WorldWideScience

Sample records for relativistically beamed synchrotron

  1. Relativistic Turbulence with Strong Synchrotron and Synchrotron-Self-Compton Cooling

    Science.gov (United States)

    Uzdensky, D. A.

    2018-03-01

    Many relativistic plasma environments in high-energy astrophysics, including pulsar wind nebulae, hot accretion flows onto black holes, relativistic jets in active galactic nuclei and gamma-ray bursts, and giant radio lobes, are naturally turbulent. The plasma in these environments is often so hot that synchrotron and inverse-Compton (IC) radiative cooling becomes important. In this paper we investigate the general thermodynamic and radiative properties (and hence the observational appearance) of an optically thin relativistically hot plasma stirred by driven magnetohydrodynamic (MHD) turbulence and cooled by radiation. We find that if the system reaches a statistical equilibrium where turbulent heating is balanced by radiative cooling, the effective electron temperature tends to attain a universal value θ = kT_e/m_e c^2 ˜ 1/√{τ_T}, where τT = neσTL ≪ 1 is the system's Thomson optical depth, essentially independent of the strength of turbulent driving and hence of the magnetic field. This is because both MHD turbulent dissipation and synchrotron cooling are proportional to the magnetic energy density. We also find that synchrotron self-Compton (SSC) cooling and perhaps a few higher-order IC components are automatically comparable to synchrotron in this regime. The overall broadband radiation spectrum then consists of several distinct components (synchrotron, SSC, etc.), well separated in photon energy (by a factor ˜ τ_T^{-1}) and roughly equal in power. The number of IC peaks is checked by Klein-Nishina effects and depends logarithmically on τT and the magnetic field. We also examine the limitations due to synchrotron self-absorption, explore applications to Crab PWN and blazar jets, and discuss links to radiative magnetic reconnection.

  2. Relativistic Beaming and Orientation Effects in BL Lacertae Objects ...

    Indian Academy of Sciences (India)

    tation paradigm for high peaked and low-peaked BL Lacs (X-ray and radio selected .... consequences of relativistic beaming and geometric projection were studied in high- ... model. If we assume α = 0 (for synchrotron self-absorbed sources) and β ∼ 1, it can .... for RBL and XBL subsamples at confidence level of ∼ 95.0%.

  3. Synchrotron light beam and a synchrotron light experiment facility

    International Nuclear Information System (INIS)

    Ando, Masami

    1980-01-01

    In the National Laboratory for High Energy Physics, about two years ago, the requirements of synchrotron light beam in respective measuring instruments were discussed. Then, also the arrangement (lattice) of a storage ring, the nature of synchrotron light beam, a synchrotron light experiment facility and the arrangement of the beam lines were studied. During the period of two years since then, due to the changes in the circumstances, the design of the lattice was altered. Accordingly, the arrangement of the beam lines and of measuring instruments were largely changed. At this point, the results of discussions in various meetings are described, though they may still be subject to future changes, with due consideration to beam, environment and beam lines required for the design of the measuring instruments: (1) storage ring and synchrotron light beam, (2) requirements on small beam size and beam stability, (3) a synchrotron light experiment facility. (J.P.N.)

  4. Fundamentals of relativistic particle beam optics

    International Nuclear Information System (INIS)

    Cornacchia, M.

    1995-12-01

    This lecture introduces the nonaccelerator-specialist to the motion of charged particles in a Storage Ring. The topics of discussion are restricted to the linear and nonlinear dynamics of a single particle in the transverse plane, i.e., the plane perpendicular to the direction of motion. The major omissions for a complete review of accelerator theory, for which a considerable literature exists, are the energy and phase oscillations (1). Other important accelerator physics aspects not treated here are the collective instabilities (2), the role of synchrotron radiation in electron storage rings (3), scattering processes (4), and beam-beam effects in colliding beam facilities (5). Much of the discussion that follows applies equally well to relativistic electron, proton, or ion synchrotrons. In this narrative, we refer to the particle as electron. After a broad overview, the magnetic forces acting on the electrons and the associated differential equations of motion are discussed. Solutions of the equations are given without derivation; the method of solution is outlined. and references for deeper studies are given. In this paper, the word electron is used to signify electron or positron. The dynamics of a single particle are not affected by the sign of its charge when the magnetic field direction is changed accordingly

  5. Beam transfer functions for relativistic proton bunches with beam–beam interaction

    Energy Technology Data Exchange (ETDEWEB)

    Görgen, P., E-mail: goergen@temf.tu-darmstadt.de [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstr. 8 64289 Darmstadt (Germany); Boine-Frankenheim, O. [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstr. 8 64289 Darmstadt (Germany); Fischer, W. [Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2015-03-21

    We present a method for the recovery of the transverse tune spread directly from the beam transfer function (BTF). The model is applicable for coasting beams and bunched beams at high energy with a tune spread from transverse nonlinearities induced by the beam–beam effect or by an electron lens. Other sources of tune spread can be added. A method for the recovery of the incoherent tune spread without prior knowledge of the nonlinearity is presented. The approach is based on the analytic model for BTFs of coasting beams, which agrees very well with simulations results for bunched beams at relativistic energies with typically low synchrotron tune. A priori the presented tune spread recovery method is usable only in the absence of coherent modes, but additional simulation data shows its applicability even in the presence of coherent beam–beam modes. Finally agreement of both the analytic and simulation models with measurement data obtained at RHIC is presented. The proposed method successfully recovers the tune spread from analytic, simulated and measured BTF.

  6. Microwave generation and frequency conversion using intense relativistic electron beams

    International Nuclear Information System (INIS)

    Buzzi, J.M.; Doucet, H.J.; Etlicher, B.

    1977-01-01

    Some aspects of the microwave generation and frequency conversion by relativistic electron beams are studied. Using an electron synchrotron maser, the excitation of microwaves by an annular relativistic electron beam propagating through a circular wave guide immersed in a longitudinal magnetic field is analyzed. This theoretical model is somewhat more realistic than the previous one because the guiding centers are not on the wave guide axis. Microwave reflection is observed on a R.E.B. front propagating into a gas filled waveguide. The frequency conversion from the incident X-band e.m. waves and the reflected Ka band observed signal is consistent with the Doppler model for β = 0.7. This value agrees with the average beam front velocity as measured from time-of-flight using two B/sub theta/ probes. The reflection is found to occur during the current rise time. With a low impedance device (2 Ω, 400 keV) a GW X-band emission has been observed using thin anodes and a gas filled waveguide. This emission is probably due to the self-fields of the beam and could be used as a diagnostic

  7. On a method for high-energy electron beam production in proton synchrotrons

    International Nuclear Information System (INIS)

    Bessonov, E.G.; Vazdik, Ya.A.

    1979-01-01

    It is suggested to produce high-energy electron beams in such a way that the ultrarelativistic protons give an amount of their kinetic energy to the electrons of a thin target, placed inside the working volume of the proton synchrotron. The kinematics of the elastic scattering of relativistic protons on electrons at rest is treated. Evaluation of a number of elastically-scattered electrons by 1000 GeV and 3000 GeV proton beams is presented. The method under consideration is of certain practical interest and may appear to be preferable in a definite energy range of protons and electrons

  8. Numerical calculation of beam coupling impedances in synchrotron accelerators

    International Nuclear Information System (INIS)

    Haenichen, Lukas

    2016-01-01

    , particle velocities significantly lower than the speed of light occur and the commonly applied ultra-relativistic limit case may no longer be practicable. Ferrite-loaded kicker magnets are commonly used to achieve abrupt changes of the beam direction of motion and contribute to the coupling impedance due to hysteresis properties of the ferrite material. These coupling impedance contributions must be determined in order to assess the feedback action on the traversing particles of the beam. After introducing important mathematical relations and presentation of two calculation methods, a few reference examples are discussed, which can be treated by means of the classical electromagnetic field theory. After showing that the simulation results are in accordance with the corresponding analytical results, the focus is put on simulation models that represent actual components of the FAIR (Facility for Antiproton and Ion Research GmbH) SIS100 synchrotron accelerator.

  9. Numerical calculation of beam coupling impedances in synchrotron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Haenichen, Lukas

    2016-07-01

    , particle velocities significantly lower than the speed of light occur and the commonly applied ultra-relativistic limit case may no longer be practicable. Ferrite-loaded kicker magnets are commonly used to achieve abrupt changes of the beam direction of motion and contribute to the coupling impedance due to hysteresis properties of the ferrite material. These coupling impedance contributions must be determined in order to assess the feedback action on the traversing particles of the beam. After introducing important mathematical relations and presentation of two calculation methods, a few reference examples are discussed, which can be treated by means of the classical electromagnetic field theory. After showing that the simulation results are in accordance with the corresponding analytical results, the focus is put on simulation models that represent actual components of the FAIR (Facility for Antiproton and Ion Research GmbH) SIS100 synchrotron accelerator.

  10. Generation of relativistic electron bunches in plasma synchrotron Gyrac-x for hard x-ray production

    International Nuclear Information System (INIS)

    Andreev, V.V.; Umnov, A.M.

    2000-01-01

    Experiment performed on plasma synchrotron Gyrac-X operating on synchrotron gyromagnetic autoresonance (SGA) is described. Gyrac-X is a compact plasma x-ray source in which kinetic energy of relativistic electrons obtained under SGA converts into x-ray by falling e-bunches on to a heavy metal target. The plasma synchrotron acts in a regime of a magnetic field pulse packet under constant level of microwave power. Experiments and numerical modeling of the process showed that such a regime allowed obtaining dense short lived relativistic electron bunches with average electron energy of 500 keV - 4.5 MeV. Parameters of the relativistic electron bunch (energy, density and volume) and dynamics of the electron bunches can be controlled by varying the parameters of the SGA process. Possibilities of x-ray intensity increase are also discussed

  11. RF beam control system for the Brookhaven Relativistic Heavy Ion Collider, RHIC

    International Nuclear Information System (INIS)

    Brennan, J.M.; Campbell, A.; DeLong, J.; Hayes, T.; Onillon, E.; Rose, J.; Vetter, K.

    1998-01-01

    The Relativistic Heavy Ion Collider, RHIC, is two counter-rotating rings with six interaction points. The RF Beam Control system for each ring will control two 28 MHz cavities for acceleration, and five 197 MHz cavities for preserving the 5 ns bunch length during 10 hour beam stores. Digital technology is used extensively in: Direct Digital Synthesis of rf signals and Digital Signal Processing for, the realization of state-variable feedback loops, real-time calculation of rf frequency, and bunch-by-bunch phase measurement of the 120 bunches. DSP technology enables programming the parameters of the feedback loops in order to obtain closed-loop dynamics that are independent of synchrotron frequency

  12. RF Beam control system for the Brookhaven relativistic heavy ion collider, RHIC

    International Nuclear Information System (INIS)

    Brennan, J.M.; Campbell, A.; Delong, J.; Hayes, T.; Onillon, E.; Rose, J.; Vetter, K.

    1998-01-01

    The Relativistic Heavy Ion Collider, RHIC, is two counter-rotating rings with six interaction points. The RF Beam Control system for each ring will control two 28 MHz cavities for acceleration, and five 197 MHz cavities for preserving the 5 ns bunch length during 10 hour beam stores. Digital technology is used extensively in: Direct Digital Synthesis of rf signals and Digital Signal Processing for, the realization of state-variable feedback loops, real-time calculation of rf frequency, and bunch-by-bunch phase measurement of the 120 bunches. DSP technology enables programming the parameters of the feedback loops in order to obtain closed-loop dynamics that are independent of synchrotron frequency

  13. Relativistic electron beams above thunderclouds

    DEFF Research Database (Denmark)

    Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.

    2011-01-01

    Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency similar to 40-400 kHz which they radiate. The electron beams occur similar to 2-9 ms after positive cloud-to-ground lightning discharges at heights between similar to 22-72 km above...... thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams...... of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...

  14. Self-focusing of laser beams in magnetized relativistic electron beams

    International Nuclear Information System (INIS)

    Whang, M.H.; Ho, A.Y.; Kuo, S.P.

    1989-01-01

    Recently, there is considerable interest in radiation focusing and optical guiding using the resonant interaction between the radiation field and electron beam. The result of radiation focusing has been shown to play a central role in the practical utilization of the FEL. This result allows the device to use longer interaction length for achieving higher output power. Likewise, the possibility of self-focusing of the laser beam in cyclotron resonance with a relativistic electron beam is also an important issue in the laser acceleration concepts for achieving high-gradient electron acceleration. The effectiveness of the acceleration process relies strongly on whether the laser intensity can be maintained at the desired level throughout the interaction. In this work, the authors study the problem concerning the self-focusing of laser beam in the relativistic electron beams under the cyclotron auto-resonance interaction. They assume that there is no electron density perturbation prohibited from the background magnetic field for the time scale of interest. The nonlinearity responsible for self-focusing process is introduced by the energy dependence of the relativistic mass of electrons. The plasma frequency varies with the electron energy which is proportional to the radiation amplitude. They then examine such a relativistic nonlinear effect on the propagation of a Gaussian beam in the electron beam. A parametric study of the dependence of the laser beam width on the axial position for various electron beam density has been performed

  15. Intense synchrotron radiation from a magnetically compressed relativistic electron layer

    International Nuclear Information System (INIS)

    Shearer, J.W.; Nowak, D.A.; Garelis, E.; Condit, W.C.

    1975-10-01

    Using a simple model of a relativistic electron layer rotating in an axial magnetic field, energy gain by an increasing magnetic field and energy loss by synchrotron radiation were considered. For a typical example, initial conditions were approximately 8 MeV electron in approximately 14 kG magnetic field, at a layer radius of approximately 20 mm, and final conditions were approximately 4 MG magnetic field approximately 100 MeV electron layer energy at a layer radius of approximately 1.0 mm. In the final state, the intense 1-10 keV synchrotron radiation imposes an electron energy loss time constant of approximately 100 nanoseconds. In order to achieve these conditions in practice, the magnetic field must be compressed by an imploding conducting liner; preferably two flying rings in order to allow the synchrotron radiation to escape through the midplane. The synchrotron radiation loss rate imposes a lower limit to the liner implosion velocity required to achieve a given final electron energy (approximately 1 cm/μsec in the above example). In addition, if the electron ring can be made sufficiently strong (field reversed), the synchrotron radiation would be a unique source of high intensity soft x-radiation

  16. RELATIVISTIC DOPPLER BEAMING AND MISALIGNMENTS IN AGN JETS

    International Nuclear Information System (INIS)

    Singal, Ashok K.

    2016-01-01

    Radio maps of active galactic nuclei often show linear features, called jets, on both parsec and kiloparsec scales. These jets supposedly possess relativistic motion and are oriented close to the line of sight of the observer, and accordingly the relativistic Doppler beaming makes them look much brighter than they really are in their respective rest frames. The flux boosting due to the relativistic beaming is a very sensitive function of the jet orientation angle, as seen by the observer. Sometimes, large bends are seen in these jets, with misalignments being 90° or more, which might imply a change in the orientation angle that should cause a large change in the relativistic beaming factor. Hence, if relativistic beaming does play an important role in these jets such large bends should usually show high contrast in the brightness of the jets before and after the bend. It needs to be kept in mind that sometimes a small intrinsic change in the jet angle might appear as a much larger misalignment due to the effects of geometrical projection, especially when seen close to the line of sight. What really matters are the initial and final orientation angles of the jet with respect to the observer’s line of sight. Taking the geometrical projection effects properly into account, we calculate the consequences of the presumed relativistic beaming and demonstrate that there ought to be large brightness ratios in jets before and after the observed misalignments.

  17. Relativistic Doppler Beaming and Misalignments in AGN Jets

    Science.gov (United States)

    Singal, Ashok K.

    2016-08-01

    Radio maps of active galactic nuclei often show linear features, called jets, on both parsec and kiloparsec scales. These jets supposedly possess relativistic motion and are oriented close to the line of sight of the observer, and accordingly the relativistic Doppler beaming makes them look much brighter than they really are in their respective rest frames. The flux boosting due to the relativistic beaming is a very sensitive function of the jet orientation angle, as seen by the observer. Sometimes, large bends are seen in these jets, with misalignments being 90° or more, which might imply a change in the orientation angle that should cause a large change in the relativistic beaming factor. Hence, if relativistic beaming does play an important role in these jets such large bends should usually show high contrast in the brightness of the jets before and after the bend. It needs to be kept in mind that sometimes a small intrinsic change in the jet angle might appear as a much larger misalignment due to the effects of geometrical projection, especially when seen close to the line of sight. What really matters are the initial and final orientation angles of the jet with respect to the observer’s line of sight. Taking the geometrical projection effects properly into account, we calculate the consequences of the presumed relativistic beaming and demonstrate that there ought to be large brightness ratios in jets before and after the observed misalignments.

  18. Relativistic beaming and quasar statistics

    International Nuclear Information System (INIS)

    Orr, M.J.L.; Browne, I.W.A.

    1982-01-01

    The statistical predictions of a unified scheme for the radio emission from quasars are explored. This scheme attributes the observed differences between flat- and steep-spectrum quasars to projection and the effects of relativistic beaming of the emission from the nuclear components. We use a simple quasar model consisting of a compact relativistically beamed core with spectral index zero and unbeamed lobes, spectral index - 1, to predict the proportion of flat-spectrum sources in flux-limited samples selected at different frequencies. In our model this fraction depends on the core Lorentz factor, γ and we find that a value of approximately 5 gives satisfactory agreement with observation. In a similar way the model is used to construct the expected number/flux density counts for flat-spectrum quasars from the observed steep-spectrum counts. Again, good agreement with the observations is obtained if the average core Lorentz factor is about 5. Independent estimates of γ from observations of superluminal motion in quasars are of the same order of magnitude. We conclude that the statistical properties of quasars are entirely consistent with the predictions of simple relativistic-beam models. (author)

  19. CERN PSB Beam Tests of CNAO Synchrotron's Digital LLRF

    CERN Document Server

    Angoletta, M E; De Martinis, C; Falbo, L; Findlay, A; Foglio, R; Hunt, S; Tourres, D; Vescovi, C

    2008-01-01

    The Italian National Centre for Oncological hAdrontherapy (CNAO), in its final construction phase, uses proton and carbon ion beams to treat patients affected by solid tumours. At the heart of CNAO is a 78- meter circumference synchrotron that accelerates particles to up to 400 MeV/u. The synchrotron relies on a digital LLRF system based upon Digital Signal Processors (DSPs) and Field Programmable Gate Array (FPGA). This system implements cavity servoing and beam control capabilities, such as phase and radial loops. Beam tests of the CNAO synchrotron LLRF system were carried out at CERN's Proton Synchrotron Booster (PSB) in autumn 2007, to verify the combined DSP/FPGA architecture and the beam control capabilities. For this, a prototype version of CNAO's LLRF system was adapted to the PSB requirements. This paper outlines the prototype system layout and describes the tests carried out and their results. In particular, system architecture and beam control capabilities were successfully proven by comparison wit...

  20. Study of beam dynamics at cooler synchrotron TARN-II

    International Nuclear Information System (INIS)

    Watanabe, S.; Katayama, T.; Watanabe, T.; Yoshizawa, M.; Tomizawa, M.; Chida, K.; Arakaki, Y.; Noda, K.; Kanazawa, M.

    1992-08-01

    Several kinds of beam diagnostic instruments, have been developed at cooler-synchrotron TARN-II. These are intended to study beam dynamics at low beam current of several microamperes and then have high sensitivity of good S/N ratio. In addition, the acceleration system, especially low level RF system, has been improved to attain the maximum beam energy. With the successful performance of these instrumentations, the study of beam dynamics are presently being carried out. For example, the synchrotron acceleration of the light ions was achieved up to 220 MeV/u without any beam loss. (author)

  1. Recent progresses in relativistic beam-plasma instability theory

    Directory of Open Access Journals (Sweden)

    A. Bret

    2010-11-01

    Full Text Available Beam-plasma instabilities are a key physical process in many astrophysical phenomena. Within the fireball model of Gamma ray bursts, they first mediate a relativistic collisionless shock before they produce upstream the turbulence needed for the Fermi acceleration process. While non-relativistic systems are usually governed by flow-aligned unstable modes, relativistic ones are likely to be dominated by normally or even obliquely propagating waves. After reviewing the basis of the theory, results related to the relativistic kinetic regime of the poorly-known oblique unstable modes will be presented. Relevant systems besides the well-known electron beam-plasma interaction are presented, and it is shown how the concept of modes hierarchy yields a criterion to assess the proton to electron mass ratio in Particle in cell simulations.

  2. Fast infrared detectors for beam diagnostics with synchrotron radiation

    International Nuclear Information System (INIS)

    Bocci, A.; Marcelli, A.; Pace, E.; Drago, A.; Piccinini, M.; Cestelli Guidi, M.; De Sio, A.; Sali, D.; Morini, P.; Piotrowski, J.

    2007-01-01

    Beam diagnostic is a fundamental constituent of any particle accelerators either dedicated to high-energy physics or to synchrotron radiation experiments. All storage rings emit radiations. Actually they are high brilliant sources of radiation: the synchrotron radiation emission covers from the infrared range to the X-ray domain with a pulsed structure depending on the temporal characteristics of the stored beam. The time structure of the emitted radiation is extremely useful as a tool to perform time-resolved experiments. However, this radiation can be also used for beam diagnostic to determine the beam stability and to measure the dimensions of the e - or e + beam. Because of the temporal structure of the synchrotron radiation to perform diagnostic, we need very fast detectors. Indeed, the detectors required for the diagnostics of the stored particle bunches at third generation synchrotron radiation sources and FEL need response times in the sub-ns and even ps range. To resolve the bunch length and detect bunch instabilities, X-ray and visible photon detectors may be used achieving response times of a few picoseconds. Recently, photon uncooled infrared devices optimized for the mid-IR range realized with HgCdTe semiconductors allowed to obtain sub-nanosecond response times. These devices can be used for fast detection of intense IRSR sources and for beam diagnostic. We present here preliminary experimental data of the pulsed synchrotron radiation emission of DAΦNE, the electron positron collider of the LNF laboratory of the INFN, performed with new uncooled IR detectors with a time resolution of a few hundreds of picoseconds

  3. Stationary self-focusing of Gaussian laser beam in relativistic thermal quantum plasma

    International Nuclear Information System (INIS)

    Patil, S. D.; Takale, M. V.

    2013-01-01

    In the present paper, we have employed the quantum dielectric response in thermal quantum plasma to model relativistic self-focusing of Gaussian laser beam in a plasma. We have presented an extensive parametric investigation of the dependence of beam-width parameter on distance of propagation in relativistic thermal quantum plasma. We have studied the role of Fermi temperature in the phenomenon of self-focusing. It is found that the quantum effects cause much higher oscillations of beam-width parameter and better relativistic focusing of laser beam in thermal quantum plasma in comparison with that in the relativistic cold quantum plasma and classical relativistic plasma. Our computations show more reliable results in comparison to the previous works

  4. Tandems as injectors for synchrotrons

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1993-01-01

    This is a review on the use of tandem electrostatic accelerators for injection and fitting of synchrotrons to accelerate intense beams of heavy ions to relativistic energies. The paper emphasizes the need of operating the tandems in pulsed mode for this application. It has been experimentally demonstrated that at present this type of accelerator still provides the most reliable and best performance. (orig.)

  5. Nonlinear analysis of a relativistic beam-plasma cyclotron instability

    Science.gov (United States)

    Sprangle, P.; Vlahos, L.

    1986-01-01

    A self-consistent set of nonlinear and relativistic wave-particle equations are derived for a magnetized beam-plasma system interacting with electromagnetic cyclotron waves. In particular, the high-frequency cyclotron mode interacting with a streaming and gyrating electron beam within a background plasma is considered in some detail. This interaction mode may possibly find application as a high-power source of coherent short-wavelength radiation for laboratory devices. The background plasma, although passive, plays a central role in this mechanism by modifying the dielectric properties in which the magnetized electron beam propagates. For a particular choice of the transverse beam velocity (i.e., the speed of light divided by the relativistic mass factor), the interaction frequency equals the nonrelativistic electron cyclotron frequency times the relativistic mass factor. For this choice of transverse beam velocity the detrimental effects of a longitudinal beam velocity spread is virtually removed. Power conversion efficiencies in excess of 18 percent are both analytically calculated and obtained through numerical simulations of the wave-particle equations. The quality of the electron beam, degree of energy and pitch angle spread, and its effect on the beam-plasma cyclotron instability is studied.

  6. Beam dynamics issues in an extended relativistic klystron

    International Nuclear Information System (INIS)

    Giordano, G.; Li, H.; Goffeney, N.; Henestroza, E.; Sessler, A.; Yu, S.

    1995-04-01

    Preliminary studies of beam dynamics in a relativistic klystron were done to support a design study for a 1 TeV relativistic klystron two-beam accelerator (RK-TBA), 11.424 GHz microwave power source. This paper updates those studies. An induction accelerator beam is modulated, accelerated to 10 MeV, and injected into the RK with a rf current of about 1.2 kA. The main portion of the RK is the 300-m long extraction section comprise of 150 traveling-wave output structures and 900 induction accelerator cells. A periodic system of permanent quadrupole magnets is used for focusing. One and two dimensional numerical studies of beam modulation, injection into the main RK, transport and longitudinal equilibrium are presented. Transverse beam instability studies including Landau damping and the ''Betatron Node Scheme'' are presented

  7. Beam-beam observations in the Relativistic Heavy Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Laboratory (BNL), Upton, NY (United States); White, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2015-06-24

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.

  8. Relativistic beaming and orientation effects in core-dominated quasars

    International Nuclear Information System (INIS)

    Ubachukwu, A.A.; Chukwude, A.E.

    2002-07-01

    In this paper, we investigate the relativistic beaming effects in a well-defined sample of core- dominated quasars using the correlation between the relative prominence of the core with respect to the extended emission (defined as the ratio of the core- to the lobe- flux density measured in the rest frame of the source) and the projected linear size as an indicator of relativistic beaming and source orientation. Based on the orientation-dependent relativistic beaming and unification paradigm for high luminosity sources in which the Fanaroff-Riley class-ll radio galaxies form the unbeamed parent population of both the lobe- and core-dominated quasars which are expected to lie at successively smaller angles to the line of sight, we find that the flows in the cores of these core-dominated quasars are highly relativistic, with optimum bulk Lorentz factor, γ opt ∼6-16, and also highly anisotropic, with an average viewing angle, ∼ 9 deg. - 16 deg. Furthermore, the largest boosting occurs within a critical cone angle of ∼ 4 deg. - 10 deg. The results suggest that relativistic bulk flow appears to extend to kilo-parsec scales in these sources. (author)

  9. 3 GeV Booster Synchrotron Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, Helmut

    2009-06-02

    Synchrotron light cna be produced from a relativistic particle beam circulating in a storage ring at extremely high intensity and brilliance over a large spectral region reaching from the far infrared regime to hard x-rays. The particles, either electrons or positrons, radiate as they are deflected in the fields of the storage ring bending magnets or of magnets specially optimized for the production of synchrotron light. The synchrotron light being very intense and well collimated in the forward direction has become a major tool in a large variety of research fields in physics, chemistry, material science, biology, and medicine.

  10. A submicron synchrotron X-ray beam generated by capillary optics

    International Nuclear Information System (INIS)

    Engstroem, P.; Larsson, S.; Rindby, A.; Buttkewitz, A.; Garbe, S.; Gaul, G.; Knoechel, A.; Lechtenberg, F.; Deutsches Elektronen-Synchrotron

    1991-01-01

    A novel capillary optics technique for focusing synchrotron X-ray beams has been applied in an experiment performed at the DORIS storage ring at HASYLAB. This new technqiue, which utilizes the total reflection properties of X-rays inside small capillaries, has recently been applied to generate microbeams of X-rays, with a beam size down to about 10 μm using conventional X-ray tubes. The result from our recent experiment shows that capillary optics can also be used to generate a submicron beam of X-rays from a synchrotron light source. A description of the capillary unit, and the alignment procedure is given. The influence of the thermal load on the device caused by the intense flux of synchrotron radiation will be discussed. Future perspectives of the capillary techniques as applied to synchrotron radiation will be discussed. (orig.)

  11. High Intensity Beam Issues in the CERN Proton Synchrotron

    CERN Document Server

    Aumon, Sandra; Rivkin, Leonid

    This PhD work is about limitations of high intensity proton beams observed in the CERN Proton Synchrotron (PS) and, in particular, about issues at injection and transition energies. With its 53 years, the CERN PS would have to operate beyond the limit of its performance to match the future requirements. Beam instabilities driven by transverse impedance and aperture restrictions are important issues for the operation and for the High-Luminosity LHC upgrade which foresees an intensity increase delivered by the injectors. The main subject of the thesis concerns the study of a fast transverse instability occurring at transition energy. The proton beams crossing this energy range are particularly sensitive to wake forces because of the slow synchrotron motion. This instability can cause a strong vertical emittance blow-up and severe losses in less than a synchrotron period. Experimental observations show that the particles at the peak density of the beam longitudinal distribution oscillate in the vertical plane du...

  12. Synchrotron light sources: The search for quantum chaos

    International Nuclear Information System (INIS)

    Schlachter, Fred

    2001-01-01

    A storage ring is a specialized synchrotron in which a stored beam of relativistic electrons produces radiation in the vuv and x-ray regions of the spectrum. High-brightness radiation is used at the ALS to study doubly excited autoionizing states of the helium atom in the search for quantum chaos

  13. Time-dependent field equations for paraxial relativistic electron beams: Beam Research Program

    International Nuclear Information System (INIS)

    Sharp, W.M.; Yu, S.S.; Lee, E.P.

    1987-01-01

    A simplified set of field equations for a paraxial relativistic electron beam is presented. These equations for the beam electrostatic potential phi and pinch potential Phi identical to A/sub z/ - phi retain previously neglected time-dependent terms and for axisymmetric beams reduce exactly to Maxwell's equations

  14. Successful Beam-Beam Tuneshift Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Bishofberger, Kip Aaron [Univ. of California, Los Angeles, CA (United States)

    2005-01-01

    The performance of synchrotron colliders has been limited by the beam-beam limit, a maximum tuneshift that colliding bunches could sustain. Due to bunch-to-bunch tune variation and intra-bunch tune spread, larger tuneshifts produce severe emittance growth. Breaking through this constraint has been viewed as impossible for several decades. This dissertation introduces the physics of ultra-relativistic synchrotrons and low-energy electron beams, with emphasis placed on the limits of the Tevatron and the needs of a tuneshift-compensation device. A detailed analysis of the Tevatron Electron Lens (TEL) is given, comparing theoretical models to experimental data whenever possible. Finally, results of Tevatron operations with inclusion of the TEL are presented and analyzed. It is shown that the TEL provides a way to shatter the previously inescapable beam-beam limit.

  15. Extracted-beam-detection system around synchrotron saturne

    International Nuclear Information System (INIS)

    Anne, Remy; Milleret, Gerard; Giuliani, Arlette; Lefol, Andre; Perret, Robert; Poupard, Joseph; Trogno, Andre; Van den Bossche, Maurice; N'Guyen Sieu Viet.

    1977-07-01

    The extracted-beam-detection system working around the synchrotron Saturne is presented. The whole system is composed of about forty multiwire chambers used for beam tuning and providing beams profiles. Optic beam parameters such as position, divergence, dimension, emittance can be easily measured, or calculated with a program running on a computer. They are working in large range intensity beams (10 2 to 5.10 11 p/cm 2 /s of protons, alpha particles, deutons, pions, tritons and electrons [fr

  16. Beam conditioner for free electron lasers and synchrotrons

    International Nuclear Information System (INIS)

    Liu, H.; Neil, G.R.

    1998-01-01

    A focused optical has been used to introduce an optical pulse, or electromagnetic wave, collinear with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM 10 mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs

  17. From laser cooling of non-relativistic to relativistic ion beams

    International Nuclear Information System (INIS)

    Schramm, U.; Bussmann, M.; Habs, D.

    2004-01-01

    Laser cooling of stored 24 Mg + ion beams recently led to the long anticipated experimental realization of Coulomb-ordered 'crystalline' ion beams in the low-energy RF-quadrupole storage ring PAul Laser CooLing Acceleration System (Munich). Moreover, systematic studies revealed severe constraints on the cooling scheme and the storage ring lattice for the attainment and maintenance of the crystalline state of the beam, which will be summarized. With the envisaged advent of high-energy heavy ion storage rings like SIS 300 at GSI (Darmstadt), which offer favourable lattice conditions for space-charge-dominated beams, we here discuss the general scaling of laser cooling of highly relativistic beams of highly charged ions and present a novel idea for direct three-dimensional beam cooling by forcing the ions onto a helical path

  18. Sky-distribution of intensity of synchrotron radio emission of relativistic electrons trapped in Earth’s magnetic field

    Directory of Open Access Journals (Sweden)

    Klimenko V.V.

    2017-12-01

    Full Text Available This paper presents the calculations of synchrotron radio emission intensity from Van Allen belts with Gaussian space distribution of electron density across L-shells of a dipole magnetic field, and with Maxwell’s relativistic electron energy distribution. The results of these calculations come to a good agreement with measurements of the synchrotron emission intensity of the artificial radiation belt’s electrons during the Starfish nuclear test. We have obtained two-dimensional distributions of radio brightness in azimuth — zenith angle coordinates for an observer on Earth’s surface. The westside and eastside intensity maxima exceed several times the maximum level of emission in the meridian plane. We have also constructed two-dimensional distributions of the radio emission intensity in decibels related to the background galactic radio noise level. Isotropic fluxes of relativistic electrons (Е~1 MeV should be more than 107 cm–2s–1 for the synchrotron emission intensity in the meridian plane to exceed the cosmic noise level by 0.1 dB (riometer sensitivity threshold.

  19. A method for measuring the time structure of synchrotron x-ray beams

    International Nuclear Information System (INIS)

    Moses, W.W.; Derenzo, S.E.

    1989-08-01

    We describe a method employing a plastic scintillator coupled to a fast photomultiplier tube to generate a timing pulse from the x-ray bursts emitted from a synchrotron radiation source. This technique is useful for performing synchrotron experiments where detailed knowledge of the timing distribution is necessary, such as time resolved spectroscopy or fluorescence lifetime experiments. By digitizing the time difference between the timing signal generated on one beam crossing with the timing signal generated on the next beam crossing, the time structure of a synchrotron beam can be analyzed. Using this technique, we have investigated the single bunch time structure at the National Synchrotron Light Source (NSLS) during pilot runs in January, 1989, and found that the majority of the beam (96%) is contained in one rf bucket, while the remainder of the beam (4%) is contained in satellite rf buckets preceeding and following the main rf bucket by 19 ns. 1 ref., 4 figs

  20. Atomic physics using relativistic H- beams

    International Nuclear Information System (INIS)

    Bryant, H.C.

    2005-01-01

    Full text: An 8 GeV hydrogen atom can traverse a focused laser beam of width of 1 micron in a time of 353 attoseconds in its rest frame. A design is currently underway at Fermilab for a superconducting linear accelerator that will accelerate H - ions to 8 GeV. This 'Proton Driver' beam is intended to be injected, after stripping down to protons, into the 120 GeV Main Injector for the mass production of neutrinos aimed at a neutrino detector (MINOS) in a mine shaft in Soudan, Minnesota (USA) for the study of neutrino oscillations. It has not passed unnoticed that with some advance planning a few nanoamps from the up-to-250 mA beam could be diverted for atomic physics experiments. Relativistic kinematics enable the creation of extreme conditions for a beam atom. For example, the Doppler shift allows a very large tuning range in the atom's rest frame of a laser beam that is fixed- frequency in the lab. At 8 GeV the rest frame Doppler shift ranges from a factor of 19 in the forward direction to 0.05 backward. The laser intensity is enhanced by the square of the Doppler shift, so that the world's most intense laser beam would be amplified by a factor of 360 in the atom's rest frame. Furthermore, although there are extreme changes in the frequency and intensity in the atom's frame as one changes the intersection angle, the ponderomotive potential remains constant, as it is a relativistic invariant. One of the interesting problems that arises in the planning for this accelerator is the stripping of electrons from the negative ions by photodetachment from Doppler shifted thermal photons. We estimate that, if the transfer lines are kept at 300 K (room temperature), the mean free path at 8 GeV for stripping from collisions with cavity radiation is about 1300 km. The physics of the interactions of such a beam with very thin material foils, again in the attosecond regime, has been treated theoretically, but has not been studied experimentally at such high energies. We will

  1. Broadband lasercooling of relativistic ion beams at ESR

    Energy Technology Data Exchange (ETDEWEB)

    Bussmann, Michael; Seltmann, Michael; Siebold, Matthias; Schramm, Ulrich [HZDR (Germany); Wen, Weiqiang; Zhang, Dacheng; Ma, Xinwen [IMPCAS, Lanzhou (China); Winters, Danyal; Clark, Colin; Kozhuharov, Christophor; Steck, Markus; Dimopoulou, Christina; Nolden, Fritz; Stoehlker, Thomas [GSI (Germany); Beck, Tobias; Rein, Benjamin; Walther, Thomas; Tichelmann, Sascha; Birkl, Gerhard [TU Darmstadt (Germany); Sanchez-Alarcon, Rodolfo; Ullmann, Johannes; Lochmann, Matthias; Noertershaeuser, Wilfried [GSI (Germany); Univ. Mainz (Germany)

    2013-07-01

    We present new results on laser cooling of relativistic C{sup 3+} ion beams at the Experimental Storage Ring at GSI. For the first time we could show laser cooling of bunched relativistic ion beams using fast scanning of the frequency of the cooling laser over a range larger than the momentum acceptance of the bucket. Unlike previously employed cooling schemes where the bucket frequency was scanned relatively to a fixed laser frequency, scanning of the laser frequency can be readily applied to future high energy storage rings such as HESR or SIS100 at FAIR.

  2. Foil focusing of relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Jr., Carl August [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-26

    When an intense relativistic electron beams (IREB) passes through a grounded metal foil, the transverse electric field due to the beam space charge is locally shorted out, and the beam is focused by the magnetic field of its current. The effect can be treated as focusing by a thin lens with first order aberration. Expressions for the focal length and aberration coefficient of the equivalent thin lens are developed in this note. These are then applied to practical examples representative of IREB research at Los Alamos National Laboratory.

  3. Self-acceleration of relativistic modulated beams

    International Nuclear Information System (INIS)

    Ajzatskij, N.I.

    1989-01-01

    Unlike the case of self-acceleration of continuous beams, the self-acceleration of relativistic modulated beams requires the energy redistribution between the particles not at the period of excited oscillations but rather between the bunches. This may occur only in the case when the electron beam creates a multifrequency equilibrium state in the passive structure. In this case, there is a possibility for some bunches to be captured in the accelerating phase of the field without any external action. The authors have analyzed this possibility both theoretically and experimentally. 12 refs., 2 figs

  4. White beam synchrotron fractography of molybdenum and niobium single crystals

    International Nuclear Information System (INIS)

    Bilello, J.C.; Hmelo, A.B.

    1983-01-01

    It has been demonstrated that a White Beam Synchrotron reflection technique can be used to characterize the fracture surface of Mo and Nb single crystals. This technique when used in conjunction with Berg-Barrett (or in the future monochromatic synchrotron topography) gives detailed information which correlates the internal defect structure to the cleavage surface morphology. In particular, synchrotron fractography has revealed the full extent of the plastic zone associated with a precursor crack, has clearly identified the nature of the initial crack where more than one precursor could have existed, and give detailed information on the extent of twinning and microtwinning. In comparison with other fractography methods for such semi-brittle metals the White Beam Synchrotron method not only achieves rapid data collection, but also provides internal defect structure correlation non-destructively. (author)

  5. Measurement of Beam Loss at the Australian Synchrotron

    CERN Document Server

    Holzer, EB; Kastriotou, M; Boland, MJ; Jackson, PD; Rasool, RP; Schmidt, J; Welsch, CP

    2014-01-01

    The unprecedented requirements that new machines are setting on their diagnostic systems is leading to the development of new generation of devices with large dynamic range, sensitivity and time resolution. Beam loss detection is particularly challenging due to the large extension of new facilities that need to be covered with localized detector. Candidates to mitigate this problem consist of systems in which the sensitive part of the radiation detectors can be extended over long distance of beam lines. In this document we study the feasibility of a BLM system based on optical fiber as an active detector for an electron storage ring. The Australian Synchrotron (AS) comprises a 216m ring that stores electrons up to 3GeV. The Accelerator has recently claimed the world record ultra low transverse emittance (below pm rad) and its surroundings are rich in synchrotron radiation. Therefore, the AS provides beam conditions very similar to those expected in the CLIC/ILC damping rings. A qualitative benchmark of beam l...

  6. The synchrotron and its related technology for ion beam therapy

    International Nuclear Information System (INIS)

    Hiramoto, Kazuo; Umezawa, Masumi; Saito, Kazuyoshi; Tootake, Satoshi; Nishiuchi, Hideaki; Hara, Shigemistu; Tanaka, Masanobu; Matsuda, Koji; Sakurabata, Hiroaki; Moriyama, Kunio

    2007-01-01

    Hitachi has developed several new technologies for the synchrotron and its related system to realize reliable and flexible operation of a proton therapy system. Especially important among them are a non-resonant RF acceleration cavity using FINEMET core with multiple power feeding and radio frequency driven beam extraction technique (RF-DE) for a synchrotron. Various treatment operations such as variable acceleration energy or respiration gating became possible and simple due to the above technique. For beam transport, a beam steering method for the beam, using transfer matrix realizes quick and precise correction of the beam orbit. A compact microwave ion source has also been developed for the injector to obtain further higher reliability and availability. Most of these technologies are also effective to enhance the reliability and flexibility of other ion beam therapy systems

  7. Operational experience with synchrotron light interferometers for CEBAF experimental beam lines

    Energy Technology Data Exchange (ETDEWEB)

    Pavel Chevtsov

    2006-10-24

    Beam size and energy spread monitoring systems based on Synchrotron Light Interferometers (SLI) have been in operations at Jefferson Lab for several years. A non-invasive nature and a very high (a few mm) resolution of SLI make these instruments valuable beam diagnostic tools for the CEBAF accelerator. This presentation describes the evolution of the Synchrotron Light Interferometer at Jefferson Lab and highlights our extensive experience in the installation and operation of the SLI for CEBAF experimental beam lines.

  8. The profile of the electron beam in the PTB synchrotron, and its influence on radiometric measurements with synchrotron radiation

    International Nuclear Information System (INIS)

    Kaase, H.

    1976-01-01

    A simple method is described to determine the beam profile in an electron synchrotron; the measured results are compared with calculated values. Moreover, the influence of synchrotron- and betatron-oscillations on synchrotron radiation measurements is discussed, and a method is given to correct this. (orig.) [de

  9. Electromagnetic surface waves at the interface of a relativistic electron beam with vacuum

    International Nuclear Information System (INIS)

    Shoucri, M.M.; Gagne, R.R.J.

    1977-01-01

    The dispersion relation for electromagnetic surface waves propagating at the interface between a relativistic electron beam and vacuum is derived. The excitation of surface modes in a plasma at rest by a relativistic electron beam is discussed

  10. Beam-plasma interaction in a synchrotron-cooler ring

    International Nuclear Information System (INIS)

    Itahashi, T.

    1989-01-01

    We propose a plasma target installed in the synchrotron-cooler ring in order to study the beam-plasma interaction. Various types of beam diagnostic devices and precise techniques developed for stochastic cooling and rf-stacking in the storage ring would be a powerful tool to approach the problems concerning the plasma behavior induced by the beam, such as plasma lens effect, anomalous stopping power and plasma instability. (author)

  11. Beam model for non-planar orbits in synchrotrons

    International Nuclear Information System (INIS)

    Month, M.

    1984-01-01

    A framework has been developed for a beam model in the case of synchrotron orbits not confined to a plane. An appropriate moving reference system for the analysis of beam stability has been introduced. As examples of strong perturbations to median plane symmetry, two geometries for the overpass for the Tevatron collider are considered

  12. Device and method for relativistic electron beam heating of a high-density plasma to drive fast liners

    International Nuclear Information System (INIS)

    Thode, L.E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region are described. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises dt, dd, hydrogen boron or similar thermonuclear gas at a density of 1017 to 1020 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 mev, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner

  13. Plasma waves in hot relativistic beam-plasma systems: Pt. 1

    International Nuclear Information System (INIS)

    Magneville, A.

    1990-01-01

    Dispersion relations of plasma waves in a beam-plasma system are computed in the general case where the plasma and beam temperatures, and the velocity of the beam, may be relativistic. The two asymptotic temperature cases, and different contributions of plasma or beam particles to wave dispersion are considered. (author)

  14. Electromagnetic field of a circular beam of relativistic particles

    International Nuclear Information System (INIS)

    Vybiral, B.

    1978-01-01

    The generalized Coulomb law and the generalized Biot-Savart-Laplace law are derived for an element of a beam of charged relativistic particles moving generally irregularly. These laws are utilized for the description of an electromagnetic field of a circular beam of relativistic regularly moving particles. It is shown that in the points on the axis of the beam the intensity of the electric field is given by an expression precisely corresponding to the classical Coulomb law for charges at rest and the induction of the magnetic field corresponds to the classical Biot-Savart-Laplace law for conductive currents. From the numerical solution it follows that in the points outside the axis the induction of the magnetic field rises with the velocity of the particles. For a velocity nearing that of light in vacuum it assumes a definite value (with the exception of the points lying on the beam). (author)

  15. Nonlinear interaction of a parallel-flow relativistic electron beam with a plasma

    International Nuclear Information System (INIS)

    Jungwirth, K.; Koerbel, S.; Simon, P.; Vrba, P.

    1975-01-01

    Nonlinear evolution of single-mode high-frequency instabilities (ω approximately ksub(parallel)vsub(b)) excited by a parallel-flow high-current relativistic electron beam in a magnetized plasma is investigated. Fairly general dimensionless equations are derived. They describe both the temporal and the spatial evolution of amplitude and phase of the fundamental wave. Numerically, the special case of excitation of the linearly most unstable mode is solved in detail assuming that the wave energy dissipation is negligible. Then the strength of interaction and the relativistic properties of the beam are fully respected by a single parameter lambda. The value of lambda ensuring the optimum efficiency of the wave excitation as well as the efficiency of the self-acceleration of some beam electrons at higher values of lambda>1 are determined in the case of a fully compensated relativistic beam. Finally, the effect of the return current dissipation is also included (phenomenologically) into the theoretical model, its role for the beam-plasma interaction being checked numerically. (J.U.)

  16. Broadband lasercooling of relativistic ions at the ESR

    Energy Technology Data Exchange (ETDEWEB)

    Winters, Danyal; Ullmann, Johannes; Clark, Colin; Dimopoulou, Christina; Nolden, Fritz; Steck, Markus [GSI Darmstadt (Germany); Bussmann, Michael; Siebold, Mathias; Seltmann, Michael; Schramm, Ulrich [HZDR Dresden (Germany); Wen, Weiqiang [GSI Darmstadt (Germany); IMP CAS Lanzhou (China); Sanchez, Rodolfo; Lochmann, Matthias [GSI Darmstadt (Germany); Uni Mainz (Germany); Beck, Tobias; Rein, Benjamin; Tichelmann, Sascha; Birkl, Gerhard; Walther, Thomas [TU Darmstadt (Germany); Zhang, Dacheng; Yang, Jie; Ma, Xinwen [IMP CAS Lanzhou (China); Noertershaeuser, Wilfried [GSI Darmstadt (Germany); Uni Mainz (Germany); TU Darmstadt (Germany); Kuehl, Thomas [GSI Darmstadt (Germany); Uni Mainz (Germany); HI Jena (Germany); Stoehlker, Thomas [GSI Darmstadt (Germany); Uni Jena (Germany); HI Jena (Germany)

    2013-07-01

    We present new results on broadband laser cooling of stored relativistic C{sup 3+} ion beams at the ESR in Darmstadt. For the first time we could show laser cooling of bunched relativistic ion beams using a UV-laser which could scan over a very large range and thus cool all the ions in the 'bucket'. This scheme is much more versatile than a previous scheme, where the bunching frequency was scanned relative to a fixed laser frequency. We have also demonstrated that this cooling scheme works without pre-electron cooling, which is a prerequisite for its general application to future storage rings and synchrotrons, such as the HESR and the SIS100 at FAIR. We also present results from in vacuo VUV-fluorescence detectors, which have proven to be very effective.

  17. Geant4 simulations on Compton scattering of laser photons on relativistic electrons

    Energy Technology Data Exchange (ETDEWEB)

    Filipescu, D. [Extreme Light Infrastructure - Nuclear Physics, str. Atomistilor nr. 407, Bucharest-Magurele, P.O.BOX MG6, Romania and National Institute for Physics and Nuclear Engineering Horia Hulubei, str. Atomistilor nr. 407 (Romania); Utsunomiya, H. [Department of Physics, Konan University, Okamoto 8-9-1, Higashinada, Kobe 658-8501 (Japan); Gheorghe, I.; Glodariu, T. [National Institute for Physics and Nuclear Engineering Horia Hulubei, str. Atomistilor nr. 407 (Romania); Tesileanu, O. [Extreme Light Infrastructure - Nuclear Physics, str. Atomistilor nr. 407, Bucharest-Magurele, P.O.BOX MG6 (Romania); Shima, T.; Takahisa, K. [Research Center for Nuclear Physics, Osaka University, Suita, Osaka 567-0047 (Japan); Miyamoto, S. [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2 Kouto, Kamigori, Hyogo 678-1205 (Japan)

    2015-02-24

    Using Geant4, a complex simulation code of the interaction between laser photons and relativistic electrons was developed. We implemented physically constrained electron beam emittance and spacial distribution parameters and we also considered a Gaussian laser beam. The code was tested against experimental data produced at the γ-ray beam line GACKO (Gamma Collaboration Hutch of Konan University) of the synchrotron radiation facility NewSUBARU. Here we will discuss the implications of transverse missallignments of the collimation system relative to the electron beam axis.

  18. Analytical calculations of intense Gaussian laser beam propagating in plasmas with relativistic collision correction

    International Nuclear Information System (INIS)

    Wang Ying; Yuan Chengxun; Gao Ruilin; Zhou Zhongxiang

    2012-01-01

    Theoretical investigations of a Gaussian laser beam propagating in relativistic plasmas have been performed with the WKB method and complex eikonal function. We consider the relativistic nonlinearity induced by intense laser beam, and present the relativistically generalized forms of the plasma frequency and electron collision frequency in plasmas. The coupled differential equations describing the propagation variations of laser beam are derived and numerically solved. The obtained simulation results present the similar variation tendency with experiments. By changing the plasma density, we theoretically analyze the feasibility of using a plasmas slab of a fixed thickness to compress the laser beam-width and acquire the focused laser intensity. The present work complements the relativistic correction of the electron collision frequency with reasonable derivations, promotes the theoretical approaching to experiments and provides effective instructions to the practical laser-plasma interactions.

  19. Impact of Relativistic Electron Beam on Hole Acoustic Instability in Quantum Semiconductor Plasmas

    Science.gov (United States)

    Siddique, M.; Jamil, M.; Rasheed, A.; Areeb, F.; Javed, Asif; Sumera, P.

    2018-01-01

    We studied the influence of the classical relativistic beam of electrons on the hole acoustic wave (HAW) instability exciting in the semiconductor quantum plasmas. We conducted this study by using the quantum-hydrodynamic model of dense plasmas, incorporating the quantum effects of semiconductor plasma species which include degeneracy pressure, exchange-correlation potential and Bohm potential. Analysis of the quantum characteristics of semiconductor plasma species along with relativistic effect of beam electrons on the dispersion relation of the HAW is given in detail qualitatively and quantitatively by plotting them numerically. It is worth mentioning that the relativistic electron beam (REB) stabilises the HAWs exciting in semiconductor (GaAs) degenerate plasma.

  20. Beam-front dynamics and ion acceleration in drifting intense relativistic electron beams

    International Nuclear Information System (INIS)

    Alexander, K.F.; Hintze, W.

    1976-01-01

    Collective ion acceleration at the injection of a relativistic electron beam into a low-pressure gas or a plasma is discussed and its strong dependence on the beam-front dynamics is shown. A simple one-dimensional model taking explicitly into account the motion and ionizing action of the ions in the beam-front region is developed for the calculation of the beam drift velocity. The obtained pressure dependence is in good agreement with experimental data. The energy distribution is shown of the ions accelerated in the moving potential well of the space charge region. Scaling laws for the beam-front dynamics and ion acceleration are derived. (J.U.)

  1. REACHING ULTRA HIGH PEAK CHARACTERISTICS IN RELATIVISTIC THOMSON BACKSCATTERING

    International Nuclear Information System (INIS)

    POGORELSKY, I.V.; BEN ZVI, I.; HIROSE, T.; KASHIWAGI, S.; YAKIMENKO, V.; KUSCHE, K.; SIDDONS, P.; ET AL

    2001-01-01

    The concept of x-ray laser synchrotron sources (LSS) based on Thomson scattering between laser photons and relativistic electrons leads to future femtosecond light-source facilities fit to multidisciplinary research in ultra-fast structural dynamics. Enticed by these prospects, the Brookhaven Accelerator Test Facility (ATF) embarked into development of the LSS based on a combination of a photocathode RF linac and a picosecond CO 2 laser. We observed the record 1.7 x 10 8 x-ray photons/pulse yield generated via relativistic Thomson scattering between the 14 GW CO 2 laser and 60 MeV electron beam

  2. Synchrotron light and its uses

    International Nuclear Information System (INIS)

    Blewett, J.P.

    1978-01-01

    It was known for a century that charged particles radiate when accelerated and that relativistic electrons in the energy range between 100 MeV and several GeV and constrained to travel in circular orbits emit concentrated, intense beams with broad continuous spectra that can cover the electromagnetic spectrum from infrared through hard x-rays. Recently the possible applications of this radiation were appreciated and electron synchrotrons and electron storage rings are now being used in many centers for studies of the properties of matter in the solid, liquid and gaseous states. 10 references

  3. Plasma heating by a relativistic electron beam

    International Nuclear Information System (INIS)

    Janssen, G.C.A.M.

    1983-01-01

    This thesis is devoted to the interaction of a Relativistic Electron Beam (REB) with a plasma. The goal of the experiment described herein is to study in detail the mechanism of energy transfer from the beam to the plasma. The beam particles have an energy of 800 keV, a current of 6 kA, a diameter of 3 cm and an adjustable pulse length of 50-150 ns. This beam is injected into cold hydrogen and helium plasmas with densities ranging from 10 18 to 10 20 m -3 . First, the technical aspects of the experiment are described. Then measurements on the hf fields excited by the REB-plasma are presented (optical line profiles and spectra of beam electrons). The final section is devoted to plasma heating. (Auth.)

  4. An adaptive crystal bender for high power synchrotron radiation beams

    International Nuclear Information System (INIS)

    Berman, L.E.; Hastings, J.B.

    1992-01-01

    Perfect crystal monochromators cannot diffract x-rays efficiently, nor transmit the high source brightness available at synchrotron radiation facilities, unless surface strains within the beam footprint are maintained within a few arcseconds. Insertion devices at existing synchrotron sources already produce x-ray power density levels that can induce surface slope errors of several arcseconds on silicon monochromator crystals at room temperature, no matter how well the crystal is cooled. The power density levels that will be produced by insertion devices at the third-generation sources will be as much as a factor of 100 higher still. One method of restoring ideal x-ray diffraction behavior, while coping with high power levels, involves adaptive compensation of the induced thermal strain field. The design and performance, using the X25 hybrid wiggler beam line at the National Synchrotron Light Source (NSLS), of a silicon crystal bender constructed for this purpose are described

  5. Relativistic electron-beam transport in curved channels

    International Nuclear Information System (INIS)

    Vittitoe, C.N.; Morel, J.E.; Wright, T.P.

    1982-01-01

    Collisionless single particle trajectories are modeled for a single plasma channel having one section curved in a circular arc. The magnetic field is developed by superposition of straight and curved channel segments. The plasma density gives charge and beam-current neutralization. High transport efficiencies are found for turning a relativistic electron beam 90 0 under reasonable conditions of plasma current, beam energy, arc radius, channel radius, and injection distributions in velocity and in position at the channel entrance. Channel exit distributions in velocity and position are found consistent with those for a straight plasma channel of equivalent length. Such transport problems are important in any charged particle-beam application constrained by large diode-to-target distance or by requirements of maximum power deposition in a confined area

  6. Fast betatron tune controller for circulating beam in a synchrotron

    International Nuclear Information System (INIS)

    Endo, Takuyuki; Hatanaka, Kichiji; Sato, Kenji

    1997-01-01

    When rf quadrupole (RFQ) electric field is applied to the circulating beam in a synchrotron, an equation of motion is reduced to Mathieu's Equation. A new analytical method to obtain an approximate solution has been developed, while a numerical computation was usually applied. Translating the behavior of approximate solution into terms of an RFQ electric field and betatron oscillation, a fast tune control can be achieved by rapid tuning of both amplitude and frequency of rf voltage. This process could be applied to suppress a tune shift caused by a space charge effect and to control a slow beam extraction with a low ripple. We have started another analytical computation using Hamiltonian with perturbation of RFQ and the results of this computation also suggest that it is applicable to slow beam extraction. The fast tune controller has been constructed and the beam test will be performed at HIMAC synchrotron in cooperation of RCNP and NIRS. (author)

  7. Stabilization of synchrotron radiation x-ray beam by MOSTAB

    CERN Document Server

    Kudo, T P; Tanida, H; Furukawa, Y; Hirono, T; Ishikawa, T; Nishino, Y

    2003-01-01

    Monochromator stabilization (MOSTAB) is a feedback control system to stabilize an x-ray beam of synchrotron radiation. It applies a feedback voltage to a piezo electric transducer attached to a double-crystal monochromator. We developed MOSTAB modules and examined their performances using SPring-8 beamlines. The x-ray beam position stabilization using MOSTAB was realized simultaneously with the x-ray beam intensity stabilization. As an example of its application, we performed EXAFS measurement with MOSTAB. (author)

  8. Quasistationary model of high current relativistic electron beam. 2. The own magnetic field of relativistic electron beam in cylindrical Drift space

    International Nuclear Information System (INIS)

    Brenner, S.E.; Gandul', E.M.; Podkopaev, A.P.

    1995-01-01

    This paper is devoted to obtaining the components of own magnetic field of high current relativistic electron beam passing through the cylindrical drift space superconducting walls: the peculiarities of applied numerical scheme have been also described briefly. (author). 6 refs

  9. Production of hypernuclei in relativistic ion beams

    International Nuclear Information System (INIS)

    Bando, H.; Sano, M.; Wakai, M.; Zofka, J.

    1988-05-01

    The hypernuclear formation in collisions of relativistic beams of 4 He, 7 Li, 12 C and 19 F with target of 12 C is calculated at energies used in the recent Dubna experiment. The hyperfragments optimal for observation are pointed out and the secondary (π + K + ) formation is evaluated and found to be nonnegligible. (author)

  10. Calibration of beam position monitor for the SPring-8 synchrotron

    International Nuclear Information System (INIS)

    Aoki, Tsuyoshi; Yonehara, Hiroto; Suzuki, Hiromitsu

    1995-01-01

    Beam position monitors (BPMs) for SPring-8 synchrotron were already designed and manufactured. 80-BPMs were successfully calibrated for the beam position measurement. In this paper, we introduce the structure of BPMs, the electronics of signal detection system and the calibration system, and the results of calibration are reported. (author)

  11. A calculation technique of passing of a powerful relativistic beam through substance

    International Nuclear Information System (INIS)

    Pobitko, A.I.; Sal'nikov, L.I.; Sukhovitskij, E.Sh.

