory in its relation to enhanced resolution; then we explore the foundations of resolution as expounded by the astronomers and the physicists and describe the conditions for which they apply. Then we elucidate Ernst Abbe's theory of optical formation in the microscope, and its experimental verification and dissemination to the world wide microscope communities. Second, we describe and compare the early techniques that can enhance the resolution of the microscope. Third, we present the historical development of various techniques that substantially enhance the optical resolution of the light microscope. These enhanced resolution techniques in their modern form constitute an active area of research with seminal applications in biology and medicine. Our historical survey of the field of resolution enhancement uncovers many examples of reinvention, rediscovery, and independent invention and development of similar proposals, concepts, techniques, and instruments. Attribution of credit is therefore confounded by the fact that for understandable reasons authors stress the achievements from their own research groups and sometimes obfuscate their contributions and the prior art of others. In some cases, attribution of credit is also made more complex by the fact that long term developments are difficult to allocate to a specific individual because of the many mutual connections often existing between sometimes fiercely competing, sometimes strongly collaborating groups. Since applications in biology and medicine have been a major driving force in the development of resolution enhancing approaches, we focus on the contribution of enhanced resolution to these fields.

  9. COMPARATIVE ASSESSMENT OF NUCLEAR MAGNETIC RELAXATION CHARACTERISTICS OF SUNFLOWER AND RAPESEED LECITHIN

    OpenAIRE

    Lisovaya E. V.; Victorova E. P.; Agafonov O. S.; Kornen N. N.; Shahray T. A.

    2015-01-01

    The article presents a comparative assessment and peculiarities of nuclear magnetic relaxation characteristics of rapeseed and sunflower lecithin. It was established, that lecithin’s nuclear magnetic relaxation characteristics, namely, protons’ spin-spin relaxation time and amplitudes of nuclear magnetic relaxation signals of lecithin components, depend on content of oil’s fat acids and phospholipids, contained in the lecithin. Comparative assessment of protons’ spin-spin relaxation time of r...

  10. Repeatability and reliability of muscle relaxation properties induced by motor cortical stimulation.

    Science.gov (United States)

    Molenaar, Joery P; Voermans, Nicol C; de Jong, Lysanne A; Stegeman, Dick F; Doorduin, Jonne; van Engelen, Baziel G

    2018-03-15

    Impaired muscle relaxation is a feature of many neuromuscular disorders. However, there are few tests available to quantify muscle relaxation. Transcranial magnetic stimulation (TMS) of the motor cortex can induce muscle relaxation by abruptly inhibiting corticospinal drive. The aim of our study is to investigate if repeatability and reliability of TMS-induced relaxation is greater than voluntary relaxation. Furthermore, effects of sex, cooling and fatigue on muscle relaxation properties were studied. Muscle relaxation of deep finger flexors was assessed in twenty-five healthy subjects (14 M and 11 F, aged 39.1{plus minus}12.7 and 45.3{plus minus}8.7 years old, respectively) using handgrip dynamometry. All outcome measures showed greater repeatability and reliability in TMS-induced relaxation compared to voluntary relaxation. The within-subject coefficient of variability of normalized peak relaxation rate was lower in TMS-induced relaxation than in voluntary relaxation (3.0 vs 19.7% in men, and 6.1 vs 14.3% in women). The repeatability coefficient was lower (1.3 vs 6.1 s -1 in men and 2.3 vs 3.1 s -1 in women), and the intraclass correlation coefficient was higher (0.95 vs 0.53 in men and 0.78 vs 0.69 in women), for TMS-induced relaxation compared to voluntary relaxation. TMS enabled to demonstrate slowing effects of sex, muscle cooling, and muscle fatigue on relaxation properties that voluntary relaxation could not. In conclusion, repeatability and reliability of TMS-induced muscle relaxation was greater compared to voluntary muscle relaxation. TMS-induced muscle relaxation has the potential to be used in clinical practice for diagnostic purposes and therapy effect monitoring in patients with impaired muscle relaxation.

  11. Relaxation training for anxiety: a ten-years systematic review with meta-analysis

    OpenAIRE

    Castelnuovo Gianluca; Pagnini Francesco; Manzoni Gian; Molinari Enrico

    2008-01-01

    Abstract Background Relaxation training is a common treatment for anxiety problems. Lacking is a recent quantitative meta-analysis that enhances understanding of the variability and clinical significance of anxiety reduction outcomes after relaxation treatment. Methods All studies (1997–2007), both RCT, observational and without control group, evaluating the efficacy of relaxation training (Jacobson's progressive relaxation, autogenic training, applied relaxation and meditation) for anxiety p...

  12. Isochronous relaxation curves for type 304 stainless steel after monotonic and cyclic strain

    International Nuclear Information System (INIS)

    Swindeman, R.W.

    1978-01-01

    Relaxation tests to 100 hr were performed on type 304 stainless steel in the temperature range 480 to 650 0 C and were used to develop isochronous relaxation curves. Behavior after monotonic and cyclic strain was compared. Relaxation differed only slightly as a consequence of the type of previous strain, provided that plastic flow preceded the relaxation period. We observed that the short-time relaxation behavior did not manifest strong heat-to-heat variation in creep strength

  13. Thermodynamic scaling of α-relaxation time and viscosity stems from the Johari-Goldstein β-relaxation or the primitive relaxation of the coupling model.

