Testing general relativity using golden black-hole binaries
Ghosh, Abhirup; Johnson-McDaniel, Nathan K; Mishra, Chandra Kant; Ajith, Parameswaran; Del Pozzo, Walter; Nichols, David A; Chen, Yanbei; Nielsen, Alex B; Berry, Christopher P L; London, Lionel
2016-01-01
The coalescences of stellar-mass black-hole binaries through their inspiral, merger, and ringdown are among the most promising sources for ground-based gravitational-wave (GW) detectors. If a GW signal is observed with sufficient signal-to-noise ratio, the masses and spins of the black holes can be estimated from just the inspiral part of the signal. Using these estimates of the initial parameters of the binary, the mass and spin of the final black hole can be uniquely predicted making use of general-relativistic numerical simulations. In addition, the mass and spin of the final black hole can be independently estimated from the merger-ringdown part of the signal. If the binary black hole dynamics is correctly described by general relativity, these independent estimates have to be consistent with each other. We present a Bayesian implementation of such a test of general relativity, and outline the expected constraints from upcoming GW observations using the second-generation of ground-based GW detectors.
Black-Hole Binaries, Gravitational Waves, and Numerical Relativity
Kelly, Bernard J.; Centrella, Joan; Baker, John G.; Kelly, Bernard J.; vanMeter, James R.
2010-01-01
Understanding the predictions of general relativity for the dynamical interactions of two black holes has been a long-standing unsolved problem in theoretical physics. Black-hole mergers are monumental astrophysical events ' releasing tremendous amounts of energy in the form of gravitational radiation ' and are key sources for both ground- and spacebased gravitational wave detectors. The black-hole merger dynamics and the resulting gravitational waveforms can only he calculated through numerical simulations of Einstein's equations of general relativity. For many years, numerical relativists attempting to model these mergers encountered a host of problems, causing their codes to crash after just a fraction of a binary orbit cnuld be simulated. Recently ' however, a series of dramatic advances in numerical relativity has ' for the first time, allowed stable / robust black hole merger simulations. We chronicle this remarkable progress in the rapidly maturing field of numerical relativity, and the new understanding of black-hole binary dynamics that is emerging. We also discuss important applications of these fundamental physics results to astrophysics, to gravitationalwave astronomy, and in other areas.
Black-Hole Binaries, Gravitational Waves, and Numerical Relativity
Kelly, Bernard J.; Centrella, Joan; Baker, John G.; Kelly, Bernard J.; vanMeter, James R.
2010-01-01
Understanding the predictions of general relativity for the dynamical interactions of two black holes has been a long-standing unsolved problem in theoretical physics. Black-hole mergers are monumental astrophysical events ' releasing tremendous amounts of energy in the form of gravitational radiation ' and are key sources for both ground- and spacebased gravitational wave detectors. The black-hole merger dynamics and the resulting gravitational waveforms can only he calculated through numerical simulations of Einstein's equations of general relativity. For many years, numerical relativists attempting to model these mergers encountered a host of problems, causing their codes to crash after just a fraction of a binary orbit cnuld be simulated. Recently ' however, a series of dramatic advances in numerical relativity has ' for the first time, allowed stable / robust black hole merger simulations. We chronicle this remarkable progress in the rapidly maturing field of numerical relativity, and the new understanding of black-hole binary dynamics that is emerging. We also discuss important applications of these fundamental physics results to astrophysics, to gravitationalwave astronomy, and in other areas.
Binary Black Holes, Gravitational Waves, and Numerical Relativity
Centrella, Joan
2009-01-01
The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA.
Binary Black Holes, Gravitational Waves, and Numerical Relativity
Centrella, Joan
2009-01-01
The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA.
Binary black holes, gravitational waves, and numerical relativity
Centrella, Joan M.; Baker, John G.; Boggs, William D.; Kelly, Bernard J.; McWilliams, Sean T.; van Meter, James R.
2007-07-01
The final merger of comparable mass binary black holes produces an intense burst of gravitational radiation and is one of the strongest sources for both ground-based and space-based gravitational wave detectors. Since the merger occurs in the strong-field dynamical regime of general relativity, numerical relativity simulations of the full Einstein equations in 3-D are required to calculate the resulting gravitational dynamics and waveforms. While this problem has been pursued for more than 30 years, the numerical codes have long been plagued by various instabilities and, overall, progress was incremental. Recently, however, dramatic breakthrough have occurred, resulting in robust simulations of merging black holes. In this paper, we examine these developments and the exciting new results that are emerging.
The ubiquity of the rms-flux relation in black hole X-ray binaries
Heil, L.M.; Vaughan, S.; Uttley, P.
2012-01-01
We have investigated the short-term linear relation between the rms variability and the flux in 1961 observations of nine black hole X-ray binaries. The rms-flux relation for the 1-10 Hz range is ubiquitously observed in any observation with good variability signal-to-noise ratio (>3 per cent, 1-10
Testing general relativity with black-hole binary observations: results and prospects
Vallisneri, Michele
2017-01-01
The first two LIGO-Virgo detections of gravitational waves from binary black-hole inspirals offered the first opportunity to test gravitation in its strong-field, relativistic-motion, and radiative sector. The initial tests reported in PRL 116 (2016) probed consistency with the predictions of general relativity, to moderate precision. The space-based observatory LISA will observe black-hole binary signals with much larger SNRs, allowing for even more precise tests. Last, the detection of a binary black-hole stochastic background with pulsar-timing arrays will offer more constraints on the speed and polarizations of gravitational waves. I review these results and examine synergies across the gravitational-wave spectrum. I discuss the main challenges and opportunities from the viewpoint of data analysis, and outline prospects for making contact with current alternative theories of gravitation, in particular those motivated by models of dark energy.
A massive binary black-hole system in OJ287 and a test of general relativity
Valtonen, M. J.; Lehto, H. J.; Nilsson, K.; Heidt, J.; Takalo, L. O.; Sillanpää, A.; Villforth, C.; Kidger, M.; Poyner, G.; Pursimo, T.; Zola, S.; Wu, J. -H.; Zhou, X.; Sadakane, K.; Drozdz, M.
2008-01-01
Tests of Einstein's general theory of relativity have mostly been carried out in weak gravitational fields where the space-time curvature effects are first-order deviations from Newton's theory. Binary pulsars provide a means of probing the strong gravitational field around a neutron star, but strong-field effects may be best tested in systems containing black holes. Here we report such a test in a close binary system of two candidate black holes in the quasar OJ287. This quasar shows quasi-p...
Wijers, R.A.M.J.
1996-01-01
Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes
A massive binary black-hole system in OJ287 and a test of general relativity
Valtonen, M J; Nilsson, K; Heidt, J; Takalo, L O; Sillanpää, A; Villforth, C; Kidger, M; Poyner, G; Pursimo, T; Zola, S; Wu, J H; Zhou, X; Sadakane, K; Drozdz, M; Koziel, D; Marchev, D; Ogloza, W; Porowski, C; Siwak, M; Stachowski, G; Winiarski, M; Hentunen, V P; Nissinen, M; Liakos, A; Dogru, S
2008-01-01
Tests of Einstein's general theory of relativity have mostly been carried out in weak gravitational fields where the space-time curvature effects are first-order deviations from Newton's theory. Binary pulsars provide a means of probing the strong gravitational field around a neutron star, but strong-field effects may be best tested in systems containing black holes. Here we report such a test in a close binary system of two candidate black holes in the quasar OJ287. This quasar shows quasi-periodic optical outbursts at 12 yr intervals, with two outburst peaks per interval. The latest outburst occurred in September 2007, within a day of the time predicted by the binary black-hole model and general relativity. The observations confirm the binary nature of the system and also provide evidence for the loss of orbital energy in agreement (within 10 per cent) with the emission of gravitational waves from the system. In the absence of gravitational wave emission the outburst would have happened twenty days later.
Blackman, Jonathan; Galley, Chad R; Szilagyi, Bela; Scheel, Mark A; Tiglio, Manuel; Hemberger, Daniel A
2015-01-01
Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. In this paper, we construct an accurate and fast-to-evaluate surrogate model for numerical relativity (NR) waveforms from non-spinning binary black hole coalescences with mass ratios from $1$ to $10$ and durations corresponding to about $15$ orbits before merger. Our surrogate, which is built using reduced order modeling techniques, is distinct from traditional modeling efforts. We find that the full multi-mode surrogate model agrees with waveforms generated by NR to within the numerical error of the NR code. In particular, we show that our modeling strategy produces surrogates which can correctly predict NR waveforms that were {\\em not} used for the surrogate's training. For all practical purposes, then, the surrogate waveform model is equivalent to the high-accuracy, large-scale simulation waveform but can be evaluated in a millisecond to a second dependin...
The status of black-hole binary merger simulations with numerical relativity
McWilliams, Sean T, E-mail: sean@astro.columbia.edu [Institute for Strings, Cosmology and Astroparticle Physics (ISCAP), Columbia University, New York, NY 10027 (United States); Physics Department, Princeton University, Princeton, NJ 08544 (United States)
2011-07-07
The advent of long-term stability in numerical relativity has yielded a windfall of answers to long-standing questions regarding the dynamics of space-time, matter, and electromagnetic fields in the strong-field regime of black-hole binary mergers. In this review, we will briefly summarize the methodology currently applied to these problems, emphasizing the most recent advancements. We will discuss recent results of astrophysical relevance, and present some novel interpretation. Although we primarily present a review, we also present a simple analytical model for the time-dependent Poynting flux from two orbiting black holes immersed in a magnetic field, which compares favorably with recent numerical results. Finally, we will discuss recent advancements in our theoretical understanding of merger dynamics and gravitational waveforms that have resulted from interpreting the ever-growing body of numerical relativity results.
The Status of Black-Hole Binary Merger Simulations with Numerical Relativity
McWilliams, Sean T
2010-01-01
The advent of long-term stability in numerical relativity has yielded a windfall of answers to long-standing questions regarding the dynamics of space-time, matter, and electromagnetic fields in the strong-field regime of black-hole binary mergers. In this review, we will briefly summarize the methodology currently applied to these problems, emphasizing the most recent advancements. We will discuss recent results of astrophysical relevance, and present some novel interpretation. Though we primarily present a review, we also present a simple analytical model for the time-dependent Poynting flux from two orbiting black holes immersed in a magnetic field, which compares favorably with recent numerical results. Finally, we will discuss recent advancements in our theoretical understanding of merger dynamics and gravitational waveforms that have resulted from interpreting the ever-growing body of numerical relativity results.
Jani, Karan; Clark, James; Shoemaker, Deirdre; LIGO Scientific Collaboration; Virgo Collaboration
2016-03-01
Stellar and Intermediate mass binary black hole systems (10-1000 solar masses) are likely to be among the strongest sources of gravitational wave detection in Advanced LIGO. In this talk we discuss the prospects for the detection and characterization of these extreme astrophysical system using robust, morphology-independent analysis techniques. In particular, we demonstrate how numerical relativity simulations of black hole collisions may be combined with waveform reconstructions to constrain properties of a binary black-hole system using only exact solutions from general relativity and any potential gravitational wave signal in the data.
Simulations of binary black hole mergers
Lovelace, Geoffrey
2017-01-01
Advanced LIGO's observations of merging binary black holes have inaugurated the era of gravitational wave astronomy. Accurate models of binary black holes and the gravitational waves they emit are helping Advanced LIGO to find as many gravitational waves as possible and to learn as much as possible about the waves' sources. These models require numerical-relativity simulations of binary black holes, because near the time when the black holes merge, all analytic approximations break down. Following breakthroughs in 2005, many research groups have built numerical-relativity codes capable of simulating binary black holes. In this talk, I will discuss current challenges in simulating binary black holes for gravitational-wave astronomy, and I will discuss the tremendous progress that has already enabled such simulations to become an essential tool for Advanced LIGO.
Black hole binary OJ287 as a testing platform for general relativity
Valtonen, M J; Mikkola, S; Wiik, K; Lehto, H J
2012-01-01
The blazar OJ287 is the most promising (and the only) case for an extragalactic binary black hole system inspiralling under the action of gravitational radiation reaction. At present, though it is not possible to directly observe the binary components, it is possible to observe the jet emanating form the primary black hole. We argue that the orbital motion of the secondary black hole is reflected in the wobble of the jet and demonstrate that the wobble is orbital position dependent. The erratic wobble of the jet, reported in Agudo et al. (2012), is analyzed by taking into account the binary nature of the system and we find that the erratic component of jet wobble is very small.
Eccentric binary black-hole mergers: The transition from inspiral to plunge in general relativity
Sperhake, Ulrich; Berti, Emanuele; Cardoso, Vitor; González, José A.; Brügmann, Bernd; Ansorg, Marcus
2008-09-01
We study the transition from inspiral to plunge in general relativity by computing gravitational waveforms of nonspinning, equal-mass black-hole binaries. We consider three sequences of simulations, starting with a quasicircular inspiral completing 1.5, 2.3 and 9.6 orbits, respectively, prior to coalescence of the holes. For each sequence, the binding energy of the system is kept constant and the orbital angular momentum is progressively reduced, producing orbits of increasing eccentricity and eventually a head-on collision. We analyze in detail the radiation of energy and angular momentum in gravitational waves, the contribution of different multipolar components and the final spin of the remnant, comparing numerical predictions with the post-Newtonian approximation and with extrapolations of point-particle results. We find that the motion transitions from inspiral to plunge when the orbital angular momentum L=Lcrit≃0.8M2. For Lcensorship conjecture.
Belloni, T M
2016-01-01
The last two decades have seen a great improvement in our understand- ing of the complex phenomenology observed in transient black-hole binary systems, especially thanks to the activity of the Rossi X-Ray Timing Explorer satellite, com- plemented by observations from many other X-ray observatories and ground-based radio, optical and infrared facilities. Accretion alone cannot describe accurately the intricate behavior associated with black-hole transients and it is now clear that the role played by different kinds of (often massive) outflows seen at different phases of the outburst evolution of these systems is as fundamental as the one played by the accretion process itself. The spectral-timing states originally identified in the X-rays and fundamentally based on the observed effect of accretion, have acquired new importance as they now allow to describe within a coherent picture the phenomenology observed at other wave- length, where the effects of ejection processes are most evident. With a particular focu...
Hinderer, Tanja; Mroué, Abdul H; Hemberger, Daniel A; Lovelace, Geoffrey; Pfeiffer, Harald P
2013-01-01
We compute the periastron advance using the effective-one-body formalism for binary black holes moving on quasi-circular orbits and having spins collinear with the orbital angular momentum. We compare the predictions with the periastron advance recently computed in accurate numerical-relativity simulations and find remarkable agreement for a wide range of spins and mass ratios. These results do not use any numerical-relativity calibration of the effective-one-body model, and stem from two key ingredients in the effective-one-body Hamiltonian: (i) the mapping of the two-body dynamics of spinning particles onto the dynamics of an effective spinning particle in a (deformed) Kerr spacetime, fully symmetrized with respect to the two-body masses and spins, and (ii) the resummation, in the test-particle limit, of all post-Newtonian (PN) corrections linear in the spin of the particle. In fact, even when only the leading spin PN corrections are included in the effective-one-body spinning Hamiltonian but all the test-p...
Eccentric binary black-hole mergers: The transition from inspiral to plunge in general relativity
Sperhake, U; Cardoso, V; González, J A; Brügmann, B; Ansorg, M
2007-01-01
We study the transition from inspiral to plunge in general relativity by computing gravitational waveforms of non-spinning, equal-mass black-hole binaries. We consider two sequences of simulations. The longer (shorter) sequence starts with a quasi-circular inspiral completing about 2.3 (1.5) orbits prior to coalescence of the holes. For each sequence, the binding energy of the system is kept constant and the orbital angular momentum is progressively reduced to zero, producing orbits of increasing eccentricity and eventually a head-on collision. We analyze in detail the radiation of energy and angular momentum in gravitational waves, the contribution of different multipolar components and the final spin of the remnant. We find that the motion transitions from inspiral to plunge when the orbital angular momentum L=L_crit is about 0.8M. For L
Babak, Stanislav; Taracchini, Andrea; Buonanno, Alessandra
2017-01-01
In Abbott et al. [Phys. Rev. X 6, 041014 (2016), 10.1103/PhysRevX.6.041014], the properties of the first gravitational wave detected by LIGO, GW150914, were measured by employing an effective-one-body (EOB) model of precessing binary black holes whose underlying dynamics and waveforms were calibrated to numerical-relativity (NR) simulations. Here, we perform the first extensive comparison of such an EOBNR model to 70 precessing NR waveforms that span mass ratios from 1 to 5, dimensionless spin magnitudes up to 0.5, generic spin orientations, and length of about 20 orbits. We work in the observer's inertial frame and include all ℓ=2 modes in the gravitational-wave polarizations. We introduce new prescriptions for the EOB ringdown signal concerning its spectrum and time of onset. For total masses between 10 M⊙ and 200 M⊙ , we find that precessing EOBNR waveforms have unfaithfulness within about 3% to NR waveforms when considering the Advanced-LIGO design noise curve. This result is obtained without recalibration of the inspiral-plunge signal of the underlying nonprecessing EOBNR model. The unfaithfulness is computed with maximization over time and phase of arrival, sky location, and polarization of the EOBNR waveform, and it is averaged over sky location and polarization of the NR signal. We also present comparisons between NR and EOBNR waveforms in a frame that tracks the orbital precession.
Babak, Stanislav; Buonanno, Alessandra
2016-01-01
In Ref. [1], the properties of the first gravitational wave detected by LIGO, GW150914, were measured by employing an effective-one-body (EOB) model of precessing binary black holes whose underlying dynamics and waveforms were calibrated to numerical-relativity (NR) simulations. Here, we perform the first extensive comparison of such EOBNR model to 70 precessing NR waveforms that span mass ratios from 1 to 5, dimensionless spin magnitudes up to 0.5, generic spin orientations, and length of about 20 orbits. We work in the observer's inertial frame and include all $\\ell=2$ modes in the gravitational-wave polarizations. We introduce new prescriptions for the EOB ringdown signal concerning its spectrum and time of onset. For total masses between 10Msun and 200Msun, we find that precessing EOBNR waveforms have unfaithfulness within about 3% to NR waveforms when considering the Advanced-LIGO design noise curve. This result is obtained without recalibration of the inspiral-plunge of the underlying nonprecessing EOBN...
Intermediate-mass-ratio black-hole binaries: numerical relativity meets perturbation theory.
Lousto, Carlos O; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela
2010-05-28
We study black-hole binaries in the intermediate-mass-ratio regime 0.01≲q≲0.1 with a new technique that makes use of nonlinear numerical trajectories and efficient perturbative evolutions to compute waveforms at large radii for the leading and nonleading (ℓ, m) modes. As a proof-of-concept, we compute waveforms for q=1/10. We discuss applications of these techniques for LIGO and VIRGO data analysis and the possibility that our technique can be extended to produce accurate waveform templates from a modest number of fully nonlinear numerical simulations.
Massive Black Hole Binary Evolution
Merritt David
2005-11-01
Full Text Available Coalescence of binary supermassive black holes (SBHs would constitute the strongest sources of gravitational waves to be observed by LISA. While the formation of binary SBHs during galaxy mergers is almost inevitable, coalescence requires that the separation between binary components first drop by a few orders of magnitude, due presumably to interaction of the binary with stars and gas in a galactic nucleus. This article reviews the observational evidence for binary SBHs and discusses how they would evolve. No completely convincing case of a bound, binary SBH has yet been found, although a handful of systems (e.g. interacting galaxies; remnants of galaxy mergers are now believed to contain two SBHs at projected separations of <~ 1kpc. N-body studies of binary evolution in gas-free galaxies have reached large enough particle numbers to reproduce the slow, “diffusive” refilling of the binary’s loss cone that is believed to characterize binary evolution in real galactic nuclei. While some of the results of these simulations - e.g. the binary hardening rate and eccentricity evolution - are strongly N-dependent, others - e.g. the “damage” inflicted by the binary on the nucleus - are not. Luminous early-type galaxies often exhibit depleted cores with masses of ~ 1-2 times the mass of their nuclear SBHs, consistent with the predictions of the binary model. Studies of the interaction of massive binaries with gas are still in their infancy, although much progress is expected in the near future. Binary coalescence has a large influence on the spins of SBHs, even for mass ratios as extreme as 10:1, and evidence of spin-flips may have been observed.
Black Hole Binaries in Quiescence
Bailyn, Charles D
2016-01-01
I discuss some of what is known and unknown about the behavior of black hole binary systems in the quiescent accretion state. Quiescence is important for several reasons: 1) the dominance of the companion star in the optical and IR wavelengths allows the binary parameters to be robustly determined - as an example, we argue that the longer proposed distance to the X-ray source GRO J1655-40 is correct; 2) quiescence represents the limiting case of an extremely low accretion rate, in which both accretion and jets can be observed; 3) understanding the evolution and duration of the quiescent state is a key factor in determining the overall demographics of X-rary binaries, which has taken on a new importance in the era of gravitational wave astronomy.
Hybrid Black-Hole Binary Initial Data
Mundim, Bruno C.; Kelly, Bernard J.; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela
2010-01-01
"Traditional black-hole binary puncture initial data is conformally flat. This unphysical assumption is coupled with a lack of radiation signature from the binary's past life. As a result, waveforms extracted from evolutions of this data display an abrupt jump. In Kelly et al. [Class. Quantum Grav. 27:114005 (2010)], a new binary black-hole initial data with radiation contents derived in the post-Newtonian (PN) calculations was adapted to puncture evolutions in numerical relativity. This data satisfies the constraint equations to the 2.5PN order, and contains a transverse-traceless "wavy" metric contribution, violating the standard assumption of conformal flatness. Although the evolution contained less spurious radiation, there were undesired features; the unphysical horizon mass loss and the large initial orbital eccentricity. Introducing a hybrid approach to the initial data evaluation, we significantly reduce these undesired features."
Hybrid black-hole binary initial data
Mundim, Bruno C; Zlochower, Yosef; Nakano, Hiroyuki; Campanelli, Manuela
2010-01-01
Traditional black-hole binary puncture initial data is conformally flat. This unphysical assumption is coupled with a lack of radiation signature from the binary's past life. As a result, waveforms extracted from evolutions of this data display an abrupt jump. In Kelly et al. [Class.Quant.Grav.27:114005,2010], a new binary black-hole initial data with radiation contents derived in the post-Newtonian (PN) calculation was adapted to puncture evolutions in numerical relativity. This data satisfies the constraint equations to the 2.5PN order, and contains a transverse-traceless "wavy" metric contribution, violating the standard assumption of conformal flatness. Although the evolution contained less spurious radiation, there were undesired features; the unphysical horizon mass loss and the large initial orbital eccentricity. Introducing a hybrid approach to the initial data evaluation, we significantly reduce these undesired features.
Modified evolution of stellar binaries from supermassive black hole binaries
Liu, Bin; Wang, Yi-Han; Yuan, Ye-Fei
2017-04-01
The evolution of main-sequence binaries resided in the galactic centre is influenced a lot by the central supermassive black hole (SMBH). Due to this perturbation, the stars in a dense environment are likely to experience mergers or collisions through secular or non-secular interactions. In this work, we study the dynamics of the stellar binaries at galactic centre, perturbed by another distant SMBH. Geometrically, such a four-body system is supposed to be decomposed into the inner triple (SMBH-star-star) and the outer triple (SMBH-stellar binary-SMBH). We survey the parameter space and determine the criteria analytically for the stellar mergers and the tidal disruption events (TDEs). For a relative distant and equal masses SMBH binary, the stars have more opportunities to merge as a result from the Lidov-Kozai (LK) oscillations in the inner triple. With a sample of tight stellar binaries, our numerical experiments reveal that a significant fraction of the binaries, ∼70 per cent, experience merger eventually. Whereas the majority of the stellar TDEs are likely to occur at a close periapses to the SMBH, induced by the outer Kozai effect. The tidal disruptions are found numerically as many as ∼10 per cent for a close SMBH binary that is enhanced significantly than the one without the external SMBH. These effects require the outer perturber to have an inclined orbit (≥40°) relatively to the inner orbital plane and may lead to a burst of the extremely astronomical events associated with the detection of the SMBH binary.
Gravitational waves from binary black holes
Bala R Iyer
2011-07-01
It is almost a century since Einstein predicted the existence of gravitational waves as one of the consequences of his general theory of relativity. A brief historical overview including Chandrasekhar’s contribution to the subject is ﬁrst presented. The current status of the experimental search for gravitational waves and the attendant theoretical insights into the two-body problem in general relativity arising from computations of gravitational waves from binary black holes are then broadly reviewed.
Santamaria, L; Ajith, P; Bruegmann, B; Dorband, N; Hannam, M; Husa, S; Moesta, P; Pollney, D; Reisswig, C; Seiler, J; Krishnan, B
2010-01-01
We present a new phenomenological gravitational waveform model for he inspiral and coalescence of non-precessing spinning black hole binaries. Our approach is based on a frequency domain matching of post-Newtonian inspiral waveforms with numerical relativity based binary black hole coalescence waveforms. We quantify the various possible sources of systematic errors that arise in matching post-Newtonian and numerical relativity waveforms, and we use a matching criteria based on minimizing these errors; we find that the dominant source of errors are those in the post-Newtonian waveforms near the merger. An analytical formula for the dominant mode of the gravitational radiation of non-precessing black hole binaries is presented that captures the phenomenology of the hybrid waveforms. Its implementation in the current searches for gravitational waves should allow cross-checks of other inspiral-merger-ringdown waveform families and improve the reach of gravitational wave searches.
Close supermassive binary black holes
Gaskell, C. Martin
2010-01-01
It has been proposed that when the peaks of the broad emission lines in active galactic nuclei (AGNs) are significantly blueshifted or redshifted from the systemic velocity of the host galaxy, this could be a consequence of orbital motion of a supermassive blackhole binary (SMB). The AGN J1536+0441 (=SDSS J153636.22+044127.0) has recently been proposed as an example of this phenomenon. It is proposed here instead that 1536+044 is an example of line emission from a disc. If this is correct, the lack of clear optical spectral evidence for close SMBs is significant and argues either that the merging of close SMBs is much faster than has generally been hitherto thought, or if the approach is slow, that when the separation of the binary is comparable to the size of the torus and broad-line region, the feeding of the black holes is disrupted.
Damour, Thibault; Bernuzzi, Sebastiano
2012-01-01
We improve the effective-one-body (EOB) description of nonspinning coalescing black hole binaries by incorporating several recent analytical advances, notably: (i) logarithmic contributions to the conservative dynamics; (ii) resummed horizon-absorption contribution to the orbital angular momentum loss; and (iii) a specific radial component of the radiation reaction force implied by consistency with the azimuthal one. We then complete this analytically improved EOB model by comparing it to accurate numerical relativity (NR) simulations performed by the Caltech-Cornell-CITA group for mass ratios $q=(1,2,3,4,6)$. In particular, the comparison to NR data allows us to determine with high-accuracy ($\\sim 10^{-4}$) the value of the main EOB radial potential: $A(u;\\,\
Beyond the Black-White Binary of U.S. Race Relations: A Next Step in Religious Education
Goto, Courtney T.
2017-01-01
Many if not most people in the academy as well as the public sphere tend to regard race and racism in the United States in terms of a default frame of reference (i.e., a paradigm): the black-white binary. Although this frame is constructive as well as compelling, it displays serious liabilities. This article outlines, for religious educators, nine…
Hybrid black-hole binary initial data
Mundim, Bruno C; Zlochower, Yosef; Nakano, Hiroyuki; Campanelli, Manuela [Center for Computational Relativity and Gravitation, School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY14623 (United States); Kelly, Bernard J, E-mail: bcmsma@astro.rit.edu, E-mail: bernard.j.kelly@nasa.gov, E-mail: yosef@astro.rit.edu, E-mail: nakano@astro.rit.edu, E-mail: manuela@astro.rit.edu [CRESST and Gravitational Astrophysics Laboratory, NASA/GSFC, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)
2011-07-07
Traditional black-hole (BH) binary puncture initial data is conformally flat. This unphysical assumption is coupled with a lack of radiation signature from the binary's past life. As a result, waveforms extracted from evolutions of this data display an abrupt jump. In Kelly et al (2010, Class. Quantum Grav. 27 114005), a new binary BH initial data with radiation content derived from post-Newtonian (PN) theory was adapted to puncture evolutions in numerical relativity. This data satisfies the constraint equations to the 2.5PN order, and contains a transverse-traceless 'wavy' metric contribution, violating the standard assumption of conformal flatness. Although the evolution contained less spurious radiation, there were undesirable features: unphysical horizon mass loss and large initial orbital eccentricity. Introducing a hybrid approach to the initial data evaluation, we significantly reduce these undesired features.
Faber, J A; Shapiro, S L; Taniguchi, K; Rasio, F A; Faber, Joshua A.; Baumgarte, Thomas W.; Shapiro, Stuart L.; Taniguchi, Keisuke; Rasio, Frederic A.
2006-01-01
We calculate the first dynamical evolutions of merging black hole-neutron star binaries that construct the combined black hole-neutron star spacetime in a general relativistic framework. We treat the metric in the conformal flatness approximation, and assume that the black hole mass is sufficiently large compared to that of the neutron star so that the black hole remains fixed in space. Using a spheroidal spectral methods solver, we solve the resulting field equations for a neutron star orbiting a Schwarzschild black hole. The matter is evolved using a relativistic, Lagrangian, smoothed particle hydrodynamics (SPH) treatment. We take as our initial data recent quasiequilibrium models for synchronized neutron star polytropes generated as solutions of the conformal thin-sandwich (CTS) decomposition of the Einstein field equations. We are able to construct from these models relaxed SPH configurations whose profiles show good agreement with CTS solutions. Our adiabatic evolution calculations for neutron stars wit...
Binary Black Holes: Mergers, Dynamics, and Waveforms
Centrella, Joan
2007-04-01
The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based interferometer LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, data analysis, and astrophysics.
Yan, Chang-Shuo; Lu, Youjun; Yu, Qingjuan; Mao, Shude; Wambsganss, Joachim
2014-04-01
Sub-parsec binary massive black holes (BBHs) have long been thought to exist in many QSOs but remain observationally elusive. In this paper, we propose a novel method to probe sub-parsec BBHs through microlensing of lensed QSOs. If a QSO hosts a sub-parsec BBH in its center, it is expected that the BBH is surrounded by a circumbinary disk, each component of the BBH is surrounded by a small accretion disk, and a gap is opened by the secondary component in between the circumbinary disk and the two small disks. Assuming such a BBH structure, we generate mock microlensing light curves for some QSO systems that host BBHs with typical physical parameters. We show that microlensing light curves of a BBH QSO system at the infrared-optical-UV bands can be significantly different from those of corresponding QSO system with a single massive black hole (MBH), mainly because of the existence of the gap and the rotation of the BBH (and its associated small disks) around the center of mass. We estimate the half-light radii of the emission region at different wavelengths from mock light curves and find that the obtained half-light radius versus wavelength relations of BBH QSO systems can be much flatter than those of single MBH QSO systems at a wavelength range determined by the BBH parameters, such as the total mass, mass ratio, separation, accretion rates, etc. The difference is primarily due to the existence of the gap. Such unique features on the light curves and half-light radius-wavelength relations of BBH QSO systems can be used to select and probe sub-parsec BBHs in a large number of lensed QSOs to be discovered by current and future surveys, including the Panoramic Survey Telescope and Rapid Response System, the Large Synoptic Survey telescope, and Euclid.
Yan, Chang-Shuo; Yu, Qingjuan; Mao, Shude; Wambsganss, Joachim
2014-01-01
Sub-parsec binary massive black holes (BBHs) are long anticipated to exist in many QSOs but remain observationally elusive. In this paper, we propose a novel method to probe sub-parsec BBHs through microlensing of lensed QSOs. If a QSO hosts a sub-parsec BBH in its center, it is expected that the BBH is surrounded by a circum-binary disk, each component of the BBH is surrounded by a small accretion disk, and a gap is opened by the secondary component in between the circum-binary disk and the two small disks. Assuming such a BBH structure, we generate mock microlensing light curves for some QSO systems that host BBHs with typical physical parameters. We show that microlensing light curves of a BBH QSO system at the infrared-optical-UV bands can be significantly different from those of corresponding QSO system with a single massive black hole (MBH), mainly because of the existence of the gap and the rotation of the BBH (and its associated small disks) around the center of mass. We estimate the half-light radii ...
Microlensing Signature of Binary Black Holes
Schnittman, Jeremy; Sahu, Kailash; Littenberg, Tyson
2012-01-01
We calculate the light curves of galactic bulge stars magnified via microlensing by stellar-mass binary black holes along the line-of-sight. We show the sensitivity to measuring various lens parameters for a range of survey cadences and photometric precision. Using public data from the OGLE collaboration, we identify two candidates for massive binary systems, and discuss implications for theories of star formation and binary evolution.
Formation of discs around super-massive black hole binaries
Goicovic, Felipe G.; Cuadra, Jorge; Sesana, Alberto
2016-02-01
We model numerically the evolution of 104 M ⊙ turbulent molecular clouds in near-radial infall onto 106 M ⊙, equal-mass supermassive black hole binaries, using a modified version of the SPH code gadget-3. We investigate the different gas structures formed depending on the relative inclination between the binary and the cloud orbits. Our first results indicate that an aligned orbit produces mini-discs around each black hole, almost aligned with the binary; a perpendicular orbit produces misaligned mini-discs; and a counter-aligned orbit produces a circumbinary, counter-rotating ring.
Formation of discs around super-massive black hole binaries
Goicovic, Felipe G; Sesana, Alberto
2015-01-01
We model numerically the evolution of $10^4M_\\odot$ turbulent molecular clouds in near-radial infall onto $10^6M_\\odot$, equal-mass super-massive black hole binaries, using a modified version of the SPH code GADGET-3. We investigate the different gas structures formed depending on the relative inclination between the binary and the cloud orbits. Our first results indicate that an aligned orbit produces mini-discs around each black hole, almost aligned with the binary; a perpendicular orbit produces misaligned mini-discs; and a counter-aligned orbit produces a circumbinary, counter-rotating ring.
Effective-one-body modeling of precessing black hole binaries
Taracchini, Andrea; Babak, Stanislav; Buonanno, Alessandra
2016-03-01
Merging black hole binaries with generic spins that undergo precessional motion emit complicated gravitational-wave signals. We discuss how such waveforms can be accurately modeled within an effective-one-body approach by (i) exploiting the simplicity of the signals in a frame that corotates with the orbital plane of the binary and (ii) relying on an accurate model of nonprecessing black hole binaries. The model is validated by extensive comparisons to 70 numerical relativity simulations of precessing black hole binaries and can generate inspiral-merger-ringdown waveforms for mass ratios up to 100 and any spin configuration. This work is an essential tool for studying and characterizing candidate gravitational-wave events in science runs of advanced LIGO.
Toroidal Horizons in Binary Black Hole Mergers
Bohn, Andy; Teukolsky, Saul A
2016-01-01
We find the first binary black hole event horizon with a toroidal topology. It had been predicted that generically the event horizons of merging black holes should briefly have a toroidal topology, but such a phase has never been seen prior to this work. In all previous binary black hole simulations, in the coordinate slicing used to evolve the black holes, the topology of the event horizon transitions directly from two spheres during the inspiral to a single sphere as the black holes merge. We present a coordinate transformation to a foliation of spacelike hypersurfaces that "cut a hole" through the event horizon surface, resulting in a toroidal event horizon. A torus could potentially provide a mechanism for violating topological censorship. However, these toroidal event horizons satisfy topological censorship by construction, because we can always trivially apply the inverse coordinate transformation to remove the topological feature.
Ajith, P; Chen, Y; Hewitson, M; Krishnan, B; Sintes, A M; Whelan, J T; Brügmann, B; Diener, P; Dorband, N; González, J; Hannam, M; Husa, S; Pollney, D; Rezzolla, L; Santamaria, L; Sperhake, U; Thornburg, J
2007-01-01
Gravitational waveforms from the inspiral and ring-down stages of the binary black hole coalescences can be modelled accurately by approximation/perturbation techniques in general relativity. Recent progress in numerical relativity has enabled us to model also the non-perturbative merger phase of the binary black-hole coalescence problem. This enables us to \\emph{coherently} search for all three stages of the coalescence of non-spinning binary black holes using a single template bank. Taking our motivation from these results, we propose a family of template waveforms which can model the inspiral, merger, and ring-down stages of the coalescence of non-spinning binary black holes that follow quasi-circular inspiral. This two-dimensional template family is explicitly parametrized by the physical parameters of the binary. We show that the template family is not only \\emph{effectual} in detecting the signals from black hole coalescences, but also \\emph{faithful} in estimating the parameters of the binary. We compa...
Minidisks in Binary Black Hole Accretion
Ryan, Geoffrey; MacFadyen, Andrew
2017-02-01
Newtonian simulations have demonstrated that accretion onto binary black holes produces accretion disks around each black hole (“minidisks”), fed by gas streams flowing through the circumbinary cavity from the surrounding circumbinary disk. We study the dynamics and radiation of an individual black hole minidisk using 2D hydrodynamical simulations performed with a new general relativistic version of the moving-mesh code Disco. We introduce a comoving energy variable that enables highly accurate integration of these high Mach number flows. Tidally induced spiral shock waves are excited in the disk and propagate through the innermost stable circular orbit, providing a Reynolds stress that causes efficient accretion by purely hydrodynamic means and producing a radiative signature brighter in hard X-rays than the Novikov-Thorne model. Disk cooling is provided by a local blackbody prescription that allows the disk to evolve self-consistently to a temperature profile where hydrodynamic heating is balanced by radiative cooling. We find that the spiral shock structure is in agreement with the relativistic dispersion relation for tightly wound linear waves. We measure the shock-induced dissipation and find outward angular momentum transport corresponding to an effective alpha parameter of order 0.01. We perform ray-tracing image calculations from the simulations to produce theoretical minidisk spectra and viewing-angle-dependent images for comparison with observations.
Retrograde binaries of massive black holes in circumbinary accretion discs
Amaro-Seoane, Pau; Maureira-Fredes, Cristián; Dotti, Massimo; Colpi, Monica
2016-06-01
Context. We explore the hardening of a massive black hole binary embedded in a circumbinary gas disc under a specific circumstance: when the binary and the gas are coplanar and the gas is counter-rotating. The binary has unequal mass and the interaction of the gas with the lighter secondary black hole is the main cause of the braking torque on the binary that shrinks with time. The secondary black hole, revolving in the direction opposite to the gas, experiences a drag from gas-dynamical friction and from direct accretion of part of it. Aims: In this paper, using two-dimensional (2D) hydrodynamical grid simulations we investigate the effect of changing the accretion prescriptions on the dynamics of the secondary black hole, which in turn affect the binary hardening and eccentricity evolution. Methods: We find that realistic accretion prescriptions lead to results that differ from those inferred assuming accretion of all the gas within the Roche Lobe of the secondary black hole. Results: When considering gas accretion within the gravitational influence radius of the secondary black hole (which is smaller than the Roche Lobe radius) to better describe gas inflows, the shrinking of the binary is slower. In addition, in this case, a smaller amount of accreted mass is required to reduce the binary separation by the same amount. Different accretion prescriptions result in different discs' surface densities, which alter the black hole's dynamics back. Full 3D Smoothed-particle hydrodynamics realizations of a number of representative cases, run over a shorter interval of time, validate the general trends observed in the less computationally demanding 2D simulations. Conclusions: Initially circular black hole binaries increase their eccentricity only slightly, which then oscillates around small values (<0.1) while they harden. By contrast, initially eccentric binaries become more and more eccentric. A semi-analytical model describing the black hole's dynamics under
Jiménez-Forteza, Xisco; Husa, Sascha; Hannam, Mark; Khan, Sebastian; Pürrer, Michael
2016-01-01
Numerical relativity is an essential tool in studying the coalescence of binary black holes (BBHs). It is still computationally prohibitive to cover the BBH parameter space exhaustively, making phenomenological fitting formulas for BBH waveforms and final-state properties important for practical applications. We describe a general hierarchical bottom-up fitting methodology to design and calibrate fits to numerical relativity simulations for the three-dimensional parameter space of quasi-circular non-precessing merging BBHs, spanned by mass ratio and by the individual spin components orthogonal to the orbital plane. Particular attention is paid to incorporating the extreme-mass-ratio limit and to the subdominant unequal-spin effects. As an illustration of the method, we provide two applications, to the final spin and final mass (or equivalently: radiated energy) of the remnant black hole. We obtain results broadly consistent with previously published fits, but with improvements in the approach to extremal limi...
Orbital eccentricities in primordial black holes binaries
Cholis, Ilias; Ali-Haïmoud, Yacine; Bird, Simeon; Kamionkowski, Marc; Muñoz, Julian B; Raccanelli, Alvise
2016-01-01
It was recently suggested that the merger of $\\sim30\\,M_\\odot$ primordial black holes (PBHs) may provide a significant number of events in gravitational-wave observatories over the next decade, if they make up an appreciable fraction of the dark matter. Here we show that measurement of the eccentricities of the inspiralling binary black holes can be used to distinguish these binaries from those produced by more traditional astrophysical mechanisms. These PBH binaries are formed on highly eccentric orbits and can then merge on timescales that in some cases are years or less, retaining some eccentricity in the last seconds before the merger. This is to be contrasted with massive-stellar-binary, globular-cluster, or other astrophysical origins for binary black holes (BBHs) in which the orbits have very effectively circularized by the time the BBH enters the observable LIGO window. Here we discuss the features of the gravitational-wave signals that indicate this eccentricity and forecast the sensitivity of LIGO a...
Orbital eccentricities in primordial black hole binaries
Cholis, Ilias; Kovetz, Ely D.; Ali-Haïmoud, Yacine; Bird, Simeon; Kamionkowski, Marc; Muñoz, Julian B.; Raccanelli, Alvise
2016-10-01
It was recently suggested that the merger of ˜30 M⊙ primordial black holes (PBHs) may provide a significant number of events in gravitational-wave observatories over the next decade, if they make up an appreciable fraction of the dark matter. Here we show that measurement of the eccentricities of the inspiralling binary black holes can be used to distinguish these binaries from those produced by more traditional astrophysical mechanisms. These PBH binaries are formed on highly eccentric orbits and can then merge on time scales that in some cases are years or less, retaining some eccentricity in the last seconds before the merger. This is to be contrasted with massive-stellar-binary, globular-cluster, or other astrophysical origins for binary black holes (BBHs) in which the orbits have very effectively circularized by the time the BBH enters the observable LIGO window. Here we discuss the features of the gravitational-wave signals that indicate this eccentricity and forecast the sensitivity of LIGO and the Einstein Telescope to such effects. We show that if PBHs make up the dark matter, then roughly one event should have a detectable eccentricity given LIGO's expected sensitivity and observing time of six years. The Einstein Telescope should see O (10 ) such events after ten years.
Cassini states for black-hole binaries
Correia, Alexandre C M
2016-01-01
Cassini states correspond to equilibria of the spin axis of a celestial body when its orbit is perturbed. They were initially described for planetary satellites, but the spin axes of black-hole binaries also present this kind of equilibria. In previous works, Cassini states were reported as spin-orbit resonances, but actually the spin of black-hole binaries is in circulation and there is no resonant motion. Here we provide a general description of the spin dynamics of black-hole binary systems based on a Hamiltonian formalism. In absence of dissipation the problem is integrable and it is easy to identify all possible trajectories for the spin for a given value of the total angular momentum. As the system collapses due to radiation reaction, the Cassini states are shifted to different positions, which modifies the dynamics around them. This is why the final spin distribution may differ from the initial one. Our method provides a simple way of predicting the distribution of the spin of black-hole binaries at th...
Yagi, Kent
2015-01-01
When in a tight binary, the mutual tidal deformations of neutron stars imprint onto observables, encoding information about their internal structure at supranuclear densities and gravity in the extreme-gravity regime. Gravitational wave observations of their late binary inspiral may serve as a tool to extract the individual tidal deformabilities, but this is made difficult by degeneracies between them in the gravitational wave model. We here resolve this problem by discovering approximately universal relations between dimensionless combinations of the individual tidal deformabilities. We show that these relations break degeneracies in the gravitational wave model, allowing for the accurate extraction of both deformabilities. Such measurements can be used to better differentiate between equation-of-state models, and improve tests of General Relativity and cosmology.
Yagi, Kent; Yunes, Nicolás
2016-07-01
When in a tight binary, the mutual tidal deformations of neutron stars get imprinted onto observables, encoding information about their internal structure at supranuclear densities and gravity in the extreme-gravity regime. Gravitational wave (GW) observations of their late binary inspiral may serve as a tool to extract the individual tidal deformabilities, but this is made difficult by degeneracies between them in the GW model. We here resolve this problem by discovering approximately equation-of-state (EoS)-insensitive relations between dimensionless combinations of the individual tidal deformabilities. We show that these relations break degeneracies in the GW model, allowing for the accurate extraction of both deformabilities. Such measurements can be used to better differentiate between EoS models, and improve tests of general relativity and cosmology.
Modeling Flows Around Merging Black Hole Binaries
Centrella, Joan
2008-01-01
Coalescing massive black hole binaries are produced by the merger of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne LISA. In cases in which the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a first step towards this problem by mapping the flow of pressureless matter in the dynamic, 3-D general relativistic spacetime around the merging black holes. We report on the results of these initial simulations and discuss their likely importance for future hydrodynamical simulations.
Dual jets from binary black holes.
Palenzuela, Carlos; Lehner, Luis; Liebling, Steven L
2010-08-20
The coalescence of supermassive black holes--a natural outcome when galaxies merge--should produce gravitational waves and would likely be associated with energetic electromagnetic events. We have studied the coalescence of such binary black holes within an external magnetic field produced by the expected circumbinary disk surrounding them. Solving the Einstein equations to describe black holes interacting with surrounding plasma, we present numerical evidence for possible jets driven by these systems. Extending the process described by Blandford and Znajek for a single, spinning black hole, the picture that emerges suggests that the electromagnetic field extracts energy from the orbiting black holes, which ultimately merge and settle into the standard Blandford-Znajek scenario. Emissions along these jets could potentially be observable at large distances.
precession: Dynamics of spinning black-hole binaries with python
Gerosa, Davide; Kesden, Michael
2016-06-01
We present the numerical code precession, a new open-source python module to study the dynamics of precessing black-hole binaries in the post-Newtonian regime. The code provides a comprehensive toolbox to (i) study the evolution of the black-hole spins along their precession cycles, (ii) perform gravitational-wave-driven binary inspirals using both orbit-averaged and precession-averaged integrations, and (iii) predict the properties of the merger remnant through fitting formulas obtained from numerical-relativity simulations. precession is a ready-to-use tool to add the black-hole spin dynamics to larger-scale numerical studies such as gravitational-wave parameter estimation codes, population synthesis models to predict gravitational-wave event rates, galaxy merger trees and cosmological simulations of structure formation. precession provides fast and reliable integration methods to propagate statistical samples of black-hole binaries from/to large separations where they form to/from small separations where they become detectable, thus linking gravitational-wave observations of spinning black-hole binaries to their astrophysical formation history. The code is also a useful tool to compute initial parameters for numerical-relativity simulations targeting specific precessing systems. precession can be installed from the python Package Index, and it is freely distributed under version control on github, where further documentation is provided.
Binary dynamics near a massive black hole
Hopman, Clovis
2009-01-01
We analyze the dynamical evolution of binary stars that interact with a static background of single stars in the environment of a massive black hole (MBH). All stars are considered to be single mass, Newtonian point particles. We follow the evolution of the energy E and angular momentum J of the center of mass of the binaries with respect to the MBH, as well as their internal semi-major axis a, using a Monte Carlo method. For a system like the Galactic center, the main conclusions are the following: (1) The binary fraction can be of the order of a few percent outside 0.1 pc, but decreases quickly closer to the MBH. (2) Within ~0.1 pc, binaries can only exist on eccentric orbits with apocenters much further away from the MBH. (3) Far away from the MBH, loss-cone effects are the dominant mechanism that disrupts binaries with internal velocities close to the velocity dispersion. Closer to the MBH, three-body encounters are more effective in disrupting binaries. (4) The rate at which hard binaries become tighter ...
Properties of the Binary Black Hole Merger GW150914.
Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etienne, Z; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gaebel, S M; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pan, Y; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Pfeiffer, H P; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Röver, C; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van der Sluys, M V; van Heijningen, J V; Vañó-Viñuales, A; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J; Boyle, M; Brügmann, B; Campanelli, M; Clark, M; Hamberger, D; Kidder, L E; Kinsey, M; Laguna, P; Ossokine, S; Scheel, M A; Szilagyi, B; Teukolsky, S; Zlochower, Y
2016-06-17
On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36_{-4}^{+5}M_{⊙} and 29_{-4}^{+4}M_{⊙}; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be black hole of mass 62_{-4}^{+4}M_{⊙} and spin 0.67_{-0.07}^{+0.05}. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.
Flip-flopping binary black holes.
Lousto, Carlos O; Healy, James
2015-04-10
We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of d≈25M between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for t=20 000M and displays a total change in the orientation of the spin of one of the black holes from an initial alignment with the orbital angular momentum to a complete antialignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes.
Precessional Instability in Binary Black Holes with Aligned Spins.
Gerosa, Davide; Kesden, Michael; O'Shaughnessy, Richard; Klein, Antoine; Berti, Emanuele; Sperhake, Ulrich; Trifirò, Daniele
2015-10-02
Binary black holes on quasicircular orbits with spins aligned with their orbital angular momentum have been test beds for analytic and numerical relativity for decades, not least because symmetry ensures that such configurations are equilibrium solutions to the spin-precession equations. In this work, we show that these solutions can be unstable when the spin of the higher-mass black hole is aligned with the orbital angular momentum and the spin of the lower-mass black hole is antialigned. Spins in these configurations are unstable to precession to large misalignment when the binary separation r is between the values r(ud±)=(√(χ(1))±√(qχ(2)))(4)(1-q)(-2)M, where M is the total mass, q≡m(2)/m(1) is the mass ratio, and χ(1) (χ(2)) is the dimensionless spin of the more (less) massive black hole. This instability exists for a wide range of spin magnitudes and mass ratios and can occur in the strong-field regime near the merger. We describe the origin and nature of the instability using recently developed analytical techniques to characterize fully generic spin precession. This instability provides a channel to circumvent astrophysical spin alignment at large binary separations, allowing significant spin precession prior to merger affecting both gravitational-wave and electromagnetic signatures of stellar-mass and supermassive binary black holes.
Spin flips in generic black hole binaries
Lousto, Carlos O
2015-01-01
We study the spin dynamics of individual black holes in a binary system. In particular we focus on the polar precession of spins and the possibility of a complete flip of spins with respect to the orbital plane. We perform a full numerical simulation that displays these characteristics. We evolve equal mass binary spinning black holes for $t=20,000M$ from an initial proper separation of $d=25M$ down to merger after 48.5 orbits. We compute the gravitational radiation from this system and compare it to 3.5 post-Newtonian generated waveforms finding close agreement. We then further use 3.5 post-Newtonian evolutions to show the extension of this spin {flip-flop} phenomenon to unequal mass binaries. We also provide analytic expressions to approximate the maximum {flip-flop} angle and frequency in terms of the binary spins and mass ratio parameters at a given orbital radius. Finally we discuss the effect this spin {flip-flop} would have on accreting matter and other potential observational effects.
Probing Dark Energy with Black Hole Binaries
Mersini-Houghton, Laura
2008-01-01
The equation of state (EoS) of dark energy $w$ remains elusive despite enormous experimental efforts to pin down its value and its time variation. Yet it is the single most important handle we have in our understanding of one of the most mysterious puzzle in nature, dark energy. This letter proposes a new method for measuring the EoS of dark energy by using the gravitational waves (GW) of black hole binaries. The method described here offers an alternative to the standard way of large scale surveys. It is well known that the mass of a black hole changes due to the accretion of dark energy but at an extremely slow rate. However, a binary of supermassive black holes (SBH) radiates gravitational waves with a power proportional to the masses of these accreting stars and thereby carries information on dark energy. These waves can propagate through the vastness of structure in the universe unimpeded. The orbital changes of the binary, induced by the energy loss from gravitational radiation, receive a large contribu...
Tidal disruption events from supermassive black hole binaries
Coughlin, Eric R.; Armitage, Philip J.; Nixon, Chris; Begelman, Mitchell C.
2017-03-01
We investigate the pre-disruption gravitational dynamics and post-disruption hydrodynamics of the tidal disruption of stars by supermassive black hole (SMBH) binaries. We focus on binaries with relatively low mass primaries (106 M⊙), moderate mass ratios, and separations with reasonably long gravitational wave inspiral times (tens of Myr). First, we generate a large ensemble (between 1 and 10 million) of restricted three-body integrations to quantify the statistical properties of tidal disruptions by circular SMBH binaries of initially unbound stars. Compared to the reference case of a disruption by a single SMBH, the binary potential induces a significant variance into the specific energy and angular momentum of the star at the point of disruption. Second, we use Newtonian numerical hydrodynamics to study the detailed evolution of the fallback debris from 120 disruptions randomly selected from the three-body ensemble (excluding only the most deeply penetrating encounters). We find that the overall morphology of the debris is greatly altered by the presence of the second black hole, and the accretion rate histories display a wide range of behaviours, including order of magnitude dips and excesses relative to control simulations that include only one black hole. Complex evolution typically persists for many orbital periods of the binary. We find evidence for power in the accretion curves on time-scales related to the binary orbital period, though there is no exact periodicity. We discuss our results in the context of future wide-field surveys, and comment on the prospects of identifying and characterizing the subset of events occurring in nuclei with binary SMBHs.
Dynamical mass ejection from black hole-neutron star binaries
Kyutoku, Koutarou; Okawa, Hirotada; Shibata, Masaru; Taniguchi, Keisuke
2015-01-01
We investigate properties of material ejected dynamically in the merger of black hole-neutron star binaries by numerical-relativity simulations. We systematically study dependence of ejecta properties on the mass ratio of the binary, spin of the black hole, and equation of state of the neutron-star matter. Dynamical mass ejection is driven primarily by tidal torque, and the ejecta is much more anisotropic than that from binary neutron star mergers. In particular, the dynamical ejecta is concentrated around the orbital plane with a half opening angle of 10deg--20deg and often sweeps only a half of the plane. The ejecta mass can be as large as ~0.1M_sun, and the velocity is subrelativistic with ~0.2--0.3c for typical cases. The ratio of the ejecta mass to the bound mass (disk and fallback components) becomes high and the ejecta velocity is large when the binary mass ratio is large, i.e., the black hole is massive. The remnant black hole-disk system receives a kick velocity of O(100)km/s due to the ejecta linear...
Birth of Massive Black Hole Binaries
Colpi, M.; /Milan Bicocca U.; Dotti, M.; /Insubria U., Como; Mayer, L.; /Zurich, ETH; Kazantzidis, S.; /KIPAC, Menlo Park
2007-11-19
If massive black holes (BHs) are ubiquitous in galaxies and galaxies experience multiple mergers during their cosmic assembly, then BH binaries should be common albeit temporary features of most galactic bulges. Observationally, the paucity of active BH pairs points toward binary lifetimes far shorter than the Hubble time, indicating rapid inspiral of the BHs down to the domain where gravitational waves lead to their coalescence. Here, we review a series of studies on the dynamics of massive BHs in gas-rich galaxy mergers that underscore the vital role played by a cool, gaseous component in promoting the rapid formation of the BH binary. The BH binary is found to reside at the center of a massive self-gravitating nuclear disc resulting from the collision of the two gaseous discs present in the mother galaxies. Hardening by gravitational torques against gas in this grand disc is found to continue down to sub-parsec scales. The eccentricity decreases with time to zero and when the binary is circular, accretion sets in around the two BHs. When this occurs, each BH is endowed with it own small-size ({approx}< 0.01 pc) accretion disc comprising a few percent of the BH mass. Double AGN activity is expected to occur on an estimated timescale of {approx}< 1 Myr. The double nuclear point-like sources that may appear have typical separation of {approx}< 10 pc, and are likely to be embedded in the still ongoing starburst. We note that a potential threat of binary stalling, in a gaseous environment, may come from radiation and/or mechanical energy injections by the BHs. Only short-lived or sub-Eddington accretion episodes can guarantee the persistence of a dense cool gas structure around the binary necessary for continuing BH inspiral.
Toroidal horizons in binary black hole mergers
Bohn, Andy; Kidder, Lawrence E.; Teukolsky, Saul A.
2016-09-01
We find the first binary black hole event horizon with a toroidal topology. It has been predicted that generically the event horizons of merging black holes should briefly have a toroidal topology. However, such a phase has never been seen in numerical simulations. Instead, in all previous simulations, the topology of the event horizon transitions directly from two spheres during the inspiral to a single sphere as the black holes merge. We find a coordinate transformation to a foliation of spacelike hypersurfaces that "cut a hole" through the event horizon surface, resulting in a toroidal event horizon, thus reconciling the numerical work with theoretical expectations. The demonstration requires extremely high numerical precision, which is made possible by a new event horizon code described in a companion paper. A torus could potentially provide a mechanism for violating topological censorship. However, these toroidal event horizons satisfy topological censorship by construction, because we can always trivially apply the inverse coordinate transformation to remove the topological feature.
Minidisks in Binary Black Hole Accretion
Ryan, Geoffrey
2016-01-01
Newtonian simulations have demonstrated that accretion onto binary black holes produces accretion disks around each black hole ("minidisks"), fed by gas streams flowing through the circumbinary cavity from the surrounding circumbinary disk. We study the dynamics and radiation of an individual black hole minidisk using two-dimensional hydrodynamical simulations performed with a new general relativistic version of the moving mesh code Disco. We introduce a co-moving energy variable which enables highly accurate integration of these high Mach number flows. Tidally induced spiral shock waves are excited in the disk and propagate through the ISCO providing a Reynolds stress which causes efficient accretion by purely hydrodynamic means and producing a radiative signature brighter in hard X-rays than the Novikov-Thorne model. Disk cooling is provided by a local blackbody prescription that allows the disk to evolve self-consistently to a temperature profile where hydrodynamic heating is balanced by radiative cooling....
Kumar, Prayush; Bhagwat, Swetha; Afshari, Nousha; Brown, Duncan A; Lovelace, Geoffrey; Scheel, Mark A; Szilágyi, Béla
2015-01-01
Coalescing binaries of neutron stars (NS) and black holes (BH) are one of the most important sources of gravitational waves for the upcoming network of ground based detectors. Detection and extraction of astrophysical information from gravitational-wave signals requires accurate waveform models. The Effective-One-Body and other phenomenological models interpolate between analytic results and $10-30$ orbit numerical relativity (NR) merger simulations. In this paper we study the accuracy of these models using new NR simulations that span $36-88$ orbits, with mass-ratios and black hole spins $(q,\\chi_{BH}) = (7, \\pm 0.4), (7, \\pm 0.6)$, and $(5, -0.9)$. We find that: (i) the recently published SEOBNRv1 and SEOBNRv2 models of the Effective-One-Body family disagree with each other (mismatches of a few percent) for black hole spins $\\geq 0.5$ or $\\leq -0.3$, with waveform mismatch accumulating during early inspiral; (ii) comparison with numerical waveforms indicate that this disagreement is due to phasing errors of...
