WorldWideScience

Sample records for relativistic wheeler-feynman action

  1. Solutions of the Wheeler-Feynman equations with discontinuous velocities.

    Science.gov (United States)

    de Souza, Daniel Câmara; De Luca, Jayme

    2015-01-01

    We generalize Wheeler-Feynman electrodynamics with a variational boundary value problem for continuous boundary segments that might include velocity discontinuity points. Critical-point orbits must satisfy the Euler-Lagrange equations of the action functional at most points, which are neutral differential delay equations (the Wheeler-Feynman equations of motion). At velocity discontinuity points, critical-point orbits must satisfy the Weierstrass-Erdmann continuity conditions for the partial momenta and the partial energies. We study a special setup having the shortest time-separation between the (infinite-dimensional) boundary segments, for which case the critical-point orbit can be found using a two-point boundary problem for an ordinary differential equation. For this simplest setup, we prove that orbits can have discontinuous velocities. We construct a numerical method to solve the Wheeler-Feynman equations together with the Weierstrass-Erdmann conditions and calculate some numerical orbits with discontinuous velocities. We also prove that the variational boundary value problem has a unique solution depending continuously on boundary data, if the continuous boundary segments have velocity discontinuities along a reduced local space.

  2. A note on relativistic Feynman-type integrals

    International Nuclear Information System (INIS)

    Namsrai, Kh.

    1979-01-01

    An attempt is made to generalize the definition of Feynman path integral to the relativistic case within the framework of the Kershaw stochastic model. The Smoluchowski type equations are used which allow one to obtain easily the Schrodinger, Klein-Gordon and Dirac equations. The interaction is introduced by using Weyl's gaude theory. In the model developed the Feynman process may formally by interpreted as a stochastic diffusion process in complex times with a real probability measure which occurs in the Euclidean space. Feynman path integrals themselves are not obtained in the model, nonetheless it represents an interest as one of possibilities of the relativistic generalization of Feynman type integrals

  3. Calculations in the Wheeler-Feynman absorber theory of radiation

    International Nuclear Information System (INIS)

    Balaji, K.S.

    1986-01-01

    One dimensional computer aided calculations were done to find the self consistent solutions for various absorber configurations in the context of the Wheeler-Feynman absorber theory, wherein every accelerating charge is assumed to produce a time symmetric combination of advanced and retarded fields. These calculations picked out the so called outerface solution for incomplete absorbers and showed that advanced as well as retarded signals interact with matter in the same manner as in the full retarded theory. Based on these calculations, the Partridge experiment and the Schmidt-Newman experiment were ruled out as tests of the absorber theory. An experiment designed to produce and detect advanced effects is proposed, based on more one-dimensional calculations

  4. Relativistic generalization and extension to the non-Abelian gauge theory of Feynman's proof of the Maxwell equations

    International Nuclear Information System (INIS)

    Tanimura, Shogo

    1992-01-01

    R. P. Feynman showed F. J. Dyson a proof of the Lorentz force law and the homogeneous Maxwell equations, which he obtained starting from Newton's law of motion and the commutation relations between position and velocity for a single nonrelativistic particle. The author formulate both a special relativistic and a general relativistic version of Feynman's derivation. Especially in the general relativistic version they prove that the only possible fields that can consistently act on a quantum mechanical particle are scalar, gauge, and gravitational fields. They also extend Feynman's scheme to the case of non-Abelian gauge theory in the special relativistic context. 8 refs

  5. Automated generation of lattice QCD Feynman rules

    Energy Technology Data Exchange (ETDEWEB)

    Hart, A.; Mueller, E.H. [Edinburgh Univ. (United Kingdom). SUPA School of Physics and Astronomy; von Hippel, G.M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Horgan, R.R. [Cambridge Univ. (United Kingdom). DAMTP, CMS

    2009-04-15

    The derivation of the Feynman rules for lattice perturbation theory from actions and operators is complicated, especially for highly improved actions such as HISQ. This task is, however, both important and particularly suitable for automation. We describe a suite of software to generate and evaluate Feynman rules for a wide range of lattice field theories with gluons and (relativistic and/or heavy) quarks. Our programs are capable of dealing with actions as complicated as (m)NRQCD and HISQ. Automated differentiation methods are used to calculate also the derivatives of Feynman diagrams. (orig.)

  6. Automated generation of lattice QCD Feynman rules

    International Nuclear Information System (INIS)

    Hart, A.; Mueller, E.H.; Horgan, R.R.

    2009-04-01

    The derivation of the Feynman rules for lattice perturbation theory from actions and operators is complicated, especially for highly improved actions such as HISQ. This task is, however, both important and particularly suitable for automation. We describe a suite of software to generate and evaluate Feynman rules for a wide range of lattice field theories with gluons and (relativistic and/or heavy) quarks. Our programs are capable of dealing with actions as complicated as (m)NRQCD and HISQ. Automated differentiation methods are used to calculate also the derivatives of Feynman diagrams. (orig.)

  7. Quantum cosmology based on discrete Feynman paths

    International Nuclear Information System (INIS)

    Chew, Geoffrey F.

    2002-01-01

    Although the rules for interpreting local quantum theory imply discretization of process, Lorentz covariance is usually regarded as precluding time quantization. Nevertheless a time-discretized quantum representation of redshifting spatially-homogeneous universe may be based on discrete-step Feynman paths carrying causal Lorentz-invariant action--paths that not only propagate the wave function but provide a phenomenologically-promising elementary-particle Hilbert-space basis. In a model under development, local path steps are at Planck scale while, at a much larger ''wave-function scale'', global steps separate successive wave-functions. Wave-function spacetime is but a tiny fraction of path spacetime. Electromagnetic and gravitational actions are ''at a distance'' in Wheeler-Feynman sense while strong (color) and weak (isospin) actions, as well as action of particle motion, are ''local'' in a sense paralleling the action of local field theory. ''Nonmaterial'' path segments and ''trivial events'' collaborate to define energy and gravity. Photons coupled to conserved electric charge enjoy privileged model status among elementary fermions and vector bosons. Although real path parameters provide no immediate meaning for ''measurement'', the phase of the complex wave function allows significance for ''information'' accumulated through ''gentle'' electromagnetic events involving charged matter and ''soft'' photons. Through its soft-photon content the wave function is an ''information reservoir''

  8. Automatically generating Feynman rules for improved lattice field theories

    International Nuclear Information System (INIS)

    Hart, A.; Hippel, G.M. von; Horgan, R.R.; Storoni, L.C.

    2005-01-01

    Deriving the Feynman rules for lattice perturbation theory from actions and operators is complicated, especially when improvement terms are present. This physically important task is, however, suitable for automation. We describe a flexible algorithm for generating Feynman rules for a wide range of lattice field theories including gluons, relativistic fermions and heavy quarks. We also present an efficient implementation of this in a freely available, multi-platform programming language (PYTHON), optimised to deal with a wide class of lattice field theories

  9. Feynman's thesis: A new approach to quantum theory

    International Nuclear Information System (INIS)

    Das, Ashok

    2007-01-01

    It is not usual for someone to write a book on someone else's Ph.D. thesis, but then Feynman was not a usual physicist. He was without doubt one of the most original physicists of the twentieth century, who has strongly influenced the developments in quantum field theory through his many ingenious contributions. Path integral approach to quantum theories is one such contribution which pervades almost all areas of physics. What is astonishing is that he developed this idea as a graduate student for his Ph.D. thesis which has been printed, for the first time, in the present book along with two other related articles. The early developments in quantum theory, by Heisenberg and Schroedinger, were based on the Hamiltonian formulation, where one starts with the Hamiltonian description of a classical system and then promotes the classical observables to noncommuting quantum operators. However, Dirac had already stressed in an article in 1932 (this article is also reproduced in the present book) that the Lagrangian is more fundamental than the Hamiltonian, at least from the point of view of relativistic invariance and he wondered how the Lagrangian may enter into the quantum description. He had developed this idea through his 'transformation matrix' theory and had even hinted on how the action of the classical theory may enter such a description. However, although the brief paper by Dirac contained the basic essential ideas, it did not fully develop the idea of a Lagrangian description in detail in the functional language. Feynman, on the other hand, was interested in the electromagnetic interactions of the electron from a completely different point of view rooted in a theory involving action-at-a-distance. His theory (along with John Wheeler) did not have a Hamiltonian description and, in order to quantize such a theory, he needed an alternative formulation of quantum mechanics. When the article by Dirac was brought to his attention, he immediately realized what he was

  10. John Wheeler, 1933 - 1959: Particles and Weapons

    Science.gov (United States)

    Ford, Kenneth

    2009-05-01

    During the early part of his career, John Archibald Wheeler made an astonishing number of contributions to nuclear and particle physics, as well as to classical electrodynamics, often in collaboration with another physicist. He was also a major contributor to the Manhattan Project (in Chicago and Hanford rather than Los Alamos), and, following World War II, became an influential scientific cold warrior. His early achievements in physics include the calculated scattering of light by light (with Gregory Breit), the prediction of nuclear rotational states (with Edward Teller), the theory of fission (with Niels Bohr), action-at-a-distance electrodynamics (with Richard Feynman), the theory of positronium, the universal weak interaction (with Jayme Tiomno), and the proposed use of the muon as a nuclear probe particle. He gained modest fame as the person who identified xenon 135 as a reactor poison. His Project Matterhorn contributed significantly to the design of the H bomb, and his Project 137, which he had hoped would flower into a major defense lab, served as the precursor to the Jason group.

  11. Feynman versus Bakamjian-Thomas in light-front dynamics

    International Nuclear Information System (INIS)

    Araujo, W.R.B. de; Beyer, M.; Weber, H.J.; Frederico, T.

    1999-01-01

    We compare the Bakamjian-Thomas (BT) formulation of relativistic few-body systems with light-front field theories that maintain closer contact with Feynman diagrams. We find that Feynman diagrams distinguish Melosh rotations and other kinematical quantities belonging to various composite subsystem frames that correspond to different loop integrals. The BT formalism knows only the rest frame of the whole composite system, where everything is evaluated. (author)

  12. Extension of a theory of Feynman

    International Nuclear Information System (INIS)

    Blaquiere, Augustin

    1979-01-01

    We propose a relativistic extension of a method through which Feynman derives the Schroedinger equation. The equation of Klein-Gordon for a charged particle in a magnetic field is obtained. Some connections with the nonrelativistic and the classical approximations are discussed [fr

  13. General Relativity and John Archibald Wheeler

    CERN Document Server

    Ciufolini, Ignazio

    2010-01-01

    Observational and experimental data pertaining to gravity and cosmology are changing our view of the Universe. General relativity is a fundamental key for the understanding of these observations and its theory is undergoing a continuing enhancement of its intersection with observational and experimental data. These data include direct observations and experiments carried out in our solar system, among which there are direct gravitational wave astronomy, frame dragging and tests of gravitational theories from solar system and spacecraft observations. This book explores John Archibald Wheeler's seminal and enduring contributions in relativistic astrophysics and includes: the General Theory of Relativity and Wheeler's influence; recent developments in the confrontation of relativity with experiments; the theory describing gravitational radiation, and its detection in Earth-based and space-based interferometer detectors as well as in Earth-based bar detectors; the mathematical description of the initial value pro...

  14. Advanced quantum theory and its applications through Feynman diagrams

    International Nuclear Information System (INIS)

    Scadron, M.D.

    1979-01-01

    The two themes of scattering diagrams and the fundamental forces characterize this book. Transformation theory is developed to review the concepts of nonrelativistic quantum mechanics and to formulate the relativistic Klein-Gordon, Maxwell, and Dirac wave equations for relativistic spin-0, massless spin-1, and spin-1/2 particles, respectively. The language of group theory is used to write relativistic Lorentz transformations in a form similar to ordinary rotations and to describe the important discrete symmetries of C, P, and T. Then quantum mechanics is reformulated in the language of scattering theory, with the momentum-space S matrix replacing the coordinate-space hamiltonian as the central dynamical operator. Nonrelativistic perturbation scattering diagrams are then developed, and simple applications given for nuclear, atomic, and solid-state scattering problems. Next, relativistic scattering diagrams built up from covariant Feynman propagators and vertices in a manner consistent with the CPT theorem are considered. The theory is systematically applied to the lowest-order fundamental electromagnetic, strong, weak, and gravitational interactions. Finally, the use of higher-order Feynman diagrams to explain more detailed aspects of quantum electrodynamics (QED) and strong-interaction elementary-particle physics is surveyed. Throughout, the notion of currents is used to exploit the underlying symmetries and dynamical interactions of the various quantum forces. 258 references, 77 figures, 1 table

  15. Mathematical theory of Feynman path integrals an introduction

    CERN Document Server

    Albeverio, Sergio A; Mazzucchi, Sonia

    2008-01-01

    Feynman path integrals, suggested heuristically by Feynman in the 40s, have become the basis of much of contemporary physics, from non-relativistic quantum mechanics to quantum fields, including gauge fields, gravitation, cosmology. Recently ideas based on Feynman path integrals have also played an important role in areas of mathematics like low-dimensional topology and differential geometry, algebraic geometry, infinite-dimensional analysis and geometry, and number theory. The 2nd edition of LNM 523 is based on the two first authors' mathematical approach of this theory presented in its 1st edition in 1976. To take care of the many developments since then, an entire new chapter on the current forefront of research has been added. Except for this new chapter and the correction of a few misprints, the basic material and presentation of the first edition has been maintained. At the end of each chapter the reader will also find notes with further bibliographical information.

  16. Constructive Representation Theory for the Feynman Operator Calculus

    CERN Document Server

    Gill, T L

    2006-01-01

    In this paper, we survey recent progress on the constructive theory of the Feynman operator calculus. We first develop an operator version of the Henstock-Kurzweil integral, and a new Hilbert space that allows us to construct the elementary path integral in the manner originally envisioned by Feynman. After developing our time-ordered operator theory we extend a few of the important theorems of semigroup theory, including the Hille-Yosida theorem. As an application, we unify and extend the theory of time-dependent parabolic and hyperbolic evolution equations. We then develop a general perturbation theory and use it to prove that all theories generated by semigroups are asympotic in the operator-valued sense of Poincar e. This allows us to provide a general theory for the interaction representation of relativistic quantum theory. We then show that our theory can be reformulated as a physically motivated sum over paths, and use this version to extend the Feynman path integral to include more general interaction...

  17. Action at a distance in physics and cosmology

    CERN Document Server

    Hoyle, Fred

    1974-01-01

    Classical theories of electromagnetism and gravitation ; the absorber theory of Wheeler and Feynman ; the quantum response of the Universe ; direct-particle theories in Riemannian spacetime ; inertia and gravitation treated classically ; cosmology ; problems in the quantization of inertia and gravitation ; further considerations of cosmology.

  18. Cosmology as relativistic particle mechanics: from big crunch to big bang

    Energy Technology Data Exchange (ETDEWEB)

    Russo, J G [Institucio Catalana de Recerca i Estudis Avancats, Departament ECM, Facultat de FIsica, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Townsend, P K [Institucio Catalana de Recerca i Estudis Avancats, Departament ECM, Facultat de FIsica, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain)

    2005-02-21

    Cosmology can be viewed as geodesic motion in an appropriate metric on an 'augmented' target space; here we obtain these geodesics from an effective relativistic particle action. As an application, we find some exact (flat and curved) cosmologies for models with N scalar fields taking values in a hyperbolic target space for which the augmented target space is a Milne universe. The singularities of these cosmologies correspond to points at which the particle trajectory crosses the Milne horizon, suggesting a novel resolution of them, which we explore via the Wheeler-DeWitt equation.

  19. Non-relativistic supersymmetry

    International Nuclear Information System (INIS)

    Clark, T.E.; Love, S.T.

    1984-01-01

    The most general one- and two-body hamiltonian invariant under galilean supersymmetry is constructed in superspace. The corresponding Feynman rules are given for the superfield Green functions. As demonstrated by a simple example, it is straightforward to construct models in which the supersymmetry is spontaneously broken by the non-relativistic vacuum. (orig.)

  20. A superfield generalization of the classical action-at-a-distance theory

    International Nuclear Information System (INIS)

    Tugai, V.V.; Zheltukhin, A.A.