    Science.gov (United States)

    Ngai, K L; Habasaki, J; Prevosto, D; Capaccioli, S; Paluch, Marian

    2012-07-21

    By now it is well established that the structural α-relaxation time, τ(α), of non-associated small molecular and polymeric glass-formers obey thermodynamic scaling. In other words, τ(α) is a function Φ of the product variable, ρ(γ)/T, where ρ is the density and T the temperature. The constant γ as well as the function, τ(α) = Φ(ρ(γ)/T), is material dependent. Actually this dependence of τ(α) on ρ(γ)/T originates from the dependence on the same product variable of the Johari-Goldstein β-relaxation time, τ(β), or the primitive relaxation time, τ(0), of the coupling model. To support this assertion, we give evidences from various sources itemized as follows. (1) The invariance of the relation between τ(α) and τ(β) or τ(0) to widely different combinations of pressure and temperature. (2) Experimental dielectric and viscosity data of glass-forming van der Waals liquids and polymer. (3) Molecular dynamics simulations of binary Lennard-Jones (LJ) models, the Lewis-Wahnström model of ortho-terphenyl, 1,4 polybutadiene, a room temperature ionic liquid, 1-ethyl-3-methylimidazolium nitrate, and a molten salt 2Ca(NO(3))(2)·3KNO(3) (CKN). (4) Both diffusivity and structural relaxation time, as well as the breakdown of Stokes-Einstein relation in CKN obey thermodynamic scaling by ρ(γ)/T with the same γ. (5) In polymers, the chain normal mode relaxation time, τ(N), is another function of ρ(γ)/T with the same γ as segmental relaxation time τ(α). (6) While the data of τ(α) from simulations for the full LJ binary mixture obey very well the thermodynamic scaling, it is strongly violated when the LJ interaction potential is truncated beyond typical inter-particle distance, although in both cases the repulsive pair potentials coincide for some distances.

  14. Challenges and complexities of multifrequency atomic force microscopy in liquid environments.

    Science.gov (United States)

    Solares, Santiago D

    2014-01-01

    This paper illustrates through numerical simulation the complexities encountered in high-damping AFM imaging, as in liquid enviroments, within the specific context of multifrequency atomic force microscopy (AFM). The focus is primarily on (i) the amplitude and phase relaxation of driven higher eigenmodes between successive tip-sample impacts, (ii) the momentary excitation of non-driven higher eigenmodes and (iii) base excitation artifacts. The results and discussion are mostly applicable to the cases where higher eigenmodes are driven in open loop and frequency modulation within bimodal schemes, but some concepts are also applicable to other types of multifrequency operations and to single-eigenmode amplitude and frequency modulation methods.

  15. Light-free magnetic resonance force microscopy for studies of electron spin polarized systems

    International Nuclear Information System (INIS)

    Pelekhov, Denis V.; Selcu, Camelia; Banerjee, Palash; Chung Fong, Kin; Chris Hammel, P.; Bhaskaran, Harish; Schwab, Keith

    2005-01-01

    Magnetic resonance force microscopy is a scanned probe technique capable of three-dimensional magnetic resonance imaging. Its excellent sensitivity opens the possibility for magnetic resonance studies of spin accumulation resulting from the injection of spin polarized currents into a para-magnetic collector. The method is based on mechanical detection of magnetic resonance which requires low noise detection of cantilever displacement; so far, this has been accomplished using optical interferometry. This is undesirable for experiments on doped silicon, where the presence of light is known to enhance spin relaxation rates. We report a non-optical displacement detection scheme based on sensitive microwave capacitive readout

  16. Dielectric relaxation of glass particles with conductive nano-coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Shahid [Applied Technologies Department, QinetiQ Limited, Cody Technology Park, Farnborough, Hampshire, GU14 0LX (United Kingdom)

    2009-03-21

    This research focuses on the dielectric properties of particles consisting of glass cores with nanometre conductive coatings. The effects of the core glass particle shape (sphere, flake and fibre) and size are investigated for different coating characteristics over the frequency range 0.5-18 GHz. Experimental results for the coated glass particle combinations show the existence of a dielectric loss peak. This feature is associated with interfacial relaxation between the insulating core glass particle and the nanoscale conductive coating. The relaxation mechanism provides enhanced loss that is not observed in conventional solid metal particle composites. The results are fitted to a model, which shows that the relaxation frequency increases with increasing coating conductivity and thickness, with additional parameters identified for further particle optimizations.

  17. Nuclear magnetic relaxation in picolines solutions in carbon tetrachloride

    International Nuclear Information System (INIS)

    Jurga, J.; Pajak, Z.; Jurga, K.; Jurga, S.

    1973-01-01

    Spin-lattice relaxation times of the ring and CH 3 group have been measured in order to establish the temperature dependence of the longitudinal relaxation times for picolins in carbon tetrachloride solutions. The information concerning the intramolecular contribution to the relaxation times have been obtained. The high resolution NPR spectrometer operating at 25 MHz has been used. The measurements have been performed in the temperature range from -60degC to 80degC. The experimental results are compared to the predictions given by the Nora Hill and Debye models and it has been found that the Nora Hill model fits the experimental data better than the Debye model. (S.B.)

  18. Efficient relaxed-Jacobi smoothers for multigrid on parallel computers

    Science.gov (United States)

    Yang, Xiang; Mittal, Rajat

    2017-03-01

    In this Technical Note, we present a family of Jacobi-based multigrid smoothers suitable for the solution of discretized elliptic equations. These smoothers are based on the idea of scheduled-relaxation Jacobi proposed recently by Yang & Mittal (2014) [18] and employ two or three successive relaxed Jacobi iterations with relaxation factors derived so as to maximize the smoothing property of these iterations. The performance of these new smoothers measured in terms of convergence acceleration and computational workload, is assessed for multi-domain implementations typical of parallelized solvers, and compared to the lexicographic point Gauss-Seidel smoother. The tests include the geometric multigrid method on structured grids as well as the algebraic grid method on unstructured grids. The tests demonstrate that unlike Gauss-Seidel, the convergence of these Jacobi-based smoothers is unaffected by domain decomposition, and furthermore, they outperform the lexicographic Gauss-Seidel by factors that increase with domain partition count.

  19. Relaxation and transport properties of liquid n-triacontane

    International Nuclear Information System (INIS)

    Kondratyuk, N D; Lankin, A V; Norman, G E; Stegailov, V V

    2015-01-01

    Molecular modelling is used to calculate transport properties and to study relaxation of liquid n-triacontane (C 30 H 62 ). The problem is important in connection with the behavior of liquid isolators in a pre-breakdown state. Two all-atom models and a united-atom model are used. Shear viscosity is calculated using the Green-Kubo formula. The force fields are compared with each other using the following criteria: the required time for one molecular dynamics step, the compliance of the main physical and transport properties with experimental values. The problem of the system equilibration is considered. The united-atom potential is used to model the n-triacontane liquid with an initial directional orientation. The time of relaxation to the disordered state, when all molecules orientations are randomized, are obtained. The influence of the molecules orientations on the shear viscosity value and the shear viscosity relaxation are treated. (paper)

  20. Temperature dependence of the kinetics of isometric myocardium relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Izakov, V.Ya.; Bykov, B.L.; Kimmelman, I.Ya.

