WorldWideScience

Sample records for relaxation behavior bloch

  1. Influence of relaxation times on the Bloch-Siegert shift

    International Nuclear Information System (INIS)

    Cao Long Van

    1981-01-01

    A new method for calculations of Bloch-Siegert shifts in resonances between excited states with the inclusion of relaxation times is given. It will be shown that in this case the definition of the resonance given by I. Bialynicka-Birula is in agreement with the criterion defining the resonance used by D.A. Andrews and G. Newton. (author)

  2. Characterization of anomalous relaxation using the time-fractional Bloch equation and multiple echo T2 *-weighted magnetic resonance imaging at 7 T.

    Science.gov (United States)

    Qin, Shanlin; Liu, Fawang; Turner, Ian W; Yu, Qiang; Yang, Qianqian; Vegh, Viktor

    2017-04-01

    To study the utility of fractional calculus in modeling gradient-recalled echo MRI signal decay in the normal human brain. We solved analytically the extended time-fractional Bloch equations resulting in five model parameters, namely, the amplitude, relaxation rate, order of the time-fractional derivative, frequency shift, and constant offset. Voxel-level temporal fitting of the MRI signal was performed using the classical monoexponential model, a previously developed anomalous relaxation model, and using our extended time-fractional relaxation model. Nine brain regions segmented from multiple echo gradient-recalled echo 7 Tesla MRI data acquired from five participants were then used to investigate the characteristics of the extended time-fractional model parameters. We found that the extended time-fractional model is able to fit the experimental data with smaller mean squared error than the classical monoexponential relaxation model and the anomalous relaxation model, which do not account for frequency shift. We were able to fit multiple echo time MRI data with high accuracy using the developed model. Parameters of the model likely capture information on microstructural and susceptibility-induced changes in the human brain. Magn Reson Med 77:1485-1494, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  3. Creep and relaxation behavior of Inconel-617

    International Nuclear Information System (INIS)

    Osthoff, W.; Ennis, P.J.; Nickel, H.; Schuster, H.

    1984-01-01

    The static and dynamic creep behavior of Inconel alloy 617 has been determined in constant load creep tests, relaxation tests, and stress reduction tests in the temperature range 1023 to 1273 K. The results have been interpreted using the internal stress concept: The dependence of the internal stress on the applied stress and test temperature was determined. In a few experiments, the influence of cold deformation prior to the creep test on the magnitude of the internal stress was also investigated. It was found that the experimentally observed relaxation behavior could be more satisfactorily described using the Norton creep equation modified by incorporation of the internal stress than by the conventional Norton creep equation

  4. Relaxation behavior of ion conducting glasses

    International Nuclear Information System (INIS)

    Bunde, A.; Dieterich, W.; Maass, P.; Meyer, M.

    1997-01-01

    We investigate by Monte Carlo simulations the diffusion of ions in an energetically disordered lattice, where the Coulomb interaction between the mobile ions is explicitly taken into account. We show that the combined effect of Coulomb interaction and disorder can account for the ionic ac-conductivity in glasses and the recently discovered non-Arrhenius behavior of the dc-conductivity in glassy fast ionic conductors. Our results suggest that glassy ionic conductors can be optimized by lowering the strength of the energetic disorder but that the ionic interaction effects set an upper bound for the conductivity at high temperatures. (author)

  5. Anomalous behavior of secondary dielectric relaxation in polypropylene glycols

    Energy Technology Data Exchange (ETDEWEB)

    Grzybowska, K; Grzybowski, A; Ziolo, J; Rzoska, S J; Paluch, M [Institute of Physics, Silesian University, Uniwersytecka 4, 40-007 Katowice (Poland)

    2007-09-19

    A surprising slow down in the dielectric secondary {gamma}-relaxation with temperature increasing near the glass transition is confirmed for several polypropylene glycols. The peculiar behavior diminishes as the molecular weight grows. The minimal model (Dyre and Olsen 2003 Phys. Rev. Lett. 91 155703) is applied successfully to describe the temperature dependences of the {gamma}-relaxation times. The minimal model parameters are analyzed for different molecular weights. A molecular explanation of the {gamma}-process anomaly for polypropylene glycols is proposed on the basis of the minimal model prediction.

  6. Creep and stress relaxation behavior of two soft denture liners.

    Science.gov (United States)

    Salloum, Alaa'a M

    2014-03-01

    Numerous investigators stated the indications of soft denture lining materials; but no one determined the indications of these materials according to their chemical structure. The purpose of this investigation was to evaluate the viscoelastic properties of acrylic and silicon lining materials. This study investigated and compared viscoelastic properties of two resilient denture lining materials. Tested materials were laboratory processed; one of them was silicone-based liner product (Molloplast-B), and the other was plasticized acrylic resin (Vertex™ Soft). Twenty cylindrical specimens (10-20 mm in length, 11.55 mm in diameter) were fabricated in an aluminum mold from each material for creep and stress relaxation testing (the study of viscoelastic properties). Tests were performed by using the universal testing machine DY-34. Collected data were analyzed with t test statistics for statistically significant differences at the 95 % confidence level. There was a clear difference in creep and stress relaxation behavior between acrylic and silicone liners. Statistical study of Young's moduli illustrated that Vertex™ Soft was softer than Molloplast-B. On the other hand, the results explained that the recovery of silicone material was better than of acrylic one. The creep test revealed that the plasticized acrylic resin lining material exhibited considerable creep, whereas silicone-based liner exhibited elastic behavior. Besides, the stress relaxation test showed that relaxation of the plasticized acrylic resin material was bigger than of the silicone-based liner.

  7. Squeezing corrections to the Bloch equations

    International Nuclear Information System (INIS)

    Abundo, M.; Accardi, L.

    1991-01-01

    The general analysis of quantum noise shows that a squeezing noise can produce quadratic nonlinearities in the Langevin equations leading to the Bloch equations. These quadratic nonlinearities are governed by the imaginary part of the off-diagonal terms of the covariance of the noise (the squeezing terms) and imply a correction to the usual form of the Bloch equations. Here the case of spin-one nuclei subjected to squeezing noises of particular type is studied numerically. It is shown that the corrections to the Bloch equations, suggested by the theory, to the behaviour of the macroscopic nuclear polarization in a scale of times of the order of the relaxation time can be quite substantial. In the equilibrium regime, even if the qualitative behaviour of the system is the same (exponential decay), the numerical equilibrium values predicted by the theory are consistently different from those predicted by the usual Bloch equation. It is suggested that this difference might be used to test experimentally the observable effects of squeezing noises

  8. Creep and inverse stress relaxation behaviors of carbon nanotube yarns.

    Science.gov (United States)

    Misak, H E; Sabelkin, V; Miller, L; Asmatulu, R; Mall, S

    2013-12-01

    Creep, creep recovery and inverse stress relaxation behaviors of carbon nanotube yarns that consisted of 1-, 30-, and 100-yarn(s) were characterized. Primary and secondary creep stages were observed over the duration of 336 h. The primary creep stage lasted for about 4 h at an applied load equal to 75% of the ultimate tensile strength. The total strain in the primary stage was significantly larger in the carbon nanotube multi-yarn than in the carbon nanotube 1-yarn. In the secondary stage, 1-yarn also had a smaller steady state strain rate than the multi-yarn, and it was independent of number of yarns in multi-yarn. Strain response under cyclic creep loading condition was comparable to its counterpart in non-cyclic (i.e., standard) creep test except that strain response during the first cycle was slightly different from the subsequent cycles. Inverse creep (i.e., strain recovery) was observed in the 100-yarn during the cyclic creep tests after the first unloading cycle. Furthermore, inverse stress relaxation of the multi-yarns was characterized. Inverse stress relaxation was larger and for longer duration with the larger number of yarns.

  9. “Remain calm. Be kind”: Effects of relaxing video games on aggressive and prosocial behavior

    NARCIS (Netherlands)

    Whitaker, J.L.; Bushman, B.J.

    2012-01-01

    Research shows that violent video games increase aggressive behavior and decrease prosocial behavior, but could relaxing video games have the opposite effects? In two experiments, participants were randomly assigned to play a relaxing, neutral, or prosocial video game for 20 min. In Experiment 1,

  10. The Bloch Approximation in Periodically Perforated Media

    International Nuclear Information System (INIS)

    Conca, C.; Gomez, D.; Lobo, M.; Perez, E.

    2005-01-01

    We consider a periodically heterogeneous and perforated medium filling an open domain Ω of R N . Assuming that the size of the periodicity of the structure and of the holes is O(ε),we study the asymptotic behavior, as ε → 0, of the solution of an elliptic boundary value problem with strongly oscillating coefficients posed in Ω ε (Ω ε being Ω minus the holes) with a Neumann condition on the boundary of the holes. We use Bloch wave decomposition to introduce an approximation of the solution in the energy norm which can be computed from the homogenized solution and the first Bloch eigenfunction. We first consider the case where Ωis R N and then localize the problem for abounded domain Ω, considering a homogeneous Dirichlet condition on the boundary of Ω

  11. Inducing Assertive Behavior in Chronic Schizophrenics: A Comparison of Socioenvironmental Desensitization, and Relaxation Therapies

    Science.gov (United States)

    Weinman, Bernard; And Others

    1972-01-01

    It is concluded that systematic desensitization or relaxation therapy is not effective in inducing assertive behavior in the male chronic schizophrenic. The treatment of choice for the older chronic male schizophrenic remains socioenvironmental therapy. (Author)

  12. The Effects of Progressive Relaxation and Music on Attention, Relaxation, and Stress Responses: An Investigation of the Cognitive-Behavioral Model of Relaxation

    National Research Council Canada - National Science Library

    Scheufele, Peter

    1999-01-01

    ...) suggested that stress management techniques have specific effects A compromise position suggests that the specific effects of relaxation techniques are superimposed upon a general relaxation response...

  13. A theory of generalized Bloch oscillations

    International Nuclear Information System (INIS)

    Duggen, Lars; Lassen, Benny; Lew Yan Voon, L C; Willatzen, Morten

    2016-01-01

    Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact calculation is given to confirm this phenomenon. Our results allow for a greater freedom of design for experimentally observing Bloch oscillations. For strongly coupled oscillator systems displaying Bloch oscillations, it is further demonstrated that reordering of oscillators leads to destruction of Bloch oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics. (paper)

  14. Time-Dependent Behaviors of Granite: Loading-Rate Dependence, Creep, and Relaxation

    Science.gov (United States)

    Hashiba, K.; Fukui, K.

    2016-07-01

    To assess the long-term stability of underground structures, it is important to understand the time-dependent behaviors of rocks, such as their loading-rate dependence, creep, and relaxation. However, there have been fewer studies on crystalline rocks than on tuff, mudstone, and rock salt, because the high strength of crystalline rocks makes the detection of their time-dependent behaviors much more difficult. Moreover, studies on the relaxation, temporal change of stress and strain (TCSS) conditions, and relations between various time-dependent behaviors are scarce for not only granites, but also other rocks. In this study, previous reports on the time-dependent behaviors of granites were reviewed and various laboratory tests were conducted using Toki granite. These tests included an alternating-loading-rate test, creep test, relaxation test, and TCSS test. The results showed that the degree of time dependence of Toki granite is similar to other granites, and that the TCSS resembles the stress-relaxation curve and creep-strain curve. A viscoelastic constitutive model, proposed in a previous study, was modified to investigate the relations between the time-dependent behaviors in the pre- and post-peak regions. The modified model reproduced the stress-strain curve, creep, relaxation, and the results of the TCSS test. Based on a comparison of the results of the laboratory tests and numerical simulations, close relations between the time-dependent behaviors were revealed quantitatively.

  15. Stress relaxation behavior and mechanism of AEREX350 and Waspaloy superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuzhou; Dong, Jianxin; Zhang, Maicang; Yao, Zhihao

    2016-12-15

    The relaxation properties of AEREX350 and Waspaloy were studied contrastively at temperatures ranging from 600 °C to 800 °C with the same initial stress 510 MPa. The relationship between the microstructure and relaxation properties was elucidated using scanning and transmission electron microscopy techniques. It was found that the relaxation limit and relaxation stability of the two alloys decreased obviously with the increase of temperature, but the relaxation stability of AEREX350 decreased more slowly compared with Waspaloy. Further investigations show that the relaxation behavior is mainly depended on both precipitate characteristics and its interaction with dislocations. The complex precipitates evolution of AEREX350 alloy leads to a higher relaxation limit at high temperature 800 °C, but more quantity of γ′ in Waspaloy results in a higher relaxation limit at the low temperature of 600 °C. Thus it is suggested that as fastener alloys, Waspaloy is more suitable for low temperature service while AEREX350 is the preferred choice for high temperature service.

  16. The origin of small and large molecule behavior in the vibrational relaxation of highly excited molecules

    International Nuclear Information System (INIS)

    Gordon, R.J.

    1990-01-01

    An explanation is proposed for the qualitatively different types of behavior that have been reported for the vibrational relaxation of highly excited diatomic and polyatomic molecules. It is argued that all of the diatomic molecules that have been studied in bulk relax adiabatically at room temperature. In contrast, large polyatomic molecules have low frequency modes which act at ''doorway'' modes for the rest of the molecules, producing an impulsive relaxation mechanism. The theoretical work of Nesbitt and Hynes showed that impulsive collisions result in an exponential decay of the average vibrational energy of a Morse oscillator, whereas adiabatic collisions produce nonexponential power law behavior. We propose that this result explains a large body of data for the vibrational relaxation of small and large molecules

  17. Effect of Temper Condition on Stress Relaxation Behavior of an Aluminum Copper Lithium Alloy

    Science.gov (United States)

    Mishra, Sumeet; Beura, Vikrant Kumar; Singh, Amit; Yadava, Manasij; Nayan, Niraj

    2018-04-01

    Deformation behavior of an Al-Cu-Li alloy in different temper conditions (solutionized and T8) is investigated using stress relaxation tests. Fundamental parameters such as the apparent and physical activation volume, strain rate sensitivity, effective stress, and exhaustion rate of mobile dislocation density are determined from single and multiple relaxation tests. It was found that dislocation-dislocation interaction controls the kinetics of plastic deformation in the solutionized sample, whereas dislocation-precipitate interaction is the overriding factor in the presence of T1 precipitates. The apparent activation volume was found to be significantly lower in the presence of T1 precipitates compared with solutionized samples. Strain rate sensitivity and effective stress were found to be higher in the presence of T1 precipitates. In addition, multiple relaxation tests showed that irrespective of microstructural features (solutes, semi-coherent precipitates), the mobile dislocation density reduces during the relaxation period. Further evidence regarding reduction in mobile dislocation density is obtained from uniaxial tensile tests carried out after stress relaxation tests, where both solutionized and T8 samples show an increase in strength. Additional discussion on relaxation strain is included to provide a complete overview regarding the time-dependent deformation behavior of the Al-Cu-Li alloy in different temper conditions.

  18. Felix Bloch (1905–1983)

    Indian Academy of Sciences (India)

    IAS Admin

    1905, to Jewish parents, Gustav and Agnes Bloch. The year he ... Both the student and the supervisor were in their 20's, separated by 5– ... up on the West Coast, in the University of Stanford, where he stayed for the rest of his academic life.

  19. Multidimensional dynamic piezoresponse measurements. Unraveling local relaxation behavior in relaxor-ferroelectrics via big data

    International Nuclear Information System (INIS)

    Vasudevan, Rama K.; Zhang, Shujun; Okatan, Mahmut Baris; Jesse, Stephen; Kalinin, Sergei V.; Bassiri-Gharb, Nazanin

    2015-01-01

    Compositional and charge disorder in ferroelectric relaxors lies at the heart of the unusual properties of these systems, such as aging and non-ergodicity, polarization rotations, and a host of temperature and field-driven phase transitions. However, much information about the field-dynamics of the polarization in the prototypical ferroelectric relaxor (1-x)Pb(Mg 1/3 Nb 2/3 )O 3-x PbTiO 3 (PMN-xPT) remains unprobed at the mesoscopic level. We use a piezoresponse force microscopy-based dynamic multimodal relaxation spectroscopy technique, enabling the study of ferroelectric switching and polarization relaxation at mesoscopic length scales, and carry out measurements on a PMN-0.28PT sample with minimal polishing. Results indicate that beyond a threshold DC bias the average relaxation increases as the system attempts to relax to the previous state. Phenomenological fitting reveals the presence of mesoscale heterogeneity in relaxation amplitudes and clearly suggests the presence of two distinct amplitudes. Independent component analysis reveals the presence of a disorder component of the relaxation, which is found to be strongly anti-correlated with the maximum piezoresponse at that location, suggesting smaller disorder effects where the polarization reversal is large and vice versa. The disorder in the relaxation amplitudes is postulated to arise from rhombohedral and field-induced tetragonal phase in the crystal, with each phase associated with its own relaxation amplitude. As a result, these studies highlight the crucial importance of the mixture of ferroelectric phases in the compositions in proximity of the morphotropic phase boundary in governing the local response and further highlight the ability of PFM voltage and time spectroscopies, in conjunction with big-data multivariate analyses, to locally map disorder and correlate it with parameters governing the dynamic behavior

  20. Behavioral Relaxation Training for Parkinson's Disease Related Dyskinesia and Comorbid Social Anxiety

    Science.gov (United States)

    Lundervold, Duane A.; Pahwa, Rajesh; Lyons, Kelly E.

    2013-01-01

    Effects of brief Behavioral Relaxation Training (BRT) on anxiety and dyskinesia of a 57-year-old female, with an 11-year history of Parkinson's disease (PD) and 18-months post-deep brain stimulation of the subthalamic nucleus, were evaluated. Multiple process and outcome measures were used including the Clinical Anxiety Scale (CAS), Subjective…

  1. Molecular relaxation behavior and isothermal crystallization above glass transition temperature of amorphous hesperetin.

    Science.gov (United States)

    Shete, Ganesh; Khomane, Kailas S; Bansal, Arvind Kumar

    2014-01-01

    The purpose of this paper was to investigate the relaxation behavior of amorphous hesperetin (HRN), using dielectric spectroscopy, and assessment of its crystallization kinetics above glass transition temperature (Tg ). Amorphous HRN exhibited both local (β-) and global (α-) relaxations. β-Relaxation was observed below Tg , whereas α-relaxation prominently emerged above Tg . β-Relaxation was found to be of Johari-Goldstein type and was correlated with α-process by coupling model. Secondly, isothermal crystallization experiments were performed at 363 K (Tg + 16.5 K), 373 K (Tg + 26.5 K), and 383 K (Tg + 36.5 K). The kinetics of crystallization, obtained from the normalized dielectric strength, was modeled using the Avrami model. Havriliak-Negami (HN) shape parameters, αHN and αHN .βHN , were analyzed during the course of crystallization to understand the dynamics of amorphous phase during the emergence of crystallites. HN shape parameters indicated that long range (α-like) were motions affected to a greater extent than short range (β-like) motions during isothermal crystallization studies at all temperature conditions. The variable behavior of α-like motions at different isothermal crystallization temperatures was attributed to evolving crystallites with time and increase in electrical conductivity with temperature. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  2. Effect of extender oils on the stress relaxation behavior of thermoplastic vulcanizates

    Directory of Open Access Journals (Sweden)

    2008-11-01

    Full Text Available The long term mechanical behavior of oil extended thermoplastic vulcanizates (TPV based on polypropylene (PP and acrylonitrile-butadiene rubber (NBR has been characterized by means of stress relaxation experiments. The morphology of TPV and the phase specific oil distribution which depend on the content and type of oil as well as on the mixing regime have been characterized by means of Atomic Force Microscopy (AFM, Dynamic Mechanical Thermal Analysis (DMTA and Differential Scanning Calorimetrie (DSC. The discussion of the stress relaxation behavior was carried out using the two-component model, which allows splitting the initial stress into two components: a thermal activated stress component and an athermal one. A master curve was created by shifting the relaxation curves vertically and horizontally towards the reference curve. The vertical shift factor bT is a function of the temperature dependence of the athermal stress components. It was found that the oil distribution strongly affects the athermal stress component which is related to the contribution of the structural changes, e.g. crystallinity of the PP phase and the average molecular weight between the crosslinks of the NBR phase. From the temperature dependence of the horizontal shift factor aT the main viscoelastic relaxation process was determined as the α-relaxation process of the crystalline PP phase. It is not dependent on the polarity and content of the oil as well as the mixing regime.

  3. Relaxation behavior of a microbubble under ultrasonic field

    International Nuclear Information System (INIS)

    Kang, Sarng Woo; Kwak, Ho Young

    2000-01-01

    Nonlinear oscillation of a microbubble under ultrasound was investigated theoretically. The bubble radius-time curves calculated by the Rayleigh-Plesset equation with a polytropic index and by the Keller-Miksis equation with the analytical solution for the Navier-Stokes equations of the gases were compared with the observed results by the light scattering method. This study has revealed that the bubble behavior such as the expansion ratio and the bouncing motion after the first collapse under ultrasound depends crucially on the retarded time of the bubble motion to the applied ultrasound

  4. Analysis of pulse and relaxation behavior in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Bernardi, Dawn M. [Ford Motor Company, Research and Innovation Center, Dearborn, MI 48124 (United States); Go, Joo-Young [SB LiMotive, R and D team, 428-5, Gongse-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-577 (Korea)

    2011-01-01

    A mathematical model of a lithium-ion cell is used to analyze pulse and relaxation behavior in cells designed for hybrid-electric-vehicle propulsion. Predictions of cell voltage show good agreement with experimental results. Model results indicate the ohmic voltage loss in the positive electrode is the dominant contributor to cell overvoltage in the first instances of a pulse. The concentration overvoltage associated with the reduced lithium in the solid phase of the positive is of secondary importance through pulse duration, but dominates after current interruption. Effects of anisotropy in the particle diffusion coefficient are also studied. Heaviside mollification functions are utilized to describe the thermodynamic open-circuit voltage of lithiated graphite, and the ''pleated-layer model'' is extended to realize the phase behavior of primary-particle aggregates during cell operation. The negative electrode contributes little to the cell overvoltage, and two-phase behavior results in a reaction front within the electrode. No voltage relaxation is associated with the negative electrode, and after full relaxation, a stable composition gradient of lithium exists throughout the solid phase. Internal galvanic coupling removes the composition gradients in the positive electrode during relaxation. (author)

  5. Physical behaviors of impure atoms during relaxation of impure NiAl-based alloy grain boundary

    International Nuclear Information System (INIS)

    Zheng Liping; Jiang Bingyao; Liu Xianghuai; Li Douxing

    2003-01-01

    The Monte Carlo simulation with the energetics described by the embedded atom method has been employed to mainly study physical behaviors of boron atoms during relaxation of the Ni 3 Al-x at.% B grain boundary. During relaxation of impure Ni 3 Al grain boundaries, authors suggest that for different types of impure atoms (Mg, B, Cr and Zr atoms etc.), as the segregating species, they have the different behaviors, but as the inducing species, they have the same behaviors, i.e. they all induce Ni atoms to substitute Al atoms. Calculations show that at the equilibrium, when x(the B bulk concentration) increases from 0.1 to 0.9, the peak concentration of B increases, correspondently, the peak concentration of Ni maximizes but the valley concentration of Al minimizes, at x=0.5. The calculations also show the approximate saturation of Ni at the grain boundary at x=0.5

  6. A theory of generalized Bloch oscillations

    DEFF Research Database (Denmark)

    Duggen, Lars; Lew Yan Voon, L. C.; Lassen, Benny

    2016-01-01

    Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact...... oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics....

  7. Bloch-Siegert shift in Dirac-Weyl fermionic systems

    Science.gov (United States)

    Kumar, Upendra; Kumar, Vipin; Enamullah, Setlur, Girish S.

    2018-04-01

    The Bloch-Siegert shift is a phenomenon in quantum optics, typically seen in two-level systems, when the driving field is sufficiently strong. The inclusion of frequency doubling effect (counter rotating term) in the conventional rotating wave approximation (RWA) changes the resonance condition thereby producing a rather small shift in the resonance condition, which is known as the Bloch-Siegert shift (BSS). Rabi oscillations in Dirac-Weyl fermionic systems exhibit anomalous behavior far from resonance, called anomalous Rabi oscillations. Therefore, in the present work, we study the phenomenon of the Bloch-Siegert shift in Weyl semimetal and topological insulator (TI) far from resonance, called anomalous Bloch-Siegert shift (ABSS). It is seen that the change in the resonance condition of anomalous Rabi oscillations is drastic in Weyl semimetal and TI. The ABSS in Weyl semimetals is highly anisotropic, whereas it is isotropic in TI. In case of TI, it is the Chern number which plays a crucial role to produce substantial change in the ABSS.

  8. Cognitive–Behavioral Therapy and Hypnotic Relaxation to Treat Sleep Problems in an Adolescent With Diabetes

    Science.gov (United States)

    Perfect, Michelle M.; Elkins, Gary R.

    2014-01-01

    Inadequate sleep among adolescents frequently contributes to obesity and reduced academic performance, along with symptoms of anxiety, depression, fatigue, and attention deficits. The etiological bases of sleep quality has been associated with both stress and sleep habits. These problems tend to be especially important for adolescents with diabetes as the effects of poor sleep complicate health outcomes. This case example concerns a 14-year-old adolescent girl with a history of type I diabetes and stress-related sleep difficulties. Treatment included cognitive–behavioral methods and hypnotic relaxation therapy. Results of this case example and other controlled research suggest that hypnotic relaxation therapy is well accepted, results in good compliance, and serves as a useful adjunctive to cognitive–behavioral intervention for sleep problems. PMID:20865769

  9. Predictors of tanning salon use: behavioral alternatives for enhancing appearance, relaxing and socializing.

    Science.gov (United States)

    Danoff-Burg, Sharon; Mosher, Catherine E

    2006-05-01

    This study investigated cognitive predictors of tanning salon use, based on Jaccard's Theory of Alternative Behavior. A total of 164 undergraduates completed questionnaires that assessed tanning salon use, attitudes toward tanning salon use and attitudes toward behavioral alternatives for enhancing appearance, relaxing and socializing. Results indicated that attitudes toward alternatives for enhancing appearance were not significantly related to tanning salon use. However, favorable attitudes toward engaging in a hobby to relax and going to the gym to socialize were inversely related to frequency of tanning salon use. Findings suggest that interventions for reducing skin cancer risk should focus not only on decreasing favorable attitudes toward tanning, but also on increasing favorable attitudes toward healthier alternatives to tanning salon use.

  10. Studies about strength recovery and generalized relaxation behavior of rock (4)

    International Nuclear Information System (INIS)

    Sanada, Masanori; Kishi, Hirokazu; Hayashi, Katsuhiko; Takebe, Atsuji; Okubo, Seisuke

    2011-11-01

    Surrounding rock failure occurs due to the increasing stress with tunnel excavation and extent of the failure depends on rock strength and rock stress. The NATM (New Austrian Tunneling Method) assumes that supporting effects by shotcrete and rock bolt prevent rock failure maximizing the potential capability of rock mass. Recently, it was found that failed rock just behind tunnel support recovers its strength. This phenomenon should take into account in evaluation of tunnel stability and long-term mechanical behavior of rock mass after closure of a repository for high-level radioactive waste (HLW). Visco-elastic behavior of rock is frequently studied by creep testing, but creep occasionally occurs together with relaxation in-situ due to the effect of various supports and rock heterogeneity. Therefore generalized stress relaxation in which both load and displacement are controlled is proper to study such behavior under the complicated conditions. It is also important to understand rock behavior in tensile stress field which may be developed in the surrounding rock of deposition hole or tunnel by swelling of bentonite or volume expansion of overpack with corrosion after the repository closure. Cores sampled at 'Horonobe Underground Research Laboratory' has been tested to reveal the above-mentioned behavior. Quantitative evaluation and modeling of the rock behavior, however, have not been established mainly because of large scatter of data. As a factor of the large scatter of data, it was expected that the evaporation of moisture from the surface of the test piece influences the test outcome because it tested in the nature. In this study, strength recovery, generalized stress relaxation and two tensile strength tests were carried out using shale sampled in the Wakkanai-formation. As the results, recovery of failed rocks in strength and hydraulic conductivity were observed under a certain condition. We believe this result is very important for the stability evaluation

  11. Electric dipoles on the Bloch sphere

    OpenAIRE

    Vutha, Amar C.

    2014-01-01

    The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic & molecular physics.

  12. Electric dipoles on the Bloch sphere

    International Nuclear Information System (INIS)

    Vutha, Amar C

    2015-01-01

    The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic and molecular physics. (paper)

  13. Modeling of the mechanical behavior of austenitic stainless steels under pure fatigue and fatigue relaxation loadings

    International Nuclear Information System (INIS)

    Hajjaji-Rachdi, Fatima

    2015-01-01

    Austenitic stainless steels are potential candidates for structural components of sodium-cooled fast neutron reactors. Many of these components will be subjected to cyclic loadings including long hold times (1 month) under creep or relaxation at high temperature. These hold times are unattainable experimentally. The aim of the present study is to propose mechanical models which take into account the involved mechanisms and their interactions during such complex loadings. First, an experimental study of the pure fatigue and fatigue-relaxation behavior of 316L(N) at 500 C has been carried out with very long hold times (10 h and 50 h) compared with the ones studied in literature. Tensile tests at 600 C with different applied strain rates have been undertaken in order to study the dynamic strain ageing phenomenon. Before focusing on more complex loadings, the mean field homogenization approach has been used to predict the mechanical behavior of different FCC metals and alloys under low cycle fatigue at room temperature. Both Hill-Hutchinson and Kroener models have been used. Next, a physically-based model based on dislocation densities has been developed and its parameters measured. The model allows predictions in a qualitative agreement with experimental data for tensile loadings. Finally, this model has been enriched to take into account visco-plasticity, dislocation climb and interaction between dislocations and solute atoms, which are influent during creep-fatigue or fatigue relaxation at high temperature. The proposed model uses three adjustable parameters only and allows rather accurate prediction of the behavior of 316L(N) steel under tensile loading and relaxation. (author) [fr

  14. High Temperature Uniaxial Compression and Stress-Relaxation Behavior of India-Specific RAFM Steel

    Science.gov (United States)

    Shah, Naimish S.; Sunil, Saurav; Sarkar, Apu

    2018-05-01

    India-specific reduced activity ferritic martensitic steel (INRAFM), a modified 9Cr-1Mo grade, has been developed by India as its own structural material for fabrication of the Indian Test Blanket Module (TBM) to be installed in the International Thermonuclear Energy Reactor (ITER). The extensive study on mechanical and physical properties of this material has been currently going on for appraisal of this material before being put to use in the ITER. High temperature compression, stress-relaxation, and strain-rate change behavior of the INRAFM steel have been investigated. The optical microscopic and scanning electron microscopic characterizations were carried out to observe the microstructural changes that occur during uniaxial compressive deformation test. Comparable true plastic stress values at 300 °C and 500 °C and a high drop in true plastic stress at 600 °C were observed during the compression test. Stress-relaxation behaviors were investigated at 500 °C, 550 °C, and 600 °C at a strain rate of 10-3 s-1. The creep properties of the steel at different temperatures were predicted from the stress-relaxation test. The Norton's stress exponent (n) was found to decrease with the increasing temperature. Using Bird-Mukherjee-Dorn relationship, the temperature-compensated normalized strain rate vs stress was plotted. The stress exponent (n) value of 10.05 was obtained from the normalized plot. The increasing nature of the strain rate sensitivity (m) with the test temperature was found from strain-rate change test. The low plastic stability with m 0.06 was observed at 600 °C. The activation volume (V *) values were obtained in the range of 100 to 300 b3. By comparing the experimental values with the literature, the rate-controlling mechanisms at the thermally activated region of high temperature were found to be the nonconservative movement of jogged screw dislocations and thermal breaking of attractive junctions.

  15. Effectiveness of autogenic relaxation training on children and adolescents with behavioral and emotional problems.

    Science.gov (United States)

    Goldbeck, Lutz; Schmid, Katharina

    2003-09-01

    To investigate the effectiveness of autogenic relaxation training in a mildly disturbed outpatient population of children and adolescents with mostly internalizing symptoms, and/or some aggressive, impulsive, or attention deficit symptoms. Fifty children and adolescents from southern Germany (mean age 10.2 years; range 6-15 years; mostly intact middle class family background) participated in a group intervention program. Fifteen patients were randomly assigned to a waiting-list control group. Behavior symptoms (Child Behavior Checklist), psychosomatic complaints (Giessen Complaint List), and level of stress were assessed before and after the intervention or after the waiting phase. Individual goal attainment was evaluated at the end of the intervention and in a 3-month follow-up. The parent report on CBCL reflected reduced symptoms compared with control. The child report indicated reduced stress and psychosomatic complaints both in the intervention and control group, and no significant group x time interaction effects occurred on these scales. Effect sizes of 0.49 in the CBCL and 0.36 in the complaint list indicated clinically relevant effects of the intervention compared with the control group. At the end of the intervention, 56% of the children and 55% of the parents reported partial goal attainment, 38% of the children and 30% of the parents reported complete goal attainment; 71% of the parents confirmed partial goal attainment 3 months postintervention. Autogenic relaxation training is an effective broadband method for children and adolescents.

  16. Behaviour of neutrons passing through the Bloch wall

    International Nuclear Information System (INIS)

    Schaerpf, O.

    1976-01-01

    In part I of the present paper the pertinent knowledge about Bloch walls is presented and developed insofar as it appears necessary for the experiments with neutrons, that is to say the direction of magnetization within the domains, the calculation of the variation of magnetization in the wall, the wall thickness, and the zigzag structure of the Bloch wall. In part II it is first clarified why the Bloch wall can be treated as a continuum problem. It shows that this is possible far away from Laue reflexes. For angles far away from Laure-reflex angles the interaction of the periodic structure of the magnetization can be described with the aid of an averaged magnetic flux density. The consequence of it is the possibility of treating the problem by means of a Schroedinger equation with continous interaction. This leads to a law of refraction. The question of the possibilities for explaining the intensity behavior is treated in part III. This part, from different aspects, describes the fact, which already was pointed out in Schaerpf, O., Vehoff, H., Schwink, Ch. 1973, that the spin of the neutrons in passing through the wall is partly taken along by the magnetization gradually rotating in the wall. (orig./WBU) [de

  17. Bloch walls in a nickel single crystal

    International Nuclear Information System (INIS)

    Peters, J.; Treimer, W.

    2001-01-01

    We present a consistent theory for the dependence of the magnetic structure in bulk samples on external static magnetic fields and corresponding experimental results. We applied the theory of micromagnetism to this crystal and calculated the Bloch wall thickness as a function of external magnetic fields. The theoretical results agree well with the experimental data, so that the Bloch wall thickness of a 71 deg. nickel single crystal was definitely determined with some hundred of nanometer

  18. Relaxation characteristics of hastelloy X

    International Nuclear Information System (INIS)

    Suzuki, Kazuhiko

    1980-02-01

    Relaxation diagrams of Hastelloy X (relaxation curves, relaxation design diagrams, etc.) were generated from the creep constitutive equation of Hastelloy X, using inelastic stress analysis code TEPICC-J. These data are in good agreement with experimental relaxation data of ORNL-5479. Three typical inelastic stress analyses were performed for various relaxation behaviors of the high-temperature structures. An attempt was also made to predict these relaxation behaviors by the relaxation curves. (author)

  19. The basic properties of Bloch functions

    Directory of Open Access Journals (Sweden)

    Joseph A. Cima

    1979-01-01

    Full Text Available A Bloch function f(z is an analytic function on the unit disc whose derivative grows no faster than a constant times the reciprocal of the distance from z to ∂. We reprove here the basic analytic facts concerning Bloch functions. We establish the Banach space structure and collect facts concerning the geometry of the space. We indicate duality relationships, and known isomorphic correspondences are given. We give a rather complete list of references for further study in the case of several variables.

  20. On history and salvation in Emmanuel Levinas and Ernst Bloch

    African Journals Online (AJOL)

    p1243322

    “Chronos” who devours his own children.13 In addition to this, one would invert ... death” against Bloch, one could argue that Bloch, in effect, is glorifying death .... fantasy or wishful thinking) to Bloch's belief that in a humanised world the.

  1. Crystallization Behavior and Relaxation Dynamics of Supercooled S‑Ketoprofen and the Racemic Mixture along an Isochrone

    DEFF Research Database (Denmark)

    Adrjanowicz, Karolina; Kaminski, Kamil; Paluch, Marian

    2015-01-01

    In this paper, we study crystallization behavior and molecular dynamics in the supercooled liquid state of the pharmaceutically important compound ketoprofen at various thermodynamic conditions. Dielectric relaxation for a racemic mixture was investigated in a wide range of temperatures and press...

  2. Chaos synchronization of nonlinear Bloch equations

    International Nuclear Information System (INIS)

    Park, Ju H.

    2006-01-01

    In this paper, the problem of chaos synchronization of Bloch equations is considered. A novel nonlinear controller is designed based on the Lyapunov stability theory. The proposed controller ensures that the states of the controlled chaotic slave system asymptotically synchronizes the states of the master system. A numerical example is given to illuminate the design procedure and advantage of the result derived

  3. Reve et action: Bloch, Heidegger et Levinas

    Czech Academy of Sciences Publication Activity Database

    Bierhanzl, Jan

    2016-01-01

    Roč. 12, č. 3 (2016), s. 1-6 ISSN 1336-6556 R&D Projects: GA ČR(CZ) GA16-23046S Institutional support: RVO:67985955 Keywords : possibility * wishing * decision * action * dream * utopia Subject RIV: AA - Philosophy ; Religion http://www.ostium.sk/sk/r%C8%87ve-er-action-bloch-heidegger-et-levinas/

  4. Dielectric relaxation behavior and impedance studies of Cu2+ ion doped Mg - Zn spinel nanoferrites

    Science.gov (United States)

    Choudhary, Pankaj; Varshney, Dinesh

    2018-03-01

    Cu2+ substituted Mg - Zn nanoferrites is synthesized by low temperature fired sol gel auto combustion method. The spinel nature of nanoferrites was confirmed by lab x-ray technique. Williamson - Hall (W-H) analysis estimate the average crystallite size (22.25-29.19 ± 3 nm) and micro strain induced Mg0.5Zn0.5-xCuxFe2O4 (0.0 ≤ x ≤ 0.5). Raman scattering measurements confirm presence of four active phonon modes. Red shift is observed with enhanced Cu concentration. Dielectric parameters exhibit a non - monotonous dispersion with Cu concentration and interpreted with the support of hopping mechanism and Maxwell-Wagner type of interfacial polarization. The ac conductivity of nanoferrites increases with raising the frequency. Complex electrical modulus reveals a non - Debye type of dielectric relaxation present in nanoferrites. Reactive impedance (Z″) detected an anomalous behavior and is related with resonance effect. Complex impedance demonstrates one semicircle corresponding to the intergrain (grain boundary) resistance and also explains conducting nature of nanoferrites. For x = 0.2, a large semicircle is observed revealing the ohmic nature (minimum potential drop at electrode surface). Dielectric properties were improved for nanoferrites with x = 0.2 and is due to high dielectric constant, conductivity and minimum loss value (∼0.009) at 1 MHz.

  5. Applied relaxation vs cognitive behavior therapy in the treatment of panic disorder.

    Science.gov (United States)

    Ost, L G; Westling, B E

    1995-02-01

    The present study investigated the efficacy of a coping-technique, applied relaxation (AR) and cognitive behavior therapy (CBT), in the treatment of panic disorder. Thirty-eight outpatients fulfilling the DSM-III-R criteria for panic disorder with no (n = 30) or mild (n = 8) avoidance were assessed with independent assessor ratings, self-report scales and self-observation of panic attacks before and after treatment, and at a 1-yr follow-up. The patients were treated individually for 12 weekly sessions. The results showed that both treatments yielded very large improvements, which were maintained, or furthered at follow-up. There was no difference between AR and CBT on any measure. The proportion of panic-free patients were 65 and 74% at post-treatment, and 82 and 89% at follow-up, for AR and CBT, respectively. There were no relapses at follow-up, on the contrary 55% of the patients who still had panic attacks at post-treatment were panic-free at follow-up. Besides affecting panic attacks the treatments also yielded marked and lasting changes on generalized anxiety, depression and cognitive misinterpretations. The conclusion that can be drawn is that both AR and CBT are effective treatments for panic disorder without avoidance.

  6. Stress-relaxation behavior of lignocellulosic high-density polyethlene composites

    Science.gov (United States)

    Babak Mirzaei; Mehdi Tajvidi; Robert H. Falk; Colin Felton

    2011-01-01

    In this study, stress-relaxation performance of HDPE-based injection-molded composites containing four types of natural fibers (i.e., wood flour, rice hulls, newsprint, and kenaf fiber) at 25 and 50 wt% contents, and the effect of prescribed strain levels were investigated. The results indicated that incorporating more filler causes lower relaxation values and rates,...

  7. Comprehensive solutions to the Bloch equations and dynamical models for open two-level systems

    Science.gov (United States)

    Skinner, Thomas E.

    2018-01-01

    The Bloch equation and its variants constitute the fundamental dynamical model for arbitrary two-level systems. Many important processes, including those in more complicated systems, can be modeled and understood through the two-level approximation. It is therefore of widespread relevance, especially as it relates to understanding dissipative processes in current cutting-edge applications of quantum mechanics. Although the Bloch equation has been the subject of considerable analysis in the 70 years since its inception, there is still, perhaps surprisingly, significant work that can be done. This paper extends the scope of previous analyses. It provides a framework for more fully understanding the dynamics of dissipative two-level systems. A solution is derived that is compact, tractable, and completely general, in contrast to previous results. Any solution of the Bloch equation depends on three roots of a cubic polynomial that are crucial to the time dependence of the system. The roots are typically only sketched out qualitatively, with no indication of their dependence on the physical parameters of the problem. Degenerate roots, which modify the solutions, have been ignored altogether. Here the roots are obtained explicitly in terms of a single real-valued root that is expressed as a simple function of the system parameters. For the conventional Bloch equation, a simple graphical representation of this root is presented that makes evident the explicit time dependence of the system for each point in the parameter space. Several intuitive, visual models of system dynamics are developed. A Euclidean coordinate system is identified in which any generalized Bloch equation is separable, i.e., the sum of commuting rotation and relaxation operators. The time evolution in this frame is simply a rotation followed by relaxation at modified rates that play a role similar to the standard longitudinal and transverse rates. These rates are functions of the applied field, which

  8. Unusual behavior of nuclear relaxation in CeCu2Si2 'possible evidence for triplet superconductivity'

    International Nuclear Information System (INIS)

    Kitaoka, Y.; Asayama, K.; Ueda, K.; Kohara, T.

    1984-01-01

    Nuclear relaxation of 63 Cu in the superconducting state of the Kondo-lattice system CeCu 2 Si 2 has been studied with the use of the 63 Cu nuclear quadrupole resonance technique under zero field and down to 65mK. The nuclear spin-lattice relaxation rate (1/T 1 ) decreases drastically just below Tsub(c)=0.67 K down to 0.5Tsub(c) without the apparent enhanced behavior and then is found to be almost temperature independent below 0.3Tsub(c). These results suggest that the superconductivity in CeCu 2 Si 2 is not in the usual BCS regime. The analysis based upon the existing triplet pairing model with an anisotropic energy gap describes well the behavior from Tsub(c) down to 0.5Tsub(c), while the temperature independence below 0.3Tsub(c) remains unexplained. (author)

  9. Anomalous behavior of the structural relaxation dispersion function of a carborane-containing siloxane

    Energy Technology Data Exchange (ETDEWEB)

    Pawlus, Sebastian; Paluch, Marian; Ziolo, Jerzy [Institute of Physics, University of Silesia, Uniwersytecka 4, Katowice 40-007 (Poland); Kolel-Veetil, Manoj K [Chemistry Division, Code 6127, Naval Research Laboratory, Washington, DC 20375-5342 (United States)

    2010-10-20

    Broadband dielectric spectroscopic investigations of a vinyl-terminated carboranylenesiloxane, VCS, were performed at ambient and elevated pressures. At a constant structural relaxation time, results show that the structural relaxation dispersion function of VCS narrows with both increasing pressure and temperature. This narrowing is substantial in the case of pressurization and, consequently, the breakdown of the temperature-pressure superposition rule is observed. The interpretation of this breakdown is presented.

  10. Simulation of NMR signals through the Bloch equations; Simulação de sinais de RMN através das equações de Bloch

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Tiago Bueno, E-mail: tiagobuemoraes@gmail.com [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Física; Colnago, Luiz Alberto, E-mail: tiagobuemoraes@gmail.com [Embrapa Instrumentação, São Carlos, SP (Brazil)

    2014-07-01

    The aim of this paper was to present a simple and fast way of simulating Nuclear Magnetic Resonance signals using the Bloch equations. These phenomenological equations describe the classical behavior of macroscopic magnetization and are easily simulated using rotation matrices. Many NMR pulse sequences can be simulated with this formalism, allowing a quantitative description of the influence of many experimental parameters. Finally, the paper presents simulations of conventional sequences such as Single Pulse, Inversion Recovery, Spin Echo and CPMG. (author)

  11. Taking a peek at Bloch oscillations

    Science.gov (United States)

    Morsch, Oliver

    2016-11-01

    Bloch oscillations arise when matter waves inside a periodic potential, such as a crystal lattice, are accelerated by a constant force. Keßler et al (2016 New J. Phys. 18 102001) have now experimentally tested a method that allows one to observe those oscillations continuously, without a destructive measurement on the matter wave. Their approach could help to make cold atom-based accelerometers and gravimeters more precise.

  12. Relaxation Behavior by Time-Salt and Time-Temperature Superpositions of Polyelectrolyte Complexes from Coacervate to Precipitate

    Directory of Open Access Journals (Sweden)

    Samim Ali

    2018-01-01

    Full Text Available Complexation between anionic and cationic polyelectrolytes results in solid-like precipitates or liquid-like coacervate depending on the added salt in the aqueous medium. However, the boundary between these polymer-rich phases is quite broad and the associated changes in the polymer relaxation in the complexes across the transition regime are poorly understood. In this work, the relaxation dynamics of complexes across this transition is probed over a wide timescale by measuring viscoelastic spectra and zero-shear viscosities at varying temperatures and salt concentrations for two different salt types. We find that the complexes exhibit time-temperature superposition (TTS at all salt concentrations, while the range of overlapped-frequencies for time-temperature-salt superposition (TTSS strongly depends on the salt concentration (Cs and gradually shifts to higher frequencies as Cs is decreased. The sticky-Rouse model describes the relaxation behavior at all Cs. However, collective relaxation of polyelectrolyte complexes gradually approaches a rubbery regime and eventually exhibits a gel-like response as Cs is decreased and limits the validity of TTSS.

  13. Modeling Bloch oscillations in nanoscale Josephson junctions

    Science.gov (United States)

    Vora, Heli; Kautz, R. L.; Nam, S. W.; Aumentado, J.

    2018-01-01

    Bloch oscillations in nanoscale Josephson junctions with a Coulomb charging energy comparable to the Josephson coupling energy are explored within the context of a model previously considered by Geigenmüller and Schön that includes Zener tunneling and treats quasiparticle tunneling as an explicit shot-noise process. The dynamics of the junction quasicharge are investigated numerically using both Monte Carlo and ensemble approaches to calculate voltage-current characteristics in the presence of microwaves. We examine in detail the origin of harmonic and subharmonic Bloch steps at dc biases I = (n/m)2ef induced by microwaves of frequency f and consider the optimum parameters for the observation of harmonic (m = 1) steps. We also demonstrate that the GS model allows a detailed semiquantitative fit to experimental voltage-current characteristics previously obtained at the Chalmers University of Technology, confirming and strengthening the interpretation of the observed microwave-induced steps in terms of Bloch oscillations. PMID:29577106

  14. Matter-wave solitons and finite-amplitude Bloch waves in optical lattices with a spatially modulated nonlinearity

    OpenAIRE

    Zhang, Jie-Fang; Li, Yi-Shen; Meng, Jianping; Wu, Lei; Malomed, Boris A.

    2010-01-01

    We investigate solitons and nonlinear Bloch waves in Bose-Einstein condensates trapped in optical lattices. By introducing specially designed localized profiles of the spatial modulation of the attractive nonlinearity, we construct an infinite number of exact soliton solutions in terms of the Mathieu and elliptic functions, with the chemical potential belonging to the semi-infinite bandgap of the optical-lattice-induced spectrum. Starting from the exact solutions, we employ the relaxation met...

  15. A 2D multi-term time and space fractional Bloch-Torrey model based on bilinear rectangular finite elements

    Science.gov (United States)

    Qin, Shanlin; Liu, Fawang; Turner, Ian W.

    2018-03-01

    The consideration of diffusion processes in magnetic resonance imaging (MRI) signal attenuation is classically described by the Bloch-Torrey equation. However, many recent works highlight the distinct deviation in MRI signal decay due to anomalous diffusion, which motivates the fractional order generalization of the Bloch-Torrey equation. In this work, we study the two-dimensional multi-term time and space fractional diffusion equation generalized from the time and space fractional Bloch-Torrey equation. By using the Galerkin finite element method with a structured mesh consisting of rectangular elements to discretize in space and the L1 approximation of the Caputo fractional derivative in time, a fully discrete numerical scheme is derived. A rigorous analysis of stability and error estimation is provided. Numerical experiments in the square and L-shaped domains are performed to give an insight into the efficiency and reliability of our method. Then the scheme is applied to solve the multi-term time and space fractional Bloch-Torrey equation, which shows that the extra time derivative terms impact the relaxation process.

  16. Teacher-led relaxation response curriculum in an urban high school: impact on student behavioral health and classroom environment.

    Science.gov (United States)

    Wilson, H Kent; Scult, Matthew; Wilcher, Marilyn; Chudnofsky, Rana; Malloy, Laura; Drewel, Emily; Riklin, Eric; Saul, Southey; Fricchione, Gregory L; Benson, Herbert; Denninger, John W

    2015-01-01

    Recent data suggest that severe stress during the adolescent period is becoming a problem of epidemic proportions. Elicitation of the relaxation response (RR) has been shown to be effective in treating anxiety, reducing stress, and increasing positive health behaviors. The research team's objective was to assess the impact of an RR-based curriculum, led by teachers, on the psychological status and health management behaviors of high-school students and to determine whether a train-the-trainer model would be feasible in a high-school setting. The research team designed a pilot study. The setting was a Horace Mann charter school within Boston's public school system. Participants were teachers and students at the charter school. The team taught teachers a curriculum that included (1) relaxation strategies, such as breathing and imagery; (2) psychoeducation regarding mind-body pathways; and (3) positive psychology. Teachers implemented this curriculum with students. The research team assessed changes in student outcomes (eg, stress, anxiety, and stress management behaviors) using preintervention/postintervention surveys, including the Perceived Stress Scale (PSS), the State-Trait Anxiety Inventory-Form Y (STAI-Y), the stress management subscale of the Health-promoting Lifestyle Profile II (HPLP-II), the Rosenberg Self-Esteem Scale (RSES), the Locus of Control (LOC) questionnaire, and the Life Orientation Test-Revised (LOTR). Classroom observations using the Classroom Assessment Scoring System (CLASS)-Secondary were also completed to assess changes in classroom environment. Using a Bonferroni correction (P management behaviors at that point. Using a Bonferroni correction (P management behaviors (P classroom productivity (eg, increased time spent on activities and instruction from pre- to postintervention). This study showed that teachers can lead an RR curriculum with fidelity and suggests that such a curriculum has positive benefits on student emotional and behavioral

  17. Chaotic dynamics in the Maxwell-Bloch equations

    International Nuclear Information System (INIS)

    Holm, D.D.; Kovacic, G.

    1992-01-01

    In the slowly varying envelope approximation and the rotating wave approximation for the Maxwell-Bloch equations, we describe how the presence of a small-amplitude probe laser in an excited, two-level, resonant medium leads to homoclinic chaos in the laser-matter dynamics. We also describe a derivation of the Maxwell-Bloch equations from an action principle

  18. Composition operators between Bloch type spaces and Zygmund ...

    Indian Academy of Sciences (India)

    MS received 1 September 2009; revised 31 March 2011. Abstract. The boundedness and compactness of composition operators between. Bloch type spaces and Zygmund spaces of holomorphic functions in the unit ball are characterized in the paper. Keywords. Composition operator; Bloch type space; Zygmund space. 1.

  19. Bloch-mode analysis for retrieving effective parameters of metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Ha, Sangwoo; Sukhorukov, Andrey A.

    2012-01-01

    by our method with a high accuracy. We employ both surface and volume averaging of the electromagnetic fields of the dominating (fundamental) Bloch modes to determine the Bloch and wave impedances, respectively. We discuss how this method works for several characteristic examples, and demonstrate...

  20. Optical Bloch equations with multiply connected states

    International Nuclear Information System (INIS)

    Stacey, D N; Lucas, D M; Allcock, D T C; Szwer, D J; Webster, S C

    2008-01-01

    The optical Bloch equations, which give the time evolution of the elements of the density matrix of an atomic system subject to radiation, are generalized so that they can be applied when transitions between pairs of states can proceed by more than one stimulated route. The case considered is that for which the time scale of interest in the problem is long compared with that set by the differences in detuning of the radiation fields stimulating via the different routes. It is shown that the Bloch equations then reduce to the standard form of linear differential equations with constant coefficients. The theory is applied to a two-state system driven by two lasers with different intensities and frequencies and to a three-state Λ-system with one laser driving one transition and two driving the second. It is also shown that the theory reproduces well the observed response of a cold 40 Ca + ion when subject to a single laser frequency driving the 4S 1/2 -4P 1/2 transition and a laser with two strong sidebands driving 3D 3/2 -4P 1/2

  1. On the Temperature Behavior of Pulse Propagation and Relaxation in Worms, Nerves and Gels.

    Directory of Open Access Journals (Sweden)

    Christian Fillafer

    Full Text Available The effect of temperature on pulse propagation in biological systems has been an important field of research. Environmental temperature not only affects a host of physiological processes e.g. in poikilotherms but also provides an experimental means to investigate the thermodynamic phenomenology of nerves and muscle. In the present work, the temperature dependence of blood vessel pulsation velocity and frequency was studied in the annelid Lumbriculus variegatus. The pulse velocity was found to vary linearily between 0°C and 30°C. In contrast, the pulse frequency increased non-linearly in the same temperature range. A heat block ultimately resulted in complete cessation of vessel pulsations at 37.2±2.7°C (lowest: 33°C, highest: 43°C. However, quick cooling of the animal led to restoration of regularly propagating pulses. This experimentally observed phenomenology of pulse propagation and frequency is interpreted without any assumptions about molecules in the excitable membrane (e.g. ion channels or their temperature-dependent behaviour. By following Einstein's approach to thermodynamics and diffusion, a relation between relaxation time τ and compressibility κ of the excitable medium is derived that can be tested experimentally (for κT ∼ κS. Without fitting parameters this theory predicts the temperature dependence of the limiting (i.e. highest pulse frequency in good agreement with experimental data. The thermodynamic approach presented herein is neither limited to temperature nor to worms nor to living systems. It describes the coupling between pulse propagation and relaxation equally well in nerves and gels. The inherent consistency and universality of the concept underline its potential to explain the dependence of pulse propagation and relaxation on any thermodynamic observable.

  2. Electrical Properties and Dipole Relaxation Behavior of Zinc-Substituted Cobalt Ferrite

    Science.gov (United States)

    Supriya, Sweety; Kumar, Sunil; Kar, Manoranjan

    2017-12-01

    Co1- x Zn x Fe2O4 ceramics with x = 0.00, 0.05, 0.10, 0.15 and 0.20 were synthesized by a modified citric acid sol-gel method. The crystalline phase of the samples was characterized by the powder x-ray diffraction technique (XRD) and the Rietveld analysis of the XRD patterns. The morphology and particle size were studied using field emission scanning electron microscopy. Fourier transform infrared spectroscopy studies were consistent with the XRD results. The impedance measurements were carried out from 100 Hz to 10 MHz at different temperatures from 40°C to 300°C. The frequency dispersion of dielectric was analyzed with a modified Debye equation. The activation energy derived from the dielectric constant and the impedance follows the Arrhenius law and are comparable with each other. The dielectric relaxation and impedance relaxation are correlated in terms of activation energy, show a good temperature stability of the dielectrics and are useful for their applications in microelectronic devices such as filters, capacitors, resonators, etc.

  3. Anomalous NMR Relaxation in Cartilage Matrix Components and Native Cartilage: Fractional-Order Models

    Science.gov (United States)

    Magin, Richard L.; Li, Weiguo; Velasco, M. Pilar; Trujillo, Juan; Reiter, David A.; Morgenstern, Ashley; Spencer, Richard G.

    2011-01-01

    We present a fractional-order extension of the Bloch equations to describe anomalous NMR relaxation phenomena (T1 and T2). The model has solutions in the form of Mittag-Leffler and stretched exponential functions that generalize conventional exponential relaxation. Such functions have been shown by others to be useful for describing dielectric and viscoelastic relaxation in complex, heterogeneous materials. Here, we apply these fractional-order T1 and T2 relaxation models to experiments performed at 9.4 and 11.7 Tesla on type I collagen gels, chondroitin sulfate mixtures, and to bovine nasal cartilage (BNC), a largely isotropic and homogeneous form of cartilage. The results show that the fractional-order analysis captures important features of NMR relaxation that are typically described by multi-exponential decay models. We find that the T2 relaxation of BNC can be described in a unique way by a single fractional-order parameter (α), in contrast to the lack of uniqueness of multi-exponential fits in the realistic setting of a finite signal-to-noise ratio. No anomalous behavior of T1 was observed in BNC. In the single-component gels, for T2 measurements, increasing the concentration of the largest components of cartilage matrix, collagen and chondroitin sulfate, results in a decrease in α, reflecting a more restricted aqueous environment. The quality of the curve fits obtained using Mittag-Leffler and stretched exponential functions are in some cases superior to those obtained using mono- and bi-exponential models. In both gels and BNC, α appears to account for microstructural complexity in the setting of an altered distribution of relaxation times. This work suggests the utility of fractional-order models to describe T2 NMR relaxation processes in biological tissues. PMID:21498095

  4. Relaxation behavior and dose dependence of radiation induced radicals in irradiated mango

    International Nuclear Information System (INIS)

    Kameya, Hiromi; Kakita, Daisuke; Kaimori, Yoshihiko; Ukai, Mitsuko; Kikuchi, Masahiro; Kobayashi, Yasuhiko; Shimoyama, Yuhei

    2010-01-01

    Mangoes are imported to Japan after treated with hot water. Recently, irradiated mangoes imported to U. S. are widely used. This paper reports on the ESR method for analyzing the radiation induced radicals of irradiated mangoes. Upon the γ ray irradiation, a strong single peak in the flesh and skin of mangoes was observed at g=2.004. This singlet peak may be attributed to organic free radicals. The ESR spectra of the flesh and skin of mangoes showed the radiation induced radicals due to cellulose by irradiation over 12 kGy. The relaxation times (T 1 and T 2 ) of the singlet signal were calculated. T 2 showed dose response according to increasing the irradiation dose levels, while T 1 was almost constant. The value of (T 1 T 2 ) 1/2 showed the dependence of irradiation dose level. (author)

  5. Communication: High pressure specific heat spectroscopy reveals simple relaxation behavior of glass forming molecular liquid

    DEFF Research Database (Denmark)

    Roed, Lisa Anita; Niss, Kristine; Jakobsen, Bo

    2015-01-01

    The frequency dependent specific heat has been measured under pressure for the molecular glass forming liquid 5-polyphenyl-4-ether in the viscous regime close to the glass transition. The temperature and pressure dependences of the characteristic time scale associated with the specific heat...... is compared to the equivalent time scale from dielectric spectroscopy performed under identical conditions. It is shown that the ratio between the two time scales is independent of both temperature and pressure. This observation is non-trivial and demonstrates the existence of specially simple molecular...... liquids in which different physical relaxation processes are both as function of temperature and pressure/density governed by the same underlying “inner clock.” Furthermore, the results are discussed in terms of the recent conjecture that van der Waals liquids, like the measuredliquid, comply...

  6. Effect of saline absorption on the flexural stress relaxation behavior of epoxy/cotton composite materials for orthopedics applications

    Science.gov (United States)

    Kontaxis, L. C.; Pavlou, C.; Portan, D. V.; Papanicolaou, G. C.