    1995-01-01

    The calculation algorithm of passing powerful relativistic beam through substance is developed. Algorithm of calculation is separated on the following problems: 1) a trial charge movement in electromagnetic field of the cylindrical geometry; 2) a computing of own electromagnetic field arising at movement of a particle heavy-current beam in a target; 3) accounting of an interaction of a beam with target atoms; 4) accounting of change of the target properties in a time; 5) geometry and construction of an iterative procedure of calculation. The calculation of passing heavy-current beams of charged particles for transient case is carried out by Monte Carlo method. A conclusion of equations of movement trial charge and technique of calculation own electromagnetic field of the powerful relativistic beam at passing through substance are resulted. 6 refs

  12. Beam stability in synchrotrons with digital transverse feedback systems in dependence on beam tunes

    International Nuclear Information System (INIS)

    Zhabitskij, V.M.

    2011-01-01

    The beam stability problem in synchrotrons with a digital transverse feedback system (TFS) is studied. The TFS damper kicker (DK) corrects the transverse momentum of a bunch in proportion to its displacement from the closed orbit measured at the location of the beam position monitor (BPM). It is shown that the area and configuration of the beam stability separatrix depend on the beam tune, the feedback gain, the phase balance between the phase advance from BPM to DK and the phase response of the feedback chain at the betatron frequency

  13. Coulomb-Driven Relativistic Electron Beam Compression.

    Science.gov (United States)

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie

    2018-01-26

    Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.

  14. Coulomb-Driven Relativistic Electron Beam Compression

    Science.gov (United States)

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie

    2018-01-01

    Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.

  15. Relativistic electron beam source with an air-core step-up transformer

    International Nuclear Information System (INIS)

    Mohri, Akihiro; Ikuta, Kazunari; Masuzaki, Masaru; Tsuzuki, Tetsuya; Fujiwaka, Setsuya.

    1975-04-01

    An air-core step-up transformer with a high coupling factor has been developed to generate a high voltage pulse for charging the pulse forming line of a relativistic electron beam source. A beam source using the transformer was constructed and well operated for the beam injection into a toroidal system. (auth.)

  16. Beam extraction control systems of the fast-cycling synchrotron

    International Nuclear Information System (INIS)

    Toumanian, A.; Zapolski, N.; Nickogosian, V.; Ananian, A.; Kazarian, A.; Khoetsian, M.; Agababian, A.; Matevosian, A.

    1992-01-01

    A compact system controlling the extraction of different beams (gamma, electron, synchrotron radiation) in single and simultaneous operation modes at high electromagnetic disturbances level based on using one computer of IBM PC/AT type is described. (author)

  17. Preliminary studies of the quickly pulsed synchrotron involved in the Beta-Beam project; Etudes preliminaires du synchrotron rapidement pulse du projet Beta-Beam

    Energy Technology Data Exchange (ETDEWEB)

    Lachaize, A

    2007-07-01

    This study presents a quickly-pulsed synchrotron able to accelerate He{sup 6} and Ne{sup 18} beams from 100 MeV/u till 3.5 GeV (proton equivalent) The accelerator is made up of 48 bending dipoles and 42 focusing quadrupoles. The design of the HF accelerating system, the bunch injection and the correction of errors in beam dynamics are dealt with.

  18. DOE/DMS workshop on future synchrotron VUV and x-ray beam Lines

    International Nuclear Information System (INIS)

    Green, P.H.

    1992-03-01

    This document contains an overview of the participating DOE Laboratory beam line interests and the projected science to be addressed on these beam lines, both at new and existing synchrotron facilities. The scientific programs associated with present and planned synchrotron research by DOE Laboratories are discussed in chapters titled ''VUV and Soft X-Ray Research'' and ''Hard X-Ray Research.'' This research encompasses a broad range of the nation's scientific and technical research needs from fundamental to applied, in areas including environmental, biological, and physical sciences; new materials; and energy-related technologies. The projected cost of this proposed construction has been provided in tabular form using a uniform format so that anticipated DOE and outside funding agency contributions for construction and for research and development can be determined. The cost figures are, of course, subject to uncertainties of detailed design requirements and the availability of facility-designed generic components and outside vendors. The report also contains a compendium (as submitted by the beam line proposers) of the design capabilities, the anticipated costs, and the scientific programs of projected beam line construction at the four synchrotron facilities. A summary of the projected cost of these beam lines to be requested of DOE is compiled

  19. Shielding calculation of slow extracted beam facility at KEK proton synchrotron

    International Nuclear Information System (INIS)

    Hirabayashi, Hiromi; Katoh, Kazuaki

    1978-01-01

    The KEK proton synchrotron has two external beam lines, i.e. a fast extracted beam line for a bubble chamber and a slow extracted beam line for counter experiments. The maximum total intensity of the slow beam is estimated as 5 x 10 12 protons per sec. For beam losses along the line, shielding calculation was made, and on the basis of these results, adequacy of the current shielding construction plans was discussed. (Mori, K.)

  20. Relativistic electron beam acceleration by cascading nonlinear Landau damping of electromagnetic waves in a plasma

    International Nuclear Information System (INIS)

    Sugaya, R.; Ue, A.; Maehara, T.; Sugawa, M.

    1996-01-01

    Acceleration and heating of a relativistic electron beam by cascading nonlinear Landau damping involving three or four intense electromagnetic waves in a plasma are studied theoretically based on kinetic wave equations and transport equations derived from relativistic Vlasov endash Maxwell equations. Three or four electromagnetic waves excite successively two or three nonresonant beat-wave-driven relativistic electron plasma waves with a phase velocity near the speed of light [v p =c(1-γ -2 p ) 1/2 , γ p =ω/ω pe ]. Three beat waves interact nonlinearly with the electron beam and accelerate it to a highly relativistic energy γ p m e c 2 more effectively than by the usual nonlinear Landau damping of two electromagnetic waves. It is proved that the electron beam can be accelerated to more highly relativistic energy in the plasma whose electron density decreases temporally with an appropriate rate because of the temporal increase of γ p . copyright 1996 American Institute of Physics

  1. Electron beam spectrum monitor using synchrotron light

    International Nuclear Information System (INIS)

    Reagan, D.; Hostetler, T.E.

    1979-03-01

    This instrument shows the positions, widths, and shapes of momentum spectra of SLAC beams. It uses synchrotron light produced when the beam is deflected by a magnet. Some of the light is focused on the face of an image splitter consisting of acrylic light pipes. The light pipes illuminate twelve photomultiplier tubes. Pulses from the PM tubes are integrated, multiplexed, and displayed on an oscilloscope. The resolution of the instrument is usually better than 0.2%. It has some advantages over the secondary emitter foil spectrum monitors (SEM's) currently in use at SLAC. It need never be put out of service to avoid disturbing the beam. It is as sensitive as the most sensitive SLAC SEM. (Its performance has been optimized for high-current beams; it can easily be made much more sensitive.) It provides information on a pulse-to-pulse basis and, with better cables, could indicate electron beam pulse shapes

  2. A polarimeter for GeV protons of recirculating synchrotron beams

    CERN Document Server

    Bauer, F

    1999-01-01

    A polarimeter for use in recirculating beams of proton synchrotrons with energies from 300 MeV up to several GeV has been developed. The polarimetry is based on the asymmetry measurement of elastic p->p scattering on an internal CH sub 2 fiber target. The forward going protons are detected with two scintillator systems on either side of the beam pipe close to the angle THETA sub f of maximum analyzing power A sub N. Each one operates in coincidence with a broad (DELTA THETA sub b =21.4 deg. ), segmented detector system for the recoil proton of kinematically varying direction THETA sub b; this position resolution is also used for a concurrent measurement of the p->C and nonelastic p->p background. The CH sub 2 fiber can be replaced by a carbon fiber for detailed background studies; 'false' asymmetries are accounted for with a rotation of the polarimeter around the beam axis. Polarimetry has been performed in the internal beam of the Cooler Synchrotron COSY at fixed energies as well as during proton acceleratio...

  3. Relativistic electron beam interaction with a thin target

    International Nuclear Information System (INIS)

    Gazaix, M.

    1981-03-01

    This study is concerned with the increasing possibilities of electron energy deposition in thin targets. The thesis theoretical part studies the relativistic electron beam-plasma instability; the Buneman-Pierce instability in limited medium is also studied. In the experimental part, several questions are tentatively answered: - what is the spatial and temporal evolution of the anode material, in temperature and in density. - What sort of interaction is the beam-target interaction; more particularly questions about focusing and energy deposition are studied [fr

  4. Static and transient beam loading of a synchrotron

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Weng, W.T.

    1992-01-01

    In a synchrotron, when the beam induced current is comparable to the driver current, the RF cavity is subjected to beam loading perturbation and corrective steps have to be implemented to regain beam stability. In this paper, the static and transient beam loading will be studied. We first discuss the static beam loading, which includes the cavity detuning condition, the stability condition, and the generator power dissipation. The beam current induced beam phase deviation is used as criterion to study the transient beam loading. The upgraded and the old AGS RF system parameters are used as an example to demonstrate how to choose cavity and generator parameters to satisfy the stability requirements under the beam loading. The dynamic models for the beam loading with beam control, and the beam loading with fast power amplifier feedback are presented and analyzed. It is shown that the beam phase and radial feedbacks alone are insufficient for the transient beam loading compensation, but the fast power amplifier feedback can provide effective correction on the beam loading. The limitation of the fast feedback and the beam loading with tuning and AVC loops are also discussed

  5. Charged particle beam monitoring by means of synchrotron radiation

    International Nuclear Information System (INIS)

    Panasyuk, V.S.; Anevskij, S.I.

    1984-01-01

    Optical methods for monitoring the number of accelerated electrons and electron energy by means of beam synchrotron radiation (SR) as well as peculiarities of SR characteristics of beams with a small radius of the orbit are considered. Optical methods for charged particle beam monitoring are shown to ensure operative and precise monitoring the number of particles and particle energy. SR sources with large axial dimensions of an electron beam have specific spectral angular and polarization characteristics. If electron angular distribution at deflection from the median plane is noticeably wider than angular distribution of SR of a certain electron, relative SR characteristics of these soUrces are calculated with high accuracy

  6. Spatio-temporal dynamics of relativistic electron bunches during the micro bunching instability: study of the Synchrotron Soleil and UVSOR storage rings

    International Nuclear Information System (INIS)

    Roussel, Eleonore

    2014-01-01

    Relativistic electron bunches circulating in storage rings are used to produce intense radiation from far-infrared to X-rays. However, above a density threshold value, the interaction between the electron bunch and its own radiation can lead to a spatio-temporal instability called micro bunching instability. This instability is characterized by a strong emission of coherent THz radiation (typically 105 times stronger than the classical synchrotron radiation) which is a signature of the presence of microstructures (at mm scale) in the electron bunch. This instability is known to be a fundamental limitation of the operation of synchrotron light sources at high beam current. In this thesis, we have focused on this instability from a nonlinear dynamics point of view by combining experimental studies carried out at the Synchrotron Soleil and UVSOR storage rings with numerical studies mainly based on the Vlasov-Fokker-Planck equation. In a first step, due to the very indirect nature of the experimental observations, we have sought to deduce information on the microstructure wavenumber either by looking at the temporal evolution of the THz signal emitted during the instability or by studying the response of the electron bunch to a laser perturbation. In a second step, we have achieved direct, real time observations of the microstructures dynamics through two new, very different, detection techniques: a thin-film superconductor-based detector at UVSOR, and a spectrally-encoded electro-optic detection technique at Soleil. These new available experimental observations have allowed severe comparisons with the theoretical models. (author)

  7. Design consideration of relativistic klystron two-beam accelerator for suppression of beam-break-up

    International Nuclear Information System (INIS)

    Li, H.; Houck, T.L.; Yu, S.; Goffeney, N.

    1994-03-01

    It is demonstrated in this simulation study that by using the scheme of operating rf extraction structures on the betatron nodes of electron drive beam in conjunction with adequate de-Q-ing, appropriate choice of geometries for the rf structures (reducing transverse impedence) and/or staggered tuning we can suppress the overall growth of transverse instabilities to 4 e-folds in a relativistic klystron two-beam accelerator with 200 extraction cavities

  8. Monitoring elastic strain and damage by neutron and synchrotron beams

    International Nuclear Information System (INIS)

    Withers, P.J.

    2001-01-01

    Large-scale neutron and synchrotron X-ray facilities have been providing important information for physicists and chemists for many decades. Increasingly, materials engineers are finding that they can also provide them with important information non-destructively. Highly penetrating neutron and X-ray synchrotron beams provide the materials engineer with a means of obtaining information about the state of stress and damage deep within materials. In this paper the principles underlying the elastic strain measurement and damage characterization techniques are introduced. (orig.)

  9. Synchrotron radiation: its characteristics and applications

    International Nuclear Information System (INIS)

    Blewett, J.P.; Chasman, R.; Green, G.K.

    1977-01-01

    It has been known for a century that charged particles radiate when accelerated and that relativistic electrons in the energy range between 100 MeV and several GeV and constrained to travel in circular orbits emit concentrated, intense beams with broad continuous spectra that can cover the electromagnetic spectrum from infrared through hard X-rays. Recently the possible applications of this radiation have been appreciated and electron synchrotrons and electron storage rings are now being used in many centers for studies of the properties of matter in the solid, liquid and gaseous states. A brief history is presented of ''synchrotron radiation'' as it is now called. The basic properties of this radiation are described and the world-wide distribution is indicated of facilities for its production. Particular attention is given to the proposed facility at Brookhaven which will be the first major installation to be dedicated only to the production and use of synchrotron radiation. Finally, typical examples are given of applications in the areas of radiation absorption studies, techniques based on scattering of radiation, and advances based on X-ray lithography

  10. Novel non-intercepting diagnostic techniques for low-emittance relativistic electron beams

    International Nuclear Information System (INIS)

    Moran, M.J.; Chang, B.

    1988-01-01

    Relativistic electron beams are being generated with emittances low enough that diffraction radiation can be used for beam diagnostics. Techniques based on diffraction radiation can be used to measure the beam transverse momentum distribution and to measure the transverse spatial distribution. The radiation is intense and can be in the visible spectral region where optical diagnostic techniques can be used to maximum advantage. 4 refs. 3 figs

  11. Simulations of X-ray synchrotron beams using the EGS4 code system in medical applications

    International Nuclear Information System (INIS)

    Orion, I.; Henn, A.; Sagi, I.; Dilmanian, F.A.; Pena, L.; Rosenfeld, A.B.

    2001-01-01

    X-ray synchrotron beams are commonly used in biological and medical research. The availability of intense, polarized low-energy photons from the synchrotron beams provides a high dose transfer to biological materials. The EGS4 code system, which includes the photoelectron angular distribution, electron motion inside a magnetic field, and the LSCAT package, found to be the appropriate Monte Carlo code for synchrotron-produced X-ray simulations. The LSCAT package was developed in 1995 for the EGS4 code to contain the routines to simulate the linear polarization, the bound Compton, and the incoherent scattering functions. Three medical applications were demonstrated using the EGS4 Monte Carlo code as a proficient simulation code system for the synchrotron low-energy X-ray source. (orig.)

  12. Coherent emission from relativistic beam-plasma interactions

    International Nuclear Information System (INIS)

    Latham, P.E.

    1986-01-01

    A theoretical model for the production of high-power, high-frequency electromagnetic radiation from unmagnetized, relativistic beam-plasma interactions is studied. Emphasis is placed on the injected-beam system, for which the dominant portion of the radiation is emitted near the point where the beam enters the plasma. In such systems, frequencies much larger than the plasma frequency and power levels many orders of magnitude above that predicted by single-particle radiation have been observed experimentally. A two-step process is proposed to explain these observations: electrostatic bunching of the beam followed by coherent radiation by the bunches. The first step, beam bunching, produces large-amplitude electrostatic waves. A Green's function analysis is employed to understand the convective growth of those waves near the plasma boundary; their saturation amplitude is found by applying conservation of energy to the beam-plasma system. An azimuthally symmetric model is used to compute the saturated spectrum analytically, and a relatively simple expression is found. The second step, the interaction of the electron beam with the electrostatic spectrum, leads to the production of high-power, high-frequency electromagnetic radiation. From a detailed analysis of the phase-space evolution of the trapped beam, an analytic expression for the electromagnetic spectrum is found as a function of angle and frequency

  13. Instabilities excited by head-on collisions of two relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Kou Shu-Ying

    1982-02-01

    In this paper, we studied the instabilities excited by head-on collision of two relativistic electron beams in transporting, taking account of the magnetic field B/sub 0/ and the thermal pressure delp of the beams. The conditions under which the instabilities occur and the growth rate of instabilities are obtained. The results show that these instabilities can be excited or inhibited by controlling the velocity of the beams.

  14. Thresholds of a bunched beam longitudinal instability in proton synchrotrons

    International Nuclear Information System (INIS)

    Balbekov, V.I.; Ivanov, S.V.

    1986-01-01

    The formulas and graphs for calculating instability thresholds arising during the interaction of a bunched proton beam with narrow-band resonator are given. The instabilities of three types with oscillations of a definite multipolarity, oscillations of some bound multipoles and with microwave oscillations arising as a result of addition of a great number of multipoles. The analysis of the above data shows that the increase of oscillations nonlinearity is accompanied by the growth of instability threshold only in the zone of separated and weakly bound multipoles. The increase of spread of synchrotron frequencies reduces the zone separated multipoles owing to which the microwave bunch instability can be caused by more and more low-frequency resonators. In the microwave zone practically there is no stabilizing effect of synchrotron frequencies spread. The instability threshold of the bunched beam now - where exceeds the microwave level

  15. Intense relativistic electron beam: generation and propagation

    International Nuclear Information System (INIS)

    Mittal, K.C.; Mondal, J.

    2010-01-01

    A general review of relativistic electron beam extracted from explosive field emission diode has been presented here. The beam current in the diode gap taking into account cathode and anode plasma expansion velocity and excluding the self magnetic field effect is directly proportional to gap voltage V 3/2 and inversely proportional to the square of the effective diode gap (d-vt). In the limit of high current, self magnetic field focusing effect comes into play and results in a critical current at which pinching will take place. When the diode current exceeds the critical current, the electron flow is in the para-potential regime. Different diode geometries such as planner, coaxial, rod-pinched, reflex triode are discussed qualitatively. When the beam is injected into a vacuum drift tube the propagation of the beam is only possible in presence of a strong axial magnetic field which prevents the beam expansion in the radial direction. If the beam is injected in the drift tube filled with dense plasma, then the redistribution of the plasma electrons effectively neutralizes the beam space charge, resulting subsequent propagation of the beam along the drift tube. The beam propagation through neutral gas is similar to the plasma filled drift tube. In this case both the neutral gas pressure and the beam current regulate the transmission of the REB. (author)

  16. Synchrotron Radiation

    International Nuclear Information System (INIS)

    Asfour, F.I

    2000-01-01

    Synchrotron light is produced by electron accelerators combined with storage rings. This light is generated over a wide spectral region; from infra-red (IR) through the visible and vacuum ultraviolet (VUV), and into the X-ray region. For relativistic electrons (moving nearly with the speed of light), most radiation is concentrated in a small cone with an opening angle of 1/gamma(some 0.1 to 1 milliradian),where gamma is the electron energy in units of rest energy (typically 10 3 -10 4 ). In synchrotron radiation sources (storage rings) highly relativistic electrons are stored to travel along a circular path for many hours. Radiation is caused by transverse acceleration due to magnetic forces(bending magnets). The radiation is emitted in pulses of 10-20 picosecond, separated by some 2 nanosecond or longer separation

  17. Design of a synchrotron radiation detector for the test beam lines at the Superconducting Super Collider Laboratory

    International Nuclear Information System (INIS)

    Hutton, R.D.

    1994-01-01

    As part of the particle- and momentum-tagging instrumentation required for the test beam lines of the Superconducting Super Collider (SSC), the synchrotron radiation detector (SRD) was designed to provide electron tagging at momentum above 75 GeV. In a parallel effort to the three test beam lines at the SSC, schedule demands required testing and calibration operations to be initiated at Fermilab. Synchrotron radiation detectors also were to be installed in the NM and MW beam lines at Femilab before the test beam lines at the SSC would become operational. The SRD is the last instrument in a series of three used in the SSC test beam fines. It follows a 20-m drift section of beam tube downstream of the last silicon strip detector. A bending dipole just in of the last silicon strip detector produces the synchrotron radiation that is detected in a 50-mm-square cross section NaI crystal. A secondary scintillator made of Bicron BC-400 plastic is used to discriminate whether it is synchrotron radiation or a stray particle that causes the triggering of the NaI crystal's photo multiplier tube (PMT)

  18. Study of nonlinear interaction between bunched beam and intermediate cavities in a relativistic klystron amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y. [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China); Science and Technology on High Power Microwave Laboratory, Mianyang 621900 (China); Xu, Z.; Li, Z. H. [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China); Tang, C. X. [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

    2012-07-15

    In intermediate cavities of a relativistic klystron amplifier (RKA) driven by intense relativistic electron beam, the equivalent circuit model, which is widely adopted to investigate the interaction between bunched beam and the intermediate cavity in a conventional klystron design, is invalid due to the high gap voltage and the nonlinear beam loading in a RKA. According to Maxwell equations and Lorentz equation, the self-consistent equations for beam-wave interaction in the intermediate cavity are introduced to study the nonlinear interaction between bunched beam and the intermediate cavity in a RKA. Based on the equations, the effects of modulation depth and modulation frequency of the beam on the gap voltage amplitude and its phase are obtained. It is shown that the gap voltage is significantly lower than that estimated by the equivalent circuit model when the beam modulation is high. And the bandwidth becomes wider as the beam modulation depth increases. An S-band high gain relativistic klystron amplifier is designed based on the result. And the corresponding experiment is carried out on the linear transformer driver accelerator. The peak output power has achieved 1.2 GW with an efficiency of 28.6% and a gain of 46 dB in the corresponding experiment.

  19. Study of nonlinear interaction between bunched beam and intermediate cavities in a relativistic klystron amplifier

    Science.gov (United States)

    Wu, Y.; Xu, Z.; Li, Z. H.; Tang, C. X.

    2012-07-01

    In intermediate cavities of a relativistic klystron amplifier (RKA) driven by intense relativistic electron beam, the equivalent circuit model, which is widely adopted to investigate the interaction between bunched beam and the intermediate cavity in a conventional klystron design, is invalid due to the high gap voltage and the nonlinear beam loading in a RKA. According to Maxwell equations and Lorentz equation, the self-consistent equations for beam-wave interaction in the intermediate cavity are introduced to study the nonlinear interaction between bunched beam and the intermediate cavity in a RKA. Based on the equations, the effects of modulation depth and modulation frequency of the beam on the gap voltage amplitude and its phase are obtained. It is shown that the gap voltage is significantly lower than that estimated by the equivalent circuit model when the beam modulation is high. And the bandwidth becomes wider as the beam modulation depth increases. An S-band high gain relativistic klystron amplifier is designed based on the result. And the corresponding experiment is carried out on the linear transformer driver accelerator. The peak output power has achieved 1.2 GW with an efficiency of 28.6% and a gain of 46 dB in the corresponding experiment.

  20. Formation of a single-bunch beam in the booster synchrotron at SPring-8

    CERN Document Server

    Suzuki, H; Ego, H; Hara, M; Hosoda, N; Kawashima, Y; Ohashi, Y; Ohshima, T; Tani, N; Yabashi, M; Yonehara, H

    2000-01-01

    In order to fill a radio frequency (rf) bucket with an electron beam in the storage ring at SPring-8, an rf knockout system was installed in the booster synchrotron. With this system, the energy of the electron beam injected from the linac was increased from 1 to 8 GeV. The time width of multi-bunch beams from the linac operated at 2856 MHz rf can be selected as 1 or 40 ns. The beam injected from the linac is distributed in rf buckets of the booster synchrotron operated at 508.58 MHz rf. To fill a single rf bucket with a beam, the rf knockout system is operated at a minimum beam energy of 1 GeV. By using the rf knockout system, the electron beam is effectively kept in a single rf bucket. Then the beam is injected into a targeted rf bucket in the storage ring with a precise timing system. The beam intensity of satellite rf buckets in the storage ring was measured with a photon counting method and determined to be 10 sup - sup 6 less than that of the main rf bucket. In this paper, we describe the rf knockout sy...

  1. Plasma lenses for focusing relativistic electron beams

    International Nuclear Information System (INIS)

    Govil, R.; Wheeler, S.; Leemans, W.

    1997-01-01

    The next generation of colliders require tightly focused beams with high luminosity. To focus charged particle beams for such applications, a plasma focusing scheme has been proposed. Plasma lenses can be overdense (plasma density, n p much greater than electron beam density, n b ) or underdense (n p less than 2 n b ). In overdense lenses the space-charge force of the electron beam is canceled by the plasma and the remaining magnetic force causes the electron beam to self-pinch. The focusing gradient is nonlinear, resulting in spherical aberrations. In underdense lenses, the self-forces of the electron beam cancel, allowing the plasma ions to focus the beam. Although for a given beam density, a uniform underdense lens produces smaller focusing gradients than an overdense lens, it produces better beam quality since the focusing is done by plasma ions. The underdense lens can be improved by tapering the density of the plasma for optimal focusing. The underdense lens performance can be enhanced further by producing adiabatic plasma lenses to avoid the Oide limit on spot size due to synchrotron radiation by the electron beam. The plasma lens experiment at the Beam Test Facility (BTF) is designed to study the properties of plasma lenses in both overdense and underdense regimes. In particular, important issues such as electron beam matching, time response of the lens, lens aberrations and shot-to-shot reproducibility are being investigated

  2. Limitation of accelerating process in the partly neutralized relativistic electron hollow beam

    International Nuclear Information System (INIS)

    Chen, H.C.

    1984-01-01

    A fluid-Maxwell theory of the diocotron instability is developed for a relativistic electron hollow beam which is assumed in rigid-rotor and cold laminar flow equilibria. Stability analysis is performed for a sharp boundary electron density profile including the influence of positive ions which can accumulate in a long pulse device, and which form a partially neutralizing background. In the case of the strong magnetic field and tenuous electron beam (plasma frequency ω/sub p/b 1 2 ) has a stabilizing effect on the diocotron instability, R 1 and R 2 are the inner and outer radius of the annular hollow beam, respectively. However, the ions accumulating in the center of the beam (0 1 ) have a destabilizing effect on the diocotron instability. Most importantly the kink mode becomes unstable with a growth rate several tenths of the diocotron frequency ω/sub D/ equivalent ω 2 /sub p/b/2γ 2 ω/sub c/, where γ is the relativistic scaling factor

  3. Relativistic beam self-contraction in the inhomogeneous magnetic field with a neck

    International Nuclear Information System (INIS)

    Grishin, V.K.

    1979-01-01

    For production of short bunches of relativistic electrons and accompanying electromagnetic fields with amplitudes (up to MW/cm), considered was self-contraction of a relativistic electron beam (REB) in a magnetic field with a neck. REB dynamics in a ferrodielectric channel with permeability >> 1 was considered as well. It is shown, that in a such system, 10 m beam with a current up to ten kA is contracted to a length of approximately 0.5 m. Also the possible ways of application of the considered method of REB contraction are shown. For instance, a slow REB, fearing a great field, can be used for the capture and subsequent acceleration of heavy ions. The contracted beam application for generating powerful pulses of a h.f. field with, in fact, a homogeneous spectrum up to 100-300 MHz and total field energy up to 10-15% of initial beam energy is of great interest as well

  4. Nonlineart theory of relativistic beam-plasma instabilities in the regime of the collective Cherenkov effect

    Energy Technology Data Exchange (ETDEWEB)

    Bobylev, Yu. V. [L.N. Tolstoy Tula State Pedagogical University (Russian Federation); Kuzelev, M. V. [Moscow State University (Russian Federation); Rukhadze, A. A. [Russian Academy of Sciences, Prokhorov Institute of General Physics (Russian Federation)

    2008-02-15

    A general mathematical model is proposed that is based on the Vlasov kinetic equation with a self-consistent field and describes the nonlinear dynamics of the electromagnetic instabilities of a relativistic electron beam in a spatially bounded plasma. Two limiting cases are analyzed, namely, high-frequency (HF) and low-frequency (LF) instabilities of a relativistic electron beam, of which the LF instability is a qualitatively new phenomenon in comparison with the known Cherenkov resonance effects. For instabilities in the regime of the collective Cherenkov effect, the equations containing cubic nonlinearities and describing the nonlinear saturation of the instabilities of a relativistic beam in a plasma are derived by using the methods of expansion in small perturbations of the trajectories and momenta of the beam electrons. Analytic expressions for the amplitudes of the interacting beam and plasma waves are obtained. The analytical results are shown to agree well with the exact solutions obtained numerically from the basic general mathematical model of the instabilities in question. The general mathematical model is also used to discuss the effects associated with variation in the constant component of the electron current in a beam-plasma system.

  5. Intense relativistic electron beam generation from KALI-5000 pulse accelerator

    International Nuclear Information System (INIS)

    Roy, A.; Mondal, J.; Mitra, S.; Durga Praveen Kumar, D.; Sharma, Archana; Nagesh, K.V.; Chakravarthy, D.P.

    2006-01-01

    Intense Relativistic Electron Beam (IREB) with parameters 420 keV, 22 kA, 100 ns has been generated from indigenously developed pulse power system KALI- 5000. High current electron beam is generated from explosive field emission graphite cathodes. Studies have been conducted by changing the diameter of graphite cathode and also the anode cathode gap. In order to avoid prepulse effect it was concluded that anode cathode (AK) gap should be kept larger than estimated by the Child Langmuir relation. Beam voltage has been measured by a copper sulphate voltage divider, beam current by a self integrating Rogowski coil and B-dot probe. Electron beam diode Impedance and Perveance were obtained from the experimentally measured beam voltage and current. (author)

  6. A monolithic relativistic electron beam source based on a dielectric laser accelerator structure

    International Nuclear Information System (INIS)

    McNeur, Josh; Carranza, Nestor; Travish, Gil; Yin Hairong; Yoder, Rodney

    2012-01-01

    Work towards a monolithic device capable of producing relativistic particle beams within a cubic-centimeter is detailed. We will discuss the Micro-Accelerator Platform (MAP), an optical laser powered dielectric accelerator as the main building block of this chip-scale source along with a field enhanced emitter and a region for sub-relativistic acceleration.

  7. Advances in beam position monitoring methods at GSI synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rahul; Reiter, Andreas; Forck, Peter; Kowina, Piotr; Lang, Kevin; Miedzik, Piotr [GSI, Darmstadt (Germany)

    2016-07-01

    At the GSI synchrotron facilities, capacitive beam pick-up signals for position evaluation are immediately digitized within the acquisition electronics due to availability of reliable, fast and high resolution ADCs. The signal processing aspects are therefore fully dealt with in the digital domain. Novel digital techniques for asynchronous and synchronous (bunch-by-bunch) beam position estimation have been developed at GSI SIS-18 and CRYRING as part of FAIR development program. This contribution will highlight the advancements and its impact on the operational ease and high availability of the BPM systems.

  8. Simulating satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds

    OpenAIRE

    M. Füllekrug; C. Hanuise; M. Parrot

    2010-01-01

    Relativistic electron beams above thunderclouds emit 100 kHz radio waves which illuminate the Earth's atmosphere and near-Earth space. This contribution aims to clarify the physical processes which are relevant for the spatial spreading of the radio wave energy below and above the ionosphere and thereby enables simulating satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. The simulation uses the DEMETER satellite which observes 100 kHz ...

  9. Development and Optimisation of the SPS and LHC beam diagnostics based on Synchrotron Radiation monitors

    CERN Document Server

    AUTHOR|(CDS)2081364; Roncarolo, Federico

    Measuring the beam transverse emittance is fundamental in every accelerator, in particular for colliders, where its precise determination is essential to maximize the luminosity and thus the performance of the colliding beams.
 Synchrotron Radiation (SR) is a versatile tool for non-destructive beam diagnostics, since its characteristics are closely related to those of the source beam. At CERN, being the only available diagnostics at high beam intensity and energy, SR monitors are exploited as the proton beam size monitor of the two higher energy machines, the Super Proton Synchrotron (SPS) and the Large Hadron Collider (LHC). The thesis work documented in this report focused on the design, development, characterization and optimization of these beam size monitors. Such studies were based on a comprehensive set of theoretical calculations, numerical simulations and experiments. A powerful simulation tool has been developed combining conventional softwares for SR simulation and optics design, thus allowing t...

  10. Beam analysis spectrometer for relativistic heavy ions

    International Nuclear Information System (INIS)

    Schimmerling, W.; Subramanian, T.S.; McDonald, W.J.; Kaplan, S.N.; Sadoff, A.; Gabor, G.

    1983-01-01

    A versatile spectrometer useful for measuring the mass, charge, energy, fluence and angular distribution of primaries and fragments associated with relativistic heavy ion beams is described. The apparatus is designed to provide accurate physical data for biology experiments and medical therapy planning as a function of depth in tissue. The spectrometer can also be used to measure W, the average energy to produce an ion pair, range-energy, dE/dx, and removal cross section data of interest in nuclear physics. (orig.)

  11. Cooling and focusing of a relativistic charged particle beam in crossed laser field

    International Nuclear Information System (INIS)

    Li Fuli

    1987-01-01

    A new method to focus a relativistic charged particle beam is suggested and studied. This idea is based on the use of the ponderomotive force which arises when a periodic electromagnetic field is created, as in the case of two crossed laser beams. (author)

  12. High-intensity laser synchrotron x-ray source

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1995-10-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the Laser Synchrotron Light Source (LSLS) concept is still waiting for a convincing demonstration. Available at the BNL's Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power C0 2 laser may be used as prototype LSLS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps C0 2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 70 MeV electron bunch. Flashes of well-collimated, up to 9.36-keV (∼ Angstrom) x-rays of 10-ps pulse duration, with a flux of ∼10 19 photons/sec will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to a variable e-beam energy. A natural short-term extension of the proposed experiment would be further enhancement of the x-ray flux to a 10 21 -10 22 photons/sec level, after the ongoing ATF CO 2 laser upgrade to 1 TW peak power and electron bunch shortening to 3 ps. The ATF LSLS x-ray beamline, exceeding by orders of magnitude the peak fluxes attained at the National Synchrotron Light Source (NSLS) x-ray storage ring, may become attractive for certain users, e.g., for biological x-ray microscopy. In addition, a terawatt CO 2 laser will enable harmonic multiplication of the x-ray spectrum via nonlinear Compton scattering

  13. Phase II beam lines at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1984-06-01

    The expansion of the National Synchrotron Light Source has been funded by the US Department of Energy. The Phase II program consists of both increased conventional facilities and six new beam lines. In this paper, an overview of the six beam lines which will be constructed during Phase II is presented. For five of the lines special radiation sources are necessary and the designs of four of the devices are complete. The relevant parameters of the insertion devices under construction and development are presented

  14. Basis of medical accelerator. Synchrotron

    International Nuclear Information System (INIS)

    Kawachi, Kiyomitsu

    2014-01-01

    On the synchrotron as a medical accelerator, this paper introduces the basic principle, basic techniques and the like. The accelerator, when synchrotron is adopted as an ion beam radiotherapy system, is the composite accelerator composed of ion sources, injector, and synchrotron. This paper introduces the overall structure of synchrotron, and conceptually explains the basic behavior of high-frequency waves and magnetic field of synchrotron, as well as the deflection electromagnet of medical synchrotron and the operation pattern of high-frequency acceleration system. The types of synchrotron can be classified to the function combination type and function separation type, and this paper introduces the features of each type and various types of synchrotrons. It also explains beam dynamics important for ensuring the stability of beams, with a focus on the coordinate system, vertical movement, and lateral movement. In addition, it explains the incidence and outgoing of beams that are important for properly operating the accelerator, with a focus on their techniques. (A.O.)

  15. Application of high power modulated intense relativistic electron beams for development of Wake Field Accelerator

    International Nuclear Information System (INIS)

    Friedman, M.

    1989-01-01

    This final Progress Report addresses DOE-sponsored research on the development of future high-gradient particle accelerators. The experimental and the theoretical research, which lasted three years, investigated the Two Beam Accelerator (TBA). This high-voltage-gradient accelerator was powered by a modulated intense relativistic electron beam (MIREB) of power >10 10 watts. This research was conceived after a series of successful experiments performed at NRL generating and using MIREBs. This work showed that an RF structure could be built which was directly powered by a modulated intense relativistic electron beam. This structure was then used to accelerate a second electron beam. At the end of the three year project the proof-of-principle accelerator demonstrated the generation of a high current beam of electrons with energy >60 MeV. Scaling laws needed to design practical devices for future applications were also derived

  16. Absolute x-ray dosimetry on a synchrotron medical beam line with a graphite calorimeter.

    Science.gov (United States)

    Harty, P D; Lye, J E; Ramanathan, G; Butler, D J; Hall, C J; Stevenson, A W; Johnston, P N

    2014-05-01

    The absolute dose rate of the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter. The calorimetry results were compared to measurements from the existing free-air chamber, to provide a robust determination of the absolute dose in the synchrotron beam and provide confidence in the first implementation of a graphite calorimeter on a synchrotron medical beam line. The graphite calorimeter has a core which rises in temperature when irradiated by the beam. A collimated x-ray beam from the synchrotron with well-defined edges was used to partially irradiate the core. Two filtration sets were used, one corresponding to an average beam energy of about 80 keV, with dose rate about 50 Gy/s, and the second filtration set corresponding to average beam energy of 90 keV, with dose rate about 20 Gy/s. The temperature rise from this beam was measured by a calibrated thermistor embedded in the core which was then converted to absorbed dose to graphite by multiplying the rise in temperature by the specific heat capacity for graphite and the ratio of cross-sectional areas of the core and beam. Conversion of the measured absorbed dose to graphite to absorbed dose to water was achieved using Monte Carlo calculations with the EGSnrc code. The air kerma measurements from the free-air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. Absolute measurements of the IMBL dose rate were made using the graphite calorimeter and compared to measurements with the free-air chamber. The measurements were at three different depths in graphite and two different filtrations. The calorimetry measurements at depths in graphite show agreement within 1% with free-air chamber measurements, when converted to absorbed dose to water. The calorimetry at the surface and free-air chamber results show agreement of order 3% when converted to absorbed dose to water. The combined standard uncertainty is 3.9%. The good agreement of

  17. Visible-light beam size monitors using synchrotron radiation at CESR

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.T., E-mail: sw565@cornell.edu [Cornell Laboratory for Accelerator-Based Science and Education, Cornell University, Ithaca, NY 14853 (United States); Rubin, D.L.; Conway, J.; Palmer, M.; Hartill, D. [Cornell Laboratory for Accelerator-Based Science and Education, Cornell University, Ithaca, NY 14853 (United States); Campbell, R.; Holtzapple, R. [Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407 (United States)

    2013-03-01

    A beam profile monitor utilizing visible synchrotron radiation (SR) from a bending magnet has been designed and installed in Cornell Electron-Positron Storage Ring (CESR). The monitor employs a double-slit interferometer to measure both the horizontal and vertical beam sizes over a wide range of beam currents. By varying the separation of the slits, beam sizes ranging from 50 to 500 μm can be measured with a resolution of approximately 5 μm. To measure larger beam size (>500 μm), direct imaging can be employed by rotating the double slits away from SR beam path. By imaging the π-polarized component of SR, a small vertical beam size (∼70 μm) was measured during an undulator test run in CESR, which was consistent with the interferometer measurement. To measure the bunch length, a beam splitter is inserted to direct a fraction of light into a streak camera setup. This beam size monitor measures the transverse and longitudinal beam sizes simultaneously, which is successfully used for intrabeam scattering studies. Detailed error analysis is discussed.

  18. Implementation of electron beam position measurement algorithm and embedded web server using MCS-51 microcontroller for Booster Synchrotron

    International Nuclear Information System (INIS)

    Shrivastava, B.B.; Chouhan, Manish; Puntambekar, T.A.; Tiwari, A.N.

    2015-01-01

    The Booster Synchrotron at RRCAT caters as Injector Machine for Indus-1 and Indus-2 with the repetition rate of 1Hz. In Booster Synchrotron, energy of electron bunches are increased from 20 MeV to 450 MeV (in ∼ 280 ms) and 550 MeV (in ∼ 340 ms ) for Indus-1 and Indus-2 respectively. An algorithm for microcontroller based beam position measurement system has been developed for the Booster Synchrotron to measure the fast changes in the beam position of electron bunches during energy ramping. In this paper, software implementation in microcontroller and its optimization to achieve beam position update rate of 1 kHz is discussed. (author)

  19. Experimental status of the AGS Relativistic Heavy Ion Program

    International Nuclear Information System (INIS)

    Sangster, T.C.

    1994-10-01

    The universal motivation for colliding large nuclei at relativistic energies is the expectation that a small volume of the primordial quark soup, generally referred to as the Quark-Gluon Plasma (QGP), can be created and studied. The QGP is formed via a phase transition caused by either the extreme baryon densities and/or the extreme temperatures achieved in the overlap zone of the two colliding nuclei. Experiments at the Brookhaven National Laboratory Alternating Gradient Synchrotron (AGS) using a beam of Si nuclei at 14.6 GeV per nucleon on various nuclear targets have been completed. These same experiments are now actively searching for signatures of QGP formation using a beam of Au nuclei at 11.7 GeV per nucleon. This paper briefly summarizes some of the key results from the Si beam program and the current status of the experimental Au beam program at the AGS

  20. Paraxial Green's functions in synchrotron radiation theory

    International Nuclear Information System (INIS)

    Geloni, G.; Saldin, E.; Scheidmiller, E.; Yurkov, M.

    2005-02-01

    This work contains a systematic treatment of single particle synchrotron radiation and some application to realistic beams with given cross section area, divergence and energy spread. Standard theory relies on several approximations whose applicability limits and accuracy are often forgotten. We begin remarking that on the one hand, a paraxial approximation can always be applied without loss of generality and with ultra relativistic accuracy. On the other hand, dominance of the acceleration field over the velocity part in the Lienard-Wiechert expressions is not always guaranteed and constitutes a separate assumption, whose applicability is discussed. Treating synchrotron radiation in paraxial approximation we derive the equation for the slow varying envelope function of the Fourier components of the electric field vector. Calculations of Synchrotron Radiation properties performed by others showed that the phase of the Fourier components of the electric field vector differs from the phase of a virtual point source. In this paper we present a systematic, analytical description of this phase shift, calculating amplitude and phase of electric field from bending magnets, short magnets, two bending magnet system separated by a straight section (edge radiation) and undulator devices. We pay particular attention to region of applicability and accuracy of approximations used. Finally, taking advantage of results of analytical calculation presented in reduced form we analyze various features of radiation from a complex insertion device (set of two undulators with a focusing triplet in between) accounting for the influence of energy spread and electron beam emittance. (orig.)

  1. Relativistic treatment of Raman free-electro laser in beam frame

    International Nuclear Information System (INIS)

    Korbacheh, A.; Maraghechi, B.; Aghahosseni, H.

    2004-01-01

    A relativistic theory for Raman backscattering in the beam frame of electrons is used to find the growth rate of free- electron laser in Raman regime. The electromagnetic effects of the space-charge wave are taken into account by using the electrostatic approximation in the beam frame. The wiggler effects on the linear dispersion relations of the space- charge wave and radiation are included in the analysis. A numerical computation is conducted to compare the growth rate of the excited waves with nonrelativistic treatment

  2. Influence of light absorption on relativistic self-focusing of Gaussian laser beam in cold quantum plasma

    Science.gov (United States)

    Patil, S. D.; Valkunde, A. T.; Vhanmore, B. D.; Urunkar, T. U.; Gavade, K. M.; Takale, M. V.

    2018-05-01

    When inter particle distance is comparable to the de Broglies wavelength of charged particles, quantum effects in plasmas are unavoidable. We have exploited an influence of light absorption on self-focusing of Gaussian laser beam in cold quantum plasma by considering relativistic nonlinearity. Nonlinear differential equation governing beam-width parameter has been established by using parabolic equation approach under paraxial and WKB approximations. The effect of light absorption on variation of beam-width parameter with dimensionless distance of propagation is presented graphically and discussed. It is found that light absorption plays vital role in weakening the relativistic self-focusing of laser beam during propagation in cold quantum plasma and gives reasonably interesting results.

  3. Compensation of head-on beam-beam induced resonance driving terms and tune spread in the Relativistic Heavy Ion Collider

    Directory of Open Access Journals (Sweden)

    W. Fischer

    2017-09-01

    Full Text Available A head-on beam-beam compensation scheme was implemented for operation in the Relativistic Heavy Ion Collider (RHIC at Brookhaven National Laboratory [Phys. Rev. Lett. 115, 264801 (2015PRLTAO0031-900710.1103/PhysRevLett.115.264801]. The compensation consists of electron lenses for the reduction of the beam-beam induced tune spread, and a lattice for the minimization of beam-beam generated resonance driving terms. We describe the implementations of the lattice and electron lenses, and report on measurements of lattice properties and the effect of the electron lenses on the hadron beam.

  4. Formation of virtual cathodes and microwave generation in relativistic electron beams

    International Nuclear Information System (INIS)

    Kwan, T.J.T.; Thode, L.E.

    1984-01-01

    Simulation of the generation of a relativistic electron beam in a foil diode configuration and the subsequent intense microwave generation resulting from the formation of the virtual cathode is presented. The oscillating virtual cathode and the trapped beam electrons between the real and the virtual cathodes were found to generate microwaves at two distinct frequencies. Generation of high-power microwaves with about 10% efficiency might reasonably be expected from such a virtual-cathode configuration

  5. Design of kicker magnet and power supply unit for synchrotron beam injection

    International Nuclear Information System (INIS)

    Wang, Ju.

    1991-03-01

    To inject beams from the positron accumulator ring (PAR) into the synchrotron, a pulsed kicker magnet is used. The specifications of this kicker magnet and the power supply unit are listed and discussed in this report

  6. Synchrotron white beam topographic studies of gallium arsenide crystals

    International Nuclear Information System (INIS)

    Wierzchowski, W.; Wieteska, K.; Graeff, W.

    1997-01-01

    A series of samples cut out from different types of gallium arsenide crystals with low dislocation density were studied by means of white beam synchrotron topography. The investigation was performed with transmission and black-reflection projection methods and transmission section method. Some of topographs in transmission geometry provided a very high sensitivity suitable for revealing small precipitates. The transmission section images significantly differed depending on the wavelength and absorption. In some cases a distinct Pendelloesung fringes and fine details of dislocation and precipitates images were observed. It was possible to reproduce the character of these images by means of numerical simulation based on integration of Takagi-Taupin equations. Due to more convenient choice of radiation, synchrotron back-reflection projection topography provided much better visibility of dislocations than analogous realized with conventional X-ray sources. (author)

  7. Transient pulse analysis of ionized electronics exposed to γ-radiation generated from a relativistic electron beam

    Science.gov (United States)

    Min, Sun-Hong; Kwon, Ohjoon; Sattorov, Matlabjon; Baek, In-Keun; Kim, Seontae; Hong, Dongpyo; Jeong, Jin-Young; Jang, Jungmin; Bera, Anirban; Barik, Ranjan Kumar; Bhattacharya, Ranajoy; Cho, Ilsung; Kim, Byungsu; Park, Chawon; Jung, Wongyun; Park, Seunghyuk; Park, Gun-Sik

    2018-02-01

    When a semiconductor element is irradiated with radiation in the form of a transient pulse emitted from a nuclear explosion, a large amount of charge is generated in a short time in the device. A photocurrent amplified in a certain direction by these types of charges cause the device to break down and malfunction or in extreme cases causes them to burn out. In this study, a pulse-type γ-ray generator based on a relativistic electron beam accelerator (γ=2.2, β=0.89) which functions by means of tungsten impingement was constructed and tested in an effort to investigate the process and effects of the photocurrent formed by electron hole pairs (EHP) generated in a pMOSFET device when a transient radiation pulse is incident in the device. The pulse-type γ-ray irradiating device used here to generate the electron beam current in a short time was devised to allow an increase in the irradiation dose. A precise signal processing circuit was constructed to measure the photocurrent of the small signal generated by the pMOSFET due to the electron beam accelerator pulse signal from the large noise stemming from the electromagnetic field around the relativistic electron beam accelerator. The pulse-type γ-ray generator was installed to meet the requirements of relativistic electron beam accelerators, and beam irradiation was conducted after a beam commissioning step.

  8. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X. P. [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zhang, Z. C.; Lei, M. K., E-mail: surfeng@dlut.edu.cn [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Pushkarev, A. I. [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Laboratory of Beam and Plasma Technology, High Technologies Physics Institute, Tomsk Polytechnic University, 30, Lenin Ave, 634050 Tomsk (Russian Federation)

    2016-01-15

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.

  9. Compensating effect of the coherent synchrotron radiation in bunch compressors

    Science.gov (United States)

    Jing, Yichao; Hao, Yue; Litvinenko, Vladimir N.

    2013-06-01

    Typical bunch compression for a high-gain free-electron laser (FEL) requires a large compression ratio. Frequently, this compression is distributed in multiple stages along the beam transport line. However, for a high-gain FEL driven by an energy recovery linac (ERL), compression must be accomplished in a single strong compressor located at the beam line’s end; otherwise the electron beam would be affected severely by coherent synchrotron radiation (CSR) in the ERL’s arcs. In such a scheme, the CSR originating from the strong compressors could greatly degrade the quality of the electron beam. In this paper, we present our design for a bunch compressor that will limit the effect of CSR on the e-beam’s quality. We discuss our findings from a study of such a compressor, and detail its potential for an FEL driven by a multipass ERL developed for the electron-Relativistic Heavy Ion Collider.

  10. Coherent Nonlinear Longitudinal Phenomena in Unbunched Synchrotron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Spentzouris, Linda Klamp [Northwestern U.

    1996-12-01

    Coherent nonlinear longitudinal phenomena are studied in proton and antiproton synchrotron beams. Theoretical development done in the eld of plasma physics for resonant wave-wave coupling is applied to the case of a particle beam. Results are given from experiments done to investigate the nature of the weakly nonlinear three-wave coupling processes known as parametric coupling and echoes. Storage ring impedances are shown to amplify the parametric coupling process, underlining the possibility that machine impedances might be extracted from coupling events instigated by external excitation. Echo amplitudes are demonstrated to be sensitive to diusion processes, such as intrabeam scattering, which degrade a beam. The result of a fast diusion rate measurement using echo amplitudes is presented. In addition to the wave-wave interactions, observations of moderately nonlinear waveparticle interactions are also included. The manifestations of these interactions that are documented include nonlinear Landau damping, higher harmonic generation, and signs of the possible formation of solitons.

  11. X-ray diffraction using synchrotron radiation on the G.I.L.D.A. beam line at the E.S.R.F

    Energy Technology Data Exchange (ETDEWEB)

    Balerna, A [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Meneghini, C [INFN, Laboratori Nazionali di Frascati, Rome (Italy); [INFM, Genoa (Italy); Bordoni, S [Rome Univ. ` Tor Vergata` (Italy). Dip. di Fisica; Mobilio, S [Rome Univ. III (Italy). Dip. di Fisica ` E. Amaldi`

    1996-09-01

    The aim of this lecture is to make a short introduction on Synchrotron radiation, its history and main properties. The main components of a synchrotron radiation beam line will be described. The Italian beam line, General purpose Italian beam line Line for Diffraction and Absorption (G.I.L.D.A.) at the European Synchrotron Radiation Facility (E.S.R.F.) in Grenoble will be used as an example. The G.I.L.D.A. diffractometer will be described in detail reporting also some experimental results.

  12. The Rapid Cycling Synchrotron of the EURISOL Beta-Beam facility

    CERN Document Server

    Lachaize, A

    During the last two years, several upgrades of the initial baseline scenario were studied with the aim of increasing the average intensity of ion beams in the accelerator chain of the Beta Beam complex. This is the reason why the Rapid Cycling Synchrotron (RCS) specifications were reconsidered many times.General considerations on the optical design were presented at the Beta Beam Task Meetings held at CERN and at Saclay in 2005 (http://beta-beam.web.cern.ch/beta-beam/). More detailed beam optics studies were performed during the next months. Lattices, RF system parameters, multi-turn injection scheme, fast extraction, closed orbit correction and chromaticity correction systems were proposed for different versions of the RCS.Finally, the RCS specifications have stabilized in November 2006 after the fourth Beta Beam Task Meeting when it was decided to fix the maximum magnetic rigidity of ion beams to 14.47 T.m (3.5 GeV equivalent proton energy) and to adopt a ring physical radius of 40 m in order to facilitat...

  13. Influence of filling pattern structure on synchrotron radiation and beam spectrum at ANKA

    Energy Technology Data Exchange (ETDEWEB)

    Steinmann, Johannes; Brosi, Miriam; Bruendermann, Erik; Caselle, Michele; Blomley, Edmund; Hiller, Nicole; Kehrer, Benjamin; Mueller, Anke-Susanne; Schoenfeldt, Patrik; Schuh, Marcel; Schwarz, Markus; Siegel, Michael [Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2016-07-01

    We present the effects of the filling pattern structure in multi-bunch mode on the beam spectrum. This effects can be seen by all detectors whose resolution is better than the RF frequency, ranging from stripline and Schottky measurements to high resolution synchrotron radiation measurements. Our heterodyne measurements of the emitted coherent synchrotron radiation at 270 GHz reveal the discrete frequency harmonics around the 100'000 revolution harmonic of ANKA, the synchrotron radiation facility in Karlsruhe, Germany. Significant effects of bunch spacing, gaps between bunch trains and variations in individual bunch currents on the emitted CSR spectrum are described by theory and supported by observations.

  14. On some methods to produce high-energy polarized electron beams by means of proton synchrotrons

    International Nuclear Information System (INIS)

    Bessonov, E.G.; Vazdik, Ya.A.

    1980-01-01

    Some methods of production of high-energy polarized electron beams by means of proton synchrotrons are considered. These methods are based on transfer by protons of a part of their energy to the polarized electrons of a thin target placed inside the working volume of the synchrotron. It is suggested to use as a polarized electron target a magnetized crystalline iron in which proton channeling is realized, polarized atomic beams and the polarized plasma. It is shown that by this method one can produce polarized electron beams with energy approximately 100 GeV, energy spread +- 5 % and intensity approximately 10 7 electron/c, polarization approximately 30% and with intensity approximately 10 4 -10 5 electron/c, polarization approximately 100% [ru

  15. Decontamination of drug vegetative raw material by relativistic electron beam

    International Nuclear Information System (INIS)

    Gorbanyuk, A.G.; Dikiy, I.L.; Yegorov, A.M.; Linnik, A.F.; Uskov, V.V.

    2004-01-01

    The new technology of decontamination of drug vegetative raw material and medical products is proposed. Advantages of use of relativistic beams in a range of electron energies from 0.5 MeV to 5 MeV for these purposes are shown in comparison with X-radiation of energy from 80 keV to 1 MeV

  16. Characteristics of synchrotron radiation and of its sources

    International Nuclear Information System (INIS)

    Krinsky, S.; Perlman, M.L.; Watson, R.E.

    1979-01-01

    Synchrotron light emission and the classical relativistic electromagnetic theory describing it are reviewed. The electron optics of storage rings are considered in some detail, beginning with the ideal electron orbit and the distribution which electrons take around it. This is folded with the process of synchrotron light emission itself to define the effective photon source. The predictions of classical relativistic theory are compared with experiment, and one finds agreement within the experimental uncertainties. Further refinements, such as wiggler magnets and free electron lasers are also considered

  17. Status report on the relativistic electron beam technology

    International Nuclear Information System (INIS)

    Iyyengar, S.K.; Ron, P.H.; Rohatgi, V.K.

    1974-01-01

    The status of technology of the pulsed relativistic electron beam (REB) has been examined and summarised in this report. With the present technology the beam generator can be used either as a source of intense electron burst or to produce bursts of positive ions x and γ-rays, and neutrons by suitable secondary reactions. A large number of applications have been identified where this technology can play an important role. Typical applications of the technology include : (a) generation and heating of fusion plasma (b) development of high power laser and (c) sterilisation and radiation sources. The present day cost of radiation produced by REB is competitive with the cost of radiation produced from Co 60 source. At the same time there are indications that the cost of radiation from REB source can be significantly reduced with advanced technology. The type of equipment developed by various laboratories to study realitivistic electron beams is also included in this report. (author)

  18. Nonlinear dynamic of interaction of the relativistic electron beam with plasma

    International Nuclear Information System (INIS)

    Dorofeenko, V.G.; Krasovitskii, V.B.; Osmolovsky, S.I.

    1994-01-01

    Quasi-transverse instability of thin relativistic electron beam in a dense plasma is studied numerically and analytically in a broad range of the frequency of the beam modulation and external longitudinal magnetic field. It is shown that the nonlinear stage of solution depends on the increment of the instability. It is permitted to classify possible nonlinear solutions and also to determine optimal regimes of the modulation for transport of beam along magnetic field in a plasma without substantial radial divergence. Numerical calculations show, that injection of the bunches with parameters, corresponding nonlinear regime of the beam's instability, in neutrally-charged plasma permits to output on the stationary regime without loss of particles

  19. Experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds

    OpenAIRE

    Fullekrug, Martin; Hanuise, C; Parrot, M

    2011-01-01

    Relativistic electron beams above thunderclouds emit 100 kHz radio waves which illuminate the Earth's atmosphere and near-Earth space. This contribution aims to clarify the physical processes which are relevant for the spatial spreading of the radio wave energy below and above the ionosphere and thereby enables an experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. The simulation uses the DEMETER satellite which...

  20. Experimental studies on coherent synchrotron radiation at an emittance exchange beam line

    Science.gov (United States)

    Thangaraj, J. C. T.; Thurman-Keup, R.; Ruan, J.; Johnson, A. S.; Lumpkin, A. H.; Santucci, J.

    2012-11-01

    One of the goals of the Fermilab A0 photoinjector is to investigate experimentally the transverse to longitudinal emittance exchange (EEX) principle. Coherent synchrotron radiation in the emittance exchange line could limit the performance of the emittance exchanger at short bunch lengths. In this paper, we present experimental and simulation studies of the coherent synchrotron radiation (CSR) in the emittance exchange line at the A0 photoinjector. We report on time-resolved CSR studies using a skew-quadrupole technique. We also demonstrate the advantages of running the EEX with an energy-chirped beam.

  1. Synchrotron accelerator technology for proton beam therapy with high accuracy

    International Nuclear Information System (INIS)

    Hiramoto, Kazuo

    2009-01-01

    Proton beam therapy was applied at the beginning to head and neck cancers, but it is now extended to prostate, lung and liver cancers. Thus the need for a pencil beam scanning method is increasing. With this method radiation dose concentration property of the proton beam will be further intensified. Hitachi group has supplied a pencil beam scanning therapy system as the first one for M. D. Anderson Hospital in United States, and it has been operational since May 2008. Hitachi group has been developing proton therapy system to correspond high-accuracy proton therapy to concentrate the dose in the diseased part which is located with various depths, and which sometimes has complicated shape. The author described here on the synchrotron accelerator technology that is an important element for constituting the proton therapy system. (K.Y.)

  2. Beam stability in synchrotrons with digital filters in the feedback loop of a transverse damper

    International Nuclear Information System (INIS)

    Zhabitskij, V.M.