Tidal disruption events from supermassive black hole binaries
Coughlin, Eric R; Nixon, Chris; Begelman, Mitchell C
2016-01-01
We investigate the pre-disruption gravitational dynamics and post-disruption hydrodynamics of the tidal disruption of stars by supermassive black hole (SMBH) binaries. We focus on binaries with relatively low mass primaries ($10^6M_{\\odot}$), moderate mass ratios, and separations with reasonably long gravitational wave inspiral times (tens of Myr). First, we generate a large ensemble (between 1 and 10 million) of restricted three-body integrations to quantify the statistical properties of tidal disruptions by circular SMBH binaries of initially-unbound stars. Compared to the reference case of a disruption by a single SMBH, the binary potential induces significant variance into the specific energy and angular momentum of the star at the point of disruption. Second, we use Newtonian numerical hydrodynamics to study the detailed evolution of the fallback debris from 120 disruptions randomly selected from the three-body ensemble (excluding only the most deeply penetrating encounters). We find that the overall mor...
Jiménez-Forteza, Xisco; Keitel, David; Husa, Sascha; Hannam, Mark; Khan, Sebastian; Pürrer, Michael
2017-03-01
Numerical relativity is an essential tool in studying the coalescence of binary black holes (BBHs). It is still computationally prohibitive to cover the BBH parameter space exhaustively, making phenomenological fitting formulas for BBH waveforms and final-state properties important for practical applications. We describe a general hierarchical bottom-up fitting methodology to design and calibrate fits to numerical relativity simulations for the three-dimensional parameter space of quasicircular nonprecessing merging BBHs, spanned by mass ratio and by the individual spin components orthogonal to the orbital plane. Particular attention is paid to incorporating the extreme-mass-ratio limit and to the subdominant unequal-spin effects. As an illustration of the method, we provide two applications, to the final spin and final mass (or equivalently: radiated energy) of the remnant black hole. Fitting to 427 numerical relativity simulations, we obtain results broadly consistent with previously published fits, but improving in overall accuracy and particularly in the approach to extremal limits and for unequal-spin configurations. We also discuss the importance of data quality studies when combining simulations from diverse sources, how detailed error budgets will be necessary for further improvements of these already highly accurate fits, and how this first detailed study of unequal-spin effects helps in choosing the most informative parameters for future numerical relativity runs.
Binary Black Hole Mergers, Gravitational Waves, and LISA
Centrella, Joan; Baker, J.; Boggs, W.; Kelly, B.; McWilliams, S.; vanMeter, J.
2008-01-01
The final merger of comparable mass binary black holes is expected to be the strongest source of gravitational waves for LISA. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. We will present the results of new simulations of black hole mergers with unequal masses and spins, focusing on the gravitational waves emitted and the accompanying astrophysical "kicks." The magnitude of these kicks has bearing on the production and growth of supermassive black holes during the epoch of structure formation, and on the retention of black holes in stellar clusters.
Binary pairs of supermassive black holes - Formation in merging galaxies
Valtaoja, L.; Valtonen, M.J.; Byrd, G.G. (Turku Univ. (Finland); Alabama Univ., Tuscaloosa (USA))
1989-08-01
A process in which supermassive binary blackholes are formed in nuclei of supergiant galaxies due to galaxy mergers is examined. There is growing evidence that mergers of galaxies are common and that supermassive black holes in center of galaxies are also common. Consequently, it is expected that binary black holes should arise in connection with galaxy mergers. The merger process in a galaxy modeled after M87 is considered. The capture probability of a companion is derived as a function of its mass. Assuming a correlation between the galaxy mass and the blackholes mass, the expected mass ratio in binary black holes is calculated. The binary black holes formed in this process are long lived, surviving longer than the Hubble time unless they are perturbed by black holes from successive mergers. The properties of these binaries agree with Gaskell's (1988) observational work on quasars and its interpretation in terms of binary black holes. 39 refs.
Observational Signatures of Binary Supermassive Black Holes
Roedig, Constanze; Miller, M Coleman
2014-01-01
Observations indicate that most massive galaxies contain a supermassive black hole, and theoretical studies suggest that when such galaxies have a major merger, the central black holes will form a binary and eventually coalesce. Here we discuss two spectral signatures of such binaries that may help distinguish them from ordinary AGN. These signatures are expected when the mass ratio between the holes is not extreme and the system is fed by a circumbinary disk. One such signature is a notch in the thermal continuum that has been predicted by other authors; we point out that it should be accompanied by a spectral revival at shorter wavelengths and also discuss its dependence on binary properties such as mass, mass ratio, and separation. In particular, we note that the wavelength $\\lambda_n$ at which the notch occurs depends on these three parameters in such a way as to make the number of systems displaying these notches $\\propto \\lambda_n^{16/3}$; longer wavelength searches are therefore strongly favored. A sec...
Observation of Gravitational Waves from a Binary Black Hole Merger
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Gleason, J. R.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.
2016-02-01
On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 ×10-21. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 σ . The source lies at a luminosity distance of 41 0-180+160 Mpc corresponding to a redshift z =0.0 9-0.04+0.03 . In the source frame, the initial black hole masses are 3 6-4+5M⊙ and 2 9-4+4M⊙ , and the final black hole mass is 6 2-4+4M⊙ , with 3. 0-0.5+0.5M⊙ c2 radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.
Observation of Gravitational Waves from a Binary Black Hole Merger.
Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Arain, M A; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Belczynski, C; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cruise, A M; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Da Silva Costa, C F; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Gleason, J R; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Greenhalgh, R J S; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heefner, J; Heidmann, A; Heintze, M C; Heinzel, G; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A
2016-02-12
On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.
PRECESSION. Dynamics of spinning black-hole binaries with python
Gerosa, Davide
2016-01-01
We present the numerical code PRECESSION: a new open-source python module to study the dynamics of precessing black-hole binaries in the post-Newtonian regime. The code provides a comprehensive toolbox to (i) study the evolution of the black-hole spins along their precession cycles, (ii) perform gravitational-wave driven binary inspirals using both orbit-averaged and precession-averaged integrations, and (iii) predict the properties of the merger remnant through fitting formulae obtained from numerical-relativity simulations. PRECESSION is a ready-to-use tool to add the black-hole spin dynamics to larger-scale numerical studies such as gravitational-wave parameter estimation codes, population synthesis models to predict gravitational-wave event rates, galaxy merger trees and cosmological simulations of structure formation. PRECESSION provides fast and reliable integration methods to propagate statistical samples of black-hole binaries from/to large separations where they form to/from small separations where t...
Properties of the Binary Black Hole Merger GW150914
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Carbon Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.
2016-06-01
On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 3 6-4+5M⊙ and 2 9-4+4M⊙ ; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be <0.7 (at 90% probability). The luminosity distance to the source is 41 0-180+160 Mpc , corresponding to a redshift 0.0 9-0.04+0.03 assuming standard cosmology. The source location is constrained to an annulus section of 610 deg2 , primarily in the southern hemisphere. The binary merges into a black hole of mass 6 2-4+4M⊙ and spin 0.6 7-0.07+0.05. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.
Understanding the "antikick" in the merger of binary black holes.
Rezzolla, Luciano; Macedo, Rodrigo P; Jaramillo, José Luis
2010-06-04
The generation of a large recoil velocity from the inspiral and merger of binary black holes represents one of the most exciting results of numerical-relativity calculations. While many aspects of this process have been investigated and explained, the "antikick," namely, the sudden deceleration after the merger, has not yet found a simple explanation. We show that the antikick can be understood in terms of the radiation from a deformed black hole where the anisotropic curvature distribution on the horizon correlates with the direction and intensity of the recoil. Our analysis is focused on Robinson-Trautman spacetimes and allows us to measure both the energies and momenta radiated in a gauge-invariant manner. At the same time, this simpler setup provides the qualitative and quantitative features of merging black holes, opening the way to a deeper understanding of the nonlinear dynamics of black-hole spacetimes.
Gravitational Radiation of Binaries Coalescence into Intermediate Mass Black Holes
李瑾; 仲元红; 潘宇
2012-01-01
This paper discusses the gravitation waveforms of binaries coalescence into intermediate mass black holes （about 30 times of the solar mass）. We focus on the non-spinning intermediate mass black hole located less than 100 Mpc from earth. By comparing two simulation waveforms （effective one body numerical relativity waveform （EOBNR）, phenomenological waveform）, we discuss the relationship between the effective distance and frequency; and through analyzing large amounts of data in event, we find that the phenomenological waveform is much smoother than EOBNR waveform, and has higher accuracy at the same effective distance.
Binary Black Hole Mergers, Gravitational Waves, and LISA
Centrella, Joan; Baker, J.; Boggs, W.; Kelly, B.; McWilliams, S.; van Meter, J.
2007-12-01
The final merger of comparable mass binary black holes is expected to be the strongest source of gravitational waves for LISA. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. We will present the results of new simulations of black hole mergers with unequal masses and spins, focusing on the gravitational waves emitted and the accompanying astrophysical "kicks.” The magnitude of these kicks has bearing on the production and growth of supermassive blackholes during the epoch of structure formation, and on the retention of black holes in stellar clusters. This work was supported by NASA grant 06-BEFS06-19, and the simulations were carried out using Project Columbia at the NASA Advanced Supercomputing Division (Ames Research Center) and at the NASA Center for Computational Sciences (Goddard Space Flight Center).
Modeling gravitational radiation from coalescing binary black holes
Baker, J; Loustó, C O; Takahashi, R
2002-01-01
With the goal of bringing theory, particularly numerical relativity, to bear on an astrophysical problem of critical interest to gravitational wave observers we introduce a model for coalescence radiation from binary black hole systems. We build our model using the "Lazarus approach", a technique that bridges far and close limit approaches with full numerical relativity to solve Einstein equations applied in the truly nonlinear dynamical regime. We specifically study the post-orbital radiation from a system of equal-mass non-spinning black holes, deriving waveforms which indicate strongly circularly polarized radiation of roughly 3% of the system's total energy and 12% of its total angular momentum in just a few cycles. Supporting this result we first establish the reliability of the late-time part of our model, including the numerical relativity and close-limit components, with a thorough study of waveforms from a sequence of black hole configurations varying from previously treated head-on collisions to rep...
Coalescence of Black Hole-Neutron Star Binaries
Masaru Shibata
2011-08-01
Full Text Available We review the current status of general relativistic studies for the coalescence of black hole-neutron star (BH-NS binaries. First, procedures for a solution of BH-NS binaries in quasi-equilibrium circular orbits and the numerical results, such as quasi-equilibrium sequence and mass-shedding limit, of the high-precision computation, are summarized. Then, the current status of numerical-relativity simulations for the merger of BH-NS binaries is described. We summarize our understanding for the merger and/or tidal disruption processes, the criterion for tidal disruption, the properties of the remnant formed after the tidal disruption, gravitational waveform, and gravitational-wave spectrum.
Results from Binary Black Hole Simulations in Astrophysics Applications
Baker, John G.
2007-01-01
Present and planned gravitational wave observatories are opening a new astronomical window to the sky. A key source of gravitational waves is the merger of two black holes. The Laser Interferometer Space Antenna (LISA), in particular, is expected to observe these events with signal-to-noise ratio's in the thousands. To fully reap the scientific benefits of these observations requires a detailed understanding, based on numerical simulations, of the predictions of General Relativity for the waveform signals. New techniques for simulating binary black hole mergers, introduced two years ago, have led to dramatic advances in applied numerical simulation work. Over the last two years, numerical relativity researchers have made tremendous strides in understanding the late stages of binary black hole mergers. Simulations have been applied to test much of the basic physics of binary black hole interactions, showing robust results for merger waveform predictions, and illuminating such phenomena as spin-precession. Calculations have shown that merging systems can be kicked at up to 2500 km/s by the thrust from asymmetric emission. Recently, long lasting simulations of ten or more orbits allow tests of post-Newtonian (PN) approximation results for radiation from the last orbits of the binary's inspiral. Already, analytic waveform models based PN techniques with incorporated information from numerical simulations may be adequate for observations with current ground based observatories. As new advances in simulations continue to rapidly improve our theoretical understanding of the systems, it seems certain that high-precision predictions will be available in time for LISA and other advanced ground-based instruments. Future gravitational wave observatories are expected to make precision.
Measuring Massive Black Hole Binaries with LISA
Lang, Ryan N.; Hughes, Scott A.; Cornish, Neil J.
2009-01-01
The coalescence of two massive black holes produces gravitational waves (GWs) which can be detected by the space-based detector LISA. By measuring these waves, LISA can determine the various parameters which characterize the source. Measurements of the black hole masses and spins will provide information about the growth of black holes and their host galaxies over time. Measurements of a source's sky position and distance may help astronomers identify an electromagnetic counterpart to the GW event. The counterpart's redshift, combined with the GW-measured luminosity distance, can then be used to measure the Hubble constant and the dark energy parameter $w$. Because the potential science output is so high, it is useful to know in advance how well LISA can measure source parameters for a wide range of binaries. We calculate expected parameter estimation errors using the well-known Fisher matrix method. Our waveform model includes the physics of spin precession, as well as subleading harmonics. When these higher-order effects are not included, strong degeneracies between some parameters cause them to be poorly determined by a GW measurement. When precession and subleading harmonics are properly included, the degeneracies are broken, reducing parameter errors by one to several orders of magnitude.
Massive Black Hole Binaries: Dynamical Evolution and Observational Signatures
M. Dotti
2012-01-01
Full Text Available The study of the dynamical evolution of massive black hole pairs in mergers is crucial in the context of a hierarchical galaxy formation scenario. The timescales for the formation and the coalescence of black hole binaries are still poorly constrained, resulting in large uncertainties in the expected rate of massive black hole binaries detectable in the electromagnetic and gravitational wave spectra. Here, we review the current theoretical understanding of the black hole pairing in galaxy mergers, with a particular attention to recent developments and open issues. We conclude with a review of the expected observational signatures of massive binaries and of the candidates discussed in literature to date.
Properties of the binary black hole merger GW150914
,
2016-01-01
On September 14, 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterise the properties of the source and its parameters. The data around the time of the event were analysed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of $36^{+5}_{-4} M_\\odot$ and $29^{+4}_{-4} M_\\odot$ (for each parameter we report the median value and the range of the 90% credible interval). The dimensionless spin magnitude of the more massive black hole is bound to be $0.7$ (at 90% probability). The luminosity distance to the source is $410^{+160}_{-180}$ Mpc, corresponding to a redshift $0.09^{+0.03}_{-0.04}$ assuming standard cosmology. The source location is constrained to an annulus section of $590$ deg$^2$, primarily in the southern hemisphere. The binary merges into a black h...
Recent Advances in the Numerical Simulations of Binary Black Holes
Marronetti, Pedro
2011-01-01
Since the breakthrough papers from 2005/2006, the field of numerical relativity has experienced a growth spurt that took the two-body problem in general relativity from the category of "really-hard-problems" to the realm of "things-we-know-how-to-do". Simulations of binary black holes in circular orbits, the holy grail of numerical relativity, are now tractable problems that lead to some of the most spectacular results in general relativity in recent years. We cover here some of the latest achievements and highlight the field's next challenges.
Evolution of massive binary black holes
Yu, Q
2002-01-01
Since many or most galaxies have central massive black holes (BHs), mergers of galaxies can form massive binary black holes (BBHs). In this paper, we study the evolution of massive BBHs in realistic galaxy models, using a generalization of techniques used to study tidal disruption rates around massive BHs. The evolution of BBHs depends on BH mass ratio and host galaxy type. BBHs with very low mass ratios (say, $\\la$ 0.001) are hardly ever formed by mergers of galaxies because the dynamical friction timescale is too long for the smaller BH to sink into the galactic center within a Hubble time. BBHs with moderate mass ratios are most likely to form and survive in spherical or nearly spherical galaxies and in high-luminosity or high-dispersion galaxies; they are most likely to have merged in low-dispersion galaxies (line-of-sight velocity dispersion $\\la$ 90 km/s) or in highly flattened or triaxial galaxies. The semimajor axes and orbital periods of surviving BBHs are generally in the range 10^{-3}-10 pc and 10-...
Distinguishing Between Formation Channels for Binary Black Holes with LISA
Breivik, Katelyn; Larson, Shane L; Kalogera, Vassiliki; Rasio, Frederic A
2016-01-01
The recent detections of GW150914 and GW151226 imply an abundance of stellar-mass binary-black-hole mergers in the local universe. While ground-based gravitational-wave detectors are limited to observing the final moments before a binary merges, space-based detectors, such as the Laser Interferometer Space Antenna (LISA), can observe binaries at lower orbital frequencies where such systems may still encode information about their formation histories. In particular, the orbital eccentricity of binary black holes in the LISA frequency band can be used discriminate between binaries formed in isolation in galactic fields, and those formed in dense stellar environments such as globular clusters. In this letter, we explore the differences in orbital eccentricities of binary black hole populations as they evolve through the LISA frequency band. Overall we find that there are three distinct populations of orbital eccentricities discernible by LISA. We show that, depending on gravitational-wave frequency, anywhere fro...
Black Hole Based Tests of General Relativity
Yagi, Kent
2016-01-01
General relativity has passed all solar system experiments and neutron star based tests, such as binary pulsar observations, with flying colors. A more exotic arena for testing general relativity is in systems that contain one or more black holes. Black holes are the most compact objects in the universe, providing probes of the strongest-possible gravitational fields. We are motivated to study strong-field gravity since many theories give large deviations from general relativity only at large field strengths, while recovering the weak-field behavior. In this article, we review how one can probe general relativity and various alternative theories of gravity by using electromagnetic waves from a black hole with an accretion disk, and gravitational waves from black hole binaries. We first review model-independent ways of testing gravity with electromagnetic/gravitational waves from a black hole system. We then focus on selected examples of theories that extend general relativity in rather simple ways. Some impor...
Black Hole Formation and Growth: Simulations in General Relativity
Shapiro, Stuart L
2007-01-01
Black holes are popping up all over the place: in compact binary X-ray sources and GRBs, in quasars, AGNs and the cores of all bulge galaxies, in binary black holes and binary black hole-neutron stars, and maybe even in the LHC! Black holes are strong-field objects governed by Einstein's equations of general relativity. Hence general relativistic, numerical simulations of dynamical phenomena involving black holes may help reveal ways in which black holes can form, grow and be detected in the universe. To convey the state-of-the art, we summarize several representative simulations here, including the collapse of a hypermassive neutron star to a black hole following the merger of a binary neutron star, the magnetorotational collapse of a massive star to a black hole, and the formation and growth of supermassive black hole seeds by relativistic MHD accretion in the early universe.
Distinguishing Between Formation Channels for Binary Black Holes with LISA
Breivik, Katelyn; Rodriguez, Carl L.; Larson, Shane L.; Kalogera, Vassiliki; Rasio, Frederic A.
2017-01-01
The recent detections of GW150914 and GW151226 imply an abundance of stellar-mass binary-black-hole mergers in the local universe. While ground-based gravitational-wave detectors are limited to observing the final moments before a binary merges, space-based detectors, such as the Laser Interferometer Space Antenna (LISA), can observe binaries at lower orbital frequencies where such systems may still encode information about their formation histories. In particular, the orbital eccentricity and mass of binary black holes in the LISA frequency band can be used together to discriminate between binaries formed in isolation in galactic fields and those formed in dense stellar environments such as globular clusters. In this letter, we explore the orbital eccentricity and mass of binary-black-hole populations as they evolve through the LISA frequency band. Overall we find that there are two distinct populations discernible by LISA. We show that up to ~90% of binaries formed either dynamically or in isolation have eccentricities measurable by LISA. Finally, we note how measured eccentricities of low-mass binary black holes evolved in isolation could provide detailed constraints on the physics of black-hole natal kicks and common-envelope evolution.
Ajith, P; Brown, Duncan A; Brügmann, Bernd; Buchman, Luisa T; Cadonati, Laura; Campanelli, Manuela; Chu, Tony; Etienne, Zachariah B; Fairhurst, Stephen; Hannam, Mark; Healy, James; Hinder, Ian; Husa, Sascha; Kidder, Lawrence E; Krishnan, Badri; Laguna, Pablo; Liu, Yuk Tung; London, Lionel; Lousto, Carlos O; Lovelace, Geoffrey; MacDonald, Ilana; Marronetti, Pedro; Mohapatra, Satya; Mösta, Philipp; Müller, Doreen; Mundim, Bruno C; Nakano, Hiroyuki; Ohme, Frank; Paschalidis, Vasileios; Pekowsky, Larne; Pollney, Denis; Pfeiffer, Harald P; Ponce, Marcelo; Pürrer, Michael; Reifenberger, George; Reisswig, Christian; Santamaría, Lucía; Scheel, Mark A; Shapiro, Stuart L; Shoemaker, Deirdre; Sopuerta, Carlos F; Sperhake, Ulrich; Szilágyi, Béla; Taylor, Nicholas W; Tichy, Wolfgang; Tsatsin, Petr; Zlochower, Yosef
2012-01-01
The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search and parameter-estimation algorithms using numerically generated waveforms, and to foster closer collaboration between the numerical relativity and data analysis communities. The first NINJA project used only a small number of injections of short numerical-relativity waveforms, which limited its ability to draw quantitative conclusions. The goal of the NINJA-2 project is to overcome these limitations with long post-Newtonian - numerical relativity hybrid waveforms, large numbers of injections, and the use of real detector data. We report on the submission requirements for the NINJA-2 project and the construction of the waveform catalog. Eight numerical relativity groups have contributed 63 hybrid waveforms consisting of a numerical portion modelling the late ...
The Relativitic Evolution of Black Hole-Neutron Star Binaries
Faber, J. A.; Baumgarte, T. W.; Shapiro, S. L.; Taniguchi, K.
2004-12-01
We report results from our new relativistic evolution calculations of black hole-neutron star (BH-NS) binaries. The evolution equations of general relativity are treated in the conformally flat (CF) approximation. Assuming that the BH mass is significantly larger than that of the NS allows us to simplify the field equations for the NS, which we solve self-consistently in a fixed BH background spacetime. This approach guarantees that self-gravity is fully included. The NS fluid, assumed here to follow a gamma-law equation of state (EOS), is evolved using a Lagrangian SPH method. The field equations are solved by spectral methods in spheroidal coordinates. The code has been tested by comparing our results to previously computed quasi-equilibrium sequences, showing good agreement. Our results are a crucial first step in evaluating the stability of mass transfer in extremely close BH-NS binaries. They will allow us to describe quantitatively the dynamical tidal disruption of the NS, and to determine the dependence on the initial binary parameters, including the mass ratio and assumed NS EOS. We will also discuss the implications for detecting gravitational waves from the merger of these systems, about which, in contrast to NS-NS binaries, little is currently known for systems with components of comparable mass. JAF is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-0401533.
Accuracy of Binary Black Hole Waveform Models for Advanced LIGO
Kumar, Prayush; Fong, Heather; Barkett, Kevin; Bhagwat, Swetha; Afshari, Nousha; Chu, Tony; Brown, Duncan; Lovelace, Geoffrey; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela; Simulating Extreme Spacetimes (SXS) Team
2016-03-01
Coalescing binaries of compact objects, such as black holes and neutron stars, are the primary targets for gravitational-wave (GW) detection with Advanced LIGO. Accurate modeling of the emitted GWs is required to extract information about the binary source. The most accurate solution to the general relativistic two-body problem is available in numerical relativity (NR), which is however limited in application due to computational cost. Current searches use semi-analytic models that are based in post-Newtonian (PN) theory and calibrated to NR. In this talk, I will present comparisons between contemporary models and high-accuracy numerical simulations performed using the Spectral Einstein Code (SpEC), focusing at the questions: (i) How well do models capture binary's late-inspiral where they lack a-priori accurate information from PN or NR, and (ii) How accurately do they model binaries with parameters outside their range of calibration. These results guide the choice of templates for future GW searches, and motivate future modeling efforts.
Busting Up Binaries: Encounters Between Compact Binaries and a Supermassive Black Hole
Addison, Eric; Larson, Shane
2015-01-01
Given the stellar density near the galactic center, close encounters between compact object binaries and the supermassive black hole are a plausible occurrence. We present results from a numerical study of close to 13 million such encounters. Consistent with previous studies, we corroborate that, for binary systems tidally disrupted by the black hole, the component of the binary remaining bound to the hole has eccentricity ~ 0.97 and circularizes dramatically by the time it enters the classical LISA band. Our results also show that the population of surviving binaries merits attention. These binary systems experience perturbations to their internal orbital parameters with potentially interesting observational consequences. We investigated the regions of parameter space for survival and estimated the distribution of orbital parameters post-encounter. We found that surviving binaries harden and their eccentricity increases, thus accelerating their merger due gravitational radiation emission and increasing the p...
BPASS predictions for Binary Black-Hole Mergers
Eldridge, J J
2016-01-01
Using the Binary Population and Spectral Synthesis code BPASS, we have calculated the rates, timescales and mass distributions for binary black hole mergers as a function of metallicity. We consider these in the context of the recently reported 1st LIGO event detection. We find that the event has a low probability of arising from a stellar population with initial metallicity mass fraction above $Z=0.010$. Binary black hole merger events with the reported masses are most likely in populations between Z=0.0001 and 0.002 (Z < 0.1Z_sun). The masses inferred for the black holes in the binary progenitor of GW 150914 are close to the predicted peak in the mass distribution for such events. We discuss the implications of our analysis for the electromagnetic follow-up of future LIGO event detections.
Observations of Black Hole Binaries with NICER
Remillard, Ronald A.; Cackett, Edward; Fabian, Andrew C.; Miller, Jon M.; Ranga Reddy Pasham, Deeraj; Steiner, James F.
2017-08-01
The Neutron Star Interior Composition Explorer (NICER; to be launched 2017 June) will observe persistent Black Hole (BH) Binaries and BH-type transients during its 18-month Prime Mission. Substantial advances are expected from investigations of BH physical properties and accretion physics in strong gravity, continuing the science legacy of RXTE. One of the primary differences between NICER/XTI and RXTE/PCA Instruments is the energy response (0.2-12 keV vs 3-45 keV). NICER provides a direct spectral view of the inner accretion disk, where the maximum effective temperatures vary in the range 0.2-2 keV. In addition, NICER provides superior spectral resolution (140 eV at Fe K-alpha), superior time resolution (100 ns absolute accuracy), lower background (by a factor of 100), and full flexibility for data analyses (with complete information for every photon event). Finally the source count rate from NICER's 56 cameras will exceed the rate from RXTE (3 PCUs), except for sources obscured by very high levels of ISM column density (log Nh > 22).Anticipated BH science themes include sensitive measures of the effective radius and temperature of the inner disk during BH hard states and transitions, full use the disk spectrum (as seed photons) for Comptonization models for the corona, and powerful opportunities to interpret timing properties including QPOs. Such capabilities will support a new initiative on the "disk:corona" connection, which is a fundamental component of the "disk:jet" connection and our understanding of the different accretion states. Early results from NICER will be reported, to the extent possible.
Alignment of supermassive black hole binary orbits and spins
Miller, M Coleman
2013-01-01
Recent studies of accretion onto supermassive black hole binaries suggest that much, perhaps most, of the matter eventually accretes onto one hole or the other. If so, then for binaries whose inspiral from ~1 pc to 0.001 - 0.01 pc is driven by interaction with external gas, both the binary orbital axis and the individual black hole spins can be reoriented by angular momentum exchange with this gas. Here we show that, unless the binary mass ratio is far from unity, the spins of the individual holes align with the binary orbital axis in a time few-100 times shorter than the binary orbital axis aligns with the angular momentum direction of the incoming circumbinary gas; the spin of the secondary aligns more rapidly than that of the primary by a factor ~(m_1/m_2)^{1/2}>1. Thus the binary acts as a stabilizing agent, so that for gas-driven systems, the black hole spins are highly likely to be aligned (or counteraligned if retrograde accretion is common) with each other and with the binary orbital axis. This alignm...
Accretion Disks Around Binary Black Holes: A Quasistationary Model
Liu, Yuk Tung
2010-01-01
Tidal torques acting on a gaseous accretion disk around a binary black hole can create a gap in the disk near the orbital radius. At late times, when the binary inspiral timescale due to gravitational wave emission becomes shorter than the viscous timescale in the disk, the binary decouples from the disk and eventually merges. Prior to decoupling the balance between tidal and viscous torques drives the disk to a quasistationary equilibrium state, perturbed slightly by small amplitude, spiral density waves emanating from the edges of the gap. We consider a black hole binary with a companion of smaller mass and construct a simple Newtonian model for a geometrically thin, Keplerian disk in the orbital plane of the binary. We solve the disk evolution equations in steady state to determine the quasistationary, (orbit-averaged) surface density profile prior to decoupling. We use our solution, which is analytic up to simple quadratures, to compute the electromagnetic flux and approximate radiation spectrum during th...
A simple method of constructing binary black hole initial data
Rácz, István
2016-01-01
By applying a parabolic-hyperbolic formulation of constraint equations and superposing Kerr-Schild black holes, a simple method is introduced to initialize time evolution of binary black hole systems. In constructing the initial data no use of boundary conditions in the strong field regime is made. The proposed new method offers a direct control on the ADM parameters of the composite system, and it could also be applied to construct initial data for multiple black holes.
Growth of Supermassive Black Holes, Galaxy Mergers and Supermassive Binary Black Holes
Komossa, S.; Baker, J. G.; Liu, F. K.
The study of galaxy mergers and supermassive binary black holes (SMBBHs) is central to our understanding of the galaxy and black hole assembly and (co-)evolution at the epoch of structure formation and throughout cosmic history. Galaxy mergers are the sites of major accretion episodes, they power quasars, grow supermassive black holes (SMBHs), and drive SMBH-host scaling relations. The coalescing SMBBHs at their centers are the loudest sources of gravitational waves (GWs) in the Universe, and the subsequent GW recoil has a variety of potential astrophysical implications which are still under exploration. Future GW astronomy will open a completely new window on structure formation and galaxy mergers, including the direct detection of coalescing SMBBHs, high-precision measurements of their masses and spins, and constraints on BH formation and evolution in the high-redshift Universe.
Growth of supermassive black holes, galaxy mergers and supermassive binary black holes
Komossa, S; Liu, F K
2016-01-01
The study of galaxy mergers and supermassive binary black holes (SMBBHs) is central to our understanding of the galaxy and black hole assembly and (co-)evolution at the epoch of structure formation and throughout cosmic history. Galaxy mergers are the sites of major accretion episodes, they power quasars, grow supermassive black holes (SMBHs), and drive SMBH-host scaling relations. The coalescing SMBBHs at their centers are the loudest sources of gravitational waves (GWs) in the universe, and the subsequent GW recoil has a variety of potential astrophysical implications which are still under exploration. Future GW astronomy will open a completely new window on structure formation and galaxy mergers, including the direct detection of coalescing SMBBHs, high-precision measurements of their masses and spins, and constraints on BH formation and evolution in the high-redshift universe.
Massive black hole binary evolution in gas-rich mergers
Colpi, M; Dotti, M; Mayer, L
2009-01-01
We report on key studies on the dynamics of black holes (BHs) in gas-rich galaxy mergers that underscore the vital role played by gas dissipation in promoting BH inspiral down to the smallest scales ever probed with use of high-resolution numerical simulations. In major mergers, the BHs sink rapidly under the action of gas-dynamical friction while orbiting inside the massive nuclear disc resulting from the merger. The BHs then bind and form a Keplerian binary on a scale of 5 pc. In minor mergers, BH pairing proceeds down to the minimum scale explored of 10-100 pc only when the gas fraction in the less massive galaxy is comparatively large to avoid its tidal and/or ram pressure disruption and the wandering of the light BH in the periphery of the main halo. Binary BHs enter the gravitational wave dominated inspiral only when their relative distance is typically of 0.001 pc. If the gas preserves the degree of dissipation expected in a star-burst environment, binary decay continues down to 0.1 pc, the smallest le...
Santamaria, Lucia; Whelan, John T
2009-01-01
Recent progress in numerical relativity now allows computation of the binary black hole merger, whereas post-Newtonian and perturbative techniques can be used to model the inspiral and ringdown phases. So far, most gravitational-wave searches have made use of various post-Newtonian-inspired templates to search for signals arising from the coalescence of compact binary objects. Ajith et al have produced hybrid waveforms for non-spinning binary black-hole systems which include the three stages of the coalescence process, and constructed from them phenomenological templates which capture the features of these waveforms in a parametrized form. As a first step towards extending the present inspiral searches to higher-mass binary black-hole systems, we have used these phenomenological waveforms in a search for numerically-simulated signals injected into synthetic LIGO data as part of the NINJA project.
Evolution Of Binary Supermassive Black Holes In Rotating Nuclei
Rasskazov, Alexander
2016-01-01
Interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binary's orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can be large, causing large changes in the binary's orbital eccentricity as well. We present a general treatment of this problem based on the Fokker-Planck equation for f, defined as the probability distribution for the binary's orbital elements. First- and second-order diffusion coefficients are derived for the orbital elements of the binary using numerical scattering experiments, and analytic approximations are presented for some of these coefficients. Solutions of the Fokker-Planck equation are then derived under various assumptions about the initial rotational state of the nucleus and the binary hardening rate. We find that the evolution of the orbital elements can become qualitatively different when we introduce nuclear rotation: 1) the orientation of the binar...
Redshift Factor and the First Law of Binary Black Hole Mechanics in Numerical Simulations.
Zimmerman, Aaron; Lewis, Adam G M; Pfeiffer, Harald P
2016-11-04
The redshift factor z is an invariant quantity of fundamental interest in post-Newtonian and self-force descriptions of compact binaries. It connects different approximation schemes, and plays a central role in the first law of binary black hole mechanics, which links local quantities to asymptotic measures of energy and angular momentum in these systems. Through this law, the redshift factor is conjectured to have a close relation to the surface gravity of the event horizons of black holes in circular orbits. We propose and implement a novel method for extracting the redshift factor on apparent horizons in numerical simulations of quasicircular binary inspirals. Our results confirm the conjectured relationship between z and the surface gravity of the holes and that the first law holds to a remarkable degree for binary inspirals. The redshift factor enables tests of analytic predictions for z in spacetimes where the binary is only approximately circular, giving a new connection between analytic approximations and numerical simulations.
The redshift factor and the first law of binary black hole mechanics in numerical simulations
Zimmerman, Aaron; Pfeiffer, Harald P
2016-01-01
The redshift factor $z$ is an invariant quantity of fundamental interest in Post-Newtonian and self-force descriptions of compact binaries. It connects different approximation schemes, and plays a central role in the first law of binary black hole mechanics, which links local quantities to asymptotic measures of energy and angular momentum in these systems. Through this law, the redshift factor is conjectured to have a close relation to the surface gravity of the event horizons of black holes in circular orbits. We propose and implement a novel method for extracting the redshift factor on apparent horizons in numerical simulations of quasi-circular binary inspirals. Our results confirm the conjectured relationship between $z$ and the surface gravity of the holes and that the first law holds to a remarkable degree for binary inspirals. The redshift factor allows us to test analytic predictions for $z$ in spacetimes where the binary is only approximately circular, giving a new connection between analytic approx...
Binary Black Hole merger in f(R) theory
Cao, Zhoujian; Li, Li-Fang
2016-01-01
In the near future, gravitational wave detection is set to become an important observational tool for astrophysics. It will provide us with an excellent means to distinguish different gravitational theories. In effective form, many gravitational theories can be cast into an f(R) theory. In this article, we study the dynamics and gravitational waveform of an equal-mass binary black hole system in f(R) theory. We reduce the equations of motion in f(R) theory to the Einstein-Klein-Gordon coupled equations. In this form, it is straightforward to modify our existing numerical relativistic codes to simulate binary black hole mergers in f(R) theory. We considered binary black holes surrounded by a shell of scalar field. We solve the initial data numerically using the Olliptic code. The evolution part is calculated using the extended AMSSNCKU code. Both codes were updated and tested to solve the problem of binary black holes in f(R) theory. Our results show that the binary black hole dynamics in f(R) theory is more c...
Dynamical Formation of the GW150914 Binary Black Hole
Rodriguez, Carl L; Chatterjee, Sourav; Kalogera, Vicky; Rasio, Frederic A
2016-01-01
We explore the possibility that GW150914, the binary black hole merger recently detected by Advanced LIGO, was formed by gravitational interactions in the core of a dense star cluster. Using models of globular clusters with detailed $N$-body dynamics and stellar evolution, we show that a typical cluster with a mass of $3\\times10^5M_{\\odot}$ to $6\\times10^5M_{\\odot}$ is optimal for forming GW150914-like binary black holes that will merge in the local universe. We identify the most likely dynamical processes for forming GW150914 in such a cluster, and we show that the detection of GW150914 is consistent with the masses and merger rates expected for binary black hole mergers from globular clusters. Our results show that dynamical processes provide a significant and well-understood pathway for forming binary black hole mergers in the local universe. Understanding the contribution of dynamics to the binary black hole merger problem is a critical step in unlocking the full potential of gravitational-wave astronomy.
Binary Black Hole Mergers in the First Advanced LIGO Observing Run
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gaebel, S.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hamilton, H.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016-10-01
The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper, we present full results from a search for binary black hole merger signals with total masses up to 100 M⊙ and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational-wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5 σ over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance and with an 87% probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and we place improved empirical bounds on several high-order post-Newtonian coefficients. From our observations, we infer stellar-mass binary black hole merger rates lying in the range 9 - 240 Gpc-3 yr-1 . These observations are beginning to inform astrophysical predictions of binary black hole formation rates and indicate that future observing runs of the Advanced detector network will yield many more gravitational-wave detections.
Binary Black Hole Mergers in the First Advanced LIGO Observing Run
2016-10-01
Full Text Available The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper, we present full results from a search for binary black hole merger signals with total masses up to 100M_{⊙} and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational-wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5σ over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance and with an 87% probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and we place improved empirical bounds on several high-order post-Newtonian coefficients. From our observations, we infer stellar-mass binary black hole merger rates lying in the range 9–240 Gpc^{-3} yr^{-1}. These observations are beginning to inform astrophysical predictions of binary black hole formation rates and indicate that future observing runs of the Advanced detector network will yield many more gravitational-wave detections.
Galaxy Rotation and Rapid Supermassive Black Hole Binary Coalescence
Holley-Bockelmann, Kelly
2015-01-01
During a galaxy merger, the supermassive black hole (SMBH) in each galaxy is thought to sink to the center of the potential and form a supermassive black hole binary; this binary can eject stars via 3-body scattering, bringing the SMBHs ever closer. In a static spherical galaxy model, the binary stalls at a separation of about a parsec after ejecting all the stars in its loss cone -- this is the well-known final parsec problem. However it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N larger than 500K, we find that the evolution of the SMBH binary is convergent, and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co...
Massive Black Hole Binary Mergers in Dynamical Galactic Environments
Kelley, Luke Zoltan; Hernquist, Lars
2016-01-01
Gravitational Waves (GW) have now been detected from stellar-mass black hole binaries, and the first observations of GW from Massive Black Hole (MBH) Binaries are expected within the next decade. Pulsar Timing Arrays (PTA), which can measure the years long periods of GW from MBHB, have excluded many standard predictions for the amplitude of a stochastic GW Background (GWB). We use coevolved populations of MBH and galaxies from hydrodynamic, cosmological simulations ('Illustris') to calculate a predicted GWB. The most advanced predictions so far have included binary hardening mechanisms from individual environmental processes. We present the first calculation including all of the environmental mechanisms expected to be involved: dynamical friction, stellar 'loss-cone' scattering, and viscous drag from a circumbinary disk. We find that MBH binary lifetimes are generally multiple gigayears, and only a fraction coalesce by redshift zero. For a variety of parameters, we find all GWB amplitudes to be below the most...
Ghosh, Arindam; Chakrabarti, Sandip Kumar
2016-07-01
X-ray binary orbits are expected to have some eccentricity, albeit small. Stellar companion of a black hole orbiting in an eccentric orbit will experience modulating tidal force with a periodicity same as that of the orbital period which will result in a modulation of accretion rates, seed photon flux, and flux of inverse Comptonized harder X-rays as well. Timing analysis of long-term X-ray data (1.5-12 keV) of RXTE/ASM and all sky survey data (15-50 keV) of Swift/BAT satellites reveal this periodicity in several black hole candidates. If this modulation is assumed to be solely due to tidal effects (without taking other effects, such as eclipses, reflection from winds, super-hump phenomena etc. into account), the RMS-value of the peak in power density spectrum allows us to estimate eccentricities of these orbits. We present these very interesting results. We show that our results generally agree with independent studies of these parameters.
Massive black hole binaries in gaseous nuclear discs
Dotti, M; Haardt, F; Mayer, L
2008-01-01
We study the evolution of a massive black hole pair in a rotationally supported nuclear disc. The distributions of stars and gas mimic the nuclear region of a gas-rich galaxy merger remnant. Using high-resolution SPH simulations, we follow the black hole dynamics and trace the evolution of the underlying background, until the black holes form a binary. We find that the gravitational perturbation of the pair creates a core in the disc density profile, hence decreasing the gas-dynamical drag. This leads the newly formed binary to stall at a separation of ~5 pc. In the early phases of the sinking, black holes lose memory of their initial orbital eccentricity if they co-rotate with the disc, as rotation of the gaseous background promotes circularization of the black hole orbits. Circularization is efficient until the black holes bind in a binary, though in the latest stages of the simulations a residual eccentricity > 0.1 is still present. Black holes are treated as sink particles, allowing for gas accretion. We ...
Stirring, not shaking: binary black holes' effects on electromagnetic fields
Palenzuela, Carlos; Lehner, Luis; Liebling, Steven L; Neilsen, David
2009-01-01
In addition to producing gravitational waves (GW), the dynamics of a binary black hole system could induce emission of electromagnetic (EM) radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We here study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as a possible enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.
Electromagnetic Luminosity of the Coalescence of Charged Black Hole Binaries
Liebling, Steven L
2016-01-01
The observation of a possible electromagnetic counterpart by the Fermi GBM group to the aLIGO detection of the merger of a black hole binary has spawned a number of ideas about its source. Furthermore, observations of fast radio bursts (FRBs) have similarly resulted in a range of new models that might endow black hole binaries with electromagnetic signatures. In this context, even the unlikely idea that astrophysical black holes may have significant charge is worth exploring, and here we present results from the simulation of weakly charged black holes as they orbit and merge. Our simulations suggest that a black hole binary with mass comparable to that observed in GW150914 could produce the level of electromagnetic luminosity observed by Fermi GBM ($10^{49}$ ergs/s) with a non-dimensional charge of $q \\equiv Q/M = 10^{-4}$ assuming good radiative efficiency. However even a charge such as this is difficult to imagine avoiding neutralization long enough for the binary to produce its electromagnetic counterpart...
Black hole binaries dynamically formed in globular clusters
Park, Dawoo; Kim, Chunglee; Lee, Hyung Mok; Bae, Yeong-Bok; Belczynski, Krzysztof
2017-08-01
We investigate properties of black hole (BH) binaries formed in globular clusters via dynamical processes, using directN-body simulations. We pay attention to effects of BH mass function on the total mass and mass ratio distributions of BH binaries ejected from clusters. First, we consider BH populations with two different masses in order to learn basic differences from models with single-mass BHs only. Secondly, we consider continuous BH mass functions adapted from recent studies on massive star evolution in a low metallicity environment, where globular clusters are formed. In this work, we consider only binaries that are formed by three-body processes and ignore stellar evolution and primordial binaries for simplicity. Our results imply that most BH binary mergers take place after they get ejected from the cluster. Also, mass ratios of dynamically formed binaries should be close to 1 or likely to be less than 2:1. Since the binary formation efficiency is larger for higher-mass BHs, it is likely that a BH mass function sampled by gravitational-wave observations would be weighed towards higher masses than the mass function of single BHs for a dynamically formed population. Applying conservative assumptions regarding globular cluster populations such as small BH mass fraction and no primordial binaries, the merger rate of BH binaries originated from globular clusters is estimated to be at least 6.5 yr-1 Gpc-3. Actual rate can be up to more than several times of our conservative estimate.
Black hole binary inspiral: Analysis of the plunge
Price, Richard H.; Nampalliwar, Sourabh; Khanna, Gaurav
2016-02-01
Binary black hole coalescence has its peak of gravitational-wave generation during the "plunge," the transition from quasicircular early motion to late quasinormal ringing (QNR). Although advances in numerical relativity have provided plunge waveforms, there is still no intuitive or phenomenological understanding of plunge comparable to that of the early and late stages. Here we make progress in developing such understanding by relying on insights of the linear mathematics of the particle perturbation model for the extreme mass limit. Our analysis, based on the Fourier-domain Green function, and a simple initial model, point to the crucial role played by the kinematics near the "light ring" (the circular photon orbit) in determining the plunge radiation and the excitation of QNR. That insight is then shown to successfully explain results obtained for particle motion in a Schwarzschild background.
Black hole binary inspiral: Analysis of the plunge
Price, Richard H; Khanna, Gaurav
2015-01-01
Binary black hole coalescence has its peak of gravitational wave generation during the "plunge," the transition from quasicircular early motion to late quasinormal ringing. Although advances in numerical relativity have provided plunge waveforms, there is still no intuitive or phenomenological understanding of plungecomparable to that of the early and late stages. Here we make progress in developing such understanding by focusing on the excitation of quasinormal ringing (QNR) during the plunge. We rely on insights of the linear mathematics of the particle perturbation model for the extreme mass limit. Our analysis, based on the Fourier domain Green function, and a simple initial model, point to the crucial role played by the kinematics near the "light ring" (the circular photon orbit) in determining the excitation of QNR. That insight is then shown to successfully explain Schwarzschild QNR found with evolution codes. Lastly, a phenomenological explanation is given for the underlying importance of the light ri...
The Lazarus project : A pragmatic approach to binary black hole
2002-01-01
We present a detailed description of techniques developed to combine 3D numerical simulations and, subsequently, a single black hole close-limit approximation. This method has made it possible to compute the first complete waveforms covering the post-orbital dynamics of a binary black hole system with the numerical simulation covering the essential non-linear interaction before the close limit becomes applicable for the late time dynamics. To determine when close-limit perturbation th...
Mandel, Ilya
2016-01-01
We explore a newly proposed channel to create binary black holes of stellar origin. This scenario applies to massive, tight binaries where mixing induced by rotation and tides transports the products of hydrogen burning throughout the stellar envelopes. This slowly enriches the entire star with helium, preventing the build-up of an internal chemical gradient. The stars remain compact as they evolve nearly chemically homogeneously, eventually forming two black holes, which, we estimate, typically merge 4 to 11 Gyr after formation. Like other proposed channels, this evolutionary pathway suffers from significant theoretical uncertainties, but could be constrained in the near future by data from advanced ground-based gravitational-wave detectors. We perform Monte Carlo simulations of the expected merger rate over cosmic time to explore the implications and uncertainties. Our default model for this channel yields a local binary black hole merger rate of about $10$ Gpc$^{-3}$ yr$^{-1}$ at redshift $z=0$, peaking at...
Black Hole - Neutron Star Binary Mergers
National Aeronautics and Space Administration — Gravitational radiation waveforms for black hole-neutron star coalescence calculations. The physical input is Newtonian physics, an ideal gas equation of state with...
Anatomy of the Binary Black Hole Recoil: A Multipolar Analysis
Schnittman, Jeremy; Buonanno, Alessandra; vanMeter, James R.; Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.
2007-01-01
We present a multipolar analysis of the recoil velocity computed in recent numerical simulations of binary black hole coalescence, for both unequal masses and non-zero, non-precessing spins. We show that multipole moments up to and including 1 = 4 are sufficient to accurately reproduce the final recoil velocity (= 98%) and that only a few dominant modes contribute significantly to it (2 95%). We describe how the relative amplitude, and more importantly, the relative phase, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ring-down phases. We also find that the numerical results can be reproduced, to a high level of accuracy, by an effective Newtonian formula for the multipole moments obtained by replacing in the Newtonian formula the radial separation with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasi-normal modes. Analytic formulae, obtained by expressing the multipole moments in terms of the fundamental QNMs of a Kerr BH, are able to explain the onset and amount of '.anti-kick" for each of the simulations. Lastly, we apply this multipolar analysis to understand the remarkable difference between the amplitudes of planar and non-planar kicks for equal-mass spinning black holes.
Observing Mergers of Non-Spinning Black-Hole Binaries
McWilliams, Sean T.; Boggs, William D.; Baker, John G.; Kelly, Bernard J.
2010-01-01
Advances in the field of numerical relativity now make it possible to calculate the final, most powerful merger phase of binary black-hole coalescence for generic binaries. The state of the art has advanced well beyond the equal-mass case into the unequal-mass and spinning regions of parameter space. We present a study of the nonspinning portion of parameter space, primarily using an analytic waveform model tuned to available numerical data, with an emphasis on observational implications. We investigate the impact of varied m8BS ratio on merger signal-to-noise ratios (SNR) for several detectors, and compare our results with expectations from the test-mass limit. We note a striking similarity of the waveform phasing of the merger waveform across the available mass ratios. Motivated by this, we calculate the match between our equal-mass and 4:1 mass-ratio waveforms during the merger as a function of location on the source sky, using a new formalism for the match that accounts for higher harmonics. This is an indicator of the amount of degeneracy in mass ratio for mergers of moderate mass ratio systems.
Observing mergers of non-spinning black-hole binaries
McWilliams, Sean T; Baker, John G
2010-01-01
Advances in the field of numerical relativity now make it possible to calculate the final, most powerful merger phase of binary black-hole coalescence for generic binaries. The state of the art has advanced well beyond the equal-mass case into the unequal-mass and spinning regions of parameter space. We present a study of the nonspinning portion of parameter space, primarily using an analytic waveform model tuned to available numerical data, with an emphasis on observational implications. We investigate the impact of varied mass ratio on merger signal-to-noise ratios (SNRs) for several detectors, and compare our results with expectations from the test-mass limit. We note a striking similarity of the waveform phasing of the merger waveform across the available mass ratios. Motivated by this, we calculate the match between our 1:1 (equal mass) and 4:1 mass-ratio waveforms during the merger as a function of location on the source sky, using a new formalism for the match that accounts for higher harmonics. This i...
High-frequency QPO in black hole binaries (Belloni+, 2012)
Belloni, T. M.; Sanna, A.; Mendez, M.
2013-01-01
We selected all RXTE observations of known transient black hole binaries available in the archive from the start of the mission until MJD 55601 (2011 February 9), concentrating on the data from the Proportional Counter Array (PCA) instrument. We analysed 22 sources, for a total of 7108 observations.
Retrograde binaries of massive black holes in circum-binary accretion discs
Amaro-Seoane, Pau; Dotti, Massimo; Colpi, Monica
2016-01-01
We explore the hardening of a massive black hole binary embedded in a circum-binary gas disc when the binary and the gas are coplanar and the gas is counter-rotating. The secondary black hole, revolving in the direction opposite to the gas, experiences a drag from gas-dynamical friction and from direct accretion of part of it. Using two-dimensional (2D) hydrodynamical grid simulations we investigate the effect of changing the accretion prescriptions on the dynamics of the secondary black hole which in turn affect the binary hardening and eccentricity evolution. We find that realistic accretion prescriptions lead to results that differ from those inferred assuming accretion of all the gas within the Roche Lobe of the secondary black hole. Different accretion prescriptions result in different disc's surface densities which alter the black hole's dynamics back. Full 3D SPH realizations of a number of representative cases, run over a shorter interval of time, validate the general trends observed in the less compu...
Black-hole binaries with non-precessing spins
Hannam, Mark; Ohme, Frank; Mueller, Doreen; Bruegmann, Bernd
2010-01-01
We present gravitational waveforms for the last orbits and merger of black-hole-binary (BBH) systems along two branches of the BBH parameter space: equal-mass binaries with equal non-precessing spins, and nonspinning unequal-mass binaries. The waveforms are calculated from numerical solutions of Einstein's equations for black-hole binaries that complete between six and ten orbits before merger. Along the equal-mass spinning branch, the spin parameter of each BH is $\\chi_i = S_i/M_i^2 \\in [-0.85,0.85]$, and along the unequal-mass branch the mass ratio is $q =M_2/M_1 \\in [1,4]$. We discuss the construction of low-eccentricity puncture initial data for these cases, the properties of the final merged BH, and compare the last 8-10 GW cycles up to $M\\omega = 0.1$ with the phase and amplitude predicted by standard post-Newtonian (PN) approximants. As in previous studies, we find that the phase from the 3.5PN TaylorT4 approximant is most accurate for nonspinning binaries. For equal-mass spinning binaries the 3.5PN Ta...
Characterizing Spinning Black Hole Binaries in Eccentric Orbits with LISA
Key, Joey Shapiro
2010-01-01
The Laser Interferometer Space Antenna (LISA) is designed to detect gravitational wave signals from astrophysical sources, including those from coalescing binary systems of compact objects such as black holes. Colliding galaxies have central black holes that sink to the center of the merged galaxy and begin to orbit one another and emit gravitational waves. Some galaxy evolution models predict that the binary black hole system will enter the LISA band with significant orbital eccentricity, while other models suggest that the orbits will already have circularized. Using a full seventeen parameter waveform model that includes the effects of orbital eccentricity, spin precession and higher harmonics, we investigate how well the source parameters can be inferred from simulated LISA data. Defining the reference eccentricity as the value one year before merger, we find that for typical LISA sources, it will be possible to measure the eccentricity to an accuracy of parts in a thousand. The accuracy with which the ec...
Pulsar timing arrays and the challenge of massive black hole binary astrophysics
Sesana, Alberto
2014-01-01
Pulsar timing arrays (PTAs) are designed to detect gravitational waves (GWs) at nHz frequencies. The expected dominant signal is given by the superposition of all waves emitted by the cosmological population of supermassive black hole (SMBH) binaries. Such superposition creates an incoherent stochastic background, on top of which particularly bright or nearby sources might be individually resolved. In this contribution I describe the properties of the expected GW signal, highlighting its dependence on the overall binary population, the relation between SMBHs and their hosts, and their coupling with the stellar and gaseous environment. I describe the status of current PTA efforts, and prospect of future detection and SMBH binary astrophysics.
PRECESSION: Python toolbox for dynamics of spinning black-hole binaries
Gerosa, Davide; Kesden, Michael
2016-11-01
PRECESSION is a comprehensive toolbox for exploring the dynamics of precessing black-hole binaries in the post-Newtonian regime. It allows study of the evolution of the black-hole spins along their precession cycles, performs gravitational-wave-driven binary inspirals using both orbit-averaged and precession-averaged integrations, and predicts the properties of the merger remnant through fitting formulas obtained from numerical-relativity simulations. PRECESSION can add the black-hole spin dynamics to larger-scale numerical studies such as gravitational-wave parameter estimation codes, population synthesis models to predict gravitational-wave event rates, galaxy merger trees and cosmological simulations of structure formation, and provides fast and reliable integration methods to propagate statistical samples of black-hole binaries from/to large separations where they form to/from small separations where they become detectable, thus linking gravitational-wave observations of spinning black-hole binaries to their astrophysical formation history. The code is also useful for computing initial parameters for numerical-relativity simulations targeting specific precessing systems.
Understanding the "anti-kick" in the merger of binary black holes
Rezzolla, Luciano; Jaramillo, José Luis
2010-01-01
The generation of a large recoil velocity from the inspiral and merger of binary black holes represents one of the most exciting results of numerical-relativity calculations. While many aspects of this process have been investigated and explained, the "anti-kick", namely the sudden deceleration after the merger, has not yet found a simple explanation. We show that the anti-kick can be easily understood in terms of the radiation from a deformed black hole where the intrinsically anisotropic curvature distribution on the horizon determines the direction and intensity of the recoil. Our analysis is focussed on the properties of Robinson-Trautman spacetimes and allows us to measure both the energies and momenta radiated in a gauge-invariant manner. At the same time, this simpler setup provides all the qualitative but also quantitative features of inspiralling black hole binaries, thus opening the way to a deeper understanding of the nonlinear dynamics of black-hole spacetimes.
On the nature of the 'radio-quiet' black hole binaries
Soleri, Paolo; Fender, Rob
2011-01-01
The coupling between accretion processes and ejection mechanisms in accreting black holes in binary systems can be investigated by empirical relations between the X-ray/radio and X-ray/optical-infrared luminosities. These correlations are valid over several orders of magnitude and were initially tho
A simple estimate of gravitational wave memory in binary black hole systems
Garfinkle, David
2016-01-01
A simple estimate is given of gravitational wave memory for the inspiral and merger of a binary black hole system. Here the memory is proportional to the total energy radiated and has a simple angular dependence. This estimate might be helpful in finding better numerical relativity memory waveforms.
Pulsar-Black Hole Binaries in the Galactic Center
Faucher-Giguere, C -A
2010-01-01
Binaries consisting of a pulsar and a black hole (BH) are a holy grail of astrophysics, both for their significance for stellar evolution and for their potential application as probes of strong gravity. In spite of extensive surveys of our Galaxy and its system of globular clusters, no pulsar-black hole (PSR-BH) binary has been found to date. Clues as to where such systems might exist are therefore highly desirable. We show that if the central parsec around Sgr A* harbors a cluster of ~25,000 stellar BHs (as predicted by mass segregation arguments) and if it is also rich in recycled pulsar binaries (by analogy with globular clusters), then 3-body exchange interactions should produce PSR-BHs in the Galactic center. Simple estimates of the formation rate and survival time of these binaries suggest that a few PSR-BHs should be present in the central parsec today. The proposed formation mechanism makes unique predictions for the PSR-BH properties: 1) the binary would reside within ~1 pc of Sgr A*; 2) the pulsar w...
Distinguishing between Formation Channels for Binary Black Holes with LISA
Breivik, Katelyn; Rodriguez, Carl L.; Larson, Shane L.; Kalogera, Vassiliki; Rasio, Frederic A.
2016-10-01
The recent detections of GW150914 and GW151226 imply an abundance of stellar-mass binary black hole (BBH) mergers in the local universe. While ground-based gravitational wave detectors are limited to observing the final moments before a binary merges, space-based detectors, such as the Laser Interferometer Space Antenna (LISA), can observe binaries at lower orbital frequencies where such systems may still encode information about their formation histories. In particular, the orbital eccentricity and mass of BBHs in the LISA frequency band can be used together to discriminate between binaries formed in isolation in galactic fields and those formed in dense stellar environments such as globular clusters. In this letter, we explore the orbital eccentricity and mass of BBH populations as they evolve through the LISA frequency band. Overall we find that there are two distinct populations discernible by LISA. We show that up to ∼ 90 % of binaries formed either dynamically or in isolation have eccentricities that are measurable with LISA. Finally, we note how measured eccentricities of low-mass BBHs evolved in isolation could provide detailed constraints on the physics of black hole natal kicks and common-envelope evolution.