    2018-02-01

    In the present study, a composite material consisting of a polymeric epoxy resin matrix, reinforced with forty layers of non-woven cotton fiber fabric was manufactured. The method used to manufacture the composite was the Resin Vacuum Infusion technique. This is a technique widely used for high-performance, defect-free, composite materials. Composites and neat polymers are subjected to stresses during their function, while at the same time being influenced by environmental conditions, such as temperature and humidity. The main goal of this study was the investigation of the degradation of composite's viscoelastic behavior, after saline absorption. At this point, it should be mentioned, that this material could be used in biomedical applications. Therefore, a sealed container full of saline was used for the immer s ion of the specimens manufactured, and was placed in a bath at 37°C (body temperature). The specimens remained there for five different immersion periods (24, 72, 144, 216, 336 hours). The viscoelastic behavior of the composite material was determined through stress relaxation under flexure conditions, and the effect of immersion time and amount of saline absorption was studied. It was observed that after 24 hours of immersion a 42% decrease in stress was observed, which in the sequence remained almost constant. The stress relaxation experimental results were predicted by using the Residua l Property Model (RPM), a model developed by Papanicolaou et al. The same model has been successfully applied in the past, to many different materials previously subjected to various types of damage, in order to predict their residual behavior. For its application, the RPM predictive model needs only two experimental points. It was found that in all cases, predictions were in good agreement with experimental findings. Furthermore, the comparison between experimental values and theoretical predictions formed the basis of useful observations and conclusions.

  7. Matter-wave solitons and finite-amplitude Bloch waves in optical lattices with spatially modulated nonlinearity

    Science.gov (United States)

    Zhang, Jie-Fang; Li, Yi-Shen; Meng, Jianping; Wu, Lei; Malomed, Boris A.

    2010-09-01

    We investigate solitons and nonlinear Bloch waves in Bose-Einstein condensates trapped in optical lattices (OLs). By introducing specially designed localized profiles of the spatial modulation of the attractive nonlinearity, we construct an infinite set of exact soliton solutions in terms of Mathieu and elliptic functions, with the chemical potential belonging to the semi-infinite gap of the OL-induced spectrum. Starting from the particular exact solutions, we employ the relaxation method to construct generic families of soliton solutions in a numerical form. The stability of the solitons is investigated through the computation of the eigenvalues for small perturbations, and also by direct simulations. Finally, we demonstrate a virtually exact (in the numerical sense) composition relation between nonlinear Bloch waves and solitons.

  8. Matter-wave solitons and finite-amplitude Bloch waves in optical lattices with spatially modulated nonlinearity

    International Nuclear Information System (INIS)

    Zhang Jiefang; Meng Jianping; Wu Lei; Li Yishen; Malomed, Boris A.

    2010-01-01

    We investigate solitons and nonlinear Bloch waves in Bose-Einstein condensates trapped in optical lattices (OLs). By introducing specially designed localized profiles of the spatial modulation of the attractive nonlinearity, we construct an infinite set of exact soliton solutions in terms of Mathieu and elliptic functions, with the chemical potential belonging to the semi-infinite gap of the OL-induced spectrum. Starting from the particular exact solutions, we employ the relaxation method to construct generic families of soliton solutions in a numerical form. The stability of the solitons is investigated through the computation of the eigenvalues for small perturbations, and also by direct simulations. Finally, we demonstrate a virtually exact (in the numerical sense) composition relation between nonlinear Bloch waves and solitons.

  9. Spin wave vortex from the scattering on Bloch point solitons

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho-Santos, V.L., E-mail: vagson.carvalho@usach.cl [Instituto Federal de Educação, Ciência e Tecnologia Baiano - Campus Senhor do Bonfim, Km 04 Estrada da Igara, 48970-000 Senhor do Bonfim, Bahia (Brazil); Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Elías, R.G., E-mail: gabriel.elias@usach.cl [Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Nunez, A.S., E-mail: alnunez@dfi.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago (Chile)

    2015-12-15

    The interaction of a spin wave with a stationary Bloch point is studied. The topological non-trivial structure of the Bloch point manifests in the propagation of spin waves endowing them with a gauge potential that resembles the one associated with the interaction of a magnetic monopole and an electron. By pursuing this analogy, we are led to the conclusion that the scattering of spin waves and Bloch points is accompanied by the creation of a magnon vortex. Interference between such a vortex and a plane wave leads to dislocations in the interference pattern that can be measurable by means of magnon holography.

  10. Nuclear relaxation behavior of the superconducting cuprates: Bi2Sr2CaCu2O8

    Science.gov (United States)

    Walstedt, R. E.; Bell, R. F.; Mitzi, D. B.

    1991-10-01

    Nuclear-magnetic-resonance data are presented and analyzed for the high-Tc compound Bi2Sr2CaCu2O8 for two oxygen doping levels. Both sample conditions lead to spin-gap behavior for the NMR shift, with a precursive downturn in the data at T>Tc. In addition, the relaxation times T1 obey the relation (T1T)-1~Ks(T) at low temperatures (T<~100 K), where Ks(T) is the spin paramagnetic shift. This relation, which is also obeyed by other superconductors, is argued to be related to the spin-gap effects and thus incompatible with a Fermi-liquid approach to the understanding of these systems.

  11. Effects of hydrolysis on solid-state relaxation and stickiness behavior of sodium caseinate-lactose powders.

    Science.gov (United States)

    Mounsey, J S; Hogan, S A; Murray, B A; O'Callaghan, D J

    2012-05-01

    Hydrolyzed or nonhydrolyzed sodium caseinate-lactose dispersions were spray dried, at a protein: lactose ratio of 0.5, to examine the effects of protein hydrolysis on relaxation behavior and stickiness of model powders. Sodium caseinate (NC) used included a nonhydrolyzed control (DH 0) and 2 hydrolyzed variants (DH 8.3 and DH 15), where DH = degree of hydrolysis (%). Prior to spray drying, apparent viscosities of liquid feeds (at 70°C) at a shear rate of 20/s were 37.6, 3.14, and 3.19 mPa·s, respectively, for DH 0, DH 8, and DH 15 dispersions. Powders containing hydrolyzed casein were more susceptible to sticking than those containing intact NC. The former had also lower bulk densities and powder particle sizes. Scanning electron microscopy showed that hydrolyzed powders had thinner particle walls and were more friable than powders containing intact NC. Secondary structure of caseinates, determined by Fourier transform infrared spectroscopy, was affected by the relative humidity of storage and the presence of lactose as co-solvent rather than its physical state. Glass transition temperatures and lactose crystallization temperatures, determined by differential scanning calorimetry were not affected by caseinate hydrolysis, although the effects of protein hydrolysis on glass-rubber transitions (T(gr)) could be determined by thermo-mechanical analysis. Powders containing hydrolyzed NC had lower T(gr) values (~30°C) following storage at a higher subcrystallization relative humidity (33%) compared with powder with nonhydrolyzed NC (T(gr) value of ~40°C), an effect that reflects more extensive plasticization of powder matrices by moisture. Results support that sodium caseinate-lactose interactions were weak but that relaxation behavior, as determined by the susceptibility of powder to sticking, was affected by hydrolysis of sodium caseinate. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Skyrmion clusters from Bloch lines in ferromagnetic films

    KAUST Repository

    Garanin, Dmitry A.; Chudnovsky, Eugene M.; Zhang, Xixiang

    2017-01-01

    anisotropy, and dipole-dipole interaction. Evolution of labyrinth domains into compact topological structures on application of the magnetic field is found to be governed by the configuration of Bloch lines inside domain walls. Depending on the combination

  13. Quantum anomalous Bloch-Siegert shift in Weyl semimetal

    Science.gov (United States)

    Kumar, Upendra; Kumar, Vipin; Enamullah, Setlur, Girish S.

    2018-05-01

    A periodic exchange of energy between the light field and two level system is known as Rabi oscillations. The Bloch-Siegert shift (BSS) is a shift in Rabi oscillation resonance condition, when the driving field is sufficiently strong. There are new type of oscillations exhibit in Weyl semimetal at far from resonance, known as anomalous Rabi oscillation. In this work, we study the phenomenon of the Bloch-Siegert shift in Weyl semimetal at far from resonance called anomalous Bloch-Siegert shift (ABSS) by purely quantum mechanical treatment and describe it's anisotropic nature. A fully numerical solution of the Floquet-Bloch equations unequivocally establishes the presence of not only anomalous Rabi oscillations in these systems but also their massless character.

  14. Observation of Bloch oscillations in complex PT-symmetric photonic lattices

    Science.gov (United States)

    Wimmer, Martin; Miri, Mohammed-Ali; Christodoulides, Demetrios; Peschel, Ulf

    2015-01-01

    Light propagation in periodic environments is often associated with a number of interesting and potentially useful processes. If a crystalline optical potential is also linearly ramped, light can undergo periodic Bloch oscillations, a direct outcome of localized Wannier-Stark states and their equidistant eigenvalue spectrum. Even though these effects have been extensively explored in conservative settings, this is by no means the case in non-Hermitian photonic lattices encompassing both amplification and attenuation. Quite recently, Bloch oscillations have been predicted in parity-time-symmetric structures involving gain and loss in a balanced fashion. While in a complex bulk medium, one intuitively expects that light will typically follow the path of highest amplification, in a periodic system this behavior can be substantially altered by the underlying band structure. Here, we report the first experimental observation of Bloch oscillations in parity-time-symmetric mesh lattices. We show that these revivals exhibit unusual properties like secondary emissions and resonant restoration of PT symmetry. In addition, we present a versatile method for reconstructing the real and imaginary components of the band structure by directly monitoring the light evolution during a cycle of these oscillations. PMID:26639941

  15. Bloch spaces of holomorphic functions in the polydisk

    Directory of Open Access Journals (Sweden)

    Anahit Harutyunyan

    2007-01-01

    Full Text Available This work is an introduction to anisotropic spaces of holomorphic functions, which have ω-weight and are generalizations of Bloch spaces to a polydisc. We prove that these classes form an algebra and are invariant with respect to monomial multiplication. Some theorems on projection and diagonal mapping are proved. We establish a description of (Ap(ω* (or (Hp(ω* via the Bloch classes for all 0

  16. Relaxing moral reasoning to win: How organizational identification relates to unethical pro-organizational behavior.

    Science.gov (United States)

    Chen, Mo; Chen, Chao C; Sheldon, Oliver J

    2016-08-01

    Drawing on social identity theory and social-cognitive theory, we hypothesize that organizational identification predicts unethical pro-organizational behavior (UPB) through the mediation of moral disengagement. We further propose that competitive interorganizational relations enhance the hypothesized relationships. Three studies conducted in China and the United States using both survey and vignette methodologies provided convergent support for our model. Study 1 revealed that higher organizational identifiers engaged in more UPB, and that this effect was mediated by moral disengagement. Study 2 found that organizational identification once again predicted UPB through the mediation of moral disengagement, and that the mediation relationship was stronger when employees perceived a higher level of industry competition. Finally, Study 3 replicated the above findings using a vignette experiment to provide stronger evidence of causality. Theoretical and practical implications are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  17. Relaxation behavior of radicals produced in irradiated black pepper under various moisture conditions by ESR

    International Nuclear Information System (INIS)

    Kameya, Hiromi; Kawauchi, Risa; Shimoyama, Yuhei; Kaeda, Yoko; Ogawa, Satoko; Nakamura, Hideo; Ukai, Mitsuko

    2008-01-01

    Black pepper is easy to be contaminated by microorganism and often processed to γ-irradiation. ESR has been used for the detection of radicals induced in irradiated spices. Using ESR, we revealed the effects of moisture condition during storage of irradiated black pepper on the saturation behavior of ESR signal. The ESR spectrum of black pepper consists of a broad sextet centered at g=2.0, a singlet as same g-value and a singlet at g=4.0. The irradiation causes two new signals, one is the strong and sharp singlet signal at g=2.0 and the other is the side signal. We found that the signal intensity originated by the radicals of black pepper with and without radiation decayed in the high humidity condition during storage. The ESR signal intensity of irradiated black pepper decayed during storage and showed almost the same intensity level as that of non-irradiated black pepper during storage. (author)

  18. Functional behavior of the anomalous magnetic relaxation observed in melt-textured YBa_2Cu_3O_7_-_δ samples showing the paramagnetic Meissner effect

    International Nuclear Information System (INIS)

    Dias, F.T.; Vieira, V.N.; Garcia, E.L.; Wolff-Fabris, F.; Kampert, E.; Gouvêa, C.P.; Schaf, J.; Obradors, X.; Puig, T.; Roa, J.J.

    2016-01-01

    Highlights: • Paramagnetic Meissner effect observed up to 5T in FCC and FCW measurements. • Time effects evidenced by irreversibilities between FCC and FCW measurements. • Strong time effects causing an anomalous paramagnetic relaxation. • Paramagnetic relaxation governed by different flux dynamics in different intervals. • An interpretative analysis to identify the flux dynamics in the relaxation process. - Abstract: We have studied the functional behavior of the field-cooled (FC) magnetic relaxation observed in melt-textured YBa_2Cu_3O_7_-_δ (Y123) samples with 30 wt% of Y_2Ba_1Cu_1O_5 (Y211) phase, in order to investigate anomalous paramagnetic moments observed during the experiments. FC magnetic relaxation experiments were performed under controlled conditions, such as cooling rate and temperature. Magnetic fields up to 5T were applied parallel to the ab plane and along the c-axis. Our results are associated with the paramagnetic Meissner effect (PME), characterized by positive moments during FC experiments, and related to the magnetic flux compression into the samples. After different attempts our experimental data could be adequately fitted by an exponential decay function with different relaxation times. We discuss our results suggesting the existence of different and preferential flux dynamics governing the anomalous FC paramagnetic relaxation in different time intervals. This work is one of the first attempts to interpret this controversial effect in a simple analysis of the pinning mechanisms and flux dynamics acting during the time evolution of the magnetic moment. However, the results may be useful to develop models to explain this interesting and still misunderstood feature of the paramagnetic Meissner effect.

  19. Is cognitive behavioral therapy more effective than relaxation therapy in the treatment of anxiety disorders? A meta-analysis.

    NARCIS (Netherlands)

    Montero Marin, J.; Garcia-Campayo, J.; López-Montoyo, A.; Zabaleta-del-Olmo, E.; Cuijpers, P.

    2017-01-01

    Background It is not clear whether relaxation therapies are more or less effective than cognitive and behavioural therapies in the treatment of anxiety. The aims of the present study were to examine the effects of relaxation techniques compared to cognitive and behavioural therapies in reducing

  20. A randomized clinical trial comparing an acceptance-based behavior therapy to applied relaxation for generalized anxiety disorder.

    Science.gov (United States)

    Hayes-Skelton, Sarah A; Roemer, Lizabeth; Orsillo, Susan M

    2013-10-01

    To examine whether an empirically and theoretically derived treatment combining mindfulness- and acceptance-based strategies with behavioral approaches would improve outcomes in generalized anxiety disorder (GAD) over an empirically supported treatment. This trial randomized 81 individuals (65.4% female, 80.2% identified as White, average age 32.92) diagnosed with GAD to receive 16 sessions of either an acceptance-based behavior therapy (ABBT) or applied relaxation (AR). Assessments at pretreatment, posttreatment, and 6-month follow-up included the following primary outcome measures: GAD clinician severity rating, Structured Interview Guide for the Hamilton Anxiety Rating Scale, Penn State Worry Questionnaire, Depression Anxiety Stress Scale, and the State-Trait Anxiety Inventory. Secondary outcomes included the Beck Depression Inventory-II, Quality of Life Inventory, and number of comorbid diagnoses. Mixed effect regression models showed significant, large effects for time for all primary outcome measures (ds = 1.27 to 1.61) but nonsignificant, small effects for condition and Condition × Time (ds = 0.002 to 0.20), indicating that clients in the 2 treatments improved comparably over treatment. For secondary outcomes, time was significant (ds = 0.74 to 1.38), but condition and Condition × Time effects were not (ds = 0.004 to 0.31). No significant differences emerged over follow-up (ds = 0.03 to 0.39), indicating maintenance of gains. Between 63.3 and 80.0% of clients in ABBT and 60.6 and 78.8% of clients in AR experienced clinically significant change across 5 calculations of change at posttreatment and follow-up. ABBT is a viable alternative for treating GAD. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  1. Controlled comparison of family cognitive behavioral therapy and psychoeducation/relaxation training for child obsessive-compulsive disorder.

    Science.gov (United States)

    Piacentini, John; Bergman, R Lindsey; Chang, Susanna; Langley, Audra; Peris, Tara; Wood, Jeffrey J; McCracken, James

    2011-11-01

    To examine the efficacy of exposure-based cognitive-behavioral therapy (CBT) plus a structured family intervention (FCBT) versus psychoeducation plus relaxation training (PRT) for reducing symptom severity, functional impairment, and family accommodation in youths with obsessive-compulsive disorder (OCD). A total of 71 youngsters 8 to 17 years of age (mean 12.2 years; range, 8-17 years, 37% male, 78% Caucasian) with primary OCD were randomized (70:30) to 12 sessions over 14 weeks of FCBT or PRT. Blind raters assessed outcomes with responders followed for 6 months to assess treatment durability. FCBT led to significantly higher response rates than PRT in ITT (57.1% vs 27.3%) and completer analyses (68.3% vs. 35.3%). Using HLM, FCBT was associated with significantly greater change in OCD severity and child-reported functional impairment than PRT and marginally greater change in parent-reported accommodation of symptoms. These findings were confirmed in some, but not all, secondary analyses. Clinical remission rates were 42.5% for FCBT versus 17.6% for PRT. Reduction in family accommodation temporally preceded improvement in OCD for both groups and child functional status for FCBT only. Treatment gains were maintained at 6 months. FCBT is effective for reducing OCD severity and impairment. Importantly, treatment also reduced parent-reported involvement in symptoms with reduced accommodation preceding reduced symptom severity and functional impairment. CLINICAL TRIALS REGISTRY INFORMATION: Behavior Therapy for Children and Adolescents with Obsessive-Compulsive Disorder (OCD); http://www.clinicaltrials.gov; NCT00000386. Copyright © 2011 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  2. Modeling Bloch oscillations in ultra-small Josephson junctions

    Science.gov (United States)

    Vora, Heli; Kautz, Richard; Nam, Sae Woo; Aumentado, Jose

    In a seminal paper, Likharev et al. developed a theory for ultra-small Josephson junctions with Josephson coupling energy (Ej) less than the charging energy (Ec) and showed that such junctions demonstrate Bloch oscillations which could be used to make a fundamental current standard that is a dual of the Josephson volt standard. Here, based on the model of Geigenmüller and Schön, we numerically calculate the current-voltage relationship of such an ultra-small junction which includes various error processes present in a nanoscale Josephson junction such as random quasiparticle tunneling events and Zener tunneling between bands. This model allows us to explore the parameter space to see the effect of each process on the width and height of the Bloch step and serves as a guide to determine whether it is possible to build a quantum current standard of a metrological precision using Bloch oscillations.

  3. Weighted Composition Operators from Hardy Spaces into Logarithmic Bloch Spaces

    Directory of Open Access Journals (Sweden)

    Flavia Colonna

    2012-01-01

    Full Text Available The logarithmic Bloch space Blog⁡ is the Banach space of analytic functions on the open unit disk 𝔻 whose elements f satisfy the condition ∥f∥=sup⁡z∈𝔻(1-|z|2log⁡  (2/(1-|z|2|f'(z|<∞. In this work we characterize the bounded and the compact weighted composition operators from the Hardy space Hp (with 1≤p≤∞ into the logarithmic Bloch space. We also provide boundedness and compactness criteria for the weighted composition operator mapping Hp into the little logarithmic Bloch space defined as the subspace of Blog⁡ consisting of the functions f such that lim⁡|z|→1(1-|z|2log⁡  (2/(1-|z|2|f'(z|=0.

  4. Skyrmion clusters from Bloch lines in ferromagnetic films

    KAUST Repository

    Garanin, Dmitry A.

    2017-12-29

    Conditions under which various skyrmion objects emerge in experiments on thin magnetic films remain largely unexplained. We investigate numerically centrosymmetric spin lattices in films of finite thickness with ferromagnetic exchange, magnetic anisotropy, and dipole-dipole interaction. Evolution of labyrinth domains into compact topological structures on application of the magnetic field is found to be governed by the configuration of Bloch lines inside domain walls. Depending on the combination of Bloch lines, the magnetic domains evolve into individual skyrmions, biskyrmions, or more complex topological objects. While the geometry of such objects is sensitive to the parameters, their topological charge is uniquely determined by the topological charge of Bloch lines inside the magnetic domain from which the object emerges.

  5. Effects of cognitive behavioral therapy with relaxation vs. imagery rescripting on test anxiety: A randomized controlled trial.

    Science.gov (United States)

    Reiss, Neele; Warnecke, Irene; Tolgou, Theano; Krampen, Dorothea; Luka-Krausgrill, Ursula; Rohrmann, Sonja

    2017-01-15

    Test anxiety is a common condition in students, which may lead to impaired academic performance as well as to distress. The primary objective of this study was to evaluate the effectiveness of two cognitive-behavioral interventions designed to reduce test anxiety. Test anxiety in the participants was diagnosed as social or specific phobia according to DSM-IV. Subsequently subjects were randomized to three groups: a moderated self-help group, which served as a control group, and two treatment groups, where either relaxation techniques or imagery rescripting were applied. Students suffering from test anxiety were recruited at two German universities (n=180). The randomized controlled design comprised three groups which received test anxiety treatment in weekly three-hour sessions over a period of five weeks. Treatment outcome was assessed with a test anxiety questionnaire, which was administered before and after treatment, as well as in a six-month follow-up. A repeated-measures ANOVA for participants with complete data (n=59) revealed a significant reduction of test anxiety from baseline to six-month follow-up in all three treatment groups (panxiety. The sample may therefore represent only more severe forms of text anxiety . Moreover, the sample size in this study was small, the numbers of participants per group differed, and treatment results were based on self-report. Due to the length of the treatment, an implementation of the group treatments used in this study might not be feasible in all settings. Group treatments constitute an effective method of treating test anxiety, e.g. in university settings. Imagery rescripting may particularly contribute to treatment efficacy. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Variational principle for the Bloch unified reaction theory

    International Nuclear Information System (INIS)

    MacDonald, W.; Rapheal, R.

    1975-01-01

    The unified reaction theory formulated by Claude Bloch uses a boundary value operator to write the Schroedinger equation for a scattering state as an inhomogeneous equation over the interaction region. As suggested by Lane and Robson, this equation can be solved by using a matrix representation on any set which is complete over the interaction volume. Lane and Robson have proposed, however, that a variational form of the Bloch equation can be used to obtain a ''best'' value for the S-matrix when a finite subset of this basis is used. The variational principle suggested by Lane and Robson, which gives a many-channel S-matrix different from the matrix solution on a finite basis, is considered first, and it is shown that the difference results from the fact that their variational principle is not, in fact, equivalent to the Bloch equation. Then a variational principle is presented which is fully equivalent to the Bloch form of the Schroedinger equation, and it is shown that the resulting S-matrix is the same as that obtained from the matrix solution of this equation. (U.S.)

  7. News Focus: NSF Director Erich Bloch Discusses Foundation's Problems, Outlook.

    Science.gov (United States)

    Chemical and Engineering News, 1987

    1987-01-01

    Relates the comments offered in an interview with Erich Bloch, the National Science Foundation (NSF) Director. Discusses issues related to NSF and its funding, engineering research centers, involvement with industry, concern for science education, computer centers, and its affiliation with the social sciences. (ML)

  8. Improved Reading Gate For Vertical-Bloch-Line Memory

    Science.gov (United States)

    Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.

    1994-01-01

    Improved design for reading gate of vertical-Bloch-line magnetic-bubble memory increases reliability of discrimination between binary ones and zeros. Magnetic bubbles that signify binary "1" and "0" produced by applying sufficiently large chopping currents to memory stripes. Bubbles then propagated differentially in bubble sorter. Method of discriminating between ones and zeros more reliable.

  9. Sintering behavior, ac conductivity and dielectric relaxation of Li1.3Ti1.7Al0.3(PO43 NASICON compound

    Directory of Open Access Journals (Sweden)

    Tasiu Zangina

    Full Text Available The phenomenon of relaxation in dielectric materials is described as one of the powerful tools to determine the behavior and properties of ion transport. The kinetics of ionic species and dipole in solid-state electrolyte are dependent on frequency, temperature, and dielectric relaxation. Li1+xTi2−xAlx(PO43 conducting solid state electrolyte with x = 0.3 was synthesized via conventional solid state technique using the raw materials Li2CO3, TiO2, Al2O3, and NH4H2PO4 as starting materials. TGA/DTG and X-ray diffraction measurements were carried out to study the thermal behavior and phases of the composition. It was observed from the TGA/DTA curves that there is no mass loss above 500 °C. The XRD peaks were observed to start appearing at 500 °C which corresponds to small peaks in TGA. It was also pointed out that at increasing sintering temperatures from 700 °C to 1000 °C the number of phases drastically decreased which is attributed to the complete chemical reaction. Temperature and frequency dependence of dielectric relaxation and electric modulus of the compounds were investigated at temperatures 30–230 °C and at frequencies of 40 kHz–1 MHz. The findings showed that the dielectric relaxation peaks shift to higher temperature as frequency increases and the change in ac conductivity with frequency is in agreement with Jonscher’s power law. Keywords: Sintering behavior, Dielectric permittivity, Universal power law, Electric modulus

  10. The electrical properties and relaxation behavior of AgNb{sub 1/2}Ta{sub 1/2}O{sub 3} ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, K.Ganga, E-mail: kotagirigangaprasad@gmail.com; Niranjan, Manish K.; Asthana, Saket

    2017-02-01

    Polycrystalline AgNb{sub 1/2}Ta{sub 1/2}O{sub 3} powder was prepared by solid state reaction method. Preliminary x-ray diffractogram analysis of some aspects of crystal structure showed that a single phase compound formed exhibiting a monoclinic system. Impedance spectroscopy showed the presence of both bulk and grain boundary effects in the material. The relaxation behavior was studied by fitting electric modulus with Bergman function confirms us the existence of non-Debye type of relaxation the material. The ac conductivity spectrum obeyed Funke's double power law and fitting in results, the hopping parameters n{sub 1},n{sub 2} were indicating the existence of small and large range polaron hopping in the material. The band gap of the material 3.02 eV measured by using UV visible spectroscopy.

  11. A Bloch-Torrey Equation for Diffusion in a Deforming Media

    International Nuclear Information System (INIS)

    Rohmer, Damien; Gullberg, Grant T.

    2006-01-01

    Diffusion Tensor Magnetic Resonance Imaging (DTMRI)technique enables the measurement of diffusion parameters and therefore, informs on the structure of the biological tissue. This technique is applied with success to the static organs such as brain. However, the diffusion measurement on the dynamically deformable organs such as the in-vivo heart is a complex problem that has however a great potential in the measurement of cardiac health. In order to understand the behavior of the Magnetic Resonance (MR)signal in a deforming media, the Bloch-Torrey equation that leads the MR behavior is expressed in general curvilinear coordinates. These coordinates enable to follow the heart geometry and deformations through time. The equation is finally discredited and presented in a numerical formulation using implicit methods, in order to get a stable scheme that can be applied to any smooth deformations. Diffusion process enables the link between the macroscopic behavior of molecules and the microscopic structure in which they evolve. The measurement of diffusion in biological tissues is therefore of major importance in understanding the complex underlying structure that cannot be studied directly. The Diffusion Tensor Magnetic Resonance Imaging(DTMRI) technique enables the measurement of diffusion parameters and therefore provides information on the structure of the biological tissue. This technique has been applied with success to static organs such as the brain. However, diffusion measurement of dynamically deformable organs such as the in-vivo heart remains a complex problem, which holds great potential in determining cardiac health. In order to understand the behavior of the magnetic resonance (MR) signal in a deforming media, the Bloch-Torrey equation that defines the MR behavior is expressed in general curvilinear coordinates. These coordinates enable us to follow the heart geometry and deformations through time. The equation is finally discredited and presented in a

  12. Relaxation System

    Science.gov (United States)

    1987-01-01

    Environ Corporation's relaxation system is built around a body lounge, a kind of super easy chair that incorporates sensory devices. Computer controlled enclosure provides filtered ionized air to create a feeling of invigoration, enhanced by mood changing aromas. Occupant is also surrounded by multidimensional audio and the lighting is programmed to change colors, patterns, and intensity periodically. These and other sensory stimulators are designed to provide an environment in which the learning process is stimulated, because research has proven that while an individual is in a deep state of relaxation, the mind is more receptive to new information.

  13. A Bloch-Torrey Equation for Diffusion in a Deforming Media

    Energy Technology Data Exchange (ETDEWEB)

    Rohmer, Damien; Gullberg, Grant T.

    2006-12-29

    Diffusion Tensor Magnetic Resonance Imaging (DTMRI)technique enables the measurement of diffusion parameters and therefore,informs on the structure of the biological tissue. This technique isapplied with success to the static organs such as brain. However, thediffusion measurement on the dynamically deformable organs such as thein-vivo heart is a complex problem that has however a great potential inthe measurement of cardiac health. In order to understand the behavior ofthe Magnetic Resonance (MR)signal in a deforming media, the Bloch-Torreyequation that leads the MR behavior is expressed in general curvilinearcoordinates. These coordinates enable to follow the heart geometry anddeformations through time. The equation is finally discretized andpresented in a numerical formulation using implicit methods, in order toget a stable scheme that can be applied to any smooth deformations.Diffusion process enables the link between the macroscopic behavior ofmolecules and themicroscopic structure in which they evolve. Themeasurement of diffusion in biological tissues is therefore of majorimportance in understanding the complex underlying structure that cannotbe studied directly. The Diffusion Tensor Magnetic ResonanceImaging(DTMRI) technique enables the measurement of diffusion parametersand therefore provides information on the structure of the biologicaltissue. This technique has been applied with success to static organssuch as the brain. However, diffusion measurement of dynamicallydeformable organs such as the in-vivo heart remains a complex problem,which holds great potential in determining cardiac health. In order tounderstand the behavior of the magnetic resonance (MR) signal in adeforming media, the Bloch-Torrey equation that defines the MR behavioris expressed in general curvilinear coordinates. These coordinates enableus to follow the heart geometry and deformations through time. Theequation is finally discretized and presented in a numerical formulationusing

  14. Effect of temperature on cyclic deformation behavior and residual stress relaxation of deep rolled under-aged aluminium alloy AA6110

    International Nuclear Information System (INIS)

    Juijerm, P.; Altenberger, I.

    2007-01-01

    Mechanical surface treatment (deep rolling) was performed at room temperature on the under-aged aluminium wrought alloy AA6110 (Al-Mg-Si-Cu). Afterwards, specimens were cyclically deformed at room and elevated temperatures up to 250 deg. C. The cyclic deformation behavior and s/n-curves of deep rolled under-aged AA6110 were investigated by stress-controlled fatigue tests and compared to the as-polished condition as a reference. The stability of residual stresses as well as diffraction peak broadening under high-loading and/or elevated-temperature conditions was investigated by X-ray diffraction methods before and after fatigue tests. Depth profiles of near-surface residual stresses as well as full width at half maximum (FWHM) values before and after fatigue tests at elevated temperatures are presented. Thermal residual stress relaxation of deep rolled under-aged AA6110 was investigated and analyzed by applying a Zener-Wert-Avrami function. Thermomechanical residual stress relaxation was analyzed through thermal residual stress relaxation and depth profiles of residual stresses before and after fatigue tests. Finally, an effective border line for the deep rolling treatment due to instability of near-surface work hardening was found and established in a stress amplitude-temperature diagram

  15. Binding and relaxation behavior of Coumarin-153 in lecithin-taurocholate mixed micelles: A time resolved fluorescence spectroscopic study

    Science.gov (United States)

    Chakrabarty, Debdeep; Chakraborty, Anjan; Seth, Debabrata; Hazra, Partha; Sarkar, Nilmoni

    2005-09-01

    The microenvironment of the bile salt-lecithin mixed aggregates has been investigated using steady state and picosecond time resolved fluorescence spectroscopy. The steady state spectra show that the polarity of the bile salt is higher compared to lecithin vesicles or the mixed aggregates. We have observed slow solvent relaxation in bile salt micelles and lecithin vesicles. The solvation time is gradually slowed down due to gradual addition of the bile salt in lecithin vesicles. Addition of bile salt leads to the tighter head group packing in lecithin. Thus, mobility of the water molecules becomes slower and consequently the solvation time is also retarded. We have observed bimodal slow rotational relaxation time in all these systems.

  16. Electron spin relaxation in cryptochrome-based magnetoreception

    DEFF Research Database (Denmark)

    Kattnig, Daniel R; Solov'yov, Ilia A; Hore, P J

    2016-01-01

    The magnetic compass sense of migratory birds is thought to rely on magnetically sensitive radical pairs formed photochemically in cryptochrome proteins in the retina. An important requirement of this hypothesis is that electron spin relaxation is slow enough for the Earth's magnetic field to have...... this question for a structurally characterized model cryptochrome expected to share many properties with the putative avian receptor protein. To this end we combine all-atom molecular dynamics simulations, Bloch-Redfield relaxation theory and spin dynamics calculations to assess the effects of spin relaxation...... on the performance of the protein as a compass sensor. Both flavin-tryptophan and flavin-Z˙ radical pairs are studied (Z˙ is a radical with no hyperfine interactions). Relaxation is considered to arise from modulation of hyperfine interactions by librational motions of the radicals and fluctuations in certain...

  17. Orbital magnetism of Bloch electrons I. General formula

    International Nuclear Information System (INIS)

    Ogata, Masao; Fukuyama, Hidetoshi

    2015-01-01

    We derive an exact formula of orbital susceptibility expressed in terms of Bloch wave functions, starting from the exact one-line formula by Fukuyama in terms of Green's functions. The obtained formula contains four contributions: (1) Landau-Peierls susceptibility, (2) interband contribution, (3) Fermi surface contribution, and (4) contribution from occupied states. Except for the Landau-Peierls susceptibility, the other three contributions involve the crystal-momentum derivatives of Bloch wave functions. Physical meaning of each term is clarified. The present formula is simplified compared with those obtained previously by Hebborn et al. Based on the formula, it is seen first of all that diamagnetism from core electrons and Van Vleck susceptibility are the only contributions in the atomic limit. The band effects are then studied in terms of linear combination of atomic orbital treating overlap integrals between atomic orbitals as a perturbation and the itinerant feature of Bloch electrons in solids are clarified systematically for the first time. (author)

  18. Effects of Relaxing Music on Mental Fatigue Induced by a Continuous Performance Task: Behavioral and ERPs Evidence.

    Science.gov (United States)

    Guo, Wei; Ren, Jie; Wang, Biye; Zhu, Qin

    2015-01-01

    The purpose of this study was to investigate whether listening to relaxing music would help reduce mental fatigue and to maintain performance after a continuous performance task. The experiment involved two fatigue evaluation phases carried out before and after a fatigue inducing phase. A 1-hour AX-continuous performance test was used to induce mental fatigue in the fatigue-inducing phase, and participants' subjective evaluation on the mental fatigue, as well as their neurobehavioral performance in a Go/NoGo task, were measured before and after the fatigue-inducing phase. A total of 36 undergraduate students (18-22 years) participated in the study and were randomly assigned to the music group and control group. The music group performed the fatigue-inducing task while listening to relaxing music, and the control group performed the same task without any music. Our results revealed that after the fatigue-inducing phase, (a) the music group demonstrated significantly less mental fatigue than control group, (b) reaction time significantly increased for the control group but not for the music group, (c) larger Go-P3 and NoGo-P3 amplitudes were observed in the music group, although larger NoGo-N2 amplitudes were detected for both groups. These results combined to suggest that listening to relaxing music alleviated the mental fatigue associated with performing an enduring cognitive-motor task.

  19. Properties of Floquet-Bloch space harmonics in 1D periodic magneto-dielectric structures

    DEFF Research Database (Denmark)

    Breinbjerg, O.

    2012-01-01

    Recent years have witnessed a significant research interest in Floquet-Bloch analysis for determining the homogenized permittivity and permeability of metamaterials consisting of periodic structures. This work investigates fundamental properties of the Floquet-Bloch space harmonics in a 1......-dimensional magneto-dielectric lossless structure supporting a transverse-electric-magnetic Floquet-Bloch wave; in particular, the space harmonic permittivity and permeability, as well as the space harmonic Poynting vector....

  20. Self-consistent Maxwell-Bloch model of quantum-dot photonic-crystal-cavity lasers

    Science.gov (United States)

    Cartar, William; Mørk, Jesper; Hughes, Stephen

    2017-08-01

    We present a powerful computational approach to simulate the threshold behavior of photonic-crystal quantum-dot (QD) lasers. Using a finite-difference time-domain (FDTD) technique, Maxwell-Bloch equations representing a system of thousands of statistically independent and randomly positioned two-level emitters are solved numerically. Phenomenological pure dephasing and incoherent pumping is added to the optical Bloch equations to allow for a dynamical lasing regime, but the cavity-mediated radiative dynamics and gain coupling of each QD dipole (artificial atom) is contained self-consistently within the model. These Maxwell-Bloch equations are implemented by using Lumerical's flexible material plug-in tool, which allows a user to define additional equations of motion for the nonlinear polarization. We implement the gain ensemble within triangular-lattice photonic-crystal cavities of various length N (where N refers to the number of missing holes), and investigate the cavity mode characteristics and the threshold regime as a function of cavity length. We develop effective two-dimensional model simulations which are derived after studying the full three-dimensional passive material structures by matching the cavity quality factors and resonance properties. We also demonstrate how to obtain the correct point-dipole radiative decay rate from Fermi's golden rule, which is captured naturally by the FDTD method. Our numerical simulations predict that the pump threshold plateaus around cavity lengths greater than N =9 , which we identify as a consequence of the complex spatial dynamics and gain coupling from the inhomogeneous QD ensemble. This behavior is not expected from simple rate-equation analysis commonly adopted in the literature, but is in qualitative agreement with recent experiments. Single-mode to multimode lasing is also observed, depending on the spectral peak frequency of the QD ensemble. Using a statistical modal analysis of the average decay rates, we also

  1. Exact solutions for fermionic Green's functions in the Bloch-Nordsieck approximation of QED

    International Nuclear Information System (INIS)

    Kernemann, A.; Stefanis, N.G.

    1989-01-01

    A set of new closed-form solutions for fermionic Green's functions in the Bloch-Nordsieck approximation of QED is presented. A manifestly covariant phase-space path-integral method is applied for calculating the n-fermion Green's function in a classical external field. In the case of one and two fermions, explicit expressions for the full Green's functions are analytically obtained, with renormalization carried out in the modified minimal subtraction scheme. The renormalization constants and the corresponding anomalous dimensions are determined. The mass-shell behavior of the two-fermion Green's function is investigated in detail. No assumptions are made concerning the structure of asymptotic states and no IR cutoff is used in the calculations

  2. Mechanical, relaxation behavior and thermal degradation of UV irradiated poly(vinyl acetate)/poly( methyl methacrylate) blends

    International Nuclear Information System (INIS)

    Mansour, S.A.; Hafez, M.; Hussien, K.A.

    2005-01-01

    The effect of different doses of UV- irradiation on the mechanical and relaxation properties of poly(vinyl acetate)/poly(methyl methacrylate) blends were studied. Films of PVAc/PMMA blend with different contents were prepared using the casting technique. Also, PMMA could be blended with PVAc to improve its impact strength. Moreover UV-irradiation causes degradation of PVAc and formation of ketonic and aldehyde carbonyl groups according to a suggested scheme. Irradiation of PvAc/ PMMA blends causes a higher degree of degradation as compared to the PVAc alone although the PMMA is more susceptible than PVAc to the influence of radiation. Recognizable differences are observed for all parameters between the unirradiated and irradiated samples. Existence of a relaxation mechanism within the first 200s is reported. The shear modulus for all samples is also obtained and discussed. These data are used to calculate the strain energy density using the equation proposed by Blatzetal(1974 trans. Soc.Rheol. 18 145-61), based on the n-measure of Sethe

  3. Dielectric Relaxation Behavior of Bismuth Doped (Ba0.2Sr0.8 TiO3 Ceramics

    Directory of Open Access Journals (Sweden)

    Baptista, J. L.

    1999-12-01

    Full Text Available The dielectric properties of bismuth doped (Ba0.2Sr0.8TiO3 ceramics are investigated. The temperature dependence of the dielectric permittivity and loss factor were measured from 102 to 106Hz in the temperature range 12-320K. As the amount of Bi increases, the ferroelectric-paraelectric phase transition gets diffused and relaxed. In addition to this ferroelectric-paraelectric phase transition, other two sets of dielectric anomalies, located at 50-100K and 200-300K respectively, are also found. The possible relaxation mechanisms are briefly discussed.Las propiedades dieléctricas de cerámicos dopados con bismuto son investigadas. La dependencia con la temperatura de la permitividad dieléctrica y el factor de pérdidas se midieron entre 02 y 106Hz en el rango de temperatura 12-320K. Con el aumento del contenido en Bi, la transición de fase ferroeléctrica-paraléctrica se hace difusa y reloja. Junto a esta transición de fase los conjuntos de anomalías dieléctricas, localizados a 50-100k y 200-300k respectivamente, también se encontraron. Se discute brevemente los posibles mecanismos de relajación.

  4. The Efficacy of Rational-Emotive-Behavioral versus Relaxation Group Therapies in Treatment of Aggression of Offspring of Veterans with Post Traumatic Stress Disorder

    Directory of Open Access Journals (Sweden)

    M Barekatain

    2006-01-01

    Full Text Available Background: Post traumatic stress disorder (PTSD in war veterans has been linked with symptoms in their children, including symptoms resembling those of the traumatized parents, especially aggression. This study aims to examine the effectiveness of cognitive-behavioral group therapy in reducing aggressive behaviors of male adolescents whose fathers have war related PTSD. Method: 36 male children (aged 11 19 years whose fathers had PTSD, were randomly assigned into three groups for Rational-Emotive- Behavioral Therapy (REBT, Relaxation Therapy, and Wait-List control group. Each method had a course of ten therapeutic group sessions of 60 minutes once a week. Rates of aggression were assessed by Aggression Questionnaire (AGQ at baseline, end of intervention, and two months later. Results: The difference between AGQ scores of three groups was statistically significant. The behaviors of the three groups were not homogenous across the time (group × time interaction and showed a statistically significant difference. Conclusion: This study revealed that the intervention groups were superior to control group in reduction of aggressive behaviors in male adolescents of war veterans with PTSD. Further studies with greater sample size, prolonged duration of follow up, and multiple assessment procedures may be needed for better conclusions. Key words: Aggression, offspring, PTSD, Group Therapy

  5. Traffic restrictions on Routes Bloch, Maxwell and Bohr

    CERN Multimedia

    IT Department

    2008-01-01

    Excavation and pipework is being carried out in the framework of the transfer of the waste water treatment plant for the effluents from the surface treatment workshops from Building 254 to Building 676, currently under construction. This work may encroach onto Routes Bloch, Maxwell and Bohr and disrupt the flow of traffic. Users are requested to comply with the road signs that will be erected. The work is expected to last until the beginning of December 2008. Thank you for your understanding. TS/CE and TS/FM Groups Tel.7 4188 or 16 4314

  6. Bipolaron assisted Bloch-like oscillations in organic lattices

    International Nuclear Information System (INIS)

    Ribeiro, Luiz Antonio; Ferreira da Cunha, Wiliam; Magela e Silva, Geraldo

    2017-01-01

    The transport of a dissociated bipolaron in organic one-dimensional lattices is theoretically investigated in the scope of a tight-binding model that includes electron-lattice interactions and an external electric field. Remarkably, the results point to a physical picture in which the dissociated bipolaron propagates as a combined state of two free-like electrons that coherently perform spatial Bloch oscillations (BO) above a critical field strength. It was also obtained that the BO's trajectory presents a net forward motion in the direction of the applied electric field. The impact of dynamical disorder in the formation of electronic BOs is determined.

  7. Bipolaron assisted Bloch-like oscillations in organic lattices

    Science.gov (United States)

    Ribeiro, Luiz Antonio; Ferreira da Cunha, Wiliam; Magela e Silva, Geraldo

    2017-06-01

    The transport of a dissociated bipolaron in organic one-dimensional lattices is theoretically investigated in the scope of a tight-binding model that includes electron-lattice interactions and an external electric field. Remarkably, the results point to a physical picture in which the dissociated bipolaron propagates as a combined state of two free-like electrons that coherently perform spatial Bloch oscillations (BO) above a critical field strength. It was also obtained that the BO's trajectory presents a net forward motion in the direction of the applied electric field. The impact of dynamical disorder in the formation of electronic BOs is determined.

  8. Bipolaron assisted Bloch-like oscillations in organic lattices

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Luiz Antonio, E-mail: ribeirojr@unb.br [International Center for Condensed Matter Physics, University of Brasília, P.O. Box 04531, 70.919-970, Brasília, DF (Brazil); University of Brasília, UnB Faculty of Planaltina, 73.345-010, Planaltina, DF (Brazil); Ferreira da Cunha, Wiliam; Magela e Silva, Geraldo [Institute of Physics, University of Brasília, 70.919-970, Brasília (Brazil)

    2017-06-15

    The transport of a dissociated bipolaron in organic one-dimensional lattices is theoretically investigated in the scope of a tight-binding model that includes electron-lattice interactions and an external electric field. Remarkably, the results point to a physical picture in which the dissociated bipolaron propagates as a combined state of two free-like electrons that coherently perform spatial Bloch oscillations (BO) above a critical field strength. It was also obtained that the BO's trajectory presents a net forward motion in the direction of the applied electric field. The impact of dynamical disorder in the formation of electronic BOs is determined.

  9. A formula for the Bloch vector of some Lindblad quantum systems

    International Nuclear Information System (INIS)

    Salgado, D.; Sanchez-Gomez, J.L.

    2004-01-01

    Using the Bloch representation of an N-dimensional quantum system and immediate results from quantum stochastic calculus, we establish a closed formula for the Bloch vector, hence also for the density operator, of a quantum system following a Lindblad evolution with selfadjoint Lindblad operators

  10. Bloch electrons in 2D periodic electric and magnetic fields; Bloch-Elektronen in 2D periodischen elektrischen und magnetischen Feldern

    Energy Technology Data Exchange (ETDEWEB)

    Naundorf, B.

    2001-06-01

    The following topics were dealt with: electrons in periodic potentials, Bloch states, Landau states, wave packets, Harper equation, uncoupled Landau band states, matrix elements and matrix equations, periodic electric and magnetic fields (WL)

  11. Nonlinear Bloch waves in metallic photonic band-gap filaments

    International Nuclear Information System (INIS)

    Kaso, Artan; John, Sajeev

    2007-01-01

    We demonstrate the occurrence of nonlinear Bloch waves in metallic photonic crystals (PCs). These periodically structured filaments are characterized by an isolated optical pass band below an effective plasma gap. The pass band occurs in a frequency range where the metallic filament exhibits a negative, frequency-dependent dielectric function and absorption loss. The metallic losses are counterbalanced by gain in two models of inhomogeneously broadened nonlinear oscillators. In the first model, we consider close-packed quantum dots that fill the void regions of a two-dimensional (2D) metallic PC, and whose inhomogeneously broadened emission spectrum spans the original optical pass band of the bare filament. In the second model, we consider thin (10-50 nm) layers of inhomogeneously broadened two-level resonators, with large dipole oscillator strength, that cover the interior surfaces of 2D metallic (silver and tungsten) PCs. These may arise from localized surface plasmon resonances due to small metal particles or an otherwise rough metal surface. For simplicity, we treat electromagnetic modes with electric field perpendicular to the plane of metal periodicity. In both models, a pumping threshold of the resonators is found, above which periodic nonlinear solutions of Maxwell's equations with purely real frequency within the optical pass band emerge. These nonlinear Bloch waves exhibit a laserlike input pumping to output amplitude characteristic. For strong surface resonances, these nonlinear waves may play a role in light emission from a hot tungsten (suitably microstructured) filament

  12. Nonlinear Bloch waves in metallic photonic band-gap filaments

    Science.gov (United States)

    Kaso, Artan; John, Sajeev

    2007-11-01

    We demonstrate the occurrence of nonlinear Bloch waves in metallic photonic crystals (PCs). These periodically structured filaments are characterized by an isolated optical pass band below an effective plasma gap. The pass band occurs in a frequency range where the metallic filament exhibits a negative, frequency-dependent dielectric function and absorption loss. The metallic losses are counterbalanced by gain in two models of inhomogeneously broadened nonlinear oscillators. In the first model, we consider close-packed quantum dots that fill the void regions of a two-dimensional (2D) metallic PC, and whose inhomogeneously broadened emission spectrum spans the original optical pass band of the bare filament. In the second model, we consider thin (10 50 nm) layers of inhomogeneously broadened two-level resonators, with large dipole oscillator strength, that cover the interior surfaces of 2D metallic (silver and tungsten) PCs. These may arise from localized surface plasmon resonances due to small metal particles or an otherwise rough metal surface. For simplicity, we treat electromagnetic modes with electric field perpendicular to the plane of metal periodicity. In both models, a pumping threshold of the resonators is found, above which periodic nonlinear solutions of Maxwell’s equations with purely real frequency within the optical pass band emerge. These nonlinear Bloch waves exhibit a laserlike input pumping to output amplitude characteristic. For strong surface resonances, these nonlinear waves may play a role in light emission from a hot tungsten (suitably microstructured) filament.

  13. Overall conductivity and NCL-type relaxation behavior in nanocrystalline sodium peroxide Na{sub 2}O{sub 2}—Consequences for Na-oxygen batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dunst, Andreas; Sternad, Michael; Wilkening, Martin, E-mail: wilkening@tugraz.at

    2016-09-15

    Highlights: • Na{sub 2}O{sub 2} turned out to be a poor electrical conductor. • Total conductivity of nanocrystalline Na{sub 2}O{sub 2} measured slightly above room temperature is in the order of 10{sup −15} S cm{sup −1}. • Activation energies of micro- and nanocrystalline Na{sub 2}O{sub 2} are in the order of 1 eV. • At low temperatures nearly constant loss behavior showed up pointing to locally restricted electrical relaxation processes. - Abstract: Metal air batteries are considered as promising candidates for room-temperature batteries with high-energy densities. On discharge, atmospheric oxygen is reduced at the positive electrode which, in the ideal case, forms the discharge products in a reversible cell reaction. In Na-O{sub 2} batteries upon discharge either sodium peroxide (Na{sub 2}O{sub 2}) or sodium superoxide (NaO{sub 2}) is reported to be formed. So far, the charge carrier transport remains relatively unexplored but is expected to crucially determine the efficiency of such energy storage systems. Na{sub 2}O{sub 2} is predicted to be an electrical insulator wherein the transport presumably is determined by very slow hopping processes. Understanding the basic fundamental properties of the overall charge carrier transport, including also nanostructured forms of Na{sub 2}O{sub 2}, is key to developing high-energy metal oxygen batteries. The present study answers the question how overall, i.e., total, conductivity changes when going from microcrystalline to nanocrystalline, defect-rich Na{sub 2}O{sub 2}. Nanocrystalline Na{sub 2}O{sub 2} was prepared via a top-down approach, viz by high-energy ball milling. Milling does not only shrink the average crystallite diameter but also introduces a large amount of defects which are anticipated to influence total conductivity. It turned out that even after vigorous mechanical treatment the conductivity of the sample is only increased by ca. one order of magnitude. The activation energy remains almost

  14. Dynamical renormalization group approach to relaxation in quantum field theory

    International Nuclear Information System (INIS)

    Boyanovsky, D.; Vega, H.J. de

    2003-01-01

    The real time evolution and relaxation of expectation values of quantum fields and of quantum states are computed as initial value problems by implementing the dynamical renormalization group (DRG). Linear response is invoked to set up the renormalized initial value problem to study the dynamics of the expectation value of quantum fields. The perturbative solution of the equations of motion for the field expectation values of quantum fields as well as the evolution of quantum states features secular terms, namely terms that grow in time and invalidate the perturbative expansion for late times. The DRG provides a consistent framework to resum these secular terms and yields a uniform asymptotic expansion at long times. Several relevant cases are studied in detail, including those of threshold infrared divergences which appear in gauge theories at finite temperature and lead to anomalous relaxation. In these cases the DRG is shown to provide a resummation akin to Bloch-Nordsieck but directly in real time and that goes beyond the scope of Bloch-Nordsieck and Dyson resummations. The nature of the resummation program is discussed in several examples. The DRG provides a framework that is consistent, systematic, and easy to implement to study the non-equilibrium relaxational dynamics directly in real time that does not rely on the concept of quasiparticle widths

  15. Evaluation of the internal structure of articular cartilage in terms of 1H-NMR relaxation behavior

    International Nuclear Information System (INIS)

    Matsuo, Takeshi

    2000-01-01

    The structural characteristics of articular cartilage were analyzed using 1 H-longitudinal (T 1 ) and transverse (T 2 ) relaxation times as measured by fast-inversion-recovery and multi-spin-echo magnetic resonance imaging (MRI). Pairs of cartilage-bone plugs from weight bearing and non-weight bearing regions were dissected from 15 medial femoral condyles and were subjected to NMR measurements with and without static loads (0.15-1.0 MPa). The T 1 of the cartilage with no load showed a maximum value just beneath the articular surface and this value decreased gradually towards the deeper zones. The T 2 of the same cartilage showed a maximum value at, or just beneath, the articular surface, decreased rapidly towards the intermediate zone yet increased again in the deepest zone. The increase of T 2 in the deepest zone was more greatly pronounced in the weight bearing region than in the non-weight bearing region. These layer-dependent differences in the T 1 and T 2 could account for the laminar appearance of the articular cartilage in the MR images. Under static loads, the decrease of T 1 in the transitional zone (from just beneath the articular surface to the intermediate zone) was significant. Because T 1 has a positive correlation with the water content, this decrease in T 1 may signify that the largest water loss occurs in the transitional zone. These findings suggest that the transitional zone might attenuate mechanical stress in the joint, and the expressed water from the cartilage could substantially contribute to the lubrication of the joint. (author)

  16. Study of crystallization kinetics and structural relaxation behavior in phase separated Ag{sub 33}Ge{sub 17}Se{sub 50} glassy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen, E-mail: prafiziks@gmail.com [Semiconductors Laboratory, Department of Physics, GND University, Amritsar 143005 (India); Nanotechnology Research Centre, DAV Institute of Engineering and Technology, Kabir Nagar, Jalandhar 144008 (India); Yannopoulos, S.N. [Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes (FORTH/ICE-HT), P.O. Box 1414, GR-26 504, Rio-Patras (Greece); Sathiaraj, T.S. [Department of Physics, University of Botswana, Gaborone (Botswana); Thangaraj, R., E-mail: rthangaraj@rediffmail.com [Semiconductors Laboratory, Department of Physics, GND University, Amritsar 143005 (India)

    2012-07-16

    We report on the crystallization processes and structure (crystal phases) of Ag{sub 33}Ge{sub 17}Se{sub 50} glassy alloy using differential scanning calorimetry and x-ray diffraction techniques, respectively. The devitrification that gives rise to the first exothermic peak results in the crystallization of Ag{sub 2}Se and Ag{sub 8}GeSe{sub 6} phases, while the growth of GeSe{sub 2} accompanied by the transformation of Ag{sub 8}GeSe{sub 6} to Ag{sub 2}Se phase occurs during the second crystallization process. Different theoretical models are used to elucidate various kinetic parameters for the crystallization transformation process in this phase separated system. With annealing below the glass transition temperature, an inverse behavior between the variation of the optical gap and the band tailing parameter is observed for the thermally evaporated films. These results are explained as the mixing of different clusters/species in the amorphous state and/or changes caused by structural relaxation of the glassy network for the thermally evaporated films. - Highlights: Black-Right-Pointing-Pointer Phase separation in Ag{sub 33}Ge{sub 17}Se{sub 50} glassy alloy bordering two glass forming regions. Black-Right-Pointing-Pointer Transformation of Ag{sub 8}GeSe{sub 6} {yields} Ag{sub 2}Se along with crystallization GeSe{sub 2} phase. Black-Right-Pointing-Pointer Elucidation of various kinetic parameters for the crystalline transformation. Black-Right-Pointing-Pointer Structural relaxation in thermally evaporated films by optical spectroscopy.

  17. Nuclear Spin Lattice Relaxation and Conductivity Studies of the Non-Arrhenius Conductivity Behavior in Lithium Fast Ion Conducting Sulfide Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Benjamin Michael [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    As time progresses, the world is using up more of the planet's natural resources. Without technological advances, the day will eventually arrive when these natural resources will no longer be sufficient to supply all of the energy needs. As a result, society is seeing a push for the development of alternative fuel sources such as wind power, solar power, fuel cells, and etc. These pursuits are even occurring in the state of Iowa with increasing social pressure to incorporate larger percentages of ethanol in gasoline. Consumers are increasingly demanding that energy sources be more powerful, more durable, and, ultimately, more cost efficient. Fast Ionic Conducting (FIC) glasses are a material that offers great potential for the development of new batteries and/or fuel cells to help inspire the energy density of battery power supplies. This dissertation probes the mechanisms by which ions conduct in these glasses. A variety of different experimental techniques give a better understanding of the interesting materials science taking place within these systems. This dissertation discusses Nuclear Magnetic Resonance (NMR) techniques performed on FIC glasses over the past few years. These NMR results have been complimented with other measurement techniques, primarily impedance spectroscopy, to develop models that describe the mechanisms by which ionic conduction takes place and the dependence of the ion dynamics on the local structure of the glass. The aim of these measurements was to probe the cause of a non-Arrhenius behavior of the conductivity which has been seen at high temperatures in the silver thio-borosilicate glasses. One aspect that will be addressed is if this behavior is unique to silver containing fast ion conducting glasses. more specifically, this study will determine if a non-Arrhenius correlation time, τ, can be observed in the Nuclear Spin Lattice Relaxation (NSLR) measurements. If so, then can this behavior be modeled with a new single

  18. Entanglement and the three-dimensionality of the Bloch ball

    Energy Technology Data Exchange (ETDEWEB)

    Masanes, Ll., E-mail: ll.masanes@gmail.com [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Müller, M. P. [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 19, D-69120 Heidelberg (Germany); Pérez-García, D. [Departamento de Analisis Matematico and IMI, Universidad Complutense de Madrid, 28040 Madrid (Spain); Augusiak, R. [ICFO-Institut de Ciencies Fotoniques, 08860 Castelldefels, Barcelona (Spain)

    2014-12-15

    We consider a very natural generalization of quantum theory by letting the dimension of the Bloch ball be not necessarily three. We analyze bipartite state spaces where each of the components has a d-dimensional Euclidean ball as state space. In addition to this, we impose two very natural assumptions: the continuity and reversibility of dynamics and the possibility of characterizing bipartite states by local measurements. We classify all these bipartite state spaces and prove that, except for the quantum two-qubit state space, none of them contains entangled states. Equivalently, in any of these non-quantum theories, interacting dynamics is impossible. This result reveals that “existence of entanglement” is the requirement with minimal logical content which singles out quantum theory from our family of theories.

  19. Terahertz emission of Bloch oscillators excited by electromagnetic field in lateral semiconductor superlattices

    International Nuclear Information System (INIS)

    Dodin, E.P.; Zharov, A.A.

    2003-01-01

    The effect of the strong high-frequency electromagnetic field on the lateral semiconductor superlattice is considered on the basis of the quasi-classical theory on the electron transport in the self-consistent wave arrangement. It is theoretically identified, that the lateral superlattice in the strong feed-up wave field may emit the terahertz radiation wave trains, which are associated with the periodical excitation of the Bloch oscillations in the superlattice. The conditions, required for the Bloch oscillators radiation observation, are determined. The spectral composition of the radiation, passing through the superlattice, and energy efficiency of multiplying the frequency, related to the Bloch oscillator excitation, are calculated [ru

  20. From Bloch to random lasing in ZnO self-assembled nanostructures

    DEFF Research Database (Denmark)

    Garcia-Fernandez, Pedro David; Cefe, López

    2013-01-01

    In this paper, we present measurements on UV lasing in ZnO ordered and disordered nanostructures. Bloch lasing is achieved in the ordered structures by exploiting very low group-velocity Bloch modes in ZnO photonic crystals. In the second case, random lasing is observed in ZnO photonic glasses. We...... study the lasing threshold in both cases and its dependence on the structural parameters. Finally, we present the transition from Bloch to random lasing by deliberately doping a ZnO inverse photonic crystal with a controlled amount of lattice vacancies effectively converting it into a translationally...