    1981-11-01

    The dependence of the exponential decay constant expressing the isometric relaxation of the myocardium on temperature is investigated in animals with various specific contents of myocardial sarcoplasmic reticulum. Experiments were performed on cardiac ventricles and atria isolated from rabbits, frogs and turtles and electrically stimulated to produce maximal contraction at temperatures from 10 to 35 C. Arrhenius plots derived from the data are found to be linear in the myocardia of the rabbit and frog, with a greater activation energy for the relaxation found in the rabbit. The Arrhenius plot for the turtle, which has a sarcoplasmic reticulum content intermediate between those of the frog and rabbit, corresponds to two straight lines with different activation energies. Results thus support the hypothesis of two separate mechanisms of calcium removal, involving the sarcoplasmic reticulum and cellular membrane, in muscle relaxation.

  1. Sawtooth oscillations as MHD relaxation process in a plasma

    International Nuclear Information System (INIS)

    Yoshida, Zensho; Inoue, Nobuyuki; Ogawa, Yuichi

    1992-01-01

    The sawtooth oscillation in a tokamak plasma is a spontaneous relaxation process accompanying global instabilities which behave to reduce the internal magnetic energy. This phenomenon has a similarity to the MHD relaxation processes in Reversed Field Pinch (RFP) and Ultra Low Q (ULQ) plasmas. The self-stabilizing effect of instabilities with m (poloidal mode number) = 1 results in an increase in the central safety factor q(0). Nonlinear dynamics of m = 1 instabilities has been discussed both for global and local modes. The latter appears when a pitch minimum exists in the plasma, and is relevant to the compound sawtooth oscillation. The MHD relaxation is a restructuring process of the plasma current profile that is competitive with the resistive diffusion. (author)

  2. Stability and suppression of turbulence in relaxing molecular gas flows

    CERN Document Server

    Grigoryev, Yurii N

    2017-01-01

    This book presents an in-depth systematic investigation of a dissipative effect which manifests itself as the growth of hydrodynamic stability and suppression of turbulence in relaxing molecular gas flows. The work describes the theoretical foundations of a new way to control stability and laminar turbulent transitions in aerodynamic flows. It develops hydrodynamic models for describing thermal nonequilibrium gas flows which allow the consideration of suppression of inviscid acoustic waves in 2D shear flows. Then, nonlinear evolution of large-scale vortices and Kelvin-Helmholtz waves in relaxing shear flows are studied. Critical Reynolds numbers in supersonic Couette flows are calculated analytically and numerically within the framework of both linear and nonlinear classical energy hydrodynamic stability theories. The calculations clearly show that the relaxation process can appreciably delay the laminar-turbulent transition. The aim of the book is to show the new dissipative effect, which can be used for flo...

  3. Nonequilibrium thermodynamics and information theory: basic concepts and relaxing dynamics

    International Nuclear Information System (INIS)

    Altaner, Bernhard

    2017-01-01

    Thermodynamics is based on the notions of energy and entropy. While energy is the elementary quantity governing physical dynamics, entropy is the fundamental concept in information theory. In this work, starting from first principles, we give a detailed didactic account on the relations between energy and entropy and thus physics and information theory. We show that thermodynamic process inequalities, like the second law, are equivalent to the requirement that an effective description for physical dynamics is strongly relaxing. From the perspective of information theory, strongly relaxing dynamics govern the irreversible convergence of a statistical ensemble towards the maximally non-commital probability distribution that is compatible with thermodynamic equilibrium parameters. In particular, Markov processes that converge to a thermodynamic equilibrium state are strongly relaxing. Our framework generalizes previous results to arbitrary open and driven systems, yielding novel thermodynamic bounds for idealized and real processes. (paper)

  4. Physiological blunting during pregnancy extends to induced relaxation.

    Science.gov (United States)

    DiPietro, Janet A; Mendelson, Tamar; Williams, Erica L; Costigan, Kathleen A

    2012-01-01

    There is accumulating evidence that pregnancy is accompanied by hyporesponsivity to physical, cognitive, and psychological challenges. This study evaluates whether observed autonomic blunting extends to conditions designed to decrease arousal. Physiological and psychological responsivity to an 18-min guided imagery relaxation protocol in healthy pregnant women during the 32nd week of gestation (n=54) and non-pregnant women (n=28) was measured. Data collection included heart period (HP), respiratory sinus arrhythmia (RSA), tonic and phasic measures of skin conductance (SCL and NS-SCR), respiratory period (RP), and self-reported psychological relaxation. As expected, responses to the manipulation included increased HP, RSA, and RP and decreased SCL and NS-SCR, followed by post-manipulation recovery. However, responsivity was attenuated for all physiological measures except RP in pregnant women, despite no difference in self-reported psychological relaxation. Findings support non-specific blunting of physiological responsivity during pregnancy. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Interface relaxation and band gap shift in epitaxial layers

    Directory of Open Access Journals (Sweden)

    Ziming Zhu

    2012-12-01

    Full Text Available Although it is well known that the interface relaxation plays the crucial role for the electronic properties in semiconductor epitaxial layers, there is lack of a clear definition of relationship between interfacial bond-energy variation and interface bond-nature-factor (IBNF in epitaxial layers before and after relaxation. Here we establish an analytical method to shed light on the relationship between the IBNF and the bond-energy change, as well as the relation with band offset in epitaxial layers from the perspective of atomic-bond-relaxation consideration and continuum mechanics. The theoretical predictions are consistent with the available evidences, which provide an atomistic understanding on underlying mechanism of interface effect in epitaxial nanostructures. Thus, it will be helpful for opening up to tailor physical-chemical properties of the epitaxial nanostructures to the desired specifications.