    2009-01-01

    The stability of an ion beam in synchrotrons with digital filters in the feedback loop of a transverse damper is treated. Solving the characteristic equation allows one to calculate the achievable damping rates as a function of instability growth rate, feedback gain and parameters of the signal processing. A transverse feedback system (TFS) is required in synchrotrons to stabilize the high intensity ion beams against transverse instabilities and to damp the beam injection errors. The TFS damper kicker (DK) corrects the transverse momentum of a bunch in proportion to its displacement from the closed orbit at the location of the beam position monitor (BPM). The digital signal processing unit in the feedback loop between BPM and DK ensures a condition to achieve optimal damping. Damping rates of the feedback systems with digital notch, Hilbert and all-pass filters are analyzed in comparison with those in an ideal feedback system

  3. Beam commissioning and operation of the J-PARC main ring synchrotron

    International Nuclear Information System (INIS)

    Koseki, Tadashi; Arakaki, Yoshitugu; Chin, Yong Ho; Hara, Keigo; Hasegawa, Katsushi; Hashimoto, Yoshinori; Hori, Yoichiro; Igarashi, Susumu; Ishii, Koji; Kamikubota, Norihiko; Kimura, Takuro; Koseki, Kunio; Fan, Kuanjyun; Kubota, Chikashi; Kuniyasu, Yuu; Kurimoto, Yoshinori; Lee, Seishu; Matsumoto, Hiroshi; Molodozhentsev, Alexander; Morita, Yuichi; Murasugi, Shigeru; Muto, Ryotaro; Naito, Fujio; Nakagawa, Hidetoshi; Nakamura, Shu; Niki, Kazuaki; Ohmi, Kazuhito; Ohmori, Chihiro; Okada, Masashi; Okamura, Katsuya; Oogoe, Takao; Ooya, Kazufumi; Sato, Kenichi; Sato, Yoichi; Sato, Yoshihiro; Satou, Kenichirou; Shimamoto, Masayuki; Shirakata, Masashi; Someya, Hirohiko; Sugimoto, Takuya; Takano, Junpei; Takeda, Yasuhiro; Takiyama, Yoichi; Tejima, Masaki; Toda, Makoto; Tomizawa, Masahito; Toyama, Takeshi; Uota, Masahiko; Yamada, Shuei; Yamamoto, Noboru; Yanaoka, Eiichi; Yoshii, Masahito; Harada, Hiroyuki; Hatakeyama, Shuichiro; Hotchi, Hideaki; Nomura, Masahiro; Schnase, Alexander; Shimada, Taihei; Tamura, Fumihiko; Yamamoto, Masanobu; Shimogawa, Tetsushi

    2012-01-01

    The slow cycling main ring synchrotron (MR) is located the furthest downstream in the J-PARC accelerator cascade. It became available for user operation in 2009 and provides high-intensity 30 GeV proton beams for various experiments on particle and nuclear physics. The MR has two beam extraction systems: a fast extraction system for beam delivery to the neutrino beam line of the Tokai-to-Kamioka (T2K) experiment and a slow extraction system for beam delivery to the hadron experimental hall. After a nine-month beam shutdown during the recovery from the Great East Japan Earthquake, the J-PARC facility resumed beam operation in December 2011. The MR delivers a 160-200 kW beam to the T2K experiment and a 3.5-6 kW beam to users in the hadron experimental hall. In this paper, a brief review of the MR and the recent status of beam operation are presented. Near-future plans for a beam intensity upgrade are also discussed. (author)

  4. Design and performance of the 40 MeV linac and beam transport system for the 1 GeV synchrotron radiation source at SORTEC

    International Nuclear Information System (INIS)

    Shiota, M.; Hiraki, A.; Mizota, M.; Iida, T.; Haraguchi, M.; Kuno, K.; Nakamura, S.; Ohno, M.; Tomimasu, T.

    1990-01-01

    A 1 Gev synchrotron radiation source (SOR) system has been installed and is now being adjusted at SORTEC corporation. This paper reports the configuration and the beam test results of the 40 MeV electron linac (pre-injector) and the beam transport line to the electron synchrotron used in this system. The output beam from the linac must be low emittance, small energy spread, and stable in energy. The beam transport line must also efficiently lead the beam from the linac to the electron synchrotron. This linac produced the beam current of 130 mA, with an energy spread of 1.3 % (FWHM), and an emittance of 0.7 πmm·mrad. The beam characteristics were verified by various beam monitors on the beam transport line. (author)

  5. On the limiting stationary currents of relativistic electron beams

    International Nuclear Information System (INIS)

    Kavchuk, V.N.; Kondratenko, A.N.

    1987-01-01

    The problem on electron beam transport in the system of different configurations both vacuum and filled with gas or plasma is connected with the problem of the limiting current, which can conduct such systems. Two models of a vacuum relativistic electron beam (REB) are considered. It is shown that there is upper limit for the value of the external magnetic field, H 0 , in the model of isovelocity REB with the constant longitudinal beam particle rate, β z =const. Estimation of the limiting current of REB as a series of inverse power H 0 is obtained. Estimations of the limiting current of magnetized hallow REB with thin walls are obtained in another model with β z ≠ const. Determination used in this case of the limiting current is directly connected with ''trapping'' of the beam central part due to formation of a virtual cathode and based on consideration of uniflux electron motion in the beam. Such an approach allows to obtain estimations of the limiting current of the thin-wall hallow beam. In this case an upper limit for the thickness of the beam wall is connected with the bottom limit for the value of the external magnetic field providing radial beam equilibrium

  6. Memory testing with Saturne synchrotron beams. Experiments with protons and deuterons

    International Nuclear Information System (INIS)

    Buisson, J.

    1989-01-01

    For simulate light ions of the cosmic rays CEA will use facilities used in fundamental physic research. SATURNE is a synchrotron especially designed to accelerate light particles, for example protons with energy up to 2.9 GeV. Two experiments are made on SATURNE to specify the beam characteristics (energy and intensity) and to adapt the beam for irradiation of electronic components. During these preliminary experimentation memories and microprocessors was tested. The results of the tests (cross-section) are given in this paper [fr

  7. Relativistic focusing and ponderomotive channeling of intense laser beams

    International Nuclear Information System (INIS)

    Hafizi, B.; Ting, A.; Sprangle, P.; Hubbard, R. F.

    2000-01-01

    The ponderomotive force associated with an intense laser beam expels electrons radially and can lead to cavitation in plasma. Relativistic effects as well as ponderomotive expulsion of electrons modify the refractive index. An envelope equation for the laser spot size is derived, using the source-dependent expansion method with Laguerre-Gaussian eigenfunctions, and reduced to quadrature. The envelope equation is valid for arbitrary laser intensity within the long pulse, quasistatic approximation and neglects instabilities. Solutions of the envelope equation are discussed in terms of an effective potential for the laser spot size. An analytical expression for the effective potential is given. For laser powers exceeding the critical power for relativistic self-focusing the analysis indicates that a significant contraction of the spot size and a corresponding increase in intensity is possible. (c) 2000 The American Physical Society

  8. Current-Voltage Characteristic of Nanosecond - Duration Relativistic Electron Beam

    Science.gov (United States)

    Andreev, Andrey

    2005-10-01

    The pulsed electron-beam accelerator SINUS-6 was used to measure current-voltage characteristic of nanosecond-duration thin annular relativistic electron beam accelerated in vacuum along axis of a smooth uniform metal tube immersed into strong axial magnetic field. Results of these measurements as well as results of computer simulations performed using 3D MAGIC code show that the electron-beam current dependence on the accelerating voltage at the front of the nanosecond-duration pulse is different from the analogical dependence at the flat part of the pulse. In the steady-state (flat) part of the pulse), the measured electron-beam current is close to Fedosov current [1], which is governed by the conservation law of an electron moment flow for any constant voltage. In the non steady-state part (front) of the pulse, the electron-beam current is higher that the appropriate, for a giving voltage, steady-state (Fedosov) current. [1] A. I. Fedosov, E. A. Litvinov, S. Ya. Belomytsev, and S. P. Bugaev, ``Characteristics of electron beam formed in diodes with magnetic insulation,'' Soviet Physics Journal (A translation of Izvestiya VUZ. Fizika), vol. 20, no. 10, October 1977 (April 20, 1978), pp.1367-1368.

  9. Three-dimensional relativistic pair plasma reconnection with radiative feedback in the Crab Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Cerutti, B. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Werner, G. R.; Uzdensky, D. A. [Center for Integrated Plasma Studies, Physics Department, University of Colorado, UCB 390, Boulder, CO 80309-0390 (United States); Begelman, M. C., E-mail: bcerutti@astro.princeton.edu, E-mail: greg.werner@colorado.edu, E-mail: uzdensky@colorado.edu, E-mail: mitch@jila.colorado.edu [JILA, University of Colorado and National Institute of Standards and Technology, UCB 440, Boulder, CO 80309-0440 (United States)

    2014-02-20

    The discovery of rapid synchrotron gamma-ray flares above 100 MeV from the Crab Nebula has attracted new interest in alternative particle acceleration mechanisms in pulsar wind nebulae. Diffuse shock-acceleration fails to explain the flares because particle acceleration and emission occur during a single or even sub-Larmor timescale. In this regime, the synchrotron energy losses induce a drag force on the particle motion that balances the electric acceleration and prevents the emission of synchrotron radiation above 160 MeV. Previous analytical studies and two-dimensional (2D) particle-in-cell (PIC) simulations indicate that relativistic reconnection is a viable mechanism to circumvent the above difficulties. The reconnection electric field localized at X-points linearly accelerates particles with little radiative energy losses. In this paper, we check whether this mechanism survives in three dimension (3D), using a set of large PIC simulations with radiation reaction force and with a guide field. In agreement with earlier works, we find that the relativistic drift kink instability deforms and then disrupts the layer, resulting in significant plasma heating but few non-thermal particles. A moderate guide field stabilizes the layer and enables particle acceleration. We report that 3D magnetic reconnection can accelerate particles above the standard radiation reaction limit, although the effect is less pronounced than in 2D with no guide field. We confirm that the highest-energy particles form compact bunches within magnetic flux ropes, and a beam tightly confined within the reconnection layer, which could result in the observed Crab flares when, by chance, the beam crosses our line of sight.

  10. The EMP excitation of radiation by the pulsed relativistic electron beam

    International Nuclear Information System (INIS)

    Balakirev, V.A.; Sidelnikov, G.L.

    1996-01-01

    The mechanisms of excitation of ultra-wideband electromagnetic pulses (EMP) by short pulses of high-current relativistic electron beams were proposed and investigated. It is shown that the transformation efficiency of the bunch kinetic energy to the excited energy of the EMP can be very significant. (author). 2 figs., 4 refs

  11. The EMP excitation of radiation by the pulsed relativistic electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Balakirev, V A; Sidelnikov, G L [Kharkov Inst. of Physics and Technology (Russian Federation)

    1997-12-31

    The mechanisms of excitation of ultra-wideband electromagnetic pulses (EMP) by short pulses of high-current relativistic electron beams were proposed and investigated. It is shown that the transformation efficiency of the bunch kinetic energy to the excited energy of the EMP can be very significant. (author). 2 figs., 4 refs.

  12. Self-modulated dynamics of a relativistic charged particle beam in plasma wake field excitation

    Energy Technology Data Exchange (ETDEWEB)

    Akhter, T.; Fedele, R. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Nicola, S. De [CNR-SPIN and INFN Sezione di Napoli, Napoli (Italy); Tanjia, F. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Jovanović, D. [Institute of Physics, University of Belgrade, Belgrade (Serbia); Mannan, A. [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2016-09-01

    The self-modulated dynamics of a relativistic charged particle beam is provided within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.

  13. Confinement of electron beams by mesh arrays in a relativistic klystron amplifier

    International Nuclear Information System (INIS)

    Wang Pingshan; Gu Binlin

    1998-01-01

    Theoretical and experimental results of intense beam confinement by conducting meshes in a relativistic klystron amplifier (RKA) are presented. Electron motions in a steady intense electron beam confined by conducting meshes are analyzed with an approximate space charge field distribution. And the conditions for steady beam transportation are discussed. Experimental results of a long distance (60 cm) transportation of an intense beam (400 kV, 2.5 kA) generated by a linear induction accelerator are presented. Experimental results of modulated beam transportation confined by the mesh array are presented also. The results show that the focusing ability of the conducting meshes is not very sensitive to the beam energy. And the meshes can be used effectively in a RKA to replace the magnetic field system

  14. Design of a relativistic klystron two-beam accelerator prototype

    International Nuclear Information System (INIS)

    Westenskow, G.; Caporaso, G.; Chen, Y.

    1995-01-01

    We are designing an experiment to study physics, engineering, and costing issues of an extended Relativistic Klystron Two-Beam Accelerator (RK-TBA). The experiment is a prototype for an RK-TBA based microwave power source suitable for driving a 1 TeV linear collider. Major components of the experiment include a 2.5-MV, 1.5-kA electron source, a 11.4-GHz modulator, a bunch compressor, and a 8-m extraction section. The extraction section will be comprised of 4 traveling-wave output structures, each generating about 360 MW of rf power. Induction cells will be used in the extraction section to maintain the average beam energy at 5 MeV. Status of the design is presented

  15. The relativistic foundations of synchrotron radiation.

    Science.gov (United States)

    Margaritondo, Giorgio; Rafelski, Johann

    2017-07-01

    Special relativity (SR) determines the properties of synchrotron radiation, but the corresponding mechanisms are frequently misunderstood. Time dilation is often invoked among the causes, whereas its role would violate the principles of SR. Here it is shown that the correct explanation of the synchrotron radiation properties is provided by a combination of the Doppler shift, not dependent on time dilation effects, contrary to a common belief, and of the Lorentz transformation into the particle reference frame of the electromagnetic field of the emission-inducing device, also with no contribution from time dilation. Concluding, the reader is reminded that much, if not all, of our argument has been available since the inception of SR, a research discipline of its own standing.

  16. Combined X-ray fluorescence and absorption computed tomography using a synchrotron beam

    International Nuclear Information System (INIS)

    Hall, C

    2013-01-01

    X-ray computed tomography (CT) and fluorescence X-ray computed tomography (FXCT) using synchrotron sources are both useful tools in biomedical imaging research. Synchrotron CT (SRCT) in its various forms is considered an important technique for biomedical imaging since the phase coherence of SR beams can be exploited to obtain images with high contrast resolution. Using a synchrotron as the source for FXCT ensures a fluorescence signal that is optimally detectable by exploiting the beam monochromaticity and polarisation. The ability to combine these techniques so that SRCT and FXCT images are collected simultaneously, would bring distinct benefits to certain biomedical experiments. Simultaneous image acquisition would alleviate some of the registration difficulties which comes from collecting separate data, and it would provide increased information about the sample: functional X-ray images from the FXCT, with the morphological information from the SRCT. A method is presented for generating simultaneous SRCT and FXCT images. Proof of principle modelling has been used to show that it is possible to recover a fluorescence image of a point-like source from an SRCT apparatus by suitably modulating the illuminating planar X-ray beam. The projection image can be successfully used for reconstruction by removing the static modulation from the sinogram in the normal flat and dark field processing. Detection of the modulated fluorescence signal using an energy resolving detector allows the position of a fluorescent marker to be obtained using inverse reconstruction techniques. A discussion is made of particular reconstruction methods which might be applied by utilising both the CT and FXCT data.

  17. Injection of a relativistic electron beam into neutral hydrogen gas

    International Nuclear Information System (INIS)

    de Haan, P.H.; Janssen, G.C.A.M.; Hopman, H.J.; Granneman, E.H.A.

    1982-01-01

    The injection of a relativistic electron beam (0.8 MeV, 6 kA, 150 nsec) into hydrogen gas of 190 Pa pressure results in a plasma with density n/sub e/approx. =10 20 m -3 and temperature kT/sub e/< or approx. =kT/sub i/approx. =3.5 eV. The results of the measurements show good agreement with computations based on a model combining gas ionization and turbulent plasma heating. It is found that a quasistationary state exists in which the energy lost by the beam (about 6% of the total kinetic energy of the beam) is partly used to further ionize and dissociate the gas and for the other part is lost as line radiation

  18. On a temporal evolution of the ultra-relativistic electron spectrum by action of synchrotron losses and turbulent acceleration

    International Nuclear Information System (INIS)

    Samsonov, A.M.; Fedorenko, V.N.

    1981-01-01

    The kinetic equation describing temporal evolution of the ultra-relativistic electrons' energy spectrum effected by synchrotron losses and turbulent acceleration is solved for the isotropic part of the electrons' distribution function. The original distribution is assumed to be given in the form of a power spectrum. Turbulence properties are stated by means of the turbulent acceleration coefficient depending on epsilon energy D(epsilon)=D 0 epsilon 3 which is related to the synchrotron losses coefficient b(epsilon)=b 0 epsilon 3 so that the isotropization of the distribution function is provided without essential acceleration of particles. The initial spectrum is conserved up to some values of time t and energy epsilon connected by inequality epsilonb 0 t 0 /D 0 -2 if epsilonD 0 t>>1 and b 0 >>D 0 . Finally, are possible applications of the solution to description of processes in supernova shells and radio galaxies are discussed [ru

  19. Collective ion acceleration by relativistic electron beams in plasmas

    International Nuclear Information System (INIS)

    Galvez, M.; Gisler, G.

    1991-01-01

    A two-dimensional fully electromagnetic particle-in-cell code is used to simulate the interaction of a relativistic electron beam injected into a finite-size background neutral plasma. The simulations show that the background electrons are pushed away from the beam path, forming a neutralizing ion channel. Soon after the beam head leaves the plasma, a virtual cathode forms which travels away with the beam. However, at later times a second, quasi-stationary, virtual cathode forms. Its position and strength depends critically on the parameters of the system which critically determines the efficiency of the ion acceleration process. The background ions trapped in the electrostatic well of the virtual cathode are accelerated and at later times, the ions as well as the virtual cathode drift away from the plasma region. The surfing of the ions in the electrostatic well produces an ion population with energies several times the initial electron beam energy. It is found that optimum ion acceleration occurs when the beam-to-plasma density ratio is near unity. When the plasma is dense, the beam is a weak perturbation and accelerates few ions, while when the plasma is tenuous, the beam is not effectively neutralized, and a virtual cathode occurs right at the injection plane. The simulations also show that, at the virtual cathode position, the electron beam is pinched producing a self-focusing phenomena

  20. Experimental studies on coherent synchrotron radiation at an emittance exchange beam line

    Directory of Open Access Journals (Sweden)

    J. C. T. Thangaraj

    2012-11-01

    Full Text Available One of the goals of the Fermilab A0 photoinjector is to investigate experimentally the transverse to longitudinal emittance exchange (EEX principle. Coherent synchrotron radiation in the emittance exchange line could limit the performance of the emittance exchanger at short bunch lengths. In this paper, we present experimental and simulation studies of the coherent synchrotron radiation (CSR in the emittance exchange line at the A0 photoinjector. We report on time-resolved CSR studies using a skew-quadrupole technique. We also demonstrate the advantages of running the EEX with an energy-chirped beam.

  1. Diagnostic tools used in the calibration and verification of protein crystallography synchrotron beam lines and apparatus

    International Nuclear Information System (INIS)

    Rotella, F.J.; Alkire, R.W.; Duke, N.E.C.; Molitsky, M.J.

    2011-01-01

    Diagnostic tools have been developed for use at the Structural Biology Center beam lines at the Advanced Photon Source. These tools are used in the calibration and operating verification of these synchrotron X-ray beam lines and constituent equipment.

  2. Very small beam-size measurement by a reflective synchrotron radiation interferometer

    Directory of Open Access Journals (Sweden)

    T. Naito

    2006-12-01

    Full Text Available A synchrotron radiation (SR interferometer with Herschelian reflective optics has been developed for the measurement of beams of several μm in size. In a conventional refractive SR interferometer, the dispersion effect of the objective lens limits the instrument to a smaller range of beam-size measurements. To avoid this problem, we designed a Herschelian arrangement of reflective optics for the interferometer. The effectiveness of the reflective SR interferometer was confirmed at the KEK Accelerator Test Facility (ATF damping ring. The measured vertical beam size obtained using the reflective SR interferometer was 4.7   μm and the estimated vertical emittance was 0.97×10^{-11}   m.

  3. Radiative cooling of relativistic electron beams

    International Nuclear Information System (INIS)

    Huang, Z.

    1998-05-01

    Modern high-energy particle accelerators and synchrotron light sources demand smaller and smaller beam emittances in order to achieve higher luminosity or better brightness. For light particles such as electrons and positrons, radiation damping is a natural and effective way to obtain low emittance beams. However, the quantum aspect of radiation introduces random noise into the damped beams, yielding equilibrium emittances which depend upon the design of a specific machine. In this dissertation, the author attempts to make a complete analysis of the process of radiation damping and quantum excitation in various accelerator systems, such as bending magnets, focusing channels and laser fields. Because radiation is formed over a finite time and emitted in quanta of discrete energies, he invokes the quantum mechanical approach whenever the quasiclassical picture of radiation is insufficient. He shows that radiation damping in a focusing system is fundamentally different from that in a bending system. Quantum excitation to the transverse dimensions is absent in a straight, continuous focusing channel, and is exponentially suppressed in a focusing-dominated ring. Thus, the transverse normalized emittances in such systems can in principle be damped to the Compton wavelength of the electron, limited only by the Heisenberg uncertainty principle. In addition, he investigates methods of rapid damping such as radiative laser cooling. He proposes a laser-electron storage ring (LESR) where the electron beam in a compact storage ring repetitively interacts with an intense laser pulse stored in an optical resonator. The laser-electron interaction gives rise to rapid cooling of electron beams and can be used to overcome the space charge effects encountered in a medium energy circular machine. Applications to the designs of low emittance damping rings and compact x-ray sources are also explored

  4. Radiative cooling of relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhirong [Stanford Univ., CA (United States)

    1998-05-01

    Modern high-energy particle accelerators and synchrotron light sources demand smaller and smaller beam emittances in order to achieve higher luminosity or better brightness. For light particles such as electrons and positrons, radiation damping is a natural and effective way to obtain low emittance beams. However, the quantum aspect of radiation introduces random noise into the damped beams, yielding equilibrium emittances which depend upon the design of a specific machine. In this dissertation, the author attempts to make a complete analysis of the process of radiation damping and quantum excitation in various accelerator systems, such as bending magnets, focusing channels and laser fields. Because radiation is formed over a finite time and emitted in quanta of discrete energies, he invokes the quantum mechanical approach whenever the quasiclassical picture of radiation is insufficient. He shows that radiation damping in a focusing system is fundamentally different from that in a bending system. Quantum excitation to the transverse dimensions is absent in a straight, continuous focusing channel, and is exponentially suppressed in a focusing-dominated ring. Thus, the transverse normalized emittances in such systems can in principle be damped to the Compton wavelength of the electron, limited only by the Heisenberg uncertainty principle. In addition, he investigates methods of rapid damping such as radiative laser cooling. He proposes a laser-electron storage ring (LESR) where the electron beam in a compact storage ring repetitively interacts with an intense laser pulse stored in an optical resonator. The laser-electron interaction gives rise to rapid cooling of electron beams and can be used to overcome the space charge effects encountered in a medium energy circular machine. Applications to the designs of low emittance damping rings and compact x-ray sources are also explored.

  5. Synchrotron based spallation neutron source concepts

    International Nuclear Information System (INIS)

    Cho, Y.

    1998-01-01

    During the past 20 years, rapid-cycling synchrotrons (RCS) have been used very productively to generate short-pulse thermal neutron beams for neutron scattering research by materials science communities in Japan (KENS), the UK (ISIS) and the US (IPNS). The most powerful source in existence, ISIS in the UK, delivers a 160-kW proton beam to a neutron-generating target. Several recently proposed facilities require proton beams in the MW range to produce intense short-pulse neutron beams. In some proposals, a linear accelerator provides the beam power and an accumulator ring compresses the pulse length to the required ∼ 1 micros. In others, RCS technology provides the bulk of the beam power and compresses the pulse length. Some synchrotron-based proposals achieve the desired beam power by combining two or more synchrotrons of the same energy, and others propose a combination of lower and higher energy synchrotrons. This paper presents the rationale for using RCS technology, and a discussion of the advantages and disadvantages of synchrotron-based spallation sources

  6. Design study of beam dynamics issues for 1 TeV next linear collider based upon the relativistic-klystron two-beam accelerator

    International Nuclear Information System (INIS)

    Li, H.; Goffeney, N.; Henestroza, E.; Sessler, A.; Yu, S.; Houck, T.; Westenskow, G.

    1994-11-01

    A design study has recently been conducted for exploring the feasibility of a relativistic-klystron two-beam accelerator (RK-TBA) system as a rf power source for a 1 TeV linear collider. The author present, in this paper, the beam dynamics part of this study. They have achieved in their design study acceptable transverse and longitudinal beam stability properties for the resulting high efficiency and low cost RK-TBA

  7. Materials research and beam line operation utilizing NSLS [National Synchrotron Light Source]: Progress report

    International Nuclear Information System (INIS)

    Liedl, G.L.

    1987-10-01

    MATRIX is a group of scientists who have common interests in utilizing x-ray synchrotron radiation for materials research. This group has developed a specialized beam line (X-18A) for x-ray scattering studies at the National Synchrotron Light Source (NSLS). The beam line was designed to optimize experimental conditions for diffuse scattering and surface/interface studies. An extension of diffuse scattering to provide better quantitative data has been shown as well as a unique application to the solution of the phase problem. In the x-ray surface scattering area the first reported experiment to illustrate the capabilities for studying monolayers on water was performed. Current beam line upgrade projects are also described. In addition to a change to a UHV system and improvements dictated by operational experience, two new systems are described, a unique small angle scattering chamber (SAXS) for dynamic studies of nucleation and growth and a surface scattering chamber. 5 figs

  8. Finite geometry effects on the stability of a charged beam propagating through a relativistic annular electron beam

    International Nuclear Information System (INIS)

    Ganguli, G.; Palmadesso, P.

    1984-01-01

    Finite geometry effects on the stability properties of a charged beam propagating through an intense relativistic annular electron beam have been studied. The stability of the system under transverse oscillation has been examined in detail in a parameter domain pertinent to the collective particle accelerator, currently under development at the Naval Research Laboratory. Both the normal mode and the convective aspects of this instability have been investigated. Despite a substantial temporal growth rate as predicted by the normal mode approach, this instability does not prevent successful acceleration of a portion of the axial beam. Thus the transverse oscillation is not fatal to the collective particle accelerator operation

  9. Second harmonic generation by a relativistic annular electron beam propagating through a cylindrical waveguide

    International Nuclear Information System (INIS)

    Yasumoto, Kiyotoshi; Abe, Hiroshi

    1983-01-01

    The second harmonic generated by a relativistic annular electron beam propagating through a cylindrical waveguide immersed in a strong axial magnetic field is investigated on the basis of the relativistic hydrodynamic equations for cold electrons. The efficiency of second harmonic generation is calculated separately for the pump by the TM electromagnetic wave and for the pump by the slow space-charge wave, by assuming that the electron beam is thin and of low density and the pump wave is azimuthally symmetric. It is shown that, in the case of slow space-charge wave pump, an appreciably large efficiency of second harmonic generation is achieved in the high frequency region, whereas the efficiency by the TM electromagnetic wave pump is relatively small over the whole frequency range.(author)

  10. Studies of beam dynamics in relativistic klystron two-beam accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lidia, Steven M.

    1999-11-01

    Two-beam accelerators (TBAs) based upon free-electron lasers (FELs) or relativistic klystrons (RK-TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band (~8-12 GHz) through Ka band (~ 30-35 GHz) frequency regions. Provided that further prototyping shows stable beam propagation with minimal current loss and production of good quality, high-power rf fields, this technology is compatible with current schemes for electron-positron colliders in the multi-TeV center-of-mass scale. A new method of simulating the beam dynamics in accelerators of this type has been developed in this dissertation. There are three main components to this simulation. The first is a tracking algorithm to generate nonlinear transfer maps for pushing noninteracting particles through the external fields. The second component is a 3D Particle-In-Cell (PIC) algorithm that solves a set of Helmholtz equations for the self-fields, including the conducting boundary condition, and generates impulses that are interleaved with the nonlinear maps by means of a split-operation algorithm. The Helmholtz equations are solved by a multi-grid algorithm. The third component is an equivalent circuit equation solver that advances the modal rf cavity fields in time due to excitation by the modulated beam. The RTA project is described, and the simulation code is used to design the latter portions of the experiment. Detailed calculations of the beam dynamics and of the rf cavity output are presented and discussed. A beamline design is presented that will generate nearly 1.2 GW of power from 40 input, gain, and output rv cavities over a 10 m distance. The simulations show that beam current losses are acceptable, and that longitudinal and transverse focusing techniques are sufficient capable of maintaining a high degree of beam quality along the entire beamline. Additional experimental efforts are also

  11. Higher harmonics generation in relativistic electron beam with virtual cathode

    Energy Technology Data Exchange (ETDEWEB)

    Kurkin, S. A., E-mail: KurkinSA@gmail.com; Badarin, A. A.; Koronovskii, A. A.; Hramov, A. E. [Saratov State Technical University, Politechnicheskaja 77, Saratov 410028, Russia and Saratov State University, Astrakhanskaja 83, Saratov 410012 (Russian Federation)

    2014-09-15

    The study of the microwave generation regimes with intense higher harmonics taking place in a high-power vircator consisting of a relativistic electron beam with a virtual cathode has been made. The characteristics of these regimes, in particular, the typical spectra and their variations with the change of the system parameters (beam current, the induction of external magnetic field) as well as physical processes occurring in the system have been analyzed by means of 3D electromagnetic simulation. It has been shown that the system under study demonstrates the tendency to the sufficient growth of the amplitudes of higher harmonics in the spectrum of current oscillations in the VC region with the increase of beam current. The obtained results allow us to consider virtual cathode oscillators as promising high power mmw-to-THz sources.

  12. One-dimensional theory and simulation of acceleration in relativistic electron beam Raman scattering

    International Nuclear Information System (INIS)

    Abe, T.

    1986-01-01

    Raman scattering by a parallel relativistic electron beam was examined analytically and by using the numerical simulation. Incident wave energy can be transferred not only to the scattered electromagnetic wave but also to the beam. That is, the beam can be accelerated by the Doppler-shifted plasma oscillation accompanied by the scattered wave. The energy conversion rates for them were obtained. They increase with the γ value of the electron beam. For the larger γ values of the beam, the energy of the incident wave is mainly transferred to the beam, while in smaller γ, the energy conversion rate to the scattered wave is about 0.2 times that to the beam. Even in smaller γ, the total energy conversion rate is about 0.1

  13. particle simulation for electrostatic oscillation of virtual cathode in relativistic electron beams

    International Nuclear Information System (INIS)

    Chen Deming; Wang Min

    1990-01-01

    The virtual cathode oscillation in relativistic electron beams is studied by a 1-D electrostatic particle simulation code with finite-size-particle model. When injection current is less than the space charge limiting current, electron beam propagates stably and transsmits completely. When injection current exceeds the space charge limit, its propagation is unstable, a part of electrons reflect and the other electrons transsmit. The position and potential of the virtual cathode caused by space charge effects oscillate periodically. When the beam current increases, the virtual cathode position closer to the injection plane and its oscillating region gets narrower, the virtual cathode potential decreases and its amplitude increases, the oscillation frequency increases above the beam plasma frequency

  14. New theoretical results in synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V.G. [Tomsk State University, Lenin Avenue 36, 634050 Tomsk (Russian Federation)]. E-mail: bagrov@phys.tsu.ru; Gitman, D.M. [Instituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, SP (Brazil); Tlyachev, V.B. [Tomsk Institute of High Current Electronics, Akademicheskiy Avenue 4, Tomsk (Russian Federation); Jarovoi, A.T. [Tomsk State University, Lenin Avenue 36, 634050 Tomsk (Russian Federation)

    2005-11-15

    One of the remarkable features of the relativistic electron synchrotron radiation is its concentration in small angle {delta}{approx}1/{gamma} (here {gamma}-relativistic factor: {gamma}=E/mc{sup 2}, E - energy, m - electron rest mass, c - light velocity) near rotation orbit plane [V.G. Bagrov, V.A. Bordovitsyn, V.G. Bulenok, V. Ya. Epp, Kinematical projection of pulsar synchrotron radiation profiles, in: Proceedings of IV ISTC Scientific Advisory Commitee Seminar on Basic Science in ISTC Aktivities, Akademgorodok, Novosibirsk, April 23-27, 2001, p. 293-300]. This theoretically predicted and experimentally confirmed feature is peculiar to total (spectrum summarized) radiating intensity. This angular distribution property has been supposed to be (at least qualitatively) conserved and for separate spectrum synchrotron radiation components. In the work of V.G. Bagrov, V.A. Bordovitsyn, V. Ch. Zhukovskii, Development of the theory of synchrotron radiation and related processes. Synchrotron source of JINR: the perspective of research, in: The Materials of the Second International Work Conference, Dubna, April 2-6, 2001, pp. 15-30 and in Angular dependence of synchrotron radiation intensity. http://lanl.arXiv.org/abs/physics/0209097, it is shown that the angular distribution of separate synchrotron radiation spectrum components demonstrates directly inverse tendency - the angular distribution deconcentration relatively the orbit plane takes place with electron energy growth. The present work is devoted to detailed investigation of this situation. For exact quantitative estimation of angular concentration degree of synchrotron radiation the definition of radiation effective angle and deviation angle is proposed. For different polarization components of radiation the dependence of introduced characteristics was investigated as a functions of electron energy and number of spectrum component.

  15. Optical and x-ray imaging of electron beams using synchrotron emission

    International Nuclear Information System (INIS)

    Wilke, M.

    1995-01-01

    In the case of very low emittance electron and positron storage ring beams, it is impossible to make intrusive measurements of beam properties without increasing the emittance and possibly disrupting the beam. In cases where electron or positron beams have high average power densities (such as free electron laser linacs), intrusive probes such as wires and optical transition radiation screens or Cherenkov emitting screens can be easily damaged or destroyed. The optical and x-ray emissions from the bends in the storage rings and often from linac bending magnets can be used to image the beam profile to obtain emittance information about the beam. The techniques, advantages and limitations of using both optical and x-ray synchrotron emission to measure beam properties are discussed and the possibility of single bunch imaging is considered. The properties of suitable imagers and converters such as phosphors are described. Examples of previous, existing and planned applications are given where available, including a pinhole imaging system currently being designed for the Advanced Photon Source at Argonne National Laboratory

  16. Optical and x-ray imaging of electron beams using synchrotron emission

    International Nuclear Information System (INIS)

    Wilke, M.D.

    1994-01-01

    In the case of very low eniittance electron and positron storage ring beams, it is impossible to make intrusive measurements of beam properties without increasing the emittance and possibly disrupting the beam. In cases where electron or positron beams have high average power densities (such as free electron laser linacs), intrusive probes such as wires and optical transition radiation screens or Cherenkov emitting screens can be easily damaged or destroyed. The optical and x-ray emissions from the bends in the storage rings and often from linac bending magnets can be used to image the beam profile to obtain emittance information about the beam. The techniques, advantages and limitations of using both optical and x-ray synchrotron emission to measure beam properties are discussed and the possibility of single bunch imaging is considered. The properties of suitable imagers and converters such as phosphors are described. Examples of previous, existing and planned applications are given where available, including a pinhole imaging system currently being designed for the Advanced Photon Source at Argonne National Laboratory

  17. Proposal for the study of laminar relativistic electron beam generation by a foilless diode

    International Nuclear Information System (INIS)

    Jones, M.E.; Thode, L.E.

    1979-02-01

    The continuation of an analytical and numerical study of intense relativistic electron beam generation by foilless diodes is proposed. The investigation is aimed at optimizing the diode design to produce a laminar flow

  18. Modelling properties of hard x-rays generated by the interaction between relativistic electrons and very intense laser beams

    International Nuclear Information System (INIS)

    Popa, Alexandru

    2009-01-01

    In a previous paper we presented a calculation model for high harmonic generation by relativistic Thomson scattering of the electromagnetic radiation by free electrons. In this paper we present a similar model for the calculation of the energies of hard x-rays (20- 200 keV) resulted from the interaction between relativistic electrons (20-100 MeV) and very intense laser beams. Starting from the relativistic equations of motion of an electron in the electromagnetic field we show that the Lienard-Wiechert equation leads to electromagnetic waves whose frequencies are in the domain of hard x-rays. When the relativistic parameter of the laser beam is greater than unity, the model predicts the existence of harmonics of the above frequencies. Our theoretical values are in good agreement with experimental values of the x-ray energies from the literature and predict accurately their angular distribution.

  19. Precision synchrotron radiation detectors

    International Nuclear Information System (INIS)

    Levi, M.; Rouse, F.; Butler, J.

    1989-03-01

    Precision detectors to measure synchrotron radiation beam positions have been designed and installed as part of beam energy spectrometers at the Stanford Linear Collider (SLC). The distance between pairs of synchrotron radiation beams is measured absolutely to better than 28 /mu/m on a pulse-to-pulse basis. This contributes less than 5 MeV to the error in the measurement of SLC beam energies (approximately 50 GeV). A system of high-resolution video cameras viewing precisely-aligned fiducial wire arrays overlaying phosphorescent screens has achieved this accuracy. Also, detectors of synchrotron radiation using the charge developed by the ejection of Compton-recoil electrons from an array of fine wires are being developed. 4 refs., 5 figs., 1 tab

  20. Secondary beams and the synthesis of exotic nuclei

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1985-09-01

    With the advent of modern fast cycling synchrotrons capable of delivering high intensity heavy ion beams up to uranium, the production of secondary radioactive ion beams (RIBs) with sufficient intensity has become feasible. The basic production mechanism is the fragmentation of near relativistic heavy ion beams on light targets. The physical facts underlying the efficient conversion of stable beams into RIBs are: (1) at beam energies of several 100 MeV/A thick conversion targets (1 to 10 g/cm 2 ) can be used, which, for nuclei near stability, convert on the order of .1 to 1% of the primary beam into secondary beams, (2) the secondary beams are emitted into a narrow phase space (small transverse and longitudinal emittances), and (3) these emittances are of the correct magnitude to match the acceptances of suitably designed storage and accumulator rings. 14 refs

  1. Smoothing of the Time Structure of Slowly Extracted Beam From Synchrotron by RF-Knock-out Method

    International Nuclear Information System (INIS)

    Voloshnyuk, A.V.; Bezshyjko, O.A.; Dolinskiy, A.V.; Dolinskij, A.V.

    2005-01-01

    Results of the study are presented in work on smoothing of the time structure of the bunch, slowly extracted from synchrotron. The numerical algorithm has been designed for study of the influence of the radio-frequency field of the resonator on time structure of the bunch. The numerical algorithm is based on method Monte-Carlo, where particles in the beam have been extracted by means of slow moving to the third-order resonance conditions. Characteristics of the time structure are vastly smoothed when synchrotron oscillations have been used as first experiments showed. Theoretical motivation of the reasons, influencing upon time structure of the slowly extracted beam is explained in given work

  2. A self-consistent nonlinear theory of resistive-wall instability in a relativistic electron beam

    International Nuclear Information System (INIS)

    Uhm, H.S.

    1994-01-01

    A self-consistent nonlinear theory of resistive-wall instability is developed for a relativistic electron beam propagating through a grounded cylindrical resistive tube. The theory is based on the assumption that the frequency of the resistive-wall instability is lower than the cutoff frequency of the waveguide. The theory is concentrated on study of the beam current modulation directly related to the resistive-wall klystron, in which a relativistic electron beam is modulated at the first cavity and propagates downstream through the resistive wall. Because of the self-excitation of the space charge waves by the resistive-wall instability, a highly nonlinear current modulation of the electron beam is accomplished as the beam propagates downstream. A partial integrodifferential equation is obtained in terms of the initial energy modulation (ε), the self-field effects (h), and the resistive-wall effects (κ). Analytically investigating the partial integrodifferential equation, a scaling law of the propagation distance z m at which the maximum current modulation occurs is obtained. It is found in general that the self-field effects dominate over the resistive-wall effects at the beginning of the propagation. As the beam propagates farther downstream, the resistive-wall effects dominate. Because of a relatively large growth rate of the instability, the required tube length of the klystron is short for most applications

  3. On the influence of electromagnetic wave and relativistic electron beam on a plasma

    International Nuclear Information System (INIS)

    El Ashry, M.Y.; Berezhiani, V.I.; Javakhishvili, J.L.

    1993-08-01

    The dynamics of nonlinear wave in plasma under the influence of high-frequency electromagnetic pump and relativistic electron beam is considered. It is shown that the electrons of the beam play the role of the heavy plasma component, the matter which creates a possibility of formation of wave of a soliton type in a pure electron plasma. The wave structure is investigated and the characteristic parameters of the soliton are obtained. (author). 8 refs

  4. Study on the intense relativistic electron beam propagation in a collisionless plasma of small density

    International Nuclear Information System (INIS)

    Korenev, S.A.; Rubin, N.B.; Khodataev, K.V.

    1982-01-01

    The results of the experimental studies of the intense relativistic electron beam (IREB) propagation with ν/γ approximately 0.1, and γ approximately 1.6 (γ is an electron beam relativistic factor) in a collisionless plasma of small density over the 180 cm length are presented. Plasma is generated with the incomplete discharge over dielectric surface at the residual gas pressure of P approximately 10 -5 Torr. It is shown that the transportation efficiency may be essentially high, if the electron concentration in plasma satisfies the equilibrium conditions and if it is less or equal to the electron concentration in a beam. At concentration less than optimum one, the transportation efficiency decreases due to violations of equilibrium conditions. At high concentration the transportation efficiency also decreased due to the scattering and breaking on excited small-scale and plasma oscillations. The IREB propagation occurs without essential time delay under optimum conditions

  5. High current relativistic beam propagates stably in gas surrounded by nonconducting walls

    International Nuclear Information System (INIS)

    Clark, J.C.

    1977-01-01

    LLL has been studying the propagation of high current electron beams for a number of years to understand their behavior for use in a variety of experimental uses. Our latest experiments have shown that a mildly relativistic electron beam of 10 to 15 kA and a pulse width of 30 to 40 ns can propagate stably and with no net current transfer in insulating tubes filled with neutral gases. These experiments have been performed in the Magnetic Fusion Energy program where Electronics Engineering has been operating an electron beam accelerator, designing some of the diagnostics, such as laser interferometers, and performing the experiments. This article briefly describes our experimental observations

  6. Heating of a dense plasma with an intense relativistic electron beam: initial observations

    International Nuclear Information System (INIS)

    Montgomery, M.D.; Parker, J.V.; Riepe, K.B.; Sheffield, R.L.

    1981-01-01

    A dense (approx. 10 17 cm -3 ) plasma has been heated via the relativistic two-stream instability using a 3 MeV, intense (5 x 10 5 A/cm 2 ) electron beam. Evidence for heating has been obtained with diamagnetic loops, thin-foil witness plates, and a 2-channel, broad-band soft x-ray detector. Measurements of energy loss from the beam using calorimetry techniques have been attempted. The measured strong dependence of heating on beam transverse temperature and the very short interaction length ( 100 ns after the beam pulse are consistent with a plasma temperature <150 eV and line emission near 80 to 90 eV

  7. Heat transfer issues in high-heat-load synchrotron x-ray beams

    International Nuclear Information System (INIS)

    Khounsary, A.M.; Mills, D.M.

    1994-09-01

    In this paper, a short description of the synchrotron radiation x-ray sources and the associated power loads is given, followed by a brief description of typical synchrotron components and their heat load. It is emphasized that the design goals for most of these components is to limit (a) temperature, (b) stresses, or (c) strains in the system. Each design calls for a different geometry, material selection, and cooling scheme. Cooling schemes that have been utilized so far are primarily single phase and include simple macrochannel cooling, microchannel cooling, contact cooling, pin-post cooling, porous-flow cooling, jet cooling, etc. Water, liquid metals, and various cryogenic coolants have been used. Because the trend in x-ray beam development is towards brighter (i.e., more powerful) beams and assuming that no radical changes in the design of x-ray generating machines occurs in the next few years, it is fair to state that the utilization of various effective cooling schemes and, in particular, two-phase flow (e.g., subcooled boiling) warrants further investigation. This, however, requires a thorough examination of stability and reliability of two-phase flows for high-heat-flux components operating in ultrahigh vacuum with stringent reliability requirements

  8. Double-wall IFR cell for conditioning intense relativistic electron beams

    International Nuclear Information System (INIS)

    Myers, M.C.; Meger, R.A.; Murphy, D.P.; Fernsler, R.F.; Hubbard, R.F.; Slinker, S.P.; Weidman, D.J.

    1994-01-01

    An intense relativistic electron beam (IREB) injected into neutral gas in the high pressure regime characteristically propagates in a self-pinched mode but is susceptible to the resistive hose instability. Typically, beam are conditioned for propagation experiments by reducing the perturbations that may excite resistive hose and by adjusting the emittance profile of the beam such that the convective growth of the instability is decreased. The former has been achieved by applying an anharmonic focusing force as the beam is transported through a conducting tube or cell. The latter has been effectively demonstrated by passing the beam through an ion focus regime (IFR) cell which imposes a head to tail beam emittance variations. However, since the physical parameters of the two types of cells are different, conflicts arise when the cells are coupled sequentially. The double-wall IFR cell described here eliminates these interface difficulties by providing the necessary conditions properties in a single cell. The physics and design of the cell will be introduced and parameter variations explored. The conditioning and propagation measurements will be presented and the results of the experiment will be discussed in relation to theory and simulation

  9. Design and performance of a Tesla transformer type relativistic electron beam generator

    International Nuclear Information System (INIS)

    Jain, K.K.; Chennareddy, D.; John, P.I.; Saxena, Y.C.

    1986-01-01

    A relativistic electron beam generator driven by an air core Tesla transformer is described. The Tesla transformer circuit analysis is outlined and computational results are presented for the case when the coaxial water line has finite resistance. The transformer has a coupling coefficient of 0.56 and a step-up ratio of 25. The Tesla transformer can provide 800 kV at the peak of the second half cycle of the secondary output voltage and has been tested up to 600 kV. A 100-200 keV, 15-20 kA electron beam having 150 ns pulse width has been obtained. The beam generator described is being used for the beam injection into a toroidal device BETA. (author). 20 refs. 9 figures

  10. National Synchrotron Light Source

    International Nuclear Information System (INIS)

    van Steenbergen, A.

    1979-01-01

    The National Synchrotron Light Source comprises two high intensity electron storage rings for the generation of intense fluxes of synchrotron radiation in the vuv wavelength domain (700 MeV e - ring) and in the x-ray wavelength domain (2.5 GeV e - ring). A description is presented of the basic facility and the characteristics of the synchrotron radiation sources. The present plans for specific beam lines will be enumerated and the planned use of beam wigglers and undulators will be discussed

  11. National Synchrotron Light Source users manual: Guide to the VUV and x-ray beam lines

    International Nuclear Information System (INIS)

    Gmuer, N.F.; White-DePace, S.M.

    1987-08-01

    The success of the National Synchrotron Light Source in the years to come will be based, in large part, on the size of the users community and the diversity of the scientific disciplines represented by these users. In order to promote this philosophy, this National Synchrotron Light Source (NSLS) Users Manual: Guide to the VUV and X-Ray Beam Lines, has been published. This manual serves a number of purposes. In an effort to attract new research, it will present to the scientific community-at-large the current and projected architecture and capabilities of the various VUV and x-ray beam lines and storage rings. We anticipate that this publication will be updated periodically in order to keep pace with the constant changes at the NSLS

  12. Projectile fission of 238U relativistic ions in a Pb target and discovery of new fission fragments

    International Nuclear Information System (INIS)

    Bernas, M.; Donzaud, C.; Dessagne, Ph.; Miehe, Ch.; Hanelt, E.; Heinz, A.

    1994-01-01

    With the 238 U beam accelerated at relativistic energies by the heavy ion synchrotron (SIS) at GSI, fission was investigated using inverse kinematics. This geometry is well suited for analyzing fragments with the fragment separator. The fragments are identified by in flight measurements of their energy loss and time of flight signals. More than forty new isotopes have been discovered focusing on the light branch of fission products. (K.A.) 12 refs., 5 figs., 1 tab

  13. Uniform irradiation using rotational-linear scanning method for narrow synchrotron radiation beam

    International Nuclear Information System (INIS)

    Nariyama, N.; Ohnishi, S.; Odano, N.

    2004-01-01

    At SPring-8, photon intensity monitors for synchrotron radiation have been developed. Using these monitors, the responses of radiation detectors and dosimeters to monoenergetic photons can be measured. In most cases, uniform irradiation to the sample is necessary. Here, two scanning methods are proposed. One is an XZ-linear scanning method, which moves the sample simultaneously in both the X and Z direction, that is, in zigzag fashion. The other is a rotational-linear scanning method, which rotates the sample moving in the X direction. To investigate the validity of the two methods, thermoluminescent dosimeters were irradiated with a broad synchrotron-radiation beam, and the readings from the two methods were compared with that of the dosimeters fixed in the beam. The results for both scanning methods virtually agreed with that of the fixed method. The advantages of the rotational-linear scanning method are that low- and medium-dose irradiation is possible, uniformity is excellent and the load to the scanning equipment is light: hence, this method is superior to the XZ-linear scanning method for most applications. (author)

  14. Thermal equilibrium properties of an intense relativistic electron beam

    International Nuclear Information System (INIS)

    Davidson, R.C.; Uhm, H.S.

    1979-01-01

    The thermal equilibrium properties of an intense relativistic electron beam with distribution function f 0 /sub b/=Z -1 /sub b/exp[-(H-β/sub b/cP/sub z/-ω/sub b/P/sub theta/) /T] are investigated. This choice of f 0 /sub b/ allows for a mean azimuthal rotation of the beam electrons (when ω/sub b/not =0), and corresponds to an important generalization of the distribution function first analyzed by Bennett. Beam equilibrium properties, including axial velocity profile V 0 /sub z/b(r), azimuthal velocity profile V 0 /sub thetab/(r), beam temperature profile T 0 /sub b/(r), beam density profile n 0 /sub b/(r), and equilibrium self-field profiles, are calculated for a broad range of system parameters. For appropriate choice of beam rotation velocity ω/sub b/, it is found that radially confined equilibrium solutions [with n 0 /sub b/(r→infinity) =0] exist even in the absence of a partially neutralizing ion background that weakens the repulsive space-charge force. The necessary and sufficient conditions for radially confined equilibria are ω - /sub b/ + /sub b/ for 0 2 /sub b/p /ω 2 /sub b/c) (1-f-β 2 /sub b/) 2 /sub b/p/ω 2 /sub b/c) (1-f-β 2 /sub b/) <0

  15. Transverse phase space mapping of relativistic electron beams using optical transition radiation

    Directory of Open Access Journals (Sweden)

    G. P. Le Sage

    1999-12-01

    Full Text Available Optical transition radiation (OTR has proven to be a versatile and effective diagnostic for measuring the profile, divergence, and emittance of relativistic electron beams with a wide range of parameters. Diagnosis of the divergence of modern high brightness beams is especially well suited to OTR interference (OTRI techniques, where multiple dielectric or metal foils are used to generate a spatially coherent interference pattern. Theoretical analysis of measured OTR and OTRI patterns allows precise measurement of electron beam emittance characteristics. Here we describe an extension of this technique to allow mapping of divergence characteristics as a function of transverse coordinates within a measured beam. We present the first experimental analysis of the transverse phase space of an electron beam using all optical techniques. Comparing an optically masked portion of the beam to the entire beam, we measure different angular spread and average direction of the particles. Direct measurement of the phase-space ellipse tilt angle has been demonstrated using this optical masking technique.

  16. Development of a synchrotron radiation beam monitor for the Integrable Optics Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Scarpelli, Andrea [Univ. of Ferrara (Italy)

    2016-01-01

    Nonlinear integrable optics applied to beam dynamics may mitigate multi-particle instabilities, but proof of principle experiments have never been carried out. The Integrable Optics Test Accelerator (IOTA) is an electron and proton storage ring currently being built at Fermilab, which addresses tests of nonlinear lattice elements in a real machine in addition to experiments on optical stochastic cooling and on the single-electron wave function. These experiments require an outstanding control over the lattice parameters, achievable with fast and precise beam monitoring systems. This work describes the steps for designing and building a beam monitor for IOTA based on synchrotron radiation, able to measure intensity, position and transverse cross-section beam.

  17. Passive beam sprending systems and light-weight gentries for synchrotron based hadron therapy

    International Nuclear Information System (INIS)

    Maier, A.

    1998-12-01

    Hadron therapy is a promising technique that uses beams of protons or light ions for the treatment of cancer. In order to open this technique to a wider application, dedicated hospital based treatment centers are now needed. The Proton-Ion Medical Machine Study (PIMMS) in CERN is concerned with the design of such a center that would use both protons and light ions. The dual species operation makes it preferable to base the center on a synchrotron. The present thesis is concerned with the beam delivery for the protons. After introducing the basic vocabulary of linear beam optics, the feasibility of a light-weight gantry with passive beam spreading fed by a synchrotron is investigated. The device is a non-linear magnetic structure, which can be described as a magnetic guide or as a proton pipe. Detailed studies show that while it is possible to design an optically stable 270 o section, which would be necessary for a gantry, the properties do not fulfil the requirements of a gantry for medical purposes. It was therefore concluded that a conventional isocentric gantry would be used for protons. The problem of passive beam-spreading is also investigated. A detailed knowledge of multiple scattering is necessary for the design of such a system. The basic principles of multiple scattering following Moliere's theory are mentioned. In addition, a Gaussian approximation of multiple scattering developed by Highland is described. A treatment of multiple scattering for thick and thin scatterers is then developed using the so-called Q-formalism that is frequently used in accelerator optics. This is then used to give a statistical description of the beam with scattering included using the Twiss formalism that is also used widely in accelerator physics. Excellent agreement is demonstrated with Monte-Carlo data. The Twiss-Scatterer relations obtained make it possible to include arbitrary, thick scatterers in accelerator codes. High intensities for protons are less readily available

  18. On the injection of relativistic particles into the Crab Nebula

    International Nuclear Information System (INIS)

    Shklovskij, I.S.

    1977-01-01

    It is shown that a flux of relativistic electrons from the NP 0532 pulsar magnetosphere, responsible for its synchrotron emission, cannot provide the necessary energy pumping to the Crab Nebula. A conclusion is reached that such a pumping can be effectuated by a flow of relativistic electrons leaving the NP 0532 magnetosphere at small pitch angles and giving therefore no appreciable contribution to the synchrotron emission of the pulsar. An interpretation of the Crab Nebula synchrotron spectrum is given on the assumption of secular ''softening'' of the energy spectrum of the relativistic electrons injected into the Nebula. A possibility of explanation of the observed rapid variability of some features in the central part of the Nebula by ejection of free - neutron - rich dense gas clouds from the pulsar surface during ''starquakes'' is discussed. The clouds of rather dense (nsub(e) approximately 10 7 cm -3 ) plasma, thus formed at about 10 13 cm from pulsar, will be accelerated up to relativistic velocities by the pressure of the magneto-dipole radiation of NP 0532 and will deform the magnetic field in the inner part (R 17 cm) of the Crab Nebula, that is the cause of the variability observed. In this case, favourable conditions for the acceleration of the particles in the cloud up to relativistic energies are realized; that may be an additional source of injection

  19. The interaction between a relativistic electron beam and a slow electromagnetic wave in a waveguide that is partially filled with a dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, S.T.; Nikolov, N.A.

    1979-01-01

    The problem of the excitation of microwaves during the propagation of a relativistic electron beam through a waveguide which is partially filled with a dielectric is solved using Maxwell equations and relativistic magnetic hydrodynamics. Two cases are found in which the beam-excited wave has a single mode (it is coherent). For one of the coherent waves, the saturation amplitude and the efficiency of converting the beam energy into electomagnetic field energy are determined.

  20. Drift Loss-Cone Distributions Electrons in the Jovian Synchrotron Zone from 06 and VIP4 Models

    Science.gov (United States)

    Wang, K.; Bolton, S. J.; Gulkis, S.; Levin, S. M.

    2000-01-01

    Relativistic electrons (10-50 MeV) play an important role to account for the observed synchrotron decimetric radiation in Jupiter's inner radiation belt (L loss cone for relativistic electrons using both the O6 and VIP4 magnetic field models. Model maps of the synchrotron emission for specific electron distributions are shown for comparison.

  1. MM-wave emission by magnetized plasma during sub-relativistic electron beam relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, I. A., E-mail: Ivanov@inp.nsk.su; Arzhannikov, A. V.; Burmasov, V. S.; Popov, S. S.; Postupaev, V. V.; Sklyarov, V. F.; Vyacheslavov, L. N. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090 (Russian Federation); Burdakov, A. V.; Sorokina, N. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20 Karl Marx Avenue, Novosibirsk 630092 (Russian Federation); Gavrilenko, D. E.; Kasatov, A. A.; Kandaurov, I. V.; Mekler, K. I.; Rovenskikh, A. F.; Trunev, Yu. A. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, Novosibirsk 630090 (Russian Federation); Kurkuchekov, V. V.; Kuznetsov, S. A. [Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090 (Russian Federation); Polosatkin, S. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20 Karl Marx Avenue, Novosibirsk 630092 (Russian Federation)

    2015-12-15

    There are described electromagnetic spectra of radiation emitted by magnetized plasma during sub-relativistic electron beam in a double plasma frequency band. Experimental studies were performed at the multiple-mirror trap GOL-3. The electron beam had the following parameters: 70–110 keV for the electron energy, 1–10 MW for the beam power and 30–300 μs for its duration. The spectrum was measured in 75–230 GHz frequency band. The frequency of the emission follows variations in electron plasma density and magnetic field strength. The specific emission power on the length of the plasma column is estimated on the level 0.75 kW/cm.

  2. Radial focusing of a relativistic electron beam in a bipotential electrostatic lens

    International Nuclear Information System (INIS)

    Genoni, T.C.

    1994-01-01

    The focusing of a relativistic electron beam in a bipotential electrostatic lens is discussed. An iterative scheme for the solution of the paraxial ray equation is used to derive approximate analytic formulas for the lens parameters and lens transfer matrix elements. The formulas are compared to results of direct numerical integration of the paraxial ray equation

  3. Rapid plasma heating by collective interactions, using strong turbulence and relativistic electron beams

    International Nuclear Information System (INIS)

    Wharton, C.B.

    1977-01-01

    A multi-kilovolt, moderate density plasma was generated in a magnetic mirror confinement system by two methods: turbulent heating and relativistic electron beam. Extensive diagnostic development permitted the measurement of important plasma characteristics, leading to interesting and novel conclusions regarding heating and loss mechanisms. Electron and ion heating mechanisms were categorized, and parameter studies made to establish ranges of importance. Nonthermal ion and electron energy distributions were measured. Beam propagation and energy deposition studies yielded the spatial dependence of plasma heating

  4. Effects of high energy photon emissions in laser generated ultra-relativistic plasmas: Real-time synchrotron simulations

    Energy Technology Data Exchange (ETDEWEB)

    Wallin, Erik [Department of Physics, Umeå University, SE–901 87 Umeå (Sweden); Department of Applied Physics, Chalmers University of Technology, SE–412 96 Göteborg (Sweden); Gonoskov, Arkady [Department of Applied Physics, Chalmers University of Technology, SE–412 96 Göteborg (Sweden); Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); University of Nizhny Novgorod, Nizhny Novgorod 603950 (Russian Federation); Marklund, Mattias [Department of Applied Physics, Chalmers University of Technology, SE–412 96 Göteborg (Sweden)

    2015-03-15

    We model the emission of high energy photons due to relativistic charged particle motion in intense laser-plasma interactions. This is done within a particle-in-cell code, for which high frequency radiation normally cannot be resolved due to finite time steps and grid size. A simple expression for the synchrotron radiation spectra is used together with a Monte-Carlo method for the emittance. We extend previous work by allowing for arbitrary fields, considering the particles to be in instantaneous circular motion due to an effective magnetic field. Furthermore, we implement noise reduction techniques and present validity estimates of the method. Finally, we perform a rigorous comparison to the mechanism of radiation reaction, and find the emitted energy to be in excellent agreement with the losses calculated using radiation reaction.