  1. Study of Maxwell–Wagner (M–W) relaxation behavior and hysteresis observed in bismuth titanate layered structure obtained by solution combustion synthesis using dextrose as fuel

    International Nuclear Information System (INIS)

    Subohi, Oroosa; Shastri, Lokesh; Kumar, G.S.; Malik, M.M.; Kurchania, Rajnish

    2014-01-01

    Graphical abstract: X-ray diffraction studies show that phase formation and crystallinity was reached only after calcinations at 800 °C. Dielectric constant versus temperature curve shows ferroelectric to paraelectric transition temperature (T c ) to be 650 °C. Complex impedance curves show deviation from Debye behavior. The material shows a thin PE Loop with low remnant polarization due to high conductivity in the as prepared sample. - Highlights: • Bi 4 Ti 3 O 12 is synthesized using solution combustion technique with dextrose as fuel. • Dextrose has high reducing capacity (+24) and generates more no. of moles of gases. • Impedance studies show that the sample follows Maxwell–Wagner relaxation behavior. • Shows lower remnant polarization due to higher c-axis ratio. - Abstract: Structural, dielectric and ferroelectric properties of bismuth titanate (Bi 4 Ti 3 O 12 ) obtained by solution combustion technique using dextrose as fuel is studied extensively in this paper. Dextrose is used as fuel as it has high reducing valancy and generates more number of moles of gases during the reaction. X-ray diffraction studies show that phase formation and crystallinity was reached only after calcinations at 800 °C. Dielectric constant versus temperature curve shows ferroelectric to paraelectric transition temperature (T c ) to be 650 °C. The dielectric loss is very less (tan δ < 1) at lower temperatures but increases around T c due to structural changes in the sample. Complex impedance curves show deviation from Debye behavior. The material shows a thin PE Loop with low remnant polarization due to high conductivity in the as prepared sample

  2. Full-angle Negative Reflection with An Ultrathin Acoustic Gradient Metasurface: Floquet-Bloch Modes Perspective and Experimental Verification

    KAUST Repository

    Liu, Bingyi

    2017-07-01

    Metasurface with gradient phase response offers new alternative for steering the propagation of waves. Conventional Snell\\'s law has been revised by taking the contribution of local phase gradient into account. However, the requirement of momentum matching along the metasurface sets its nontrivial beam manipulation functionality within a limited-angle incidence. In this work, we theoretically and experimentally demonstrate that the acoustic gradient metasurface supports the negative reflection for full-angle incidence. The mode expansion theory is developed to help understand how the gradient metasurface tailors the incident beams, and the full-angle negative reflection occurs when the first negative order Floquet-Bloch mode dominates. The coiling-up space structures are utilized to build desired acoustic gradient metasurface and the full-angle negative reflections have been perfectly verified by experimental measurements. Our work offers the Floquet-Bloch modes perspective for qualitatively understanding the reflection behaviors of the acoustic gradient metasurface and enables a new degree of the acoustic wave manipulating.

  3. Quantum Transport in Solids: Bloch Dynamics and Role of Oscillating Fields

    National Research Council Canada - National Science Library

    Kim, Ki

    1997-01-01

    .... The specific areas of research are those of Bloch electron dynamics, quantum transport in oscillating electric fields or in periodic potentials, and the capacitive nature of atomic size structures...

  4. Surface Acoustic Analog of Bloch Oscillations, Wannier-Stark Ladders and Landau-Zener Tunneling

    Science.gov (United States)

    de Lima, M. M.; Kosevich, Yu. A.; Santos, P. V.; Cantarero, A.

    2011-12-01

    In this contribution, we discuss the recent experimental demonstration of Wannier-Stark ladders, Bloch Oscillations and Landau Zener tunneling in a solid by means of surface acoustic waves propagating through perturbed grating structures.

  5. Non-Bloch decay of Rabi oscillations in liquid state NMR

    Science.gov (United States)

    Chakrabarti, Arnab; Bhattacharyya, Rangeet

    2018-03-01

    Rabi oscillations are known to exhibit non-Bloch behaviour in anisotropic media. In this letter, we report an experimental observation of non-Bloch decay of Rabi oscillations in isotropic liquid state NMR. To avoid the dephasing due to the radio-frequency inhomogeneities, we develop a modified version of the rotary echo protocol and use it to determine the decay rates of Rabi oscillations. We find that the measured decay rates are proportional to the square of the Rabi frequencies and the proportionality constant is of the order of tens of picoseconds. Further, we show that this non-Bloch nature of the decay rates becomes less prominent with increasing temperature. The implications of the presence of non-Bloch decay rates in liquid state NMR in the context of ensemble quantum computing are also discussed.

  6. On the equilibrium configuration of the Kittel type domain structure with Bloch walls, l80deg

    International Nuclear Information System (INIS)

    Gavrila, H.

    1975-01-01

    Using a phenomenologic method for appreciating different components of the free energy, the equilibrium configuration of the Kittel-type domain structure with Bloch walls is obtained. By improving the known methods, more accurate magnetostatic energy calculations are reported. In order to determine the equilibrium structure, the total free energy is minimized with respect to two system parameters: the Bloch wall width and the structure half-period. (author)

  7. Optical Effects Induced by Bloch Surface Waves in One-Dimensional Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Irina V. Soboleva

    2018-01-01

    Full Text Available The review considers the influence of Bloch surface waves on the optical and magneto-optical effects observed in photonic crystals; for example, the Goos–Hänchen effect, the Faraday effect, optical trapping and so on. Prospects for using Bloch surface waves for spatial light modulation, for controlling the polarization of light, for optical trapping and control of micro-objects are discussed.

  8. Functional behavior of the anomalous magnetic relaxation observed in melt-textured YBa{sub 2}Cu{sub 3}O{sub 7-δ} samples showing the paramagnetic Meissner effect

    Energy Technology Data Exchange (ETDEWEB)

    Dias, F.T., E-mail: fabio.dias@ufpel.edu.br [Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, 96010-900, Pelotas, Rio Grande do Sul (Brazil); Vieira, V.N.; Garcia, E.L. [Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, 96010-900, Pelotas, Rio Grande do Sul (Brazil); Wolff-Fabris, F.; Kampert, E. [Dresden High Magnetic Field Laboratory, Helmholtz-Zentrum Dresden-Rossendorf, 01314, Dresden (Germany); Gouvêa, C.P. [National Institute of Metrology, Quality and Technology (Inmetro), Material Metrology Division, 25250-020, Duque de Caxias, Rio de Janeiro (Brazil); Schaf, J. [Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Rio Grande do Sul (Brazil); Obradors, X.; Puig, T. [Institut de Ciència de Materials de Barcelona, CSIC, Universitat Autònoma de Barcelona, 08193, Bellaterra (Spain); Roa, J.J. [Departamento de Ciencia de Materiales e Ingeniería Metalúrgica, Universitat Politècnica de Catalunya, 08028, Barcelona (Spain)

    2016-10-15

    Highlights: • Paramagnetic Meissner effect observed up to 5T in FCC and FCW measurements. • Time effects evidenced by irreversibilities between FCC and FCW measurements. • Strong time effects causing an anomalous paramagnetic relaxation. • Paramagnetic relaxation governed by different flux dynamics in different intervals. • An interpretative analysis to identify the flux dynamics in the relaxation process. - Abstract: We have studied the functional behavior of the field-cooled (FC) magnetic relaxation observed in melt-textured YBa{sub 2}Cu{sub 3}O{sub 7-δ} (Y123) samples with 30 wt% of Y{sub 2}Ba{sub 1}Cu{sub 1}O{sub 5} (Y211) phase, in order to investigate anomalous paramagnetic moments observed during the experiments. FC magnetic relaxation experiments were performed under controlled conditions, such as cooling rate and temperature. Magnetic fields up to 5T were applied parallel to the ab plane and along the c-axis. Our results are associated with the paramagnetic Meissner effect (PME), characterized by positive moments during FC experiments, and related to the magnetic flux compression into the samples. After different attempts our experimental data could be adequately fitted by an exponential decay function with different relaxation times. We discuss our results suggesting the existence of different and preferential flux dynamics governing the anomalous FC paramagnetic relaxation in different time intervals. This work is one of the first attempts to interpret this controversial effect in a simple analysis of the pinning mechanisms and flux dynamics acting during the time evolution of the magnetic moment. However, the results may be useful to develop models to explain this interesting and still misunderstood feature of the paramagnetic Meissner effect.

  9. Structural relaxation in annealed hyperquenched basaltic glasses

    DEFF Research Database (Denmark)

    Guo, Xiaoju; Mauro, John C.; Potuzak, M.

    2012-01-01

    The enthalpy relaxation behavior of hyperquenched (HQ) and annealed hyperquenched (AHQ) basaltic glass is investigated through calorimetric measurements. The results reveal a common onset temperature of the glass transition for all the HQ and AHQ glasses under study, indicating that the primary...... relaxation is activated at the same temperature regardless of the initial departure from equilibrium. The analysis of secondary relaxation at different annealing temperatures provides insights into the enthalpy recovery of HQ glasses....

  10. In vitro and in vivo aphrodisiac properties of the seed extract from Allium tuberosum on corpus cavernosum smooth muscle relaxation and sexual behavior parameters in male Wistar rats.

    Science.gov (United States)

    Tang, Xingli; Olatunji, Opeyemi J; Zhou, Yifeng; Hou, Xilin

    2017-12-01

    Allium tuberosum is a well-known spice as well as a herb in traditional Chinese medicine, used for increasing libido and treating erectile dysfunction. However, not many studies have been done to evaluate the sexual enhancing properties of A. tuberosum. The aim of this study was to evaluate the aphrodisiac and vasorelaxant properties of A. tuberosum on corpus cavernosum smooth muscle (CCSM) as well as checking the effect on enhancing male rat sexual behavior, libido, potency as well as its spermatogenic properties. The seeds were powdered and sequentially extracted with hexane, ethyl acetate and butanol. Male Wistar rats were administered with graded doses of the n-BuOH extracts (ATB) of A. tuberosum (50, 100, 200 and 400 mg/kg) and Viagra was used as the positive control drug. The extract/drug was administered by gastric probe once daily for 45 days and the sexual behavior was analyzed by exposing the male rats to female rats in the estrus period. ATB relaxed corpus cavernosum smooth muscle (68.9%) at a concentration of 200 μg/ml. The results obtained from the animal studies indicated that ATB significantly increased mount frequency (MF), intromission frequency (IF), ejaculation frequency (EF), ejaculation latency (EL) and markedly reduced post ejaculatory interval (PEI), mount latency (ML), and intromission latency (IL). Furthermore, a remarkable increase in the test for potency was observed as witnessed by marked increase in erections, quick flips, long flips and total reflex. In addition, ATB significantly improved the sperm viability and count as well as increased the concentrations of testosterone, follicle stimulating hormone (FSH), and phosphatases in the treated animals. Thus our results suggest that A. tuberosum could stimulate sexual arousal and enhance sexual execution in male rats, thus providing valuable experimental evidence that A. tuberosum possesses sexual enhancing properties.

  11. Stochastic and Chaotic Relaxation Oscillations

    NARCIS (Netherlands)

    Grasman, J.; Roerdink, J.B.T.M.

    1988-01-01

    For relaxation oscillators stochastic and chaotic dynamics are investigated. The effect of random perturbations upon the period is computed. For an extended system with additional state variables chaotic behavior can be expected. As an example, the Van der Pol oscillator is changed into a

  12. The peripheral olfactory organ in the Greenland shark Somniosus microcephalus (Bloch and Schneider, 1801

    Directory of Open Access Journals (Sweden)

    Laura Ghigliotti

    2015-11-01

    Full Text Available The Greenland shark Somniosus microcephalus (Bloch and Schneider, 1801 is the largest predatory fish in Arctic waters. The socio-economic significance of Greenland shark is demonstrated by its impact on the fishing cultures in Greenland, Scandinavia and Iceland for centuries. The fundamental biology and ecological role of Greenland shark, on the other hand, is virtually unknown. Although knowledge of its life history is limited, increasing evidence indicates that the Greenland shark may undertake long-distance migrations and perform vertical movements from the surface to the deep sea. It is an omnivorous species feeding on carrion and a wide variety of pelagic and bottom-dwelling organisms ranging from invertebrates to mammals, and including active species such as fishes and seals. Accordingly, Greenland shark should be recognized as a top predator, with a strong potential to influence the trophic dynamics of the Arctic marine ecosystem. The sensory biology of Greenland shark is scarcely studied, and considering the importance of olfaction in chemoreception, feeding and other behavioral traits, we examined the architecture of the peripheral olfactory organ where olfactory cues are received from the environment – the olfactory rosette. The structural organization of the olfactory rosette, in terms of histological features of the sensory epithelium, number of primary lamellae and total sensory surface area, provides a first proxy of the olfactory capability of Greenland shark. Based on own results and published studies, the overall morphology of the olfactory rosette is viewed in context of the functional and trophic ecology among other elasmobranch species.

  13. Philippe Bloch: Reducing distance between experiments and CERN

    CERN Multimedia

    2009-01-01

    With its unique combination of several hundred staff members and thousands of users from around the world sharing offices and physics data and profiting from mutually beneficial exchanges of know-how and expertise, the PH Department is a good example of a successful worldwide collaboration, set up as it was to construct and run the Laboratory’s physics experiments. The PH Depart-ment has always played host to thousands of users that contribute to CERN experiments and work on them, and whose numbers are set to grow in the years to come. With his long-standing experience as a user and then as the head of the CERN group within the CMS collaboration, Philippe Bloch, the new PH Department Head, is in favour of closer links between the Department and the experiments. "I think that the PH management should have a direct link to the experiments, and to do so we are holding regular management team meetings comprising members of the Department’s management and the e...

  14. Bloch-Nordsieck estimates of high-temperature QED

    International Nuclear Information System (INIS)

    Fried, H. M.; Sheu, Y.-M.; Grandou, T.

    2008-01-01

    In anticipation of a subsequent application to QCD, we consider the case of QED at high temperature. We introduce a Fradkin representation into the exact, Schwingerian, functional expression of a fermion propagator, as well as a new and relevant version of the Bloch-Nordsieck model, which extracts the soft contributions of every perturbative graph, in contradistinction to the assumed separation of energy scales of previous semiperturbative treatments. Our results are applicable to the absorption of a fast particle which enters a heat bath, as well as to the propagation of a symmetric pulse within the thermal medium due to the appearance of an instantaneous, shockwave-like source acting in the medium. An exponentially decreasing time dependence of the incident particle's initial momentum combines with a stronger decrease in the particle's energy, estimated by a sum over all Matsubara frequencies, to model an initial 'fireball', which subsequently decays in a Gaussian fashion. When extended to QCD, qualitative applications could be made to RHIC scattering, in which a fireball appears, expands, and is damped away

  15. Relaxation dispersion in MRI induced by fictitious magnetic fields.

    Science.gov (United States)

    Liimatainen, Timo; Mangia, Silvia; Ling, Wen; Ellermann, Jutta; Sorce, Dennis J; Garwood, Michael; Michaeli, Shalom

    2011-04-01

    A new method entitled Relaxation Along a Fictitious Field (RAFF) was recently introduced for investigating relaxations in rotating frames of rank ≥ 2. RAFF generates a fictitious field (E) by applying frequency-swept pulses with sine and cosine amplitude and frequency modulation operating in a sub-adiabatic regime. In the present work, MRI contrast is created by varying the orientation of E, i.e. the angle ε between E and the z″ axis of the second rotating frame. When ε > 45°, the amplitude of the fictitious field E generated during RAFF is significantly larger than the RF field amplitude used for transmitting the sine/cosine pulses. Relaxation during RAFF was investigated using an invariant-trajectory approach and the Bloch-McConnell formalism. Dipole-dipole interactions between identical (like) spins and anisochronous exchange (e.g., exchange between spins with different chemical shifts) in the fast exchange regime were considered. Experimental verifications were performed in vivo in human and mouse brain. Theoretical and experimental results demonstrated that changes in ε induced a dispersion of the relaxation rate constants. The fastest relaxation was achieved at ε ≈ 56°, where the averaged contributions from transverse components during the pulse are maximal and the contribution from longitudinal components are minimal. RAFF relaxation dispersion was compared with the relaxation dispersion achieved with off-resonance spin lock T(₁ρ) experiments. As compared with the off-resonance spin lock T(₁ρ) method, a slower rotating frame relaxation rate was observed with RAFF, which under certain experimental conditions is desirable. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Narrow Bloch walls and intrinsic characteristics of the pseudoternary Nd14Fe78-xMnxC8 systems

    International Nuclear Information System (INIS)

    Xing, F.; Ho, W.W.

    1990-01-01

    The lattice constants of Nd 14 Fe 78-x Mn x C 8 compounds decrease with the increase of Mn context x and have a minimum at about x=14. The Curie temperature T c decreases linearly and falls off below room temperature beyond x=14. The strong reduction of the saturation magnetization and T c are attributed to the antiparallel alignment of the Mn and Fe atoms moments. The behavior of magnetization and magnetization reversal in the high-Mn-containing samples at low temperature can be interpreted by the narrow domain wall effect. The relationship of the intrinsic coercive force i H c on temperature agrees well with the exponential formula of the narrow Bloch wall

  17. The Exploration and Analysis of the Magnetic Relaxation Behavior in Three Isostructural Cyano-Bridged 3d–4f Linear Heterotrinuclear Compounds

    Directory of Open Access Journals (Sweden)

    Xia Xiong

    2018-03-01

    Full Text Available Three isostructural cyano-bridged 3d–4f linear heterotrinuclear compounds, (H2.5O4{Ln[TM(CN5(CNH0.5]2(HMPA4} (Ln = YIII, TM = [FeIII]LS (1; Ln = DyIII, TM = [FeIII]LS (2; Ln = DyIII, TM = CoIII (3, have been synthesized and characterized by single-crystal X-ray diffraction. Due to the steric effect of the HMPA ligands, the central lanthanide ions in these compounds possess a low coordination number, six-coordinate, exhibiting a coordination geometry of an axially elongated octahedron with a perfect D4h symmetry. Four HMPA ligands situate in the equatorial plane around the central lanthanide ions, and two [TM(CN5(CNH0.5]2.5− entities occupy the apical positions to form a cyano-bridged 3d–4f linear heterotrinuclear structure. The static magnetic analysis of the three compounds indicated a paramagnetic behavior of compounds 1 and 3, and possible small magnetic interactions between the intramolecular DyIII and [FeIII]LS ions in compound 2. Under zero dc field, the ac magnetic measurements on 2 and 3 revealed the in-phase component (χ′ of the ac susceptibility without frequency dependence and silent out-of-phase component (χ″, which was attributed to the QTM effect induced by the coordination geometry of an axially elongated octahedron for the DyIII ion. Even under a 1 kOe applied dc field, the χ″ components of 2 were revealed frequency dependence without peaks above 2 K. And under a 2 kOe and 3 kOe dc field, the χ″ components of 3 exhibited weak frequency dependence below 4 K with the absence of well-shaped peaks, which confirmed the poor single-ion magnetic relaxation behavior of the six-coordinate DyIII ion excluding any influence from the neighboring [FeIII]LS ions as that in the analogue 2.

  18. Bloch-Surface-Polariton-Based Hybrid Nanowire Structure for Subwavelength, Low-Loss Waveguiding

    Directory of Open Access Journals (Sweden)

    Weijing Kong

    2018-03-01

    Full Text Available Surface plasmon polaritons (SPPs have been thoroughly studied in the past decades for not only sensing but also waveguiding applications. Various plasmonic device structures have been explored due to their ability to confine their optical mode to the subwavelength level. However, with the existence of metal, the large ohmic loss limits the propagation distance of the SPP and thus the scalability of such devices. Therefore, different hybrid waveguides have been proposed to overcome this shortcoming. Through fine tuning of the coupling between the SPP and a conventional waveguide mode, a hybrid mode could be excited with decent mode confinement and extended propagation distance. As an effective alternative of SPP, Bloch surface waves have been re-investigated more recently for their unique advantages. As is supported in all-dielectric structures, the optical loss for the Bloch surface wave is much lower, which stands for a much longer propagating distance. Yet, the confinement of the Bloch surface wave due to the reflections and refractions in the multilayer structure is not as tight as that of the SPP. In this work, by integrating a periodic multilayer structure that supports the Bloch surface wave with a metallic nanowire structure, a hybrid Bloch surface wave polariton could be excited. With the proposed hybrid nanowire structure, a hybrid mode is demonstrated with the deep subwavelength mode confinement and a propagation distance of tens of microns.

  19. Quasiperiodicity in time evolution of the Bloch vector under the thermal Jaynes-Cummings model

    Science.gov (United States)

    Azuma, Hiroo; Ban, Masashi

    2014-07-01

    We study a quasiperiodic structure in the time evolution of the Bloch vector, whose dynamics is governed by the thermal Jaynes-Cummings model (JCM). Putting the two-level atom into a certain pure state and the cavity field into a mixed state in thermal equilibrium at initial time, we let the whole system evolve according to the JCM Hamiltonian. During this time evolution, motion of the Bloch vector seems to be in disorder. Because of the thermal photon distribution, both a norm and a direction of the Bloch vector change hard at random. In this paper, taking a different viewpoint compared with ones that we have been used to, we investigate quasiperiodicity of the Bloch vector’s trajectories. Introducing the concept of the quasiperiodic motion, we can explain the confused behaviour of the system as an intermediate state between periodic and chaotic motions. More specifically, we discuss the following two facts: (1) If we adjust the time interval Δt properly, figures consisting of plotted dots at the constant time interval acquire scale invariance under replacement of Δt by sΔt, where s(>1) is an arbitrary real but not transcendental number. (2) We can compute values of the time variable t, which let |Sz(t)| (the absolute value of the z-component of the Bloch vector) be very small, with the Diophantine approximation (a rational approximation of an irrational number).

  20. Breathing and Relaxation

    Science.gov (United States)

    ... Find a Doctor Relaxation is the absence of tension in muscle groups and a minimum or absence ... Drill Meditation Progressive Muscle Relaxation Minimizing Shortness of Breath Visualization This information has been approved by Shelby ...

  1. Integral type operators from normal weighted Bloch spaces to QT,S spaces

    Directory of Open Access Journals (Sweden)

    Yongyi GU

    2016-08-01

    Full Text Available Operator theory is an important research content of the analytic function space theory. The discussion of simultaneous operator and function space is an effective way to study operator and function space. Assuming that  is an analytic self map on the unit disk Δ, and the normal weighted bloch space μ-B is a Banach space on the unit disk Δ, defining a composition operator C∶C(f=f on μ-B for all f∈μ-B, integral type operator JhC and CJh are generalized by integral operator and composition operator. The boundeness and compactness of the integral type operator JhC acting from normal weighted Bloch spaces to QT,S spaces are discussed, as well as the boundeness of the integral type operators CJh acting from normal weighted Bloch spaces to QT,S spaces. The related sufficient and necessary conditions are given.

  2. Mechanical Properties of Laminate Materials: From Surface Waves to Bloch Oscillations

    DEFF Research Database (Denmark)

    Liang, Z.; Willatzen, Morten; Christensen, Johan

    2015-01-01

    for designing Bloch oscillations in classical plate structures and show how mechanical Bloch oscillations can be generated in arrays of solid plates when the modal wavelength is gradually reduced. The design recipe describes how Bloch oscillations in classical structures of arbitrary dimensions can be generated......We propose hitherto unexplored and fully analytical insights into laminate elastic materials in a true condensed-matter-physics spirit. Pure mechanical surface waves that decay as evanescent waves from the interface are discussed, and we demonstrate how these designer Scholte waves are controlled......, and we demonstrate this numerically for structures with millimeter and centimeter dimensions in the kilohertz to megahertz range. Analytical predictions agree entirely with full wave simulations showing how elastodynamics can mimic quantum-mechanical condensed-matter phenomena....

  3. Incorporating excitation-induced dephasing into the Maxwell-Bloch numerical modeling of photon echoes

    International Nuclear Information System (INIS)

    Burr, G.W.; Harris, Todd L.; Babbitt, Wm. Randall; Jefferson, C. Michael

    2004-01-01

    We describe the incorporation of excitation-induced dephasing (EID) into the Maxwell-Bloch numerical simulation of photon echoes. At each time step of the usual numerical integration, stochastic frequency jumps of ions--caused by excitation of neighboring ions--is modeled by convolving each Bloch vector with the Bloch vectors of nearby frequency detunings. The width of this convolution kernel follows the instantaneous change in overall population, integrated over the simulated bandwidth. This approach is validated by extensive comparison against published and original experimental results. The enhanced numerical model is then used to investigate the accuracy of experiments designed to extrapolate to the intrinsic dephasing time T 2 from data taken in the presence of EID. Such a modeling capability offers improved understanding of experimental results, and should allow quantitative analysis of engineering tradeoffs in realistic optical coherent transient applications

  4. Bloch wave deafness and modal conversion at a phononic crystal boundary

    Directory of Open Access Journals (Sweden)

    Vincent Laude

    2011-12-01

    Full Text Available We investigate modal conversion at the boundary between a homogeneous incident medium and a phononic crystal, with consideration of the impact of symmetry on the excitation of Bloch waves. We give a quantitative criterion for the appearance of deaf Bloch waves, which are antisymmetric with respect to a symmetry axis of the phononic crystal, in the frame of generalized Fresnel formulas for reflection and transmission at the phononic crystal boundary. This criterion is used to index Bloch waves in the complex band structure of the phononic crystal, for directions of incidence along a symmetry axis. We argue that within deaf frequency ranges transmission is multi-exponential, as it is within frequency band gaps.

  5. On averaging the Kubo-Hall conductivity of magnetic Bloch bands leading to Chern numbers

    International Nuclear Information System (INIS)

    Riess, J.

    1997-01-01

    The authors re-examine the topological approach to the integer quantum Hall effect in its original form where an average of the Kubo-Hall conductivity of a magnetic Bloch band has been considered. For the precise definition of this average it is crucial to make a sharp distinction between the discrete Bloch wave numbers k 1 , k 2 and the two continuous integration parameters α 1 , α 2 . The average over the parameter domain 0 ≤ α j 1 , k 2 . They show how this can be transformed into a single integral over the continuous magnetic Brillouin zone 0 ≤ α j j , j = 1, 2, n j = number of unit cells in j-direction, keeping k 1 , k 2 fixed. This average prescription for the Hall conductivity of a magnetic Bloch band is exactly the same as the one used for a many-body system in the presence of disorder

  6. Bloch-wave engineered submicron-diameter quantum-dot micropillars for cavity QED experiments

    DEFF Research Database (Denmark)

    Gregersen, Niels; Lermer, Matthias; Reitzenstein, Stephan

    2013-01-01

    The semiconductor micropillar is attractive for cavity QED experiments. For strong coupling, the figure of merit is proportional to Q/√V, and a design combining a high Q and a low mode volume V is thus desired. However, for the standard submicron diameter design, poor mode matching between the ca...... the cavity and the DBR Bloch mode limits the Q. We present a novel adiabatic design where Bloch-wave engineering is employed to improve the mode matching, allowing the demonstration of a record-high vacuum Rabi splitting of 85 μeV and a Q of 13600 for a 850 nm diameter micropillar....

  7. Multiscale approach to mechanical behavior of polymeric nanocomposites: an application of T1.rho.(13C) relaxation experiments at variable spin-locking fields

    Czech Academy of Sciences Publication Activity Database

    Kotek, Jiří; Brus, Jiří

    2014-01-01

    Roč. 59, č. 9 (2014), s. 662-666 ISSN 0032-2725 R&D Projects: GA ČR(CZ) GA13-29009S Institutional support: RVO:61389013 Keywords : polyamide 6 * nanocomposite * T1ρ(13C) relaxation Subject RIV: JI - Composite Materials Impact factor: 0.633, year: 2014

  8. Three Treatments for Reducing the Worry and Emotionality Components of Test Anxiety with Undergraduate and Graduate College Students: Cognitive-Behavioral Hypnosis, Relaxation Therapy, and Supportive Counseling.

    Science.gov (United States)

    Sapp, Marty

    1996-01-01

    Examines the effects of 3 different types of therapy in reducing the worry and emotional components associated with test anxiety among undergraduate (n=45) and graduate (n=45) students. Relaxation therapy was more effective with graduate students, while undergraduates responded more to supportive counseling. (JPS)

  9. Computational Modeling of Bloch Surface Waves in One-Dimensional Periodic and Aperiodic Multilayer Structures

    Science.gov (United States)

    Koju, Vijay

    Photonic crystals and their use in exciting Bloch surface waves have received immense attention over the past few decades. This interest is mainly due to their applications in bio-sensing, wave-guiding, and other optical phenomena such as surface field enhanced Raman spectroscopy. Improvement in numerical modeling techniques, state of the art computing resources, and advances in fabrication techniques have also assisted in growing interest in this field. The ability to model photonic crystals computationally has benefited both the theoretical as well as experimental communities. It helps the theoretical physicists in solving complex problems which cannot be solved analytically and helps to acquire useful insights that cannot be obtained otherwise. Experimentalists, on the other hand, can test different variants of their devices by changing device parameters to optimize performance before fabrication. In this dissertation, we develop two commonly used numerical techniques, namely transfer matrix method, and rigorous coupled wave analysis, in C++ and MATLAB, and use two additional software packages, one open-source and another commercial, to model one-dimensional photonic crystals. Different variants of one-dimensional multilayered structures such as perfectly periodic dielectric multilayers, quasicrystals, aperiodic multilayer are modeled, along with one-dimensional photonic crystals with gratings on the top layer. Applications of Bloch surface waves, along with new and novel aperiodic dielectric multilayer structures that support Bloch surface waves are explored in this dissertation. We demonstrate a slow light configuration that makes use of Bloch Surface Waves as an intermediate excitation in a double-prism tunneling configuration. This method is simple compared to the more usual techniques for slowing light using the phenomenon of electromagnetically induced transparency in atomic gases or doped ionic crystals operated at temperatures below 4K. Using a semi

  10. Mechanical relaxation in glasses

    International Nuclear Information System (INIS)

    Hiki, Y.

    2004-01-01

    The basic properties of glasses and the characteristics of mechanical relaxation in glasses were briefly reviewed, and then our studies concerned were presented. Experimental methods adopted were viscosity, internal friction, ultrasonic attenuation, and Brillouin scattering measurements. The specimens used were several kinds of inorganic, organic, and metallic glasses. The measurements were mainly carried out from the room temperature up to the glass transition temperature, and the relaxation time was determined as a function of temperature. The 'double relaxation' composed of two Arrhenius-type relaxations was observed in many materials. In both relaxations, the 'compensation effect' showing a correlation of the pre-exponential factor and the activation energy was observed. These results were explained by considering the 'complex relaxation' due to cooperative motions of atoms or group of atoms. Values of activation energy near the glass transition determined by the various experimental methods were compared with each other

  11. Properties of solutions of Bloch-type equations for the paraelectric phase of KDP

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, M; Paszkiewicz, T [Wroclaw Univ. (Poland). Inst. Fyziki Teoretycznej

    1979-10-01

    Exact solutions for two sets of Bloch-like equations describing the paraelectric phase of the model of KDP were studied. The general properties of both solutions are the same. However, in numerical calculations they differ significantly. A modification of the decay law connected with the soft mode frequency fluctuations is considered.

  12. Integral-Type Operators from Bloch-Type Spaces to QK Spaces

    Directory of Open Access Journals (Sweden)

    Stevo Stević

    2011-01-01

    Full Text Available The boundedness and compactness of the integral-type operator Iφ,g(nf(z=∫0zf(n(φ(ζg(ζdζ, where n∈N0, φ is a holomorphic self-map of the unit disk D, and g is a holomorphic function on D, from α-Bloch spaces to QK spaces are characterized.

  13. Bloch oscillations and accelerated Bose–Einstein condensates in an optical lattice

    Energy Technology Data Exchange (ETDEWEB)

    Sacchetti, Andrea, E-mail: andrea.sacchetti@unimore.it

    2017-01-30

    Highlights: • Discrete nonlinear Schrödinger model for accelerated BECs in optical lattices. • Numerical computation of wavefunction BECs dynamics. • Correlation between nonlinearity and the oscillating period of the BEC's center of mass. • Discussion of the validity of the Bloch Theorem for accelerated BECs in an optical lattice. - Abstract: We discuss the method for the measurement of the gravity acceleration g by means of Bloch oscillations of an accelerated BEC in an optical lattice. This method has a theoretical critical point due to the fact that the period of the Bloch oscillations depends, in principle, on the initial shape of the BEC wavepacket. Here, by making use of the nearest-neighbor model for the numerical analysis of the BEC wavefunction, we show that in real experiments the period of the Bloch oscillations does not really depend on the shape of the initial wavepacket and that the relative uncertainty, due to the fact that the initial shape of the wavepacket may be asymmetrical, is smaller than the one due to experimental errors. Furthermore, we also show that the relation between the oscillation period and the scattering length of the BEC's atoms is linear; this fact suggests us a new experimental procedure for the measurement of the scattering length of atoms.

  14. Diagrammatical display of the counter-example to non-Abelian Bloch-Nordsieck conjecture

    International Nuclear Information System (INIS)

    Yoshida, Nobuo

    1981-01-01

    The reason why the Bloch-Nordsieck theorem breaks down in the Drell-Yan process is shown through a simple diagrammatical calculation. The uncancelled contribution is from the retarded soft gluons, and the colour weight different for each ''double cut diagram'' interrupts the cancellation analogous to QED. (author)

  15. Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides

    NARCIS (Netherlands)

    Gersen, H.; Karle, T.J.; Engelen, R.J.P.; Engelen, R.J.P.; Bogaerts, W.; Korterik, Jeroen P.; van Hulst, N.F.; Krauss, T.F.; Kuipers, L.

    2005-01-01

    The eigenfield distribution and the band structure of a photonic crystal waveguide have been measured with a phase-sensitive near-field scanning optical microscope. Bloch modes, which consist of more than one spatial frequency, are visualized in the waveguide. In the band structure, multiple

  16. New algorithm for efficient Bloch-waves calculations of orientation-sensitive ELNES

    Czech Academy of Sciences Publication Activity Database

    Rusz, Ján; Muto, S.; Tatsumi, K.

    2013-01-01

    Roč. 125, Feb (2013), s. 81-88 ISSN 0304-3991 Institutional support: RVO:68378271 Keywords : transmission electron microscopy * density functional theory * dynamical diffraction theory * Bloch waves * electron magnetic circular dichroism Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.745, year: 2013

  17. A new characterization of Bloch function in the unit ball of Cn

    International Nuclear Information System (INIS)

    Shi Jihuai.

    1989-07-01

    Bloch function in the unit disc v has many different but equivalent characterizations. Recently, a new characterization has been obtained by the study of Hankel operators. The purpose of this note is to generalize this characterization to the unit ball of C n . 7 refs

  18. Isochronous relaxation curves for type 304 stainless steel after monotonic and cyclic strain

    International Nuclear Information System (INIS)

    Swindeman, R.W.

    1978-01-01

    Relaxation tests to 100 hr were performed on type 304 stainless steel in the temperature range 480 to 650 0 C and were used to develop isochronous relaxation curves. Behavior after monotonic and cyclic strain was compared. Relaxation differed only slightly as a consequence of the type of previous strain, provided that plastic flow preceded the relaxation period. We observed that the short-time relaxation behavior did not manifest strong heat-to-heat variation in creep strength

  19. Behavior of cesium and thallium cations inside a calixarene cavity as probed by nuclear spin relaxation. Evidence of cation-pi interactions in water.

    Science.gov (United States)

    Cuc, Diana; Bouguet-Bonnet, Sabine; Morel-Desrosiers, Nicole; Morel, Jean-Pierre; Mutzenhardt, Pierre; Canet, Daniel

    2009-08-06

    We have studied the complexes formed between the p-sulfonatocalix[4]arene and cesium or thallium metal cation, first by carbon-13 longitudinal relaxation of the calixarene molecule at two values of the magnetic field B(0). From the longitudinal relaxation times of an aromatic carbon directly bonded to a proton, thus subjected essentially to the dipolar interaction with that proton, we could obtain the correlation time describing the reorientation of the CH bond. The rest of this study has demonstrated that it is also the correlation time describing the tumbling of the whole calixarene assembly. From three non-proton-bearing carbons of the aromatic cycles (thus subjected to the chemical shift anisotropy and dipolar mechanisms), we have been able to determine the variation of the chemical shift anisotropy when going from the free to the complex form of the calixarene. These variations not only provide the location of the cation inside the calixarene cavity but also constitute a direct experimental proof of the cation-pi interactions. These results are complemented by cesium and thallium relaxation measurements performed again at two values of the magnetic field B(0). An estimation of the mean distance between the cation and the calixarene protons could be obtained. These measurements have also revealed an important chemical shift anisotropy of thallium upon complexation.

  20. Relaxation and hypnosis in pediatric dental patients.

    Science.gov (United States)

    Peretz, B

    1996-01-01

    Relaxation and hypnosis are methods which, may solve the problem of extreme dental anxiety, when all other methods, behavioral or pharmacological may not be used. A simple definition of hypnosis is suggestion and repetition. Suggestion is the process whereby an individual accepts a proposition put to him by another, without having the slightest logical reason for doing so. Relaxation is one method of inducing hypnosis. A case of using hypnosis on an 11-year-old boy is described.

  1. Self-consistent Maxwell-Bloch theory of quantum-dot-population switching in photonic crystals

    International Nuclear Information System (INIS)

    Takeda, Hiroyuki; John, Sajeev

    2011-01-01

    We theoretically demonstrate the population switching of quantum dots (QD's), modeled as two-level atoms in idealized one-dimensional (1D) and two-dimensional (2D) photonic crystals (PC's) by self-consistent solution of the Maxwell-Bloch equations. In our semiclassical theory, energy states of the electron are quantized, and electron dynamics is described by the atomic Bloch equation, while electromagnetic waves satisfy the classical Maxwell equations. Near a waveguide cutoff in a photonic band gap, the local electromagnetic density of states (LDOS) and spontaneous emission rates exhibit abrupt changes with frequency, enabling large QD population inversion driven by both continuous and pulsed optical fields. We recapture and generalize this ultrafast population switching using the Maxwell-Bloch equations. Radiative emission from the QD is obtained directly from the surrounding PC geometry using finite-difference time-domain simulation of the electromagnetic field. The atomic Bloch equations provide a source term for the electromagnetic field. The total electromagnetic field, consisting of the external input and radiated field, drives the polarization components of the atomic Bloch vector. We also include a microscopic model for phonon dephasing of the atomic polarization and nonradiative decay caused by damped phonons. Our self-consistent theory captures stimulated emission and coherent feedback effects of the atomic Mollow sidebands, neglected in earlier treatments. This leads to remarkable high-contrast QD-population switching with relatively modest (factor of 10) jump discontinuities in the electromagnetic LDOS. Switching is demonstrated in three separate models of QD's placed (i) in the vicinity of a band edge of a 1D PC, (ii) near a cutoff frequency in a bimodal waveguide channel of a 2D PC, and (iii) in the vicinity of a localized defect mode side coupled to a single-mode waveguide channel in a 2D PC.

  2. Nonmaxwell relaxation in disordered media: Physical mechanisms and fractional relaxation equations

    International Nuclear Information System (INIS)

    Arkhincheev, V.E.

    2004-12-01

    The problem of charge relaxation in disordered systems has been solved. It is shown, that due to the inhomogeneity of the medium the charge relaxation has a non-Maxwell character. The two physical mechanisms of a such behavior have been founded. The first one is connected with the 'fractality' of conducting ways. The second mechanism of nonexponential non-Maxwell behavior is connected with the frequency dispersion of effective conductivity of heterogeneous medium, initially consisting of conducting phases without dispersion. The new generalized relaxation equations in the form of fractional temporal integro-differential equations are deduced. (author)

  3. Magneto-dependent stress relaxation of magnetorheological gels

    KAUST Repository

    Xu, Yangguang; Liu, Taixiang; Liao, G J; Lubineau, Gilles

    2017-01-01

    The stress relaxation behaviors of magnetorheological (MR) gels under stepwise shear loading are systematically investigated. The particle-enhanced effect, the magneto-induced effect, and the temperature-enhanced effect on the stress relaxation of MR gels are discussed. For further analysis of the magneto-induced stress relaxation mechanism in MR gels, a phenomenological model is established to describe the stress relaxation behavior of the matrix and the magnetic particle chains. All characteristic parameters introduced in the model, i.e. relaxation time, instantaneous modulus, and stable modulus, have well-defined physical meanings and are fitted based on the experimental results. The influence of each parameter on the macroscopic response is discussed and it is found that the relaxation stress induced by the magneto-mechanical coupling effect plays an important role in the stress relaxation process of MR gels.

  4. Magneto-dependent stress relaxation of magnetorheological gels

    KAUST Repository

    Xu, Yangguang

    2017-09-01

    The stress relaxation behaviors of magnetorheological (MR) gels under stepwise shear loading are systematically investigated. The particle-enhanced effect, the magneto-induced effect, and the temperature-enhanced effect on the stress relaxation of MR gels are discussed. For further analysis of the magneto-induced stress relaxation mechanism in MR gels, a phenomenological model is established to describe the stress relaxation behavior of the matrix and the magnetic particle chains. All characteristic parameters introduced in the model, i.e. relaxation time, instantaneous modulus, and stable modulus, have well-defined physical meanings and are fitted based on the experimental results. The influence of each parameter on the macroscopic response is discussed and it is found that the relaxation stress induced by the magneto-mechanical coupling effect plays an important role in the stress relaxation process of MR gels.

  5. Relaxation time in confined disordered systems

    International Nuclear Information System (INIS)

    Chamati, H.; Korutcheva, E.

    2006-05-01

    The dynamic critical behavior of a quenched hypercubic sample of linear size L is considered within the 'random T c ' field theoretical model with purely relaxation dynamic (Model A). The dynamic finite size scaling behavior is established and analyzed when the system is quenched from a homogeneous phase towards its critical temperature. The obtained results are compared to those reported in the literature. (author)

  6. TEACHING NEUROMUSCULAR RELAXATION.

    Science.gov (United States)

    NORRIS, JEANNE E.; STEINHAUS, ARTHUR H.

    THIS STUDY ATTEMPTED TO FIND OUT WHETHER (1) THE METHODS FOR ATTAINING NEUROMUSCULAR RELAXATION THAT HAVE PROVED FRUITFUL IN THE ONE-TO-ONE RELATIONSHIP OF THE CLINIC CAN BE SUCCESSFULLY ADAPTED TO THE TEACHER-CLASS RELATIONSHIP OF THE CLASSROOM AND GYMNASIUM, AND (2) NEUROMUSCULAR RELAXATION CAN BE TAUGHT SUCCESSFULLY BY AN APPROPRIATELY TRAINED…

  7. Relaxation of Anisotropic Glasses

    DEFF Research Database (Denmark)

    Deubener, Joachim; Martin, Birgit; Wondraczek, Lothar

    2004-01-01

    . When the load was removed at room temperature a permanent optical anisotropy (birefringence) was observed only perpendicular to cylinder axis and the pressure direction indicating complete elimination of thermal stresses. Relaxation of structural anisotropy was studied from reheating experiments using...... the energy release, thermo-mechanical and optical relaxation behaviour are drawn....

  8. Relaxation techniques for stress

    Science.gov (United States)

    ... raise your heart rate. This is called the stress response. Relaxation techniques can help your body relax and lower your blood pressure ... also many other types of breathing techniques you can learn. In many cases, you do not need much ... including those that cause stress. Meditation has been practiced for thousands of years, ...

  9. Motivation and Treatment Credibility Predicts Dropout, Treatment Adherence, and Clinical Outcomes in an Internet-Based Cognitive Behavioral Relaxation Program: A Randomized Controlled Trial.

    Science.gov (United States)

    Alfonsson, Sven; Olsson, Erik; Hursti, Timo

    2016-03-08

    In previous research, variables such as age, education, treatment credibility, and therapeutic alliance have shown to affect patients' treatment adherence and outcome in Internet-based psychotherapy. A more detailed understanding of how such variables are associated with different measures of adherence and clinical outcomes may help in designing more effective online therapy. The aims of this study were to investigate demographical, psychological, and treatment-specific variables that could predict dropout, treatment adherence, and treatment outcomes in a study of online relaxation for mild to moderate stress symptoms. Participant dropout and attrition as well as data from self-report instruments completed before, during, and after the online relaxation program were analyzed. Multiple linear and logistical regression analyses were conducted to predict early dropout, overall attrition, online treatment progress, number of registered relaxation exercises, posttreatment symptom levels, and reliable improvement. Dropout was significantly predicted by treatment credibility, whereas overall attrition was associated with reporting a focus on immediate consequences and experiencing a low level of intrinsic motivation for the treatment. Treatment progress was predicted by education level and treatment credibility, whereas number of registered relaxation exercises was associated with experiencing intrinsic motivation for the treatment. Posttreatment stress symptoms were positively predicted by feeling external pressure to participate in the treatment and negatively predicted by treatment credibility. Reporting reliable symptom improvement after treatment was predicted by treatment credibility and therapeutic bond. This study confirmed that treatment credibility and a good working alliance are factors associated with successful Internet-based psychotherapy. Further, the study showed that measuring adherence in different ways provides somewhat different results, which

  10. A new distributional record of alligator pipefish, Syngnathoides biaculeatus (Bloch, 1785) along Goa, central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sanaye, S.V.; Rivonker, C.U.; Ansari, Z.A; Sreepada, R.A

    Present study is based on a single male specimen of alligator pipefish, Syngnathoides biaculeatus (Bloch, 1785) collected from the bay-estuarine system of, Goa (central west coast of India) which is the new distributional record for this species. A...

  11. The relaxation time approximation

    International Nuclear Information System (INIS)

    Gairola, R.P.; Indu, B.D.

    1991-01-01

    A plausible approximation has been made to estimate the relaxation time from a knowledge of the transition probability of phonons from one state (r vector, q vector) to other state (r' vector, q' vector), as a result of collision. The relaxation time, thus obtained, shows a strong dependence on temperature and weak dependence on the wave vector. In view of this dependence, relaxation time has been expressed in terms of a temperature Taylor's series in the first Brillouin zone. Consequently, a simple model for estimating the thermal conductivity is suggested. the calculations become much easier than the Callaway model. (author). 14 refs

  12. Spin Relaxation in III-V Semiconductors in various systems: Contribution of Electron-Electron Interaction

    Science.gov (United States)

    Dogan, Fatih; Kesserwan, Hasan; Manchon, Aurelien

    2015-03-01

    In spintronics, most of the phenomena that we are interested happen at very fast time scales and are rich in structure in time domain. Our understanding, on the other hand, is mostly based on energy domain calculations. Many of the theoretical tools use approximations and simplifications that can be perceived as oversimplifications. We compare the structure, material, carrier density and temperature dependence of spin relaxation time in n-doped III-V semiconductors using Elliot-Yafet (EY) and D'yakanov-Perel'(DP) with real time analysis using kinetic spin Bloch equations (KSBE). The EY and DP theories fail to capture details as the system investigated is varied. KSBE, on the other hand, incorporates all relaxation sources as well as electron-electron interaction which modifies the spin relaxation time in a non-linear way. Since el-el interaction is very fast (~ fs) and spin-conserving, it is usually ignored in the analysis of spin relaxation. Our results indicate that electron-electron interaction cannot be neglected and its interplay with the other (spin and momentum) relaxation mechanisms (electron-impurity and electron-phonon scattering) dramatically alters the resulting spin dynamics. We use each interaction explicitly to investigate how, in the presence of others, each relaxation source behaves. We use GaAs and GaN for zinc-blend structure, and GaN and AlN for the wurtzite structure.

  13. Quantum Theory of Conducting Matter Newtonian Equations of Motion for a Bloch Electron

    CERN Document Server

    Fujita, Shigeji

    2007-01-01

    Quantum Theory of Conducting Matter: Newtonian Equations of Motion for a Bloch Electron targets scientists, researchers and graduate-level students focused on experimentation in the fields of physics, chemistry, electrical engineering, and material sciences. It is important that the reader have an understanding of dynamics, quantum mechanics, thermodynamics, statistical mechanics, electromagnetism and solid-state physics. Many worked-out problems are included in the book to aid the reader's comprehension of the subject. The Bloch electron (wave packet) moves by following the Newtonian equation of motion. Under an applied magnetic field B the electron circulates around the field B counterclockwise or clockwise depending on the curvature of the Fermi surface. The signs of the Hall coefficient and the Seebeck coefficient are known to give the sign of the major carrier charge. For alkali metals, both are negative, indicating that the carriers are "electrons." These features arise from the Fermi surface difference...

  14. On an Integral-Type Operator Acting between Bloch-Type Spaces on the Unit Ball

    Directory of Open Access Journals (Sweden)

    Stevo Stević

    2010-01-01

    Full Text Available Let 𝔹 denote the open unit ball of ℂn. For a holomorphic self-map φ of 𝔹 and a holomorphic function g in 𝔹 with g(0=0, we define the following integral-type operator: Iφgf(z=∫01ℜf(φ(tzg(tz(dt/t, z∈𝔹. Here ℜf denotes the radial derivative of a holomorphic function f in 𝔹. We study the boundedness and compactness of the operator between Bloch-type spaces ℬω and ℬμ, where ω is a normal weight function and μ is a weight function. Also we consider the operator between the little Bloch-type spaces ℬω,0 and ℬμ,0.

  15. Modeling Dzyaloshinskii-Moriya Interaction at Transition Metal Interfaces: Constrained Moment versus Generalized Bloch Theorem

    KAUST Repository

    Dong, Yao-Jun; Belabbes, Abderrezak; Manchon, Aurelien

    2017-01-01

    Dzyaloshinskii-Moriya interaction (DMI) at Pt/Co interfaces is investigated theoretically using two different first principles methods. The first one uses the constrained moment method to build a spin spiral in real space, while the second method uses the generalized Bloch theorem approach to construct a spin spiral in reciprocal space. We show that although the two methods produce an overall similar total DMI energy, the dependence of DMI as a function of the spin spiral wavelength is dramatically different. We suggest that long-range magnetic interactions, that determine itinerant magnetism in transition metals, are responsible for this discrepancy. We conclude that the generalized Bloch theorem approach is more adapted to model DMI in transition metal systems, where magnetism is delocalized, while the constrained moment approach is mostly applicable to weak or insulating magnets, where magnetism is localized.

  16. Modeling Dzyaloshinskii-Moriya Interaction at Transition Metal Interfaces: Constrained Moment versus Generalized Bloch Theorem

    KAUST Repository

    Dong, Yao-Jun

    2017-10-29

    Dzyaloshinskii-Moriya interaction (DMI) at Pt/Co interfaces is investigated theoretically using two different first principles methods. The first one uses the constrained moment method to build a spin spiral in real space, while the second method uses the generalized Bloch theorem approach to construct a spin spiral in reciprocal space. We show that although the two methods produce an overall similar total DMI energy, the dependence of DMI as a function of the spin spiral wavelength is dramatically different. We suggest that long-range magnetic interactions, that determine itinerant magnetism in transition metals, are responsible for this discrepancy. We conclude that the generalized Bloch theorem approach is more adapted to model DMI in transition metal systems, where magnetism is delocalized, while the constrained moment approach is mostly applicable to weak or insulating magnets, where magnetism is localized.

  17. Bloch Surface Waves Using Graphene Layers: An Approach toward In-Plane Photodetectors

    Directory of Open Access Journals (Sweden)

    Richa Dubey

    2018-03-01

    Full Text Available A dielectric multilayer platform was investigated as a foundation for two-dimensional optics. In this paper, we present, to the best of our knowledge, the first experimental demonstration of absorption of Bloch surface waves in the presence of graphene layers. Graphene is initially grown on a Cu foil via Chemical Vapor Deposition and transferred layer by layer by a wet-transfer method using poly(methyl methacrylate, (PMMA. We exploit total internal reflection configuration and multi-heterodyne scanning near-field optical microscopy as a far-field coupling method and near-field characterization tool, respectively. The absorption is quantified in terms of propagation lengths of Bloch surface waves. A significant drop in the propagation length of the BSWs is observed in the presence of graphene layers. The propagation length of BSWs in bare multilayer is reduced to 17 times shorter in presence of graphene monolayer, and 23 times shorter for graphene bilayer.

  18. General PFG signal attenuation expressions for anisotropic anomalous diffusion by modified-Bloch equations

    Science.gov (United States)

    Lin, Guoxing

    2018-05-01

    Anomalous diffusion exists widely in polymer and biological systems. Pulsed-field gradient (PFG) anomalous diffusion is complicated, especially in the anisotropic case where limited research has been reported. A general PFG signal attenuation expression, including the finite gradient pulse (FGPW) effect for free general anisotropic fractional diffusion { 0 integral modified-Bloch equation, were extended to obtain general PFG signal attenuation expressions for anisotropic anomalous diffusion. Various cases of PFG anisotropic anomalous diffusion were investigated, including coupled and uncoupled anisotropic anomalous diffusion. The continuous-time random walk (CTRW) simulation was also carried out to support the theoretical results. The theory and the CTRW simulation agree with each other. The obtained signal attenuation expressions and the three-dimensional fractional modified-Bloch equations are important for analyzing PFG anisotropic anomalous diffusion in NMR and MRI.

  19. Optimal cloning of qubits given by an arbitrary axisymmetric distribution on the Bloch sphere

    International Nuclear Information System (INIS)

    Bartkiewicz, Karol; Miranowicz, Adam

    2010-01-01

    We find an optimal quantum cloning machine, which clones qubits of arbitrary symmetrical distribution around the Bloch vector with the highest fidelity. The process is referred to as phase-independent cloning in contrast to the standard phase-covariant cloning for which an input qubit state is a priori better known. We assume that the information about the input state is encoded in an arbitrary axisymmetric distribution (phase function) on the Bloch sphere of the cloned qubits. We find analytical expressions describing the optimal cloning transformation and fidelity of the clones. As an illustration, we analyze cloning of qubit state described by the von Mises-Fisher and Brosseau distributions. Moreover, we show that the optimal phase-independent cloning machine can be implemented by modifying the mirror phase-covariant cloning machine for which quantum circuits are known.

  20. The Bloch wave operator: generalizations and applications: Part I. The time-independent case

    CERN Document Server

    Killingbeck, J P

    2003-01-01

    This is part 1 of a two-part review on wave operator theory and methods. The basic theory of the time-independent wave operator is presented in terms of partitioned matrix theory for the benefit of general readers, with a discussion of the links between the matrix and projection operator approaches. The matrix approach is shown to lead to simple derivations of the wave operators and effective Hamiltonians of Loewdin, Bloch, Des Cloizeaux and Kato as well as to some associated variational forms. The principal approach used throughout stresses the solution of the nonlinear equation for the reduced wave operator, leading to the construction of the effective Hamiltonians of Bloch and of Des Cloizeaux. Several mathematical techniques which are useful in implementing this approach are explained, some of them being relatively little known in the area of wave operator calculations. The theoretical discussion is accompanied by several specimen numerical calculations which apply the described techniques to a selection ...

  1. Chaos synchronization in bi-axial magnets modeled by Bloch equation

    International Nuclear Information System (INIS)

    Moukam Kakmeni, F.M.; Nguenang, J.P.; Kofane, T.C.

    2005-10-01

    In this paper, we show that the bi-axial magnetic material modelled by Bloch equation admits chaotic solutions for a certain set of numerical values assigned to the system of parameters and initial conditions. Using the unidirectional linear and nonlinear feedback schemes, we demonstrate that two such systems can be synchronized together. The chaotic synchronization is discussed in the context of complete synchronization which means that the difference of the states of two relevant systems converge to zero. (author)

  2. Weighted Differentiation Composition Operator from Logarithmic Bloch Spaces to Zygmund-Type Spaces

    Directory of Open Access Journals (Sweden)

    Huiying Qu

    2014-01-01

    Full Text Available Let H( denote the space of all holomorphic functions on the unit disk of ℂ, u∈H( and let  n be a positive integer, φ a holomorphic self-map of , and μ a weight. In this paper, we investigate the boundedness and compactness of a weighted differentiation composition operator φ,unf(z=u(zf(n(φ(z,f∈H(, from the logarithmic Bloch spaces to the Zygmund-type spaces.

  3. Effective Hamiltonians, two level systems, and generalized Maxwell-Bloch equations

    International Nuclear Information System (INIS)

    Sczaniecki, L.

    1981-02-01

    A new method is proposed involving a canonical transformation leading to the non-secular part of time-independent perturbation calculus. The method is used to derive expressions for effective Shen-Walls Hamiltonians which, taken in the two-level approximation and on the inclusion of non-Hamiltonian terms into the dynamics of the system, lead to generalized Maxwell-Bloch equations. The rotating wave approximation is written anew within the framework of our formalism. (author)

  4. Bloch-Kohn and Wannier-Kohn functions in one dimension

    International Nuclear Information System (INIS)

    Bruno-Alfonso, Alexys; Guo-Qiang, Hai

    2003-01-01

    Bloch and Wannier functions of the Kohn type for a quite general one-dimensional Hamiltonian with inversion symmetry are studied. Important clarifications on null minigaps and the symmetry of those functions are given, with emphasis on the Kronig-Penney model. The lack of a general selection rule on the miniband index for optical transitions between edge states in semiconductor superlattices is discussed. A direct method for the calculation of Wannier-Kohn functions is presented

  5. Designing non-Hermitian dynamics for conservative state evolution on the Bloch sphere

    Science.gov (United States)

    Yu, Sunkyu; Piao, Xianji; Park, Namkyoo

    2018-03-01

    An evolution on the Bloch sphere is the fundamental state transition, including optical polarization controls and qubit operations. Conventional evolution of a polarization state or qubit is implemented within a closed system that automatically satisfies energy conservation from the Hermitian formalism. Although particular forms of static non-Hermitian Hamiltonians, such as parity-time-symmetric Hamiltonians, allow conservative states in an open system, the criteria for the energy conservation in a dynamical open system have not been fully explored. Here, we derive the condition of conservative state evolution in open-system dynamics and its inverse design method, by developing the non-Hermitian modification of the Larmor precession equation. We show that the geometrically designed locus on the Bloch sphere can be realized by different forms of dynamics, leading to the isolocus family of non-Hermitian dynamics. This increased degree of freedom allows the complementary phenomena of error-robust and highly sensitive evolutions on the Bloch sphere, which could be applicable to stable polarizers, quantum gates, and optimized sensors in dynamical open systems.

  6. Vacuum Bloch-Siegert shift in Landau polaritons with ultra-high cooperativity

    Science.gov (United States)

    Li, Xinwei; Bamba, Motoaki; Zhang, Qi; Fallahi, Saeed; Gardner, Geoff C.; Gao, Weilu; Lou, Minhan; Yoshioka, Katsumasa; Manfra, Michael J.; Kono, Junichiro

    2018-06-01

    A two-level system resonantly interacting with an a.c. magnetic or electric field constitutes the physical basis of diverse phenomena and technologies. However, Schrödinger's equation for this seemingly simple system can be solved exactly only under the rotating-wave approximation, which neglects the counter-rotating field component. When the a.c. field is sufficiently strong, this approximation fails, leading to a resonance-frequency shift known as the Bloch-Siegert shift. Here, we report the vacuum Bloch-Siegert shift, which is induced by the ultra-strong coupling of matter with the counter-rotating component of the vacuum fluctuation field in a cavity. Specifically, an ultra-high-mobility two-dimensional electron gas inside a high-Q terahertz cavity in a quantizing magnetic field revealed ultra-narrow Landau polaritons, which exhibited a vacuum Bloch-Siegert shift up to 40 GHz. This shift, clearly distinguishable from the photon-field self-interaction effect, represents a unique manifestation of a strong-field phenomenon without a strong field.

  7. Polysaccharides and paramagnetic ions as a model for the relaxation behavior of hypointense cysts of the head and neck in MR imaging

    International Nuclear Information System (INIS)

    Gibby, W.A.; Hackney, D.B.; Bilaniuk, L.T.; Zimmerman, R.A.; Bogdan, A.R.