Multi-Domain Spectral Method for Initial Data of Arbitrary Binaries in General Relativity
Ansorg, M
2006-01-01
We present a multi-domain spectral method to compute initial data of binary systems in General Relativity. By utilizing adapted conformal coordinates, the vacuum region exterior to the gravitational sources is divided up into two subdomains within which the spectral expansion of the field quantities is carried out. If a component of the binary is a neutron star, a further subdomain covering the star's interior is added. As such, the method can be used to construct arbitrary initial data corresponding to binary black holes, binary neutron stars or mixed binaries. In particular, it is possible to describe a black hole component by the puncture ansatz as well as through an excision technique. First examples are given for binary black hole excision data that fulfill the requirements of the quasi-stationary framework, which combines the Conformal Thin Sandwich formulation of the constraint equations with the Isolated Horizon conditions for black holes in quasi-equilibrium. These numerical solutions were obtained t...
Black Hole - Neutron Star Binary Simulations at Georgia Tech
Haas, Roland
2009-05-01
Mixed compact object binaries consisting of a black hole and a neutron star are expected to be not only one of the primary sources of gravitational radiation to be observed by interferometric detectors but also the central engine of short gamma-ray bursts. We report on the status of our effort at Georgia Tech to model these mixed binary systems using the moving puncture method. The results are obtained with an enhanced version our vacuum MayaKranc code coupled to the hydrodynamics Whisky code. We present preliminary results of gravitational waveforms and the disruption of the neutron star for simple polytropic equations of state.
ASTRONOMICAL PLATE ARCHIVES AND SUPERMASSIVE BLACK HOLE BINARIES
René Hudec
2013-12-01
Full Text Available The recent extensive digitisation of astronomical photographic plate archives, the development of new dedicated software and the use of powerful computers have for the first time enabled effective data mining in extensive plate databases, with wide applications in various fields of recent astrophysics. As an example, analyses of supermassive binary black holes (binary blazars require very long time intervals (50 years and more, which cannot be provided by other data sources. Examples of data obtained from data mining in plate archives are presented and briefly discussed.
Berti, Emanuele; Gualtieri, Leonardo; Horbatsch, Michael; Sperhake, Ulrich
2013-01-01
Scalar-tensor theories are a compelling alternative to general relativity and one of the most accepted extensions of Einstein's theory. Black holes in these theories have no hair, but could grow "wigs" supported by time-dependent boundary conditions or spatial gradients. Time-dependent or spatially varying fields lead in general to nontrivial black hole dynamics, with potentially interesting experimental consequences. We carry out a numerical investigation of the dynamics of single and binary black holes in the presence of scalar fields. In particular we study gravitational and scalar radiation from black-hole binaries in a constant scalar-field gradient, and we compare our numerical findings to analytical models.
Spinning, Precessing, Black Hole Binary Spacetime via Asymptotic Matching
Nakano, Hiroyuki; Campanelli, Manuela; West, Eric J
2016-01-01
We briefly discuss a method to construct a global, analytic, approximate spacetime for precessing, spinning binary black holes. The spacetime construction is broken into three parts: the inner zones are the spacetimes close to each black hole, and are approximated by perturbed Kerr solutions; the near zone is far from the two black holes, and described by the post-Newtonian metric; and finally the wave (far) zone, where retardation effects need to be taken into account, is well modeled by the post-Minkowskian metric. These individual spacetimes are then stitched together using asymptotic matching techniques to obtain a global solution that approximately satisfies the Einstein field equations. Precession effects are introduced by rotating the black hole spin direction according to the precessing equations of motion, in a way that is consistent with the global spacetime construction.
Black hole based tests of general relativity
Yagi, Kent; Stein, Leo C.
2016-03-01
General relativity has passed all solar system experiments and neutron star based tests, such as binary pulsar observations, with flying colors. A more exotic arena for testing general relativity is in systems that contain one or more black holes. Black holes are the most compact objects in the Universe, providing probes of the strongest-possible gravitational fields. We are motivated to study strong-field gravity since many theories give large deviations from general relativity only at large field strengths, while recovering the weak-field behavior. In this article, we review how one can probe general relativity and various alternative theories of gravity by using electromagnetic waves from a black hole with an accretion disk, and gravitational waves from black hole binaries. We first review model-independent ways of testing gravity with electromagnetic/gravitational waves from a black hole system. We then focus on selected examples of theories that extend general relativity in rather simple ways. Some important characteristics of general relativity include (but are not limited to) (i) only tensor gravitational degrees of freedom, (ii) the graviton is massless, (iii) no quadratic or higher curvatures in the action, and (iv) the theory is four-dimensional. Altering a characteristic leads to a different extension of general relativity: (i) scalar-tensor theories, (ii) massive gravity theories, (iii) quadratic gravity, and (iv) theories with large extra dimensions. Within each theory, we describe black hole solutions, their properties, and current and projected constraints on each theory using black hole based tests of gravity. We close this review by listing some of the open problems in model-independent tests and within each specific theory.
Wang, Lile; Greene, Jenny E.; Ju, Wenhua; Rafikov, Roman R.; Ruan, John J.; Schneider, Donald P.
2017-01-01
Supermassive black hole binaries (SMBHs) are expected to result from galaxy mergers, and thus are natural byproducts (and probes) of hierarchical structure formation in the universe. They are also the primary expected source of low-frequency gravitational wave emission. We search for binary BHs using time-variable velocity shifts in broad Mg ii emission lines of quasars with multi-epoch observations. First, we inspect velocity shifts of the binary SMBH candidates identified in Ju et al., using Sloan Digital Sky Survey spectra with an additional epoch of data that lengthens the typical baseline to ∼10 yr. We find variations in the line of sight velocity shifts over 10 yr that are comparable to the shifts observed over 1–2 yr, ruling out the binary model for the bulk of our candidates. We then analyze 1438 objects with eight-year median time baselines, from which we would expect to see velocity shifts >1000 {km} {{{s}}}-1 from sub-parsec binaries. We find only one object with an outlying velocity of 448 {km} {{{s}}}-1, indicating—based on our modeling—that ≲1% (the value varies with different assumptions) of SMBHs that are active as quasars reside in binaries with ∼0.1 pc separations. Binaries either sweep rapidly through these small separations or stall at larger radii.
Attempt to explain black hole spin in X-ray binaries by new physics
Bambi, Cosimo [Fudan University, Department of Physics, Center for Field Theory and Particle Physics, Shanghai (China)
2015-01-01
It is widely believed that the spin of black holes in X-ray binaries is mainly natal. A significant spin-up from accretion is not possible. If the secondary has a low mass, the black hole spin cannot change too much even if the black hole swallows the whole stellar companion. If the secondary has a high mass, its lifetime is too short to transfer the necessary amount of matter and spin the black hole up. However, while black holes formed from the collapse of a massive star with solarmetallicity are expected to have low birth spin, current spin measurements show that some black holes in X-ray binaries are rotating very rapidly. Here we show that, if these objects are not the Kerr black holes of general relativity, the accretion of a small amount of matter (∝2 M{sub s}un) can make them look like very fast-rotating Kerr black holes. Such a possibility is not in contradiction with any observation and it can explain current spin measurements in a very simple way. (orig.)
In what sense a neutron star-black hole binary is the holy grail for testing gravity?
Bagchi, Manjari
2014-01-01
Pulsars in binary systems have been very successful to test the validity of general relativity in the strong field regime. So far, such binaries include neutron star-white dwarf (NS-WD) and neutron star-neutron star (NS-NS) systems. It is commonly believed that a neutron star-black hole (NS-BH) binary will be much superior for this purpose. But in what sense is this true? Does it apply to all possible deviations?
Accurate Evolutions of Orbiting Black-Hole Binaries Without Excision
Campanelli, M; Marronetti, P; Zlochower, Y
2006-01-01
We present a new algorithm for evolving orbiting black-hole binaries that does not require excision or a corotating shift. Our algorithm is based on a novel technique to handle the singular puncture conformal factor. This system, based on the BSSN formulation of Einstein's equations, when used with a `pre-collapsed' initial lapse, is non-singular at the start of the evolution, and remains non-singular and stable provided that a good choice is made for the gauge. As a test case, we use this technique to fully evolve orbiting black-hole binaries from near the Innermost Stable Circular Orbit (ISCO) regime. We show fourth order convergence of waveforms and compute the radiated gravitational energy and angular momentum from the plunge. These results are in good agreement with those predicted by the Lazarus approach.
Gravitational-wave modes from precessing black-hole binaries
Boyle, Michael; Ossokine, Serguei; Pfeiffer, Harald P
2014-01-01
Gravitational waves from precessing black-hole binaries exhibit features that are absent in nonprecessing systems. The most prominent of these is a parity-violating asymmetry that beams energy and linear momentum preferentially along or opposite to the orbital angular momentum, leading to recoil of the binary. The asymmetry will appear as amplitude and phase modulations at the orbital frequency. For strongly precessing systems, it accounts for at least 3% amplitude modulation for binaries in the sensitivity band of ground-based gravitational-wave detectors, and can exceed 50% for massive systems. Such asymmetric features are also clearly visible when the waves are decomposed into modes of spin-weighted spherical harmonics, and are inherent in the waves themselves---rather than resulting from residual eccentricity in numerical simulations, or from mode-mixing due to precession. In particular, there is generically no instantaneous frame for which the mode decomposition will have any symmetry. We introduce a met...
Energetics and phasing of nonprecessing spinning coalescing black hole binaries
Nagar, Alessandro; Reisswig, Christian; Pollney, Denis
2015-01-01
We present an improved numerical relativity (NR) calibration of the new effective-one-body (EOB) model for coalescing non precessing spinning black hole binaries recently introduced by Damour and Nagar [Physical Review D 90, 044018 (2014)]. We do so by comparing the EOB predictions to both the phasing and the energetics provided by two independent sets of NR data covering mass ratios $1\\leq q \\leq 8$ and dimensionless spin range $-0.95\\leq \\chi\\leq +0.98$. One set of data is a subset of the Simulating eXtreme Spacetimes (SXS) catalog of public waveforms; the other set consists of new simulations obtained with the Llama code plus Cauchy Characteristic Evolution. We present the first systematic computation of the gauge-invariant relation between the binding energy and the total angular momentum, $E_{b}(j)$, for a large sample of, spin-aligned, SXS and Llama data. The EOB model presented here has only two calibration parameters, one entering the non spinning sector, as a 5PN effective correction to the interacti...
Modeling AGN outbursts from supermassive black hole binaries
Tanaka T.
2012-12-01
Full Text Available When galaxies merge to assemble more massive galaxies, their nuclear supermassive black holes (SMBHs should form bound binaries. As these interact with their stellar and gaseous environments, they will become increasingly compact, culminating in inspiral and coalescence through the emission of gravitational radiation. Because galaxy mergers and interactions are also thought to fuel star formation and nuclear black hole activity, it is plausible that such binaries would lie in gas-rich environments and power active galactic nuclei (AGN. The primary difference is that these binaries have gravitational potentials that vary – through their orbital motion as well as their orbital evolution – on humanly tractable timescales, and are thus excellent candidates to give rise to coherent AGN variability in the form of outbursts and recurrent transients. Although such electromagnetic signatures would be ideally observed concomitantly with the binary’s gravitational-wave signatures, they are also likely to be discovered serendipitously in wide-field, high-cadence surveys; some may even be confused for stellar tidal disruption events. I discuss several types of possible “smoking gun” AGN signatures caused by the peculiar geometry predicted for accretion disks around SMBH binaries.
Massive black hole binary mergers in dynamical galactic environments
Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars
2017-01-01
Gravitational waves (GWs) have now been detected from stellar-mass black hole binaries, and the first observations of GWs from massive black hole (MBH) binaries are expected within the next decade. Pulsar timing arrays (PTA), which can measure the years long periods of GWs from MBH binaries (MBHBs), have excluded many standard predictions for the amplitude of a stochastic GW background (GWB). We use coevolved populations of MBHs and galaxies from hydrodynamic, cosmological simulations (`Illustris') to calculate a predicted GWB. The most advanced predictions so far have included binary hardening mechanisms from individual environmental processes. We present the first calculation including all of the environmental mechanisms expected to be involved: dynamical friction, stellar `loss-cone' scattering, and viscous drag from a circumbinary disc. We find that MBH binary lifetimes are generally multiple gigayears, and only a fraction coalesce by redshift zero. For a variety of parameters, we find all GWB amplitudes to be below the most stringent PTA upper limit of A_{yr^{-1}} ≈ 10^{-15}. Our fairly conservative fiducial model predicts an amplitude of A_{yr^{-1}} ≈ 0.4× 10^{-15}. At lower frequencies, we find A_{0.1 yr^{-1}} ≈ 1.5× 10^{-15} with spectral indices between -0.4 and -0.6 - significantly flatter than the canonical value of -2/3 due to purely GW-driven evolution. Typical MBHBs driving the GWB signal come from redshifts around 0.3, with total masses of a few times 109 M⊙, and in host galaxies with very large stellar masses. Even without GWB detections, our results can be connected to observations of dual active galactic nuclei to constrain binary evolution.
Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae.
Fryer, Chris L; Oliveira, F G; Rueda, J A; Ruffini, R
2015-12-01
Binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (E_{iso}≳10^{52} erg), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed "ultrastripped" binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.
GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes.
Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calderón; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Haris, K; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J
2016-04-01
The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses ≳30M_{⊙}, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO and Advanced Virgo band for stochastic backgrounds (near 25 Hz), we predict Ω_{GW}(f=25 Hz)=1.1_{-0.9}^{+2.7}×10^{-9} with 90% confidence. This prediction is robustly demonstrated for a variety of formation scenarios with different parameters. The differences between models are small compared to the statistical uncertainty arising from the currently poorly constrained local coalescence rate. We conclude that this background is potentially measurable by the Advanced LIGO and Advanced Virgo detectors operating at their projected final sensitivity.
GW150914: Implications for the stochastic gravitational wave background from binary black holes
,
2016-01-01
The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses $\\gtrsim 30\\, \\text{M}_\\odot$, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO/Virgo band for stochastic backgrounds (near 25 Hz), we predict $\\Omega_\\text{GW}(f=25 Hz) = 1.1_{-0.9}^{+2.7} \\times 10^{-9}$ with 90\\% confidence. This prediction is robustly demonstrated for a variety of formation scenarios with different parameters. The differences between models are small compared to the statistical uncertainty arising from the currently poorly constrained local coalescence rate. We co...
GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.
2016-04-01
The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses ≳30 M⊙, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO and Advanced Virgo band for stochastic backgrounds (near 25 Hz), we predict ΩGW(f =25 Hz )=1. 1-0.9+2.7×10-9 with 90% confidence. This prediction is robustly demonstrated for a variety of formation scenarios with different parameters. The differences between models are small compared to the statistical uncertainty arising from the currently poorly constrained local coalescence rate. We conclude that this background is potentially measurable by the Advanced LIGO and Advanced Virgo detectors operating at their projected final sensitivity.
Binary Relations as a Foundation of Mathematics
Kuper, Jan; Barendsen, E.; Capretta, V.; Geuvers, H.; Niqui, M.
2007-01-01
We describe a theory for binary relations in the Zermelo-Fraenkel style. We choose for ZFCU, a variant of ZFC Set theory in which the Axiom of Foundation is replaced by an axiom allowing for non-wellfounded sets. The theory of binary relations is shown to be equi-consistent ZFCU by constructing a mo
Binary Relations as a Foundation of Mathematics
Kuper, J.; Barendsen, E.; Capretta, V.; Geuvers, H.; Niqui, M.
2007-01-01
We describe a theory for binary relations in the Zermelo-Fraenkel style. We choose for ZFCU, a variant of ZFC Set theory in which the Axiom of Foundation is replaced by an axiom allowing for non-wellfounded sets. The theory of binary relations is shown to be equi-consistent ZFCU by constructing a mo
Binary Relations as a Foundation of Mathematics
Kuper, Jan; Barendsen, E.; Capretta, V.; Geuvers, H.; Niqui, M.
2007-01-01
We describe a theory for binary relations in the Zermelo-Fraenkel style. We choose for ZFCU, a variant of ZFC Set theory in which the Axiom of Foundation is replaced by an axiom allowing for non-wellfounded sets. The theory of binary relations is shown to be equi-consistent ZFCU by constructing a
Galaxy rotation and supermassive black hole binary evolution
Mirza, M. A.; Tahir, A.; Khan, F. M.; Holley-Bockelmann, H.; Baig, A. M.; Berczik, P.; Chishtie, F.
2017-09-01
Supermassive black hole (SMBH) binaries residing at the core of merging galaxies are recently found to be strongly affected by the rotation of their host galaxies. The highly eccentric orbits that form when the host is counterrotating emit strong bursts of gravitational waves that propel rapid SMBH binary coalescence. Most prior work, however, focused on planar orbits and a uniform rotation profile, an unlikely interaction configuration. However, the coupling between rotation and SMBH binary evolution appears to be such a strong dynamical process that it warrants further investigation. This study uses direct N-body simulations to isolate the effect of galaxy rotation in more realistic interactions. In particular, we systematically vary the SMBH orbital plane with respect to the galaxy rotation axis, the radial extent of the rotating component, and the initial eccentricity of the SMBH binary orbit. We find that the initial orbital plane orientation and eccentricity alone can change the inspiral time by an order of magnitude. Because SMBH binary inspiral and merger is such a loud gravitational wave source, these studies are critical for the future gravitational wave detector, Laser Interferometer Space Antenna, an ESA/NASA mission currently set to launch by 2034.
Binary black hole shadows, chaotic scattering and the Cantor set
Shipley, Jake
2016-01-01
We investigate the qualitative features of binary black hole shadows using the model of two extremally charged black holes in static equilibrium (a Majumdar--Papapetrou solution). Our perspective is that binary spacetimes are natural exemplars of {\\it chaotic scattering}, because they admit more than one fundamental null orbit, and thus an uncountably-infinite set of perpetual orbits which generate scattering singularities in initial data. Inspired by the three-disc model, we develop an appropriate symbolic dynamics to describe planar null geodesics on the double black hole spacetime. We show that a one-dimensional (1D) black hole shadow may constructed through an iterative procedure akin to the construction of the Cantor set; thus the shadow is self-similar. Next, we study non-planar rays, to understand how angular momentum affects the existence and properties of the fundamental null orbits. Taking slices through 2D shadows, we observe three types of 1D shadow: regular, Cantor-like, and highly chaotic. The s...
What Can We Learn About Black-Hole Formation from Black-Hole X-ray Binaries?
Nelemans, G.
2007-01-01
I discuss the effect of the formation of a black hole on a (close) binary and show some of the current constraints that the observed properties of black hole X-ray binaries put on the formation of black holes. In particular I discuss the evidence for and against asymmetric kicks imparted on the black hole at formation and find contradicting answers, as there seems to be evidence for kick for individual systems and from the Galactic $z$-distribution of black hole X-ray binaries, but not from t...
Accretion and Orbital Inspiral in Gas-assisted Supermassive Black Hole Binary Mergers
Rafikov, Roman R.
2016-08-01
Many galaxies are expected to harbor binary supermassive black holes (SMBHs) in their centers. Their interaction with the surrounding gas results in the accretion and exchange of angular momentum via tidal torques, facilitating binary inspiral. Here, we explore the non-trivial coupling between these two processes and analyze how the global properties of externally supplied circumbinary disks depend on the binary accretion rate. By formulating our results in terms of the angular momentum flux driven by internal stresses, we come up with a very simple classification of the possible global disk structures, which differ from the standard constant \\dot{M} accretion disk solution. The suppression of accretion by the binary tides, leading to a significant mass accumulation in the inner disk, accelerates binary inspiral. We show that once the disk region strongly perturbed by the viscously transmitted tidal torque exceeds the binary semimajor axis, the binary can merge in less than its mass-doubling time due to accretion. Thus, unlike the inspirals driven by stellar scattering, the gas-assisted merger can occur even if the binary is embedded in a relatively low-mass disk (lower than its own mass). This is important for resolving the “last parsec” problem for SMBH binaries and understanding powerful gravitational wave sources in the universe. We argue that the enhancement of accretion by the binary found in some recent simulations cannot persist for a long time and should not affect the long-term orbital inspiral. We also review existing simulations of SMBH binary-disk coupling and propose a numerical setup which is particularly well suited to verifying our theoretical predictions.
Gravitational waveforms for neutron star binaries from binary black hole simulations
Barkett, Kevin; Haas, Roland; Ott, Christian D; Bernuzzi, Sebastiano; Brown, Duncan A; Szilágyi, Béla; Kaplan, Jeffrey D; Lippuner, Jonas; Muhlberger, Curran D; Foucart, Francois; Duez, Matthew D
2015-01-01
Gravitational waves from binary neutron star (BNS) and black-hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of the gravitational waveform, and these changes can be used to constrain the nuclear equation of state. Current methods of generating BNS and BHNS waveforms rely on either computationally challenging full 3D hydrodynamical simulations or approximate analytic solutions. We introduce a new method for computing inspiral waveforms for BNS/BHNS systems by adding the post-Newtonian (PN) tidal effects to full numerical simulations of binary black holes (BBHs), effectively replacing the non-tidal terms in the PN expansion with BBH results. Comparing a waveform generated with this method against a full hydrodynamical simulation of a BNS inspiral yields a phase difference of $<1$ radian over $\\sim 15$ orbits. The numerical phase accuracy ...
Numerical simulation of binary black hole and neutron star mergers
Kastaun, W.; Rezzolla, L. [Albert Einstein Institut, Potsdam-Golm (Germany)
2016-11-01
One of the last predictions of general relativity that still awaits direct observational confirmation is the existence of gravitational waves. Those fluctuations of the geometry of space and time are expected to travel with the speed of light and are emitted by any accelerating mass. Only the most violent events in the universe, such as mergers of two black holes or neutron stars, produce gravitational waves strong enough to be measured. Even those waves are extremely weak when arriving at Earth, and their detection is a formidable technological challenge. In recent years sufficiently sensitive detectors became operational, such as GEO600, Virgo, and LIGO. They are expected to observe around 40 events per year. To interpret the observational data, theoretical modeling of the sources is a necessity, and requires numerical simulations of the equations of general relativity and relativistic hydrodynamics. Such computations can only be carried out on large scale supercomputers, given that many scenarios need to be simulated, each of which typically occupies hundreds of CPU cores for a week. Our main goal is to predict the gravitational wave signal from the merger of two compact objects. Comparison with future observations will provide important insights into the fundamental forces of nature in regimes that are impossible to recreate in laboratory experiments. The waveforms from binary black hole mergers would allow one to test the correctness of general relativity in previously inaccessible regimes. The signal from binary neutron star mergers will provide input for nuclear physics, because the signal depends strongly on the unknown properties of matter at the ultra high densities inside neutron stars, which cannot be observed in any other astrophysical scenario. Besides mergers, we also want to improve the theoretical models of close encounters between black holes. A gravitational wave detector with even higher sensitivity, the Einstein Telescope, is already in the
Mandel, Ilya; de Mink, Selma E.
2016-05-01
We explore a newly proposed channel to create binary black holes of stellar origin. This scenario applies to massive, tight binaries where mixing induced by rotation and tides transports the products of hydrogen burning throughout the stellar envelopes. This slowly enriches the entire star with helium, preventing the build-up of an internal chemical gradient. The stars remain compact as they evolve nearly chemically homogeneously, eventually forming two black holes, which we estimate typically merge 4-11 Gyr after formation. Like other proposed channels, this evolutionary pathway suffers from significant theoretical uncertainties, but could be constrained in the near future by data from advanced ground-based gravitational-wave detectors. We perform Monte Carlo simulations of the expected merger rate over cosmic time to explore the implications and uncertainties. Our default model for this channel yields a local binary black hole merger rate of about 10 Gpc-3 yr-1 at redshift z = 0, peaking at twice this rate at z = 0.5. This means that this channel is competitive, in terms of expected rates, with the conventional formation scenarios that involve a common-envelope phase during isolated binary evolution or dynamical interaction in a dense cluster. The events from this channel may be distinguished by the preference for nearly equal-mass components and high masses, with typical total masses between 50 and 110 M⊙. Unlike the conventional isolated binary evolution scenario that involves shrinkage of the orbit during a common-envelope phase, short time delays are unlikely for this channel, implying that we do not expect mergers at high redshift.
Massive Black Hole Binary Mergers in Dynamical Galactic Environments
Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars
2016-10-01
Gravitational Waves (GW) have now been detected from stellar-mass black hole binaries, and the first observations of GW from Massive Black Hole (MBH) Binaries are expected within the next decade. Pulsar Timing Arrays (PTA), which can measure the years long periods of GW from MBHB, have excluded many standard predictions for the amplitude of a stochastic GW Background (GWB). We use coevolved populations of MBH and galaxies from hydrodynamic, cosmological simulations ('Illustris') to calculate a predicted GWB. The most advanced predictions so far have included binary hardening mechanisms from individual environmental processes. We present the first calculation including all of the environmental mechanisms expected to be involved: dynamical friction, stellar `loss-cone' scattering, and viscous drag from a circumbinary disk. We find that MBH binary lifetimes are generally multiple gigayears, and only a fraction coalesce by redshift zero. For a variety of parameters, we find all GWB amplitudes to be below the most stringent PTA upper limit of A_yr^{-1} ≈ 10^{-15}. Our fairly conservative fiducial model predicts an amplitude of A_yr^{-1} ≈ 0.4× 10^{-15}. At lower frequencies, we find A_{0.1 yr^{-1} ≈ 1.5× 10^{-15} with spectral indices between -0.4 and -0.6-significantly flatter than the canonical value of -2/3 due to purely GW-driven evolution. Typical MBHB driving the GWB signal come from redshifts around 0.3, with total masses of a few times 109 M⊙, and in host galaxies with very large stellar masses. Even without GWB detections, our results can be connected to observations of dual AGN to constrain binary evolution.
Statistical constraints on binary black hole inspiral dynamics
Galley, Chad R; Herrmann, Frank; Silberholz, John; Tiglio, Manuel [Department of Physics, Center for Fundamental Physics, Center for Scientific Computation and Mathematical Modeling, Joint Space Institute, University of Maryland, College Park, MD 20742 (United States); Guerberoff, Gustavo, E-mail: tiglio@umd.ed [Facultad de IngenierIa, Instituto de Matematica y EstadIstica, ' Prof. Ing. Rafael Laguardia' , Universidad de la Republica, Montevideo (Uruguay)
2010-12-21
We perform a statistical analysis of binary black holes in the post-Newtonian approximation by systematically sampling and evolving the parameter space of initial configurations for quasi-circular inspirals. Through a principal component analysis of spin and orbital angular momentum variables, we systematically look for uncorrelated quantities and find three of them which are highly conserved in a statistical sense, both as functions of time and with respect to variations in initial spin orientations. For example, we find a combination of spin scalar products, 2S-circumflex{sub 1{center_dot}}S-circumflex{sub 2} + (S-circumflex{sub 1{center_dot}}L-circumflex) (S-circumflex{sub 2{center_dot}}L-circumflex), that is exactly conserved in time at the considered post-Newtonian order (including spin-spin and radiative effects) for binaries with equal masses and spin magnitudes evolving in a quasi-circular inspiral. We also look for and find the variables that account for the largest variations in the problem. We present binary black hole simulations of the full Einstein equations analyzing to what extent these results might carry over to the full theory in the inspiral and merger regimes. Among other applications these results should be useful both in semi-analytical and numerical building of templates of gravitational waves for gravitational wave detectors.
Statistical constraints on binary black hole inspiral dynamics
Galley, Chad R.; Herrmann, Frank; Silberholz, John; Tiglio, Manuel; Guerberoff, Gustavo
2010-12-01
We perform a statistical analysis of binary black holes in the post-Newtonian approximation by systematically sampling and evolving the parameter space of initial configurations for quasi-circular inspirals. Through a principal component analysis of spin and orbital angular momentum variables, we systematically look for uncorrelated quantities and find three of them which are highly conserved in a statistical sense, both as functions of time and with respect to variations in initial spin orientations. For example, we find a combination of spin scalar products, 2 \\hat{\\bf S}_1 \\,\\cdot\\, \\hat{\\bf S}_2 + ( \\hat{\\bf S}_1 \\,\\cdot\\, \\hat{\\bf L}) ( \\hat{\\bf S}_2 \\,\\cdot\\, \\hat{\\bf L}), that is exactly conserved in time at the considered post-Newtonian order (including spin-spin and radiative effects) for binaries with equal masses and spin magnitudes evolving in a quasi-circular inspiral. We also look for and find the variables that account for the largest variations in the problem. We present binary black hole simulations of the full Einstein equations analyzing to what extent these results might carry over to the full theory in the inspiral and merger regimes. Among other applications these results should be useful both in semi-analytical and numerical building of templates of gravitational waves for gravitational wave detectors.
Wang, Lile; Ju, Wenhua; Rafikov, Roman R; Ruan, John J; Schneider, Donald P
2016-01-01
Supermassive black hole binaries (SMBHs) are expected to result from galaxy mergers, and thus are natural byproducts (and probes) of hierarchical structure formation in the Universe. They are also the primary expected source of low-frequency gravitational wave emission. We search for binary BHs using time-variable velocity shifts in broad Mg II emission lines of quasars with multi-epoch observations. First, we inspect velocity shifts of the binary SMBH candidates identified in Ju et al. (2013), using SDSS spectra with an additional epoch of data that lengthens the typical baseline to ~10 yr. We find variations in the line-of-sight velocity shifts over 10 years that are comparable to the shifts observed over 1-2 years, ruling out the binary model for the bulk of our candidates. We then analyze 1438 objects with 8 yr median time baselines, from which we would expect to see velocity shifts >1000 km/s from sub-pc binaries. We find only one object with an outlying velocity of 448 km/s, indicating, based on our mod...
Binary black hole shadows, chaotic scattering and the Cantor set
Shipley, Jake O.; Dolan, Sam R.
2016-09-01
We investigate the qualitative features of binary black hole shadows using the model of two extremally charged black holes in static equilibrium (a Majumdar-Papapetrou solution). Our perspective is that binary spacetimes are natural exemplars of chaotic scattering, because they admit more than one fundamental null orbit, and thus an uncountably infinite set of perpetual null orbits which generate scattering singularities in initial data. Inspired by the three-disc model, we develop an appropriate symbolic dynamics to describe planar null geodesics on the double black hole spacetime. We show that a one-dimensional (1D) black hole shadow may be constructed through an iterative procedure akin to the construction of the Cantor set; thus the 1D shadow is self-similar. Next, we study non-planar rays, to understand how angular momentum affects the existence and properties of the fundamental null orbits. Taking slices through 2D shadows, we observe three types of 1D shadow: regular, Cantor-like, and highly chaotic. The switch from Cantor-like to regular occurs where outer fundamental orbits are forbidden by angular momentum. The highly chaotic part is associated with an unexpected feature: stable and bounded null orbits, which exist around two black holes of equal mass M separated by {a}1\\lt a\\lt \\sqrt{2}{a}1, where {a}1=4M/\\sqrt{27}. To show how this possibility arises, we define a certain potential function and classify its stationary points. We conjecture that the highly chaotic parts of the 2D shadow possess the Wada property. Finally, we consider the possibility of following null geodesics through event horizons, and chaos in the maximally extended spacetime.
Evolution of an accretion disc in binary black hole systems
Kimura, Shigeo S.; Takahashi, Sanemichi Z.; Toma, Kenji
2017-03-01
We investigate evolution of an accretion disc in binary black hole (BBH) systems and possible electromagnetic counterparts of the gravitational waves from mergers of BBHs. Perna et al. proposed a novel evolutionary scenario of an accretion disc in BBHs in which a disc eventually becomes 'dead', i.e. the magnetorotational instability (MRI) becomes inactive. In their scenario, the dead disc survives until a few seconds before the merger event. We improve the dead disc model and propose another scenario, taking account of effects of the tidal torque from the companion and the critical ionization degree for MRI activation more carefully. We find that the mass of the dead disc is much lower than that in the Perna's scenario. When the binary separation sufficiently becomes small, the mass inflow induced by the tidal torque reactivates MRI, restarting mass accretion on to the black hole. We also find that this disc 'revival' happens more than thousands of years before the merger. The mass accretion induced by the tidal torque increases as the separation decreases, and a relativistic jet could be launched before the merger. The emissions from these jets are too faint compared to gamma-ray bursts, but detectable if the merger events happen within ≲10 Mpc or if the masses of the black holes are as massive as ∼105 M⊙.
Gravitational waves from binary supermassive black holes in galactic nuclei
Merritt, David
2017-01-01
Pulsar timing arrays (PTAs) will eventually detect the gravitational wave (GW) background produced by a cosmological population of binary supermassive black hole (SBHs). In this talk, I review the ways in which the formation and evolution of the binary population determine the amplitude and form of the GW spectrum. A major source of systematic uncertainty is the mass function of SBHs; in the past, SBH masses have often been overestimated, and the number of SBHs with trustworthy mass estimates is still very small. The presence of gas and stars around the binaries accelerates the evolution at large separations, reducing the amplitude of the GW spectrum at low frequencies. I will highlight two recent developments in our theoretical understanding of binary evolution. (1) Slight departures from axi-symmetry in a galaxy imply a sustained supply of stars to the very center, thus overcoming the “final-parsec problem”. (2) In the generic case of a rotating nucleus, the plane of the binary’s orbit evolves predictably toward alignment with the symmetry plane of the nucleus; the binary’s eccentricity also evolves in tandem with the orientation, sometimes reaching values close to one. These processes should leave distinct imprints on the stochastic GW spectrum, and have important implications for the likelihood of GW detection in the near future.
Astrophysical Implications of the Binary Black-Hole Merger GW150914
,
2016-01-01
The discovery of the gravitational-wave source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black-hole systems that inspiral and merge within the age of the Universe. Such black-hole mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively "heavy" black holes ($\\gtrsim 25\\, M_\\odot$) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with metallicity lower than $\\sim 1/2$ of the solar value. The rate of binary black-hole mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions ($\\gtrsim 1 \\, \\mathrm{Gpc}^{-3} \\, \\mathrm{yr}^{-1}$) from both types of formation models. The low measured redshift ($z \\sim 0.1$) of GW150914 and the low inferr...
On the detectability of dual jets from binary black holes
Moesta, Philipp; Rezzolla, Luciano; Zanotti, Olindo; Palenzuela, Carlos
2011-01-01
We revisit the suggestion that dual jets can be produced during the inspiral and merger of supermassive black holes when these are immersed in a force-free plasma threaded by a uniform magnetic field. By performing independent calculations and by computing the electromagnetic emission in a way which is consistent with estimates using the Poynting flux, we show that a dual-jet structure is present but energetically subdominant with respect to a non-collimated and predominantly quadrupolar emission, which is similar to the one computed when the binary is in electrovacuum. While our findings set serious restrictions on the detectability of dual jets from coalescing binaries, they also increase the chances of detecting an EM counterpart from these systems.
Tidal Disruption Events by a Massive Black Hole Binary
Ricarte, Angelo; Dai, Lixin; Coppi, Paolo
2015-01-01
Massive black hole binaries (MBHBs) are a natural byproduct of galaxy mergers. Previous studies have shown that flares from stellar tidal disruption events (TDEs) are modified by the presence of a secondary perturber, causing interruptions in the light curve. We study the dynamics of TDE debris in the presence of a milliparsec-separated MBHB by integrating ballistic particle orbits in the time-varying potential of the binary. We find that gaps in the light curve appear when material misses the accretion radius on its first return to pericentre. Subsequent recurrences can be decomposed into "continuous" and "delayed" components, which exhibit different behaviour. We find that this potential can substantially alter the locations of stream self-intersections. When debris is confined to the plane, we find that close encounters with the secondary BH leave noticeable signatures on the fallback rate and can result in significant accretion onto the secondary BH. Tight, equal-mass MBHBs accrete equally, periodically t...
Spacelike gravitational radiation extraction from rotating binary black holes
Imbiriba, Breno C. O.
2016-07-01
We introduce an alternate method for gravitational radiation extraction for binary black hole mergers where we do not use a single extraction radius at the intermediate field region but instead use a whole spherical shell of three-dimensional (3D) data and continue its evolution using the linearized (Teukolsky) evolution to a final distant radiation extraction radius. We implement this using the Hahndol code for the 3D evolution, and use the “Lazarus” procedure to convert the numerical data into the linearized data. The final waveform is compatible with the ones obtained from the full 3D evolutions with some minor variations that require further study. In the process, we tested the “Lazarus” method with our numerical 3D implementation and gauges showing that even with the advanced gauges suitable for 3D rotating binary evolutions, we recover the same type of limited results obtained in the original work.
Parameter estimates in binary black hole collisions using neural networks
Carrillo, M.; Gracia-Linares, M.; González, J. A.; Guzmán, F. S.
2016-10-01
We present an algorithm based on artificial neural networks (ANNs), that estimates the mass ratio in a binary black hole collision out of given gravitational wave (GW) strains. In this analysis, the ANN is trained with a sample of GW signals generated with numerical simulations. The effectiveness of the algorithm is evaluated with GWs generated also with simulations for given mass ratios unknown to the ANN. We measure the accuracy of the algorithm in the interpolation and extrapolation regimes. We present the results for noise free signals and signals contaminated with Gaussian noise, in order to foresee the dependence of the method accuracy in terms of the signal to noise ratio.
Parameter estimates in binary black hole collisions using neural networks
Carrillo, M; González, J A; Guzmán, F S
2016-01-01
We present an algorithm based on artificial neural networks (ANNs), that estimates the mass ratio in a binary black hole collision out of given Gravitational Wave (GW) strains. In this analysis, the ANN is trained with a sample of GW signals generated with numerical simulations. The effectiveness of the algorithm is evaluated with GWs generated also with simulations for given mass ratios unknown to the ANN. We measure the accuracy of the algorithm in the interpolation and extrapolation regimes. We present the results for noise free signals and signals contaminated with Gaussian noise, in order to foresee the dependence of the method accuracy in terms of the signal to noise ratio.
Remnant of binary black-hole mergers: New simulations and peak luminosity studies
Healy, James
2016-01-01
We present the results of 61 new simulations of nonprecessing spinning black hole binaries with mass ratios $q=m_1/m_2$ in the range $1\\leq q\\leq1/3$ and individual spins covering the parameter space $-0.85\\leq\\alpha_{1,2}\\leq0.85$. We additionally perform 10 new simulations of nonspinning black hole binaries with mass ratios covering the range $1/6\\leq q<1$. We follow the evolution for typically the last ten orbits before merger down to the formation of the final remnant black hole. This allows for assessment of the accuracy of our previous empirical formulae for relating the binary parameters to the remnant final black hole mass, spin and recoil. We use the new simulation to improve the fit to the above remnant formulae and add a formula for the peak luminosity of gravitational waves, produced around the merger of the two horizons into one. We find excellent agreement (typical errors $\\sim0.1-0.2\\%$) for the mass and spin, and $\\sim5\\%$ for the recoil and peak luminosity. These formulae have direct appli...
Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO.
Rodriguez, Carl L; Morscher, Meagan; Pattabiraman, Bharath; Chatterjee, Sourav; Haster, Carl-Johan; Rasio, Frederic A
2015-07-31
The predicted rate of binary black hole mergers from galactic fields can vary over several orders of magnitude and is extremely sensitive to the assumptions of stellar evolution. But in dense stellar environments such as globular clusters, binary black holes form by well-understood gravitational interactions. In this Letter, we study the formation of black hole binaries in an extensive collection of realistic globular cluster models. By comparing these models to observed Milky Way and extragalactic globular clusters, we find that the mergers of dynamically formed binaries could be detected at a rate of ∼100 per year, potentially dominating the binary black hole merger rate. We also find that a majority of cluster-formed binaries are more massive than their field-formed counterparts, suggesting that Advanced LIGO could identify certain binaries as originating from dense stellar environments.
Illuminating Black Hole Binary Formation Channels with Spins in Advanced LIGO
Rodriguez, Carl L; Pankow, Chris; Kalogera, Vicky; Rasio, Frederic A
2016-01-01
The recent detections of the binary black hole mergers GW150914 and GW151226 have inaugurated the field of gravitational-wave astronomy. For the two main formation channels that have been proposed for these sources, isolated binary evolution in galactic fields and dynamical formation in dense star clusters, the predicted masses and merger rates overlap significantly, complicating any astrophysical claims that rely on measured masses alone. Here, we examine the distribution of spin- orbit misalignments expected for binaries from the field and from dense star clusters. Under standard assumptions for black-hole natal kicks, we find that black-hole binaries similar to GW150914 could be formed with significant spin-orbit misalignment only through dynamical processes. In particular, these heavy-black-hole binaries can only form with a significant spin-orbit anti-alignment in the dynamical channel. Our results suggest that future detections of merging black hole binaries with measurable spins will allow us to identi...
Dvorkin, Irina; Silk, Joseph; Uzan, Jean-Philippe; Olive, Keith A
2016-01-01
The recent detection of the binary black hole merger GW150914 demonstrates the existence of black holes more massive than previously observed in X-ray binaries in our Galaxy. This article explores different scenarios of black hole formation in the context of self-consistent cosmic chemical evolution models that simultaneously match observations of the cosmic star formation rate, optical depth to reionization and metallicity of the interstellar medium. This framework is used to calculate the mass distribution of merging black hole binaries and its evolution with redshift. We also study the implications of the black hole mass distribution for the stochastic gravitational wave background from mergers and from core collapse events.
No time for dead time: timing analysis of bright black hole binaries with NuSTAR
Bachetti, Matteo; Harrison, Fiona A.; Cook, Rick
2015-01-01
Timing of high-count-rate sources with the NuSTAR Small Explorer Mission requires specialized analysis techniques. NuSTAR was primarily designed for spectroscopic observations of sources with relatively low count rates rather than for timing analysis of bright objects. The instrumental dead time ...... techniques. We apply this technique to NuSTAR observations of the black hole binaries GX 339-4, Cyg X-1, and GRS 1915+105....
Evolution of an Accretion Disk in Binary Black Hole Systems
Kimura, Shigeo S; Toma, Kenji
2016-01-01
We investigate evolution of an accretion disk in binary black hole (BBH) systems, the importance of which is now increasing due to its close relationship to possible electromagnetic counterparts of the gravitational waves (GWs) from mergers of BBHs. Perna et al. (2016) proposed a novel evolutionary scenario of an accretion disk in BBHs in which a disk eventually becomes "dead", i.e., the magnetorotational instability (MRI) becomes inactive. In their scenario, the dead disk survives until {\\it a few seconds before} the merger event. We improve the dead disk model and propose another scenario, taking account of effects of the tidal torque from the companion and the critical ionization degree for MRI activation more carefully. We find that the mass of the dead disk is much lower than that in the Perna's scenario. When the binary separation sufficiently becomes small, the tidal heating reactivates MRI and mass accretion onto the black hole (BH). We also find that this disk "revival" happens {\\it many years before...
Tidal disruption events by a massive black hole binary
Ricarte, Angelo; Natarajan, Priyamvada; Dai, Lixin; Coppi, Paolo
2016-05-01
Massive black hole binaries (MBHBs) are a natural byproduct of galaxy mergers. Previous studies have shown that flares from stellar tidal disruption events (TDEs) are modified by the presence of a secondary perturber, causing interruptions in the light curve. We study the dynamics of TDE debris in the presence of a milliparsec-separated MBHB by integrating ballistic particle orbits in the time-varying potential of the binary. We find that gaps in the light curve appear when material misses the accretion radius on its first return to pericentre. Subsequent recurrences can be decomposed into `continuous' and `delayed' components, which exhibit different behaviour. We find that this potential can substantially alter the locations of stream self-intersections. When debris is confined to the plane, we find that close encounters with the secondary massive black hole (MBH) leave noticeable signatures on the fallback rate and can result in significant accretion on to the secondary MBH. Tight, equal-mass MBHBs accrete equally, periodically trading the infalling stream.
Intra-Binary Shock Heating of Black Widow Companions
Romani, Roger W
2016-01-01
The low mass companions of evaporating binary pulsars (black widows and their ilk) are strongly heated on the side facing the pulsar. However in high-quality photometric and spectroscopic data the heating pattern does not match that expected for direct pulsar illumination. Here we explore heating mediated by an intra-binary shock (IBS). We develop a simple analytic model and implement it in the popular `ICARUS' light curve code. The model is parameterized by the wind momentum ratio beta and velocity v_Rel v_orb and assumes that the reprocessed pulsar wind emits prompt particles or radiation to heat the companion surface. We illustrate an interesting range of light curve asymmetries controlled by these parameters. The code also computes the IBS synchrotron emission pattern, and thus can model black widow X-ray light curves. As a test we apply the results to the high quality asymmetric optical light curves of PSR J2215+5135; the resulting fit gives a substantial improvement upon direct heating models and produc...
Simple model of complete precessing black-hole-binary gravitational waveforms.
Hannam, Mark; Schmidt, Patricia; Bohé, Alejandro; Haegel, Leïla; Husa, Sascha; Ohme, Frank; Pratten, Geraint; Pürrer, Michael
2014-10-10
The construction of a model of the gravitational-wave (GW) signal from generic configurations of spinning-black-hole binaries, through inspiral, merger, and ringdown, is one of the most pressing theoretical problems in the buildup to the era of GW astronomy. We present the first such model in the frequency domain, PhenomP, which captures the basic phenomenology of the seven-dimensional parameter space of binary configurations with only three key physical parameters. Two of these (the binary's mass ratio and an effective total spin parallel to the orbital angular momentum, which determines the inspiral rate) define an underlying nonprecessing-binary model. The nonprecessing-binary waveforms are then twisted up with approximate expressions for the precessional motion, which require only one additional physical parameter, an effective precession spin, χ(p). All other parameters (total mass, sky location, orientation and polarization, and initial phase) can be specified trivially. The model is constructed in the frequency domain, which will be essential for efficient GW searches and source measurements. We have tested the model's fidelity for GW applications by comparison against hybrid post-Newtonian-numerical-relativity waveforms at a variety of configurations--although we did not use these numerical simulations in the construction of the model. Our model can be used to develop GW searches, to study the implications for astrophysical measurements, and as a simple conceptual framework to form the basis of generic-binary waveform modeling in the advanced-detector era.
Un-modeled search for black hole binary systems in the NINJA project
Cadonati, Laura; Fischetti, Sebastian; Guidi, Gianluca; Mohapatra, Satyanarayan R P; Sturani, Riccardo; Viceré, Andrea
2009-01-01
The gravitational wave signature from binary black hole coalescences is an important target for LIGO and VIRGO. The Numerical INJection Analysis (NINJA) project brought together the numerical relativity and gravitational wave data analysis communities, with the goal to optimize the detectability of these events. In its first instantiation, the NINJA project produced a simulated data set with numerical waveforms from binary black hole coalescences of various morphologies (spin, mass ratio, initial conditions), superimposed to Gaussian colored noise at the design sensitivity for initial LIGO and VIRGO. We analyzed this simulated data set with the Q-pipeline burst algorithm. This code, designed for the all-sky detection of gravitational wave bursts with minimal assumptions on the shape of the waveform, filters the data with a bank of sine-Gaussians, or sinusoids with Gaussian envelope. The algorithm's performance was compared to matched filtering with ring-down templates. The results are qualitatively consistent...
The final spin from binary black holes in quasi-circular orbits
Hofmann, Fabian; Rezzolla, Luciano
2016-01-01
We revisit the problem of predicting the spin magnitude and direction of the black hole resulting from the merger of two black holes with arbitrary masses and spins inspiralling in quasi-circular orbits. We do this by analyzing a catalog of 641 recent numerical-relativity simulations collected from the literature and spanning a large variety of initial conditions. By combining information from the post-Newtonian approximation, the extreme mass-ratio limit and perturbative calculations, we improve our previously proposed phenomenological formulae for the final remnant spin. In contrast with alternative suggestions in the literature, and in analogy with our previous expressions, the new formula is a simple algebraic function of the initial system parameters and is not restricted to binaries with spins aligned/anti-aligned with the orbital angular momentum, but can be employed for fully generic binaries. The accuracy of the new expression is significantly improved, especially for almost extremal progenitor spins...
:,; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Accadia, T; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Austin, L; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Blom, M; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Buchman, S; Bulik, T; Bulten, H J; Buonanno, A; Burman, R; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Bustillo, J Calderón; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castiglia, A; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio, M; Conte, A; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corpuz, A; Corsi, A; Costa, C A; Coughlin, M W; Coughlin, S; Coulon, J -P; Countryman, S; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Canton, T Dal; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; Debreczeni, G; Degallaix, J; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Donath, A; Donovan, F; Dooley, K L; Doravari, S; Dossa, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H; Ehrens, P; Eichholz, J; Eikenberry, S S; Endrőczi, G; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Feroz, F; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J -D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gair, J; Gammaitoni, L; Gaonkar, S; Garufi, F; Gehrels, N; Gemme, G; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, C; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Gräf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gushwa, K; Gustafson, E K; Gustafson, R; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hart, M; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Hooper, S; Hopkins, P; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; James, E; Jang, H; Jaranowski, P; Ji, Y; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karlen, J; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kawabe, K; Kawazoe, F; Kéfélian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N; Kim, N G; Kim, Y -M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D B; Kremin, A; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, A; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Kwee, P; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lawrie, C; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C -H; Lee, H K; Lee, H M; Lee, J; Leonardi, M; Leong, J R; Roux, A Le; Leroy, N; Letendre, N; Levin, Y; Levine, B; Lewis, J; Li, T G F; Libbrecht, K; Libson, A; Lin, A C; Littenberg, T B; Litvine, V; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Lubinski, M J; Lück, H; Luijten, E; Lundgren, A P; Lynch, R; Ma, Y; Macarthur, J; Macdonald, E P; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Mageswaran, M; Maglione, C; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mangini, N; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; McLin, K; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meinders, M; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyers, P; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Milde, S; Miller, J; Minenkov, Y; Mingarelli, C M F; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Moesta, P; Mohan, M; Mohapatra, S R P; Moraru, D; Moreno, G; Morgado, N; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Kumar, D Nanda; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Oh, J J; Oh, S H; Ohme, F; Oppermann, P; O'Reilly, B; O'Shaughnessy, R; Osthelder, C; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palashov, O; Palomba, C; Pan, H; Pan, Y; Pankow, C; Paoletti, F; Paoletti, R; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poteomkin, A; Powell, J; Prasad, J; Premachandra, S; Prestegard, T; Price, L R; Prijatelj, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Qin, J; Quetschke, V; Quintero, E; Quiroga, G; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Ramirez, K; Rapagnani, P; Raymond, V; Re, V; Read, J; Reed, C M; Regimbau, T; Reid, S; Reitze, D H; Rhoades, E; Ricci, F; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Rodruck, M; Rolland, L; Rollins, J G; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J R; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Scheuer, J; Schilling, R; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D; Shah, S; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Singh, R; Sintes, A M; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M; Smith, R J E; Smith-Lefebvre, N D; Son, E J; Sorazu, B; Souradeep, T; Sperandio, L; Staley, A; Stebbins, J; Steinlechner, J; Steinlechner, S; Stephens, B C; Steplewski, S; Stevenson, S; Stone, R; Stops, D; Strain, K A; Straniero, N; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Tacca, M; Talukder, D; Tanner, D B; Tarabrin, S P; Taylor, R; ter Braack, A P M; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Toncelli, A; Tonelli, M; Torre, O; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Ugolini, D; Unnikrishnan, C S; Urban, A L; Urbanek, K; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; Brand, J F J van den; Broeck, C Van Den; van der Putten, S; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Verma, S S; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J -Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vyachanin, S P; Wade, A; Wade, L; Wade, M; Walker, M; Wallace, L; Wang, M; Wang, X; Ward, R L; Was, M; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Williams, K; Williams, L; Williams, R; Williams, T; Williamson, A R; Willis, J L; Willke, B; Wimmer, M; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Worden, J; Yablon, J; Yakushin, I; Yamamoto, H; Yancey, C C; Yang, H; Yang, Z; Yoshida, S; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J -P; Zhang, Fan; Zhang, L; Zhao, C; Zhu, X J; Zucker, M E; Zuraw, S; Zweizig, J; Boyle, M; Brügmann, B; Buchman, L T; Campanelli, M; Chu, T; Etienne, Z B; Hannam, M; Healy, J; Hinder, I; Kidder, L E; Laguna, P; Liu, Y T; London, L; Lousto, C O; Lovelace, G; MacDonald, I; Marronetti, P; Mösta, P; Müller, D; Mundim, B C; Nakano, H; Paschalidis, V; Pekowsky, L; Pollney, D; Pfeiffer, H P; Ponce, M; Pürrer, M; Reifenberger, G; Reisswig, C; Santamaría, L; Scheel, M A; Shapiro, S L; Shoemaker, D; Sopuerta, C F; Sperhake, U; Szilágyi, B; Taylor, N W; Tichy, W; Tsatsin, P; Zlochower, Y
2014-01-01
The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave astrophysics communities. The purpose of NINJA is to study the ability to detect gravitational waves emitted from merging binary black holes and recover their parameters with next-generation gravitational-wave observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete binary black hole hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral. In a "blind injection challenge" similar to that conducted in recent LIGO and Virgo science runs, we added 7 hybrid waveforms to two months of data recolored to predictions of Advanced LIGO and Advanced Virgo sensitivity curves during their first observing runs. The resulting data was analyzed by gravitational-wave detection algorithms and 6 of the waveforms were recovered w...
The Lazarus project A pragmatic approach to binary black hole evolutions
Baker, J; Loustó, C O
2002-01-01
We present a detailed description of techniques developed to combine 3D numerical simulations and, subsequently, a single black hole close-limit approximation. This method has made it possible to compute the first complete waveforms covering the post-orbital dynamics of a binary black hole system with the numerical simulation covering the essential non-linear interaction before the close limit becomes applicable for the late time dynamics. To determine when close-limit perturbation theory is applicable we apply a combination of invariant a priori estimates and a posteriori consistency checks of the robustness of our results against exchange of linear and non-linear treatments near the interface. Once the numerically modeled binary system reaches a regime that can be treated as perturbations of the Kerr spacetime, we must approximately relate the numerical coordinates to the perturbative background coordinates. We also perform a rotation of a numerically defined tetrad to asymptotically reproduce the tetrad re...
How black holes saved relativity
Prescod-Weinstein, Chanda
2016-02-01
While there have been many popular-science books on the historical and scientific legacy of Albert Einstein's general theory of relativity, a gap exists in the literature for a definitive, accessible history of the theory's most famous offshoot: black holes. In Black Hole, the science writer Marcia Bartusiak aims for a discursive middle ground, writing solely about black holes at a level suitable for both high-school students and more mature readers while also giving some broader scientific context for black-hole research.
Accretion Disks Around Binary Black Holes of Unequal Mass: GRMHD Simulations Near Decoupling
Gold, Roman; Paschalidis, Vasileios; Etienne, Zachariah B.; Shapiro, Stuart L.; Pfeiffer, Harald, P.
2013-01-01
We report on simulations in general relativity of magnetized disks onto black hole binaries. We vary the binary mass ratio from 1:1 to 1:10 and evolve the systems when they orbit near the binary disk decoupling radius. We compare (surface) density profiles, accretion rates (relative to a single, non-spinning black hole), variability, effective alpha-stress levels and luminosities as functions of the mass ratio. We treat the disks in two limiting regimes: rapid radiative cooling and no radiative cooling. The magnetic field lines clearly reveal jets emerging from both black hole horizons and merging into one common jet at large distances. The magnetic fields give rise to much stronger shock heating than the pure hydrodynamic flows, completely alter the disk structure, and boost accretion rates and luminosities. Accretion streams near the horizons are among the densest structures; in fact, the 1:10 no-cooling evolution results in a refilling of the cavity. The typical effective temperature in the bulk of the disk is approx. 10(exp5) (M / 10(exp 8)M solar mass (exp -1/4(L/L(sub edd) (exp 1/4K) yielding characteristic thermal frequencies approx. 10 (exp 15) (M /10(exp 8)M solar mass) (exp -1/4(L/L (sub edd) (1+z) (exp -1)Hz. These systems are thus promising targets for many extragalactic optical surveys, such as LSST, WFIRST, and PanSTARRS.
Hayasaki, Kimitake; Loeb, Abraham
2016-10-21
Galaxy mergers produce supermassive black hole binaries, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries of its life. We find that the gas stream of the stellar debris moves chaotically in the binary potential and forms accretion disks around both black holes. The accretion light curve is modulated over the binary orbital period owing to relativistic beaming. This periodic signal allows to detect the decay of the binary orbit due to gravitational wave emission by observing two tidal disruption events that are separated by more than a decade.
Hayasaki, Kimitake; Loeb, Abraham
2016-10-01
Galaxy mergers produce supermassive black hole binaries, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries of its life. We find that the gas stream of the stellar debris moves chaotically in the binary potential and forms accretion disks around both black holes. The accretion light curve is modulated over the binary orbital period owing to relativistic beaming. This periodic signal allows to detect the decay of the binary orbit due to gravitational wave emission by observing two tidal disruption events that are separated by more than a decade.
Hayasaki, Kimitake
2015-01-01
Galaxy mergers produce binaries of supermassive black holes, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries of its life. We find that the gas stream of the stellar debris moves chaotically in the binary potential and forms accretion disks around both black holes. The accretion light curve is modulated over the binary orbital period owing to relativistic beaming. This periodic signal allows to detect the decay of the binary orbit due to gravitational wave emission by observing two tidal disruption events that are separated by more than a decade.
Schutz, Katelin
2015-01-01
Pulsar timing arrays (PTAs) are placing increasingly stringent constraints on the strain amplitude of continuous gravitational waves emitted by supermassive black hole binaries on subparsec scales. In this paper, we incorporate independent measurements of the dynamical masses $M_{\\rm bh}$ of supermassive black holes in specific galaxies at known distances and leverage this additional information to further constrain whether or not those galaxies could host a detectable supermassive black hole binary. We estimate the strain amplitudes from individual binaries as a function of binary mass ratio for two samples of nearby galaxies: (1) those with direct dynamical measurements of $M_{\\rm bh}$ in the literature, and (2) the 116 most massive early-type galaxies (and thus likely hosts of the most massive black holes) within 108 Mpc from the MASSIVE Survey. Our exploratory analysis shows that the current PTA upper limits on continuous waves can already constrain the mass ratios of hypothetical black hole binaries in a...