  5. Plasma heating by relativistic electron beams: correlations between experiment and theory

    International Nuclear Information System (INIS)

    Thode, L.E.; Godfrey, B.B.

    1975-01-01

    The streaming instability is the primary heating mechanism in most, if not all, experiments in which the beam is injected into partially or fully ionized gas. In plasma heating experiments, the relativistic beam must traverse an anode foil before interacting with the plasma. The linear theory for such a scattered beam is discussed, including a criterion for the onset of the kinetic interaction. A nonlinear model of the two-stream instability for a scattered beam is developed. Using this model, data from ten experiments are unfolded to obtain the following correlations: (i) for a fixed anode foil, the dependence of the plasma heating on the beam-to-plasma density ratio is due to anode foil scattering, (ii) for a fixed beam-to-plasma density ratio, the predicted change in the magnitude of plasma heating as a function of the anode foil is in agreement with experiment, and (iii) the plasma heating tentatively appears to be proportional to the beam kinetic energy density and beam pulse length. For a fixed anode foil, theory also predicts that the energy deposition is improved by increasing the beam electron energy γmc 2 . Presently, no experiment has been performed to confirm this aspect of the theory

  6. Incident energy dependence of pt correlations at relativistic energies

    CERN Document Server

    Adams, J; Ahammed, Z; Amonett, J; Anderson, B D; Arkhipkin, D; Averichev, G S; Badyal, S K; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Berger, J; Bezverkhny, B I; Bharadwaj, S; Bhasin, A; Bhati, A K; Bhatia, V S; Bichsel, H; Bielcik, J; Bielcikova, J; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Bouchet, J; Brandin, A V; Bravar, A; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca-Sanchez, M; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Daugherity, M; De Moura, M M; Dedovich, T G; Derevshchikov, A A; Didenko, L; Dietel, T; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta, M R; Mazumdar; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faivre, J; Fatemi, R; Fedorisin, J; Filimonov, K; Filip, P; Finch, E; Fine, V; Fisyak, Yu; Fu, J; Gagliardi, C A; Gaillard, L; Gans, J; Ganti, M S; Geurts, F; Ghazikhanian, V; Ghosh, P; González, J E; Gos, H; Grachov, O; Grebenyuk, O; Grosnick, D P; Guertin, S M; Guo, Y; Sen-Gupta, A; Gutíerrez, T D; Hallman, T J; Hamed, A; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Jedynak, M; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Kislov, E M; Klay, J; Klein, S R; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kowalik, K L; Krämer, M; Kravtsov, P; Kravtsov, V I; Krüger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kutuev, R K; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lehocka, S; Le Vine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, L; Liu, Q J; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; López-Noriega, M; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahajan, S; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J N; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Meissner, F; Melnik, Yu M; Meschanin, A; Miller, M L; Minaev, N G; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnár, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Nurushev, S B; Odyniec, Grazyna Janina; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pal, S K; Panebratsev, Yu A; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevozchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M V; Potrebenikova, E V; Potukuchi, B V K S; Prindle, D; Pruneau, C A; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D M; Reid, J G; Reinnarth, J; Renault, G; Retière, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Sarsour, M; Savin, I; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Schweda, K; Seger, J; Seyboth, P; Shahaliev, E; Shao, M; Shao, W; Sharma, M; Shen, W Q; Shestermanov, K E; Shimansky, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sørensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M N; Stringfellow, B C; Suaide, A A P; Sugarbaker, E R; Suire, C; Sumbera, M; Surrow, B; Swanger, M; Symons, T J M; Szanto de Toledo, A; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T J; Thein, D; Thomas, J H; Timoshenko, S; Tokarev, M; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; Van Leeuwen, M; Van der Molen, A M; Varma, R; Vasilevski, I M; Vasilev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, X L; Wang, Y; Wang, Z M; Ward, H; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zborovský, I; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N

    2005-01-01

    We present results for two-particle transverse momentum correlations, , as a function of event centrality for Au+Au collisions at sqrt(sNN) = 20, 62, 130, and 200 GeV at the Relativistic Heavy Ion Collider. We observe correlations decreasing with centrality that are similar at all four incident energies. The correlations multiplied by the multiplicity density increase with incident energy and the centrality dependence may show evidence of processes such as thermalization, minijet production, or the saturation of transverse flow. The square root of the correlations divided by the event-wise average transverse momentum per event shows little or no beam energy dependence and generally agrees with previous measurements at the Super Proton Synchrotron.

  7. Smith-Purcell radiation in the highly relativistic regime

    International Nuclear Information System (INIS)

    Walsh, J.E.; Woods, K.J.; Kirk, H.G.

    1995-01-01

    An electron moving over the surface of a diffraction grating will transfer a part of its kinetic energy to radiation via a velocity synchronous coupling with a slow space harmonic component of the field. Since the phase velocity of a slow space harmonic is less than the speed of light, the slow components decay exponentially, or evanesce, with distance above the grating and the evanescence scale is determined by the product of the relative velocity, β, the relative energy, γ, and the wavelength λ. Thus, in the relativistic regime, good electron - grating coupling can be maintained at beam heights that are greater than the emitted wavelength. In order to explore this regime a series of experiments have been carried out with moderately energetic beams and an experiment with the 70-MeV beam at the Accelerator Test Facility is in the planning stage. The work has two basic goals: the first is to explore the characteristics of the spontaneous emission produced by the beam as it moves over the grating, and the second is to evaluate the potential of grating-coupled or Smith-Purcell free electron lasers. The spontaneous emission is of direct interest. It appears on the basis of work to date that the broad spectral distribution produced by a relativistic electron beam moving over a grating is potentially an alternative source for experiments of the type now carried out on synchrotron infrared beam lines. The grating, or a system of gratings, are also a potential alternative to the magnetic undulator and thus another basic approach to free electron laser design. The presentation will include a summary of the design of the experiment which is to be carried out on the 70-MeV A.T.F. beam line and a review of the theory of Smith-Purcell radiation in the high energy limit. Gain calculations and the role of beam quality in establishing performance limits will be discussed

  8. Coherent Synchrotron Radiation: Theory and Simulations

    International Nuclear Information System (INIS)

    Novokhatski, Alexander

    2012-01-01

    The physics of coherent synchrotron radiation (CSR) emitted by ultra-relativistic electron bunches, known since the last century, has become increasingly important with the development of high peak current free electron lasers and shorter bunch lengths in storage rings. Coherent radiation can be described as a low frequency part of the familiar synchrotron radiation in bending magnets. As this part is independent of the electron energy, the fields of different electrons of a short bunch can be in phase and the total power of the radiation will be quadratic with the number of electrons. Naturally the frequency spectrum of the longitudinal electron distribution in a bunch is of the same importance as the overall electron bunch length. The interest in the utilization of high power radiation from the terahertz and far infrared region in the field of chemical, physical and biological processes has led synchrotron radiation facilities to pay more attention to the production of coherent radiation. Several laboratories have proposed the construction of a facility wholly dedicated to terahertz production using the coherent radiation in bending magnets initiated by the longitudinal instabilities in the ring. Existing synchrotron radiation facilities also consider such a possibility among their future plans. There is a beautiful introduction to CSR in the 'ICFA Beam Dynamics Newsletter' N 35 (Editor C. Biscari). In this paper we recall the basic properties of CSR from the theory and what new effects, we can get from the precise simulations of the coherent radiation using numerical solutions of Maxwell's equations. In particular, transverse variation of the particle energy loss in a bunch, discovered in these simulations, explains the slice emittance growth in bending magnets of the bunch compressors and transverse de-coherence in undulators. CSR may play same the role as the effect of quantum fluctuations of synchrotron radiation in damping rings. It can limit the minimum

  9. Quasistationary model of high-current relativistic electron beam. 1. Exact solution of Poisson equations

    International Nuclear Information System (INIS)

    Brenner, S.E.; Gandyl', E.M.; Podkopaev, A.P.

    1995-01-01

    The dynamics of high-current relativistic electron beam moving trough the cylindrical drift space has been modelled by the large particles, the shape of which allows to solve the Poisson equations exactly, and in such a way to avoid the linearization being usually used in those problems. The expressions for the components of own electric field of electron beam passing through the cylindrical drift space have been obtained. (author). 11 refs., 1 fig

  10. Suitability of high-current standing-wave linac technology for ultra-relativistic electron beam propagation experiments

    International Nuclear Information System (INIS)

    Moir, D.C.; Faehl, R.J.; Newberger, B.S.; Thode, L.E.

    1981-01-01

    Near-term development of the existing PHERMEX standing-wave linac would provide a 40 to 60 MeV electron beam with a current of 3 kA capable of answering a number of fundamental issues concerning endoatmospheric, ultra-relativistic electron beam propagation. Inherent high-repetition rate and multiple-pulse capability would allow alternative propagation scenarios to be investigated. Much of the theoretical expertise required to support the technology development and time-resolved beam propagation experiments presently resides within the Theoretical Applications Division

  11. Relativistic electron beam - plasma interaction with intense self-fields

    International Nuclear Information System (INIS)

    Davidson, R.C.

    1984-01-01

    The major interest in the equilibrium, stability and radiation properties of relativistic electron beams and in beam-plasma interactions originates from several diverse research areas. It is well known that a many-body collection of charged particles in which there is not overall charge neutrality and/or current neutrality can be characterized by intense self-electric fields and/or self-magnetic fields. Moreover, the intense equilibrium self-fields associated with the lack of charge neutrality and/or current neutrality can have a large effect on particle trajectories and on detailed equilibrium and stability behavior. The main emphasis in Sections 9.1.2-9.1.5 of this chapter is placed on investigations of the important influence of self-fields on the equilibrium and stability properties of magnetically confined electron beam-plasma systems. Atomic processes and discrete particle interactions (binary collisions) are omitted from the analysis, and collective processes are assumed to dominate on the time and length scales of interest. Moreover, both macroscopic (Section 9.1.2) and kinetic (Sections 9.1.3-9.1.5) theoretical models are developed and used to investigate equilibrium and stability properties in straight cylindrical geometry. Several of the classical waves and instabilities characteristic of nonneutral plasmas and beam-plasma systems are analyzed in Sections 9.1.2-9.1.5, including stable surface oscillation on a nonneutral electron beam, the ion resonance instability, the diocotron instability, two-stream instabilities between beam electrons and plasma electrons and between beam electrons and plasma ions, the filamentation instability, the modified two-stream instability, etc

  12. Impact of coherent synchrotron radiation on beam qualities in a Chicane

    International Nuclear Information System (INIS)

    Xiang Dao; Huang Wenhui; He Xiaozhong

    2004-01-01

    When the bunch goes through a Chicane, the energy will be redistributed within the bunch due to CSR (coherent synchrotron radiation), which would cause nonlinearity. Present theory states that this nonlinearity would add a huge amount to emittance growth. Based on simulation results, this paper would point out that the theory is only valid under an ideal condition that the bunch initially has no nonlinearity and under some given parameters there could be a cancellation between the nonlinearity caused by CSR and the initial nonlinearity. So under these circumstances authors can expect CSR to improve the beam quality. This paper provides a brief information about CSR and a full estimation of effects of CSR on beam qualities

  13. Beam brightness from a relativistic, field-emission diode with a velvet covered cathode

    International Nuclear Information System (INIS)

    Bekefi, G.; Shefer, R.E.; Tasker, S.C.

    1985-08-01

    The beam emittance and brightness from a mildly relativistic (200 to 400 kV) high current density (0.5 to 3.5kA/cm 2 ) planar, field emission diode provided with a velvet covered cathode have been studied experimentally as a function of the applied electric field (100 to 600kV/cm). Transverse beam spreading has been measured using a conventional pinhole arrangement followed by a fluorescent screen and open shutter camera. Good turn-on, and a high normalized beam brightness (B/sub n/ = 300kA/cm 2 -rad 2 ) have been observed. The results are compared with those obtained with a graphite cathode. 11 refs., 6 figs

  14. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1996-11-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power CO 2 laser may be used as prototype LSS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps CO 2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 angstrom) x-rays of 10-ps pulse duration, with a flux of ∼ 10 19 photons/sec, will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to the e-beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 10 22 photons/sec level, after the ongoing ATF CO 2 laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact ''table-top'' LSS of monochromatic gamma radiation may become feasible

  15. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1997-01-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high- brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high- brightness electron beam and the high-power C0 2 laser may be used as prototype LSS brick stones. In a feasible demonstration experiment, 10 GW, 100 ps C0 2 laser beam will be brought to a head-on collision with a 10 ps, 0.5 nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 A) x-rays of 10-ps pulse duration, with a flux of ∼10 19 photons/sec, will be produced via linear Compton backscattering. The x-ray spectra is tunable proportionally to the e- beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 10 22 photon/sec level, after the ongoing ATF C0 2 laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact ''table- top'' LSS of monochromatic gamma radiation may become feasible

  16. Spin dynamics in electron synchrotrons

    International Nuclear Information System (INIS)

    Schmidt, Jan Felix

    2017-01-01

    Providing spin polarized particle beams with circular accelerators requires the consideration of depolarizing resonances which may significantly reduce the desired degree of polarization at specific beam energies. The corresponding spin dynamical effects are typically analyzed with numerical methods. In case of electron beams the influence of the emission of synchrotron radiation has to be taken into account. On short timescales, as in synchrotrons with a fast energy ramp or in damping rings, spin dynamics are investigated with spin tracking algorithms. This thesis presents the spin tracking code Polematrix as a versatile tool to study the impact of synchrotron radiation on spin dynamics. Spin tracking simulations have been performed based on the well established particle tracking code Elegant. The numerical studies demonstrate effects which are responsible for beam depolarization: Synchrotron side bands of depolarizing resonances and decoherence of spin precession. Polematrix can be utilized for any electron accelerator with minimal effort as it imports lattice files from the tracking programs MAD-X or Elegant. Polematrix has been published as open source software. Currently, the Electron Stretcher Accelerator ELSA at Bonn University is the only electron synchrotron worldwide providing a polarized beam. Integer and intrinsic depolarizing resonances are compensated with dedicated countermeasures during the fast energy ramp. Polarization measurements from ELSA demonstrate the particular spin dynamics of electrons and confirm the results of the spin tracking code Polematrix.

  17. Kinetic study of the sausage mode of a resistive instability of a relativistic electron beam

    International Nuclear Information System (INIS)

    Gureev, K.G.; Zolotarev, V.O.; Stolbetsov, S.D.

    1984-01-01

    The nonlinear problem of the growth of the sausage mode of the resistive instability of a relativistic electron beam propagating without collisions through a tenuous plasma is solved. The plasma conductivity is assumed to be high, so that the wave phase velocity is low in comparison with the velocity of light. A kinetic approach is taken to the description of the beam. A numerical solution of the problem shows that this instability occurs in a cold, uniform beam. In the nonlinear stage of the instability the beam goes through states with a hollow structure. Suppression of the instability is found for a beam with a Bennett distribution function. The stabilization results from phase mixing of the beam particles

  18. Evidence of interaction between a relativistic electron beam and solid target

    International Nuclear Information System (INIS)

    Scarlat, Fl.; Scarlat, F.S.; Mitru, E.

    2002-01-01

    The investigation of the X ray production mechanism by the relativistic electron beams (REB) is an important keypoint for increasing the output of electron X ray conversion. This paper presents the image of a platinum target optically observed by its radiography (after irradiation by a REB of 31 MeV). The image is processed by means of a scanner and computer. The paper presents the distributions of the absorbed dose in a target volume

  19. Development of a nuclear data base for relativistic ion beams

    International Nuclear Information System (INIS)

    Townsend, L.W.; Wong, M.; Schimmerling, W.; Wilson, J.W.

    1987-01-01

    The primary limitation on the development of heavy ion beam transport methods is the lack of an accurate nuclear data base. Because of the large number of ion/target combinations, the complexity of the reaction products, and the broad range of energies required, it is unlikely that the data base will ever be compiled from experiments alone. For the last 15 years, relativistic heavy-ion accelerators have been available, but the experimental data base remains inadequate. However, theoretical models of heavy-ion reactions are being derived to provide cross section data for beam transport problems. A concurrent experimental program to provide sufficient experimental data to validate the model is also in progress. Model development and experimental results for model validation are discussed. The need for additional nuclear fragmentation data is identified

  20. JHF synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The Japan Hadron Facility (JHF) consists of two synchrotrons and an injector linac. First, we will present a brief review of the specifications and lattice of the synchrotrons; one is 3 GeV booster and the other is 50 GeV main ring. Secondly, some detailed results of design study will be discussed, together with the present status of the R and D programs in progress. Among them, an estimate of beam loss is one of critical issues in beam dynamics. The development of a high gradient RF cavity is also crucial for a high intensity machine. (author)

  1. Fourier optics treatment of classical relativistic electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, G.; Saldin, E.; Schneidmiller, E.; Yurkov, M.

    2006-08-15

    In this paper we couple Synchrotron Radiation (SR) theory with a branch of physical optics, namely laser beam optics. We show that the theory of laser beams is successful in characterizing radiation fields associated with any SR source. Both radiation beam generated by an ultra-relativistic electron in a magnetic device and laser beam are solutions of the wave equation based on paraxial approximation. It follows that they are similar in all aspects. In the space-frequency domain SR beams appear as laser beams whose transverse extents are large compared with the wavelength. In practical solutions (e.g. undulator, bending magnet sources), radiation beams exhibit a virtual ''waist'' where the wavefront is often plane. Remarkably, the field distribution of a SR beam across the waist turns out to be strictly related with the inverse Fourier transform of the far-field angle distribution. Then, we take advantage of standard Fourier Optics techniques and apply the Fresnel propagation formula to characterize the SR beam. Altogether, we show that it is possible to reconstruct the near-field distribution of the SR beam outside the magnetic setup from the knowledge of the far-field pattern. The general theory of SR in the near-zone developed in this paper is illustrated for the special cases of undulator radiation, edge radiation and transition undulator radiation. Using known analytical formulas for the far-field pattern and its inverse Fourier transform we find analytical expressions for near-field distributions in terms of far-field distributions. Finally, we compare these expressions with incorrect or incomplete literature. (orig.)

  2. Protein crystallography with a micrometre-sized synchrotron-radiation beam

    International Nuclear Information System (INIS)

    Moukhametzianov, Rouslan; Burghammer, Manfred; Edwards, Patricia C.; Petitdemange, Sebastien; Popov, Dimitri; Fransen, Maikel; McMullan, Gregory; Schertler, Gebhard F. X.; Riekel, Christian

    2008-01-01

    For the first time, protein microcrystallography has been performed with a focused synchrotron-radiation beam of 1 µm using a goniometer with a sub-micrometre sphere of confusion. The crystal structure of xylanase II has been determined with a flux density of about 3 × 10 10 photons s −1 µm −2 at the sample. For the first time, protein microcrystallography has been performed with a focused synchrotron-radiation beam of 1 µm using a goniometer with a sub-micrometre sphere of confusion. The crystal structure of xylanase II has been determined with a flux density of about 3 × 10 10 photons s −1 µm −2 at the sample. Two sets of diffraction images collected from different sized crystals were shown to comprise data of good quality, which allowed a 1.5 Å resolution xylanase II structure to be obtained. The main conclusion of this experiment is that a high-resolution diffraction pattern can be obtained from 20 µm 3 crystal volume, corresponding to about 2 × 10 8 unit cells. Despite the high irradiation dose in this case, it was possible to obtain an excellent high-resolution map and it could be concluded from the individual atomic B-factor patterns that there was no evidence of significant radiation damage. The photoelectron escape from a narrow diffraction channel is a possible reason for reduced radiation damage as indicated by Monte Carlo simulations. These results open many new opportunities in scanning protein microcrystallography and make random data collection from microcrystals a real possibility, therefore enabling structures to be solved from much smaller crystals than previously anticipated as long as the crystallites are well ordered

  3. High-brightness electron beams for production of high intensity, coherent radiation for scientific and industrial applications

    International Nuclear Information System (INIS)

    Kim, K.-J.

    1999-01-01

    Relativistic electron beams with high six-dimensional phase space densities, i.e., high-brightness beams, are the basis for efficient generation of intense and coherent radiation beams for advanced scientific and industrial applications. The remarkable progress in synchrotrons radiation facilities from the first generation to the current, third-generation capability illustrates this point. With the recent development of the high-brightness electron gun based on laser-driven rf photocathodes, linacs have become another important option for high-brightness electron beams. With linacs of about 100 MeV, megawatt-class infrared free-electron lasers can be designed for industrial applications such as power beaming. With linacs of about 10 GeV, 1- angstrom x-ray beams with brightness and time resolution exceeding by several orders of magnitude the current synchrotrons radiation sources can be generated based on self-amplified spontaneous emission. Scattering of a high-brightness electron beam by high power laser beams is emerging as a compact method of generating short-pulse, bright x-rays. In the high-energy frontier, photons of TeV quantum energy could be generated by scattering laser beams with TeV electron beams in future linear colliders

  4. Low-field permanent magnet quadrupoles in a new relativistic-klystron two-beam accelerator design

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.; Sessler, A. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    Permanent magnets play a central role in the new relativistic klystron two-beam-accelerator design. The two key goals of this new design, low cost and the suppression of beam break-up instability are both intimately tied to the permanent magnet quadrupole focusing system. A recently completed systems study by a joint LBL-LLNL team concludes that a power source for a 1 TeV center-of-mass Next Linear Collider based on the new TBA design can be as low as $1 billion, and the efficiency (wall plug to rf) is estimated to be 36%. End-to-end simulations of longitudinal and transverse beam dynamics show that the drive beam is stable over the entire TBA unit.

  5. Stabilization effect of a strong HF electrical field on beam-plasma interaction in a relativistic plasma waveguide

    International Nuclear Information System (INIS)

    El-Shorbagy, K.H.

    2000-07-01

    The influence effect of a strong HF electrical field on the excitation of surface waves by an electron beam under the development of instability of low-density electron beam passing through plane relativistic plasma is investigated. Starting from the two fluid plasma model we separate the problem into two parts. The 'temporal' (dynamical) part enables us to find the frequencies and growth rates of unstable waves. This part within the redefinition of natural (eigen) frequencies coincide with the system describing HF suppression of the Buneman instability in a uniform unbounded plasma. Natural frequencies of oscillations and spatial distribution of the amplitude of the self-consistent electrical field are obtained by solving a boundary value problem ('spatial' part) considering a specific spatial distribution of plasma density. Plasma electrons are considered to have a relativistic velocity. It is shown that a HF electric field has no essential influence on dispersion characteristics of unstable surface waves excited in a relativistic plasma waveguide by a low-density electron beam. The region of instability only slightly narrowing and the growth rate decreases by a small parameter and this result has been reduced compared to nonrelativistic plasma. Also, it is found that the plasma electrons have not affected the solution of the space part of the problem. (author)

  6. Simulation of the development and interaction of instabilities in a relativistic electron beam under variation of the beam wall thickness

    Energy Technology Data Exchange (ETDEWEB)

    Badarin, A. A.; Kurkin, S. A. [Saratov State University (Russian Federation); Koronovskii, A. A. [Yuri Gagarin State Technical University (Russian Federation); Rak, A. O. [Belorussian State University of Informatics and Radioelectronics (Belarus); Hramov, A. E., E-mail: hramovae@gmail.com [Saratov State University (Russian Federation)

    2017-03-15

    The development and interaction of Bursian and diocotron instabilities in an annular relativistic electron beam propagating in a cylindrical drift chamber are investigated analytically and numerically as functions of the beam wall thickness and the magnitude of the external uniform magnetic field. It is found that the interaction of instabilities results in the formation of a virtual cathode with a complicated rotating helical structure and several reflection regions (electron bunches) in the azimuthal direction. It is shown that the number of electron bunches in the azimuthal direction increases with decreasing beam wall thickness and depends in a complicated manner on the magnitude of the external magnetic field.

  7. Analytical and numerical calculations of resistive wall impedances for thin beam pipe structures at low frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Niedermayer, U., E-mail: u.niedermayer@gsi.de [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstrasse 8, 64289 Darmstadt (Germany); Boine-Frankenheim, O. [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstrasse 8, 64289 Darmstadt (Germany)

    2012-09-21

    The resistive wall impedance is one of the main sources for beam instabilities in synchrotrons and storage rings. The fast ramped SIS18 synchrotron at GSI and the projected SIS100 synchrotron for FAIR both employ thin (0.3 mm) stainless steel beam pipes in order to reduce eddy current effects. The lowest betatron sidebands are at about 100 kHz, which demands accurate impedance predictions in the low frequency (LF) range where the beam pipe and possibly also the structures behind the pipe are the dominating impedance sources. The longitudinal and transverse resistive wall impedances of a circular multi-layer pipe are calculated analytically using the field matching technique. We compare the impedances obtained from a radial wave model, which corresponds to the setup used in bench measurements, with the axial wave model, which corresponds to an actual beam moving with relativistic velocity. For thin beam pipes the induced wall current and the corresponding shielding properties of the pipe are important. In both models the wall current is obtained analytically. The characteristic frequencies for the onset of the wall current are calculated from equivalent lumped element circuits corresponding to the radial model. For more complex structures, like the SIS100 beam pipe, we use a numerical method, in which the impedance is obtained from the total power loss. The method is validated by the analytic expressions for circular beam pipes.

  8. The Crab Pulsar and Relativistic Wind

    Science.gov (United States)

    Coroniti, F. V.

    2017-12-01

    The possibility that the Crab pulsar produces a separated ion-dominated and pair-plasma-dominated, magnetically striped relativistic wind is assessed by rough estimates of the polar cap acceleration of the ion and electron primary beams, the pair production of secondary electrons and positrons, and a simple model of the near-magnetosphere-wind zone. For simplicity, only the orthogonal rotator is considered. Below (above) the rotational equator, ions (electrons) are accelerated in a thin sheath, of order (much less than) the width of the polar cap, to Lorentz factor {γ }i≈ (5{--}10)× {10}7({γ }e≈ {10}7). The accelerating parallel electric field is shorted out by ion-photon (curvature synchrotron) pair production. With strong, but fairly reasonable, assumptions, a set of general magnetic geometry relativistic wind equations is derived and shown to reduce to conservation relations that are similar to those of the wind from a magnetic monopole. The strength of the field-aligned currents carried by the primary beams is determined by the wind’s Alfvén critical point condition to be about eight times the Goldreich-Julian value. A simple model for the transition from the dipole region wind to the asymptotic monopole wind zone is developed. The asymptotic ratio of Poynting flux to ion (pair plasma) kinetic energy flux—the wind {σ }w∞ -parameter—is found to be of order {σ }w∞ ≈ 1/2({10}4). The far wind zone is likely to be complex, with the ion-dominated and pair-plasma-dominated magnetic stripes merging, and the oppositely directed azimuthal magnetic fields annihilating.

  9. Relativistic Klystron Two-Beam Accelerator studies at the RTA test facility

    International Nuclear Information System (INIS)

    Westenskow, G.A.; Houck, T.L.; Anderson, D.

    1996-01-01

    A prototype rf power source based on the Relativistic Klystron Two- Beam Accelerator (RK-TBA) concept is being constructed at LBNL to study physics, engineering, and costing issues. The prototype, called RTA, is described and compared to a full scale design appropriate for driving the Next Linear Collider. Specific details of the induction core test and pulsed power system are presented. Details of the 1-MeV, 1.2-kA induction gun currently under construction are described

  10. Synchrotron white beam topography studies of SrLaGaO4 crystals

    International Nuclear Information System (INIS)

    Wieteska, K.; Wierzchowski, W.; Graeff, W.; Lefeld-Sosnowska, M.; Pajaczkowska, A.; Wierzbicka, E.; Malinowska, A.

    2005-01-01

    Strontium lantanum gallate SrLaGaO 4 tetragonal single crystal was investigated by white beam synchrotron radiation topography. Projection and section topographs were taken in back reflection and transmission geometry. The central 'core' crystal region was practically free of defects; only one extended 'oval' defect with strong boundary contrast was observed. The strong white-black contrasts connected with elongated volume defects and cracks were observed in surrounding the 'core' region

  11. eBooking of beam-time over internet for beamlines of Indus synchrotron radiation sources

    International Nuclear Information System (INIS)

    Jain, Alok; Verma, Rajesh; Rajan, Alpana; Modi, M.H.; Rawat, Anil

    2015-01-01

    Users from various research labs and academic institutes carry out experiments on beamlines of two Synchrotron Radiation Sources Indus-1 and Indus-2 available at RRCAT, Indore. To carry out experimental work on beamlines of both synchrotron radiation sources, beam-time is booked over Internet by the users of beamlines using user portal designed, developed and deployed over Internet. This portal has made the process of beamtime booking fast, hassle free and paperless as manual booking of beam-time for carrying out experiment on a particular beamline is cumbersome. The portal facilitates in-charge of Indus-1 and Indus-2 beamlines to keep track of users' records, work progress and other activities linked to experiments carried on beamlines. It is important to keep record and provide statistics about the usage of the beam lines from time-to-time. The user portal for e-booking of beam-time has been developed in-house using open source software development tools. Multi-step activities of users and beamline administrators are workflow based with seamless flow of information across various modules and fully authenticated using role based mechanism for different roles of software usage. The software is in regular use since November 2013 and has helped beamline in- charges in efficiently managing various activities related to user registration, booking of beam-time, booking of Guest House, Generation of Security permits, User feedback etc. Design concept, role based authentication mechanism and features provided by the web portal are discussed in detail in this paper. (author)

  12. Development of a relativistic Particle In Cell code PARTDYN for linear accelerator beam transport

    Energy Technology Data Exchange (ETDEWEB)

    Phadte, D., E-mail: deepraj@rrcat.gov.in [LPD, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Patidar, C.B.; Pal, M.K. [MAASD, Raja Ramanna Centre for Advanced Technology, Indore (India)

    2017-04-11

    A relativistic Particle In Cell (PIC) code PARTDYN is developed for the beam dynamics simulation of z-continuous and bunched beams. The code is implemented in MATLAB using its MEX functionality which allows both ease of development as well higher performance similar to a compiled language like C. The beam dynamics calculations carried out by the code are compared with analytical results and with other well developed codes like PARMELA and BEAMPATH. The effect of finite number of simulation particles on the emittance growth of intense beams has been studied. Corrections to the RF cavity field expressions were incorporated in the code so that the fields could be calculated correctly. The deviations of the beam dynamics results between PARTDYN and BEAMPATH for a cavity driven in zero-mode have been discussed. The beam dynamics studies of the Low Energy Beam Transport (LEBT) using PARTDYN have been presented.

  13. Relativistic shock waves and the excitation of plerions

    Energy Technology Data Exchange (ETDEWEB)

    Arons, J. (California Univ., Berkeley, CA (USA)); Gallant, Y.A. (California Univ., Berkeley, CA (USA). Dept. of Physics); Hoshino, Masahiro; Max, C.E. (California Univ., Livermore, CA (USA). Inst. of Geophysics and Planetary Physics); Langdon, A.B. (Lawrence Livermore National Lab., CA (USA))

    1991-01-07

    The shock termination of a relativistic magnetohydrodynamic wind from a pulsar is the most interesting and viable model for the excitation of the synchrotron sources observed in plerionic supernova remnants. We have studied the structure of relativistic magnetosonic shock waves in plasmas composed purely of electrons and positrons, as well as those whose composition includes heavy ions as a minority constituent by number. We find that relativistic shocks in symmetric pair plasmas create fully thermalized distributions of particles and fields downstream. Therefore, such shocks are not good candidates for the mechanism which converts rotational energy lost from a pulsar into the nonthermal synchrotron emission observed in plerions. However, when the upstream wind contains heavy ions which are minority constituent by number density, but carry the bulk of the energy density, much of the energy of the shock goes into a downstream, nonthermal power law distribution of positrons with energy distribution N(E)dE {proportional to}E{sup {minus}s}. In a specific model presented in some detail, s = 3. These characteristics are close to those assumed for the pairs in macroscopic MHD wind models of plerion excitation. The essential mechanism is collective synchrotron emission of left-handed extraordinary modes by the ions in the shock front at high harmonics of the ion cyclotron frequency, with the downstream positrons preferentially absorbing almost all of this radiation, mostly at their fundamental (relativistic) cyclotron frequencies. Possible applications to models of plerions and to constraints on theories of energy loss from pulsars are briefly outlines. 27 refs., 5 figs.

  14. A theory of two-stream instability in two hollow relativistic electron beams

    International Nuclear Information System (INIS)

    Uhm, H.S.

    1993-01-01

    Stability properties of two-stream instability of two hollow electron beams are investigated. The equilibrium configuration consists of two intense relativistic hollow electron beams propagating through a grounded conducting cylinder. Analysis of the longitudinal two-stream instability is carried out within the framework of the linearized Vlasov--Maxwell equations for the equilibrium distribution function, in which beam electrons have a Lorentzian distribution in the axial momentum. Dispersion relation of the longitudinal two-stream instability is derived. Stability criteria from this dispersion relation indicate that the normalized velocity difference Δβ between the beams should be within a certain range of value to be unstable. Growth rate of the instability is a substantial fraction of the real frequency, thereby indicating that the longitudinal two-stream instability is an effective means of beam current modulation. Transverse instability of hollow electron beams is also investigated. Dispersion relation of the coupled transverse oscillation of the beams is derived and numerical investigation of this dispersion relation is carried out. Growth rate of the kink instability is a substantial fraction of the diocotron frequency, which may pose a serious threat to the two-stream klystron

  15. Beam simulation of synchrotron radiation equipment. New method responsive to three dimensional magnetic field

    International Nuclear Information System (INIS)

    Tanaka, Hirofumi

    1999-01-01

    A new numerical analysis method capable of precise modeling of complex three dimensional magnetic field of superconducting wiggler and of long-term beam simulation without destroying property of Hamiltonian dynamics system was developed by using the above-mentioned method. Therefore, a fundamental design of a compact synchrotron radiation equipment with hexagonal column shape was also developed. Its main parameters had 1 GeV in energy, 36 m in circumference, 300 mA in stored current, and 184 nmrad in emittance. So as to enable to research the x-ray and vacuum UV regions, a superconducting wiggler with 7T in magnetic field strength and an undulator were set at straight section. It depends upon if beam around stable region on exciting the superconducting wiggler is wider than the required region whether this type of synchrotron radiation equipment can be realized or not. By using three orbit analysis methods containing the developed one, the circulating stable region was introduced. As a result, although shape of the stable region was different from used methods, it was found that considerably larger stable region was obtained than the required in circulation results of every three methods. That is to say, it was shown that the designed compact equipment can accumulate electron beams stably. (G.K.)

  16. Proposal for the theoretical investigation of the relativistic beam-plasma interaction with application to the proof-of-principle electron beam-heated linear solenoidal reactor

    International Nuclear Information System (INIS)

    Thode, L.E.

    1978-09-01

    A 36-month program to study the linear relativistic electron beam-plasma interaction is proposed. This program is part of a joint proposal between the Physics International Company (PI) and Los Alamos Scientific Laboratory (LASL) that combines the advanced electron beam generator technology at PI with the highly developed computer simulation technology at LASL. The proposed LASL program includes direct support for 1- and 3-m beam-plasma interaction experiments planned at PI and development of theory relevant for design of a 10-m proof-of-principle electron beam-driven linear solenoidal reactor

  17. Influence of two-stream relativistic electron beam parameters on the space-charge wave with broad frequency spectrum formation

    Science.gov (United States)

    Alexander, LYSENKO; Iurii, VOLK

    2018-03-01

    We developed a cubic non-linear theory describing the dynamics of the multiharmonic space-charge wave (SCW), with harmonics frequencies smaller than the two-stream instability critical frequency, with different relativistic electron beam (REB) parameters. The self-consistent differential equation system for multiharmonic SCW harmonic amplitudes was elaborated in a cubic non-linear approximation. This system considers plural three-wave parametric resonant interactions between wave harmonics and the two-stream instability effect. Different REB parameters such as the input angle with respect to focusing magnetic field, the average relativistic factor value, difference of partial relativistic factors, and plasma frequency of partial beams were investigated regarding their influence on the frequency spectrum width and multiharmonic SCW saturation levels. We suggested ways in which the multiharmonic SCW frequency spectrum widths could be increased in order to use them in multiharmonic two-stream superheterodyne free-electron lasers, with the main purpose of forming a powerful multiharmonic electromagnetic wave.

  18. Generation of relativistic electron beam and its anomalous stopping in the fast ignition scheme

    International Nuclear Information System (INIS)

    Sengupta, S.; Sandhu, A.S.; Dharmadhikari, A.K.; Kumar, G.R.; Das, A.; Kaw, P.K.

    2005-01-01

    We present experimental/theoretical results concerning two main physics issues related to the fast ignition scheme viz. the nonlinear mechanism of conversion of incident laser energy into a relativistic electron beam at the critical layer and its subsequent transport through an overdense plasma. Theoretical/numerical modelling of the experimental data, firstly shows that the conversion of the laser energy into an inward propagating electron beam occurs through the nonlinear mechanism of wave breaking of plasma waves excited at the critical layer and, secondly the transport of the electron beam through the overdense plasma is influenced by electrostatically induced and/or turbulence induced anomalous resistivity. (author)

  19. Linear theory of a cold relativistic beam in a strongly magnetized finite-geometry plasma

    International Nuclear Information System (INIS)

    Gagne, R.R.J.; Shoucri, M.M.

    1976-01-01

    The linear theory of a finite-geometry cold relativistic beam propagating in a cold homogeneous finite-geometry plasma, is investigated in the case of a strongly magnetized plasma. The beam is assumed to propagate parallel to the external magnetic field. It is shown that the instability which takes place at the Cherenkov resonance ωapprox. =k/subz/v/subb/ is of the convective type. The effect of the finite geometry on the instability growth rate is studied and is shown to decrease the growth rate, with respect to the infinite geometry, by a factor depending on the ratio of the beam-to-plasma radius

  20. Design study of longitudinal dynamics of the drive beam in 1 TeV relativistic klystron two-beam accelerator

    International Nuclear Information System (INIS)

    Li, H.; Yu, S.S.; Sessler, A.M.

    1994-10-01

    In this paper the authors present a design study on the longitudinal dynamics of a relativistic klystron two-beam accelerator (RK-TBA) scheme which has been proposed as a power source candidate for a 1 TeV next linear collider (NLC). They address the issue of maintaining stable power output at desired level for a 300-m long TBA with 150 extraction cavities and present their simulation results to demonstrate that it can be achieved by inductively detuning the extraction cavities to counter the space charge debunching effect on the drive beam. They then carry out simulation study to show that the beam bunches desired by the RK-TBA can be efficiently obtained by first chopping an initially uniform beam of low energy into a train of beam bunches with modest longitudinal dimension and then using the open-quotes adiabatic captureclose quotes scheme to bunch and accelerate these beam bunches into tight bunches at the operating energy of the drive beam. The authors have also examined the open-quotes after burnerclose quotes scheme which is implemented in their RK-TBA design for efficiency enhancement

  1. The dispersion relation of charge and current compensated relativistic electron beam-plasma system

    International Nuclear Information System (INIS)

    Vrba, P.; Schroetter, J.; Jarosova, P.; Koerbel, S.

    1978-01-01

    The unstable regions of relativistic electron beam-plasma system were determined by analysing the general dispersion relation numerically. The external parameters were varied to ensure more effective instability excitations. The full charge- and current compensation presumptions lead to the new synchronism predictions. The slow space charge wave and slow cyclotron wave of the return current are synchronous with the plasma ion wave. (author)

  2. Diamond monochromator for high heat flux synchrotron x-ray beams

    International Nuclear Information System (INIS)

    Khounsary, A.M.; Smither, R.K.; Davey, S.; Purohit, A.

    1992-12-01

    Single crystal silicon has been the material of choice for x-ray monochromators for the past several decades. However, the need for suitable monochromators to handle the high heat load of the next generation synchrotron x-ray beams on the one hand and the rapid and on-going advances in synthetic diamond technology on the other make a compelling case for the consideration of a diamond mollochromator system. In this Paper, we consider various aspects, advantage and disadvantages, and promises and pitfalls of such a system and evaluate the comparative an monochromator subjected to the high heat load of the most powerful x-ray beam that will become available in the next few years. The results of experiments performed to evaluate the diffraction properties of a currently available synthetic single crystal diamond are also presented. Fabrication of diamond-based monochromator is within present technical means

  3. Aharonov-Bohm effect in cyclotron and synchrotron radiations

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V.G.; Gitman, D.M. E-mail: gitman@fma.if.usp.br; Levin, A.; Tlyachev, V.B

    2001-07-02

    We study the impact of Aharonov-Bohm solenoid on the radiation of a charged particle moving in a constant uniform magnetic field. With this aim in view, exact solutions of Klein-Gordon and Dirac equations are found in the magnetic-solenoid field. Using such solutions, we calculate exactly all the characteristics of one-photon spontaneous radiation both for spinless and spinning particle. Considering non-relativistic and relativistic approximations, we analyze cyclotron and synchrotron radiations in detail. Radiation peculiarities caused by the presence of the solenoid may be considered as a manifestation of Aharonov-Bohm effect in the radiation. In particular, it is shown that new spectral lines appear in the radiation spectrum. Due to angular distribution peculiarities of the radiation intensity, these lines can in principle be isolated from basic cyclotron and synchrotron radiation spectra.

  4. Aharonov-Bohm effect in cyclotron and synchrotron radiations

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Gitman, D.M.; Levin, A.; Tlyachev, V.B.

    2001-01-01

    We study the impact of Aharonov-Bohm solenoid on the radiation of a charged particle moving in a constant uniform magnetic field. With this aim in view, exact solutions of Klein-Gordon and Dirac equations are found in the magnetic-solenoid field. Using such solutions, we calculate exactly all the characteristics of one-photon spontaneous radiation both for spinless and spinning particle. Considering non-relativistic and relativistic approximations, we analyze cyclotron and synchrotron radiations in detail. Radiation peculiarities caused by the presence of the solenoid may be considered as a manifestation of Aharonov-Bohm effect in the radiation. In particular, it is shown that new spectral lines appear in the radiation spectrum. Due to angular distribution peculiarities of the radiation intensity, these lines can in principle be isolated from basic cyclotron and synchrotron radiation spectra

  5. Plasma heating in a long solenoid by a laser or a relativistic electron beam

    International Nuclear Information System (INIS)

    Tajima, T.

    1975-01-01

    Advances in the technology of a large energy laser and/or relativistic electron beam (REB) generator have made it possible to seriously consider a long solenoid reactor concept. This concept has been reviewed. The physical problems in the plasma heating of the long solenoid by a laser or a REB are studied

  6. SHORT-RANGE WAKEFIELD IN A FLAT PILLBOX CAVITY GENERATED BY A SUB-RELATIVISTIC BEAM BUNCH

    International Nuclear Information System (INIS)

    WANG, H.; PALMER, R.B.; GALLARDO, J.

    2001-01-01

    The short-range wakefield between two parallel conducting plates generated by a sub-relativistic beam bunch has been solved analytically by the image charge method in time domain. Comparing with the traditional modal analysis in frequency domain, this algorithm simplifies the mathematics and reveals in greater details the physics of electromagnetic field generation, propagation, reflection and causality. The calculated results have an excellent agreement with MAFIA and ABC1 simulations in all range of beam velocities

  7. MIRKO - An interactive program for beam lines and synchrotrons

    International Nuclear Information System (INIS)

    Franczak, B.

    1984-01-01

    The ion-optical design of beam lines and synchrotrons is usually not done by a single run of one program. It takes many iterations of calculation, examination of results, and modification of input data. In most cases the first order design has to be followed by the investigation of higher order effects, i.e. chromatic and geometrical aberrations or resonance phenomena. The interactive computer program MIRKO is operated from a terminal and has a command structure, which enables the user to edit data, perform calculations, and to obtain alpha or graphics output on the terminal in any desired sequence. With graphics one can recognize the properties of an optical system much faster than with numbers only. Thus modifications of input data depending on the results of calculations can be made easily without stopping and restarting the program. Higher order effects can sometimes influence the first order design. Therefore, particle tracking capability was included in MIRKO as well as the calculation of stop band widths for synchrotrons. Consequently a large variety of phenomena can be studied with one program in one session based upon exactly the same data for the optical system and the possibility of fast switching between the different features

  8. Atmospheric Signatures and Effects of Space-based Relativistic Electron Beam Injection

    Science.gov (United States)

    Marshall, R. A.; Sanchez, E. R.; Kero, A.; Turunen, E. S.; Marsh, D. R.

    2017-12-01

    Future relativistic electron beam injection experiments have the potential to provide groundbreaking insights into the physics of wave-particle interactions and beam-neutral interactions, relevant to space physics and to fundamental plasma physics. However, these experiments are only useful if their signatures can be detected. In this work, we use a physics-based forward modeling framework to investigate the observable signatures of a relativistic beam interacting with the upper atmosphere. The modeling framework is based around the Electron Precipitation Monte Carlo (EPMC) model, used to simulate electron precipitation in the upper atmosphere. That model is coupled to physics-based models of i) optical emission production; ii) bremsstrahlung photon production and propagation; iii) D-region ion chemistry; and iv) VLF wave propagation in the Earth-ionosphere waveguide. Using these modeling tools, we predict the optical, X-ray, chemical, radar, and VLF signatures of a realistic beam injection, based on recent space-based accelerator designs. In particular, we inject a beam pulse of 10 mA for a duration of 500 μs at an energy of 1 MeV, providing a total pulse energy of 5 J. We further investigate variations in these parameters, in particular the total energy and the electron energy. Our modeling shows that for this 5 J pulse injection at 1 MeV electron energy, the optical signal is easily detectable from the ground in common emission bands, but the X-ray signal is likely too weak to be seen from either balloons or LEO orbiting spacecraft. We further predict the optical signal-to-noise ratio that would be expected in different optical systems. Chemical signatures such as changes to NOx and HOx concentrations are too short-lived to be detectable; however our modeling provides a valuable estimate of the total chemical response. Electron density perturbations should be easily measurable from ground-based high-power radars and via VLF subionospheric remote sensing

  9. SOFT: a synthetic synchrotron diagnostic for runaway electrons

    Science.gov (United States)

    Hoppe, M.; Embréus, O.; Tinguely, R. A.; Granetz, R. S.; Stahl, A.; Fülöp, T.

    2018-02-01

    Improved understanding of the dynamics of runaway electrons can be obtained by measurement and interpretation of their synchrotron radiation emission. Models for synchrotron radiation emitted by relativistic electrons are well established, but the question of how various geometric effects—such as magnetic field inhomogeneity and camera placement—influence the synchrotron measurements and their interpretation remains open. In this paper we address this issue by simulating synchrotron images and spectra using the new synthetic synchrotron diagnostic tool SOFT (Synchrotron-detecting Orbit Following Toolkit). We identify the key parameters influencing the synchrotron radiation spot and present scans in those parameters. Using a runaway electron distribution function obtained by Fokker-Planck simulations for parameters from an Alcator C-Mod discharge, we demonstrate that the corresponding synchrotron image is well-reproduced by SOFT simulations, and we explain how it can be understood in terms of the parameter scans. Geometric effects are shown to significantly influence the synchrotron spectrum, and we show that inherent inconsistencies in a simple emission model (i.e. not modeling detection) can lead to incorrect interpretation of the images.

  10. Synchrotron radiation research

    International Nuclear Information System (INIS)

    Markus, N.

    1995-01-01

    In the many varied application fields of accelerators, synchrotron radiation ranks as one of the most valuable and widely useful tools. Synchrotron radiation is produced in multi-GeV electron synchrotrons and storage rings, and emerges tangentially in a narrow vertical fan. Synchrotron radiation has been used extensively for basic studies and, more recently, for applied research in the chemical, materials, biotechnology and pharmaceutical industries. Initially, the radiation was a byproduct of high energy physics laboratories but the high demand soon resulted in the construction of dedicated electron storage rings. The accelerator technology is now well developed and a large number of sources have been constructed, with energies ranging from about 1.5 to 8 GeV including the 6 GeV European Synchrotron Radiation Facility (ESRF) source at Grenoble, France. A modern third-generation synchrotron radiation source has an electron storage ring with a complex magnet lattice to produce ultra-low emittance beams, long straights for 'insertion devices', and 'undulator' or 'wiggler' magnets to generate radiation with particular properties. Large beam currents are necessary to give high radiation fluxes and long beam lifetimes require ultra high vacuum systems. Industrial synchrotron radiation research programmes use either Xray diffraction or spectroscopy to determine the structures of a wide range of materials. Biological and pharmaceutical applications study the functions of various proteins. With this knowledge, it is possible to design molecules to change protein behaviour for pharmaceuticals, or to configure more active proteins, such as enzymes, for industrial processes. Recent advances in molecular biology have resulted in a large increase in protein crystallography studies, with researchers using crystals which, although small and weakly diffracting, benefit from the high intensity. Examples with commercial significance include the study of

  11. System for detecting neutrons in the harsh radiation environment of a relativistic electron beam

    International Nuclear Information System (INIS)

    Kruse, L.W.

    1978-06-01

    Newly developed detectors and procedures allow measurement of neutron yield and energy in the harsh radiation environment of a relativistic electron beam source. A new photomultiplier tube design and special gating methods provide the basis for novel time-of-flight and total-yield detectors. The technique of activation analysis is expanded to provide a neutron energy spectrometer. There is a demonstrated potential in the use of the integrated system as a valuable diagnostic tool to study particle-beam fusion, intense ion-beam interactions, and pulsed neutron sources for simulating weapons effects. A physical lower limit of 10 8 neutrons into 4π is established for accurate and meaningful measurements in the REB environment

  12. Propagation of high power electromagnetic beam in relativistic magnetoplasma: Higher order paraxial ray theory

    Science.gov (United States)

    Gill, Tarsem Singh; Kaur, Ravinder; Mahajan, Ranju

    2010-09-01

    This paper presents an analysis of self-consistent, steady-state, theoretical model, which explains the ring formation in a Gaussian electromagnetic beam propagating in a magnetoplasma, characterized by relativistic nonlinearity. Higher order terms (up to r4) in the expansion of the dielectric function and the eikonal have been taken into account. The condition for the formation of a dark and bright ring derived earlier by Misra and Mishra [J. Plasma Phys. 75, 769 (2009)] has been used to study focusing/defocusing of the beam. It is seen that inclusion of higher order terms does significantly affect the dependence of the beam width on the distance of propagation. Further, the effect of the magnetic field and the nature of nonlinearity on the ring formation and self-focusing of the beam have been explored.

  13. Propagation of high power electromagnetic beam in relativistic magnetoplasma: Higher order paraxial ray theory

    International Nuclear Information System (INIS)

    Gill, Tarsem Singh; Kaur, Ravinder; Mahajan, Ranju

    2010-01-01

    This paper presents an analysis of self-consistent, steady-state, theoretical model, which explains the ring formation in a Gaussian electromagnetic beam propagating in a magnetoplasma, characterized by relativistic nonlinearity. Higher order terms (up to r 4 ) in the expansion of the dielectric function and the eikonal have been taken into account. The condition for the formation of a dark and bright ring derived earlier by Misra and Mishra [J. Plasma Phys. 75, 769 (2009)] has been used to study focusing/defocusing of the beam. It is seen that inclusion of higher order terms does significantly affect the dependence of the beam width on the distance of propagation. Further, the effect of the magnetic field and the nature of nonlinearity on the ring formation and self-focusing of the beam have been explored.

  14. Beam transfer between the coupled cavity linac and the low energy booster synchrotron for the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Bhandari, R.K.; Penner, S.

    1990-09-01

    Ion optical design of the transfer line, which will be used to inject H - beam at 600 MeV from the Coupled Cavity Linac (CCL) into the Low Energy Booster (LEB) synchrotron, is described. Space charge effects of up to 50 mA average beam current have been taken into account

  15. Biophysical characterization of a relativistic proton beam for image-guided radiosurgery.

    Science.gov (United States)

    Yu, Zhan; Vanstalle, Marie; La Tessa, Chiara; Jiang, Guo-Liang; Durante, Marco

    2012-07-01

    We measured the physical and radiobiological characteristics of 1 GeV protons for possible applications in stereotactic radiosurgery (image-guided plateau-proton radiosurgery). A proton beam was accelerated at 1 GeV at the Brookhaven National Laboratory (Upton, NY) and a target in polymethyl methacrylate (PMMA) was used. Clonogenic survival was measured after exposures to 1-10 Gy in three mammalian cell lines. Measurements and simulations demonstrate that the lateral scattering of the beam is very small. The lateral dose profile was measured with or without the 20-cm plastic target, showing no significant differences up to 2 cm from the axis A large number of secondary swift protons are produced in the target and this leads to an increase of approximately 40% in the measured dose on the beam axis at 20 cm depth. The relative biological effectiveness at 10% survival level ranged between 1.0 and 1.2 on the beam axis, and was slightly higher off-axis. The very low lateral scattering of relativistic protons and the possibility of using online proton radiography during the treatment make them attractive for image-guided plateau (non-Bragg peak) stereotactic radiosurgery.

  16. Biophysical characterization of a relativistic proton beam for image-guided radiosurgery

    International Nuclear Information System (INIS)

    Yu, Z.; Vanstalle, M.; La Tessa, C.; Durante, M.; Jiang Guoliang

    2012-01-01

    We measured the physical and radiobiological characteristics of 1 GeV protons for possible applications in stereotactic radiosurgery (image-guided plateau-proton radiosurgery). A proton beam was accelerated at 1 GeV at the Brookhaven National Laboratory (Upton, NY) and a target in polymethyl methacrylate (PMMA) was used. Clonogenic survival was measured after exposures to 1-10 Gy in three mammalian cell lines. Measurements and simulations demonstrate that the lateral scattering of the beam is very small. The lateral dose profile was measured with or without the 20-cm plastic target, showing no significant differences up to 2 cm from the axis A large number of secondary swift protons are produced in the target and this leads to an increase of approximately 40% in the measured dose on the beam axis at 20 cm depth. The relative biological effectiveness at 10% survival level ranged between 1.0 and 1.2 on the beam axis, and was slightly higher off-axis. The very low lateral scattering of relativistic protons and the possibility of using online proton radiography during the treatment make them attractive for image-guided plateau (non-Bragg peak) stereotactic radiosurgery. (author)

  17. Nonlinear two-stream interaction between a cold, relativistic electron beam and a collisional plasma-Astron experiment

    International Nuclear Information System (INIS)

    Newberger, B.S.; Thode, L.E.

    1979-05-01

    Experiments on the two-stream instability of a relativistic electron beam propagating through a neutral gas, carried out with the Lawrence Livermore Laboratory Astron beam, have been analyzed using a nonlinear saturation model for a cold beam. The behavior of the observed microwave emission due to the instability is in good agreement with that of the beam energy loss. Collisions on the plasma electrons weaken the nonlinear state of the instability but do not stabilize the mode. The beam essentially acts as if it were cold, a result substantiated by linear theory for waves propagating along the beam. In order to predict the effect of both beam momentum scatter and plasma electron collisions on the stability of the mode in future experiments a full two-dimensional linear theory must be developed

  18. Far-field interaction of focused relativistic electron beams in electron energy loss spectroscopy of nanoscopic platelets

    OpenAIRE

    Itskovsky, M. A.; Cohen, H.; Maniv, T.

    2008-01-01

    A quantum mechanical scattering theory for relativistic, highly focused electron beams near nanoscopic platelets is presented, revealing a new excitation mechanism due to the electron wave scattering from the platelet edges. Radiative electromagnetic excitations within the light cone are shown to arise, allowed by the breakdown of momentum conservation along the beam axis in the inelastic scattering process. Calculated for metallic (silver and gold) and insulating (SiO2 and MgO) nanoplatelets...

  19. Beam commissioning of the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    Directory of Open Access Journals (Sweden)

    H. Hotchi

    2009-04-01

    Full Text Available The 3-GeV rapid cycling synchrotron (RCS of the Japan Proton Accelerator Research Complex (J-PARC was commissioned in October 2007, and successfully accomplished 3 GeV acceleration on October 31. Six run cycles through February 2008 were dedicated to commissioning the RCS, for which the initial machine parameter tuning and various underlying beam studies were completed. Then since May 2008 the RCS beam has been delivered to the downstream facilities for their beam commissioning. In this paper we describe beam tuning and study results following our beam commissioning scenario and a beam performance and operational experience obtained in the first commissioning phase through June 2008.

  20. Ponderomotive and weakly relativistic self-focusing of Gaussian laser beam in plasma: Effect of light absorption

    Energy Technology Data Exchange (ETDEWEB)

    Patil, S. D., E-mail: sdpatilphy@gmail.com [Department of Physics, Devchand College, Arjunnagar, Dist.: Kolhapur 591 237 (India); Takale, M. V. [Department of Physics, Shivaji University, Kolhapur 416 004 (India)

    2016-05-06

    This paper presents an influence of light absorption on self-focusing of laser beam propagation in plasma. The differential equation for beam-width parameter is obtained using the Wentzel-Kramers-Brillouin and paraxial approximations through parabolic equation approach. The nonlinearity in dielectric function is assumed to be aroused due to the combined effect of weakly relativistic and ponderomotive regime. To highlight the nature of propagation, behavior of beam-width parameter with dimensionless distance of propagation is presented graphically and discussed. The present work is helpful to understand issues related to the beam propagation in laser plasma interaction experiments where light absorption plays a vital role.

  1. Calculation of high power relativistic beams with consideration of collision effects

    International Nuclear Information System (INIS)

    Sveshnikov, V.M.

    1986-01-01

    This paper considers the numerical calculation of relativistic charged particle beams moving in axisymmetric systems in which the presence of a residual neutral gas is possible. It is essential to consider phenomena related to collisions between charged particles and neutrals. Algorithms are constructed for numerical modeling of ionization processes within the framework of the ERA program complex. Solutions of model and practical problems are presented as examples. Such problems were studied where ionization processes were considered by a more complex method requiring a greater volume of calculations but valid at lower pressures

  2. Longitudinal waves and a beam instability in a relativistic anisotropic plasma

    International Nuclear Information System (INIS)

    Onishchenko, O.G.