    1988-01-01

    Marked hypointensity on the second echo of long repetition time (TR) pulse sequences at 1.5 T has been noted in colloid cysts of the third ventricle and mucous retention cysts of the sinuses. Both are lesions containing a large quantity of material that stains positive for polysaccharide. In an attempt to explain these findings, polysaccharide materials (potato starch) were prepared at 1%, 3%, and 7% (liquid) and 10% (gel) concentrations in distilled deionized water, .01 and .1m mM FeCl3. Imaging at 1.5 T and measurements of T1 and T2 at 1.9 T were performed. Relaxation rates of 10% dextran solutions with average molecular weights of 17,000, 40,000, 70,000, 150,000 and 450,0000 were measured at 1.9 T. The addition of 1% - 10% starch to water shortened T1 and increased the brightness of images obtained at short TR/TE. The addition of FeCl3 increased T1 shortening and image brightness with T1 weighting. T2 was minimally affected by the soluble polysaccharide, but somewhat more decreased in the gelatinous material

  8. Mozart versus new age music: relaxation states, stress, and ABC relaxation theory.

    Science.gov (United States)

    Smith, Jonathan C; Joyce, Carol A

    2004-01-01

    Smith's (2001) Attentional Behavioral Cognitive (ABC) relaxation theory proposes that all approaches to relaxation (including music) have the potential for evoking one or more of 15 factor-analytically derived relaxation states, or "R-States" (Sleepiness, Disengagement, Rested / Refreshed, Energized, Physical Relaxation, At Ease/Peace, Joy, Mental Quiet, Childlike Innocence, Thankfulness and Love, Mystery, Awe and Wonder, Prayerfulness, Timeless/Boundless/Infinite, and Aware). The present study investigated R-States and stress symptom-patterns associated with listening to Mozart versus New Age music. Students (N = 63) were divided into three relaxation groups based on previously determined preferences. Fourteen listened to a 28-minute tape recording of Mozart's Eine Kleine Nachtmusik and 14 listened to a 28-minute tape of Steven Halpern's New Age Serenity Suite. Others (n = 35) did not want music and instead chose a set of popular recreational magazines. Participants engaged in their relaxation activity at home for three consecutive days for 28 minutes a session. Before and after each session, each person completed the Smith Relaxation States Inventory (Smith, 2001), a comprehensive questionnaire tapping 15 R-States as well as the stress states of somatic stress, worry, and negative emotion. Results revealed no differences at Session 1. At Session 2, those who listened to Mozart reported higher levels of At Ease/Peace and lower levels of Negative Emotion. Pronounced differences emerged at Session 3. Mozart listeners uniquely reported substantially higher levels of Mental Quiet, Awe and Wonder, and Mystery. Mozart listeners reported higher levels, and New Age listeners slightly elevated levels, of At Ease/Peace and Rested/Refreshed. Both Mozart and New Age listeners reported higher levels of Thankfulness and Love. In summary, those who listened to Mozart's Eine Kleine Nachtmusik reported more psychological relaxation and less stress than either those who listened to

  9. Models for multiple relaxation processes in collagen fiber

    Indian Academy of Sciences (India)

    ... originate from stress strain induced changes in hydrogen bond network whereas the other seems to be more strongly coupled to salt like bridges and electrostatic interactions. Urea alters the activation energy for one relaxation step while pH and solvent dielectric constant alter the relaxation behavior one set of processes.

  10. Accelerating convergence of molecular dynamics-based structural relaxation

    DEFF Research Database (Denmark)

    Christensen, Asbjørn

    2005-01-01

    We describe strategies to accelerate the terminal stage of molecular dynamics (MD)based relaxation algorithms, where a large fraction of the computational resources are used. First, we analyze the qualitative and quantitative behavior of the QuickMin family of MD relaxation algorithms and explore...

  11. Anomalous relaxation and self-organization in nonequilibrium processes

    International Nuclear Information System (INIS)

    Fatkullin, Ibrahim; Kladko, Konstantin; Mitkov, Igor; Bishop, A. R.

    2001-01-01

    We study thermal relaxation in ordered arrays of coupled nonlinear elements with external driving. We find that our model exhibits dynamic self-organization manifested in a universal stretched-exponential form of relaxation. We identify two types of self-organization, cooperative and anticooperative, which lead to fast and slow relaxation, respectively. We give a qualitative explanation for the behavior of the stretched exponent in different parameter ranges. We emphasize that this is a system exhibiting stretched-exponential relaxation without explicit disorder or frustration

  12. Bloch oscillations of ultracold atoms and measurement of the fine structure constant; Oscillations de Bloch d'atomes ultrafroids et mesure de la constante de structure fine

    Energy Technology Data Exchange (ETDEWEB)

    Clade, P

    2005-10-15

    From a measurement of the recoil velocity of an atom absorbing a photon, it is possible to deduce a determination of the ratio h/m between the Planck constant and the mass of the atoms and then to deduce a value of the fine structure constant alpha. To do this measurement, we use the technique of Bloch oscillations, which allows us to transfer a large number of recoils to atoms. A velocity sensor, based on velocity selective Raman transition, enables us to measure the momentum transferred to the atoms. A measurement with a statistical uncertainty of 4.4 10{sup -9}, in conjunction with a careful study of systematic effects (5 10{sup -9}), has led us to a determination of alpha with an uncertainty of 6.7 10{sup -9}: {alpha}{sup -1}(Rb) = 137.03599878 (91). This uncertainty is similar to the uncertainty of the best determinations of alpha based on atom interferometry. (author)

  13. Relaxed Binaural LCMV Beamforming

    NARCIS (Netherlands)

    Koutrouvelis, A.; Hendriks, R.C.; Heusdens, R.; Jensen, Jesper Rindom

    2017-01-01

    In this paper, we propose a new binaural beamforming technique, which can be seen as a relaxation of the linearly constrained minimum variance (LCMV) framework. The proposed method can achieve simultaneous noise reduction and exact binaural cue preservation of the target source, similar to the

  14. Relaxation dynamics of multilayer triangular Husimi cacti

    Science.gov (United States)

    Galiceanu, Mircea; Jurjiu, Aurel

    2016-09-01

    We focus on the relaxation dynamics of multilayer polymer structures having, as underlying topology, the Husimi cactus. The relaxation dynamics of the multilayer structures is investigated in the framework of generalized Gaussian structures model using both Rouse and Zimm approaches. In the Rouse type-approach, we determine analytically the complete eigenvalues spectrum and based on it we calculate the mechanical relaxation moduli (storage and loss modulus) and the average monomer displacement. First, we monitor these physical quantities for structures with a fixed generation number and we increase the number of layers, such that the linear topology will smoothly come into play. Second, we keep constant the size of the structures, varying simultaneously two parameters: the generation number of the main layer, G, and the number of layers, c. This fact allows us to study in detail the crossover from a pure Husimi cactus behavior to a predominately linear chain behavior. The most interesting situation is found when the two limiting topologies cancel each other. For this case, we encounter in the intermediate frequency/time domain regions of constant slope for different values of the parameter set (G, c) and we show that the number of layers follows an exponential-law of G. In the Zimm-type approach, which includes the hydrodynamic interactions, the quantities that describe the mechanical relaxation dynamics do not show scaling behavior as in the Rouse model, except the limiting case, namely, a very high number of layers and low generation number.

  15. Statistical mechanics of violent relaxation

    International Nuclear Information System (INIS)

    Shu, F.H.

    1978-01-01

    We reexamine the foundations of Lynden-Bell's statistical mechanical discussion of violent relaxation in collisionless stellar systems. We argue that Lynden-Bell's formulation in terms of a continuum description introduces unnecessary complications, and we consider a more conventional formulation in terms of particles. We then find the exclusion principle discovered by Lynden-Bell to be quantitatively important only at phase densities where two-body encounters are no longer negligible. Since the edynamical basis for the exclusion principle vanishes in such cases anyway, Lynden-Bell statistics always reduces in practice to Maxwell-Boltzmann statistics when applied to stellar systems. Lynden-Bell also found the equilibrium distribution function generally to be a sum of Maxwellians with velocity dispersions dependent on the phase density at star formation. We show that this difficulty vanishes in the particulate description for an encounterless stellar system as long as stars of different masses are initially well mixed in phase space. Our methods also demonstrate the equivalence between Gibbs's formalism which uses the microcanonical ensemble and Boltzmann's formalism which uses a coarse-grained continuum description. In addition, we clarify the concept of irreversible behavior on a macroscopic scale for an encounterless stellar system. Finally, we comment on the use of unusual macroscopic constraints to simulate the effects of incomplete relaxation

  16. Magnon localization and Bloch oscillations in finite Heisenberg spin chains in an inhomogeneous magnetic field.

    Science.gov (United States)

    Kosevich, Yuriy A; Gann, Vladimir V

    2013-06-19

    We study the localization of magnon states in finite defect-free Heisenberg spin-1/2 ferromagnetic chains placed in an inhomogeneous magnetic field with a constant spatial gradient. Continuous transformation from the extended magnon states to the localized Wannier-Zeeman states in a finite spin chain placed in an inhomogeneous field is described both analytically and numerically. We describe for the first time the non-monotonic dependence of the energy levels of magnons, both long and short wavelength, on the magnetic field gradient, which is a consequence of magnon localization in a finite spin chain. We show that, in contrast to the destruction of the magnon band and the establishment of the Wannier-Stark ladder in a vanishingly small field gradient in an infinite chain, the localization of magnon states at the chain ends preserves the memory of the magnon band. Essentially, the localization at the lower- or higher-field chain end resembles the localization of the positive- or negative-effective-mass band quasiparticles. We also show how the beat dynamics of coherent superposition of extended spin waves in a finite chain in a homogeneous or weakly inhomogeneous field transforms into magnon Bloch oscillations of the superposition of localized Wannier-Zeeman states in a strongly inhomogeneous field. We provide a semiclassical description of the magnon Bloch oscillations and show that the correspondence between the quantum and semiclassical descriptions is most accurate for Bloch oscillations of the magnon coherent states, which are built from a coherent superposition of a large number of the nearest-neighbour Wannier-Zeeman states.

  17. Magnon localization and Bloch oscillations in finite Heisenberg spin chains in an inhomogeneous magnetic field

    International Nuclear Information System (INIS)

    Kosevich, Yuriy A; Gann, Vladimir V

    2013-01-01

    We study the localization of magnon states in finite defect-free Heisenberg spin-1/2 ferromagnetic chains placed in an inhomogeneous magnetic field with a constant spatial gradient. Continuous transformation from the extended magnon states to the localized Wannier–Zeeman states in a finite spin chain placed in an inhomogeneous field is described both analytically and numerically. We describe for the first time the non-monotonic dependence of the energy levels of magnons, both long and short wavelength, on the magnetic field gradient, which is a consequence of magnon localization in a finite spin chain. We show that, in contrast to the destruction of the magnon band and the establishment of the Wannier–Stark ladder in a vanishingly small field gradient in an infinite chain, the localization of magnon states at the chain ends preserves the memory of the magnon band. Essentially, the localization at the lower- or higher-field chain end resembles the localization of the positive- or negative-effective-mass band quasiparticles. We also show how the beat dynamics of coherent superposition of extended spin waves in a finite chain in a homogeneous or weakly inhomogeneous field transforms into magnon Bloch oscillations of the superposition of localized Wannier–Zeeman states in a strongly inhomogeneous field. We provide a semiclassical description of the magnon Bloch oscillations and show that the correspondence between the quantum and semiclassical descriptions is most accurate for Bloch oscillations of the magnon coherent states, which are built from a coherent superposition of a large number of the nearest-neighbour Wannier–Zeeman states. (paper)

  18. Bloch Oscillations in the Chains of Artificial Atoms Dressed with Photons

    Directory of Open Access Journals (Sweden)

    Ilay Levie

    2018-06-01

    Full Text Available We present a model of one-dimensional chain of two-level artificial atoms driven with DC field and quantum light simultaneously in a strong coupling regime. The interaction of atoms with light leads to electron-photon entanglement (dressing of the atoms with light. The driving via dc field leads to the Bloch oscillations (BO in the chain of dressed atoms. We consider the mutual influence of dressing and BO and show that scenario of oscillations dramatically differs from predicted by the Jaynes-Cummings and Bloch-Zener models. We study the evolution of the population inversion, tunneling current, photon probability distribution, mean number of photons, and photon number variance, and show the influence of BO on the quantum-statistical characteristics of light. For example, the collapse-revivals picture and vacuum Rabi-oscillations are strongly modulated with Bloch frequency. As a result, quantum properties of light and degree of electron-photon entanglement become controllable via adiabatic dc field turning. On the other hand, the low-frequency tunneling current depends on the quantum light statistics (in particular, for coherent initial state it is modulated accordingly the collapse-revivals picture. The developed model is universal with respect to the physical origin of artificial atom and frequency range of atom-light interaction. The model is adapted to the 2D-heterostructures (THz frequencies, semiconductor quantum dots (optical range, and Josephson junctions (microwaves. The data for numerical simulations are taken from recently published experiments. The obtained results open a new way in quantum state engineering and nano-photonic spectroscopy.

  19. Slow logarithmic relaxation in models with hierarchically constrained dynamics

    OpenAIRE

    Brey, J. J.; Prados, A.

    2000-01-01

    A general kind of models with hierarchically constrained dynamics is shown to exhibit logarithmic anomalous relaxation, similarly to a variety of complex strongly interacting materials. The logarithmic behavior describes most of the decay of the response function.

  20. Motives and algebraic cycles a celebration in honour of Spencer J. Bloch

    CERN Document Server

    Jeu, Rob de; Lewis, James D

    2009-01-01

    Spencer J. Bloch has, and continues to have, a profound influence on the subject of Algebraic K-Theory, Cycles and Motives. This book, which is comprised of a number of independent research articles written by leading experts in the field, is dedicated in his honour, and gives a snapshot of the current and evolving nature of the subject. Some of the articles are written in an expository style, providing a perspective on the current state of the subject to those wishing to learn more about it. Others are more technical, representing new developments and making them especially interesting to res

  1. Third harmonic generation by Bloch-oscillating electrons in a quasioptical array

    International Nuclear Information System (INIS)

    Ghosh, A.W.; Wanke, M.C.; Allen, S.J.; Wilkins, J.W.

    1999-01-01

    We compute the third harmonic field generated by Bloch-oscillating electrons in a quasioptical array of superlattices under THz irradiation. The third harmonic power transmitted oscillates with the internal electric field, with nodes associated with Bessel functions in eEd/ℎω. The nonlinear response of the array causes the output power to be a multivalued function of the incident laser power. The output can be optimized by adjusting the frequency of the incident pulse to match one of the Fabry-Pacute erot resonances in the substrate. Within the transmission-line model of the array, the maximum conversion efficiency is 0.1%. copyright 1999 American Institute of Physics

  2. Manipulation of Bloch surface waves: from subwavelength focusing to nondiffracting beam

    Science.gov (United States)

    Kim, Myun-Sik; Herzig, Hans Peter

    2018-01-01

    We present a different type of electromagnetic surface wave than a surface plasmon polariton (SPP), called Bloch surface wave (BSW). BSWs are sustained by dielectric multilayers, and therefore they do not suffer from dissipation. Their propagation length is unbeatably long, e.g., over several millimeters. Thanks to this feature, larger integrations of 2D photonic chips are realizable. To do this, 2D optical components and corresponding techniques are necessary to manipulate in-plane propagation of surface waves. We overview recent progresses of the BSW research on manipulation techniques and developed components. Our study will provide a good guideline of the BSW components for users.

  3. Identification of Bloch-modes in hollow-core Photonic Crystal Fiber cladding

    DEFF Research Database (Denmark)

    Couny, F.; Benabid, F.; Roberts, John

    2007-01-01

    We report on the experimental visualization of the cladding Bloch-modes of a hollow-core photonic crystal fiber. Both spectral and spatial field information is extracted using the approach, which is based on measurement of the near-field and Fresnel-zone that results after propagation over a short...... length of fiber. A detailed study of the modes near the edges of the band gap shows that it is formed by the influence of three types of resonator: the glass interstitial apex, the silica strut which joins the neighboring apexes, and the air hole. The cladding electromagnetic field which survives...

  4. Self-consistent Maxwell-Bloch model of quantum-dot photonic-crystal-cavity lasers

    DEFF Research Database (Denmark)

    Cartar, William; Mørk, Jesper; Hughes, Stephen

    2017-01-01

    -level emitters are solved numerically. Phenomenological pure dephasing and incoherent pumping is added to the optical Bloch equations to allow for a dynamical lasing regime, but the cavity-mediated radiative dynamics and gain coupling of each QD dipole (artificial atom) is contained self-consistently within......-mode to multimode lasing is also observed, depending on the spectral peak frequency of the QD ensemble. Using a statistical modal analysis of the average decay rates, we also show how the average radiative decay rate decreases as a function of cavity size. In addition, we investigate the role of structural disorder...

  5. Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Volkov, V.S.; Søndergaard, Thomas

    2002-01-01

    We employ a collection scanning near-field optical microscope (SNOM) to image the propagation of light at telecommunication wavelengths along straight and bent regions of silicon-on-insulator photonic crystal waveguides (PCWs) formed by removing a single row of holes in the triangular 410-nm...... the interference between a quasihomogeneous background field and Bloch harmonics of the PCW mode, we account for spatial frequency spectra of the intensity variations and determine the propagation constant of the PCW mode at 1520 nm. The possibilities and limitations of SNOM imaging for the characterization...

  6. Hair Dye and Hair Relaxers

    Science.gov (United States)

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  7. Experiments in paramagnetic relaxation

    International Nuclear Information System (INIS)

    Lijphart, E.E.

    1976-01-01

    This thesis presents two attempts to improve the resolving power of the relaxation measurement technique. The first attempt reconsiders the old technique of steady state saturation. When used in conjunction with the pulse technique, it offers the possibility of obtaining additional information about the system in which all-time derivatives are zero; in addition, non-linear effects may be distinguished from each other. The second attempt involved a systematic study of only one system: Cu in the Tutton salts (K and Rb). The systematic approach, the high accuracy of the measurement and the sheer amount of experimental data for varying temperature, magnetic field and concentration made it possible in this case to separate the prevailing relaxation mechanisms reliably

  8. Surface Acoustic Bloch Oscillations, the Wannier-Stark Ladder, and Landau-Zener Tunneling in a Solid

    Science.gov (United States)

    de Lima, M. M., Jr.; Kosevich, Yu. A.; Santos, P. V.; Cantarero, A.

    2010-04-01

    We present the experimental observation of Bloch oscillations, the Wannier-Stark ladder, and Landau-Zener tunneling of surface acoustic waves in perturbed grating structures on a solid substrate. A model providing a quantitative description of our experimental observations, including multiple Landau-Zener transitions of the anticrossed surface acoustic Wannier-Stark states, is developed. The use of a planar geometry for the realization of the Bloch oscillations and Landau-Zener tunneling allows a direct access to the elastic field distribution. The vertical surface displacement has been measured by interferometry.

  9. Relaxation from particle production

    Energy Technology Data Exchange (ETDEWEB)

    Hook, Anson; Marques-Tavares, Gustavo [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305 (United States)

    2016-12-20

    We consider using particle production as a friction force by which to implement a “Relaxion” solution to the electroweak hierarchy problem. Using this approach, we are able to avoid superplanckian field excursions and avoid any conflict with the strong CP problem. The relaxation mechanism can work before, during or after inflation allowing for inflationary dynamics to play an important role or to be completely decoupled.

  10. Magnetic relaxation in anisotropic magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1971-01-01

    The line shape and the kinematic and thermodynamic slowing down of the critical and paramagnetic relaxation in axially anisotropic materials are discussed. Kinematic slowing down occurs only in the longitudinal relaxation function. The thermodynamic slowing down occurs in either the transverse...... or longitudinal relaxation function depending on the sign of the axial anisotropy....

  11. Earthquake sequence simulations of a fault in a viscoelastic material with a spectral boundary integral equation method: The effect of interseismic stress relaxation on a behavior of a rate-weakening patch

    Science.gov (United States)

    Miyake, Y.; Noda, H.

    2017-12-01

    Earthquake sequences involve many processes in a wide range of time scales, from quasistatic loading to dynamic rupture. At a depth of brittle-plastic transitional and deeper, rock behaves as a viscous fluid in a long timescale, but as an elastic material in a short timescale. Viscoelastic stress relaxation may be important in the interseismic periods at the depth, near the deeper limit of the seismogenic layer or the region of slow slip events (SSEs) [Namiki et al., 2014 and references therein]. In the present study, we implemented the viscoelastic effect (Maxwell material) in fully-dynamic earthquake sequence simulations using a spectral boundary integral equation method (SBIEM) [e.g., Lapusta et al., 2000]. SBIEM is efficient in calculation of convolutional terms for dynamic stress transfer, and the problem size is limited by the amount of memory available. Linear viscoelasticity could be implemented by convolution of slip rate history and Green's function, but this method requires additional memory and thus not suitable for the implementation to the present code. Instead, we integrated the evolution of "effective slip" distribution, which gives static stress distribution when convolved with static elastic Green's function. This method works only for simple viscoelastic property distributions, but such models are suitable for numerical experiments aiming basic understanding of the system behavior because of the virtue of SBIEM, the ability of fine on-fault spatial resolution and efficient computation utilizing the fast Fourier transformation. In the present study, we examined the effect of viscoelasticity on earthquake sequences of a fault with a rate-weakening patch. A series of simulations with various relaxation time tc revealed that as decreasing tc, recurrence intervals of earthquakes increases and seismicity ultimately disappears. As long as studied, this transition to aseismic behavior is NOT associated with SSEs. In a case where the rate-weakening patch

  12. Momentum constraint relaxation

    International Nuclear Information System (INIS)

    Marronetti, Pedro

    2006-01-01

    Full relativistic simulations in three dimensions invariably develop runaway modes that grow exponentially and are accompanied by violations of the Hamiltonian and momentum constraints. Recently, we introduced a numerical method (Hamiltonian relaxation) that greatly reduces the Hamiltonian constraint violation and helps improve the quality of the numerical model. We present here a method that controls the violation of the momentum constraint. The method is based on the addition of a longitudinal component to the traceless extrinsic curvature A ij -tilde, generated by a vector potential w i , as outlined by York. The components of w i are relaxed to solve approximately the momentum constraint equations, slowly pushing the evolution towards the space of solutions of the constraint equations. We test this method with simulations of binary neutron stars in circular orbits and show that it effectively controls the growth of the aforementioned violations. We also show that a full numerical enforcement of the constraints, as opposed to the gentle correction of the momentum relaxation scheme, results in the development of instabilities that stop the runs shortly

  13. Vogel-Fulcher dependence of relaxation rates in a nematic monomer and elastomer

    Science.gov (United States)

    Shenoy, D.; Filippov, S.; Aliev, F.; Keller, P.; Thomsen, D.; Ratna, B.

    2000-12-01

    Dielectric relaxation spectroscopy is used to study the relaxation processes in a nematic monomer and the corresponding cross-linked polymer nematic liquid crystal (elastomer). In the frequency window 10 mHz to 2 GHz the monomer liquid crystal shows a single relaxation whereas the polymer exhibits three relaxation processes, two of which are quantitatively analyzed. The temperature dependence of relaxation times in both the monomer and polymer follows a Vogel-Fulcher behavior. The relaxation processes are identified with specific molecular motions and activation energies are calculated in a linear approximation for comparison with literature data.

  14. Bloch Modes and Evanescent Modes of Photonic Crystals: Weak Form Solutions Based on Accurate Interface Triangulation

    Directory of Open Access Journals (Sweden)

    Matthias Saba

    2015-01-01

    Full Text Available We propose a new approach to calculate the complex photonic band structure, both purely dispersive and evanescent Bloch modes of a finite range, of arbitrary three-dimensional photonic crystals. Our method, based on a well-established plane wave expansion and the weak form solution of Maxwell’s equations, computes the Fourier components of periodic structures composed of distinct homogeneous material domains from a triangulated mesh representation of the inter-material interfaces; this allows substantially more accurate representations of the geometry of complex photonic crystals than the conventional representation by a cubic voxel grid. Our method works for general two-phase composite materials, consisting of bi-anisotropic materials with tensor-valued dielectric and magnetic permittivities ε and μ and coupling matrices ς. We demonstrate for the Bragg mirror and a simple cubic crystal closely related to the Kelvin foam that relatively small numbers of Fourier components are sufficient to yield good convergence of the eigenvalues, making this method viable, despite its computational complexity. As an application, we use the single gyroid crystal to demonstrate that the consideration of both conventional and evanescent Bloch modes is necessary to predict the key features of the reflectance spectrum by analysis of the band structure, in particular for light incident along the cubic [111] direction.

  15. Communication: Relaxation-limited electronic currents in extended reservoir simulations

    Science.gov (United States)

    Gruss, Daniel; Smolyanitsky, Alex; Zwolak, Michael

    2017-10-01

    Open-system approaches are gaining traction in the simulation of charge transport in nanoscale and molecular electronic devices. In particular, "extended reservoir" simulations, where explicit reservoir degrees of freedom are present, allow for the computation of both real-time and steady-state properties but require relaxation of the extended reservoirs. The strength of this relaxation, γ, influences the conductance, giving rise to a "turnover" behavior analogous to Kramers turnover in chemical reaction rates. We derive explicit, general expressions for the weak and strong relaxation limits. For weak relaxation, the conductance increases linearly with γ and every electronic state of the total explicit system contributes to the electronic current according to its "reduced" weight in the two extended reservoir regions. Essentially, this represents two conductors in series—one at each interface with the implicit reservoirs that provide the relaxation. For strong relaxation, a "dual" expression-one with the same functional form-results, except now proportional to 1/γ and dependent on the system of interest's electronic states, reflecting that the strong relaxation is localizing electrons in the extended reservoirs. Higher order behavior (e.g., γ2 or 1/γ2) can occur when there is a gap in the frequency spectrum. Moreover, inhomogeneity in the frequency spacing can give rise to a pseudo-plateau regime. These findings yield a physically motivated approach to diagnosing numerical simulations and understanding the influence of relaxation, and we examine their occurrence in both simple models and a realistic, fluctuating graphene nanoribbon.

  16. Controlled Population of Floquet-Bloch States via Coupling to Bose and Fermi Baths

    Directory of Open Access Journals (Sweden)

    Karthik I. Seetharam

    2015-12-01

    Full Text Available External driving is emerging as a promising tool for exploring new phases in quantum systems. The intrinsically nonequilibrium states that result, however, are challenging to describe and control. We study the steady states of a periodically driven one-dimensional electronic system, including the effects of radiative recombination, electron-phonon interactions, and the coupling to an external fermionic reservoir. Using a kinetic equation for the populations of the Floquet eigenstates, we show that the steady-state distribution can be controlled using the momentum and energy relaxation pathways provided by the coupling to phonon and Fermi reservoirs. In order to utilize the latter, we propose to couple the system and reservoir via an energy filter which suppresses photon-assisted tunneling. Importantly, coupling to these reservoirs yields a steady state resembling a band insulator in the Floquet basis. The system exhibits incompressible behavior, while hosting a small density of excitations. We discuss transport signatures and describe the regimes where insulating behavior is obtained. Our results give promise for realizing Floquet topological insulators.

  17. Study on properties of stress relaxation for NiTiNb shape memory alloy

    International Nuclear Information System (INIS)

    Zhou Xuchang; Mo Huaqiang; Zeng Guangting; Shen Baoluo; Huo Yongzhong

    2002-01-01

    Stress relaxation tests at high temperature are performed for NiTiNb shape memory alloy to obtain the properties of stress relaxation. The relaxation curve fitted with the expression, which is deduced based on the relation between the relaxation and the creep. With the aid of experimental data, relaxation characteristic coefficient and remaining stress ratio are obtained, which characterize the relaxation behavior. The results of the study show that stress relaxation would be more evident with the higher temperature and/or greater initial stress. NiTiNb alloy has good relaxation resistance in the temperature range 300-400 degree C and the initial stress range 260-360 MPa. NiTiNb has better properties to resist relaxation than NiTiFe, therefore it is more applicable to work at high temperature

  18. Stress relaxation analysis of single chondrocytes using porohyperelastic model based on AFM experiments

    Directory of Open Access Journals (Sweden)

    Trung Dung Nguyen

    2014-01-01

    Full Text Available Based on atomic force microscopytechnique, we found that the chondrocytes exhibits stress relaxation behavior. We explored the mechanism of this stress relaxation behavior and concluded that the intracellular fluid exuding out from the cells during deformation plays the most important role in the stress relaxation. We applied the inverse finite element analysis technique to determine necessary material parameters for porohyperelastic (PHE model to simulate stress relaxation behavior as this model is proven capable of capturing the non-linear behavior and the fluid-solid interaction during the stress relaxation of the single chondrocytes. It is observed that PHE model can precisely capture the stress relaxation behavior of single chondrocytes and would be a suitable model for cell biomechanics.

  19. On real statistics of relaxation in gases

    Science.gov (United States)

    Kuzovlev, Yu. E.

    2016-02-01

    By example of a particle interacting with ideal gas, it is shown that the statistics of collisions in statistical mechanics at any value of the gas rarefaction parameter qualitatively differ from that conjugated with Boltzmann's hypothetical molecular chaos and kinetic equation. In reality, the probability of collisions of the particle in itself is random. Because of that, the relaxation of particle velocity acquires a power-law asymptotic behavior. An estimate of its exponent is suggested on the basis of simple kinematic reasons.

  20. Notes on the genus Amphiprion Bloch & Schneider, 1801 (Teleostei: Pomacentridae) and its host sea anemones in the Seychelles

    NARCIS (Netherlands)

    Hartog, den J.C.

    1997-01-01

    The genus Amphiprion Bloch & Schneider, 1801, is represented in the Seychelles by two species, A. akallopisos Bleeker, 1853, and the endemic A. fuscocaudatus Allen, 1972. Throughout its distributional range Amphiprion akallopisos has exclusively been recorded to associate with the clownfish anemones

  1. Boundedness and compactness of a new product-type operator from a general space to Bloch-type spaces

    Directory of Open Access Journals (Sweden)

    Stevo Stević

    2016-09-01

    Full Text Available Abstract We characterize the boundedness and compactness of a product-type operator, which, among others, includes all the products of the single composition, multiplication, and differentiation operators, from a general space to Bloch-type spaces. We also give some upper and lower bounds for the norm of the operator.

  2. Permittivity and Permeability for Floquet-Bloch Space Harmonics in Infinite 1D Magneto-Dielectric Periodic Structures

    DEFF Research Database (Denmark)

    Breinbjerg, Olav; Yaghjian, Arthur D.

    2014-01-01

    -Bloch space harmonics. We discuss how space harmonic permittivity and permeability can be expressed in seemingly different though equivalent forms, and we investigate these parameters of the zeroeth order space harmonic for a particular 1D periodic structure that is based on a previously reported 3D periodic...

  3. Design of Slow and Fast Light Photonic Crystal Waveguides for Single-photon Emission Using a Bloch Mode Expansion Technique

    DEFF Research Database (Denmark)

    de Lasson, Jakob Rosenkrantz; Rigal, B.; Kapon, E.

    We design slow and fast light photonic crystal waveguides for single-photon emission using a Bloch mode expansion and scattering matrix technique. We propose slow light designs that increase the group index-waveguide mode volume ratio for larger Purcell enhancement, and address efficient slow-to-...

  4. Variational formulation of relaxed and multi-region relaxed magnetohydrodynamics

    Science.gov (United States)

    Dewar, R. L.; Yoshida, Z.; Bhattacharjee, A.; Hudson, S. R.

    2015-12-01

    > Ideal magnetohydrodynamics (IMHD) is strongly constrained by an infinite number of microscopic constraints expressing mass, entropy and magnetic flux conservation in each infinitesimal fluid element, the latter preventing magnetic reconnection. By contrast, in the Taylor relaxation model for formation of macroscopically self-organized plasma equilibrium states, all these constraints are relaxed save for the global magnetic fluxes and helicity. A Lagrangian variational principle is presented that leads to a new, fully dynamical, relaxed magnetohydrodynamics (RxMHD), such that all static solutions are Taylor states but also allows state with flow. By postulating that some long-lived macroscopic current sheets can act as barriers to relaxation, separating the plasma into multiple relaxation regions, a further generalization, multi-region relaxed magnetohydrodynamics (MRxMHD) is developed.

  5. Spin transport and relaxation in graphene

    International Nuclear Information System (INIS)

    Han Wei; McCreary, K.M.; Pi, K.; Wang, W.H.; Li Yan; Wen, H.; Chen, J.R.; Kawakami, R.K.

    2012-01-01

    We review our recent work on spin injection, transport and relaxation in graphene. The spin injection and transport in single layer graphene (SLG) were investigated using nonlocal magnetoresistance (MR) measurements. Spin injection was performed using either transparent contacts (Co/SLG) or tunneling contacts (Co/MgO/SLG). With tunneling contacts, the nonlocal MR was increased by a factor of ∼1000 and the spin injection/detection efficiency was greatly enhanced from ∼1% (transparent contacts) to ∼30%. Spin relaxation was investigated on graphene spin valves using nonlocal Hanle measurements. For transparent contacts, the spin lifetime was in the range of 50-100 ps. The effects of surface chemical doping showed that for spin lifetimes in the order of 100 ps, charged impurity scattering (Au) was not the dominant mechanism for spin relaxation. While using tunneling contacts to suppress the contact-induced spin relaxation, we observed the spin lifetimes as long as 771 ps at room temperature, 1.2 ns at 4 K in SLG, and 6.2 ns at 20 K in bilayer graphene (BLG). Furthermore, contrasting spin relaxation behaviors were observed in SLG and BLG. We found that Elliot-Yafet spin relaxation dominated in SLG at low temperatures whereas Dyakonov-Perel spin relaxation dominated in BLG at low temperatures. Gate tunable spin transport was studied using the SLG property of gate tunable conductivity and incorporating different types of contacts (transparent and tunneling contacts). Consistent with theoretical predictions, the nonlocal MR was proportional to the SLG conductivity for transparent contacts and varied inversely with the SLG conductivity for tunneling contacts. Finally, bipolar spin transport in SLG was studied and an electron-hole asymmetry was observed for SLG spin valves with transparent contacts, in which nonlocal MR was roughly independent of DC bias current for electrons, but varied significantly with DC bias current for holes. These results are very important for

  6. Dynamics of relaxed inflation

    Science.gov (United States)

    Tangarife, Walter; Tobioka, Kohsaku; Ubaldi, Lorenzo; Volansky, Tomer

    2018-02-01

    The cosmological relaxation of the electroweak scale has been proposed as a mechanism to address the hierarchy problem of the Standard Model. A field, the relaxion, rolls down its potential and, in doing so, scans the squared mass parameter of the Higgs, relaxing it to a parametrically small value. In this work, we promote the relaxion to an inflaton. We couple it to Abelian gauge bosons, thereby introducing the necessary dissipation mechanism which slows down the field in the last stages. We describe a novel reheating mechanism, which relies on the gauge-boson production leading to strong electro-magnetic fields, and proceeds via the vacuum production of electron-positron pairs through the Schwinger effect. We refer to this mechanism as Schwinger reheating. We discuss the cosmological dynamics of the model and the phenomenological constraints from CMB and other experiments. We find that a cutoff close to the Planck scale may be achieved. In its minimal form, the model does not generate sufficient curvature perturbations and additional ingredients, such as a curvaton field, are needed.

  7. Charge Relaxation Dynamics of an Electrolytic Nanocapacitor

    Science.gov (United States)

    2015-01-01

    Understanding ion relaxation dynamics in overlapping electric double layers (EDLs) is critical for the development of efficient nanotechnology-based electrochemical energy storage, electrochemomechanical energy conversion, and bioelectrochemical sensing devices as well as the controlled synthesis of nanostructured materials. Here, a lattice Boltzmann (LB) method is employed to simulate an electrolytic nanocapacitor subjected to a step potential at t = 0 for various degrees of EDL overlap, solvent viscosities, ratios of cation-to-anion diffusivity, and electrode separations. The use of a novel continuously varying and Galilean-invariant molecular-speed-dependent relaxation time (MSDRT) with the LB equation recovers a correct microscopic description of the molecular-collision phenomena and enhances the stability of the LB algorithm. Results for large EDL overlaps indicated oscillatory behavior for the ionic current density, in contrast to monotonic relaxation to equilibrium for low EDL overlaps. Further, at low solvent viscosities and large EDL overlaps, anomalous plasmalike spatial oscillations of the electric field were observed that appeared to be purely an effect of nanoscale confinement. Employing MSDRT in our simulations enabled modeling of the fundamental physics of the transient charge relaxation dynamics in electrochemical systems operating away from equilibrium wherein Nernst–Einstein relation is known to be violated. PMID:25678941

  8. Fetal response to abbreviated relaxation techniques. A randomized controlled study.

    Science.gov (United States)

    Fink, Nadine S; Urech, Corinne; Isabel, Fornaro; Meyer, Andrea; Hoesli, Irène; Bitzer, Johannes; Alder, Judith

    2011-02-01

    stress during pregnancy can have adverse effects on the course of pregnancy and on fetal development. There are few studies investigating the outcome of stress reduction interventions on maternal well-being and obstetric outcome. this study aims (1) to obtain fetal behavioral states (quiet/active sleep, quiet/active wakefulness), (2) to investigate the effects of maternal relaxation on fetal behavior as well as on uterine activity, and (3) to investigate maternal physiological and endocrine parameters as potential underlying mechanisms for maternal-fetal relaxation-transferral. the behavior of 33 fetuses was analyzed during laboratory relaxation/quiet rest (control group, CG) and controlled for baseline fetal behavior. Potential associations between relaxation/quiet rest and fetal behavior (fetal heart rate (FHR), FHR variation, FHR acceleration, and body movements) and uterine activity were studied, using a computerized cardiotocogram (CTG) system. Maternal heart rate, blood pressure, cortisol, and norepinephrine were measured. intervention (progressive muscle relaxation, PMR, and guided imagery, GI) showed changes in fetal behavior. The intervention groups had higher long-term variation during and after relaxation compared to the CG (p=.039). CG fetuses had more FHR acceleration, especially during and after quiet rest (p=.027). Women in the PMR group had significantly more uterine activity than women in the GI group (p=.011) and than CG women. Maternal heart rate, blood pressure, and stress hormones were not associated with fetal behavior. this study indicates that the fetus might participate in maternal relaxation and suggests that GI is superior to PMR. This could especially be true for women who tend to direct their attention to body sensations such as abdominal activity. 2010 Elsevier Ltd. All rights reserved.

  9. Bloch oscillations of ultracold atoms and measurement of the fine structure constant

    International Nuclear Information System (INIS)

    Clade, P.

    2005-10-01

    From a measurement of the recoil velocity of an atom absorbing a photon, it is possible to deduce a determination of the ratio h/m between the Planck constant and the mass of the atoms and then to deduce a value of the fine structure constant alpha. To do this measurement, we use the technique of Bloch oscillations, which allows us to transfer a large number of recoils to atoms. A velocity sensor, based on velocity selective Raman transition, enables us to measure the momentum transferred to the atoms. A measurement with a statistical uncertainty of 4.4 10 -9 , in conjunction with a careful study of systematic effects (5 10 -9 ), has led us to a determination of alpha with an uncertainty of 6.7 10 -9 : α -1 (Rb) = 137.03599878 (91). This uncertainty is similar to the uncertainty of the best determinations of alpha based on atom interferometry. (author)

  10. A note on the Königs domain of compact composition operators on the Bloch space

    Directory of Open Access Journals (Sweden)

    Jones Matthew

    2011-01-01

    Full Text Available Abstract Let be the unit disk in the complex plane. We define to be the little Bloch space of functions f analytic in which satisfy lim|z|→1 (1 - |z|2|f'(z| = 0. If is analytic then the composition operator Cφ : f ↦ f ∘ φ is a continuous operator that maps into itself. In this paper, we show that the compactness of Cφ , as an operator on , can be modelled geometrically by its principal eigenfunction. In particular, under certain necessary conditions, we relate the compactness of Cφ to the geometry of , where σ satisfies Schöder's functional equation σ ∘ φ = φ'(0σ. 2000 Mathematics Subject Classification: Primary 30D05; 47B33 Secondary 30D45.

  11. Effects of gamma radiations on certain tissues of heteropneustes fossils bloch

    International Nuclear Information System (INIS)

    Purohit, R.K.; Rathore, N.; Ahluwalia, P.; Srivastava, M.; Gupta, M.L.

    1992-01-01

    In the present investigation effect of gamma radiation on certain tissues (kidney, stomach and gills) of Heteropneustes fossilis Bloch, an Indian Cat fish, were studied. The fish were irradiated with 10 Gy of gamma radiations at the dose rate of 1.60 Gy/minute from a 60 Co source. Five fish were autopsied at each post-irradiation time of 1,2,3,7,15 and 30 days. Radiation induced histopathology was observed in all the tissues studied. The radio lesions appeared on day-1 after exposure which became exaggerated on day-2 and 3. Signs of recovery were noticed on day-7 which progressed on day-15 and normal histology was observed on day-30. (author). 18 refs

  12. The Bergman spaces, the Bloch space and the pluriharmonic conjugates in the unit ball of Cn

    International Nuclear Information System (INIS)

    Shi Jihuai.

    1989-06-01

    It has been proved that if f is holomorphic in the unit ball B of C m , then f is an element of L p (B,dν) if all the functions (1 - |z| 2 ) m (D n f)(z) with |α| = m are in L p (B,dν). This method can only deal with the case of p ≥ 1. In this paper, we give a new approach to prove that the above result holds for all p is an element of (0, ∞). A simple proof about the characterization of the Bloch space will be given. As a by-product of our approach, we generalize a theorem to the unit ball of C m , and use this result to generalize some theorems about the pluriharmonic conjugates to the case 0 < p < 1. 9 refs

  13. Generalized Bloch Theorem for Complex Periodic Potentials - A Powerful Application to Quantum Transport Calculations

    International Nuclear Information System (INIS)

    Zhang, Xiaoguang; Varga, Kalman; Pantelides, Sokrates T

    2007-01-01

    Band-theoretic methods with periodically repeated supercells have been a powerful approach for ground-state electronic structure calculations, but have not so far been adapted for quantum transport problems with open boundary conditions. Here we introduce a generalized Bloch theorem for complex periodic potentials and use a transfer-matrix formulation to cast the transmission probability in a scattering problem with open boundary conditions in terms of the complex wave vectors of a periodic system with absorbing layers, allowing a band technique for quantum transport calculations. The accuracy and utility of the method is demonstrated by the model problems of the transmission of an electron over a square barrier and the scattering of a phonon in an inhomogeneous nanowire. Application to the resistance of a twin boundary in nanocrystalline copper yields excellent agreement with recent experimental data

  14. Bloch surface wave structures for high sensitivity detection and compact waveguiding

    Science.gov (United States)

    Khan, Muhammad Umar; Corbett, Brian

    2016-01-01

    Resonant propagating waves created on the surface of a dielectric multilayer stack, called Bloch surface waves (BSW), can be designed for high sensitivity monitoring of the adjacent refractive index as an alternative platform to the metal-based surface plasmon resonance (SPR) sensing. The resonant wavelength and polarization can be designed by engineering of the dielectric layers unlike the fixed resonance of SPR, while the wide bandwidth low loss of dielectrics permits sharper resonances, longer propagation lengths and thus their use in waveguiding devices. The transparency of the dielectrics allows the excitation and monitoring of surface-bound fluorescent molecules. We review the recent developments in this technology. We show the advantages that can be obtained by using high index contrast layered structures. Operating at 1550 nm wavelengths will allow the BSW sensors to be implemented in the silicon photonics platform where active waveguiding can be used in the realization of compact planar integrated circuits for multi-parameter sensing.

  15. Illuminating "spin-polarized" Bloch wave-function projection from degenerate bands in decomposable centrosymmetric lattices

    Science.gov (United States)

    Li, Pengke; Appelbaum, Ian

    2018-03-01

    The combination of space inversion and time-reversal symmetries results in doubly degenerate Bloch states with opposite spin. Many lattices with these symmetries can be constructed by combining a noncentrosymmetric potential (lacking this degeneracy) with its inverted copy. Using simple models, we unravel the evolution of local spin splitting during this process of inversion symmetry restoration, in the presence of spin-orbit interaction and sublattice coupling. Importantly, through an analysis of quantum mechanical commutativity, we examine the difficulty of identifying states that are simultaneously spatially segregated and spin polarized. We also explain how surface-sensitive experimental probes (such as angle-resolved photoemission spectroscopy, or ARPES) of "hidden spin polarization" in layered materials are susceptible to unrelated spin splitting intrinsically induced by broken inversion symmetry at the surface.

  16. Bloch oscillations of quasispin polaritons in a magneto-optically controlled atomic ensemble

    International Nuclear Information System (INIS)

    Jiang, Chang; Lu, Jing; Zhou, Lan

    2012-01-01

    We consider the propagation of quantized polarized light in a magneto-optically-manipulated atomic ensemble with a tripod configuration. A polariton formalism is applied when the medium is subjected to a washboard magnetic field under electromagnetically-induced transparency. The dark-state polariton with multiple components is achieved. We analyze the quantum dynamics of the dark-state polariton using experimental data from the rubidium D1-line. It is found that one component propagates freely, however the wave packet trajectory of the other component performs Bloch oscillations. -- Highlights: ► We study the wave–particle dualism of quasiparticles in a magneto-optical medium. ► We generate a “spin”-component dark-state polariton. ► Magnetic fields lead to oscillation and free propagation of a dark-state polariton. ► Our approach shows the role of entanglement of degrees of freedom of photons.

  17. Bloch oscillations of quasispin polaritons in a magneto-optically controlled atomic ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Chang [Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081 (China); Lu, Jing, E-mail: lujing@hunnu.edu.cn [Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081 (China); Zhou, Lan [Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081 (China)

    2012-10-01

    We consider the propagation of quantized polarized light in a magneto-optically-manipulated atomic ensemble with a tripod configuration. A polariton formalism is applied when the medium is subjected to a washboard magnetic field under electromagnetically-induced transparency. The dark-state polariton with multiple components is achieved. We analyze the quantum dynamics of the dark-state polariton using experimental data from the rubidium D1-line. It is found that one component propagates freely, however the wave packet trajectory of the other component performs Bloch oscillations. -- Highlights: ► We study the wave–particle dualism of quasiparticles in a magneto-optical medium. ► We generate a “spin”-component dark-state polariton. ► Magnetic fields lead to oscillation and free propagation of a dark-state polariton. ► Our approach shows the role of entanglement of degrees of freedom of photons.

  18. Dynamics of Peregrine combs and Peregrine walls in an inhomogeneous Hirota and Maxwell-Bloch system

    Science.gov (United States)

    Wang, Lei; Wang, Zi-Qi; Sun, Wen-Rong; Shi, Yu-Ying; Li, Min; Xu, Min

    2017-06-01

    Under investigation in this paper is an inhomogeneous Hirota-Maxwell-Bloch (IHMB) system which can describe the propagation of optical solitons in an erbium-doped optical fiber. The breather multiple births (BMBs) are derived with periodically varying group velocity dispersion (GVD) coefficients. Under large periodic modulations in the GVD coefficient of IHMB system, the Peregrine comb (PC) solution is produced, which can be viewed as the limiting case of the BMBs. When the amplitude of the modulation satisfies a special condition, the Peregrine wall (PW) that can be regarded as an intermediate state between rogue wave and PC is obtained. The effects of the third-order dispersion on the spatiotemporal characteristics of PCs and PWs are studied. Our results may be useful for the experimental control and manipulation of the formation of generalized Peregrine rogue waves in inhomogeneous erbium-doped optical fiber.

  19. Violation of Bloch's Law That Specifies Reciprocity of Intensity and Duration with Brief Light Flashes

    Directory of Open Access Journals (Sweden)

    Ernest Greene

    2013-12-01

    Full Text Available For more than a century researchers have been reporting that the visual impact of a very brief flash is determined by the quantity of photons that the flash delivers. This has been variously described as the Bunsen-Roscoe Law or Bloch's Law, often specified as reciprocity of intensity × duration. Prior research found no evidence for such reciprocity when microsecond-duration flashes from a light-emitting diode array were used to display the major contours of nameable shapes. The present work tested with flash durations ranging up to 100 ms and also found no reciprocity. This departure from classic principles might be due to the specific range of wavelengths of the light-emitting diodes and to a mesopic level of ambient light, which together would preclude activation of rods. The reciprocity of intensity and duration may only be valid with full dark adaptation and very dim flashes that activate rods.

  20. Bloch surface waves confined in one dimension with a single polymeric nanofibre

    Science.gov (United States)

    Wang, Ruxue; Xia, Hongyan; Zhang, Douguo; Chen, Junxue; Zhu, Liangfu; Wang, Yong; Yang, Erchan; Zang, Tianyang; Wen, Xiaolei; Zou, Gang; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Lakowicz, Joseph R.

    2017-02-01

    Polymeric fibres with small radii (such as ≤125 nm) are delicate to handle and should be laid down on a solid substrate to obtain practical devices. However, placing these nanofibres on commonly used glass substrates prevents them from guiding light. In this study, we numerically and experimentally demonstrate that when the nanofibre is placed on a suitable dielectric multilayer, it supports a guided mode, a Bloch surface wave (BSW) confined in one dimension. The physical origin of this new mode is discussed in comparison with the typical two-dimensional BSW mode. Polymeric nanofibres are easily fabricated to contain fluorophores, which make the dielectric nanofibre and multilayer configuration suitable for developing a large range of new nanometric scale devices, such as processor-memory interconnections, devices with sensitivity to target analytes, incident polarization and multi-colour BSW modes.

  1. Irradiation creep, stress relaxation and a mechanical equation of state

    International Nuclear Information System (INIS)

    Foster, J.P.

    1976-01-01

    Irradiation creep and stress relaxation data are available from the United Kingdom for 20 percent CW M316, 20 percent CW FV 548 and FHT PE16 using pure torsion in the absence of swelling at 300 0 C. Irradiation creep models were used to calculate the relaxation and permanent deflection of the stress relaxation tests. Two relationships between irradiation creep and stress relaxation were assessed by comparing the measured and calculated stress relaxation and permanent deflection. The results show that for M316 and FV548, the stress relaxation and deflection may be calculated using irradiation creep models when the stress rate term arising from the irradiation creep model is set equal to zero. In the case of PE16, the inability to calculate the stress relaxation and permanent deflection from the irradiation creep data was attributed to differences in creep behavior arising from lot-to-lot variations in alloying elements and impurity content. A modification of the FV548 and PE16 irradiation creep coefficients was necessary in order to calculate the stress relaxation and deflection. The modifications in FV548 and PE16 irradiation creep properties reduces the large variation in the transient or incubation parameter predicted by irradiation creep tests for M316, FV548 and PE16

  2. THE ACTION OF CORAGEN INSECTICIDE ON CERTAIN PHYSIOLOGICAL BIOMARKERS ON CARASSIUS AURATUS GIBELIO BLOCH L. 1758

    Directory of Open Access Journals (Sweden)

    Claudiu Alexandru Baciu

    2015-12-01

    Full Text Available In our researches we have determined the variation of certain physiological indexes, such as the oxygen consume, the breathing rhythm, the glycaemia and the number of red blood cells under the action of Coragen insecticide on Carassius auratus gibelio Bloch. Under the action of Coragen, we have registered significant changes in the oxygen consume, the breathing rhythm, the number of red blood cells and glycemia at the Carassius auratus gibelio Bloch items, considered as answers to the stress provoked by emissions. The highest variations of the physiological indexes, from the perspective of the percentage, were noticed at the glycemia, which at the mark was 28 mg/dl, and in the treated sample, with 0.1 ml/l Coragen is 42 mg/dl, representing a 50% growth and at the breathing rhythm in 24 hours, where values significantly decreased with 41.18% at the concentration of 0.07 ml/l and with 39.33% at the concentrations of 0.05 and 0.1 ml/l Coragen. The slightest variations of the physiological indexes, from the perspective of percentage, were noticed at the oxygen consumption, which, at the mark is of 55.302 ml oxygen/kg/hour, and for the treated sample, with 0.1 ml/l Coragen is 34.81 ml oxygen/kg/hour, representing a decrease of 37.06% in 24 hours and the number of red blood cells, where the values have significantly decrease with 9.58%, 13.48%, respectively 18.44% for the concentrations of 0.05, 0.07 and 0.1 ml/l Coragen.

  3. Structural relaxation in an amorphous rapidly quenched cobalt-based alloy

    International Nuclear Information System (INIS)

    Fradin, V.; Grynszpan, R.I.; Alves, F.; Houzali, A.; Perron, J.C.

    1995-01-01

    An amorphous melt-spun Co-based alloy (Metglas 2705 MN) is investigated by Doppler Broadening and Positron Lifetime techniques in order to follow the microstructural changes yielded by isochronal annealings before crystallization. The results are correlated with those of Differential Scanning Calorimetry and Coercive Field measurements. The quenched empty spaces underlined by Lifetime measurements are less than one atomic volume in size and migrate without clustering in larger voids. Both Positron Annihilation and Coercive Field investigations suggest that the overall decrease of free volume related to structural relaxation in this amorphous material, proceeds mainly via compositional short-range ordering. These local chemical rearrangements which lead to a partial disorientation of the magnetic moments act as strong pinning points for Bloch Walls. (orig.)

  4. Slow stress relaxation behavior of cohesive powders

    NARCIS (Netherlands)

    Imole, Olukayode Isaiah; Paulick, Maria; Magnanimo, Vanessa; Morgenmeyer, Martin; Ramaioli, Marco; Chavez Montes, Bruno E.; Kwade, Arno; Luding, Stefan

    2016-01-01

    We present uniaxial (oedometric) compression tests on two cohesive industrially relevant granular materials (cocoa and limestone powder). A comprehensive set of experiments is performed using two devices – the FT4 Powder Rheometer and the custom made lambdameter – in order to investigate the

  5. A Block-Asynchronous Relaxation Method for Graphics Processing Units

    OpenAIRE

    Anzt, H.; Dongarra, J.; Heuveline, Vincent; Tomov, S.

    2011-01-01

    In this paper, we analyze the potential of asynchronous relaxation methods on Graphics Processing Units (GPUs). For this purpose, we developed a set of asynchronous iteration algorithms in CUDA and compared them with a parallel implementation of synchronous relaxation methods on CPU-based systems. For a set of test matrices taken from the University of Florida Matrix Collection we monitor the convergence behavior, the average iteration time and the total time-to-solution time. Analyzing the r...

  6. An Optomechanical Elevator: Transport of a Bloch Oscillating Bose–Einstein Condensate up and down an Optical Lattice by Cavity Sideband Amplification and Cooling

    Directory of Open Access Journals (Sweden)

    B. Prasanna Venkatesh

    2015-12-01

    Full Text Available In this paper we give a new description, in terms of optomechanics, of previous work on the problem of an atomic Bose–Einstein condensate interacting with the optical lattice inside a laser-pumped optical cavity and subject to a bias force, such as gravity. An atomic wave packet in a tilted lattice undergoes Bloch oscillations; in a high-finesse optical cavity the backaction of the atoms on the light leads to a time-dependent modulation of the intracavity lattice depth at the Bloch frequency which can in turn transport the atoms up or down the lattice. In the optomechanical picture, the transport dynamics can be interpreted as a manifestation of dynamical backaction-induced sideband damping/amplification of the Bloch oscillator. Depending on the sign of the pump-cavity detuning, atoms are transported either with or against the bias force accompanied by an up- or down-conversion of the frequency of the pump laser light. We also evaluate the prospects for using the optomechanical Bloch oscillator to make continuous measurements of forces by reading out the Bloch frequency. In this context, we establish the significant result that the optical spring effect is absent and the Bloch frequency is not modified by the backaction.

  7. Nonlinear tunneling of bright and dark rogue waves in combined nonlinear Schrödinger and Maxwell-Bloch systems

    Science.gov (United States)

    Raju, Thokala Soloman; Pal, Ritu

    2018-05-01

    We derive the analytical rogue wave solutions for the generalized inhomogeneous nonlinear Schrödinger-Maxwell-Bloch (GINLS-MB) equation describing the pulse propagation in erbium-doped fibre system. Then by suitably choosing the inhomogeneous parameters, we delineate the tunneling properties of rogue waves through dispersion and nonlinearity barriers or wells. Finally, we demonstrate the propagating characteristics of optical solitons by considering their tunneling through periodic barriers by the proper choice of external potential.

  8. Perturbation theory for the bloch electrons on strongly coupled chains in both uniform electric and magnetic fields

    International Nuclear Information System (INIS)

    Zhao, X.G.; Chen, S.G.

    1992-01-01

    In this paper, the energy spectrum and the wave functions for a tight-binding Bloch electron on coupled chains under the action of both uniform electric and magnetic fields are studied in detail. Exact results are obtained for the case when the coupling between chains is large by using the perturbation theory, from which it is found that the spectrum is that of two interspaced Stark ladders. The magnetic field dependence of the energy spectrum is also discussed

  9. Dynamics and relaxation in confined medium. Application to 129Xe magnetic relaxation in Vycor

    International Nuclear Information System (INIS)

    Pasquier, Virginie

    1995-01-01

    Porous media morphology and topology drive the exploration of pore space by fluid. So, analysis of transport process, associated with relaxation mechanism, allows indirect study of pore geometry. The purpose of this work is to understand better the relation between geometry and transport. This study involves two parts: a modelization and prediction step is followed by an experimental application of magnetic relaxation. Numerical simulations and analytical models allow to quantify the influence on the solid interface of the dynamical behavior of confined gas in disordered porous media (granular structure and porous network) or in common geometry (cylindrical and lamellar interfaces). The formalism of diffusion propagator is a powerful tool to quantify the influence of the pore geometry on the diffusion of confined gas. The propagator holds all dynamical information on the system; it also predicts the temporal evolution of the autocorrelation functions of the Hamiltonian describing local coupling. In an intermediate time scale, magnetic relaxation shows complex diffusional regime: the autocorrelation functions decrease in a power law with a exponent smaller than d/2 (where d is the Euclidian dimension of the system). This behavior is analogous to dynamic in low-dimensional space, but here arises from surface correlations of the porous media. The long-time behavior of the autocorrelation functions retrieves the asymptotic decrease t -d/2 . Moreover, atypical behavior is observed for the Knudsen diffusion between infinite planes. It turns out that 129 Xe NMR is a appropriate technique to characterize organization and diffusion of gas confined in Vycor. Systematic studies of temperature and pressure effect on the 129 Xe chemical shift allow to specify the Xe/solid interaction. The analysis of the relaxation measurements, thanks to the numerical development, confirms conclusions arising from the study of diffusion propagator. (author) [fr

  10. Interrelation of creep and relaxation: a modeling approach for ligaments.

    Science.gov (United States)

    Lakes, R S; Vanderby, R

    1999-12-01

    Experimental data (Thornton et al., 1997) show that relaxation proceeds more rapidly (a greater slope on a log-log scale) than creep in ligament, a fact not explained by linear viscoelasticity. An interrelation between creep and relaxation is therefore developed for ligaments based on a single-integral nonlinear superposition model. This interrelation differs from the convolution relation obtained by Laplace transforms for linear materials. We demonstrate via continuum concepts of nonlinear viscoelasticity that such a difference in rate between creep and relaxation phenomenologically occurs when the nonlinearity is of a strain-stiffening type, i.e., the stress-strain curve is concave up as observed in ligament. We also show that it is inconsistent to assume a Fung-type constitutive law (Fung, 1972) for both creep and relaxation. Using the published data of Thornton et al. (1997), the nonlinear interrelation developed herein predicts creep behavior from relaxation data well (R > or = 0.998). Although data are limited and the causal mechanisms associated with viscoelastic tissue behavior are complex, continuum concepts demonstrated here appear capable of interrelating creep and relaxation with fidelity.

  11. Quasi-periodic Schroedinger operators in one dimension, absolutely continuous spectra, Bloch waves, and integrable Hamiltonian systems

    International Nuclear Information System (INIS)

    Chierchia, L.

    1986-01-01

    In the first chapter, the eigenvalue problem for a periodic Schroedinger operator, Lf = (-d 2 /dx 2 + v)f = Ef, is viewed as a two-dimensional Hamiltonian system which is integrable in the sense of Arnold and Liouville. With the aid of the Floquet-BLoch theory, it is shown that such a system is conjugate to two harmonic oscillators with frequencies α and omega, being the rotation number for L and 2π/omega the period of the potential v. This picture is generalized in the second chapter, to quasi periodic Schroedinger operators, L/sub epsilon/, with highly irrational frequencies (omega 1 , ..., omega/sub d/), which are a small perturbation of periodic operators. In the last chapter, the absolutely continuous spectrum σ/sub ac/ of a general quasi-periodic Schroedinger operators is considered. The Radon-Nikodym derivatives (with respect to Lebesgue measure) of the spectral measures are computed in terms of special independent eigensolutions existing for almost ever E in σ/sub ac/. Finally, it is shown that weak Bloch waves always exist for almost ever E in σ/sub ac/ and the question of the existence of genuine Bloch waves is turned into a regularity problem for a certain nonlinear partial differential equation on a d-dimensional torus

  12. Relaxed states with plasma flow

    International Nuclear Information System (INIS)

    Avinash, K.; Taylor, J.B.