Relativistic mergers of black hole binaries have large, similar masses, low spins and are circular
Amaro-Seoane, Pau; Chen, Xian
2016-05-01
Gravitational waves are a prediction of general relativity, and with ground-based detectors now running in their advanced configuration, we will soon be able to measure them directly for the first time. Binaries of stellar-mass black holes are among the most interesting sources for these detectors. Unfortunately, the many different parameters associated with the problem make it difficult to promptly produce a large set of waveforms for the search in the data stream. To reduce the number of templates to develop, one must restrict some of the physical parameters to a certain range of values predicted by either (electromagnetic) observations or theoretical modelling. In this work, we show that `hyperstellar' black holes (HSBs) with masses 30 ≲ MBH/M⊙ ≲ 100, i.e black holes significantly larger than the nominal 10 M⊙, will have an associated low value for the spin, i.e. a < 0.5. We prove that this is true regardless of the formation channel, and that when two HSBs build a binary, each of the spin magnitudes is also low, and the binary members have similar masses. We also address the distribution of the eccentricities of HSB binaries in dense stellar systems using a large suite of three-body scattering experiments that include binary-single interactions and long-lived hierarchical systems with a highly accurate integrator, including relativistic corrections up to O(1/c^5). We find that most sources in the detector band will have nearly zero eccentricities. This correlation between large, similar masses, low spin and low eccentricity will help to accelerate the searches for gravitational-wave signals.
Binary Black Holes in Dense Star Clusters: Exploring the Theoretical Uncertainties
Chatterjee, Sourav; Rodriguez, Carl L.; Rasio, Frederic A.
2017-01-01
Recent N-body simulations predict that large numbers of stellar black holes (BHs) could at present remain bound to globular clusters (GCs), and merging BH–BH binaries are produced dynamically in significant numbers. We systematically vary “standard” assumptions made by numerical simulations related to, e.g., BH formation, stellar winds, binary properties of high-mass stars, and IMF within existing uncertainties, and study the effects on the evolution of the structural properties of GCs, and the BHs in GCs. We find that variations in initial assumptions can set otherwise identical initial clusters on completely different evolutionary paths, significantly affecting their present observable properties, or even affecting the cluster’s very survival to the present. However, these changes usually do not affect the numbers or properties of local BH–BH mergers. The only exception is that variations in the assumed winds and IMF can change the masses and numbers of local BH–BH mergers, respectively. All other variations (e.g., in initial binary properties and binary fraction) leave the masses and numbers of locally merging BH–BH binaries largely unchanged. This is in contrast to binary population synthesis models for the field, where results are very sensitive to many uncertain parameters in the initial binary properties and binary stellar-evolution physics. Weak winds are required for producing GW150914-like mergers from GCs at low redshifts. LVT151012 can be produced in GCs modeled both with strong and weak winds. GW151226 is lower-mass than typical mergers from GCs modeled with weak winds, but is similar to mergers from GCs modeled with strong winds.
LISA detection of binary black holes in the Milky Way galaxy
Christian, Pierre; Loeb, Abraham
2017-07-01
Using the black hole merger rate inferred from LIGO, we calculate the abundance of tightly bound binary black holes in the Milky Way galaxy. Binaries with a small semimajor axis (≲10 R⊙) originate at larger separations through conventional formation mechanisms and evolve as a result of gravitational wave emission. We find that LISA could detect them in the Milky Way. We also identify possible X-ray signatures of such binaries.
Gravitational waveforms for neutron star binaries from binary black hole simulations
Barkett, Kevin; Scheel, Mark; Haas, Roland; Ott, Christian; Bernuzzi, Sebastiano; Brown, Duncan; Szilagyi, Bela; Kaplan, Jeffrey; Lippuner, Jonas; Muhlberger, Curran; Foucart, Francois; Duez, Matthew
2016-03-01
Gravitational waves from binary neutron star (BNS) and black-hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of the gravitational waveform, and these changes can be used to constrain the nuclear equation of state. Current methods of generating BNS and BHNS waveforms rely on either computationally challenging full 3D hydrodynamical simulations or approximate analytic solutions. We introduce a new method for computing inspiral waveforms for BNS/BHNS systems by adding the post-Newtonian (PN) tidal effects to full numerical simulations of binary black holes (BBHs), effectively replacing the non-tidal terms in the PN expansion with BBH results. Comparing a waveform generated with this method against a full hydrodynamical simulation of a BNS inspiral yields a phase difference of < 1 radian over ~ 15 orbits. The numerical phase accuracy required of BNS simulations to measure the accuracy of the method we present here is estimated as a function of the tidal deformability parameter λ.
Dynamics of spinning compact binaries in general relativity
Hartl, Michael David
This thesis investigates the dynamics of binary systems composed of spinning compact objects in the context of general relativity. Compact binaries are promising sources of gravitational radiation for both ground- and space-based gravitational-wave detectors. If the dynamics of these systems were chaotic, the number of waveform templates needed to match a given gravitational-wave signal would grow exponentially with increasing detection sensitivity, rendering the preferred matched filter detection method computationally impractical. It is therefore urgent to understand whether the binary dynamics can be chaotic, and, if so, how prevalent this chaos is. We first consider the dynamics of a spinning compact object orbiting a much more massive rotating black hole, as modeled by the Papapetrou equations in Kerr spacetime. We find that many initial conditions lead to positive Lyapunov exponents, indicating chaotic dynamics. Despite the formal existence of chaotic solutions, we find that chaos occurs only for physically unrealistic values of the small body's spin. As a result, chaos will not affect theoretical templates in the extreme mass-ratio limit for which the Papapetrou equations are valid. We next consider the dynamics of spinning black-hole binaries, as modeled by the post-Newtonian (PN) equations, which are valid for orbital velocities much smaller than the speed of light. We study thoroughly the special case of quasi-circular orbits with comparable mass ratios. Our survey shows that chaos occurs in a negligible fraction of possible configurations, and only for such small radii that the PN approximation is likely to be invalid. As a result, at least in the case of comparable mass black-hole binaries, theoretical templates will not be significantly affected by chaos. In a final, self-contained chapter, we discuss various methods for the calculation of Lyapunov exponents in systems of ordinary differential equations. We introduce several new techniques applicable
Puncture initial data for black-hole binaries with high spins and high boosts
Ruchlin, Ian; Healy, James; Lousto, Carlos O.; Zlochower, Yosef
2017-01-01
We solve the Hamiltonian and momentum constraints of general relativity for two black holes with nearly extremal spins and relativistic boosts in the puncture formalism. We use a non-conformally-flat ansatz with an attenuated superposition of two Lorentz-boosted, conformally Kerr or conformally Schwarzschild 3-metrics and their corresponding extrinsic curvatures. We compare evolutions of these data with the standard Bowen-York conformally flat ansatz (technically limited to intrinsic spins χ =S /MADM2=0.928 and boosts P /MADM=0.897 ), finding, typically, an order of magnitude smaller burst of spurious radiation and agreement with inspiral and merger. As a first case study, we evolve two equal-mass black holes from rest with an initial separation of d =12 M and spins χi=Si/mi2=0.99 , compute the waveforms produced by the collision, the energy and angular momentum radiated, and the recoil of the final remnant black hole. We find that the black-hole trajectories curve at close separations, leading to the radiation of angular momentum. We also study orbiting nonspinning and moderate-spin black-hole binaries and compare these with standard Bowen-York data. We find a substantial reduction in the nonphysical initial burst of radiation which leads to cleaner waveforms. Finally, we study the case of orbiting binary black-hole systems with spin magnitude χi=0.95 in an aligned configuration and compare waveform and final remnant results with those of the SXS Collaboration [54 A. H. Mroue et al., Phys. Rev. Lett. 111, 241104 (2013)., 10.1103/PhysRevLett.111.241104], finding excellent agreement. This represents the first moving puncture evolution of orbiting and spinning black holes exceeding the Bowen-York limit. Finally, we study different choices of the initial lapse and lapse evolution equation in the moving puncture approach to improve the accuracy and efficiency of the simulations.
Gravitational Wave Physics with Binary Love Relations
Yagi, Kent; Yunes, Nicolas
2016-03-01
Gravitational waves from the late inspiral of neutron star binaries encode rich information about their internal structure at supranuclear densities through their tidal deformabilities. However, extracting the individual tidal deformabilities of the components of a binary is challenging with future ground-based gravitational wave interferometers due to degeneracies between them. We overcome this difficulty by finding new, approximate universal relations between the individual tidal deformabilities that depend on the mass ratio of the two stars and are insensitive to their internal structure. Such relations have applications not only to gravitational wave astrophysics, but also to nuclear physics as they improve the measurement accuracy of tidal parameters. Moreover, the relations improve our ability to test extreme gravity and perform cosmology with gravitational waves emitted from neutron star binaries.
A catalog of 171 high-quality binary black-hole simulations for gravitational-wave astronomy
Mroue, Abdul H; Szilagyi, Bela; Pfeiffer, Harald P; Boyle, Michael; Hemberger, Daniel A; Kidder, Lawrence E; Lovelace, Geoffrey; Ossokine, Sergei; Taylor, Nicholas W; Zenginoglu, Anil; Buchman, Luisa T; Chu, Tony; Foley, Evan; Giesler, Matthew; Owen, Robert; Teukolsky, Saul A
2013-01-01
Coalescing binary black holes are a primary science target of ground-based gravitational-wave detectors, which require detailed knowledge of the expected waveforms to maximize detections and our understanding of the waves' sources. This paper presents a catalog of numerical binary black- hole simulations that represents a major advance toward the application of numerical relativity to gravitational-wave data analysis. Specifically, the catalog contains 171 numerical simulations that maintain the high accuracy required for matched filtering while following more orbits (up to 33) than previous simulations. A larger number of orbits allows a more reliable connection to approximate analytical waveforms, which are used to extend numerical waveforms to span the entire frequency range of a detector. The catalog contains 91 precessing binaries, providing the most comprehensive survey of precessing systems to date, and includes waveforms with black-hole spins up to 0.97, mass ratios up to 8, and orbital eccentricities...
Electromagnetic radiation accompanying gravitational waves from black hole binaries
Dolgov, A.; Postnov, K.
2017-09-01
The transition of powerful gravitational waves, created by the coalescence of massive black hole binaries, into electromagnetic radiation in external magnetic fields is considered. In contrast to the previous calculations of the similar effect we study the realistic case of the gravitational radiation frequency below the plasma frequency of the surrounding medium. The gravitational waves propagating in the plasma constantly create electromagnetic radiation dragging it with them, despite the low frequency. The plasma heating by the unattenuated electromagnetic wave may be significant in hot rarefied plasma with strong magnetic field and can lead to a noticeable burst of electromagnetic radiation with higher frequency. The graviton-to-photon conversion effect in plasma is discussed in the context of possible electromagnetic counterparts of GW150914 and GW170104.
Forecasting Tidal Disruption Events by Binary Black Hole Roulettes
Seto, Naoki
2016-01-01
We discuss the gravitational wave emission and the orbital evolution of a hierarchical triple system composed of an inner binary black hole (BBH) and an outer tertiary. Depending on the kick velocity at the merger, the merged BBH could tidally disrupt the tertiary. Even though the fraction of BBH mergers accompanied by such disruptions is expected to be much smaller than unity, the existence of a tertiary and its basic parameters (e.g. semimajor axis, projected mass) can be examined for more than 1000 BBHs with the space GW detector LISA and its follow-on missions. This allows us to efficiently prescreen the targets for the follow-up searches for the tidal disruption events (TDEs). The TDE probability would be significantly higher for triple systems with aligned orbital- and spin-angular momenta, compared with random configurations.
Foucart, Francois; Duez, Matthew D; Grudich, Michael; Kidder, Lawrence E; MacDonald, Ilana; Mroue, Abdul; Pfeiffer, Harald P; Scheel, Mark A; Szilagyi, Bela
2013-01-01
We present the first direct comparison of numerical simulations of neutron star-black hole and black hole-black hole mergers in full general relativity. We focus on a configuration with non spinning objects and within the most likely range of mass ratio for neutron star-black hole systems (q=6). In this region of the parameter space, the neutron star is not tidally disrupted prior to merger, and we show that the two types of mergers appear remarkably similar. The effect of the presence of a neutron star on the gravitational wave signal is not only undetectable by the next generation of gravitational wave detectors, but also too small to be measured in the numerical simulations: even the plunge, merger and ringdown signals appear in perfect agreement for both types of binaries. The characteristics of the post-merger remnants are equally similar, with the masses of the final black holes agreeing within dM< 5 10^{-4}M_BH and their spins within da< 10^{-3}M_BH. The rate of periastron advance in the mixed bi...
Galactic black hole binaries: High-energy radiation
Grove, J. E.; Grindlay, J. E.; Harmon, B. A.; Hua, X.-M.; Kazanas, D.; McConnell, M.
1997-05-01
Observations of galactic black hole candidates made by the instruments aboard the Compton GRO in the hard X-ray and γ-ray bands have significantly enhanced our knowledge of the phenomenology of the emission from these objects. Understanding these observations presents a formidable challenge to theoretical models of the accretion flow onto the compact object and of the physical mechanisms that generate high-energy radiation. Here we summarize the current state of observations and theoretical interpretation of the emission from black hole candidates above 20 keV. The all-sky monitoring capability of BATSE allows, for the first time, nearly continuous studies of the high-energy emission from more than a dosen black hole candidates. These long-term datasets are particularly well-suited to multi-wavelength comparison studies, from the radio upward in frequency (Zhang et al. 1997a, these proceedings). Energy spectral evolution and/or spectral state transitions have been observed from many of the black hole candidates. Moderately deep searches of the galactic plane suggest a deficit of weak γ-ray transients. Such population studies have implications for the origin of black hole binaries and the nature of accretion events. Observations above 50 keV from OSSE demonstrate that in the γ-ray band there exist two spectral states that appear to be the extensions of the X-ray low (hard) and high (soft), or perhaps very high, states. The former state cuts off with e-folding energy ~100 keV and has its peak luminosity near this energy; thus substantial corrections need to be made to historical estimates of the bolometric luminosity of black holes in the ``low'' state. In contrast, in the X-ray high (soft) state, the luminosity peaks in the soft X-rays and the spectrum extends with an unbroken power law, even up to energies above 500 keV in some cases. COMPTEL has detected emission above 750 keV from Cyg X-1 and the transient GRO J0422+32. In both cases the data suggest that an
Black-hole binaries go to eleven orbits
Sperhake, Ulrich; Mueller, Doreen; Sopuerta, Carlos F
2010-01-01
We analyse an eleven-orbit inspiral of a non-spinning black-hole binary with mass ratio q=M1/M2=4. The numerically obtained gravitational waveforms are compared with post-Newtonian (PN) predictions including several sub-dominant multipoles up to multipolar indices (l=5,m=5). We find that (i) numerical and post-Newtonian predictions of the phase of the (2,2) mode accumulate a phase difference of about 0.35 rad at the PN cut off frequency 0.1 for the Taylor T1 approximant; (ii) in contrast to previous studies of equal-mass and specific spinning binaries, we find the Taylor T4 approximant to agree less well with numerical results, provided the latter are extrapolated to infinite extraction radius; (iii) extrapolation of gravitational waveforms to infinite extraction radius is particularly important for subdominant multipoles with l unequal m; (iv) 3PN terms in post-Newtonian multipole expansions significantly improve the agreement with numerical predictions for sub-dominant multipoles.
Binary Black Holes, Accretion Disks and Relativistic Jets: Photocenters of Nearby AGN and Quasars
Wehrle, Ann E.; Jones, Dayton L.; Meier, David L.; Piner, B. Glenn; Unwin, Stephen C.
2004-01-01
One of the most challenging questions in astronomy today is to understand the origin, structure, and evolution of the central engines in the nuclei of quasars and active galaxies (AGNs). The favoured theory involves the activation of relativistic jets from the fueling of a supermassive black hole through an accretion disk. In some AGN an outer optically thick, dusty torus is seen orbiting the black hole system. This torus is probably related to an inner accretion disk - black hole system that forms the actual powerhouse of the AGN. In radio-loud AGN two oppositely-directed radio jets are ejected perpendicular to the torus/disk system. Although there is a wealth of observational data on AGN, some very basic questions have not been definitively answered. The Space Interferometry Mission (SIM) will address the following three key questions about AGN. 1) Does the most compact optical emission from an AGN come from an accretion disk or from a relativistic jet? 2) Does the separation of the radio core and optical photocenter of the quasars used for the reference frame tie, change on the timescales of their photometric variability, or is the separation stable at the level of a few microarcseconds? 3) Do the cores of galaxies harbor binary supermassive black holes remaining from galaxy mergers? It is not known whether such mergers are common, and whether binaries would persist for a significant time.
Numerical Relativity, Black Hole Mergers, and Gravitational Waves: Part II
Centrella, Joan
2012-01-01
This series of 3 lectures will present recent developments in numerical relativity, and their applications to simulating black hole mergers and computing the resulting gravitational waveforms. In this second lecture, we focus on simulations of black hole binary mergers. We hig hlight the instabilities that plagued the codes for many years, the r ecent breakthroughs that led to the first accurate simulations, and the current state of the art.
Do floating orbits in extreme mass ratio binary black holes exist?
Kapadia, Shasvath J; Glampedakis, Kostas
2013-01-01
This paper examines the possibility of floating or non-decaying orbits for extreme mass ratio binary black holes. In the adiabatic approximation, valid in the extreme mass ratio case, if the orbital flux lost due to gravitational radiation reaction is compensated for by the orbital flux gained from the spins of the black holes via superradiant scattering (or, equivalently, tidal acceleration) the orbital decay would be stalled, causing the binary to "float". We show that this flux balance is not, in practice, possible for extreme mass ratio binary black holes with circular equatorial orbits; furthermore, adding eccentricity and inclination to the orbits will not significantly change this null result, thus ruling out the possibility of floating orbits for extreme mass ratio binary black holes. We also argue that binaries consisting of material bodies dense and massive enough to generate gravitational waves detectable by any kind of gravitational wave detector are also unlikely to float. Using a multipolar anal...
Optical Variability Signatures from Massive Black Hole Binaries
Kasliwal, Vishal P.; Frank, Koby Alexander; Lidz, Adam
2017-01-01
The hierarchical merging of dark matter halos and their associated galaxies should lead to a population of supermassive black hole binaries (MBHBs). We consider plausible optical variability signatures from MBHBs at sub-parsec separations and search for these using data from the Catalina Real-Time Transient Survey (CRTS). Specifically, we model the impact of relativistic Doppler beaming on the accretion disk emission from the less massive, secondary black hole. We explore whether this Doppler modulation may be separated from other sources of stochastic variability in the accretion flow around the MBHBs, which we describe as a damped random walk (DRW). In the simple case of a circular orbit, relativistic beaming leads to a series of broad peaks — located at multiples of the orbital frequency — in the fluctuation power spectrum. We extend our analysis to the case of elliptical orbits and discuss the effect of beaming on the flux power spectrum and auto-correlation function using simulations. We present a code to model an observed light curve as a stochastic DRW-type time series modulated by relativistic beaming and apply the code to CRTS data.
The Binary Black Hole Merger Rate from Ultraluminous X-ray Source Progenitors
Finke, Justin; Razzaque, Soebur
2017-01-01
Ultraluminous X-ray sources (ULXs) exceed the Eddington luminosity for an approximately 10 solar mass black hole. The recent detection of a black hole merger event GW 150914 by the gravitational wave detector ALIGO indicates that black holes with mass greater than 10 do indeed exist. Motivated by this, we explore a scenario where ULXs consist of black holes formed by the collapse of high-mass, low-metallicity stars, and that these ULXs become binary black holes (BBHs) that eventually merge. We use empirical relations between the number of ULXs and the star formation rate and host galaxy metallicity to estimate the ULX formation rate and the BBH merger rate at all redshifts. This assumes the ULX rate is directly proportional to the star formation rate for a given metallicity, and that the black hole accretion rate is distributed as a log-normal distribution. We include an enhancement in the ULX formation rate at earlier epochs due to lower mean metallicities. Our model is able to reproduce both the rate and mass distribution of BBH mergers in the nearby universe inferred from the detection of GW 150914, LVT 151012, and GW 151226 by LIGO if the median accretion rate of ULXs is a factor 1 to 30 greater than the Eddington rate. Our predictions of the BBH merger rate, mass distribution.
Stochastic Gravitational-Wave Background due to Primordial Binary Black Hole Mergers.
Mandic, Vuk; Bird, Simeon; Cholis, Ilias
2016-11-11
Recent Advanced LIGO detections of binary black hole mergers have prompted multiple studies investigating the possibility that the heavy GW150914 binary system was of primordial origin, and hence could be evidence for dark matter in the form of black holes. We compute the stochastic background arising from the incoherent superposition of such primordial binary black hole systems in the Universe and compare it to the similar background spectrum due to binary black hole systems of stellar origin. We investigate the possibility of detecting this background with future gravitational-wave detectors, and conclude that constraining the dark matter component in the form of black holes using stochastic gravitational-wave background measurements will be very challenging.
Stochastic Gravitational-Wave Background due to Primordial Binary Black Hole Mergers
Mandic, Vuk; Cholis, Ilias
2016-01-01
Recent Advanced LIGO detections of binary black hole mergers have prompted multiple studies investigating the possibility that the heavy GW150914 binary system was of primordial origin, and hence could be evidence for dark matter in the form of black holes. We compute the stochastic background arising from the incoherent superposition of such primordial binary black hole systems in the universe and compare it to the similar background spectrum due to binary black hole systems of stellar origin. We investigate the possibility of detecting this background with future gravitational wave detectors, and discuss the possibility of using the stochastic gravitational-wave background measurement to constrain the dark matter component in the form of black holes.
Stochastic Gravitational-Wave Background due to Primordial Binary Black Hole Mergers
Mandic, Vuk; Bird, Simeon; Cholis, Ilias
2016-11-01
Recent Advanced LIGO detections of binary black hole mergers have prompted multiple studies investigating the possibility that the heavy GW150914 binary system was of primordial origin, and hence could be evidence for dark matter in the form of black holes. We compute the stochastic background arising from the incoherent superposition of such primordial binary black hole systems in the Universe and compare it to the similar background spectrum due to binary black hole systems of stellar origin. We investigate the possibility of detecting this background with future gravitational-wave detectors, and conclude that constraining the dark matter component in the form of black holes using stochastic gravitational-wave background measurements will be very challenging.
Massive black hole binary mergers within sub-pc scale gas discs
Cuadra, J; Alexander, R D; Begelman, M C
2008-01-01
[ABRIDGED] We study supermassive black hole binary mergers driven by angular momentum loss to small-scale gas discs. Such binaries form after major galaxy mergers, but their fate is unclear since hardening through stellar scattering becomes very inefficient at sub-parsec distances. Gas discs may dominate binary dynamics on these scales, and promote mergers. Using numerical simulations, we investigate the evolution of the orbits of binaries embedded within geometrically thin gas discs. Our simulations directly resolve angular momentum transport within the disc, which at the radii of interest is likely dominated by disc self-gravity. We show that the binary decays at a rate which is in good agreement with analytical estimates, while the eccentricity grows. Saturation of eccentricity growth is not observed up to values e > 0.35. Accretion onto the black holes is variable, and is roughly modulated by the binary orbital frequency. Scaling our results, we analytically estimate the maximum rate of binary decay that ...
Antonini, Fabio
2012-01-01
The environment near super massive black holes (SMBHs) in galactic nuclei contain a large number of stars and compact objects. A fraction of these are likely to be members of binaries. Here we discuss the binary population of stellar black holes and neutron stars near SMBHs and focus on the secular evolution of such binaries, due to the perturbation by the SMBH. Binaries with highly inclined orbits in respect to their orbit around the SMBH are strongly affected by secular Kozai processes, which periodically change their eccentricities and inclinations (Kozai-cycles). During periapsis approach, at the highest eccentricities during the Kozai-cycles, gravitational wave emission becomes highly efficient. Some binaries in this environment can inspiral and coalesce at timescales much shorter than a Hubble time and much shorter than similar binaries which do not reside near a SMBH. The close environment of SMBHs could therefore serve as catalyst for the inspiral and coalescence of binaries, and strongly affect their...
"Complete" gravitational waveforms for black-hole binaries with non-precessing spins
Ajith, P; Husa, S; Chen, Y; Brügmann, B; Dorband, N; Müller, D; Ohme, F; Pollney, D; Reisswig, C; Santamaria, L; Seiler, J
2009-01-01
We present the first analytical inspiral-merger-ringdown gravitational waveforms from black-hole (BH) binaries with non-precessing spins. By matching a post-Newtonian description of the inspiral to a set of numerical calculations performed in full general relativity, we obtain a waveform family with a conveniently small number of physical parameters. The physical content of these waveforms includes the "orbital hang-up" effect, when BHs are spinning rapidly along the direction of the orbital angular momentum. These waveforms will allow us to detect a larger parameter space of BH binary coalescence, to explore various scientific questions related to GW astronomy, and could dramatically improve the expected detection rates of GW detectors.
Radiation reaction in binary systems in general relativity
Kennefick, Daniel John
1997-09-01
This thesis is concerned with current problems in, and historical aspects of, the problem of radiation reaction in stellar binary systems in general relativity. Part I addresses current issues in the orbital evolution due to gravitational radiation damping of compact binaries. A particular focus is on the inspiral of small bodies orbiting large black holes, employing a perturbation formalism. In addition, the merger, at the end of the insprial, of comparable mass compact binaries, such as neutron star binaries is also discussed. The emphasis of Part I is on providing detailed descriptions of sources and signals with a view to optimising signal analysis in gravitational wave detectors, whether ground- or space- based interferometers, or resonant mass detectors. Part II of the thesis examines the historical controversies surrounding the problem of gravitational waves, and gravitational radiation damping in stellar binaries. In particular, it focuses on debates in the mid 20th-century on whether binary star systems would really exhibit this type of damping and emit gravitational waves, and on the 'quadrupole formula controversy' of the 1970s and 1980s, on the question whether the standard formular describing energy loss due to emission of gravitational waves was correctly derived for such systems. The study shed light on the role of analogy in science, especially where its use is controversial, on the importance of style in physics and on the problem of identity in science, as the use of history as a rhetorical device in controversial debate is examined. The concept of the Theoretician's Regress is introduced to explain the difficulty encountered by relativists in closing debate in this controversy, which persisted in one forms or another for several decades.
Simulations of non-equal mass black hole binaries with spectral methods
Buchman, Luisa T; Scheel, Mark A; Szilagyi, Bela
2012-01-01
This paper presents techniques and results for simulations of unequal mass, non-spinning black hole binaries with pseudo-spectral methods. Specifically, we develop an efficient root-finding procedure to ensure the black hole initial data have the desired masses and spins, we extend the dual coordinate frame method and eccentricity removal to asymmetric binaries. Furthermore, we describe techniques to simulate mergers of unequal mass black holes. The second part of the paper presents numerical simulations of non-spinning black hole binaries with mass ratios 2, 3, 4 and 6, covering between 15 and 22 orbits, merger and ringdown. We discuss the accuracy of these simulations, the evolution of the (initially zero) black hole spins, and the remnant black hole properties.
Astrophysical Implications of the Binary Black-hole Merger GW150914
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.
2016-02-01
The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that inspiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively “heavy” BHs (≳ 25 {M}⊙ ) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 1/2 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (≳ 1 Gpc-3 yr-1) from both types of formation models. The low measured redshift (z≃ 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.
Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei
Bartos, Imre; Kocsis, Bence; Haiman, Zoltán; Márka, Szabolcs
2017-02-01
The Laser Interferometer Gravitational-wave Observatory (LIGO) found direct evidence for double black hole binaries emitting gravitational waves. Galactic nuclei are expected to harbor the densest population of stellar-mass black holes. A significant fraction (∼ 30 % ) of these black holes can reside in binaries. We examine the fate of the black hole binaries in active galactic nuclei, which get trapped in the inner region of the accretion disk around the central supermassive black hole. We show that binary black holes can migrate into and then rapidly merge within the disk well within a Salpeter time. The binaries may also accrete a significant amount of gas from the disk, well above the Eddington rate. This could lead to detectable X-ray or gamma-ray emission, but would require hyper-Eddington accretion with a few percent radiative efficiency, comparable to thin disks. We discuss implications for gravitational-wave observations and black hole population studies. We estimate that Advanced LIGO may detect ∼20 such gas-induced binary mergers per year.
Detecting black-hole binary clustering via the second-generation gravitational-wave detectors
Namikawa, Toshiya; Nishizawa, Atsushi; Taruya, Atsushi
2016-01-01
The first discovery of the gravitational wave (GW) event, GW150914, suggests a higher merger rate of black-hole (BH) binaries. If this is true, a number of BH binaries will be observed via the second-generation GW detectors, and the statistical properties of the observed BH binaries can be scrutinized. A naive but important question to ask is whether the spatial distribution of BH binaries faithfully traces the matter inhomogeneities in the Universe or not. Although the BH binaries are though...
Linking the fate of massive black hole binaries to the active galactic nuclei luminosity function
Dotti, Massimo; Montuori, Carmen
2015-01-01
Massive black hole binaries are naturally predicted in the context of the hierarchical model of structure formation. The binaries that manage to lose most of their angular momentum can coalesce to form a single remnant. In the last stages of this process, the holes undergo an extremely loud phase of gravitational wave emission, possibly detectable by current and future probes. The theoretical effort towards obtaining a coherent physical picture of the binary path down to coalescence is still underway. In this paper, for the first time, we take advantage of observational studies of active galactic nuclei evolution to constrain the efficiency of gas-driven binary decay. Under conservative assumptions we find that gas accretion toward the nuclear black holes can efficiently lead binaries of any mass forming at high redshift (> 2) to coalescence within the current time. The observed "downsizing" trend of the accreting black hole luminosity function further implies that the gas inflow is sufficient to drive light ...
Rodriguez, Carl L; Rasio, Frederic A
2016-01-01
Expanding upon our previous work (Rodriguez et al., 2015), we study merging binary black holes formed in globular clusters using our Monte Carlo approach to stellar dynamics. We have created a new set of 52 cluster models with different masses, metallicities, and radii to fully characterize the binary black hole merger rate. These models include all the relevant dynamical processes (such as two-body relaxation, strong encounters, and three-body binary formation) and agree well with detailed direct N-body simulations. In addition, we have enhanced our stellar evolution algorithms with updated metallicity-dependent stellar wind and supernova prescriptions, allowing us to compare our results directly to the most recent population synthesis predictions for merger rates from isolated binary evolution. We explore the relationship between a cluster's global properties and the population of binary black holes that it produces. In particular, we derive a numerically calibrated relationship between the merger times of ...
Systematic Biases in Parameter Estimation of Binary Black-Hole Mergers
Littenberg, Tyson B.; Baker, John G.; Buonanno, Alessandra; Kelly, Bernard J.
2012-01-01
Parameter estimation of binary-black-hole merger events in gravitational-wave data relies on matched filtering techniques, which, in turn, depend on accurate model waveforms. Here we characterize the systematic biases introduced in measuring astrophysical parameters of binary black holes by applying the currently most accurate effective-one-body templates to simulated data containing non-spinning numerical-relativity waveforms. For advanced ground-based detectors, we find that the systematic biases are well within the statistical error for realistic signal-to-noise ratios (SNR). These biases grow to be comparable to the statistical errors at high signal-to-noise ratios for ground-based instruments (SNR approximately 50) but never dominate the error budget. At the much larger signal-to-noise ratios expected for space-based detectors, these biases will become large compared to the statistical errors but are small enough (at most a few percent in the black-hole masses) that we expect they should not affect broad astrophysical conclusions that may be drawn from the data.
Yunes, Nicolas
2016-01-01
The recent observation of gravitational waves by the LIGO/Virgo collaboration provides a unique opportunity to probe the extreme gravity of coalescing binary black holes. In this regime, the gravitational interaction is not only strong, but the spacetime curvature is large, characteristic velocities are a non-negligible fraction of the speed of light, and the time scale on which the curvature and gravity change is small. This contribution discusses some consequences of these observations on modifications to General Relativity, with a special emphasis on Lorentz-violating theories.
Goicovic, F. G.; Cuadra, J.; Sesana, A.; Stasyszyn, F.; Amaro-Seoane, P.; Tanaka, T. L.
2016-01-01
There is compelling evidence that most - if not all - galaxies harbour a supermassive black hole (SMBH) at their nucleus; hence binaries of these massive objects are an inevitable product of the hierarchical evolution of structures in the Universe, and represent an important but thus-far elusive phase of galaxy evolution. Gas accretion via a circumbinary disc is thought to be important for the dynamical evolution of SMBH binaries, as well as in producing luminous emission that can be used to infer their properties. One plausible source of the gaseous fuel is clumps of gas formed due to turbulence and gravitational instabilities in the interstellar medium, that later fall towards and interact with the binary. In this context, we model numerically the evolution of turbulent clouds in near-radial infall on to equal-mass SMBH binaries, using a modified version of the SPH (smoothed particle hydrodynamics) code GADGET-3. We present a total of 12 simulations that explore different possible pericentre distances and relative inclinations, and show that the formation of circumbinary discs and discs around each SMBH (`mini-discs') depend on those parameters. We also study the dynamics of the formed discs, and the variability of the feeding rate on to the SMBHs in the different configurations.
The Final Spin from Binary Black Holes in Quasi-circular Orbits
Hofmann, Fabian; Barausse, Enrico; Rezzolla, Luciano
2016-07-01
We revisit the problem of predicting the spin magnitude and direction of the black hole (BH) resulting from the merger of two BHs with arbitrary masses and spins inspiraling in quasi-circular orbits. We do this by analyzing a catalog of 619 recent numerical-relativity simulations collected from the literature and spanning a large variety of initial conditions. By combining information from the post-Newtonian approximation, the extreme mass-ratio limit, and perturbative calculations, we improve our previously proposed phenomenological formulae for the final remnant spin. In contrast with alternative suggestions in the literature, and in analogy with our previous expressions, the new formula is a simple algebraic function of the initial system parameters and is not restricted to binaries with spins aligned/anti-aligned with the orbital angular momentum but can be employed for fully generic binaries. The accuracy of the new expression is significantly improved, especially for almost extremal progenitor spins and for small mass ratios, yielding an rms error σ ≈ 0.002 for aligned/anti-aligned binaries and σ ≈ 0.006 for generic binaries. Our new formula is suitable for cosmological applications and can be employed robustly in the analysis of the gravitational waveforms from advanced interferometric detectors.
Observation of Gravitational Waves from a Binary Black Hole Merger
,
2016-01-01
On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of $1.0 \\times 10^{-21}$. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 {\\sigma}. The source lies at a luminosity distance of $410^{+160}_{-180}$ Mpc corresponding to a redshift $z = 0.09^{+0.03}_{-0.04}$. In the source frame, the initial black hole masses are $36^{+5}_{-4} M_\\odot$ and $29^{+4}_{-4} M_\\odot$, and the final black hole mass is $62^{+4}_{-4} M_\\odot$, with $3.0^{+0.5}_{-0.5} M_\\odot c^2$ radiated in gravitational waves. ...
Hypervelocity intracluster stars ejected by supermassive black hole binaries
Holley-Bockelmann, K; Mihos, J C; Feldmeier, J J; Ciardullo, R; McBride, C; Holley-Bockelmann, Kelly; Sigurdsson, Steinn; Feldmeier, John J.; Ciardullo, Robin; Bride, Cameron Mc
2005-01-01
Hypervelocity stars have been recently discovered in the outskirts of galaxies, such as the unbound star in the Milky Way halo, or the three anomalously fast intracluster planetary nebulae (ICPNe) in the Virgo Cluster. These may have been ejected by close 3-body interactions with a binary supermassive black hole (SMBBH), where a star which passes within the semimajor axis of the SMBBH can receive enough energy to eject it from the system. Stars ejected by SMBBHs may form a significant sub-population with very different kinematics and mean metallicity than the bulk of the intracluster stars. The number, kinematics, and orientation of the ejected stars may constrain the mass ratio, semimajor axis, and even the orbital plane of the SMBBH. We investigate the evolution of the ejected debris from a SMBBH within a clumpy and time-dependent cluster potential using a high resolution, self-consistent cosmological N-body simulation of a galaxy cluster. We show that the predicted number and kinematic signature of the fas...
A New Parallel Method for Binary Black Hole Simulations
Quan Yang
2016-01-01
Full Text Available Simulating binary black hole (BBH systems are a computationally intensive problem and it can lead to great scientific discovery. How to explore more parallelism to take advantage of the large number of computing resources of modern supercomputers is the key to achieve high performance for BBH simulations. In this paper, we propose a scalable MPM (Mesh based Parallel Method which can explore both the inter- and intramesh level parallelism to improve the performance of BBH simulation. At the same time, we also leverage GPU to accelerate the performance. Different kinds of performance tests are conducted on Blue Waters. Compared with the existing method, our MPM can improve the performance from 5x speedup (compared with the normalized speed of 32 MPI processes to 8x speedup. For the GPU accelerated version, our MPM can improve the performance from 12x speedup to 28x speedup. Experimental results also show that when only enough CPU computing resource or limited GPU computing resource is available, our MPM can employ two special scheduling mechanisms to achieve better performance. Furthermore, our scalable GPU acceleration MPM can achieve almost ideal weak scaling up to 2048 GPU computing nodes which enables our software to handle even larger BBH simulations efficiently.
The parameters of binary black hole system in PKS 1510-089
Li Juan; Fan Jun-Hui; Yuan Yu-Hai
2007-01-01
Observations of PKS 1510-089 indicate the existence of a deep flux minimum with a timescale of ～35 min and an interval of about 336±14 d. A binary black hole system is proposed to be at the nucleus of this object. The secondary black hole orbits around the primary black hole.The minimum is caused by the periodic eclipse of the primary black hole by the secondary black hole.Based on the observations of PKS 1510-089,we estimate the parameters of the binary black hole system.The masses for the primary and secondary black holes are 1.37×109M⊙(M⊙ is the solar mass) and 1.37×107M⊙,and the major axis for this pair being about 0.1 parsec(pc).
Search of sub-parsec massive binary black holes through line diagnosis II
Montuori, C; Haardt, F; Colpi, M; Decarli, R
2012-01-01
Massive black hole binaries at sub-parsec separations may display in their spectra anomalously small flux ratios between the MgII and CIV broad emission lines, i.e. F_MgII/F_CIV <~ 0.1, due to the erosion of the broad line region around the active, secondary black hole, by the tidal field of the primary. In Paper I by Montuori et al. (2011), we focussed on broad lines emitted by gas bound to the lighter accreting member of a binary when the binary is at the center of a hollow density region (the gap) inside a circum-binary disc. The main aim of this new study is at exploring the potential contribution to the broad line emission by the circum-binary disc and by gaseous streams flowing toward the black hole through the gap. We carry out a post-process analysis of data extracted from a SPH simulation of a circum-binary disc around a black hole binary. Our main result is that the MgII to CIV flux ratio can be reduced to ~ 0.1 within an interval of sub-pc binary separations of the order of a ~ (0.01-0.2)(f_Edd/...
Suppression of the accretion rate in thin discs around binary black holes
Ragusa, Enrico; Lodato, Giuseppe; Price, Daniel J.
2016-08-01
We present three-dimensional Smoothed Particle Hydrodynamics (SPH) simulations investigating the dependence of the accretion rate on the disc thickness around an equal-mass, circular black hole binary system. We find that for thick/hot discs, with H/R ≳ 0.1, the binary torque does not prevent the gas from penetrating the cavity formed in the disc by the binary (in line with previous investigations). The situation drastically changes for thinner discs; in this case the mass accretion rate is suppressed, such that only a fraction (linearly dependent on H/R) of the available gas is able to flow within the cavity and accrete on to the binary. Extrapolating this result to the cold and thin accretion discs expected around supermassive black hole binary systems implies that this kind of system accretes less material than predicted so far, with consequences not only for the electromagnetic and gravitational waves emissions during the late inspiral phase but also for the recoil speed of the black hole formed after binary coalescence, thus influencing also the evolutionary path both of the binary and of the host galaxy. Our results, being scale-free, are also applicable to equal-mass, circular binaries of stellar mass black holes, such as the progenitor of the recently discovered gravitational wave source GW150914.
Merging Black Hole Binaries in Galactic Nuclei: Implications for Advanced-LIGO Detections
Antonini, Fabio; Rasio, Frederic A.
2016-11-01
Motivated by the recent detection of gravitational waves from the black hole binary merger GW150914, we study the dynamical evolution of (stellar-mass) black holes in galactic nuclei, where massive star clusters reside. With masses of ˜ {10}7 {M}⊙ and sizes of only a few parsecs, nuclear star clusters (NSCs) are the densest stellar systems observed in the local universe and represent a robust environment where black hole binaries can dynamically form, harden, and merge. We show that due to their large escape speeds, NSCs can retain a large fraction of their merger remnants. Successive mergers can then lead to significant growth and produce black hole mergers of several tens of solar masses similar to GW150914 and up to a few hundreds of solar masses, without the need to invoke extremely low metallicity environments. We use a semi-analytical approach to describe the dynamics of black holes in massive star clusters. Our models give a black hole binary merger rate of ≈ 1.5 {{Gpc}}-3 {{yr}}-1 from NSCs, implying up to a few tens of possible detections per year with Advanced LIGO. Moreover, we find a local merger rate of ˜ 1 {{Gpc}}-3 {{yr}}-1 for high mass black hole binaries similar to GW150914; a merger rate comparable to or higher than that of similar binaries assembled dynamically in globular clusters (GCs). Finally, we show that if all black holes receive high natal kicks, ≳ 50 {km} {{{s}}}-1, then NSCs will dominate the local merger rate of binary black holes compared to either GCs or isolated binary evolution.
Search for gravitational waves from binary black hole inspirals in LIGO data
Abbott, B; Adhikari, R; Ageev, A; Agresti, J; Ajith, P; Allen, B; Allen, J; Amin, R; Anderson, S B; Anderson, W G; Araya, M; Armandula, H; Ashley, M; Asiri, F; Aufmuth, P; Aulbert, C; Babak, S; Balasubramanian, R; Ballmer, S; Barish, B C; Barker, C; Barker, D; Barnes, M; Barr, B; Barton, M A; Bayer, K; Beausoleil, R; Belczynski, K; Bennett, R; Berukoff, S J; Betzwieser, J; Bhawal, B; Bilenko, I A; Billingsley, G; Black, E; Blackburn, K; Blackburn, L; Bland, B; Bochner, B; Bogue, L; Bork, R; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burgess, R; Busby, D; Butler, W E; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cannizzo, J; Cannon, K; Cantley, C A; Cao, J; Cardenas, L; Carter, K; Casey, M M; Castiglione, J; Chandler, A; Chapsky, J; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chickarmane, V; Chin, D; Christensen, N; Churches, D; Cokelaer, T; Colacino, C; Coldwell, R; Coles, M; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Creighton, T D; Crooks, D R M; Csatorday, P; Cusack, B J; Cutler, C; D'Ambrosio, E; Dalrymple, J; Danzmann, K; Davies, G; Daw, E; De Bra, D; DeSalvo, R; Delker, T; Dergachev, V; Desai, S; Dhurandhar, S V; Di Credico, A; Ding, H; Drever, R W P; Dupuis, R J; Díaz, M; Edlund, J A; Ehrens, P; Elliffe, E J; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fallnich, C; Farnham, D; Fejer, M M; Findley, T; Fine, M; Finn, L S; Franzen, K Y; Freise, A; Frey, R; Fritschel, P; Frolov, V V; Fyffe, M; Ganezer, K S; Garofoli, J; Giaime, J A; Gillespie, A; Goda, K; Goggin, L; Goler, S; González, G; Grandclément, P; Grant, A; Gray, C; Gretarsson, A M; Grimmett, D; Grote, H; Grünewald, S; Gustafson, E; Gustafson, R; Günther, M; Hamilton, W O; Hammond, M; Hanna, C; Hanson, J; Hardham, C; Harms, J; Harry, G; Hartunian, A; Heefner, J; Hefetz, Y; Heinzel, G; Heng, I S; Hennessy, M; Hepler, N; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hindman, N; Hoang, P; Hough, J; Hrynevych, M; Hua, W; Ito, M; Itoh, Y; Ivanov, A; Jennrich, O; Johnson, B; Johnson, W W; Johnston, W R; Jones, D I; Jones, G; Jones, L; Jungwirth, D; Kalogera, V; Katsavounidis, E; Kawabe, K; Kawamura, S; Kells, W; Kern, J; Khan, A; Killbourn, S; Killow, C J; Kim, C; King, C; King, P; Klimenko, S; Koranda, S; Kotter, K; Kovalik, Yu; Kozak, D; Krishnan, B; Landry, M; Langdale, J; Lantz, B; Lawrence, R; Lazzarini, A; Lei, M; Leonor, I; Libbrecht, K; Libson, A; Lindquist, P; Liu, S; Logan, J; Lormand, M; Lubinski, M; Luck, H; Luna, M; Lyons, T T; MacInnis, M; Machenschalk, B; Mageswaran, M; Mailand, K; Majid, W; Malec, M; Mandic, V; Mann, F; Marin, A; Marka, S; Maros, E; Mason, J; Mason, K; Matherny, O; Matone, L; Mavalvala, N; McCarthy, R; McClelland, D E; McHugh, M; McNabb, J W C; Melissinos, A C; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C; Mikhailov, E; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Miyoki, S; Mohanty, S; Moreno, G; Mossavi, K; Mukherjee, S; Murray, P; Myers, E; Myers, J; Müller, G; Nagano, S; Nash, T; Nayak, R; Newton, G; Nocera, F; Noel, J S; Nutzman, P; O'Reilly, B; Olson, T; Ottaway, D J; Ottewill, A; Ouimette, D A; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Parameswariah, C; Pedraza, M; Penn, S; Pitkin, M; Plissi, M; Prix, R; Quetschke, V; Raab, F; Radkins, H; Rahkola, R; Rakhmanov, M; Rao, S R; Rawlins, K; Ray-Majumder, S; Re, V; Redding, D; Regehr, M W; Regimbau, T; Reid, S; Reilly, K T; Reithmaier, K; Reitze, D H; Richman, S; Riesen, R; Riles, K; Rivera, B; Rizzi, A; Robertson, D I; Robertson, N A; Robinson, C; Robison, L; Roddy, S; Rodríguez, A; Rollins, J; Romano, J D; Romie, J; Rong, H; Rose, D; Rotthoff, E; Rowan, S; Ruet, L; Russell, P; Ryan, K; Rüdiger, A; Salzman, I; Sandberg, V; Sanders, G H; Sannibale, V; Sarin, P; Sathyaprakash, B; Saulson, P R; Savage, R; Sazonov, A; Schilling, R; Schlaufman, K; Schmidt, V; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Seader, S E; Searle, A C; Sears, B; Seel, S; Seifert, F; Sellers, D; Sengupta, A S; Shapiro, C A; Shawhan, P; Shoemaker, D H; Shu, Q Z; Sibley, A; Siemens, X; Sievers, L; Sigg, D; Sintes, A M; Smith, J R; Smith, M; Smith, M R; Sneddon, P H; Spero, R; Spjeld, O; Stapfer, G; Steussy, D; Strain, K A; Strom, D; Stuver, A; Summerscales, T; Sumner, M C; Sung, M; Sutton, P J; Sylvestre, J; Takamori, A; Tanner, D B; Tarallo, M; Tariq, H; Taylor, I; Taylor, R; Thorne, K A; Thorne, K S; Tibbits, M; Tilav, S; Tinto, M; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Tyler, W; Ugolini, D W; Ungarelli, C; Vallisneri, M; Van Putten, M H P M; Vass, S; Vecchio, A; Veitch, J; Vorvick, C; Vyachanin, S P; Wallace, L; Walther, H; Ward, H; Ward, R; Ware, B; Watts, K; Webber, D; Weidner, A; Weiland, U; Weinstein, A; Weiss, R; Welling, H; Wen, L; Wen, S; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Wiley, S; Wilkinson, C; Willems, P A; Williams, P R; Williams, R; Willke, B; Wilson, A; Winjum, B J; Winkler, W; Wise, S; Wiseman, A G; Woan, G; Woods, D; Wooley, R; Worden, J; Wu, W; Yakushin, I; Yamamoto, H; Yoshida, S; Zaleski, K D; Zanolin, M; Zawischa, I; Zhang, L; Zhu, R; Zotov, N P; Zucker, M; Zweizig, J
2006-01-01
We report on a search for gravitational waves from binary black hole inspirals in the data from the second science run of the LIGO interferometers. The search focused on binary systems with component masses between 3 and 20 solar masses. Optimally oriented binaries with distances up to 1 Mpc could be detected with efficiency of at least 90%. We found no events that could be identified as gravitational waves in the 385.6 hours of data that we searched.
Dvorkin, Irina; Vangioni, Elisabeth; Silk, Joseph; Uzan, Jean-Philippe; Olive, Keith A.
2016-10-01
The recent detection of the binary black hole merger GW150914 demonstrates the existence of black holes more massive than previously observed in X-ray binaries in our Galaxy. This article explores different scenarios of black hole formation in the context of self-consistent cosmic chemical evolution models that simultaneously match observations of the cosmic star formation rate, optical depth to reionization and metallicity of the interstellar medium. This framework is used to calculate the mass distribution of merging black hole binaries and its evolution with redshift. We also study the implications of the black hole mass distribution for the stochastic gravitational wave background from mergers and from core-collapse events.
Mergers of non-spinning black-hole binaries: Gravitational radiation characteristics
Baker, John G; Centrella, Joan; Kelly, Bernard J; McWilliams, Sean T; van Meter, James R
2008-01-01
We present a detailed descriptive analysis of the gravitational radiation from black-hole binary mergers of non-spinning black holes, based on numerical simulations of systems varying from equal-mass to a 6:1 mass ratio. Our primary goal is to present relatively complete information about the waveforms, including all the leading multipolar components, to interested researchers. In our analysis, we pursue the simplest physical description of the dominant features in the radiation, providing an interpretation of the waveforms in terms of an {\\em implicit rotating source}. This interpretation applies uniformly to the full wavetrain, from inspiral through ringdown. We emphasize strong relationships among the $\\ell=m$ modes that persist through the full wavetrain. Exploring the structure of the waveforms in more detail, we conduct detailed analytic fitting of the late-time frequency evolution, identifying a key quantitative feature shared by the $\\ell=m$ modes among all mass-ratios. We identify relationships, with...
Massive Black Hole Binary Inspirals: Results from the LISA Parameter Estimation Taskforce
Arun, K G; Berti, Emanuele; Cornish, Neil; Cutler, Curt; Gair, Jonathan; Hughes, Scott A; Iyer, Bala R; Lang, Ryan N; Mandel, Ilya; Porter, Edward K; Sathyaprakash, Bangalore S; Sinha, Siddhartha; Sintes, Alicia M; Trias, Miquel; Broeck, Chris Van Den; Volonteri, Marta
2008-01-01
The LISA Parameter Estimation (LISAPE) Taskforce was formed in September 2007 to provide the LISA Project with vetted codes, source distribution models, and results related to parameter estimation. The Taskforce's goal is to be able to quickly calculate the impact of any mission design changes on LISA's science capabilities, based on reasonable estimates of the distribution of astrophysical sources in the universe. This paper describes our Taskforce's work on massive black-hole binaries (MBHBs). Given present uncertainties in the formation history of MBHBs, we adopt four different population models, based on (i) whether the initial black-hole seeds are small or large, and (ii) whether accretion is efficient or inefficient at spinning up the holes. We compare four largely independent codes for calculating LISA's parameter-estimation capabilities. All codes are based on the Fisher-matrix approximation, but in the past they used somewhat different signal models, source parametrizations and noise curves. We show ...
Kyutoku, Koutarou; Okawa, Hirotada; Shibata, Masaru; Taniguchi, Keisuke
2011-09-01
We study the merger of black hole-neutron star binaries with a variety of black hole spins aligned or antialigned with the orbital angular momentum, and with the mass ratio in the range MBH/MNS=2-5, where MBH and MNS are the mass of the black hole and neutron star, respectively. We model neutron-star matter by systematically parametrized piecewise polytropic equations of state. The initial condition is computed in the puncture framework adopting an isolated horizon framework to estimate the black hole spin and assuming an irrotational velocity field for the fluid inside the neutron star. Dynamical simulations are performed in full general relativity by an adaptive-mesh refinement code, SACRA. The treatment of hydrodynamic equations and estimation of the disk mass are improved. We find that the neutron star is tidally disrupted irrespective of the mass ratio when the black hole has a moderately large prograde spin, whereas only binaries with low mass ratios, MBH/MNS≲3, or small compactnesses of the neutron stars bring the tidal disruption when the black hole spin is zero or retrograde. The mass of the remnant disk is accordingly large as ≳0.1M⊙, which is required by central engines of short gamma-ray bursts, if the black hole spin is prograde. Information of the tidal disruption is reflected in a clear relation between the compactness of the neutron star and an appropriately defined “cutoff frequency” in the gravitational-wave spectrum, above which the spectrum damps exponentially. We find that the tidal disruption of the neutron star and excitation of the quasinormal mode of the remnant black hole occur in a compatible manner in high mass-ratio binaries with the prograde black hole spin. The correlation between the compactness and the cutoff frequency still holds for such cases. It is also suggested by extrapolation that the merger of an extremely spinning black hole and an irrotational neutron star binary does not lead to the formation of an overspinning
The Lazarus project: A pragmatic approach to binary black hole evolutions
Baker, John; Campanelli, Manuela; Lousto, Carlos O.
2002-02-01
We present a detailed description of techniques developed to combine 3D numerical simulations and, subsequently, a single black hole close-limit approximation. This method has made it possible to compute the first complete waveforms covering the post-orbital dynamics of a binary-black-hole system with the numerical simulation covering the essential nonlinear interaction before the close limit becomes applicable for the late time dynamics. In order to couple full numerical and perturbative methods we must address several questions. To determine when close-limit perturbation theory is applicable we apply a combination of invariant a priori estimates and a posteriori consistency checks of the robustness of our results against exchange of linear and nonlinear treatments near the interface. Our method begins with a specialized application of standard numerical techniques adapted to the presently realistic goal of brief, but accurate simulations. Once the numerically modeled binary system reaches a regime that can be treated as perturbations of the Kerr spacetime, we must approximately relate the numerical coordinates to the perturbative background coordinates. We also perform a rotation of a numerically defined tetrad to asymptotically reproduce the tetrad required in the perturbative treatment. We can then produce numerical Cauchy data for the close-limit evolution in the form of the Weyl scalar ψ4 and its time derivative ∂tψ4 with both objects being first order coordinate and tetrad invariant. The Teukolsky equation in Boyer-Lindquist coordinates is adopted to further continue the evolution. To illustrate the application of these techniques we evolve a single Kerr hole and compute the spurious radiation as a measure of the error of the whole procedure. We also briefly discuss the extension of the project to make use of improved full numerical evolutions and outline the approach to a full understanding of astrophysical black-hole-binary systems which we can now
On the Gravitational Wave Background from Black Hole Binaries after the First LIGO Detections
Cholis, Ilias
2016-01-01
The detection of gravitational waves from the merger of binary black holes by the LIGO Collaboration has opened a new window to astrophysics. With the sensitivities of ground based detectors in the coming years we can only detect the local black hole binary mergers. The integrated merger rate can instead be probed by the gravitational-wave background, the incoherent superposition of the released energy in gravitational waves during binary-black-hole coalescence. Through that, the properties of the binary black holes can be studied. In this work we show that by measuring the energy density $\\Omega_{GW}$ (in units of the cosmic critical density) of the gravitational-wave background, we can search for the rare $\\sim 100 M_{\\odot}$ massive black holes formed in the Universe. In addition, we can answer how often the least massive BHs of mass $> 3 M_{\\odot}$ form. Finally, if there are multiple channels for the formation of binary black holes and if any of them predicts a narrow mass range for the black holes, then...
Constraints on Black Hole/Host Galaxy Co-evolution and Binary Stalling Using Pulsar Timing Arrays
Simon, Joseph
2016-01-01
Pulsar timing arrays are now setting increasingly tight limits on the gravitational wave background from binary supermassive black holes. But as upper limits grow more constraining, what can be implied about galaxy evolution? We investigate which astrophysical parameters have the largest impact on strain spectrum predictions and provide a simple framework to directly translate between measured values for the parameters of galaxy evolution and PTA limits on the gravitational wave background of binary supermassive black holes. We find that the most influential observable is the relation between a host galaxy's central bulge and its central black hole, $\\mbox{$M_{\\bullet}$-$M_{\\rm bulge}$}$, which has the largest effect on the mean value of the characteristic strain amplitude. However, the variance of each prediction is dominated by uncertainties in the galaxy stellar mass function. Using this framework with the best published PTA limit, we can set limits on the shape and scatter of the $\\mbox{$M_{\\bullet}$-$M_{...
Grzędzielski, Mikołaj; Janiuk, Agnieszka; Czerny, Bożena; Wu, Qingwen
2017-07-01
Aims: Black holes (BHs) surrounded by accretion disks are present in the Universe at different scales of masses, from microquasars up to the active galactic nuclei (AGNs). Since the work of Shakura & Sunyaev (1973, A&A, 24, 337) and their α-disk model, various prescriptions for the heat-production rate are used to describe the accretion process. The current picture remains ad hoc due the complexity of the magnetic field action. In addition, accretion disks at high Eddington rates can be radiation-pressure dominated and, according to some of the heating prescriptions, thermally unstable. The observational verification of their resulting variability patterns may shed light on both the role of radiation pressure and magnetic fields in the accretion process. Methods: We compute the structure and time evolution of an accretion disk, using the code GLADIS (which models the global accretion disk instability). We supplement this model with a modified viscosity prescription, which can to some extent describe the magnetisation of the disk. We study the results for a large grid of models, to cover the whole parameter space, and we derive conclusions separately for different scales of black hole masses, which are characteristic for various types of cosmic sources. We show the dependencies between the flare or outburst duration, its amplitude, and period, on the accretion rate and viscosity scaling. Results: We present the results for the three grids of models, designed for different black hole systems (X-ray binaries, intermediate mass black holes, and galaxy centres). We show that if the heating rate in the accretion disk grows more rapidly with the total pressure and temperature, the instability results in longer and sharper flares. In general, we confirm that the disks around the supermassive black holes are more radiation-pressure dominated and present relatively brighter bursts. Our method can also be used as an independent tool for the black hole mass determination
The PyCBC search for binary black hole coalescences in Advanced LIGO's first observing run
Willis, Joshua; LIGO Scientific Collaboration
2017-01-01
Advanced LIGO's first observing run saw the first detections of binary black hole coalescences. We describe the PyCBC matched filter analysis, and the results of that search for binary systems with total mass up to 100 solar masses. This is a matched filter search for general-relativistic signals from binary black hole systems. Two signals, GW150914 and GW151226, were identified with very high significance, and a third possible signal, LVT151012, was found, though at much lower significance. Supported by NSF award PHY-1506254.