    1981-01-01

    Dispersion relations are derived for longitudinal waves in a relativistic plasma with an arbitrary anisotropic particle distribution function. Longitudinal waves with phase velocity lower than the speed of light are shown to exist in such a plasma. The damping rate of longitudinal waves due to the Cerenkov interaction with plasma particles is derived for such a plasma. The instability of a beam of high-energy particles in such a plasma is studied. As the anisotropy of an ultrarelativistic plasma becomes less pronounced, the maximum hydrodynamic growth rate decreases

  3. Optics measurement and correction during beam acceleration in the Relativistic Heavy Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-09-09

    To minimize operational complexities, setup of collisions in high energy circular colliders typically involves acceleration with near constant β-functions followed by application of strong focusing quadrupoles at the interaction points (IPs) for the final beta-squeeze. At the Relativistic Heavy Ion Collider (RHIC) beam acceleration and optics squeeze are performed simultaneously. In the past, beam optics correction at RHIC has taken place at injection and at final energy with some interpolation of corrections into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats which if corrected could minimize undesirable emittance dilutions and maximize the spin polarization of polarized proton beams by avoidance of higher-order multipole fields sampled by particles within the bunch. In this report the methodology now operational at RHIC for beam optics corrections during acceleration with simultaneous beta-squeeze will be presented together with measurements which conclusively demonstrate the superior beam control. As a valuable by-product, the corrections have minimized the beta-beat at the profile monitors so reducing the dominant error in and providing more precise measurements of the evolution of the beam emittances during acceleration.

  4. Light source for synchrotron radiation x-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL)

    International Nuclear Information System (INIS)

    Zhao Jiyong; Jiang Jianhua; Tian Yulian

    1992-01-01

    Characteristics of the synchrotron radiation source for X-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL) is described, local geometrical resolution of topographies is discussed, and the diffracting intensities of white beam topography is given

  5. Collective acceleration of electrons and ions in a high current relativistic electron beam. Final report

    International Nuclear Information System (INIS)

    Nation, J.A.

    1996-01-01

    The original purpose of this research was an investigation into the use of slow space charge waves on weakly relativistic electron beams for ion acceleration. The work had three main objectives namely, the development of a suitable ion injector, the growth and study of the properties of slow space charge waves on an electron beam, and a combination of the two components parts into a suitable proof of principle demonstration of the wave accelerator. This work focusses on the first two of these objectives

  6. Study of quantum spin correlations of relativistic electron pairs - Testing nonlocality of relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Bodek, K.; Rozpędzik, D.; Zejma, J.; Caban, P.; Rembieliński, J.; Włodarczyk, M.; Ciborowski, J.; Enders, J.; Köhler, A.; Kozela, A.

    2013-01-01

    The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass

  7. Interaction of an intense relativistic electron beam with full density air

    International Nuclear Information System (INIS)

    Murphy, D.P.; Pechacek, R.E.; Raleigh, M.; Oliphant, W.F.; Meger, R.A.

    1987-01-01

    The authors report on a study of plasma generation by direct deposition of energy from an intense relativistic electron beam (REB) into full density air. It has been postulated that a sufficiently intense REB can fully ionize the air and produce a 2 eV plasma with Spitzer conductivity. The REB is produced from a field emission diode driven by either the Gamble I or Gamble II generator. Gamble I can produce a 0.60 MV, 300 kA, 50 ns REB and Gamble II can produce a 2.0 MV, 1.0 MA, 50 ns REB. The REB was injected into a short diagnostic cell containing full density air and up to a 14 kG solenoidal magnetic field. The diagnostics include beam and net current measurements, x-ray and visible photography and visible light spectroscopy

  8. All-optical time-resolved measurement of laser energy modulation in a relativistic electron beam

    Directory of Open Access Journals (Sweden)

    D. Xiang

    2011-11-01

    Full Text Available We propose and demonstrate an all-optical method to measure laser energy modulation in a relativistic electron beam. In this scheme the time-dependent energy modulation generated from the electron-laser interaction in an undulator is converted into time-dependent density modulation with a chicane, which is measured to infer the laser energy modulation. The method, in principle, is capable of simultaneously providing information on femtosecond time scale and 10^{-5} energy scale not accessible with conventional methods. We anticipate that this method may have wide applications in many laser-based advanced beam manipulation techniques.

  9. Sextupole correction of the longitudinal transport of relativistic beams in dispersionless translating sections

    Directory of Open Access Journals (Sweden)

    R. J. England

    2005-01-01

    Full Text Available We examine the use of sextupole magnets to correct nonlinearities in the longitudinal phase space transformation of a relativistic beam of charged particles in a dispersionless translating section, or dogleg. Through heuristic analytical arguments and examples derived from recent experimental efforts, augmented by simulations using the particle tracking codes PARMELA and ELEGANT, sextupole corrections are found to be effective in optimizing the use of such structures for beam compression or for shaping the current profile of the beam, by manipulation of the second-order longitudinal dispersion. Recent experimental evidence of the use of sextupoles to manipulate second-order horizontal and longitudinal dispersion of the beam is presented. The theoretical and experimental results indicate that these manipulations can be used to create an electron bunch with a current profile having a long ramp followed by a sharp cutoff, which is optimal for driving large-amplitude wake fields in a plasma wake field accelerator.

  10. Design of inductively detuned RF extraction cavities for the Relativistic Klystron Two Beam Accelerator

    International Nuclear Information System (INIS)

    Henestroza, E.; Yu, S.S.; Li, H.

    1995-04-01

    An inductively detuned traveling wave cavity for the Relativistic Klystron Two Beam Accelerator expected to extract high RF power at 11. 424 GHz for the 1 TeV Center of Mass Next Linear Collider has been designed. Longitudinal beam dynamics studies led to the following requirements on cavity design: (a) Extraction of 360 MW of RF power with RF component of the current being 1.15 kAmps at 11.424 GHz, (b) Inductively detuned traveling wave cavity with wave phase velocity equal to 4/3 the speed of light, (c) Output cavity with appropriate Q ext and eigenfrequency for proper matching. Furthermore, transverse beam dynamics require low shunt impedances to avoid the beam break-up instability. We describe the design effort to meet these criteria based on frequency-domain and time-domain computations using 2D- and 3D- electromagnetic codes

  11. Impact of the Wiggler Coherent Synchrotron Radiation Impedance on the Beam Instability

    International Nuclear Information System (INIS)

    Wu, Juhao

    2003-01-01

    Coherent Synchrotron Radiation (CSR) can play an important role by not only increasing the energy spread and emittance of a beam, but also leading to a potential instability. Previous studies of the CSR induced longitudinal instability were carried out for the CSR impedance due to dipole magnets. However, many storage rings include long wigglers where a large fraction of the synchrotron radiation is emitted. This includes high-luminosity factories such as DAPHNE, PEP-II, KEK-B, and CESR-C as well as the damping rings of future linear colliders. In this paper, the instability due to the CSR impedance from a wiggler is studied assuming a large wiggler parameter K. The primary consideration is a low frequency microwave-like instability, which arises near the pipe cut-off frequency. Detailed results are presented on the growth rate and threshold for the damping rings of several linear collider designs. Finally, the optimization of the relative fraction of damping due to the wiggler systems is discussed for the damping rings

  12. Technique of infrared synchrotron acceleration diagnostics

    International Nuclear Information System (INIS)

    Mal'tsev, A.A.; Mal'tsev, M.A.

    1997-01-01

    Techniques of measuring of current and geometric parameters and evaluating of energy parameters of the ring bunch of relativistic low-energy electrons have been presented. They have been based on using the synchrotron radiation effect in its infrared spectral part. Fast infrared detectors have provided radiation detection in the spectral range Δλ ≅ 0.3-45 μm. The descriptions of some data monitoring and measuring systems developed in JINR for the realization of techniques of the infrared synchrotron acceleration diagnostics have been given. Infrared optics elements specially developed have been used in these systems

  13. Limitations on plasma acceleration due to synchrotron losses

    International Nuclear Information System (INIS)

    Barletta, W.A.; Lee, E.P.; Bonifacio, R.; De Salvo, L.

    1999-01-01

    In this letter we consider the effect of synchrotron radiation losses due to the betatron motion of the electron beam in its self-induced magnetic field in a plasma accelerator taking into account the charge neutralization factor. The most favorable case is where the plasma density is smaller than the beam density. The contrary regime is strongly disfavored by the synchrotron radiation loss for beams with characteristics for TeV energies. In both cases we find that upon increasing the plasma density the synchrotron losses kill the acceleration process, so that there are limitations on the maximum allowable plasma density

  14. Relativistic self-focusing of ultra-high intensity X-ray laser beams in warm quantum plasma with upward density profile

    International Nuclear Information System (INIS)

    Habibi, M.; Ghamari, F.

    2014-01-01

    The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration of the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam

  15. Research using synchrotron radiation at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1982-01-01

    The National Synchrotron Light Source (NSLS) is now becoming operational with synchrotron radiation experiments beginning on the 700 MeV VUV electron storage ring. Commissioning of the 2.5 GeV x-ray storage ring has also begun with the experimental program expected to begin in 1983. The current status of the experimental program and instrumentation and the plans for future developments, will be discussed. Although some early results have been obtained on VUV beam lines no attempt will be made in this paper to describe them. Instead, an overview of the beam line characteristics will be given, with an indication of those already operational. In the oral presentation some initial experimental results will be discussed

  16. Heating of a plasma by a powerful relativistic electron beam in a strong magnetic field

    International Nuclear Information System (INIS)

    Arzhannikov, A.V.; Brejzman, B.N.; Vyacheslavov, L.N.; Kojdan, V.S.; Konyukhov, V.V.; Ryutov, D.D.

    1975-01-01

    The results of an experimental investigation into the interaction of a powerful relativistic electron beam with plasma in the INAR apparatus are presented. The relativistic electron beam had initial energy of 1 MeV, maximum injection current of 10 kA, duration of 70 ns, and diameter of 2 cm. The total beam energy at entry into the plasma was approximately 300 J. The beam was injected into the column of a hydrogen plasma 230 cm long, 8 cm in diameter, and with a density of 3x10 14 cm -3 . The magnetic field had mirror-trap geometry (mirror ratio 1.7, intensity in the uniform region up to 15 kOe). In the experiments various diagnostic methods were used, making it possible to measure the beam current, the total current within the plasma, the total energy of the beam entering and leaving the plasma, and the distribution of beam current over the cross-section at the plasma outlet; the energy content of the plasma was determined from diamagnetic measurements; the electron distribution function was analysed by the method of Thomson scattering of light at 90 0 . From an analysis of the shape of the diamagnetic signals and distribution of diamagnetism along the length of the apparatus it was established that under the assumption of predominant electron heating, the temperature of plasma electrons in order of magnitude equals 1 keV for a plasma density of 5x10 13 cm -3 . The cause of heating cannot be dissipation of the reversed current. Thomson scattering of laser radiation indicated the presence of a comparatively cold plasma component with a temperature of 25 eV. High-energy electrons moving from the opposite direction toward the beam were recorded; their appearance evidently was associated with acceleration of plasma electrons in the induction fields. Mechanisms which can provide effective heating of the whole mass of electrons under conditions in which pair collisions are minor are indicated. (author)

  17. CORNELL: Synchrotron 25

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    A recent celebration marked the twenty-fifth anniversary of the Cornell Electron Synchrotron. The major milestone in the commissioning of the synchrotron was on October 11, 1967 when Helen Edwards, Boyce McDaniel, and Maury Tigner achieved a 7 GeV beam, a worldrecord energy for electron synchrotrons at that time. Like so many advances in experimental physics, this occurred early in the morning - 3 a.m.! The transition from accelerator commissioning to high energy physics operation was extremely rapid; 7 GeV operation for data collection was routine just five weeks later. Throughout its life as a source of photon and electron beams for fixed target experiments, the synchrotron maintained energy leadership for circular electron machines. Originally designed for operation at 10 GeV, eventually it consistently provided beams for experiments at energies up to 11.6 GeV. It now operates at 5 GeV, serving as the injector for the CESR electron-positron storage ring. Robert Wilson was director of the laboratory during the design and most of the construction of the machine. He left near the end of the construction to become the first director of Fermilab and was replaced by Boyce McDaniel, who guided the laboratory from the completion of the synchrotron to the construction and early operation of CESR. Wilson recalled how the laboratory had originally proposed a 3 GeV turnkey machine to be built entirely by industry and would fit in the space previously occupied by earlier Cornell accelerators. However, members of the laboratory realized that 3 GeV would not open new physics frontiers, that the construction of the accelerator was much of the fun of doing high energy physics experiments, and that a more challenging project was needed. This led to the proposal for the 10 GeV synchrotron which was built in the ''Cornell Style'' with many of the components fabricated and nearly all of the assembly done at Cornell

  18. CORNELL: Synchrotron 25

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-03-15

    A recent celebration marked the twenty-fifth anniversary of the Cornell Electron Synchrotron. The major milestone in the commissioning of the synchrotron was on October 11, 1967 when Helen Edwards, Boyce McDaniel, and Maury Tigner achieved a 7 GeV beam, a worldrecord energy for electron synchrotrons at that time. Like so many advances in experimental physics, this occurred early in the morning - 3 a.m.! The transition from accelerator commissioning to high energy physics operation was extremely rapid; 7 GeV operation for data collection was routine just five weeks later. Throughout its life as a source of photon and electron beams for fixed target experiments, the synchrotron maintained energy leadership for circular electron machines. Originally designed for operation at 10 GeV, eventually it consistently provided beams for experiments at energies up to 11.6 GeV. It now operates at 5 GeV, serving as the injector for the CESR electron-positron storage ring. Robert Wilson was director of the laboratory during the design and most of the construction of the machine. He left near the end of the construction to become the first director of Fermilab and was replaced by Boyce McDaniel, who guided the laboratory from the completion of the synchrotron to the construction and early operation of CESR. Wilson recalled how the laboratory had originally proposed a 3 GeV turnkey machine to be built entirely by industry and would fit in the space previously occupied by earlier Cornell accelerators. However, members of the laboratory realized that 3 GeV would not open new physics frontiers, that the construction of the accelerator was much of the fun of doing high energy physics experiments, and that a more challenging project was needed. This led to the proposal for the 10 GeV synchrotron which was built in the ''Cornell Style'' with many of the components fabricated and nearly all of the assembly done at Cornell.

  19. The Imaging and Medical Beam Line at the Australian Synchrotron

    Science.gov (United States)

    Hausermann, Daniel; Hall, Chris; Maksimenko, Anton; Campbell, Colin

    2010-07-01

    As a result of the enthusiastic support from the Australian biomedical, medical and clinical communities, the Australian Synchrotron is constructing a world-class facility for medical research, the `Imaging and Medical Beamline'. The IMBL began phased commissioning in late 2008 and is scheduled to commence the first clinical research programs with patients in 2011. It will provide unrivalled x-ray facilities for imaging and radiotherapy for a wide range of research applications in diseases, treatments and understanding of physiological processes. The main clinical research drivers are currently high resolution and sensitivity cardiac and breast imaging, cell tracking applied to regenerative and stem cell medicine and cancer therapies. The beam line has a maximum source to sample distance of 136 m and will deliver a 60 cm by 4 cm x-ray beam1—monochromatic and white—to a three storey satellite building fully equipped for pre-clinical and clinical research. Currently operating with a 1.4 Tesla multi-pole wiggler, it will upgrade to a 4.2 Tesla device which requires the ability to handle up to 21 kW of x-ray power at any point along the beam line. The applications envisaged for this facility include imaging thick objects encompassing materials, humans and animals. Imaging can be performed in the range 15-150 keV. Radiotherapy research typically requires energies between 30 and 120 keV, for both monochromatic and broad beam.

  20. Coherent effects in relativistic electron beams radiation in the presence of beat waves; Kogerentnye ehffekty v izluchenii relyativistskogo ehlektronnogo sgustka pri nalichii voln bienij

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgyan, L A; Shamamian, A N

    1992-12-31

    The problem of relativistic electron beam-laser beat waves interaction is considered. Due to interaction the electron density is changed as opposed to the case, when it interacts with still electron plasma, the change of density gets less. But it is interesting to research the coherent spontaneous radiation of the electron beam interacting with. It is shown that this interaction brings to an increase of the partial coherent effect. The radiation efficiency depends essentially on the beam parameters, i.e. on the radio of the distinctive longitudinal dimension density. The maximum amplification takes place when the beam length makes room for an odd number of wave length quarters. Since the gain factor decreases with the radiation wave length, we offer to use high-current relativistic electron beams to generate micro radio waves. 4 refs.

  1. Brain tumors and synchrotron radiation: new methods for mini-beams radiation therapy and treatment follow-up by functional imaging

    International Nuclear Information System (INIS)

    Deman, P.

    2012-01-01

    An innovative method of synchrotron radiation therapy, called mini-beams, was proposed by A. Dilmanian et al. in 2006. Mini-beams consists in tumor irradiation with monochromatic sub-millimetric x-ray beams spatially fractionated produced by a synchrotron source. To obtain a homogeneous dose in the target volume, an interleaving is realized using two orthogonal incidences. Adjacent healthy tissue is only partially irradiated by mini-beams, the areas between the beams only receive scattered radiation and therefore the energy deposited is 10 to 15 times lower than on one mini-beam axis, leading to a sparing effect of healthy tissue even when a high dose is deposited in the target volume. The thesis project is the development of this experimental method of monochromatic mini-beams, which involves the control of the irradiation geometry, the control of dosimetry and its modeling by Monte Carlo simulations. To evaluate the method, preclinical experiments on models of brain tumors implanted in rats (F98) are performed. Follow-up by anatomical and functional imaging is carried out to evaluate the effectiveness of the treatment. Functional imaging of cerebral perfusion (volume and cerebral blood flow, mean transit time of heavy elements) appears to be associated in the literature as a relevant method for monitoring prognostic. The key parameters of the cerebral vasculature are mainly studied in magnetic resonance imaging (MRI), because of the harmlessness of this imaging modality. The relation between MRI signal and contrast agent concentration is very complex and no quantitative relationship is well known. Synchrotron Radiation Computed Tomography (SRCT) is an imaging modality with performances to measure absolute contrast agent concentration very close to the theoretical limits and can be used as gold-standard. The used pharmacokinetic models need as input parameters a contrast agent concentration versus time. A comparison of perfusion measurements between MRI and SRCT

  2. Synchrotron white beam topography studies of SrLaGaO{sub 4} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wieteska, K. [Institute of Atomic Energy, 05-400 Otwock-Swierk (Poland); Wierzchowski, W. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland)]. E-mail: wierzc_w@sp.itme.edu.pl; Graeff, W. [HASYLAB at DESY, Notkestr. 85, 22603 Hamburg (Germany); Lefeld-Sosnowska, M. [Institute of Experimental Physics, University of Warsaw, Hoza 69, 00-681 Warsaw (Poland); Pajaczkowska, A. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Wierzbicka, E. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Institute of Experimental Physics, University of Warsaw, Hoza 69, 00-681 Warsaw (Poland); Malinowska, A. [Institute of Experimental Physics, University of Warsaw, Hoza 69, 00-681 Warsaw (Poland); Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland)

    2005-09-29

    Strontium lantanum gallate SrLaGaO{sub 4} tetragonal single crystal was investigated by white beam synchrotron radiation topography. Projection and section topographs were taken in back reflection and transmission geometry. The central 'core' crystal region was practically free of defects; only one extended 'oval' defect with strong boundary contrast was observed. The strong white-black contrasts connected with elongated volume defects and cracks were observed in surrounding the 'core' region.

  3. Space charge effect measurements for a multi-channel ionization chamber used for synchrotron radiation

    International Nuclear Information System (INIS)

    Nasr, Amgad

    2012-01-01

    In vivo coronary angiography is one of the techniques used to investigate the heart diseases, by using catheter to inject a contrast medium of a given absorption coefficient into the heart vessels. Taking X-ray images produced by X-ray tube or synchrotron radiation for visualizing the blood in the coronary arteries. As the synchrotron radiation generated by the relativistic charged particle at the bending magnets, which emits high intensity photons in comparison with the X-ray tube. The intensity of the synchrotron radiation is varies with time. However for medical imaging it's necessary to measure the incoming intensity with the integrated time. The thesis work includes building a Multi-channel ionization chamber which can be filled with noble gases N 2 , Ar and Xe with controlled inner pressure up to 30 bar. This affects the better absorption efficiency in measuring the high intensity synchrotron beam fluctuation. The detector is a part of the experimental setup used in the k-edge digital subtraction angiography project, which will be used for correcting the angiography images taken by another detector at the same time. The Multi-channel ionization chamber calibration characteristics are measured using 2 kW X-ray tube with molybdenum anode with characteristic energy of 17.44 keV. According to the fast drift velocity of the electrons relative to the positive ions, the electrons will be collected faster at the anode and will induce current signals, while the positive ions is still drifting towards the cathode. However the accumulation of the slow ions inside the detector disturbs the homogeneous applied electric field and leads to what is known a space charge effect. In this work the space charge effect is measured with very high synchrotron photons intensity from EDR beam line at BESSYII. The strong attenuation in the measured amplitude signal occurs when operating the chamber in the recombination region. A plateau is observed at the amplitude signal when

  4. Chaotic behavior in a relativistic electron beam interacting with a transverse slow electromagnetic wave

    International Nuclear Information System (INIS)

    Serbeto, A.; Alves, M.V.

    1993-01-01

    Using a nonlinear set of equations which describes the excitation of a purely transverse slow electromagnetic wave by a relativistic electron beam, it is shown that the system runs from chaotic behavior to a regular stable state due to crisis phenomenon and from stabilized soliton and repeated stabilized explosive solutions to a temporal chaos. These behaviors suggest that the primary mechanism for the saturation of the explosive instability is not only the cubic nonlinear frequency shift as pointed out by many authors until now. The inclusion of the velocity perturbation in the beam charge initial equilibrium state leads the system to these strange behaviors. (author)

  5. Experimental investigation of dynamic pressure in a cryosorbing beam tube exposed to synchrotron radiation

    International Nuclear Information System (INIS)

    Anashin, V.V.; Malyshev, O.B.; Osipov, V.N.; Maslennikov, I.L.; Turner, W.C.

    1994-06-01

    Results of photodesorption experiments on a 4.2-K beam tube irradiated with synchrotron radiation from the VEPP-2M storage ring are being reported. The experiments have been performed on SSC1 and SSC2 beamlines. Synchrotron radiation parameters of the SSC1 beamline are the same as the SSCL 20 TeV proton collider; critical energy = 284 eV, photon intensity 1·10 16 photons/m/s. Photon intensity of the SSC2 beamline is eight times higher than intensity of the SSC1 beamline. We have used two experimental configurations to observe the density increase due to: (1) photodesorption of tightly bound molecules not previously desorbed and (2) photodesorption of weakly bound cryosorbed molecules. The two configurations used were a simple 4.2-K beam tube and a 4.2-K tube with a coaxial perforated liner. The photo-desorption coefficient of tightly bound H 2 measured on the SSC1 beamline was observed to decrease monotonically with photon exposure, reaching η4·10 -4 molecules per photon at the end of exposure (∼1·10 22 photons/m). The same experiment on the SSC2 beamline gave a similar result at photon dose 3.5·10 22 photons/m. The photodesorption coefficient of cryosorbed H 2 increased with increasing H 2 surface density, reaching η'σ w ∼7 molecules/photon at one monolayer surface density (s m ∼3·10 15 H 2 /cm 2 ), where σ w is the sticking coefficient. The liner was shown to effectively shield cryosorbed molecules from synchrotron radiation

  6. The impact of coherent synchrotron radiation on the beam transport of short bunches

    International Nuclear Information System (INIS)

    Li, R.

    1999-01-01

    Designs for next-generation accelerator, such as future linear colliders and short-wavelength FEL drivers, require beams of short (mm-length or smaller) bunches and high charge (nC-regime). As such a high charge microbunch traverses magnetic bends, the curvature effect on the bunch self-interaction, by way of coherent synchrotron radiation (CSR) and space charge force, may cause serious emittance degradation. This impact of CSR on the beam transport of short bunches has raised significant concern in the design of future machines and led to extensive investigations. This paper reviews some of the recent progress in the understanding of the CSR effect, presents analysis of and computational work on the CSR impact on short bunch transport, and addresses remaining issues

  7. Common analysis of the relativistic klystron and the standing-wave free-electron laser two-beam accelerator

    International Nuclear Information System (INIS)

    Wurtele, J.S.; Whittum, D.H.; Sessler, A.M.

    1992-07-01

    This paper summarizes a new formalism which makes the analysis and understanding of both the relativistic klystron (RK) and the standing-wave free-electron laser (SWFEL) two-beam accelerator (TBA) available to a wide audience of accelerator physicists. A ''coupling impedance'' for both the RK and SWFEL is introduced, which can include realistic cavity features, such as beam and vacuum ports, in a simple manner. The RK and SWFEL macroparticle equations, which govern the energy and phase evolution of successive bunches in the beam, are of identical form, differing only by multiplicative factors. The analysis allows, for the first time, a relative comparison of the RF and SWFEL TBAs

  8. Study on intense relativistic electron beam propagation in a low density collisionless plasma

    International Nuclear Information System (INIS)

    Korenev, S.A.; Rubin, N.B.; Khodataev, K.V.

    1982-01-01

    The results of investigations into the increase in effectivity of transport of an intensive relativistic electron beam (IREB) in a collisionless plasma of low density are presented. The electron beam with the current of 1.5 kA, energy of 300 keV, radius of 1.5 cm is in ected into a plasma channel 180 cm long which is a metallic cylinder covered with a biniplast layer from inside 0.5 cm thickness on which there is a metallic net from the vacuum side. Plasma production is carried out during the supply of voltage pulse to the net. A condition of the optimum IREB distribution is found. It is sohwn that self-focusing IREB transport in plasma of low density can be effective if equilibrium conditions are carried out in plasma with the concentration of electrons less (or equal) to the concentration of electrons in a beam

  9. Electromagnetic Coupling Between High Intensity LHC Beams and the Synchrotron Radiation Monitor Light Extraction System

    CERN Document Server

    Andreazza, W; Bravin, E; Caspers, F; Garlasch`e, M; Gras, J; Goldblatt, A; Lefevre, T; Jones, R; Metral, E; Nosych, A; Roncarolo_, F; Salvant, B; Trad, G; Veness, R; Vollinger, C; Wendt, M

    2013-01-01

    The CERN LHC is equipped with two Synchrotron Radiation Monitor (BSRT) systems used to characterise transverse and longitudinal beam distributions. Since the end of the 2011 LHC run the light extraction system, based on a retractable mirror, has suffered deformation and mechanical failure that is correlated to the increase in beam intensity. Temperature probes have associated these observations to a strong heating of the mirror support with a dependence on the longitudinal bunch length and shape, indicating the origin as electromagnetic coupling between the beam and the structure. This paper combines all this information with the aim of characterising and improving the system in view of its upgrade during the current LHC shutdown. Beam-based observations are presented along with electromagnetic and thermomechanical simulations and complemented by laboratory measurements, including the study of the RF properties of different mirror bulk and coating materials.

  10. Optical and mechanical design of the extended x-ray absorption fine structure (EXAFS) beam-line at Indus-II synchrotron source

    International Nuclear Information System (INIS)

    Das, N.C.; Jha, S.N.; Bhattacharyya, D.; Sinha, A.K.; Mishra, V.K.; Verma, Vishnu; Ghosh, A.K.

    2002-11-01

    An extended x-ray absorption fine structure (EXAFS) beam line for x-ray absorption studies using energy dispersive geometry and position sensitive detector is being designed for the INDUS-II Synchrotron source. The beam line would be used for doing x-ray absorption experiments involving measurements of fme structures above the absorption edge of different species of atoms in a material The results of the above experiments would lead to the determination of different important structural parameters of materials viz.. inter-atomic distance. co-ordination number, degree of disorder and radial distribution function etc. The optical design of the beam line has been completed based on the working principle that a single crystal bent in the shape of an ellipse by a crystal bender would act as a dispersing as well as focusing element. The mechanical design of the beam line including the crystal bender has also been completed and discussed here. Calculations have been done to detennine the temperature profile on the different components of the beam line under exposure to synchrotron radiation and proper cooling channels have been designed to bring down the heat load on the components. (author)

  11. Spin dynamics in electron synchrotrons; Spindynamik in Elektronensynchrotronen

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Jan Felix

    2017-07-14

    Providing spin polarized particle beams with circular accelerators requires the consideration of depolarizing resonances which may significantly reduce the desired degree of polarization at specific beam energies. The corresponding spin dynamical effects are typically analyzed with numerical methods. In case of electron beams the influence of the emission of synchrotron radiation has to be taken into account. On short timescales, as in synchrotrons with a fast energy ramp or in damping rings, spin dynamics are investigated with spin tracking algorithms. This thesis presents the spin tracking code Polematrix as a versatile tool to study the impact of synchrotron radiation on spin dynamics. Spin tracking simulations have been performed based on the well established particle tracking code Elegant. The numerical studies demonstrate effects which are responsible for beam depolarization: Synchrotron side bands of depolarizing resonances and decoherence of spin precession. Polematrix can be utilized for any electron accelerator with minimal effort as it imports lattice files from the tracking programs MAD-X or Elegant. Polematrix has been published as open source software. Currently, the Electron Stretcher Accelerator ELSA at Bonn University is the only electron synchrotron worldwide providing a polarized beam. Integer and intrinsic depolarizing resonances are compensated with dedicated countermeasures during the fast energy ramp. Polarization measurements from ELSA demonstrate the particular spin dynamics of electrons and confirm the results of the spin tracking code Polematrix.

  12. Development of a 2 MW relativistic backward wave oscillator

    Indian Academy of Sciences (India)

    In this paper, a high power relativistic backward wave oscillator (BWO) experiment is reported. A 230 keV, 2 kA, 150 ns relativistic electron beam is generated using a Marx generator. The beam is then injected into a hollow rippled wall metallic cylindrical tube that forms a slow wave structure. The beam is guided using an ...

  13. Electromagnetic computer simulations of collective ion acceleration by a relativistic electron beam

    International Nuclear Information System (INIS)

    Galvez, M.; Gisler, G.R.

    1988-01-01

    A 2.5 electromagnetic particle-in-cell computer code is used to study the collective ion acceleration when a relativistic electron beam is injected into a drift tube partially filled with cold neutral plasma. The simulations of this system reveals that the ions are subject to electrostatic acceleration by an electrostatic potential that forms behind the head of the beam. This electrostatic potential develops soon after the beam is injected into the drift tube, drifts with the beam, and eventually settles to a fixed position. At later times, this electrostatic potential becomes a virtual cathode. When the permanent position of the electrostatic potential is at the edge of the plasma or further up, then ions are accelerated forward and a unidirectional ion flow is obtained otherwise a bidirectional ion flow occurs. The ions that achieve higher energy are those which drift with the negative potential. When the plasma density is varied, the simulations show that optimum acceleration occurs when the density ratio between the beam (n b ) and the plasma (n o ) is unity. Simulations were carried out by changing the ion mass. The results of these simulations corroborate the hypothesis that the ion acceleration mechanism is purely electrostatic, so that the ion acceleration depends inversely on the charge particle mass. The simulations also show that the ion maximum energy increased logarithmically with the electron beam energy and proportional with the beam current

  14. Design of x-ray diagnostic beam line for a synchrotron radiation source and measurement results

    Energy Technology Data Exchange (ETDEWEB)

    Garg, Akash Deep, E-mail: akash-deep@rrcat.gov.in; Karnewar, A.K.; Ojha, A.; Shrivastava, B.B.; Holikatti, A.C.; Puntambekar, T.A.; Navathe, C.P.

    2014-08-01

    Indus-2 is a 2.5 GeV synchrotron radiation source (SRS) operational at the Raja Ramanna Centre for Advanced Technology (RRCAT) in India. We have designed, developed and commissioned x-ray diagnostic beam line (X-DBL) at the Indus-2. It is based on pinhole array imaging (8–18 keV). We have derived new equations for online measurements of source position and emission angle with pinhole array optics. Measured values are compared with the measurements at an independent x-ray beam position monitor (staggered pair blade monitor) installed in the X-DBL. The measured values are close to the theoretical expected values within ±12 µm (or ±1.5 μrad) for sufficiently wide range of the beam movements. So, beside the beam size and the beam emittance, online information for the vertical position and angle is also used in the orbit steering. In this paper, the various design considerations of the X-DBL and online measurement results are presented.

  15. Transverse beam splitting made operational: Key features of the multiturn extraction at the CERN Proton Synchrotron

    Directory of Open Access Journals (Sweden)

    A. Huschauer

    2017-06-01

    Full Text Available Following a successful commissioning period, the multiturn extraction (MTE at the CERN Proton Synchrotron (PS has been applied for the fixed-target physics programme at the Super Proton Synchrotron (SPS since September 2015. This exceptional extraction technique was proposed to replace the long-serving continuous transfer (CT extraction, which has the drawback of inducing high activation in the ring. MTE exploits the principles of nonlinear beam dynamics to perform loss-free beam splitting in the horizontal phase space. Over multiple turns, the resulting beamlets are then transferred to the downstream accelerator. The operational deployment of MTE was rendered possible by the full understanding and mitigation of different hardware limitations and by redesigning the extraction trajectories and nonlinear optics, which was required due to the installation of a dummy septum to reduce the activation of the magnetic extraction septum. This paper focuses on these key features including the use of the transverse damper and the septum shadowing, which allowed a transition from the MTE study to a mature operational extraction scheme.

  16. Conceptual design of the Relativistic Heavy Ion Collider: RHIC

    International Nuclear Information System (INIS)

    1986-05-01

    The complete Relativistic Heavy Ion Collider (RHIC) facility will be a complex set of accelerators and beam transfer equipment connecting them. A significant portion of the total facility either exists or is under construction. Two existing Tandem Van de Graaff accelerators will serve for the initial ion acceleration. Ions with a charge of -1 would be accelerated from ground to +15 MV potential, pass through a stripping foil, and accelerate back to ground potential, where they would pass through a second stripping foil. From there the ions will traverse a long transfer line to the AGS tunnel and be injected into the Booster accelerator. The Booster accelerates the ion bunch, and then the ions pass through one more stripper and then enter the Alternating Gradient Synchrotron (AGS), where they are accelerated to the top AGS energy and transferred to the collider. Bending and focusing of ion beams is to be achieved by superconducting magnets. The physics goals behind the RHIC are enumerated, particularly as regards the study of quark matter and the characteristics of high energy nucleus-nucleus collisions. The design of the collider and all its components is described, including the injector, the lattice, magnet system, cryogenic and vacuum systems, beam transfer, injection, and dump, rf system, and beam instrumentation and control system. Also given are cost estimates, construction schedules, and a management plan

  17. Radiative interaction of a focused relativistic electron beam in energy-loss spectroscopy of nanoscopic platelets

    International Nuclear Information System (INIS)

    Itskovsky, M. A.; Maniv, T.; Cohen, H.

    2008-01-01

    A quantum-mechanical scattering theory for relativistic, highly focused electron beams in the vacuum near nanoscopic platelets is presented, revealing an excitation mechanism due to the electron wave scattering from the platelet edges. Radiative electromagnetic excitations within the light cone are shown to arise, allowed by the breakdown of momentum conservation along the beam axis in the inelastic-scattering process. Calculated for metallic (silver and gold) and insulating (SiO 2 and MgO) nanoplatelets, radiative features are revealed above the main surface-plasmon-polariton peak, and dramatic enhancements in the electron-energy-loss probability at gaps of the 'classical' spectra are found. The corresponding radiation should be detectable in the vacuum far-field zone, with e beams exploited as sensitive 'tip detectors' of electronically excited nanostructures

  18. Report of the Synchrotron Radiation Vacuum Workshop

    International Nuclear Information System (INIS)

    Avery, R.T.

    1984-06-01

    The Synchrotron Radiation Vacuum Workshop was held to consider two vacuum-related problems that bear on the design of storage rings and beam lines for synchrotron radiation facilities. These problems are gas desorption from the vacuum chamber walls and carbon deposition on optical components. Participants surveyed existing knowledge on these topics and recommended studies that should be performed as soon as possible to provide more definitive experimental data on these topics. This data will permit optimization of the final design of the Advanced Light Source (ALS) and its associated beam lines. It also should prove useful for other synchrotron radiation facilities as well

  19. Interaction of high-current relativistic electron beams with plasma. Physical nature of the phenomenon and its application in microwave electronics

    International Nuclear Information System (INIS)

    Rukhadze, A.A.

    1981-01-01

    Pulsed high-current electron beams with characteristic parameters: electron energy 10 5 -10 7 eV, electron current 10 3 -10 6 A, pulse duration 10 -8 -10 -6 s, beam energy 10 2 -10 6 J and power 10 8 -10 13 W, are widely used in different branches of science and technology such as controlled thermonuclear fusion, relativistic microwave electronics, powerful semiconductors, chemical and gaseous lasers, new principles of heavy-ion acceleration, and long-distance energy transmission. The paper discusses a new branch of science - pulsed high-current electronics, which has its own experimental technique and methods of theoretical analysis. Parts I and II determine what is meant by ''high current'' in an electron beam and calculate the maximum obtainable current values; these calculations are made for the simplest geometrical configurations realizable in practice. Current methods for theoretical analysis of high-current electron beam physics are described, together with classification of current experimental devices for generating such beams according to high-current parameters. The stability of electron beams is discussed and the concept of critical currents is introduced. Part III gives a detailed account of plasma-beam instability which occurs on the interaction of a high-current electron beam with high-density space-limited plasma. The linear and non-linear stages of beam instability are considered. The given theory is used for calculations for amplifiers and microwave generators of electromagnetic radiation. Finally, the experimental achievements in high-current relativistic microwave electronics are reviewed. (author)

  20. Using short silicon crystals for beam extraction and collimation at U-70 proton synchrotron

    International Nuclear Information System (INIS)

    Afonin, A.G.; Baranov, V.T.; Biryukov, V.M.; Kotov, V.I.; Maisheev, V.A.; Terekhov, V.I.; Troyanov, E.F.; Fedotov, Yu.S.; Chepegin, V.N.; Chesnonkov, Yu.A.

    2002-01-01

    Results of investigations into escape and collimation of proton beams at the IHEP U-70 synchrotron with the application of short flexed silicon monocrystals in length 2 - 4 mm are demonstrated. Good agreement between the measured and calculated efficiency of the flexed crystal is available. Lowering efficiency with the decreasing proton energy is explained by growth of root-mean-square angle of the multiple Coulomb scattering and drop of dechanneling length [ru

  1. Chaotic phase oscillation of a proton beam in a synchrotron

    International Nuclear Information System (INIS)

    Li Fei; Hai Wenhua; Ren Zhongzhou; Shu Weixing

    2006-01-01

    We investigate the chaotic phase oscillation of a proton beam in a cooler synchrotron. By using direct perturbation method, we construct the general solution of the 1st-order equation. It is demonstrated that the general solution is bounded under some initial and parameter conditions. From these conditions, we get a Melnikov function which predicts the existence of Smale-horseshoe chaos iff it has simple zeros. Our result under the 1st-order approximation is in good agreement with that in [H. Huang et al., Phys. Rev. E 48 (1993) 4678]. When the perturbation method is not suitable for the system, numerical simulation shows the system may present transient chaos before it goes into periodical oscillation; changing the damping parameter can result in or suppress stationary chaos

  2. Pierce-type dispersion relation for an intense relativistic electron beam interacting with a slow-wave structure

    International Nuclear Information System (INIS)

    Chen, C.

    1994-01-01

    A Pierce-type dispersion relation is derived for the interaction of an intense relativistic electron beam with a cylindrical slow-wave structure of arbitrary corrugation depth. It is shown that near a resonance, the Pierce parameter can be expressed in terms of the vacuum dispersion function and the beam current. The dispersion relation is valid in both the low-current (Compton) regime and the high-current (Raman) regime. The dispersion characteristics of the interaction, such as the linear instability growth rate and bandwidth, are analyzed for both regimes

  3. Radiation dominated relativistic current sheets

    International Nuclear Information System (INIS)

    Jaroschek, C.H.

    2008-01-01

    Relativistic Current Sheets (RCS) feature plasma instabilities considered as potential key to magnetic energy dissipation and non-thermal particle generation in Poynting flux dominated plasma flows. We show in a series of kinetic plasma simulations that the physical nature of non-linear RCS evolution changes in the presence of incoherent radiation losses: In the ultra-relativistic regime (i.e. magnetization parameter sigma = 104 defined as the ratio of magnetic to plasma rest frame energy density) the combination of non-linear RCS dynamics and synchrotron emission introduces a temperature anisotropy triggering the growth of the Relativistic Tearing Mode (RTM). As direct consequence the RTM prevails over the Relativistic Drift Kink (RDK) Mode as competitive RCS instability. This is in contrast to the previously studied situation of weakly relativistic RCS (sigma ∼ 1) where the RDK is dominant and most of the plasma is thermalized. The simulations witness the typical life cycle of ultra-relativistic RCS evolving from a violent radiation induced collapse towards a radiation quiescent state in rather classical Sweet-Parker topology. Such a transition towards Sweet-Parker configuration in the late non-linear evolution has immediate consequences for the efficiency of magnetic energy dissipation and non-thermal particle generation. Ceasing dissipation rates directly affect our present understanding of non-linear RCS evolution in conventional striped wind scenarios. (author)

  4. Parallel beam microradiography of dental hard tissue using synchrotron radiation and X-ray image magnification

    International Nuclear Information System (INIS)

    Takagi, S.; Chow, L.C.; Brown, W.E.; Dobbyn, R.C.; Kuriyama, M.

    1984-01-01

    A novel technique utilizing a highly parallel beam of monochromatic synchrotron radiation combined with X-ray image magnification has been used to obtain microradiographs of caries lesions in relatively thick tooth sections. Preliminary results reveal structural features not previously reported. This technique holds the promise of allowing one to follow the structural changes accompanying the formation, destruction and chemical repair of mineralized tissue in real time. (orig.)

  5. Efficiency evaluation of slow extraction from the synchrotron

    International Nuclear Information System (INIS)

    Kazarinov, N.Yu.; Mikhajlov, V.A.

    1986-01-01

    Analytical calculation of slow extraction of the beam out of the JINR synchrotron is made. The formulae for evaluation of the sextupole amplitudes and phases, quadrupole lens gradient range are obtained, the connection with circulated and extracted beam parameters is shown. The formulae for calculating optimal position of the septum-magnet or electrostatic septum are presented. On this basis the formula for estimating the efficiency of beam slow extraction out of the synchrotron is obtained under assumption that in the septum region during the extraction a quasistationary distribution of the beam density occurs

  6. Design of a wire imaging synchrotron radiation detector

    International Nuclear Information System (INIS)

    Kent, J.; Gomez-Cadenas, J.J.; Hogan, A.; King, M.; Rowe, W.; Watson, S.; Von Zanthier, C.; Briggs, D.D.; Levi, M.

    1990-01-01

    This paper documents the design of a detector invented to measure the positions of synchrotron radiation beams for the precision energy spectrometers of the Stanford Linear Collider (SLC). The energy measurements involve the determination, on a pulse-by-pulse basis, of the separation of pairs of intense beams of synchrotron photons in the MeV energy range. The detector intercepts the beams with arrays of fine wires. The ejection of Compton recoil electrons results in charges being developed in the wires, thus enabling a determination of beam positions. 10 refs., 4 figs

  7. Transport and interaction of a relativistic electron beam in low pressure neutral gases

    International Nuclear Information System (INIS)

    Iyyengar, S.K.; Rohatgi, V.K.

    1989-01-01

    A numerical study of the transport of a 0.27-MeV, 6.6-kA, 40-ns relativistic electron beam in argon and hydrogen in the pressure range of 0.01--1.0 Torr taking into account charge and current neutralization effects is presented. Ionization by avalanching and by beam and plasma electrons is included in the calculation of plasma density buildup. Plasma heating resulting from return current heating and two-stream instability is taken into account. The computed results of charge transport, net current, and breakdown time are compared with experimental results obtained in this laboratory. The results are in reasonable agreement with the experiment and show a maximum charge transport of 75% at the optimum pressure of 0.1 and 0.6 Torr in argon and hydrogen, respectively. The calculations indicate beam-generated plasma parameters of 10 19 --10 20 m -3 density and 1--5 eV electron temperature

  8. Limitations of heavy ion synchrotron acceleration for inertial fusion

    International Nuclear Information System (INIS)

    Berley, D.; Danby, G.T.

    1977-01-01

    The potential benefits from heavy ion inertial fusion motivate the rapid development of a program to test the principle. To define the program, accelerator parameters which have not hitherto been commonly considered must be studied interactively with basic questions of space charge limitations and charge exchange. Beam lifetime and power output efficiency may ultimately lead to a linear accelerator as the choice for an ignition device. For proof of principle, however, at power levels way beyond present inertial fusion experience, synchrotrons may have applicability at lower cost. The power and energy which can be delivered by the accelerating system to the reaction chamber are limited by space charge defocussing and intra beam charge exchange scattering, both of which are beam density dependent. These put constraints on linac injector energy, synchrotron aperture, synchrotron magnetic rigidity, acceleration time, ion species and charge to mass ratio. The accelerator system considered is classical. A linear accelerator injects into a synchrotron which accelerates the ion beam to the full energy delivered to the target. The maximum energy deliverable by a synchrotron is treated in section I. The targetting parameters and the energy gained through synchrotron acceleration completely determine the synchrotron aperture. These are discussed in sections II and III. The ion range in material is treated in section IV. The problem of intrabeam scattering is considered in section V. Finally, in section VI is a discussion of examples to meet specified goals

  9. Generation of highly collimated high-current ion beams by skin-layer laser-plasma interaction at relativistic laser intensities

    International Nuclear Information System (INIS)

    Badziak, J.; Jablonski, S.; Glowacz, S.

    2006-01-01

    Generation of fast ion beams by laser-induced skin-layer ponderomotive acceleration has been studied using a two-dimensional (2D) two-fluid relativistic computer code. It is shown that the key parameter determining the spatial structure and angular divergence of the ion beam is the ratio d L /L n , where d L is the laser beam diameter and L n is the plasma density gradient scale length. When d L >>L n , a dense highly collimated megaampere ion (proton) beam of the ion current density approaching TA/cm 2 can be generated by skin-layer ponderomotive acceleration, even with a tabletop subpicosecond laser

  10. DESY: Synchrotron and storage rings

    CERN Multimedia

    1972-01-01

    An improvement programme has been under way for several years at the 7.5 GeV électron synchrotron at DESY. In particular it has been designed to increase the accelerated beam intensity, to achieve better quality of the ejected électron beams and photon beams and to improve machine reliability.

  11. Heating of a plasma by a powerful relativistic electron beam in a strong magnetic field

    International Nuclear Information System (INIS)

    Arzhannikov, A.V.; Brejzman, B.N.; Vyacheslavov, L.N.; Kojdan, V.S.; Konyukhov, V.V.; Ryutov, D.D.

    1975-01-01

    The results of an experimental investigation into the interaction of a powerful relativistic electron beam with plasma in the INAR apparatus are presented. The relativistic electron beam had initial energy of 1 MeV, maximum injection current of 10 kA, duration of 70 ns, and diameter of 2 cm. The total beam energy at entry into the plasma was approximately 300 J. The beam was injected into the column of a hydrogen plasma 230 cm long, 8 cm in diameter, and with a density of 3 x 10 14 cm -3 . The magnetic field had mirror-trap geometry (mirror ratio 1.7, intensity in the uniform portion up to 15 kOe). In the experiments, various diagnostic methods were used, making it possible to measure the beam current, the total current within the plasma, the total energy of the beam entering and leaving the plasma, and the distribution of beam current over the cross-section at the plasma outlet; opposing high-energy electrons were recorded. The density of the preliminary plasma was controlled during the experiment; the energy content of the plasma was determined from diamagnetic measurements; the electron distribution function was analysed by the method of Thomson scattering of light at 90deg. From an analysis of the shape of the diamagnetic signals and distribution of diamagnetism along the length of the apparatus it was established that under the assumption of predominant electron heating, the temperature of plasma electrons in order of magnitude equals 1 keV for a plasma density of 5 x 10 13 cm -3 . The cause of heating cannot be dissipation of the reversed current. According to Thomson scattering of laser radiation, the authors established the presence of a comparatively cold plasma component with temperature of 25 eV. High-energy electrons moving from the opposite direction toward the beam were recorded; their appearance evidently was associated with acceleration of plasma electrons in the induction fields. Mechanisms which can provide effective heating of the whole mass of

  12. X-ray emission from BL Lac objects: Comparison to the synchrotron self-Compton models

    International Nuclear Information System (INIS)

    Schwartz, D.A.; Madejski, G.; Ku, W.H.-M.

    1982-01-01

    As one part of our joint study of the X-ray properties of BL Lac objects, the authors compare the measured X-ray flux densities with those predicted using the synchrotron self-Compton (SSC) formalism (Jones et al. 1974). Naive application of the formalism predicts X-ray fluxes from 10 -3 to 10 5 those observed. They therefore ask what we can learn by simply assuming the SSC mechanism, and looking for ways to reconcile the observed and measured X-ray fluxes. This paper reports investigation of beaming factors due to relativistic ejection of a radiation source which is isotropic in its own rest frame. The authors conclude that large Lorentz factors, GAMMA approximately > 10, do not apply to BL Lac objects as a class. (Auth.)

  13. Radiative interaction of a focused relativistic electron beam in energy-loss spectroscopy of nanoscopic platelets

    Science.gov (United States)

    Itskovsky, M. A.; Cohen, H.; Maniv, T.

    2008-07-01

    A quantum-mechanical scattering theory for relativistic, highly focused electron beams in the vacuum near nanoscopic platelets is presented, revealing an excitation mechanism due to the electron wave scattering from the platelet edges. Radiative electromagnetic excitations within the light cone are shown to arise, allowed by the breakdown of momentum conservation along the beam axis in the inelastic-scattering process. Calculated for metallic (silver and gold) and insulating ( SiO2 and MgO) nanoplatelets, radiative features are revealed above the main surface-plasmon-polariton peak, and dramatic enhancements in the electron-energy-loss probability at gaps of the “classical” spectra are found. The corresponding radiation should be detectable in the vacuum far-field zone, with e beams exploited as sensitive “tip detectors” of electronically excited nanostructures.

  14. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    Science.gov (United States)

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.

  15. Transfer and focusing of high current relativistic electron beams on a target

    International Nuclear Information System (INIS)

    Baranchikov, E.I.; Gordeev, A.V.; Koba, Yu.V.; Korolev, V.D.; Penkina, V.S.; Rudakov, L.I.; Smirnov, V.P.; Sukhov, A.D.; Tarumov, E.Z.; Bakshaeev, Yu.L.

    Research is being conducted at the I. V. Kurchatov Atomic Energy Institute to investigate possibilities of creating a pulsed thermonuclear reactor based on REBs; this work involves the creation of a multimodel system using vacuum lines for transferring energy and an acute angled external magnetic field for transferring electron beams to the target. A field of this configuration can be used at the same time for accumulating a ''cloud'' of relativistic protons around the target for purposes of irradiating them. This alternative solution of the problem of target irradiation, instead of focusing beams directly on it, may prove to be highly promising. Experiments are described which were conducted recently on high current electron accelerators ''URAL'', ''MS'' and others and which were directed at investigating possibilities of transferring and focusing high current REBs, as well as effective transmission of electromagnetic energy using vacuum lines at considerable distances

  16. Space-charge calculations in synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Machida, S.

    1993-05-01

    One obvious bottleneck of achieving high luminosity in hadron colliders, such as the Superconducting Super Collider (SSC), is the beam emittance growth, due to space-charge effects in low energy injector synchrotrons. Although space-charge effects have been recognized since the alternating-gradient synchrotron was invented, and the Laslett tune shift usually calculated to quantify these effects, our understanding of the effects is limited, especially when the Laslett tune shift becomes a large fraction of the integer. Using the Simpsons tracking code, which we developed to study emittance preservation issues in proton synchrotrons, we investigated space-charge effects in the SSC Low Energy Booster (LEB). We observed detailed dependence on parameters such as beam intensity, initial emittance, injection energy, lattice function, and longitudinal motion. A summary of those findings, as well as the tracking technique we developed for the study, are presented.

  17. A precision synchrotron radiation detector using phosphorescent screens

    International Nuclear Information System (INIS)

    Jung, C.K.; Lateur, M.; Nash, J.; Tinsman, J.; Butler, J.; Wormser, G.

    1990-01-01

    A precision detector to measure synchrotron radiation beam positions has been designed and installed as part of beam energy spectrometers at the Stanford Linear Collider (SLC). The distance between pairs of synchrotron radiation beams is measured absolutely to better than 28 μm on a pulse-to-pulse basis. This contributes less than 5 MeV to the error in the measurement of SLC beam energies (approximately 50 GeV). A system of high-resolution video cameras viewing precisely aligned fiducial wire arrays overlaying phosphorescent screens has achieved this accuracy. 3 refs., 5 figs., 1 tab

  18. Beam Characterisation of the Australian Synchrotron Imaging and medical beamline for microbeam radiotherapy research

    International Nuclear Information System (INIS)

    Gagliardi, F.M.; Midgley, S.; Lewis, R.A.; Ackerly, T.L.

    2010-01-01

    Full text: Microbeam radiotherapy (MRT) has been developed at synchrotrons around the world over the last two decades. Previous studies have shown normal tissue to be extremely tolerant to MRT at doses normally considered toxic in conventional radiotherapy whilst having a palliative and even curative effect on animal tumours. Our MRT research team has attempted to characterise the beam spectrum of the imaging and medical beamline (TMBL) at the Australian Synchrotron. We also carried out film dosimetry to quantify the peak-to-valley dose ratio for three fixed geometry MRT collimators. The source of X-rays on the IMBL is a 1.4 T wiggler at a distance of 20 m from the sample stage. In vacuo and in-air metal absorbers were used to remove soft X-rays hardening the beam to between 30 and 160 keY. Filters used were 1.5 mm C, 2.5 mm AI, 0.5 mm Be and 0.75 mm Cu. Free air ion chamber measurements and half value layer measurements in conjunction with predictions from a theoretical model based upon a spectrum calculator derived a mean energy of the microbeam of 57 keV with a half value layer of approximately 0.29 mm Cu. The measured air kerma rate was 120 Gy/s. Measurements of the MRT beams created with tungsten/kapton multi-slit collimators on radiographic films were compared with Monte Carlo simulations of the microbeam arrays. The peak-to-valley-dose ratios were found to be 3-4 times lower than predicted by the Monte Carlo model. Imperfections in the manufacturing of the collimators may explain the observed discrepancy. (author)

  19. A Project Of The 2.5 Gev Booster-synchrotron In Binp

    CERN Document Server

    Barbashin, V M; Kremyanskaya, E V; Kvardakov, V A; Levichev, E B; Mishnev, S I; Skrinsky, A N; Smaluk, V V

    2004-01-01

    A project of the 2.5 GeV booster synchrotron to provide effective injection of electron and positron beams into VEPP-2000 and VEPP-4M storage rings, and for future facilities, is developing in BINP. The beams are injected to synchrotron at 510 MeV energy from a damping ring, which is the part of the new injection facility [1]. Small transverse size of the beam extracted from the damping ring allows us to design the synchrotron with rather small acceptance. Therefore, the aperture can be reduced essentially, which also decreases dimensions of the magnets and their power-consuming. In this report, the synchrotron parameters are presented, the basic systems are briefly described.

  20. Synchrotron Radiation in Biology and Medicine

    International Nuclear Information System (INIS)

    Pelka, J.B.

    2008-01-01

    This work is focused on a present status of synchrotron radiation X-ray applications in medicine and biology to imaging, diagnostics, and radio- therapy. Properties of X-ray beams generated by synchrotron sources are compared with radiation produced by classical laboratory X-ray tubes. A list of operating and planned synchrotron facilities applicable to biomedical purposes is given, together with their basic characteristics. A concise overview of typical X-ray synchrotron techniques in biology and medicine is carried out with discussion of their specific properties and examples of typical results. (author)

  1. Novel probe for determining the size and position of a relativistic electron beam

    International Nuclear Information System (INIS)

    Orzechowski, T.J.; Koehler, H.; Edwards, W.; Nelson, M.; Marshall, B.

    1984-01-01

    In order to determine the size and position of a relativistic electron beam inside the wiggler magnetic field of a Free Electron Laser (FEL), we have developed a new probe which intercepts the electron beam on a high Z target and monitors the resulting bremsstrahlung radiation. The probe is designed to move along the entire three meters of the wiggler. This FEL is designed to operate in the microwave region (2 to 8 mm) and the interaction region is an oversized waveguide with a cross section 3 cm x 9.8 cm. The axial probe moves inside this waveguide. The probe stops the electron beam on a Tantalum target and the resulting x-rays are scattered in the forward direction. A scintillator behind the beam stop reacts to the x-rays and emits visible light in the region where the x-rays strike. An array of fiber optics behind the scintillator transmits the visible light to a Reticon camera system which images the visible pattern from the scintillator. Processing the optical image is done by digitizing and storing the image and/or recording the image on video tape. Resolution and performance of this probe will be discussed

  2. First observations of intensity-dependent effects for transversely split beams during multiturn extraction studies at the CERN Proton Synchrotron

    Directory of Open Access Journals (Sweden)

    Simone Gilardoni

    2013-05-01

    Full Text Available During the commissioning of the CERN Proton Synchrotron multiturn extraction, tests with different beam intensities were performed in order to probe the behavior of resonance crossing in the presence of possible space charge effects. The initial beam intensity before transverse splitting was varied and the properties of the five beamlets obtained by crossing the fourth-order horizontal resonance were studied. A clear dependence of the beamlets’ parameters on the total beam intensity was found, which is the first direct observation of intensity-dependent effects for such a peculiar beam type. The experimental results are presented and discussed in detail in this paper.

  3. Synchrotron radiation based on laser-plasma interaction in the relativistic range

    International Nuclear Information System (INIS)

    Albert, F.

    2007-12-01

    This work illustrates the experimental characterization of a new compact X-ray source: the Betatron X-ray source. It is the first time that collimated hard X-ray source is produced by laser. Through the focusing of an ultra-intense laser radiation (30 TW, 30 fs) on a helium plasma, the ponderomotive force linked to the light intensity gradient expels the plasma electrons forming an accelerating cavity in the wake of the laser plasma. Some electrons trapped in the back of this structure, are accelerated and oscillate to produce X-radiation. This document is composed of 8 chapters. The first one is a presentation of the topic. The second chapter gives an account of the physics behind the laser-plasma interaction in the relativistic range and for ultra-short pulses. The third chapter presents the theoretical characteristics of the Betatron X-ray source. This chapter begins with an analogy with current synchrotron radiation and the radiation emitted by an electron undergoing Betatron oscillations is described in terms of power, spectral intensity and photon flux. The fourth chapter is dedicated to the numerical simulation of the Betatron radiation. The trajectories of the electrons are computed from the equation of motion, taking into account longitudinal and transverse forces. The radiation emission term is then computed from the radiation equation detailed in the previous chapter. The fifth chapter presents the experimental setting to produce Betatron X-rays. The sixth chapter gives the experimental characterization of the source (size, divergence and spectrum) on one hand, and on the other hand studies how source flux and spectra vary when laser and plasma parameters change. The seventh chapter presents experimental methods used to characterize the electrons trajectories in the plasma wiggler. The last chapter draws some perspectives on this source in terms of improvement and uses. (A.C.)

  4. Application of white beam synchrotron radiation topography to the analysis of twins

    International Nuclear Information System (INIS)

    Yao, G.D.; Dudley, M.; Hou, S.Y.; DiSalvo, R.