    1991-01-01

    In the theory of relaxation, a turbulent plasma reaches a state of minimum energy subject to constant magnetic helicity. In this state the plasma velocity is zero. Attempts have been made by introducing a number of different constraints, to obtain relaxed states with plasma flow. It is shown that these alternative constraints depend on two self-helicities, one for ions, and one for electrons. However, whereas there are strong arguments for the effective invariance of the original magnetic-helicity, these arguments do not apply to the self-helicities. Consequently the existence of relaxed states with flow remains in doubt. (author)

  13. Mechanical properties of plant cell walls probed by relaxation spectra

    DEFF Research Database (Denmark)

    Hansen, Steen Laugesen; Ray, Peter Martin; Karlsson, Anders Ola

    2011-01-01

    Relax, that deduces relaxation spectra from appropriate rheological measurements is presented and made accessible through a Web interface. BayesRelax models the cell wall as a continuum of relaxing elements, and the ability of the method to resolve small differences in cell wall mechanical properties is demonstrated......Transformants and mutants with altered cell wall composition are expected to display a biomechanical phenotype due to the structural role of the cell wall. It is often quite difficult, however, to distinguish the mechanical behavior of a mutant's or transformant's cell walls from that of the wild...... type. This may be due to the plant’s ability to compensate for the wall modification or because the biophysical method that is often employed, determination of simple elastic modulus and breakstrength, lacks the resolving power necessary for detecting subtle mechanical phenotypes. Here, we apply...

  14. Water types and their relaxation behavior in partially rehydrated CaFe-mixed binary oxide obtained from CaFe-layered double hydroxide in the 155-298 K temperature range.

    Science.gov (United States)

    Bugris, Valéria; Haspel, Henrik; Kukovecz, Ákos; Kónya, Zoltán; Sipiczki, Mónika; Sipos, Pál; Pálinkó, István

    2013-10-29

    Heat-treated CaFe-layered double hydroxide samples were equilibrated under conditions of various relative humidities (11%, 43% and 75%). Measurements by FT-IR and dielectric relaxation spectroscopies revealed that partial to full reconstruction of the layered structure took place. Water types taking part in the reconstruction process were identified via dielectric relaxation measurements either at 298 K or on the flash-cooled (to 155 K) samples. The dynamics of water molecules at the various positions was also studied by this method, allowing the flash-cooled samples to warm up to 298 K.

  15. Phonon-assisted relaxation and decoherence of singlet-triplet qubits in Si/SiGe quantum dots

    Directory of Open Access Journals (Sweden)

    Viktoriia Kornich

    2018-05-01

    Full Text Available We study theoretically the phonon-induced relaxation and decoherence of spin states of two electrons in a lateral double quantum dot in a SiGe/Si/SiGe heterostructure. We consider two types of singlet-triplet spin qubits and calculate their relaxation and decoherence times, in particular as a function of level hybridization, temperature, magnetic field, spin orbit interaction, and detuning between the quantum dots, using Bloch-Redfield theory. We show that the magnetic field gradient, which is usually applied to operate the spin qubit, may reduce the relaxation time by more than an order of magnitude. Using this insight, we identify an optimal regime where the magnetic field gradient does not affect the relaxation time significantly, and we propose regimes of longest decay times. We take into account the effects of one-phonon and two-phonon processes and suggest how our theory can be tested experimentally. The spin lifetimes we find here for Si-based quantum dots are significantly longer than the ones reported for their GaAs counterparts.

  16. Relaxed states of tokamak plasmas

    International Nuclear Information System (INIS)

    Kucinski, M.Y.; Okano, V.

    1993-01-01

    The relaxed states of tokamak plasmas are studied. It is assumed that the plasma relaxes to a quasi-steady state which is characterized by a minimum entropy production rate, compatible with a number of prescribed conditions and pressure balance. A poloidal current arises naturally due to the anisotropic resistivity. The minimum entropy production theory is applied, assuming the pressure equilibrium as fundamental constraint on the final state. (L.C.J.A.)

  17. Negative magnetic relaxation in superconductors

    Directory of Open Access Journals (Sweden)

    Krasnoperov E.P.

    2013-01-01

    Full Text Available It was observed that the trapped magnetic moment of HTS tablets or annuli increases in time (negative relaxation if they are not completely magnetized by a pulsed magnetic field. It is shown, in the framework of the Bean critical-state model, that the radial temperature gradient appearing in tablets or annuli during a pulsed field magnetization can explain the negative magnetic relaxation in the superconductor.

  18. Relaxation effects in ferrous complexes

    International Nuclear Information System (INIS)

    Nicolini, C.; Mathieu, J.P.; Chappert, J.

    1976-01-01

    The slow relaxation mechanism of the Fe 2+ ion in the tri-fluorinated TF(acac) and hexafluorinated HF(acac) complexes of Fe(II) acetylacetonate was investigated. The 300K and 77K Moessbauer spectra for TF(acac) consist in a slightly asymmetric quadrupole doublet. On the contrary, at 4.2K the higher energy line is strongly widened; that is typical of a slowing down in the electron relaxation frequency [fr

  19. Differential geometric invariants for time-reversal symmetric Bloch-bundles: The “Real” case

    International Nuclear Information System (INIS)

    De Nittis, Giuseppe; Gomi, Kiyonori

    2016-01-01

    Topological quantum systems subjected to an even (resp. odd) time-reversal symmetry can be classified by looking at the related “Real” (resp. “Quaternionic”) Bloch-bundles. If from one side the topological classification of these time-reversal vector bundle theories has been completely described in De Nittis and Gomi [J. Geom. Phys. 86, 303–338 (2014)] for the “Real” case and in De Nittis and Gomi [Commun. Math. Phys. 339, 1–55 (2015)] for the “Quaternionic” case, from the other side it seems that a classification in terms of differential geometric invariants is still missing in the literature. With this article and its companion [G. De Nittis and K. Gomi (unpublished)] we want to cover this gap. More precisely, we extend in an equivariant way the theory of connections on principal bundles and vector bundles endowed with a time-reversal symmetry. In the “Real” case we generalize the Chern-Weil theory and we show that the assignment of a “Real” connection, along with the related differential Chern class and its holonomy, suffices for the classification of “Real” vector bundles in low dimensions.

  20. Corrections to Newton’s law of gravitation - application to hybrid Bloch brane

    Science.gov (United States)

    Almeida, C. A. S.; Veras, D. F. S.; Dantas, D. M.

    2018-02-01

    We present in this work, the calculations of corrections in the Newton’s law of gravitation due to Kaluza-Klein gravitons in five-dimensional warped thick braneworld scenarios. We consider here a recently proposed model, namely, the hybrid Bloch brane. This model couples two scalar fields to gravity and is engendered from a domain wall-like defect. Also, two other models the so-called asymmetric hybrid brane and compact brane are considered. Such models are deformations of the ϕ 4 and sine-Gordon topological defects, respectively. Therefore we consider the branes engendered by such defects and we also compute the corrections in their cases. In order to attain the mass spectrum and its corresponding eigenfunctions which are the essential quantities for computing the correction to the Newtonian potential, we develop a suitable numerical technique. The calculation of slight deviations in the gravitational potential may be used as a selection tool for braneworld scenarios matching with future experimental measurements in high energy collisions

  1. Cytotoxic and genotoxic affects of acid mine drainage on fish Channa punctata (Bloch).

    Science.gov (United States)

    Talukdar, B; Kalita, H K; Basumatary, S; Saikia, D J; Sarma, D

    2017-10-01

    The investigation deals with the effects of Acid Mine Drainage (AMD) of coal mine on fish Channa punctata (Bloch) by examining the incidence of haematological, morphological, histological changes and DNA fragmentation in tissues of C. punctata in laboratory condition. For this study fishes were exposed to 10% of AMD for a period of 30 days. The fusion of the primary and secondary gill lamellae, distortion, loss of alignment, deposition of worn out tissues and mucous on the surface of the lamella in the gills; degeneration of morphological architecture, loss of alignment of tubules, mucous deposition in the kidney; cellular damage, cellular necrosis, extraneous deposition on the surface, pore formation in the liver are some important changes detected by scanning electron microscopy. Fishes of AMD treated group showed gradual significant decrease in TEC, Hb and, increase in TLC and DLC as compared to that of the control. DNA fragmentation observed in kidney of fishes from treated group indicates an intricate pollutant present in the AMD. The high incidence of morphological and histological alterations, haematological changes along with DNA breakage in C. punctata is an evidence of the cytotoxic and genotoxic potential of AMD of coal mines. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Microbiological and biochemical changes in pearl spot (Etroplus suratensis Bloch) stored under modified atmospheres.

    Science.gov (United States)

    Lalitha, K V; Sonaji, E R; Manju, S; Jose, L; Gopal, T K S; Ravisankar, C N

    2005-01-01

    This study aimed to determine the effect of packaging [air, modified atmosphere (MA)] on microbial growth, sensory and chemical parameters and also on shelf life of fresh pearl spot (Etroplus suratensis Bloch) and on the selection of microbial association. Fresh pearl spot (whole, gutted) were packaged under both 100% air and MAs (40%CO(2)/60% O(2), 50%CO(2)/50%O(2), 60% CO(2)/40%O(2), 70% CO(2)/30% O(2) and 40% CO(2)/30% O(2)/30% N(2)) and stored at 0 degrees C. Microbial growth (counts of total aerobic bacteria, H(2)S-producing bacteria, Lactic acid bacteria, Brochothrix thermosphacta, yeast and mould), chemical spoilage indicators (pH, total volatile basic nitrogen) and sensory characteristics were monitored. Microbial changes in Pearl spot packed under 100% air and 40% CO(2)/30%O(2)/30% N(2) were similar. The total volatile basic nitrogen values increased, but the values never exceeded the acceptability limit of 25 mg 100 g(-1). MA 60% CO(2) : 40%O(2) was found to be better with a shelf life of 21 days whereas air stored samples had a shelf-life of 12-14 days only. Storage of pearl spot under MAs 60% CO(2) : 40%O(2) is a promising method to extend shelf-life. Longer shelf life expands the market potential of pearl spot and reduces waste during distribution and retail display.

  3. Emergence of quasiparticle Bloch states in artificial crystals crafted atom-by-atom

    Directory of Open Access Journals (Sweden)

    Jan Girovsky, Jose L. Lado, Floris E. Kalff, Eleonora Fahrenfort, Lucas J. J. M. Peters, Joaquín Fernández-Rossier, Alexander F. Otte

    2017-06-01

    Full Text Available The interaction of electrons with a periodic potential of atoms in crystalline solids gives rise to band structure. The band structure of existing materials can be measured by photoemission spectroscopy and accurately understood in terms of the tight-binding model, however not many experimental approaches exist that allow to tailor artificial crystal lattices using a bottom-up approach. The ability to engineer and study atomically crafted designer materials by scanning tunnelling microscopy and spectroscopy (STM/STS helps to understand the emergence of material properties. Here, we use atom manipulation of individual vacancies in a chlorine monolayer on Cu(100 to construct one- and two-dimensional structures of various densities and sizes. Local STS measurements reveal the emergence of quasiparticle bands, evidenced by standing Bloch waves, with tuneable dispersion. The experimental data are understood in terms of a tight-binding model combined with an additional broadening term that allows an estimation of the coupling to the underlying substrate.

  4. Energies and bounds from perturbative approximations to the Bloch-Horowitz effective Hamiltonian

    International Nuclear Information System (INIS)

    Darema-Rogers, F.; Vincent, C.M.

    1978-01-01

    Bloch-Horowitz perturbation theory is applied to the calculation of approximate energies and model-space eigenvectors, for the solvable large-matrix Hamiltonian H used by Pittel, Vincent, and Vergados. Two types of upper and lower bounds to the energies are discussed: moment-theory bounds, obtained by applying moment theory to the terms of perturbation theory, and norm bounds, derived from the expectation E-bar and variance sigma 2 of H with respect to an eigenvector approximated by nth order perturbation theory (n < or = 6). It is shown that lower bounds cannot be constructed unless some fourth-order quantity is known. The upper bounds are generally stricter than the lower bounds. All of the bounds apply even when back-door intruder states cause perturbation theory to diverge; but they lose their rigor and become ''quasibounds'' when there are physical intruders. The moment-theory and norm lower quasibounds always require estimation of a parameter. For the solvable Hamiltonians, it is shown that this can be done quite reliably, and that the resulting quasibounds are tight enough to have some practical utility. The energy-independent effective interaction V is constructed and its errors are displayed and discussed. Finally, a certain [1/2] pseudo-Pade approximant is empirically shown to give energies with a mean absolute error of less than 0.3 MeV in all cases

  5. Establishment of a cell line from kidney of seabass, Lates calcarifer (Bloch

    Directory of Open Access Journals (Sweden)

    Phromkunthong, W.

    2003-01-01

    Full Text Available Primary cell culture from caudal fin and kidney of seabass (Lates calcarifer Bloch using tissue explant method were cultured in three different medias with various salt concentrations. Only seabass kidney (SK cells grew well in Leibovitze's-15 medium containing 8 g/l of NaCl supplemented with 10 % fetal bovine serum at an optimum temperature of 25 oC. Over a period of 24 months, SK cells were subcultured over than 75 passages and exhibited epithelial-like cells. The chromosome number of SK cells was 42. The cells were found to be free from bacterial, fungal and mycoplasma contamination. Seabass cells can be kept at -80 oC and/or in liquid nitrogen (-196 oC for at least 24 months with a survival rate of 83.20 and 74.50 %, respectively. Nine fish viruses were tested for their infectivity and this SK cells were susceptible to sand goby virus (SGV, chub reovirus (CRV, snake-head rhabdovirus (SHRV, red seabream iridovirus (RSIV, seabass iridovirus (SIV and grouper iridovirus-2 (GIV-2.

  6. Development of immune functionality in larval and juvenile crimson snapper Lutjanus erythropterus (Bloch 1790

    Directory of Open Access Journals (Sweden)

    Ke Cui

    2018-05-01

    Full Text Available Ontogenetic development of the immune system in crimson snapper (Lutjanus erythropterus Bloch 1790 larvae was histologically and enzymatically studied from hatch to 36 days post-hatch (DPH. Primitive hepatopancreas appeared on 2 DPH and renal tubules started hematopoiesis on 4 DPH. The spleen anlage appeared on 6 DPH and the thymus formed on 14 DPH. Total activities of superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPX and sodium-potassium adenosine triphosphatase (Na+ K+-ATPase gradually increased after hatch, and showed a sharp increase after 29 DPH during the transitional feeding period from Artemia to inert feed. The specific activities of SOD, CAT, and GPX showed a trend of sharp increase and reached the maximum level on 4 DPH when exogenous feeding started, except for Na+ K+-ATPase where the peak occurred on10 DPH. The specific activities of these five enzymes reached the peak during the food transition from rotifers to Artemia, but the total activity of enzymes showed an increasing trend as fish grew. The present study provides new knowledge of the development of functional enzymes relevant to fish larvae immunity, sheds light on the understanding of the change of larval health, and improves hatchery management of crimson snapper. Keywords: Immune system, Enzyme activity, Ontogenetic development, Crimson snapper Lutjanus erythropterus

  7. A size selective porous silicon grating-coupled Bloch surface and sub-surface wave biosensor.

    Science.gov (United States)

    Rodriguez, Gilberto A; Ryckman, Judson D; Jiao, Yang; Weiss, Sharon M

    2014-03-15

    A porous silicon (PSi) grating-coupled Bloch surface and sub-surface wave (BSW/BSSW) biosensor is demonstrated to size selectively detect the presence of both large and small molecules. The BSW is used to sense large immobilized analytes at the surface of the structure while the BSSW that is confined inside but near the top of the structure is used to sensitively detect small molecules. Functionality of the BSW and BSSW modes is theoretically described by dispersion relations, field confinements, and simulated refractive index shifts within the structure. The theoretical results are experimentally verified by detecting two different small chemical molecules and one large 40 base DNA oligonucleotide. The PSi-BSW/BSSW structure is benchmarked against current porous silicon technology and is shown to have a 6-fold higher sensitivity in detecting large molecules and a 33% improvement in detecting small molecules. This is the first report of a grating-coupled BSW biosensor and the first report of a BSSW propagating mode. © 2013 Published by Elsevier B.V.

  8. Anomalous relaxation and self-organization in non-equilibrium processes

    OpenAIRE

    Fatkullin, Ibrahim; Kladko, Konstantin; Mitkov, Igor; Bishop, A. R.

    2000-01-01

    We study thermal relaxation in ordered arrays of coupled nonlinear elements with external driving. We find, that our model exhibits dynamic self-organization manifested in a universal stretched-exponential form of relaxation. We identify two types of self-organization, cooperative and anti-cooperative, which lead to fast and slow relaxation, respectively. We give a qualitative explanation for the behavior of the stretched exponent in different parameter ranges. We emphasize that this is a sys...

  9. Hot-electron effect in spin relaxation of electrically injected electrons in intrinsic Germanium.

    Science.gov (United States)

    Yu, T; Wu, M W

    2015-07-01

    The hot-electron effect in the spin relaxation of electrically injected electrons in intrinsic germanium is investigated by the kinetic spin Bloch equations both analytically and numerically. It is shown that in the weak-electric-field regime with E ≲ 0.5 kV cm(-1), our calculations have reasonable agreement with the recent transport experiment in the hot-electron spin-injection configuration (2013 Phys. Rev. Lett. 111 257204). We reveal that the spin relaxation is significantly enhanced at low temperature in the presence of weak electric field E ≲ 50 V cm(-1), which originates from the obvious center-of-mass drift effect due to the weak electron-phonon interaction, whereas the hot-electron effect is demonstrated to be less important. This can explain the discrepancy between the experimental observation and the previous theoretical calculation (2012 Phys. Rev. B 86 085202), which deviates from the experimental results by about two orders of magnitude at low temperature. It is further shown that in the strong-electric-field regime with 0.5 ≲ E ≲ 2 kV cm(-1), the spin relaxation is enhanced due to the hot-electron effect, whereas the drift effect is demonstrated to be marginal. Finally, we find that when 1.4 ≲ E ≲ 2 kV cm(-1) which lies in the strong-electric-field regime, a small fraction of electrons (≲5%) can be driven from the L to Γ valley, and the spin relaxation rates are the same for the Γ and L valleys in the intrinsic sample without impurity. With the negligible influence of the spin dynamics in the Γ valley to the whole system, the spin dynamics in the L valley can be measured from the Γ valley by the standard direct optical transition method.

  10. Statistical foundation of the Kubo-Tomita theory of magnetic relaxation

    International Nuclear Information System (INIS)

    Yul'met'ev, R.M.

    1974-01-01

    With the aim to give the statistical foundation of the Kubo-Tomita theory the theoretical-functional method of the projection operators is applied to the phenomenon of magnetic relaxation. The exact nonmarkov nonlinear kinetic equations are found for the time correlation functions (TCF) of the longitudinal and transversal components of the spin magnetization of a system including the spin-lattice interaction lambda H' in a general form. The markov kinetic equations of the well-known Bloch-type are derived in the weak coupling Van Hove limits t → infinity, lambda → 0, lambda 2 t=const., and the rate of the spin-lattice (T 1 -1 ) and spin-spin (T 2 -1 ) relaxation is obtained from the relaxation coefficients. It is found that the formulas of the Kubo-Tomita for T 1 -1 and T 2 -1 are correct only in the case of rapid thermal motions when ω 0 tau 0 0 is the resonance frequency and tau 0 is the typical correlation time of the molecular thermal motions). In the other limiting case (ω 0 tau 0 >>1) of slow motion, the effective spectral densities which enter T 1 and T 2 are determined by a set of relaxation times Tsub(β)sup(n) of the spin irreducible operators Vsub(β)sup(n) from the spin-lattice interaction lambda H'. It is found that the time dependence of the transversal component of magnetization had been left out in the collision integral of Kubo-Tomita's theory. Precisely considering this circumstance the frequency dependence of T 2 -1 on the resonance frequency must be changed. (author)

  11. Treatment of Nightmares via Relaxation and Desensitization: A Controlled Evaluation.

    Science.gov (United States)

    Miller, William R.; DiPilato, Marina

    1983-01-01

    Investigated the role of relaxation training as a component of desensitization to nightmares in adults (N=32). Results showed an 80 percent reduction in nightmares reported by 20 clients, of whom 12 reported total elimination of symptoms at 25-week follow-up, suggesting the effectiveness of a behavioral approach in treating nightmares. (LLL)

  12. An Update on the Invasion of Weakfish Cynoscion regalis (Bloch & Schneider, 1801 (Actinopterygii: Sciaenidae into Europe

    Directory of Open Access Journals (Sweden)

    Pedro Morais

    2017-10-01

    Full Text Available New information on weakfish introduction vectors, its invasive status, distribution, and use as a fishing resource arose after the publication of “The transatlantic introduction of weakfish Cynoscion regalis (Bloch & Schneider, 1801 (Sciaenidae, Pisces into Europe” by Morais and Teodósio (2016. Currently, the first known report of weakfish in Europe dates back to September 2009, with a specimen captured in the Schelde estuary (Belgium/The Netherlands. This fact suggests that weakfish could have been introduced into Europe via multiple and independent ballast water introduction events, and not through a point-source introduction event with subsequent dispersion as previously hypothesized. It is also unlikely that Schelde weakfish migrated southwards to colonize Iberian aquatic ecosystems. Weakfish have established a population in the Gulf of Cádiz region and have already reached an invasive status in the Sado estuary (Portugal. Weakfish were also captured in several other locations along the Portuguese coast, including the Tagus and Mira estuaries at least since 2013 or 2014, and the Ria Formosa lagoon in 2017. Tagus anglers caught weakfish specimens of ~1 kg and ~40 cm in November 2016, which corresponds to fish of 3+ years of age in the native range. The presence of weakfish in the Tagus estuary is still fairly unknown to local anglers. Sado weakfish has already been sold in local fish markets in southern Portugal for 3 to 10 € kg−1. However, we consider that the weakfish sale price is underrated in comparison with other wild species (e.g., meagre, seabass, gilthead seabream. Increasing sale price will convince fishers to use weakfish as a new fishing resource; however, it is necessary to promote the species among consumers and evaluate consumers’ preference in respect to other species. A putative biological threat might turn into a new valuable fishing resource by implementing adequate management solutions.

  13. Several Growth Characteristics of an Invasive Cyprinid Fish (Carassius gibelio Bloch, 1782

    Directory of Open Access Journals (Sweden)

    Sait BULUT

    2013-05-01

    Full Text Available Age composition, length-weight relationships, growth, and condition factors of the gibel carp (Carassius gibelio Bloch, 1782 were determined using specimens collected from Seyitler Reservoir between July 2005 to June 2006. A total of 149 gibel carp were observed and examined. The age composition of the samples ranged between I and VII years of age. It has been determined than 82.55% of the obtained samples are comprised of females, 16.11% is comprised of males and 1.34% is comprised of immature. The population is dominated by females able to reproduce gynogenetically. The mean fork lengths and mean weights of the population were 14.8-32.5 cm and 43.1-807.3 g respectively. The length-weight relation were calculated as W = 0.0696 L2.132, r=0.838 for females, for males W = 0.2942 L2.6417 r=0.784 and W = 0.0274 L2.9382, r=0.813 for all samples. The mean Fulton Condition Factor was calculated as 2.342 for females, 2.064 for males and 2.276 for all samples. Age-length and age-weight relations were determined according to von Bertalanffy growth equation formula. Growth parameters of the population were Lt = 48.09 [1-e-0.093(t+0.29], and Wt=2323.62 [1-e-0.093(t+0.29]2.9382. The growth performance index value (Ø´ was computed as 5.37 for all specimens.

  14. Peeling mode relaxation ELM model

    International Nuclear Information System (INIS)

    Gimblett, C. G.

    2006-01-01

    This paper discusses an approach to modelling Edge Localised Modes (ELMs) in which toroidal peeling modes are envisaged to initiate a constrained relaxation of the tokamak outer region plasma. Relaxation produces both a flattened edge current profile (which tends to further destabilise a peeling mode), and a plasma-vacuum negative current sheet which has a counteracting stabilising influence; the balance that is struck between these two effects determines the radial extent (rE) of the ELM relaxed region. The model is sensitive to the precise position of the mode rational surfaces to the plasma surface and hence there is a 'deterministic scatter' in the results that has an accord with experimental data. The toroidal peeling stability criterion involves the edge pressure, and using this in conjunction with predictions of rE allows us to evaluate the ELM energy losses and compare with experiment. Predictions of trends with the edge safety factor and collisionality are also made

  15. Characterization of structural relaxation in inorganic glasses using length dilatometry

    Science.gov (United States)

    Koontz, Erick

    The processes that govern how a glass relaxes towards its thermodynamic quasi-equilibrium state are major factors in understanding glass behavior near the glass transition region, as characterized by the glass transition temperature (Tg). Intrinsic glass properties such as specific volume, enthalpy, entropy, density, etc. are used to map the behavior of the glass network below in and near the transition region. The question of whether a true thermodynamic second order phase transition takes place in the glass transition region is another pending question. Linking viscosity behavior to entropy, or viewing the glass configuration as an energy landscape are just a couple of the most prevalent methods used for attempting to understand the glass transition. The structural relaxation behavior of inorganic glasses is important for more than scientific reasons, many commercial glass processing operations including glass melting and certain forms of optical fabrication include significant time spent in the glass transition region. For this reason knowledge of structural relaxation processes can, at a minimum, provide information for annealing duration of melt-quenched glasses. The development of a predictive model for annealing time prescription has the potential to save glass manufacturers significant time and money as well as increasing volume throughput. In optical hot forming processes such as precision glass molding, molded optical components can significantly change in shape upon cooling through the glass transition. This change in shape is not scientifically predictable as of yet though manufacturers typically use empirical rules developed in house. The classification of glass behavior in the glass transition region would allow molds to be accurately designed and save money for the producers. The work discussed in this dissertation is comprised of the development of a dilatometric measurement and characterization method of structural relaxation. The measurement and

  16. Asymmetric rogue waves, breather-to-soliton conversion, and nonlinear wave interactions in the Hirota–Maxwell–Bloch system

    International Nuclear Information System (INIS)

    Wang Lei; Zhu Yujie; Wang Ziqi; Xu Tao; Qi Fenghua; Xue Yushan

    2016-01-01

    We study the nonlinear localized waves on constant backgrounds of the Hirota–Maxwell–Bloch (HMB) system arising from the erbium doped fibers. We derive the asymmetric breather, rogue wave (RW) and semirational solutions of the HMB system. We show that the breather and RW solutions can be converted into various soliton solutions. Under different conditions of parameters, we calculate the locus of the eigenvalues on the complex plane which converts the breathers or RWs into solitons. Based on the second-order solutions, we investigate the interactions among different types of nonlinear waves including the breathers, RWs and solitons. (author)

  17. Asymmetric Rogue Waves, Breather-to-Soliton Conversion, and Nonlinear Wave Interactions in the Hirota-Maxwell-Bloch System

    Science.gov (United States)

    Wang, Lei; Zhu, Yu-Jie; Wang, Zi-Qi; Xu, Tao; Qi, Feng-Hua; Xue, Yu-Shan

    2016-02-01

    We study the nonlinear localized waves on constant backgrounds of the Hirota-Maxwell-Bloch (HMB) system arising from the erbium doped fibers. We derive the asymmetric breather, rogue wave (RW) and semirational solutions of the HMB system. We show that the breather and RW solutions can be converted into various soliton solutions. Under different conditions of parameters, we calculate the locus of the eigenvalues on the complex plane which converts the breathers or RWs into solitons. Based on the second-order solutions, we investigate the interactions among different types of nonlinear waves including the breathers, RWs and solitons.

  18. Fast-forward scaling theory for phase imprinting on a BEC: creation of a wave packet with uniform momentum density and loading to Bloch states without disturbance

    Science.gov (United States)

    Masuda, Shumpei; Nakamura, Katsuhiro; Nakahara, Mikio

    2018-02-01

    We study phase imprinting on Bose-Einstein condensates (BECs) with the fast-forward scaling theory revealing a nontrivial scaling property in quantum dynamics. We introduce a wave packet with uniform momentum density (WPUM) which has peculiar properties but is short-lived. The fast-forward scaling theory is applied to derive the driving potential for creation of the WPUMs in a predetermined time. Fast manipulation is essential for the creation of WPUMs because of the instability of the state. We also study loading of a BEC into a predetermined Bloch state in the lowest band from the ground state of a periodic potential. Controlled linear potential is not sufficient for creation of the Bloch state with large wavenumber because the change in the amplitude of the order parameter is not negligible. We derive the exact driving potential for creation of predetermined Bloch states using the obtained theory.

  19. Relaxation properties in classical diamagnetism

    Science.gov (United States)

    Carati, A.; Benfenati, F.; Galgani, L.

    2011-06-01

    It is an old result of Bohr that, according to classical statistical mechanics, at equilibrium a system of electrons in a static magnetic field presents no magnetization. Thus a magnetization can occur only in an out of equilibrium state, such as that produced through the Foucault currents when a magnetic field is switched on. It was suggested by Bohr that, after the establishment of such a nonequilibrium state, the system of electrons would quickly relax back to equilibrium. In the present paper, we study numerically the relaxation to equilibrium in a modified Bohr model, which is mathematically equivalent to a billiard with obstacles, immersed in a magnetic field that is adiabatically switched on. We show that it is not guaranteed that equilibrium is attained within the typical time scales of microscopic dynamics. Depending on the values of the parameters, one has a relaxation either to equilibrium or to a diamagnetic (presumably metastable) state. The analogy with the relaxation properties in the Fermi Pasta Ulam problem is also pointed out.

  20. Onsager relaxation of toroidal plasmas

    International Nuclear Information System (INIS)

    Samain, A.; Nguyen, F.

    1997-01-01

    The slow relaxation of isolated toroidal plasmas towards their thermodynamical equilibrium is studied in an Onsager framework based on the entropy metric. The basic tool is a variational principle, equivalent to the kinetic equation, involving the profiles of density, temperature, electric potential, electric current. New minimization procedures are proposed to obtain entropy and entropy production rate functionals. (author)

  1. Anisotropic spin relaxation in graphene

    NARCIS (Netherlands)

    Tombros, N.; Tanabe, S.; Veligura, A.; Jozsa, C.; Popinciuc, M.; Jonkman, H. T.; van Wees, B. J.

    2008-01-01

    Spin relaxation in graphene is investigated in electrical graphene spin valve devices in the nonlocal geometry. Ferromagnetic electrodes with in-plane magnetizations inject spins parallel to the graphene layer. They are subject to Hanle spin precession under a magnetic field B applied perpendicular

  2. Tensions relaxation in Zircaloy-4

    International Nuclear Information System (INIS)

    Cuniberti, A.M.; Picasso, A.C.

    1990-01-01

    Traction and stress relaxation studies were performed on polycrystalline Zry-4 at room temperature. The effect of loading velocity on the plastic behaviour of the material is discussed, analysing log σ vs. log dε/dt at different deformation levels. The contribution introduced by the testing machine was taken into account in data evaluation. (Author). 7 refs., 3 figs., 3 tabs

  3. NMR structural refinement of an extrahelical adenosine tridecamer d(CGCAGAATTCGCG)2 via a hybrid relaxation matrix procedure

    International Nuclear Information System (INIS)

    Nikonowicz, E.P.; Meadows, R.P.; Gorenstein, D.G.

    1990-01-01

    Until very recently interproton distances from NOESY experiments have been derived solely from the two-spin approximation method. Unfortunately, even at short mixing times, there is a significant error in many of these distances. A complete relaxation matrix approach employing a matrix eigenvalue/eigenvector solution to the Bloch equations avoids the approximation of the two-spin method. The authors calculated the structure of an extrahelical adenosine tridecamer oligodeoxyribonucleotide duplex, d-(CGCAGAATTCGCG) 2 , by an iterative refinement approach using a hybrid relaxation matrix method combined with restrained molecular dynamics calculations. Distances from the 2D NOESY spectra have been calculated from the relaxation rate matrix which has been evaluated from a hybrid NOESY volume matrix comprising elements from the experiment and those calculated from an initial structure. The hybrid matrix derived distances have then been used in a restrained molecular dynamics procedure to obtain a new structure that better approximates the NOESY spectra. The resulting partially refined structure is then used to calculate an improved theoretical NOESY volume matrix which is once again merged with the experimental matrix until refinement is complete. Although the crystal structure of the tridecamer clearly shows the extrahelical adenosine looped out way from the duplex, the NOESY distance restrained hybrid matrix/molecular dynamics structural refinement establishes that the extrahelical adenosine stacks into the duplex

  4. Sleep, Stress & Relaxation: Rejuvenate Body & Mind

    Science.gov (United States)

    Sleep, Stress & Relaxation: Rejuvenate Body & Mind; Relieve Stress; best ways to relieve stress; best way to relieve stress; different ways to relieve stress; does smoking relieve stress; does tobacco relieve stress; how can I relieve stress; how can you relieve stress; how do I relieve stress; reduce stress; does smoking reduce stress; how can I reduce stress; how to reduce stress; reduce stress; reduce stress levels; reducing stress; smoking reduce stress; smoking reduces stress; stress reducing techniques; techniques to reduce stress; stress relief; best stress relief; natural stress relief; need stress relief; relief for stress; relief from stress; relief of stress; smoking and stress relief; smoking for stress relief; smoking stress relief; deal with stress; dealing with stress; dealing with anger; dealing with stress; different ways of dealing with stress; help dealing with stress; how to deal with anger; how to deal with stress; how to deal with stress when quitting smoking; stress management; free stress management; how can you manage stress; how do you manage stress; how to manage stress; manage stress; management of stress; management stress; managing stress; strategies for managing stress; coping with stress; cope with stress; copeing with stress; coping and stress; coping skills for stress; coping strategies for stress; coping strategies with stress; coping strategy for stress; coping with stress; coping with stress and anxiety; emotional health; emotional health; emotional health article; emotional health articles; deep relaxation; deep breathing relaxation techniques; deep muscle relaxation; deep relaxation; deep relaxation meditation; deep relaxation technique; deep relaxation techniques; meditation exercises; mindful exercises; mindful meditation exercises; online relaxation exercises; relaxation breathing exercises; relaxation exercise; relaxation exercises; stress relaxation; methods of relaxation for stress; relax stress; relax techniques stress

  5. Relaxation and transport properties of liquid n-triacontane

    International Nuclear Information System (INIS)

    Kondratyuk, N D; Lankin, A V; Norman, G E; Stegailov, V V

    2015-01-01

    Molecular modelling is used to calculate transport properties and to study relaxation of liquid n-triacontane (C 30 H 62 ). The problem is important in connection with the behavior of liquid isolators in a pre-breakdown state. Two all-atom models and a united-atom model are used. Shear viscosity is calculated using the Green-Kubo formula. The force fields are compared with each other using the following criteria: the required time for one molecular dynamics step, the compliance of the main physical and transport properties with experimental values. The problem of the system equilibration is considered. The united-atom potential is used to model the n-triacontane liquid with an initial directional orientation. The time of relaxation to the disordered state, when all molecules orientations are randomized, are obtained. The influence of the molecules orientations on the shear viscosity value and the shear viscosity relaxation are treated. (paper)

  6. Irradiation-induced stress relaxation of Eurofer97 steel

    International Nuclear Information System (INIS)

    Luzginova, N.V.; Jong, M.; Rensman, J.W.; Hegeman, J.B.J.; Laan, J.G. van der

    2011-01-01

    The irradiation-induced stress relaxation behavior of Eurofer97 at 300 deg. C up to 3.4 dpa and under pre-stress loads typical for the ITER applications is investigated. The bolt specimens are pre-loaded from 30% to 90% of the yield strength. To verify the results obtained with the pre-stressed bolts, bent strips were investigated as well. The strips are bent into a pre-defined radius in order to achieve similar pre-stress levels. The irradiation-induced stress relaxation is found to be independent of the pre-stress level. 10-12% of the stress relaxation in Eurofer97 may be reached after a dose of 0.1 dpa, and after an irradiation dose of 2.7 dpa 42-47% of the original pre-stress is retained.

  7. KONSERVASI GENETIK IKAN BETOK (Anabas testudineus Bloch 1792 DI PERAIRAN RAWA, KALIMANTAN SELATAN

    Directory of Open Access Journals (Sweden)

    Slamat Slamat

    2016-05-01

    Full Text Available Penelitian ini dilakukan dengan menggunakan sample ikan betok (Anabas testudineus Bloch 1972 yang berasal dari perairan rawa Kalimantan Selatan, dengan tujuan untuk mendeskripsikan keragaman  genetik dan aspek konservasinya dengan metode amplifikasi mtDNA. Proses amplifikasi mtDNA ikan betok terjadi di daerah D Loop.  Hasil analisis mt-DNA D Loop ikan betok menunjukkan bahwa, analisis keseimbangan populasi Hardy-Weinberg  berkisar antara 0,02 - 0,09, sedangkan haplotipe tertinggi terdapat pada rawa monoton (0,9384, kemudian tadah hujan (0,7111 dan pasang surut (0,6.  Heterozigositas ditemukan unik pada populasi rawa monoton (BAAAA dan rawa pasang surut (BAACA dan umum di temukan di ketiga ekosistem rawa (AAABA.  Ikan betok di bagi menjadi dua stok populasi yaitu populasi rawa monoton dan pasang surut serta stok tadah hujan.  Konsep utama dalam konservasi genetik adalah fitness population dimana populasi dipertahankan minimal 500 ekor/kawasan. Untuk meningkatkan keragaman genetik ikan betok, dilakukan dengan cara introduksi individu-individu baru yang memiliki keragaman genetik yang lebih tinggi kedalam populasi lokal, restocking dan membuat kawasan suaka yang dilindungi oleh Dinas Perikanan setempat bersama-sama dengan masyarakat di sekitar perairan rawa tersebut.   The research was conducted using climbing perch samples originated from the swampy waters of the southern Borneo, and the objektive of this study to investigate the genetic diversity and the conservation aspect using mtDNA amplification method.  mtDNA amplification process occurs in the D Loop region.  The results of the analysis of D-Loop mtDNA of climbing perch showed that, the analysis of Hardy-Weinberg equilibrium population ranged from 0.02 to 0.09, while the highest haplotypes found in swamp bogs (monotonic (0.9384 then rainfed (0.7111 and tides (0.6. Heterozygosity was found uniquely in the swamp monotonic population (BAAAA and marsh tides (BAACA and common in all

  8. Web-based description of the space radiation environment using the Bethe-Bloch model

    Science.gov (United States)

    Cazzola, Emanuele; Calders, Stijn; Lapenta, Giovanni

    2016-01-01

    Space weather is a rapidly growing area of research not only in scientific and engineering applications but also in physics education and in the interest of the public. We focus especially on space radiation and its impact on space exploration. The topic is highly interdisciplinary, bringing together fundamental concepts of nuclear physics with aspects of radiation protection and space science. We give a new approach to presenting the topic by developing a web-based application that combines some of the fundamental concepts from these two fields into a single tool that can be used in the context of advanced secondary or undergraduate university education. We present DREADCode, an outreach or teaching tool to rapidly assess the current conditions of the radiation field in space. DREADCode uses the available data feeds from a number of ongoing space missions (ACE, GOES-13, GOES-15) to produce a first order approximation of the radiation dose an astronaut would receive during a mission of exploration in deep space (i.e. far from the Earth’s shielding magnetic field and from the radiation belts). DREADCode is based on an easy-to-use GUI interface available online from the European Space Weather Portal (www.spaceweather.eu/dreadcode). The core of the radiation transport computation to produce the radiation dose from the observed fluence of radiation observed by the spacecraft fleet considered is based on a relatively simple approximation: the Bethe-Bloch equation. DREADCode also assumes a simplified geometry and material configuration for the shields used to compute the dose. The approach is approximate and sacrifices some important physics on the altar of rapid execution time, which allows a real-time operation scenario. There is no intention here to produce an operational tool for use in space science and engineering. Rather, we present an educational tool at undergraduate level that uses modern web-based and programming methods to learn some of the most important

  9. ESTIMASI KELIMPAHAN IKAN GABUS (Channa striata Bloch, 1793 DENGAN METODE HIDROAKUSTIK DI SUNGAI LEMPUING, SUMATERA SELATAN

    Directory of Open Access Journals (Sweden)

    Zulkarnaen Fahmi

    2016-03-01

    Full Text Available Kegiatan pengkajian stok sumberdaya ikan yang dilakukan secara berkala bertujuan untuk optimasi pemanfaatan sumberdaya perikanan bagi kegiatan perikanan tangkap. Kegiatan pengkajian stok ikandengan survey akustik di perairan Lubuk Lampam telah dilakukan pada tahun 2011 sebanyak 2 (dua kali dengan interval waktu 3 (tiga bulan untuk melihat perubahan kelimpahan ikan gabus (Channa striatadi perairan tersebut. Ekstraksi data akustik meliputi data sebaran kelimpahan dan distribusi ukuran ikan dilakukan untuk melihat keragaman (variance nilai yang diperoleh. Hasil penelitian menunjukkan bahwa estimasi rata-rata kelimpahan ikan pada bulan Maret sebesar 7.53 ± 1.33 ekor/m2  lebih rendah dibandingkan pada bulan Mei sebesar 53.11 ± 9.43  ekor/m2  . Biomass ikan pada bulan Maret sebesar 75.59 ± 30.22 kg/ha lebih rendah dibandingkan pada bulan Mei sebesar 521 ± 65.01 kg/ha. Nilai rataan target strength ikan tunggal yang terdeteksi pada bulan Maret sebesar -54.81 ± 0.9 dB lebih rendah dibandingkan pada bulan Mei sebesar -50.03 ± 0.35 dB. Estimasi kelimpahan dan distribusi ikan di sungai Lempuing menunjukkan nilai keragaman (variance yang lebih rendah pada bulan Maret dibandingkan dengan bulan Mei 2011 untuk parameter kelimpahan dan biomass ikan, sedangkan untuk nilai rataan target strength ikan menunjukkan sebaliknya. Fish assessment using hydroacoustic in inland water was conducted to optimize fish exploitation activity. Successive hydroacoustic survey was conducted twice with interval three months in 2011 to estimated distribution fish abundance and size distribution of snakehead fish (Channa striata Bloch, 1793 in Lempuing River, South Sumatera. Reability test was conducted on hydroacoustic data including data distribution and abundance of fish size distribution to obtain edvariance value. The results showed that the average estimate abundance of fish on March about 7.53 ± 1.33 fish/m2 lower than in the month of May at 53.11 ± 9.43 fish/m2

  10. Web-based description of the space radiation environment using the Bethe–Bloch model

    International Nuclear Information System (INIS)

    Cazzola, Emanuele; Lapenta, Giovanni; Calders, Stijn

    2016-01-01

    Space weather is a rapidly growing area of research not only in scientific and engineering applications but also in physics education and in the interest of the public. We focus especially on space radiation and its impact on space exploration. The topic is highly interdisciplinary, bringing together fundamental concepts of nuclear physics with aspects of radiation protection and space science. We give a new approach to presenting the topic by developing a web-based application that combines some of the fundamental concepts from these two fields into a single tool that can be used in the context of advanced secondary or undergraduate university education. We present DREADCode, an outreach or teaching tool to rapidly assess the current conditions of the radiation field in space. DREADCode uses the available data feeds from a number of ongoing space missions (ACE, GOES-13, GOES-15) to produce a first order approximation of the radiation dose an astronaut would receive during a mission of exploration in deep space (i.e. far from the Earth’s shielding magnetic field and from the radiation belts). DREADCode is based on an easy-to-use GUI interface available online from the European Space Weather Portal (www.spaceweather.eu/dreadcode). The core of the radiation transport computation to produce the radiation dose from the observed fluence of radiation observed by the spacecraft fleet considered is based on a relatively simple approximation: the Bethe–Bloch equation. DREADCode also assumes a simplified geometry and material configuration for the shields used to compute the dose. The approach is approximate and sacrifices some important physics on the altar of rapid execution time, which allows a real-time operation scenario. There is no intention here to produce an operational tool for use in space science and engineering. Rather, we present an educational tool at undergraduate level that uses modern web-based and programming methods to learn some of the most

  11. Innovations in the Treatment of Bulimia: Transpersonal Psychology, Relaxation, Imagination, Hypnosis, Myth, and Ritual.

    Science.gov (United States)

    Brown, Michael H.

    1991-01-01

    Written for counselors who must help clients deal with bulimia, this article reviews bulimia's most obvious physical signs and symptoms, etiology, and behavioral characteristics. Considers innovative counseling approaches including Transpersonal Psychology, relaxation training, imagination, fantasy, hypnosis, myths, and rituals. (Author)

  12. Influence of rotating in-plane field on vertical Bloch lines in the walls of second kind of dumbbell domains

    International Nuclear Information System (INIS)

    Sun, H.Y.; Hu, H.N.; Sun, Y.P.; Nie, X.F.

    2004-01-01

    Influence of rotating in-plane field on vertical Bloch lines in the walls of second kind of dumbbell domains (IIDs) was investigated, and a critical in-plane field range [H ip 1 ,H ip 2 ] of which vertical-Bloch lines (VBLs) annihilated in IIDs is found under rotating in-plane field (H ip 1 is the maximal critical in-plane-field of which hard domains remain stable, H ip 2 is the minimal critical in-plane-field of which all of the hard domains convert to soft bubbles (SBs, without VBLs)). It shows that the in-plane field range [H ip 1 , H ip 2 ] changes with the change of the rotating angle Δφ H ip 1 maintains stable, while H ip 2 decreases with the decreasing of rotating angle Δφ. Comparing it with the spontaneous shrinking experiment of IIDs under both bias field and in-plane field, we presume that under the application of in-plane field there exists a direction along which the VBLs in the domain walls annihilate most easily, and it is in the direction that domain walls are perpendicular to the in-plane field

  13. Plasmonic Photonic-Crystal Slabs: Visualization of the Bloch Surface Wave Resonance for an Ultrasensitive, Robust and Reusable Optical Biosensor

    Directory of Open Access Journals (Sweden)

    Alexander V. Baryshev

    2014-12-01

    Full Text Available A one-dimensional photonic crystal (PhC with termination by a metal film—a plasmonic photonic-crystal slab—has been theoretically analyzed for its optical response at a variation of the dielectric permittivity of an analyte and at a condition simulating the molecular binding event. Visualization of the Bloch surface wave resonance (SWR was done with the aid of plasmon absorption in a dielectric/metal/dielectric sandwich terminating a PhC. An SWR peak in spectra of such a plasmonic photonic crystal (PPhC slab comprising a noble or base metal layer was shown to be sensitive to a negligible variation of refractive index of a medium adjoining to the slab. As a consequence, the considered PPhC-based optical sensors exhibited an enhanced sensitivity and a good robustness in comparison with the conventional surface-plasmon and Bloch surface wave sensors. The PPhC biosensors can be of practical importance because the metal layer is protected by a capping dielectric layer from contact with analytes and, consequently, from deterioration.

  14. Longitudinal relaxation of initially straight flexible and stiff polymers

    Science.gov (United States)

    Dimitrakopoulos, Panagiotis; Dissanayake, Inuka

    2004-11-01

    The present talk considers the relaxation of a single flexible or stiff polymer chain from an initial straight configuration in a viscous solvent. This problem commonly arises when strong flows are turned off in both industrial and biological applications. The problem is also motivated by recent experiments with single biopolymer molecules relaxing after being fully extended by applied forces as well as by the recent development of micro-devices involving stretched tethered biopolymers. Our results are applicable to a wide array of synthetic polymers such as polyacrylamides, Kevlar and polyesters as well as biopolymers such as DNA, actin filaments, microtubules and MTV. In this talk we discuss the mechanism of the polymer relaxation as was revealed through Brownian Dynamics simulations covering a broad range of time scales and chain stiffness. After the short-time free diffusion, the chain's longitudinal reduction at early intermediate times is shown to constitute a universal behavior for any chain stiffness caused by a quasi-steady relaxation of tensions associated with the deforming action of the Brownian forces. Stiff chains are shown to exhibit a late intermediate-time longitudinal reduction associated with a relaxation of tensions affected by the deforming Brownian and the restoring bending forces. The longitudinal and transverse relaxations are shown to obey different laws, i.e. the chain relaxation is anisotropic at all times. In the talk, we show how from the knowledge of the relaxation mechanism, we can predict and explain the polymer properties including the polymer stress and the solution birefringence. In addition, a generalized stress-optic law is derived valid for any time and chain stiffness. All polymer properties which depend on the polymer length are shown to exhibit two intermediate-time behaviors with the early one to constitute a universal behavior for any chain stiffness. This work was supported in part by the Minta Martin Research Fund. The

  15. Relaxation Techniques to Manage IBS Symptoms

    Science.gov (United States)

    ... for 15–20 seconds and then begin again. Progressive Muscle Relaxation This method of relaxation focuses on ... helpful, please consider supporting IFFGD with a small tax- deductible donation. Make Donation Adapted from IFFGD Publication # ...

  16. Relaxation and Distraction in Experimental Desensitization.

    Science.gov (United States)

    Weir, R. O.; Marshall, W. L.

    1980-01-01

    Compared experimental desensitization with a procedure that replaced relaxation with a distraction task and with an approach that combined both relaxation and distraction. Desensitization generally was more effective than the other two procedures. (Author)

  17. Relaxation as a Factor in Semantic Desensitization

    Science.gov (United States)

    Bechtel, James E.; McNamara, J. Regis

    1975-01-01

    Relaxation and semantic desensitization were used to alleviate the fear of phobic females. Results showed that semantic desensitization, alone or in combination with relaxation, failed to modify the evaluative meanings evoked by the feared object. (SE)

  18. Ethical Ideologies: Do They Affect Shopping Behaviors and Perceptions of Morality?

    Science.gov (United States)

    Cho, Hyeon; Yoo, Jeong-Ju; Johnson, Kim K. P.

    2005-01-01

    Counterfeiting is a serious problem facing several industries, including the medical, agricultural, and apparel industries (Bloch, Bush, & Campbell, 1993). The authors investigated whether ethical viewpoints affect perceptions of the morality of particular shopping behaviors, attitudes toward counterfeit products, and intentions to purchase such…

  19. Plasmon-mediated energy relaxation in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ferry, D. K. [School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287-5706 (United States); Somphonsane, R. [Department of Physics, King Mongkut' s Institute of Technology, Ladkrabang, Bangkok 10520 (Thailand); Ramamoorthy, H.; Bird, J. P. [Department of Electrical Engineering, University at Buffalo, the State University of New York, Buffalo, New York 14260-1500 (United States)

    2015-12-28

    Energy relaxation of hot carriers in graphene is studied at low temperatures, where the loss rate may differ significantly from that predicted for electron-phonon interactions. We show here that plasmons, important in the relaxation of energetic carriers in bulk semiconductors, can also provide a pathway for energy relaxation in transport experiments in graphene. We obtain a total loss rate to plasmons that results in energy relaxation times whose dependence on temperature and density closely matches that found experimentally.

  20. Nonlinear Relaxation in Population Dynamics

    Science.gov (United States)

    Cirone, Markus A.; de Pasquale, Ferdinando; Spagnolo, Bernardo

    We analyze the nonlinear relaxation of a complex ecosystem composed of many interacting species. The ecological system is described by generalized Lotka-Volterra equations with a multiplicative noise. The transient dynamics is studied in the framework of the mean field theory and with random interaction between the species. We focus on the statistical properties of the asymptotic behaviour of the time integral of the ith population and on the distribution of the population and of the local field.

  1. Structural relaxation: low temperature properties

    International Nuclear Information System (INIS)

    Cruz, F. de la

    1984-01-01

    We discuss the changes in transport and superconducting properties of amorphous Zr 70 Cu 30 , induced by thermal relaxation. The experimental results are used to investigate the relation between the microscopic parameters and the observed physical properties. It is shown that the density of eletronic states determines the shift Tc as well as the variation of the electrical resistivity. It is necessary to assume strong hybridization between s and d bands to understand the eletrodynamic response of the superconductor. (Author) [pt

  2. The Effects of Suggestibility on Relaxation.

    Science.gov (United States)

    Rickard, Henry C.; And Others

    1985-01-01

    Selected undergraduates (N=32) on the basis of Creative Imagination Scale scores and randomly assigned high and low suggestibility subjects to progressive relaxation (PR) and suggestions of relaxation (SR) training modes. Results revealed a significant pre-post relaxation effect, and main efffects for both suggestibility and training mode. (NRB)

  3. Relaxed Poisson cure rate models.

    Science.gov (United States)

    Rodrigues, Josemar; Cordeiro, Gauss M; Cancho, Vicente G; Balakrishnan, N

    2016-03-01

    The purpose of this article is to make the standard promotion cure rate model (Yakovlev and Tsodikov, ) more flexible by assuming that the number of lesions or altered cells after a treatment follows a fractional Poisson distribution (Laskin, ). It is proved that the well-known Mittag-Leffler relaxation function (Berberan-Santos, ) is a simple way to obtain a new cure rate model that is a compromise between the promotion and geometric cure rate models allowing for superdispersion. So, the relaxed cure rate model developed here can be considered as a natural and less restrictive extension of the popular Poisson cure rate model at the cost of an additional parameter, but a competitor to negative-binomial cure rate models (Rodrigues et al., ). Some mathematical properties of a proper relaxed Poisson density are explored. A simulation study and an illustration of the proposed cure rate model from the Bayesian point of view are finally presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Arresting relaxation in Pickering Emulsions

    Science.gov (United States)

    Atherton, Tim; Burke, Chris

    2015-03-01

    Pickering emulsions consist of droplets of one fluid dispersed in a host fluid and stabilized by colloidal particles absorbed at the fluid-fluid interface. Everyday materials such as crude oil and food products like salad dressing are examples of these materials. Particles can stabilize non spherical droplet shapes in these emulsions through the following sequence: first, an isolated droplet is deformed, e.g. by an electric field, increasing the surface area above the equilibrium value; additional particles are then adsorbed to the interface reducing the surface tension. The droplet is then allowed to relax toward a sphere. If more particles were adsorbed than can be accommodated by the surface area of the spherical ground state, relaxation of the droplet is arrested at some non-spherical shape. Because the energetic cost of removing adsorbed colloids exceeds the interfacial driving force, these configurations can remain stable over long timescales. In this presentation, we present a computational study of the ordering present in anisotropic droplets produced through the mechanism of arrested relaxation and discuss the interplay between the geometry of the droplet, the dynamical process that produced it, and the structure of the defects observed.

  5. Vibrational relaxation in OCS mixtures

    International Nuclear Information System (INIS)

    Simpson, C.J.S.M.; Gait, P.D.; Simmie, J.M.

    1976-01-01

    Experimental measurements are reported of vibrational relaxation times which may be used to show whether there is near resonant vibration-rotation energy transfer between OCS and H 2 , D 2 or HD. Vibrational relaxation times have been measured in OCS and OCS mixtures over the temperature range 360 to 1000 K using a shock tube and a laser schlieren system. The effectiveness of the additives in reducing the relaxation time of OCS is in the order 4 He 3 He 2 2 and HD. Along this series the effect of an increase in temperature changes from the case of speeding up the rate with 4 He to retarding it with D 2 , HD and H 2 . There is no measurable difference in the effectiveness of n-D 2 and o-D 2 and little, or no, difference between n-H 2 and p-H 2 . Thus the experimental results do not give clear evidence for rotational-vibration energy transfer between hydrogen and OCS. This contrasts with the situation for CO 2 + H 2 mixtures. (author)

  6. Relaxed plasma-vacuum systems

    International Nuclear Information System (INIS)

    Spies, G.O.; Lortz, D.; Kaiser, R.

    2001-01-01

    Taylor's theory of relaxed toroidal plasmas (states of lowest energy with fixed total magnetic helicity) is extended to include a vacuum between the plasma and the wall. In the extended variational problem, one prescribes, in addition to the helicity and the magnetic fluxes whose conservation follows from the perfect conductivity of the wall, the fluxes whose conservation follows from the assumption that the plasma-vacuum interface is also perfectly conducting (if the wall is a magnetic surface, then one has the toroidal and the poloidal flux in the vacuum). Vanishing of the first energy variation implies a pressureless free-boundary magnetohydrostatic equilibrium with a Beltrami magnetic field in the plasma, and in general with a surface current in the interface. Positivity of the second variation implies that the equilibrium is stable according to ideal magnetohydrodynamics, that it is a relaxed state according to Taylor's theory if the interface is replaced by a wall, and that the surface current is nonzero (at least if there are no closed magnetic field lines in the interface). The plane slab, with suitable boundary conditions to simulate a genuine torus, is investigated in detail. The relaxed state has the same double symmetry as the vessel if, and only if, the prescribed helicity is in an interval that depends on the prescribed fluxes. This interval is determined in the limit of a thin slab

  7. Regularized Label Relaxation Linear Regression.

    Science.gov (United States)

    Fang, Xiaozhao; Xu, Yong; Li, Xuelong; Lai, Zhihui; Wong, Wai Keung; Fang, Bingwu

    2018-04-01

    Linear regression (LR) and some of its variants have been widely used for classification problems. Most of these methods assume that during the learning phase, the training samples can be exactly transformed into a strict binary label matrix, which has too little freedom to fit the labels adequately. To address this problem, in this paper, we propose a novel regularized label relaxation LR method, which has the following notable characteristics. First, the proposed method relaxes the strict binary label matrix into a slack variable matrix by introducing a nonnegative label relaxation matrix into LR, which provides more freedom to fit the labels and simultaneously enlarges the margins between different classes as much as possible. Second, the proposed method constructs the class compactness graph based on manifold learning and uses it as the regularization item to avoid the problem of overfitting. The class compactness graph is used to ensure that the samples sharing the same labels can be kept close after they are transformed. Two different algorithms, which are, respectively, based on -norm and -norm loss functions are devised. These two algorithms have compact closed-form solutions in each iteration so that they are easily implemented. Extensive experiments show that these two algorithms outperform the state-of-the-art algorithms in terms of the classification accuracy and running time.

  8. Model and prediction of stress relaxation of polyurethane fiber

    Science.gov (United States)

    You, Gexin; Wang, Chunyan; Mei, Shuqin; Yang, Bo; Zhou, Xiuwen

    2018-03-01

    In this study, the effect of small strain (less than 10%) on hydrogen bond (H-bond) and crystallinity of dry-spun polyurethane fiber was investigated with fourier transform infrared spectroscopy and x-ray diffractometer, respectively. The results showed that the H-bond of hard segments hardly broke and its degree of crystallinity scarcely varied below strain of 10%. The fiber stress relaxation behavior at 25 °C under small strain was researched using dynamic mechanical analyzer. The stress relaxation modulus constitutive equation was obtained by transforming the non-linear relationship between stress and time into the linear relationship between stress and strain. The stress relaxation modulus master curve at 25 °C was established in terms of short-term stress relaxation tests at elevated temperatures (35 °C, 45 °C, 65 °C and 75 °C) according to time-temperature superposition principle (TTS) to predict long-term behavior within 353 year.

  9. The annihilation of vertical-Bloch lines in the walls of hard domains to which bias fields and in-plane fields are alternately applied

    International Nuclear Information System (INIS)

    Sun, H.Y.; Hu, H.N.; Nie, X.F.

    2001-01-01

    The annihilation of vertical-Bloch lines in magnetic domain walls of the ordinary hard bubbles, to which both bias fields and in-plane fields are alternately applied, is investigated experimentally. The influence of an in-plane magnetic field on ordinary hard bubbles (OHB), dumbbell domains of the first kind (ID), and dumbbell domains of the second kind (IID) was analyzed, and a critical in-plane field range [H ip 0 ,H ip 2 ] for vertical Bloch line (VBL) annihilation was found. For the three types of hard domains (H ip 0 is the minimum critical in-plane field of VBLs which begin to be unstable, H ip 2 is the minimum critical in-plane field which only needs to be applied one time for collapse of all OHBs), the critical field range is the same with H ip 0 ≅8πM s . We hypothesize that there exists a direction along which the vertical-Bloch lines in the domain walls are annihilated most easily. It is also observed that the stability of vertical-Bloch lines in the domain walls does not depend on the initial state. This provides a more detailed description of the minimum critical in-plane field than previously known

  10. Capturing molecular multimode relaxation processes in excitable gases based on decomposition of acoustic relaxation spectra

    Science.gov (United States)

    Zhu, Ming; Liu, Tingting; Wang, Shu; Zhang, Kesheng

    2017-08-01

    Existing two-frequency reconstructive methods can only capture primary (single) molecular relaxation processes in excitable gases. In this paper, we present a reconstructive method based on the novel decomposition of frequency-dependent acoustic relaxation spectra to capture the entire molecular multimode relaxation process. This decomposition of acoustic relaxation spectra is developed from the frequency-dependent effective specific heat, indicating that a multi-relaxation process is the sum of the interior single-relaxation processes. Based on this decomposition, we can reconstruct the entire multi-relaxation process by capturing the relaxation times and relaxation strengths of N interior single-relaxation processes, using the measurements of acoustic absorption and sound speed at 2N frequencies. Experimental data for the gas mixtures CO2-N2 and CO2-O2 validate our decomposition and reconstruction approach.

  11. Sandpile model for relaxation in complex systems

    International Nuclear Information System (INIS)

    Vazquez, A.; Sotolongo-Costa, O.; Brouers, F.