Accretion and Orbital Inspiral in Gas-Assisted Supermassive Black Hole Binary Mergers
Rafikov, Roman R
2016-01-01
Many galaxies are expected to harbor binary supermassive black holes (SMBHs) in their centers. Their interaction with the surrounding gas results in accretion and exchange of angular momentum via tidal torques, facilitating binary inspiral. Here we explore the non-trivial coupling between these two processes and analyze how the global properties of externally supplied circumbinary disks depend on the binary accretion rate. By formulating our results in terms of the angular momentum flux driven by internal stresses, we come up with a very simple classification of the possible global disk structures, which differ from the standard constant $\\dot M$ accretion disk solution. Suppression of accretion by the binary tides, leading to a significant mass accumulation in the inner disk, accelerates binary inspiral. We show that once the disk region strongly perturbed by the viscously transmitted tidal torque exceeds the binary semi-major axis, the binary can merge in less than its mass-doubling time due to accretion. T...
Missing Link: Bayesian detection and measurement of intermediate-mass black-hole binaries
Graff, Philip B.; Buonanno, Alessandra; Sathyaprakash, B. S.
2015-07-01
We perform Bayesian analysis of gravitational-wave signals from nonspinning, intermediate-mass black-hole binaries (IMBHBs) with observed total mass, Mobs, from 50 M⊙ to 500 M⊙ and mass ratio 1-4 using advanced LIGO and Virgo detectors. We employ inspiral-merger-ringdown waveform models based on the effective-one-body formalism and include subleading modes of radiation beyond the leading (2,2) mode. The presence of subleading modes increases signal power for inclined binaries and allows for improved accuracy and precision in measurements of the masses as well as breaking of degeneracies in distance, orientation and polarization. For low total masses, Mobs≲50 M⊙ , for which the inspiral signal dominates, the observed chirp mass Mobs=Mobsη3 /5 (η being the symmetric mass ratio) is better measured. In contrast, as increasing power comes from merger and ringdown, we find that the total mass Mobs has better relative precision than Mobs. Indeed, at high Mobs (≥300 M⊙ ), the signal resembles a burst and the measurement thus extracts the dominant frequency of the signal that depends on Mobs. Depending on the binary's inclination, at signal-to-noise ratio (SNR) of 12, uncertainties in Mobs can be as large as ˜20 - 25 % while uncertainties in Mobs are ˜50 - 60 % in binaries with unequal masses (those numbers become ˜17 % vs. ˜22 % in more symmetric mass-ratio binaries). Although large, those uncertainties in Mobs will establish the existence of IMBHs. We find that effective-one-body waveforms with subleading modes are essential to confirm a signal's presence in the data, with calculated Bayesian evidences yielding a false alarm probability below 10-5 for SNR ≳9 in Gaussian noise. Our results show that gravitational-wave observations can offer a unique tool to observe and understand the formation, evolution and demographics of IMBHs, which are difficult to observe in the electromagnetic window.
Illuminating Black Hole Binary Formation Channels with Spins in Advanced LIGO
Rodriguez, Carl L.; Zevin, Michael; Pankow, Chris; Kalogera, Vasilliki; Rasio, Frederic A.
2016-11-01
The recent detections of the binary black hole mergers GW150914 and GW151226 have inaugurated the field of gravitational-wave astronomy. For the two main formation channels that have been proposed for these sources, isolated binary evolution in galactic fields and dynamical formation in dense star clusters, the predicted masses and merger rates overlap significantly, complicating any astrophysical claims that rely on measured masses alone. Here, we examine the distribution of spin-orbit misalignments expected for binaries from the field and from dense star clusters. Under standard assumptions for black hole natal kicks, we find that black hole binaries similar to GW150914 could be formed with significant spin-orbit misalignment only through dynamical processes. In particular, these heavy-black hole binaries can only form with a significant spin-orbit anti-alignment in the dynamical channel. Our results suggest that future detections of merging black hole binaries with measurable spins will allow us to identify the main formation channel for these systems.
Repetitive patterns in rapid optical variations in the nearby black-hole binary V404 Cygni.
Kimura, Mariko; Isogai, Keisuke; Kato, Taichi; Ueda, Yoshihiro; Nakahira, Satoshi; Shidatsu, Megumi; Enoto, Teruaki; Hori, Takafumi; Nogami, Daisaku; Littlefield, Colin; Ishioka, Ryoko; Chen, Ying-Tung; King, Sun-Kun; Wen, Chih-Yi; Wang, Shiang-Yu; Lehner, Matthew J; Schwamb, Megan E; Wang, Jen-Hung; Zhang, Zhi-Wei; Alcock, Charles; Axelrod, Tim; Bianco, Federica B; Byun, Yong-Ik; Chen, Wen-Ping; Cook, Kem H; Kim, Dae-Won; Lee, Typhoon; Marshall, Stuart L; Pavlenko, Elena P; Antonyuk, Oksana I; Antonyuk, Kirill A; Pit, Nikolai V; Sosnovskij, Aleksei A; Babina, Julia V; Baklanov, Aleksei V; Pozanenko, Alexei S; Mazaeva, Elena D; Schmalz, Sergei E; Reva, Inna V; Belan, Sergei P; Inasaridze, Raguli Ya; Tungalag, Namkhai; Volnova, Alina A; Molotov, Igor E; de Miguel, Enrique; Kasai, Kiyoshi; Stein, William L; Dubovsky, Pavol A; Kiyota, Seiichiro; Miller, Ian; Richmond, Michael; Goff, William; Andreev, Maksim V; Takahashi, Hiromitsu; Kojiguchi, Naoto; Sugiura, Yuki; Takeda, Nao; Yamada, Eiji; Matsumoto, Katsura; James, Nick; Pickard, Roger D; Tordai, Tamás; Maeda, Yutaka; Ruiz, Javier; Miyashita, Atsushi; Cook, Lewis M; Imada, Akira; Uemura, Makoto
2016-01-01
How black holes accrete surrounding matter is a fundamental yet unsolved question in astrophysics. It is generally believed that matter is absorbed into black holes via accretion disks, the state of which depends primarily on the mass-accretion rate. When this rate approaches the critical rate (the Eddington limit), thermal instability is supposed to occur in the inner disk, causing repetitive patterns of large-amplitude X-ray variability (oscillations) on timescales of minutes to hours. In fact, such oscillations have been observed only in sources with a high mass-accretion rate, such as GRS 1915+105 (refs 2, 3). These large-amplitude, relatively slow timescale, phenomena are thought to have physical origins distinct from those of X-ray or optical variations with small amplitudes and fast timescales (less than about 10 seconds) often observed in other black-hole binaries-for example, XTE J1118+480 (ref. 4) and GX 339-4 (ref. 5). Here we report an extensive multi-colour optical photometric data set of V404 Cygni, an X-ray transient source containing a black hole of nine solar masses (and a companion star) at a distance of 2.4 kiloparsecs (ref. 8). Our data show that optical oscillations on timescales of 100 seconds to 2.5 hours can occur at mass-accretion rates more than ten times lower than previously thought. This suggests that the accretion rate is not the critical parameter for inducing inner-disk instabilities. Instead, we propose that a long orbital period is a key condition for these large-amplitude oscillations, because the outer part of the large disk in binaries with long orbital periods will have surface densities too low to maintain sustained mass accretion to the inner part of the disk. The lack of sustained accretion--not the actual rate--would then be the critical factor causing large-amplitude oscillations in long-period systems.
Prospects for Detection of Extragalactic Stellar Black Hole Binaries in the Nearby Universe
Benacquista, Matthew; Mata, Alberto; Belczynski, Krzysztof
2014-01-01
Stellar mass black hole binaries have individual masses between 10-80 solar masses. These systems may emit gravitational waves at frequencies detectable at Megaparsec distances by space-based gravitational wave observatories. In a previous study, we determined the selection effects of observing these systems with detectors similar to the Laser Interferometer Space Antenna by using a generated population of binary black holes that covered a reasonable parameter space and calculating their signal-to-noise ratio. We further our study by populating the galaxies in our nearby (less than 30 Mpc) universe with binary black hole systems drawn from a distribution found in the Synthetic Universe to ultimately investigate the likely event rate of detectable binaries from galaxies in the nearby universe.
Search for gravitational waves from binary black hole inspiral, merger and ringdown
Abadie, J; Abbott, R; Abernathy, M; Accadia, T; Acernese, F; Adams, C; Adhikari, R; Ajith, P; Allen, B; Allen, G S; Ceron, E Amador; Amin, R S; Anderson, S B; Anderson, W G; Antonucci, F; Arain, M A; Araya, M C; Aronsson, M; Aso, Y; Aston, S M; Astone, P; Atkinson, D; Aufmuth, P; Aulbert, C; Babak, S; Baker, P; Ballardin, G; Ballinger, T; Ballmer, S; Barker, D; Barnum, S; Barone, F; Barr, B; Barriga, P; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Bauchrowitz, J; Bauer, Th S; Behnke, B; Beker, M G; Belletoile, A; Benacquista, M; Bertolini, A; Betzwieser, J; Beveridge, N; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Birindelli, S; Biswas, R; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Blom, M; Boccara, C; Bock, O; Bodiya, T P; Bondarescu, R; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, S; Bosi, L; Bouhou, B; Boyle, M; Braccini, S; Bradaschia, C; Brady, P R; Braginsky, V B; Brau, J E; Breyer, J; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Budzyński, R; Bulik, T; Bulten, H J; Buonanno, A; Burguet-Castell, J; Burmeister, O; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cain, J; Calloni, E; Camp, J B; Campagna, E; Campsie, P; Cannizzo, J; Cannon, K; Canuel, B; Cao, J; Capano, C; Carbognani, F; Caride, S; Caudill, S; Cavaglia`, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chaibi, O; Chalermsongsak, T; Chalkley, E; Charlton, P; Chassande-Mottin, E; Chelkowski, S; Chen, Y; Chincarini, A; Christensen, N; Chua, S S Y; Chung, C T Y; Clark, D; Clark, J; Clayton, J H; Cleva, F; Coccia, E; Colacino, C N; Colas, J; Colla, A; Colombini, M; Conte, R; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Costa, C A; Coulon, J -P; Coward, D M; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Culter, R M; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Danilishin, S L; Dannenberg, R; D'Antonio, S; Danzmann, K; Das, K; Dattilo, V; Daudert, B; Davier, M; Davies, G; Davis, A; Daw, E J; Day, R; Dayanga, T; De Rosa, R; DeBra, D; Debreczeni, G; Degallaix, J; del Prete, M; Dergachev, V; DeRosa, R; DeSalvo, R; Devanka, P; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Palma, I; Emilio, M Di Paolo; Di Virgilio, A; Díaz, M; Dietz, A; Donovan, F; Dooley, K L; Doomes, E E; Dorsher, S; Douglas, E S D; Drago, M; Drever, R W P; Driggers, J C; Dueck, J; Dumas, J -C; Eberle, T; Edgar, M; Edwards, M; Effler, A; Ehrens, P; Ely, G; Engel, R; Etzel, T; Evans, M; Evans, T; Fafone, V; Fairhurst, S; Fan, Y; Farr, B F; Fazi, D; Fehrmann, H; Feldbaum, D; Ferrante, I; Fidecaro, F; Finn, L S; Fiori, I; Flaminio, R; Flanigan, M; Flasch, K; Foley, S; Forrest, C; Forsi, E; Forte, L A; Fotopoulos, N; Fournier, J -D; Franc, J; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Friedrich, D; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Galimberti, M; Gammaitoni, L; Garofoli, J A; Garufi, F; Gáspár, M E; Gemme, G; Genin, E; Gennai, A; Gholami, I; Ghosh, S; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Gill, C; Goetz, E; Goggin, L M; González, G; Gorodetsky, M L; Goßler, S; Gouaty, R; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Greverie, C; Grosso, R; Grote, H; Grunewald, S; Guidi, G M; Gustafson, E K; Gustafson, R; Hage, B; Hall, P; Hallam, J M; Hammer, D; Hammond, G; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Haughian, K; Hayama, K; Hayau, J -F; Hayler, T; Heefner, J; Heitmann, H; Hello, P; Heng, I S; Heptonstall, A W; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Hodge, K A; Holt, K; Hosken, D J; Hough, J; Howell, E J; Hoyland, D; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Jaranowski, P; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, P; Kalogera, V; Kandhasamy, S; Kanner, J B; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, H; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kondrashov, V; Kopparapu, R; Koranda, S; Kowalska, I; Kozak, D; Krause, T; Kringel, V; Krishnamurthy, S; Krishnan, B; Królak, A; Kuehn, G; Kullman, J; Kumar, R; Kwee, P; Landry, M; Lang, M; Lantz, B; Lastzka, N; Lazzarini, A; Leaci, P; Leong, J; Leonor, I; Leroy, N; Letendre, N; Li, J; Li, T G F; Liguori, N; Lin, H; Lindquist, P E; Lockerbie, N A; Lodhia, D; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lu, P; Luan, J; Lubinski, M; Lucianetti, A; Lück, H; Lundgren, A D; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Majorana, E; Mak, C; Maksimovic, I; Man, N; Mandel, I; Mandic, V; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Marx, J N; Mason, K
2011-01-01
We present the first modeled search for gravitational waves using the complete binary black hole gravitational waveform from inspiral through the merger and ringdown for binaries with negligible component spin. We searched approximately 2 years of LIGO data taken between November 2005 and September 2007 for systems with component masses of 1-99 solar masses and total masses of 25-100 solar masses. We did not detect any plausible gravitational-wave signals but we do place upper limits on the merger rate of binary black holes as a function of the component masses in this range. We constrain the rate of mergers for binary black hole systems with component masses between 19 and 28 solar masses and negligible spin to be no more than 2.0 per Mpc^3 per Myr at 90% confidence.
Search for gravitational waves from binary black hole inspiral, merger, and ringdown
Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Arain, M. A.; Araya, M. C.; Aronsson, M.; Aso, Y.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.; Ballinger, T.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Beker, M. G.; Belletoile, A.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Boccara, C.; Bock, O.; Bodiya, T. P.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Budzyński, R.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coulon, J.-P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Das, K.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Davis, A.; Daw, E. J.; Day, R.; Dayanga, T.; Derosa, R.; Debra, D.; Debreczeni, G.; Degallaix, J.; Del Prete, M.; Dergachev, V.; de Rosa, R.; Desalvo, R.; Devanka, P.; Dhurandhar, S.; di Fiore, L.; di Lieto, A.; di Palma, I.; di Paolo Emilio, M.; di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dueck, J.; Dumas, J.-C.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Ely, G.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Flasch, K.; Foley, S.; Forrest, C.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Genin, E.; Gennai, A.; Gholami, I.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hall, P.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Hayler, T.; Heefner, J.; Heitmann, H.; Hello, P.; Heng, I. S.; Heptonstall, A. W.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hoyland, D.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J. B.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, H.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kowalska, I.; Kozak, D.; Krause, T.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kullman, J.; Kumar, R.; Kwee, P.; Landry, M.; Lang, M.; Lantz, B.
2011-06-01
We present the first modeled search for gravitational waves using the complete binary black-hole gravitational waveform from inspiral through the merger and ringdown for binaries with negligible component spin. We searched approximately 2 years of LIGO data, taken between November 2005 and September 2007, for systems with component masses of 1-99M⊙ and total masses of 25-100M⊙. We did not detect any plausible gravitational-wave signals but we do place upper limits on the merger rate of binary black holes as a function of the component masses in this range. We constrain the rate of mergers for 19M⊙≤m1, m2≤28M⊙ binary black-hole systems with negligible spin to be no more than 2.0Mpc-3Myr-1 at 90% confidence.
GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hamilton, H.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Hemberger, D.; Kidder, L. E.; Lovelace, G.; Ossokine, S.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; LIGO Scientific Collaboration; Virgo Collaboration
2016-06-01
We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5 σ . The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3. 4-0.9+0.7×10-22 . The inferred source-frame initial black hole masses are 14.2-3.7+8.3 M⊙ and 7. 5-2.3+2.3 M⊙, and the final black hole mass is 20.8-1.7+6.1 M⊙. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 44 0-190+180 Mpc corresponding to a redshift of 0.0 9-0.04+0.03. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.
Repetitive Patterns in Rapid Optical Variations in the Nearby Black-hole Binary V404 Cygni
Kimura, Mariko; Kato, Taichi; Ueda, Yoshihiro; Nakahira, Satoshi; Shidatsu, Megumi; Enoto, Teruaki; Hori, Takafumi; Nogami, Daisaku; Littlefield, Colin; Ishioka, Ryoko; Chen, Ying-Tung; King, Sun-Kun; Wen, Chih-Yi; Wang, Shiang-Yu; Lehner, Matthew J; Schwamb, Megan E; Wang, Jen-Hung; Zhang, Zhi-Wei; Alcock, Charles; Axelrod, Tim; Bianco, Federica B; Byun, Yong-Ik; Chen, Wen-Ping; Cook, Kem H; Kim, Dae-Won; Lee, Typhoon; Marshall, Stuart L; Pavlenko, Elena P; Antonyuk, Oksana I; Antonyuk, Kirill A; Pit, Nikolai V; Sosnovskij, Aleksei A; Babina, Julia V; Baklanov, Aleksei V; Pozanenko, Alexei S; Mazaeva, Elena D; Schmalz, Sergei E; Reva, Inna V; Belan, Sergei P; Inasaridze, Raguli Ya; Tungalag, Namkhai; Volnova, Alina A; Molotov, Igor E; de Miguel, Enrique; Kasai, Kiyoshi; Stein, William; Dubovsky, Pavol A; Kiyota, Seiichiro; Miller, Ian; Richmond, Michael; Goff, William; Andreev, Maksim V; Takahashi, Hiromitsu; Kojiguchi, Naoto; Sugiura, Yuki; Takeda, Nao; Yamada, Eiji; Matsumoto, Katsura; James, Nick; Pickard, Roger D; Tordai, Tamás; Maeda, Yutaka; Ruiz, Javier; Miyashita, Atsushi; Cook, Lewis M; Imada, Akira; Uemura, Makoto
2016-01-01
How black holes accrete surrounding matter is a fundamental, yet unsolved question in astrophysics. It is generally believed that matter is absorbed into black holes via accretion disks, the state of which depends primarily on the mass-accretion rate. When this rate approaches the critical rate (the Eddington limit), thermal instability is supposed to occur in the inner disc, causing repetitive patterns of large-amplitude X-ray variability (oscillations) on timescales of minutes to hours. In fact, such oscillations have been observed only in sources with a high mass accretion rate, such as GRS 1915+105. These large-amplitude, relatively slow timescale, phenomena are thought to have physical origins distinct from X-ray or optical variations with small amplitudes and fast ($\\lesssim$10 sec) timescales often observed in other black hole binaries (e.g., XTE J1118+480 and GX 339-4). Here we report an extensive multi-colour optical photometric data set of V404 Cygni, an X-ray transient source containing a black hol...
Sesana, A
2012-01-01
Space based gravitational wave astronomy will open a completely new window on the Universe and massive black holes binaries are expected to be among the primary actors on this upcoming stage. The New Gravitational-wave Observatory (NGO) is a space interferometer proposal derived from the former Laser Interferometer Space Antenna (LISA) concept. We describe here its capabilities of observing massive black hole binaries throughout the Universe, measuring their relevant parameters (masses, spins, distance to the observer) to high precision. The statistical properties of the population of detected systems can be used to constrain the massive black hole cosmic history, providing deep insights into the faint, high redshift Universe.
Binary Systems with a Black Hole Component as Sources of Gravitational Waves
Koçak, D
2016-01-01
Discovery of gravitational waves by LIGO team (Abbott et al. 2016) bring a new era for observation of black hole systems. These new observations will improve our knowledge on black holes and gravitational physics. In this study, we present angular momentum loss mechanism through gravitational radiation for selected X-ray binary systems. The angular momentum loss in X-ray binary systems with a black hole companion due to gravitational radiation and mass loss time-scales are estimated for each selected system. In addition, their gravitational wave amplitudes are also estimated and their detectability with gravitational wave detectors has been discussed.
eLISA eccentricity measurements as tracers of binary black hole formation
Nishizawa, Atsushi; Berti, Emanuele; Klein, Antoine; Sesana, Alberto
2016-09-01
Up to hundreds of black hole binaries individually resolvable by eLISA will coalesce in the Advanced LIGO and Virgo band within 10 yr, allowing for multiband gravitational wave observations. Binaries formed via dynamical interactions in dense star clusters are expected to have eccentricities e0˜10-3-10-1 at the frequencies f0=10-2 Hz where eLISA is most sensitive, while binaries formed in the field should have negligible eccentricity in both frequency bands. We estimate that eLISA should always be able to detect a nonzero e0 whenever e0≳10-2; if e0˜10-3, eLISA should detect nonzero eccentricity for a fraction ˜90 % (˜25 %) of binaries when the observation time is Tobs=5 (2) yr, respectively. Therefore eLISA observations of black hole binaries have the potential to distinguish between field and cluster formation scenarios.
Ultra-low frequency gravitational radiation from massive black hole binaries
Rajagopal, M; Rajagopal, Mohan; Romani, Roger W
1994-01-01
For massive black hole binaries produced in galactic mergers, we examine the possibility of inspiral induced by interaction with field stars. We model the evolution of such binaries for a range of galaxy core and binary parameters, using numerical results from the literature to compute the binary's energy and angular momentum loss rates due to stellar encounters and including the effect of back-action on the field stars. We find that only a small fraction of binary systems can merge within a Hubble time via unassisted stellar dynamics. External perturbations may, however, cause efficient inspiral. Averaging over a population of central black holes and galaxy mergers, we compute the expected background of gravitational radiation with periods Pw ~1-10y. Comparison with sensitivities from millisecond pulsar timing suggests that the strongest sources may be detectable with modest improvements to present experiments.
Supermassive binary black holes - possible observational effects in the x-ray emission
Jovanović Predrag
2014-01-01
Full Text Available Here we discuss the possible observational effects in the X-ray emission from two relativistic accretion disks in a supermassive binary black hole system. For that purpose we developed a model and performed numerical simulations of the X-ray radiation from a relativistic accretion disk around a supermassive black hole, based on the ray-tracing method in the Kerr metric, and applied it to the case of the close binary supermassive black holes. Our results indicate that the broad Fe Kα line is a powerful tool for detecting such systems and studying their properties. The most favorable candidates for observational studies are the supermassive binary black holes in the galactic mergers during the phase when the orbital velocities of their components are very large and exceed several thousand kms -1. [Projekat Ministarstva nauke Republike Srbije, br. 176003: Gravitation and the Large Scale Structure of the Universe i br. 176001: Astrophysical Spectroscopy of Extragalactic Objects
Inspiralling, Non-Precessing, Spinning Black Hole Binary Spacetime via Asymptotic Matching
Ireland, Brennan; Nakano, Hiroyuki; Campanelli, Manuela
2015-01-01
We construct a new global, fully analytic, approximate spacetime which accurately describes the dynamics of non-precessing, spinning black hole binaries during the inspiral phase of the relativistic merger process. This approximate solution of the vacuum Einstein's equations can be obtained by asymptotically matching perturbed Kerr solutions near the two black holes to a post-Newtonian metric valid far from the two black holes. This metric is then matched to a post-Minkowskian metric even farther out in the wave zone. The procedure of asymptotic matching is generalized to be valid on all spatial hypersurfaces, instead of a small group of initial hypersurfaces discussed in previous works. This metric is well suited for long term dynamical simulations of spinning black hole binary spacetimes prior to merger, such as studies of circumbinary gas accretion which requires hundreds of binary orbits.
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.
2016-09-01
We compare GW150914 directly to simulations of coalescing binary black holes in full general relativity, including several performed specifically to reproduce this event. Our calculations go beyond existing semianalytic models, because for all simulations—including sources with two independent, precessing spins—we perform comparisons which account for all the spin-weighted quadrupolar modes, and separately which account for all the quadrupolar and octopolar modes. Consistent with the posterior distributions reported by Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016)] (at the 90% credible level), we find the data are compatible with a wide range of nonprecessing and precessing simulations. Follow-up simulations performed using previously estimated binary parameters most resemble the data, even when all quadrupolar and octopolar modes are included. Comparisons including only the quadrupolar modes constrain the total redshifted mass Mz∈[64 M⊙-82 M⊙] , mass ratio 1 /q =m2/m1∈[0.6 ,1 ], and effective aligned spin χeff∈[-0.3 ,0.2 ], where χeff=(S1/m1+S2/m2).L ^/M . Including both quadrupolar and octopolar modes, we find the mass ratio is even more tightly constrained. Even accounting for precession, simulations with extreme mass ratios and effective spins are highly inconsistent with the data, at any mass. Several nonprecessing and precessing simulations with similar mass ratio and χeff are consistent with the data. Though correlated, the components' spins (both in magnitude and directions) are not significantly constrained by the data: the data is consistent with simulations with component spin magnitudes a1 ,2 up to at least 0.8, with random orientations. Further detailed follow-up calculations are needed to determine if the data contain a weak imprint from transverse (precessing) spins. For nonprecessing binaries, interpolating between simulations, we reconstruct a posterior distribution consistent with previous results. The final black hole
The Role of the Kozai-Lidov Mechanism in Black Hole Binary Mergers in Galactic Centers
VanLandingham, John H; Hamilton, Douglas P; Richardson, Derek C
2016-01-01
In order to understand the rate of merger of stellar-mass black hole binaries (BHBs) by gravitational wave (GW) emission it is important to determine the major pathways to merger. We use numerical simulations to explore the evolution of BHBs inside the radius of influence of supermassive black holes (SMBHs) in galactic centers. In this region the evolution of binaries is dominated by perturbations from the central SMBH. In particular, as first pointed out by Antonini and Perets, the Kozai-Lidov (KL) mechanism trades relative inclination of the BHB to the SMBH for eccentricity of the BHB, and for some orientations can bring the BHB to an eccentricity near unity. At very high eccentricities, GW emission from the BHB can become efficient, causing the members of the BHB to coalesce. We use a novel combination of two N-body codes to follow this evolution. We are forced to simulate small systems to follow the behavior accurately. We have completed 400 simulations that range from $\\sim$ 300 stars around a $10^{3}$ M...
Inspiral, merger and ring-down of equal-mass black-hole binaries
Buonanno, A; Pretorius, F; Buonanno, Alessandra; Cook, Gregory B.; Pretorius, Frans
2006-01-01
We investigate the dynamics and gravitational-wave (GW) emission in the binary merger of equal-mass black holes as obtained from numerical relativity simulations. Results from the evolution of three sets of initial data are explored in detail, corresponding to different initial separations of the black holes. We find that to a good approximation the inspiral phase of the evolution is quasi-circular, followed by a "blurred, quasi-circular plunge", then merger and ring down. We present first-order comparisons between analytical models of the various stages of the merger and the numerical results. We provide comparisons between the numerical results and analytical predictions based on the adiabatic Newtonain, post-Newtonian (PN), and non-adiabatic resummed-PN models. From the ring-down portion of the GW we extract the fundamental quasi-normal mode and several of the overtones. Finally, we estimate the optimal signal-to-noise ratio for typical binaries detectable by GW experiments.
Accretion Disks Around Binary Black Holes: A Simple GR-Hybrid Evolution Model
Shapiro, Stuart L
2013-01-01
We consider a geometrically thin, Keplerian disk in the orbital plane of a binary black hole (BHBH) consisting of a spinning primary and low-mass secondary (mass ratio q < 1). To account for the principle effects of general relativity (GR), we propose a modification of the standard Newtonian evolution equation for the (orbit-averaged) time-varying disk surface density. In our modified equation the viscous torque in the disk is treated in full GR, while the tidal torque is handled in the Newtonian limit. Our GR-hybrid treatment is reasonable because the tidal torque is concentrated near the orbital radius of the secondary and is most important prior to binary-disk decoupling, when the orbital separation is large and resides in the weak-field regime. The tidal torque on the disk diminishes during late merger and vanishes altogether following merger. By contrast, the viscous torque drives the flow into the strong-field region and onto the primary during all epochs. Following binary coalescence, the viscous to...
Bustos, Cesar; Sandeen, Ben; Chennakesavalu, Shriram; Littenberg, Tyson; Farr, Ben; Kalogera, Vassiliki
2016-01-01
Gravitational Waves (GWs) were predicted by Einstein's Theory of General Relativity as ripples in space-time that propagate outward from a source. Strong GW sources consist of compact binary systems such as Binary Neutron Stars (BNS) or Binary Black Holes (BBHs) that experience orbital shrinkage (inspiral) and eventual merger. Indirect evidence for the existence of GWs has been obtained through radio pulsar studies in BNS systems. A study of BBHs and other compact objects has limitations in the electromagnetic spectrum, therefore direct detections of GWs will open a new window into their nature. The effort targeting direct GWs detection is anchored on the development of a detector known as Advanced LIGO (Laser Interferometer Gravitational Wave Observation). Although detecting GW sources represents an anticipated breakthrough in physics, making GW astrophysics a reality critically relies on our ability to determine and measure the physical parameters associated with GW sources. We use Markov Chain Monte Carlo (MCMC) simulations on high-performance computing clusters for parameter estimation on high dimensional spaces (GW sources - 15 parameters). The quality of GW parameter estimation greatly depends on having the best possible knowledge of the expected waveform. Unfortunately, BBH GW production is very complex and our best waveforms are not valid across the full parameter space. With large-scale simulations we examine quantitatively the limitations of these waveforms in terms of extracting the astrophysical properties of BBH GW sources. We find that current waveforms are inadequate for BBH of unequal masses and demonstrate that improved waveforms are critically needed.
The Observation of Gravitational Waves from a Binary Black Hole Merger
Reitze, David
2016-03-01
On September 14, 2015, the two LIGO detectors operating at Hanford, WA and Livingston, LA nearly simultaneously recorded a strong trigger consistent with the passage of gravitational waves. An extensive and thorough analysis by the LIGO Scientific Collaboration and the Virgo Collaboration over the following months determined the gravitational waves to originate from the final stage of the inspiral of two black holes with masses approximately 36 and 29 Msun merging to form a 62 Msun black hole located at a distance of roughly 410 Mpc.This discovery is remarkable in many ways. In addition to being the first direct measurement of a gravitational wave by an earth-based detector, this is the first observation of coalescing binary black hole system and the first evidence that ``heavy'' stellar mass black holes exist. The measured gravitational waveform was determined to be highly consistent with that predicted by general relativity for the merger of two black holes. In this talk, the first of two in this special session on the discovery of GW150914, I'll cover a number of topics related to the detection, including a brief description of the operation and performance of the Advanced LIGO detectors during the first `O1' Observing Run as well as the data quality verification methods used to determine the validity of the detection. I'll also present the searches that were used to find and establish the statistical confidence of the event, as well as provide an estimate of its sky localization. Finally, I will discuss the plans for future observations by LIGO, Virgo and other gravitational wave detectors over the next few years and, time permitting, present the short term and longer term programs for improving the sensitivity and range of gravitational wave detectors over the next ten years.
A Proposed Search for the Detection of Gravitational Waves from Eccentric Binary Black Holes
Tiwari, Vaibhav; Christensen, Nelson; Huerta, Eliu; Mohapatra, Satya; Gopakumar, Achamveedu; Haney, Maria; Parameswaran, Ajith; McWilliams, Sean; Vedovato, Gabriele; Drago, Marco; Salemi, Francesco; Prodi, Giovanni; Lazzaro, Claudia; Tiwari, Shubhanshu; Mitselmakher, Guenakh; Da Silva, Filipe
2015-01-01
Most of compact binary systems are expected to circularize before the frequency of emitted gravitational waves (GWs) enters the sensitivity band of the ground based interferometric detectors. However, several mechanisms have been proposed for the formation of binary systems, which retain eccentricity throughout their lifetimes. Since no matched-filtering algorithm has been developed to extract continuous GW signals from compact binaries on orbits with low to moderate values of eccentricity, and available algorithms to detect binaries on quasi-circular orbits are sub-optimal to recover these events, in this paper we propose a search method for detection of gravitational waves produced from the coalescences of eccentric binary black holes (eBBH). We study the search sensitivity and the false alarm rates on a segment of data from the second joint science run of LIGO and Virgo detectors, and discuss the implications of the eccentric binary search for the advanced GW detectors.
Supermassive Black Hole Binaries: Environment and Galaxy Host Properties of PTA and eLISA sources
Palafox, Eva Martínez; Colín, Pedro; Gottlöber, Stefan
2014-01-01
Supermassive black hole (BH) binaries would comprise the strongest sources of gravitational waves (GW) once they reach <<1 pc separations, for both pulsar timing arrays (PTAs) and space based (SB) detectors. While BH binaries coalescences constitute a natural outcome of the cosmological standard model and galaxy mergers, their dynamical evolution is still poorly understood and therefore their abundances at different stages. We use a dynamical model for the decay of BH binaries coupled with a cosmological simulation and semi-empirical approaches to the occupation of haloes by galaxies and BHs, in order to follow the evolution of the properties distribution of galaxies hosting BH binaries candidates to decay due to GWs emission. Our models allow us to relax simplifying hypothesis about the binaries occupation in galaxies and their mass, as well as redshift evolution. Following previously proposed electromagnetic (EM) signatures of binaries in the subpc regime, that include spectral features and variabilit...
Hydrodynamical simulations of the tidal stripping of binary stars by massive black holes
Mainetti, Deborah; Lupi, Alessandro; Campana, Sergio; Colpi, Monica
2016-04-01
In a galactic nucleus, a star on a low angular momentum orbit around the central massive black hole can be fully or partially disrupted by the black hole tidal field, lighting up the compact object via gas accretion. This phenomenon can repeat if the star, not fully disrupted, is on a closed orbit. Because of the multiplicity of stars in binary systems, also binary stars may experience in pairs such a fate, immediately after being tidally separated. The consumption of both the binary components by the black hole is expected to power a double-peaked flare. In this paper, we perform for the first time, with GADGET2, a suite of smoothed particle hydrodynamics simulations of binary stars around a galactic central black hole in the Newtonian regime. We show that accretion luminosity light curves from double tidal disruptions reveal a more prominent knee, rather than a double peak, when decreasing the impact parameter of the encounter and when elevating the difference between the mass of the star which leaves the system after binary separation and the mass of the companion. The detection of a knee can anticipate the onset of periodic accretion luminosity flares if one of the stars, only partially disrupted, remains bound to the black hole after binary separation. Thus knees could be precursors of periodic flares, which can then be predicted, followed up and better modelled. Analytical estimates in the black hole mass range 105-108 M⊙ show that the knee signature is enhanced in the case of black holes of mass 106-107 M⊙.
Theoretical Physics Implications of the Binary Black-Hole Merger GW150914
Yunes, Nicolas; Pretorius, Frans
2016-01-01
The gravitational-wave observation GW150914 by Advanced LIGO provides the first opportunity to learn about physics in the extreme gravity of coalescing binary black holes. The LIGO/Virgo collaboration has verified that this observation is consistent with General Relativity, constraining the presence of parametric anomalies in the signal. This paper expands this analysis to a larger class of anomalies, highlighting the inferences that can be drawn on non-standard theoretical physics mechanisms that would affect the signal. We find that GW150914 constrains a plethora of mechanisms associated with the generation and propagation of gravitational waves, including the activation of scalar fields, gravitational leakage into large extra dimensions, the variability of Newton's constant, the speed of gravity, a modified dispersion relation, gravitational Lorentz violation and the strong equivalence principle. Unlike other observations that limit these mechanisms, GW150914 is a direct probe of dynamical strong-field gra...
Post-merger evolution of a neutron star-black hole binary with neutrino transport
Foucart, Francois; Roberts, Luke; Duez, Matthew D; Haas, Roland; Kidder, Lawrence E; Ott, Christian D; Pfeiffer, Harald P; Scheel, Mark A; Szilagyi, Bela
2015-01-01
We present a first simulation of the post-merger evolution of a black hole-neutron star binary in full general relativity using an energy-integrated general relativistic truncated moment formalism for neutrino transport. We describe our implementation of the moment formalism and important tests of our code, before studying the formation phase of a disk after a black hole-neutron star merger. We use as initial data an existing general relativistic simulation of the merger of a neutron star of 1.4 solar mass with a black hole of 7 solar mass and dimensionless spin a/M=0.8. Comparing with a simpler leakage scheme for the treatment of the neutrinos, we find noticeable differences in the neutron to proton ratio in and around the disk, and in the neutrino luminosity. We find that the electron neutrino luminosity is much lower in the transport simulations, and that the remnant is less neutron-rich. The spatial distribution of the neutrinos is significantly affected by relativistic effects. Over the short timescale e...
Relativistic mergers of black hole binaries have large, similar masses, low spins and are circular
Amaro-Seoane, Pau
2015-01-01
Gravitational waves are a prediction of general relativity, and with ground-based detectors now running in their advanced configuration, we will soon be able to measure them directly for the first time. Binaries of stellar-mass black holes are among the most interesting sources for these detectors. Unfortunately, the many different parameters associated with the problem make it difficult to promptly produce a large set of waveforms for the search in the data stream. To reduce the number of templates to develop, and hence speed up the search, one must restrict some of the physical parameters to a certain range of values predicted by either (electromagnetic) observations or theoretical modeling. This allows one to avoid the need to blindly cover the whole parameter space. In this work we show that "hyperstellar" black holes (HSBs) with masses $30 \\lesssim M_{\\rm BH}/M_{\\odot} \\lesssim 100$, i.e black holes significantly larger than the nominal $10\\,M_{\\odot}$, will have an associated low value for the spin, i.e...
A New Approach to Black hole Spin in X-Ray Binaries
ZUO Xue-Qin; WANG Ding-Xiong; MA Ren-Yi
2005-01-01
@@ A new approach of detecting the black hole spin in x-ray binaries is proposed based on the model of the coexistence of the Blandford-Znajek (BZ) and magnetic coupling (MC) processes, in which the BZ process is used to power the jet emissions from x-ray binaries, and high frequency quasi-periodic oscillations (QPOs) are explained by a rotating hotspot in the inner region of the accretion disc surrounding a fast-spinning black hole. It is shown that the black hole spins of several x-ray binaries (XTE J1550-564, GRO J1665-40 and GRS 1915+105) can be constrained in a rather narrow range, provided that QPOs and jets coexist in these sources.
Supermassive recoil velocities for binary black-hole mergers with antialigned spins.
González, José A; Hannam, Mark; Sperhake, Ulrich; Brügmann, Bernd; Husa, Sascha
2007-06-08
Recent calculations of the recoil velocity in binary black-hole mergers have found the kick velocity to be of the order of a few hundred km/s in the case of nonspinning binaries and about 500 km/s in the case of spinning configurations, and have lead to predictions of a maximum kick of up to 1300 km/s. We test these predictions and demonstrate that kick velocities of at least 2500 km/s are possible for equal-mass binaries with antialigned spins in the orbital plane. Kicks of that magnitude are likely to have significant repercussions for models of black-hole formation, the population of intergalactic black holes, and the structure of host galaxies.
Hannam, Mark
2013-01-01
The inspiral and merger of two orbiting black holes is among the most promising sources for the first (hopefully imminent) direct detection of gravitational waves (GWs), and measurements of these signals could provide a wealth of information about astrophysics, fundamental physics and cosmology. Detection and measurement require a theoretical description of the GW signals from all possible black-hole-binary configurations, which can include complicated precession effects due to the black-hole spins. Modelling the GW signal from generic precessing binaries is therefore one of the most urgent theoretical challenges facing GW astronomy. This article briefly reviews the phenomenology of generic-binary dynamics and waveforms, and recent advances in modelling them.
Black holes in stellar-mass binary systems: expiating original spin?
King, Andrew; Nixon, Chris
2016-10-01
We investigate systematically whether accreting black hole systems are likely to reach global alignment of the black hole spin and its accretion disc with the binary plane. In low-mass X-ray binaries (LMXBs), there is only a modest tendency to reach such global alignment, and it is difficult to achieve fully: except for special initial conditions, we expect misalignment of the spin and orbital planes by ˜1 rad for most of the LMXB lifetime. The same is expected in high-mass X-ray binaries. A fairly close approach to global alignment is likely in most stellar-mass ultraluminous X-ray binary systems (ULXs) where the companion star fills its Roche lobe and transfers mass on a thermal or nuclear time-scale to a black hole of lower mass. These systems are unlikely to show orbital eclipses, as their emission cones are close to the hole's spin axis. This offers a potential observational test, as models for ULXs invoking intermediate-mass black holes do predict eclipses for ensembles of ≳ 10 systems. Recent observational work shows that eclipses are either absent or extremely rare in ULXs, supporting the picture that most ULXs are stellar-mass binaries with companion stars more massive than the accretor.
Formation of Black Hole X-Ray Binaries with Non-degenerate Donors in Globular Clusters
Ivanova, Natalia; da Rocha, Cassio A.; Van, Kenny X.; Nandez, Jose L. A.
2017-07-01
In this Letter, we propose a formation channel for low-mass X-ray binaries with black hole accretors and non-degenerate donors via grazing tidal encounters with subgiants. We estimate that in a typically dense globular cluster with a core density of 105 stars pc-3, the formation rates are about one binary per Gyr per 50-100 retained black holes. The donors—stripped subgiants—will be strongly underluminous when compared to subgiant or giant branch stars of the same colors. The products of tidal stripping are underluminous by at least one magnitude for several hundred million years when compared to normal stars of the same color, and differ from underluminous red stars that could be produced by non-catastrophic mass transfer in an ordinary binary. The dynamically formed binaries become quiescent LMXBs, with lifetimes of about a Gyr. The expected number of X-ray binaries is one per 50-200 retained black holes, while the expected number of strongly underluminous subsubgiant is about half this. The presence of strongly underluminous stars in a GC may be indicative of the presence of black holes.
Merging Black Holes, Gravitational Waves, and Numerical Relativity
Centrella, Joan M.
2009-01-01
The final merger of two black holes will emit more energy than all the stars in the observable universe combined. This energy will come in the form of gravitational waves, which are a key prediction of Einstein's general relativity and a new tool for exploring the universe. Observing these mergers with gravitational wave detectors, such as the ground-based LIGO and the space-based LISA, requires knowledge of the radiation waveforms. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes were long plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and w aefo rms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.
Merging Black Holes, Gravitational Waves, and Numerical Relativity
Centrella, Joan M.
2009-01-01
The final merger of two black holes will emit more energy than all the stars in the observable universe combined. This energy will come in the form of gravitational waves, which are a key prediction of Einstein's general relativity and a new tool for exploring the universe. Observing these mergers with gravitational wave detectors, such as the ground-based LIGO and the space-based LISA, requires knowledge of the radiation waveforms. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes were long plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and w aefo rms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.
Digging deeper: Observing primordial gravitational waves below black hole binary confusion noise
Regimbau, T; Christensen, N; Katsavounidis, E; Sathyaprakash, B; Vitale, S
2016-01-01
The merger rate of black hole binaries inferred from the recent LIGO detections implies that a stochastic background produced by a cosmological population of mergers will likely mask the primordial gravitational-wave background. Here we demonstrate that the next generation of ground-based detectors, such as the Einstein Telescope and Cosmic Explorer, will be able to observe binary black hole mergers throughout the universe with sufficient efficiency that the confusion background can be subtracted to observe the primordial background at the level of $\\Omega_{\\mathrm{GW}} \\simeq 10^{-13}$ after five years of observation.
Palenzuela, Carlos; Yoshida, Shin
2009-01-01
In addition to producing loud gravitational waves (GW), the dynamics of a binary black hole system could induce emission of electromagnetic (EM) radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We here study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.
Regimbau, T; Evans, M; Christensen, N; Katsavounidis, E; Sathyaprakash, B; Vitale, S
2017-04-14
The merger rate of black hole binaries inferred from the detections in the first Advanced LIGO science run implies that a stochastic background produced by a cosmological population of mergers will likely mask the primordial gravitational wave background. Here we demonstrate that the next generation of ground-based detectors, such as the Einstein Telescope and Cosmic Explorer, will be able to observe binary black hole mergers throughout the Universe with sufficient efficiency that the confusion background can potentially be subtracted to observe the primordial background at the level of Ω_{GW}≃10^{-13} after 5 years of observation.
Theoretical physics implications of the binary black-hole mergers GW150914 and GW151226
Yunes, Nicolás; Yagi, Kent; Pretorius, Frans
2016-10-01
The gravitational wave observations GW150914 and GW151226 by Advanced LIGO provide the first opportunity to learn about physics in the extreme gravity environment of coalescing binary black holes. The LIGO Scientific Collaboration and the Virgo Collaboration have verified that this observation is consistent with Einstein's theory of general relativity, constraining the presence of certain parametric anomalies in the signal. This paper expands their analysis to a larger class of anomalies, highlighting the inferences that can be drawn on nonstandard theoretical physics mechanisms that could otherwise have affected the observed signals. We find that these gravitational wave events constrain a plethora of mechanisms associated with the generation and propagation of gravitational waves, including the activation of scalar fields, gravitational leakage into large extra dimensions, the variability of Newton's constant, the speed of gravity, a modified dispersion relation, gravitational Lorentz violation and the strong equivalence principle. Though other observations limit many of these mechanisms already, GW150914 and GW151226 are unique in that they are direct probes of dynamical strong-field gravity and of gravitational wave propagation. We also show that GW150914 constrains inferred properties of exotic compact object alternatives to Kerr black holes. We argue, however, that the true potential for GW150914 to both rule out exotic objects and constrain physics beyond general relativity is severely limited by the lack of understanding of the coalescence regime in almost all relevant modified gravity theories. This event thus significantly raises the bar that these theories have to pass, both in terms of having a sound theoretical underpinning and reaching the minimal level of being able to solve the equations of motion for binary merger events. We conclude with a discussion of the additional inferences that can be drawn if the lower-confidence observation of an
Extremely fast orbital decay of the black hole X-ray binary Nova Muscae 1991
González Hernández, J. I.; Suárez-Andrés, L.; Rebolo, R.; Casares, J.
2017-02-01
We present new medium-resolution spectroscopic observations of the black hole X-ray binary Nova Muscae 1991 taken with X-Shooter spectrograph installed at the 8.2-m VLT telescope. These observations allow us to measure the time of inferior conjunction of the secondary star with the black hole in this system that, together with previous measurements, yield an orbital period decay of dot{P}=-20.7± 12.7 ms yr-1 (-24.5 ± 15.1 μs per orbital cycle). This is significantly faster than those previously measured in the other black hole X-ray binaries A0620-00 and XTE J1118+480. No standard black hole X-ray binary evolutionary model is able to explain this extremely fast orbital decay. At this rate, the secondary star would reach the event horizon (as given by the Schwarzschild radius of about 32 km) in roughly 2.7 Myr. This result has dramatic implications on the evolution and lifetime of black hole X-ray binaries.
From Gamma-Ray Bursts/Hypernovae To Black-Hole Binaries
Méndez, Enrique Moreno
2013-01-01
In this work I summarize a model of binary stellar evolution involving Case C mass transfer followed by a common envelope that strips away the hydrogen from the core of the primary star at the cost of shrinking the orbital separation and then, through tidal interaction, spins it up. This model is then used to produce the possible progenitors of long gamma-ray burst / hypernova (GRB/HN) explosions. As the core collapses with the newly supplied angular momentum it produces a Kerr black hole surrounded by an accretion disk. Energy is extracted from the rotation of the black hole (BH) through the Blandford-Znajek (BZ) mechanism to power both, the long gamma-ray burst and the accompanying hypernova (supernova type Ic broad line). If the binary survives the asymmetric mass loss its remnant is a black-hole binary that may eventually be observed as a soft X-ray transient (SXT) when the companion evolves and starts to transfer mass back to the black hole. A comparison with a sample of black-hole binaries where the mas...
The kinematic signature of the inspiral phase of massive binary black holes
Meiron, Yohai
2013-01-01
Supermassive black holes are expected to pair as a result of galaxy mergers, and form a bound binary at parsec or sub-parsec scales. These scales are unresolved even in nearby galaxies, and thus detection of non-active black hole binaries must rely on stellar dynamics. Here we show that these systems could be indirectly detected through the trail that the black holes leave as they spiral inwards. We analyze two numerical simulations of inspiralling black holes (equal masses and 10:1 mass ratio) in the stellar environment of a galactic centre. We studied the effect of the binary on the structure of the stellar population, with particular emphasis on projected kinematics and directly measurable moments of the velocity distribution. We present those moments as high-resolution 2D maps. As shown in past scattering experiments, a torus of stars counter-rotating with respect to the black holes exists in scales ~ 5 to 10 times larger than the binary separation. While this is seen in the average velocity map in the un...
Extremely fast orbital decay of the black hole X-ray binary Nova Muscae 1991
Hernández, J I González; Rebolo, R; Casares, J
2016-01-01
We present new medium-resolution spectroscopic observations of the black hole X-ray binary Nova Muscae 1991 taken with X-Shooter spectrograph installed at the 8.2m-VLT telecope. These observations allow us to measure the time of inferior conjunction of the secondary star with the black hole in this system that, together with previous measurements, yield an orbital period decay of $\\dot P=-20.7\\pm12.7$ ms yr$^{-1}$ ($-24.5\\pm15.1$ $\\mu $s per orbital cycle). This is significantly faster than those previously measured in the other black hole X-ray binaries A0620-00 and XTE J1118+480. No standard black hole X-ray binary evolutionary model is able to explain this extremely fast orbital decay. At this rate, the secondary star would reach the event horizon (as given by the Schwarzschild radius of about 32 km) in roughly 2.7 Myr. This result has dramatic implications on the evolution and lifetime of black hole X-ray binaries.
Discriminating Formation Channels of Binary Black Hole Systems with Advanced LIGO
Zevin, Michael; Rodriguez, Carl; Pankow, Chris; Kalogera, Vicky; Rasio, Fred
2017-01-01
The field of gravitational-wave astronomy has been initiated by the recent observations of binary black hole mergers. These observations illuminate objects that are inaccessible with electromagnetic telescopes, and open inquiries as to how heavy binary black hole systems form and merge. Two possible formation channels proposed for such systems are isolated binary evolution in galactic fields and dynamical formation in star clusters. Currently, the coarse localization of these gravitational-wave events cannot indicate the environment in which the binary formed, and the mass distributions and merger rates from simulations of the aforementioned formation channels do not have an appreciable difference. However, the component spins of the black holes have the potential to unveil the formation history of the system. In this talk, I will discuss how to match measurements of the black hole component spin alignment with the projected spin distributions produced by population synthesis simulations. Using this framework we will link the estimated black hole spin to the formation channel of a merger, thus leading to a more detailed picture of their environments and origins.
eLISA eccentricity measurements as tracers of binary black hole formation
Nishizawa, Atsushi; Klein, Antoine; Sesana, Alberto
2016-01-01
Up to hundreds of black hole binaries individually resolvable by eLISA will coalesce in the Advanced LIGO/Virgo band within ten years, allowing for multi-band gravitational wave observations. Binaries formed via dynamical interactions in dense star clusters are expected to have eccentricities $e_0\\sim 10^{-3}$-$10^{-1}$ at the frequencies $f_0=10^{-2}$ Hz where eLISA is most sensitive, while binaries formed in the field should have negligible eccentricity in both frequency bands. We estimate that eLISA should always be able to detect a nonzero $e_0$ whenever $e_0\\gtrsim 10^{-2}$; if $e_0\\sim 10^{-3}$, eLISA should detect nonzero eccentricity for a fraction $\\sim 90\\%$ ($\\sim 25\\%$) of binaries when the observation time is $T_{\\rm obs}=5$ ($2$) years, respectively. Therefore eLISA observations of BH binaries have the potential to distinguish between field and cluster formation scenarios.
Featured Image: Mini-Disks in a Black-Hole Binary
Kohler, Susanna
2017-04-01
This image shows a snapshot from a simulation of a relativistic binary black hole system. A recent study led by Dennis Bowen (Rochester Institute of Technology) presents the first exploration of gas dynamics in relativistic binary black hole systems in which each black hole is surrounded by its own small accretion disk. Bowen and collaborators use their 2D hydrodynamical simulations to explore how gas is passed back and forth between the two mini-disks as the black holes orbit each other. They also examine what kind of distinctive observable signals might be caused by this sloshing and by tidally driven spiral waves in the disks. To read more about their outcomes, check out the article below!CitationDennis B. Bowen et al 2017 ApJ 838 42. doi:10.3847/1538-4357/aa63f3
Sesana, A; Volonteri, M
2008-01-01
Massive black holes are key components of the assembly and evolution of cosmic structures and a number of surveys are currently on-going or planned to probe the demographics of these objects and to gain insight into the relevant physical processes. Pulsar Timing Arrays (PTAs) currently provide the only means to observe gravitational radiation from massive black hole binary systems with masses >10^7 solar masses. The whole cosmic population produces a stochastic background that could be detectable with upcoming Pulsar Timing Arrays. Sources sufficiently close and/or massive generate gravitational radiation that significantly exceeds the level of the background and could be individually resolved. We consider a wide range of massive black hole binary assembly scenarios, we investigate the distribution of the main physical parameters of the sources, such as masses and redshift, and explore the consequences for Pulsar Timing Arrays observations. Depending on the specific massive black hole population model, we est...
Electromagnetic signatures of supermassive black hole binaries resolved by PTAs
Tanaka, Takamitsu L
2013-01-01
Pulsar timing arrays (PTAs) may eventually be able to detect not only the stochastic gravitational-wave (GW) background of SMBH binaries, but also individual, particularly massive binaries whose signals stick out above the background. In this contribution, we discuss the possibility of identifying and studying such `resolved' binaries through their electromagnetic emission. The host galaxies of such binaries are themselves expected to be also very massive and rare, so that out to redshifts z~2 a unique massive galaxy may be identified as the host. At higher redshifts, the PTA error boxes are larger and may contain as many as several hundred massive-galaxy interlopers. In this case, the true counterpart may be identified, if it is accreting gas efficiently, as an active galactic nucleus (AGN) with a peculiar spectrum and variable emission features. Specifically, the binary's tidal torques expel the gas from the inner part of the accretion disk, making it unusually dim in X-ray and UV bands and in broad optical...
Tanaka, Takamitsu L
2013-01-01
I discuss the possibility that accreting, supermassive black hole (SMBH) binaries with sub-parsec separations produce luminous, periodically recurring outbursts that interrupt periods of relative quiescence. This hypothesis is motivated by two characteristics found in simulations of binaries embedded in prograde accretion discs: (i) the formation of a central, low-density cavity, and (ii) the leakage of circumbinary gas into this cavity, occurring once per orbit, via discrete streams on nearly radial trajectories. The first feature will diminish the emergent optical/UV flux of the system relative to active galactic nuclei (AGN) powered by single SMBHs, while the second is likely to trigger periodic fluctuations in the emergent flux. I propose a simple toy model in which a leaked stream crosses its own orbit and shocks, converting its bulk kinetic energy to heat. The result is a hot, optically thick flow that is quickly accreted and produces a flare with an AGN-like spectrum that peaks in the UV and ranges fro...
The Lazarus project: A pragmatic approach to binary black hole evolutions
2001-01-01
We present a detailed description of techniques developed to combine 3D numerical simulations and, subsequently, a single black hole close-limit approximation. This method has made it possible to compute the first complete waveforms covering the post-orbital dynamics of a binary black hole system with the numerical simulation covering the essential non-linear interaction before the close limit becomes applicable for the late time dynamics. To determine when close-limit perturbation theory is ...
Numerical Relativity Simulations for Black Hole Merger Astrophysics
Baker, John G.
2010-01-01
Massive black hole mergers are perhaps the most energetic astronomical events, establishing their importance as gravitational wave sources for LISA, and also possibly leading to observable influences on their local environments. Advances in numerical relativity over the last five years have fueled the development of a rich physical understanding of general relativity's predictions for these events. Z will overview the understanding of these event emerging from numerical simulation studies. These simulations elucidate the pre-merger dynamics of the black hole binaries, the consequent gravitational waveform signatures ' and the resulting state, including its kick velocity, for the final black hole produced by the merger. Scenarios are now being considered for observing each of these aspects of the merger, involving both gravitational-wave and electromagnetic astronomy.
Numerical Relativity Simulations for Black Hole Merger Astrophysics
Baker, John G.
2010-01-01
Massive black hole mergers are perhaps the most energetic astronomical events, establishing their importance as gravitational wave sources for LISA, and also possibly leading to observable influences on their local environments. Advances in numerical relativity over the last five years have fueled the development of a rich physical understanding of general relativity's predictions for these events. Z will overview the understanding of these event emerging from numerical simulation studies. These simulations elucidate the pre-merger dynamics of the black hole binaries, the consequent gravitational waveform signatures ' and the resulting state, including its kick velocity, for the final black hole produced by the merger. Scenarios are now being considered for observing each of these aspects of the merger, involving both gravitational-wave and electromagnetic astronomy.
GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence.
Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Bejger, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fenyvesi, E; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gehrels, N; Gemme, G; Geng, P; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hamilton, H; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jian, L; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chi-Woong; Kim, Chunglee; Kim, J; Kim, K; Kim, N; Kim, W; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Lewis, J B; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Nedkova, K; Nelemans, G; Nelson, T J N; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O E S; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J; Boyle, M; Hemberger, D; Kidder, L E; Lovelace, G; Ossokine, S; Scheel, M; Szilagyi, B; Teukolsky, S
2016-06-17
We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4_{-0.9}^{+0.7}×10^{-22}. The inferred source-frame initial black hole masses are 14.2_{-3.7}^{+8.3}M_{⊙} and 7.5_{-2.3}^{+2.3}M_{⊙}, and the final black hole mass is 20.8_{-1.7}^{+6.1}M_{⊙}. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440_{-190}^{+180} Mpc corresponding to a redshift of 0.09_{-0.04}^{+0.03}. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.
Vitale, Salvatore
2016-01-01
The two binary black-hole (BBH) coalescences detected by LIGO, GW150914 and GW151226, were relatively nearby sources, with a redshift of ~0.1. As the sensitivity of Advanced LIGO and Virgo increases in the next few years, they will eventually detect heavy BBHs up to redshifts of ~1. However, these are still relatively small distances compared with the size of the Universe, or with those encountered in most areas of astrophysics. In order to study BBH during the epoch of reionization, or black holes born from population III stars, more sensitive instruments are needed. Third-generation gravitational-wave detectors, such as the Einstein Telescope or the Cosmic Explorer are already in an advanced R&D stage. These detectors will be roughly a factor of 10 more sensitive than the current generation, and be able to detect BBH mergers beyond a redshift of 20. In this paper we quantify the precision with which these new facilities will be able to estimate the parameters of stellar-mass, heavy, and intermediate-mas...