  6. The relaxation phenomena of radicals induced in irradiated fresh mangoes

    International Nuclear Information System (INIS)

    Kikuchi, Masahiro; Morishita, Norio; Kobayashi, Yasuhiko; Ogawa, Hideyuki; Shimoyama, Yuhei; Ukai, Mitsuko

    2009-01-01

    Using the γ-irradiated fresh mangoes followed by freeze-drying and powderization, electron spin resonance spectrometry of specimens was performed. As a result, a strong single peak in the flesh, the pericarp and the seed was observed at g=2.004 and attributed to organic free radicals. When relaxation times of the peak was calculated using the method of Lund et al., T 2 showed dose responses according to increasing doses while T 1 was almost constant. Dose responsibility of the relaxation time T 2 obtained from flesh specimens of the mangoes could be measured regardless of the preservation period of 1 to 9 days following γ-irradiation. Therefore, there might be possible to detect the irradiation treatment of fresh mangoes using relaxation time T 2 . (author)

  7. Irradiation-induced stress relaxation of Eurofer97 steel

    International Nuclear Information System (INIS)

    Luzginova, N.V.; Jong, M.; Rensman, J.W.; Hegeman, J.B.J.; Laan, J.G. van der

    2011-01-01

    The irradiation-induced stress relaxation behavior of Eurofer97 at 300 deg. C up to 3.4 dpa and under pre-stress loads typical for the ITER applications is investigated. The bolt specimens are pre-loaded from 30% to 90% of the yield strength. To verify the results obtained with the pre-stressed bolts, bent strips were investigated as well. The strips are bent into a pre-defined radius in order to achieve similar pre-stress levels. The irradiation-induced stress relaxation is found to be independent of the pre-stress level. 10-12% of the stress relaxation in Eurofer97 may be reached after a dose of 0.1 dpa, and after an irradiation dose of 2.7 dpa 42-47% of the original pre-stress is retained.

  8. Wall relaxation and the driving forces for cell expansive growth

    Science.gov (United States)

    Cosgrove, D. J.

    1987-01-01

    When water uptake by growing cells is prevented, the turgor pressure and the tensile stress in the cell wall are reduced by continued wall loosening. This process, termed in vivo stress relaxation, provides a new way to study the dynamics of wall loosening and to measure the wall yield threshold and the physiological wall extensibility. Stress relaxation experiments indicate that wall stress supplies the mechanical driving force for wall yielding. Cell expansion also requires water absorption. The driving force for water uptake during growth is created by wall relaxation, which lowers the water potential of the expanding cells. New techniques for measuring this driving force show that it is smaller than believed previously; in elongating stems it is only 0.3 to 0.5 bar. This means that the hydraulic resistance of the water transport pathway is small and that rate of cell expansion is controlled primarily by wall loosening and yielding.

  9. Present state of the controversy about the grain boundary relaxation

    International Nuclear Information System (INIS)

    Povolo, F.; Molinas, B.J.

    1990-04-01

    An analysis of the internal friction produced by grain boundary relaxation in metals, alloys and ceramics is presented. The different interpretations given in the literature to relaxation phenomena occurring at temperatures above about half the melting point which include the influence of grain boundaries and their interaction with solutes and precipitates are discussed in detail. A complete set of the experimental data disposable in this field since 1972 until today is reviewed. Finally, some recent experiments are discussed and new ones are suggested. They might solve the actual controversy about the real origin of the relaxation phenomena observed. If this is the case, a considerable amount of information already published can be taken into account with a good degree of confidence. This information contributes to the description of the structure and behaviour of grain boundaries, both being important topics for materials science. (author). 119 refs, 21 figs, 1 tab

  10. Relaxation oscillations and transport barrier dynamics in tokamak edge plasmas

    International Nuclear Information System (INIS)

    Benkadda, Sadruddin; Beyer, Peter; Fuhr-Chaudier, Guillaume; Garbet, Xavier; Ghendrih, Philippe; Sarazin, Yanick

    2004-01-01

    Oscillations of turbulent transport of particles and energy in magnetically confined plasmas can be easily observed in simulations of a variety of turbulence models. These oscillations typically involve a mechanism of energy exchange between fluctuations and a poloidal shear flow. This kind of ''predator-prey'' mechanism is found to be not relevant for transport barrier relaxations. In RBM simulations of resistive ballooning turbulence with transport barrier, relaxation oscillations of the latter are observed even in the case of frozen poloidal shear flow. These relaxations are due to a transitory growth of a mode localized at the barrier center. A one-dimensional model for the evolution of such a mode in the presence of a shear flow describes a transitory growth of an initial perturbation. Oscillations in the case of a finite steady-state shear flow are possible due to the coupling of the mode to the dynamics of the pressure profile. (author)

  11. Relaxation phenomena in the high temperature S-1 spheromak

    International Nuclear Information System (INIS)

    Ono, Y.; Ellis, R.A. Jr.; Janos, A.C.; Levinton, F.M.; Mayo, R.M.; Motley, R.W.; Ueda, Y.; Yamada, M.

    1988-06-01

    Operation of the S-1 device in a high current density (j/n/sub e/ ≥ 2 /times/ 10 -14 A/center dot/m) regime has created high electron temperature spheromaks (50eV ≤ T/sub e/ ≤ 130eV). The mechanisms and causes of the periodic relaxation events often observed in these hotter spheromak plasmas were made clear. Also, a relationship between the MHD relaxation cycle and confinement characteristics was revealed for the first time. Resistive loss at the outer edge of the plasma causes a departure from the initial force-free minimum-energy Taylor state to a MHD profile unstable to low-n ideal MHD modes; a relaxation event then returns the configuration to nearly a Taylor state. 11 refs., 5 figs

  12. Mechanisms underlying epithelium-dependent relaxation in rat bronchioles

    DEFF Research Database (Denmark)

    Kroigaard, Christel; Dalsgaard, Thomas; Simonsen, Ulf

    2010-01-01

    This study investigated the mechanisms underlying epithelium-derived hyperpolarizing factor (EpDHF)-type relaxation in rat bronchioles. Immunohistochemistry was performed, and rat bronchioles and pulmonary arteries were mounted in microvascular myographs for functional studies. An opener of small...... (SK(Ca)) and intermediate (IK(Ca))-conductance calcium-activated potassium channels, NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime) was used to induce EpDHF-type relaxation. IK(Ca) and SK(Ca)3 positive immunoreactions were observed mainly in the epithelium and endothelium of bronchioles and arteries......, respectively. In 5-hydroxytryptamine (1 microM)-contracted bronchioles (828 +/- 20 microm, n = 84) and U46619 (0.03 microM)-contracted arteries (720 +/- 24 microm, n = 68), NS309 (0.001-10 microM) induced concentration-dependent relaxations that were reduced by epithelium/endothelium removal and by blocking IK...