    1994-07-01

    A generalization of the Fokker-Schwarzschild-Tetrode-Wheeler-Feynman electromagnetic theory onto the superspace is considered. The classical vector and spinor fields belonging to the Maxwell supermultiplet are built of the world-line coordinates of the charged particles in superspace. (author). 9 refs

  1. Interpretation of the evolution parameter of the Feynman parametrization of the Dirac equation

    International Nuclear Information System (INIS)

    Aparicio, J.P.; Garcia Alvarez, E.T.

    1995-01-01

    The Feynman parametrization of the Dirac equation is considered in order to obtain an indefinite mass formulation of relativistic quantum mechanics. It is shown that the parameter that labels the evolution is related to the proper time. The Stueckelberg interpretation of antiparticles naturally arises from the formalism. ((orig.))

  2. Foundations for relativistic quantum theory. I. Feynman's operator calculus and the Dyson conjectures

    International Nuclear Information System (INIS)

    Gill, Tepper L.; Zachary, W.W.

    2002-01-01

    In this paper, we provide a representation theory for the Feynman operator calculus. This allows us to solve the general initial-value problem and construct the Dyson series. We show that the series is asymptotic, thus proving Dyson's second conjecture for quantum electrodynamics. In addition, we show that the expansion may be considered exact to any finite order by producing the remainder term. This implies that every nonperturbative solution has a perturbative expansion. Using a physical analysis of information from experiment versus that implied by our models, we reformulate our theory as a sum over paths. This allows us to relate our theory to Feynman's path integral, and to prove Dyson's first conjecture that the divergences are in part due to a violation of Heisenberg's uncertainly relations

  3. Feynman graphs and gauge theories for experimental physicists. 2. rev. ed.

    International Nuclear Information System (INIS)

    Schmueser, P.

    1995-01-01

    This book is an introduction to the foundations of quantum field theory with special regards to gauge theory. After a general introduction to relativistic wave equations the concept of Feynman graphs is introduced. Then after an introduction to the phenomenology of weak interactions and the principle of gauge invariance the standard model of the electroweak interaction is presented. Finally quantum chromodynamics is described. Every chapter contains exercise problems. (HSI)

  4. Quantum leap from Dirac and Feynman, across the universe, to human body and mind

    CERN Document Server

    Ivancevic, Vladimir G

    2008-01-01

    This is a unique 21st-century monograph that reveals a basic, yet deep understanding of the universe, as well as the human mind and body - all from the perspective of quantum mechanics and quantum field theory.This book starts with both non-mathematical and mathematical preliminaries. It presents the basics of both non-relativistic and relativistic quantum mechanics, and introduces Feynman path integrals and their application to quantum fields and string theory, as well as some non-quantum applications. It then describes the quantum universe in the form of loop quantum gravity and quantum cosm

  5. Feynman integral calculus

    CERN Document Server

    Smirnov, Vladimir A

    2006-01-01

    The problem of evaluating Feynman integrals over loop momenta has existed from the early days of perturbative quantum field theory. The goal of the book is to summarize those methods for evaluating Feynman integrals that have been developed over a span of more than fifty years. `Feynman Integral Calculus' characterizes the most powerful methods in a systematic way. It concentrates on the methods that have been employed recently for most sophisticated calculations and illustrates them with numerous examples, starting from very simple ones and progressing to nontrivial examples. It also shows how to choose adequate methods and combine them in a non-trivial way. This is a textbook version of the previous book (Evaluating Feynman integrals, STMP 211) of the author. Problems and solutions have been included, Appendix G has been added, more details have been presented, recent publications on evaluating Feynman integrals have been taken into account and the bibliography has been updated.

  6. Discrete anti-gravity

    International Nuclear Information System (INIS)

    Noyes, H.P.; Starson, S.

    1991-03-01

    Discrete physics, because it replaces time evolution generated by the energy operator with a global bit-string generator (program universe) and replaces ''fields'' with the relativistic Wheeler-Feynman ''action at a distance,'' allows the consistent formulation of the concept of signed gravitational charge for massive particles. The resulting prediction made by this version of the theory is that free anti-particles near the surface of the earth will ''fall'' up with the same acceleration that the corresponding particles fall down. So far as we can see, no current experimental information is in conflict with this prediction of our theory. The experiment crusis will be one of the anti-proton or anti-hydrogen experiments at CERN. Our prediction should be much easier to test than the small effects which those experiments are currently designed to detect or bound. 23 refs

  7. Introduction to Feynman diagrams

    CERN Document Server

    Bilenky, Samoil Mikhelevich

    1974-01-01

    Introduction to Feynman Diagrams provides Feynman diagram techniques and methods for calculating quantities measured experimentally. The book discusses topics Feynman diagrams intended for experimental physicists. Topics presented include methods for calculating the matrix elements (by perturbation theory) and the basic rules for constructing Feynman diagrams; techniques for calculating cross sections and polarizations; processes in which both leptons and hadrons take part; and the electromagnetic and weak form factors of nucleons. Experimental physicists and graduate students of physics will

  8. Equivariance, Variational Principles, and the Feynman Integral

    Directory of Open Access Journals (Sweden)

    George Svetlichny

    2008-03-01

    Full Text Available We argue that the variational calculus leading to Euler's equations and Noether's theorem can be replaced by equivariance and invariance conditions avoiding the action integral. We also speculate about the origin of Lagrangian theories in physics and their connection to Feynman's integral.

  9. S-matrix, Feynman zigzag and Einstein correlation

    International Nuclear Information System (INIS)

    Costa de Beauregard, O.

    1978-01-01

    An inherent binding between Einstein correlations and the S-matrix formalism entails full relativistic covariance, complete time symmetry, and spacelike connexions via Feynman zigzags. The relay is in the past for predictive correlations between future measurements, and in the future for retrodictive correlations between past preparations (Pflegor and Mandel). An analogy and a partial binding exist between intrinsic symmetry together with factlike asymmetry of (1) 'blind statistical' prediction and retrodiction (retarded and advanced waves, information as cognizance and as will) and (2) positive and negative frequencies (particles and antiparticles). As advanced waves are required for completeness of expansions, 'antiphysics' obeying blind statistical retrodiction should show up in appropriate contexts, 'parapsychology' being submitted as one of them. (Auth.)

  10. Midisuperspace-induced corrections to the Wheeler De Witt equation

    International Nuclear Information System (INIS)

    Mazzitelli, F.D.

    1992-04-01

    We consider the midisuperspace of four dimensional spherically symmetric metrics and the Kantowski-Sachs minisuperspace contained in it. We discuss the quantization of the midisuperspace using the fact that the dimensionally reduced Einstein Hilbert action becomes a scalar-tensor theory of gravity in two dimensions. We show that the covariant regularization procedure in the midisuperspace induces modifications into the minisuperspace Wheeler De Witt equation. (author). 8 refs

  11. Generalized absorber theory and the Einstein-Podolsky-Rosen paradox

    International Nuclear Information System (INIS)

    Cramer, J.G.

    1980-01-01

    A generalized form of Wheeler-Feynman absorber theory is used to explain the quantum-mechanical paradox proposed by Einstein, Podolsky, and Rosen (EPR). The advanced solutions of the electromagnetic wave equation and of relativistic quantum-mechanical wave equations are shown to play the role of ''verifier'' in quantum-mechanical ''transactions,'' providing microscopic communication paths between detectors across spacelike intervals in violation of the EPR locality postulate. The principle of causality is discussed in the context of this approach, and possibilities for experimental tests of the theory are examined

  12. Combinatorial and geometric aspects of Feynman graphs and Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Bergbauer, Christoph

    2009-06-11

    The integrals associated to Feynman graphs must have been a source of frustration for particle physicists ever since. Indeed there is a delicate difference between being able to draw a Feynman graph and being able to compute the associated Feynman integral. Although perturbation theory has brought enormous breakthroughs, many physicists turned to more abstract developments in quantum field theory, looked for other ways to produce perturbational results, or left the field entirely. Nonetheless there is a significant number of physicists, computational and theoretical, who pursue the quest for concepts and algorithms to compute and understand those integrals to higher and higher orders. Their motivation is to help test the validity of the underlying physical theory. For a mathematician, Feynman graphs and their integrals provide a rich subject in their own right, independent of their computability. It was only recently though that the work of Bloch, Esnault and Kreimer has brought a growing interest of mathematicians from various disciplines to the subject. In fact it opened up a completely new direction of research: a motivic interpretation of Feynman graphs that unites their combinatorial, geometric and arithmetic aspects. This idea had been in the air for a while, based on computational results of Broadhurst and Kreimer, and on a theorem of Belkale and Brosnan related to a conjecture of Kontsevich about the generality of the underlying motives. A prerequisite for the motivic approach is a profound understanding of renormalization that was established less recently in a modern language by Connes and Kreimer. This dissertation studies the renormalization of Feynman graphs in position space using an adapted resolution of singularities, and makes two other contributions of mostly combinatorial nature to the subject. I hope this may serve as a reference for somebody who feels comfortable with the traditional position space literature and looks for a transition to the

  13. Combinatorial and geometric aspects of Feynman graphs and Feynman integrals

    International Nuclear Information System (INIS)

    Bergbauer, Christoph

    2009-01-01

    The integrals associated to Feynman graphs must have been a source of frustration for particle physicists ever since. Indeed there is a delicate difference between being able to draw a Feynman graph and being able to compute the associated Feynman integral. Although perturbation theory has brought enormous breakthroughs, many physicists turned to more abstract developments in quantum field theory, looked for other ways to produce perturbational results, or left the field entirely. Nonetheless there is a significant number of physicists, computational and theoretical, who pursue the quest for concepts and algorithms to compute and understand those integrals to higher and higher orders. Their motivation is to help test the validity of the underlying physical theory. For a mathematician, Feynman graphs and their integrals provide a rich subject in their own right, independent of their computability. It was only recently though that the work of Bloch, Esnault and Kreimer has brought a growing interest of mathematicians from various disciplines to the subject. In fact it opened up a completely new direction of research: a motivic interpretation of Feynman graphs that unites their combinatorial, geometric and arithmetic aspects. This idea had been in the air for a while, based on computational results of Broadhurst and Kreimer, and on a theorem of Belkale and Brosnan related to a conjecture of Kontsevich about the generality of the underlying motives. A prerequisite for the motivic approach is a profound understanding of renormalization that was established less recently in a modern language by Connes and Kreimer. This dissertation studies the renormalization of Feynman graphs in position space using an adapted resolution of singularities, and makes two other contributions of mostly combinatorial nature to the subject. I hope this may serve as a reference for somebody who feels comfortable with the traditional position space literature and looks for a transition to the

  14. Orbit-averaged quantities, the classical Hellmann-Feynman theorem, and the magnetic flux enclosed by gyro-motion

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, R. J., E-mail: rperkins@pppl.gov; Bellan, P. M. [Applied Physics and Materials Science, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-02-15

    Action integrals are often used to average a system over fast oscillations and obtain reduced dynamics. It is not surprising, then, that action integrals play a central role in the Hellmann-Feynman theorem of classical mechanics, which furnishes the values of certain quantities averaged over one period of rapid oscillation. This paper revisits the classical Hellmann-Feynman theorem, rederiving it in connection to an analogous theorem involving the time-averaged evolution of canonical coordinates. We then apply a modified version of the Hellmann-Feynman theorem to obtain a new result: the magnetic flux enclosed by one period of gyro-motion of a charged particle in a non-uniform magnetic field. These results further demonstrate the utility of the action integral in regards to obtaining orbit-averaged quantities and the usefulness of this formalism in characterizing charged particle motion.

  15. Ahlstroem Pyropower sold to Foster Wheeler

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Representatives of Foster Wheeler Corporation and A. Ahlstroem Oy have signed in the 3rd of October 1995 a contract which transfers the majority of the shares in Ahlstroem Pyropower to the American company Foster Wheeler at a price of some 200 million dollars. The final price will depend on the result of Ahlstroem Pyropower at the end of 1995. (1 fig.)

  16. Exploring manufacturing competencies of a two wheeler manufacturing unit

    Science.gov (United States)

    Deep Singh, Chandan; Singh Khamba, Jaimal; Singh, Rajdeep; Singh, Navdeep

    2014-07-01

    The two wheeler industry of India is one of the most dependable industries as every person has at least a two wheeler with him, if not any four wheeler. Earlier there were scooters like Bajaj Chetak, Priya but with evolution of motorcycles like splendor, splendor+, etc. the scooter market started declining but with arrival of gearless scooters like Honda Activa, Scooty Pep, etc. the market place has become increasingly competitive in recent time and industries are facing tough test of improving products and thus market share. The competitiveness among industries is an important issue. Competency development is a vital tool to enhance the competitiveness of industries. Based, on aggregate performance of a firm, it comprehensively explores the varying importance of manufacturing competencies and drives of industrial competitiveness. Hence by, exploring the manufacturing competencies of a two wheeler industry, one can reflect the competitiveness of two wheeler manufacturing industry as a whole. This study presents various factors of manufacturing competencies affecting industrial competitiveness as the significance of these competencies is increasing day by day in two wheeler manufacturing industry.

  17. Exploring manufacturing competencies of a two wheeler manufacturing unit

    International Nuclear Information System (INIS)

    Singh, Chandan Deep; Khamba, Jaimal Singh; Singh, Rajdeep; Singh, Navdeep

    2014-01-01

    The two wheeler industry of India is one of the most dependable industries as every person has at least a two wheeler with him, if not any four wheeler. Earlier there were scooters like Bajaj Chetak, Priya but with evolution of motorcycles like splendor, splendor+, etc. the scooter market started declining but with arrival of gearless scooters like Honda Activa, Scooty Pep, etc. the market place has become increasingly competitive in recent time and industries are facing tough test of improving products and thus market share. The competitiveness among industries is an important issue. Competency development is a vital tool to enhance the competitiveness of industries. Based, on aggregate performance of a firm, it comprehensively explores the varying importance of manufacturing competencies and drives of industrial competitiveness. Hence by, exploring the manufacturing competencies of a two wheeler industry, one can reflect the competitiveness of two wheeler manufacturing industry as a whole. This study presents various factors of manufacturing competencies affecting industrial competitiveness as the significance of these competencies is increasing day by day in two wheeler manufacturing industry

  18. Traffic safety analysis of powered two-wheelers (PTWs) in Slovenia.

    Science.gov (United States)

    Šraml, Matjaž; Tollazzi, Tomaž; Renčelj, Marko

    2012-11-01

    Due to the 2006 European research report on powered two-wheelers (PTWs) riders' traffic safety, Slovenia represents the highest risk for PTW riders in the European Union. Namely, in Slovenia we have the largest number of PTW riders' deaths per billion travelled kilometers in 2006. Since then the traffic safety situation in the field of PTW riders in Slovenia has been improving and we will discuss that phenomenon in the present paper. The paper identifies and analyzes the causes that led to such a critical situation. Further, the evaluation of activities that were carried out to improve the road safety for powered two-wheeler riders in Slovenia in the last past years are discussed. In conclusion a selection of measures and actions is presented that already has been and also should be carried out in the future. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Professor Richard Feynman colloquium

    CERN Multimedia

    1965-01-01

    Richard P. Feynman received the Nobel Prize for physics in 1965. Following the ceremony in Stockholm, Feynman gave the colloquium "Development of the space-time view of quantum electrodynamics" at CERN on 17th December.