    1991-01-01

    White beam synchrotron X-ray topography (WBSXRT) has been used to characterize room temperature twinning structures in lanthanum gallate and p-terphenyl single crystals. Both Laue and Bragg geometries are utilized to reveal the nature of twinning in LaGaO 3 . The geometric relationships between the twin related domains and the directions of the corresponding diffracted beams are used to establish the presence of reflection twins on (1anti 12) orth , (1anti 1anti 2) orth and (1anti 10) orth planes. Also described is the application of WBSXRT to reveal the twin law in the solution grown organic crystal p-terphenyl. The active twin plane was unambiguously determined to be (201) by determination of the orientation relationship between parent and twinned structures through Laue pattern analysis. Twin lamellae with the same twin plane were also observed. For both materials, no radiation damage was observed throughout the experiments. These results demonstrate the usefulness of WBSXRT for the study of twins. (orig.)

  5. Application of white beam synchrotron radiation topography to the analysis of twins

    Science.gov (United States)

    Yao, G.-D.; Dudley, M.; Hou, S.-Y.; DiSalvo, R.

    1991-05-01

    White beam synchrotron X-ray topography (WBSXRT) has been used to characterize room temperature twinning structures in lanthanum gallate and P-terphenyl single crystals. Both Laue and Bragg geometries are utilized to reveal the nature of twinning in LaGaO 3. The geometric relationships between the twin related domains and the directions of the corresponding diffracted beams are used to establish the presence of reflection twins on (11¯2) orth, (11¯2¯) orth and (11¯0) orth planes. Also described is the application of WBSXRT to reveal the twin law in the solution grown organic crystal p-terphenyl. The active twin plane was unambiguously determined to be (201) by determination of the orientation relationship between parent and twinned structures through Laue pattern analysis. Twin lamellae with the same twin plane were also observed. For both materials, no radiation damage was observed throughout the experiments. These results demonstrate the usefulness of WBSXRT for the study of twins.

  6. Application of white beam synchrotron radiation topography to the analysis of twins

    Energy Technology Data Exchange (ETDEWEB)

    Yao, G.D.; Dudley, M.; Hou, S.Y.; DiSalvo, R. (Dept. of Materials Science and Engineering, SUNY, Stony Brook, NY (USA))

    1991-05-01

    White beam synchrotron X-ray topography (WBSXRT) has been used to characterize room temperature twinning structures in lanthanum gallate and p-terphenyl single crystals. Both Laue and Bragg geometries are utilized to reveal the nature of twinning in LaGaO{sub 3}. The geometric relationships between the twin related domains and the directions of the corresponding diffracted beams are used to establish the presence of reflection twins on (1anti 12){sub orth}, (1anti 1anti 2){sub orth} and (1anti 10){sub orth} planes. Also described is the application of WBSXRT to reveal the twin law in the solution grown organic crystal p-terphenyl. The active twin plane was unambiguously determined to be (201) by determination of the orientation relationship between parent and twinned structures through Laue pattern analysis. Twin lamellae with the same twin plane were also observed. For both materials, no radiation damage was observed throughout the experiments. These results demonstrate the usefulness of WBSXRT for the study of twins. (orig.).

  7. Synchrotron topography of the SrLaGaO4 monocrystals in the white beam

    International Nuclear Information System (INIS)

    Malinowska, A.; Lefeld-Sosnowska, M.; Wierzbicka, E.; Wieteska, K.; Wierzchowski, W.; Graeff, W.

    2005-01-01

    Paper presents results of the studies on defects of the crystalline lattice in the SrLaGaO 4 (SLG) monocrystals grown in the Institute of Electronic Materials Technology (ITME), Warsaw (Poland) by the Czochralski method. Studies were performed in the F1 station of the HASYLAB (Desy, Hamburg) using the synchrotron projecting and the sectional topography in the white beam, both transmission and reflection modes. Nature of the defects appearing in the SLG crystals remains unclear and needs further studies [pl

  8. Synchrotrons for hadron therapy: Part I

    CERN Document Server

    Badano, L; Bryant, P; Crescenti, M; Holy, P; Knaus, P; Maier, A; Pullia, M; Rossi, S

    1999-01-01

    The treatment of cancer with accelerator beams has a long history with betatrons, linacs, cyclotrons and now synchrotrons being exploited for this purpose. Treatment techniques can be broadly divided into the use of spread-out beams and scanned 'pencil' beams. The Bragg-peak behaviour of hadrons makes them ideal candidates for the latter. The combination of precisely focused 'pencil' beams with controllable penetration (Bragg peak) and high, radio-biological efficiency (light ions) opens the way to treating the more awkward tumours that are radio-resistant, complex in shape and lodged against critical organs. To accelerate light ions (probably carbon) with pulse-to-pulse energy variation, a synchrotron is the natural choice. The beam scanning system is controlled via an on-line measurement of the particle flux entering the patient and, for this reason, the beam spill must be extended in time (seconds) by a slow-extraction scheme. The quality of the dose intensity profile ultimately depends on the uniformity o...

  9. Relativistic klystrons

    International Nuclear Information System (INIS)

    Allen, M.A.; Azuma, O.; Callin, R.S.

    1989-03-01

    Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs

  10. Space charge effect measurements for a multi-channel ionization chamber used for synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nasr, Amgad

    2012-07-18

    In vivo coronary angiography is one of the techniques used to investigate the heart diseases, by using catheter to inject a contrast medium of a given absorption coefficient into the heart vessels. Taking X-ray images produced by X-ray tube or synchrotron radiation for visualizing the blood in the coronary arteries. As the synchrotron radiation generated by the relativistic charged particle at the bending magnets, which emits high intensity photons in comparison with the X-ray tube. The intensity of the synchrotron radiation is varies with time. However for medical imaging it's necessary to measure the incoming intensity with the integrated time. The thesis work includes building a Multi-channel ionization chamber which can be filled with noble gases N{sub 2}, Ar and Xe with controlled inner pressure up to 30 bar. This affects the better absorption efficiency in measuring the high intensity synchrotron beam fluctuation. The detector is a part of the experimental setup used in the k-edge digital subtraction angiography project, which will be used for correcting the angiography images taken by another detector at the same time. The Multi-channel ionization chamber calibration characteristics are measured using 2 kW X-ray tube with molybdenum anode with characteristic energy of 17.44 keV. According to the fast drift velocity of the electrons relative to the positive ions, the electrons will be collected faster at the anode and will induce current signals, while the positive ions is still drifting towards the cathode. However the accumulation of the slow ions inside the detector disturbs the homogeneous applied electric field and leads to what is known a space charge effect. In this work the space charge effect is measured with very high synchrotron photons intensity from EDR beam line at BESSYII. The strong attenuation in the measured amplitude signal occurs when operating the chamber in the recombination region. A plateau is observed at the amplitude signal when

  11. The European Synchrotron Radiation Facility - an overview of planned diffraction capability

    International Nuclear Information System (INIS)

    Kvick, A.

    1991-01-01

    The European Synchrotron Radiation Facility (ESRF) is a third generation synchrotron radiation facility presently being built as a joint venture between 12 European countries in Grenoble, France. The ESRF will be a low emittance 6 GeV storage ring aimed at producing high-brilliance synchrotron radiation from 29 insertion devices and from 27 bending magnet ports. The general user program will start in the middle of 1994 with seven ESRF beam-lines. By 1999, 30 facility beam-lines as well as beam-lines built and financed by Collaborating Research Groups are scheduled to be in operation. The guidelines for the first beam-lines to be constructed as well as a survey of the diffraction oriented beam-lines built by the ESRF are given in the article. (author)

  12. The theory and simulation of relativistic electron beam transport in the ion-focused regime

    International Nuclear Information System (INIS)

    Swanekamp, S.B.; Holloway, J.P.; Kammash, T.; Gilgenbach, R.M.

    1992-01-01

    Several recent experiments involving relativistic electron beam (REB) transport in plasma channels show two density regimes for efficient transport; a low-density regime known as the ion-focused regime (IFR) and a high-pressure regime. The results obtained in this paper use three separate models to explain the dependency of REB transport efficiency on the plasma density in the IFR. Conditions for efficient beam transport are determined by examining equilibrium solutions of the Vlasov--Maxwell equations under conditions relevant to IFR transport. The dynamic force balance required for efficient IFR transport is studied using the particle-in-cell (PIC) method. These simulations provide new insight into the transient beam front physics as well as the dynamic approach to IFR equilibrium. Nonlinear solutions to the beam envelope are constructed to explain oscillations in the beam envelope observed in the PIC simulations but not contained in the Vlasov equilibrium analysis. A test particle analysis is also developed as a method to visualize equilibrium solutions of the Vlasov equation. This not only provides further insight into the transport mechanism but also illustrates the connections between the three theories used to describe IFR transport. Separately these models provide valuable information about transverse beam confinement; together they provide a clear physical understanding of REB transport in the IFR

  13. Statistical signal processing techniques for coherent transversal beam dynamics in synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Alhumaidi, Mouhammad

    2015-03-04

    Transversal coherent beam oscillations can occur in synchrotrons directly after injection due to errors in position and angle, which stem from inaccurate injection kicker reactions. Furthermore, the demand for higher beam intensities is always increasing in particle accelerators. The wake fields generated by the traveling particles will be increased by increasing the beam intensity. This leads to a stronger interaction between the beam and the different accelerator components, which increases the potential of coherent instabilities. Thus, undesired beam oscillations will occur when the natural damping is not enough to attenuate the oscillations generated by the coherent beam-accelerator interactions. The instabilities and oscillations can be either in transversal or longitudinal direction. In this work we are concerned with transversal beam oscillations only. In normal operation, transversal beam oscillations are undesired since they lead to beam quality deterioration and emittance blow up caused by the decoherence of the oscillating beam. This decoherence is caused by the tune spread of the beam particles. The emittance blow up reduces the luminosity of the beam, and thus the collision quality. Therefore, beam oscillations must be suppressed in order to maintain high beam quality during acceleration. A powerful way to mitigate coherent instabilities is to employ a feedback system. A Transversal Feedback System (TFS) senses instabilities of the beam by means of Pickups (PUs), and acts back on the beam through actuators, called kickers. In this thesis, a novel concept to use multiple PUs for estimating the beam displacement at the position with 90 phase advance before the kicker is proposed. The estimated values should be the driving feedback signal. The signals from the different PUs are delayed such that they correspond to the same bunch. Subsequently, a weighted sum of the delayed signals is suggested as an estimator of the feedback correction signal. The

  14. Comparison Between In-Beam and Offline Positron Emission Tomography Imaging of Proton and Carbon Ion Therapeutic Irradiation at Synchrotron- and Cyclotron-Based Facilities

    International Nuclear Information System (INIS)

    Parodi, Katia; Bortfeld, Thomas; Haberer, Thomas

    2008-01-01

    Purpose: The benefit of using dedicated in-beam positron emission tomography (PET) detectors in the treatment room instead of commercial tomographs nearby is an open question. This work quantitatively compares the measurable signal for in-beam and offline PET imaging, taking into account realistic acquisition strategies at different ion beam facilities. Both scenarios of pulsed and continuous irradiation from synchrotron and cyclotron accelerators are considered, because of their widespread use in most carbon ion and proton therapy centers. Methods and Materials: A mathematical framework is introduced to compare the time-dependent amount and spatial distribution of decays from irradiation-induced isotope production. The latter is calculated with Monte Carlo techniques for real proton treatments of head-and-neck and paraspinal tumors. Extrapolation to carbon ion irradiation is based on results of previous phantom experiments. Biologic clearance is modeled taking into account available data from previous animal and clinical studies. Results: Ratios between the amount of physical decays available for in-beam and offline detection range from 40% to 60% for cyclotron-based facilities, to 65% to 110% (carbon ions) and 94% to 166% (protons) at synchrotron-based facilities, and increase when including biologic clearance. Spatial distributions of decays during irradiation exhibit better correlation with the dose delivery and reduced influence of biologic processes. Conclusions: In-beam imaging can be advantageous for synchrotron-based facilities, provided that efficient PET systems enabling detection of isotope decays during beam extraction are implemented. For very short (<2 min) irradiation times at cyclotron-based facilities, a few minutes of acquisition time after the end of irradiation are needed for counting statistics, thus affecting patient throughput

  15. Time resolved, 2-D hard X-ray imaging of relativistic electron-beam target interactions on ETA-II

    International Nuclear Information System (INIS)

    Crist, C.E.; Sampayan, S.; Westenskow, G.; Caporaso, G.; Houck, T.; Weir, J.; Trimble, D.; Krogh, M.

    1998-01-01

    Advanced radiographic applications require a constant source size less than 1 mm. To study the time history of a relativistic electron beam as it interacts with a bremsstrahlung converter, one of the diagnostics they use is a multi-frame time-resolved hard x-ray camera. They are performing experiments on the ETA-II accelerator at Lawrence Livermore National Laboratory to investigate details of the electron beam/converter interactions. The camera they are using contains 6 time-resolved images, each image is a 5 ns frame. By starting each successive frame 10 ns after the previous frame, they create a 6-frame movie from the hard x-rays produced from the interaction of the 50-ns electron beam pulse

  16. High peak current operation of x-ray free-electron laser multiple beam lines by suppressing coherent synchrotron radiation effects

    Science.gov (United States)

    Hara, Toru; Kondo, Chikara; Inagaki, Takahiro; Togawa, Kazuaki; Fukami, Kenji; Nakazawa, Shingo; Hasegawa, Taichi; Morimoto, Osamu; Yoshioka, Masamichi; Maesaka, Hirokazu; Otake, Yuji; Tanaka, Hitoshi

    2018-04-01

    The parallel operation of multiple beam lines is an important means to expand the opportunity of user experiments at x-ray free-electron laser (XFEL) facilities. At SPring-8 Angstrom free-electron laser (SACLA), the multi-beam-line operation had been tested using two beam lines, but transverse coherent synchrotron radiation (CSR) effects at a dogleg beam transport severely limited the laser performance. To suppress the CSR effects, a new beam optics based on two double bend achromat (DBA) structures was introduced for the dogleg. After the replacement of the beam optics, high peak current bunches of more than 10 kA are now stably transported through the dogleg and the laser pulse output is increased by a factor of 2-3. In the multi-beam-line operation of SACLA, the electron beam parameters, such as the beam energy and peak current, can be adjusted independently for each beam line. Thus the laser output can be optimized and wide spectral tunability is ensured for all beam lines.

  17. Present status of the theoretical relativistic plasma SHF electronics

    International Nuclear Information System (INIS)

    Kuzelev, M.V.; Rukhadze, A.A.

    2000-01-01

    Paper presents a review of theoretical investigations into powerful sources of SHF waves grounded on the forced emission of relativistic electron beams in plasma wave guides and resonator. Emission sources operating under amplification of a certain inlet signal and under generation mode were studied. Two mechanisms of forced emission: resonance Cherenkov radiation of relativistic electron beams in plasma and nonresonance Pierce emission resulting from evolution of high-frequency Pierce instability, were studied. Paper discusses theoretical problems only, all evaluations and calculations are made for the parameters of the exact experiments, the theoretical results are compared with the available experimental data. Factors affecting formation of spectrum of waves excited by relativistic electron beam in plasma systems are discussed [ru

  18. Entrance and Exit CSR Impedance for Non-Ultrarelativistic Beam

    Energy Technology Data Exchange (ETDEWEB)

    Li, Rui; Tsai, Cheng Ying [SLAC National Accelerator Lab., Menlo Park, CA (United States); Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2017-05-01

    For a high-brightness electron beam being transported through beamlines involving bending systems, the coherent synchrotron radiation (CSR) and longitudinal space charge (LSC) interaction could often cause microbunching instability. The semi-analytical Vlasov solver for microbunching gain* depends on the impedances for the relevant collective effects. The existing results for CSR impedances are usually obtained for the ultrarelativistic limit. To extend the microbunching analysis to cases of low energies, such as the case of an ERL merger, or to density modulations at extremely small wavelength, it is necessary to extend the impedance analysis to the non-ultrarelativistic regime. In this study, we present the impedance analysis for the transient CSR interaction in the non-ultrarelativistic regime, for transients including both entrance to and exit from a magnetic dipole. These impedance results will be compared to their ultra-relativistic counterparts**, and the corresponding wakefield obtained from the impedance for low-energy beams will be compared with the existing results of transient CSR wakefield for general beam energies***.

  19. Coronary angiography using synchrotron radiation

    International Nuclear Information System (INIS)

    Akatsuka, Takao; Hiranaka, Yukio; Takeda, Tohru; Hyodo, Kazuyuki.

    1990-01-01

    Invasive coronary angiography is the imaging technique of choice for diagnosis of ischemic heart disease. Recently, the application of synchrotron radiation in coronary angiography has been investigated in the world, with the aim of developing the noninvasive technique for visualizing the heart. In this article, backgrounds and present situation of coronary angiography using synchrotron radiation are reviewed. Firstly, visual imaging techniques of the cardiovascular system are discussed in terms of angiography and digital subtraction angiography (DSA). Conventional temporal, energy, and hybrid subtraction modes used in DSA are referred to. Secondly, the application of synchrotron radiation is presented, focusing on the property of synchrotron radiation and K-edge subtraction angiography. Two kinds of synchrotron radiation beam methods are outlined. Interpretation of image data and various subtraction procedures remain unestablished. There is much to be done before coronary angiography using synchrotron radiation comes into a clinical practice. (N.K.)

  20. Beam loading effects for two-beam ring

    International Nuclear Information System (INIS)

    Wang Lanfa; Lin Yuzheng; Tong Dechun

    1999-01-01

    An analytic treatment of multi-bunch potential well distortion for a two-beam storage ring is presented. The longitudinal wake effects are separated into: the mode loss, the synchrotron tune shift (both due to potential well distortion) and the coherent multi-bunch coupling. Here, only the first two effects are studied. Resulting simple analytic formulas describe the mode loss and the synchrotron tune shift experienced by a given bunch within the two-beam, as a function of the high order mode's parameters. One can get immediately a simple quantitative answer in term of the mode loss and the synchrotron tune shift experienced by each bunch from these formulas, so the authors can know how to modify the existing configuration of parasitic cavity resonance (via frequency tuning) so that the resulting potential well distortion effects are minimized. When the RF cavities are symmetrically distributed about the interaction points, the two beams will have same beam loading effects, so the authors can compensate the phase shift of the two beam using the same method as in one beam case

  1. Contribution of Higher-Order Dispersion to Nonlinear Electron-Acoustic Solitary Waves in a Relativistic Electron Beam Plasma System

    International Nuclear Information System (INIS)

    Zahran, M.A.; El-Shewy, E.K.

    2008-01-01

    The nonlinear properties of solitary wave structures are reported in an unmagnetized collisionless plasma comprising of cold relativistic electron fluid, Maxwellian hot electrons, relativistic electron beam, and stationary ions. The Korteweg--de Vries (KdV) equation has been derived using a reductive perturbation theory. As the wave amplitude increases, the width and velocity of the soliton deviate from the prediction of the KdV equation i.e. the breakdown of the KdV approximation. On the other hand, to overcome this weakness we extend our analysis to obtain the KdV equation with fifth-order dispersion term. The solution of the resulting equation has been obtained

  2. Nondestructive mapping of chemical composition and structural qualities of group III-nitride nanowires using submicron beam synchrotron-based X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Bonanno, P.L., E-mail: plb2@njit.edu [Georgia Institute of Technology/GTL, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Gautier, S. [LMOPS + UMI: Laboratoire Matériaux Optiques, Photonique et micro-nano Systèmes, UMR CNRS 7132, Université de Metz et SUPELEC, 2 rue E. Belin, 57070 Metz, France, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Gmili, Y.El.; Moudakir, T. [UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Sirenko, A.A. [Department of Physics, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Kazimirov, A. [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States); Cai, Z.-H. [Advanced Photon Source, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Martin, J. [LMOPS + UMI: Laboratoire Matériaux Optiques, Photonique et micro-nano Systèmes, UMR CNRS 7132, Université de Metz et SUPELEC, 2 rue E. Belin, 57070 Metz, France, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Goh, W.H. [Georgia Institute of Technology/GTL, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Martinez, A.; Ramdane, A.; Le Gratiet, L. [Laboratoire de Photonique et de Nanostructures, UPR CNRS 20, Route de Nozay, 91460 Marcoussis (France); Maloufi, N. [Laboratoire d' Etude des Textures et Application aux Matériaux UMR CNRS 7078 Ile du Saulcy 57045 METZ cedex 1 (France); Assouar, M.B. [Laboratoire de Physique des Milieux Ionisés et Applications, Nancy University, CNRS, BP 239, F-54506 Vandoeuvre-lès-Nancy Cédex (France); Ougazzaden, A. [Georgia Institute of Technology/GTL, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France)

    2013-08-31

    Submicron beam synchrotron-based X-ray diffraction (XRD) techniques have been developed and used to accurately and nondestructively map chemical composition and material quality of selectively grown group III-nitride nanowires. GaN, AlGaN, and InGaN multi-quantum-well nanowires have been selectively grown on lattice matched and mismatched substrates, and the challenges associated with obtaining and interpreting submicron beam XRD results are addressed and solved. Nanoscale cathodoluminescence is used to examine exciton behavior, and energy-dispersive X-ray spectroscopy is used to verify chemical composition. Scanning transmission electron microscopy is later used to paint a more complete picture. The advantages of submicron beam XRD over other techniques are discussed in the context of this challenging material system. - Highlights: ► We used nano selective area growth to create nanowires of GaN, AlGaN and InGaN/GaN. ► We characterized them by synchrotron-based submicron beam X-ray diffraction (XRD). ► This technique accurately determined chemical and crystallographic properties. ► Challenges of XRD are addressed in the context of this challenging material system. ► Advantages of XRD over other characterization methods are discussed.

  3. Synchrotron radiation at Trieste

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-06-15

    The fast developing field of synchrotron radiation has its origins in the mastery of storage rings in high energy physics and is a prime example of spinoff from pure science. Intense electromagnetic radiation streams off when beams of high energy electrons are bent or shaken. This synchrotron radiation was once an annoying waste of energy in particle storage rings, but now the wheel has turned full circle, with dedicated machines supplying this radiation for a wide range of science. The astonishing growth rate in this field was highlighted at an International Conference on Synchrotron Radiation, held at the International Centre for Theoretical Physics (ICTP), Trieste, Italy from 7-11 April.

  4. Synchrotron radiation at Trieste

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The fast developing field of synchrotron radiation has its origins in the mastery of storage rings in high energy physics and is a prime example of spinoff from pure science. Intense electromagnetic radiation streams off when beams of high energy electrons are bent or shaken. This synchrotron radiation was once an annoying waste of energy in particle storage rings, but now the wheel has turned full circle, with dedicated machines supplying this radiation for a wide range of science. The astonishing growth rate in this field was highlighted at an International Conference on Synchrotron Radiation, held at the International Centre for Theoretical Physics (ICTP), Trieste, Italy from 7-11 April

  5. Status report of the Cornell High Energy Synchrotron Radiation Source (CHESS)

    International Nuclear Information System (INIS)

    Batterman, B.W.

    1980-01-01

    The Wilson Laboratory at Cornell University has done pioneering work on the development of high energy synchrotrons. In the last decade the 12 GeV Wilson Synchrotron was the most energetic electron synchrotron in the world. In 1975 plans were formulated at the Wilson Laboratory to build a new electron-positron storage ring to cover the range from 4-8 GeV. The storage ring was to be constructed in the same tunnel as the present synchrotron and to use the latter as an injector for the ring. A novel injection feature was to be incorporated, namely, vernier phase compression. In this scheme, positron coalesence is to be performed by compressing a 30-60 bunch positron beam by tranferring individual bunches from the storage ring to the synchrotron and stacking back into the storage ring. This procedure takes advantage of the slight circumferential difference between the storage ring and the synchrotron. Positron beams of 10 mA have been achieved in CESR at the present time. The first colliding beam studies were performed in an October 1979 two-week running period at which time CHESS, the synchrotron radiation source associated with CESR, also had its first extended experience with synchrotron light. (orig.)

  6. Experimental method for investigating γd→pn photodisintegration reaction on the linearly polarized photon beam of the Erevan synchrotron

    International Nuclear Information System (INIS)

    Agababyan, K.Sh.; Adamyan, F.V.; Ajrapetyan, A.V.

    1985-01-01

    The experimental method for measuring the asymmetry of the γd → pn photodisintegration reaction on the linearly polarized photon beam of the Erevan synchrotron is described. The results of Monte Carlo calculations, the calibration of apparatus, the procedure of measurements and experimental data processing are repored

  7. Low Level RF Control System of J-PARC Synchrotrons

    CERN Document Server

    Tamura, Fumihiko; Ezura, Eizi; Hara, Keigo; Nomura, Masahiro; Ohmori, Chihiro; Schnase, Alexander; Takagi, Akira; Yamamoto, Masanobu; Yoshii, Masahito

    2005-01-01

    We present the concept and the design of the low level RF (LLRF) control system of the J-PARC synchrotrons. The J-PARC synchrotrons are the rapid cycling 3-GeV synchrotron (RCS) and the 50-GeV main ring (MR) which require very precise and stable LLRF control systems to accelerate the ultra-high proton beam current. The LLRF system of the synchrotron is a full-digital system based on the direct digital synthesis (DDS). The functions of the system are (1) the multi-harmonic RF generation for the acceleration and the longitudinal bunch shaping, (2) the feedbacks for stabilizing the beam, (3) the feedforward for compensating the heavy beam loading, and (4) other miscellaneous functions such as the synchronization and chopper timing. The LLRF system of the RCS is now under construction. We present the details of the system. Also, we show preliminary results of performance tests of the control modules.

  8. Detailed spectra of high power broadband microwave radiation from interactions of relativistic electron beams with weakly magnetized plasmas

    International Nuclear Information System (INIS)

    Kato, K.G.; Benford, G.; Tzach, D.

    1983-01-01

    Prodigious quantities of microwave energy are observed uniformly across a wide frequency band when a relativistic electron beam (REB) penetrates a plasma. Measurement calculations are illustrated. A model of Compton-like boosting of ambient plasma waves by beam electrons, with collateral emission of high frequency photons, qualitatively explain the spectra. A transition in spectral behavior is observed from the weak to strong turbulence theories advocated for Type III solar burst radiation, and further into the regime the authors characterize as super-strong REB-plasma interactions

  9. MICROANALYSIS OF MATERIALS USING SYNCHROTRON RADIATION.

    Energy Technology Data Exchange (ETDEWEB)

    JONES,K.W.; FENG,H.

    2000-12-01

    High intensity synchrotron radiation produces photons with wavelengths that extend from the infrared to hard x rays with energies of hundreds of keV with uniquely high photon intensities that can be used to determine the composition and properties of materials using a variety of techniques. Most of these techniques represent extensions of earlier work performed with ordinary tube-type x-ray sources. The properties of the synchrotron source such as the continuous range of energy, high degree of photon polarization, pulsed beams, and photon flux many orders of magnitude higher than from x-ray tubes have made possible major advances in the possible chemical applications. We describe here ways that materials analyses can be made using the high intensity beams for measurements with small beam sizes and/or high detection sensitivity. The relevant characteristics of synchrotron x-ray sources are briefly summarized to give an idea of the x-ray parameters to be exploited. The experimental techniques considered include x-ray fluorescence, absorption, and diffraction. Examples of typical experimental apparatus used in these experiments are considered together with descriptions of actual applications.

  10. The present status of a compact synchrotron radiation source LUNA of IHI

    International Nuclear Information System (INIS)

    Marushita, Motoharu; Oishi, Masaya; Takahashi, Mitsuyuki; Komatsu, Takahito; Mandai, Shinichi

    1993-01-01

    Synchrotron radiation is expected to apply to many fields of science and industry and we are specially interested in availability of SR for X-ray lithography. This paper presents the characteristics, the design parameters, the features and current status of LUNA. Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI) has developed a compact synchrotron radiation source 'LUNA' for lithography and has successfully stored beam current at full energy. LUNA consists of a 45 MeV linear accelerator as an electron injector and an 800 MeV synchrotron as a storage ring. The construction of LUNA has been completed in April 1989 at IHI Tsuchiura facility near Tsukuba. Synchrotron Radiation was first observed at December 1989. The design goal, which is to store beam current of 50 mA with the beam lifetime of over 30 minutes, has been successfully achieved in March 1991. At present the stored beam current is 80 mA with the beam lifetime of over 5 hours. (author)

  11. Upgrading the AGS polarized beam facility

    International Nuclear Information System (INIS)

    Ratner, L.G.

    1991-01-01

    Although present techniques for crossing depolarizing resonances in circular accelerators work, they are very time-consuming to implement and were only able to provide about a 40% polarized beam at 22 GeV in the Alternating Gradient Synchrotron (AGS). We propose to install a partial ''Siberian Snake'' solenoid in the AGS to eliminate the need to correct imperfection resonances and to make other modifications in our intrinsic resonance correctors. This will allow us to reach an energy of 25 GeV with 70% polarization and will enable the AGS to be an efficient injector of polarized protons into the Relativistic Heavy Ion Collider (RHIC), as well as being able to carry on a fixed-target program with minimum set-up time. 3 refs., 5 figs., 1 tab

  12. Ultra-relativistic heavy-ion physics with AFTER@LHC

    DEFF Research Database (Denmark)

    Rakotozafindrabe, A.; Arnaldi, R.; Brodsky, Stanley

    2013-01-01

    We outline the opportunities for ultra-relativistic heavy–ion physics which are offered by a next generation and multi-purpose fixed-target experiment exploiting the proton and ion LHC beams extracted by a bent crystal.......We outline the opportunities for ultra-relativistic heavy–ion physics which are offered by a next generation and multi-purpose fixed-target experiment exploiting the proton and ion LHC beams extracted by a bent crystal....

  13. Calculation of Coherent Synchrotron Radiation Impedance for a Beam Moving in a Curved Trajectory

    Science.gov (United States)

    Zhou, Demin; Ohmi, Kazuhito; Oide, Katsunobu; Zang, Lei; Stupakov, Gennady

    2012-01-01

    Coherent synchrotron radiation (CSR) fields are generated when a bunched beam moves along a curved trajectory. A new code, named CSRZ, was developed using finite difference method to calculate the longitudinal CSR impedance for a beam moving along a curved chamber. The method adopted in the code was originated by Agoh and Yokoya [Phys. Rev. ST Accel. Beams 7 (2004) 054403]. It solves the parabolic equation in the frequency domain in a curvilinear coordinate system. The chamber considered has uniform rectangular cross-section along the beam trajectory. The code was used to investigate the properties of CSR impedance of a single or a series of bending magnets. The calculation results indicate that the shielding effect due to outer chamber wall can be well explained by a simple optical approximation model at high frequencies. The CSR fields reflected by the outer wall may interfere with each other along a series of bending magnets and lead to sharp narrow peaks in the CSR impedance. In a small storage ring, such interference effect can be significant and may cause microwave instability, according to a simple estimate of instability threshold.

  14. Reaction of congo red in water after irradiation by pulsed intense relativistic electron beam

    International Nuclear Information System (INIS)

    Kikuchi, Takashi; Kondo, Hironobu; Sasaki, Toru; Harada, Nob.; Moriwaki, Hiroshi; Nakanishi, Hiromitsu; Imada, Go

    2011-01-01

    The reaction of congo red, a well-known toxic azo dye, occurred after irradiation by a pulsed intense relativistic electron beam (PIREB). An aquation of congo red was irradiated by PIREB (2 MeV, 0.36 kA, 140 ns). After PIREB irradiation, the solution was measured by electrospray ionization-mass spectrometry and liquid chromatography/mass spectrometry. It was found that congo red underwent a reaction (77% conversion after five shots of PIREB irradiation) and the hydroxylated compounds of the dye were observed as reaction products. (author)

  15. Electron beam ion sources for use in second generation synchrotrons for medical particle therapy

    Science.gov (United States)

    Zschornack, G.; Ritter, E.; Schmidt, M.; Schwan, A.

    2014-02-01

    Cyclotrons and first generation synchrotrons are the commonly applied accelerators in medical particle therapy nowadays. Next generation accelerators such as Rapid Cycling Medical Synchrotrons (RCMS), direct drive accelerators, or dielectric wall accelerators have the potential to improve the existing accelerator techniques in this field. Innovative accelerator concepts for medical particle therapy can benefit from ion sources which meet their special requirements. In the present paper we report on measurements with a superconducting Electron Beam Ion Source, the Dresden EBIS-SC, under the aspect of application in combination with RCMS as a well proven technology. The measurements indicate that this ion source can offer significant advantages for medical particle therapy. We show that a superconducting EBIS can deliver ion pulses of medically relevant ions such as protons, C4 + and C6 + ions with intensities and frequencies required for RCMS [S. Peggs and T. Satogata, "A survey of Hadron therapy accelerator technology," in Proceedings of PAC07, BNL-79826- 2008-CP, Albuquerque, New Mexico, USA, 2007; A. Garonna, U. Amaldi et al., "Cyclinac medical accelerators using pulsed C6 +/H+_2 ion sources," in Proceedings of EBIST 2010, Stockholm, Sweden, July 2010]. Ion extraction spectra as well as individual ion pulses have been measured. For example, we report on the generation of proton pulses with up to 3 × 109 protons per pulse and with frequencies of up to 1000 Hz at electron beam currents of 600 mA.

  16. Synchrotron radiation leakage from the B-factory beam pipe

    International Nuclear Information System (INIS)

    Jenkins, T.M.; Nelson, W.R.; Ipe, N.

    1990-01-01

    The high-energy ring (HER) of the B-Factory, running at an energy of 9 GeV, generates the synchrotron spectrum when applied to a ring with the PEP bending radius. The B-Factory HER may also run at 12 GeV, producing the harder spectrum. Depending upon beam-pipe material and thickness, some of this radiation may escape and deposit energy in the surrounding material. This was originally pointed out in PEP-109 during the initial design of PEP, and subsequently verified by measurements at both PEP and PETRA at DESY. Of concern to the B Factory is magnet insulation, though other adjacent materials such as wire insulation and cooling water hoses are even more radiosensitive. Radiation damage to magnets is a function of the type of material used in the potting compound. The PEP magnets, which hopefully can be used for the high-energy ring of the B-Factory, are insulated with an epoxy composed of DER-332, DER-732, NMA and aluminum oxide. It is estimated that this epoxy compound should tolerate doses near the 10 10 rad range. To summarize the results of these calculations, 0.87 cm of copper is needed at the point of maximum dose from 12-GeV operation in order to reach the dose criterion if a rectangular beam pipe is used. The copper needs to be only 0.7-cm thick for an octagonal beam pipe and the same energy. For 9-GeV operation, an octagonal copper pipe needs only to be 0.25-cm thick. An octagonal aluminum pipe that is 0.5-cm thick also needs 0.3 cm of lead on the outside to reach the same criterion for 12-GeV operation. For 9-GeV operation, the aluminum pipe still requires a lead liner

  17. Plasma relativistic microwave electronics

    International Nuclear Information System (INIS)

    Kuzelev, M.V.; Loza, O.T.; Rukhadze, A.A.; Strelkov, P.S.; Shkvarunets, A.G.

    2001-01-01

    One formulated the principles of plasma relativistic microwave electronics based on the induced Cherenkov radiation of electromagnetic waves at interaction of a relativistic electron beam with plasma. One developed the theory of plasma relativistic generators and accelerators of microwave radiation, designed and studied the prototypes of such devices. One studied theoretically the mechanisms of radiation, calculated the efficiencies and the frequency spectra of plasma relativistic microwave generators and accelerators. The theory findings are proved by the experiment: intensity of the designed sources of microwave radiation is equal to 500 μW, the frequency of microwave radiation is increased by 7 times (from 4 up to 28 GHz), the width of radiation frequency band may vary from several up to 100%. The designed sources of microwave radiation are no else compared in the electronics [ru

  18. Relativistic-Klystron two-beam accelerator as a power source for future linear colliders

    International Nuclear Information System (INIS)

    Lidia, S. M.; Anderson, D. E.; Eylon, S.; Henestroza, E.; Vanecek, D. L.; Yu, S. S.; Houck, T. L.; Westenskow, G. A.

    1999-01-01

    The technical challenge for making two-beam accelerators into realizable power sources for high-energy colliders lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2-kA, 1-MeV, induction gun for a prototype relativistic klystron two-beam accelerator (RK-TBA). The electron source will be a 8.9 cm diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150-ns flat top (1% energy variation), and a normalized edge emittance of less than 300 pi-mm-mr. The prototype accelerator will be used to study, physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. We have also been studying optimization parameters, such as frequency, for the application of the RK-TBA concept to multi-TeV linear colliders. As an rf power source the RK-TBA scales favorably up to frequencies around 35 GHz. An overview of this work with details of the design and performance of the prototype injector, beam line, and diagnostics will be presented

  19. Effects of relativistic and channel focusing on q-Gaussian laser beam propagating in a preformed parabolic plasma channel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li; Hong, Xue-Ren, E-mail: hxr_nwnu@163.com; Sun, Jian-An, E-mail: sunja@nwnu.edu.cn; Tang, Rong-An; Yang, Yang; Zhou, Wei-Jun; Tian, Jian-Min; Duan, Wen-Shan

    2017-07-12

    The propagation of q-Gaussian laser beam in a preformed plasma channel is investigated by means of the variational method. A differential equation for the spot size has been obtained by including the effects of relativistic self-focusing, ponderomotive self-channeling and preformed channel focusing. The propagation behaviors and their corresponding physical conditions are identified. The comparison of the propagation between q-Gaussian and Gaussian laser beams is done by theoretical and numerical analysis. It is shown that, in the same channel, the focusing power of q-Gaussian laser beam is lower than that of Gaussian laser beam, i.e., the q-Gaussian laser beam is easier to focus than Gaussian laser beam. - Highlights: • Some behaviors for Gaussian laser are also found for q-Gaussian one. • The parameter regions corresponding to different laser behaviors are given. • Influence of q on the laser propagation behavior is obvious. • The q-Gaussian laser beam is easier to focus than the Gaussian one.

  20. Effects of relativistic and channel focusing on q-Gaussian laser beam propagating in a preformed parabolic plasma channel

    International Nuclear Information System (INIS)

    Wang, Li; Hong, Xue-Ren; Sun, Jian-An; Tang, Rong-An; Yang, Yang; Zhou, Wei-Jun; Tian, Jian-Min; Duan, Wen-Shan

    2017-01-01

    The propagation of q-Gaussian laser beam in a preformed plasma channel is investigated by means of the variational method. A differential equation for the spot size has been obtained by including the effects of relativistic self-focusing, ponderomotive self-channeling and preformed channel focusing. The propagation behaviors and their corresponding physical conditions are identified. The comparison of the propagation between q-Gaussian and Gaussian laser beams is done by theoretical and numerical analysis. It is shown that, in the same channel, the focusing power of q-Gaussian laser beam is lower than that of Gaussian laser beam, i.e., the q-Gaussian laser beam is easier to focus than Gaussian laser beam. - Highlights: • Some behaviors for Gaussian laser are also found for q-Gaussian one. • The parameter regions corresponding to different laser behaviors are given. • Influence of q on the laser propagation behavior is obvious. • The q-Gaussian laser beam is easier to focus than the Gaussian one.

  1. Detector issues for relativistic heavy ion experimentation

    International Nuclear Information System (INIS)

    Gordon, H.

    1986-04-01

    Several aspects of experiments using relativistic heavy ion beams are discussed. The problems that the current generation of light ion experiments would face in using gold beams are noted. A brief review of colliding beam experiments for heavy ion beams is contrasted with requirements for SSC detectors. 11 refs., 13 figs

  2. Photon production in relativistic nuclear collisions at SPS and RHIC energies

    CERN Document Server

    Turbide, S; Rapp, R; 10.1142/S0217751X0402258X

    2004-01-01

    Chiral Lagrangians are used to compute the production rate of photons from the hadronic phase of relativistic nuclear collisions. Special attention is paid to the role of the a/sub 1/ pseudovector. Calculations that include strange meson reactions, form factors, the use of consistent vector spectral densities, the emission from a quark-gluon plasma, and primordial nucleon-nucleon collisions reproduce the photon spectra measured at the Super Proton Synchrotron (SPS). Some predictions for the Relativistic Heavy Ion Collider (RHIC) are made.

  3. Design consideration on the synchrotron ultrahigh vacuum system

    International Nuclear Information System (INIS)

    Tsujikawa, H.; Chida, K.; Mizobuchi, A.; Miyahara, A.

    1982-01-01

    Ultrahigh vacuum production for the high-energy heavy-ion accelerator poses special problems concerning beam-gas molecule and beam-wall interactions. In this paper, summary of the TARN ultrahigh vacuum system and design criteria of the synchrotron ultrahigh vacuum system are presented. On-beam pressure of 4 x 10 -11 Torr is achieved in the TARN ultrahigh vacuum system, of which experiences through the construction and the operation are described and discussed. With emphasis on the application of newly developed technique in the fabrication of vacuum chamber and ultrahigh vacuum pump for the synchrotron ultrahigh vacuum system. (author)

  4. Present status and future plans at INS 1.3 GeV electron synchrotron

    International Nuclear Information System (INIS)

    Yoshida, K.

    1984-01-01

    The 1.3 GeV electron synchrotron at the Institute for Nuclear Study, University of Tokyo, was completed in 1961, and it was the first accelerator in Japan that was able to be used for the study on particle physics. The brief chronicle is shown. One of the purposes to construct the electron synchrotron was to train accelerator physicists for the next big project of building a high energy proton synchrotron. This project led to the foundation of the National Laboratory for High Energy Physics, and the Photon Factory was completed in 1982 there. The electron synchrotron has been continuously operated for 22 years. Meanwhile, the major components such as the injector linac, the vacuum system and the of acceleration system were renewed. By these improvement, the beam intensity and stability of the synchrotron were much improved. The circulating current is now 160 mA, and the number of accelerated electrons is 2.5 x 10 12 /sec. These are the highest values in the world. The parameters of the present synchrotron and the operational status are shown. There are five beam channels, that is, bremsstrahlung channel, tagged photon beam, fast extracted electron beam, synchrotron light channel and detector test channel. The recent activities with the INS electron synchrotron and the future plans are summarized. (Kako, I.)

  5. Heat load studies of a water-cooled minichannel monochromator for synchrotron x-ray beams

    Science.gov (United States)

    Freund, Andreas K.; Arthur, John R.; Zhang, Lin

    1997-12-01

    We fabricated a water-cooled silicon monochromator crystal with small channels for the special case of a double-crystal fixed-exit monochromator design where the beam walks across the crystal when the x-ray energy is changed. The two parts of the cooled device were assembled using a new technique based on low melting point solder. The bending of the system produced by this technique could be perfectly compensated by mechanical counter-bending. Heat load tests of the monochromator in a synchrotron beam of 75 W total power, 3 mm high and 15 mm wide, generated by a multipole wiggler at SSRL, showed that the thermal slope error of the crystal is 1 arcsec/40 W power, in full agreement with finite element analysis. The cooling scheme is adequate for bending magnet beamlines at the ESRF and present wiggler beamlines at the SSRL.

  6. Longitudinal tracking studies for a high intensity proton synchrotron

    International Nuclear Information System (INIS)

    Lessner, E.; Cho, Y.; Harkay, K.; Symon, K.

    1995-01-01

    Results from longitudinal tracking studies for a high intensity proton synchrotron designed for a 1-MW spallation source are presented. The machine delivers a proton beam of 0.5 mA time-averaged current at a repetition rate of 30 Hz. The accelerator is designed to have radiation levels that allow hands-on-maintenance. However, the high beam intensity causes strong space charge fields whose effects may lead to particle loss and longitudinal instabilities. The space charge fields modify the particle distribution, distort the stable bucket area and reduce the rf linear restoring force. Tracking simulations were conducted to analyze the space charge effects on the dynamics of the injection and acceleration processes and means to circumvent them. The tracking studies led to the establishment of the injected beam parameters and rf voltage program that minimized beam loss and longitudinal instabilities. Similar studies for a 10-GeV synchrotron that uses the 2-GeV synchrotron as its injector are also discussed

  7. Design of a beam optic for the transfer channel between the LINAC 2 and the 2.5 GeV synchrotron

    International Nuclear Information System (INIS)

    Schneider, W.

    1992-10-01

    The accelerator facility at the Physikalisches Institut of Bonn University is being extended by a linear accelerator (LINAC 2) for the preacceleration of polarized electron beams to an energy level of 20 MeV. The beam optics of the transfer channel, which guides the electrons to the injection point of the 2.5 GeV-Synchrotron, has been designed. Because the emittance of the electron beam leaving the LINAC 2 is unknown at the movement, the beam optics and the aperture of the transfer channel has been layed out for a high transmission even for the worst case scenario. The quadrupol magnets needed for focusing and matching the beam has been constructed and tested. The integration of a system for beam diagnosis and position correction in the transfer channel is planned. (orig.) [de

  8. National Synchrotron Light Source: vacuum system for National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Schuchman, J.C.; Godel, J.B.; Jordan, W.; Oversluizen, T.

    1978-01-01

    The National Synchrotron Light Source (NSLS), a 24 million dollar project under construction at Brookhaven National Laboratory (BNL), is a research facility dedicated to the production of synchrotron radiation. Synchrotron radiation is that radiation produced by the acceleration of charged particles at near the speed of light. This facility will provide a continuous spectrum of radiation from the vacuum ultraviolet to the hard x-ray range. The radiation will be highly intense, 100% polarized, extremely well collimated and will have a pulsed time structure. The radiation will be produced in two electron storage rings at energies of 700 MeV and 2.5 GeV, respectively. A maximum of one ampere at 2 GeV, or one-half ampere at 2.5 GeV, of electron beam will be stored

  9. Relativistic electron beam interaction and $K_{\\alpha}$-generation in solid targets

    CERN Document Server

    Fill, E; Eder, D; Eidmann, K; Saemann, A

    1999-01-01

    When fs laser pulses interact with solid surfaces at intensities I lambda /sup 2/ >10/sup 18/ W/cm/sup 2/ mu m/sup 2/, collimated relativistic electron beams are generated. These electrons can be used for producing intense X-radiation (bremsstrahlung or K/sub alpha /) for pumping an innershell X-ray laser. The basic concept of such a laser involves the propagation of the electron beam in a material which converts electron energy into appropriate pump photons. Using the ATLAS titanium-sapphire laser at Max-Planck-Institut fur Quantenoptik, we investigate the generation of hot electrons and of characteristic radiation in copper. The laser (200 mJ/130 fs) is focused by means of an off-axis parabola to a diameter of about 10 mu m. By varying the position of the focus, we measure the copper K/sub alpha /-yield as a function of intensity in a range from 10/sup 15/ to 2 x 10/sup 18/ W/cm/sup 2/ while keeping the laser pulse energy constant. Surprisingly, the highest emission is obtained at an intensity of about 10/s...

  10. Enhanced relativistic self-focusing of Hermite-cosh-Gaussian laser beam in plasma under density transition

    International Nuclear Information System (INIS)

    Nanda, Vikas; Kant, Niti

    2014-01-01

    Enhanced and early relativistic self-focusing of Hermite-cosh-Gaussian (HChG) beam in the plasmas under density transition has been investigated theoretically using Wentzel-Kramers-Brillouin and paraxial ray approximation for mode indices m=0, 1, and 2. The variation of beam width parameter with normalized propagation distance for m=0, 1, and 2 is reported, and it is observed that strong self-focusing occurs as the HChG beam propagates deeper inside the nonlinear medium as spot size shrinks due to highly dense plasmas and the results are presented graphically. A comparative study between self-focusing of HChG beam in the presence and absence of plasmas density transition is reported. The dependency of beam width parameter on the normalized propagation distance for different values of decentered parameter “b” has also been presented graphically. For m=0 and 1, strong self-focusing is reported for b=1.8, and for m=2 and b=1.8, beam gets diffracted. The results obtained indicate the dependency of the self-focusing of the HChG beam on the selected values of decentered parameter. Moreover, proper selection of decentered parameter results strong self-focusing of HChG beam. Stronger self-focusing of laser beam is observed due to the presence of plasma density transition which might be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, etc

  11. Enhanced relativistic self-focusing of Hermite-cosh-Gaussian laser beam in plasma under density transition

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Vikas; Kant, Niti, E-mail: nitikant@yahoo.com [Department of Physics, Lovely Professional University, Phagwara 144411, Punjab (India)

    2014-04-15

    Enhanced and early relativistic self-focusing of Hermite-cosh-Gaussian (HChG) beam in the plasmas under density transition has been investigated theoretically using Wentzel-Kramers-Brillouin and paraxial ray approximation for mode indices m=0, 1, and 2. The variation of beam width parameter with normalized propagation distance for m=0, 1, and 2 is reported, and it is observed that strong self-focusing occurs as the HChG beam propagates deeper inside the nonlinear medium as spot size shrinks due to highly dense plasmas and the results are presented graphically. A comparative study between self-focusing of HChG beam in the presence and absence of plasmas density transition is reported. The dependency of beam width parameter on the normalized propagation distance for different values of decentered parameter “b” has also been presented graphically. For m=0 and 1, strong self-focusing is reported for b=1.8, and for m=2 and b=1.8, beam gets diffracted. The results obtained indicate the dependency of the self-focusing of the HChG beam on the selected values of decentered parameter. Moreover, proper selection of decentered parameter results strong self-focusing of HChG beam. Stronger self-focusing of laser beam is observed due to the presence of plasma density transition which might be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, etc.

  12. Mono-energetic ion beam acceleration in solitary waves during relativistic transparency using high-contrast circularly polarized short-pulse laser and nanoscale targets

    International Nuclear Information System (INIS)

    Yin, L.; Albright, B. J.; Bowers, K. J.; Shah, R. C.; Palaniyappan, S.; Fernandez, J. C.; Jung, D.; Hegelich, B. M.

    2011-01-01

    In recent experiments at the Trident laser facility, quasi-monoenergetic ion beams have been obtained from the interaction of an ultraintense, circularly polarized laser with a diamond-like carbon target of nm-scale thickness under conditions of ultrahigh laser pulse contrast. Kinetic simulations of this experiment under realistic laser and plasma conditions show that relativistic transparency occurs before significant radiation pressure acceleration and that the main ion acceleration occurs after the onset of relativistic transparency. Associated with this transition are a period of intense ion acceleration and the generation of a new class of ion solitons that naturally give rise to quasi-monoenergetic ion beams. An analytic theory has been derived for the properties of these solitons that reproduces the behavior observed in kinetic simulations and the experiments.

  13. Relativistic-klystron two-beam-accelerator as a power source for a 1 TeV next linear collider: A systems study

    International Nuclear Information System (INIS)

    Yu, S.; Goffeney, N.; Deadrick, F.

    1994-10-01

    A physics, engineering, and costing study has been conducted to explore the feasibility of a relativistic-klystron two-beam-accelerator system as a power source candidate for a 1 TeV linear collider. We present a point design example which has acceptable transverse and longitudinal beam stability properties. Preliminary ''bottom-up'' cost estimate yields the full power source system at less than 1 billion dollars. The overall efficiency for rf production is estimated to be 36%

  14. The principles of designing autoregulated circuits of particles injection in synchrotron accelerators

    International Nuclear Information System (INIS)

    Karabekov, I.P.; Krol', V.K.

    1974-01-01

    The paper deals with an investigation of beam injection systems of large electron synchrotrons from the point of view of a possibility of the injection process automation. The injection system elements of the Erevan synchrotron are considered as an example to show the possibility of designing a closed automatic control system based on the beam parameter data. To obtain data on the beam parameters a scheme based on magnetoinduction zero-indicators is used. The particle capture int orbit and automatic control system is shown to be indeterminate without preliminary monochromatization of the beam. The automatic control functional scheme is presented and main technical requirements for some synchrotron components are formulated. The realization of the proposed automatic control system on the Erevan synchrotron will ensure the matching of beam trajectory parameters at the point of particle capture into orbit with injected particle energy and the injection field value on the orbit, if the accuracy required for the adjustment of the magnetic field parameters necessary for the first turns is achieved

  15. Consideration of Relativistic Dynamics in High-Energy Electron Coolers

    CERN Document Server

    Bruhwiler, David L

    2005-01-01

    A proposed electron cooler for RHIC would use ~55 MeV electrons to cool fully-ionized 100 GeV/nucleon gold ions.* At two locations in the collider ring, the electrons and ions will co-propagate for ~13 m, with velocities close to c and gamma>100. To lowest-order, one can Lorentz transform all physical quantities into the beam frame and calculate the dynamical friction forces assuming a nonrelativisitc, electrostatic plasma. However, we show that nonlinear space charge forces of the bunched electron beam on the ions must be calculated relativistically, because an electrostatic beam-frame calculation is not valid for such short interaction times. The validity of nonrelativistic friction force calculations must also be considered. Further, the transverse thermal velocities of the high-charge (~20 nC) electron bunch are large enough that some electrons have marginally relativistic velocities, even in the beam frame. Hence, we consider relativistic binary collisions – treating the model problem of ...

  16. Spectral characteristics of a relativistic plasma microwave generator

    International Nuclear Information System (INIS)

    Kuzelev, M.V.; Loza, O.T.; Ponomarev, A.V.; Rukhadze, A.A.; Strelkov, P.S.; Ul'yanov, D.K.; Shkvarunets, A.G.

    1996-01-01

    The radiation spectrum of a broad-band relativistic plasma microwave generator, in which a hollow relativistic electron beam is injected into a plasma waveguide consisting of a hollow plasma within a round metallic waveguide is measured experimentally. The radiation spectrum is measured using a wide-aperture calorimetric spectrometer in the frequency range 3-32 GHz. The influence of the plasma density and the beam-plasma gap on the radiation spectrum is investigated. The amplification of the noise electromagnetic radiation when a relativistic electron beam is injected into the plasma waveguide is calculated on the basis of the nonlinear theory. The theory predicts passage from a one-particle generation regime to a collective regime and narrowing of the radiation spectrum as the plasma density and the gap between the hollow beam and the plasma increases. A comparison of the measurement results with the nonlinear theory accounts for several features of the measured spectrum. However, the predicted change in the generation regimes is not observed experimentally. Qualitative arguments are advanced, which explain the observed phenomena and call for further theoretical and experimental research, are advanced

  17. Planning study for advanced national synchrotron-radiation facilities

    International Nuclear Information System (INIS)

    1984-01-01

    A new generation of synchrotron-radiation sources based on insertion devices offers gains in photon-beam brilliance as large as the gains that present-day synchrotron sources provided over conventional sources. This revolution in synchrotron capability and its impact on science and technology will be as significant as the original introduction of synchrotron radiation. This report recommends that insertion-device technology be pursued as our highest priority, both through the full development of insertion-device potential on existing machines and through the building of new facilities

  18. Polarization transfer in relativistic magnetized plasmas

    Science.gov (United States)

    Heyvaerts, Jean; Pichon, Christophe; Prunet, Simon; Thiébaut, Jérôme

    2013-04-01

    The polarization transfer coefficients of a relativistic magnetized plasma are derived. These results apply to any momentum distribution function of the particles, isotropic or anisotropic. Particles interact with the radiation either in a non-resonant mode when the frequency of the radiation exceeds their characteristic synchrotron emission frequency or quasi-resonantly otherwise. These two classes of particles contribute differently to the polarization transfer coefficients. For a given frequency, this dichotomy corresponds to a regime change in the dependence of the transfer coefficients on the parameters of the particle's population, since these parameters control the relative weight of the contribution of each class of particles. Our results apply to either regimes as well as the intermediate one. The derivation of the transfer coefficients involves an exact expression of the conductivity tensor of the relativistic magnetized plasma that has not been used hitherto in this context. Suitable expansions valid at frequencies much larger than the cyclotron frequency allow us to analytically perform the summation over all resonances at high harmonics of the relativistic gyrofrequency. The transfer coefficients are represented in the form of two-variable integrals that can be conveniently computed for any set of parameters by using Olver's expansion of high-order Bessel functions. We particularize our results to a number of distribution functions, isotropic, thermal or power law, with different multipolar anisotropies of low order, or strongly beamed. Specifically, earlier exact results for thermal distributions are recovered. For isotropic distributions, the Faraday coefficients are expressed in the form of a one-variable quadrature over energy, for which we provide the kernels in the high-frequency limit and in the asymptotic low-frequency limit. An interpolation formula extending over the full energy range is proposed for these kernels. A similar reduction to a

  19. Study of charge-sharing in MEDIPIX3 using a micro-focused synchrotron beam

    International Nuclear Information System (INIS)

    Gimenez, E N; Horswell, I; Marchal, J; Sawhney, K J S; Tartoni, N; Ballabriga, R; Campbell, M; Llopart, X; Turecek, D

    2011-01-01

    X-ray photon-counting detectors consisting of a silicon pixel array sensor bump-bonded to a CMOS electronic readout chip offer several advantages over traditional X-ray detection technologies used for synchrotron applications. They offer high frame rate, dynamic range, count rate capability and signal-to-noise ratio. A survey of the requirements for future synchrotron detectors carried out at the Diamond Light Source synchrotron highlighted the needs for detectors with a pixel size of the order of 50μm. Reducing the pixel size leads to an increase of charge-sharing events between adjacent pixels and, therefore, to a degradation of the energy resolution and image quality of the detector. This effect was observed with MEDIPIX2, a photon-counting readout chip with a pixel size of 55μm. The latest generation of the MEDIPIX family, MEDIPIX3, is designed to overcome this charge-sharing effect in an implemented readout operating mode referred to as Charge Summing Mode. MEDIPIX3 has the same pixel size as MEDIPIX2, but it is implemented in an 8-metal 0.13μm CMOS technology which enables increased functionality per pixel. The present work focuses on the study of the charge-sharing effect when the MEDIPIX3 is operated in Charge Summing Mode compared to the conventional readout mode, referred to as Single Pixel Mode. Tests of a standard silicon photodiode array bump-bonded to MEDIPIX3 were performed in beamline B16 at the Diamond Light Source synchrotron. A monochromatic micro-focused beam of 2.9μm x 2.2μm size at 15keV was used to scan a cluster of nine pixels in order to study the charge collection and X-ray count allocation process for each readout mode, Single Pixel Mode and Charge Summing Mode. The study showed that charge-shared events were eliminated when Medipix3 was operated in Charge Summing Mode.

  20. Radiological Considerations in the Desgin of Synchrotron Radiation Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ipe, Nisy E.

    1999-01-06

    As synchrotron radiation (SR) facilities are rapidly being designed and built all over the world, the radiological considerations should be weighed carefully at an early stage in the design of the facility. This necessitates the understanding and identification of beam losses in the machines, especially the storage ring. The potential sources of radiation are photons and neutrons from loss of injected or stored beam, gas bremsstrahlung and synchrotron radiation. Protection against radiation is achieved through the adequate design of the shielding walls of the storage ring and the synchrotron radiation beam lines. In addition safety systems such as stoppers and shutters provide protection in the forward direction for entry into the experimental enclosures. Special care needs to be exercised in the design of SR experimental enclosures to minimize radiation leakage through penetrations and gaps between doors and walls, and doors and floors.

  1. Macromolecular crystallography using synchrotron radiation

    International Nuclear Information System (INIS)

    Bartunik, H.D.; Phillips, J.C.; Fourme, R.

    1982-01-01

    The use of synchrotron X-ray sources in macromolecular crystallography is described. The properties of synchrotron radiation relevant to macromolecular crystallography are examined. The applications discussed include anomalous dispersion techniques, the acquisition of normal and high resolution data, and kinetic studies of structural changes in macromolecules; protein data are presented illustrating these applications. The apparatus used is described including information on the electronic detectors, the monitoring of the incident beam and crystal cooling. (U.K.)