    1997-10-01

    The relaxation in complex systems is, in general, nonexponential. After an initial rapid decay the system relaxes slowly following a long time tail. In the present paper a sandpile moderation of the relaxation in complex systems is analysed. Complexity is introduced by a process of avalanches in the Bethe lattice and a feedback mechanism which leads to slower decay with increasing time. In this way, some features of relaxation in complex systems: long time tails relaxation, aging, and fractal distribution of characteristic times, are obtained by simple computer simulations. (author)

  12. Computational Diffusion Magnetic Resonance Imaging Based on Time-Dependent Bloch NMR Flow Equation and Bessel Functions.

    Science.gov (United States)

    Awojoyogbe, Bamidele O; Dada, Michael O; Onwu, Samuel O; Ige, Taofeeq A; Akinwande, Ninuola I

    2016-04-01

    Magnetic resonance imaging (MRI) uses a powerful magnetic field along with radio waves and a computer to produce highly detailed "slice-by-slice" pictures of virtually all internal structures of matter. The results enable physicians to examine parts of the body in minute detail and identify diseases in ways that are not possible with other techniques. For example, MRI is one of the few imaging tools that can see through bones, making it an excellent tool for examining the brain and other soft tissues. Pulsed-field gradient experiments provide a straightforward means of obtaining information on the translational motion of nuclear spins. However, the interpretation of the data is complicated by the effects of restricting geometries as in the case of most cancerous tissues and the mathematical concept required to account for this becomes very difficult. Most diffusion magnetic resonance techniques are based on the Stejskal-Tanner formulation usually derived from the Bloch-Torrey partial differential equation by including additional terms to accommodate the diffusion effect. Despite the early success of this technique, it has been shown that it has important limitations, the most of which occurs when there is orientation heterogeneity of the fibers in the voxel of interest (VOI). Overcoming this difficulty requires the specification of diffusion coefficients as function of spatial coordinate(s) and such a phenomenon is an indication of non-uniform compartmental conditions which can be analyzed accurately by solving the time-dependent Bloch NMR flow equation analytically. In this study, a mathematical formulation of magnetic resonance flow sequence in restricted geometry is developed based on a general second order partial differential equation derived directly from the fundamental Bloch NMR flow equations. The NMR signal is obtained completely in terms of NMR experimental parameters. The process is described based on Bessel functions and properties that can make it

  13. Behaviorism

    Science.gov (United States)

    Moore, J.

    2011-01-01

    Early forms of psychology assumed that mental life was the appropriate subject matter for psychology, and introspection was an appropriate method to engage that subject matter. In 1913, John B. Watson proposed an alternative: classical S-R behaviorism. According to Watson, behavior was a subject matter in its own right, to be studied by the…

  14. The relationships between suggestibility, influenceability, and relaxability.

    Science.gov (United States)

    Polczyk, Romuald; Frey, Olga; Szpitalak, Malwina

    2013-01-01

    This research explores the relationships between relaxability and various aspects of suggestibility and influenceability. The Jacobson Progressive Muscle Relaxation procedure was used to induce relaxation. Tests of direct suggestibility, relating to the susceptibility of overt suggestions, and indirect suggestibility, referring to indirect hidden influence, as well as self-description questionnaires on suggestibility and the tendency to comply were used. Thayer's Activation-Deactivation Adjective Check List, measuring various kinds of activation and used as a pre- and posttest, determined the efficacy of the relaxation procedure. Indirect, direct, and self-measured suggestibility proved to be positively related to the ability to relax, measured by Thayer's subscales relating to emotions. Compliance was not related to relaxability. The results are discussed in terms of the aspects of relaxation training connected with suggestibility.

  15. Aging of the Johari-Goldstein relaxation in the glass-forming liquids sorbitol and xylitol

    Science.gov (United States)

    Yardimci, Hasan; Leheny, Robert L.

    2006-06-01

    Employing frequency-dependent dielectric susceptibility we characterize the aging in two supercooled liquids, sorbitol and xylitol, below their calorimetric glass transition temperatures. In addition to the alpha relaxation that tracks the structural dynamics, the susceptibility of both liquids possesses a secondary Johari-Goldstein relaxation at higher frequencies. Following a quench through the glass transition, the susceptibility slowly approaches the equilibrium behavior. For both liquids, the magnitude of the Johari-Goldstein relaxation displays a dependence on the time since the quench, or aging time, that is quantitatively very similar to the age dependence of the alpha peak frequency. The Johari-Goldstein relaxation time remains constant during aging for sorbitol while it decreases slightly with age for xylitol. Hence, one cannot sensibly assign a fictive temperature to the Johari-Goldstein relaxation. This behavior contrasts with that of liquids lacking distinct Johari-Goldstein peaks for which the excess wing of the alpha peak tracks the main part of the peak during aging, enabling the assignment of a single fictive temperature to the entire spectrum. The aging behavior of the Johari-Goldstein relaxation time further calls into question the possibility that the relaxation time possesses stronger temperature dependence in equilibrium than is observed in the out-of-equilibrium state below the glass transition.

  16. Compaction and relaxation of biofilms

    KAUST Repository

    Valladares Linares, R.

    2015-06-18

    Operation of membrane systems for water treatment can be seriously hampered by biofouling. A better characterization of biofilms in membrane systems and their impact on membrane performance may help to develop effective biofouling control strategies. The objective of this study was to determine the occurrence, extent and timescale of biofilm compaction and relaxation (decompaction), caused by permeate flux variations. The impact of permeate flux changes on biofilm thickness, structure and stiffness was investigated in situ and non-destructively with optical coherence tomography using membrane fouling monitors operated at a constant crossflow velocity of 0.1 m s−1 with permeate production. The permeate flux was varied sequentially from 20 to 60 and back to 20 L m−2 h−1. The study showed that the average biofilm thickness on the membrane decreased after elevating the permeate flux from 20 to 60 L m−2 h−1 while the biofilm thickness increased again after restoring the original flux of 20 L m−2 h−1, indicating the occurrence of biofilm compaction and relaxation. Within a few seconds after the flux change, the biofilm thickness was changed and stabilized, biofilm compaction occurred faster than the relaxation after restoring the original permeate flux. The initial biofilm parameters were not fully reinstated: the biofilm thickness was reduced by 21%, biofilm stiffness had increased and the hydraulic biofilm resistance was elevated by 16%. Biofilm thickness was related to the hydraulic biofilm resistance. Membrane performance losses are related to the biofilm thickness, density and morphology, which are influenced by (variations in) hydraulic conditions. A (temporarily) permeate flux increase caused biofilm compaction, together with membrane performance losses. The impact of biofilms on membrane performance can be influenced (increased and reduced) by operational parameters. The article shows that a (temporary) pressure increase leads to more

  17. Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes

    Energy Technology Data Exchange (ETDEWEB)

    Fountaine, Katherine T., E-mail: kfountai@caltech.edu [Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Whitney, William S. [Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Department of Physics, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Atwater, Harry A. [Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Department of Applied Physics and Materials Science, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States)

    2014-10-21

    We present a unified framework for resonant absorption in periodic arrays of high index semiconductor nanowires that combines a leaky waveguide theory perspective and that of photonic crystals supporting Bloch modes, as array density transitions from sparse to dense. Full dispersion relations are calculated for each mode at varying illumination angles using the eigenvalue equation for leaky waveguide modes of an infinite dielectric cylinder. The dispersion relations along with symmetry arguments explain the selectivity of mode excitation and spectral red-shifting of absorption for illumination parallel to the nanowire axis in comparison to perpendicular illumination. Analysis of photonic crystal band dispersion for varying array density illustrates that the modes responsible for resonant nanowire absorption emerge from the leaky waveguide modes.

  18. High-Q contacted ring microcavities with scatterer-avoiding “wiggler” Bloch wave supermode fields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yangyang, E-mail: yangyang.liu@colorado.edu; Popović, Miloš A., E-mail: milos.popovic@colorado.edu [Nanophotonic Systems Laboratory, Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309 (United States)

    2014-05-19

    High-Q ring resonators with contacts to the waveguide core provide a versatile platform for various applications in chip-scale optomechanics, thermo-, and electro-optics. We propose and demonstrate azimuthally periodic contacted ring resonators based on multi-mode Bloch matching that support contacts on both the inner and outer radius edges with small degradation to the optical quality factor (Q). Radiative coupling between degenerate modes of adjacent radial spatial order leads to imaginary frequency (Q) splitting and a scatterer avoiding high-Q “wiggler” supermode field. We experimentally measure Qs up to 258 000 in devices fabricated in a silicon device layer on buried oxide undercladding and up to 139 000 in devices fully suspended in air using an undercut step. Wiggler supermodes are true modes of the microphotonic system that offer additional degrees of freedom in electrical, thermal, and mechanical design.

  19. Semiconvergence and Relaxation Parameters for Projected SIRT Algorithms

    DEFF Research Database (Denmark)

    Elfving, Tommy; Hansen, Per Christian; Nikazad, Touraj

    2012-01-01

    We give a detailed study of the semiconverg ence behavior of projected nonstationary simultaneous iterative reconstruction technique (SIRT) algorithms, including the projected Landweber algorithm. We also consider the use of a relaxation parameter strategy, proposed recently for the standard...... algorithms, for controlling the semiconvergence of the projected algorithms. We demonstrate the semiconvergence and the performance of our strategies by examples taken from tomographic imaging. © 2012 Society for Industrial and Applied Mathematics....

  20. Relaxation Dynamics of Nanoparticle-Tethered Polymer Chains

    KAUST Repository

    Kim, Sung A

    2015-09-08

    © 2015 American Chemical Society. Relaxation dynamics of nanoparticle-tethered cis-1,4-polyisoprene (PI) are investigated using dielectric spectroscopy and rheometry. A model system composed of polymer chains densely grafted to spherical SiO2 nanoparticles to form self-suspended suspensions facilitates detailed studies of slow global chain and fast segmental mode dynamics under surface and geometrical confinement-from experiments performed in bulk materials. We report that unentangled polymer molecules tethered to nanoparticles relax far more slowly than their tethered entangled counterparts. Specifically, at fixed grafting density we find, counterintuitively, that increasing the tethered polymer molecular weight up to values close to the entanglement molecular weight speeds up chain relaxation dynamics. Decreasing the polymer grafting density for a fixed molecular weight has the opposite effect: it dramatically slows down chain relaxation, increases interchain coupling, and leads to a transition in rheological response from simple fluid behavior to viscoelastic fluid behavior for tethered PI chains that are unentangled by conventional measures. Increasing the measurement temperature produces an even stronger elastic response and speeds up molecular relaxation at a rate that decreases with grafting density and molecular weight. These observations are discussed in terms of chain confinement driven by crowding between particles and by the existence of an entropic attractive force produced by the space-filling constraint on individual chains in a self-suspended material. Our results indicate that the entropic force between densely grafted polymer molecules couples motions of individual chains in an analogous manner to reversible cross-links in associating polymers.

  1. Ultrasonic relaxations in borate glasses

    International Nuclear Information System (INIS)

    D'Angelo, G.; Tripodo, G.; Carini, G.; Cosio, E.; Bartolotta, A.; Di Marco, G.

    2004-01-01

    The attenuation and velocity of ultrasonic waves of frequencies in the range from 10 to 70 MHz have been measured in M 2 O-B 2 O 3 borate glasses (M: Li or Ag) as a function of temperature between 15 and 350 K. The velocity of sound waves decreases with increasing temperature in all the glasses, the decrease as the temperature is increased is larger in glasses containing silver than in those with lithium. A broad relaxation peak characterises the attenuation behaviour of the lithium and silver borate glasses at temperatures below 100 K and is paralleled by a corresponding dispersive behaviour of the sound velocity. Above 100 K, the ultrasonic velocity shows a nearly linear behaviour regulated by the vibrational anharmonicity, which decreases with increasing content of modifier oxide and is smaller in lithium than in silver borates. These results suggest that the relaxation of structural defects and the anharmonicity of borate glasses are strongly affected by two parameters: the number of bridging bonds per network forming ion and the polarising power of network modifier ions which occupy sites in the existing interstices

  2. Dielectric and mechanical relaxation in isooctylcyanobiphenyl (8*OCB)

    Energy Technology Data Exchange (ETDEWEB)

    Pawlus, S; Mierzwa, M; Paluch, M; Rzoska, S J [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Roland, C M, E-mail: michal.mierzwa@us.edu.p [Chemistry Division, Naval Research Laboratory, Code 6120, Washington, DC 20375-5342 (United States)

    2010-06-16

    The dynamics of isooctylcyanobiphenyl (8*OCB) was characterized using dielectric and mechanical spectroscopies. This isomer of the liquid crystalline octylcyanobiphenyl (8OCB) vitrifies during cooling or on application of pressure, exhibiting the typical features of glass-forming liquids: non-Debye relaxation function, non-Arrhenius temperature dependence of the relaxation times, {tau}{sub {alpha}}, a dynamic crossover at T {approx} 1.6T{sub g}. This crossover is evidenced by changes in the behavior of both the peak shape and the temperature dependence of {tau}{sub {alpha}}. The primary relaxation time at the crossover, 2 ns at ambient pressure, is the smallest value reported to date for any molecular liquid or polymer. Interestingly, at all temperatures below this crossover, {tau}{sub {alpha}}and the dc conductivity remain coupled (i.e., conform to the Debye-Stokes-Einstein relation). Two secondary relaxations are observed in the glassy state, one of which is identified as the Johari-Goldstein process. Unlike the case for 8OCB, no liquid crystalline phase could be attained for 8*OCB, demonstrating that relatively small differences in chemical structure can effect substantial changes in the intermolecular potential.

  3. Relaxation model of radiation-induced conductivity in polymers

    Science.gov (United States)

    Zhutayeva, Yu. R.; Khatipov, S. A.

    1999-05-01

    The paper suggests a relaxation model of radiation-induced conductivity (RIC) in polymers. According to the model, the transfer of charges generated in the polymer volume by ionizing radiation takes place with the participation of molecular relaxation processes. The mechanism of electron transport consists in the transfer of the charge directly between traps when they draw close to one another due to the rotation of macromolecule segments. The numerical solutions of the corresponding kinetic equations for different distribution functions Q( τ) of the times of molecular relaxation and for different functions of the probability P( τ, τ') of charge transfer in the `overlapping' regions of the diffusion spheres of the segments are analyzed. The relaxation model provides an explanation of the non-Arrhenius behavior of the RIC temperature dependence, the power dependence of RIC on the dose rate with a power index in the interval 0.5-1.0, the appearance of maxima in the curves of the RIC temporal dependence and their irreversible character in the region of large dose rates (more than 1 Gy/s). The model can be used for interpreting polymer RIC in conditions of kinetic mobility of macromolecules.

  4. Relaxation phenomena and host exchange parameters in Tm van Vleck compounds

    International Nuclear Information System (INIS)

    Zevin, V.; Levin, R.; Shaltiel, D.; Baberschke, K.; Davidov, D.

    1977-01-01

    The ESR linewidth of Gd in TmP (measured by Sugawara et al (Phys. Rev.; B11 (1975)) TmSb and TmBi (measured in the present work and by Davidov and Baberschke (Phys. Lett.; A51:144 (1975)) exhibits an appreciable temperature dependence. This behaviour is attributed to the fluctuation spectra of the host Tm ions. The previous theory (Davidov et al (Phys. Rev.; B15:2771 (1977)) for impurity relaxation in weakly coupled van Vleck paramagnets based on the Bloch-Redfield kinetic equation is extended here and applied to the interpretation of the ESR linewidth in the Tm pnictides. In particular the second moment calculation of the host fluctuation spectra has been extended to include both pair correlation and autocorrelation contributions. Explicit expressions are given for Tm and Pr cubic van Vleck compounds. Using the crystalline field as extracted from independent neutron scattering techniques and the Gd-Tm exchange from the ESR g shift, the Tm-Tm host exchange has been estimated by fitting theory to the experimental results. The host exchange parameter in TmSb is very small confirming previous studies on this compound. (author)

  5. Paramagnetic relaxation effects in perturbed angular correlations for arbitrary electronic relaxation time

    International Nuclear Information System (INIS)

    Chopin, C.; Spanjaard, D.; Hartmann-Boutron, F.

    1975-01-01

    Previous perturbation treatments of paramagnetic relaxation effects in γγ PAC were limited to the case of very short electronic relaxation times. This limitation is circumvented by invoking a new perturbation theory recently elaborated by Hirst and others for handling relaxation effects in Moessbauer spectra. Under the assumption of spherical electronic relaxation the perturbation factors are computed as functions of certain relaxation parameters which are directly related to the microscopic relaxation Hamiltonian. The results are compared to those of the stochastic theory of Scherer and Blume [fr

  6. Cross relaxation in nitroxide spin labels

    DEFF Research Database (Denmark)

    Marsh, Derek

    2016-01-01

    Cross relaxation, and mI-dependence of the intrinsic electron spin-lattice relaxation rate We, are incorporated explicitly into the rate equations for the electron-spin population differences that govern the saturation behaviour of 14N- and 15N-nitroxide spin labels. Both prove important in spin......-label EPR and ELDOR, particularly for saturation recovery studies. Neither for saturation recovery, nor for CW-saturation EPR and CW-ELDOR, can cross relaxation be described simply by increasing the value of We, the intrinsic spin-lattice relaxation rate. Independence of the saturation recovery rates from...... the hyperfine line pumped or observed follows directly from solution of the rate equations including cross relaxation, even when the intrinsic spin-lattice relaxation rate We is mI-dependent....

  7. Chirality effect on electron phonon relaxation, energy loss, and thermopower in single and bilayer graphene in BG regime

    Science.gov (United States)

    Ansari, Meenhaz; Ashraf, S. S. Z.

    2017-10-01

    We investigate the energy dependent electron-phonon relaxation rate, energy loss rate, and phonon drag thermopower in single layer graphene (SLG) and bilayer graphene (BLG) under the Bloch-Gruneisen (BG) regime through coupling to acoustic phonons interacting via the Deformation potential in the Boltzmann transport equation approach. We find that the consideration of the chiral nature of electrons alters the temperature dependencies in two-dimensional structures of SLG and BLG from that shown by other conventional 2DEG system. Our investigations indicate that the BG analytical results are valid for temperatures far below the BG limit (˜TBG/4) which is in conformity with a recent experimental investigation for SLG [C. B. McKitterick et al., Phys. Rev. B 93, 075410 (2016)]. For temperatures above this renewed limit (˜TBG/4), there is observed a suppression in energy loss rate and thermo power in SLG, but enhancement is observed in relaxation rate and thermopower in BLG, while a suppression in the energy loss rate is observed in BLG. This strong nonmonotonic temperature dependence in SLG has also been experimentally observed within the BG limit [Q. Ma et al., Phys. Rev. Lett. 112, 247401 (2014)].

  8. Quantifying NMR relaxation correlation and exchange in articular cartilage with time domain analysis

    Science.gov (United States)

    Mailhiot, Sarah E.; Zong, Fangrong; Maneval, James E.; June, Ronald K.; Galvosas, Petrik; Seymour, Joseph D.

    2018-02-01

    Measured nuclear magnetic resonance (NMR) transverse relaxation data in articular cartilage has been shown to be multi-exponential and correlated to the health of the tissue. The observed relaxation rates are dependent on experimental parameters such as solvent, data acquisition methods, data analysis methods, and alignment to the magnetic field. In this study, we show that diffusive exchange occurs in porcine articular cartilage and impacts the observed relaxation rates in T1-T2 correlation experiments. By using time domain analysis of T2-T2 exchange spectroscopy, the diffusive exchange time can be quantified by measurements that use a single mixing time. Measured characteristic times for exchange are commensurate with T1 in this material and so impacts the observed T1 behavior. The approach used here allows for reliable quantification of NMR relaxation behavior in cartilage in the presence of diffusive fluid exchange between two environments.

  9. Dielectric Relaxation of Water: Theory and Experiment

    International Nuclear Information System (INIS)

    Adhikari, Narayan Prasad; Paudyal, Harihar; Johri, Manoj

    2010-06-01

    We have studied the hydrogen bond dynamics and methods for evaluation of probability and relaxation time for hydrogen bond network. Further, dielectric relaxation time has been calculated by using a diagonalization procedure by obtaining eigen values (inverse of relaxation time) of a master equation framed on the basis of Fokker-Planck equations. Microwave cavity spectrometer has been described to make measurements of relaxation time. Slater's perturbation equations are given for the analysis of the data. A comparison of theoretical and experimental data shows that there is a need for improvements in the theoretical model and experimental techniques to provide exact information about structural properties of water. (author)

  10. Suppression of Electron Spin Relaxation in Mn-Doped GaAs

    Science.gov (United States)

    Astakhov, G. V.; Dzhioev, R. I.; Kavokin, K. V.; Korenev, V. L.; Lazarev, M. V.; Tkachuk, M. N.; Kusrayev, Yu. G.; Kiessling, T.; Ossau, W.; Molenkamp, L. W.

    2008-08-01

    We report a surprisingly long spin relaxation time of electrons in Mn-doped p-GaAs. The spin relaxation time scales with the optical pumping and increases from 12 ns in the dark to 160 ns upon saturation. This behavior is associated with the difference in spin relaxation rates of electrons precessing in the fluctuating fields of ionized or neutral Mn acceptors, respectively. For the latter, the antiferromagnetic exchange interaction between a Mn ion and a bound hole results in a partial compensation of these fluctuating fields, leading to the enhanced spin memory.

  11. Pair plasma relaxation time scales.

    Science.gov (United States)

    Aksenov, A G; Ruffini, R; Vereshchagin, G V

    2010-04-01

    By numerically solving the relativistic Boltzmann equations, we compute the time scale for relaxation to thermal equilibrium for an optically thick electron-positron plasma with baryon loading. We focus on the time scales of electromagnetic interactions. The collisional integrals are obtained directly from the corresponding QED matrix elements. Thermalization time scales are computed for a wide range of values of both the total-energy density (over 10 orders of magnitude) and of the baryonic loading parameter (over 6 orders of magnitude). This also allows us to study such interesting limiting cases as the almost purely electron-positron plasma or electron-proton plasma as well as intermediate cases. These results appear to be important both for laboratory experiments aimed at generating optically thick pair plasmas as well as for astrophysical models in which electron-positron pair plasmas play a relevant role.

  12. Relaxing Chosen-Ciphertext Security

    DEFF Research Database (Denmark)

    Canetti, Ran; Krawczyk, Hugo; Nielsen, Jesper Buus

    2003-01-01

    Security against adaptive chosen ciphertext attacks (or, CCA security) has been accepted as the standard requirement from encryption schemes that need to withstand active attacks. In particular, it is regarded as the appropriate security notion for encryption schemes used as components within...... general protocols and applications. Indeed, CCA security was shown to suffice in a large variety of contexts. However, CCA security often appears to be somewhat too strong: there exist encryption schemes (some of which come up naturally in practice) that are not CCA secure, but seem sufficiently secure...... “for most practical purposes.” We propose a relaxed variant of CCA security, called Replayable CCA (RCCA) security. RCCA security accepts as secure the non-CCA (yet arguably secure) schemes mentioned above; furthermore, it suffices for most existing applications of CCA security. We provide three...

  13. Hoarding behavior among young children with obsessive-compulsive disorder

    OpenAIRE

    Frank, Hannah; Stewart, Elyse; Walther, Michael; Benito, Kristen; Freeman, Jennifer; Conelea, Christ; Garci, Abbe

    2013-01-01

    Previous research has shown that among the various subtypes of obsessive-compulsive disorder (OCD), adults (e.g. Frost, Krause & Steketee, 1996) and older children and adolescents (Bloch et al., 2009; Storch et al., 2007) with problematic hoarding have distinct features and a poor treatment prognosis. However, there is limited information on the phenomenology and prevalence of hoarding behaviors in young children. The present study characterizes children ages 10 and under who present with OCD...

  14. Spin relaxation in quantum dots: Role of the phonon modulated spin-orbit interaction

    Science.gov (United States)

    Alcalde, A. M.; Romano, C. L.; Sanz, L.; Marques, G. E.

    2010-01-01

    We calculate the spin relaxation rates in a parabolic InSb quantum dots due to the spin interaction with acoustical phonons. We considered the deformation potential mechanism as the dominant electron-phonon coupling in the Pavlov-Firsov spin-phonon Hamiltonian. We analyze the behavior of the spin relaxation rates as a function of an external magnetic field and mean quantum dot radius. Effects of the spin admixture due to Dresselhaus contribution to spin-orbit interaction are also discussed.

  15. High-order-harmonic generation from solids: The contributions of the Bloch wave packets moving at the group and phase velocities

    Science.gov (United States)

    Du, Tao-Yuan; Huang, Xiao-Huan; Bian, Xue-Bin

    2018-01-01

    We study numerically the Bloch electron wave-packet dynamics in periodic potentials to simulate laser-solid interactions. We introduce an alternative perspective in the coordinate space combined with the motion of the Bloch electron wave packets moving at group and phase velocities under the laser fields. This model interprets the origins of the two contributions (intra- and interband transitions) in the high-order harmonic generation (HHG) processes by investigating the local and global behaviours of the wave packets. It also elucidates the underlying physical picture of the HHG intensity enhancement by means of carrier-envelope phase, chirp, and inhomogeneous fields. It provides a deep insight into the emission of high-order harmonics from solids. This model is instructive for experimental measurements and provides an alternative avenue to distinguish mechanisms of the HHG from solids in different laser fields.

  16. Kramers degeneracy and relaxation in vanadium, niobium and tantalum clusters

    Science.gov (United States)

    Diaz-Bachs, A.; Katsnelson, M. I.; Kirilyuk, A.

    2018-04-01

    In this work we use magnetic deflection of V, Nb, and Ta atomic clusters to measure their magnetic moments. While only a few of the clusters show weak magnetism, all odd-numbered clusters deflect due to the presence of a single unpaired electron. Surprisingly, for the majority of V and Nb clusters an atomic-like behavior is found, which is a direct indication of the absence of spin–lattice interaction. This is in agreement with Kramers degeneracy theorem for systems with a half-integer spin. This purely quantum phenomenon is surprisingly observed for large systems of more than 20 atoms, and also indicates various quantum relaxation processes, via Raman two-phonon and Orbach high-spin mechanisms. In heavier, Ta clusters, the relaxation is always present, probably due to larger masses and thus lower phonon energies, as well as increased spin–orbit coupling.

  17. Composite Analysis of Concrete - Creep, Relaxation and Eigenstrain/stress

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1996-01-01

    approach.The model is successfully justified comparing predicted results with recent experimental data obtained in tests made at the Danish Technological Institute and at the Technical University of Denmark on creep, relaxation, and shrinkage of very young concretes (hours) - and also with experimental...... results on creep, shrinkage, and internal stresses caused by drying shrinkage reported in the literature on the mechanical behavior of mature concretes.Shrinkage (autogeneous or drying) of mortar and concrete and associated internal stress states are examples of analysis made in this report......A composite-rheological model of concrete is presented by which consistent predictions of creep, relaxation, and internal stresses can be made from known concrete composition, age at loading, and climatic conditions. No other existing "creep prediction method" offers these possibilities in one...

  18. Relaxation property of the fractional Brownian particle

    International Nuclear Information System (INIS)

    Wang Litan; Lung, C.W.

    1988-08-01

    Dynamic susceptibility of a diffusion system associated with the fractional Brownian motion (fBm) was examined for the fractal property of the Non-Debye relaxation process. The comparisons between fBm and other approaches were made. Anomalous diffusion and the Non-Debye relaxation processes were discussed with this approach. (author). 8 refs, 1 fig

  19. Lifshitz quasinormal modes and relaxation from holography

    NARCIS (Netherlands)

    Sybesma, Watse|info:eu-repo/dai/nl/369283074; Vandoren, Stefan|info:eu-repo/dai/nl/304830739

    2015-01-01

    We obtain relaxation times for field theories with Lifshitz scaling and with holographic duals Einstein-Maxwell-Dilaton gravity theories. This is done by computing quasinormal modes of a bulk scalar field in the presence of Lifshitz black branes. We determine the relation between relaxation time and

  20. Superparamagnetic relaxation of weakly interacting particles

    DEFF Research Database (Denmark)

    Mørup, Steen; Tronc, Elisabeth

    1994-01-01

    The influence of particle interactions on the superparamagnetic relaxation time has been studied by Mossbauer spectroscopy in samples of maghemite (gamma-Fe2O3) particles with different particle sizes and particle separations. It is found that the relaxation time decreases with decreasing particl...

  1. Models of Flux Tubes from Constrained Relaxation

    Indian Academy of Sciences (India)

    tribpo

    J. Astrophys. Astr. (2000) 21, 299 302. Models of Flux Tubes from Constrained Relaxation. Α. Mangalam* & V. Krishan†, Indian Institute of Astrophysics, Koramangala,. Bangalore 560 034, India. *e mail: mangalam @ iiap. ernet. in. † e mail: vinod@iiap.ernet.in. Abstract. We study the relaxation of a compressible plasma to ...

  2. Superparamagnetic relaxation in alpha-Fe particles

    DEFF Research Database (Denmark)

    Bødker, Franz; Mørup, Steen; Pedersen, Michael Stanley

    1998-01-01

    The superparamagnetic relaxation time of carbon-supported alpha-Fe particles with an average size of 3.0 Mm has been studied over a large temperature range by the use of Mossbauer spectroscopy combined with AC and DC magnetization measurements. It is found that the relaxation time varies...

  3. Baryogenesis via Elementary Goldstone Higgs Relaxation

    DEFF Research Database (Denmark)

    Gertov, Helene; Pearce, Lauren; Sannino, Francesco

    2016-01-01

    We extend the relaxation mechanism to the Elementary Goldstone Higgs framework. Besides studying the allowed parameter space of the theory we add the minimal ingredients needed for the framework to be phenomenologically viable. The very nature of the extended Higgs sector allows to consider very ...... but radiatively generated, it is possible to generate the observed matter-antimatter asymmetry via the relaxation mechanism....

  4. Nuclear spin-lattice relaxation in n -type insulating and metallic GaAs single crystals

    Science.gov (United States)

    Lu, J.; Hoch, M. J. R.; Kuhns, P. L.; Moulton, W. G.; Gan, Z.; Reyes, A. P.

    2006-09-01

    The coupling of electron and nuclear spins in n-GaAs changes significantly as the donor concentration n increases through the insulator-metal critical concentration nC˜1.2×1016cm-3 . The present measurements of the Ga71 relaxation rates W made as a function of magnetic field (1-13T) and temperature (1.5-300K) for semi-insulating GaAs and for three doped n-GaAs samples with donor concentrations n=5.9×1015 , 7×1016 , and 2×1018cm-3 , show marked changes in the relaxation behavior with n . Korringa-like relaxation is found in both metallic samples for T30K phonon-induced nuclear quadrupolar relaxation is dominant. The relaxation rate measurements permit determination of the electron probability density at Ga71 sites. A small Knight shift of -3.3ppm was measured on the most metallic (2×1018cm-3) sample using magic-angle spinning at room temperature. For the n=5.9×1015cm-3 sample, a nuclear relaxation model involving the Fermi contact hyperfine interaction, rapid spin diffusion, and exchange coupled local moments is proposed. While the relaxation rate behavior with temperature for the weakly metallic sample, n=7×1016cm-3 , is similar to that found for the just-insulating sample, the magnetic field dependence is quite different. For the 5.9×1015cm-3 sample, increasing the magnetic field leads to a decrease in the relaxation rate, while for the 7×1016cm-3 sample this results in an increase in the relaxation rate ascribed to an increase in the density of states at the Fermi level as the Landau level degeneracy is increased.

  5. Pinning of 1800 Bloch walls at etched nuclear tracks in LPE-grown iron garnet films

    International Nuclear Information System (INIS)

    Krumme, J.; Bartels, I.; Strocka, B.; Witter, K.; Schmelzer, C.; Spohr, R.

    1977-01-01

    For increasing the magnetic-wall coercivity H/sup w//sub c/ in liquid-phase epitaxial (LPE) ferrimagnetic garnet films of composition (Gd,Bi) 3 (Fe,Al,Ga) 5 O 12 , magnetic-wall ''traps'' are formed via bombardment by xenon ions with 180-MeV/ion energy and doses between 10 6 and 10 8 cm -2 . For efficient wall pinning, the width of the nuclear damage tracks associated with the ion trajectories in the film have been enlarged to about the wall width by using a selective (chemical) etchant that makes use of the drastically increased etching rate in the damaged track volume. Therefore, channels of cylindrical or prismatic cross section are created having a width of a few 10 2 to about 10 3 A and a length of more than 10 μm at the given etching conditions. The pinning capability of such channels can be further enhanced in films that are grown under planar compressive or tensile misfit strain. Then, strain relaxation occurs in the vicinity of these channels which results in steep gradients of the magnetic-wall energy via magnetostriction. These strain halos extend sufficiently beyond the channels so that efficient wall pinning is observed, even if the channel cross section is small compared with the wall width. Thermomagnetic compensation-point writing in LPE garnet film, that were treated accordingly, yield a pattern of stable magnetic domains of down to 8 μm in diameter in 3-μm-thick layers. The effect of etched nuclear tracks on the magnetic-wall coercivity can be interpreted satisfactorily with present models on H/sup w//sub c/

  6. Stress relaxation under cyclic electron irradiation

    International Nuclear Information System (INIS)

    Bystrov, L.N.; Reznitskij, M.E.

    1990-01-01

    The kinetics of deformation process in a relaxating sample under 2 MeV electron cyclic irradiation was studied experimentally. The Al-Mg alloys with controllable and different (in dislocation density precipitate presence and their character) structure were used in experiments. It was established that after the beam was switched on the deformation rate increased sharply and then, during prolonged irradiation, in a gradual manner. After the switching-off the relaxation rate decreases by jumps up to values close to extrapolated rates of pre-radiation relaxation. The exhibition of these effects with radiation switching-off and switchin-on is dependent on the initial rate of thermal relaxation, the test temperature, the preliminary cold deformation and the dominating deformation dislocation mechanism. The preliminary cold deformation and test temperature elevation slightly decrease the effect of instantaneous relaxation acceleration with the irradiation switch-on. 17 refs., 5 figs

  7. Relaxation dynamics following transition of solvated electrons

    International Nuclear Information System (INIS)

    Barnett, R.B.; Landman, U.; Nitzan, A.

    1989-01-01

    Relaxation dynamics following an electronic transition of an excess solvated electron in clusters and in bulk water is studied using an adiabatic simulation method. In this method the solvent evolves classically and the electron is constrained to a specified state. The coupling between the solvent and the excess electron is evaluated via the quantum expectation value of the electron--water molecule interaction potential. The relaxation following excitation (or deexcitation) is characterized by two time scales: (i) a very fast (/similar to/20--30 fs) one associated with molecular rotations in the first solvation shell about the electron, and (ii) a slower stage (/similar to/200 fs), which is of the order of the longitudinal dielectric relaxation time. The fast relaxation stage exhibits an isotope effect. The spectroscopical consequences of the relaxation dynamics are discussed

  8. Anomalous enthalpy relaxation in vitreous silica

    DEFF Research Database (Denmark)

    Yue, Yuanzheng

    2015-01-01

    scans. It is known that the liquid fragility (i.e., the speed of the viscous slow-down of a supercooled liquid at its Tg during cooling) has impact on enthalpy relaxation in glass. Here, we find that vitreous silica (as a strong system) exhibits striking anomalies in both glass transition and enthalpy...... relaxation compared to fragile oxide systems. The anomalous enthalpy relaxation of vitreous silica is discovered by performing the hyperquenching-annealing-calorimetry experiments. We argue that the strong systems like vitreous silica and vitreous Germania relax in a structurally cooperative manner, whereas...... the fragile ones do in a structurally independent fashion. We discuss the origin of the anomalous enthalpy relaxation in the HQ vitreous silica....

  9. Vibrational and Rotational Energy Relaxation in Liquids

    DEFF Research Database (Denmark)

    Petersen, Jakob

    Vibrational and rotational energy relaxation in liquids are studied by means of computer simulations. As a precursor for studying vibrational energy relaxation of a solute molecule subsequent to the formation of a chemical bond, the validity of the classical Bersohn-Zewail model for describing......, the vibrational energy relaxation of I2 subsequent to photodissociation and recombination in CCl4 is studied using classical Molecular Dynamics simulations. The vibrational relaxation times and the time-dependent I-I pair distribution function are compared to new experimental results, and a qualitative agreement...... is found in both cases. Furthermore, the rotational energy relaxation of H2O in liquid water is studied via simulations and a power-and-work analysis. The mechanism of the energy transfer from the rotationally excited H2O molecule to its water neighbors is elucidated, i.e. the energy-accepting degrees...

  10. Cross-relaxation solid state lasers

    International Nuclear Information System (INIS)

    Antipenko, B.M.

    1989-01-01

    Cross-relaxation functional diagrams provide a high quantum efficiency for pumping bands of solid state laser media and a low waste heat. A large number of the cross-relaxation mechanisms for decay rare earth excited states in crystals have been investigated. These investigations have been a starting-point for development of the cross-relaxation solid state lasers. For example, the cross-relaxation interactions, have been used for the laser action development of LiYF 4 :Gd-Tb. These interactions are important elements of the functional diagrams of the 2 μm Ho-doped media sensitized with Er and Tm and the 3 μm Er-doped media. Recently, new efficient 2 μm laser media with cross-relaxation pumping diagrams have been developed. Physical aspects of these media are the subject of this paper. A new concept of the Er-doped medium, sensitized with Yb, is illustrated

  11. Magnetic Resonance Fingerprinting with short relaxation intervals.

    Science.gov (United States)

    Amthor, Thomas; Doneva, Mariya; Koken, Peter; Sommer, Karsten; Meineke, Jakob; Börnert, Peter

    2017-09-01

    The aim of this study was to investigate a technique for improving the performance of Magnetic Resonance Fingerprinting (MRF) in repetitive sampling schemes, in particular for 3D MRF acquisition, by shortening relaxation intervals between MRF pulse train repetitions. A calculation method for MRF dictionaries adapted to short relaxation intervals and non-relaxed initial spin states is presented, based on the concept of stationary fingerprints. The method is applicable to many different k-space sampling schemes in 2D and 3D. For accuracy analysis, T 1 and T 2 values of a phantom are determined by single-slice Cartesian MRF for different relaxation intervals and are compared with quantitative reference measurements. The relevance of slice profile effects is also investigated in this case. To further illustrate the capabilities of the method, an application to in-vivo spiral 3D MRF measurements is demonstrated. The proposed computation method enables accurate parameter estimation even for the shortest relaxation intervals, as investigated for different sampling patterns in 2D and 3D. In 2D Cartesian measurements, we achieved a scan acceleration of more than a factor of two, while maintaining acceptable accuracy: The largest T 1 values of a sample set deviated from their reference values by 0.3% (longest relaxation interval) and 2.4% (shortest relaxation interval). The largest T 2 values showed systematic deviations of up to 10% for all relaxation intervals, which is discussed. The influence of slice profile effects for multislice acquisition is shown to become increasingly relevant for short relaxation intervals. In 3D spiral measurements, a scan time reduction of 36% was achieved, maintaining the quality of in-vivo T1 and T2 maps. Reducing the relaxation interval between MRF sequence repetitions using stationary fingerprint dictionaries is a feasible method to improve the scan efficiency of MRF sequences. The method enables fast implementations of 3D spatially

  12. Discontinuous Galerkin Approximations for Computing Electromagnetic Bloch Modes in Photonic Crystals

    NARCIS (Netherlands)

    Lu, Zhongjie; Cesmelioglu, A.; van der Vegt, Jacobus J.W.; Xu, Yan

    We analyze discontinuous Galerkin finite element discretizations of the Maxwell equations with periodic coefficients. These equations are used to model the behavior of light in photonic crystals, which are materials containing a spatially periodic variation of the refractive index commensurate with

  13. Corroborative evidences of TV γ -scaling of the α-relaxation originating from the primitive relaxation/JG β relaxation

    Science.gov (United States)

    Ngai, K. L.; Paluch, M.

    2017-12-01

    Successful thermodynamic scaling of the structural alpha-relaxation time or transport coefficients of glass-forming liquids determined at various temperatures T and pressures P means the data conform to a single function of the product variable TVgamma, where V is the specific volume and gamma is a material specific constant. In the past two decades we have witnessed successful TVgamma-scaling in many molecular, polymeric, and even metallic glass-formers, and gamma is related to the slope of the repulsive part of the intermolecular potential. The advances made indicate TVgamma-scaling is an important aspect of the dynamic and thermodynamic properties of glass-formers. In this paper we show the origin of TVgamma-scaling is not from the structural alpha-relaxation time. Instead it comes from its precursor, the Johari-Goldstein beta-relaxation or the primitive relaxation of the Coupling Model and their relaxation times or tau_0 respectively. It is remarkable that all relaxation times are functions of TVgamma with the same gama, as well as the fractional exponent of the Kohlrausch correlation function of the structural alpha-relaxation. We arrive at this conclusion convincingly based on corroborative evidences from a number of experiments and molecular dynamics simulations performed on a wide variety of glass-formers and in conjunction with consistency with the predictions of the Coupling Model.

  14. Relaxing a large cosmological constant

    International Nuclear Information System (INIS)

    Bauer, Florian; Sola, Joan; Stefancic, Hrvoje

    2009-01-01

    The cosmological constant (CC) problem is the biggest enigma of theoretical physics ever. In recent times, it has been rephrased as the dark energy (DE) problem in order to encompass a wider spectrum of possibilities. It is, in any case, a polyhedric puzzle with many faces, including the cosmic coincidence problem, i.e. why the density of matter ρ m is presently so close to the CC density ρ Λ . However, the oldest, toughest and most intriguing face of this polyhedron is the big CC problem, namely why the measured value of ρ Λ at present is so small as compared to any typical density scale existing in high energy physics, especially taking into account the many phase transitions that our Universe has undergone since the early times, including inflation. In this Letter, we propose to extend the field equations of General Relativity by including a class of invariant terms that automatically relax the value of the CC irrespective of the initial size of the vacuum energy in the early epochs. We show that, at late times, the Universe enters an eternal de Sitter stage mimicking a tiny positive cosmological constant. Thus, these models could be able to solve the big CC problem without fine-tuning and have also a bearing on the cosmic coincidence problem. Remarkably, they mimic the ΛCDM model to a large extent, but they still leave some characteristic imprints that should be testable in the next generation of experiments.

  15. The effects of progressive muscle relaxation and autogenic relaxation on young soccer players' mood states.

    Science.gov (United States)

    Hashim, Hairul Anuar; Hanafi Ahmad Yusof, Hazwani

    2011-06-01

    This study was designed to compare the effects of two different relaxation techniques, namely progressive muscle relaxation (PMR) and autogenic relaxation (AGR) on moods of young soccer players. sixteen adolescent athletes (mean age: 14.1 ± 1.3) received either PMR or AGR training. Using Profile of Mood States- Adolescents, their mood states were measured one week before relaxation training, before the first relaxation session, and after the twelfth relaxation session. Mixed ANOVA revealed no significant interaction effects and no significant main effects in any of the subscales. However, significant main effects for testing sessions were found for confusion, depression, fatigue, and tension subscales. Post hoc tests revealed post-intervention reductions in the confusion, depression, fatigue, and tension subscale scores. These two relaxation techniques induce equivalent mood responses and may be used to regulate young soccer players' mood states.

  16. The Effects of Progressive Muscle Relaxation and Autogenic Relaxation on Young Soccer Players’ Mood States

    Science.gov (United States)

    Hashim, Hairul Anuar; Hanafi@Ahmad Yusof, Hazwani

    2011-01-01

    Purpose This study was designed to compare the effects of two different relaxation techniques, namely progressive muscle relaxation (PMR) and autogenic relaxation (AGR) on moods of young soccer players. Methods Sixteen adolescent athletes (mean age: 14.1 ± 1.3) received either PMR or AGR training. Using Profile of Mood States- Adolescents, their mood states were measured one week before relaxation training, before the first relaxation session, and after the twelfth relaxation session. Results Mixed ANOVA revealed no significant interaction effects and no significant main effects in any of the subscales. However, significant main effects for testing sessions were found for confusion, depression, fatigue, and tension subscales. Post hoc tests revealed post-intervention reductions in the confusion, depression, fatigue, and tension subscale scores. Conclusion These two relaxation techniques induce equivalent mood responses and may be used to regulate young soccer players’ mood states. PMID:22375225

  17. Magnetic susceptibility of Dirac fermions, Bi-Sb alloys, interacting Bloch fermions, dilute nonmagnetic alloys, and Kondo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Buot, Felix A., E-mail: fbuot@gmu.edu [Computational Materials Science Center, George Mason University, Fairfax, VA 22030 (United States); TCSE Center, Spintronics Group, Physics Department, University of San Carlos, Talamban, Cebu 6000 (Philippines); C& LB Research Institute, Carmen, Cebu 6005 (Philippines); Otadoy, Roland E.S.; Rivero, Karla B. [TCSE Center, Spintronics Group, Physics Department, University of San Carlos, Talamban, Cebu 6000 (Philippines)

    2017-03-01

    Wide ranging interest in Dirac Hamiltonian is due to the emergence of novel materials, namely, graphene, topological insulators and superconductors, the newly-discovered Weyl semimetals, and still actively-sought after Majorana fermions in real materials. We give a brief review of the relativistic Dirac quantum mechanics and its impact in the developments of modern physics. The quantum band dynamics of Dirac Hamiltonian is crucial in resolving the giant diamagnetism of bismuth and Bi-Sb alloys. Quantitative agreement of the theory with the experiments on Bi-Sb alloys has been achieved, and physically meaningful contributions to the diamagnetism has been identified. We also treat relativistic Dirac fermion as an interband dynamics in uniform magnetic fields. For the interacting Bloch electrons, the role of translation symmetry for calculating the magnetic susceptibility avoids any approximation to second order in the field. The expressions for magnetic susceptibility of dilute nonmagnetic alloys give a firm theoretical foundation of the empirical formulas used in fitting experimental results. The unified treatment of all the above calculations is based on the lattice Weyl-Wigner formulation of discrete phase-space quantum mechanics. For completeness, the magnetic susceptibility of Kondo alloys is also given since Dirac fermions in conduction band and magnetic impurities exhibit Kondo effect.

  18. Time-dependent Bloch-Maxwell modelling of 1 mJ, 200 fs seeded soft x-ray laser

    International Nuclear Information System (INIS)

    Zeitoun, Ph.; Oliva, E.; Fajardo, M.; Velarde, P.; Ros, D.; Sebban, S.

    2010-01-01

    Complete text of publication follows. Seeding of high harmonic generation in a soft x-ray plasma amplifier has been first proposed and tested by T. Ditmire and collaborators. The experiment demonstrated low amplification (*2), with a very strong background coming from the soft x-ray laser ASE. Later seeding experiments reached very high amplification factors (up to 600) in both gas (Ph. Zeitoun et al.) and solid amplifiers (Wang et at.). Surprisingly, solid amplifiers extracted less energy (90 nJ) than gas amplifier (∼ 1 μJ) with equivalent pump energy. We recently demonstrated that 50-100 μJ is achievable with adequate plasma tailoring. However, this energy is still low as compared to the 10 mJ per pulse demonstrated on the ASE soft x-ray laser running at PALS facility (Czech Republic). In order to model the seeding process of PALS soft x-ray laser, we developed a time-dependent Bloch-Maxwell model that solves coherently the pumping, amplification and saturation processes. We demonstrated that direct seeding, with femtosecond pulse, a soft x-ray plasma amplifier having gain duration of several 100s of picosecond cannot extract the stored energy keeping the output beam energy in the 100 μJ range. We proposed and fully modelled a new seeding scheme that allows to achieve 10 mJ, 200 fs soft x-ray laser.

  19. Bloch Surface Waves Biosensors for High Sensitivity Detection of Soluble ERBB2 in a Complex Biological Environment.

    Science.gov (United States)

    Sinibaldi, Alberto; Sampaoli, Camilla; Danz, Norbert; Munzert, Peter; Sonntag, Frank; Centola, Fabio; Occhicone, Agostino; Tremante, Elisa; Giacomini, Patrizio; Michelotti, Francesco

    2017-08-17

    We report on the use of one-dimensional photonic crystals to detect clinically relevant concentrations of the cancer biomarker ERBB2 in cell lysates. Overexpression of the ERBB2 protein is associated with aggressive breast cancer subtypes. To detect soluble ERBB2, we developed an optical set-up which operates in both label-free and fluorescence modes. The detection approach makes use of a sandwich assay, in which the one-dimensional photonic crystals sustaining Bloch surface waves are modified with monoclonal antibodies, in order to guarantee high specificity during the biological recognition. We present the results of exemplary protein G based label-free assays in complex biological matrices, reaching an estimated limit of detection of 0.5 ng/mL. On-chip and chip-to-chip variability of the results is addressed too, providing repeatability rates. Moreover, results on fluorescence operation demonstrate the capability to perform high sensitive cancer biomarker assays reaching a resolution of 0.6 ng/mL, without protein G assistance. The resolution obtained in both modes meets international guidelines and recommendations (15 ng/mL) for ERBB2 quantification assays, providing an alternative tool to phenotype and diagnose molecular cancer subtypes.

  20. Fish condensate as effective replacer of fish meal protein in diet for striped snakehead, Channa striata (Bloch).

    Science.gov (United States)

    Wattanakul, Wattana; Wattanakul, Uraiwan; Thongprajukaew, Karun; Muenpo, Chutchawan

    2017-02-01

    The optimal protein replacement of fish meal (FM) by fish condensate (FC) was investigated in striped snakehead, Channa striata (Bloch) (1.78 ± 0.02 g initial weight). The FM-based diet (0FC) was replaced by substituting protein from FC for 100 (100FC), 200 (200FC), 300 (300FC), 400 (400FC), 500 (500FC) or 600 (600FC) g kg -1 of the FM, and a commercial diet (CD) for carnivorous fish was included for comparison. The experiment was conducted indoors under completely randomized design (8 treatments × 3 replications × 60 fish per pond) over a 6-month trial. There were no significant differences in water quality during the experiment. The fish fed with 500FC had superior growth performance and feed utilization. This dietary treatment gave similar levels to all observed specific activities of digestive enzymes as did baseline 0FC. Survival, carcass composition, hematological parameters and liver histopathology were not negatively impacted by this protein replacement level. Economic analysis also supports the use of this by-product as a potent protein replacer in striped snakehead diet. Findings from the current study indicate that a 500 g kg -1 protein replacement of FM by FC is near optimal for striped snakehead, and similar use of it in the aquafeed of other species appears worth further studies.

  1. Morphological, histological and molecular characterization of Myxobolus kingchowensis and Thelohanellus cf. sinensis infecting gibel carp Carassius auratus gibelio (Bloch, 1782).

    Science.gov (United States)

    Zhang, Bo; Zhai, Yanhua; Gu, Zemao; Liu, Yang

    2018-06-26

    A Myxobolus species and a Thelohanellus species infecting Carassius auratus gibelio (Bloch, 1782) were redescribed by their morphological, histological and molecular characterization. In the present study, the Myxobolus species infecting the muscle was identified as Myxobolus kingchowensis Chen et Ma, 1998 by the morphological and molecular data. Histologically, mature spores of M. kingchowensis were observed in the intercellular and connective tissue of muscle, though the plasmodia were not found. In addition, scattered spores also occurred in the intercellular of haematopoietic cells, intraepithelial of the renal tubules and interior of the melano-macrophage centres. Phylogenetic analysis showed that M. kingchowensis clustered in the clade of muscle-infecting Myxobolus species, further supporting muscle as the infection site of M. kingchowensis. The present Thelohanellus species infecting the gills was identified conspecific as Thelohanellus sinensis reported in Sun (2006) (mark it as T. sinensis-Sun)based on spore morphology, biological traits (host specificity and organ specificity), and molecular data. However, compared with the original description of T. sinensis Chen et Hsieh, 1960, the present Thelohanellus species and T. sinensis-Sun both infecting the gills of gibel carp are distinguishable from the original description in the host and infection site, which made the validity of T. sinensis-Sun dubious. Due to the absence of molecular data in the original description of T. sinensis, we suggest marking the present species and T. sinensis-Sun as T. cf. sinensis to avoid the confusion until T. sinensis is obtained from the type host and type infection site.

  2. Azimuthal spin-wave excitations in magnetic nanodots over the soliton background: Vortex, Bloch, and Néel-like skyrmions

    Science.gov (United States)

    Mruczkiewicz, M.; Gruszecki, P.; Krawczyk, M.; Guslienko, K. Y.

    2018-02-01

    We study azimuthal spin-wave (SW) excitations in a circular ferromagnetic nanodot in different inhomogeneous, topologically nontrivial magnetization states, specifically, vortex, Bloch-type skyrmion, and Néel-type skyrmion states. A continuous transition between these states is realized by gradually changing the out-of-plane magnetic anisotropy and the Dzyaloshinskii-Moriya exchange interaction (DMI), and the corresponding SW spectra are calculated for each state. We observe the lifting of degeneracy of SW mode frequencies and a change in the systematics of frequency levels. The latter effect is induced by the geometric Berry phase, which occurs in SWs localized at the edge of the dot in the vortex state, and vanishes in the skyrmion states. Furthermore, channeling of edge-localized azimuthal SWs and a related large frequency splitting are observed in the skyrmion states. This is attributed to DMI-induced nonreciprocity, while the coupling of the breathing and gyrotropic modes is related to the skyrmion motion. Finally, we demonstrate efficient coupling of the dynamic magnetization to a uniform magnetic field in nanodots of noncircular symmetry in the skyrmion states.

  3. Strain relaxation and ambipolar electrical transport in GaAs/InSb core-shell nanowires.

    Science.gov (United States)

    Rieger, Torsten; Zellekens, Patrick; Demarina, Natalia; Hassan, Ali Al; Hackemüller, Franz Josef; Lüth, Hans; Pietsch, Ullrich; Schäpers, Thomas; Grützmacher, Detlev; Lepsa, Mihail Ion

    2017-11-30

    The growth, crystal structure, strain relaxation and room temperature transport characteristics of GaAs/InSb core-shell nanowires grown using molecular beam epitaxy are investigated. Due to the large lattice mismatch between GaAs and InSb of 14%, a transition from island-based to layer-like growth occurs during the formation of the shell. High resolution transmission electron microscopy in combination with geometric phase analyses as well as X-ray diffraction with synchrotron radiation are used to investigate the strain relaxation and prove the existence of different dislocations relaxing the strain on zinc blende and wurtzite core-shell nanowire segments. While on the wurtzite phase only Frank partial dislocations are found, the strain on the zinc blende phase is relaxed by dislocations with perfect, Shockley partial and Frank partial dislocations. Even for ultrathin shells of about 2 nm thickness, the strain caused by the high lattice mismatch between GaAs and InSb is relaxed almost completely. Transfer characteristics of the core-shell nanowires show an ambipolar conductance behavior whose strength strongly depends on the dimensions of the nanowires. The interpretation is given based on an electronic band profile which is calculated for completely relaxed core/shell structures. The peculiarities of the band alignment in this situation implies simultaneously occupied electron and hole channels in the InSb shell. The ambipolar behavior is then explained by the change of carrier concentration in both channels by the gate voltage.

  4. Relaxation of polarized nuclei in superconducting rhodium

    DEFF Research Database (Denmark)

    Knuuttila, T.A.; Tuoriniemi, J.T.; Lefmann, K.

    2000-01-01

    Nuclear spin lattice relaxation rates were measured in normal and superconducting (sc) rhodium with nuclear polarizations up to p = 0.55. This was sufficient to influence the sc state of Rh, whose T, and B-c, are exceptionally low. Because B-c ... is unchanged, the nuclear spin entropy was fully sustained across the sc transition. The relaxation in the sc state was slower at all temperatures without the coherence enhancement close to T-c. Nonzero nuclear polarization strongly reduced the difference between the relaxation rates in the sc and normal...

  5. Spin relaxation in nanowires by hyperfine coupling

    International Nuclear Information System (INIS)

    Echeverria-Arrondo, C.; Sherman, E.Ya.

    2012-01-01

    Hyperfine interactions establish limits on spin dynamics and relaxation rates in ensembles of semiconductor quantum dots. It is the confinement of electrons which determines nonzero hyperfine coupling and leads to the spin relaxation. As a result, in nanowires one would expect the vanishing of this effect due to extended electron states. However, even for relatively clean wires, disorder plays a crucial role and makes electron localization sufficient to cause spin relaxation on the time scale of the order of 10 ns. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Le Chatelier's principle with multiple relaxation channels

    Science.gov (United States)

    Gilmore, R.; Levine, R. D.

    1986-05-01

    Le Chatelier's principle is discussed within the constrained variational approach to thermodynamics. The formulation is general enough to encompass systems not in thermal (or chemical) equilibrium. Particular attention is given to systems with multiple constraints which can be relaxed. The moderation of the initial perturbation increases as additional constraints are removed. This result is studied in particular when the (coupled) relaxation channels have widely different time scales. A series of inequalities is derived which describes the successive moderation as each successive relaxation channel opens up. These inequalities are interpreted within the metric-geometry representation of thermodynamics.

  7. Universal Mechanism of Spin Relaxation in Solids

    Science.gov (United States)

    Chudnovsky, Eugene

    2006-03-01

    Conventional elastic theory ignores internal local twists and torques. Meantime, spin-lattice relaxation is inherently coupled with local elastic twists through conservation of the total angular momentum (spin + lattice). This coupling gives universal lower bound (free of fitting parameters) on the relaxation of the atomic or molecular spin in a solid [1] and on the relaxation of the electron spin in a quantum dot [2]. [1] E. M. Chudnovsky, D. A. Garanin, and R. Schilling, Phys. Rev. B 72, 094426 (2005). [2] C. Calero, E. M. Chudnovsky, and D. A. Garanin, Phys. Rev. Lett. 95, 166603 (2005).

  8. Collisional relaxation of electron tail distribution

    International Nuclear Information System (INIS)

    Yamagiwa, Mitsuru; Okamoto, Masao.

    1985-05-01

    Relaxation due to the Coulomb collisions of the electron velocity distribution function with a high energy tail is investigated in detail. In the course of the relaxation, a 'saddle' point can be created in velocity space owing to upsilon -3 dependence of the deflection rate and a positive slope or a 'dip' appears in the tail direction. The time evolution of the electron tail is studied analytically. A comparison is made with numerical results by using a Fokker-Planck code. Also discussed is the kinetic instability concerned with the positive slope during the relaxation. (author)

  9. Nuclear magnetic resonance relaxation in multiple sclerosis

    DEFF Research Database (Denmark)

    Larsson, H B; Barker, G J; MacKay, A

    1998-01-01

    OBJECTIVES: The theory of relaxation processes and their measurements are described. An overview is presented of the literature on relaxation time measurements in the normal and the developing brain, in experimental diseases in animals, and in patients with multiple sclerosis. RESULTS...... AND CONCLUSION: Relaxation time measurements provide insight into development of multiple sclerosis plaques, especially the occurrence of oedema, demyelination, and gliosis. There is also evidence that normal appearing white matter in patients with multiple sclerosis is affected. What is now needed are fast...

  10. Stress Relaxation in Entangled Polymer Melts

    DEFF Research Database (Denmark)

    Hou, Ji-Xuan; Svaneborg, Carsten; Everaers, Ralf

    2010-01-01

    We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements...... and into the terminal relaxation regime for Z=10. Using the known (Rouse) mobility of unentangled chains and the melt entanglement length determined via the primitive path analysis of the microscopic topological state of our systems, we have performed parameter-free tests of several different tube models. We find...

  11. Slow relaxation in weakly open rational polygons.

    Science.gov (United States)

    Kokshenev, Valery B; Vicentini, Eduardo

    2003-07-01

    The interplay between the regular (piecewise-linear) and irregular (vertex-angle) boundary effects in nonintegrable rational polygonal billiards (of m equal sides) is discussed. Decay dynamics in polygons (of perimeter P(m) and small opening Delta) is analyzed through the late-time survival probability S(m) approximately equal t(-delta). Two distinct slow relaxation channels are established. The primary universal channel exhibits relaxation of regular sliding orbits, with delta=1. The secondary channel is given by delta>1 and becomes open when m>P(m)/Delta. It originates from vertex order-disorder dual effects and is due to relaxation of chaoticlike excitations.

  12. [A study on Korean concepts of relaxation].