The Missing Link: Bayesian Detection and Measurement of Intermediate-Mass Black-Hole Binaries
Graff, Philip B; Sathyaprakash, B S
2015-01-01
We perform Bayesian analysis of gravitational-wave signals from non-spinning, intermediate-mass black-hole binaries (IMBHBs) with observed total mass, $M_{\\mathrm{obs}}$, from $50\\mathrm{M}_{\\odot}$ to $500\\mathrm{M}_{\\odot}$ and mass ratio $1\\mbox{--}4$ using advanced LIGO and Virgo detectors. We employ inspiral-merger-ringdown waveform models based on the effective-one-body formalism and include subleading modes of radiation beyond the leading $(2,2)$ mode. The presence of subleading modes increases signal power for inclined binaries and allows for improved accuracy and precision in measurements of the masses as well as breaking of extrinsic parameter degeneracies. For low total masses, $M_{\\mathrm{obs}} \\lesssim 50 \\mathrm{M}_{\\odot}$, the observed chirp mass $\\mathcal{M}_{\\rm obs} = M_{\\mathrm{obs}}\\,\\eta^{3/5}$ ($\\eta$ being the symmetric mass ratio) is better measured. In contrast, as increasing power comes from merger and ringdown, we find that the total mass $M_{\\mathrm{obs}}$ has better relative prec...
Dayanga, Thilina
2013-01-01
We evaluate how well EOBNR waveforms, obtained from the effective one-body formalism, perform in detecting gravitational wave (GW) signals from binary black hole (BBH) coalescences modelled by numerical relativity (NR) groups participating in the second edition of the numerical injection analysis (NINJA-2). In this study, NINJA-2 NR-based signals that are available in the public domain were injected in simulated Gaussian, stationary data prepared for three LIGO-Virgo detectors with early Advanced LIGO sensitivities. Here we studied only non-spinning BBH signals. A total of 2000 such signals from 20 NR-based signal families were injected in a two-month long data set. The all-sky, all-time compact binary coalescence (CBC) search pipeline was run along with an added coherent stage to search for those signals. We find that the EOBNR templates are only slightly less efficient (by a few percent) in detecting non-spinning NR-based signals than in detecting EOBNR injections. On the other hand, the coherent stage impr...
Gravitational-wave observations of binary black holes: Effect of non-quadrupole modes
Varma, Vijay; Husa, Sascha; Bustillo, Juan Calderon; Hannam, Mark; Puerrer, Michael
2014-01-01
We study the effect of non-quadrupolar modes in the detection and parameter estimation of gravitational waves (GWs) from non-spinning black-hole binaries. We evaluate the loss of signal-to-noise ratio and the systematic errors in the estimated parameters when one uses a quadrupole-mode template family to detect GW signals with all the relevant modes, for target signals with total masses $20 M_\\odot \\leq M \\leq 250 M_\\odot$ and mass ratios $1 \\leq q \\leq 18$. Target signals are constructed by matching numerical-relativity simulations describing the late inspiral, merger and ringdown of the binary with post-Newtonian/effective-one-body waveforms describing the early inspiral. We find that waveform templates modeling only the quadrupolar modes of the GW signal are sufficient (loss of detection rate $< 10\\%$) for the detection of GWs with mass ratios $q\\leq4$ using advanced GW observatories. Neglecting the effect of non-quadrupole modes will introduce systematic errors in the estimated parameters. The systemat...
Abbott, B P; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Bejger, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calder'on; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavagli`a, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J -P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dasgupta, A; Costa, C F Da Silva; Dattilo, V; Dave, I; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Del'eglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; D'iaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H -B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fenyvesi, E; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J -D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gehrels, N; Gemme, G; Geng, P; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; Gonz'alez, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J -M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jian, L; Jim'enez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; K'ef'elian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chi-Woong; Kim, Chunglee; Kim, J; Kim, K; Kim, N; Kim, W; Kim, Y -M; Kimbrell, S J; King, E J; King, P J; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Kr'olak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Lewis, J B; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Lombardi, A L; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; L"uck, H; Lundgren, A P; Lynch, R; Ma, Y; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Zertuche, L Magaña; Magee, R M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; M'arka, S; M'arka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Nedkova, K; Nelemans, G; Nelson, T J N; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Perri, L M; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; P"urrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosi'nska, D; Rowan, S; R"udiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O E S; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Sch"onbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepa'nczyk, M J; Tacca, M; Talukder, D; Tanner, D B; T'apai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torres, C V; Torrie, C I; T"oyr"a, D; Travasso, F; Traylor, G; Trifir`o, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; Brand, J F J van den; Broeck, C Van Den; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vas'uth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Vicer'e, A; Vinciguerra, S; Vine, D J; Vinet, J -Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yu, H; Yvert, M; zny, A Zadro; Zangrando, L; Zanolin, M; Zendri, J -P; Zevin, M; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J; Boyle, M; Campanelli, M; Chu, T; Clark, M; Fauchon-Jones, E; Fong, H; Hannam, M; Healy, J; Hemberger, D; Hinder, I; Husa, S; Kalaghati, C; Khan, S; Kidder, L E; Kinsey, M; Laguna, P; London, L T; Lousto, C O; Lovelace, G; Ossokine, S; Pannarale, F; Pfeiffer, H P; Scheel, M; Shoemaker, D M; Szilagyi, B; Teukolsky, S; Vinuales, A Vano; Zlochower, Y
2016-01-01
We compare GW150914 directly to simulations of coalescing binary black holes in full general relativity, accounting for all the spin-weighted quadrupolar modes, and separately accounting for all the quadrupolar and octopolar modes. Consistent with the posterior distributions reported in LVC_PE[1] (at 90% confidence), we find the data are compatible with a wide range of nonprecessing and precessing simulations. Followup simulations performed using previously-estimated binary parameters most resemble the data. Comparisons including only the quadrupolar modes constrain the total redshifted mass Mz \\in [64 - 82M_\\odot], mass ratio q = m2/m1 \\in [0.6,1], and effective aligned spin \\chi_eff \\in [-0.3, 0.2], where \\chi_{eff} = (S1/m1 + S2/m2) \\cdot\\hat{L} /M. Including both quadrupolar and octopolar modes, we find the mass ratio is even more tightly constrained. Simulations with extreme mass ratios and effective spins are highly inconsistent with the data, at any mass. Several nonprecessing and precessing simulation...
Effective potentials and morphological transitions for binary black-hole spin precession
Kesden, Michael; O'Shaughnessy, Richard; Berti, Emanuele; Sperhake, Ulrich
2014-01-01
Binary black holes (BBHs) on quasicircular orbits are fully characterized by their total mass $M$, mass ratio $q$, spins $\\mathbf{S}_1$ and $\\mathbf{S}_2$, and orbital angular momentum $\\mathbf{L}$. When the binary separation $r \\gg GM/c^2$, the precession timescale is much shorter than the radiation-reaction time on which $L = |\\mathbf{L}|$ decreases due to gravitational-wave (GW) emission. We use conservation of the total angular momentum $\\mathbf{J} = \\mathbf{L} + \\mathbf{S}_1 + \\mathbf{S}_2$ (with magnitude $J$) and the projected effective spin $\\xi \\equiv M^{-2} [(1+q) \\mathbf{S}_1 + (1+q^{-1})\\mathbf{S}_2] \\cdot \\hat{\\mathbf{L}}$ on the precession time to derive an effective potential for BBH spin precession. This effective potential allows us to solve the orbit-averaged spin-precession equations analytically for arbitrary mass ratios and spins. These solutions are quasiperiodic functions of time: after a period $\\tau(L, J, \\xi)$ the angular momenta return to their initial relative orientations and prec...
Khan, Fazeel
2013-01-01
During a galaxy merger, the supermassive black hole (SMBH) in each galaxy is thought to sink to the center of the potential and form a supermassive black hole binary; this binary can eject stars via 3-body scattering, bringing the SMBHs ever closer. In a static spherical galaxy model, the binary stalls at a separation of about a parsec after ejecting all the stars in its loss cone -- this is the well-known final parsec problem. Earlier work has shown that the centrophilic orbits in triaxial galaxy models are key in refilling the loss cone at a high enough rate to prevent the black holes from stalling. However, the evolution of binary SMBHs has never been explored in axisymmetric galaxies, so it is not clear if the final parsec problem persists in these systems. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in galaxy models with a range of ellipticity. For the first time, we show that mere axisymmetry can solve the final parsec problem; we find the the SMBH evolution is indep...
Suppression of the accretion rate in thin discs around binary black holes
Ragusa, Enrico; Price, Daniel J
2016-01-01
We present three-dimensional Smoothed Particle Hydrodynamics (SPH) simulations investigating the dependence of the accretion rate on the disc thickness around an equal-mass, circular black hole binary system. We find that for thick/hot discs, with $H/R\\gtrsim 0.1$, the binary torque does not prevent the gas from penetrating the cavity formed in the disc by the binary (in line with previous investigations). The situation drastically changes for thinner discs, in this case the mass accretion rate is suppressed, such that only a fraction (linearly dependent on $H/R$) of the available gas is able to flow within the cavity and accrete on to the binary. Extrapolating this result to the cold and thin accretion discs expected around supermassive black hole binary systems implies that this kind of systems accretes less material than predicted so far, with consequences not only for the electromagnetic and gravitational waves emissions during the late inspiral phase but also for the recoil speed of the black hole formed...
Constraining the formation of black holes in short-period black hole low-mass X-ray binaries
Repetto, Serena; Nelemans, Gijs
2015-11-01
The formation of stellar-mass black holes (BHs) is still very uncertain. Two main uncertainties are the amount of mass ejected in the supernova (SN) event (if any) and the magnitude of the natal kick (NK) the BH receives at birth (if any). Repetto et al., studying the position of Galactic X-ray binaries containing BHs, found evidence for BHs receiving high NKs at birth. In this paper, we extend that study, taking into account the previous binary evolution of the sources as well. The seven short-period BH X-ray binaries that we use are compact binaries consisting of a low-mass star orbiting a BH in a period less than 1 d. We trace their binary evolution backwards in time, from the current observed state of mass transfer, to the moment the BH was formed, and we add the extra information on the kinematics of the binaries. We find that several systems could be explained by no NK, just mass ejection, while for two systems (and possibly more) a high kick is required. So unless the latter have an alternative formation, such as within a globular cluster, we conclude that at least some BHs get high kicks. This challenges the standard picture that BH kicks would be scaled down from neutron star kicks. Furthermore, we find that five systems could have formed with a non-zero NK but zero mass ejected (i.e. no SN) at formation, as predicted by neutrino-driven NKs.
Detecting black-hole binary clustering via the second-generation gravitational-wave detectors
Namikawa, Toshiya; Nishizawa, Atsushi; Taruya, Atsushi
2016-07-01
The first discovery of the gravitational-wave (GW) event, GW150914, suggests a higher merger rate of black-hole (BH) binaries. If this is true, a number of BH binaries will be observed via the second-generation GW detectors, and the statistical properties of the observed BH binaries can be scrutinized. A naive but important question to ask is whether the spatial distribution of BH binaries faithfully traces the matter inhomogeneities in the Universe or not. Although the BH binaries are thought to be formed inside the galaxies in most of the scenarios, there is no observational evidence to confirm such a hypothesis. Here, we estimate how well the second-generation GW detectors can statistically confirm the BH binaries to be a tracer of the large-scale structure by looking at the auto- and cross-correlation of BH binaries with photometric galaxies and weak-lensing measurements, finding that, with a 3 year observation, the >3 σ detection of a nonzero signal is possible if the BH merger rate today is n˙ 0≳100 Gpc-3 yr-1 and the clustering bias of BH binaries is bBH ,0≳1.5 .
Search for Binary Black Hole Candidates from the VLBI Images of AGNs
Xiang Liu
2014-09-01
We have searched the core-jet pairs in the VLBI scales (< 1 kpc), from several VLBI catalogues, and found out 5 possible Binary Black Hole (BBH) candidates. We present here the search results and analyse the candidates preliminarily. We plan to study with multi-band VLBI observation. We also plan to carry out optical line investigation in future.
Detection of radial velocity shifts due to black hole binaries near merger
McKernan, B
2015-01-01
The barycenter of a massive black hole binary will lie outside the event horizon of the primary black hole for modest values of mass ratio and binary separation. Analagous to radial velocity shifts in stellar emission lines caused by the tug of planets, the radial velocity of the primary black hole around the barycenter can leave a tell-tale oscillation in the broad component of Fe K$\\alpha$ emission from accreting gas. Near-future X-ray telescopes such as Astro-H and Athena will have the energy resolution ($\\delta E/E \\lesssim 10^{-3}$) to search nearby active galactic nuclei (AGN) for the presence of binaries with mass ratios $q \\gtrsim 0.01$, separated by several hundred gravitational radii. The general-relativistic and Lense-Thirring precession of the periapse of the secondary orbit imprints a detectable modulation on the oscillations. The lowest mass binaries in AGN will oscillate many times within typical X-ray exposures, leading to a broadening of the line wings and an over-estimate of black hole spin ...
Hydrodynamical simulations of the tidal stripping of binary stars by massive black holes
Mainetti, Deborah; Campana, Sergio; Colpi, Monica
2016-01-01
In a galactic nucleus, a star on a low angular momentum orbit around the central massive black hole can be fully or partially disrupted by the black hole tidal field, lighting up the compact object via gas accretion. This phenomenon can repeat if the star, not fully disrupted, is on a closed orbit. Because of the multiplicity of stars in binary systems, also binary stars may experience in pairs such a fate, immediately after being tidally separated. The consumption of both the binary components by the black hole is expected to power a double peaked flare (Mandel & Levin 2015). In this paper we perform for the first time, with GADGET2, a suite of SPH simulations of binary stars around a galactic central black hole in the Newtonian regime. We show that accretion luminosity light curves from double tidal disruptions reveal a more prominent knee, rather than a double peak, when decreasing the impact parameter of the encounter and when elevating the difference between the mass of the star which leaves the syst...
Black holes in stellar-mass binary systems: expiating original spin?
King, Andrew
2016-01-01
We investigate systematically whether accreting black hole systems are likely to reach global alignment of the black hole spin and its accretion disc with the binary plane. In low-mass X-ray binaries (LMXBs) there is only a modest tendency to reach such global alignment, and it is difficult to achieve fully: except for special initial conditions we expect misalignment of the spin and orbital planes by ~1 radian for most of the LMXB lifetime. The same is expected in high-mass X-ray binaries (HMXBs). A fairly close approach to global alignment is likely in most stellar-mass ultraluminous X-ray binary systems (ULXs) where the companion star fills its Roche lobe and transfers on a thermal timescale to a black hole of lower mass. These systems are unlikely to show orbital eclipses, as their emission cones are close to the hole's spin axis. This offers a potential observational test, as models for ULXs invoking intermediate-mass black holes do predict eclipses for ensembles of > ~10 systems. Recent observational wo...
Energy and angular momentum radiated for non head-on binary black hole collisions
Moreschi, O M; Lehner, L; Moreschi, Osvaldo; Perez, Alejandro; Lehner, Luis
2002-01-01
We investigate the possible total radiated energy produced by a binary black hole system containing non-vanishing total angular momentum. For the scenearios considered we find that the total radiated energy does not exceed 1%. Additionally we explore the gravitational radiation field and the variation of angular momentum in the process.
The formation of the black hole in the X-ray binary system V404 Cyg
J.C.A. Miller-Jones; P.G. Jonker; G. Nelemans; S. Portegies Zwart; V. Dhawan; W. Brisken; E. Gallo; M.P. Rupen
2009-01-01
Using new and archival radio data, we have measured the proper motion of the black hole X-ray binary V404 Cyg to be 9.2 +/- 0.3 mas yr(-1). Combined with the systemic radial velocity from the literature, we derive the full three-dimensional heliocentric space velocity of the system, which we use to
The formation of black holes derived from X-ray binaries
Repetto, S.
2016-01-01
This Thesis revolves around the topic of black holes (BHs) in X-ray binaries (XRBs). The trigger of this work was to understand how stellar-mass BHs form, a question which we tackled both with theoretical as well as observational studies. The formation mechanism of BHs is an unsolved problem in high
The formation of black holes derived from X-ray binaries
Repetto, S.
2016-01-01
This Thesis revolves around the topic of black holes (BHs) in X-ray binaries (XRBs). The trigger of this work was to understand how stellar-mass BHs form, a question which we tackled both with theoretical as well as observational studies. The formation mechanism of BHs is an unsolved problem in high
Observing the dynamics of supermassive black hole binaries with pulsar timing arrays.
Mingarelli, C M F; Grover, K; Sidery, T; Smith, R J E; Vecchio, A
2012-08-24
Pulsar timing arrays are a prime tool to study unexplored astrophysical regimes with gravitational waves. Here, we show that the detection of gravitational radiation from individually resolvable supermassive black hole binary systems can yield direct information about the masses and spins of the black holes, provided that the gravitational-wave-induced timing fluctuations both at the pulsar and at Earth are detected. This in turn provides a map of the nonlinear dynamics of the gravitational field and a new avenue to tackle open problems in astrophysics connected to the formation and evolution of supermassive black holes. We discuss the potential, the challenges, and the limitations of these observations.
The nature of massive black hole binary candidates: I. Spectral properties and evolution
Decarli, Roberto; Fumagalli, Michele; Tsalmantza, Paraskevi; Montuori, Carmen; Lusso, Elisabeta; Hogg, David W; Prochaska, Jason X
2013-01-01
Theoretically, bound binaries of massive black holes are expected as the natural outcome of mergers of massive galaxies. From the observational side, however, massive black hole binaries remain elusive. Velocity shifts between narrow and broad emission lines in quasar spectra are considered a promising observational tool to search for spatially unresolved, dynamically bound binaries. In this series of papers we investigate the nature of such candidates through analyses of their spectra, images and multi-wavelength spectral energy distributions. Here we investigate the properties of the optical spectra, including the evolution of the broad line profiles, of all the sources identified in our previous study. We find a diverse phenomenology of broad and narrow line luminosities, widths, shapes, ionization conditions and time variability, which we can broadly ascribe to 4 classes based on the shape of the broad line profiles: 1) Objects with bell-shaped broad lines with big velocity shifts (>1000 km/s) compared to...
Rapid formation of supermassive black hole binaries in galaxy mergers with gas.
Mayer, L; Kazantzidis, S; Madau, P; Colpi, M; Quinn, T; Wadsley, J
2007-06-29
Supermassive black holes (SMBHs) are a ubiquitous component of the nuclei of galaxies. It is normally assumed that after the merger of two massive galaxies, a SMBH binary will form, shrink because of stellar or gas dynamical processes, and ultimately coalesce by emitting a burst of gravitational waves. However, so far it has not been possible to show how two SMBHs bind during a galaxy merger with gas because of the difficulty of modeling a wide range of spatial scales. Here we report hydrodynamical simulations that track the formation of a SMBH binary down to scales of a few light years after the collision between two spiral galaxies. A massive, turbulent, nuclear gaseous disk arises as a result of the galaxy merger. The black holes form an eccentric binary in the disk in less than 1 million years as a result of the gravitational drag from the gas rather than from the stars.
Rapid Formation of Supermassive Black Hole Binaries in Galaxy Mergers with Gas
Mayer, L.; /Zurich U. /Zurich, ETH; Kazantzidis, S.; /KIPAC, Menlo Park; Madau, P.; /UC, Santa Cruz /Garching, Max Planck Inst.; Colpi, M.; /Milan Bicocca U.; Quinn, T.; /Washington U., Seattle; Wadsley, J.; /McMaster U.
2008-03-24
Supermassive black holes (SMBHs) are a ubiquitous component of the nuclei of galaxies. It is normally assumed that, following the merger of two massive galaxies, a SMBH binary will form, shrink due to stellar or gas dynamical processes and ultimately coalesce by emitting a burst of gravitational waves. However, so far it has not been possible to show how two SMBHs bind during a galaxy merger with gas due to the difficulty of modeling a wide range of spatial scales. Here we report hydrodynamical simulations that track the formation of a SMBH binary down to scales of a few light years following the collision between two spiral galaxies. A massive, turbulent nuclear gaseous disk arises as a result of the galaxy merger. The black holes form an eccentric binary in the disk in less than a million years as a result of the gravitational drag from the gas rather than from the stars.
On similarity of binary black hole gravitational-wave skymaps: to observe or to wait?
Vitale, Salvatore; Katsavounidis, Erik; Klimenko, Sergey; Vedovato, Gabriele
2016-01-01
Localization estimates for GW150914, the first binary black hole detected by the LIGO instruments, were shared with partner facilities for electromagnetic follow-up. While the source was a compact binary coalescence (CBC), it was first identified by algorithms that search for unmodeled signals, which produced the skymaps that directed electromagnetic observations. Later on, CBC specific algorithms produced refined versions, which showed significant differences. In this paper we show that those differences were not accidental and that CBC and unmodeled skymaps for binary black holes will frequently be different; we thus provide a way to determine whether to observe electromagnetically as promptly as possible (following a gravitational-wave detection), or to wait until CBC skymaps become available, should they not be available in low latency. We also show that, unsurprisingly, CBC algorithms can yield much smaller searched areas.
Khan, Fazeel Mahmood; Holley-Bockelmann, Kelly; Berczik, Peter; Just, Andreas
2013-08-01
During a galaxy merger, the supermassive black hole (SMBH) in each galaxy is thought to sink to the center of the potential and form an SMBH binary; this binary can eject stars via three-body scattering, bringing the SMBHs ever closer. In a static spherical galaxy model, the binary stalls at a separation of about a parsec after ejecting all the stars in its loss cone—this is the well-known final parsec problem. Earlier work has shown that the centrophilic orbits in triaxial galaxy models are key in refilling the loss cone at a high enough rate to prevent the black holes from stalling. However, the evolution of binary SMBHs has never been explored in axisymmetric galaxies, so it is not clear if the final parsec problem persists in these systems. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in galaxy models with a range of ellipticity. For the first time, we show that mere axisymmetry can solve the final parsec problem; we find the SMBH evolution is independent of N for an axis ratio of c/a = 0.8, and that the SMBH binary separation reaches the gravitational radiation regime for c/a = 0.75.
Taylor, S R; Gair, J R; McWilliams, S T
2015-01-01
The couplings between supermassive black-hole binaries and their environments within galactic nuclei have been well studied as part of the search for solutions to the final parsec problem. The scattering of stars by the binary or the interaction with a circumbinary disk may efficiently drive the system to sub-parsec separations, allowing the binary to enter a regime where the emission of gravitational-waves can drive it to merger within a Hubble time. However, these interactions can also affect the orbital parameters of the binary. In particular, they may drive an increase in binary eccentricity which survives until the system's gravitational-wave signal enters the pulsar-timing array band. Therefore, if we can measure the eccentricity from observed signals, we can potentially deduce some of the properties of the binary environment. To this end, we build on previous techniques to present a general Bayesian pipeline with which we can detect and estimate the parameters of an eccentric supermassive black-hole bi...
Khan, Fazeel Mahmood [Department of Space Science, Institute of Space Technology, P.O. Box 2750 Islamabad (Pakistan); Holley-Bockelmann, Kelly [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Berczik, Peter; Just, Andreas, E-mail: khan@ari.uni-heidelberg.de, E-mail: just@ari.uni-heidelberg.de, E-mail: berczik@ari.uni-heidelberg.de, E-mail: k.holley@vanderbilt.edu [Astronomisches Rechen-Institut, Zentrum fuer Astronomie, University of Heidelberg, Moenchhof-Strasse 12-14, D-69120 Heidelberg (Germany)
2013-08-20
During a galaxy merger, the supermassive black hole (SMBH) in each galaxy is thought to sink to the center of the potential and form an SMBH binary; this binary can eject stars via three-body scattering, bringing the SMBHs ever closer. In a static spherical galaxy model, the binary stalls at a separation of about a parsec after ejecting all the stars in its loss cone-this is the well-known final parsec problem. Earlier work has shown that the centrophilic orbits in triaxial galaxy models are key in refilling the loss cone at a high enough rate to prevent the black holes from stalling. However, the evolution of binary SMBHs has never been explored in axisymmetric galaxies, so it is not clear if the final parsec problem persists in these systems. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in galaxy models with a range of ellipticity. For the first time, we show that mere axisymmetry can solve the final parsec problem; we find the SMBH evolution is independent of N for an axis ratio of c/a = 0.8, and that the SMBH binary separation reaches the gravitational radiation regime for c/a = 0.75.
High-energy signatures of binary systems of supermassive black holes
Romero, Gustavo E; Pérez, Daniela
2016-01-01
Context. Binary systems of supermassive black holes are expected to be strong sources of long gravitational waves prior to merging. These systems are good candidates to be observed with forthcoming space-borne detectors. Only a few of these systems, however, have been firmly identified to date. Aims. We aim at providing a criterion for the identification of some supermassive black hole binaries based on the characteristics of the high-energy emission of a putative relativistic jet launched from the most massive of the two black holes. Methods. We study supermassive black hole binaries where the less massive black hole has carved an annular gap in the circumbinary disk, but nevertheless there is a steady mass flow across its orbit. Such a perturbed disk is hotter and more luminous than a standard thin disk in some regions. Assuming that the jet contains relativistic electrons, we calculate its broadband spectral energy distribution focusing on the inverse Compton up-scattering of the disk photons. We also comp...
Astrophysical constraints on massive black hole binary evolution from Pulsar Timing Arrays
Middleton, Hannah; Farr, Will M; Sesana, Alberto; Vecchio, Alberto
2015-01-01
We consider massive black hole binary systems and information that can be derived about their population and formation history solely from current and possible future pulsar timing array (PTA) results. We use models of the stochastic gravitational-wave background from circular massive black hole binaries with chirp mass in the range $10^6 - 10^{11} M_\\odot$ evolving solely due to radiation reaction. Our parameterised models for the black hole merger history make only weak assumptions about the properties of the black holes merging over cosmic time. We show that current PTA results place a model-independent upper limit on the merger density of massive black hole binaries, but provide no information about their redshift or mass distribution. We show that even in the case of a detection resulting from a factor of 10 increase in amplitude sensitivity, PTAs will only put weak constraints on the source merger density as a function of mass, and will not provide any additional information on the redshift distribution...
Shining Light on Quantum Gravity with Pulsar-Black Hole Binaries
Estes, John; Lippert, Matthew; Simonetti, John H
2016-01-01
Pulsars are some of the most accurate clocks found in nature, while black holes offer a unique arena for the study of quantum gravity. As such, pulsar-black hole (PSR-BH) binaries provide ideal astrophysical systems for detecting effects of quantum gravity. With the success of aLIGO and the advent of instruments like the SKA and eLISA, the prospects for discovery of such PSR-BH binaries are very promising. We argue that PSR-BH binaries can serve as ready-made testing grounds for proposed resolutions to the black hole information paradox. We propose using timing signals from a pulsar beam passing through the region near a BH event horizon as a probe of quantum gravitational effects. In particular, we demonstrate that fluctuations of the geometry outside a black hole lead to an increase in the measured root-mean-square deviation of arrival times of pulsar pulses traveling near the horizon. This allows for a clear observational test of the nonviolent nonlocality proposal for black hole information escape. For a ...
Inspiral, merger and ringdown of unequal mass black hole binaries: a multipolar analysis
Berti, E; Cardoso, V; González, J A; Hannam, M; Husa, S; Sperhake, U; Berti, Emanuele; Bruegmann, Bernd; Cardoso, Vitor; Gonzalez, Jose A.; Hannam, Mark; Husa, Sascha; Sperhake, Ulrich
2007-01-01
We study the inspiral, merger and ringdown of unequal mass black hole binaries by analyzing a catalogue of numerical simulations for seven different values of the mass ratio (from q=M2/M1=1 to q=4). We compare numerical and Post-Newtonian results by projecting the waveforms onto spin-weighted spherical harmonics, characterized by angular indices (l,m). We find that the Post-Newtonian equations predict remarkably well the relation between the wave amplitude and the orbital frequency for each (l,m), and that the convergence of the Post-Newtonian series to the numerical results is non-monotonic. To leading order the total energy emitted in the merger phase scales like eta^2 and the spin of the final black hole scales like eta, where eta=q/(1+q)^2 is the symmetric mass ratio. We study the multipolar distribution of the radiation, finding that odd-l multipoles are suppressed in the equal mass limit. Higher multipoles carry a larger fraction of the total energy as q increases. We introduce and compare three differe...
Mergers of Non-spinning Black-hole Binaries: Gravitational Radiation Characteristics
Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.; vanMeter, James R.
2008-01-01
We present a detailed descriptive analysis of the gravitational radiation from black-hole binary mergers of non-spinning black holes, based on numerical simulations of systems varying from equal-mass to a 6:1 mass ratio. Our primary goal is to present relatively complete information about the waveforms, including all the leading multipolar components, to interested researchers. In our analysis, we pursue the simplest physical description of the dominant features in the radiation, providing an interpretation of the waveforms in terms of an implicit rotating source. This interpretation applies uniformly to the full wavetrain, from inspiral through ringdown. We emphasize strong relationships among the l = m modes that persist through the full wavetrain. Exploring the structure of the waveforms in more detail, we conduct detailed analytic fitting of the late-time frequency evolution, identifying a key quantitative feature shared by the l = m modes among all mass-ratios. We identify relationships, with a simple interpretation in terms of the implicit rotating source, among the evolution of frequency and amplitude, which hold for the late-time radiation. These detailed relationships provide sufficient information about the late-time radiation to yield a predictive model for the late-time waveforms, an alternative to the common practice of modeling by a sum of quasinormal mode overtones. We demonstrate an application of this in a new effective-one-body-based analytic waveform model.
Stationary Black-Hole Binaries: A Non-existence Proof
Neugebauer, Gernot; Hennig, Jörg
We resume former discussions of the question, whether the spin-spin repulsion and the gravitational attraction of two aligned black holes can balance each other. Based on the solution of a boundary problem for disconnected (Killing) horizons and the resulting violation of characteristic black hole properties, we present a non-existence proof for the equilibrium configuration in question. From a mathematical point of view, this result is a further example for the efficiency of the inverse ("scattering") method in non-linear theories.
Stationary black-hole binaries: A non-existence proof
Neugebauer, Gernot
2013-01-01
We resume former discussions of the question, whether the spin-spin repulsion and the gravitational attraction of two aligned black holes can balance each other. Based on the solution of a boundary problem for disconnected (Killing) horizons and the resulting violation of characteristic black hole properties, we present a non-existence proof for the equilibrium configuration in question. From a mathematical point of view, this result is a further example for the efficiency of the inverse ("scattering") method in non-linear theories.
Binary black hole mergers: large kicks for generic spin orientations
Tichy, W; Tichy, Wolfgang; Marronetti, Pedro
2007-01-01
We present results from several simulations of equal mass black holes with spin. The spin magnitudes are $S/m^2=0.8$ in all cases, but we vary the spin orientations arbitrarily, in and outside the orbital plane. We find that in all but one case the final merged black hole acquires a kick of more than 1000 km/s, indicating that kicks of this magnitude are likely to be generic and should be expected for mergers with general spin orientations. The maximum kick velocity we find is 2500 km/s and occurs for initial spins which are anti-aligned in the initial orbital plane.
Shining Light on Quantum Gravity with Pulsar-Black hole Binaries
Estes, John; Kavic, Michael; Lippert, Matthew; Simonetti, John H.
2017-03-01
Pulsars are some of the most accurate clocks found in nature, while black holes offer a unique arena for the study of quantum gravity. As such, pulsar-black hole (PSR-BH) binaries provide ideal astrophysical systems for detecting the effects of quantum gravity. With the success of aLIGO and the advent of instruments like SKA and eLISA, the prospects for the discovery of such PSR-BH binaries are very promising. We argue that PSR-BH binaries can serve as ready-made testing grounds for proposed resolutions to the black hole information paradox. We propose using timing signals from a pulsar beam passing through the region near a black hole event horizon as a probe of quantum gravitational effects. In particular, we demonstrate that fluctuations of the geometry outside a black hole lead to an increase in the measured root mean square deviation of the arrival times of pulsar pulses traveling near the horizon. This allows for a clear observational test of the nonviolent nonlocality proposal for black hole information escape. For a series of pulses traversing the near-horizon region, this model predicts an rms in pulse arrival times of ˜ 30 μ {{s}} for a 3{M}⊙ black hole, ˜ 0.3 {ms} for a 30{M}⊙ black hole, and ˜ 40 {{s}} for Sgr A*. The current precision of pulse time-of-arrival measurements is sufficient to discern these rms fluctuations. This work is intended to motivate observational searches for PSR-BH systems as a means of testing models of quantum gravity.
M. Smailagić; E. Bon
2015-12-01
Variability of active galactic nuclei is not well understood. One possible explanation is existence of supermassive binary black holes (SMBBH) in their centres. It is expected that major mergers are common in the Universe. It is expected that each supermassive black hole of every galaxy eventually finish as a SMBBH system in the core of newly formed galaxy. Here we model the emission line profiles of active galactic nuclei (AGN) assuming that the flux and emission line shape variations are induced by supermassive binary black hole systems (SMBBH). We assume that the accreting gas inside the circumbinary (CB) disk is photo ionized by mini accretion disk emission around each SMBBH. We calculate variations of emission line flux, shifts and shapes for different parameters of SMBBH orbits. We consider cases with different masses and inclinations for circular orbits and measure the effect to the shape of emission line profiles and flux variability.
Smailagić, Marijana
2016-01-01
Variability of active galactic nuclei is not well understood. One possible explanation is existence of supermassive binary black holes (SMBBH) in their centres. It is expected that major mergers are common in the Universe. It is expected that each supermassive black hole of every galaxy eventually finish as a SMBBH system in the core of newly formed galaxy. Here we model the emission line profiles of active galactic nuclei (AGN) assuming that the flux and emission line shapes variation are induced by supermassive binary black hole systems (SMBBH). We assume that accreting gas inside of circumbinary (CB) disk is photo ionized by mini accretion disk emission around each SMBBH. We calculate variations of emission line flux, shifts and shapes for different parameters of SMBBH orbits. We consider cases with different masses and inclinations for circular orbits and measure the effect to the shape of emission line profiles and flux variability.
Simulating a High-Spin Black Hole-Neutron Star Binary
Derby, John; Lovelace, Geoffrey; Duez, Matt; Foucart, Francois; Simulating Extreme Spacetimes (SXS) Collaboration
2017-01-01
During their first observing run (fall 2015) Advanced LIGO detected gravitational waves from merging black holes. In its future observations LIGO could detect black hole neutron star binaries (BHNS). It is important to have numerical simulations to predict these waves, to help find as many of these waves as possible and to estimate the sources properties, because at times near merger analytic approximations fail. Also, numerical models of the disk formed when the black hole tears apart the neutron star can help us learn about these systems' potential electromagnetic counterparts. One area of the parameter space for BHNS systems that is particularly challenging is simulations with high black hole spin. I will present results from a new BHNS simulation that has a black hole spin of 90% of the theoretical maximum. We are part of SXS but not all.
Estimates of black-hole natal kick velocities from observations of low-mass X-ray binaries
Mandel, Ilya
2015-01-01
The birth kicks of black holes, arising from asymmetric mass ejection or neutrino emission during core-collapse supernovae, are of great interest for both observationally constraining supernova models and population-synthesis studies of binary evolution. Recently, several efforts were undertaken to estimate black hole birth kicks from observations of black-hole low-mass X-ray binaries. We follow up on this work, specifically focussing on the highest estimated black-hole kick velocities. We find that existing observations do not require black hole birth kicks in excess of approximately 100 km/s, although higher kicks are not ruled out.
Brownian motion of massive black hole binaries and the final parsec problem
Bortolas, E; Dotti, M; Spera, M; Mapelli, M
2016-01-01
Massive black hole binaries (BHBs) are expected to be one of the most powerful sources of gravitational waves (GWs) in the frequency range of the pulsar timing array and of forthcoming space-borne detectors. They are believed to form in the final stages of galaxy mergers, and then harden by slingshot ejections of passing stars. However, evolution via the slingshot mechanism may be ineffective if the reservoir of interacting stars is not readily replenished, and the binary shrinking may come to a halt at roughly a parsec separation. Recent simulations suggest that the departure from spherical symmetry, naturally produced in merger remnants, leads to efficient loss cone refilling, preventing the binary from stalling. However, current N-body simulations able to accurately follow the evolution of BHBs are limited to very modest particle numbers. Brownian motion may artificially enhance the loss cone refilling rate in low-N simulations, where the binary encounters a larger population of stars due its random motion...
Rasskazov, Alexander
2016-01-01
We compute the isotropic gravitational wave (GW) background produced by binary supermassive black holes (SBHs) in galactic nuclei. In our model, massive binaries evolve at early times via gravitational-slingshot interaction with nearby stars, and at later times by the emission of GWs. Our expressions for the rate of binary hardening in the "stellar" regime are taken from the recent work of Vasiliev et al., who show that in the non-axisymmetric galaxies expected to form via mergers, stars are supplied to the center at high enough rates to ensure binary coalescence on Gyr timescales. We also include, for the first time, the extra degrees of freedom associated with evolution of the binary's orbital plane; in rotating nuclei, interaction with stars causes the orientation and the eccentricity of a massive binary to change in tandem, leading in some cases to very high eccentricities (e>0.9) before the binary enters the GW-dominated regime. We argue that previous studies have over-estimated the mean ratio of SBH mas...
Detecting Black-Hole Binary Clustering via the Second-Generation Gravitational-Wave Detectors
Namikawa, Toshiya; Taruya, Atsushi
2016-01-01
First discovery of the gravitational wave (GW) event, GW150914, suggests a higher merger rate of black-hole (BH) binaries. If this is true, a number of BH binaries will be observed via the second-generation GW detectors, and the statistical properties of the observed BH binaries can be scrutinized. A naive but important question to ask is whether the spatial distribution of BH binaries faithfully traces the matter inhomogeneities in the Universe or not. Although the BH binaries are thought to be formed inside the galaxies in most of the scenarios, there is no observational evidence to confirm such a hypothesis. Here, we estimate how well the second-generation GW detectors can statistically confirm the BH binaries to be a tracer of the large-scale structure by looking at the auto- and cross-correlation of BH binaries with photometric galaxies and weak lensing measurements, finding that, with a three-year observation, the $>3\\sigma$ detection of non-zero signal is possible if the BH merger rate today is $\\dot{n...
Roedig, Constanze
2013-01-01
We study the interplay between mass transfer, accretion and gravitational torques onto a black hole binary migrating in a self-gravitating, retrograde circumbinary disc. A direct comparison with an identical prograde disc shows that: (i) because of the absence of resonances, the cavity size is a factor a(1+e) smaller for retrograde discs; (ii) nonetheless the shrinkage of a circular binary semi--major axis, a, is identical in both cases; (iii) a circular binary in a retrograde disc remains circular while eccentric binaries grow more eccentric. For non-circular binaries, we measure the orbital decay rates and the eccentricity growth rates to be exponential as long as the binary orbits in the plane of its disc. Additionally, for these co-planar systems, we find that interaction (~ non--zero torque) stems only from the cavity edge plus a(1+e) in the disc, i.e. for dynamical purposes, the disc can be treated as a annulus of small radial extent. We find that simple 'dust' models in which the binary- disc interacti...
A close-pair binary in a distant triple supermassive black hole system.
Deane, R P; Paragi, Z; Jarvis, M J; Coriat, M; Bernardi, G; Fender, R P; Frey, S; Heywood, I; Klöckner, H-R; Grainge, K; Rumsey, C
2014-07-03
Galaxies are believed to evolve through merging, which should lead to some hosting multiple supermassive black holes. There are four known triple black hole systems, with the closest black hole pair being 2.4 kiloparsecs apart (the third component in this system is at 3 kiloparsecs), which is far from the gravitational sphere of influence (about 100 parsecs for a black hole with mass one billion times that of the Sun). Previous searches for compact black hole systems concluded that they were rare, with the tightest binary system having a separation of 7 parsecs (ref. 10). Here we report observations of a triple black hole system at redshift z = 0.39, with the closest pair separated by about 140 parsecs and significantly more distant from Earth than any other known binary of comparable orbital separation. The effect of the tight pair is to introduce a rotationally symmetric helical modulation on the structure of the large-scale radio jets, which provides a useful way to search for other tight pairs without needing extremely high resolution observations. As we found this tight pair after searching only six galaxies, we conclude that tight pairs are more common than hitherto believed, which is an important observational constraint for low-frequency gravitational wave experiments.
Binary Black Hole Mergers in the first Advanced LIGO Observing Run
,
2016-01-01
The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper we present full results from a search for binary black hole merger signals with total masses up to $100 M_\\odot$ and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than $5\\sigma$ over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance, which has a 87% probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We d...
Measuring the spin of black holes in binary systems using gravitational waves
Vitale, Salvatore; Veitch, John; Raymond, Vivien; Sturani, Riccardo
2014-01-01
Compact binary coalescences are the most promising sources of gravitational waves (GWs) for ground based detectors. Binary systems containing one or two spinning black holes are particularly interesting due to spin-orbit (and eventual spin-spin) interactions, and the opportunity of measuring spins directly through GW observations. In this letter we analyze simulated signals emitted by spinning binaries with several values of masses, spins, orientation, and signal-to-noise ratio. We find that spin magnitudes and tilt angles can be estimated to accuracy of a few percent for neutron star--black hole systems and $\\sim$ 5-30% for black hole binaries. In contrast, the difference in the azimuth angles of the spins, which may be used to check if spins are locked into resonant configurations, cannot be constrained. We observe that the best performances are obtained when the line of sight is perpendicular to the system's total angular momentum, and that a sudden change of behavior occurs when a system is observed from ...
Constraining the formation of black-holes in short-period Black-Hole Low-Mass X-ray Binaries
Repetto, Serena
2015-01-01
The formation of stellar mass black holes is still very uncertain. Two main uncertainties are the amount of mass ejected in the supernova event (if any) and the magnitude of the natal kick the black hole receives at birth (if any). Repetto et al. (2012), studying the position of Galactic X-ray binaries containing black holes, found evidence for black holes receiving high natal kicks at birth. In this Paper we extend that study, taking into account the previous binary evolution of the sources as well. The seven short-period black-hole X-ray binaries that we use, are compact binaries consisting of a low-mass star orbiting a black hole in a period less than $1$ day. We trace their binary evolution backwards in time, from the current observed state of mass-transfer, to the moment the black hole was formed, and we add the extra information on the kinematics of the binaries. We find that several systems could be explained by no natal kick, just mass ejection, while for two systems (and possibly more) a high kick is...
Search for gravitational waves from intermediate mass binary black holes
Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barayoga, J. C. B.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, W.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H.; Chow, J.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Del Pozzo, W.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil, S.; Gill, C.; Gleason, J.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.
2012-05-01
We present the results of a weakly modeled burst search for gravitational waves from mergers of nonspinning intermediate mass black holes in the total mass range 100-450M⊙ and with the component mass ratios between 1∶1 and 4∶1. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the intermediate mass black holes mergers as a function of the component masses. In the most efficiently detected bin centered on 88+88M⊙, for nonspinning sources, the rate density upper limit is 0.13 per Mpc3 per Myr at the 90% confidence level.
Tanaka, Takamitsu
2011-12-01
Supermassive black holes permeate the observable Universe, residing in the nuclei of all or nearly all nearby massive galaxies and powering luminous quasars as far as ten billion light years away. These monstrous objects must grow through a combination of gas accretion and mergers of less massive black holes. The direct detection of the mergers by future gravitational-wave detectors will be a momentous scientific achievement, providing tests of general relativity and revealing the cosmic evolution of supermassive black holes. An additional --- and arguably equally rewarding --- challenge is the concomitant observation of merging supermassive black holes with both gravitational and electromagneticwaves. Such synergistic, "multi-messenger" studies can probe the expansion history of the Universe and shed light on the details of accretion astrophysics. This thesis examines the mergers of supermassive black hole binaries and the observable signatures of these events. First, we consider the formation scenarios for the earliest supermassive black holes. This investigation is motivated by the Sloan Digital Sky Survey observation of a quasar that appears to be powered by a supermassive black hole with a mass of billions of solar masses, already in place one billion years after the Big Bang. Second, we develop semianalytic, time-dependent-models for the thermal emission from circumbinary gas disks around merging black holes. Our calculations corroborate the qualitative conclusion of a previous study that for black hole mergers detectable by a space-based gravitational-wave observatory, a gas disk near the merger remnant may exhibit a dramatic brightening of soft X-rays on timescales of several years. Our results suggest that this "afterglow" may become detectable more quickly after the merger than previously estimated. Third, we investigate whether these afterglow episodes could be observed serendipitously by forthcoming wide-field, high-cadence electromagnetic surveys
Yun, Yuqi; Zevin, Michael; Sampson, Laura; Kalogera, Vassiliki
2017-01-01
With more observations from LIGO in the upcoming years, we will be able to construct an observed mass distribution of black holes to compare with binary evolution simulations. This will allow us to investigate the physics of binary evolution such as the effects of common envelope efficiency and wind strength, or the properties of the population such as the initial mass function.However, binary evolution codes become computationally expensive when running large populations of binaries over a multi-dimensional grid of input parameters, and may simulate accurately only for a limited combination of input parameter values. Therefore we developed a fast machine-learning method that utilizes Gaussian Mixture Model (GMM) and Gaussian Process (GP) regression, which together can predict distributions over the entire parameter space based on a limited number of simulated models. Furthermore, Gaussian Process regression naturally provides interpolation errors in addition to interpolation means, which could provide a means of targeting the most uncertain regions of parameter space for running further simulations.We also present a case study on applying this new method to predicting chirp mass distributions for binary black hole systems (BBHs) in Milky-way like galaxies of different metallicities.
Dosopoulou, Fani
2016-01-01
The massive black holes originally in the nuclei of two merging galaxies will form a binary in the core of the merger remnant. The early evolution of the massive binary is driven by dynamical friction before the binary becomes "hard" and eventually reaches coalescence through the emission of gravitational wave radiation. We use analytical models and $N$-body integrations to study the evolution of supermassive black hole binaries due to dynamical friction. In our treatment we include the frictional force from stars moving faster than the massive body which is neglected in the standard Chandrasekhar's treatment. We show that the eccentricity of a massive binary increases due to dynamical friction if the density profile of the surrounding stellar cusp rises less steeply than $\\rho\\propto r^{-2}$. For cusps shallower than $\\rho\\propto r^{-1}$ the dynamical fiction timescale can become very long due to the deficit of stars moving slower than the secondary hole. Although adding the contribution of the fast stars in...
Evolution of binary supermassive black holes and the final-parsec problem
Vasiliev, Eugene
2014-01-01
I review the evolution of binary supermassive black holes and focus on the stellar-dynamical mechanisms that may help to overcome the final-parsec problem - the possible stalling of the binary at a separation much larger than is required for an efficient gravitational wave emission. Recent N-body simulations have suggested that a departure from spherical symmetry in the nucleus of the galaxy may keep the rate of interaction of stars with the binary at a high enough level so that the binary continues to shrink rather rapidly. However, a major problem of all these simulations is that they do not probe the regime where collisionless effects are dominant - in other words, the number of particles in the simulation is still not sufficient to reach the asymptotic behaviour of the system. I present a novel Monte Carlo method for simulating both collisional and collisionless evolution of non-spherical stellar systems, and apply it for the problem of binary supermassive black hole evolution. I show that in triaxial gal...
Merging black hole binaries in galactic nuclei: implications for advanced-LIGO detections
Antonini, Fabio
2016-01-01
Motivated by the recent detection of gravitational waves from the black hole binary merger GW150914, we study the dynamical evolution of black holes in galactic nuclei where massive star clusters reside. With masses of ~10^7M_Sun and sizes of only a few parsecs, nuclear star clusters are the densest stellar systems observed in the local universe and represent a robust environment where (stellar mass) black hole binaries can dynamically form, harden and merge. We show that due to their large escape speeds, nuclear star clusters can keep a large fraction of their merger remnants while also evolving rapidly enough that the holes can sink back to the central regions where they can swap in new binaries that can subsequently harden and merge. This process can repeat several times and produce black hole mergers of several tens of solar masses similar to GW150914 and up to a few hundreds of solar masses, without the need of invoking extremely low metallicity environments or implausible initial conditions. We use a se...
Fossil Gas and the Electromagnetic Precursor of Supermassive Binary Black Hole Mergers
Chang, P; Menou, K; Quataert, E
2009-01-01
Using a one-dimensional height integrated model, we calculate the evolution of an unequal mass binary black hole with a coplanar gas disk that contains a gap due to the presence of the secondary black hole. Viscous evolution of the outer circumbinary disk initially hardens the binary, while the inner disk drains onto the primary (central) black hole. As long as the inner disk remains cool and thin at low $\\dot{M}_{\\rm ext}$ (rather than becoming hot and geometrically thick), the mass of the inner disk reaches an asymptotic mass typically $\\sim 10^{-3}-10^{-4}\\Msun$. Once the semimajor axis shrinks below a critical value, angular momentum losses from gravitational waves dominate over viscous transport in hardening the binary. The inner disk then no longer responds viscously to the inspiraling black holes. Instead, tidal interactions with the secondary rapidly drive the inner disk into the primary. Tidal and viscous dissipation in the inner disk lead to a late time brightening in luminosity $L\\propto t_{\\rm min...
The Formation and Gravitational-Wave Detection of Massive Stellar Black-Hole Binaries
Belczynski, Krzysztof; Cantiello, Matteo; Holz, Daniel E; Fryer, Chris L; Mandel, Ilya; Miller, M Coleman; Walczak, Marek
2014-01-01
If binaries consisting of two 100 Msun black holes exist they would serve as extraordinarily powerful gravitational-wave sources, detectable to redshifts of z=2 with the advanced LIGO/Virgo ground-based detectors. Large uncertainties about the evolution of massive stars preclude definitive rate predictions for mergers of these massive black holes. We show that rates as high as hundreds of detections per year, or as low as no detections whatsoever, are both possible. It was thought that the only way to produce these massive binaries was via dynamical interactions in dense stellar systems. This view has been challenged by the recent discovery of several stars with mass greater than 150 Msun in the R136 region of the Large Magellanic Cloud. Current models predict that when stars of this mass leave the main sequence, their expansion is insufficient to allow common envelope evolution to efficiently reduce the orbital separation. The resulting black-hole--black-hole binary remains too wide to be able to coalesce wi...
Measuring the spin of black holes in binary systems using gravitational waves.
Vitale, Salvatore; Lynch, Ryan; Veitch, John; Raymond, Vivien; Sturani, Riccardo
2014-06-27
Compact binary coalescences are the most promising sources of gravitational waves (GWs) for ground-based detectors. Binary systems containing one or two spinning black holes are particularly interesting due to spin-orbit (and eventual spin-spin) interactions and the opportunity of measuring spins directly through GW observations. In this Letter, we analyze simulated signals emitted by spinning binaries with several values of masses, spins, orientations, and signal-to-noise ratios, as detected by an advanced LIGO-Virgo network. We find that for moderate or high signal-to-noise ratio the spin magnitudes can be estimated with errors of a few percent (5%-30%) for neutron star-black hole (black hole-black hole) systems. Spins' tilt angle can be estimated with errors of 0.04 rad in the best cases, but typical values will be above 0.1 rad. Errors will be larger for signals barely above the threshold for detection. The difference in the azimuth angles of the spins, which may be used to check if spins are locked into resonant configurations, cannot be constrained. We observe that the best performances are obtained when the line of sight is perpendicular to the system's total angular momentum and that a sudden change of behavior occurs when a system is observed from angles such that the plane of the orbit can be seen both from above and below during the time the signal is in band. This study suggests that direct measurement of black hole spin by means of GWs can be as precise as what can be obtained from x-ray binaries.
Vigeland, Sarah; Siemens, Xavier
2017-01-01
Pulsar timing arrays (PTAs) are sensitive to the gravitational wave (GW) stochastic background produced by supermassive black hole binaries (SMBHBs). Environmental effects such as gas and stars accelerate the evolution of SMBHBs and may deplete the stochastic background at low frequencies. How much this effects the sensitivity of PTAs to the stochastic background depends on the astrophysical mechanism and where the binary's evolution transitions from being driven by environmental effects to driven by GW emission. We will discuss how these issues impact our observing strategy and estimated time-to-detection.
2.5PN kick from black-hole binaries in circular orbit: Nonspinning case
Mishra, Chandra Kant; Iyer, Bala R
2013-01-01
Using the Multipolar post-Minskowskian formalism, we compute the linear momentum flux from black-hole binaries in circular orbits and having no spins. The total linear momentum flux contains various types of instantaneous (which are functions of the retarded time) and hereditary (which depends on the dynamics of the binary in the past) terms both of which are analytically computed. In addition to the inspiral contribution, we use a simple model of plunge to compute the kick or recoil accumulated during this phase.
Vigeland, Sarah; Siemens, Xavier
2017-01-01
Pulsar timing arrays (PTAs) are sensitive to the gravitational wave (GW) stochastic background produced by supermassive black hole binaries (SMBHBs). Environmental effects such as gas and stars accelerate the evolution of SMBHBs and may deplete the stochastic background at low frequencies. How much this effects the sensitivity of PTAs to the stochastic background depends on the astrophysical mechanism and where the binary's evolution transitions from being driven by environmental effects to driven by GW emission. We will discuss how these issues impact our observing strategy and estimated time-to-detection. National Science Foundation PIRE program.
Search for gravitational waves from binary black hole inspiral, merger and ringdown
Abadie, J.; Abbott, B.; Abbott, R.; Abernathy, M; Accadia, T; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; G. Allen; Amador Ceron, E.; Amin, R.; Anderson, S.; Anderson, W.
2011-01-01
We present the first modeled search for gravitational waves using the complete binary black hole gravitational waveform from inspiral through the merger and ringdown for binaries with negligible component spin. We searched approximately 2 years of LIGO data taken between November 2005 and September 2007 for systems with component masses of 1-99 solar masses and total masses of 25-100 solar masses. We did not detect any plausible gravitational-wave signals but we do place upper limits on the m...
Error analysis of numerical gravitational waveforms from coalescing binary black holes
Fong, Heather; Chu, Tony; Kumar, Prayush; Pfeiffer, Harald; Boyle, Michael; Hemberger, Daniel; Kidder, Lawrence; Scheel, Mark; Szilagyi, Bela; SXS Collaboration
2016-03-01
The Advanced Laser Interferometer Gravitational-wave Observatory (Advanced LIGO) has finished a successful first observation run and will commence its second run this summer. Detection of compact object binaries utilizes matched-filtering, which requires a vast collection of highly accurate gravitational waveforms. This talk will present a set of about 100 new aligned-spin binary black hole simulations. I will discuss their properties, including a detailed error analysis, which demonstrates that the numerical waveforms are sufficiently accurate for gravitational wave detection purposes, as well as for parameter estimation purposes.
Anomalous Low States and Long Term Variability in the Black Hole Binary LMC X-3
Smale, Alan P.; Boyd, Patricia T.
2012-01-01
Rossi X-my Timing Explorer observations of the black hole binary LMC X-3 reveal an extended very low X-ray state lasting from 2003 December 13 until 2004 March 18, unprecedented both in terms of its low luminosity (>15 times fainter than ever before seen in this source) and long duration (approx 3 times longer than a typical low/hard state excursion). During this event little to no source variability is observed on timescales of approx hours-weeks, and the X-ray spectrum implies an upper limit of 1.2 x 10(exp 35) erg/s, Five years later another extended low state occurs, lasting from 2008 December 11 until 2009 June 17. This event lasts nearly twice as long as the first, and while significant variability is observed, the source remains reliably in the low/hard spectral state for the approx 188 day duration. These episodes share some characteristics with the "anomalous low states" in the neutron star binary Her X-I. The average period and amplitude of the Variability of LMC X-3 have different values between these episodes. We characterize the long-term variability of LMC X-3 before and after the two events using conventional and nonlinear time series analysis methods, and show that, as is the case in Her X-I, the characteristic amplitude of the variability is related to its characteristic timescale. Furthermore, the relation is in the same direction in both systems. This suggests that a similar mechanism gives rise to the long-term variability, which in the case of Her X-I is reliably modeled with a tilted, warped precessing accretion disk.
Science Advancements for Black Hole Binaries from Observations with NICER
Remillard, Ronald A.; Steiner, James F.; Miller, Jon M.; Homan, Jeroen; Eikenberry, Stephen S.; Kara, Erin; Pasham, Dheeraj; Uttley, Phil; Nicer Science Team
2017-01-01
The Neutron Star Interior Composiiton Explorer (NICER; 2017 launch) will advance investigations of black-hole physical properties and accretion physics in strong gravity, which are research themes that flourished during the RXTE era (1996-2012). One of the primary differences between NICER/XTI and RXTE/PCA Instruments is the energy response (0.2-12 keV vs 3-45 keV), with NICER affording a much more direct view of the inner accretion disk, where the maximum temperatures vary in the range 0.2-2 keV. In addition, NICER provides superior spectral resolution (140 eV at Fe K-alpha), superior time resolution (100 ns accuracy), lower background (by factor of 100), and full flexibility for data analyses (with complete information for each photon event). Finally the count rate from NICER's 56 cameras usually exceeds the count rates from RXTE (3 PCUs), except for sources obscured by very high levels of ISM column density (log Nh > 22).Simulations are shown to support the following expectations for advancement: (1) comprehensive measures of the effective radius and temperature of the inner disk during black hole hard states and transitions; (2) visibility of the disk spectrum to constrain (as seed photons) Comptonization models to infer the properties of the corona(3) derivation of black hole spin via simultaneous use of the disk continuum and Fe line profile; (4) investigations of both high- and low-freqency QPOs in an energy range that samples both disk and corona; (5) partnerships with NuSTAR and ASTROSAT to use reflection spectra/timing to study the disk/corona geometry and interplay in different X-ray states.
Relative Deprivation, Rising Expectations, and Black Militancy
Abeles, Ronald P.