  20. Feynman Lectures on Computation

    CERN Document Server

    Feynman, Richard Phillips; Allen, Robin W

    1999-01-01

    "When, in 1984-86, Richard P. Feynman gave his famous course on computation at the California Institute of Technology, he asked Tony Hey to adapt his lecture notes into a book. Although led by Feynman,"

  1. John Archibald Wheeler

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 1. John Archibald Wheeler - Man with Picturesque Imagination. Jayant V Narlikar. General Article Volume 18 Issue 1 January 2013 pp 22-28. Fulltext. Click here to view fulltext PDF. Permanent link:

  2. Feynman formulae and phase space Feynman path integrals for tau-quantization of some Lévy-Khintchine type Hamilton functions

    Energy Technology Data Exchange (ETDEWEB)

    Butko, Yana A., E-mail: yanabutko@yandex.ru, E-mail: kinderknecht@math.uni-sb.de [Bauman Moscow State Technical University, 2nd Baumanskaya street, 5, Moscow 105005, Russia and University of Saarland, Postfach 151150, D-66041 Saarbrücken (Germany); Grothaus, Martin, E-mail: grothaus@mathematik.uni-kl.de [University of Kaiserslautern, 67653 Kaiserslautern (Germany); Smolyanov, Oleg G., E-mail: Smolyanov@yandex.ru [Lomonosov Moscow State University, Vorob’evy gory 1, Moscow 119992 (Russian Federation)

    2016-02-15

    Evolution semigroups generated by pseudo-differential operators are considered. These operators are obtained by different (parameterized by a number τ) procedures of quantization from a certain class of functions (or symbols) defined on the phase space. This class contains Hamilton functions of particles with variable mass in magnetic and potential fields and more general symbols given by the Lévy-Khintchine formula. The considered semigroups are represented as limits of n-fold iterated integrals when n tends to infinity. Such representations are called Feynman formulae. Some of these representations are constructed with the help of another pseudo-differential operator, obtained by the same procedure of quantization; such representations are called Hamiltonian Feynman formulae. Some representations are based on integral operators with elementary kernels; these are called Lagrangian Feynman formulae. Langrangian Feynman formulae provide approximations of evolution semigroups, suitable for direct computations and numerical modeling of the corresponding dynamics. Hamiltonian Feynman formulae allow to represent the considered semigroups by means of Feynman path integrals. In the article, a family of phase space Feynman pseudomeasures corresponding to different procedures of quantization is introduced. The considered evolution semigroups are represented as phase space Feynman path integrals with respect to these Feynman pseudomeasures, i.e., different quantizations correspond to Feynman path integrals with the same integrand but with respect to different pseudomeasures. This answers Berezin’s problem of distinguishing a procedure of quantization on the language of Feynman path integrals. Moreover, the obtained Lagrangian Feynman formulae allow also to calculate these phase space Feynman path integrals and to connect them with some functional integrals with respect to probability measures.

  3. Feynman formulae and phase space Feynman path integrals for tau-quantization of some Lévy-Khintchine type Hamilton functions

    International Nuclear Information System (INIS)

    Butko, Yana A.; Grothaus, Martin; Smolyanov, Oleg G.

    2016-01-01

    Evolution semigroups generated by pseudo-differential operators are considered. These operators are obtained by different (parameterized by a number τ) procedures of quantization from a certain class of functions (or symbols) defined on the phase space. This class contains Hamilton functions of particles with variable mass in magnetic and potential fields and more general symbols given by the Lévy-Khintchine formula. The considered semigroups are represented as limits of n-fold iterated integrals when n tends to infinity. Such representations are called Feynman formulae. Some of these representations are constructed with the help of another pseudo-differential operator, obtained by the same procedure of quantization; such representations are called Hamiltonian Feynman formulae. Some representations are based on integral operators with elementary kernels; these are called Lagrangian Feynman formulae. Langrangian Feynman formulae provide approximations of evolution semigroups, suitable for direct computations and numerical modeling of the corresponding dynamics. Hamiltonian Feynman formulae allow to represent the considered semigroups by means of Feynman path integrals. In the article, a family of phase space Feynman pseudomeasures corresponding to different procedures of quantization is introduced. The considered evolution semigroups are represented as phase space Feynman path integrals with respect to these Feynman pseudomeasures, i.e., different quantizations correspond to Feynman path integrals with the same integrand but with respect to different pseudomeasures. This answers Berezin’s problem of distinguishing a procedure of quantization on the language of Feynman path integrals. Moreover, the obtained Lagrangian Feynman formulae allow also to calculate these phase space Feynman path integrals and to connect them with some functional integrals with respect to probability measures

  4. Precausal quantum mechanics

    International Nuclear Information System (INIS)

    Bennett, C.L.

    1987-01-01

    It is pointed out that both classical Wheeler-Feynman electrodynamics and its finite quantized generalization inevitably lead to microscopic causality violation. As there is some evidence for such effects in proton Compton scattering, there is possibly reason to prefer such absorber theories of action at a distance over field theories as the more reasonable microscopic description of nature

  5. To the proof of manifest relativistic invariance of transverse variables in QED

    International Nuclear Information System (INIS)

    Pervushin, V.N.; Nguyen Suan Han; Azimov, R.A.

    1986-01-01

    The quantization of electrodynamics in terms of transverse physical variables is accomplished. At all the steps of the theory construction: 1) the choice of transverse variables, 2) the choice of energy-momentum tensor, 3) quantization, 4) the Feynman diagram description the manifest gauge and relativistic invariance is preserved. For the transverse variables the relativistic-invariant self-energy of the electron is calculated. The results completely solve the problem of renormalization of physical quantities on the mass shell for the physical variables

  6. Detailed balance of the Feynman micromotor

    Science.gov (United States)

    Abbott, Derek; Davis, Bruce R.; Parrondo, Juan M. R.

    1999-09-01

    One existing implication of micromotors is that they can be powered by rectifying non-equilibrium thermal fluctuations or mechanical vibrations via the so-called Feynman- micromotor. An example of mechanical rectification is found in the batteryless wristwatch. The original concept was described in as early as 1912 by Smoluchowski and was later revisited in 1963 by Feynman, in the context of rectifying thermal fluctuations to obtain useful motion. It has been shown that, although rectification is impossible at equilibrium, it is possible for the Feynman-micromotor to perform work under non-equilibrium conditions. These concepts can now be realized by MEMS technology and may have exciting implications in biomedicine - where the Feynman- micromotor can be used to power a smart pill, for example. Previously, Feynman's analysis of the motor's efficiency has been shown to be flawed by Parrondo and Espanol. We now show there are further problems in Feynman's treatment of detailed balance. In order to design and understand this device correctly, the equations of detailed balance must be found. Feynman's approach was to use probabilities based on energies and we show that this is problematic. In this paper, we demonstrate corrected equations using level crossing probabilities instead. A potential application of the Feynman-micromotor is a batteryless nanopump that consists of a small MEMS chip that adheres to the skin of a patient and dispense nanoliter quantities of medication. Either mechanical or thermal rectification via a Feynman- micromotor, as the power source, is open for possible investigation.

  7. Feynman integrals and hyperlogarithms

    Energy Technology Data Exchange (ETDEWEB)

    Panzer, Erik

    2015-02-05

    We study Feynman integrals in the representation with Schwinger parameters and derive recursive integral formulas for massless 3- and 4-point functions. Properties of analytic (including dimensional) regularization are summarized and we prove that in the Euclidean region, each Feynman integral can be written as a linear combination of convergent Feynman integrals. This means that one can choose a basis of convergent master integrals and need not evaluate any divergent Feynman graph directly. Secondly we give a self-contained account of hyperlogarithms and explain in detail the algorithms needed for their application to the evaluation of multivariate integrals. We define a new method to track singularities of such integrals and present a computer program that implements the integration method. As our main result, we prove the existence of infinite families of massless 3- and 4-point graphs (including the ladder box graphs with arbitrary loop number and their minors) whose Feynman integrals can be expressed in terms of multiple polylogarithms, to all orders in the ε-expansion. These integrals can be computed effectively with the presented program. We include interesting examples of explicit results for Feynman integrals with up to 6 loops. In particular we present the first exactly computed counterterm in massless φ{sup 4} theory which is not a multiple zeta value, but a linear combination of multiple polylogarithms at primitive sixth roots of unity (and divided by the √(3)). To this end we derive a parity result on the reducibility of the real- and imaginary parts of such numbers into products and terms of lower depth.

  8. Feynman integrals and hyperlogarithms

    International Nuclear Information System (INIS)

    Panzer, Erik

    2015-01-01

    We study Feynman integrals in the representation with Schwinger parameters and derive recursive integral formulas for massless 3- and 4-point functions. Properties of analytic (including dimensional) regularization are summarized and we prove that in the Euclidean region, each Feynman integral can be written as a linear combination of convergent Feynman integrals. This means that one can choose a basis of convergent master integrals and need not evaluate any divergent Feynman graph directly. Secondly we give a self-contained account of hyperlogarithms and explain in detail the algorithms needed for their application to the evaluation of multivariate integrals. We define a new method to track singularities of such integrals and present a computer program that implements the integration method. As our main result, we prove the existence of infinite families of massless 3- and 4-point graphs (including the ladder box graphs with arbitrary loop number and their minors) whose Feynman integrals can be expressed in terms of multiple polylogarithms, to all orders in the ε-expansion. These integrals can be computed effectively with the presented program. We include interesting examples of explicit results for Feynman integrals with up to 6 loops. In particular we present the first exactly computed counterterm in massless φ 4 theory which is not a multiple zeta value, but a linear combination of multiple polylogarithms at primitive sixth roots of unity (and divided by the √(3)). To this end we derive a parity result on the reducibility of the real- and imaginary parts of such numbers into products and terms of lower depth.

  9. A Feynman-Hellmann approach to the spin structure of hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, A.J. [Adelaide Univ., SA (Australia). CSSM, Dept. of Physics; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe (Japan); Collaboration: CSSM and QCDSF/UKQCD Collaborations; and others

    2014-05-15

    We perform a N{sub f}=2+1 lattice QCD simulation to determine the quark spin fractions of hadrons using the Feynman-Hellmann theorem. By introducing an external spin operator to the fermion action, the matrix elements relevant for quark spin fractions are extracted from the linear response of the hadron energies. Simulations indicate that the Feynman-Hellmann method offers statistical precision that is comparable to the standard three-point function approach, with the added benefit that it is less susceptible to excited state contamination. This suggests that the Feynman-Hellmann technique offers a promising alternative for calculations of quark line disconnected contributions to hadronic matrix elements. At the SU(3)-flavour symmetry point, we find that the connected quark spin fractions are universally in the range 55-70% for vector mesons and octet and decuplet baryons. There is an indication that the amount of spin suppression is quite sensitive to the strength of SU(3) breaking.

  10. Baikov-Lee representations of cut Feynman integrals

    International Nuclear Information System (INIS)

    Harley, Mark; Moriello, Francesco; Schabinger, Robert M.

    2017-01-01

    We develop a general framework for the evaluation of d-dimensional cut Feynman integrals based on the Baikov-Lee representation of purely-virtual Feynman integrals. We implement the generalized Cutkosky cutting rule using Cauchy’s residue theorem and identify a set of constraints which determine the integration domain. The method applies equally well to Feynman integrals with a unitarity cut in a single kinematic channel and to maximally-cut Feynman integrals. Our cut Baikov-Lee representation reproduces the expected relation between cuts and discontinuities in a given kinematic channel and furthermore makes the dependence on the kinematic variables manifest from the beginning. By combining the Baikov-Lee representation of maximally-cut Feynman integrals and the properties of periods of algebraic curves, we are able to obtain complete solution sets for the homogeneous differential equations satisfied by Feynman integrals which go beyond multiple polylogarithms. We apply our formalism to the direct evaluation of a number of interesting cut Feynman integrals.

  11. Relativistic non-Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2010-01-01

    Relativistic particle subjected to a general four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u μ u μ + c 2 = 0, where c is the speed of light in vacuum. In the general case, four-forces are non-potential, and the relativistic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time. We consider non-Hamiltonian and dissipative systems in relativistic mechanics. Covariant forms of the principle of stationary action and the Hamilton's principle for relativistic mechanics of non-Hamiltonian systems are discussed. The equivalence of these principles is considered for relativistic particles subjected to potential and non-potential forces. We note that the equations of motion which follow from the Hamilton's principle are not equivalent to the equations which follow from the variational principle of stationary action. The Hamilton's principle and the principle of stationary action are not compatible in the case of systems with nonholonomic constraint and the potential forces. The principle of stationary action for relativistic particle subjected to non-potential forces can be used if the Helmholtz conditions are satisfied. The Hamilton's principle and the principle of stationary action are equivalent only for a special class of relativistic non-Hamiltonian systems.

  12. Powered two-wheeler drivers' risk of hitting a pedestrian in towns.

    Science.gov (United States)

    Clabaux, Nicolas; Fournier, Jean-Yves; Michel, Jean-Emmanuel

    2014-12-01

    The risk of collision between pedestrians and powered two-wheelers is poorly understood today. The objective of this research is to determine the risk for powered two-wheeler drivers of hitting and injuring a pedestrian per kilometer driven in towns and to compare this risk with that run by four-wheeled vehicle drivers. Using the bodily injury accidents recorded by the police on nine roads in the city of Marseille in 2011 and a campaign of observations of powered two-wheeler traffic, we estimated the risk per kilometer driven by powered two-wheeler drivers of hitting a pedestrian and compared it with the risk run by four-wheeled vehicle drivers. The results show that the risk for powered two-wheeler drivers of hitting and injuring a pedestrian is significantly higher than the risk run by four-wheeled vehicle drivers. On the nine roads studied, it is on average 3.33 times higher (95% CI: 1.63; 6.78). Taking four more years into account made it possible to consolidate these results and to tighten the confidence interval. There does indeed seem to be problems in the interactions between pedestrians and powered two-wheeler users in urban traffic. These interaction problems lead to a higher risk of hitting and injuring a pedestrian for powered two-wheeler drivers than for four-wheeled vehicle drivers. The analysis of the police reports suggests that part of this increased risk comes from filtering maneuvers by powered two-wheelers. Possible countermeasures deal with the urban street layout. Measures consisting in reducing the width and the number of traffic lanes to a strict minimum and installing medians or pedestrian islands could be an effective way for the prevention of urban accidents between pedestrians and powered two-wheelers. Copyright © 2014 National Safety Council and Elsevier Ltd. All rights reserved.

  13. Feynman diagrams without Feynman parameters

    International Nuclear Information System (INIS)

    Mendels, E.

    1978-01-01

    Dimensionally regularized Feynman diagrams are represented by means of products of k-functions. The infinite part of these diagrams is found very easily, also if they are overlapping, and the separation of the several kinds of divergences comes out quite naturally. Ward identities are proven in a transparent way. Series expansions in terms of the external momenta and their inner products are possible

  14. Feynman Lectures on Gravitation

    International Nuclear Information System (INIS)

    Borcherds, P

    2003-01-01

    In the early 1960s Feynman lectured to physics undergraduates and, with the assistance of his colleagues Leighton and Sands, produced the three-volume classic Feynman Lectures in Physics. These lectures were delivered in the mornings. In the afternoons Feynman was giving postgraduate lectures on gravitation. This book is based on notes compiled by two students on that course: Morinigo and Wagner. Their notes were checked and approved by Feynman and were available at Caltech. They have now been edited by Brian Hatfield and made more widely available. The book has a substantial preface by John Preskill and Kip Thorne, and an introduction entitled 'Quantum Gravity' by Brian Hatfield. You should read these before going on to the lectures themselves. Preskill and Thorne identify three categories of potential readers of this book. 1. Those with a postgraduate training in theoretical physics. 2. 'Readers with a solid undergraduate training in physics'. 3. 'Admirers of Feynman who do not have a strong physics background'. The title of the book is perhaps misleading: readers in category 2 who think that this book is an extension of the Feynman Lectures in Physics may be disappointed. It is not: it is a book aimed mainly at those in category 1. If you want to get to grips with gravitation (and general relativity) then you need to read an introductory text first e.g. General Relativity by I R Kenyon (Oxford: Oxford University Press) or A Unified Grand Tour of Theoretical Physics by Ian D Lawrie (Bristol: IoP). But there is no Royal Road. As pointed out in the preface and in the introduction, the book represents Feynman's thinking about gravitation some 40 years ago: the lecture course was part of his attempts to understand the subject himself, and for readers in all three categories it is this that makes the book one of interest: the opportunity to observe how a great physicist attempts to tackle some of the hardest challenges of physics. However, the book was written 40

  15. First quantized noncritical relativistic Polyakov string

    International Nuclear Information System (INIS)

    Jaskolski, Z.; Meissner, K.A.

    1994-01-01

    The first quantization of the relativistic Brink-DiVecchia-Howe-Polyakov (BDHP) string in the range 1 < d 25 is considered. It is shown that using the Polyakov sum over bordered surfaces in the Feynman path integral quantization scheme one gets a consistent quantum mechanics of relativistic 1-dim extended objects in the range 1 < d < 25. In particular, the BDHP string propagator is exactly calculated for arbitrary initial and final string configurations and the Hilbert space of physical states of noncritical BDHP string is explicitly constructed. The resulting theory is equivalent to the Fairlie-Chodos-Thorn massive string model. In contrast to the conventional conformal field theory approach to noncritical string and random surfaces in the Euclidean target space the path integral formulation of the Fairlie-Chodos-Thorn string obtained in this paper does not rely on the principle of conformal invariance. Some consequences of this feature for constructing a consistent relativistic string theory based on the ''splitting-joining'' interaction are discussed. (author). 42 refs, 1 fig

  16. FeynRules - Feynman rules made easy

    OpenAIRE

    Christensen, Neil D.; Duhr, Claude

    2008-01-01

    In this paper we present FeynRules, a new Mathematica package that facilitates the implementation of new particle physics models. After the user implements the basic model information (e.g. particle content, parameters and Lagrangian), FeynRules derives the Feynman rules and stores them in a generic form suitable for translation to any Feynman diagram calculation program. The model can then be translated to the format specific to a particular Feynman diagram calculator via F...