  13. Stability investigations of relaxing molecular gas flows. Results and perspectives

    Science.gov (United States)

    Grigor'ev, Yurii N.; Ershov, Igor V.

    2017-10-01

    This article presents results of systematic investigations of a dissipative effect which manifests itself as the growth of hydrodynamic stability and suppression of turbulence in relaxing molecular gas flows. The effect can be a new way for control stability and laminar turbulent transition in aerodynamic flows. The consideration of suppression of inviscid acoustic waves in 2D shear flows is presented. Nonlinear evolution of large-scale vortices and Kelvin — Helmholtz waves in relaxing shear flows are studied. Critical Reynolds numbers in supersonic Couette flows are calculated analytically and numerically within the framework of both classical linear and nonlinear energy hydrodynamic stability theories. The calculations clearly show that the relaxation process can appreciably delay the laminar-turbulent transition. The aim of this article is to show the new dissipative effect, which can be used for flow control and laminarization.

  14. Dielectric relaxations above room temperature in DMPU derived polyaniline film

    International Nuclear Information System (INIS)

    Mallya, Ashwini N.; Yashavanth Kumar, G.S.; Ranjan, Rajeev; Ramamurthy, Praveen C.

    2012-01-01

    Dielectric measurements carried out on drop casted from solution of emeraldine base form of polyaniline films in the temperature range 30-300 °C revealed occurrence of two maxima in the loss tangent as a function of temperature. The activation energies corresponding to these two relaxation processes were found to be ∼0.5 eV and ∼1.5 eV. The occurrence of one relaxation peak in the dispersion curve of the imaginary part of the electric modulus suggests the absence of microphase separation in the film. Thermogravimetric analysis and infrared spectroscopic measurements showed that the films retained its integrity up to 300 °C. The dielectric relaxation at higher temperatures with large activation energy of 1.5 eV is attributed to increase in the barrier potential due to decrease in the polymer conjugation as a result of wide amplitude motion of the chain segments well above the glass transition temperature.

  15. Grid Cell Relaxation Effects on the High Frequency Vibration Characteristics

    International Nuclear Information System (INIS)

    Ryu, Joo-Young; Eom, Kyong-Bo; Jeon, Sang-Youn; Kim, Jae-Ik

    2015-01-01

    The plate structure of the grid of fuel assembly is always exposed to serious vortex induced vibration. Also, High Frequency flow induced Vibration (HFV) is primarily generated by vortex-shedding effect. When it comes to grid design as a fuel assembly component, HFV should be considered in advance since it is one of the critical factors. Excessive HFV has a possibility of making degradation of the fuel reliability that is directly related to the fuel robustness and operating performance. KEPCO NF (KNF) has performed HFV tests with various grid designs. While studying the HFV characteristics through the HFV tests, it has been observed that HFV amplitudes show different levels according to grid cell relaxation. It means that the testing could give different interpretations due to the condition of grid cell. Since the amount of relaxation is different under operating conditions and environments in a reactor, test specimens should be modified as much as possible to the real state of the fuel. Therefore, in order to consider the grid cell relaxation effects on the HFV tests, it is important to use cell sized or non-cell sized grids. The main focus of this study is to find out how the HFV characteristics such as amplitude and frequency are affected by grid cell relaxation. Three cases of the grid cell sized specimen which is nickel alloy were prepared and tested. Through the comparison of the test results, it could be concluded that HFV amplitudes show decreasing trend according to the grid cell relaxation in the case of nickel alloy grid. It is also possible to expect the tendency of grid cell relaxation of a zirconium alloy grid based on test results

  16. Vascular relaxation induced by C-type natriuretic peptide involves the ca2+/NO-synthase/NO pathway.

    Directory of Open Access Journals (Sweden)

    Fernanda A Andrade

    Full Text Available AIMS: C-type natriuretic peptide (CNP and nitric oxide (NO are endothelium-derived factors that play important roles in the regulation of vascular tone and arterial blood pressure. We hypothesized that NO produced by the endothelial NO-synthase (NOS-3 contributes to the relaxation induced by CNP in isolated rat aorta via activation of endothelial NPR-C receptor. Therefore, the aim of this study was to investigate the putative contribution of NO through NPR-C activation in the CNP induced relaxation in isolated conductance artery. MAIN METHODS: Concentration-effect curves for CNP were constructed in aortic rings isolated from rats. Confocal microscopy was used to analyze the cytosolic calcium mobilization induced by CNP. The phosphorylation of the residue Ser1177 of NOS was analyzed by Western blot and the expression and localization of NPR-C receptors was analyzed by immunohistochemistry. KEY FINDINGS: CNP was less potent in inducing relaxation in denuded endothelium aortic rings than in intact ones. L-NAME attenuated the potency of CNP and similar results were obtained in the presence of hydroxocobalamin, an intracellular NO0 scavenger. CNP did not change the phosphorylation of Ser1177, the activation site of NOS-3, when compared with control. The addition of CNP produced an increase in [Ca2+]c in endothelial cells and a decrease in [Ca2+]c in vascular smooth muscle cells. The NPR-C-receptors are expressed in endothelial and adventitial rat aortas. SIGNIFICANCE: These results suggest that CNP-induced relaxation in intact aorta isolated from rats involves NO production due to [Ca2+]c increase in endothelial cells possibly through NPR-C activation expressed in these cells. The present study provides a breakthrough in the understanding of the close relationship between the vascular actions of nitric oxide and CNP.