    Science.gov (United States)

    Park, J S

    1992-01-01

    Relaxation technique is an independent nursing intervention used in various stressful situations. The concept of relaxation must be explored for the meaning given by the people in their traditional thought and philosophy. Korean relaxation technique, wanting to become culturally acceptable and effective, is learning to recognize and develop Korean concepts, experiences, and musics of relaxation. This study was aimed at discovering Korean concepts, experiences and musics of relaxation and contributing the development of the relaxation technique for Korean people. The subjects were 59 nursing students, 39 hospitalized patients, 61 housewives, 21 rural residents and 16 researchers. Data were collected from September 4th to October 24th, 1991 by interviews or questionnaires. The data analysis was done by qualitative research method, and validity assured by conformation of the concept and category by 2 nursing scientists who had written a Master's thesis on the relaxation technique. The results of the study were summarized as follows; 1. The meaning of the relaxation concept; From 298 statements, 107 concepts were extracted and then 5 categories "Physical domain", "Psychological domain", "Complex domain", "Situation", and "environment" were organized. 'Don't have discomforts, 'don't have muscle tension', 'don't have energy (him in Korean)', 'don't have activities' subcategories were included in "Physical domain". 'Don't have anxiety', 'feel good', 'emotional stability', 'don't have wordly thoughts', 'feel one's brain muddled', 'loss of desire' subcategories were included in "physical domain" 'Comfort body and mind', 'don't have tension of body and mind', 'be sagged' 'liveliness of thoughts' subcategories were included in "Complex domain". 'Rest', 'sleep', 'others' subcategories were included in "Situation domain". And 'quite environment' & 'comfortable environment' subcategories were included in "Environmental domain". 2. The experiences of the relaxation; From 151

  13. Temperature-dependent structural relaxation in As{sub 40}Se{sub 60} glass

    Energy Technology Data Exchange (ETDEWEB)

    Golovchak, R., E-mail: roman_ya@yahoo.com [Lviv Sci. and Res. Institute of Materials of SRC ' Carat' , 202 Stryjska str., 79031 Lviv (Ukraine); Kozdras, A. [Opole University of Technology, 75, Ozimska str., Opole, PL-45370 (Poland); Academy of Management and Administration, 18 Niedzialkowski str., Opole, PL-45085 (Poland); Shpotyuk, O. [Jan Dlugosz University, 13/15, al. Armii Krajowej, 42201, Czestochowa (Poland); Gorecki, Cz. [Opole University of Technology, 75, Ozimska str., Opole, PL-45370 (Poland); Kovalskiy, A.; Jain, H. [Department of Materials Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States)

    2011-08-01

    The origin of structural relaxation in As{sub 40}Se{sub 60} glass at different annealing temperatures is studied by differential scanning calorimetry (DSC) and in situ extended X-ray absorption fine structure (EXAFS) methods. Strong physical aging effect, expressed through the increase of endothermic peak area in the vicinity of T{sub g}, is recorded by DSC technique at the annealing temperatures T{sub a}>90{sup o}C. EXAFS data show that the observed structural relaxation is not associated with significant changes in the short-range order of this glass. An explanation is proposed for this relaxation behavior assuming temperature-dependent constraints. -- Highlights: → In this study we report experimental evidence for temperature-dependent constraints theory. → Structural relaxation of As{sub 2}Se{sub 3} glass at higher annealing temperatures is studied by DSC technique. → Accompanied changes in the structure are monitored by in situ EXAFS measurements.

  14. Spin relaxation rates in quantum dots: Role of the phonon modulated spin orbit interaction

    Science.gov (United States)

    Alcalde, A. M.; Romano, C. L.; Marques, G. E.

    2008-11-01

    We calculate the spin relaxation rates in InAs and GaAs parabolic quantum dots due to the interaction of spin carriers with acoustical phonons. We consider a spin relaxation mechanism completely intrinsic to the system, since it is based on the modulation of the spin-orbit interaction by the acoustic phonon potential, which is independent of any structural properties of the confinement potential. The electron-phonon deformation potential and the piezoelectric interaction are described by the Pavlov-Firsov spin-phonon Hamiltonian. Our results demonstrate that, for narrow-gap semiconductors, the deformation potential interaction becomes dominant. This behavior is not observed for wide or intermediate gap semiconductors, where the piezoelectric coupling, in general, governs the relaxation processes. We also demonstrate that the spin relaxation rates are particularly sensitive to values of the Landé g-factor, which depend strongly on the spatial shape of the confinement.

  15. Microscopic dynamics and relaxation processes in liquid hydrogen fluoride

    International Nuclear Information System (INIS)

    Angelini, R.; Giura, P.; Monaco, G.; Sette, F.; Fioretto, D.; Ruocco, G.

    2004-01-01

    Inelastic x-ray scattering and Brillouin light scattering measurements of the dynamic structure factor of liquid hydrogen fluoride have been performed in the temperature range T=214-283 K. The data, analyzed using a viscoelastic model with a two time-scale memory function, show a positive dispersion of the sound velocity c(Q) between the low frequency value c 0 (Q) and the high frequency value c ∞α (Q). This finding confirms the existence of a structural (α) relaxation directly related to the dynamical organization of the hydrogen bonds network of the system. The activation energy E a of the process has been extracted by the analysis of the temperature behavior of the relaxation time τ α (T) that follows an Arrhenius law. The obtained value for E a , when compared with that observed in another hydrogen bond liquid as water, suggests that the main parameter governing the α-relaxation process is the number of hydrogen bonds per molecule

  16. Dielectric relaxation in AgI doped silver selenomolybdate glasses

    Science.gov (United States)

    Palui, A.; Shaw, A.; Ghosh, A.

    2016-05-01

    We report the study of dielectric properties of some silver ion conducting silver selenomolybdate mixed network former glasses in a wide frequency and temperature range. The experimental data have been analyzed in the framework of complex dielectric permittivity. The dielectric permittivity data have been well interpreted using the Cole-Cole function. The temperature dependence of relaxation time obtained from real part of dielectric permittivity data shows an Arrhenius behavior. The activation energy shows a decreasing trend with the increase of doping content. Values of stretched exponential parameter are observed to be independent of temperature and composition.

  17. Morphometric evaluation of the spermatogenesis in trahira Hoplias malabaricus (Bloch (Characiformes, Erythrinidae Avaliação morfométrica da espermatogênese da traíra Hoplias malabaricus (Bloch (Characiformes, Erythrinidae

    Directory of Open Access Journals (Sweden)

    Paula M. Bizzott

    2007-01-01

    Full Text Available The Erythrinidae trahira, Hoplias malabaricus (Bloch, 1794, is widespread throughout South America river basins. We determined Sertoli cell supporting capacity (ratio of primary spermatocytes: Sertoli cells and spermatids: Sertoli cells, meiotic index (ratio of spermatids: primary spermatocytes and the number of spermatogonial mitotic generations of this fish. The fish were captured in the Igarapava reservoir, Grande River, Alto Paraná River basin, Brazil. Testis fragments of three sexually mature trahiras were fixed in 5% buffered glutaraldehyde solution and embedded in glycol methacrylate. Serial sections of 2 and 3 µm in thickness were stained with 0.5% toluidine blue. Histological counts from cysts of primary spermatocytes and spermatids revealed, respectively, 326 ± 99 and 468 ± 73 nuclei of these cells. Sertoli cell supporting capacity was considerably higher for spermatids (113.3 ± 16:1 when compared to primary spermatocytes (71 ± 5:1. Between eight and ten spermatogonial generations were formed to give rise to primary spermatocytes. These values were within the generation range of those already found in freshwater teleosts of external fertilization. Correlation between the number of Sertoli cells and primary spermatocytes per cyst, and Sertoli cells and spermatids per cyst were statistically significant (p A traíra, Hoplias malabaricus (Bloch, 1794, da família Erythrinidae, encontra-se espalhada pelas bacias fluviais da América do Sul. Determinou-se a capacidade de suporte das células de Sertoli (espermatócitos primários: células de Sertoli e espermátides: células de Sertoli, índice meiótico (espermátides: espermatócitos primário e o número de gerações mitóticas de espermatogônias desse peixe. Os indivíduos foram capturados no reservatório de Igarapava, rio Grande, bacia do Alto Paraná, Brasil. Fragmentos dos testículos de três traíras sexualmente maduras foram fixados em glutaraldeído a 5%, e inclu

  18. Relaxation processes during amorphous metal alloys heating

    International Nuclear Information System (INIS)

    Malinochka, E.Ya.; Durachenko, A.M.; Borisov, V.T.

    1982-01-01

    Behaviour of Te+15 at.%Ge and Fe+13 at.%P+7 at.%C amorphous metal alloys during heating has been studied using the method of differential scanning calorimetry (DSC) as the most convenient one for determination of the value of heat effects, activation energies, temperature ranges of relaxation processes. Thermal effects corresponding to high-temperature relaxation processes taking place during amorphous metal alloys (AMA) heating are detected. The change of ratio of relaxation peaks values on DSC curves as a result of AMA heat treatment can be explained by the presence of a number of levels of inner energy in amorphous system, separated with potential barriers, the heights of which correspond to certain activation energies of relaxation processes

  19. The relaxation of plasmas with dust particles

    International Nuclear Information System (INIS)

    Chutov, Yu.I.; Kravchenko, A.Yu.; Schram, P.P.J.M.

    1997-01-01

    Various parameters of relaxing plasmas with dust particles including the electron and ion energy distributions function are numerically simulated at various parameters of the dust particles using the PIC method and taking into account the dynamics of the dust particle charge without the assumption about the equilibrium of electrons and ions. Coulomb collisions are taken into account in the framework of the method of stochastic differential equations. The relaxation of bounded plasma clouds expanding into a vacuum as well as the relaxation of a uniform plasma, in which dust particles appear at some initial time, are investigated. The obtained results show that the relaxation of plasmas can be accompanied by a deviation of the ion distribution function from equilibrium as well as a change of the mean energy of electrons and ions because of the dependence of the collection of electrons and ions by dust particles on their energy. (author)

  20. Multiscale dipole relaxation in dielectric materials

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt

    2016-01-01

    Dipole relaxation from thermally induced perturbations is investigated on different length scales for dielectric materials. From the continuum dynamical equations for the polarisation, expressions for the transverse and longitudinal dipole autocorrelation functions are derived in the limit where ...

  1. Generalized approach to non-exponential relaxation

    Indian Academy of Sciences (India)

    Non-exponential relaxation is a universal feature of systems as diverse as glasses, spin ... which changes from a simple exponential to a stretched exponential and a power law by increasing the constraints in the system. ... Current Issue

  2. Oxygen-17 relaxation in aqueous agarose gels

    International Nuclear Information System (INIS)

    Ablett, S.; Lillford, P.J.

    1977-01-01

    Nuclear magnetic relaxation of oxygen-17 in H 2 17 O enriched agarose gels shows that existing explanations of water behaviour are oversimplified. Satisfactory models must include at least three proton phases, two of which involve water molecules. (Auth.)

  3. Ghost lines in Moessbauer relaxation spectra

    International Nuclear Information System (INIS)

    Price, D.C.

    1985-01-01

    The appearance in Moessbauer relaxation spectra of 'ghost' lines, which are narrow lines that do not correspond to transitions between real hyperfine energy levels of the resonant system, is examined. It is shown that in many cases of interest, the appearance of these 'ghost' lines can be interpreted in terms of the relaxational averaging of one or more of the static interactions of the ion. (orig.)

  4. Dynamics of helicity transport and Taylor relaxation

    International Nuclear Information System (INIS)

    Diamond, P.H.; Malkov, M.

    2003-01-01

    A simple model of the dynamics of Taylor relaxation is derived using symmetry principles alone. No statistical closure approximations are invoked or detailed plasma model properties assumed. Notably, the model predicts several classes of nondiffusive helicity transport phenomena, including traveling nonlinear waves and superdiffusive turbulent pulses. A universal expression for the scaling of the effective magnetic Reynolds number of a system undergoing Taylor relaxation is derived. Some basic properties of intermittency in helicity transport are examined

  5. Regularities of intermediate adsorption complex relaxation

    International Nuclear Information System (INIS)

    Manukova, L.A.

    1982-01-01

    The experimental data, characterizing the regularities of intermediate adsorption complex relaxation in the polycrystalline Mo-N 2 system at 77 K are given. The method of molecular beam has been used in the investigation. The analytical expressions of change regularity in the relaxation process of full and specific rates - of transition from intermediate state into ''non-reversible'', of desorption into the gas phase and accumUlation of the particles in the intermediate state are obtained

  6. Relaxation of synchronization on complex networks.

    Science.gov (United States)

    Son, Seung-Woo; Jeong, Hawoong; Hong, Hyunsuk

    2008-07-01

    We study collective synchronization in a large number of coupled oscillators on various complex networks. In particular, we focus on the relaxation dynamics of the synchronization, which is important from the viewpoint of information transfer or the dynamics of system recovery from a perturbation. We measure the relaxation time tau that is required to establish global synchronization by varying the structural properties of the networks. It is found that the relaxation time in a strong-coupling regime (K>Kc) logarithmically increases with network size N , which is attributed to the initial random phase fluctuation given by O(N-1/2) . After elimination of the initial-phase fluctuation, the relaxation time is found to be independent of the system size; this implies that the local interaction that depends on the structural connectivity is irrelevant in the relaxation dynamics of the synchronization in the strong-coupling regime. The relaxation dynamics is analytically derived in a form independent of the system size, and it exhibits good consistency with numerical simulations. As an application, we also explore the recovery dynamics of the oscillators when perturbations enter the system.

  7. Stress relaxation in viscous soft spheres.

    Science.gov (United States)

    Boschan, Julia; Vasudevan, Siddarth A; Boukany, Pouyan E; Somfai, Ellák; Tighe, Brian P

    2017-10-04

    We report the results of molecular dynamics simulations of stress relaxation tests in athermal viscous soft sphere packings close to their unjamming transition. By systematically and simultaneously varying both the amplitude of the applied strain step and the pressure of the initial condition, we access both linear and nonlinear response regimes and control the distance to jamming. Stress relaxation in viscoelastic solids is characterized by a relaxation time τ* that separates short time scales, where viscous loss is substantial, from long time scales, where elastic storage dominates and the response is essentially quasistatic. We identify two distinct plateaus in the strain dependence of the relaxation time, one each in the linear and nonlinear regimes. The height of both plateaus scales as an inverse power law with the distance to jamming. By probing the time evolution of particle velocities during relaxation, we further identify a correlation between mechanical relaxation in the bulk and the degree of non-affinity in the particle velocities on the micro scale.

  8. Relaxation strain measurements in cellular dislocation structures

    International Nuclear Information System (INIS)

    Tsai, C.Y.; Quesnel, D.J.

    1984-01-01

    The conventional picture of what happens during a stress relaxation usually involves imagining the response of a single dislocation to a steadily decreasing stress. The velocity of this dislocation decreases with decreasing stress in such a way that we can measure the stress dependence of the dislocation velocity. Analysis of the data from a different viewpoint enables us to calculate the apparent activation volume for the motion of the dislocation under the assumption of thermally activated glie. Conventional thinking about stress relaxation, however, does not consider the eventual fate of this dislocation. If the stress relaxes to a low enough level, it is clear that the dislocation must stop. This is consistent with the idea that we can determine the stress dependence of the dislocation velocity from relaxation data only for those cases where the dislocation's velocity is allowed to approach zero asymptotically, in short, for those cases where the dislocation never stops. This conflict poses a dilemma for the experimentalist. In real crystals, however, obstacles impede the dislocation's progress so that those dislocations which are stopped at a given stress will probably never resume motion under the influence of the steadily declining stress present during relaxation. Thus one could envision stress relaxation as a process of exhaustion of mobile dislocations, rather than a process of decreasing dislocation velocity. Clearly both points of view have merit and in reality both mechanisms contribute to the phenomena

  9. T2 relaxation time analysis in patients with multiple sclerosis: correlation with magnetization transfer ratio

    International Nuclear Information System (INIS)

    Papanikolaou, Nickolas; Papadaki, Eufrosini; Karampekios, Spyros; Maris, Thomas; Prassopoulos, Panos; Gourtsoyiannis, Nicholas; Spilioti, Martha

    2004-01-01

    The aim of the current study was to perform T2 relaxation time measurements in multiple sclerosis (MS) patients and correlate them with magnetization transfer ratio (MTR) measurements, in order to investigate in more detail the various histopathological changes that occur in lesions and normal-appearing white matter (NAWM). A total number of 291 measurements of MTR and T2 relaxation times were performed in 13 MS patients and 10 age-matched healthy volunteers. Measurements concerned MS plaques (105), NAWM (80), and ''dirty'' white matter (DWM; 30), evenly divided between the MS patients, and normal white matter (NWM; 76) in the healthy volunteers. Biexponential T2 relaxation-time analysis was performed, and also possible linearity between MTR and mean T2 relaxation times was evaluated using linear regression analysis in all subgroups. Biexponential relaxation was more pronounced in ''black-hole'' lesions (16.6%) and homogeneous enhancing plaques (10%), whereas DWM, NAWM, and mildly hypointense lesions presented biexponential behavior with a lower frequency(6.6, 5, and 3.1%, respectively). Non-enhancing isointense lesions and normal white matter did not reveal any biexponentional behavior. Linear regression analysis between monoexponential T2 relaxation time and MTR measurements demonstrated excellent correlation for DWM(r=-0.78, p<0.0001), very good correlation for black-hole lesions(r=-0.71, p=0.002), good correlation for isointense lesions(r=-0.60, p=0.005), moderate correlation for mildly hypointense lesions(r=-0.34, p=0.007), and non-significant correlation for homogeneous enhancing plaques, NAWM, and NWM. Biexponential T2 relaxation-time behavior is seen in only very few lesions (mainly on plaques with high degree of demyelination and axonal loss). A strong correlation between MTR and monoexponential T2 values was found in regions where either inflammation or demyelination predominates; however, when both pathological conditions coexist, this linear

  10. Theory of relaxation phenomena in a spin-3/2 Ising system near the second-order phase transition temperature

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Canko, Osman

    2005-01-01

    The relaxation behavior of the spin-3/2 Ising model Hamiltonian with bilinear and biquadratic interactions near the second-order phase transition temperature or critical temperature is studied by means of the Onsager's theory of irreversible thermodynamics or the Onsager reciprocity theorem (ORT). First, we give the equilibrium case briefly within the molecular-field approximation in order to study the relaxation behavior by using the ORT. Then, the ORT is applied to the model and the kinetic equations are obtained. By solving these equations, three relaxation times are calculated and examined for temperatures near the second-order phase transition temperature. It is found that one of the relaxation times goes to infinity near the critical temperature on either side, the second relaxation time makes a cusp at the critical temperature and third one behaves very differently in which it terminates at the critical temperature while approaching it, then showing a 'flatness' property and then decreases. We also study the influences of the Onsager rate coefficients on the relaxation times. The behavior of these relaxation times is discussed and compared with the spin-1/2 and spin-1 Ising systems

  11. Optimal cloning of arbitrary mirror-symmetric distributions on the Bloch sphere: a proposal for practical photonic realization

    International Nuclear Information System (INIS)

    Bartkiewicz, Karol; Miranowicz, Adam

    2012-01-01

    We study state-dependent quantum cloning that can outperform universal cloning (UC). This is possible by using some a priori information on a given quantum state to be cloned. Specifically, we propose a generalization and optical implementation of quantum optimal mirror phase-covariant cloning, which refers to optimal cloning of sets of qubits of known modulus of the expectation value of Pauli's Z operator. Our results can be applied to cloning of an arbitrary mirror-symmetric distribution of qubits on the Bloch sphere including in special cases UC and phase-covariant cloning. We show that the cloning is optimal by adapting our former optimality proof for axisymmetric cloning (Bartkiewicz and Miranowicz 2010 Phys. Rev. A 82 042330). Moreover, we propose an optical realization of the optimal mirror phase-covariant 1→2 cloning of a qubit, for which the mean probability of successful cloning varies from 1/6 to 1/3 depending on prior information on the set of qubits to be cloned. The qubits are represented by polarization states of photons generated by the type-I spontaneous parametric down-conversion. The scheme is based on the interference of two photons on an unbalanced polarization-dependent beam splitter with different splitting ratios for vertical and horizontal polarization components and the additional application of feedforward by means of Pockels cells. The experimental feasibility of the proposed setup is carefully studied including various kinds of imperfections and losses. Moreover, we briefly describe two possible cryptographic applications of the optimal mirror phase-covariant cloning corresponding to state discrimination (or estimation) and secure quantum teleportation.

  12. The structural relaxation effect on the nanomechanical properties of a Ti-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yongjiang, E-mail: yjhuang@hit.edu.cn [State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin 150001 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Ministry of Education, Harbin 150001 (China); Zhou, Binjun [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Chiu, YuLung, E-mail: y.chiu@bham.ac.uk [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Fan, Hongbo [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Dongjun [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Ministry of Education, Harbin 150001 (China); Sun, Jianfei; Shen, Jun [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2014-09-01

    Highlights: • The effect of structural relaxation on the nano-mechanical behaviors of BMGs is studied. • The indent load at first pop-in event, the hardness and Young’s modulus are enhanced after annealing. • The differences in nanomechanical properties can be attributed to their different atomic structure. - Abstract: Indentation experiments were performed on the as-cast and the annealed Ti-based bulk metallic glass samples to investigate the effect of structural relaxation on the nanomechanical behaviors of the material. The onset of pop-in event, Young’s modulus, and hardness were found to be sensitive to the structural relaxation of the testing material. The difference in nanomechanical properties between the as-cast and annealed BMG samples is interpreted in terms of free volume theory.

  13. The structural relaxation effect on the nanomechanical properties of a Ti-based bulk metallic glass

    International Nuclear Information System (INIS)

    Huang, Yongjiang; Zhou, Binjun; Chiu, YuLung; Fan, Hongbo; Wang, Dongjun; Sun, Jianfei; Shen, Jun

    2014-01-01

    Highlights: • The effect of structural relaxation on the nano-mechanical behaviors of BMGs is studied. • The indent load at first pop-in event, the hardness and Young’s modulus are enhanced after annealing. • The differences in nanomechanical properties can be attributed to their different atomic structure. - Abstract: Indentation experiments were performed on the as-cast and the annealed Ti-based bulk metallic glass samples to investigate the effect of structural relaxation on the nanomechanical behaviors of the material. The onset of pop-in event, Young’s modulus, and hardness were found to be sensitive to the structural relaxation of the testing material. The difference in nanomechanical properties between the as-cast and annealed BMG samples is interpreted in terms of free volume theory

  14. The transmission factor of a bloch wall for spin waves whose wave vector is perpendicular to the wall (1961); Facteur de transmission d'une paroi de bloch pour des ondes de spin de vecteur d'onde normal a la paroi (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Boutron, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    When, for a ferromagnetic, the anisotropic energy takes the form E= K sin{sup 2} {alpha}, the study of the propagation of spin waves of low energy across a Bloch wall leads to a one-dimensional Schrodinger equation in which is found a potential well which has the remarkable property of being completely transparent for all values of the incident wave energy. (author) [French] Dans un ferromagnetique, lorsque la densite d'energie d'anisotropie est de la forme E= K sin{sup 2} {alpha}, l'etude de la propagation des ondes de spin de faible energie a travers une paroi de Bloch, conduit a une equation de Schrodinger a une dimension, dans laquelle figure un puits de potentiel qui a la propriete remarquable d'etre completement transparent quelle que soit l'energie de l'onde incidente. (auteur)

  15. Real-time relaxation and kinetics in hot scalar QED: Landau damping

    International Nuclear Information System (INIS)

    Boyanovsky, D.; Vega, H.J. de; Holman, R.; Kumar, S.P.; Pisarski, R.D.

    1998-01-01

    The real time evolution of non-equilibrium expectation values with soft length scales ∼k -1 >(eT) -1 is solved in hot scalar electrodynamics, with a view towards understanding relaxational phenomena in the QGP and the electroweak plasma. We find that the gauge invariant non-equilibrium expectation values relax via power laws to asymptotic amplitudes that are determined by the quasiparticle poles. The long time relaxational dynamics and relevant time scales are determined by the behavior of the retarded self-energy not at the small frequencies, but at the Landau damping thresholds. This explains the presence of power laws and not of exponential decay. In the process we rederive the HTL effective action using non-equilibrium field theory. Furthermore we obtain the influence functional, the Langevin equation and the fluctuation-dissipation theorem for the soft modes, identifying the correlators that emerge in the classical limit. We show that a Markovian approximation fails to describe the dynamics both at short and long times. We find that the distribution function for soft quasiparticles relaxes with a power law through Landau damping. We also introduce a novel kinetic approach that goes beyond the standard Boltzmann equation by incorporating off-shell processes and find that the distribution function for soft quasiparticles relaxes with a power law through Landau damping. We find an unusual dressing dynamics of bare particles and anomalous (logarithmic) relaxation of hard quasiparticles. copyright 1998 The American Physical Society

  16. The Effect of Relaxation Interventions on Cortisol Levels in HIV-Sero-Positive Women

    Science.gov (United States)

    Jones, Deborah; Owens, Mary; Kumar, Mahendra; Cook, Ryan; Weiss, Stephen M.

    2016-01-01

    Purpose Activation of the hypothalamic–pituitary–adrenal axis, assessed in terms of cortisol levels, may enhance the ability of HIV to infect lymphocytes and downregulate the immune system, accelerating disease progression. This study sought to determine the effects of relaxation techniques on cortisol levels in HIV-sero-positive women. Methods Women (n = 150) were randomized to a group cognitive–behavioral stress management (CBSM) condition or an individual information condition and underwent 3 types of relaxation training (progressive muscle relaxation, imagery, and autogenic training). Cortisol levels were obtained pre- and postrelaxation. Results Guided imagery was effective in reducing cortisol in the group condition (t = 3.90, P < .001), and muscle relaxation reduced cortisol in the individual condition (t = 3.11, P = .012). Among participants in the group condition attending all sessions, the magnitude of pre- to postsession reduction became greater over time. Conclusions Results suggest that specific relaxation techniques may be partially responsible for cortisol decreases associated with relaxation and CBSM. PMID:23715264

  17. Use of relaxation skills in differentially skilled athletes.

    OpenAIRE

    Kudlackova, K.; Eccles, D. W.; Dieffenbach, K.

    2013-01-01

    Objectives: To examine the use of relaxation skills by differentially skilled athletes in relation to the deliberate practice framework. Design: Differentially skilled athletes completed a survey about their use of relaxation skills. Method: 150 athletes representing three skill levels (recreational, college, and professional) completed the deliberate relaxation for sport survey, which assessed relaxation on three deliberate practice dimensions (relevancy, concentration, and ...

  18. The use of (double) relaxation oscillation SQUIDs as a sensor

    NARCIS (Netherlands)

    van Duuren, M.J.; Brons, G.C.S.; Kattouw, H.; Flokstra, Jakob; Rogalla, Horst

    1997-01-01

    Relaxation Oscillation SQUIDs (ROSs) and Double Relaxation Oscillation SQUIDs (DROSs) are based on relaxation oscillations that are induced in hysteretic dc SQUIDs by an external L-R shunt. The relaxation frequency of a ROS varies with the applied flux Φ, whereas the output of a DROS is a dc

  19. Dark and bright solitons for the two-dimensional complex modified Korteweg-de Vries and Maxwell-Bloch system with time-dependent coefficient

    Science.gov (United States)

    Shaikhova, G.; Ozat, N.; Yesmakhanova, K.; Bekova, G.

    2018-02-01

    In this work, we present Lax pair for two-dimensional complex modified Korteweg-de Vries and Maxwell-Bloch (cmKdV-MB) system with the time-dependent coefficient. Dark and bright soliton solutions for the cmKdV-MB system with variable coefficient are received by Darboux transformation. Moreover, the determinant representation of the one-fold and two-fold Darboux transformation for the cmKdV-MB system with time-dependent coefficient is presented.

  20. The Bloch self-consistently renormalized spin wave approximation and behaviour of some thermodynamic quantities of a Heisenberg ferromagnet in the critical region

    International Nuclear Information System (INIS)

    Jezewski, W.

    1979-01-01

    Properties of the Bloch self-consistently renormalized spin wave approximation are analyzed near the zero-field transition temperature Tsub(m). The analysis is carried out on the basis of the application of this approximation to the Heisenberg ferromagnet involving nearest neighbour interaction. Series expansions for the resulting Helmholtz free energy, magnetization, and specific heat in the reduced temperature t=(Tsub(m)-T)/Tsub(m) are derived and the critical exponents β and α' are obtained. The limiting case of infinite spin (the classical limit) is also investigated. (author)

  1. [Fibromyalgia: behavioral medicine interventions].

    Science.gov (United States)

    Petermann, F; Holtz, M C; van der Meer, B; Krohn-Grimberghe, B

    2007-10-01

    The etiology of fibromyalgia as a chronic disease is still unexplained. This article gives an overview of the newest treatment methods of behavioral medicine of the fibromyalgia syndrome with regard to the state of research of etiology and diagnosis of this disease. Methods such as operant conditioning, cognitive-behavioral approaches, patient education and relaxation methods are discussed.

  2. NMR relaxation rate in quasi one-dimensional antiferromagnets

    Science.gov (United States)

    Capponi, Sylvain; Dupont, Maxime; Laflorencie, Nicolas; Sengupta, Pinaki; Shao, Hui; Sandvik, Anders W.

    We compare results of different numerical approaches to compute the NMR relaxation rate 1 /T1 in quasi one-dimensional (1d) antiferromagnets. In the purely 1d regime, recent numerical simulations using DMRG have provided the full crossover behavior from classical regime at high temperature to universal Tomonaga-Luttinger liquid at low-energy (in the gapless case) or activated behavior (in the gapped case). For quasi 1d models, we can use mean-field approaches to reduce the problem to a 1d one that can be studied using DMRG. But in some cases, we can also simulate the full microscopic model using quantum Monte-Carlo techniques. This allows to compute dynamical correlations in imaginary time and we will discuss recent advances to perform stochastic analytic continuation to get real frequency spectra. Finally, we connect our results to experiments on various quasi 1d materials.

  3. Projectile-z3 and -z4 corrections to basic Bethe-Bloch stopping power theory and mean excitation energies of Al, Si, Ni, Ge, Se, Y, Ag and Au

    International Nuclear Information System (INIS)

    Porter, L.E.; Bryan, S.R.

    1980-01-01

    Three independent sets of measurements of the stopping power of solid elemental targets for alpha particles were previously analyzed in terms of basic Bethe-Bloch theory with the low velocity projectile-z 3 correction term included. These data for Al, Si, Ni, Ge, Se, Y, Ag and Au have now been analyzed with the Bloch projectile-z 4 term and a revised projectile-z 3 term incorporated in the Bethe-Bloch formula, the projectile-z 3 revision having been effected by variation of the single free parameter of the projectile-z 3 effect formalism. The value of this parameter, fixed at 1.8 in previous studies, which counteracts inclusion of the projectile-z 4 term is 1.3 +- 0.1 for all target elements except Si. (orig.)

  4. Analysis of the kinetics of the fragile fracture process in Mo monocrystals in quasi-relaxation

    International Nuclear Information System (INIS)

    Tamayo Meza, Pedro; Bautista Godinez, Eric Gustavo; Yermishkin, Viacheslav

    2008-01-01

    The method of quasi-relaxation, generally known as the force relaxation method, has been widely applied in the study of elementary dislocational processes. It is essential for the study and analysis of thermoactivated mechanisms, for the determination of the energy of interaction between dislocations and inclusions, in the definition of the dislocational constants, to predict the development of creep, and even for the study of fracture kinetics. For the first time the use of the quasi-relaxation method for evaluating the fragile fracture tendency was presented in the work. However, as usually carried out, the use of mass specimens and the development of a considerable plastic deformation in the vertex of the crack-notch sample limits the possibilities for this method. Many studies analyze the theoretical aspects of the fracture process, and the obtention of reliable quantitative information about the behavior of the dislocation based on an analytical description of the process, and how and when it influences the conditions under which the final catastrophic fracture occurs. This work proposes a new method to analyze the effect of a tension concentrator on the surface of Mo monocrystal specimens. The relaxation of the force and the increase in the crack opening is related to the development of the plastic zone in its vertex with the help of the Irwin correction. During the relaxation, the crack-groove grows until it attains the length of the plastic zone. Specimens with and without force concentrators were tested in quasi-relaxation. The cracks appearing under these conditions are analyzed using a scanning electron microscopy (SEM). The crack appearing in the specimens under load conditions, whose development produced heavy force relaxation, allowed the force relaxation value to be defined and compared in the specimens with and without tension concentrators (au)

  5. The Effect of Relaxation and Positive Self-Talk on Symptoms of Premenstrual Syndrome

    Directory of Open Access Journals (Sweden)

    Kimiyaee Asadi

    2016-05-01

    Full Text Available Background Premenstrual syndrome (PMS is characterized by recurrent, moderate-to-severe affective, physical, and behavioral symptoms that develop during the luteal menstrual cycle and disappear within a few days of menstruation. Objectives This article aims to identify the effects of relaxation, positive self-talk, and a combination of relaxation and positive self-talk on premenstrual syndrome. Methods In this quasi-experimental study, 80 women with PMS disorder were selected using a simple random sampling method, in Hamadan, west of Iran. They were randomly divided into four groups. The first and second groups underwent positive self-talk and relaxation, respectively. The third group experienced positive self-talk and relaxation at the same time. The fourth group did not receive any treatment. The duration of treatment was 8 one-hour sessions. Data were collected using a PMS symptom severity questionnaire. All groups were followed up for six months after the intervention. Finally, data analysis was performed using SPSS version 18 for ANCOVA and Bonferroni tests. Results The results showed that compared to the control group, relaxation (23.2 and positive self-talk (21.25 treatment methods alone can reduce PMS (P < 0.001. On the other hand, a combined (relaxation + positive self-talk treatment method (13.75 was more effective in reducing PMS compared to relaxation or positive self-talk alone. Conclusions It seems that psychological therapy based on relaxation and positive self-talk can be significantly effective in reducing PMS.

  6. Influence of ammonia on forming the toxicity of waters from the surface sources of water supply determined on Carassius auratus gibelio (Bloch, 1782

    Directory of Open Access Journals (Sweden)

    Е. Arystarkhova

    2018-03-01

    Full Text Available Purpose. Determination of the influence of ammonia in waters from surface sources of water supply of Zhytomyr city on forming the toxicity of these waters determined by test-reactions of atypical motor activity of Carassius auratus gibelio (Bloch, 1782 with the use of the «time sampling» method during 2012–2014. Methodology. Biotesting was performed at the Municipal Enterprise "Zhytomyrvodokanal". Water samples were taken once a month time from the Teteriv river reservoirs and tap water network and then placed into aquaria (8 dm3 on a group. Control and experimental groups of fish were formed according to the following scheme: control group — samples of settled (24 hours tap water; experimental group D-1 — water samples from the Denyshivske reservoir; experimental group D-2 — water samples from the Vidsichne water intake. Test specimens were females of C. auratus gibelio. Biotesting was conducted using the «time sampling» method by keeping fish (n=30 in water for 12 hours. The toxicity indexes of waters were calculated on the basis of the following test-reactions: spiral-like and vector movements, jumping out from water, immobilization and death of fish. Statistical processing of study results were performed using cross-correlation and regression analysis in MS Excel 2007 and Statistica-6. Findings. The study showed an effect of ammonia on the toxicity of waters from reservoirs of the Teteriv river that was determined by atypical motor activity with the use of the «time sampling» method, which consisted in the instantaneous fixation of the number of individuals that favored one or another act of behavior. It was shown that females not adapted to the action of ammonia reacted to its concentration in water of more than 0.55 mg/dm3 by disorders in movements. Unlike fish of experience groups, only single pathological acts were observed in the control group. A positive moderate relationship, which had a tendency to an increase, was

  7. Cognitive Therapy Versus Exposure and Applied Relaxation in Social Phobia: A Randomized Controlled Trial

    Science.gov (United States)

    Clark, David M.; Ehlers, Anke; Hackmann, Ann; McManus, Freda; Fennell, Melanie; Grey, Nick; Waddington, Louise; Wild, Jennifer

    2006-01-01

    A new cognitive therapy (CT) program was compared with an established behavioral treatment. Sixty-two patients meeting Diagnostic and Statistical Manual of Mental Disorders (4th ed.; American Psychiatric Association, 1994) criteria for social phobia were randomly assigned to CT, exposure plus applied relaxation (EXP = AR), or wait-list (WAIT). CT…

  8. Semi-convergence and relaxation parameters for a class of SIRT algorithms

    DEFF Research Database (Denmark)

    Elfving, Tommy; Nikazad, Touraj; Hansen, Per Christian

    2010-01-01

    This paper is concerned with the Simultaneous Iterative Reconstruction Technique (SIRT) class of iterative methods for solving inverse problems. Based on a careful analysis of the semi-convergence behavior of these methods, we propose two new techniques to specify the relaxation parameters...

  9. Treatment of Test Anxiety by Cue-Controlled Relaxation and Systematic Desensitization

    Science.gov (United States)

    Russell, Richard K.; And Others

    1976-01-01

    Test-anxious subjects (N=19) participated in an outcome study comparing systematic desensitization, cue-controlled relaxation, and no treatment. The treatment groups demonstrated significant improvement on the self-report measures of test and state anxiety but not on the behavioral indices. The potential advantages of this technique over…

  10. Reversibility and Relaxation Behavior of Polyelectrolyte Complex Micelle Formation

    NARCIS (Netherlands)

    Lindhoud, Saskia; Norde, Willem; Stuart, Martien A. Cohen

    2009-01-01

    In this study, the formation and disintegration of polyelectrolyte complex micelles is studied by dynamic light scattering titrations with the aim to assess the extent to which these complexes equilibrate. Also, the time evolution of samples at fixed (electroneutral) composition was followed to

  11. [Mind-body approach in the area of preventive medicine: focusing on relaxation and meditation for stress management].

    Science.gov (United States)

    Kang, Yunesik

    2010-09-01

    Emotional support and a stress management program should be simultaneously provided to clients as effective preventive services for healthy behavioral change. This study was conducted to review various relaxation and meditation intervention methods and their applicability for a preventive service program. The author of this paper tried to find various relaxation and meditation programs through a literature review and program searching and to introduce them. The 'Relaxation Response' and 'Mindfulness Based Stress Reduction (MBSR)' are the most the widely used meditative programs in mainstream medical systems. Abdominal breathing, Progressive Musclular Relaxation (PMR), Relaxative Imagery, Autogenic Training (AT) and Biofeedback are other well-known techniques for relaxation and stress management. I have developed and implemented some programs using these methods. Relaxation and meditation classes for cancer patients and a meditation based stress coping workshop are examples of this program. Relaxation and meditation seem to be good and effective methods for primary, secondary and tertiary preventive service programs. Program development and standardization and further study are needed for more and wider use of the mind-body approach in the preventive service area of medicine.

  12. Asymptotic representation of relaxation oscillations in lasers

    CERN Document Server

    Grigorieva, Elena V

    2017-01-01

    In this book we analyze relaxation oscillations in models of lasers with nonlinear elements controlling light dynamics. The models are based on rate equations taking into account periodic modulation of parameters, optoelectronic delayed feedback, mutual coupling between lasers, intermodal interaction and other factors. With the aim to study relaxation oscillations we present the special asymptotic method of integration for ordinary differential equations and differential-difference equations. As a result, they are reduced to discrete maps. Analyzing the maps we describe analytically such nonlinear phenomena in lasers as multistability of large-amplitude relaxation cycles, bifurcations of cycles, controlled switching of regimes, phase synchronization in an ensemble of coupled systems and others. The book can be fruitful for students and technicians in nonlinear laser dynamics and in differential equations.

  13. Relaxation of the magnetization in magnetic molecules

    Science.gov (United States)

    Carretta, S.; Bianchi, A.; Liviotti, E.; Santini, P.; Amoretti, G.

    2006-04-01

    Several mechanisms characterize the relaxation dynamics in magnetic molecules. We investigate two of them, spin-lattice coupling and incoherent quantum tunneling. The effect of the phonon heat bath is studied by analyzing the exponential time decay of the autocorrelation of the magnetization. We show that in ferromagnetic (Cu6) and antiferromagnetic (Fe6) molecular rings this decay is characterized by a single characteristic time. At very low temperature, relaxation through incoherent quantum tunneling may occur in nanomagnets such as Fe8 or Ni4. The mixing between levels with different values of the total spin (S mixing) greatly influences this mechanism. In particular, we demonstrate that a fourth-order anisotropy term O44, required to interpret experimental electron paramagnetic resonance and relaxation data in Ni4, naturally arises when S mixing is considered in calculations.

  14. Excited-state relaxation of some aminoquinolines

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available The absorption and fluorescence spectra, fluorescence quantum yields and lifetimes, and fluorescence rate constants ( k f of 2-amino-3-( 2 ′ -benzoxazolylquinoline (I, 2-amino-3-( 2 ′ -benzothiazolylquinoline (II, 2-amino-3-( 2 ′ -methoxybenzothiazolyl-quinoline (III, 2-amino-3-( 2 ′ -benzothiazolylbenzoquinoline (IV at different temperatures have been measured. The shortwavelength shift of fluorescence spectra of compounds studied (23–49 nm in ethanol as the temperature decreases (the solvent viscosity increases points out that the excited-state relaxation process takes place. The rate of this process depends essentially on the solvent viscosity, but not the solvent polarity. The essential increasing of fluorescence rate constant k f (up to about 7 times as the solvent viscosity increases proves the existence of excited-state structural relaxation consisting in the mutual internal rotation of molecular fragments of aminoquinolines studied, followed by the solvent orientational relaxation.

  15. Relaxation oscillation logic in Josephson junction circuits

    International Nuclear Information System (INIS)

    Fulton, T.A.

    1981-01-01

    A dc powered, self-resetting Josephson junction logic circuit relying on relaxation oscillations is described. A pair of Josephson junction gates are connected in series, a first shunt is connected in parallel with one of the gates, and a second shunt is connected in parallel with the series combination of gates. The resistance of the shunts and the dc bias current bias the gates so that they are capable of undergoing relaxation oscillations. The first shunt forms an output line whereas the second shunt forms a control loop. The bias current is applied to the gates so that, in the quiescent state, the gate in parallel with the second shunt is at V O, and the other gate is undergoing relaxation oscillations. By controlling the state of the first gate with the current in the output loop of another identical circuit, the invert function is performed

  16. Muon spin relaxation in ferromagnets. Pt. 1

    International Nuclear Information System (INIS)

    Lovesey, S.W.; Karlsson, E.B.

    1991-04-01

    Expressions for the dipolar and hyperfine contributions to the relaxation rate of muons implanted in a ferromagnet are presented and analysed using the Heisenberg model of spin-waves including dipolar and Zeeman energies. Calculations for EuO indicate that relaxation is likely to be dominated by the hyperfine mechanism, even if the ratio of the hyperfine and dipolar coupling constants is small. The hyperfine mechanism is sensitive to the dipolar energy of the atomic spins, whereas the dipolar mechanisms depend essentially on the exchange energy. For both mechanisms there is an almost quadratic dependence on temperature, throughout much of the ordered magnetic phase, which reflects two-spin-wave difference events from the Raman-type relaxation processes. (author)

  17. Improved memristor-based relaxation oscillator

    KAUST Repository

    Mosad, Ahmed G.

    2013-09-01

    This paper presents an improved memristor-based relaxation oscillator which offers higher frequency and wider tunning range than the existing reactance-less oscillators. It also has the capability of operating on two positive supplies or alternatively a positive and negative supply. Furthermore, it has the advantage that it can be fully integrated on-chip providing an area-efficient solution. On the other hand, The oscillation concept is discussed then a complete mathematical analysis of the proposed oscillator is introduced. Furthermore, the power consumption of the new relaxation circuit is discussed and validated by the PSPICE circuit simulations showing an excellent agreement. MATLAB results are also introduced to demonstrate the resistance range and the corresponding frequency range which can be obtained from the proposed relaxation oscillator. © 2013 Elsevier Ltd.

  18. Relaxation and Diffusion in Complex Systems

    CERN Document Server

    Ngai, K L

    2011-01-01

    Relaxation and Diffusion in Complex Systems comprehensively presents a variety of experimental evidences of universal relaxation and diffusion properties in complex materials and systems. The materials discussed include liquids, glasses, colloids, polymers, rubbers, plastic crystals and aqueous mixtures, as well as carbohydrates, biomolecules, bioprotectants and pharmaceuticals. Due to the abundance of experimental data, emphasis is placed on glass-formers and the glass transition problem, a still unsolved problem in condensed matter physics and chemistry. The evidence for universal properties of relaxation and diffusion dynamics suggests that a fundamental physical law is at work. The origin of the universal properties is traced to the many-body effects of the interaction, rigorous theory of which does not exist at the present time. However, using solutions of simplified models as guides, key quantities have been identified and predictions of the universal properties generated. These predictions from Ngai’...

  19. Electron relaxation properties of Ar magnetron plasmas

    Science.gov (United States)

    Xinjing, CAI; Xinxin, WANG; Xiaobing, ZOU

    2018-03-01

    An understanding of electron relaxation properties in plasmas is of importance in the application of magnetrons. An improved multi-term approximation of the Boltzmann equation is employed to study electron transport and relaxation properties in plasmas. Elastic, inelastic and nonconservative collisions between electrons and neutral particles are considered. The expressions for the transport coefficients are obtained using the expansion coefficients and the collision operator term. Numerical solutions of the matrix equations for the expansion coefficients are also investigated. Benchmark calculations of the Reid model are presented to demonstrate the accuracy of the improved multi-term approximation. It is shown that the two-term approximation is generally not accurate enough and the magnetic fields can reduce the anisotropy of the velocity distribution function. The electron relaxation properties of Ar plasmas in magnetrons for various magnetic fields are studied. It is demonstrated that the energy parameters change more slowly than the momentum parameters.

  20. Enhancement of relaxation rates in the normal state of superconductor PuRhGa5:NQR relaxation study

    International Nuclear Information System (INIS)

    Sakai, H.; Kambe, S.; Tokunaga, Y.; Fujimoto, T.; Walstedt, R.E.; Yasuoka, H.; Aoki, D.; Homma, Y.; Yamamoto, E.; Nakamura, A.; Shiokawa, Y.; Nakajima, K.; Arai, Y.; Matsuda, T.D.; Haga, Y.; Onuki, Y.

    2007-01-01

    The spin-lattice relaxation rates (1/T 1 ) have been measured under zero field using nuclear quadrupole resonance (NQR) lines in superconductor PuRhGa 5 and Pauli-paramagnet LuCoGa 5 . In the reference LuCoGa 5 with fully-occupied 4f shell, the 1/T 1 shows the constant behavior of (T 1 T) -1 =0.495+/-0.002(sK) -1 . On the other hand, in PuRhGa 5 , 1/T 1 is much larger than in LuCoGa 5 and the 1/T 1 ∝T behavior below ∼30K is seen, where its (T 1 T) -1 value is 3.27+/-0.005(sK) -1 . These results suggest a development of coherent Fermi liquid state incorporated with 5f electrons below ∼30K in PuRhGa 5

  1. Abrupt relaxation in high-spin molecules

    International Nuclear Information System (INIS)

    Chang, C.-R.; Cheng, T.C.

    2000-01-01

    Mean-field model suggests that the rate of resonant quantum tunneling in high-spin molecules is not only field-dependent but also time-dependent. The relaxation-assisted resonant tunneling in high-spin molecules produces an abrupt magnetization change during relaxation. When the applied field is very close to the resonant field, a time-dependent interaction field gradually shifts the energies of different collective spin states, and magnetization tunneling is observed as two energies of the spin states coincide

  2. Relaxed plasmas in external magnetic fields

    International Nuclear Information System (INIS)

    Spies, G.O.; Li, J.

    1991-08-01

    The well-known theory of relaxed plasmas (Taylor states) is extended to external magnetic fields whose field lines intersect the conducting toroidal boundary. Application to an axially symmetric, large-aspect-ratio torus with circular cross section shows that the maximum pinch ratio, and hence the phenomenon of current saturation, is independent of the external field. The relaxed state is explicitly given for an external octupole field. In this case, field reversal is inhibited near parts of the boundary if the octupole generates magnetic x-points within the plasma. (orig.)

  3. Nonlocal and collective relaxation in stellar systems

    Science.gov (United States)

    Weinberg, Martin D.

    1993-01-01

    The modal response of stellar systems to fluctuations at large scales is presently investigated by means of analytic theory and n-body simulation; the stochastic excitation of these modes is shown to increase the relaxation rate even for a system which is moderately far from instability. The n-body simulations, when designed to suppress relaxation at small scales, clearly show the effects of large-scale fluctuations. It is predicted that large-scale fluctuations will be largest for such marginally bound systems as forming star clusters and associations.

  4. NMR relaxation times of natural rubber latex

    International Nuclear Information System (INIS)

    Harun, S.; Aziz, H.; Basir, Z.

    1994-01-01

    NMR relaxation times T sub 1 and T sub 2 of natural rubber latex have been measured at 25 degree C on a pulsed NMR spectrometer. The work focuses on the variation of the relaxation times with the amount of water content from 0% to 50%. The water content was adjusted by centrifuging and removing a certain amount of water from the sample. The data were analysed using a biexponential fitting procedure which yields simultaneously either T sub 1a and T sub 1b or T sub 2a and T sub 2b. The amount of solid was compared with the known amount of dry rubber content

  5. Green--Kubo formula for collisional relaxation

    International Nuclear Information System (INIS)

    Visscher, P.B.

    1988-01-01

    In this paper we generalize the Green--Kubo method (usually used for obtaining formulas for transport coefficients involving conserved densities) to relaxation processes occurring during collisions, such as the transfer of energy from vibrational to translational modes in a molecular fluid. We show that the relaxation rate can be calculated without evaluating time correlation functions over long times, and can in fact be written as a sum over collisions which makes the relation between the Green--Kubo method and approximate independent-collision models much clearer

  6. Exciton-relaxation dynamics in lead halides

    International Nuclear Information System (INIS)

    Iwanaga, Masanobu; Hayashi, Tetsusuke

    2003-01-01

    We survey recent comprehensive studies of exciton relaxation in the crystals of lead halides. The luminescence and electron-spin-resonance studies have revealed that excitons in lead bromide spontaneously dissociate and both electrons and holes get self-trapped individually. Similar relaxation has been also clarified in lead chloride. The electron-hole separation is ascribed to repulsive correlation via acoustic phonons. Besides, on the basis of the temperature profiles of self-trapped states, we discuss the origin of luminescence components which are mainly induced under one-photon excitation into the exciton band in lead fluoride, lead chloride, and lead bromide

  7. Point defect relaxation volumes for copper

    International Nuclear Information System (INIS)

    Miller, K.M.

    1979-11-01

    The methods used for the determination of point defect relaxation volumes are discussed and it is shown that a previous interatomic potential derived for copper is inaccurate and results obtained using it are invalid. A new interatomic potential has been produced for copper and a computer simulation of point and planar defects carried out. A vacancy relaxation volume of -0.33 atomic volumes has been found with interstitial values in the range 1.7 to 2.0 atomic volumes. It is shown that these values in current theories of irradiation induced swelling lead to an anomalously high value for dislocation bias compared with that determined experimentally. (author)

  8. Influence of in-plane field on vertical Bloch line in the walls of the second kind of dumbbell domains at various temperatures

    International Nuclear Information System (INIS)

    Xu, J.P.; Liu, S.P.; Guo, G.X.; Zhen, C.M.; Tang, G.D.; Sun, H.Y.; Nie, X.F.

    2004-01-01

    The stability of vertical Bloch lines (VBLs) in the second kind of dumbbell domain (IIDs) walls in liquid phase epitaxy garnet bubble films subjected to an in-plane field at various temperatures is studied experimentally. It is found that there exists a critical in-plane field range depending on temperature, in which vertical Bloch lines (VBLs) in the second kind of IIDs walls are unstable, i.e., [Hip(1)(T),Hip(2)(T)]. Here, Hip(1)(T) is the initial critical in-plane field at which VBLs in the walls of IIDs annihilate; while Hip(2)(T) is the lowest in-plane field at which all VBLs in the walls of IIDs have annihilated completely. Also, the critical in-plane field range [Hip(1)(T),Hip(2)(T)],Hip(1)(T) and Hip(2)(T) all decrease with the temperature increasing. Hip(1)(T) and Hip(2)(T) reach zero at T0' and T0, respectively

  9. Relaxation dynamics of a quantum emitter resonantly coupled to a metal nanoparticle

    DEFF Research Database (Denmark)

    Nerkararyan, K. V.; Bozhevolnyi, S. I.

    2014-01-01

    consequence of this relaxation process is that the emission, being largely determined by the MNP, comes out with a substantial delay. A large number of system parameters in our analytical description opens new possibilities for controlling quantum emitter dynamics. (C) 2014 Optical Society of America......The presence of a metal nanoparticle (MNP) near a quantum dipole emitter, when a localized surface plasmon mode is excited via the resonant coupling with an excited quantum dipole, dramatically changes the relaxation dynamics: an exponential decay changes to step-like behavior. The main physical...

  10. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yongling [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Bo, Maolin [Yangtze Normal University, College of Mechanical and Electrical Engineering, Chongqing 408100 (China); Wang, Yan [School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Liu, Yonghui [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Sun, Chang Q. [NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Huang, Yongli, E-mail: huangyongli@xtu.edu.cn [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China)

    2017-02-28

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O{sup 2−} lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta{sup +} electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta{sup +}; the sp{sup 3}-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent

  11. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    International Nuclear Information System (INIS)

    Guo, Yongling; Bo, Maolin; Wang, Yan; Liu, Yonghui; Sun, Chang Q.; Huang, Yongli

    2017-01-01

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O"2"− lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta"+ electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta"+; the sp"3-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent insight into the

  12. Dynamical relaxation in 2HDM models

    Science.gov (United States)

    Lalak, Zygmunt; Markiewicz, Adam

    2018-03-01

    Dynamical relaxation provides an interesting solution to the hierarchy problem in face of the missing signatures of any new physics in recent experiments. Through a dynamical process taking place in the inflationary phase of the Universe it manages to achieve a small electroweak scale without introducing new states observable in current experiments. Appropriate approximation makes it possible to derive an explicit formula for the final vevs in the double-scanning scenario extended to a model with two Higgs doublets (2HDM). Analysis of the relaxation in the 2HDM confirms that in a general case it is impossible to keep vevs of both scalars small, unless fine-tuning is present or additional symmetries are cast upon the Lagrangian. Within the slightly constrained variant of the 2HDM, where odd powers of the fields’ expectation values are not present (which can be easily enforced by requiring that the doublets have different gauge transformations or by imposing a global symmetry) it is shown that the difference between the vevs of two scalars tends to be proportional to the cutoff. The analysis of the relaxation in 2HDM indicates that in a general case the relaxation would be stopped by the first doublet that gains a vev, with the other one remaining vevless with a mass of the order of the cutoff. This happens to conform with the inert doublet model.

  13. Relaxation of coupled nuclear spin systems

    International Nuclear Information System (INIS)

    Koenigsberger, E.

    1985-05-01

    The subject of the present work is the relaxation behaviour of scalarly coupled spin-1/2 systems. In the theoretical part the semiclassical Redfield equations are used. Dipolar (D), Chemical Shift Anisotropy (CSA) and Random Field (RF) interactions are considered as relaxation mechanisms. Cross correlations of dipolar interactions of different nuclei pairs and those between the D and the CSA mechanisms are important. The model of anisotropic molecular rotational relaxation and the extreme narrowing approximation are used to obtain the spectral density functions. The longitudinal relaxation data are analyzed into normal modes following Werbelow and Grant. The time evolution of normal modes is derived for the AX system with D-CSA cross terms. In the experimental part the hypothesis of dimerization in the cinnamic acid and the methyl cinnamate - AMX systems with DD cross terms - is corroborated by T 1 -time measurements and a calculation of the diffusion constants. In pentachlorobenzene - an AX system - taking into account of D-CSA cross terms enables the complete determination of movements anosotropy and the determination of the sign of the indirect coupling constant 1 Jsub(CH). (G.Q.)

  14. Quantization by stochastic relaxation processes and supersymmetry

    International Nuclear Information System (INIS)

    Kirschner, R.

    1984-01-01

    We show the supersymmetry mechanism resposible for the quantization by stochastic relaxation processes and for the effective cancellation of the additional time dimension against the two Grassmann dimensions. We give a non-perturbative proof of the validity of this quantization procedure. (author)

  15. Waveform relaxation methods for implicit differential equations

    NARCIS (Netherlands)

    P.J. van der Houwen; W.A. van der Veen

    1996-01-01

    textabstractWe apply a Runge-Kutta-based waveform relaxation method to initial-value problems for implicit differential equations. In the implementation of such methods, a sequence of nonlinear systems has to be solved iteratively in each step of the integration process. The size of these systems

  16. Collection Development: Relaxation & Meditation, September 1, 2010

    Science.gov (United States)

    Lettus, Dodi

    2010-01-01

    One of the first books to document the relationship between stress and physical and emotional health was "The Relaxation Response" by Herbert Benson, M.D., with Miriam Z. Klipper. Originally published in 1975, the book grew out of Benson's observations as a cardiologist and his research as a fellow at Harvard Medical School. Benson's study of…

  17. Stretched Exponential relaxation in pure Se glass

    Science.gov (United States)

    Dash, S.; Ravindren, S.; Boolchand, P.

    A universal feature of glasses is the stretched exponential relaxation, f (t) = exp[ - t / τ ] β . The model of diffusion of excitations to randomly distributed traps in a glass by Phillips1 yields the stretched exponent β = d[d +2] where d, the effective dimensionality. We have measured the enthalpy of relaxation ΔHnr (tw) at Tg of Se glass in modulated DSC experiments as glasses age at 300K and find β = 0.43(2) for tw in the 0 relaxation is a narrowing of the glass transition width from 7.1°C to 1.4°C, and the ΔHnr term increasing from 0.21 cal/gm to 0.92 cal/gm. In bulk GexSe100-x glasses as x increases to 20%, the length of the polymeric Sen chains between the Ge-crosslinks decreases to n = 2. and the striking relaxation effects nearly vanish. J.C. Phillips, Rep.Prog.Phys. 59 , 1133 (1996). Supported by NSF Grant DMR 08-53957.

  18. Structural relaxation monitored by instantaneous shear modulus

    DEFF Research Database (Denmark)

    Olsen, Niels Boye; Dyre, Jeppe; Christensen, Tage Emil

    1998-01-01

    time definition based on a recently proposed expression for the relaxation time, where G [infinity] reflects the fictive temperature. All parameters entering the reduced time were determined from independent measurements of the frequency-dependent shear modulus of the equilibrium liquid....

  19. Electron spin-lattice relaxation in fractals

    International Nuclear Information System (INIS)

    Shrivastava, K.N.

    1986-08-01

    We have developed the theory of the spin-fracton interaction for paramagnetic ions in fractal structures. The interaction is exponentially damped by the self-similarity length of the fractal and by the range dimensionality d Φ . The relaxation time of the spin due to the absorption and emission of the fracton has been calculated for a general dimensionality called the Raman dimensionality d R , which for the fractons differs from the Hausdorff (fractal) dimensionality, D, as well as from the Euclidean dimensionality, d. The exponent of the energy level separation in the relaxation rate varies with d R d Φ /D. We have calculated the spin relaxation rate due to a new type of Raman process in which one fracton is absorbed to affect a spin transition from one electronic level to another and later another fracton is emitted along with a spin transition such that the difference in the energies of the two fractons is equal to the electronic energy level separation. The temperature and the dimensionality dependence of such a process has been found in several approximations. In one of the approximations where the van Vleck relaxation rate for a spin in a crystal is known to vary with temperature as T 9 , our calculated variation for fractals turns out to be T 6.6 , whereas the experimental value for Fe 3+ in frozen solutions of myoglobin azide is T 6.3 . Since we used d R =4/3 and the fracton range dimensionality d Φ =D/1.8, we expect to measure the dimensionalities of the problem by measuring the temperature dependence of the relaxation times. We have also calculated the shift of the paramagnetic resonance transition for a spin in a fractal for general dimensionalities. (author)

  20. Relaxation of microparticles exposed to hydrodynamic forces in microfluidic conduits.

    Science.gov (United States)

    Janča, Josef; Halabalová, Věra; Polášek, Vladimír; Vašina, Martin; Menshikova, Anastasia Yu

    2011-02-01

    The behavior of microparticles exposed to gravitational and lift forces and to the velocity gradient in flow velocity profile formed in microfluidic conduits is studied from the viewpoint of the transient period (the relaxation) between the moment at which a particle starts to be transported by the hydrodynamic flow and the time at which it reaches an equilibrium position, characterized by a balance of all active forces. The theoretical model allowing the calculation of the relaxation time is proposed. The numerical calculus based on the proposed model is compared with the experimental data obtained under different experimental conditions, namely, for different lengths of microfluidic channels, different average linear velocities of the carrier liquid, and different sizes and densities of the particles used in the study. The results are important for the optimization of microfluidic separation units such as microthermal field-flow fractionation channels in which the separation or manipulation of the microparticles of various origin, synthetic, natural, biological, etc., is performed under similar experimental conditions but by applying an additional thermodynamic force.