  17. Analytic Tools for Feynman Integrals

    CERN Document Server

    Smirnov, Vladimir A

    2012-01-01

    The goal of this book is to describe the most powerful methods for evaluating multiloop Feynman integrals that are currently used in practice.  This book supersedes the author’s previous Springer book “Evaluating Feynman Integrals” and its textbook version “Feynman Integral Calculus.” Since the publication of these two books, powerful new methods have arisen and conventional methods have been improved on in essential ways. A further qualitative change is the fact that most of the methods and the corresponding algorithms have now been implemented in computer codes which are often public. In comparison to the two previous books, three new chapters have been added:  One is on sector decomposition, while the second describes a new method by Lee. The third new chapter concerns the asymptotic expansions of Feynman integrals in momenta and masses, which were described in detail in another Springer book, “Applied Asymptotic Expansions in Momenta and Masses,” by the author. This chapter describes, on t...

  18. Charges in gravitational fields: From Fermi, via Hanni-Ruffini-Wheeler, to the 'electric Meissner effect'

    Science.gov (United States)

    Ruffini, R.

    2004-07-01

    Recent developments in obtaining a detailed model for gamma-ray bursts have shown the need for a deeper understanding of phenomena described by solutions of the Einstein-Maxwell equations, reviving interest in the behavior of charges close to a black hole. In particular a drastic difference has been found between the lines of force of a charged test particle in the fields of Schwarzschild and Reissner-Nordström black holes. This difference characterizes a general relativistic effect for the electric field of a charged test particle around a (charged) Reissner-Nordström black hole similar to the “Meissner effect” for a magnetic field around a superconductor. These new results are related to earlier work by Fermi and Hanni-Ruffini-Wheeler.

  19. Feynman integral calculus

    International Nuclear Information System (INIS)

    Smirnov, V.A.

    2006-01-01

    The goal of the book is to summarize those methods for evaluating Feynman integrals that have been developed over a span of more than fifty years. The book characterizes the most powerful methods and illustrates them with numerous examples starting from very simple ones and progressing to nontrivial examples. The book demonstrates how to choose adequate methods and combine evaluation methods in a non-trivial way. The most powerful methods are characterized and then illustrated through numerous examples. This is an updated textbook version of the previous book (Evaluating Feynman integrals, STMP 211) of the author. (orig.)

  20. Feynman integral calculus

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, V.A. [Lomonosov Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics

    2006-07-01

    The goal of the book is to summarize those methods for evaluating Feynman integrals that have been developed over a span of more than fifty years. The book characterizes the most powerful methods and illustrates them with numerous examples starting from very simple ones and progressing to nontrivial examples. The book demonstrates how to choose adequate methods and combine evaluation methods in a non-trivial way. The most powerful methods are characterized and then illustrated through numerous examples. This is an updated textbook version of the previous book (Evaluating Feynman integrals, STMP 211) of the author. (orig.)

  1. Richard Feynman Quarks, Bombs, and Bongos

    CERN Document Server

    Henderson, Harry

    2010-01-01

    Described by his peers as the "finest physicist of his generation," Richard Feynman defied scientist stereotypes. This brash New York-born American physicist startled the more conservative giants of European physics with his endless ability to improvise. Indeed, later in life, Feynman became an accomplished bongo player. Feynman's legacy to physics was his ability to simplify complex equations and clarify fundamental principles through the use of graphs. He developed the theory of quantum electrodynamics, which illustrates the behavior of electrically charged particles, such as elect

  2. Characterization of particle states in relativistic classical quantum theory

    International Nuclear Information System (INIS)

    Horwitz, L.P.; Rabin, Y.

    1977-02-01

    Classical and quantum relativistic mechanics are studied. The notion of a ''particle'' is defined in the classical case and the interpretation of mechanics in space-time is clarified. These notions are carried over to the quantum theory, as much as possible. The relation between the results of Feyman's path integral approach and the theory of Horwitz and Piron is discussed. The ''particle'' interpretation is shown to imply an asymptotic condition for scattering. A general method of constructing the dynamical mass spectrum of composite ''particle'' states is discussed. An interference experiment is proposed to affirm the interpretation and applicability of Stueckelberg type wave functions for actual physical phenomena. Some discussion of the relation of this relativistic quantum theory to Feynman's approach to quantum field theory is also given

  3. Analytic tools for Feynman integrals

    International Nuclear Information System (INIS)

    Smirnov, Vladimir A.

    2012-01-01

    Most powerful methods of evaluating Feynman integrals are presented. Reader will be able to apply them in practice. Contains numerous examples. The goal of this book is to describe the most powerful methods for evaluating multiloop Feynman integrals that are currently used in practice. This book supersedes the author's previous Springer book ''Evaluating Feynman Integrals'' and its textbook version ''Feynman Integral Calculus.'' Since the publication of these two books, powerful new methods have arisen and conventional methods have been improved on in essential ways. A further qualitative change is the fact that most of the methods and the corresponding algorithms have now been implemented in computer codes which are often public. In comparison to the two previous books, three new chapters have been added: One is on sector decomposition, while the second describes a new method by Lee. The third new chapter concerns the asymptotic expansions of Feynman integrals in momenta and masses, which were described in detail in another Springer book, ''Applied Asymptotic Expansions in Momenta and Masses,'' by the author. This chapter describes, on the basis of papers that appeared after the publication of said book, how to algorithmically discover the regions relevant to a given limit within the strategy of expansion by regions. In addition, the chapters on the method of Mellin-Barnes representation and on the method of integration by parts have been substantially rewritten, with an emphasis on the corresponding algorithms and computer codes.

  4. Mathematical aspects of Feynman integrals

    International Nuclear Information System (INIS)

    Bogner, Christian

    2009-08-01

    In the present dissertation we consider Feynman integrals in the framework of dimensional regularization. As all such integrals can be expressed in terms of scalar integrals, we focus on this latter kind of integrals in their Feynman parametric representation and study their mathematical properties, partially applying graph theory, algebraic geometry and number theory. The three main topics are the graph theoretic properties of the Symanzik polynomials, the termination of the sector decomposition algorithm of Binoth and Heinrich and the arithmetic nature of the Laurent coefficients of Feynman integrals. The integrand of an arbitrary dimensionally regularised, scalar Feynman integral can be expressed in terms of the two well-known Symanzik polynomials. We give a detailed review on the graph theoretic properties of these polynomials. Due to the matrix-tree-theorem the first of these polynomials can be constructed from the determinant of a minor of the generic Laplacian matrix of a graph. By use of a generalization of this theorem, the all-minors-matrix-tree theorem, we derive a new relation which furthermore relates the second Symanzik polynomial to the Laplacian matrix of a graph. Starting from the Feynman parametric parameterization, the sector decomposition algorithm of Binoth and Heinrich serves for the numerical evaluation of the Laurent coefficients of an arbitrary Feynman integral in the Euclidean momentum region. This widely used algorithm contains an iterated step, consisting of an appropriate decomposition of the domain of integration and the deformation of the resulting pieces. This procedure leads to a disentanglement of the overlapping singularities of the integral. By giving a counter-example we exhibit the problem, that this iterative step of the algorithm does not terminate for every possible case. We solve this problem by presenting an appropriate extension of the algorithm, which is guaranteed to terminate. This is achieved by mapping the iterative

  5. Mathematical aspects of Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Bogner, Christian

    2009-08-15

    In the present dissertation we consider Feynman integrals in the framework of dimensional regularization. As all such integrals can be expressed in terms of scalar integrals, we focus on this latter kind of integrals in their Feynman parametric representation and study their mathematical properties, partially applying graph theory, algebraic geometry and number theory. The three main topics are the graph theoretic properties of the Symanzik polynomials, the termination of the sector decomposition algorithm of Binoth and Heinrich and the arithmetic nature of the Laurent coefficients of Feynman integrals. The integrand of an arbitrary dimensionally regularised, scalar Feynman integral can be expressed in terms of the two well-known Symanzik polynomials. We give a detailed review on the graph theoretic properties of these polynomials. Due to the matrix-tree-theorem the first of these polynomials can be constructed from the determinant of a minor of the generic Laplacian matrix of a graph. By use of a generalization of this theorem, the all-minors-matrix-tree theorem, we derive a new relation which furthermore relates the second Symanzik polynomial to the Laplacian matrix of a graph. Starting from the Feynman parametric parameterization, the sector decomposition algorithm of Binoth and Heinrich serves for the numerical evaluation of the Laurent coefficients of an arbitrary Feynman integral in the Euclidean momentum region. This widely used algorithm contains an iterated step, consisting of an appropriate decomposition of the domain of integration and the deformation of the resulting pieces. This procedure leads to a disentanglement of the overlapping singularities of the integral. By giving a counter-example we exhibit the problem, that this iterative step of the algorithm does not terminate for every possible case. We solve this problem by presenting an appropriate extension of the algorithm, which is guaranteed to terminate. This is achieved by mapping the iterative

  6. Why do three-wheelers carrying schoolchildren suffer very low fatal crashes?

    Directory of Open Access Journals (Sweden)

    Gaurav Pandey

    2015-03-01

    Full Text Available This paper investigates the possible causes of low fatalities in three-wheelers (autorickshaw carrying schoolchildren in India. The data was collected in the form of First Information Report (FIR from local police stations from 2007 to 2012 and video-graphic surveys were done on four arterial roads running through Ludhiana, Punjab, India. Surveys were also done on one subarterial road near school zone which was used by three-wheelers carrying schoolchildren. The objective of the study was to investigate the hypothesis that drivers behave differently while following or overtaking three-wheelers carrying children. Many researchers have investigated the effect of passengers on the driver of the same vehicle, but there was no evidence of any study which investigated the effect of child passengers on nearby vehicles. It was found that heavy vehicles maintain more gaps while following or overtaking three-wheelers carrying children as compared to those not carrying children. It was also found that this effect is more prominent at speeds higher than 40 km/h. On the other hand lighter vehicles keep the highest lateral and longitudinal gaps to heavy vehicles and three-wheelers without children respectively.

  7. Analytic tools for Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, Vladimir A. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics

    2012-07-01

    Most powerful methods of evaluating Feynman integrals are presented. Reader will be able to apply them in practice. Contains numerous examples. The goal of this book is to describe the most powerful methods for evaluating multiloop Feynman integrals that are currently used in practice. This book supersedes the author's previous Springer book ''Evaluating Feynman Integrals'' and its textbook version ''Feynman Integral Calculus.'' Since the publication of these two books, powerful new methods have arisen and conventional methods have been improved on in essential ways. A further qualitative change is the fact that most of the methods and the corresponding algorithms have now been implemented in computer codes which are often public. In comparison to the two previous books, three new chapters have been added: One is on sector decomposition, while the second describes a new method by Lee. The third new chapter concerns the asymptotic expansions of Feynman integrals in momenta and masses, which were described in detail in another Springer book, ''Applied Asymptotic Expansions in Momenta and Masses,'' by the author. This chapter describes, on the basis of papers that appeared after the publication of said book, how to algorithmically discover the regions relevant to a given limit within the strategy of expansion by regions. In addition, the chapters on the method of Mellin-Barnes representation and on the method of integration by parts have been substantially rewritten, with an emphasis on the corresponding algorithms and computer codes.

  8. Summing over Feynman histories by functional contour integration

    International Nuclear Information System (INIS)

    Garrison, J.C.; Wright, E.M.

    1986-01-01

    The authors show how complex paths can be consistently introduced into sums for Feynman histories by using the notion of functional contour integration. For a kappa-dimensional system specified by a potential with suitable analyticity properties, each coordinate axis is replaced by a copy of the complex plane, and at each instant of time a contour is chosen in each plane. This map from the time axis into the set of complex contours defines a functional contour. The family of contours labelled by time generates a (kappa+1)-dimensional submanifold of the (2kappa+1)-dimensional space defined by the cartesian product of the time axis and the coordinate planes. The complex Feynman paths lie on this submanifold. An application of this idea to systems described by absorptive potentials yields a simple derivation of the correct WKB result in terms of a complex path that extremalises the action. The method can also be applied to spherically symmetric potentials by using a partial wave expansion and restricting the contours appropriately. (author)

  9. Analytic continuation of dual Feynman amplitudes

    International Nuclear Information System (INIS)

    Bleher, P.M.

    1981-01-01

    A notion of dual Feynman amplitude is introduced and a theorem on the existence of analytic continuation of this amplitude from the convergence domain to the whole complex is proved. The case under consideration corresponds to massless power propagators and the analytic continuation is constructed on the propagators powers. Analytic continuation poles and singular set of external impulses are found explicitly. The proof of the theorem on the existence of analytic continuation is based on the introduction of α-representation for dual Feynman amplitudes. In proving, the so-called ''trees formula'' and ''trees-with-cycles formula'' are established that are dual by formulation to the trees and 2-trees formulae for usual Feynman amplitudes. (Auth.)

  10. Feynman diagram drawing made easy

    International Nuclear Information System (INIS)

    Baillargeon, M.

    1997-01-01

    We present a drawing package optimised for Feynman diagrams. These can be constructed interactively with a mouse-driven graphical interface or from a script file, more suitable to work with a diagram generator. It provides most features encountered in Feynman diagrams and allows to modify every part of a diagram after its creation. Special attention has been paid to obtain a high quality printout as easily as possible. This package is written in Tcl/Tk and in C. (orig.)

  11. Beyond Feynman Diagrams (1/3)

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    For decades the central theoretical tool for computing scattering amplitudes has been the Feynman diagram. However, Feynman diagrams are just too slow, even on fast computers, to be able to go beyond the leading order in QCD, for complicated events with many jets of hadrons in the final state. Such events are produced copiously at the LHC, and constitute formidable backgrounds to many searches for new physics. Over the past few years, alternative methods that go beyond ...

  12. Waiting Endurance Time Estimation of Electric Two-Wheelers at Signalized Intersections

    Directory of Open Access Journals (Sweden)

    Mei Huan

    2014-01-01

    Full Text Available The paper proposed a model for estimating waiting endurance times of electric two-wheelers at signalized intersections using survival analysis method. Waiting duration times were collected by video cameras and they were assigned as censored and uncensored data to distinguish between normal crossing and red-light running behavior. A Cox proportional hazard model was introduced, and variables revealing personal characteristics and traffic conditions were defined as covariates to describe the effects of internal and external factors. Empirical results show that riders do not want to wait too long to cross intersections. As signal waiting time increases, electric two-wheelers get impatient and violate the traffic signal. There are 12.8% of electric two-wheelers with negligible wait time. 25.0% of electric two-wheelers are generally nonrisk takers who can obey the traffic rules after waiting for 100 seconds. Half of electric two-wheelers cannot endure 49.0 seconds or longer at red-light phase. Red phase time, motor vehicle volume, and conformity behavior have important effects on riders’ waiting times. Waiting endurance times would decrease with the longer red-phase time, the lower traffic volume, or the bigger number of other riders who run against the red light. The proposed model may be applicable in the design, management and control of signalized intersections in other developing cities.

  13. Waiting endurance time estimation of electric two-wheelers at signalized intersections.

    Science.gov (United States)

    Huan, Mei; Yang, Xiao-bao

    2014-01-01

    The paper proposed a model for estimating waiting endurance times of electric two-wheelers at signalized intersections using survival analysis method. Waiting duration times were collected by video cameras and they were assigned as censored and uncensored data to distinguish between normal crossing and red-light running behavior. A Cox proportional hazard model was introduced, and variables revealing personal characteristics and traffic conditions were defined as covariates to describe the effects of internal and external factors. Empirical results show that riders do not want to wait too long to cross intersections. As signal waiting time increases, electric two-wheelers get impatient and violate the traffic signal. There are 12.8% of electric two-wheelers with negligible wait time. 25.0% of electric two-wheelers are generally nonrisk takers who can obey the traffic rules after waiting for 100 seconds. Half of electric two-wheelers cannot endure 49.0 seconds or longer at red-light phase. Red phase time, motor vehicle volume, and conformity behavior have important effects on riders' waiting times. Waiting endurance times would decrease with the longer red-phase time, the lower traffic volume, or the bigger number of other riders who run against the red light. The proposed model may be applicable in the design, management and control of signalized intersections in other developing cities.