  17. Correlated and uncorrelated heart rate fluctuations during relaxing visualization

    Science.gov (United States)

    Papasimakis, N.; Pallikari, F.

    2010-05-01

    The heart rate variability (HRV) of healthy subjects practicing relaxing visualization is studied by use of three multiscale analysis techniques: the detrended fluctuation analysis (DFA), the entropy in natural time (ENT) and the average wavelet (AWC) coefficient. The scaling exponent of normal interbeat interval increments exhibits characteristics of the presence of long-range correlations. During relaxing visualization the HRV dynamics change in the sense that two new features emerge independent of each other: a respiration-induced periodicity that often dominates the HRV at short scales (sleep.

  18. Nuclear magnetic relaxation in aqueous praseodymium and europium solutions

    International Nuclear Information System (INIS)

    Lopez, J.L.; Diaz, D.

    1991-01-01

    A general theory for the relaxation of the nuclear spin in paramagnetic complexes where the electronic spin is within a slow-movement regime was presented by Benetis et al. and applied to d-group elements (Ni 2+ , Co 2+ ). This paper show the possibility to apply such formalism to f-group elements and it was developed for S=3(Eu 3+ ). A group of magnitudes characterizing the microstructure and dynamics of these solutions is reported with the approximations used. The dispersion of the nuclear magnetic relaxation (NMRD) for the proton of the variable field was also assessed which had a similar behaviour to what was experimentally reported

  19. Nuclear quadrupole relaxation and viscosity in liquid metals

    International Nuclear Information System (INIS)

    Schirmacher, W.

    1976-01-01

    It is shown that the nuclear quadrupole relaxation rate due to the molecular motions in liquid metals is related to the shear and bulk viscosity and hence to the absorption coefficient of ultrasound. Application of the 'extended liquid phonon' model of Ortoleva and Nelkin - which is the third of a series of continued-fraction-approximations for the van Hove neutron scattering function - gives a relation to the self diffusion constant. The predictions of the theory concerning the temperature dependence are compared with quadrupole relaxation measurements of Riegel et al. and Kerlin et al. in liquid gallium. Agreement is found only with the data of Riegel et al. (orig.) [de

  20. Multi-region relaxed magnetohydrodynamics with anisotropy and flow

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, G. R., E-mail: graham.dennis@anu.edu.au; Dewar, R. L.; Hole, M. J. [Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia); Hudson, S. R. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)

    2014-07-15

    We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes pressure anisotropy and general plasma flows. This anisotropic extension to our previous isotropic model is motivated by Sun and Finn's model of relaxed anisotropic magnetohydrodynamic equilibria. We prove that as the number of plasma regions becomes infinite, our anisotropic extension of MRxMHD reduces to anisotropic ideal MHD with flow. The continuously nested flux surface limit of our MRxMHD model is the first variational principle for anisotropic plasma equilibria with general flow fields.

  1. Computation of multi-region relaxed magnetohydrodynamic equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, S. R.; Lazerson, S. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Dewar, R. L.; Dennis, G.; Hole, M. J.; McGann, M.; Nessi, G. von [Plasma Research Laboratory, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2012-11-15

    We describe the construction of stepped-pressure equilibria as extrema of a multi-region, relaxed magnetohydrodynamic (MHD) energy functional that combines elements of ideal MHD and Taylor relaxation, and which we call MRXMHD. The model is compatible with Hamiltonian chaos theory and allows the three-dimensional MHD equilibrium problem to be formulated in a well-posed manner suitable for computation. The energy-functional is discretized using a mixed finite-element, Fourier representation for the magnetic vector potential and the equilibrium geometry; and numerical solutions are constructed using the stepped-pressure equilibrium code, SPEC. Convergence studies with respect to radial and Fourier resolution are presented.

  2. Measuring the equations of state in a relaxed magnetohydrodynamic plasma

    Science.gov (United States)

    Kaur, M.; Barbano, L. J.; Suen-Lewis, E. M.; Shrock, J. E.; Light, A. D.; Brown, M. R.; Schaffner, D. A.

    2018-01-01

    We report measurements of the equations of state of a fully relaxed magnetohydrodynamic (MHD) laboratory plasma. Parcels of magnetized plasma, called Taylor states, are formed in a coaxial magnetized plasma gun, and are allowed to relax and drift into a closed flux conserving volume. Density, ion temperature, and magnetic field are measured as a function of time as the Taylor states compress and heat. The theoretically predicted MHD and double adiabatic equations of state are compared to experimental measurements. We find that the MHD equation of state is inconsistent with our data.

  3. Characterization of the transverse relaxation rates in lipid bilayers

    International Nuclear Information System (INIS)

    Watnick, P.I.; Dea, P.; Chan, S.I.

    1990-01-01

    The 2H NMR transverse relaxation rates of a deuterated phospholipid bilayer reflect slow motions in the bilayer membrane. A study of dimyristoyl lecithin specifically deuterated at several positions of the hydrocarbon chains indicates that these motions are cooperative and are confined to the hydrocarbon chains of the lipid bilayer. However, lipid head group interactions do play an important role in modulating the properties of the cooperative fluctuations of the hydrocarbon chains (director fluctuations), as evidenced by the effects of various lipid additives on the 2H NMR transverse relaxation rates of the dimyristoyl lecithin bilayer

  4. Magnetization relaxation in spin glasses above transition point

    International Nuclear Information System (INIS)

    Zajtsev, I.A.; Minakov, A.A.; Galonzka, R.R.

    1988-01-01

    Magnetization relaxation of Cd 0.6 Zn 0.4 Cr 2 Se 4 and Cd 0.6 Mn 0.4 Te monocrystalline samples with T g =21 K and T g =12 K respectively and magnetic colloid is investigated. It is shown that magnetization inexponential relaxation detected experimentally in spin and dipole glasses is essentially higher than T g temperature transition. It is found that at temperatures higher than T g the essential difference is observed in behaviour of spin glasses with different Z and disorder types

  5. An Electron/Photon/Relaxation Data Library for MCNP6

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, III, H. Grady [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-07

    The capabilities of the MCNP6 Monte Carlo code in simulation of electron transport, photon transport, and atomic relaxation have recently been significantly expanded. The enhancements include not only the extension of existing data and methods to lower energies, but also the introduction of new categories of data and methods. Support of these new capabilities has required major additions to and redesign of the associated data tables. In this paper we present the first complete documentation of the contents and format of the new electron-photon-relaxation data library now available with the initial production release of MCNP6.