  2. Single-mode coherent synchrotron radiation instability

    Directory of Open Access Journals (Sweden)

    S. Heifets

    2003-06-01

    Full Text Available The microwave instability driven by the coherent synchrotron radiation (CSR has been previously studied [S. Heifets and G. V. Stupakov, Phys. Rev. ST Accel. Beams 5, 054402 (2002] neglecting effect of the shielding caused by the finite beam pipe aperture. In practice, the unstable mode can be close to the shielding threshold where the spectrum of the radiation in a toroidal beam pipe is discrete. In this paper, the CSR instability is studied in the case when it is driven by a single synchronous mode. A system of equations for the beam-wave interaction is derived and its similarity to the 1D free-electron laser theory is demonstrated. In the linear regime, the growth rate of the instability is obtained and a transition to the case of continuous spectrum is discussed. The nonlinear evolution of the single-mode instability, both with and without synchrotron damping and quantum diffusion, is also studied.

  3. Synchrotron radiation from a Helical Wiggler

    International Nuclear Information System (INIS)

    Irani, A.A.

    1979-01-01

    The use of Wiggler magnets as an improved source of synchrotron radiation from high energy electron storage rings was proposed a few years ago. Since then it has also been suggested that synchrotron radiation from Wiggler magnets placed in proton machines can be used to monitor energy, dimensions and position of the beam and that this effect is even more interesting in proton storage rings where the need to see the beam is greater. Most of the calculations carried out so far consider radiation from a single particle in a Wiggler which is appropriate when the beam is radiating incoherently. In this paper a general formalism is developed for the case when the beam radiates coherently. These results are then applied to both electron and proton storage rings. For the electron case, an expression is derived for the length of the bunch to be used as a more intense coherent radiation source. For proton machines the radiation can be used to measure energy, current, transverse dimensions and longitudinal density variations in the beam

  4. Synchrotron radiation from a helical wiggler

    International Nuclear Information System (INIS)

    Irani, A.A.

    1979-01-01

    The use of wiggler magnets as an improved source of synchrotron radiation from high energy electron storage rings was proposed a few years age. Since then it has also been suggested that synchrotron radiation from wiggler magnets placed in proton machines can be used to monitor energy, dimensions and position of the beam and that this effect is even more interesting in proton storage rings where the need to see the beam is greater. Most of the calculations carried out so far consider radiation from a single particle in a wiggler which is appropriate when the beam is radiating incoherently. A general formalism is presented for the case when the beam radiates coherently. These results are applied to both electron and proton storage rings. For the electron case, an expression is derived for the length of the bunch to use it as a more intense coherent radiation source. For proton machines the radiation can be used to measure energy, current, transverse dimensions and longitudinal density variations in the beam

  5. Synchrotron radiation in atomic physics

    International Nuclear Information System (INIS)

    Crasemann, B.

    1998-01-01

    Much of present understanding of atomic and molecular structure and dynamics was gained through studies of photon-atom interactions. In particular, observations of the emission, absorption, and scattering of X rays have complemented particle-collision experiments in elucidating the physics of atomic inner shells. Grounded on Max von Laue's theoretical insight and the invention of the Bragg spectrometer, the field's potential underwent a step function with the development of synchrotron-radiation sources. Notably current third-generation sources have opened new horizons in atomic and molecular physics by producing radiation of wide tunability and exceedingly high intensity and polarization, narrow energy bandwidth, and sharp time structure. In this review, recent advances in synchrotron-radiation studies in atomic and molecular science are outlined. Some tempting opportunities are surveyed that arise for future studies of atomic processes, including many-body effects, aspects of fundamental photon-atom interactions, and relativistic and quantum-electrodynamic phenomena. (author)

  6. Impact of cardio-synchronous brain pulsations on Monte Carlo calculated doses for synchrotron micro- and mini-beam radiation therapy.

    Science.gov (United States)

    Manchado de Sola, Francisco; Vilches, Manuel; Prezado, Yolanda; Lallena, Antonio M

    2018-05-15

    To assess the effects of brain movements induced by heartbeat on dose distributions in synchrotron micro- and mini-beam radiaton therapy and to develop a model to help guide decisions and planning for future clinical trials. The Monte Carlo code PENELOPE was used to simulate the irradiation of a human head phantom with a variety of micro- and mini-beam arrays, with beams narrower than 100 μm and above 500 μm, respectively, and with radiation fields of 1cm × 2cm and 2cm × 2cm. The dose in the phantom due to these beams was calculated by superposing the dose profiles obtained for a single beam of 1μm × 2cm. A parameter δ, accounting for the total displacement of the brain during the irradiation and due to the cardio-synchronous pulsation, was used to quantify the impact on peak-to-valley dose ratios and the full-width at half-maximum. The difference between the maximum (at the phantom entrance) and the minimum (at the phantom exit) values of the peak-to-valley dose ratio reduces when the parameter δ increases. The full-width at half-maximum remains almost constant with depth for any δ value. Sudden changes in the two quantities are observed at the interfaces between the various tissues (brain, skull and skin) present in the head phantom. The peak-to-valley dose ratio at the center of the head phantom reduces when δ increases, remaining above 70% of the static value only for mini-beams and δ smaller than ~ 200 μm. Optimal setups for brain treatments with synchrotron radiation micro- and mini-beam combs depend on the brain displacement due to cardio-synchronous pulsation. Peak-to-valley dose ratios larger than 90% of the maximum values obtained in the static case occur only for mini-beams and relatively large dose rates. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Radio galaxies radiation transfer, dynamics, stability and evolution of a synchrotron plasmon

    CERN Document Server

    Pacholczyk, A G

    1977-01-01

    Radio Galaxies: Radiation Transfer, Dynamics, Stability and Evolution of a Synchrotron Plasmon deals with the physics of a region in space containing magnetic field and thermal and relativistic particles (a plasmon). The synchrotron emission and absorption of this region are discussed, along with the properties of its spectrum; its linear and circular polarization; transfer of radiation through such a region; its dynamics and expansion; and interaction with external medium.Comprised of eight chapters, this volume explores the stability, turbulence, and acceleration of particles in a synchrotro

  8. Analytical research using synchrotron radiation based techniques

    International Nuclear Information System (INIS)

    Jha, Shambhu Nath

    2015-01-01

    There are many Synchrotron Radiation (SR) based techniques such as X-ray Absorption Spectroscopy (XAS), X-ray Fluorescence Analysis (XRF), SR-Fourier-transform Infrared (SRFTIR), Hard X-ray Photoelectron Spectroscopy (HAXPS) etc. which are increasingly being employed worldwide in analytical research. With advent of modern synchrotron sources these analytical techniques have been further revitalized and paved ways for new techniques such as microprobe XRF and XAS, FTIR microscopy, Hard X-ray Photoelectron Spectroscopy (HAXPS) etc. The talk will cover mainly two techniques illustrating its capability in analytical research namely XRF and XAS. XRF spectroscopy: XRF spectroscopy is an analytical technique which involves the detection of emitted characteristic X-rays following excitation of the elements within the sample. While electron, particle (protons or alpha particles), or X-ray beams can be employed as the exciting source for this analysis, the use of X-ray beams from a synchrotron source has been instrumental in the advancement of the technique in the area of microprobe XRF imaging and trace level compositional characterisation of any sample. Synchrotron radiation induced X-ray emission spectroscopy, has become competitive with the earlier microprobe and nanoprobe techniques following the advancements in manipulating and detecting these X-rays. There are two important features that contribute to the superb elemental sensitivities of microprobe SR induced XRF: (i) the absence of the continuum (Bremsstrahlung) background radiation that is a feature of spectra obtained from charged particle beams, and (ii) the increased X-ray flux on the sample associated with the use of tunable third generation synchrotron facilities. Detection sensitivities have been reported in the ppb range, with values of 10 -17 g - 10 -14 g (depending on the particular element and matrix). Keeping in mind its demand, a microprobe XRF beamline has been setup by RRCAT at Indus-2 synchrotron

  9. Fast synchrotron and FEL beam monitors based on single-crystal diamond detectors and InGaAs/InAlAs quantum well devices

    Science.gov (United States)

    Antonelli, M.; Di Fraia, M.; Carrato, S.; Cautero, G.; Menk, R. H.; Jark, W. H.; Ganbold, T.; Biasiol, G.; Callegari, C.; Coreno, M.; De Sio, A.; Pace, E.

    2013-12-01

    Simultaneous photon-beam position and intensity monitoring is becoming of increasing importance for new-generation synchrotron radiation sources and free-electron lasers (FEL). Thus, novel concepts of beam diagnostics are required in order to keep such beams under control. From this perspective diamond is a promising material for the production of semitransparent in situ photon beam monitors, which can withstand the high dose rates occurring in such radiation facilities. Here, we report on the development of freestanding, single-crystal chemical-vapor-deposited diamond detectors with segmented electrodes. Due to their direct, low-energy band gap, InGaAs quantum well devices operated at room temperature may also be used as fast detectors for photons ranging from visible to X-ray. These features are valuable in low-energy and time-resolved FEL applications. In particular, a novel segmented InGaAs/InAlAs device has been developed and will be discussed. Dedicated measurements carried out on both these devices at the Elettra Synchrotron show their capability to monitor the position and the intensity of the photon beam with bunch-by-bunch temporal performances. Furthermore, preliminary tests have been performed on diamond detectors at the Fermi FEL, extracting quantitative intensity and position information for 100-fs-wide FEL pulses with a photon energy of 28.8 eV.

  10. Energy dispersive detector for white beam synchrotron x-ray fluorescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Matthew D., E-mail: Matt.Wilson@stfc.ac.uk; Seller, Paul; Veale, Matthew C. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus,UK (United Kingdom); Connolley, Thomas [Diamond Light Source, I12 Beamline, Harwell Campus, Didcot, Oxfordshire (United Kingdom); Dolbnya, Igor P.; Malandain, Andrew; Sawhney, Kawal [Diamond Light Source, B16 Beamline, Harwell Campus, Didcot, Oxfordshire (United Kingdom); Grant, Patrick S.; Liotti, Enzo; Lui, Andrew [Department of Materials, University of Oxford Parks Road, Oxford (United Kingdom)

    2016-07-27

    A novel, “single-shot” fluorescence imaging technique has been demonstrated on the B16 beamline at the Diamond Light Source synchrotron using the HEXITEC energy dispersive imaging detector. A custom made furnace with 200µm thick metal alloy samples was positioned in a white X-ray beam with a hole made in the furnace walls to allow the transmitted beam to be imaged with a conventional X-ray imaging camera consisting of a 500 µm thick single crystal LYSO scintillator, mirror and lens coupled to an AVT Manta G125B CCD sensor. The samples were positioned 45° to the incident beam to enable simultaneous transmission and fluorescence imaging. The HEXITEC detector was positioned at 90° to the sample with a 50 µm pinhole 13 cm from the sample and the detector positioned 2.3m from pinhole. The geometric magnification provided a field of view of 1.1×1.1mm{sup 2} with one of the 80×80 pixels imaging an area equivalent to 13µm{sup 2}. Al-Cu alloys doped with Zr, Ag and Mo were imaged in transmission and fluorescence mode. The fluorescence images showed that the dopant metals could be simultaneously imaged with sufficient counts on all 80x80 pixels within 60 s, with the X-ray flux limiting the fluorescence imaging rate. This technique demonstrated that it is possible to simultaneously image and identify multiple elements on a spatial resolution scale ~10µm or higher without the time consuming need to scan monochromatic energies or raster scan a focused beam of X-rays. Moving to high flux beamlines and using an array of detectors could improve the imaging speed of the technique with element specific imaging estimated to be on a 1 s timescale.

  11. Energy dispersive detector for white beam synchrotron x-ray fluorescence imaging

    International Nuclear Information System (INIS)

    Wilson, Matthew D.; Seller, Paul; Veale, Matthew C.; Connolley, Thomas; Dolbnya, Igor P.; Malandain, Andrew; Sawhney, Kawal; Grant, Patrick S.; Liotti, Enzo; Lui, Andrew

    2016-01-01

    A novel, “single-shot” fluorescence imaging technique has been demonstrated on the B16 beamline at the Diamond Light Source synchrotron using the HEXITEC energy dispersive imaging detector. A custom made furnace with 200µm thick metal alloy samples was positioned in a white X-ray beam with a hole made in the furnace walls to allow the transmitted beam to be imaged with a conventional X-ray imaging camera consisting of a 500 µm thick single crystal LYSO scintillator, mirror and lens coupled to an AVT Manta G125B CCD sensor. The samples were positioned 45° to the incident beam to enable simultaneous transmission and fluorescence imaging. The HEXITEC detector was positioned at 90° to the sample with a 50 µm pinhole 13 cm from the sample and the detector positioned 2.3m from pinhole. The geometric magnification provided a field of view of 1.1×1.1mm"2 with one of the 80×80 pixels imaging an area equivalent to 13µm"2. Al-Cu alloys doped with Zr, Ag and Mo were imaged in transmission and fluorescence mode. The fluorescence images showed that the dopant metals could be simultaneously imaged with sufficient counts on all 80x80 pixels within 60 s, with the X-ray flux limiting the fluorescence imaging rate. This technique demonstrated that it is possible to simultaneously image and identify multiple elements on a spatial resolution scale ~10µm or higher without the time consuming need to scan monochromatic energies or raster scan a focused beam of X-rays. Moving to high flux beamlines and using an array of detectors could improve the imaging speed of the technique with element specific imaging estimated to be on a 1 s timescale.

  12. The Stanford Synchrotron Radiation Laboratory, 20 years of synchrotron light

    International Nuclear Information System (INIS)

    Cantwell, K.

    1993-08-01

    The Stanford Synchrotron Radiation Laboratory (SSRL) is now operating as a fully dedicated light source with low emittance electron optics, delivering high brightness photon beams to 25 experimental stations six to seven months per year. On October 1, 1993 SSRL became a Division of the Stanford Linear Accelerator Center, rather than an Independent Laboratory of Stanford University, so that high energy physics and synchrotron radiation now function under a single DOE contract. The SSRL division of SLAC has responsibility for operating, maintaining and improving the SPEAR accelerator complex, which includes the storage ring and a 3 GeV injector. SSRL has thirteen x-ray stations and twelve VUV/Soft x-ray stations serving its 600 users. Recently opened to users is a new spherical grating monochromator (SGM) and a multiundulator beam line. Circularly polarized capabilities are being exploited on a second SGM line. New YB 66 crystals installed in a vacuum double-crystal monochromator line have sparked new interest for Al and Mg edge studies. One of the most heavily subscribed stations is the rotation camera, which has been recently enhanced with a MAR imaging plate detector system for protein crystallography on a multipole wiggler. Under construction is a new wiggler-based structural molecular biology beam line with experimental stations for crystallography, small angle scattering and x-ray absorption spectroscopy. Plans for new developments include wiggler beam lines and associated facilities specialized for environmental research and materials processing

  13. Dynamic response of a typical synchrotron magnet/girder assembly

    International Nuclear Information System (INIS)

    Jendrzejczyk, J.A.; Smith, R.K.; Vogt, M.E.

    1993-06-01

    In the Advanced Photon Source, the synchrotron booster ring accelerates positrons to the required energy level of 7 GeV. The positrons are then injected into the storage ring where they continue to orbit for 10--15 h. The storage ring quadrupoles have very stringent vibration criteria that must be satisfied to ensure that beam emittance growth is within acceptable limits, viz., <10%. Because the synchrotron booster ring is not operated after particle insertion into the storage ring, its vibration response is not a critical issue relative to the performance of the storage ring beam. Nevertheless, the synchrotron pulses at a frequency of 2 Hz, and if a vibration response frequency of the synchrotron magnet/girder assembly were to coincide with the pulsation frequency or its near harmonics, large-amplitude motion could result, with the effect that it could compromise the operation of the synchrotron. Due to the complex dynamics of the synchrotron magnet/girder assembly, it is necessary to measure the dynamic response of a prototypic assembly and its components to ensure that the inherent dynamic response frequencies are not equal to 2 Hz or any near harmonics. Dynamic-response measurement of the synchrotron girder assembly and component magnets is the subject of this report

  14. MONO: A program to calculate synchrotron beamline monochromator throughputs

    International Nuclear Information System (INIS)

    Chapman, D.

    1989-01-01

    A set of Fortran programs have been developed to calculate the expected throughput of x-ray monochromators with a filtered synchrotron source and is applicable to bending magnet and wiggler beamlines. These programs calculate the normalized throughput and filtered synchrotron spectrum passed by multiple element, flat un- focussed monochromator crystals of the Bragg or Laue type as a function of incident beam divergence, energy and polarization. The reflected and transmitted beam of each crystal is calculated using the dynamical theory of diffraction. Multiple crystal arrangements in the dispersive and non-dispersive mode are allowed as well as crystal asymmetry and energy or angle offsets. Filters or windows of arbitrary elemental composition may be used to filter the incident synchrotron beam. This program should be useful to predict the intensities available from many beamline configurations as well as assist in the design of new monochromator and analyzer systems. 6 refs., 3 figs

  15. Squids, snakes, and polarimeters: A new technique for measuring the magnetic moments of polarized beams

    International Nuclear Information System (INIS)

    Cameron, P.R.; Luccio, A.U.; Shea, T.J.; Tsoupas, N.; Goldberg, D.A.

    1997-01-01

    Effective polarimetry at high energies in hadron and lepton synchrotrons has been a long-standing and difficult problem. In synchrotrons with polarized beams it is possible to cause the direction of the polarization vector of a given bunch to alternate at a frequency which is some subharmonic of the rotation frequency. This can result in the presence of lines in the beam spectrum which are due only to the magnetic moment of the beam and which are well removed from the various lines due to the charge of the beam. The magnitude of these lines can be calculated from first principles. They are many orders of magnitude weaker than the Schottky signals. Measurement of the magnitude of one of these lines would be an absolute measurement of beam polarization. For measuring magnetic field, the Superconducting Quantum Interference Device, or squid, is about five orders of magnitude more sensitive than any other transducer. Using a squid, such a measurement might be accomplished with the proper combination of shielding, pickup loop design, and filtering. The resulting instrument would be fast, non-destructive, and comparatively cheap. In addition, techniques developed in the creation of such an instrument could be used to measure the Schottky spectrum in unprecedented detail. We present specifics of a polarimeter design for the Relativistic Heavy Ion Collider (RHIC) and briefly discuss the possibility of using this technique to measure polarization at high-energy electron machines like LEP and HERA. copyright 1997 American Institute of Physics

  16. Thermal analysis of injection beam dump of high-intensity rapid-cycling synchrotron in J-PARC

    Science.gov (United States)

    Kamiya, J.; Saha, P. K.; Yamamoto, K.; Kinsho, M.; Nihei, T.

    2017-10-01

    The beam dump at the beam injection area in the J-PARC 3-GeV rapid cycling synchrotron (RCS) accepts beams that pass through the charge exchange foil without ideal electron stripping during the multi-turn beam injection. The injection beam dump consists of the beam pipe, beam stopper, radiation shield, and cooling mechanism. The ideal beam power into the injection beam dump is 400 W in the case of design RCS extraction beam power of 1 MW with a healthy foil, which has 99.7 % charge stripping efficiency. On the other hand, as a radiation generator, the RCS is permitted to be operated with maximum average beam power of 4 kW into the injection beam dump based on the radiation shielding calculation, in consideration of lower charge stripping efficiency due to the foil deterioration. In this research, to evaluate the health of the RCS injection beam dump system from the perspective of the heat generation, a thermal analysis was performed based on the actual configuration with sufficiently large region, including the surrounding concrete and soil. The calculated temperature and heat flux density distribution showed the validity of the mesh spacing and model range. The calculation result showed that the dumped 4 kW beam causes the temperature to increase up to 330, 400, and 140 °C at the beam pipe, beam stopper, and radiation shield, respectively. Although these high temperatures induce stress in the constituent materials, the calculated stress values were lower than the ultimate tensile strength of each material. Transient temperature analysis of the beam stopper, which simulated the sudden break of the charge stripper foil, demonstrated that one bunched beam pulse with the maximum beam power does not lead to a serious rise in the temperature of the beam stopper. Furthermore, from the measured outgassing rate of stainless steel at high temperature, the rise in beam line pressure due to additive outgassing from the heated beam pipe was estimated to have a negligible

  17. Relativistic heavy ions from the BNL [Brookhaven National Laboratory] booster medical research and technological applications

    International Nuclear Information System (INIS)

    Thieberger, P.

    1990-05-01

    The BNL Booster, now nearing completion, was designed to inject protons and heavy ions into the Alternating Gradient Synchrotron (AGS) for further acceleration. In the future, ion beams from the AGS will in turn be further accelerated in the Relativistic Heavy Ion Collider (RHIC). Given the wide range of ion masses, energies and beam intensities the Booster will generate, other important applications should be considered. Dedicated use of the Booster for such applications may be possible during limited periods. However shared use would be preferable from the points of view of availability, affordability and efficiency. While heavy ions of a given isotope are injected into the AGS, the same or other ion species from the Booster could be simultaneously delivered to a new irradiation area for treatment of patients, testing of electronic devices or other applications and research. To generate two different beam species, ion sources on both Tandem accelerators would be used; one for AGS injection and the other one for a time-sharing application. Since the beam transport from the Tandems to the Booster can not be rapidly adjusted, it will be necessary to select beams of identical magnetic rigidity. The present study was performed to determine to what extent this compatibility requirement imposes limitations on the available ion species, energies and/or intensities

  18. First indication of the coherent unipolar diffraction radiation generated by relativistic electrons

    Science.gov (United States)

    Naumenko, G.; Shevelev, M.

    2018-05-01

    As is generally known, the integral of the electric field strength over all time for usual (bipolar) radiation is zero. The first demonstration of the possibility of unipolar radiation generation has been considered theoretically by Bessonov in 1981 [E.G. Bessonov, Zh. Eksp. Teor. Fiz. 80 (1981) 852]. According to this work, the unipolar radiation (or strange electromagnetic waves) is radiation for which the integral of the electric field strength over the entire duration of a pulse differs significantly from zero. Later, several theoretical papers devoted to this phenomenon have appeared in the literature, where authors investigated mainly synchrotron radiation. However, despite the critical interest, the experimental investigations ignored this effect. In this paper we present results of the first experimental investigation of the unipolar radiation generated by a relativistic electron beam. To detect the unipolar radiation the detector that is sensitive to the selected direction of the electric field strength has been elaborated and tested. We used a designed detector to observe the coherent backward diffraction radiation appearing when a bunched electron beam travels in the vicinity of a flat conductive target. The asymmetry of the electric field strength of the coherent backward diffraction radiation has been demonstrated.

  19. Time-resolved materials science opportunities using synchrotron x-ray sources

    International Nuclear Information System (INIS)

    Larson, B.C.; Tischler, J.Z.

    1995-06-01

    The high brightness, high intensity, and pulsed time-structure of synchrotron sources provide new opportunities for time-resolved x-ray diffraction investigations. With third generation synchrotron sources coming on line, high brilliance and high brightness are now available in x-ray beams with the highest flux. In addition to the high average flux, the instantaneous flux available in synchrotron beams is greatly enhanced by the pulsed time structure, which consists of short bursts of x-rays that are separated by ∼tens to hundreds of nanoseconds. Time-resolved one- and two-dimensional position sensitive detection techniques that take advantage of synchrotron radiation for materials science x-ray diffraction investigations are presented, and time resolved materials science applications are discussed in terms of recent diffraction and spectroscopy results and materials research opportunities

  20. Roundness and straightness measurement of ceramic beam ducts for the 3 GeV-synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Nishizawa, Daiji; Kinsho, Michikazu; Kanazawa, Kenichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kubo, Tomio; Sato, Yoshihiro; Saito, Yoshio [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2001-12-01

    Large aperture ({phi}200 - {phi}250) cylindrical beam ducts consisting of alumina ceramics will be used in the 3 GeV-synchrotron of High Intensity Proton Accelerator Facility. In particular, bending magnet sections require the large length ({approx}3500 mm) ceramic beam duct connecting several unit ducts whose length is around 500-1000 mm by metallizing and glazing. Therefore it is very important to evaluate roundness and straightness of ceramic ducts because we have to compensate contact area large and have to minimize misalignment of ducts connected. We developed an apparatus for measuring roundness and straightness, and we completed data analysis method using general application software Excel as well as measuring method. Then we have taken data, and have evaluated value of roundness and straightness for the first time about 7 pieces (3 kinds) of ceramic beam duct. At last we have found out that unit ceramic ducts can be made after sintering without polishing with roundness several hundred micron ({mu}m) and straightness around 0.2-1 mm, and that straightness has a tendency to become large as duct length increases as well as roundness increases directly proportional to the maximum oblateness. (author)

  1. Investigation of fundamental limits to beam brightness available from photoinjectors

    International Nuclear Information System (INIS)

    Bazarov, Ivan

    2015-01-01

    The goal of this project was investigation of fundamental limits to beam brightness available from photoinjectors. This basic research in accelerator physics spanned over 5 years aiming to extend the fundamental understanding of high average current, low emittance sources of relativistic electrons based on photoemission guns, a necessary prerequisite for a new generation of coherent X-ray synchrotron radiation facilities based on continuous duty superconducting linacs. The program focused on two areas critical to making advances in the electron source performance: 1) the physics of photocathodes for the production of low emittance electrons and 2) control of space charge forces in the immediate vicinity to the cathode via 3D laser pulse shaping.

  2. Investigation of fundamental limits to beam brightness available from photoinjectors

    Energy Technology Data Exchange (ETDEWEB)

    Bazarov, Ivan [Cornell Univ., Ithaca, NY (United States)

    2015-07-09

    The goal of this project was investigation of fundamental limits to beam brightness available from photoinjectors. This basic research in accelerator physics spanned over 5 years aiming to extend the fundamental understanding of high average current, low emittance sources of relativistic electrons based on photoemission guns, a necessary prerequisite for a new generation of coherent X-ray synchrotron radiation facilities based on continuous duty superconducting linacs. The program focused on two areas critical to making advances in the electron source performance: 1) the physics of photocathodes for the production of low emittance electrons and 2) control of space charge forces in the immediate vicinity to the cathode via 3D laser pulse shaping.

  3. Surface, interface and bulk materials characterization using Indus synchrotron sources

    International Nuclear Information System (INIS)

    Phase, Deodatta M.

    2014-01-01

    Synchrotron radiation sources, providing intense, polarized and stable beams of ultra violet, soft and hard x-ray photons, are having great impact on physics, chemistry, biology, materials science and other areas research. In particular synchrotron radiation has revolutionized materials characterization techniques by enhancing its capabilities for investigating the structural, electronic and magnetic properties of solids. The availability of synchrotron sources and necessary instrumentation has led to considerable improvements in spectral resolution and intensities. As a result, application scope of different materials characterization techniques has tremendously increased particularly in the analysis of solid surfaces, interfaces and bulk materials. The Indian synchrotron storage ring, Indus-1 and Indus-2 are in operation at RRCAT, Indore. The UGC-DAE CSR with the help of university scientist had designed and developed an angle integrated photoelectron spectroscopy (AlPES) beam line on Indus-1 storage ring of 450 MeV and polarized light beam line for soft x-ray absorption spectroscopy (SXAS) on Indus-2 storage ring of 2.5 GeV. (author)

  4. Synchrotron control system of the HIMAC

    International Nuclear Information System (INIS)

    Takada, E.; Sato, K.; Itano, A.

    1994-01-01

    A structural design synopsis and the present status of the HIMAC synchrotron control system are described. The control system comprises of Timing System, (ring magnet) Power-supply Controller, Programmable Logic Controller, Static Var Compensator controller, Monitor Controller, RF control computer, Beam Transport control computer and the synchrotron main computer (denoted as CS, hereafter) that forms a local area cluster with man-machine interfacing computers, and communicates with HIMAC supervisor computer. (author)

  5. Strong-field relativistic processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Postavaru, Octavian

    2010-12-08

    In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part, we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving the time-dependent master equation in a multi-level model. Our ab initio approach based on the Dirac equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means to test correlated relativistic dynamics, bound-state quantum electrodynamic phenomena and nuclear effects by applying coherent light with x-ray frequencies. Atomic dipole or multipole moments may be determined to unprecedented accuracy by measuring the interference-narrowed fluorescence spectrum. Furthermore, we investigate the level structure of heavy hydrogenlike ions in laser beams. Interaction with the light field leads to dynamic shifts of the electronic energy levels, which is relevant for spectroscopic experiments. We apply a fully relativistic description of the electronic states by means of the Dirac equation. Our formalism goes beyond the dipole approximation and takes into account non-dipole effects of retardation and interaction with the magnetic field components of the laser beam. We predicted cross sections for the inter-shell trielectronic recombination (TR) and quadruelectronic recombination processes which have been experimentally confirmed in electron beam ion trap measurements, mainly for C-like ions, of Ar, Fe and Kr. For Kr{sup 30}+, inter-shell TR contributions of nearly 6% to the total resonant photorecombination rate were found. (orig.)

  6. Beam loss reduction by injection painting in the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    Directory of Open Access Journals (Sweden)

    H. Hotchi

    2012-04-01

    Full Text Available The 3-GeV rapid cycling synchrotron (RCS of the Japan Proton Accelerator Research Complex was commissioned in October 2007. Via the initial beam tuning and a series of underlying beam studies with low-intensity beams, since December 2009, we have intermittently been performing beam tuning experiments with higher-intensity beams including the injection painting technique. By optimizing the injection painting parameters, we have successfully achieved a 420 kW-equivalent output intensity at a low-level intensity loss of less than 1%. Also the corresponding numerical simulation well reproduced the observed painting parameter dependence on the beam loss, and captured a characteristic behavior of the high-intensity beam in the injection painting process. In this paper, we present the experimental results obtained in the course of the RCS beam power ramp-up, especially on the beam loss reduction achieved by employing the injection painting, together with the numerical simulation results.

  7. HIDE working groups. A. Synchrotron based system

    International Nuclear Information System (INIS)

    Barton, M.Q.

    1977-01-01

    A summary is given of a week's discussions on an ion source to target scenario for a synchrotron for heavy ion fusion. Topics considered include: the number of beams on the target; beam dynamics; and a number of areas explicitly identified as needing further work

  8. The investigations of beam extraction and collimation at U-70 proton synchrotron of IHEP by using short silicon crystals

    CERN Document Server

    Afonine, A G; Biryukov, V M; Breese, M B H; Chepegin, V N; Chesnokov, Yu A; Drees, A; Fedotov, Y S; Guidi, V; Kotov, V I; Maisheev, V A; Martinelli, G; Scandale, Walter; Stefancich, M; Terekhov, V I; Trbojevic, D; Troyanov, E F; Vincenzi, D

    2002-01-01

    The new results of using short (2-4 mm) bent crystals for extraction and collimation of proton beam at IHEP 70 GeV proton synchrotron are reported. A broad range of energies from 6 to 65 GeV has been studied in the same crystal collimation set-up where earlier the extraction efficiency of 85% was obtained for 70 GeV protons using a 2-mm Si crystal. The new regime of extraction is applied now at the accelerator to deliver the beam for different experimental setups within the range of intensity 10E7-10E12ppp. (6 refs).

  9. On the polarized beam acceleration in medium energy synchrotrons

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1992-01-01

    This lecture note reviews physics of spin motion in a synchrotron, spin depolarization mechanisms of spin resonances, and methods of overcoming the spin resonances during acceleration. Techniques used in accelerating polarized ions in the low/medium energy synchrotrons, such as the ZGS, the AGS, SATURNE, and the KEK PS and PS Booster are discussed. Problems related to polarized proton acceleration with snakes or partial snake are also examined

  10. On the polarized beam acceleration in medium energy synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.Y.

    1992-12-31

    This lecture note reviews physics of spin motion in a synchrotron, spin depolarization mechanisms of spin resonances, and methods of overcoming the spin resonances during acceleration. Techniques used in accelerating polarized ions in the low/medium energy synchrotrons, such as the ZGS, the AGS, SATURNE, and the KEK PS and PS Booster are discussed. Problems related to polarized proton acceleration with snakes or partial snake are also examined.

  11. Multiwavelength Observations of Relativistic Jets from General Relativistic Magnetohydrodynamic Simulations

    Directory of Open Access Journals (Sweden)

    Richard Anantua

    2018-03-01

    Full Text Available This work summarizes a program intended to unify three burgeoning branches of the high-energy astrophysics of relativistic jets: general relativistic magnetohydrodynamic (GRMHD simulations of ever-increasing dynamical range, the microphysical theory of particle acceleration under relativistic conditions, and multiwavelength observations resolving ever-decreasing spatiotemporal scales. The process, which involves converting simulation output into time series of images and polarization maps that can be directly compared to observations, is performed by (1 self-consistently prescribing models for emission, absorption, and particle acceleration and (2 performing time-dependent polarized radiative transfer. M87 serves as an exemplary prototype for this investigation due to its prominent and well-studied jet and the imminent prospect of learning much more from Event Horizon Telescope (EHT observations this year. Synthetic observations can be directly compared with real observations for observational signatures such as jet instabilities, collimation, relativistic beaming, and polarization. The simplest models described adopt the standard equipartition hypothesis; other models calculate emission by relating it to current density or shear. These models are intended for application to the radio jet instead of the higher frequency emission, the disk and the wind, which will be subjects of future investigations.

  12. Relativistic klystron

    International Nuclear Information System (INIS)

    Marks, R.

    1985-09-01

    Theoretical analysis is presented of a relativisic klystron; i.e. a high-relativistic bunched electron beam which is sent through a succession of tuned cavities and has its energy replenished by periodic induction accelerator units. Parameters are given for a full-size device and for an experimental device using the FEL at the ETA; namely the ELF Facility. 6 refs., 2 figs

  13. Development and optimization of the LHC and the SPS beam diagnostics based on synchrotron radiation monitoring

    International Nuclear Information System (INIS)

    Trad, Georges

    2015-01-01

    Measuring the beam transverse emittance is fundamental in every accelerator, in particular for colliders, where its precise determination is essential to maximize the luminosity and thus the performance of the colliding beams. Synchrotron Radiation (SR) is a versatile tool for non-destructive beam diagnostics, since its characteristics are closely related to those of the source beam. At CERN, being the only available diagnostics at high beam intensity and energy, SR monitors are exploited as the proton beam size monitor of the two higher energy machines, the Super Proton Synchrotron (SPS) and the Large Hadron Collider (LHC). The thesis work documented in this report focused on the design, development, characterization and optimization of these beam size monitors. Such studies were based on a comprehensive set of theoretical calculations, numerical simulations and experiments. A powerful simulation tool has been developed combining conventional softwares for SR simulation and optics design, thus allowing the description of an SR monitor from its source up to the detector. The simulations were confirmed by direct observations, and a detailed performance studies of the operational SR imaging monitor in the LHC, where different techniques for experimentally validating the system were applied, such as cross-calibrations with the wire scanners at low intensity (that are considered as a reference) and direct comparison with beam sizes de-convoluted from the LHC luminosity measurements. In 2015, the beam sizes to be measured with the further increase of the LHC beam energy to 7 TeV will decrease down to ∼190 μm. In these conditions, the SR imaging technique was found at its limits of applicability since the error on the beam size determination is proportional to the ratio of the system resolution and the measured beam size. Therefore, various solutions were probed to improve the system's performance such as the choice of one light polarization, the reduction of

  14. Hard alpha-keratin degradation inside a tissue under high flux X-ray synchrotron micro-beam: a multi-scale time-resolved study.

    Science.gov (United States)

    Leccia, Emilie; Gourrier, Aurélien; Doucet, Jean; Briki, Fatma

    2010-04-01

    X-rays interact strongly with biological organisms. Synchrotron radiation sources deliver very intense X-ray photon fluxes within micro- or submicro cross-section beams, resulting in doses larger than the MGy. The relevance of synchrotron radiation analyses of biological materials is therefore questionable since such doses, million times higher than the ones used in radiotherapy, can cause huge damages in tissues, with regard to not only DNA, but also proteic and lipid organizations. Very few data concerning the effect of very high X-ray doses in tissues are available in the literature. We present here an analysis of the structural phenomena which occur when the model tissue of human hair is irradiated by a synchrotron X-ray micro-beam. The choice of hair is supported by its hierarchical and partially ordered keratin structure which can be analysed inside the tissue by X-ray diffraction. To assess the damages caused by hard X-ray micro-beams (1 microm(2) cross-section), short exposure time scattering SAXS/WAXS patterns have been recorded at beamline ID13 (ESRF) after various irradiation times. Various modifications of the scattering patterns are observed, they provide fine insight of the radiation damages at various hierarchical levels and also unexpectedly provide information about the stability of the various hierarchical structural levels. It appears that the molecular level, i.e. the alpha helices which are stabilized by hydrogen bonds and the alpha-helical coiled coils which are stabilized by hydrophobic interactions, is more sensitive to radiation than the supramolecular architecture of the keratin filament and the filament packing within the keratin associated proteins matrix, which is stabilized by disulphide bonds. (c) 2009 Elsevier Inc. All rights reserved.

  15. BNL alternating gradient synchrotron with four helical magnets to minimize the losses of the polarized proton beam

    Directory of Open Access Journals (Sweden)

    N. Tsoupas

    2013-04-01

    Full Text Available The principle of using multiple partial helical magnets to preserve the polarization of the proton beam during its acceleration was applied successfully to the alternating gradient synchrotron (AGS which currently operates with two partial helical magnets. In this paper we further explore this idea by using four partial helical magnets placed symmetrically in the AGS ring. This provides many advantages over the present setup of the AGS, which uses two partial helical magnets. First, the symmetric placement of the four helical magnets and their relatively lower field of operation allows for better control of the AGS optics with reduced values of the beta functions especially near beam injection and allows both the vertical and horizontal tunes to be placed within the “spin tune gap,” therefore eliminating the horizontal and vertical intrinsic spin resonances of the AGS during the acceleration cycle. Second, it provides a wider spin tune gap. Third, the vertical spin direction during beam injection and extraction is closer to vertical. Although the spin tune gap, which is created with four partial helices, can also be created with a single or two partial helices, the high field strength of a single helical magnet which is required to generate such a spin tune gap makes the use of the single helical magnet impractical, and that of the two helical magnets rather difficult. In this paper we will provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and compare them with those from the present setup of the AGS that uses two partial helical magnets. Although in this paper we specifically discuss the effect of the four partial helices on the AGS, this method which can eliminate simultaneously the vertical and horizontal intrinsic spin resonances is a general method and can be applied to any medium energy synchrotron which operates in similar energy range like the AGS and provides the required space to

  16. Programmed improvements of the alternating gradient synchrotron complex at Brookhaven National Laboratory, Upton, New York. Environmental assessment

    International Nuclear Information System (INIS)

    1994-03-01

    The purpose and need for DOE to undertake the actions described in this document are to improve the efficiency of the Alternating Gradient Synchrotron (AGS) complex. Benefits would include optimization of the AGS scientific program, increased high-energy and nuclear physics experimentation, improved health and safety conditions for workers and users, reduced impact on the environment and the general public, energy conservation, decreased generation of hazardous and radioactive wastes, and completion of actions required to permit the AGS to be the injector to the Relativistic Heavy Ion Collider (RHIC)., Improved efficiency is defined as increasing the AGS's capabilities to capture and accelerate the proton intensity transferred to the AGS from the AGS booster. Improved capture of beam intensity would reduce the beam losses which equate to lost scientific opportunity for study and increased potential for radiation doses to workers and the general public. The action would also refurbish magnets used in the transfer tunnel which connects the AGS complex to RHIC to permit smooth injection of beam into the RHIC accelerator. These magnets were previously used to direct beam to fixed targets for high energy physics studies but have hot received proper maintenance to be reliable as injectors to RHIC. The document describes alternative actions, the affected environment, and environmental impacts

  17. Higher-order paraxial theory of the propagation of ring rippled laser beam in plasma: Relativistic ponderomotive regime

    International Nuclear Information System (INIS)

    Purohit, Gunjan; Rawat, Priyanka; Chauhan, Prashant; Mahmoud, Saleh T.

    2015-01-01

    This article presents higher-order paraxial theory (non-paraxial theory) for the ring ripple formation on an intense Gaussian laser beam and its propagation in plasma, taking into account the relativistic-ponderomotive nonlinearity. The intensity dependent dielectric constant of the plasma has been determined for the main laser beam and ring ripple superimposed on the main laser beam. The dielectric constant of the plasma is modified due to the contribution of the electric field vector of ring ripple. Nonlinear differential equations have been formulated to examine the growth of ring ripple in plasma, self focusing of main laser beam, and ring rippled laser beam in plasma using higher-order paraxial theory. These equations have been solved numerically for different laser intensities and plasma frequencies. The well established experimental laser and plasma parameters are used in numerical calculation. It is observed that the focusing of the laser beams (main and ring rippled) becomes fast in the nonparaxial region by expanding the eikonal and other relevant quantities up to the fourth power of r. The splitted profile of laser beam in the plasma is observed due to uneven focusing/defocusing of the axial and off-axial rays. The growths of ring ripple increase when the laser beam intensity increases. Furthermore, the intensity profile of ring rippled laser beam gets modified due to the contribution of growth rate

  18. Application of synchrotron radiation to elemental analysis

    International Nuclear Information System (INIS)

    Jones, K.W.; Gordon, B.M.; Hanson, A.L.; Hastings, J.B.; Howells, M.R.; Kraner, H.W.; Chen, J.R.

    1983-01-01

    The use of a synchrotron storage ring as a high brightness source for production of monoergic, variable energy, and highly polarized x-ray beams promises to revolutionize the field of elemental analysis. The results of exploratory work using the Cornell synchrotron facility, CHESS, will be described. Design considerations and features of the new X-Ray Microprobe Facility now under construction at the Brookhaven National Synchrotron Light Source will be presented. This facility will be used for bulk analysis and for microanalysis with an initial spatial resolution of the order of 30 μm

  19. Beam-beam interaction in high energy linear electron-positron colliders

    International Nuclear Information System (INIS)

    Ritter, S.

    1985-04-01

    The interaction of high energy electron and positron beams in a linear collider has been investigated using a macroparticle Monte Carlo method based on a Cloud-In-Cells plasma simulation scheme. Density evolutions, luminosities, energy and angular distributions for electrons (positrons) and synchrotron photons are calculated. Beside beams with a symmetric transverse profile also flat beams are considered. A reasonably good agreement to alternative computer calculations as well as to an analytical approximation for the energy spectrum of synchrotron photons has been obtained. (author)

  20. Technological challenges of third generation synchrotron radiation sources

    International Nuclear Information System (INIS)

    Cornacchia, M.; Winick, H.

    1990-01-01

    New ''third generation'' synchrotron radiation research facilities are now in construction in France, Italy, Japan, Taiwan and the USA. Designs for such facilities are being developed in several other countries. Third generation facilities are based on storage rings with low electron beam emittance and space for many undulator magnets to produce radiation with extremely high brightness and coherent power. Photon beam from these rings will greatly extend present research capabilities and open up new opportunities in imaging, spectroscopy, structural and dynamic studies and other applications. The technological problems of the third generation of synchrotron radiation facilities are reviewed. These machines are designed to emit radiation of very high intensity, extreme brightness, very short pulses, and partial coherence. These performance goals put severe requirements on the quality of the electron or positron beams. Phenomena affecting the injection process and the beam lifetime are discussed. Gas desorption by synchrotron radiation and collective effects play an important role. Low emittance lattices are more sensitive to quadrupole movements and at the same time, in order not to lose the benefits of high brilliance, require tighter tolerances on the allowed movement of the photon beam source. We discuss some of the ways that should be considered to extend the performance capabilities of the facilities in the future. 14 refs., 1 fig

  1. The stability of the damper system for the coherent transverse oscillations of the beam in a synchrotron

    International Nuclear Information System (INIS)

    Zhabitskij, V.M.; Korenev, I.L.; Yudin, L.A.

    1991-01-01

    The investigation of the direct alternating kicker current perturbation influence of the particle motion in synchrotron with the beam coherent transverse oscillation damper in feedback are obtained. It has been shown that for a some pick-up and kicker placements are impossible due to this reason. The resonance conditions and their dependences on feedback gain-transfer characteristic have been found. The numerical results are given for the damper systems in UNK-1 and LHC. 6 refs.; 5 figs

  2. Challenges and opportunities in synchrotron radiation optics

    Science.gov (United States)

    Rehn, V.

    Design necessities germaine to advances in optics for experimentation with synchrotron radiation are explored. Objectives for development include improved beam-line performance using new mirror materials or coatings, filtering and order-sorting enhancement, and lower surface scattering. A summary is presented of optical systems currently in use, together with requirements imposed by storage rings and experimental design. Advances are recommended in intensity, collimation, focus, and spectral purity of synchrotron beam lines. Any new storage ring mirror is noted to be required to dissipate several hundred watts, something which polished Cu is mentioned as being capable of handling, while standard SiO2 mirrors cannot.

  3. Real world issues for the new soft x-ray synchrotron sources

    International Nuclear Information System (INIS)

    Kincaid, B.M.

    1991-05-01

    A new generation of synchrotron radiation light sources covering the VUV, soft x-ray and hard x-ray spectral regions is under construction in several countries. They are designed specifically to use periodic magnetic undulators and low-emittance electron or positron beams to produce high-brightness near-diffraction-limited synchrotron radiation beams. An introduction to the properties of undulator radiation is followed by a discussion of some of the challenges to be faced at the new facilities. Examples of predicted undulator output from the Advanced Light Source, a third generation 1--2 GeV storage ring optimized for undulator use, are used to highlight differences from present synchrotron radiation sources, including high beam power, partial coherence, harmonics, and other unusual spectral and angular properties of undulator radiation. 8 refs., 2 figs

  4. Experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds

    Directory of Open Access Journals (Sweden)

    M. Füllekrug

    2011-01-01

    Full Text Available Relativistic electron beams above thunderclouds emit 100 kHz radio waves which illuminate the Earth's atmosphere and near-Earth space. This contribution aims to clarify the physical processes which are relevant for the spatial spreading of the radio wave energy below and above the ionosphere and thereby enables an experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. The simulation uses the DEMETER satellite which observes 100 kHz radio waves from fifty terrestrial Long Range Aid to Navigation (LORAN transmitters. Their mean luminosity patch in the plasmasphere is a circular area with a radius of 300 km and a power density of 22 μW/Hz as observed at 660 km height above the ground. The luminosity patches exhibit a southward displacement of 450 km with respect to the locations of the LORAN transmitters. The displacement is reduced to 150 km when an upward propagation of the radio waves along the geomagnetic field line is assumed. This residual displacement indicates that the radio waves undergo 150 km sub-ionospheric propagation prior to entering a magnetospheric duct and escaping into near-Earth space. The residual displacement at low (L < 2.14 and high (L > 2.14 geomagnetic latitudes ranges from 100 km to 200 km which suggests that the smaller inclination of the geomagnetic field lines at low latitudes helps to trap the radio waves and to keep them in the magnetospheric duct. Diffuse luminosity areas are observed northward of the magnetic conjugate locations of LORAN transmitters at extremely low geomagnetic latitudes (L < 1.36 in Southeast Asia. This result suggests that the propagation along the geomagnetic field lines results in a spatial spreading of the radio wave energy over distances of 1 Mm. The summative assessment of the electric field intensities measured in space show that nadir observations of terrestrial 100 kHz radio waves, e.g., from

  5. Diffraction radiation from relativistic particles

    CERN Document Server

    Potylitsyn, Alexander Petrovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.

  6. Diffraction radiation from relativistic particles

    International Nuclear Information System (INIS)

    Potylitsyn, Alexander Petrovich; Ryazanov, Mikhail Ivanovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results. (orig.)

  7. Diogene: A 4π detector, based on a time projection chamber, for studying central collisions of relativistic heavy ions

    International Nuclear Information System (INIS)

    Gosset, J.

    1981-01-01

    'Diogene' is the name we have chosen for a 4π solid angle detector, based on a Time Projection Chamber, designed to perform exclusive measurements of charged particles emitted in central collisions or relativistic heavy ions. This detector is being developed by a collaboration between physicists from Saclay, Strasbourg and Clermont Ferrand, to be installed at the Saturne Synchrotron in Saclay. I first give the motivations for our choice of a TPC rather than any other kind of detector, then I recall the principle of such a detector, before describing it with more detail and describing its present status and forsean capabilities, including some discussion about the possible extension of such a detector towards higher energies and/or heavier beams. (orig.)

  8. Diogene: a 4π detector, based on a time projection chamber, for studying central collisions of relativistic heavy ions

    International Nuclear Information System (INIS)

    Gosset, J.

    1980-10-01

    'Diogene' is the name we have chosen for a 4π solid angle detector, based on a Time Projection Chamber (TPC), designed to perform exclusive measurements of charged particles emitted in central collisions or relativistic heavy ions This detector is being developed by a collaboration between physicists from Saclay, Strasbourg and Clermont-Ferrand, to be installed at the Saturne Synchrotron in Saclay. I shall first give the motivations for our choice of a TPC rather than any other kind of detector, than recall the principle of such a detector, before describing it with more detail and describing its present status and forsean capabilities, including some discussion about the possible extension of such a detector towards higher energies and/or heavier beams

  9. Fiber structural analysis by synchrotron radiation

    CERN Document Server

    Kojima, J I; Kikutani, T

    2003-01-01

    Topics of fiber structural analysis by synchrotron radiation are explained. There are only three synchrotron radiation facilities in the world, SPring-8 (Super Photon ring-8) in Japan, APS (Advanced Photon Source) in U.S.A. and ESRF (European Synchrotron Radiation Facility) in France. Online measurement of melt spinning process of PET and Nylon6 is explained in detail. Polypropylene and PBO (poly-p-phenylenebenzobisoxazole) was measured by WAXD (Wide Angle X-ray Diffraction)/SAXS (Small Angle X-ray Scattering) at the same time. Some examples of measure of drawing process of fiber are described. The structure formation process of spider's thread was measured. Micro beam of X-ray of synchrotron facility was improved and it attained to 65nm small angle resolving power by 10 mu m beamsize. (S.Y.)

  10. Synchrotron power supply of TARN II

    International Nuclear Information System (INIS)

    Watanabe, Shin-ichi.

    1991-07-01

    The construction and performance of synchrotron power supply of TARN II are described. The 1.1 GeV synchrotron-cooler TARN II has been constructed at Institute for Nuclear Study, University of Tokyo. Constructed power supply for the dipole magnets is 600 V, 2500 A operated in the mode of trapezoid wave form with the repetition cycle of 0.1 Hz. The stability of magnetic field within 10 -3 and tracking error of 10 -4 have been attained with the aid of computer control system. First trial of synchrotron acceleration of He 2+ beam has been done up to 600 MeV in April, 1991. (author)

  11. Lifetimes of relativistic heavy-ion beams in the High Energy Storage Ring of FAIR

    Science.gov (United States)

    Shevelko, V. P.; Litvinov, Yu. A.; Stöhlker, Th.; Tolstikhina, I. Yu.

    2018-04-01

    The High Energy Storage Ring, HESR, will be constructed at the Facility for Antiproton and Ion Research, FAIR, Darmstadt. For the first time, it will be possible to perform experiments with cooled high-intensity stable and radioactive heavy ions at highly relativistic energies. To design experiments at the HESR, realistic estimations of beam lifetimes are indispensable. Here we report calculated cross sections and lifetimes for typical U88+ , U90+ , U92+ , Sn49+ and Sn50+ ions in the energy range E = 400 MeV/u-5 GeV/u, relevant for the HESR. Interactions with the residual gas and with internal gas-jet targets are also considered.

  12. Tabletop synchrotron and its unique features

    CERN Document Server

    Yamada, H

    2002-01-01

    Two synchrotrons, AURORA and MIRRORCLE, were built in Ritsumeikan University. MIRRORCLE-20 is the smallest normal conduction synchrotron (15 cm orbit radius and 1.2 m outer diameter) in the world. It uses 2/3 resonance method for electron beam incidence but is not optimized for X-ray generation. MIRRORCLE-6 shall be optimized for X-ray generation. X-ray generated by MIRRORCLE shows very flat white light, rich in hard X-ray, pulse with width changeable from a few mu s to a few ms , wide radiation angle of 25 mrad at MIRRORCLE-20 and 80 mrad at MIRRORCLE-8 and high coherence. The feature such as pulsed light and high coherence is expected to new application which photon radiation cannot practice. Imaging experiments by MIRRORCLE were carried out by Cu plate, Al plate, Teflon and acryl plate. We took a photograph of insect, electric lamp, connector, and cyclotron. New X-ray generation mechanism, X-ray strength, development of tabletop synchrotron and features of X-ray beam are explained. (S.Y.)

  13. Tabletop synchrotron and its unique features

    International Nuclear Information System (INIS)

    Yamada, Hironari

    2002-01-01

    Two synchrotrons, AURORA and MIRRORCLE, were built in Ritsumeikan University. MIRRORCLE-20 is the smallest normal conduction synchrotron (15 cm orbit radius and 1.2 m outer diameter) in the world. It uses 2/3 resonance method for electron beam incidence but is not optimized for X-ray generation. MIRRORCLE-6 shall be optimized for X-ray generation. X-ray generated by MIRRORCLE shows very flat white light, rich in hard X-ray, pulse with width changeable from a few μs to a few ms , wide radiation angle of 25 mrad at MIRRORCLE-20 and 80 mrad at MIRRORCLE-8 and high coherence. The feature such as pulsed light and high coherence is expected to new application which photon radiation cannot practice. Imaging experiments by MIRRORCLE were carried out by Cu plate, Al plate, Teflon and acryl plate. We took a photograph of insect, electric lamp, connector, and cyclotron. New X-ray generation mechanism, X-ray strength, development of tabletop synchrotron and features of X-ray beam are explained. (S.Y.)

  14. Computer controlled vacuum control system for synchrotron radiation beam lines

    International Nuclear Information System (INIS)

    Goldberg, S.M.; Wang, C.; Yang, J.

    1983-01-01

    The increasing number and complexity of vacuum control systems at the Stanford Synchrotron Radiation Laboratory has resulted in the need to computerize its operations in order to lower costs and increase efficiency of operation. Status signals are transmitted through digital and analog serial data links which use microprocessors to monitor vacuum status continuously. Each microprocessor has a unique address and up to 256 can be connected to the host computer over a single RS232 data line. A FORTRAN program on the host computer will request status messages and send control messages via only one RS232 line per beam line, signal the operator when a fault condition occurs, take automatic corrective actions, warn of impending valve failure, and keep a running log of all changes in vacuum status for later recall. Wiring costs are thus greatly reduced and more status conditions can be monitored without adding excessively to the complexity of the system. Operators can then obtain status reports at various locations in the lab quickly without having to read a large number of meter and LED's

  15. Upgrade of the Super Proton Synchrotron Vertical Beam Dump System

    CERN Document Server

    Senaj, V; Vossenberg, E

    2010-01-01

    The vertical beam dump system of the CERN Super Proton Synchrotron (SPS) uses two matched magnets with an impedance of 2 W and a combined kick strength of 1.152 Tm at 60 kV supply voltage. For historical reasons the two magnets are powered from three 3 W pulse forming networks (PFN) through three thyratronignitron switches. Recently flashovers were observed at the entry of one of the magnets, which lead, because of the electrical coupling between the kickers, to a simultaneous breakdown of the pulse in both magnets. To improve the reliability an upgrade of the system was started. In a first step the radii of surfaces at the entry of the weak magnet were increased, and the PFN voltage was reduced by 4%; the kick strength could be preserved by reducing the magnet termination resistance by 10 %. The PFNs were protected against negative voltage reflections and their last cell was optimised. In a second step the two magnets will be electrically separated and powered individually by new 2 W PFNs with semiconductor ...

  16. New synchrotron radiation facility project. Panel on new synchrotron radiation facility project

    CERN Document Server

    Sato, S; Kimura, Y

    2003-01-01

    The project for constructing a new synchrotron radiation facility dedicated to the science in VUV (or EUV) and Soft X-ray (SX) region has been discussed for these two years at the Panel on New Synchrotron Radiation Facility Project. The Panel together with the Accelerator Design Working Group (WG), Beamline Design WG and Research Program WG suggested to the Ministry of Education, Science, Culture and Sports the construction of a 1.8 GeV electron storage ring suitable for 'Top-Up' operation and beamlines and monochromators designed for undulator radiation. The scientific programs proposed by nationwide scientists are summarized with their requirements of the characteristics of the beam. (author)

  17. Nonlinear propagation of ion-acoustic solitary waves in relativistic ion-beam plasma with negative ions

    International Nuclear Information System (INIS)

    Singh, Kh.I.; Das, G.C.

    1993-01-01

    Soliton propagations are studied in a relativistic multicomponent ion-beam plasma through the derivation of Korteweg-deVries (K-dV) and modified K-dV (mK-dV) equations. A generalization of the mK-dV equation involving higher order nonlinearities gives a transitive link between the K-dV and mK-dV equations for isothermal plasma, and the validity of this generalized equation throughout the whole range of negative ion concentrations is investigated through the derivation of Sagdeev potential. Parallel discussion of various K-dV solitons enlightening the experimental implications is also made. (author). 22 refs

  18. Cooling rates and intensity limitations for laser-cooled ions at relativistic energies

    Science.gov (United States)

    Eidam, Lewin; Boine-Frankenheim, Oliver; Winters, Danyal

    2018-04-01

    The ability of laser cooling for relativistic ion beams is investigated. For this purpose, the excitation of relativistic ions with a continuous wave and a pulsed laser is analyzed, utilizing the optical Bloch equations. The laser cooling force is derived in detail and its scaling with the relativistic factor γ is discussed. The cooling processes with a continuous wave and a pulsed laser system are investigated. Optimized cooling scenarios and times are obtained in order to determine the required properties of the laser and the ion beam for the planed experiments. The impact of beam intensity effects, like intrabeam scattering and space charge are analyzed. Predictions from simplified models are compared to particle-in-cell simulations and are found to be in good agreement. Finally two realistic example cases of Carbon ions in the ESR and relativistic Titanium ions in SIS100 are compared in order to discuss prospects for future laser cooling experiments.

  19. Panofsky magnet for the beam extraction from the synchrotron using a fast Q-magnet and RF-knockout

    Science.gov (United States)

    Masubuchi, S.; Nakanishi, T.

    2011-12-01

    The fast control of the beam spill extracted from a synchrotron is a key function for the spot scanning irradiation in cancer therapy application. The authors propose an extraction method which uses the quadruple field of fast response, as well as the RF-knockout. A Panofsky magnet was developed as a quadruple magnet, with a frequency response of around 10 kHz. The Panofsky magnet has a rectangular beam aperture and plate coils attached to the pole face. A model magnet has been manufactured with ferrite, and static and dynamic magnetic fields were measured. From the measurement we observed that the effects of eddy current in the plate coils were large and the uniformity of the magnetic field gradient in the beam aperture was worse than ±5% with a plate thickness of 0.02 cm and a frequency of current of 10 kHz. For the future, in a detailed design the eddy current effects have to be taken into account.

  20. Reflectometry with synchrotron radiation

    International Nuclear Information System (INIS)

    Krumrey, Michael; Cibik, Levent; Fischer, Andreas; Gottwald, Alexander; Kroth, Udo; Scholze, Frank

    2014-01-01

    The measurement of the reflectivity for VUV, XUV, and X-radiation at the PTB synchrotron radiation sources is described. The corresponding data of the used beams are presented. Results of experiments on a Cu-Ni double-layer, SiO 2 , Si, and MgF 2 are presented. (HSI)

  1. High flux and high resolution VUV beam line for synchrotron radiation

    International Nuclear Information System (INIS)

    Wilcke, H.; Boehmer, W.; Schwentner, N.