  14. John Archibald Wheeler: A study of mentoring in modern physics

    Science.gov (United States)

    Christensen, Terry M.

    This dissertation has two objectives. The first objective is to determine where best to situate the study of mentoring (i.e. the 'making of scientists') on the landscape of the history of science and science studies. This task is accomplished by establishing mentoring studies as a link between the robust body of literature dealing with Research Schools and the emerging scholarship surrounding the development, dispersion, and evolution of pedagogy in the training of twentieth century physicists. The second, and perhaps more significant and novel objective, is to develop a means to quantitatively assess the mentoring workmanship of scientific craftsmen who preside over the final stages of preparation when apprentices are transformed into professional scientists. The project builds upon a 2006 Master's Thesis that examined John Archibald Wheeler's work as a mentor of theoretical physicists at Princeton University in the years 1938--1976. It includes Wheeler's work as a mentor at the University of Texas and is qualitatively and quantitatively enhanced by virtue of the author having access to five separate collections with archival holdings of John Wheeler's papers and correspondence, as well as having access to thirty one tape recorded interviews that feature John Wheeler as either the interviewee or a prominent subject of discussion. The project also benefited from the opportunity to meet with and gather background information from a number of John Wheeler's former colleagues and students. Included in the dissertation is a content analysis of the acknowledgements in 949 Ph.D. dissertations, 122 Master's Theses, and 670 Senior Theses that were submitted during Wheeler's career as an active mentor. By establishing a census of the students of the most active mentors at Princeton and Texas, it is possible to tabulate the publication record of these apprentice groups and obtain objective measures of mentoring efficacy. The dissertation concludes by discussing the wider

  15. Feynman integrals in QCD made simple

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    A key insight is that important properties of these functions can be predicted by inspecting the singularity structure of the Feynman integrand. Combined with the differential equations technique, this gives a powerful method for computing the necessary Feynman integrals. I will review these ideas, based on Phys.Rev.Lett. 110 (2013) 25, and present recent new results relevant for QCD scattering amplitudes.

  16. (U) Feynman-Y calculations using PARTISN

    Energy Technology Data Exchange (ETDEWEB)

    Favorite, Jeffrey A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-31

    A prescription for computing the Feynman Y as a function of coincidence gate width using a deterministic multigroup neutron transport code has been published and the results compared favorably with measurements of the BeRP ball. In this paper, we report on our project to implement the method and reproduce the results. There are several clarifications and corrections of the published prescription. We show results using two multigroup cross section libraries compared with measurements and with Monte Carlo results. Deterministic simulations of the mean count rates compare very favorably with previously published Monte Carlo results, and deterministic simulations of the Feynman Y asymptote compare somewhat favorably. In Feynman beta plots, the deterministic simulations reached the asymptotic value much sooner than did a fit to the measured data.

  17. The Feynman-Dyson view

    International Nuclear Information System (INIS)

    Gill, Tepper L.

    2017-01-01

    This paper is a survey of our work on the mathematical foundations for the Feynman-Dyson program in quantum electrodynamics (QED). After a brief discussion of the history, we provide a representation theory for the Feynman operator calculus. This allows us to solve the general initial-value problem and construct the Dyson series. We show that the series is asymptotic, thus proving Dyson’s second conjecture for quantum electrodynamics. In addition, we show that the expansion may be considered exact to any finite order by producing the remainder term. This implies that every nonperturbative solution has a perturbative expansion. Using a physical analysis of information from experiment versus that implied by our models, we reformulate our theory as a sum over paths. This allows us to relate our theory to Feynman’s path integral, and to prove Dyson’s first conjecture that the divergences are in part due to a violation of Heisenberg’s uncertainly relations. As a by-product, we also prove Feynman’s conjecture about the relationship between the operator calculus and has path integral. Thus, providing the first rigorous justification for the Feynman formulation of quantum mechanics. (paper)

  18. The Feynman-Dyson view

    Science.gov (United States)

    Gill, Tepper L.

    2017-05-01

    This paper is a survey of our work on the mathematical foundations for the Feynman-Dyson program in quantum electrodynamics (QED). After a brief discussion of the history, we provide a representation theory for the Feynman operator calculus. This allows us to solve the general initial-value problem and construct the Dyson series. We show that the series is asymptotic, thus proving Dyson’s second conjecture for quantum electrodynamics. In addition, we show that the expansion may be considered exact to any finite order by producing the remainder term. This implies that every nonperturbative solution has a perturbative expansion. Using a physical analysis of information from experiment versus that implied by our models, we reformulate our theory as a sum over paths. This allows us to relate our theory to Feynman’s path integral, and to prove Dyson’s first conjecture that the divergences are in part due to a violation of Heisenberg’s uncertainly relations. As a by-product, we also prove Feynman’s conjecture about the relationship between the operator calculus and has path integral. Thus, providing the first rigorous justification for the Feynman formulation of quantum mechanics.

  19. Schrödinger problem, Lévy processes, and noise in relativistic quantum mechanics

    Science.gov (United States)

    Garbaczewski, Piotr; Klauder, John R.; Olkiewicz, Robert

    1995-05-01

    The main purpose of the paper is an essentially probabilistic analysis of relativistic quantum mechanics. It is based on the assumption that whenever probability distributions arise, there exists a stochastic process that is either responsible for the temporal evolution of a given measure or preserves the measure in the stationary case. Our departure point is the so-called Schrödinger problem of probabilistic evolution, which provides for a unique Markov stochastic interpolation between any given pair of boundary probability densities for a process covering a fixed, finite duration of time, provided we have decided a priori what kind of primordial dynamical semigroup transition mechanism is involved. In the nonrelativistic theory, including quantum mechanics, Feynman-Kac-like kernels are the building blocks for suitable transition probability densities of the process. In the standard ``free'' case (Feynman-Kac potential equal to zero) the familiar Wiener noise is recovered. In the framework of the Schrödinger problem, the ``free noise'' can also be extended to any infinitely divisible probability law, as covered by the Lévy-Khintchine formula. Since the relativistic Hamiltonians ||∇|| and √-Δ+m2 -m are known to generate such laws, we focus on them for the analysis of probabilistic phenomena, which are shown to be associated with the relativistic wave (D'Alembert) and matter-wave (Klein-Gordon) equations, respectively. We show that such stochastic processes exist and are spatial jump processes. In general, in the presence of external potentials, they do not share the Markov property, except for stationary situations. A concrete example of the pseudodifferential Cauchy-Schrödinger evolution is analyzed in detail. The relativistic covariance of related wave equations is exploited to demonstrate how the associated stochastic jump processes comply with the principles of special relativity.

  20. Spin wave Feynman diagram vertex computation package

    Science.gov (United States)

    Price, Alexander; Javernick, Philip; Datta, Trinanjan

    Spin wave theory is a well-established theoretical technique that can correctly predict the physical behavior of ordered magnetic states. However, computing the effects of an interacting spin wave theory incorporating magnons involve a laborious by hand derivation of Feynman diagram vertices. The process is tedious and time consuming. Hence, to improve productivity and have another means to check the analytical calculations, we have devised a Feynman Diagram Vertex Computation package. In this talk, we will describe our research group's effort to implement a Mathematica based symbolic Feynman diagram vertex computation package that computes spin wave vertices. Utilizing the non-commutative algebra package NCAlgebra as an add-on to Mathematica, symbolic expressions for the Feynman diagram vertices of a Heisenberg quantum antiferromagnet are obtained. Our existing code reproduces the well-known expressions of a nearest neighbor square lattice Heisenberg model. We also discuss the case of a triangular lattice Heisenberg model where non collinear terms contribute to the vertex interactions.

  1. Some recent results on evaluating Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, V.A. [Nuclear Physics Institute of Moscow State University, Moscow 119992 (Russian Federation)

    2006-07-15

    Some recent results on evaluating Feynman integrals are reviewed. The status of the method based on Mellin-Barnes representation as a powerful tool to evaluate individual Feynman integrals is characterized. A new method based on Groebner bases to solve integration by parts relations in an automatic way is described.

  2. Some recent results on evaluating Feynman integrals

    International Nuclear Information System (INIS)

    Smirnov, V.A.

    2006-01-01

    Some recent results on evaluating Feynman integrals are reviewed. The status of the method based on Mellin-Barnes representation as a powerful tool to evaluate individual Feynman integrals is characterized. A new method based on Groebner bases to solve integration by parts relations in an automatic way is described

  3. A Feynman graph selection tool in GRACE system

    International Nuclear Information System (INIS)

    Yuasa, Fukuko; Ishikawa, Tadashi; Kaneko, Toshiaki

    2001-01-01

    We present a Feynman graph selection tool grcsel, which is an interpreter written in C language. In the framework of GRACE, it enables us to get a subset of Feynman graphs according to given conditions

  4. Numerical evaluation of tensor Feynman integrals in Euclidean kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Gluza, J.; Kajda [Silesia Univ., Katowice (Poland). Inst. of Physics; Riemann, T.; Yundin, V. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2010-10-15

    For the investigation of higher order Feynman integrals, potentially with tensor structure, it is highly desirable to have numerical methods and automated tools for dedicated, but sufficiently 'simple' numerical approaches. We elaborate two algorithms for this purpose which may be applied in the Euclidean kinematical region and in d=4-2{epsilon} dimensions. One method uses Mellin-Barnes representations for the Feynman parameter representation of multi-loop Feynman integrals with arbitrary tensor rank. Our Mathematica package AMBRE has been extended for that purpose, and together with the packages MB (M. Czakon) or MBresolve (A. V. Smirnov and V. A. Smirnov) one may perform automatically a numerical evaluation of planar tensor Feynman integrals. Alternatively, one may apply sector decomposition to planar and non-planar multi-loop {epsilon}-expanded Feynman integrals with arbitrary tensor rank. We automatized the preparations of Feynman integrals for an immediate application of the package sectordecomposition (C. Bogner and S. Weinzierl) so that one has to give only a proper definition of propagators and numerators. The efficiency of the two implementations, based on Mellin-Barnes representations and sector decompositions, is compared. The computational packages are publicly available. (orig.)

  5. Evaluation of purchase intention of customers in two wheeler automobile segment: AHP and TOPSIS

    Science.gov (United States)

    Sri Yogi, Kottala

    2018-03-01

    Winning heart of customers is preeminent main design of any business organization in global business environment. This paper explored customer’s priorities while purchasing a two wheeler automobile segment using Analytical Hierarchy Process (AHP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) as a multi criteria decision making tools to accomplish the research objectives. Study has been done to analyze different criteria to be considered during purchasing of two wheeler automobiles among respondents using structured questionnaire based on SAATY scale. Based on our previous work on empirical & fuzzy logic approach to product quality and purchase intention of customers in two wheeler- operational, performance, economic, brand value and maintenance aspects are considered as decision criteria of customers while purchasing a two wheeler. The study suggests high pick up during overtaking, petrol saving, reasonable spare parts price, unique in design and identity and easy to change gear as main criterion in purchasing process. We also found some leading two wheeler automobiles models available in Indian market using some objective function criterion in choosing some important characteristics like price, cylinder capacity, brake horse power and weight during purchasing process of two wheeler automobile in Indian market based on respondents perception.

  6. Possible Quantum Absorber Effects in Cortical Synchronization

    Science.gov (United States)

    Kämpf, Uwe

    The Wheeler-Feynman transactional "absorber" approach was proposed originally to account for anomalous resonance coupling between spatio-temporally distant measurement partners in entangled quantum states of so-called Einstein-Podolsky-Rosen paradoxes, e.g. of spatio-temporal non-locality, quantum teleportation, etc. Applied to quantum brain dynamics, however, this view provides an anticipative resonance coupling model for aspects of cortical synchronization and recurrent visual action control. It is proposed to consider the registered activation patterns of neuronal loops in so-called synfire chains not as a result of retarded brain communication processes, but rather as surface effects of a system of standing waves generated in the depth of visual processing. According to this view, they arise from a counterbalance between the actual input's delayed bottom-up data streams and top-down recurrent information-processing of advanced anticipative signals in a Wheeler-Feynman-type absorber mode. In the framework of a "time-loop" model, findings about mirror neurons in the brain cortex are suggested to be at least partially associated with temporal rather than spatial mirror functions of visual processing, similar to phase conjugate adaptive resonance-coupling in nonlinear optics.

  7. Application of difference filter to Feynman-α analysis

    International Nuclear Information System (INIS)

    Mouri, Tomoaki; Ohtani, Nobuo

    1997-11-01

    The Feynman-α method has been developed for monitoring sub-criticality in nuclear fuel facilities. It is difficult to apply the Feynman-α method which estimates statistical variation of the number of neutron counts per unit time, to the system in transient condition such that the averaged neutron flux varies with time. In the application of Feynman-α method to such system, it is suggested to remove the averaged variation of neutron flux from neutron count data by the use of the difference filter. In this study, we applied the difference filter to reactor noise data at sub-criticality near to criticality, where the prompt decay constant was difficult to estimate due to the large effect of delayed neutron. With the difference filter, accurate prompt decay constants for effective multiplication factors from 0.999 to 0.994 were obtained by Feynman-α method. It was cleared that the difference filter is effective to estimate accurate prompt decay constant, so that there is the prospect to be able to apply Feynman-α method having the difference filter to the system in the transient condition. (author)

  8. Feynman diagrams coupled to three-dimensional quantum gravity

    International Nuclear Information System (INIS)

    Barrett, John W

    2006-01-01

    A framework for quantum field theory coupled to three-dimensional quantum gravity is proposed. The coupling with quantum gravity regulates the Feynman diagrams. One recovers the usual Feynman amplitudes in the limit as the cosmological constant tends to zero

  9. Feynman maps without improper integrals

    International Nuclear Information System (INIS)

    Exner, P.; Kolerov, G.I.

    1980-01-01

    The Feynman maps introduced first by Truman are examined. The domain considered here consists of the Fresnel-inteo-rable functions in the sense of Albeverio and Hoegh-Krohn. The original definition of the F-maps is slightly modified: it is started from the underlying measures on the Hilbert space of paths in order to avoid use of improper integrals. Some new properties of the F-maps are derived. In particular, the dominated convergence theorem is shown to be not valid for the F 1 -map (or Feynman integral); this fact is of a certain importance for classical limit of quantum mechanics

  10. Factorization in QCD in Feynman gauge

    International Nuclear Information System (INIS)

    Tucci, R.R.

    1985-01-01

    We present a mass divergence power counting technique for QCD in the Feynman gauge. For the process γ/sup */ → qq, we find the leading regions of integration and show that single diagrams are at worst logarithmically divergent. Using the Weyl representation facilities the γ matrix manipulations necessary for power counting and adds much physical insight. We prove Ward type identities which are needed in the proof of factorization of the Drill Yan process. Previous treatments prove them only for an axial gauge, and the proofs are diagrammatic in nature. We, on the other hand, establish the identities for the Feynman gauge and through symmetry considerations at the Lagrangian level. The strategy is to first derive exact results in a background field gauge and then to show that to leading order in the mass divergences the background field gauge results can be used in the Feynman gauge

  11. Solution of Wheeler-De Witt Equation, Potential Well and Tunnel Effect

    International Nuclear Information System (INIS)

    Huang Yongchang; Weng Gang

    2005-01-01

    This paper uses the relation of the cosmic scale factor and scalar field to solve Wheeler-De Witt equation, gives the tunnel effect of the cosmic scale factor a and quantum potential well of scalar field, and makes it fit with the physics of cosmic quantum birth. By solving Wheeler-De Witt equation we achieve a general probability distribution of the cosmic birth, and give the analysis of cosmic quantum birth.

  12. Rigorous time slicing approach to Feynman path integrals

    CERN Document Server

    Fujiwara, Daisuke

    2017-01-01

    This book proves that Feynman's original definition of the path integral actually converges to the fundamental solution of the Schrödinger equation at least in the short term if the potential is differentiable sufficiently many times and its derivatives of order equal to or higher than two are bounded. The semi-classical asymptotic formula up to the second term of the fundamental solution is also proved by a method different from that of Birkhoff. A bound of the remainder term is also proved. The Feynman path integral is a method of quantization using the Lagrangian function, whereas Schrödinger's quantization uses the Hamiltonian function. These two methods are believed to be equivalent. But equivalence is not fully proved mathematically, because, compared with Schrödinger's method, there is still much to be done concerning rigorous mathematical treatment of Feynman's method. Feynman himself defined a path integral as the limit of a sequence of integrals over finite-dimensional spaces which is obtained by...