  1. Magnetism of a relaxed single atom vacancy in graphene

    Science.gov (United States)

    Wu, Yunyi; Hu, Yonghong; Xue, Li; Sun, Tieyu; Wang, Yu

    2018-04-01

    It has been suggested in literature that defects in graphene (e.g. absorbed atoms and vacancies) may induce magnetizations due to unpaired electrons. The nature of magnetism, i.e. ferromagnetic or anti-ferromagnetic, is dependent on a number of structural factors including locations of magnetic moments and lattice symmetry. In the present work we investigated the influence of a relaxed single atom vacancy in garphnene on magnetization which were obtained under different pinning boundary conditions, aiming to achieve a better understanding of the magnetic behaviors of graphene. Through first principles calculations, we found that major spin polarizations occur on atoms that deviate slightly from their original lattice positions, and pinning boundaries could also affect the relaxed positions of atoms and determine which atom(s) would become the main source(s) of total spin polarizations and magnetic moments. When the pinning boundary condition is free, a special non-magnetic and semi-conductive structure may be obtained, suggesting that magnetization should more readily occur under pinning boundary conditions.

  2. Nuclear spin dominated relaxation of atomic tunneling systems in glasses

    Energy Technology Data Exchange (ETDEWEB)

    Luck, Annina

    2016-11-16

    The measurements performed in this thesis have revealed a non phononic relaxation channel for atomic tunneling systems in glasses at very low temperatures due to the presence of nuclear electric quadrupoles. Dielectric measurements on the multicomponent glasses N-KZFS11 and HY-1, containing {sup 181}Ta and {sup 165}Ho, respectively, that both carry very large nuclear electric quadrupole moments, show a relaxation rate in the kilohertz range, that is constant for temperatures exceeding the nuclear quadrupole splitting of the relevant isotopes. The results are compared to measurements performed on the glasses Herasil and N-BK7 that both contain no large nuclear quadrupole moments. Using three different setups to measure the complex dielectric function, the measurements cover almost eight orders of magnitude in frequency from 60 Hz to 1 GHz and temperatures down to 7.5 mK. This has allowed us a detailed study of the novel effects observed within this thesis and has led to a simplified model explaining the effects of nuclear electric quadrupoles on the behavior of glasses at low temperatures. Numeric calculations based on this model are compared to the measured data.

  3. Pure-Phase Selective Excitation in Fast-Relaxing Systems

    Science.gov (United States)

    Zangger, Klaus; Oberer, Monika; Sterk, Heinz

    2001-09-01

    Selective pulses have been used frequently for small molecules. However, their application to proteins and other macromolecules has been limited. The long duration of shaped-selective pulses and the short T2 relaxation times in proteins often prohibited the use of highly selective pulses especially on larger biomolecules. A very selective excitation can be obtained within a short time by using the selective excitation sequence presented in this paper. Instead of using a shaped low-intensity radiofrequency pulse, a cluster of hard 90° pulses, delays of free precession, and pulsed field gradients can be used to selectively excite a narrow chemical shift range within a relatively short time. Thereby, off-resonance magnetization, which is allowed to evolve freely during the free precession intervals, is destroyed by the gradient pulses. Off-resonance excitation artifacts can be removed by random variation of the interpulse delays. This leads to an excitation profile with selectivity as well as phase and relaxation behavior superior to that of commonly used shaped-selective pulses. Since the evolution of scalar coupling is inherently suppressed during the double-selective excitation of two different scalar-coupled nuclei, the presented pulse cluster is especially suited for simultaneous highly selective excitation of N-H and C-H fragments. Experimental examples are demonstrated on hen egg white lysozyme (14 kD) and the bacterial antidote ParD (19 kD).

  4. Hybrid Bloch brane

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Lima, Elisama E.M.; Losano, L. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil)

    2017-02-15

    This work reports on models described by two real scalar fields coupled with gravity in the five-dimensional spacetime, with a warped geometry involving one infinite extra dimension. Through a mechanism that smoothly changes a thick brane into a hybrid brane, one investigates the appearance of hybrid branes hosting internal structure, characterized by the splitting on the energy density and the volcano potential, induced by the parameter which controls interactions between the two scalar fields. In particular, we investigate distinct symmetric and asymmetric hybrid brane scenarios. (orig.)

  5. Low-Dimensional Nanoparticle Clustering in Polymer Micelles and Their Transverse Relaxivity Rates

    Science.gov (United States)

    Hickey, Robert J.; Meng, Xin; Zhang, Peijun; Park, So-Jung

    2015-01-01

    One- or two-dimensional arrays of iron oxide nanoparticles were formed in colloidal assemblies of amphiphilic polymers. Electron tomography imaging revealed that nanoparticles are arranged into one-dimensional strings in magneto-micelles or two-dimensional sheets in magneto-core/shell assemblies. The distinct directional assembly behavior was attributed to the interparticle interaction relative to the nanoparticle–polymer interaction, which was modulated by varying the cosolvent used for the solution phase self-assembly. Magneto-core/shell assemblies with varying structural parameters were formed with a range of different sized as-synthesized nanoparticles. The transverse magnetic relaxivity rates (r2) of a series of different assemblies were determined to examine the effect of nanoparticle arrangement on the magnetic relaxivity for their potential applications in MRI. The results indicated that the assembly structure of nanoparticles in polymer micelles significantly affects the r2 of surrounding water, providing a way to control magnetic relaxivity. PMID:23731021

  6. Dielectric relaxation studies of some primary alcohols and their mixture with water

    International Nuclear Information System (INIS)

    Ahmad, S.S.; Yaqub, M.

    2003-01-01

    The complex dielectric constant of ethyl alcohol, methyl alcohol and 1- propanol and their mixtures with water of different concentration, (0 to 100% by weight) at the temperature of 303K has been evaluated, within the frequency range of (100KHz- 100 MHz). Moreover, the viscosity mu of each alcohol and its mixture with water have been measured at this temperature. The dielectric properties have been evaluated by Hartshorn and Ward apparatus. The purpose of this work is to study the influence of aliphatic group, size and shape on the extent of hydrogen bonding and also to obtain the thermodynamic data on hydrogen bond formation in the pure liquid state and its mixture. The width of the semicircle plot determines the distribution of average relaxation time. Dielectric relaxation time in pure alcohols and their water mixture has been calculated from the respected Cole-Cole plot and dielectric data. A single relaxation time of 117.16ps has been obtained for the molecules of pure methanol, whereas, the dielectric data of prophyl alcohol which indicates the viscosity water have been measured at the temperature 303 K. The dielectric properties in distribution of relaxation time, which is in good agreement with the Davidson-cole representation. The molecules in liquid mixture within frequency range, the mixture has more than one relaxation item, leading to the shortening of main relaxation time as compared with the pure alcohol and broadening of the complex permitivity spectra. The dependence of the dielectric relaxation on composition shows a remarkable behavior. Results are discussed in the light of H-bonded molecules. (author)

  7. MR imaging of the stomach and relaxation measurement with intraluminal hyperpolarized 129Xenon gas

    International Nuclear Information System (INIS)

    Yanagawa, Yasuhiro; Kimura, Atsuomi; Fujiwara, Hideaki; Kinoshita, Yoshimasa; Hattori, Mineyuki; Hiraga, Takashi; Iida, Hidehiro

    2001-01-01

    Using laser optical pumping, the nuclear spin polarization of noble gases can be strongly enhanced. The purpose of this study was to make a simple apparatus that can provide hyperpolarized 129 Xe gas, which can then be used in an attempt to obtain magnetic resonance imaging (MRI). We would also like to study the relaxation behavior of hyperpolarized 129 Xe gas through the measurement of the relaxation time. First, we demonstrated that hyperpolarized 129 Xe gas can be applied to magnetic resonance imaging of the stomach, by using a rat as a model. This was performed under a 4.7 T magnet field using the following imaging parameters for the hyperpolarized 129 Xe gas: TR=50 ms, TE=15 ms, FOV=10 x 10 cm 2 , matrix size 64 x 64, THK=2.54 cm. By using these parameters, we were able to obtain a hyperpolarized image of the stomach in rats for the first time. Next, we measured the relaxation times of the hyperpolarized 129 Xe gas enclosed in cavities such as the stomach of rats as well as in phantoms created by glass and gelatin bulbs. The cavity size dependency of the relaxation time was analyzed on the basis of the kinetic theory of gases. This analysis showed a linear relationship between the relaxation rate (1/T 1 ) and a square inverse of the cavity diameter (1/d 2 ). From this relationship, the wall effect on the 129 Xe relaxation can be estimated in the novel parameter t 1 , wall . This shows drastic dependency on the material of the wall, suggesting a potential use of the relaxation experiment as a diagnostic tool for organ surfaces in the future. (author)

  8. Picosecond intersubband hole relaxation in p-type quantum wells

    International Nuclear Information System (INIS)

    Xu, Z.; Fauchet, P.M.; Rella, C.W.; Schwettman, H.A.

    1995-01-01

    We report the first direct measurement of the relaxation time of holes in p-type quantum wells using tunable, subpicosecond mid-infrared laser pulses in a pump-probe arrangement. The QW layers consisted of 50 In 0.5 Ga 0.5 As/Al 0.5 Ga 0.5 As periods. The In 0.5 Ga 0.5 As well was 4 nm wide and the Al 0.5 Ga 0.5 As barrier was 8 nm wide. The dopant concentration was 10 19 CM -3 which corresponds to a sheet density of 1.2 x 10 13 CM -2 . The room temperature IR spectrum showed a 50 meV wide absorption peak at 5.25 μm (220 meV). This energy agrees with the calculated n=1 heavy hole to n=1 light hole transition energy of 240 meV (150 meV for strain and 90 meV for confinement). The large absorption width results from hole-hole scattering and the difference in dispersion relations between the two subbands. The equal-wavelength pump-probe transmission measurements were performed using the Stanford free electron laser (FEL). The FEL pulses were tuned between 4 and 6 μ m and their duration was less than 1 ps. The measurements were performed as a function of temperature, pump wavelength and intensity (from 0.3 to 10 GW/cm 2 ). In all our experiments, we find an increase of transmission (decrease of absorption or bleaching) following photopumping, which recovers as a single exponential with a time constant (relaxation time) of the order of 1 picosecond. The maximum change in transmission is linear with pump 2 intensity below 1 GW/cm 2 and saturates to ∼3% with a saturation intensity I sat of 3 GW/cm 2 . As the saturation regime is entered, the relaxation time increases from 0.8 ps to 1.8 ps. This relaxation time depends on the temperature T: it increases from 0.8 ps to 1.3 ps as T decreases from 300 K to 77 K. Finally, when we tune the laser through the absorption band, the magnitude of the signal changes but its temporal behavior does not change, within the accuracy of the measurements

  9. Transport and relaxation properties of superfluid 3He. I. Kinetic equation and Bogoliubov quasiparticle relaxation rate

    International Nuclear Information System (INIS)

    Einzel, D.; Woelfle, P.

    1978-01-01

    The kinetic equation for Bogoliubov quasiparticles for both the A and B phases of superfluid 3 He is derived from the general matrix kinetic equation. A condensed expression for the exact spin-symmetric collision integral is given. The quasiparticle relaxation rate is calculated for the BW state using the s--p approximation for the quasiparticle scattering amplitude. By using the results for the quasiparticle relaxation rate, the mean free path of Bogoliubov quasiparticles is calculated for all temperatures

  10. More is less: Learning but not relaxing buffers deviance under job stressors.

    Science.gov (United States)

    Zhang, Chen; Mayer, David M; Hwang, Eunbit

    2018-02-01

    Workplace deviance harms the well-being of an organization and its members. Unfortunately, theory and prior research suggest that deviance is associated with job stressors, which are endemic to work organizations and often cannot be easily eliminated. To address this conundrum, we explore actions individuals can take at work that serve as buffering conditions for the positive relationship between job stressors and deviant behavior. Drawing upon conservation of resources theory, we examine a resource-building activity (i.e., learning something new at work) and a demand-shielding activity (i.e., taking time for relaxation at work) as potential boundary conditions. In 2 studies with employee samples using complementary designs, we find support for the buffering role of learning but not for relaxation. When employees learn new things at work, the relationship between hindrance stressors and deviance is weaker; as is the indirect relationship mediated by negative emotions. Taking time for relaxation at work did not show a moderating role in either study. Therefore, although relaxation is a response that individuals might be inclined to turn to for counteracting work stress, our findings suggest that, when it comes to addressing negative emotions and deviance in stressful work environments, building positive resources by learning something new at work could be more useful. In that way, doing more (i.e., learning, and not relaxing) is associated with less (deviance) in the face of job stressors. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  11. Stress relaxation at a gelatin hydrogel-glass interface in direct shear sliding

    Science.gov (United States)

    Gupta, Vinit; Singh, Arun K.

    2018-01-01

    In this paper, we study experimentally the stress relaxation behavior of soft solids such as gelatin hydrogels on a smooth glass surface in direct shear sliding. It is observed experimentally that irrespective of pulling velocity, the sliding block relaxes to the same level of nonzero residual stress. However, residual stress increases with increasing gelatin concentration in the hydrogels. We have also validated a friction model for strong bond formation during steady relaxation in light of the experimental observations. Our theoretical analysis establishes that population of dangling chains at the sliding interface significantly affects the relaxation process. As a result, residual stress increases with increasing gelatin concentration or decreasing mesh size of the three-dimensional structures in the hydrogels. It is also found that the transition time, at which a weak bond converts to strong bond, increases with increasing mesh size of the hydrogels. Moreover, relaxation time constant of a strong bond decreases with increasing mesh size. However, activation length of a strong bond increases with mesh size. Finally, this study signifies the role of residual strength in frictional shear sliding and it is believed that these results should be useful to understand the role of residual stress in stick-slip instability.

  12. Effect of guided relaxation and imagery on falls self-efficacy: a randomized controlled trial.

    Science.gov (United States)

    Kim, Bang Hyun; Newton, Roberta A; Sachs, Michael L; Glutting, Joseph J; Glanz, Karen

    2012-06-01

    To examine the effects of guided relaxation and imagery (GRI) on improvement in falls self-efficacy in older adults who report having a fear of falling. Randomized, controlled trial with allocation to GRI or guided relaxation with music of choice. General community. Ninety-one men and women aged 60 to 92. Participants were randomized to listen to a GRI audio compact disk (intervention group) or a guided relaxation audio compact disk and music of choice (control group) twice a week for 6 weeks for 10 minutes per session. Primary outcome measure was the Short Falls Efficacy Scale-International (FES-I). Secondary outcome measures were the Leisure Time Exercise Questionnaire (LTEQ) and the Timed Up and Go (TUG) mobility test. GRI participants reported greater improvements on the Short FES-I (P = .002) and LTEQ (P = .001) scores and shorter time on the TUG (P = .002) than the guided relaxation and music-of-choice group. GRI was more effective at increasing falls self-efficacy and self-reported leisure time exercise and reducing times on a simple mobility test than was guided relaxation with music of choice. GRI is an effective, simple, low-cost tool for older adults to improve falls self-efficacy and leisure time exercise behaviors. © 2012, Copyright the Authors Journal compilation © 2012, The American Geriatrics Society.

  13. Spin-orbit coupling induced two-electron relaxation in silicon donor pairs

    Science.gov (United States)

    Song, Yang; Das Sarma, S.

    2017-09-01

    We unravel theoretically a key intrinsic relaxation mechanism among the low-lying singlet and triplet donor-pair states in silicon, an important element in the fast-developing field of spintronics and quantum computation. Despite the perceived weak spin-orbit coupling (SOC) in Si, we find that our discovered relaxation mechanism, combined with the electron-phonon and interdonor interactions, drives the transitions in the two-electron states over a large range of donor coupling regimes. The scaling of the relaxation rate with interdonor exchange interaction J goes from J5 to J4 at the low to high temperature limits. Our analytical study draws on the symmetry analysis over combined band, donor envelope, and valley configurations. It uncovers naturally the dependence on the donor-alignment direction and triplet spin orientation, and especially on the dominant SOC source from donor impurities. While a magnetic field is not necessary for this relaxation, unlike in the single-donor spin relaxation, we discuss the crossover behavior with increasing Zeeman energy in order to facilitate comparison with experiments.

  14. Nuclear magnetic resonance study of diffusion and relaxation in hydrating white cement pastes of different water content

    International Nuclear Information System (INIS)

    Nestle, Nikolaus; Galvosas, Petrik; Geier, Oliver; Zimmermann, Christian; Dakkouri, Marwan; Karger, Jorg

    2001-01-01

    While the nuclear spin relaxation time changes in hydrating cement materials have been widely studied by various groups during the last 20 years, data on the self-diffusion behavior of the pore water during hydration of a cement paste are much scarcer. Taking advantage of improved spectrometer hardware for pulsed field gradient diffusometry and a specialized pulse sequence which is designed to compensate the detrimental effects of inner magnetic field gradients in the sample we have studied the water self-diffusion behavior in pastes prepared from white cement at various water/cement ratios. For the same mixtures, studies of the transverse spin relaxation behavior were also conducted. A comparison of the results from both techniques shows that the diffusion coefficient starts to decrease only much later than the relaxation times for all pastes studied. [copyright] 2001 American Institute of Physics

  15. Spin Relaxation and Manipulation in Spin-orbit Qubits

    Science.gov (United States)

    Borhani, Massoud; Hu, Xuedong

    2012-02-01

    We derive a generalized form of the Electric Dipole Spin Resonance (EDSR) Hamiltonian in the presence of the spin-orbit interaction for single spins in an elliptic quantum dot (QD) subject to an arbitrary (in both direction and magnitude) applied magnetic field. We predict a nonlinear behavior of the Rabi frequency as a function of the magnetic field for sufficiently large Zeeman energies, and present a microscopic expression for the anisotropic electron g-tensor. Similarly, an EDSR Hamiltonian is devised for two spins confined in a double quantum dot (DQD). Finally, we calculate two-electron-spin relaxation rates due to phonon emission, for both in-plane and perpendicular magnetic fields. Our results have immediate applications to current EDSR experiments on nanowire QDs, g-factor optimization of confined carriers, and spin decay measurements in DQD spin-orbit qubits.

  16. BIOLOGICAL CHARACTERISTICS OF PRUSSIAN CARP (CARASSIUS AURATUS GIBELIO (BLOCH, 1782 COMMERCIAL STOCK OF THE DNIEPER-BUG ESTUARY

    Directory of Open Access Journals (Sweden)

    К. Heina

    2017-09-01

    Full Text Available Purpose. To provide the biological assessment of the silver Prussian carp (Carassius auratus gibelio (Bloch, 1782 commercial stock of the Dnieper-Bug estuary in the conditions of the transformed Dnieper river flow. Methodology. During the analysis of the biological state of the Prussian carp commercial stock, the main attention was given to the dynamics of age and sexual structure, length-weight growth rate, absolute fecundity and condition factor. The basic data were collected during the work of control-observation stations of the Institute of Fisheries in the Dnieper-Bug estuary during the current century. The collection and processing of ichthyological materials were performed in accordance with the generally accepted methodologies. Findings. The analysis showed that during the current century, the age structure of the Prussian carp of the Dnieper-Bug estuary was the most labile among other commercial cyprinids. It was found that as a result of an increase in the right wing of the age series, there was a gradual increase of the mean weighted age of its commercial stock. At the beginning of studies (2001-2002, the core of the stock was formed by age-3-6 fish (up ; however in subsequent years, a displacement of dominant groups toward the dominance of age-4-7 fish (more than 80% of the total stock was observed. At the same time, the relative number of age-3 fish (recruits was at a relatively high level – up to 10.6%. The linear growth varied more intensively until the age-5, but it reduced with ageing and did not show high variability. The body weight most variable was in age-4 fish (Cv=9.62%. The noted insignificant deviations in the body weight growth rate of the right wing of the age series was due to stable predominance of females in the stock structure, which were characterized by a variability of the mean weight as a result of different development of gonads. The dynamics of the age-related changes in the condition factor indicated on a

  17. Vibrational Energy Relaxation in Water-Acetonitrile Mixtures

    NARCIS (Netherlands)

    Cringus, Dan; Yeremenko, Sergey; Pshenichnikov, Maxim S.; Wiersma, Douwe A.; Kobayashi, Takayoshi; Kobayashi, Tetsuro; Nelson, Keith A.; Okada, Tadashi; Silvestri, Sandro De

    2004-01-01

    IR pump-probe spectroscopy is used to study the effect of hydrogen bonding on the vibrational energy relaxation pathways. Hydrogen bonding accelerates the population relaxation from 12ps in diluted acetonitrile solution to 700fs in bulk water.

  18. Exploiting Sparsity in SDP Relaxation for Sensor Network Localization

    NARCIS (Netherlands)

    S. Kim (Sunyoung); M. Kojima; H. Waki (Hayato)

    2008-01-01

    htmlabstract A sensor network localization problem can be formulated as a quadratic optimization problem (QOP). For quadratic optimization problems, semidefinite programming (SDP) relaxation by Lasserre with relaxation order 1 for general polynomial optimization problems (POPs) is known to be

  19. Exploiting Sparsity in SDP Relaxation for Sensor Network Localization

    NARCIS (Netherlands)

    S. Kim (Sunyoung); M. Kojima; H. Waki (Hayato)

    2009-01-01

    htmlabstract A sensor network localization problem can be formulated as a quadratic optimization problem (QOP). For quadratic optimization problems, semidefinite programming (SDP) relaxation by Lasserre with relaxation order 1 for general polynomial optimization problems (POPs) is known to be

  20. Vibrational relaxation dynamics of SD molecules in As2S3: Observation of an anomalous isotope effect

    International Nuclear Information System (INIS)

    Engholm, J.R.; Happek, U.; Rella, C.W.

    1995-01-01

    It is generally assumed that the vibrational relaxation of molecular impurities in crystals and glasses mainly depends on the order of the decay process, with lower order processes leading to more rapid relaxation (a behavior that is known under the term open-quotes gap-lawclose quotes). Here we present measurements that contradict this assumption. Using high intensity psec pulses of the Stanford FEL we measured the relaxation rate of the SD vibrational stretch mode (at a frequency of 1800 cm) by applying a pump-probe technique. We find relaxation rates on the order of 2x10 9 sec -1 , which are a factor of 2 lower than those found for the isotope molecule SH (at a frequency of about 2500 cm - 1 ) in the same host 1 . We recall that the relaxation of the SD vibrational stretch mode is controlled by a lower order process as compared to the SH molecule, which is due to the smaller number of host vibrational quanta to match the energy of the stretch mode; a fact we have confirmed experimentally by temperature dependent relaxation measurements. Thus our remits are in marked contrast to the so-called open-quotes Gap-Lawclose quotes and emphasize the importance of the molecule - host coupling in the relaxation dynamics

  1. Local spin dynamics at low temperature in the slowly relaxing molecular chain [Dy(hfac)3{NIT(C6H4OPh)}]: A μ+ spin relaxation study

    Science.gov (United States)

    Arosio, Paolo; Corti, Maurizio; Mariani, Manuel; Orsini, Francesco; Bogani, Lapo; Caneschi, Andrea; Lago, Jorge; Lascialfari, Alessandro

    2015-05-01

    The spin dynamics of the molecular magnetic chain [Dy(hfac)3{NIT(C6H4OPh)}] were investigated by means of the Muon Spin Relaxation (μ+SR) technique. This system consists of a magnetic lattice of alternating Dy(III) ions and radical spins, and exhibits single-chain-magnet behavior. The magnetic properties of [Dy(hfac)3{NIT(C6H4OPh)}] have been studied by measuring the magnetization vs. temperature at different applied magnetic fields (H = 5, 3500, and 16500 Oe) and by performing μ+SR experiments vs. temperature in zero field and in a longitudinal applied magnetic field H = 3500 Oe. The muon asymmetry P(t) was fitted by the sum of three components, two stretched-exponential decays with fast and intermediate relaxation times, and a third slow exponential decay. The temperature dependence of the spin dynamics has been determined by analyzing the muon longitudinal relaxation rate λinterm(T), associated with the intermediate relaxing component. The experimental λinterm(T) data were fitted with a corrected phenomenological Bloembergen-Purcell-Pound law by using a distribution of thermally activated correlation times, which average to τ = τ0 exp(Δ/kBT), corresponding to a distribution of energy barriers Δ. The correlation times can be associated with the spin freezing that occurs when the system condenses in the ground state.

  2. Local spin dynamics at low temperature in the slowly relaxing molecular chain [Dy(hfac)3(NIT(C6H4OPh))]: A μ+ spin relaxation study

    International Nuclear Information System (INIS)

    Arosio, Paolo; Orsini, Francesco; Corti, Maurizio; Mariani, Manuel; Bogani, Lapo; Caneschi, Andrea; Lago, Jorge; Lascialfari, Alessandro

    2015-01-01

    The spin dynamics of the molecular magnetic chain [Dy(hfac) 3 (NIT(C 6 H 4 OPh))] were investigated by means of the Muon Spin Relaxation (μ + SR) technique. This system consists of a magnetic lattice of alternating Dy(III) ions and radical spins, and exhibits single-chain-magnet behavior. The magnetic properties of [Dy(hfac) 3 (NIT(C 6 H 4 OPh))] have been studied by measuring the magnetization vs. temperature at different applied magnetic fields (H = 5, 3500, and 16500 Oe) and by performing μ + SR experiments vs. temperature in zero field and in a longitudinal applied magnetic field H = 3500 Oe. The muon asymmetry P(t) was fitted by the sum of three components, two stretched-exponential decays with fast and intermediate relaxation times, and a third slow exponential decay. The temperature dependence of the spin dynamics has been determined by analyzing the muon longitudinal relaxation rate λ interm (T), associated with the intermediate relaxing component. The experimental λ interm (T) data were fitted with a corrected phenomenological Bloembergen-Purcell-Pound law by using a distribution of thermally activated correlation times, which average to τ = τ 0 exp(Δ/k B T), corresponding to a distribution of energy barriers Δ. The correlation times can be associated with the spin freezing that occurs when the system condenses in the ground state

  3. Earth's magnetic field enabled scalar coupling relaxation of 13C nuclei bound to fast-relaxing quadrupolar 14N in amide groups.

    Science.gov (United States)

    Chiavazza, Enrico; Kubala, Eugen; Gringeri, Concetta V; Düwel, Stephan; Durst, Markus; Schulte, Rolf F; Menzel, Marion I

    2013-02-01

    Scalar coupling relaxation, which is usually only associated with closely resonant nuclei (e.g., (79)Br-(13)C), can be a very effective relaxation mechanism. While working on hyperpolarized [5-(13)C]glutamine, fast liquid-state polarization decay during transfer to the MRI scanner was observed. This behavior could hypothetically be explained by substantial T(1) shortening due to a scalar coupling contribution (type II) to the relaxation caused by the fast-relaxing quadrupolar (14)N adjacent to the (13)C nucleus in the amide group. This contribution is only effective in low magnetic fields (i.e., less than 800 μT) and prevents the use of molecules bearing the (13)C-amide group as hyperpolarized MRS/MRI probes. In the present work, this hypothesis is explored both theoretically and experimentally. The results show that high hyperpolarization levels can be retained using either a (15)N-labeled amide or by applying a magnetic field during transfer of the sample from the polarizer to the MRI scanner. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Multi-region relaxed magnetohydrodynamics with flow

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, G. R., E-mail: graham.dennis@anu.edu.au; Dewar, R. L.; Hole, M. J. [Research School of Physics and Engineering, Australian National University, ACT 0200 (Australia); Hudson, S. R. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)

    2014-04-15

    We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes plasma flow. This new model is a generalization of Woltjer's model of relaxed magnetohydrodynamics equilibria with flow. We prove that as the number of plasma regions becomes infinite, our extension of MRxMHD reduces to ideal MHD with flow. We also prove that some solutions to MRxMHD with flow are not time-independent in the laboratory frame, and instead have 3D structure which rotates in the toroidal direction with fixed angular velocity. This capability gives MRxMHD potential application to describing rotating 3D MHD structures such as 'snakes' and long-lived modes.

  5. Dissipation and the relaxation to equilibrium

    International Nuclear Information System (INIS)

    Evans, Denis J; Williams, Stephen R; Searles, Debra J

    2009-01-01

    Using the recently derived dissipation theorem and a corollary of the transient fluctuation theorem (TFT), namely the second-law inequality, we derive the unique time independent, equilibrium phase space distribution function for an ergodic Hamiltonian system in contact with a remote heat bath. We prove under very general conditions that any deviation from this equilibrium distribution breaks the time independence of the distribution. Provided temporal correlations decay, we show that any nonequilibrium distribution that is an even function of the momenta eventually relaxes (not necessarily monotonically) to the equilibrium distribution. Finally we prove that the negative logarithm of the microscopic partition function is equal to the thermodynamic Helmholtz free energy divided by the thermodynamic temperature and Boltzmann's constant. Our results complement and extend the findings of modern ergodic theory and show the importance of dissipation in the process of relaxation towards equilibrium

  6. Active nematic gels as active relaxing solids

    Science.gov (United States)

    Turzi, Stefano S.

    2017-11-01

    I propose a continuum theory for active nematic gels, defined as fluids or suspensions of orientable rodlike objects endowed with active dynamics, that is based on symmetry arguments and compatibility with thermodynamics. The starting point is our recent theory that models (passive) nematic liquid crystals as relaxing nematic elastomers. The interplay between viscoelastic response and active dynamics of the microscopic constituents is naturally taken into account. By contrast with standard theories, activity is not introduced as an additional term of the stress tensor, but it is added as an external remodeling force that competes with the passive relaxation dynamics and drags the system out of equilibrium. In a simple one-dimensional channel geometry, we show that the interaction between nonuniform nematic order and activity results in either a spontaneous flow of particles or a self-organization into subchannels flowing in opposite directions.

  7. Relaxation in the XX quantum chain

    International Nuclear Information System (INIS)

    Platini, Thierry; Karevski, Dragi

    2007-01-01

    We present the results obtained on the magnetization relaxation properties of an XX quantum chain in a transverse magnetic field. We first consider an initial thermal kink-like state where half of the chain is initially thermalized at a very high temperature T b while the remaining half, called the system, is put at a lower temperature T s . From this initial state, we derive analytically the Green function associated with the dynamical behaviour of the transverse magnetization. Depending on the strength of the magnetic field and on the temperature of the system, different regimes are obtained for the magnetic relaxation. In particular, with an initial droplet-like state, that is a cold subsystem of the finite size in contact at both ends with an infinite temperature environment, we derive analytically the behaviour of the time-dependent system magnetization

  8. Stress relaxation of thermally bowed fuel pins

    International Nuclear Information System (INIS)

    Crossland, I.G.; Speight, M.V.

    1983-01-01

    The presence of cross-pin temperature gradients in nuclear reactor fuel pins produces differential thermal expansion which, in turn, causes the fuel pin to bow elastically. If the pin is restrained in any way, such thermal bowing causes the pin to be stressed. At high temperatures these stresses can relax by creep and it is shown here that this causes the pin to suffer an additional permanent deflection, so that when the cross-pin temperature difference is removed the pin remains bowed. By representing the cylindrical pin by an equivalent I-beam, the present work examines this effect when it takes place by secondary creep. Two restraint systems are considered, and it is demonstrated that the rate of relaxation depends mainly upon the creep equation, and hence the temperature, and also the magnitude of the initial stresses. (author)

  9. Relaxation mechanism of the hydrated electron.

    Science.gov (United States)

    Elkins, Madeline H; Williams, Holly L; Shreve, Alexander T; Neumark, Daniel M

    2013-12-20

    The relaxation dynamics of the photoexcited hydrated electron have been subject to conflicting interpretations. Here, we report time-resolved photoelectron spectra of hydrated electrons in a liquid microjet with the aim of clarifying ambiguities from previous experiments. A sequence of three ultrashort laser pulses (~100 femtosecond duration) successively created hydrated electrons by charge-transfer-to-solvent excitation of dissolved anions, electronically excited these electrons via the s→p transition, and then ejected them into vacuum. Two distinct transient signals were observed. One was assigned to the initially excited p-state with a lifetime of ~75 femtoseconds, and the other, with a lifetime of ~400 femtoseconds, was attributed to s-state electrons just after internal conversion in a nonequilibrated solvent environment. These assignments support the nonadiabatic relaxation model.

  10. Effective temperature in relaxation of Coulomb glasses.

    Science.gov (United States)

    Somoza, A M; Ortuño, M; Caravaca, M; Pollak, M

    2008-08-01

    We study relaxation in two-dimensional Coulomb glasses up to macroscopic times. We use a kinetic Monte Carlo algorithm especially designed to escape efficiently from deep valleys around metastable states. We find that, during the relaxation process, the site occupancy follows a Fermi-Dirac distribution with an effective temperature much higher than the real temperature T. Long electron-hole excitations are characterized by T(eff), while short ones are thermalized at T. We argue that the density of states at the Fermi level is proportional to T(eff) and is a good thermometer to measure it. T(eff) decreases extremely slowly, roughly as the inverse of the logarithm of time, and it should affect hopping conductance in many experimental circumstances.

  11. Microplastic relaxations of single and polycrystalline molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Pichl, W.; Weiss, B. [Wien Univ. (Austria). Inst. fuer Materialphysik; Chen, D.L.

    1998-05-01

    The microplasticity of high-purity molybdenum single crystals and of Mo polycrystals of technical purity has been investigated by relaxation step tests in uniaxial compression. A new model for the evaluation of relaxation tests in the microplastic range of b.c.c metals is presented which takes into account the decrease of the mobile dislocation density due to exhaustion of non-screw dislocations. The model allows an independent determination of the activation volume and of the microstructure parameters controlling dislocation exhaustion. The results indicate that in the high-purity single crystals the deformation rate is controlled by interactions of non-screw dislocations with the grown-in network. In the polycrystals additional interactions with impurity atoms seem to occur. In the single crystals the activity and subsequent exhaustion of two different glide systems was observed, followed by a gradual onset of screw dislocation motion. (orig.) 26 refs.

  12. Limiting conditions for operation relaxation program

    International Nuclear Information System (INIS)

    Merz, J.F.

    1985-01-01

    The purpose of this effort was to assess the impact of system maintenance unavailability on plant risk to provide technical justification for the relaxation of system limiting conditions for operation from three to seven days. The primary goal of the relaxation program is to allow for more thorough equipment maintenance. A potential increase in out-of-service time for a particular outage caused by the performance of more effective repairs will be counterbalanced by a probable decrease in the frequency in the outage rate of a component. Benefits resulting from an increase in allowed outage time include: (a) a potential reduction in total system out-of-service time, (b) a minimization of challenges to plant systems, and (c) a reduction in the number of emergency technical specification change requests. This program therefore offers an opportunity to more effectively manage plant maintenance and operation

  13. Modern problems of relaxation gas dynamics

    International Nuclear Information System (INIS)

    Losev, S.A.; Osipov, A.I.

    1985-01-01

    Some of the dynamical characteristics of relaxation processes are studied. Unfortunately, many dynamical characteristics of relaxation processes, necessary for the solution of important scientific and applied problems, are not known. These problems require further development of experimental methods of the study of nonequilibrium gas. It is known, that gas systems are shifted from the equilibrium by different methods: by acoustic and shock wav es, by means of gas expansion in nozzles and jets, by powerful radiations (laser, first of all), by electric discharges, in burning and combustion devices, etc. Non-equilibrium gas is produced in installations of continuum, impulse and periodic regime. Molecular beams, shock tubes (especially with nozzles), flow and jet installations, aerodynamical tubes, plasmatrons, vessels with a gas, influenced by the strong radiation, burners and combustion devices, where the study of non-euilibrium gas is helpful to solve the problems of the determination of kinetic equations and constants of physico-chemical kinetics

  14. Impulsive relaxation process in MHD driven reconnection

    International Nuclear Information System (INIS)

    Kitabata, H.; Hayashi, T.; Sato, T.

    1997-01-01

    Compressible magnetohydrodynamic (MHD) simulation is carried out in order to investigate energy relaxation process of the driven magnetic reconnection in an open finite system through a long time calculation. It is found that a very impulsive energy release occurs in an intermittent fashion through magnetic reconnection for a continuous magnetic flux injection on the boundary. We focus our attention on the detailed process in the impulsive phase, which is the reconnection rate is remarkably enhanced up. (author)

  15. Current relaxation time scales in toroidal plasmas

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.

    1987-02-01

    An approximate normal mode analysis of plasma current diffusion in tokamaks is presented. The work is based on numerical solutions of the current diffusion equation in cylindrical geometry. Eigenvalues and eigenfunctions are shown for a broad range of plasma conductivity profile shapes. Three classes of solutions are considered which correspond to three types of tokamak operation. Convenient approximations to the three lowest eigenvalues in each class are presented and simple formulae for the current relaxation time scales are given

  16. Relaxation and kinetics in scalar field theories

    International Nuclear Information System (INIS)

    Boyanovsky, D.; Lawrie, I.D.; Lee, D.

    1996-01-01

    A new approach to the dynamics of relaxation and kinetics of thermalization in a scalar field theory is presented that incorporates the relevant time scales through the resummation of hard thermal loops. An alternative derivation of the kinetic equations for the open-quote open-quote quasiparticle close-quote close-quote distribution functions is obtained that allows a clear understanding of the different open-quote open-quote coarse-graining close-quote close-quote approximations usually involved in a kinetic description. This method leads to a systematic perturbative expansion to obtain the kinetic equations including hard thermal loop resummation and to an improvement including renormalization, off-shell effects, and contributions that change chemical equilibrium on short time scales. As a by-product of these methods we establish the equivalence between the relaxation time scale in the linearized equation of motion of the quasiparticles and the thermalization time scale of the quasiparticle distribution function in the open-quote open-quote relaxation time approximation close-quote close-quote including hard thermal loop effects. Hard thermal loop resummation dramatically modifies the scattering rate for long wavelength modes as compared to the usual (semi)classical estimate. Relaxation and kinetics are studied both in the unbroken and broken symmetry phases of the theory. The broken symmetry phase also provides the setting to obtain the contribution to the kinetic equations from processes that involve decay of a heavy scalar into light scalar particles in the medium. copyright 1996 The American Physical Society

  17. Muon spin relaxation in random spin systems

    International Nuclear Information System (INIS)

    Toshimitsu Yamazaki

    1981-01-01

    The longitudinal relaxation function Gsub(z)(t) of the positive muon can reflect dynamical characters of local field in a unique way even when the correlation time is longer than the Larmor period of local field. This method has been applied to studies of spin dynamics in spin glass systems, revealing sharp but continuous temperature dependence of the correlation time. Its principle and applications are reviewed. (author)

  18. Structural relaxation and thermal conductivity coefficient of liquids

    International Nuclear Information System (INIS)

    Abdurasulov, A.

    1992-01-01

    Present article is devoted to structural relaxation and thermal conductivity coefficient of liquids. The thermoelastic properties of liquids were studied taking into account the contribution of translational and structural relaxation. The results of determination of dynamic coefficient of thermal conductivity of liquids taking into account the contribution of translational and structural relaxation are presented.

  19. The Efficacy of Relaxation Training in Treating Anxiety

    Science.gov (United States)

    Francesco, Pagnini; Mauro, Manzoni Gian; Gianluca, Castelnuovo; Enrico, Molinari

    2009-01-01

    This paper provides a review of scientific literature about relaxation training and its effects on anxiety. Research investigating progressive relaxation, meditation, applied relaxation and autogenic training were considered. All these methods proved to be effective in reducing anxiety in all kind of samples, affected or not by physical or…

  20. Ideal relaxation of the Hopf fibration

    Science.gov (United States)

    Smiet, Christopher Berg; Candelaresi, Simon; Bouwmeester, Dirk

    2017-07-01

    Ideal magnetohydrodynamics relaxation is the topology-conserving reconfiguration of a magnetic field into a lower energy state where the net force is zero. This is achieved by modeling the plasma as perfectly conducting viscous fluid. It is an important tool for investigating plasma equilibria and is often used to study the magnetic configurations in fusion devices and astrophysical plasmas. We study the equilibrium reached by a localized magnetic field through the topology conserving relaxation of a magnetic field based on the Hopf fibration in which magnetic field lines are closed circles that are all linked with one another. Magnetic fields with this topology have recently been shown to occur in non-ideal numerical simulations. Our results show that any localized field can only attain equilibrium if there is a finite external pressure, and that for such a field a Taylor state is unattainable. We find an equilibrium plasma configuration that is characterized by a lowered pressure in a toroidal region, with field lines lying on surfaces of constant pressure. Therefore, the field is in a Grad-Shafranov equilibrium. Localized helical magnetic fields are found when plasma is ejected from astrophysical bodies and subsequently relaxes against the background plasma, as well as on earth in plasmoids generated by, e.g., a Marshall gun. This work shows under which conditions an equilibrium can be reached and identifies a toroidal depression as the characteristic feature of such a configuration.

  1. Tension and relaxation in the individual.

    Science.gov (United States)

    Newbury, C R

    1979-06-01

    Increasing materialism in society is resulting in more wide spread nervous tension in all age groups. While some degree of nervous tension is necessary in everyday living, its adverse effects require that we must learn to bring it under control. Total tension is shown to have two components: a controllable element arising from factors in the environment and the inbuilt uncontrollable residue which is basic in the individual temperament. The effects of excessive or uncontrolled stress can be classified as 1) emotional reactions such as neurotic behaviour (anxiety hypochondria, hysteria, phobia, depression obsessions and compulsions) or psychotic behaviour and 2) psychosomatic reactions (nervous asthma, headache, insomnia, heart attack). Nervous energy can be wastefully expended by such factors as loss of temper, wrong attitudes to work, job frustration and marital strains. Relaxation is the only positive way to control undesirable nervous tension and its techniques require to be learned. A number of techniques (progressive relaxation, differential relaxation, hypnosis, the use of biofeedback, Yoga and Transcendental Meditation) are described and their application to dental practice is discussed.

  2. Proton NMR relaxation in hydrous melts

    International Nuclear Information System (INIS)

    Braunstein, J.; Bacarella, A.L.; Benjamin, B.M.; Brown, L.L.; Girard, C.

    1976-01-01

    Pulse and continuous wave NMR measurements are reported for protons in hydrous melts of calcium nitrate at temperatures between -4 and 120 0 C. Although measured in different temperature ranges, spin-lattice (T 1 ) and spin-spin (T 2 ) relaxation times appear to be nearly equal to each other and proportional to the self-diffusion coefficients of solute metal cations such as Cd 2+ . At temperatures near 50 0 C, mean Arrhenius coefficients Δ H/sub T 1 / (kcal/mol) are 7.9, 7.3, and 4.8, respectively, for melts containing 2.8, 4.0, and 8.0 moles of water per mole of calcium nitrate, compared to 4.6 kcal/mol for pure water. Temperature dependence of T 1 and T 2 in Ca(NO 3 ) 2 -2.8 H 2 O between -4 and 120 0 C are non-Arrhenius and can be represented by a Fulcher-type equation with a ''zero mobility temperature'' (T 0 ) of 225 0 K, close to the value of T 0 for solute diffusion, electrical conductance and viscosity. Resolution of the relaxation rates into correlation times for intramolecular (rotational) and intermolecular (translational) diffusional motion is discussed in terms of the Bloembergen-Purcell-Pound and more recent models for dipolar relaxation

  3. Ferromagnetism versus slow paramagnetic relaxation in Fe-doped Li3N

    Science.gov (United States)

    Fix, M.; Jesche, A.; Jantz, S. G.; Bräuninger, S. A.; Klauss, H.-H.; Manna, R. S.; Pietsch, I. M.; Höppe, H. A.; Canfield, P. C.

    2018-02-01

    We report on isothermal magnetization, Mössbauer spectroscopy, and magnetostriction as well as temperature-dependent alternating-current (ac) susceptibility, specific heat, and thermal expansion of single crystalline and polycrystalline Li2(Li1 -xFex) N with x =0 and x ≈0.30 . Magnetic hysteresis emerges at temperatures below T ≈50 K with coercivity fields of up to μ0H =11.6 T at T =2 K and magnetic anisotropy energies of 310 K (27 meV). The ac susceptibility is strongly frequency-dependent (f =10 -10 000 Hz) and reveals an effective energy barrier for spin reversal of Δ E ≈1100 K (90 meV). The relaxation times follow Arrhenius behavior for T >25 K . For T <10 K , however, the relaxation times of τ ≈1010 s are only weakly temperature-dependent, indicating the relevance of a quantum tunneling process instead of thermal excitations. The magnetic entropy amounts to more than 25 J molFe-1 K-1, which significantly exceeds R ln 2 , the value expected for the entropy of a ground-state doublet. Thermal expansion and magnetostriction indicate a weak magnetoelastic coupling in accordance with slow relaxation of the magnetization. The classification of Li2(Li1 -xFex) N as ferromagnet is stressed and contrasted with highly anisotropic and slowly relaxing paramagnetic behavior.

  4. Suppression of error in qubit rotations due to Bloch-Siegert oscillation via the use of off-resonant Raman excitation

    International Nuclear Information System (INIS)

    Pradhan, Prabhakar; Cardoso, George C; Shahriar, M S

    2009-01-01

    The rotation of a quantum bit (qubit) is an important step in quantum computation. The rotation is generally performed using a Rabi oscillation. In a direct two-level qubit system, if the Rabi frequency is comparable to its resonance frequency, the rotating wave approximation is not valid, and the Rabi oscillation is accompanied by the so-called Bloch-Siegert oscillation (BSO) that occurs at twice the frequency of the driving field. One implication of the BSO is that for a given interaction time and Rabi frequency, the degree of rotation experienced by the qubit depends explicitly on the initial phase of the driving field. If this effect is not controlled, it leads to an apparent fluctuation in the rotation of the qubit. Here we show that when an off-resonant lambda system is used to realize a two-level qubit, the BSO is inherently negligible, thus eliminating this source of potential error.

  5. Multiple Bloch surface waves in visible region of light at the interfaces between rugate filter/rugate filter and rugate filter/dielectric slab/rugate filter

    Science.gov (United States)

    Ullah Manzoor, Habib; Manzoor, Tareq; Hussain, Masroor; Manzoor, Sanaullah; Nazar, Kashif

    2018-04-01

    Surface electromagnetic waves are the solution of Maxwell’s frequency domain equations at the interface of two dissimilar materials. In this article, two canonical boundary-value problems have been formulated to analyze the multiplicity of electromagnetic surface waves at the interface between two dissimilar materials in the visible region of light. In the first problem, the interface between two semi-infinite rugate filters having symmetric refractive index profiles is considered and in the second problem, to enhance the multiplicity of surface electromagnetic waves, a homogeneous dielectric slab of 400 nm is included between two semi-infinite symmetric rugate filters. Numerical results show that multiple Bloch surface waves of different phase speeds, different polarization states, different degrees of localization and different field profiles are propagated at the interface between two semi-infinite rugate filters. Having two interfaces when a homogeneous dielectric layer is placed between two semi-infinite rugate filters has increased the multiplicity of electromagnetic surface waves.

  6. Anachronism in the writing of History: ¿Error or Possibility? Some reflections about the concept of time in Carlo Ginzburg, Marc Bloch and Georges Didi-Huberman

    Directory of Open Access Journals (Sweden)

    Maria Eugenia Chaves Maldonado

    2016-01-01

    Full Text Available In his unfinished and posthumously published book Apologie pour l’histoire, Marc Bloch bestowed on future historians a seminal legacy of critical reflections on the concept of time as the object of historical analysis. During the last decades, the concept of time in History has experienced a renewed interest by professional historians, in particular in reference to the category of anachronism. The Italian historian Carlo Ginzburg and the French art historian Georges Didi-Huberman are among those engaged in this debate. This article offers a reading of two works by these historians with the purpose of underlying the fundamental influence that Marc Bloch’s ideas on time had in Ginzburg and Didi-Hubermans’ critical interventions.

  7. Architecture and Bloch-Maxwell modelling of multi-mJ 100 fs fully-coherent soft X-ray laser based on X-ray CPA

    International Nuclear Information System (INIS)

    Zeitoun, Ph.; Oliva, E.; Fajardo, M.; Cheriaux, G.; Le, T. T. T.; Li, L.; Pitman, M.; Ros, D.; Sebban, S.; Velarde, P.

    2012-01-01

    By seeding amplifying plasmas pumped with the so-called Transient collisionnal excitation scheme, the amplified pulse seems to be limited to an energy of several 10's of μJ. Aiming to attain several mJ, we study the seeding of plasma pumped by long laser pulse. Thanks to our time-dependent Maxwell-Bloch code, we demonstrate that direct seeding with femtosecond pulse is inefficient. We also study the amplification of pulse train with the drawback of re-synchronizing the pulses. We proposed and studied the amplification of high harmonic seed stretched by a grating pair, amplified finally compressed. We consider off-axis diffraction on the gratings for maximizing their efficiency. Considering the phase deformation induced by the amplification and the spectral narrowing the final pulse is 230 fs in duration and 5 mJ.

  8. Histopathological alterations of the gills, liver and kidneys in Anabas Testudineus (Bloch) fish living in an unused lignite mine, Li District, Lamphun Povince, Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Saenphet, S.; Thaworn, W.; Saenphet, K. [Chiang Mai University, Chiang Mai (Thailand). Faculty of Science

    2009-09-15

    The acidity of mine water generally makes it toxic to most organisms. The gills, kidneys and livers of Anabas testudineus Bloch fish inhabiting the acidic water (pH 2-4) of an unused lignite mine in Li District, Lamphun Province, Thailand were examined and compared to those of farmed fish. Tissue abnormalities were found in all investigated organs. Deterioration and telangiectasia of gill filaments were found. Liver tissue revealed hemorrhages, blood congestion and necrotic cells with mononuclear cell infiltration. In addition, hypertrophy of the epithelial cells of the renal tubules with reduced lumens, aneurisms of the renal tubules, and contractions of the glomeruli in the Bowman's capsule were observed. These histopathological findings suggest the acidic water in this habitat causes severe damage to the internal organs of fish and consequently alter their physiological status. Since the water in this pond is utilized by local people, these findings highlight the need for adequate water treatment.

  9. Characteristics of patients with internal diseases who use relaxation techniques as a coping strategy.

    Science.gov (United States)

    Cramer, Holger; Lauche, Romy; Langhorst, Jost; Dobos, Gustav; Paul, Anna

    2013-10-01

    To assess sociodemographic, clinical, and psychological characteristics of patients with internal diseases who use relaxation techniques as a coping strategy. Cross-sectional analysis among patients with internal diseases. Department of Internal and Integrative Medicine at an academic teaching hospital in Germany. Prior use of relaxation techniques (e.g. meditation, autogenic training), perceived benefit, and perceived harm. Potential predictors of relaxation techniques use (sociodemographic characteristics, health behavior, internal medicine diagnosis, general health status, mental health, satisfaction, and health locus of control) were tested using multiple logistic regression analysis. Of 2486 participants, 1075 (43.2%) reported to have used relaxation techniques, 648 (60.3%) reported benefits, and 11 (1.0%) reported harms. Use of relaxation techniques was independently associated with female gender (Odds ratio [OR]=1.43; 95% confidence interval [CI]=1.08-1.89), higher education (OR=1.32; 95%CI=1.03-1.71), fibromyalgia (OR=1.78; 95%CI=1.22-2.61), and internal health locus of control (OR=1.27; 95%CI=1.01-1.60). Use of relaxation techniques was negatively associated with age below 30 (OR=0.32; 95%CI=0.20-0.52) or above 64 (OR=0.65; 95%CI=0.49-0.88), full-time employment (OR=0.75; 95%CI=0.57-0.98), current smoking (OR=0.72; 95%CI=0.54-0.95), osteoarthritis (OR=0.51; 95%CI=0.34-0.77), rheumatic arthritis (OR=0.59; 95%CI=0.37-0.93), good to excellent health status (OR=0.70; 95%CI=0.52-0.96), and high life satisfaction (OR=0.78; 95%CI=0.62-0.98). In a German sample of patients with internal diseases, relaxation techniques were used as a coping strategy by about 43%. Users were more likely to be middle-aged, female, well-educated, diagnosed with fibromyalgia, not smoking, not full-time employed, and not to have a good health status or high life satisfaction. A high internal health locus of control predicted relaxation techniques use. Considering health locus of control

  10. Self-Concept Change in Behavior Modification

    Science.gov (United States)

    Ryan, Victor L.; And Others

    1976-01-01

    Changes in self-concept as a function of behavioral treatment for test anxiety are investigated. Test-anxious subjects (N=72) were randomly assigned to systematic desensitization, relaxation-training only, or no-treatment control conditions. Results indicate that the desensitization and relaxation treatments were both effective in reducing test…

  11. Charge carrier relaxation model in disordered organic semiconductors

    International Nuclear Information System (INIS)

    Lu, Nianduan; Li, Ling; Sun, Pengxiao; Liu, Ming

    2013-01-01

    The relaxation phenomena of charge carrier in disordered organic semiconductors have been demonstrated and investigated theoretically. An analytical model describing the charge carrier relaxation is proposed based on the pure hopping transport theory. The relation between the material disorder, electric field and temperature and the relaxation phenomena has been discussed in detail, respectively. The calculated results reveal that the increase of electric field and temperature can promote the relaxation effect in disordered organic semiconductors, while the increase of material disorder will weaken the relaxation. The proposed model can explain well the stretched-exponential law by adopting the appropriate parameters. The calculation shows a good agreement with the experimental data for organic semiconductors

  12. Relaxations in spin glasses: Similarities and differences from ordinary glasses

    International Nuclear Information System (INIS)

    Ngai, K.L.; Rajagopal, A.K.; Huang, C.Y.

    1984-01-01

    Relaxation phenomena have become a major concern in the physics of spin glasses. There are certain resemblances of these relaxation properties to those of ordinary glasses. In this work, we compare the relaxation properties of spin glasses near the freezing temperature with those of glasses near the glass transition temperature. There are similarities between the two types of glasses. Moreover, the relaxation properties of many glasses and spin glasses are in conformity with two coupled ''universality'' relations predicted by a recent model of relaxations in condensed matter

  13. Resonances in field-cycling NMR on molecular crystals. (reversible) Spin dynamics or (irreversible) relaxation?; Resonanzen in Field-Cycling-NMR an Molekuelkristallen. (reversible) Spindynamik oder (irreversible) Relaxation?

    Energy Technology Data Exchange (ETDEWEB)

    Tacke, Christian

    2015-07-01

    Multi spin systems with spin 1/2 nuclei and dipolar coupled quadrupolar nuclei can show so called ''quadrupolar dips''. There are two main reasons for this behavior: polarization transfer and relaxation. They look quite alike and without additional research cannot be differentiated easily in most cases. These two phenomena have quite different physical and theoretical backgrounds. For no or very slow dynamics, polarization transfer will take place, which is energy conserving inside the spin system. This effect can entirely be described using quantum mechanics on the spin system. Detailed knowledge about the crystallography is needed, because this affects the relevant hamiltonians directly. For systems with fast enough dynamics, relaxation takes over, and the energy flows from the spin system to the lattice; thus a more complex theoretical description is needed. This description has to include a dynamic model, usually in the form of a spectral density function. Both models should include detailed modelling of the complete spin system. A software library was developed to be able to model complex spin systems. It allows to simulate polarization transfer or relaxation effects. NMR measurements were performed on the protonic conductor K{sub 3}H(SO{sub 4}){sub 2}. A single crystal shows sharp quadrupolar dips at room temperature. Dynamics could be excluded using relaxation measurements and literature values. Thus, a polarization transfer analysis was used to describe those dips with good agreement. As a second system, imidazolium based molecular crystals were analyzed. The quadrupolar dips were expected to be caused by polarization transfer; this was carefully analyzed and found not to be true. A relaxation based analysis shows good agreement with the measured data in the high temperature area. It leverages a two step spectral density function, which indicates two distinct dynamic processes happening in this system.

  14. Stress relaxation of bi-disperse polystyrene melts

    DEFF Research Database (Denmark)

    Hengeller, Ludovica; Huang, Qian; Dorokhin, Andriy

    2016-01-01

    We present start-up of uniaxial extension followed by stress relaxation experiments of a bi-disperse 50 % by weight blend of 95k and 545k molecular weight polystyrene. We also show, for comparison, stress relaxation measurements of the polystyrene melts with molecular weight 95k and 545k, which...... are the components of the bi-disperse melt. The measurements show three separated relaxation regimes: a fast regime, a transition regime, and a slow regime. In the fast regime, the orientation of the long chains is frozen and the stress relaxation is due to stretch relaxation of the short chains primarily....... Conversely in the slow regime, the long chains have retracted and undergo relaxation of orientation in fully relaxed short chains....

  15. Relaxation in a two-body Fermi-Pasta-Ulam system in the canonical ensemble

    Science.gov (United States)

    Sen, Surajit; Barrett, Tyler

    The study of the dynamics of the Fermi-Pasta-Ulam (FPU) chain remains a challenging problem. Inspired by the recent work of Onorato et al. on thermalization in the FPU system, we report a study of relaxation processes in a two-body FPU system in the canonical ensemble. The studies have been carried out using the Recurrence Relations Method introduced by Zwanzig, Mori, Lee and others. We have obtained exact analytical expressions for the first thirteen levels of the continued fraction representation of the Laplace transformed velocity autocorrelation function of the system. Using simple and reasonable extrapolation schemes and known limits we are able to estimate the relaxation behavior of the oscillators in the two-body FPU system and recover the expected behavior in the harmonic limit. Generalizations of the calculations to larger systems will be discussed.

  16. Relaxed Operational Semantics of Concurrent Programming Languages

    Directory of Open Access Journals (Sweden)

    Gustavo Petri

    2012-08-01

    Full Text Available We propose a novel, operational framework to formally describe the semantics of concurrent programs running within the context of a relaxed memory model. Our framework features a "temporary store" where the memory operations issued by the threads are recorded, in program order. A memory model then specifies the conditions under which a pending operation from this sequence is allowed to be globally performed, possibly out of order. The memory model also involves a "write grain," accounting for architectures where a thread may read a write that is not yet globally visible. Our formal model is supported by a software simulator, allowing us to run litmus tests in our semantics.

  17. Reflexogenic relaxation gastroduodenography by the acupuncture method

    Energy Technology Data Exchange (ETDEWEB)

    Rabkin, I.Kh.; Tsibulyak, V.N.; Mnatsakyan, K.A.; Kondorskaya, I.L.; Galkina, T.V.

    The communication is based upon the results of x-ray examination of the stomach and duodenum in 63 patients with stenoses of the pyloroduodenal zone, cicatrical deformities of the duodenal bulb, bulbar ulcer, duodenal organic lesions, and functional stenosis of the loop. First a routine X-ray examination of the stomach and duodenum was performed using barium-water mixture, then followed acupuncture aimed at hypotension in the definite points of the floor of the auricle where branches of the vagus innervating the stomach and duodenum are located. As distinct from pharmacological relaxation this method produces a purpose-oriented selective effect.

  18. Reflexogenic relaxation gastroduodenography by the acupuncture method

    International Nuclear Information System (INIS)

    Rabkin, I.Kh.; Tsibulyak, V.N.; Mnatsakyan, K.A.; Kondorskaya, I.L.; Galkina, T.V.

    1985-01-01

    The communication is based upon the results of x-ray examination of the stomach and duodenum in 63 patients with stenoses of the pyloroduodenal zone, cicatrical deformities of the duodenal bulb, bulbar ulcer, duodenal organic lesions, and functional stenosis of the loop. First a routine X-ray examination of the stomach and duodenum was performed using barium-water mixture, than followed acupuncture aimed at hypotension in the definite points of the floor of the auricle where branches of the vagus innervating the stomach and duodenum are located. As distinct from pharmacological relaxation this method produces a purpose-oriented selective effect

  19. Relaxation Processes and Time Scale Transformation.

    Science.gov (United States)

    1982-03-01

    the response function may be immediately recognized as being 14 of the Kubo - Green type in the classical regime. Given this general framework, it is now...b as a function of temperature is 24 equivalent to the Vogel-Beuche-Fulcher empirical law for viscosity or the Williams-Landel-Ferry empirical law...relaxation times. With the weighted sum in the form of an integral , one can write exp(-(t/T)b ] = f dT’g(r’) exp[-(t/T’)], O

  20. Image charge relaxation in electrophoretic displays

    International Nuclear Information System (INIS)

    1981-01-01

    A novel improvement to a real time imaging system for use in electrostatic imaging is described. Present systems produce ten separate images per second and the image must be erased in preparation for the next exposure and image formation. The new design of electrostatic imaging chamber can take one of several forms which are discussed in detail; both organic and inorganic materials may be used as the photoconductor material in the discharging control layer and suitable examples are given. Values for the resistivity and the relaxation time of the discharging control layer are given. (U.K.)