1976-01-01
Investigates the role of relative deprivation (RD) and rising expectations (RE) as mediating variables between social structure and black militancy through secondary analyses of survey data of blacks living in Cleveland and Miami in the late 1960s. Alternative explanations and implications derived from the present data and the theories for the…
NO TIME FOR DEAD TIME: TIMING ANALYSIS OF BRIGHT BLACK HOLE BINARIES WITH NuSTAR
Bachetti, Matteo; Barret, Didier [Université de Toulouse, UPS-OMP, IRAP, Toulouse F-31400 (France); Harrison, Fiona A.; Cook, Rick; Grefenstette, Brian W.; Fürst, Felix [Cahill Center for Astronomy and Astrophysics, Caltech, Pasadena, CA 91125 (United States); Tomsick, John; Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Schmid, Christian [Dr. Karl-Remeis-Sternwarte and ECAP, Sternwartstrasse 7, D-96049 Bamberg (Germany); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Fabian, Andrew C.; Kara, Erin [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Gandhi, Poshak [Department of Physics, Durham University, South Road DH1 3LE (United Kingdom); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Maccarone, Thomas J. [Department of Physics, Texas Tech University, Lubbock, TX 79409 (United States); Miller, Jon M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Pottschmidt, Katja [CRESST, UMBC, and NASA GSFC, Code 661, Greenbelt, MD 20771 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Uttley, Phil, E-mail: matteo.bachetti@irap.omp.eu [Anton Pannekoek Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); and others
2015-02-20
Timing of high-count-rate sources with the NuSTAR Small Explorer Mission requires specialized analysis techniques. NuSTAR was primarily designed for spectroscopic observations of sources with relatively low count rates rather than for timing analysis of bright objects. The instrumental dead time per event is relatively long (∼2.5 msec) and varies event-to-event by a few percent. The most obvious effect is a distortion of the white noise level in the power density spectrum (PDS) that cannot be easily modeled with standard techniques due to the variable nature of the dead time. In this paper, we show that it is possible to exploit the presence of two completely independent focal planes and use the cospectrum, the real part of the cross PDS, to obtain a good proxy of the white-noise-subtracted PDS. Thereafter, one can use a Monte Carlo approach to estimate the remaining effects of dead time, namely, a frequency-dependent modulation of the variance and a frequency-independent drop of the sensitivity to variability. In this way, most of the standard timing analysis can be performed, albeit with a sacrifice in signal-to-noise ratio relative to what would be achieved using more standard techniques. We apply this technique to NuSTAR observations of the black hole binaries GX 339–4, Cyg X-1, and GRS 1915+105.
Supermassive black hole binaries and transient radio events: studies in pulsar astronomy
Burke-Spolaor, S.
2011-06-01
The field of pulsar astronomy encompasses a rich breadth of astrophysical topics. The research in this thesis contributes to two particular subjects of pulsar astronomy: gravitational wave science, and identifying celestial sources of pulsed radio emission. We first investigated the detection of supermassive black hole (SMBH) binaries, which are the brightest expected source of gravitational waves for pulsar timing. We considered whether two electromagnetic SMBH tracers, velocity-resolved emission lines in active nuclei, and radio galactic nuclei with spatially-resolved, flat-spectrum cores, can reveal systems emitting gravitational waves in the pulsar timing band. We found that there are systems which may in principle be simultaneously detectable by both an electromagnetic signature and gravitational emission, however the probability of actually identifying such a system is low (they will represent much less than 1% of a randomly selected galactic nucleus sample). This study accents the fact that electromagnetic indicators may be used to explore binary populations down to the 'stalling radii' at which binary inspiral evolution may stall indefinitely at radii exceeding those which produce gravitational radiation in the pulsar timing band. We then performed a search for binary SMBH holes in archival Very Long Baseline Interferometry data for 3114 radio-luminous active galactic nuclei. One source was detected as a double nucleus. This result is interpreted in terms of post-merger timescales for SMBH centralisation, implications for 'stalling', and the relationship of radio activity in nuclei to mergers. Our analysis suggested that binary pair evolution of SMBHs (both of masses >108M circled bullet) spends less than 500Myr in progression from the merging of galactic stellar cores to within the purported stalling radius for SMBH pairs, giving no evidence for an excess of stalled binary systems at small separations. Circumstantial evidence showed that the relative state
High-Resolution Observations of a Binary Black Hole Candidate
Tsai, Chao-Wei; Phillips, Chris; Norris, Ray; Jarrett, Thomas; Emonts, Bjorn; Cluver, Michelle; Eisenhardt, Peter; Stern, Daniel; Assef, Roberto
2012-10-01
We propose a 12-hour 2.3 GHz continuum Long Baseline Array (LBA) observation of WISE J2332-5056, a newly discovered supermassive black hole (SMBH) merger candidate that is located in the nearby universe (z = 0.3447). Our recently acquired 9 GHz ATCA map shows unusual radio morphology: a one-sided, smaller (and likely younger) FR-I jet perpendicular to a larger, Doppler-boosted FR-II jet. Follow-up Gemini-S/GMOS spectroscopy of this WISE-selected radio galaxy reveals broad emission lines blue-shifted by > 3,500 km/s with respect to the narrow lines and host galaxy, hallmarks of a dual AGN system. Combined, the optical spectroscopy and radio morphology of this object are strongly suggestive of a black hole merger system. Even in the local universe these systems are extremely difficult to identify; yet the process of supermassive blackhole growth is vital toward understanding galaxy evolution from the early to the current universe. Moreover, nearby merging SMBHs may serve as outstanding targets for gravitational wave studies. The proposed high resolution LBA map, reaching 50 pc resolution at the source redshift will allow us to investigate the SMBH merger scenario hypothesis.
Determining the progenitors of merging black-hole binaries
Raccanelli, Alvise; Kovetz, Ely D.; Bird, Simeon; Cholis, Ilias; Muñoz, Julian B.
2016-07-01
We investigate a possible method for determining the progenitors of black-hole (BH) mergers observed via their gravitational wave (GW) signal. We argue that measurements of the cross-correlation of the GW events with overlapping galaxy catalogs may provide an additional tool in determining if BH mergers trace the stellar mass of the Universe, as would be expected from mergers of the end points of stellar evolution. If, on the other hand, the BHs are of primordial origin, as has been recently suggested, their merging would be preferentially hosted by lower biased objects and thus have a lower cross-correlation with luminous galaxies. Here, we forecast the expected precision of the cross-correlation measurement for current and future GW detectors such as LIGO and the Einstein Telescope. We then predict how well these instruments can distinguish the model that identifies high-mass BH-BH mergers as the merger of primordial black holes that constitute the dark matter in the Universe from more traditional astrophysical sources.
Determining the progenitors of merging black-hole binaries
Raccanelli, Alvise; Bird, Simeon; Cholis, Ilias; Munoz, Julian B
2016-01-01
We investigate a possible method for determining the progenitors of black hole (BH) mergers observed via their gravitational wave (GW) signal. We argue that measurements of the cross-correlation of the GW events with overlapping galaxy catalogs may provide an additional tool in determining if BH mergers trace the stellar mass of the Universe, as would be expected from mergers of the endpoints of stellar evolution. If on the other hand the BHs are of primordial origin, as has been recently suggested, their merging would be preferentially hosted by lower biased objects, and thus have a lower cross-correlation with luminous galaxies. Here we forecast the expected precision of the cross-correlation measurement for current and future GW detectors such as LIGO and the Einstein Telescope. We then predict how well these instruments can distinguish the model that identifies high-mass BH-BH mergers as the merger of primordial black holes that constitute the dark matter in the Universe from more traditional astrophysica...
Dynamical Excision Boundaries in Spectral Evolutions of Binary Black Hole Spacetimes
Hemberger, Daniel A; Kidder, Lawrence E; Szilágyi, Béla; Teukolsky, Saul A
2012-01-01
Simulations of binary black holes systems using the Spectral Einstein Code (SpEC) are done on a computational domain that excises the regions surrounding the black holes. It is imperative that the excision boundaries are outflow boundaries with respect to the hyperbolic evolution equations used in the simulation. We employ a time-dependent mapping between the fixed computational frame and the inertial frame through which the black holes move. The time-dependent parameters of the mapping are adjusted throughout the simulation by a feedback control system in order to follow the motion of the black holes, to adjust the shape and size of the excision surfaces so that they remain outflow boundaries, and to prevent large distortions of the grid. We describe in detail the mappings and control systems that we use. We show how these techniques have been essential in the evolution of binary black hole systems with extreme configurations, such as large spin magnitudes and high mass ratios, especially during the merger, ...
Remnant mass, spin, and recoil from spin aligned black-hole binaries
Healy, James; Zlochower, Yosef
2014-01-01
We perform a set of 36 nonprecessing black-hole binary simulations with spins either aligned or counteraligned with the orbital angular momentum in order to model the final mass, spin, and recoil of the merged black hole as a function of the individual black hole spin magnitudes and the mass ratio of the progenitors. We find that the maximum recoil for these configurations is $V_{max}=526\\pm23\\,km/s$, which occurs when the progenitor spins are maximal, the mass ratio is $q_{max}=m_1/m_2=0.623\\pm0.038$, the smaller black-hole spin is aligned with the orbital angular momentum, and the larger black-hole spin is counteraligned ($\\alpha_1=-\\alpha_2=1$). This maximum recoil is about $80\\,km/s$ larger than previous estimates, but most importantly, because the maximum occurs for smaller mass ratios, the probability for a merging binary to recoil faster than $400\\,km/s$ can be as large as $17\\%$, while the probability for recoils faster than $250\\, km/s$ can be as large as $45\\%$. We provide explicit phenomenological ...
Double-double radio galaxies: remnants of merger of supermassive binary black holes
Liu, F K; Cao, S L; Wu, Xue-Bing
2003-01-01
The activity of active galaxy may be triggered by the merge of galaxies and present-day galaxies are probably the product of successive minor mergers. The frequent galactic merges at high redshift imply that active galaxy harbors supermassive unequal-mass binary black holes in its center at least once during its life time. In this paper, we showed that the recently discovered double-lobed FR II radio galaxies are the remnants of such supermassive binary black holes. The inspiraling secondary black hole opens a gap in the accretion disk and removes the inner accretion disk when it merges into the primary black hole, leaving a big hole of about several hundreds of Schwarzschild radius in the vicinity of the post-merged supermassive black hole and leading to an interruption of jet formation. When the outer accretion disk slowly refills the big hole on a viscous time scale, the jet formation restarts and the interaction of the recurrent jets and the inter-galactic medium forms a secondary pair of lobes. We applie...
Catalog of 174 binary black hole simulations for gravitational wave astronomy.
Mroué, Abdul H; Scheel, Mark A; Szilágyi, Béla; Pfeiffer, Harald P; Boyle, Michael; Hemberger, Daniel A; Kidder, Lawrence E; Lovelace, Geoffrey; Ossokine, Serguei; Taylor, Nicholas W; Zenginoğlu, Anıl; Buchman, Luisa T; Chu, Tony; Foley, Evan; Giesler, Matthew; Owen, Robert; Teukolsky, Saul A
2013-12-13
This Letter presents a publicly available catalog of 174 numerical binary black hole simulations following up to 35 orbits. The catalog includes 91 precessing binaries, mass ratios up to 8∶1, orbital eccentricities from a few percent to 10(-5), black hole spins up to 98% of the theoretical maximum, and radiated energies up to 11.1% of the initial mass. We establish remarkably good agreement with post-Newtonian precession of orbital and spin directions for two new precessing simulations, and we discuss other applications of this catalog. Formidable challenges remain: e.g., precession complicates the connection of numerical and approximate analytical waveforms, and vast regions of the parameter space remain unexplored.
Pekowsky, Larne; Healy, Jim; Shoemaker, Deirdre
2013-01-01
Previous analytic and numerical calculations suggest that, at each instant, the emission from a precessing black hole binary closely resembles the emission from a nonprecessing analog. In this paper we quantitatively explore the validity and limitations of that correspondence, extracting the radiation from a large collection of roughly two hundred generic black hole binary merger simulations both in the simulation frame and in a corotating frame that tracks precession. To a first approximation, the corotating-frame waveforms resemble nonprecessing analogs, based on similarity over a band-limited frequency interval defined using a fiducial detector (here, advanced LIGO) and the source's total mass $M$. By restricting attention to masses $M\\in 200, 2500 M_\\odot$, we insure our comparisons are sensitive only to our simulated late-time inspiral, merger, and ringdown signals. In this mass region, every one of our precessing simulations can be fit by some physically similar member of the \\texttt{IMRPhenomB} phenome...
Mergers of Black-Hole Binaries with Aligned Spins: Waveform Characteristics
Kelly, Bernard J.; Baker, John G.; vanMeter, James R.; Boggs, William D.; McWilliams, Sean T.; Centrella, Joan
2011-01-01
"We apply our gravitational-waveform analysis techniques, first presented in the context of nonspinning black holes of varying mass ratio [1], to the complementary case of equal-mass spinning black-hole binary systems. We find that, as with the nonspinning mergers, the dominant waveform modes phases evolve together in lock-step through inspiral and merger, supporting the previous model of the binary system as an adiabatically rigid rotator driving gravitational-wave emission - an implicit rotating source (IRS). We further apply the late-merger model for the rotational frequency introduced in [1], along with a new mode amplitude model appropriate for the dominant (2, plus or minus 2) modes. We demonstrate that this seven-parameter model performs well in matches with the original numerical waveform for system masses above - 150 solar mass, both when the parameters are freely fit, and when they are almost completely constrained by physical considerations."
The Case for Massive, Evolving Winds in Black Hole X-ray Binaries
Neilsen, Joseph
2013-01-01
In the last decade, high-resolution X-ray spectroscopy has revolutionized our understanding of the role of accretion disk winds in black hole X-ray binaries. Here I present a brief review of the state of wind studies in black hole X-ray binaries, focusing on recent arguments that disk winds are not only extremely massive, but also highly variable. I show how new and archival observations at high timing and spectral resolution continue to highlight the intricate links between the inner accretion flow, relativistic jets, and accretion disk winds. Finally, I discuss methods to infer the driving mechanisms of observed disk winds and their implications for connections between mass accretion and ejection processes.
Baker, Paul T; Hodge, Kari A; Talukder, Dipongkar; Capano, Collin; Cornish, Neil J
2014-01-01
Searches for gravitational waves produced by coalescing black hole binaries with total masses $\\gtrsim25\\,$M$_\\odot$ use matched filtering with templates of short duration. Non-Gaussian noise bursts in gravitational wave detector data can mimic short signals and limit the sensitivity of these searches. Previous searches have relied on empirically designed statistics incorporating signal-to-noise ratio and signal-based vetoes to separate gravitational wave candidates from noise candidates. We report on sensitivity improvements achieved using a multivariate candidate ranking statistic derived from a supervised machine learning algorithm. We apply the random forest of bagged decision trees technique to two separate searches in the high mass $\\left( \\gtrsim25\\,\\mathrm{M}_\\odot \\right)$ parameter space. For a search which is sensitive to gravitational waves from the inspiral, merger, and ringdown (IMR) of binary black holes with total mass between $25\\,$M$_\\odot$ and $100\\,$M$_\\odot$, we find sensitive volume impr...
Measuring neutron star tidal deformability with Advanced LIGO: black hole - neutron star binaries
Kumar, Prayush; Pürrer, Michael; Pfeiffer, Harald
2017-01-01
The pioneering observations of gravitational waves (GW) by Advanced LIGO have ushered us into an era of observational GW astrophysics. Compact binaries remain the primary target sources for GW observations, of which black hole - neutron star (BHNS) binaries form an important subset. GWs from coalescing BHNS systems carry signatures of the tidal distortion of the neutron star by its companion black hole during inspiral, as well as of its disruption close to merger. In this talk, I will discuss how well we can measure tidal effects from individual and populations of LIGO observations of disruptive BHNS mergers. I will also talk about how our measurements of non-tidal parameters can get affected by ignoring tidal effects in BHNS parameter estimation.
Parameter estimation and uncertainty for gravitational waves from binary black holes
Berry, Christopher; LIGO Scientific Collaboration; Virgo Collaboration
2016-03-01
Binary black holes are one of the most promising sources of gravitational waves that could be observed by Advanced LIGO. To accurately infer the parameters of an astrophysical signal, it is necessary to have a reliable model of the gravitational waveform. Uncertainty in the waveform leads to uncertainty in the measured parameters. For loud signals, this theoretical uncertainty could dominate statistical uncertainty, to be the primary source of error in gravitational-wave astronomy. However, we expect the first candidate events will be closer to the detection threshold. We look at how parameter estimation would be influenced by the use of different waveform models for a binary black-hole signal near detection threshold, and how this can be folded in to a Bayesian analysis.
Kamaretsos, Ioannis
2011-01-01
A perturbed black hole emits gravitational radiation, usually termed the ringdown signal, whose frequency and damping time depends on the mass and spin of the black hole. I investigate the case of a binary black hole merger resulting from two initially non-spinning black holes of various mass ratios, in quasi-circular orbits. The observed ringdown signal will be determined, among other things, by the black hole's spin-axis orientation with respect to Earth, its sky position and polarization angle - parameters which can take any values in a particular observation. I have carried out a statistical analysis of the effect of these variables, focusing on detection and measurement of the multimode ringdown signals using the reformulated European LISA mission, Next Gravitational-Wave Observatory, NGO, the third generation ground-based observatory, Einstein Telescope and the advanced era detector, aLIGO. To the extent possible I have discussed the effect of these results on plausible event rates, as well as astrophys...
Mohapatra, Satya; Caudill, Sarah; Clark, James; Hanna, Chad; Klimenko, Sergey; Pankow, Chris; Vaulin, Ruslan; Vedovato, Gabriele; Vitale, Salvatore
2014-01-01
Searches for gravitational-wave transients from binary black hole coalescences typically rely on one of two approaches: matched filtering with templates and morphology-independent excess power searches. Multiple algorithmic implementations in the analysis of data from the first generation of ground-based gravitational wave interferometers have used different strategies for the suppression of non-Gaussian noise transients, and targeted different regions of the binary black hole parameter space. In this paper we compare the sensitivity of three such algorithms: matched filtering with full coalescence templates, matched filtering with ringdown templates and a morphology-independent excess power search. The comparison is performed at a fixed false alarm rate and relies on Monte-carlo simulations of binary black hole coalescences for spinning, non-precessing systems with total mass 25-350 solar mass, which covers the parameter space of stellar mass and intermediate mass black hole binaries. We find that in the mas...
Inayoshi, Kohei; Kashiyama, Kazumi; Visbal, Eli; Haiman, Zoltán
2016-09-01
The recent discovery of the gravitational wave source GW150914 has revealed a coalescing binary black hole (BBH) with masses of ˜30 M⊙. Previous proposals for the origin of such a massive binary include Population III (PopIII) stars. PopIII stars are efficient producers of BBHs and of a gravitational wave background (GWB) in the 10-100 Hz band, and also of ionizing radiation in the early Universe. We quantify the relation between the amplitude of the GWB (Ωgw) and the electron scattering optical depth (τe), produced by PopIII stars, assuming that fesc ≈ 10 per cent of their ionizing radiation escapes into the intergalactic medium. We find that PopIII stars would produce a GWB that is detectable by the future O5 LIGO/Virgo if τe ≳ 0.07, consistent with the recent Planck measurement of τe = 0.055 ± 0.09. Moreover, the spectral index of the background from PopIII BBHs becomes as small as dln Ωgw/dln f ≲ 0.3 at f ≳ 30 Hz, which is significantly flatter than the value ˜2/3 generically produced by lower redshift and less-massive BBHs. A detection of the unique flattening at such low frequencies by the O5 LIGO/Virgo will indicate the existence of a high-chirp mass, high-redshift BBH population, which is consistent with the PopIII origin. A precise characterization of the spectral shape near 30-50 Hz by the Einstein Telescope could also constrain the PopIII initial mass function and star formation rate.
Goicovic, F G; Sesana, A; Stasyszyn, F; Amaro-Seoane, P; Tanaka, T L
2015-01-01
There is compelling evidence that most -if not all- galaxies harbour a super-massive black hole (SMBH) at their nucleus, hence binaries of these massive objects are an inevitable product of the hierarchical evolution of structures in the universe, and represent an important but thus-far elusive phase of galaxy evolution. Gas accretion via a circumbinary disc is thought to be important for the dynamical evolution of SMBH binaries, as well as in producing luminous emission that can be used to infer their properties. One plausible source of the gaseous fuel is clumps of gas formed due to turbulence and gravitational instabilities in the interstellar medium, that later fall toward and interact with the binary. In this context, we model numerically the evolution of turbulent clouds in near-radial infall onto equal-mass SMBH binaries, using a modified version of the SPH code GADGET-3. We present a total of 12 simulations that explore different possible pericentre distances and relative inclinations, and show that t...
Search for Gravitational Waves from Intermediate Mass Binary Black Holes
Blackburn, L.; Camp, J. B.; Cannizzo, J.; Stroeer, A. S.
2012-01-01
We present the results of a weakly modeled burst search for gravitational waves from mergers of non-spinning intermediate mass black holes (IMBH) in the total mass range 100-450 solar Mass and with the component mass ratios between 1:1 and 4:1. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the IMBH mergers as a function of the component masses. In the most efficiently detected bin centered on 88 + 88 solar Mass , for non-spinning sources, the rate density upper limit is 0.13 per Mpc(exp 3) per Myr at the 90% confidence level.
Search for Gravitational Waves from Intermediate Mass Binary Black Holes
Abadie, J; Abbott, R; Abbott, T D; Abernathy, M; Accadia, T; Acernese, F; Adams, C; Adhikari, R; Affeldt, C; Agathos, M; Agatsuma, K; Ajith, P; Allen, B; Ceron, E Amador; Amariutei, D; Anderson, S B; Anderson, W G; Arai, K; Arain, M A; Araya, M C; Aston, S M; Astone, P; Atkinson, D; Aufmuth, P; Aulbert, C; Aylott, B E; Babak, S; Baker, P; Ballardin, G; Ballmer, S; Baragoya, J C B; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Basti, A; Batch, J; Bauchrowitz, J; Bauer, Th S; Bebronne, M; Beck, D; Behnke, B; Bejger, M; Beker, M G; Bell, A S; Belletoile, A; Belopolski, I; Benacquista, M; Berliner, J M; Bertolini, A; Betzwieser, J; Beveridge, N; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Biswas, R; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Blom, M; Bock, O; Bodiya, T P; Bogan, C; Bondarescu, R; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, S; Bosi, L; Bouhou, B; Braccini, S; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Breyer, J; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Bulik, T; Bulten, H J; Buonanno, A; Burguet-Castell, J; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Calloni, E; Camp, J B; Campsie, P; Cannizzo, J; Cannon, K; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Caudill, S; Cavaglia, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chaibi, O; Chalermsongsak, T; Charlton, P; Chassande-Mottin, E; Chelkowski, S; Chen, W; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H; Chow, J; Christensen, N; Chua, S S Y; Chung, C T Y; Chung, S; Ciani, G; Clark, D E; Clark, J; Clayton, J H; Cleva, F; Coccia, E; Cohadon, P -F; Colacino, C N; Colas, J; Colla, A; Colombini, M; Conte, A; Conte, R; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corsi, A; Costa, C A; Coughlin, M; Coulon, J -P; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Cumming, A; Cunningham, L; Cuoco, E; Cutler, R M; Dahl, K; Danilishin, S L; Dannenberg, R; D'Antonio, S; Danzmann, K; Dattilo, V; Daudert, B; Daveloza, H; Davier, M; Daw, E J; Day, R; Dayanga, T; De Rosa, R; DeBra, D; Debreczeni, G; Del Pozzo, W; del Prete, M; Dent, T; Dergachev, V; DeRosa, R; DeSalvo, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Palma, I; Emilio, M Di Paolo; Di Virgilio, A; Diaz, M; Dietz, A; Donovan, F; Dooley, K L; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dumas, J -C; Eberle, T; Edgar, M; Edwards, M; Effler, A; Ehrens, P; Endroczi, G; Engel, R; Etzel, T; Evans, K; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fan, Y; Farr, B F; Fazi, D; Fehrmann, H; Feldbaum, D; Feroz, F; Ferrante, I; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Flanigan, M; Foley, S; Forsi, E; Forte, L A; Fotopoulos, N; Fournier, J -D; Franc, J; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Friedrich, D; Fritschel, P; Frolov, V V; Fujimoto, M -K; Fulda, P J; Fyffe, M; Gair, J; Galimberti, M; Gammaitoni, L; Garcia, J; Garufi, F; Gaspar, M E; Gemme, G; Geng, R; Genin, E; Gennai, A; Gergely, L A; Ghosh, S; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Gil, S; Gill, C; Gleason, J; Goetz, E; Goggin, L M; Gonzalez, G; Gorodetsky, M L; Gossler, S; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Gray, N; Greenhalgh, R J S; Gretarsson, A M; Greverie, C; Grosso, R; Grote, H; Grunewald, S; Guidi, G M; Gupta, R; Gustafson, E K; Gustafson, R; Ha, T; Hallam, J M; Hammer, D; Hammond, G; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hartman, M T; Haughian, K; Hayama, K; Hayau, J -F; Heefner, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hendry, M A; Heng, I S; Heptonstall, A W; Herrera, V; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Holtrop, M; Hong, T; Hooper, S; Hosken, D J; Hough, J; Howell, E J; Hughey, B; Husa, S; Huttner, S H; Inta, R; Isogai, T; Ivanov, A; Izumi, K; Jacobson, M; James, E; Jang, Y J; Jaranowski, P; Jesse, E; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kasturi, R; Katsavounidis, E; Katzman, W; Kaufer, H; Kawabe, K; Kawamura, S; Kawazoe, F; Kelley, D; Kells, W; Keppel, D G; Keresztes, Z; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, B; Kim, C; Kim, H; Kim, K; Kim, N; Kim, Y -M; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D; Kranz, O; Kringel, V; Krishnamurthy, S; Krishnan, B; Krolak, A; Kuehn, G; Kumar, R; Kwee, P; Lam, P K; Landry, M; Lantz, B; Lastzka, N; Lawrie, C; Lazzarini, A; Leaci, P; Lee, C H; Lee, H K; Lee, H M; Leong, J R; Leonor, I; Leroy, N; Letendre, N; Li, J; Li, T G F; Liguori, N; Lindquist, P E; Liu, Y; Liu, Z; Lockerbie, N A; Lodhia, D; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Luan, J; Lubinski, M; Luck, H; Lundgren, A P; Macdonald, E; Machenschalk, B; MacInnis, M; Macleod, D M; Mageswaran, M; Mailand, K; Majorana, E; Maksimovic, I; Man, N; Mandel, I; Mandic, V; Mantovani, M; Marandi, A; Marchesoni, F; Marion, F; Marka, S; Marka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Marx, J N; Mason, K; Masserot, A; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; McKechan, D J A; McWilliams, S; Meadors, G D; Mehmet, M; Meier, T; Melatos, A; Melissinos, A C; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Michel, C; Milano, L; Miller, J; Minenkov, Y; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Moe, B; Mohan, M; Mohanty, S D; Mohapatra, S R P; Moreno, G; Morgado, N; Morgia, A; Mori, T; Morriss, S R; Mosca, S; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Muller-Ebhardt, H; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nash, T; Naticchioni, L; Necula, V; Nelson, J; Newton, G; Nguyen, T; Nishizawa, A; Nitz, A; Nocera, F; Nolting, D; Normandin, M E; Nuttall, L; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; O'Reilly, B; O'Shaughnessy, R; Osthelder, C; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Page, A; Pagliaroli, G; Palladino, L; Palomba, C; Pan, Y; Pankow, C; Paoletti, F; Papa, M A; Parisi, M; Pasqualetti, A; Passaquieti, R; Passuello, D; Patel, P; Pedraza, M; Peiris, P; Pekowsky, L; Penn, S; Perreca, A; Persichetti, G; Phelps, M; Pickenpack, M; Piergiovanni, F; Pietka, M; Pinard, L; Pinto, I M; Pitkin, M; Pletsch, H J; Plissi, M V; Poggiani, R; Pold, J; Postiglione, F; Prato, M; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Quetschke, V; Quitzow-James, R; Raab, F J; Rabeling, D S; Racz, I; Radkins, H; Raffai, P; Rakhmanov, M; Rankins, B; Rapagnani, P; Raymond, V; Re, V; Redwine, K; Reed, C M; Reed, T; Regimbau, T; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Robertson, N A; Robinet, F; Robinson, C; Robinson, E L; Rocchi, A; Roddy, S; Rodriguez, C; Rodruck, M; Rolland, L; Rollins, J G; Romano, J D; Romano, R; Romie, J H; Rosinska, D; Rover, C; Rowan, S; Rudiger, A; Ruggi, P; Ryan, K; Sainathan, P; Salemi, F; Sammut, L; Sandberg, V; Sannibale, V; Santamaria, L; Santiago-Prieto, I; Santostasi, G; Sassolas, B; Sathyaprakash, B S; Sato, S; Saulson, P R; Savage, R L; Schilling, R; Schnabel, R; Schofield, R M S; Schreiber, E; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Seifert, F; Sellers, D; Sentenac, D; Sergeev, A; Shaddock, D A; Shaltev, M; Shapiro, B; Shawhan, P; Shoemaker, D H; Sibley, A; Siemens, X; Sigg, D; Singer, A; Singer, L; Sintes, A M; Skelton, G R; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, R J E; Smith-Lefebvre, N D; Somiya, K; Sorazu, B; Soto, J; Speirits, F C; Sperandio, L; Stefszky, M; Stein, A J; Stein, L C; Steinert, E; Steinlechner, J; Steinlechner, S; Steplewski, S; Stochino, A; Stone, R; Strain, K A; Strigin, S E; Stroeer, A S; Sturani, R; Stuver, A L; Summerscales, T Z; Sung, M; Susmithan, S; Sutton, P J; Swinkels, B; Tacca, M; Taffarello, L; Talukder, D; Tanner, D B; Tarabrin, S P; Taylor, J R; Taylor, R; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Thuring, A; Tokmakov, K V; Tomlinson, C; Toncelli, A; Tonelli, M; Torre, O; Torres, C; Torrie, C I; Tournefier, E; Travasso, F; Traylor, G; Tseng, K; Ugolini, D; Vahlbruch, H; Vajente, G; Brand, J F J van den; Broeck, C Van Den; van der Putten, S; van Veggel, A A; Vass, S; Vasuth, M; Vaulin, R; Vavoulidis, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Veltkamp, C; Verkindt, D; Vetrano, F; Vicere, A; Villar, A E; Vinet, J -Y; Vitale, S; Vitale, S; Vocca, H; Vorvick, C; Vyatchanin, S P; Wade, A; Wade, L; Wade, M; Waldman, S J; Wallace, L; Wan, Y; Wang, M; Wang, X; Wang, Z; Wanner, A; Ward, R L; Was, M; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wilkinson, C; Willems, P A; Williams, L; Williams, R; Willke, B; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Wooley, R; Worden, J; Yakushin, I; Yamamoto, H; Yamamoto, K; Yamamoto, K; Yancey, C C; Yang, H; Yeaton-Massey, D; Yoshida, S; Yu, P; Yvert, M; Zadrozny, A; Zanolin, M; Zendri, J -P; Zhang, F; Zhang, L; Zhang, W; Zhao, C; Zotov, N; Zucker, M E; Zweizig, J
2012-01-01
We present the results of a weakly modeled burst search for gravitational waves from mergers of non-spinning intermediate mass black holes (IMBH) in the total mass range 100--450 solar masses and with the component mass ratios between 1:1 and 4:1. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the IMBH mergers as a function of the component masses. In the most efficiently detected bin centered on 88+88 solar masses, for non-spinning sources, the rate density upper limit is 0.13 per Mpc^3 per Myr at the 90% confidence level.
Likelihood for detection of sub-parsec supermassive black hole binaries in spectroscopic surveys
Pflueger, Bryan James; Bogdanovic, Tamara; Eracleous, Michael; Runnoe, Jessie C.; Sigurdsson, Steinn
2017-01-01
Motivated by observational searches for sub-parsec supermassive black hole binaries (SBHBs) we develop a semi-analytic model to determine the likelihood for detection of SBHBs by ongoing spectroscopic surveys. The model combines theoretical expectations for the rate of orbital evolution of SBHBs in circumbinary disks and takes into account the selection effects of spectroscopic surveys. It returns a multivariate probability density for SBHB detection in terms of the binary mass, orbital separation, mass ratio, and mass accretion rate through the circumbinary disk. This approach allows us to infer the most likely orbital parameters for observed SBHB candidates and can be used to provide constraints on the rate of orbital evolution of SBHBs, if observed candidates are shown to be genuine binaries.
Spin–Orbit Misalignment of Merging Black Hole Binaries with Tertiary Companions
Liu, Bin; Lai, Dong
2017-09-01
We study the effect of an external companion on the orbital and spin evolution of merging black hole (BH) binaries. A sufficiently nearby and inclined companion can excite Lidov–Kozai (LK) eccentricity oscillations in the binary, thereby shortening its merger time. During such LK-enhanced orbital decay, the spin axis of the BH generally exhibits chaotic evolution, leading to a wide range (0°–180°) of the final spin–orbit misalignment angle from an initially aligned configuration. For systems that do not experience eccentricity excitation, only modest (≲ 20^\\circ ) spin–orbit misalignment can be produced, and we derive an analytic expression for the final misalignment using the principle of adiabatic invariance. The spin–orbit misalignment directly impacts the gravitational waveform and can be used to constrain the formation scenarios of BH binaries and dynamical influences of external companions.
Petiteau, Antoine; Sesana, Alberto; de Araujo, Mariana
2012-01-01
Pulsar timing arrays (PTAs) might detect gravitational waves (GWs) from massive black hole (MBH) binaries within this decade. The signal is expected to be an incoherent superposition of several nearly-monochromatic waves of different strength. The brightest sources might be individually resolved, and the overall deconvolved, at least partially, in its individual components. In this paper we extend the maximum-likelihood based method developed in Babak & Sesana 2012, to search for individual MBH binaries in PTA data. We model the signal as a collection of circular monochromatic binaries, each characterized by three free parameters: two angles defining the sky location, and the frequency. We marginalize over all other source parameters and we apply an efficient multi-search genetic algorithm to maximize the likelihood function and look for sources in synthetic datasets. On datasets characterized by white Gaussian noise plus few injected sources with signal-to-noise ratio (SNR) in the range 10-60, our search...
Gravitational waves from binary supermassive black holes missing in pulsar observations.
Shannon, R M; Ravi, V; Lentati, L T; Lasky, P D; Hobbs, G; Kerr, M; Manchester, R N; Coles, W A; Levin, Y; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Keith, M J; Osłowski, S; Reardon, D J; van Straten, W; Toomey, L; Wang, J-B; Wen, L; Wyithe, J S B; Zhu, X-J
2015-09-25
Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems would modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrained the characteristic amplitude of this background, A(c,yr), to be <1.0 × 10(-15) with 95% confidence. This limit excludes predicted ranges for A(c,yr) from current models with 91 to 99.7% probability. We conclude that binary evolution is either stalled or dramatically accelerated by galactic-center environments and that higher-cadence and shorter-wavelength observations would be more sensitive to gravitational waves.
Gravitational waves from binary supermassive black holes missing in pulsar observations
Shannon, R M; Lentati, L T; Lasky, P D; Hobbs, G; Kerr, M; Manchester, R N; Coles, W A; Levin, Y; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Keith, M J; Osłowski, S; Reardon, D J; van Straten, W; Toomey, L; Wang, J -B; Wen, L; Wyithe, J S B; Zhu, X -J
2015-01-01
Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems will modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrain the characteristic amplitude of this background, $A_{\\rm c,yr}$, to be < $1.0\\times10^{-15}$ with 95% confidence. This limit excludes predicted ranges for $A_{\\rm c,yr}$ from current models with 91-99.7% probability. We conclude that binary evolution is either stalled or dramatically accelerated by galactic-center environments, and that higher-cadence and shorter-wavelength observations would result in an increased sensitivity to gravitational waves.
Mayer, Lucio; Escala, Andres
2008-01-01
(Abridged) We review the results of the first multi-scale, hydrodynamical simulations of mergers between galaxies with central supermassive black holes (SMBHs) to investigate the formation of SMBH binaries in galactic nuclei. We demonstrate that strong gas inflows produce nuclear disks at the centers of merger remnants whose properties depend sensitively on the details of gas thermodynamics. In numerical simulations with parsec-scale spatial resolution in the gas component and an effective equation of state appropriate for a starburst galaxy, we show that a SMBH binary forms very rapidly, less than a million years after the merger of the two galaxies. Binary formation is significantly suppressed in the presence of a strong heating source such as radiative feedback by the accreting SMBHs. We also present preliminary results of numerical simulations with ultra-high spatial resolution of 0.1 pc in the gas component. These simulations resolve the internal structure of the resulting nuclear disk down to parsec sca...
The Search for Binary Black holes in Seyferts with Double Peaked Emission Lines
Kharb, P; Subramanian, S; Paragi, Z
2015-01-01
We discuss results from very long baseline interferometry (VLBI) observations of two Seyfert galaxies with double peaked emission lines in their SDSS optical spectra. Such AGN are potential candidates for the presence of binary black holes, which can be resolved on parsec-scales with VLBI. Our observations do not detect twin radio cores but rather nuclear outflows in these Seyferts. These outflows could be interacting with the emission line clouds producing the double peaks in the emission lines.
Modeling of Emission Signatures of Massive Black Hole Binaries: I Methods
Bogdanovic, Tamara; Sigurdsson, Steinn; Eracleous, Michael
2007-01-01
We model the electromagnetic signatures of massive black hole binaries (MBHBs) with an associated gas component. The method comprises numerical simulations of relativistic binaries and gas coupled with calculations of the physical properties of the emitting gas. We calculate the UV/X-ray and the Halpha light curves and the Halpha emission profiles. The simulations are carried out with a modified version of the parallel tree SPH code Gadget. The heating, cooling, and radiative processes are calculated for two different physical scenarios, where the gas is approximated as a black-body or a solar metallicity gas. The calculation for the solar metallicity scenario is carried out with the photoionization code Cloudy. We focus on sub-parsec binaries which have not yet entered the gravitational radiation phase. The results from the first set of calculations, carried out for a coplanar binary and gas disk, suggest that there are pronounced outbursts in the X-ray light curve during pericentric passages. If such outbur...
Formation and Hardening of Supermassive Black Hole Binaries in Minor Mergers of Disk Galaxies
Khan, Fazeel Mahmood; Berczik, Peter; Just, Andreas; Mayer, Lucio; Nitadori, Keigo; Callegari, Simone
2012-01-01
We model for the first time the complete orbital evolution of a pair of Supermassive Black Holes (SMBHs) in a 1:10 galaxy merger of two disk dominated gas-rich galaxies, from the stage prior to the formation of the binary up to the onset of gravitational wave emission when the binary separation has shrunk to 1 milli parsec. The high-resolution smoothed particle hydrodynamics (SPH) simulations used for the first phase of the evolution include star formation, accretion onto the SMBHs as well as feedback from supernovae explosions and radiative heating from the SMBHs themselves. Using the direct N-body code \\phi-GPU we evolve the system further without including the effect of gas, which has been mostly consumed by star formation in the meantime. We start at the time when the separation between two SMBHs is ~ 700 pc and the two black holes are still embedded in their galaxy cusps. We use 3 million particles to study the formation and evolution of the SMBH binary till it becomes hard. After a hard binary is formed...
From X-ray binaries to quasars black holes on all mass scales black holes on all mass scales
Ho, L C; Maccarone, T J
2005-01-01
This volume brings together contributions from many of the world's leading authorities on black hole accretion. The papers within represent part of a new movement to make use of the relative advantages of studying stellar mass and supermassive black holes and to bring together the knowledge gained from the two approaches. The topics discussed here run the gamut of the state of the art in black hole observational and theoretical work-variability, spectroscopy, disk-jet connections, and multi-wavelength campaigns on black holes are all covered. Reprinted from ASTROPHYSICS AND SPACE SCIENCE, 300:1-3 (2005)
On the black hole from merging binary neutron stars: how fast can it spin?
Kastaun, Wolfgang; Alic, Daniela; Rezzolla, Luciano; Font, Jose A
2013-01-01
The merger of two neutron stars will in general lead to the formation of a torus surrounding a black hole whose rotational energy can be tapped to potentially power a short gamma-ray burst. We have studied the merger of equal-mass binaries with spins aligned with the orbital angular momentum to determine the maximum spin the black hole can reach. Our initial data consists of irrotational binaries to which we add various amounts of rotation to increase the total angular momentum. Although the initial data violates the constraint equations, the use of the constraint-damping CCZ4 formulation yields evolutions with violations smaller than those with irrotational initial data and standard formulations. Interestingly, we find that a limit of $J/M^2 \\simeq 0.89$ exists for the dimensionless spin and that any additional angular momentum given to the binary ends up in the torus rather than in the black hole, thus providing another nontrivial example supporting the cosmic censorship hypothesis.
Gravitational Waves from Stellar Black Hole Binaries and the Impact on Nearby Sun-like Stars
Lopes, Ilídio; Silk, Joseph
2017-07-01
We investigate the impact of resonant gravitational waves on quadrupole acoustic modes of Sun-like stars located nearby stellar black hole binary systems (such as GW150914 and GW151226). We find that the stimulation of the low-overtone modes by gravitational radiation can lead to sizeable photometric amplitude variations, much larger than the predictions for amplitudes driven by turbulent convection, which in turn are consistent with the photometric amplitudes observed in most Sun-like stars. For accurate stellar evolution models, using up-to-date stellar physics, we predict photometric amplitude variations of 1-103 ppm for a solar mass star located at a distance between 1 au and 10 au from the black hole binary and belonging to the same multi-star system. The observation of such a phenomenon will be within the reach of the Plato mission because the telescope will observe several portions of the Milky Way, many of which are regions of high stellar density with a substantial mixed population of Sun-like stars and black hole binaries.
Qiang, Li-E.; Zhao, Shu Hong; Xu, Peng
2016-12-01
Gravitational waves from coalescing black-hole binaries (BHBs) were recently observed by the advanced LIGO detectors. Based on the perturbation analysis, for general Kaluza-Klein theories with compact extra dimensions, we find a 1st-order post-Newtonian correction to the inspiral gravitational waveforms of black-hole binaries, that comes from the variations of the volume of the extra dimensions in near source zones. Such correction depends on a new parameter χ=\\frac{n}{2+n} with n the dimensionality of the extra space and it is irrelevant to the particular choice of the topology of the extra space. For the ideal case of a black-hole binary system following nearly circular orbital motion with almost equal or intermediate mass ratio, such higher-dimensional corrections to the chirping amplitude are worked out. Giving the power of tracing inspiral waves from coalescing massive BHBs with high signal-to-noise ratios, the planned space-borne antennas such as the eLISA and DECIGO may give us a measurement of the parameter χ in the near future and may serve us as new probes in the searching for the evidence of the hidden compact dimensions.
Black hole dynamics in general relativity
Abhay Ashtekar
2007-07-01
Basic features of dynamical black holes in full, non-linear general relativity are summarized in a pedagogical fashion. Qualitative properties of the evolution of various horizons follow directly from the celebrated Raychaudhuri equation.
Maximal elements of non necessarily acyclic binary relations
Josep Enric Peris Ferrando; Begoña Subiza Martínez
1992-01-01
The existence of maximal elements for binary preference relations is analyzed without imposing transitivity or convexity conditions. From each preference relation a new acyclic relation is defined in such a way that some maximal elements of this new relation characterize maximal elements of the original one. The result covers the case whereby the relation is acyclic.
A disk-corona model for low/hard state of black hole X-ray binaries
Wang, Jiu-Zhou; Huang, Chang-Yin
2013-01-01
A disk-corona model for fitting low/hard (LH) state of associated steady jet of black hole X-ray binaries (BHXBs) is proposed based on the large-scale magnetic field configuration of the coexistence of the Blandford-Znajek (BZ) and Blandford-Payne (BP) processes,where the magnetic field configuration for the BP process is determined by the requirement of energy conversion from Poynting energy flux into kinetic energy flux in the jet. It is found that corona current is crucial to guarantee the consistency of the jet launching from accretion disk. The relative importance of the BZ to BP processes in powering jets from black hole accretion disk is discussed, and the LH state of several BHXBs is fitted based on our model.In addition, we suggest that magnetic field configuration could be regarded as the second parameter for governing the state transition of BHXBs.
Modelling variability in black hole binaries: linking simulations to observations
Ingram, Adam
2011-01-01
Black hole accretion flows show rapid X-ray variability. The Power Spectral Density (PSD) of this is typically fit by a phenomenological model of multiple Lorentzians for both the broad band noise and Quasi-Periodic Oscillations (QPOs). Our previous paper (Ingram & Done 2011) developed the first physical model for the PSD and fit this to observational data. This was based on the same truncated disc/hot inner flow geometry which can explain the correlated properties of the energy spectra. This assumes that the broad band noise is from propagating fluctuations in mass accretion rate within the hot flow, while the QPO is produced by global Lense-Thirring precession of the same hot flow. Here we develop this model, making some significant improvements. Firstly we specify that the viscous frequency (equivalently, surface density) in the hot flow has the same form as that measured from numerical simulations of precessing, tilted accretion flows. Secondly, we refine the statistical techniques which we use to fit...
Fu, Hai; Myers, A D; Djorgovski, S G; Yan, Lin
2015-01-01
Representing simultaneous black hole accretion during a merger, binary active galactic nuclei (AGNs) could provide valuable observational constraints to models of galaxy mergers and AGN triggering. High-resolution radio interferometer imaging offers a promising method to identify a large and uniform sample of binary AGNs, because it probes a generic feature of nuclear activity and is free from dust obscuration. Our previous search yielded 52 strong candidates of kpc-scale binaries over the 92 deg^2 of the Sloan Digital Sky Survey (SDSS) Stripe 82 area with 2"-resolution Very Large Array (VLA) images. Here we present 0.3"-resolution VLA 6 GHz observations for six candidates that have complete optical spectroscopy. The new data confirm the binary nature of four candidates and identify the other two as line-of-sight projections of radio structures from single AGNs. The four binary AGNs at z ~ 0.1 reside in major mergers with projected separations of 4.2-12 kpc. Optical spectral modeling shows that their hosts ha...
Khan, Fazeel Mahmood; Berczik, Peter; Berentzen, Ingo; Just, Andreas; Spurzem, Rainer
2012-01-01
Galaxy centers are residing places for Super Massive Black Holes (SMBHs). Galaxy mergers bring SMBHs close together to form gravitationally bound binary systems which, if able to coalesce in less than a Hubble time, would be one of the most promising sources of gravitational waves for the Laser Interferometer Space Antenna (LISA). In spherical galaxy models, SMBH binaries stall at a separation of approximately one parsec, leading to the "final parsec problem" (FPP). On the other hand, it has been shown that merger-induced triaxiality of the remnant in equal-mass mergers is capable of supporting a constant supply of stars on so-called centrophilic orbits that interact with the binary and thus avoid the FPP. In this paper, using a set of direct N-body simulations of mergers of initially spherically symmetric galaxies with different mass ratios, we show that the merger-induced triaxiality is able to drive unequal-mass SMBH binaries to coalescence. The binary hardening rates are high and depend only weakly on the...
Towards an Extended Binary Black Hole Search using Advanced LIGO: from Stellar to Intermediate-Mass
Mukherjee, Debnandini; LIGO Scientific Collaboration; Virgo Collaboration Collaboration
2017-01-01
Intermediate mass black hole (IMBH) binaries, make up the mass space between stellar-mass and super massive black holes, with their total mass in the range of about 100 to 100,000 solar masses. Detection of IMBH mergers would help us explore their formation channels. The IMBH search is currently sensitive to coalescences of black hole binaries covering a total mass range between 50-600 solar masses. Recent publications in astrophysics point to the physical importance of the IMBH search (they may shed light on certain supernova mechanisms). In light of the conclusion of the 1st Advanced LIGO search conducted between September 2015 and January 2016 (O1 run), I will provide an update on the IMBH search (software GstLAL based, using matched-filter) on this data and will discuss the feasibility of including the IMBH search with the stellar-mass black hole search space (total mass range 2-100 solar masses), thus achieving a combined search for future runs. NSF PHY-1607585.
Impact of Higher Harmonics in Searching for Gravitational Waves from Non-Spinning Binary Black Holes
Capano, Collin; Buonanno, Alessandra
2013-01-01
Current searches for gravitational waves from coalescing binary black holes (BBH) use templates that only include the dominant harmonic. In this study we use effective-one-body multipolar waveforms calibrated to numerical-relativity simulations to quantify the effect of neglecting sub-dominant harmonics on the sensitivity of searches. We consider both signal-to-noise ratio (SNR) and the signal-based vetoes that are used to re-weight SNR. We find that neglecting sub-dominant modes when searching for non-spinning BBHs with component masses $3\\,M_{\\odot} \\leq m_1, m_2 \\leq 200\\,M_{\\odot}$ and total mass $M < 360\\,M_{\\odot}$ in advanced LIGO results in a negligible reduction of the re-weighted SNR at detection thresholds. Sub-dominant modes therefore have no effect on the detection rates predicted for advanced LIGO. Furthermore, we find that if sub-dominant modes are included in templates the sensitivity of the search becomes worse if we use current search priors, due to an increase in false alarm probability....
Dynamical Formation of Low-mass Merging Black Hole Binaries like GW151226
Chatterjee, Sourav; Rodriguez, Carl L.; Kalogera, Vicky; Rasio, Frederic A.
2017-02-01
Using numerical models for star clusters spanning a wide range in ages and metallicities (Z) we study the masses of binary black holes (BBHs) produced dynamically and merging in the local universe (z ≲ 0.2). After taking into account cosmological constraints on star formation rate and metallicity evolution, which realistically relate merger delay times obtained from models with merger redshifts, we show here for the first time that while old, metal-poor globular clusters can naturally produce merging BBHs with heavier components, as observed in GW150914, lower-mass BBHs like GW151226 are easily formed dynamically in younger, higher-metallicity clusters. More specifically, we show that the mass of GW151226 is well within 1σ of the mass distribution obtained from our models for clusters with Z/Z⊙ ≳ 0.5. Indeed, dynamical formation of a system like GW151226 likely requires a cluster that is younger and has a higher metallicity than typical Galactic globular clusters. The LVT151012 system, if real, could have been created in any cluster with Z/Z⊙ ≲ 0.25. On the other hand, GW150914 is more massive (beyond 1σ) than typical BBHs from even the lowest-metallicity (Z/Z⊙ = 0.005) clusters we consider, but is within 2σ of the intrinsic mass distribution from our cluster models with Z/Z⊙ ≲ 0.05 of course, detection biases also push the observed distributions toward higher masses.
Formation pathway of Population III coalescing binary black holes through stable mass transfer
Inayoshi, Kohei; Hirai, Ryosuke; Kinugawa, Tomoya; Hotokezaka, Kenta
2017-07-01
We study the formation of stellar mass binary black holes (BBHs) originating from Population III (PopIII) stars, performing stellar evolution simulations for PopIII binaries with mesa. We find that a significant fraction of PopIII binaries form massive BBHs through stable mass transfer between two stars in a binary, without experiencing common envelope phases. We investigate necessary conditions required for PopIII binaries to form coalescing BBHs with a semi-analytical model calibrated by the stellar evolution simulations. The BBH formation efficiency is estimated for two different initial conditions for PopIII binaries with large and small separations, respectively. Consequently, in both models, ˜10 per cent of the total PopIII binaries form BBHs only through stable mass transfer and ˜10 per cent of these BBHs merge due to gravitational wave emission within the Hubble time. Furthermore, the chirp mass of merging BBHs has a flat distribution over 15 ≲ Mchirp/M⊙ ≲ 35. This formation pathway of PopIII BBHs is presumably robust because stable mass transfer is less uncertain than common envelope evolution, which is the main formation channel for Population II BBHs. We also test the hypothesis that the BBH mergers detected by LIGO originate from PopIII stars using the total number of PopIII stars formed in the early universe as inferred from the optical depth measured by Planck. We conclude that the PopIII BBH formation scenario can explain the mass-weighted merger rate of the LIGO's O1 events with the maximal PopIII formation efficiency inferred from the Planck measurement, even without BBHs formed by unstable mass transfer or common envelope phases.
Binary black hole merger rates inferred from luminosity function of ultra-luminous X-ray sources
Inoue, Yoshiyuki; Tanaka, Yasuyuki T.; Isobe, Naoki
2016-10-01
The Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) has detected direct signals of gravitational waves (GWs) from GW150914. The event was a merger of binary black holes whose masses are 36^{+5}_{-4} M_{{⊙}} and 29^{+4}_{-4} M_{{⊙}}. Such binary systems are expected to be directly evolved from stellar binary systems or formed by dynamical interactions of black holes in dense stellar environments. Here we derive the binary black hole merger rate based on the nearby ultra-luminous X-ray source (ULX) luminosity function (LF) under the assumption that binary black holes evolve through X-ray emitting phases. We obtain the binary black hole merger rate as 5.8(tULX/0.1 Myr)- 1λ- 0.6exp ( - 0.30λ) Gpc- 3 yr- 1, where tULX is the typical duration of the ULX phase and λ is the Eddington ratio in luminosity. This is coincident with the event rate inferred from the detection of GW150914 as well as the predictions based on binary population synthesis models. Although we are currently unable to constrain the Eddington ratio of ULXs in luminosity due to the uncertainties of our models and measured binary black hole merger event rates, further X-ray and GW data will allow us to narrow down the range of the Eddington ratios of ULXs. We also find the cumulative merger rate for the mass range of 5 M⊙ ≤ MBH ≤ 100 M⊙ inferred from the ULX LF is consistent with that estimated by the aLIGO collaboration considering various astrophysical conditions such as the mass function of black holes.
Bifurcation timescales in power spectra of black hole binaries and ultraluminous X-ray sources
无
2010-01-01
For black hole binaries(BHBs) and active galactic nuclei(AGNs),bifurcation timescales(BTs) Δtb exist,below which time-domain power is significantly higher than the corresponding Fourier power.Quasi-periodic oscillations(QPOs) are removed from the Fourier spectra of BHBs.A relationship between BT,black hole mass and bolometric luminosity is derived.Strong anti-correlation between BT and luminosity of Cyg X-1 is found.After removing the QPOs,BTs are also obtained for two ultraluminous X-ray sources(ULXs),M82 X-1 and NGC5408 X-1.The results support that they harbor intermediate mass black holes(IMBHs).
Quasiequilibrium sequences of binary strange quark stars in general relativity
Limousin, F; Gourgoulhon, E; Limousin, Francois; Gondek-Rosinska, Dorota; Gourgoulhon, Eric
2004-01-01
Inspiraling compact binaries are expected to be the strongest sources of gravitational waves for VIRGO, LIGO and other laser interferometers. We present the first computations of quasi-equilibrium sequences of compact binaries containing two strange quark stars (which are currently considered as a possible alternative to neutron stars). We study a precoalescing stage in the conformal flatness approximation of general relativity using a multidomain spectral method. A hydrodynamical treatment is performed under the assumption that the flow is irrotational.
Binary Opposition Relations of Characters in “Araby”
高洁
2014-01-01
“Araby” is a wel-known short story written.According to Greimas’ theory,narratives contain six aspects which form three binary oppositions:Subject/Object,Sender/Receiver,and Helper/Opponent.In this thesis,the author wil work out the binary opposition relations between the characters in “Araby” based on A.J.Greimas’ “Actantial Model”.
The origin of Black-Hole Spin in Galactic Low-Mass X-ray Binaries
Fragos, Tassos; McClintock, Jeffrey
2015-08-01
Galactic field low-mass X-ray binaries (LMXBs), like the ones for which black hole (BH) spin measurements are available, are believed to form in situ via the evolution of isolated binaries. In the standard formation channel, these systems survived a common envelope phase, after which the remaining helium core of the primary star and the subsequently formed BH are not expected to be highly spinning. However, the measured spins of BHs in LMXBs cover the whole range of spin parameters from a*~0 to a*1. In this talk I propose that the BH spin in LMXBs is acquired through accretion onto the BH during its long stable accretion phase. In order to test this hypothesis, I calculated extensive grids of binary evolutionary sequences in which a BH accretes matter from a close companion. For each evolutionary sequence, I examined whether, at any point in time, the calculated binary properties are in agreement with their observationally inferred counterparts of observed Galactic LMXBs with BH spin measurements. Mass-transfer sequences that simultaneously satisfy all observational constraints represent possible progenitors of the considered LMXBs and thus give estimates of the amount of matter that the BH has accreted since the onset of Roche-Lobe overflow. I find that in all Galactic LMXBs with measured BH spin, the origin of the spin can be accounted by the accreted matter. Furthermore, based on this hypothesis, I derive limits on the maximum spin that a BH can have depending on the orbital period of the binary it resides in, and give predictions on the maximum possible BH spin of Galactic LMXBs where a BH spin measurement is not yet available. Finally I will discuss the implication that our findings have on the birth black hole mass distribution.
On the orbital evolution of supermassive black hole binaries with circumbinary accretion discs
Tang, Yike; MacFadyen, Andrew; Haiman, Zoltán
2017-08-01
Gaseous circumbinary accretion discs provide a promising mechanism to facilitate the mergers of supermassive black holes (SMBHs) in galactic nuclei. We measure the torques exerted on accreting SMBH binaries, using 2D, isothermal, moving-mesh, viscous hydrodynamical simulations of circumbinary accretion discs. Our computational domain includes the entire inner region of the circumbinary disc, with the individual black holes (BHs) treated as point masses on the grid. A sink prescription is used to account for accretion on to each BH through well-resolved minidiscs. We explore a range of mass-removal rates for the sinks. We find that the torque exerted on the binary is primarily gravitational, and dominated by the gas orbiting close behind and ahead of the individual BHs. The torques are sensitive to the sink prescription: slower sinks result in more gas accumulating near the BHs and more negative torques, driving more rapid binary merger. For faster sinks, the torques are less negative, and eventually turn positive (for unphysically fast sinks). When the minidiscs are modelled as standard α discs, our results are insensitive to the chosen sink radius. When scaled to \\dot{M}/\\dot{M}_Edd=0.3, the implied residence time-scale is ≈3 × 106 yr, independent of the SMBH masses and orbital separation. For binaries with total mass ≲ 107 M⊙, this is shorter than the inspiral time due to gravitational wave (GW) emission alone, implying that gas discs will have a significant impact on the SMBH binary population and can affect the GW signal for pulsar timing arrays.
Binary black hole waveform extraction at null infinity
Babiuc, M C [Department of Physics, Marshall University, Huntington, WV 25755 (United States); Winicour, J [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Zlochower, Y, E-mail: babiuc@marshall.edu [Center for Computational Relativity and Gravitation and School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY 14623 (United States)
2011-07-07
In this paper, we present a work in progress toward an efficient and economical computational module which interfaces between Cauchy and characteristic evolution codes. Our goal is to provide a standardized waveform extraction tool for the numerical relativity community which will allow CCE to be readily applied to a generic Cauchy code. The tool provides a means of unambiguous comparison between the waveforms generated by evolution codes based upon different formulations of the Einstein equations and different numerical approximation.
Gravitational-wave cutoff frequencies of tidally disruptive neutron star-black hole binary mergers
Pannarale, Francesco; Kyutoku, Koutarou; Lackey, Benjamin D; Shibata, Masaru
2015-01-01
Tidal disruption has a dramatic impact on the outcome of neutron star-black hole mergers. The phenomenology of these systems can be divided in three classes: nondisruptive, mildly disruptive or disruptive. The cutoff frequency of the gravitational radiation produced during the merger (which is potentially measurable by interferometric detectors) is very different in each regime, and when the merger is disuptive it carries information on the neutron star equation of state. Here we use semianalytical tools to derive a formula for the critical binary mass ratio $Q=M_{\\rm BH}/M_{\\rm NS}$ below which mergers are disruptive as a function of the stellar compactness $\\mathcal{C}=M_{\\rm NS}/R_{\\rm NS}$ and the dimensionless black hole spin $\\chi$. We then employ a new gravitational waveform amplitude model, calibrated to $134$ general relativistic numerical simulations of binaries with black hole spin (anti-)aligned with the orbital angular momentum, to obtain a fit to the gravitational-wave cutoff frequency in the di...