  13. JaxoDraw: A graphical user interface for drawing Feynman diagrams

    Science.gov (United States)

    Binosi, D.; Theußl, L.

    2004-08-01

    JaxoDraw is a Feynman graph plotting tool written in Java. It has a complete graphical user interface that allows all actions to be carried out via mouse click-and-drag operations in a WYSIWYG fashion. Graphs may be exported to postscript/EPS format and can be saved in XML files to be used for later sessions. One of JaxoDraw's main features is the possibility to create ? code that may be used to generate graphics output, thus combining the powers of ? with those of a modern day drawing program. With JaxoDraw it becomes possible to draw even complicated Feynman diagrams with just a few mouse clicks, without the knowledge of any programming language. Program summaryTitle of program: JaxoDraw Catalogue identifier: ADUA Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUA Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar gzip file Operating system: Any Java-enabled platform, tested on Linux, Windows ME, XP, Mac OS X Programming language used: Java License: GPL Nature of problem: Existing methods for drawing Feynman diagrams usually require some 'hard-coding' in one or the other programming or scripting language. It is not very convenient and often time consuming, to generate relatively simple diagrams. Method of solution: A program is provided that allows for the interactive drawing of Feynman diagrams with a graphical user interface. The program is easy to learn and use, produces high quality output in several formats and runs on any operating system where a Java Runtime Environment is available. Number of bytes in distributed program, including test data: 2 117 863 Number of lines in distributed program, including test data: 60 000 Restrictions: Certain operations (like internal latex compilation, Postscript preview) require the execution of external commands that might not work on untested operating systems. Typical running time: As an interactive program, the running time depends on the complexity

  14. Counting the number of Feynman graphs in QCD

    Science.gov (United States)

    Kaneko, T.

    2018-05-01

    Information about the number of Feynman graphs for a given physical process in a given field theory is especially useful for confirming the result of a Feynman graph generator used in an automatic system of perturbative calculations. A method of counting the number of Feynman graphs with weight of symmetry factor was established based on zero-dimensional field theory, and was used in scalar theories and QED. In this article this method is generalized to more complicated models by direct calculation of generating functions on a computer algebra system. This method is applied to QCD with and without counter terms, where many higher order are being calculated automatically.

  15. Richard Phillips Feynman

    Indian Academy of Sciences (India)

    ARTICLE-IN-A-BOX. 797. RESONANCE │ September 2011. The war years interrupted the efforts of both Feynman and Schwinger to tackle the divergence problems in quantum electrodynamics, another of Dirac's pioneering creations from 1927. In 1965 the Physics Nobel Prize was shared by the two of them and Sin-Ichiro ...

  16. The Feynman integral for time-dependent anharmonic oscillators

    International Nuclear Information System (INIS)

    Grothaus, M.; Khandekar, D.C.; da Silva, J.L.; Streit, L.

    1997-01-01

    We review some basic notions and results of white noise analysis that are used in the construction of the Feynman integrand as a generalized white noise functional. We show that the Feynman integrand for the time-dependent harmonic oscillator in an external potential is a Hida distribution. copyright 1997 American Institute of Physics

  17. Richard Phillips Feynman

    Indian Academy of Sciences (India)

    While the two relativity theories were largely the creation of Albert Einstein, the quantum ... of what may lie in store for anyone who dares to follow the beat of a different drum. ... saw Feynman's exceptional talents and in a special lecture explained to him the beautiful principle ... The Character of Physical Law – 1965. c).

  18. Energy consumption and cost analysis of hybrid electric powertrain configurations for two wheelers

    International Nuclear Information System (INIS)

    Walker, Paul D.; Roser, Holger M.

    2015-01-01

    Highlights: • We analyse several driving cycles to for the preliminary design of hybrid two wheelers. • Simulation of alternate configurations to compare achievable driving range and economy. • Demonstrate that pure electric vehicles provide cost benefits over the vehicle life. • Hybrid and plug-in hybrid two wheelers have comparable costs to conventional vehicles. - Abstract: The development of hybrid electric two wheelers in recent years has targeted the reduction of on road emissions produced by these vehicles. However, added cost and complexity have resulted in the failure of these systems to meet consumer expectations. This paper presents a comparative study of the energy economy and essential costs of alternative forms of small two wheelers such as scooters or low capacity motorcycles. This includes conventional, hybrid, plug-in hybrid and electric variants. Through simulations of vehicle driving range using two popular driving cycles it is demonstrated that there is considerable benefit in fuel economy realised by hybridising such vehicles. However, the added costs associated with electrification, i.e. motor/generator, power electronics, and energy storage provide a significant cost obstacle to the purchase of such vehicles. Only the pure electric configuration is demonstrated to be cost effective over its life in comparison to conventional two wheelers. Both the hybrid electric and plug-in equivalents must overcome significant upfront costs to be cost competitive with conventional vehicles. This is demonstrated to be achieved if the annual driving range of the vehicle is increased substantially from the assumed mean. Given the shorter distances travelled by most two wheeler drivers it can therefore be concluded that the development of similar hybrid electric vehicles are unlikely to achieve the desired acceptance that pure electric or conventional equivalents currently achieve

  19. To Have Been a Student of Richard Feynman

    Indian Academy of Sciences (India)

    Excerpt from Most of the Good Stuff: Memories of Richard Feynman, 1993, ... of Feynman, but while it inspired us to try for originality after we left Cornell, it also lowered our productivity to a point that at times was dangerous to our academic careers. In truth .... (However, my actual thesis topic turned out to be a different one.).

  20. Nonlinear Breit–Wheeler pair creation with bremsstrahlung γ rays

    Science.gov (United States)

    Blackburn, T. G.; Marklund, M.

    2018-05-01

    Electron–positron pairs are produced through the Breit–Wheeler process when energetic photons traverse electromagnetic fields of sufficient strength. Here we consider a possible experimental geometry for observation of pair creation in the highly nonlinear regime, in which bremsstrahlung of an ultrarelativistic electron beam in a high-Z target is used to produce γ rays that collide with a counter-propagating laser pulse. We show how the target thickness may be chosen to optimize the yield of Breit–Wheeler positrons, and verify our analytical predictions with simulations of the cascade in the material and in the laser pulse. The electron beam energy and laser intensity required are well within the capability of today’s high-intensity laser facilities.

  1. The relativistic two-body potentials of constraint theory from summation of Feynman diagrams

    OpenAIRE

    Jallouli, H.; Sazdjian, H.

    1996-01-01

    The relativistic two-body potentials of constraint theory for systems composed of two spin-0 or two spin-1/2 particles are calculated, in perturbation theory, by means of the Lippmann-Schwinger type equation that relates them to the scattering amplitude. The cases of scalar and vector interactions with massless photons are considered. The two-photon exchange contributions, calculated with covariant propagators,are globally free of spurious infra-red singularities and produce at leading order ...

  2. Feynman rules for fermion-number-violating interactions

    International Nuclear Information System (INIS)

    Denner, A.; Eck, H.; Hahn, O.; Kueblbeck, J.

    1992-01-01

    We present simple algorithmic Feynman rules for fermion-number-violating interactions. They do not involve explicit charge-conjugation matrices and resemble closely the familiar rules for Dirac fermions. We insist on a fermion flow through the graphs along fermion lines and get the correct relative signs between different interfering Feynman graphs as in the case of Dirac fermions. We only need the familiar Dirac propagator and fewer vertices than in the usual treatment of fermion-number-violating interactions. (orig.)

  3. The Hellman-Feynman theorem at finite temperature

    International Nuclear Information System (INIS)

    Cabrera, A.; Calles, A.

    1990-01-01

    The possibility of a kind of Hellman-Feynman theorem at finite temperature is discussed. Using the cannonical ensembles, the derivative of the internal energy is obtained when it depends explicitly on a parameter. It is found that under the low temperature regime the derivative of the energy can be obtained as the statistical average of the derivative of the hamiltonian operator. The result allows to speak of the existence of the Hellman-Feynman theorem at finite temperatures (Author)

  4. Near threshold expansion of Feynman diagrams

    International Nuclear Information System (INIS)

    Mendels, E.

    2005-01-01

    The near threshold expansion of Feynman diagrams is derived from their configuration space representation, by performing all x integrations. The general scalar Feynman diagram is considered, with an arbitrary number of external momenta, an arbitrary number of internal lines and an arbitrary number of loops, in n dimensions and all masses may be different. The expansions are considered both below and above threshold. Rules, giving real and imaginary part, are derived. Unitarity of a sunset diagram with I internal lines is checked in a direct way by showing that its imaginary part is equal to the phase space integral of I particles

  5. Implementation and evaluation of change-over speed in plug-in hybrid electric two wheeler

    International Nuclear Information System (INIS)

    Amjad, Shaik; Rudramoorthy, R.; Sadagopan, P.; Neelakrishnan, S.

    2016-01-01

    In Asia, two wheelers are popular mode of transportation to a large group of people because of their relative affordability and ability to maneuver in heavy city traffic. However, the rate of fuel consumption and emission contribution by them, especially in urban areas need more attention to improve sustainability of energy and air quality. Recently, plug-in hybrid technology has been emerged as one of the most promising alternatives in reducing petroleum consumption and emission. This paper presents the implementation of plug-in hybrid technology on a two wheeler by formulation of novel control strategy suitable for Indian city driving needs. Experimental investigations on hub motor and IC (internal combustion) engine has been carried out to fix the change-over speed in hybrid mode, followed by road test on prototype vehicle. The performance of prototype vehicle on IDC (Indian driving cycle) simulated road pattern and actual road driving, confirmed the change-over speed of vehicle in hybrid mode. The converted plug-in hybrid electric two wheeler also demonstrated the drive strategy adopted for higher energy efficiency up to 2.5 times. So, plug-in hybrid electric two wheelers show significant improvements in fuel economy by replacing petroleum fuel with electricity for portions of trip to achieve nations' energy security. - Highlights: • Implementation of plug-in hybrid concept for two wheelers suitable for city driving. • Investigation on hub motor, engine and prototype vehicle to fix change-over speed. • Plug-in hybrid electric two wheeler demonstrates 2.48 times higher fuel efficiency. • Significant improvements in fuel economy help to achieve nations' energy security.

  6. Antimatter in the Direct-Action Theory of Fields

    Directory of Open Access Journals (Sweden)

    Ruth E. Kastner

    2016-01-01

    Full Text Available One of Feynman's greatest contributions to physics was the interpretation of negative energies as antimatter in quantum field theory. A key component of this interpretation is the Feynman propagator, which seeks to describe the behavior of antimatter at the virtual particle level. Ironically, it turns out that one can dispense with the Feynman propagator in a direct-action theory of fields, while still retaining the interpretation of negative energy solutions as antiparticles. Quanta 2016; 5: 12–18.

  7. Feynman path integral and the interaction picture

    International Nuclear Information System (INIS)

    Pugh, R.E.

    1986-01-01

    The role of interaction-picture fields in the construction of coherent states and in the derivation of the Feynman path integral for interacting scalar quantum fields is examined. Special attention is paid to the dependence of the integrand on the intermediate times and it is shown that the Feynman rules are valid prior to taking the limit wherein the number of intermediate times goes to infinity; thus, this number does not act as a cutoff in divergent amplitudes. Specific normalization factors are determined

  8. The signed permutation group on Feynman graphs

    Energy Technology Data Exchange (ETDEWEB)

    Purkart, Julian, E-mail: purkart@physik.hu-berlin.de [Institute of Physics, Humboldt University, D-12489 Berlin (Germany)

    2016-08-15

    The Feynman rules assign to every graph an integral which can be written as a function of a scaling parameter L. Assuming L for the process under consideration is very small, so that contributions to the renormalization group are small, we can expand the integral and only consider the lowest orders in the scaling. The aim of this article is to determine specific combinations of graphs in a scalar quantum field theory that lead to a remarkable simplification of the first non-trivial term in the perturbation series. It will be seen that the result is independent of the renormalization scheme and the scattering angles. To achieve that goal we will utilize the parametric representation of scalar Feynman integrals as well as the Hopf algebraic structure of the Feynman graphs under consideration. Moreover, we will present a formula which reduces the effort of determining the first-order term in the perturbation series for the specific combination of graphs to a minimum.

  9. A LaTeX graphics routine for drawing Feynman diagrams

    International Nuclear Information System (INIS)

    Levine, M.J.S.

    1990-01-01

    FEYNMAN is a LaTeX macropackage which allows the user to construct a versatile range of Feynman diagrams within the text of a document. Diagrams of publication quality may be drawn with relative ease and rapidity. (orig.)

  10. Non-relativistic spinning particle in a Newton-Cartan background

    Science.gov (United States)

    Barducci, Andrea; Casalbuoni, Roberto; Gomis, Joaquim

    2018-01-01

    We construct the action of a non-relativistic spinning particle moving in a general torsionless Newton-Cartan background. The particle does not follow the geodesic equations, instead the motion is governed by the non-relativistic analog of Papapetrou equation. The spinning particle is described in terms of Grassmann variables. In the flat case the action is invariant under the non-relativistic analog of space-time vector supersymmetry.

  11. Electrodynamic metaphors: communicating particle physics with Feynman diagrams

    Directory of Open Access Journals (Sweden)

    Pietroni Massimo

    2002-03-01

    Full Text Available The aim of this project is to communicate the basic laws of particle physics with Feynman diagrams - visual tools which represent elementary particle processes. They were originally developed as a code to be used by physicists and are still used today for calculations and elaborations of theoretical nature. The technical and mathematical rules of Feynman diagrams are obviously the exclusive concern of physicists, but on a pictorial level they can help to popularize many concepts, ranging from matter and the antimatter; the creation, destruction and transformation of particles; the role of ‘virtual’ particles in interactions; the conservation laws, symmetries, etc. Unlike the metaphors often used to describe the microcosm, these graphic representations provide an unequivocal translation of the physical content of the underlying quantum theory. As such they are perfect metaphors, not misleading constructions. A brief introduction on Feynman diagrams will be followed by the practical realization of this project, which will be carried out with the help of an experiment based on three-dimensional manipulable objects. The Feynman rules are expressed in terms of mechanical constraints on the possible conjuctions among the various elements of the experiment. The final part of the project will present the results of this experiment, which has been conducted among high-school students.

  12. On application of analytical transformation system using a computer for Feynman intearal calculation

    International Nuclear Information System (INIS)

    Gerdt, V.P.

    1978-01-01

    Various systems of analytic transformations for the calculation of Feynman integrals using computers are discussed. The hyperspheric technique Which is used to calculate Feynman integrals enables to perform angular integration for a set of diagrams, thus reducing the multiplicity of integral. All calculations based on this method are made with the ASHMEDAL program. Feynman integrals are calculated in Euclidean space using integration by parts and some differential identities. Analytic calculation of Feynman integral is performed by the MACSYMA system. Dispersion method of integral calculation is implemented in the SCHOONSCHIP system, calculations based on features of Nielsen function are made using efficient SINAC and RSIN programs. A tube of basic Feynman integral parameters calculated using the above techniques is given

  13. Global Estimates of Errors in Quantum Computation by the Feynman-Vernon Formalism

    Science.gov (United States)

    Aurell, Erik

    2018-04-01

    The operation of a quantum computer is considered as a general quantum operation on a mixed state on many qubits followed by a measurement. The general quantum operation is further represented as a Feynman-Vernon double path integral over the histories of the qubits and of an environment, and afterward tracing out the environment. The qubit histories are taken to be paths on the two-sphere S^2 as in Klauder's coherent-state path integral of spin, and the environment is assumed to consist of harmonic oscillators initially in thermal equilibrium, and linearly coupled to to qubit operators \\hat{S}_z . The environment can then be integrated out to give a Feynman-Vernon influence action coupling the forward and backward histories of the qubits. This representation allows to derive in a simple way estimates that the total error of operation of a quantum computer without error correction scales linearly with the number of qubits and the time of operation. It also allows to discuss Kitaev's toric code interacting with an environment in the same manner.