    1982-04-01

    A beam line has been optimized for high flux and high resolution in the wavelength range from 30 nm to 300 nm. Sample chambers for luminescence spectroscopy on gaseous, liquid and solid samples and for photoelectron spectroscopy have been integrated. The synchrotron radiation from the storage ring DORIS (at DESY, Hamburg) emitted into 50 mrad in horizontal and into 2.2 mrad in vertical direction is focused by a cylindrical and a plane elliptical mirror into the entrance slit of a 2m normal incidence monochromator. The light flux from the exit slit is focused by a rotational elliptic mirror onto the sample yielding a size of the light spot of 4 x 0.15 mm 2 . The light flux at the sample reaches 7 x 10 12 photons nm -1 s -1 at 8 eV photon energy for a current of 100 mA in DORIS. A resolution of 0.007 nm has been obtained. (orig.)

  2. Ten Thousand Years of Environment Assessment Using Synchrotron Radiation Micro Beam

    Science.gov (United States)

    Shirasawa, K.; Ide-Ektessabi, A.; Koizumi, A.; Azechi, M.

    2003-08-01

    The environment surrounding human has changed through civilization and industrialization, and through these developments, problems including the pollution from heavy metals such as lead and mercury have arisen. In this study, we analyzed major and trace elements in modern and prehistoric teeth by x-ray fluorescence (XRF) analysis using synchrotron radiation micro beam, in order to assess the changes of the environment through the civilization and the industrialization and their affects to the human. It is suggested that teeth accumulate elements in the mineral phase, hydroxiapatite, during their formation, and because there are no significant turnovers, teeth are concerned to be indicators of the environment of the donor. We first analyzed the elements on the surface of tooth from modern individual and tooth from human remains of Jomon period to assess the heavy metal concentration and effect of the diagenesis. The adhering ground elements on the prehistoric teeth showed high amount of Ti, Fe, Mn and other metallic elements.

  3. The Investigations Of Beam Extraction And Collimation At U-70 Proton Synchrotron Of IHEP By Using Short Silicon Crystals

    CERN Document Server

    Afonine, A.G.; Biryukov, V.M.; Chepegin, V.N.; Chesnokov, Y.A.; Fedotov, Y.S.; Kotov, V.I.; Maisheev, V.A.; Terekhov, V.I.; Troyanov, E.F.; Drees, A.; Trbojevic, D.; Scandale, W.; Breese, M.B.H.; Guidi, V.; Martinelli, G.; Stefancich, M.; Vincenzi, D.

    2002-01-01

    The new results of using short (2-4mm) bent crystals for extraction and collimation of proton beam at IHEP 70 Gev proton synchrotron are reported. A broad range of energies from 6 to 65 GeV has been studied in the same crystal collimation set-up. The efficiency of extraction more than 85% and intensity more than 10E12 were obtained by using crystal with the length 2-mm and the angle 1 mrad. The new regime of extraction is applied now at the accelerator to deliver the beam for different experimental setups within the range of intensity 10E7-10E12ppp.

  4. Galactic synchrotron emission from WIMPs at radio frequencies

    International Nuclear Information System (INIS)

    Fornengo, Nicolao; Regis, Marco; Lineros, Roberto A.; Taoso, Marco

    2012-01-01

    Dark matter annihilations in the Galactic halo inject relativistic electrons and positrons which in turn generate a synchrotron radiation when interacting with the galactic magnetic field. We calculate the synchrotron flux for various dark matter annihilation channels, masses, and astrophysical assumptions in the low-frequency range and compare our results with radio surveys from 22 MHz to 1420 MHz. We find that current observations are able to constrain particle dark matter with ''thermal'' annihilation cross-sections, i.e. (σv) = 3 × 10 −26 cm 3 s −1 , and masses M DM ∼<10 GeV. We discuss the dependence of these bounds on the astrophysical assumptions, namely galactic dark matter distribution, cosmic rays propagation parameters, and structure of the galactic magnetic field. Prospects for detection in future radio surveys are outlined

  5. Stanford Synchrotron Radiation Light Source (SSRL)

    Data.gov (United States)

    Federal Laboratory Consortium — The SSRL at SLAC National Accelerator Laboratory was built in 1974 to take and use for synchrotron studies the intense x-ray beams from the SPEAR storage ring that...

  6. Intense relativistic electron beam injector system for tokamak current drive

    International Nuclear Information System (INIS)

    Bailey, V.L.; Creedon, J.M.; Ecker, B.M.; Helava, H.I.

    1983-01-01

    We report experimental and theoretical studies of an intense relativistic electron beam (REB) injection system designed for tokamak current drive experiments. The injection system uses a standard high-voltage pulsed REB generator and a magnetically insulated transmission line (MITL) to drive an REB-accelerating diode in plasma. A series of preliminary experiments has been carried out to test the system by injecting REBs into a test chamber with preformed plasma and applied magnetic field. REBs were accelerated from two types of diodes: a conventional vacuum diode with foil anode, and a plasma diode, i.e., an REB cathode immersed in the plasma. REB current was in the range of 50 to 100 kA and REB particle energy ranged from 0.1 to 1.0 MeV. MITL power density exceeded 10 GW/cm 2 . Performance of the injection system and REB transport properties is documented for plasma densities from 5 x 10 12 to 2 x 10 14 cm -3 . Injection system data are compared with numerical calculations of the performance of the coupled system consisting of the generator, MITL, and diode

  7. A compact proton synchrotron with a combined function lattice dedicated for medical use

    International Nuclear Information System (INIS)

    Hiramoto, Kazuo; Hirota, Jun-ichi; Norimine, Tetsurou; Nishi, Masatsugu; Katane, Mamoru; Sakurabata, Hiroaki; Noda, Akira; Iwashita, Yoshihisa; Inoue, Makoto.

    1995-01-01

    A proton synchrotron for cancer therapy is presented. The combined function lattice is employed to reduce the size of the synchrotron and make the control to be simple. The present synchrotron employs an RF acceleration cavity of the untuned type, in which higher RF voltage is applied to the acceleration gap with a rather low input power by feeding the RF power to each ferrite respectively. In the beam extraction, the transverse perturbation of the radio frequency is applied to make the beam diffuse and reach the separatrix of the nonlinear resonance. This scheme realizes a simple and low emittance beam extraction with a high duty factor. Furthermore, a new irradiation scheme for treatment is presented in which the proton beam is defocused in the deflecting plane of the bending magnets of the treatment gantry and scanned normal to the deflecting plane. Since the scatterers are not employed, loss of the beam can be significantly reduced. (author)

  8. Simulation of space charge effects in a synchrotron

    International Nuclear Information System (INIS)

    Machida, Shinji; Ikegami, Masanori

    1998-01-01

    We have studied space charge effects in a synchrotron with multi-particle tracking in 2-D and 3-D configuration space (4-D and 6-D phase space, respectively). First, we will describe the modelling of space charge fields in the simulation and a procedure of tracking. Several ways of presenting tracking results will be also mentioned. Secondly, it is discussed as a demonstration of the simulation study that coherent modes of a beam play a major role in beam stability and intensity limit. The incoherent tune in a resonance condition should be replaced by the coherent tune. Finally, we consider the coherent motion of a beam core as a driving force of halo formation. The mechanism is familiar in linac, and we apply it in a synchrotron

  9. Experimental investigations of synchrotron radiation at the onset of the quantum regime

    DEFF Research Database (Denmark)

    Andersen, Kristoffer; Knudsen, Helge; Uggerhøj, Ulrik Ingerslev

    2012-01-01

    The classical description of synchrotron radiation fails at large Lorentz factors, $\\gamma$, for relativistic electrons crossing strong transverse magnetic fields $B$. In the rest frame of the electron this field is comparable to the so-called critical field $B_0 = 4.414\\cdot10^9$ T. For $\\chi = ......-field quantum electrodynamics, the experimental results are also relevant for the design of future linear colliders where beamstrahlung - a closely related process - may limit the achievable luminosity....... = \\gamma B/B_0 \\simeq 1$ quantum corrections are essential for the description of synchrotron radiation to conserve energy. With electrons of energies 10-150 GeV penetrating a germanium single crystal along the $\\langle110\\rangle$ axis, we have experimentally investigated the transition from the regime...... where classical synchrotron radiation is an adequate description, to the regime where the emission drastically changes character; not only in magnitude, but also in spectral shape. The spectrum can only be described by quantum synchrotron radiation formulas. Apart from being a test of strong...

  10. Experimental investigations of synchrotron radiation at the onset of the quantum regime

    DEFF Research Database (Denmark)

    Andersen, Kristoffer; Uggerhøj, Ulrik Ingerslev

    The classical description of synchrotron radiation fails at large Lorentz factors for relativistic electrons crossing strong transverse magnetic fields. In the rest frame of the electron this field is comparable to the so-called critical field of 4.414*109 T. When the Lorentz factor times the mag......-field quantum electrodynamics, the experimental results are also relevant for the design of future linear colliders where beamstrahlung - a closely related process - may limit the achievable luminosity....... the magnetic field is comparable to the critical field, quantum corrections are essential for the description of synchrotron radiation to conserve energy. With electrons of energies 10-150 GeV penetrating a germanium single crystal along the axis, we have experimentally investigated the transition from...... the regime where classical synchrotron radiation is an adequate description, to the regime where the emission drastically changes character; not only in magnitude, but also in spectral shape. The spectrum can only be described by quantum synchrotron radiation formulas. Apart from being a test of strong...

  11. The e+, e- background at Relativistic Heavy Ion Collider (RHIC) generated by beam crossing

    International Nuclear Information System (INIS)

    Rhoades-Brown, M.J.; Ludlam, T.; Wu, J.; Bottcher, C.; Strayer, M.

    1990-01-01

    At the Brookhaven Relativistic Heavy Ion Collider (RHIC), fully stripped heavy ions will circulate in each of two rings up to beam energies of 250 (Z/A) GeV/u. During the beam crossing, the peripheral electromagnetic interaction between the heavy ions is sufficient to induce copious production of di-lepton pairs. These pairs are a potential source of background for the detectors at RHIC. In this paper we discuss the expected number of e + ,e - pairs, given the accepted initial luminosity value L of the collider. More importantly, we also calculate the differential cross sections for the angle, energy, rapidity and momentum distribution of the leptons. Using the luminosity L of the collider, these differential cross sections are normalized to the expected number of leptons per second. We restrict ourselves to e + ,e - production, a discussion of μ + ,μ - and τ + τ - distributions will be published later. The results are presented for the expected worst case, namely 197 Au 79+ ions at a beam kinetic energy of 100 GeV/u. This is forseen to be the heaviest ion for high luminosity experiments at RHIC. We note for a given energy, the cross section for e + ,e - production scales as Z 4 , where Z is the atomic number of the ions

  12. Study of spear as a dedicated source of synchrotron radiation

    International Nuclear Information System (INIS)

    Cerino, J.; Golde, A.; Hastings, J.; Lindau, I.; Salsburg, B.; Winick, H.; Lee, M.; Morton, P.; Garren, A.

    1977-11-01

    A study was made of the potential of SPEAR as a dedicated source of synchrotron radiation, based on the expectation that SPEAR will become increasingly available for this purpose as PEP, the 18-GeV colliding-beam storage ring now under construction by LBL and SLAC, becomes operational. A synchrotron radiation research program has been underway since May, 1974. Two beam ports capable of serving 9 simultaneous users are now operational. In single-beam multi-bunch operation high currents are possible (225 mA has been achieved and > approximately 300 mA is expected) and the electron beam emittance can be made smaller, resulting in higher source point brightness. Descriptions are given of SPEAR capabilities and of plans to expand the research capability by adding beam runs and by inserting wiggler magnets in SPEAR straight sections

  13. Synchrotron radiation applications in medical research at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1997-08-01

    In the relatively short time that synchrotrons have been available to the scientific community, their characteristic beams of UV and X-ray radiation have been applied to virtually all areas of medical science which use ionizing radiation. The ability to tune intense monochromatic beams over wide energy ranges clearly differentiates these sources from standard clinical and research tools. The tunable spectrum, high intrinsic collimation of the beams, polarization and intensity of the beams make possible in-vitro and in-vivo research and therapeutic programs not otherwise possible. From the beginning of research operation at the National Synchrotron Light Source (NSLS), many programs have been carrying out basic biomedical research. At first, the research was limited to in-vitro programs such as the x-ray microscope, circular dichroism, XAFS, protein crystallography, micro-tomography and fluorescence analysis. Later, as the coronary angiography program made plans to move its experimental phase from SSRL to the NSLS, it became clear that other in-vivo projects could also be carried out at the synchrotron. The development of SMERF (Synchrotron Medical Research Facility) on beamline X17 became the home not only for angiography but also for the MECT (Multiple Energy Computed Tomography) project for cerebral and vascular imaging. The high energy spectrum on X17 is necessary for the MRT (Microplanar Radiation Therapy) experiments. Experience with these programs and the existence of the Medical Programs Group at the NSLS led to the development of a program in synchrotron based mammography. A recent adaptation of the angiography hardware has made it possible to image human lungs (bronchography). Fig. 1 schematically depicts the broad range of active programs at the NSLS

  14. Propagation of a laser-driven relativistic electron beam inside a solid dielectric.

    Science.gov (United States)

    Sarkisov, G S; Ivanov, V V; Leblanc, P; Sentoku, Y; Yates, K; Wiewior, P; Chalyy, O; Astanovitskiy, A; Bychenkov, V Yu; Jobe, D; Spielman, R B

    2012-09-01

    Laser probe diagnostics: shadowgraphy, interferometry, and polarimetry were used for a comprehensive characterization of ionization wave dynamics inside a glass target induced by a laser-driven, relativistic electron beam. Experiments were done using the 50-TW Leopard laser at the University of Nevada, Reno. We show that for a laser flux of ∼2 × 10(18) W/cm2 a hemispherical ionization wave propagates at c/3 for 10 ps and has a smooth electron-density distribution. The maximum free-electron density inside the glass target is ∼2 × 10(19) cm-3, which corresponds to an ionization level of ∼0.1%. Magnetic fields and electric fields do not exceed ∼15 kG and ∼1 MV/cm, respectively. The electron temperature has a hot, ringlike structure with a maximum of ∼0.7 eV. The topology of the interference phase shift shows the signature of the "fountain effect", a narrow electron beam that fans out from the propagation axis and heads back to the target surface. Two-dimensional particle-in-cell (PIC) computer simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields driven by laser. The very low ionization observed after the laser heating pulse suggests a fast recombination on the sub-ps time scale.

  15. Metrology of reflection optics for synchrotron radiation

    International Nuclear Information System (INIS)

    Takacs, P.Z.

    1985-09-01

    Recent years have seen an almost explosive growth in the number of beam lines on new and existing synchrotron radiation facilities throughout the world. The need for optical components to utilize the unique characteristics of synchrotron radiation has increased accordingly. Unfortunately, the technology to manufacture and measure the large, smooth, exotic optical surfaces required to focus and steer the synchrotron radiation beam has not progressed as rapidly as the operational demands on these components. Most companies do not wish to become involved with a project that requires producing a single, very expensive, aspheric optic with surface roughness and figure tolerances that are beyond their capabilities to measure. This paper will review some of the experiences of the National Synchrotron Light Source in procuring grazing incidence optical components over the past several years. We will review the specification process - how it is related to the function of the optic, and how it relates to the metrology available during the manufacturing process and after delivery to the user's laboratory. We will also discuss practical aspects of our experience with new technologies, such as single point diamond turning of metal mirrors and the use of SiC as a mirror material. Recent advances in metrology instrumentation have the potential to move the measurement of surface figure and finish from the research laboratory into the optical shop, which should stimulate growth and interest in the manufacturing of optics to meet the needs of the synchrotron radiation user community

  16. Electron cloud observations at the ISIS Proton Synchrotron

    CERN Document Server

    Pertica, A.

    2013-04-22

    The build up of electron clouds inside a particle accelerator vacuum chamber can produce strong transverse and longitudinal beam instabilities which in turn can lead to high levels of beam loss often requiring the accelerator to be run below its design specification. To study the behaviour of electron clouds at the ISIS Proton Synchrotron, a Micro-Channel Plate (MCP) based electron cloud detector has been developed. The detector is based on the Retarding Field Analyser (RFA) design and consists of a retarding grid, which allows energy analysis of the electron signal, and a MCP assembly placed in front of the collector plate. The MCP assembly provides a current gain over the range 300 to 25K, thereby increasing the signal to noise ratio and dynamic range of the measurements. This paper presents the first electron cloud observations at the ISIS Proton Synchrotron. These results are compared against signals from a beam position monitor and a fast beam loss monitor installed at the same location.

  17. Effectiveness of respiratory-gated radiotherapy with audio-visual biofeedback for synchrotron-based scanned heavy-ion beam delivery

    Science.gov (United States)

    He, Pengbo; Li, Qiang; Zhao, Ting; Liu, Xinguo; Dai, Zhongying; Ma, Yuanyuan

    2016-12-01

    A synchrotron-based heavy-ion accelerator operates in pulse mode at a low repetition rate that is comparable to a patient’s breathing rate. To overcome inefficiencies and interplay effects between the residual motion of the target and the scanned heavy-ion beam delivery process for conventional free breathing (FB)-based gating therapy, a novel respiratory guidance method was developed to help patients synchronize their breathing patterns with the synchrotron excitation patterns by performing short breath holds with the aid of personalized audio-visual biofeedback (BFB) system. The purpose of this study was to evaluate the treatment precision, efficiency and reproducibility of the respiratory guidance method in scanned heavy-ion beam delivery mode. Using 96 breathing traces from eight healthy volunteers who were asked to breathe freely and guided to perform short breath holds with the aid of BFB, a series of dedicated four-dimensional dose calculations (4DDC) were performed on a geometric model which was developed assuming a linear relationship between external surrogate and internal tumor motions. The outcome of the 4DDCs was quantified in terms of the treatment time, dose-volume histograms (DVH) and dose homogeneity index. Our results show that with the respiratory guidance method the treatment efficiency increased by a factor of 2.23-3.94 compared with FB gating, depending on the duty cycle settings. The magnitude of dose inhomogeneity for the respiratory guidance methods was 7.5 times less than that of the non-gated irradiation, and good reproducibility of breathing guidance among different fractions was achieved. Thus, our study indicates that the respiratory guidance method not only improved the overall treatment efficiency of respiratory-gated scanned heavy-ion beam delivery, but also had the advantages of lower dose uncertainty and better reproducibility among fractions.

  18. About the influence of phase mixing process and current neutralization on the resistive sausage instability dynamics of a relativistic electron beam

    Science.gov (United States)

    Kolesnikov, E. K.; Manuilov, A. S.; Petrov, V. S.; Zelensky, A. G.

    2018-05-01

    The resistive sausage instability of the relativistic electron beam in dense gas-plasma medium in the case of the generation of equilibrium return plasma current is investigated. In this situation the eigenvalue equation of this instability is obtained. The stabilizing and destabilizing effects of the phase mixing and generation of the return plasma current respectively have been shown.

  19. National synchrotron light source basic design and project status

    International Nuclear Information System (INIS)

    van Steenbergen, A.

    1981-01-01

    A summary description and the basic design parameters of the National Synchrotron Light Source, a facility for the generation of intense synchrotron radiation in the vuv and x-ray range is presented, the parameters of the sources are given, the presently planned facility beam lines are tabulated and the status of the project is indicated

  20. Atomic physics with hard X-rays from high brilliance synchrotron light sources

    International Nuclear Information System (INIS)

    Southworth, S.; Gemmell, D.

    1996-08-01

    A century after the discovery of x rays, the experimental capability for studying atomic structure and dynamics with hard, bright synchrotron radiation is increasing remarkably. Tempting opportunities arise for experiments on many-body effects, aspects of fundamental photon-atom interaction processes, and relativistic and quantum-electrodynamic phenomena. Some of these possibilities are surveyed in general terms

  1. Atomic physics with hard X-rays from high brilliance synchrotron light sources

    Energy Technology Data Exchange (ETDEWEB)

    Southworth, S.; Gemmell, D.

    1996-08-01

    A century after the discovery of x rays, the experimental capability for studying atomic structure and dynamics with hard, bright synchrotron radiation is increasing remarkably. Tempting opportunities arise for experiments on many-body effects, aspects of fundamental photon-atom interaction processes, and relativistic and quantum-electrodynamic phenomena. Some of these possibilities are surveyed in general terms.

  2. Managing the Real-time Behaviour of a Particle Beam Factory The CERN Proton Synchrotron Complex and its Timing System Principles

    CERN Document Server

    Bau, J C; Lewis, J; Philippe, J

    1998-01-01

    In the CERN 26 Gev Proton Synchrotron (PS) accelerator network, super-cycles are defined as sequences of different kinds of beams produced repetitively [Fig.1]. Each of these beams is characterised by attributes such as particle type, beam energy, its route through the accelerator network, and the final end user. The super-cycle is programmed by means of an editor through which the operational requirements of the physics programme can be described. Each beam in the normal sequence may later be replaced by a set of spare beams automatically depending on software and hardware interlocks and requests presented to the Master Timing Generator (MTG [Glos. 1]). The MTG calculates at run time how each beam is to be manufactured, and sends a telegram [Glos. 3] message to each accelerator, just before each cycle, describing what it should be doing now and during the next cycle. These messages, together with key machine timing events and clocks are encoded onto a timing distribution drop net where they are distributed a...

  3. Self consistent hydrodynamic description of the plasma wake field excitation induced by a relativistic charged-particle beam in an unmagnetized plasma

    Science.gov (United States)

    Jovanović, Dušan; Fedele, Renato; De Nicola, Sergio; Akhter, Tamina; Belić, Milivoj

    2017-12-01

    A self-consistent nonlinear hydrodynamic theory is presented of the propagation of a long and thin relativistic electron beam, for a typical plasma wake field acceleration configuration in an unmagnetized and overdense plasma. The random component of the trajectories of the beam particles as well as of their velocity spread is modelled by an anisotropic temperature, allowing the beam dynamics to be approximated as a 3D adiabatic expansion/compression. It is shown that even in the absence of the nonlinear plasma wake force, the localisation of the beam in the transverse direction can be achieved owing to the nonlinearity associated with the adiabatic compression/rarefaction and a coherent stationary state is constructed. Numerical calculations reveal the possibility of the beam focussing and defocussing, but the lifetime of the beam can be significantly extended by the appropriate adjustments, so that transverse oscillations are observed, similar to those predicted within the thermal wave and Vlasov kinetic models.

  4. Merger and reconnection of Weibel separated relativistic electron beam

    Science.gov (United States)

    Shukla, Chandrasekhar; Kumar, Atul; Das, Amita; Patel, Bhavesh G.

    2018-02-01

    The relativistic electron beam (REB) propagation in a plasma is fraught with beam plasma instabilities. The prominent amongst them is the collisionless Weibel destabilization which spatially separates the forward propagating REB and the return shielding currents. This results in the formation of REB current filaments which are typically of the size of electron skin depth during the linear stage of the instability. It has been observed that in the nonlinear stage, the size of filaments increases as they merge with each other. With the help of 2-D particle-in-cell simulations in the plane perpendicular to the REB propagation, it is shown that these mergers occur in two distinct nonlinear phases. In the first phase, the total magnetic energy increases. Subsequently, however, during the second phase, one observes a reduction in magnetic energy. It is shown that the transition from one nonlinear regime to another occurs when the typical current associated with individual filaments hits the Alfvén threshold. In the second nonlinear regime, therefore, the filaments can no longer permit any increase in current. Magnetic reconnection events then dissipate the excess current (and its associated magnetic energy) that would result from a merger process leading to the generation of energetic electron jets in the perpendicular plane. At later times when there are only few filaments left, the individual reconnection events can be clearly identified. It is observed that in between such events, the magnetic energy remains constant and shows a sudden drop as and when two filaments merge. The electron jets released in these reconnection events are thus responsible for the transverse heating which has been mentioned in some previous studies [Honda et al., Phys. Plasmas 7, 1302 (2000)].

  5. Nanosecond radar system based on repetitive pulsed relativistic BWO

    International Nuclear Information System (INIS)

    Bunkin, B.V.; Gaponov-Grekhov, A.V.; Eltchaninov, A.S.; Zagulov, F.Ya.; Korovin, S.D.; Mesyats, G.A.; Osipov, M.L.; Otlivantchik, E.A.; Petelin, M.I.; Prokhorov, A.M.

    1993-01-01

    The paper presents the results of studies of a nanosecond radar system based on repetitive pulsed relativistic BWO. A pulsed power repetitive accelerator producing electron beams of electron energy 500-700 keV and current 5 kA in pulses of duraction 10 ns with a repetition rate of 100 pps is described. The results of experiments with a high-voltage gas-filled spark gap and a cold-cathode vacuum diode under the conditions of high repetition rates are given. Also presented are the results of studies of a relativistic BWO operating with a wavelength of 3 cm. It is shown that for a high-current beam electron energy of 500-700 keV, the BWO efficiency can reach 35%, the microwave power being 10 9 W. A superconducting solenoid creating a magnetic field of 30 kOe was used for the formation and transportation of the high-current electron beam. In conclusion, the outcome of tests of a nanosecond radar station based on a pulsed power repetitive accelerator and a relativistic BWO is reported

  6. Relativistic laser channeling in plasmas for fast ignition

    Science.gov (United States)

    Lei, A. L.; Pukhov, A.; Kodama, R.; Yabuuchi, T.; Adumi, K.; Endo, K.; Freeman, R. R.; Habara, H.; Kitagawa, Y.; Kondo, K.; Kumar, G. R.; Matsuoka, T.; Mima, K.; Nagatomo, H.; Norimatsu, T.; Shorokhov, O.; Snavely, R.; Yang, X. Q.; Zheng, J.; Tanaka, K. A.

    2007-12-01

    We report an experimental observation suggesting plasma channel formation by focusing a relativistic laser pulse into a long-scale-length preformed plasma. The channel direction coincides with the laser axis. Laser light transmittance measurement indicates laser channeling into the high-density plasma with relativistic self-focusing. A three-dimensional particle-in-cell simulation reproduces the plasma channel and reveals that the collimated hot-electron beam is generated along the laser axis in the laser channeling. These findings hold the promising possibility of fast heating a dense fuel plasma with a relativistic laser pulse.

  7. Synchrotron oscillation effects on an rf-solenoid spin resonance

    Science.gov (United States)

    Benati, P.; Chiladze, D.; Dietrich, J.; Gaisser, M.; Gebel, R.; Guidoboni, G.; Hejny, V.; Kacharava, A.; Kamerdzhiev, V.; Kulessa, P.; Lehrach, A.; Lenisa, P.; Lorentz, B.; Maier, R.; Mchedlishvili, D.; Morse, W. M.; Öllers, D.; Pesce, A.; Polyanskiy, A.; Prasuhn, D.; Rathmann, F.; Semertzidis, Y. K.; Stephenson, E. J.; Stockhorst, H.; Ströher, H.; Talman, R.; Valdau, Yu.; Weidemann, Ch.; Wüstner, P.

    2012-12-01

    New measurements are reported for the time dependence of the vertical polarization of a 0.97GeV/c deuteron beam circulating in a storage ring and perturbed by an rf solenoid. The storage ring is the cooler synchrotron (COSY) located at the Forschungszentrum Jülich. The beam polarization was measured continuously using a 1.5 cm thick carbon target located at the edge of the circulating deuteron beam and the scintillators of the EDDA detector. An rf solenoid mounted on the ring was used to generate fields at and near the frequency of the 1-Gγ spin resonance. Measurements were made of the vertical beam polarization as a function of time with the operation of the rf solenoid in either fixed or continuously variable frequency mode. Using rf-solenoid strengths as large as 2.66×10-5revolutions/turn, slow oscillations (˜1Hz) were observed in the vertical beam polarization. When the circulating beam was continuously electron cooled, these oscillations completely reversed the polarization and showed no sign of diminishing in amplitude. But for the uncooled beam, the oscillation amplitude was damped to nearly zero within a few seconds. A simple spin-tracking model without the details of the COSY ring lattice was successful in reproducing these oscillations and demonstrating the sensitivity of the damping to the magnitude of the synchrotron motion of the beam particles. The model demonstrates that the characteristic features of measurements made in the presence of large synchrotron oscillations are distinct from the features of such measurements when made off resonance. These data were collected in preparation for a study of the spin coherence time, a beam property that needs to become long to enable a search for an electric dipole moment using a storage ring.

  8. Transport of long-pulse relativistic electron beams in preformed plasma channels in the ion focus regime

    International Nuclear Information System (INIS)

    Miller, J.D.

    1989-01-01

    Experiments have been performed demonstrating efficient transport of long-pulse (380 ns), high-current (200 A), relativistic electron beams (REBs) in preformed plasma channels in the ion focus regime (IFR). Plasma channels were created by low-energy ( e , and channel ion mass, in agreement with theoretical values predicted for the ion hose instability. Microwave emission has also been observed indicative of REB-plasma electron two-stream instability. Plasma channel density measurements indicate that the two-stream instability can become dominant for measured f e values slightly above unity. The author has introduced a theoretical analysis for high-current REB transport and modulation in axially periodic IFR plasma channels. Analytic expression for the electric field are found for the case of a cosine modulation of the channel ion density. Two different types of channels are considered: (i) periodic beam-induced ionization channels, and (ii) periodic plasma slab channels created by an external source. Analytical conditions are derived for the matched radius of the electron beam and for approximate beam envelope motion using a 'smooth' approximation. Numerical solutions to the envelope equation show that by changing the wavelength or the amplitude of the space-charge neutralization fraction of the ion channel density modulation, the beam can be made to focus and diverge, or to undergo stable, modulated transport

  9. Relativistic jets and the most powerful radio sources in the universe

    International Nuclear Information System (INIS)

    Bridle, A.

    1987-01-01

    Relativistic jets, which are beams of particles and magnetic fields emitting synchrotron radiation that emanate from black holes at the centers of galaxies and quasars, have been one of the most exciting discoveries made at the Very Large Array (VLA) operated by the National Radio Astronomy Observatory (NRAO). The VLA is an array of 27 antennas, each 25 meters in diameter, distributed in a Y-formation with two branches 21 kilometers long and one branch 19 kilometers long. Astronomers can use it to study relativistic jets that generate intense natural radio sources (or transmitters). These sources, associated with regions hundreds of thousands of light years across, are the most powerful in the universe in energy output. In his lecture, Bridle describes how consecutive advances in imaging techniques for radio astronomy have uncovered the properties of the powerful radio sources, culminating in the discovery at the VLA that many of these sources contain radio emitting jets. He then describes some of the NRAO's research on these jets, and discusses the jets' physical properties. He concludes with an outlook for the future: the NRAO's Very Long Baseline Array (VLBA) is to be completed in the early 1990's. The VLBA is an array of ten radio telescopes distributed from Hawaii to St. Croix, from the Canadian border to Texas. With the VLBA, astronomers plan to look more deeply into these radio sources. 15 figs

  10. LATTICE/hor ellipsis/a beam transport program

    International Nuclear Information System (INIS)

    Staples, J.

    1987-06-01

    LATTICE is a computer program that calculates the first order characteristics of synchrotrons and beam transport systems. The program uses matrix algebra to calculate the propagation of the betatron (Twiss) parameters along a beam line. The program draws on ideas from several older programs, notably Transport and Synch, adds many new ones and incorporates them into an interactive, user-friendly program. LATTICE will calculate the matched functions of a synchrotron lattice and display them in a number of ways, including a high resolution Tektronix graphics display. An optimizer is included to adjust selected element parameters so the beam meets a set of constraints. LATTICE is a first order program, but the effect of sextupoles on the chromaticity of a synchrotron lattice is included, and the optimizer will set the sextupole strengths for zero chromaticity. The program will also calculate the characteristics of beam transport systems. In this mode, the beam parameters, defined at the start of the transport line, are propagated through to the end. LATTICE has two distinct modes: the lattice mode which finds the matched functions of a synchrotron, and the transport mode which propagates a predefined beam through a beam line. However, each mode can be used for either type of problem: the transport mode may be used to calculate an insertion for a synchrotron lattice, and the lattice mode may be used to calculate the characteristics of a long periodic beam transport system

  11. Phase mixing of transverse oscillations in the linear and nonlinear regimes for IFR relativistic electron beam propagation

    International Nuclear Information System (INIS)

    Shokair, I.R.

    1991-01-01

    Phase mixing of transverse oscillations changes the nature of the ion hose instability from an absolute to a convective instability. The stronger the phase mixing, the faster an electron beam reaches equilibrium with the guiding ion channel. This is important for long distance propagation of relativistic electron beams where it is desired that transverse oscillations phase mix within a few betatron wavelengths of injection and subsequently an equilibrium is reached with no further beam emittance growth. In the linear regime phase mixing is well understood and results in asymptotic decay of transverse oscillations as 1/Z 2 for a Gaussian beam and channel system, Z being the axial distance measured in betatron wavelengths. In the nonlinear regime (which is likely mode of propagation for long pulse beams) results of the spread mass model indicate that phase mixing is considerably weaker than in the regime. In this paper we consider this problem of phase mixing in the nonlinear regime. Results of the spread mass model will be shown along with a simple analysis of phase mixing for multiple oscillator models. Particle simulations also indicate that phase mixing is weaker in nonlinear regime than in the linear regime. These results will also be shown. 3 refs., 4 figs

  12. Applications of Indus-1 synchrotron radiation source

    International Nuclear Information System (INIS)

    Nandedkar, R.V.

    2003-01-01

    Indus-1 is a 450 MeV electron storage ring. This is a soft X-ray and Vacuum Ultra Violet radiation source with the critical wavelength being 61 A. In this source, the first beam was stored in mid-1999 and was then made available, after initial storage and beam cleaning of the vacuum components, for beamline installation in the early 2000. Two beamlines are commissioned and are working. Other beamlines are in the advanced stage of commissioning. For Indus-1, the injection system consists of a 20 MeV classical microtron as a preinjector and a booster synchrotron that can go up to 700 MeV. For Indus-1, the injection into the storage ring is at full 450 MeV from this booster synchrotron

  13. Stimulated scattering of space-charge waves in a relativistic electron beam by the ion acoustic wave of a plasma waveguide

    International Nuclear Information System (INIS)

    Balakirev, V.A.; Buts, V.A.

    1982-01-01

    The interaction of a relativistic electron beam with a plasma waveguide whose density is modulated by an ion acoustic wave leads to the emission of electromagnetic radiation. The wavelength of the radiation is 2#betta# 2 times shorter than the ion acoustic wavelength. The emission is accompanied by the amplification of the ion acoustic wave. The maximum amplitudes of the excited waves are found

  14. Synchrotron radiation techniques for the characterization of Nb$_{3}$Sn superconductors

    CERN Document Server

    Scheuerlein, C; Buta, F

    2009-01-01

    The high flux of high energy x-rays that can be provided through state-of-the-art high energy synchrotron beam lines has enabled a variety of new experiments with the highly absorbing Nb$_{3}$Sn superconductors. We report different experiments with Nb$_{3}$Sn strands that have been conducted at the ID15 High Energy Scattering beam line of the European Synchrotron Radiation Facility (ESRF). Synchrotron x-ray diffraction has been used in order to monitor phase transformations during in-situ reaction heat treatments prior to Nb$_{3}$Sn formation, and to monitor Nb$_{3}$Sn growth. Fast synchrotron micro-tomography was applied to study void growth during the reaction heat treatment of Internal Tin strands. The elastic strain in the different phases of fully reacted Nb$_{3}$Sn composite conductors can be measured by high resolution x-ray diffraction during in-situ tensile tests.

  15. Relativistic jet with shock waves like model of superluminal radio source. Jet relativista con ondas de choque como modelo de radio fuentes superluminales

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, A.; Gomez, J.L.; Marcaide, J.M.

    1993-01-01

    The structure of the compact radio sources at milliarcsecond angular resolution can be explained in terms of shock waves propagating along bent jets. These jets consist of narrow-angle cones of plasma flowing at bulk relativistic velocities, within tangled magnetic fields, emitting synchrotron radiation. We have developed a numerical code which solves the synchrotron radiation transfer equations to compute the total and polarized emission of bent shocked relativistic jets, and we have applied it to reproduce the compact structure, kenimatic evolution and time flux density evolution of the superluminal radio source 4C 39.25 and to obtain its jet physical parameters. (Author) 23 ref.

  16. A novel molecular synchrotron for cold collision and EDM experiments.

    Science.gov (United States)

    Hou, Shunyong; Wei, Bin; Deng, Lianzhong; Yin, Jianping

    2016-09-07

    Limited by the construction demands, the state-of-the-art molecular synchrotrons consist of only 40 segments that hardly make a good circle. Imperfections in the circular structure will lead to the appearance of unstable velocity regions (i.e. stopbands), where molecules of certain forward velocity will be lost from the structure. In this paper, we propose a stopband-free molecular synchrotron. It contains 1570 ring electrodes, which nearly make a perfect circle, capable of confining both light and heavy polar molecules in the low-field-seeking states. Molecular packets can be conveniently manipulated with this synchrotron by various means, like acceleration, deceleration or even trapping. Trajectory calculations are carried out using a pulsed (88)SrF molecular beam with a forward velocity of 50 m/s. The results show that the molecular beam can make more than 500 round trips inside the synchrotron with a 1/e lifetime of 6.2 s. The synchrotron can find potential applications in low-energy collision and reaction experiments or in the field of precision measurements, such as the searches for electric dipole moment of elementary particles.

  17. National Synchrotron Light Source annual report 1988

    Energy Technology Data Exchange (ETDEWEB)

    Hulbert, S.; Lazarz, N.; Williams, G. (eds.)

    1988-01-01

    This report discusses the experiment done at the National Synchrotron Light Source. Most experiments discussed involves the use of the x-ray beams to study physical properties of solid materials. (LSP)

  18. Main Design Principles of the Cold Beam Pipe in the FastRamped Superconducting Accelerator Magnets for Heavy Ion Synchrotron SIS100

    Science.gov (United States)

    Mierau, A.; Schnizer, P.; Fischer, E.; Macavei, J.; Wilfert, S.; Koch, S.; Weiland, T.; Kurnishov, R.; Shcherbakov, P.

    SIS100, the world second large scale heavy ion synchrotron using fast ramped superconducting magnets, is to be built at FAIR. Its high current operation of intermediate charge state ions requires stable vacuum pressures technological feasible design solutions, three opposite requirements have to be met: minimum magnetic field distortion caused by AC losses, mechanical stability and low and stable wall temperatures of the beam pipe. We present the possible design versions of the beam pipe for the high current curved dipole. The pros and cons of these proposed designs were studied using simplified analytical models, FEM calculations and tests on models.

  19. Galactic synchrotron emission from WIMPs at radio frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Fornengo, Nicolao; Regis, Marco [Dipartimento di Fisica Teorica, Università di Torino, Istituto Nazionale di Fisica Nucleare, via P. Giuria 1, I-10125 Torino (Italy); Lineros, Roberto A.; Taoso, Marco, E-mail: fornengo@to.infn.it, E-mail: rlineros@ific.uv.es, E-mail: regis@to.infn.it, E-mail: taoso@ific.uv.es [IFIC, CSIC-Universidad de Valencia, Ed. Institutos, Apdo. Correos 22085, E-46071 Valencia (Spain)

    2012-01-01

    Dark matter annihilations in the Galactic halo inject relativistic electrons and positrons which in turn generate a synchrotron radiation when interacting with the galactic magnetic field. We calculate the synchrotron flux for various dark matter annihilation channels, masses, and astrophysical assumptions in the low-frequency range and compare our results with radio surveys from 22 MHz to 1420 MHz. We find that current observations are able to constrain particle dark matter with ''thermal'' annihilation cross-sections, i.e. (σv) = 3 × 10{sup −26} cm{sup 3} s{sup −1}, and masses M{sub DM}∼<10 GeV. We discuss the dependence of these bounds on the astrophysical assumptions, namely galactic dark matter distribution, cosmic rays propagation parameters, and structure of the galactic magnetic field. Prospects for detection in future radio surveys are outlined.

  20. Beam measurement of the high frequency impedance sources with long bunches in the CERN Super Proton Synchrotron

    Directory of Open Access Journals (Sweden)

    A. Lasheen

    2018-03-01

    Full Text Available Microwave instability in the Super Proton Synchrotron (SPS at CERN is one of the main limitations to reach the requirements for the High Luminosity-LHC project (increased beam intensity by a factor 2. To identify the impedance source responsible of the instability, beam measurements were carried out to probe the SPS impedance. The method presented in this paper relies on measurements of the unstable spectra of single bunches, injected in the SPS with the rf voltage switched off. The modulation of the bunch profile gives information about the main impedance sources driving microwave instability, and is compared to particle simulations using the SPS impedance model to identify the most important contributions. This allowed us to identify the vacuum flanges as the main impedance source for microwave instability in the SPS, and to evaluate possible missing impedance sources.

  1. Beam measurement of the high frequency impedance sources with long bunches in the CERN Super Proton Synchrotron

    Science.gov (United States)

    Lasheen, A.; Argyropoulos, T.; Bohl, T.; Esteban Müller, J. F.; Timko, H.; Shaposhnikova, E.

    2018-03-01

    Microwave instability in the Super Proton Synchrotron (SPS) at CERN is one of the main limitations to reach the requirements for the High Luminosity-LHC project (increased beam intensity by a factor 2). To identify the impedance source responsible of the instability, beam measurements were carried out to probe the SPS impedance. The method presented in this paper relies on measurements of the unstable spectra of single bunches, injected in the SPS with the rf voltage switched off. The modulation of the bunch profile gives information about the main impedance sources driving microwave instability, and is compared to particle simulations using the SPS impedance model to identify the most important contributions. This allowed us to identify the vacuum flanges as the main impedance source for microwave instability in the SPS, and to evaluate possible missing impedance sources.

  2. Dependence of effective spectrum width of synchrotron radiation on particle energy

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V.G. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Institute of High Current Electronics, Tomsk (Russian Federation); University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); Gitman, D.M. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); P.N. Lebedev Physical Institute, Moscow (Russian Federation); Levin, A.D. [University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); Loginov, A.S.; Saprykin, A.D. [Tomsk State University, Department of Physics, Tomsk (Russian Federation)

    2017-05-15

    In the classical theory of synchrotron radiation, for the exact quantitative characterization of spectral properties, the concept of effective spectral width is introduced. In the first part of our work, published in EJPC 75 (2015), the effective spectral width as a function of the energy E of the radiating particle was obtained only in the ultra-relativistic approximation. In this article, which can be considered as a natural continuation of this work, a complete investigation is presented of the dependence of the effective width of the synchrotron radiation spectrum on energy for any values of E and for all the polarization components of the radiation. Numerical calculations were carried out for an effective width not exceeding 100 harmonics. (orig.)

  3. Trace element measurements with synchrotron radiation

    International Nuclear Information System (INIS)

    Hanson, A.L.; Kraner, H.W.; Jones, K.W.; Gordon, B.M.; Mills, R.E.

    1982-01-01

    Aspects of the application of synchrotron radiation to trace element determinations by x-ray fluorescence have been investigated using beams from the Cornell facility, CHESS. Fluoresced x rays were detected with a Si(Li) detector placed 4 cm from the target at 90 0 to the beam. Thick samples of NBS Standard Reference Materials were used to calibrate trace element sensitivity and estimate minimum detectable limits for this method

  4. National Synchrotron Light Source safety-analysis report

    International Nuclear Information System (INIS)

    Batchelor, K.

    1982-07-01

    This document covers all of the safety issues relating to the design and operation of the storage rings and injection system of the National Synchrotron Light Source. The building systems for fire protection, access and egress are described together with air and other gaseous control or venting systems. Details of shielding against prompt bremstrahlung radiation and synchrotron radiation are described and the administrative requirements to be satisfied for operation of a beam line at the facility are given

  5. Synchrotron topographic project. Progress report, February 20, 1981-January 20, 1982

    International Nuclear Information System (INIS)

    Bilello, J.C.

    1982-01-01

    The Synchrotron Topography Project (STP) has under design and construction various phases of a dedicated beam line for x-ray diffraction topography users in conjunction with the National Synchrotron Light Source at Brookhaven National Laboratory. During the past year final design and procurement phase has been completed for the following: (1) Experimental Hutch, (2) White Beam Camera, (3) Detector Arm for White Beam Camera, (4) Film Cassette System, (5) Medium Resolution Real-time TV System, (6) Lift Table Assembly, (7) Asymmetric Camera Base Mount, (8) Motor Control System, and (9) Computer system. Experimental work has been initiated on using reflection topography to study fracture surfaces. Preliminary results, both with Berg-Barrett, as well as with Synchrotron Topography done in collaboration with the Daresbury, U.K. facility show that defects generated in the near surface layers can be detected. Research work on the effects of stress concentration and geometric effects due to grain boundaries on the fracture of tungsten has been completed

  6. An x-ray microprobe using focussing optics with a synchrotron radiation source

    International Nuclear Information System (INIS)

    Thompson, A.C.; Underwood, J.H.; Wu, Y.; Giauque, R.D.

    1989-01-01

    An x-ray microprobe can be used to produce maps of the concentration of elements in a sample. Synchrotron radiation provides x-ray beams with enough intensity and collimation to make possible elemental images with femtogram sensitivity. The use of focussing x-ray mirrors made from synthetic multilayers with a synchrotron x-ray beam allows beam spot sizes of less than 10 μm /times/ 10 μm to be produced. Since minimal sample preparation is required and a vacuum environment is not necessary, there will be a wide variety of applications for such microprobes. 8 refs., 6 figs

  7. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Pair Jets

    Science.gov (United States)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Mizuno, Y.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created by relativistic pair jets are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet propagating through an ambient plasma with and without initial magnetic fields. The growth rates of the Weibel instability depends on the distribution of pair jets. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  8. Relativistic runaway breakdown in low-frequency radio

    DEFF Research Database (Denmark)

    Fullekrug, M.; Roussel-Dupre, R.; Symbalisty, E.M.D.

    2011-01-01

    at a distance of similar to 550 km. The measured broadband pulses occur similar to 4-9 ms after the sprite-producing lightning discharge, they exhibit electromagnetic radiation which mainly spans the frequency range from similar to 50 to 350 kHz, and they exhibit complex waveforms without the typical...... electromagnetic pulses and possibly generates sprites. The source location of the broadband pulses can be determined with an interferometric network of wideband low-frequency radio receivers to lend further experimental support to the relativistic runaway breakdown theory.......The electromagnetic radiation emitted by an electron avalanche beam resulting from relativistic runaway breakdown within the Earth's atmosphere is investigated. It is found from theoretical modeling with a computer simulation that the electron beam emits electromagnetic radiation which...

  9. Plasma simulation by macroscale, electromagnetic particle code and its application to current-drive by relativistic electron beam injection

    International Nuclear Information System (INIS)

    Tanaka, M.; Sato, T.

    1985-01-01

    A new implicit macroscale electromagnetic particle simulation code (MARC) which allows a large scale length and a time step in multi-dimensions is described. Finite mass electrons and ions are used with relativistic version of the equation of motion. The electromagnetic fields are solved by using a complete set of Maxwell equations. For time integration of the field equations, a decentered (backward) finite differencing scheme is employed with the predictor - corrector method for small noise and super-stability. It is shown both in analytical and numerical ways that the present scheme efficiently suppresses high frequency electrostatic and electromagnetic waves in a plasma, and that it accurately reproduces low frequency waves such as ion acoustic waves, Alfven waves and fast magnetosonic waves. The present numerical scheme has currently been coded in three dimensions for application to a new tokamak current-drive method by means of relativistic electron beam injection. Some remarks of the proper macroscale code application is presented in this paper

  10. Discussions for the shielding materials of synchrotron radiation beamline hutches

    International Nuclear Information System (INIS)

    Asano, Y.

    2006-01-01

    Many synchrotron radiation facilities are now under operation such as E.S.R.F., APS, and S.P.ring-8. New facilities with intermediated stored electron energy are also under construction and designing such as D.I.A.M.O.N.D., S.O.L.E.I.L., and S.S.R.F.. At these third generation synchrotron radiation facilities, the beamline shielding as well as the bulk shield is very important for designing radiation safety because of intense and high energy synchrotron radiation beam. Some reasons employ lead shield wall for the synchrotron radiation beamlines. One is narrow space for the construction of many beamlines at the experimental hall, and the other is the necessary of many movable mechanisms at the beamlines, for examples. Some cases are required to shield high energy neutrons due to stored electron beam loss and photoneutrons due to gas Bremsstrahlung. Ordinary concrete and heavy concrete are coming up to shield material of synchrotron radiation beamline hutches. However, few discussions have been performed so far for the shielding materials of the hutches. In this presentation, therefore, we will discuss the characteristics of the shielding conditions including build up effect for the beamline hutches by using the ordinary concrete, heavy concrete, and lead for shielding materials with 3 GeV and 8 GeV class synchrotron radiation source. (author)

  11. VEPP-4 electron-positron storage ring RF-system on the base of gyrocon-power SHF-generator with a debunched relativistic beam

    International Nuclear Information System (INIS)

    Budker, G.I.; Gaponov, V.A.; Gorniker, Eh.I.

    1982-01-01

    A gyrocon, SHF-generator, is described in which the energy of debunched relativistic electron beam is converted to the energy of electromagnetic oscillations. The gyrocon is intended for supplying the VEPP-4 accelerating resonators. A high-voltage accelerator is used as an electron source. An electron beam is scanned by a rotating magnetic field of the resonator and in different points of the orbit circumscribed by the beam and is injected into the outlet resonator. The resonator represents a ring-form waveguide with slots for the beam passage. A travelling wave, whose field decelerates electrons, is excited in the resonator tuned in to the scanning frequency, converting the beam power to RF-power which is taken off through the energy outlets. The design parameters of the gyrocon are as follows: electron efficiency > 95%, the general efficiency > 80%, amplification factor 23 dB, output power = 5 MW. Results of preliminary tests of the gyrocon are presented

  12. Simulation of AZ-PN100 resist pattern fluctuation in X-ray lithography, including synchrotron beam polarization

    International Nuclear Information System (INIS)

    Scheckler, E.W.; Ogawa, Taro; Tanaka, Toshihiko; Takeda, Eiji; Oizumi, Hiroaki.

    1993-01-01

    A new simulation model for nanometer-scale pattern fluctuation in X-ray lithography is presented and applied to a study of AZ-PN100 negative chemical amplification resist. The exposure simulation considers polarized photons from a synchrotron radiation (SR) source. Monte Carlo simulation of Auger and photoelectron generation is followed by electron scattering simulation to determine the deposited energy distribution at the nanometer scale, including beam polarization effects. An acid-catalyst random walk model simulates the post-exposure bake (PEB) step. Fourier transform infrared (FTIR) spectroscopy and developed resist thickness measurements are used to fit PEB and rate models for AZ-PN100. A polymer removal model for development simulation predicts the macroscopic resist shape and pattern roughness. The simulated 3σ linewidth variation is in excess of 24 nm. Simulation also shows a detrimental effect if the beam polarization is perpendicular to the line. Simulation assuming a theoretical ideal exposure yields a 50 nm minimum line for standard process conditions. (author)

  13. Applications of pulsed intense relativistic electron beam to aquatic conservation

    International Nuclear Information System (INIS)

    Kikuchi, Takashi; Kondo, Hironobu; Sasaki, Toru; Harada, Nob.; Moriwaki, Hiroshi; Imada, Go

    2012-01-01

    In this study, we propose aquatic conservations by using a pulsed intense relativistic electron beam (PIREB). Treatments of introduced species and toxics azo dyes by irradiating PIREB are investigated in this report. Zooplankton contained in water have been inactivated by irradiation of PIREB. A treatment chamber is filled with a solution of 3-wt% salt in water containing Artemia larvae as zooplankton samples, and is irradiated using the PIREB (2 MeV, 0.4 kA, 140 ns). We found that up to 24% of the Artemia are inactivated by firing 10 shots of PIREB irradiation. It is found that pH changes did not affect to inactivate the Artemia larvae during the time scale of PIREB irradiation. The reaction of congo red, a well-known toxic azo dye, occurred after irradiation by PIREB. An aquation of congo red was irradiated by PIREB (2 MeV, 0.36 kA, 140 ns). After PIREB irradiation, the solution was measured by electrospray ionization-mass spectrometry and liquid chromatography/mass spectrometry. It was found that congo red underwent a reaction (77% conversion after five shots of PIREB irradiation) and the hydroxylated compounds of the dye were observed as reaction products. (author)

  14. Relativistic Calculations and Measurements of Energies, Auger Rates, and Lifetimes.

    Science.gov (United States)

    1982-12-01

    Research and Industry, Denton, Texas, 8-10 November 1982. 7. B. Crasemann: "Efectos Relativ’sticos y de QED Sobre las Transiciones Rayos - X y Auger Entre...INNER-SHELL IONIZATION BY PROTONS X -RAY EMISSION BREIT INTERACTION AUGER TRANSITIONS DIRAC-HARTREE-SLATER COMPUTATIONS SYNCHROTRON RADIATION RESONANT...computations, including relativistic and quantum- electrodynamic effects, of atomic energy levels and of x -ray and Auger transitions in atoms with one or

  15. Storage ring design of the 8 GeV synchrotron radiation facility (SPring-8)

    International Nuclear Information System (INIS)

    Hara, M.; Bc, S.H.; Motonaga, S.

    1990-01-01

    In Japan, RIKEN (Institute of Physical and Chemical Research) and JAERI (Japan Atomic Energy Research Institute) have organized a joint design team and started a design study for an 8 GeV synchrotron radiation X-ray source. This paper outlines the status of the design study for the 8 GeV highly brilliant synchrotron radiation X-ray source ring named Super Photon Ring (SPring-8). The facility consists of a main storage ring, a full-energy injector booster synchrotron and a pre-injector 1 GeV linac. The injector linac and synchrotron are laid outside the storage ring because to permit the use of the linac and synchrotron not only as an injector but also as an electron or positron beam source. The purpose of the facility is to provide stable photon beams with high brilliance in the X-ray region. The energy of the stored electrons (positrons) is fixed at 8 GeV to fulfill the required condition using conventional type insertion devices. (N.K.)

  16. Calculation of collective effects and beam lifetimes for the LBL [Lawrence Berkeley Laboratory] 1-2 GeV synchrotron radiation source

    International Nuclear Information System (INIS)

    Chattopadhyay, S.; Zisman, M.S.

    1987-03-01

    In designing a third-generation high brightness synchrotron radiation source, attention must be paid to the various collective effects that can influence beam performance. We report on calculations, performed with the code ZAP, of the bunch length, the transverse emittance and the beam lifetime (from both Touschek and gas scattering) for our 1-2 GeV storage ring. In addition, we estimate the growth times for both longitudinal and transverse coupled bunch instabilities. Bunch lengths of about 20 ps should be obtainable and intrabeam scattering emittance growth is small. For a limiting undulator gap of 1 cm and residual gas pressure of 1n Torr, the beam lifetime is about 5 hours in the single-bunch mode; in the multibunch mode, lifetimes in excess of 6 hours are expected. These results indicate that all performance goals for the facility should be achievable

  17. Intense non-relativistic cesium ion beam

    International Nuclear Information System (INIS)

    Lampel, M.C.

    1984-02-01

    The Heavy Ion Fusion group at Lawrence Berkeley Laboratory has constructed the One Ampere Cesium Injector as a proof of principle source to supply an induction linac with a high charge density and high brightness ion beam. This is studied here. An electron beam probe was developed as the major diagnostic tool for characterizing ion beam space charge. Electron beam probe data inversion is accomplished with the EBEAM code and a parametrically adjusted model radial charge distribution. The longitudinal charge distribution was not derived, although it is possible to do so. The radial charge distribution that is derived reveals an unexpected halo of trapped electrons surrounding the ion beam. A charge fluid theory of the effect of finite electron temperature on the focusing of neutralized ion beams (Nucl. Fus. 21, 529 (1981)) is applied to the problem of the Cesium beam final focus at the end of the injector. It is shown that the theory's predictions and assumptions are consistent with the experimental data, and that it accounts for the observed ion beam radius of approx. 5 cm, and the electron halo, including the determination of an electron Debye length of approx. 10 cm

  18. Energy dependent charge spread function in a dedicated synchrotron beam pnCCD detector

    International Nuclear Information System (INIS)

    Yousef, Hazem

    2011-01-01

    A scan on the pixel edges is the method which is used to resolve the electron cloud size in the pixel array of the pnCCD detector. The EDR synchrotron radiation in BESSY is the source of the X-ray photons which are used in the scans. The radius of the electron cloud as a function of the impinging photon energy is analyzed. The angle of incidence of the X-ray beam is employed in the measurements. The measurements are validated by the numerical simulation models. The inclined X-ray track leads to distribute the electron clouds in a certain number of pixels according to the incident angle of the X-ray beam. The pixels detect different electron clouds according to their generation position in the detector bulk. A collimated X-ray beam of 12.14 keV is used in the measurements with 30 and 40 entrance angles. It is shown that the two factors that leads to expand the electron clouds namely the diffusion and the mutual electrostatic repulsion can be separated from the measured electron clouds. It is noticed as well that the influence of the mutual electrostatic repulsion dominates the cloud expansion over the diffusion process in the collection time of the detector. The perpendicular X-ray track leads to determine the average radius of the electron cloud per photon energy. The results show that the size of the electron clouds (RMS) in the energy range of [5.0-21.6] keV is smaller than the pixel size. (orig.)

  19. Energy dependent charge spread function in a dedicated synchrotron beam pnCCD detector

    Energy Technology Data Exchange (ETDEWEB)

    Yousef, Hazem

    2011-05-20

    A scan on the pixel edges is the method which is used to resolve the electron cloud size in the pixel array of the pnCCD detector. The EDR synchrotron radiation in BESSY is the source of the X-ray photons which are used in the scans. The radius of the electron cloud as a function of the impinging photon energy is analyzed. The angle of incidence of the X-ray beam is employed in the measurements. The measurements are validated by the numerical simulation models. The inclined X-ray track leads to distribute the electron clouds in a certain number of pixels according to the incident angle of the X-ray beam. The pixels detect different electron clouds according to their generation position in the detector bulk. A collimated X-ray beam of 12.14 keV is used in the measurements with 30 and 40 entrance angles. It is shown that the two factors that leads to expand the electron clouds namely the diffusion and the mutual electrostatic repulsion can be separated from the measured electron clouds. It is noticed as well that the influence of the mutual electrostatic repulsion dominates the cloud expansion over the diffusion process in the collection time of the detector. The perpendicular X-ray track leads to determine the average radius of the electron cloud per photon energy. The results show that the size of the electron clouds (RMS) in the energy range of [5.0-21.6] keV is smaller than the pixel size. (orig.)

  20. Ideas for future synchrotron light sources

    International Nuclear Information System (INIS)

    Jackson, A.; Hassenzahl, W.; Meddahi, M.

    1992-03-01

    Synchrotron light sources have advanced in the past two-to-three decades through three ''generations,'' from irritating parasitic sources on high-energy physics accelerators to dedicated electron and position storage rings of unprecedented low emittance, utilizing undulator and wiggler magnets. The evolution through these three generations followed a predicable, science-driven, course towards brighter beams of VUV- and x-radiation. The requirements of future light sources is not so clear. The limit on how emittance has certainly not been reached, and diffraction-limited sources at shorter wavelengths would be the natural progression from previous generations. However, scientists are now looking at other radiation characteristics that might better serve their needs, for example, more coherent power, fast switching polarization, ultra-short (sub-picosecond) time structure, and synchronized beams for pump-probe experiments. This paper discusses some current ideas that might drive the fourth-generation synchrotron light source