Swift Observations of MAXI J1659-152: A Compact Binary with a Black Hole Accretor
Kennea, J A; Mangano, V; Beardmore, A P; Evans, P A; Curran, P A; Krimm, H A; Markwardt, C B; Yamaoka, K
2011-01-01
We report on the detection and follow-up high cadence monitoring observations of MAXI J1659-152, a bright Galactic X-ray binary transient with a likely black-hole accretor, by Swift over a 27 day period after its initial outburst detection. MAXI J1659-152 was discovered almost simultaneously by Swift and MAXI on 2010 Sept 25, and was monitored intensively from the early stages of the outburst through the rise to a brightness of ~0.5 Crab by the Swift XRT, UVOT, and BAT. We present temporal and spectral analysis of the Swift observations. The broadband light-curves show variability characteristic of black-hole candidate transients. We present the evolution of thermal and non-thermal components of the 0.5-150 keV combined X-ray spectra during the outburst. MAXI J1659-152 displays accretion state changes typically associated with black-hole binaries, transitioning from its initial detection in the Hard State, to the Steep Power-Law State, followed by a slow evolution towards the Thermal State, signified by an in...
The black hole binary V404 Cygni: an obscured AGN analogue
Motta, S E; Sánchez-Fernández, C; Giustini, M; Kuulkers, E
2016-01-01
Typical black hole binaries in outburst show spectral states and transitions, characterized by a clear connection between the inflow onto the black hole and outflow from its vicinity. The transient stellar mass black hole binary V404 Cyg apparently does not fit in this picture. Its outbursts are characterized by intense flares and intermittent low-flux states, with a dynamical range of several orders of magnitude on timescales of hours. During the 2015 June-July X-ray outburst a joint Swift and INTEGRAL observing campaign captured V404 Cyg in one of these low-flux states. The simultaneous Swift/XRT and INTEGRAL/JEM-X/ISGRI spectrum is reminiscent of that of obscured/absorbed AGN. It can be modeled as a Comptonization spectrum, heavily absorbed by a partial covering, high-column density material ($N_\\textrm{H} \\approx 1.4\\times10^{24}\\,\\textrm{cm}^{-2}$), and a dominant reflection component, including a narrow Iron-K$\\alpha$ line. Such spectral distribution can be produced by a geometrically thick accretion fl...
Zhao, Xinyu; Kesden, Michael; Gerosa, Davide
2017-07-01
In the post-Newtonian (PN) regime, the time scale on which the spins of binary black holes precess is much shorter than the radiation-reaction time scale on which the black holes inspiral to smaller separations. On the precession time scale, the angle between the total and orbital angular momenta oscillates with nutation period τ , during which the orbital angular momentum precesses about the total angular momentum by an angle α . This defines two distinct frequencies that vary on the radiation-reaction time scale: the nutation frequency ω ≡2 π /τ and the precession frequency Ω ≡α /τ . We use analytic solutions for generic spin precession at 2PN order to derive Fourier series for the total and orbital angular momenta in which each term is a sinusoid with frequency Ω -n ω for integer n . As black holes inspiral, they can pass through nutational resonances (Ω =n ω ) at which the total angular momentum tilts. We derive an approximate expression for this tilt angle and show that it is usually less than 10-3 radians for nutational resonances at binary separations r >10 M . The large tilts occurring during transitional precession (near zero total angular momentum) are a consequence of such states being approximate n =0 nutational resonances. Our new Fourier series for the total and orbital angular momenta converge rapidly with n providing an intuitive and computationally efficient approach to understanding generic precession that may facilitate future calculations of gravitational waveforms in the PN regime.
Monitoring the Black Hole Binary GRS 1758-258 with INTEGRAL and RXTE
Pottschmidt, Katja; Chernyakova, Masha; Lubinski, Piotr; Migliari, Simone; Smith, David M.; Zdziarski, Andrzej A.; Tomsick, John A.; Bezayiff, N.; Kreykenbohm, Ingo; Kretschmar, Peter;
2008-01-01
The microquasar GRS 1758-258 is one of only three persistent black hole binaries that spend most of their time in the hard spectral state, the other two being Cyg X-l and 1E 1741.7-2942. It therefore provides the rare opportunity for an extensive long term study of this important black hole state which is associated with strong variability and radio jet emission. INTEGRAL has been monitoring the source since the first Galactic Center Deep Exposure season in spring 2003 during two 2-3 months long Galactic Center viewing epochs each year, amounting to 11 epochs including spring of 2008. With the exception of the last epoch quasi-simultaneous RXTE monitoring observations are available as well. Here we present an analysis of the epoch averaged broad band spectra which display considerable long term variability, most notably the occurrence of two soft/off states, extreme examples for the hysteretic behavior of black hole binaries. The hard source spectrum and long exposures allow us to extend the analysis for several epochs to approximately 800 keV using PICsIT data and address the question of the presence of a non-thermal Comptonization component.
Initial data for black hole-neutron star binaries, with rotating stars
Tacik, Nick; Pfeiffer, Harald P; Muhlberger, Curran; Kidder, Lawrence E; Scheel, Mark A; Szilagyi, Bela
2016-01-01
The coalescence of a neutron star with a black hole is a primary science target of ground-based gravitational wave detectors. Constraining or measuring the neutron star spin directly from gravitational wave observations requires knowledge of the dependence of the emission properties of these systems on the neutron star spin. This paper lays foundations for this task, by developing a numerical method to construct initial data for black hole--neutron star binaries with arbitrary spin on the neutron star. We demonstrate the robustness of the code by constructing initial-data sets in large regions of the parameter space. In addition to varying the neutron star spin-magnitude and spin-direction, we also explore neutron star compactness, mass-ratio, black hole spin, and black hole spin-direction. Specifically, we are able to construct initial data sets with neutron stars spinning near centrifugal break-up, and with black hole spins as large as $S_{\\rm BH}/M_{\\rm BH}^2=0.99$.
A close-pair binary in a distant triple supermassive black-hole system
Deane, R P; Jarvis, M J; Coriat, M; Bernardi, G; Fender, R P; Frey, S; Heywood, I; Klöckner, H -R; Grainge, K; Rumsey, C
2014-01-01
Galaxies are believed to evolve through merging, which should lead to multiple supermassive black holes in some. There are four known triple black hole systems, with the closest pair being 2.4 kiloparsecs apart (the third component is more distant at 3 kiloparsecs), which is far from the gravitational sphere of influence of a black hole with mass $\\sim$10$^9$ M$_\\odot$ (about 100 parsecs). Previous searches for compact black hole systems concluded that they were rare, with the tightest binary system having a separation of 7 parsecs. Here we report observations of a triple black hole system at redshift z=0.39, with the closest pair separated by $\\sim$140 parsecs. The presence of the tight pair is imprinted onto the properties of the large-scale radio jets, as a rotationally-symmetric helical modulation, which provides a useful way to search for other tight pairs without needing extremely high resolution observations. As we found this tight pair after searching only six galaxies, we conclude that tight pairs ar...
Initial data for black hole–neutron star binaries, with rotating stars
Tacik, Nick; Foucart, Francois; Pfeiffer, Harald P.; Muhlberger, Curran; Kidder, Lawrence E.; Scheel, Mark A.; Szilágyi, Béla
2016-11-01
The coalescence of a neutron star with a black hole is a primary science target of ground-based gravitational wave detectors. Constraining or measuring the neutron star spin directly from gravitational wave observations requires knowledge of the dependence of the emission properties of these systems on the neutron star spin. This paper lays foundations for this task, by developing a numerical method to construct initial data for black hole–neutron star binaries with arbitrary spin on the neutron star. We demonstrate the robustness of the code by constructing initial-data sets in large regions of the parameter space. In addition to varying the neutron star spin-magnitude and spin-direction, we also explore neutron star compactness, mass-ratio, black hole spin, and black hole spin-direction. Specifically, we are able to construct initial data sets with neutron stars spinning near centrifugal break-up, and with black hole spins as large as {S}{BH}/{M}{BH}2=0.99.
The first low-mass black hole X-ray binary identified in quiescence outside of a globular cluster
Tetarenko, B E; Arnason, R M; Miller-Jones, J C A; Repetto, S; Heinke, C O; Maccarone, T J; Chomiuk, L; Sivakoff, G R; Strader, J; Kirsten, F; Vlemmings, W
2016-01-01
The observed relation between the X-ray and radio properties of low-luminosity accreting black holes has enabled the identification of multiple candidate black hole X-ray binaries (BHXBs) in globular clusters. Here we report an identification of the radio source VLA J213002.08+120904 (aka M15 S2), recently reported in Kirsten et al. 2014, as a BHXB candidate. They showed that the parallax of this flat-spectrum variable radio source indicates a 2.2$^{+0.5}_{-0.3}$ kpc distance, which identifies it as lying in the foreground of the globular cluster M15. We determine the radio characteristics of this source, and place a deep limit on the X-ray luminosity of $\\sim4\\times10^{29}$ erg s$^{-1}$. Furthermore, we astrometrically identify a faint red stellar counterpart in archival Hubble images, with colors consistent with a foreground star; at 2.2 kpc its inferred mass is 0.1-0.2 $M_{\\odot}$. We rule out that this object is a pulsar, neutron star X-ray binary, cataclysmic variable, or planetary nebula, concluding tha...
Sesana, A; Madau, P; Volonteri, M; Sesana, Alberto; Haardt, Francesco; Madau, Piero; Volonteri, Marta
2004-01-01
We compute the expected gravitational wave signal from coalescing massive black hole (MBH) binaries at the center of galaxies in a hierarchical structure formation scenario in which seed holes of intermediate mass form far up in the dark halo merger tree. The merger history of DM halos and MBHs is followed from z=20 to the present in a LCDM cosmology. MBHs get incorporated through halo mergers into larger and larger structures, sink to the center owing to dynamical friction against the DM background, accrete cold material in the merger remnant, and form MBH binary systems. Stellar dynamical interactions cause the hardening of the binary at large separations, while gravitational wave emission takes over at small radii and leads to the final coalescence of the pair. The integrated emission from inspiraling MBH binaries results in a gravitational wave background (GWB). The characteristic strain spectrum has the standard h_c(f)\\propto f^{-2/3} behavior only in the range 1E-91E-6 Hz, the strain amplitude is shaped...
Tidal Disruption of Stellar Objects by Hard Supermassive Black Hole Binaries
Chen, Xian; Magorrian, John
2007-01-01
Supermassive black hole binaries (SMBHBs) are expected by the hierarchical galaxy formation model in $\\Lambda$CDM cosmology. There is some evidence in the literature for SMBHBs in AGNs, but there are few observational constraints on the evolution of SMBHBs in inactive galaxies and gas-poor mergers. On the theoretical front, it is unclear how long is needed for a SMBHB in a typical galaxy to coalesce. In this paper we investigate the tidal interaction between stars and binary BHs and calculate the tidal disruption rates of stellar objects by the BH components of binary. We derive the interaction cross sections between SMBHBs and stars from intensive numerical scattering experiments with particle number $\\sim10^7$ and calculate the tidal disruption rates by both single and binary BHs for a sample of realistic galaxy models, taking into account the general relativistic effect and the loss cone refilling because of two-body interaction. We estimate the frequency of tidal flares for different types of galaxies usi...
On the Formation of Galactic Black Hole Low-Mass X-ray Binaries
Wang, Chen; Li, Xiang-Dong
2016-01-01
Currently, there are 24 black hole (BH) X-ray binary systems that have been dynamically confirmed in the Galaxy. Most of them are low-mass X-ray binaries (LMXBs) comprised of a stellar-mass BH and a low-mass donor star. Although the formation of these systems has been extensively investigated, some crucial issues remain unresolved. The most noticeable one is that, the low-mass companion has difficulties in ejecting the tightly bound envelope of the massive primary during the spiral-in process. While initially intermediate-mass binaries are more likely to survive the common envelope (CE) evolution, the resultant BH LMXBs mismatch the observations. In this paper, we use both stellar evolution and binary population synthesis to study the evolutionary history of BH LMXBs. We test various assumptions and prescriptions for the supernova mechanisms that produce BHs, the binding energy parameter, the CE efficiency, and the initial mass distributions of the companion stars. We obtain the birthrate and the distribution...
THE FIRST SPECTROSCOPICALLY RESOLVED SUB-PARSEC ORBIT OF A SUPERMASSIVE BINARY BLACK HOLE
Bon, E.; Jovanovic, P.; Bon, N.; Popovic, L. C. [Astronomical Observatory, Volgina 7, 11060 Belgrade (Serbia); Marziani, P. [INAF, Osservatorio Astronomico di Padova, Padova (Italy); Shapovalova, A. I. [Special Astrophysical Observatory of the Russian AS, Nizhnij Arkhyz, Karachaevo-Cherkesia 369167 (Russian Federation); Borka Jovanovic, V.; Borka, D. [Isaac Newton Institute of Chile, Yugoslavia Branch, Belgrade (Serbia); Sulentic, J. [Instituto de Astrofisica de Andalucia, CSIC, Apdo. 3004, E-18080 Granada (Spain)
2012-11-10
One of the most intriguing scenarios proposed to explain how active galactic nuclei are triggered involves the existence of a supermassive binary black hole (BH) system in their cores. Here, we present an observational evidence for the first spectroscopically resolved sub-parsec orbit of a such system in the core of Seyfert galaxy NGC 4151. Using a method similar to those typically used for spectroscopic binary stars, we obtained radial velocity curves of the supermassive binary system, from which we calculated orbital elements and made estimates about the masses of the components. Our analysis shows that periodic variations in the light and radial velocity curves can be accounted for by an eccentric, sub-parsec Keplerian orbit with a 15.9 year period. The flux maximum in the light curve corresponds to the approaching phase of the secondary component toward the observer. According to the obtained results, we speculate that the periodic variations in the observed H{alpha} line shape and flux are due to shock waves generated by the supersonic motion of the components through the surrounding medium. Given the large observational effort needed to reveal this spectroscopically resolved binary orbital motion, we suggest that many such systems may exist in similar objects even if they are hard to find. Detecting more of them will provide us with insight into the BH mass growth process.
Hannam, Mark; Baker, John G; Boyle, Michael; Bruegmann, Bernd; Chu, Tony; Dorband, Nils; Herrmann, Frank; Hinder, Ian; Kelly, Bernard J; Kidder, Lawrence E; Laguna, Pablo; Matthews, Keith D; van Meter, James R; Pfeiffer, Harald P; Pollney, Denis; Reisswig, Christian; Scheel, Mark A; Shoemaker, Deirdre
2009-01-01
We quantify the consistency of numerical-relativity black-hole-binary waveforms for use in gravitational-wave (GW) searches with current and planned ground-based detectors. We compare previously published results for the $(\\ell=2,| m | =2)$ mode of the gravitational waves from an equal-mass nonspinning binary, calculated by five numerical codes. We focus on the 1000M (about six orbits, or 12 GW cycles) before the peak of the GW amplitude and the subsequent ringdown. We find that the phase and amplitude agree within each code's uncertainty estimates. The mismatch between the $(\\ell=2,| m| =2)$ modes is better than $10^{-3}$ for binary masses above $60 M_{\\odot}$ with respect to the Enhanced LIGO detector noise curve, and for masses above $180 M_{\\odot}$ with respect to Advanced LIGO, Virgo and Advanced Virgo. Between the waveforms with the best agreement, the mismatch is below $2 \\times 10^{-4}$. We find that the waveforms would be indistinguishable in all ground-based detectors (and for the masses we consider...
Origin and Implications of high eccentricities in massive black hole binaries at sub-pc scales
Roedig, Constanze
2011-01-01
We outline the eccentricity evolution of sub-parsec massive black hole binaries (MBHBs) forming in galaxy mergers. In both stellar and gaseous environments, MBHBs are expected to grow large orbital eccentricities before they enter the gravitational wave (GW) observational domain. We re--visit the predicted eccentricities detectable by space based laser interferometers (as the proposed ELISA/NGO) for both environments. Close to coalescence, many MBHBs will still maintain detectable eccentricities, spanning a broad range from <10^{-5} up to <~ 0.5. Stellar and gas driven dynamics lead to distinct distributions, with the latter favoring larger eccentricities. At larger binary separations, when emitted GWs will be observed by pulsar timing arrays (PTAs), the expected eccentricities are usually quite large, in the range 0.01-0.7, which poses an important issue for signal modelling and detection algorithms. In this window, large eccentricities also have implications on proposed electromagnetic counterparts to...
Filling the holes: Evolving excised binary black hole initial data with puncture techniques
Etienne, Zachariah B; Liu, Yuk Tung; Shapiro, Stuart L; Baumgarte, Thomas W
2007-01-01
We follow the inspiral and merger of equal-mass black holes (BHs) by the moving puncture technique and demonstrate that both the exterior solution and the asymptotic gravitational waveforms are unchanged when the initial interior solution is replaced by constraint-violating ``junk'' initial data. We apply this result to evolve conformal thin-sandwich (CTS) binary BH initial data by filling their excised interiors with arbitrary, but smooth, initial data and evolving with standard puncture gauge choices. The waveforms generated for both puncture and filled-CTS initial data are remarkably similar, and there are only minor differences between irrotational and corotational CTS BH binaries. Even the interior solutions appear to evolve to the same constraint-satisfying solution at late times, independent of the initial data.
Binary Black Holes in Dense Star Clusters: Exploring the Theoretical Uncertainties
Chatterjee, Sourav; Rasio, Frederic A
2016-01-01
Recent theoretical studies with N-body simulations predict that large numbers of stellar black holes (BHs) could remain bound to some globular clusters (GCs) at present, and merging BH--BH binaries are produced dynamically in significant numbers. Here we systematically vary model assumptions within existing uncertainties and study their effects on the evolution of BHs in GCs and the final structural properties of GCs. We use a parallel Monte Carlo code, which provides much higher computational speed than direct N-body codes, thereby allowing large numbers of models to be computed. We find that variations in initial assumptions can set otherwise identical initial clusters on completely different evolutionary paths, significantly affecting their observable properties at present, or even affecting the cluster's very survival to the present. However, these changes usually do not affect the numbers or properties of merging BH--BH binaries produced by GCs. The only exception is that varying assumptions about stella...
A Population of Short-Period Variable Quasars from PTF as Supermassive Black Hole Binary Candidates
Charisi, M; Haiman, Z; Price-Whelan, A M; Graham, M J; Bellm, E C; Laher, R R; Marka, S
2016-01-01
Supermassive black hole binaries (SMBHBs) at sub-parsec separations should be common in galactic nuclei, as a result of frequent galaxy mergers. Hydrodynamical simulations of circumbinary discs predict strong periodic modulation of the mass accretion rate on time-scales comparable to the orbital period of the binary. As a result, SMBHBs may be recognized by the periodic modulation of their brightness. We conducted a statistical search for periodic variability in a sample of 35,383 spectroscopically confirmed quasars in the photometric database of the Palomar Transient Factory (PTF). We analysed Lomb-Scargle periodograms and assessed the significance of our findings by modeling each individual quasar's variability as a damped random walk (DRW). We identified 50 quasars with significant periodicity beyond the DRW model, typically with short periods of a few hundred days. We find 33 of these to remain significant after a re-analysis of their periodograms including additional optical data from the intermediate-PT...
Petiteau, Antoine; Sesana, Alberto
2011-01-01
Gravitational wave signals from coalescing Massive Black Hole (MBH) binaries could be used as standard sirens to measure cosmological parameters. The future space based gravitational wave observatory Laser Interferometer Space Antenna (LISA) will detect up to a hundred of those events, providing very accurate measurements of their luminosity distances. To constrain the cosmological parameters we also need to measure the redshift of the galaxy (or cluster of galaxies) hosting the merger. This requires the identification of a distinctive electromagnetic event associated to the binary coalescence. However, putative electromagnetic signatures may be too weak to be observed. Instead, we study here the possibility of constraining the cosmological parameters by enforcing statistical consistency between all the possible hosts detected within the measurement error box of a few dozen of low redshift (z<3) events. We construct MBH populations using merger tree realizations of the dark matter hierarchy in a LambdaCDM ...
GW150914: First results from the search for binary black hole coalescence with Advanced LIGO
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bohémier, K.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Cokelaer, T.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Dietz, A.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Goggin, L. M.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.
2016-06-01
On September 14, 2015, at 09∶50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) simultaneously observed the binary black hole merger GW150914. We report the results of a matched-filter search using relativistic models of compact-object binaries that recovered GW150914 as the most significant event during the coincident observations between the two LIGO detectors from September 12 to October 20, 2015 GW150914 was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203000 years, equivalent to a significance greater than 5.1 σ .
Measuring Intermediate-Mass Black-Hole Binaries with Advanced Gravitational Wave Detectors.
Veitch, John; Pürrer, Michael; Mandel, Ilya
2015-10-02
We perform a systematic study to explore the accuracy with which the parameters of intermediate-mass black-hole binary systems can be measured from their gravitational wave (GW) signatures using second-generation GW detectors. We make use of the most recent reduced-order models containing inspiral, merger, and ringdown signals of aligned-spin effective-one-body waveforms to significantly speed up the calculations. We explore the phenomenology of the measurement accuracies for binaries with total masses between 50M(⊙) and 500M(⊙) and mass ratios between 0.1 and 1. We find that (i) at total masses below ∼200M(⊙), where the signal-to-noise ratio is dominated by the inspiral portion of the signal, the chirp mass parameter can be accurately measured; (ii) at higher masses, the information content is dominated by the ringdown, and total mass is measured more accurately; (iii) the mass of the lower-mass companion is poorly estimated, especially at high total mass and more extreme mass ratios; and (iv) spin cannot be accurately measured for our injection set with nonspinning components. Most importantly, we find that for binaries with nonspinning components at all values of the mass ratio in the considered range and at a network signal-to-noise ratio of 15, analyzed with spin-aligned templates, the presence of an intermediate-mass black hole with mass >100M(⊙) can be confirmed with 95% confidence in any binary that includes a component with a mass of 130M(⊙) or greater.
LFN, QPO and fractal dimension of X-ray light curves from black hole binaries
Prosvetov, Art; Grebenev, Sergey
The origin of the low frequency noise (LFN) and quasi-periodic oscillations (QPO) observed in X-ray flux of Galactic black hole binaries is still not recognized in spite of multiple studies and attempts to model this phenomenon. There are known correlations between the QPO frequency, X-ray power density, X-ray flux and spectral state of the system, but there is no model that can do these dependences understandable. For the low frequency (~1 Hz) QPO we still have no even an idea capable to explain their production and don't know even what part of an accretion disc is responsible for them. Here we attempted to measure the fractal dimension of X-ray light curves of several black hole X-ray binaries and to study its correlation with the frequency of quasi periodic oscillations observed in their X-ray light-curves. The fractal dimension is a measure of the space-filling capacity of the light curves' profile. To measure the fractal dimension we used R/S method, which is fast enough and has good reputation in financial analytic and materials sciences. We found that if no QPO were observed in X-ray flux from the particular source, the fractal dimension is equal to the unique value which is independent on the source, its luminosity or its spectral state. On the other hand if QPO were detected in the flux, the fractal dimension deviated from its usual value. Also, we found a clear correlation between the QPO frequency and the fractal dimension of the emission. The relationship between these two parameters is solid but nonlinear. We believe that the analysis of X-ray light curves of black hole binaries using the fractal dimension has a good scientific potential and may provide an addition information on the geometry of accretion flow and fundamental physical parameters of the system.
Cornish, Neil; Sampson, Laura; McWilliams, Sean
2015-04-01
The astrophysical processes that form and harden supermassive black hole binaries impart distinct features that may be observed in the gravitational-wave spectrum within the sensitive frequency range of Pulsar Timing Arrays (PTA). We investigate how well the various formation and hardening mechanisms can be constrained by applying Bayesian inference to simulated PTA data sets. We find that even without strong priors on the merger rate, any detection of the signal will place interesting constraints on the astrophysical models. Folding in priors on the merger rate allows us to place interesting constraints on the astrophysical models even before a detection is made.
Quasi-circular orbits of conformal thin-sandwich puncture binary black holes
Hannam, M D
2005-01-01
I construct initial data for equal-mass irrotational binary black holes using the conformal thin-sandwich puncture (CTSP) approach. I locate quasi-circular orbits using the effective-potential method, and estimate the location of the innermost stable circular orbit (ISCO). The ISCO prediction is consistent with results for conformal thin-sandwich data produced using excision techniques. These results also show that the ISCOs predicted by the effective-potential and ADM-Komar mass-comparison methods agree for CTS data, just as they did for Bowen-York data.
Taylor, Stephen R; Simon, Joseph; Sampson, Laura
2017-05-05
We introduce a technique for gravitational-wave analysis, where Gaussian process regression is used to emulate the strain spectrum of a stochastic background by training on population-synthesis simulations. This leads to direct Bayesian inference on astrophysical parameters. For pulsar timing arrays specifically, we interpolate over the parameter space of supermassive black-hole binary environments, including three-body stellar scattering, and evolving orbital eccentricity. We illustrate our approach on mock data, and assess the prospects for inference with data similar to the NANOGrav 9-yr data release.
Chandra and XMM Monitoring of the Black Hole X-ray Binary IC 10 X-1
Laycock, Silas G. T.; Cappallo, Rigel C.; Moro, Matthew J.
2014-01-01
The massive black hole + Wolf-Rayet binary IC10 X-1 was observed in a series of 10 Chandra and 2 XMM-Newton observations spanning 2003-2012, showing consistent variability around 7 x10^37 erg/s, with a spectral hardening event in 2009. We phase-connected the entire light-curve by folding the photon arrival times on a series of trial periods spanning the known orbital period and its uncertainty, refining the X-ray period to P = 1.45175(1)d. The duration of minimum-flux in the X-ray eclipse is ...
MAXI J1659-152: the shortest orbital period black-hole binary
Kuulkers, E.; Kouveliotou, C.; van der Horst, A. J.
Following the detection of a bright new X-ray source, MAXI J1659-152, a series of observations was triggered with almost all currently flying high-energy missions. We report here on XMM-Newton, INTEGRAL and RXTE observations during the early phase of the X-ray outburst of this transient black-hole...... candidate. We confirm the dipping nature in the X-ray light curves. We find that the dips recur on a period of 2.4139+/-0.0005 hrs, and interpret this as the orbital period of the system. It is thus the shortest period black-hole X-ray binary known to date. Using the various observables, we derive...
Measurement of Quasi Normal Modes for a population of Binary Black Hole Mergers
da Silva Costa, Carlos Filipe; Klimenko, Sergey; Tiwari, Shubhanshu
2017-01-01
Perturbed solutions of the Kerr Black Hole (BH) are superimposition of damped sinusoids, named Quasi Normal Modes (QNM). These modes are completely defined by the final black hole parameters, mass and spin. Numerical simulations support that Binary BHs (BBH), after merging, produce a final BH emitting gravitational waves as described by the QNMs. This signal is very weak and hence the extraction of a QNM is quite challenging for the current generation of the ground based detectors. I will present a method for extraction of superimposed QNMs from future multiple observations of BBH merger signals in the advanced interferometers. We show that we can coherently sum up QNMs from the different signals and measure QNM parameters to prove the Kerr nature of a detected BHs population. NSF grant PHY 1505308.
A magnetic model for low/hard state of black hole binaries
Ye, Yong-Chun; Huang, Chang-Yin; Cao, Xiao-Feng
2015-01-01
A magnetic model for low/hard state (LHS) of black hole X-ray binaries (BHXBs),H1743-322 and GX 339-4, is proposed based on the transportation of magnetic field from a companion into an accretion disk around a black hole (BH). This model consists of a truncated thin disk with an inner advection-dominated accretion flow (ADAF). The spectral profiles of the sources are fitted in agreement with the data observed at four different dates corresponding to the rising phase of the LHS. In addition, the association of the LHS with quasi-steady jet is modelled based on transportation of magnetic field, where the Blandford-Znajek (BZ) and Blandford-Payne (BP) processes are invoked to drive the jets from BH and inner ADAF. It turns out that the steep radio/X-ray correlations observed in H1743-322 and GX 339-4 can be interpreted based on our model.
Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo
Abbott, B; Adhikari, R; Ageev, A; Allen, B; Amin, R; Anderson, S B; Anderson, W G; Araya, M; Armandula, H; Ashley, M; Asiri, F; Aufmuth, P; Aulbert, C; Babak, S; Balasubramanian, R; Ballmer, S; Barish, B C; Barker, C; Barker, D; Barnes, M; Barr, B; Barton, M A; Bayer, K; Beausoleil, R; Belczynski, K; Bennett, R; Berukoff, S J; Betzwieser, J; Bhawal, B; Bilenko, I A; Billingsley, G; Black, E; Blackburn, K; Blackburn, L; Bland, B; Bochner, B; Bogue, L; Bork, R; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burgess, R; Busby, D; Butler, W E; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cantley, C A; Cardenas, L; Carter, K; Casey, M M; Castiglione, J; Chandler, A; Chapsky, J; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chickarmane, V; Chin, D; Christensen, N; Churches, D; Cokelaer, T; Colacino, C; Coldwell, R; Coles, M; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Creighton, T D; Crooks, D R M; Csatorday, P; Cusack, B J; Cutler, C; D'Ambrosio, E; Danzmann, K; Daw, E; De Bra, D; Delker, T; Dergachev, V; DeSalvo, R; Dhurandhar, S V; Di Credico, A; Ding, H; Drever, R W P; Dupuis, R J; Edlund, J A; Ehrens, P; Elliffe, E J; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fallnich, C; Farnham, D; Fejer, M M; Findley, T; Fine, M; Finn, L S; Franzen, K Y; Freise, A; Frey, R; Fritschel, P; Frolov, V V; Fyffe, M; Ganezer, K S; Garofoli, J; Giaime, J A; Gillespie, A; Goda, K; González, G; Goler, S; Grandclément, P; Grant, A; Gray, C; Gretarsson, A M; Grimmett, D; Grote, H; Grünewald, S; Günther, M; Gustafson, E; Gustafson, R; Hamilton, W O; Hammond, M; Hanson, J; Hardham, C; Harms, J; Harry, G; Hartunian, A; Heefner, J; Hefetz, Y; Heinzel, G; Heng, I S; Hennessy, M; Hepler, N; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hindman, N; Hoang, P; Hough, J; Hrynevych, M; Hua, W; Ito, M; Itoh, Y; Ivanov, A; Jennrich, O; Johnson, B; Johnson, W W; Johnston, W R; Jones, D I; Jones, L; Jungwirth, D; Kalogera, V; Katsavounidis, E; Kawabe, K; Kawamura, S; Kells, W; Kern, J; Khan, A; Killbourn, S; Killow, C J; Kim, C; King, C; King, P; Klimenko, S; Koranda, S; Kotter, K; Kovalik, Yu; Kozak, D; Krishnan, B; Landry, M; Langdale, J; Lantz, B; Lawrence, R; Lazzarini, A; Lei, M; Leonor, I; Libbrecht, K; Libson, A; Lindquist, P; Liu, S; Logan, J; Lormand, M; Lubinski, M; Luck, H; Lyons, T T; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Majid, W; Malec, M; Mann, F; Marin, A; Marka, S; Maros, E; Mason, J; Mason, K; Matherny, O; Matone, L; Mavalvala, N; McCarthy, R; McClelland, D E; McHugh, M; McNabb, J W C; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Miyoki, S; Mohanty, S; Moreno, G; Mossavi, K; Müller, G; Mukherjee, S; Murray, P; Myers, J; Nagano, S; Nash, T; Nayak, R; Newton, G; Nocera, F; Noel, J S; Nutzman, P; Olson, T; O'Reilly, B; Ottaway, D J; Ottewill, A; Ouimette, D A; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Parameswariah, C; Pedraza, M; Penn, S; Pitkin, M; Plissi, M; Prix, R; Quetschke, V; Raab, F; Radkins, H; Rahkola, R; Rakhmanov, M; Rao, S R; Rawlins, K; Ray-Majumder, S; Re, V; Redding, D; Regehr, M W; Regimbau, T; Reid, S; Reilly, K T; Reithmaier, K; Reitze, D H; Richman, S; Riesen, R; Riles, K; Rivera, B; Rizzi, A; Robertson, D I; Robertson, N A; Robison, L; Roddy, S; Rollins, J; Romano, J D; Romie, J; Rong, H; Rose, D; Rotthoff, E; Rowan, S; Rüdiger, A; Russell, P; Ryan, K; Salzman, I; Sandberg, V; Sanders, G H; Sannibale, V; Sathyaprakash, B; Saulson, P R; Savage, R; Sazonov, A; Schilling, R; Schlaufman, K; Schmidt, V; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Seader, S E; Searle, A C; Sears, B; Seel, S; Seifert, F; Sengupta, A S; Shapiro, C A; Shawhan, P; Shoemaker, D H; Shu, Q Z; Sibley, A; Siemens, X; Sievers, L; Sigg, D; Sintes, A M; Smith, J R; Smith, M; Smith, M R; Sneddon, P H; Spero, R; Stapfer, G; Steussy, D; Strain, K A; Strom, D; Stuver, A; Summerscales, T; Sumner, M C; Sutton, P J; Sylvestre, J; Takamori, A; Tanner, D B; Tariq, H; Taylor, I; Taylor, R; Thorne, K A; Thorne, K S; Tibbits, M; Tilav, S; Tinto, M; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Tyler, W; Ugolini, D W; Ungarelli, C; Vallisneri, M; Van Putten, M H P M; Vass, S; Vecchio, A; Veitch, J; Vorvick, C; Vyachanin, S P; Wallace, L; Walther, H; Ward, H; Ware, B; Watts, K; Webber, D; Weidner, A; Weiland, U; Weinstein, A; Weiss, R; Welling, H; Wen, L; Wen, S; Whelan, J T; Whitcomb, S E; Whiting, B F; Wiley, S; Wilkinson, C; Willems, P A; Williams, P R; Williams, R; Willke, B; Wilson, A; Winjum, B J; Winkler, W; Wise, S; Wiseman, A G; Woan, G; Wooley, R; Worden, J; Wu, W; Yakushin, I; Yamamoto, H; Yoshida, S; Zaleski, K D; Zanolin, M; Zawischa, I; Zhang, L; Zhu, R; Zotov, N P; Zucker, M; Zweizig, J
2005-01-01
We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--$1.0 M_\\odot$. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--$1.0 M_\\odot$, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.
The Binary Black Hole Scenario for the BL Lacertae Object AO 0235+16
G. E. Romero; Jun-Hui Fan; S. E. Nuza
2003-01-01
Recent analysis of the long term radio light curve of the extremely variable BL Lacertae object AO 0235t16 by Raiteri et al. have revealed the presence of recurrent outbursts with a period of ～ 5.7 ± 0.5yr. Periodicity analysis of the optical light curve also shows evidence for a shorter period. Here we discuss whether such a behavior can be explained by a binary black hole model where the accretion disk of one of the supermassive black holes is precessing due to the tidal effects of the companion. We estimate the mass of the accreting hole and analyze constraints on the secondary mass and the orbital parameters of the system. It is possible to provide a viable interpretation of the available multiwavelength data.
Analysis of the Orbital Elements of Binary Black Hole in the Quasar 3C380
Matsui, T.; Kameno, S.; Nakamura, K.; Namikawa, D.; Ekawa, T.
2009-08-01
Binary black holes (BBHs) are considered to be at a stage of massive black hole (MBH) formation in active galactic nuclei (AGNs). The orbital motion of BBHs produces relativistic aberration of the jets emanating from an AGN. This relativistic aberration causes a helical structure in jets, and analysis of the helical structure can determine BBH orbital parameters. The superluminal quasar 3C 380 exhibits a helical jet structure that may be caused by the orbital motion of BBHs. We attempt to determine the orbital elements by analyzing the structure and motion of the jets in 3C 380 from multi-epoch VSOP and VLBA images at 4.8 GHz. We compare the images with jet models that were calculated based on BBH orbits with various parameters, and determine the best-fit orbital elements.
Relativistic Accretion Disk Models of High State Black Hole X-ray Binary Spectra
Davis, S W; Hubeny, I; Turner, N J; Davis, Shane W.; Blaes, Omer M.; Hubeny, Ivan; Turner, Neal J.
2004-01-01
We present calculations of non-LTE, relativistic accretion disk models applicable to the high/soft state of black hole X-ray binaries. We include the effects of thermal Comptonization and bound-free and free-free opacities of all abundant ion species. We present spectra calculated for a variety of accretion rates, black hole spin parameters, disk inclinations, and stress prescriptions. We also consider nonzero inner torques on the disk, and explore different vertical dissipation profiles, including some which are motivated by recent radiation MHD simulations of magnetorotational turbulence. Bound-free metal opacity generally produces significantly less spectral hardening than previous models which only considered Compton scattering and free-free opacity. It also tends to keep the effective photosphere near the surface, resulting in spectra which are remarkably independent of the stress prescription and vertical dissipation profile, provided little dissipation occurs above the effective photosphere. We provide...
Probing General Relativity with Accreting Black Holes
Fabian, A C
2012-01-01
Most of the X-ray emission from luminous accreting black holes emerges from within 20 gravitational radii. The effective emission radius is several times smaller if the black hole is rapidly spinning. General Relativistic effects can then be very important. Large spacetime curvature causes strong lightbending and large gravitational redshifts. The hard X-ray, power-law-emitting corona irradiates the accretion disc generating an X-ray reflection component. Atomic features in the reflection spectrum allow gravitational redshifts to be measured. Time delays between observed variations in the power-law and the reflection spectrum (reverberation) enable the physical scale of the reflecting region to be determined. The relative strength of the reflection and power-law continuum depends on light bending. All of these observed effects enable the immediate environment of the black hole where the effects of General Relativity are on display to be probed and explored.
THE ORIGIN OF BLACK HOLE SPIN IN GALACTIC LOW-MASS X-RAY BINARIES
Fragos, T. [Geneva Observatory, University of Geneva, Chemin des Maillettes 51, 1290 Sauverny (Switzerland); McClintock, J. E., E-mail: anastasios.fragkos@unige.ch [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)
2015-02-10
Galactic field black hole (BH) low-mass X-ray binaries (LMXBs) are believed to form in situ via the evolution of isolated binaries. In the standard formation channel, these systems survived a common envelope phase, after which the remaining helium core of the primary star and the subsequently formed BH are not expected to be highly spinning. However, the measured spins of BHs in LMXBs cover the whole range of spin parameters. We propose here that the BH spin in LMXBs is acquired through accretion onto the BH after its formation. In order to test this hypothesis, we calculated extensive grids of detailed binary mass-transfer sequences. For each sequence, we examined whether, at any point in time, the calculated binary properties are in agreement with their observationally inferred counterparts of 16 Galactic LMXBs. The ''successful'' sequences give estimates of the mass that the BH has accreted since the onset of Roche-Lobe overflow. We find that in all Galactic LMXBs with measured BH spin, the origin of the spin can be accounted for by the accreted matter, and we make predictions about the maximum BH spin in LMXBs where no measurement is yet available. Furthermore, we derive limits on the maximum spin that any BH can have depending on current properties of the binary it resides in. Finally we discuss the implication that our findings have on the BH birth-mass distribution, which is shifted by ∼1.5 M {sub ☉} toward lower masses, compared to the currently observed one.
GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence
,
2016-01-01
We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5 $\\sigma$. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of $3.4_{-0.9}^{+0.7} \\times 10^{-22}$. The inferred source-frame initial black hole masses are $14.2_{-3.7}^{+8.3} M_{\\odot}$ and $7.5_{-2.3}^{+2.3} M_{\\odot}$ and the final black hole mass is $20.8_{-1.7}^{+6.1} M_{\\odot}$. We find that at least one of the component black holes has spin greater than 0.2....
Concise estimate of the expected number of detections for stellar-mass binary black holes by eLISA
Kyutoku, Koutarou; Seto, Naoki
2016-10-01
We study prospects for detecting extragalactic binary black holes similar to GW150914 by evolved Laser Interferometer Space Antenna (eLISA). We find that the majority of detected binary black holes will not merge within reasonable observation periods of eLISA in any configuration. While long-arm detectors are highly desired for promoting multiband gravitational-wave astronomy by increasing the detections of merging binaries, the number of total detections can be increased also by improving the acceleration noise. A monochromatic approximation works well to derive semiquantitative features of observational prospects for non-merging binaries with clearly indicating the parameter dependence. Our estimate also suggests that the number of galaxies in the error volume is so small that the host galaxy may be determined uniquely with high confidence.
Inclination dependence of QPO phase lags in black hole X-ray binaries
Eijnden, J van den; Uttley, P; Motta, S E; Belloni, T M; Gardenier, D W
2016-01-01
Quasi-periodic oscillations (QPOs) with frequencies from $\\sim0.05$-$30$ Hz are a common feature in the X-ray emission of accreting black hole binaries. As the QPOs originate from the innermost accretion flow, they provide the opportunity to probe the behaviour of matter in extreme gravity. In this paper, we present a systematic analysis of the inclination dependence of phase lags associated with both Type-B and Type-C QPOs in a sample of 15 Galactic black hole binaries. We find that the phase lag at the Type-C QPO frequency strongly depends on inclination, both in evolution with QPO frequency and sign. Although we find that the Type-B QPO soft lags are associated with high inclination sources, the source sample is too small to confirm this as a significant inclination dependence. These results are consistent with a geometrical origin of Type-C QPOs and a different origin for Type-B and Type-C QPOs. We discuss the possibility that the phase lags originate from a pivoting spectral power law during each QPO cyc...
Asymptotically Matched Spacetime Metric for Non-Precessing, Spinning Black Hole Binaries
Gallouin, Louis; Yunes, Nicolas; Campanelli, Manuela
2012-01-01
We construct a closed-form, fully analytical 4-metric that approximately represents the spacetime evolution of non-precessing, spinning black hole binaries from infinite separations up to a few orbits prior to merger. We employ the technique of asymptotic matching to join a perturbed Kerr metric in the neighborhood of each spinning black hole to a near-zone, post-Newtonian metric farther out. The latter is already naturally matched to a far-zone, post-Minkowskian metric that accounts for full temporal retardation. The result is a 4-metric that is approximately valid everywhere in space and in a small bundle of spatial hypersurfaces. We here restrict our attention to quasi- circular orbits, but the method is valid for any orbital motion or physical scenario, provided an overlapping region of validity or buffer zone exists. A simple extension of such a metric will allow for future studies of the accretion disk and jet dynamics around spinning back hole binaries.
Mazzolo, G; Drago, M; Necula, V; Pankow, C; Prodi, G A; Re, V; Tiwari, V; Vedovato, G; Yakushin, I; Klimenko, S
2014-01-01
We estimated the sensitivity of the upcoming advanced, ground-based gravitational-wave observatories (the upgraded LIGO and Virgo and the KAGRA interferometers) to coalescing intermediate mass black hole binaries (IMBHB). We added waveforms modeling the gravitational radiation emitted by IMBHBs to detectors' simulated data and searched for the injected signals with the coherent WaveBurst algorithm. The tested binary's parameter space covers non-spinning IMBHBs with source-frame total masses between 50 and 1050 $\\text{M}_{\\odot}$ and mass ratios between $1/6$ and 1$\\,$. We found that advanced detectors could be sensitive to these systems up to a range of a few Gpc. A theoretical model was adopted to estimate the expected observation rates, yielding up to a few tens of events per year. Thus, our results indicate that advanced detectors will have a reasonable chance to collect the first direct evidence for intermediate mass black holes and open a new, intriguing channel for probing the Universe over cosmological...
Hot accretion flow with radiative cooling: state transitions in black hole X-ray binaries
Wu, Mao-Chun; Yuan, Ye-Fei; Gan, Zhao-Ming
2016-01-01
We investigate state transitions in black hole X-ray binaries through different parameters by using two-dimensional axisymmetric hydrodynamical simulation method. For radiative cooling in hot accretion flow, we take into account the bremsstrahlung, synchrotron and synchrotron-self Comptonization self-consistently in the dynamics. Our main result is that the state transitions occur when the accretion rate reaches a critical value $\\dot M \\sim 3\\alpha\\ \\dot M_{\\rm Edd}$, above which cold and dense clumpy/filamentary structures are formed, embedded within the hot gas. We argued this mode likely corresponds to the proposed two-phase accretion model, which may be responsible for the intermediate state of black hole X-ray binaries. When the accretion rate becomes sufficiently high, the clumpy/filamentary structures gradually merge and settle down onto the mid-plane. Eventually the accretion geometry transforms to a disc-corona configuration. In summary our results are consistent with the truncated accretion scenari...
Hot accretion flow with radiative cooling: state transitions in black hole X-ray binaries
Wu, Mao-Chun; Xie, Fu-Guo; Yuan, Ye-Fei; Gan, Zhaoming
2016-06-01
We investigate state transitions in black hole X-ray binaries through different parameters by using two-dimensional axisymmetric hydrodynamical simulation method. For radiative cooling in hot accretion flow, we take into account the bremsstrahlung, synchrotron and synchrotron self-Comptonization self-consistently in the dynamics. Our main result is that the state transitions occur when the accretion rate reaches a critical value dot{M} ˜ 3α dot{M}_Edd, above which cold and dense clumpy/filamentary structures are formed, embedded within the hot gas. We argued this mode likely corresponds to the proposed two-phase accretion model, which may be responsible for the intermediate state of black hole X-ray binaries. When the accretion rate becomes sufficiently high, the clumpy/filamentary structures gradually merge and settle down on to the mid-plane. Eventually the accretion geometry transforms to a disc-corona configuration. In summary, our results are consistent with the truncated accretion scenario for the state transition.
Black hole mergers: beyond general relativity
Stein, Leo; Okounkova, Maria
2017-01-01
One hundred years after the birth of general relativity, advanced LIGO has finally directly detected gravitational waves. The source: two black holes merging into one. Advanced LIGO will soon provide the opportunity to test GR, using gravitational waves, in the dynamical strong-field regime-a setting where GR has not yet been tested. GR has passed all weak-field tests with flying colors. Yet it should eventually break down, so we must look to the strong-field. To perform strong-field tests of GR, we need waveform models from theories beyond GR. To date there are no numerical simulations of black hole mergers in theories which differ from GR. The main obstacle is the mathematical one of well-posedness. I will explain how to overcome this obstacle, and demonstrate the success of this approach by presenting the first numerical simulations of black hole mergers in a theory beyond GR.
A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33.
Orosz, Jerome A; McClintock, Jeffrey E; Narayan, Ramesh; Bailyn, Charles D; Hartman, Joel D; Macri, Lucas; Liu, Jiefeng; Pietsch, Wolfgang; Remillard, Ronald A; Shporer, Avi; Mazeh, Tsevi
2007-10-18
Stellar-mass black holes are found in X-ray-emitting binary systems, where their mass can be determined from the dynamics of their companion stars. Models of stellar evolution have difficulty producing black holes in close binaries with masses more than ten times that of the Sun (>10; ref. 4), which is consistent with the fact that the most massive stellar black holes known so far all have masses within one standard deviation of 10. Here we report a mass of (15.65 +/- 1.45) for the black hole in the recently discovered system M 33 X-7, which is located in the nearby galaxy Messier 33 (M 33) and is the only known black hole that is in an eclipsing binary. To produce such a massive black hole, the progenitor star must have retained much of its outer envelope until after helium fusion in the core was completed. On the other hand, in order for the black hole to be in its present 3.45-day orbit about its (70.0 +/- 6.9) companion, there must have been a 'common envelope' phase of evolution in which a significant amount of mass was lost from the system. We find that the common envelope phase could not have occurred in M 33 X-7 unless the amount of mass lost from the progenitor during its evolution was an order of magnitude less than what is usually assumed in evolutionary models of massive stars.
A population of short-period variable quasars from PTF as supermassive black hole binary candidates
Charisi, M.; Bartos, I.; Haiman, Z.; Price-Whelan, A. M.; Graham, M. J.; Bellm, E. C.; Laher, R. R.; Márka, S.
2016-12-01
Supermassive black hole binaries (SMBHBs) at sub-parsec separations should be common in galactic nuclei, as a result of frequent galaxy mergers. Hydrodynamical simulations of circum-binary discs predict strong periodic modulation of the mass accretion rate on time-scales comparable to the orbital period of the binary. As a result, SMBHBs may be recognized by the periodic modulation of their brightness. We conducted a statistical search for periodic variability in a sample of 35 383 spectroscopically confirmed quasars in the photometric data base of the Palomar Transient Factory (PTF). We analysed Lomb-Scargle periodograms and assessed the significance of our findings by modelling each individual quasar's variability as a damped random walk (DRW). We identified 50 quasars with significant periodicity beyond the DRW model, typically with short periods of a few hundred days. We find 33 of these to remain significant after a re-analysis of their periodograms including additional optical data from the intermediate-PTF and the Catalina Real-Time Transient Survey. Assuming that the observed periods correspond to the redshifted orbital periods of SMBHBs, we conclude that our findings are consistent with a population of unequal-mass SMBHBs, with a typical mass ratio as low as q ≡ M2/M1 ≈ 0.01.
Inayoshi, Kohei; Visbal, Eli; Haiman, Zoltan
2016-01-01
The recent discovery of the gravitational wave source GW150914 has revealed a coalescing binary black hole (BBH) with masses of $\\sim 30~\\odot$. A possible origin of such a massive binary is Population III (PopIII) stars. PopIII stars are efficient producers of BBHs and of a gravitational wave background (GWB) in the $10-100$ Hz band, and also of ionizing radiation in the early Universe. We show that PopIII stars that are consistent with the recent Planck measurement of a low electron scattering optical depth $\\tau_{\\rm e}=0.066\\pm0.016$ could still produce a GWB dominating other binary populations. Moreover, the spectral index of the background from PopIII BBHs becomes flatter at $f\\gtrsim 20$ Hz than the value ${\\rm d}\\ln \\Omega_{\\rm gw}/{\\rm d}\\ln f\\approx 2/3$ generically produced by lower-redshift and less-massive BBHs. A detection of this unique flattening by the future O5 LIGO/Virgo would be a smoking gun of a high-chirp mass, high-redshift BBH population, as expected from PopIII stars. It would also c...
Haiman, Zoltán
2017-07-01
The gravitational waves (GWs) from a binary black hole (BBH) with masses 104≲M ≲107 M⊙ can be detected with the Laser Interferometer Space Antenna (LISA) once their orbital frequency exceeds 10-4- 10-5 Hz . The binary separation at this stage is a =O (100 )Rg (gravitational radius), and the orbital speed is v /c =O (0.1 ). We argue that at this stage, the binary will be producing bright electromagnetic (EM) radiation via gas bound to the individual BHs. Both BHs will have their own photospheres in x-ray and possibly also in optical bands. Relativistic Doppler modulations and lensing effects will inevitably imprint periodic variability in the EM light curve, tracking the phase of the orbital motion, and serving as a template for the GW inspiral waveform. Advanced localization of the source by LISA weeks to months prior to merger will enable a measurement of this EM chirp by wide-field x-ray or optical instruments. A comparison of the phases of the GW and EM chirp signals will help break degeneracies between system parameters, and probe a fractional difference Δ v in the propagation speed of photons and gravitons as low as Δ v /c ≈10-17.
Catalogue of cataclysmic binaries, low-mass X-ray binaries and related objects (Seventh edition)
Ritter, H
2003-01-01
The catalogue lists coordinates, apparent magnitudes, orbital parameters, and stellar parameters of the components and other characteristc properties of 472 cataclysmic binaries, 71 low-mass X-ray binaries and 113 related objects with known or suspected orbital periods together with a comprehensive selection of the relevant recent literature. In addition the catalogue contains a list of references to published finding charts for 635 of the 656 objects, and a cross-reference list of alias object designations. Literature published before 1 January 2003 has, as far as possible, been taken into account. All data can be accessed via the dedicated catalogue webpage at http://www.mpa-garching.mpg.de/RKcat/ (MPA) and http://physics.open.ac.uk/RKcat/ (OU). We will update the information given on the catalogue webpage regularly, initially every six months.
Baker, Paul T.; Caudill, Sarah; Hodge, Kari A.; Talukder, Dipongkar; Capano, Collin; Cornish, Neil J.
2015-03-01
Searches for gravitational waves produced by coalescing black hole binaries with total masses ≳25 M⊙ use matched filtering with templates of short duration. Non-Gaussian noise bursts in gravitational wave detector data can mimic short signals and limit the sensitivity of these searches. Previous searches have relied on empirically designed statistics incorporating signal-to-noise ratio and signal-based vetoes to separate gravitational wave candidates from noise candidates. We report on sensitivity improvements achieved using a multivariate candidate ranking statistic derived from a supervised machine learning algorithm. We apply the random forest of bagged decision trees technique to two separate searches in the high mass (≳25 M⊙ ) parameter space. For a search which is sensitive to gravitational waves from the inspiral, merger, and ringdown of binary black holes with total mass between 25 M⊙ and 100 M⊙ , we find sensitive volume improvements as high as 70±13%-109±11% when compared to the previously used ranking statistic. For a ringdown-only search which is sensitive to gravitational waves from the resultant perturbed intermediate mass black hole with mass roughly between 10 M⊙ and 600 M⊙ , we find sensitive volume improvements as high as 61±4%-241±12% when compared to the previously used ranking statistic. We also report how sensitivity improvements can differ depending on mass regime, mass ratio, and available data quality information. Finally, we describe the techniques used to tune and train the random forest classifier that can be generalized to its use in other searches for gravitational waves.
Berti, E; González, J A; Sperhake, U; Berti, Emanuele; Cardoso, Vitor; Gonzalez, Jose A.; Sperhake, Ulrich
2007-01-01
The ringdown phase following a binary black hole merger is usually assumed to be well described by a linear superposition of complex exponentials (quasinormal modes). In the strong-field conditions typical of a binary black hole merger, non-linear effects may produce mode coupling. Mode coupling can also be induced by the black hole's rotation, or by expanding the radiation field in terms of spin-weighted spherical harmonics (rather than spin-weighted spheroidal harmonics). Observing deviations from the predictions of linear black hole perturbation theory requires optimal fitting techniques to extract ringdown parameters from numerical waveforms, which are inevitably affected by numerical error. So far, non-linear least-squares fitting methods have been used as the standard workhorse to extract frequencies from ringdown waveforms. These methods are known not to be optimal for estimating parameters of complex exponentials. Furthermore, different fitting methods have different performance in the presence of noi...
Brownian motion of massive black hole binaries and the final parsec problem
Bortolas, E.; Gualandris, A.; Dotti, M.; Spera, M.; Mapelli, M.
2016-09-01
Massive black hole binaries (BHBs) are expected to be one of the most powerful sources of gravitational waves in the frequency range of the pulsar timing array and of forthcoming space-borne detectors. They are believed to form in the final stages of galaxy mergers, and then harden by slingshot ejections of passing stars. However, evolution via the slingshot mechanism may be ineffective if the reservoir of interacting stars is not readily replenished, and the binary shrinking may come to a halt at roughly a parsec separation. Recent simulations suggest that the departure from spherical symmetry, naturally produced in merger remnants, leads to efficient loss cone refilling, preventing the binary from stalling. However, current N-body simulations able to accurately follow the evolution of BHBs are limited to very modest particle numbers. Brownian motion may artificially enhance the loss cone refilling rate in low-N simulations, where the binary encounters a larger population of stars due its random motion. Here we study the significance of Brownian motion of BHBs in merger remnants in the context of the final parsec problem. We simulate mergers with various particle numbers (from 8k to 1M) and with several density profiles. Moreover, we compare simulations where the BHB is fixed at the centre of the merger remnant with simulations where the BHB is free to random walk. We find that Brownian motion does not significantly affect the evolution of BHBs in simulations with particle numbers in excess of one million, and that the hardening measured in merger simulations is due to collisionless loss cone refilling.
Kyutoku, Koutarou; Shibata, Masaru; Taniguchi, Keisuke
2011-01-01
We study the merger of black hole (BH)-neutron star (NS) binaries with a variety of BH spins aligned or anti-aligned with the orbital angular momentum, and with the mass ratio in the range MBH/MNS = 2--5, where MBH and MNS are the mass of the BH and NS, respectively. We model NS matter by systematically parametrized piecewise polytropic equations of state. The initial condition is computed in the puncture framework adopting an isolated horizon framework to estimate the BH spin and assuming an irrotational velocity field for the fluid inside the NS. Dynamical simulations are performed in full general relativity by an adaptive mesh refinement code, SACRA. The treatment of hydrodynamic equations and estimation of the disk mass are improved. We find that the NS is tidally disrupted irrespective of the mass ratio when the BH has a moderately large prograde spin, whereas only binaries with low mass ratios, MBH/MNS ~ 0.1 Msun, which is required by central engines of short gamma-ray bursts, if the BH spin is prograde...
Thorne, Kip S.
1998-01-01
Gravitational-wave data analysis requires a detailed understanding of the highly relativistic, late stages of inspiral of neutron-star and black-hole binaries. A promising method to compute the late inspiral and its emitted waves is numerical relativity in co-rotating coordinates. The coordinates must be kept co-rotating via an appropriate choice of numerical relativity's lapse and shift functions. This article proposes a model problem for testing the ability of various lapse and shift prescr...
Khan, Sebastian; Husa, Sascha; Hannam, Mark; Ohme, Frank; Pürrer, Michael; Forteza, Xisco Jiménez; Bohé, Alejandro
2016-02-01
We present a new frequency-domain phenomenological model of the gravitational-wave signal from the inspiral, merger and ringdown of nonprecessing (aligned-spin) black-hole binaries. The model is calibrated to 19 hybrid effective-one-body-numerical-relativity waveforms up to mass ratios of 1 ∶18 and black-hole spins of |a /m |˜0.85 (0.98 for equal-mass systems). The inspiral part of the model consists of an extension of frequency-domain post-Newtonian expressions, using higher-order terms fit to the hybrids. The merger ringdown is based on a phenomenological ansatz that has been significantly improved over previous models. The model exhibits mismatches of typically less than 1% against all 19 calibration hybrids and an additional 29 verification hybrids, which provide strong evidence that, over the calibration region, the model is sufficiently accurate for all relevant gravitational-wave astronomy applications with the Advanced LIGO and Virgo detectors. Beyond the calibration region the model produces physically reasonable results, although we recommend caution in assuming that any merger-ringdown waveform model is accurate outside its calibration region. As an example, we note that an alternative nonprecessing model, SEOBNRv2 (calibrated up to spins of only 0.5 for unequal-mass systems), exhibits mismatch errors of up to 10% for high spins outside its calibration region. We conclude that waveform models would benefit most from a larger number of numerical-relativity simulations of high-aligned-spin unequal-mass binaries