  14. Global Estimates of Errors in Quantum Computation by the Feynman-Vernon Formalism

    Science.gov (United States)

    Aurell, Erik

    2018-06-01

    The operation of a quantum computer is considered as a general quantum operation on a mixed state on many qubits followed by a measurement. The general quantum operation is further represented as a Feynman-Vernon double path integral over the histories of the qubits and of an environment, and afterward tracing out the environment. The qubit histories are taken to be paths on the two-sphere S^2 as in Klauder's coherent-state path integral of spin, and the environment is assumed to consist of harmonic oscillators initially in thermal equilibrium, and linearly coupled to to qubit operators \\hat{S}_z. The environment can then be integrated out to give a Feynman-Vernon influence action coupling the forward and backward histories of the qubits. This representation allows to derive in a simple way estimates that the total error of operation of a quantum computer without error correction scales linearly with the number of qubits and the time of operation. It also allows to discuss Kitaev's toric code interacting with an environment in the same manner.

  15. Applying Groebner bases to solve reduction problems for Feynman integrals

    International Nuclear Information System (INIS)

    Smirnov, Alexander V.; Smirnov, Vladimir A.

    2006-01-01

    We describe how Groebner bases can be used to solve the reduction problem for Feynman integrals, i.e. to construct an algorithm that provides the possibility to express a Feynman integral of a given family as a linear combination of some master integrals. Our approach is based on a generalized Buchberger algorithm for constructing Groebner-type bases associated with polynomials of shift operators. We illustrate it through various examples of reduction problems for families of one- and two-loop Feynman integrals. We also solve the reduction problem for a family of integrals contributing to the three-loop static quark potential

  16. Applying Groebner bases to solve reduction problems for Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, Alexander V. [Mechanical and Mathematical Department and Scientific Research Computer Center of Moscow State University, Moscow 119992 (Russian Federation); Smirnov, Vladimir A. [Nuclear Physics Institute of Moscow State University, Moscow 119992 (Russian Federation)

    2006-01-15

    We describe how Groebner bases can be used to solve the reduction problem for Feynman integrals, i.e. to construct an algorithm that provides the possibility to express a Feynman integral of a given family as a linear combination of some master integrals. Our approach is based on a generalized Buchberger algorithm for constructing Groebner-type bases associated with polynomials of shift operators. We illustrate it through various examples of reduction problems for families of one- and two-loop Feynman integrals. We also solve the reduction problem for a family of integrals contributing to the three-loop static quark potential.

  17. Coupled oscillators and Feynman's three papers

    International Nuclear Information System (INIS)

    Kim, Y S

    2007-01-01

    According to Richard Feynman, the adventure of our science of physics is a perpetual attempt to recognize that the different aspects of nature are really different aspects of the same thing. It is therefore interesting to combine some, if not all, of Feynman's papers into one. The first of his three papers is on the 'rest of the universe' contained in his 1972 book on statistical mechanics. The second idea is Feynman's parton picture which he presented in 1969 at the Stony Brook conference on high-energy physics. The third idea is contained in the 1971 paper he published with his students, where they show that the hadronic spectra on Regge trajectories are manifestations of harmonic-oscillator degeneracies. In this report, we formulate these three ideas using the mathematics of two coupled oscillators. It is shown that the idea of entanglement is contained in his rest of the universe, and can be extended to a space-time entanglement. It is shown also that his parton model and the static quark model can be combined into one Lorentz-covariant entity. Furthermore, Einstein's special relativity, based on the Lorentz group, can also be formulated within the mathematical framework of two coupled oscillators

  18. A convergence theorem for asymptotic expansions of Feynman amplitudes

    International Nuclear Information System (INIS)

    Mabouisson, A.P.C.

    1999-06-01

    The Mellin representations of Feynman integrals is revisited. From this representation, and asymptotic expansion for generic Feynman amplitudes, for any set of invariants going to zero or to ∞, may be obtained. In the case of all masses going to zero in Euclidean metric, we show that the truncated expansion has a rest compatible with convergence of the series. (author)

  19. Relativistic reconnection in near critical Schwinger field

    Science.gov (United States)

    Schoeffler, Kevin; Grismayer, Thomas; Fonseca, Ricardo; Silva, Luis; Uzdensky, Dmitri

    2017-10-01

    Magnetic reconnection in relativistic pair plasma with QED radiation and pair-creation effects in the presence of strong magnetic fields is investigated using 2D particle-in-cell simulations. The simulations are performed with the QED module of the OSIRIS framework that includes photon emission by electrons and positrons and single photon decay into pairs (non-linear Breit-Wheeler). We investigate the effectiveness of reconnection as a pair- and gamma-ray production mechanism across a broad range of reconnecting magnetic fields, including those approaching the critical quantum (Schwinger) field, and we also explore how the radiative cooling and pair-production processes affect reconnection. We find that in the extreme field regime, the magnetic energy is mostly converted into radiation rather than into particle kinetic energy. This study is a first concrete step towards better understanding of magnetic reconnection as a possible mechanism powering gamma-ray flares in magnetar magnetospheres.

  20. Quantum Man: Richard Feynman's Life in Science

    CERN Document Server

    CERN. Geneva

    2011-01-01

    It took a man who was willing to break all the rules to tame a theory that breaks all the rules. This talk will be based on my new book Quantum Man: Richard Feynman's life in science. I will try and present a scientific overview of the contributions of Richard Feynman, as seen through the arc of his fascinating life. From Quantum Mechanics to Antiparticles, from Rio de Janeiro to Los Alamos, a whirlwind tour will provide insights into the character, life and accomplishments of one of the 20th centuries most important scientists, and provide an object lesson in scientific integrity.

  1. Kinematics of a relativistic particle with de Sitter momentum space

    International Nuclear Information System (INIS)

    Arzano, Michele; Kowalski-Glikman, Jerzy

    2011-01-01

    We discuss kinematical properties of a free relativistic particle with deformed phase space in which momentum space is given by (a submanifold of) de Sitter space. We provide a detailed derivation of the action, Hamiltonian structure and equations of motion for such a free particle. We study the action of deformed relativistic symmetries on the phase space and derive explicit formulae for the action of the deformed Poincare group. Finally we provide a discussion on parametrization of the particle worldlines stressing analogies and differences with ordinary relativistic kinematics.

  2. Integration of a Folding Electric two-wheeler vehicle for a future commuting transportation

    DEFF Research Database (Denmark)

    Gudmundsson, Bjami Freyr; Larsen, Esben

    2012-01-01

    The paper issues the development, building and testing of a Folding Electric Motorbike, a lightweight, low cost and all-electric two-wheeler vehicle taking full advantage on today's city infrastructure. The technology offers drivers to combine transportation methods, lowering cost, and greenhouse......-electric two-wheeler vehicle taking full advantage on today's city infrastructure is very prospective. The alpha-prototype was successfully constructed and is considered to be ready for further laboratory testing and test driving before continuations on a fully designed beta-prototype....

  3. Relativistic actions for bound-states and applications in the meson spectroscopy

    International Nuclear Information System (INIS)

    Silva Carvalho, Hendly da.

    1991-08-01

    We study relativistic equations for bound states of two-body systems using Dirac's constraint formalism and supersymmetry. The two-body system can be of spinless particles, one of them spinning and the other one spinless, or both of them spinning. The interaction is described by scalar, timelike four-vector and spacelike four-vector potentials under Lorentz transformations. As an application we use the relativistic wave equation for two scalar particles and calculate the mass spectra of the mesons treating them as spinless quark-antiquark bound states. The interaction potential in this case is a convenient adaptation of the potential employed in non-relativistic calculations. Finally, we compare our results with more recent experimental data and with theoretical results obtained with the same potential used by us but with a non-relativistic wave equation. We also compare our results with results obtained with the relativistic wave equation but with a different interaction potential. (author). 38 refs, 9 figs, 8 tabs

  4. Action-angle variables for the massless relativistic string in 1+1 dimensions

    International Nuclear Information System (INIS)

    Soederberg, B.; Andersson, B.; Gustafson, G.

    1985-01-01

    In this paper the Poisson bracket algebra for the open massless relativistic string in the one-space- and one-time-dimensional case is considered. In order to characterize the orbit of the system the directrix function, i.e., the orbit of one of the endpoints of the string, is used. It turns out that the Poisson bracket algebra is of a very simple form in terms of the parameters of the directrix function. We use these results to construct action-angle variables for the general motion of the string. The variables are different for different Lorentz frames, with a continuous dependence. The action-angle variables of the center-of-mass frame and of the light-cone frames are of particular interest with respect to the simplicity of the Poincare generators and the physical interpretation. For the light-cone frame variables the equivalence to a set of indistinguishable oscillators is shown, for which an excitation corresponds to an instantaneous momentum transfer to an endpoint of the string

  5. Feynman integrals and the moment problem

    International Nuclear Information System (INIS)

    Pusterla, M.; Turchetti, G.; Vitali, G.

    1976-01-01

    In this letter it is illustrated a general procedure, based on the momentum method, to estimate the scalar Feynman integrals. In order to illustrate the various situations discussed, some numerical examples are presented

  6. New framework for the Feynman path integral

    International Nuclear Information System (INIS)

    Shaharir, M.Z.

    1986-01-01

    The well-known Fourier integral solution of the free diffusion equation in an arbitrary Euclidean space is reduced to Feynmannian integrals using the method partly contained in the formulation of the Fresnelian integral. By replacing the standard Hilbert space underlying the present mathematical formulation of the Feynman path integral by a new Hilbert space, the space of classical paths on the tangent bundle to the Euclidean space (and more general to an arbitrary Riemannian manifold) equipped with a natural inner product, we show that our Feynmannian integral is in better agreement with the qualitative features of the original Feynman path integral than the previous formulations of the integral

  7. Concurrent validity of the Wheeler signs of homosexuality in the Rorschach: P (Ci/Rj).

    Science.gov (United States)

    Stone, N M; Schneider, R E

    1975-12-01

    The Rorschach protocols of 43 males consecutively admitted to a university outpatient clinic were scored for frequency of the 20 Wheeler signs of homosexuality. Based on case history data, patients were assigned to homosexual, sex-role disturbed, or normal-control groups. In addition to the traditional group comparison the results were analyzed to yield P (Ci/Rj); that is, the probability of criterion group membership given test indicator. Both the homosexual and sex-role disturbed group displayed significantly more Wheeler signs than normals. Furthermore, given a Wheeler sign score of 15%, .75 of the predicted-homosexual group would be correctly classified compared to a .21 baserate prediction. It was suggested that expressing results as P (Ci/Rj) provides information more relevant to the clinician than is provided by the traditional practice of reporting significant differences between groups.

  8. Cosmological solutions, p-branes, and the Wheeler-DeWitt equation

    International Nuclear Information System (INIS)

    Lue, H.; Maharana, J.; Maharana, J.; Mukherji, S.; Pope, C.N.; Pope, C.N.

    1998-01-01

    The low energy effective actions which arise from string theory or M-theory are considered in the cosmological context, where the graviton, dilaton and antisymmetric tensor field strengths depend only on time. We show that previous results can be extended to include cosmological solutions that are related to the E N Toda equations. The solutions of the Wheeler-DeWitt equation in minisuperspace are obtained for some of the simpler cosmological models by introducing intertwining operators that generate canonical transformations which map the theories into free theories. We study the cosmological properties of these solutions, and also briefly discuss generalized Brans-Dicke models in our framework. The cosmological models are closely related to p-brane solitons, which we discuss in the context of the E N Toda equations. We give the explicit solutions for extremal multi-charge (D-3)-branes in the truncated system described by the D 4 =O(4,4) Toda equations. copyright 1998 The American Physical Society

  9. A New Comment on Dyson's Exposition of Feynman's Proof of Maxwell Equations

    International Nuclear Information System (INIS)

    Pombo, Claudia

    2009-01-01

    A paper by Dyson, published nearly two decades ago, describing Feynman's proof of Maxwell equations, has generated many comments, analysis, discussions and generalizations of the proof. Feynman's derivation is assumed to be based on two main sets of equations. One is supposed to be the second law of Newton and the other a set of basic commutation relations from quantum physics.Here we present a new comment on this paper, focusing mainly on the initial arguments and applying a new method of analysis and interpretation of physics, named observational realism. The present discussion does not alter the technical steps of Feynman, but do clarify their basis. We show that Newton's physics is not a starting point in Feynman's derivation, neither is quantum physics involved in it, but the foundations of relativity only.

  10. arXiv Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case

    CERN Document Server

    Abreu, Samuel; Duhr, Claude; Gardi, Einan

    2017-12-15

    We construct a diagrammatic coaction acting on one-loop Feynman graphs and their cuts. The graphs are naturally identified with the corresponding (cut) Feynman integrals in dimensional regularization, whose coefficients of the Laurent expansion in the dimensional regulator are multiple polylogarithms (MPLs). Our main result is the conjecture that this diagrammatic coaction reproduces the combinatorics of the coaction on MPLs order by order in the Laurent expansion. We show that our conjecture holds in a broad range of nontrivial one-loop integrals. We then explore its consequences for the study of discontinuities of Feynman integrals, and the differential equations that they satisfy. In particular, using the diagrammatic coaction along with information from cuts, we explicitly derive differential equations for any one-loop Feynman integral. We also explain how to construct the symbol of any one-loop Feynman integral recursively. Finally, we show that our diagrammatic coaction follows, in the special case of o...

  11. Reviving Complementarity: John Wheeler's efforts to apply complementarity toward a quantum description of gravitation

    Science.gov (United States)

    Halpern, Paul

    2017-01-01

    In 1978, John Wheeler proposed the delayed-choice thought experiment as a generalization of the classic double slit experiment intended to help elucidate the nature of decision making in quantum measurement. In particular, he wished to illustrate how a decision made after a quantum system was prepared might retrospectively affect the outcome. He extended his methods to the universe itself, raising the question of whether the universe is a ``self-excited circuit'' in which scientific measurements in the present affect the quantum dynamics in the past. In this talk we'll show how Wheeler's approach revived the notion of Bohr's complementarity, which had by then faded from the prevailing discourse of quantum measurement theory. Wheeler's advocacy reflected, in part, his wish to eliminate the divide in quantum theory between measurer and what was being measured, bringing greater consistency to the ideas of Bohr, a mentor whom he deeply respected.

  12. Computer simulation of Wheeler's delayed-choice experiment with photons

    NARCIS (Netherlands)

    Zhao, S.; Yuan, S.; De Raedt, H.; Michielsen, K.

    We present a computer simulation model of Wheeler's delayed-choice experiment that is a one-to-one copy of an experiment reported recently (Jacques V. et al., Science, 315 (2007) 966). The model is solely based on experimental facts, satisfies Einstein's criterion of local causality and does not

  13. Path-integral quantization of solitons using the zero-mode Feynman rule

    International Nuclear Information System (INIS)

    Sung Sheng Chang

    1978-01-01

    We propose a direct expansion treatment to quantize solitons without collective coordinates. Feynman's path integral for a free particle subject to an external force is directly used as the generating functional for the zero-frequency mode. The generating functional has no infrared singularity and defines a zero-mode Feynman rule which also gives a correct perturbative expansion for the harmonic-oscillator Green's function by treating the quadratic potential as a perturbation. We use the zero-mode Feynman rule to calculate the energy shift due to the second-order quantum corrections for solitons. Our result agrees with previous predictions using the collective-coordinate method or the method of Goldstone and Jackiw

  14. Physical stress, mass, and energy for non-relativistic matter

    Science.gov (United States)

    Geracie, Michael; Prabhu, Kartik; Roberts, Matthew M.

    2017-06-01

    For theories of relativistic matter fields there exist two possible definitions of the stress-energy tensor, one defined by a variation of the action with the coframes at fixed connection, and the other at fixed torsion. These two stress-energy tensors do not necessarily coincide and it is the latter that corresponds to the Cauchy stress measured in the lab. In this note we discuss the corresponding issue for non-relativistic matter theories. We point out that while the physical non-relativistic stress, momentum, and mass currents are defined by a variation of the action at fixed torsion, the energy current does not admit such a description and is naturally defined at fixed connection. Any attempt to define an energy current at fixed torsion results in an ambiguity which cannot be resolved from the background spacetime data or conservation laws. We also provide computations of these quantities for some simple non-relativistic actions.

  15. Feynman variance-to-mean method

    International Nuclear Information System (INIS)

    Dowdy, E.J.; Hansen, G.E.; Robba, A.A.