  6. Fast relaxation transients in a kicked damped oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Urquizu, Merce [Laboratori d' Estudis Geofisics ' Eduard Fontsere' , IEC, Barcelona (Spain); Correig, Antoni M. [Departament d' Astronomical i Meteorologia, Laboratori d' Estudis Geofisics Eduard Fontsere, UB Marti Franques 1, E-08028 Barcelona (Spain) and Laboratori d' Estudis Geofisics ' Eduard Fontsere' , IEC, Barcelona (Spain)]. E-mail: ton.correig@am.ub.es

    2007-08-15

    Although nonlinear relaxation transients are very common in nature, very few studies are devoted to its characterization, mainly due to its short time duration. In this paper, we present a study about the nature of relaxation transients in a kicked damped oscillator, in which transients are generated in terms of continuous fast changes in the parameters of the system. We have found that transient dynamics can be described, rather than in terms of bifurcation dynamics, in terms of instantaneous stretching factors, which are related to the stability of fixed points of the corresponding stroboscopic maps.

  7. Dispersion of Sound in Dilute Suspensions with Nonlinear Particle Relaxation

    Science.gov (United States)

    Kandula, Max

    2010-01-01

    The theory accounting for nonlinear particle relaxation (viscous and thermal) has been applied to the prediction of dispersion of sound in dilute suspensions. The results suggest that significant deviations exist for sound dispersion between the linear and nonlinear theories at large values of Omega(Tau)(sub d), where Omega is the circular frequency, and Tau(sub d) is the Stokesian particle relaxation time. It is revealed that the nonlinear effect on the dispersion coefficient due to viscous contribution is larger relative to that of thermal conduction

  8. Field dependence of the electron spin relaxation in quantum dots.

    Science.gov (United States)

    Calero, Carlos; Chudnovsky, E M; Garanin, D A

    2005-10-14

    The interaction of the electron spin with local elastic twists due to transverse phonons is studied. The universal dependence of the spin-relaxation rate on the strength and direction of the magnetic field is obtained in terms of the electron gyromagnetic tensor and macroscopic elastic constants of the solid. The theory contains no unknown parameters and it can be easily tested in experiment. At high magnetic field it provides a parameter-free lower bound on the electron spin relaxation in quantum dots.

  9. Anomalous behavior of secondary dielectric relaxation in polypropylene glycols

    Energy Technology Data Exchange (ETDEWEB)

    Grzybowska, K; Grzybowski, A; Ziolo, J; Rzoska, S J; Paluch, M [Institute of Physics, Silesian University, Uniwersytecka 4, 40-007 Katowice (Poland)

    2007-09-19

    A surprising slow down in the dielectric secondary {gamma}-relaxation with temperature increasing near the glass transition is confirmed for several polypropylene glycols. The peculiar behavior diminishes as the molecular weight grows. The minimal model (Dyre and Olsen 2003 Phys. Rev. Lett. 91 155703) is applied successfully to describe the temperature dependences of the {gamma}-relaxation times. The minimal model parameters are analyzed for different molecular weights. A molecular explanation of the {gamma}-process anomaly for polypropylene glycols is proposed on the basis of the minimal model prediction.

  10. Introduction to electronic relaxation in solids: mechanisms and measuring techniques

    International Nuclear Information System (INIS)

    Bonville, P.

    1983-01-01

    The fluctuations of electronic magnetic moments in solids may be investigated by several techniques, either electronic or nuclear. This paper is an introduction of the most frequently encountered paramagnetic relaxation mechanisms (phonons, conduction electrons, exchange or dipolar interactions) in condensed matter, and to the different techniques used for measuring relaxation frequencies: electronic paramagnetic resonance, nuclear magnetic resonance, Moessbauer spectroscopy, inelastic neutron scattering, measurement of longitudinal ac susceptibility and γ-γ perturbed angular correlations. We mainly focus our attention on individual ionic fluctuation spectra, the majority of the experimental work refered to concerning rare earth systems [fr

  11. Coherence and relaxation in energy transfer processes in condensed phases

    International Nuclear Information System (INIS)

    Shelby, R.M.

    1978-03-01

    Investigations of electronic triplet and vibrational energy transfer dynamics and relaxation processes are presented. Emphasis is placed on understanding the role of coherence and interactions which tend to destroy the coherence. In the case of triplet excitons at low temperatures, the importance of coherence in energy migration can be established, and the average coherence parameters can be experimentally determined. In the case of vibrational excitations, both picosecond spectroscopic studies of vibrational relaxation and spontaneous Raman spectroscopy are used to characterize the dynamics and give increased insight into the nature of the mechanisms responsible for vibrational dephasing. The design and operation of the picosecond apparatus used in these experiments is also described

  12. Non-exponential dynamic relaxation in strongly nonequilibrium nonideal plasmas

    International Nuclear Information System (INIS)

    Morozov, I V; Norman, G E

    2003-01-01

    Relaxation of kinetic energy to the equilibrium state is simulated by the molecular dynamics method for nonideal two-component non-degenerate plasmas. Three limiting examples of initial states of strongly nonequilibrium plasma are considered: zero electron velocities, zero ion velocities and zero velocities of both electrons and ions. The initial non-exponential stage, its duration τ nB and subsequent exponential stages of the relaxation process are studied for a wide range of the nonideality parameter and the ion mass

  13. Search Trees with Relaxed Balance and Near-Optimal Height

    DEFF Research Database (Denmark)

    Fagerberg, Rolf; Jensen, Rune E.; Larsen, Kim Skak

    2001-01-01

    We introduce a relaxed k-tree, a search tree with relaxed balance and a height bound, when in balance, of (1+epsilon)log_2 n + 1, for any epsilon > 0. The number of nodes involved in rebalancing is O(1/epsilon) per update in the amortized sense, and O(log n/epsilon) in the worst case sense. This ...... constant rebalancing, which is an improvement over the current definition. World Wide Web search engines are possible applications for this line of work....

  14. Multistage Spectral Relaxation Method for Solving the Hyperchaotic Complex Systems

    Directory of Open Access Journals (Sweden)

    Hassan Saberi Nik

    2014-01-01

    Full Text Available We present a pseudospectral method application for solving the hyperchaotic complex systems. The proposed method, called the multistage spectral relaxation method (MSRM is based on a technique of extending Gauss-Seidel type relaxation ideas to systems of nonlinear differential equations and using the Chebyshev pseudospectral methods to solve the resulting system on a sequence of multiple intervals. In this new application, the MSRM is used to solve famous hyperchaotic complex systems such as hyperchaotic complex Lorenz system and the complex permanent magnet synchronous motor. We compare this approach to the Runge-Kutta based ode45 solver to show that the MSRM gives accurate results.

  15. Stretched exponential relaxation and ac universality in disordered dielectrics

    DEFF Research Database (Denmark)

    Milovanov, Alexander V.; Rypdal, Kristoffer; Juul Rasmussen, Jens

    2007-01-01

    This paper is concerned with the connection between the properties of dielectric relaxation and alternating-current (ac) conduction in disordered dielectrics. The discussion is divided between the classical linear-response theory and a self-consistent dynamical modeling. The key issues are stretc......This paper is concerned with the connection between the properties of dielectric relaxation and alternating-current (ac) conduction in disordered dielectrics. The discussion is divided between the classical linear-response theory and a self-consistent dynamical modeling. The key issues...

  16. Power-law relaxation in human violent conflicts

    Science.gov (United States)

    Picoli, Sergio; Antonio, Fernando J.; Itami, Andreia S.; Mendes, Renio S.

    2017-08-01

    We study relaxation patterns of violent conflicts after bursts of activity. Data were obtained from available catalogs on the conflicts in Iraq, Afghanistan and Northern Ireland. We find several examples in each catalog for which the observed relaxation curves can be well described by an asymptotic power-law decay (the analog of the Omori's law in geophysics). The power-law exponents are robust, nearly independent of the conflict. We also discuss the exogenous or endogenous nature of the shocks. Our results suggest that violent conflicts share with earthquakes and other natural and social phenomena a common feature in the dynamics of aftershocks.

  17. Efficient modified Jacobi relaxation for minimizing the energy functional

    International Nuclear Information System (INIS)

    Park, C.H.; Lee, I.; Chang, K.J.

    1993-01-01

    We present an efficient scheme of diagonalizing large Hamiltonian matrices in a self-consistent manner. In the framework of the preconditioned conjugate gradient minimization of the energy functional, we replace the modified Jacobi relaxation for preconditioning and use for band-by-band minimization the restricted-block Davidson algorithm, in which only the previous wave functions and the relaxation vectors are included additionally for subspace diagonalization. Our scheme is found to be comparable with the preconditioned conjugate gradient method for both large ordered and disordered Si systems, while it is more rapidly converged for systems with transition-metal elements

  18. Relaxation of nuclear spin on holes in semiconductors

    International Nuclear Information System (INIS)

    Gr'ncharova, E.I.; Perel', V.I.

    1977-01-01

    The longitudienal relaxation time T 1 of nuclear spins due to dipole-dipole interaction with holes in semiconductors is calculated. Expressions for T 1 in cubic and uniaxial semiconductors are obtained for non-degenerate and degenerate cases. On the basis of comparison with available experimental data for silicon the agreement with the theoretical results is obtained. It is demonstrated that in uniaxial semiconductors the time of relaxation on holes for a nuclear spin directed along the c axis is considerably greater than that for a spin in the normal direction

  19. Electrical response of relaxing dielectrics compressed by arbitrary stress pulses

    International Nuclear Information System (INIS)

    Lysne, P.C.

    1983-01-01

    The theoretical problem of the electric response of biased dielectrics and piezoelectrics subjected to planar stress pulse loading is considered. The materials are taken to exhibit dielectric relaxation in the sense that changes in the polarization induced by electric fields do not occur instantaneously with changes in the fields. While this paper considers arbitrary stress pulse loading of the specimen, examples that are amenable to projectile impact techniques are considered in detail. They are shock reverberation, thin pulse, and ramp loading experiments. It is anticipated that these experiments will play a role in investigations of dielectric relaxation caused by shock induced damage in insulators

  20. Longitudinal relaxation of initially straight flexible and stiff polymers

    Science.gov (United States)

    Dimitrakopoulos, Panagiotis; Dissanayake, Inuka

    2004-11-01

    The present talk considers the relaxation of a single flexible or stiff polymer chain from an initial straight configuration in a viscous solvent. This problem commonly arises when strong flows are turned off in both industrial and biological applications. The problem is also motivated by recent experiments with single biopolymer molecules relaxing after being fully extended by applied forces as well as by the recent development of micro-devices involving stretched tethered biopolymers. Our results are applicable to a wide array of synthetic polymers such as polyacrylamides, Kevlar and polyesters as well as biopolymers such as DNA, actin filaments, microtubules and MTV. In this talk we discuss the mechanism of the polymer relaxation as was revealed through Brownian Dynamics simulations covering a broad range of time scales and chain stiffness. After the short-time free diffusion, the chain's longitudinal reduction at early intermediate times is shown to constitute a universal behavior for any chain stiffness caused by a quasi-steady relaxation of tensions associated with the deforming action of the Brownian forces. Stiff chains are shown to exhibit a late intermediate-time longitudinal reduction associated with a relaxation of tensions affected by the deforming Brownian and the restoring bending forces. The longitudinal and transverse relaxations are shown to obey different laws, i.e. the chain relaxation is anisotropic at all times. In the talk, we show how from the knowledge of the relaxation mechanism, we can predict and explain the polymer properties including the polymer stress and the solution birefringence. In addition, a generalized stress-optic law is derived valid for any time and chain stiffness. All polymer properties which depend on the polymer length are shown to exhibit two intermediate-time behaviors with the early one to constitute a universal behavior for any chain stiffness. This work was supported in part by the Minta Martin Research Fund. The