    1985-01-01

    The Feynman and other fluctuation techniques have been shown to be useful for determining the multiplication of subcritical systems. The moments of the counting distribution from neutron detectors is analyzed to yield the multiplication value. The authors present the methodology and some selected applications and results and comparisons with Monte Carlo calculations

  16. Algorithm FIRE-Feynman Integral REduction

    International Nuclear Information System (INIS)

    Smirnov, A.V.

    2008-01-01

    The recently developed algorithm FIRE performs the reduction of Feynman integrals to master integrals. It is based on a number of strategies, such as applying the Laporta algorithm, the s-bases algorithm, region-bases and integrating explicitly over loop momenta when possible. Currently it is being used in complicated three-loop calculations.

  17. evaluation of morbidity and epidemiology of two wheelers accidents

    African Journals Online (AJOL)

    urbanization are putting heavy pressure on the transport network in general and on road system in ... of road traffic accidents involving two wheelers were interviewed, using interview ... influence of alcohol making it a major reason of trauma. ... tool for data collection, the demographic and injury ..... the analysis of injury data.

  18. Basics of introduction to Feynman diagrams and electroweak interactions physics

    International Nuclear Information System (INIS)

    Bilenky, S.M.; Mikhov, S.G.

    1994-01-01

    The Feynman diagrams are the main computational method for the evaluation of the matrix elements of different processes. Although it is a perturbative method, its significance is not restricted to perturbation theory only. In this book, the elements of quantum field theory, the Feynman diagram method, the theory of electroweak interactions and other topics are discussed. A number of classical weak and electroweak processes are considered in details. This involves, first of all, the construction of the matrix elements of the process using both the Feynman diagram method (when perturbation theory can be applied) and the invariance principles (when perturbation theory fails). Then the cross sections and the decay probabilities are computed. The text is providing widely used computational techniques and some experimental data. (A.B.). 32 refs., 7 appendix

  19. Feynman's operational calculus and beyond noncommutativity and time-ordering

    CERN Document Server

    Johnson, George W; Nielsen, Lance

    2015-01-01

    This book is aimed at providing a coherent, essentially self-contained, rigorous and comprehensive abstract theory of Feynman's operational calculus for noncommuting operators. Although it is inspired by Feynman's original heuristic suggestions and time-ordering rules in his seminal 1951 paper An operator calculus having applications in quantum electrodynamics, as will be made abundantly clear in the introduction (Chapter 1) and elsewhere in the text, the theory developed in this book also goes well beyond them in a number of directions which were not anticipated in Feynman's work. Hence, the second part of the main title of this book. The basic properties of the operational calculus are developed and certain algebraic and analytic properties of the operational calculus are explored. Also, the operational calculus will be seen to possess some pleasant stability properties. Furthermore, an evolution equation and a generalized integral equation obeyed by the operational calculus are discussed and connections wi...

  20. Werner-Wheeler mass tensor for fusionlike configuration

    International Nuclear Information System (INIS)

    Gherghescu, R.A.; Poenaru, D.N.

    2005-01-01

    The Werner-Wheeler approach is used to calculate the components of the mass tensor for a binary configuration of two intersected spheroids. Four free coordinates form the deformation space: the small semiaxis of the projectile, the two semiaxis ratios of the spheroids, and the distance between centers. A correction term is also calculated, due to the center of mass motion. Final results are presented for the fusion channel 54 Cr+ 240 Pu, and all possible couplings are analyzed

  1. A multi-region multi-energy formalism for the Feynman-alpha formulas

    International Nuclear Information System (INIS)

    Malinovitch, T.; Dubi, C.

    2015-01-01

    Highlights: • A formalism of N regions and M groups for the Feynman-α method is introduced. • Using a space-energy cell notation the expressions are simplified significantly. • A simple way to incorporate the detectors in the system is used. • The results have been verified by a Monte Carlo simulation in a two-region case. - Abstract: The stochastic transport equation, describing the dynamics in time of the neutron population in a nuclear system, is used to gain expressions for the higher moments of the neutron population in a sub-critical system. Such expressions are the bone structure of the so called Feynman-α method to analyze noise experiments, aimed to determine the reactivity of sub-critical systems. In the present study, a general formalism for the stochastic transport equation in an N regions system, under the M energy groups approximation will be introduced. In particular, expressions for the Feynman variance to mean (or the Feynman-Y function) under the above mentioned restriction will be sought by using the steady state mode of the solution

  2. Simplifying Differential Equations for Multiscale Feynman Integrals beyond Multiple Polylogarithms.

    Science.gov (United States)

    Adams, Luise; Chaubey, Ekta; Weinzierl, Stefan

    2017-04-07

    In this Letter we exploit factorization properties of Picard-Fuchs operators to decouple differential equations for multiscale Feynman integrals. The algorithm reduces the differential equations to blocks of the size of the order of the irreducible factors of the Picard-Fuchs operator. As a side product, our method can be used to easily convert the differential equations for Feynman integrals which evaluate to multiple polylogarithms to an ϵ form.

  3. Path integral for relativistic particle theory

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Gitman, D.M.; Shvartsman, Sh.M.

    1990-06-01

    An action for a relativistic spinning particle interacting with external electromagnetic field is considered in reparametrization and local supergauge invariant form. It is shown that various path integral representations derived for the causal Green function correspond to the different forms of the relativistic particle action. The analogy of the path integral derived with the Lagrangian path integral of the field theory is discussed. It is shown that to obtain the causal propagator, the integration over the null mode of the Lagrangian multiplier corresponding to the reparametrization invariance, has to be performed in the (0,+infinity) limits. (author). 23 refs

  4. Feynman rules for the Standard Model Effective Field Theory in R ξ -gauges

    Science.gov (United States)

    Dedes, A.; Materkowska, W.; Paraskevas, M.; Rosiek, J.; Suxho, K.

    2017-06-01

    We assume that New Physics effects are parametrized within the Standard Model Effective Field Theory (SMEFT) written in a complete basis of gauge invariant operators up to dimension 6, commonly referred to as "Warsaw basis". We discuss all steps necessary to obtain a consistent transition to the spontaneously broken theory and several other important aspects, including the BRST-invariance of the SMEFT action for linear R ξ -gauges. The final theory is expressed in a basis characterized by SM-like propagators for all physical and unphysical fields. The effect of the non-renormalizable operators appears explicitly in triple or higher multiplicity vertices. In this mass basis we derive the complete set of Feynman rules, without resorting to any simplifying assumptions such as baryon-, lepton-number or CP conservation. As it turns out, for most SMEFT vertices the expressions are reasonably short, with a noticeable exception of those involving 4, 5 and 6 gluons. We have also supplemented our set of Feynman rules, given in an appendix here, with a publicly available Mathematica code working with the FeynRules package and producing output which can be integrated with other symbolic algebra or numerical codes for automatic SMEFT amplitude calculations.

  5. Automation of Feynman diagram evaluations

    International Nuclear Information System (INIS)

    Tentyukov, M.N.

    1998-01-01

    A C-program DIANA (DIagram ANAlyser) for the automation of Feynman diagram evaluations is presented. It consists of two parts: the analyzer of diagrams and the interpreter of a special text manipulating language. This language can be used to create a source code for analytical or numerical evaluations and to keep the control of the process in general

  6. Fuel cell two wheelers: Good market potential in Shanghai and the suggestions for development. Paper no. IGEC-1-145

    International Nuclear Information System (INIS)

    Li, L.; Yu, Z.; Gong, H.

    2005-01-01

    This paper presents the feasibility and the market potential for developing the Fuel Cell two-wheelers in Asia. Shanghai is taken as one case for this analysis. Based on the study of the transportation modal, the constitute of the vehicles both motored and non-motored, the future planning for the transportation and the market potential of two-wheelers requirement and the quick development market of Battery Bicycles in Shanghai, the potential market of Fuel Cell Two-wheelers in Shanghai is predicated. The predominance in the research and development for Fuel Cell stacks, the storage for the hydrogen and the local supply ability of hydrogen of Shanghai are also introduced. The Shanghai's Fuel Cell Market potential is also presented based on the population of motorcycles at last. The suggestions for the further development of Fuel Cell two-wheelers are proposed. (author)

  7. Quantum gravitation. The Feynman path integral approach

    International Nuclear Information System (INIS)

    Hamber, Herbert W.

    2009-01-01

    The book covers the theory of Quantum Gravitation from the point of view of Feynman path integrals. These provide a manifestly covariant approach in which fundamental quantum aspects of the theory such as radiative corrections and the renormalization group can be systematically and consistently addressed. The path integral method is suitable for both perturbative as well as non-perturbative studies, and is known to already provide a framework of choice for the theoretical investigation of non-abelian gauge theories, the basis for three of the four known fundamental forces in nature. The book thus provides a coherent outline of the present status of the theory gravity based on Feynman's formulation, with an emphasis on quantitative results. Topics are organized in such a way that the correspondence to similar methods and results in modern gauge theories becomes apparent. Covariant perturbation theory are developed using the full machinery of Feynman rules, gauge fixing, background methods and ghosts. The renormalization group for gravity and the existence of non-trivial ultraviolet fixed points are investigated, stressing a close correspondence with well understood statistical field theory models. Later the lattice formulation of gravity is presented as an essential tool towards an understanding of key features of the non-perturbative vacuum. The book ends with a discussion of contemporary issues in quantum cosmology such as scale dependent gravitational constants and quantum effects in the early universe. (orig.)

  8. Calculation of the pulsed Feynman- and Rossi-alpha formulae with delayed neutrons

    International Nuclear Information System (INIS)

    Kitamura, Y.; Pazsit, I.; Wright, J.; Yamamoto, A.; Yamane, Y.

    2005-01-01

    In previous works, the authors have developed an effective solution technique for calculating the pulsed Feynman- and Rossi-alpha formulae. Through derivation of these formulae, it was shown that the technique can easily handle various pulse shapes of the pulsed neutron source. Furthermore, it was also shown that both the deterministic (i.e., synchronizing with the pulsing of neutron source) and stochastic (non-synchronizing) Feynman-alpha formulae can be obtained with this solution technique. However, for mathematical simplicity and the sake of insight, the formal derivation was performed in a model without delayed neutrons. In this paper, to demonstrate the robustness of the technique, the pulsed Feynman- and Rossi-alpha formulae were re-derived by taking one group of delayed neutrons into account. The results show that the advantages of this technique are retained even by inclusion of the delayed neutrons. Compact explicit formulae are derived for the Feynman- and Rossi-alpha methods for various pulse shapes and pulsing methods

  9. Analytic properties of Feynman diagrams in quantum field theory

    CERN Document Server

    Todorov, I T

    1971-01-01

    Analytic Properties of Feynman Diagrams in Quantum Field Theory deals with quantum field theory, particularly in the study of the analytic properties of Feynman graphs. This book is an elementary presentation of a self-contained exposition of the majorization method used in the study of these graphs. The author has taken the intermediate position between Eden et al. who assumes the physics of the analytic properties of the S-matrix, containing physical ideas and test results without using the proper mathematical methods, and Hwa and Teplitz, whose works are more mathematically inclined with a

  10. Transport coefficients for deeply inelastic scattering from the Feynman path integral method

    International Nuclear Information System (INIS)

    Brink, D.M.; Neto, J.; Weidenmueller, H.A.

    1979-01-01

    Friction and diffusion coefficients can be derived simply by combining statistical arguments with the Feynman path integral method. A transport equation for Feynman's influence functional is obtained, and transport coefficients are deduced from it. The expressions are discussed in the limits of weak, and of strong coupling. (Auth.)

  11. The R{sup ∗}-operation for Feynman graphs with generic numerators

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Franz [Nikhef Theory Group,Science Park 105, 1098 XG Amsterdam (Netherlands); Ruijl, Ben [Nikhef Theory Group,Science Park 105, 1098 XG Amsterdam (Netherlands); Leiden University,Niels Bohrweg 1, 2333 CA Leiden (Netherlands)

    2017-05-08

    The R{sup ∗}-operation by Chetyrkin, Tkachov, and Smirnov is a generalisation of the BPHZ R-operation, which subtracts both ultraviolet and infrared divergences of euclidean Feynman graphs with non-exceptional external momenta. It can be used to compute the divergent parts of such Feynman graphs from products of simpler Feynman graphs of lower loops. In this paper we extend the R{sup ∗}-operation to Feynman graphs with arbitrary numerators, including tensors. We also provide a novel way of defining infrared counterterms which closely resembles the definition of its ultraviolet counterpart. We further express both infrared and ultraviolet counterterms in terms of scaleless vacuum graphs with a logarithmic degree of divergence. By exploiting symmetries, integrand and integral relations, which the counterterms of scaleless vacuum graphs satisfy, we can vastly reduce their number and complexity. A FORM implementation of this method was used to compute the five loop beta function in QCD for a general gauge group. To illustrate the procedure, we compute the poles in the dimensional regulator of all top-level propagator graphs at five loops in four dimensional ϕ{sup 3} theory.

  12. Relation of gauge formalisms for pulsations of general-relativistic stellar models

    International Nuclear Information System (INIS)

    Price, R.H.; Ipser, J.R.

    1991-01-01

    There have been two recent reformulations of the equations for even-parity perturbations of general-relativistic stellar models, in both of which fluid perturbation variables are absent in the final set of equations. The recent reformulation by Chandrasekhar and Ferrari uses the diagonal coordinate gauge and leads to a fifth-order system of differential equations; we have recently presented a reformulation, based on the Regge-Wheeler coordinate gauge, which leads to a fourth-order system. The difference in the orders is similar to that for perturbations of Schwarzschild and of Reissner-Nordstroem black holes; in both cases the diagonal-gauge formulation led to a system one degree higher than that for equations based on the Regge-Wheeler gauge. For perturbations of holes, however, the equations could be reduced by one degree. We show that this is the case also for the Chandrasekhar-Ferrari equations for stellar perturbations. More important, we show that the extra degree of freedom, in all descriptions based on the diagonal gauge, is due to the fact that the diagonal gauge is an incomplete constraint on coordinates; a one degree of freedom set of gauge transformations can be made within the diagonal gauge. This previously unnoticed degree of freedom is responsible for the extra degree of freedom in the Chandrasekhar-Ferrari equations, and the related black-hole equations. It also provides an a priori solution with which those equations can be reduced

  13. Relativistic impulse dynamics.

    Science.gov (United States)

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.

  14. Feynman-Kac equations for reaction and diffusion processes

    Science.gov (United States)

    Hou, Ru; Deng, Weihua

    2018-04-01

    This paper provides a theoretical framework for deriving the forward and backward Feynman-Kac equations for the distribution of functionals of the path of a particle undergoing both diffusion and reaction processes. Once given the diffusion type and reaction rate, a specific forward or backward Feynman-Kac equation can be obtained. The results in this paper include those for normal/anomalous diffusions and reactions with linear/nonlinear rates. Using the derived equations, we apply our findings to compute some physical (experimentally measurable) statistics, including the occupation time in half-space, the first passage time, and the occupation time in half-interval with an absorbing or reflecting boundary, for the physical system with anomalous diffusion and spontaneous evanescence.

  15. Electromagnetic properties of light and heavy baryons in the relativistic quark model

    International Nuclear Information System (INIS)

    Nicmorus Marinescu, Diana

    2007-01-01

    One of the main challenges of nowadays low-energy physics remains the description of the internal structure of hadrons, strongly connected to the electromagnetic properties of matter. In this vein, the success of the relativistic quark model in the analysis of the hadron structure constitutes a solid motivation for the study carried out throughout this work. The relativistic quark model is extended to the investigation of static electromagnetic properties of both heavy and light baryons. The bare contributions to the magnetic moments of the single-, double- and triple-heavy baryons are calculated. Moreover, the relativistic quark model allows the study of the electromagnetic properties of the light baryon octet incorporating meson cloud contributions in a perturbative manner. The long disputed values of the multipole ratios E2/M1 and C2/M1 and the electromagnetic form factors of the N→Δγ transition are successfully reproduced. The relativistic quark model can be viewed as a quantum field theory approach based on a phenomenological Lagrangian coupling light and heavy baryons to their constituent quarks. In our approach the baryon is a composite object of three constituent quarks, at least in leading order. The effective interaction Lagrangian is written in terms of baryon and constituent quark fields. The effective action preserves Lorentz covariance and gauge invariance. The main ingredients of the model are already introduced at the level of the interaction Lagrangian: the three-quark baryon currents, the Gaussian distribution of the constituent quarks inside the baryon and the compositeness condition which sets an upper limit for the baryon-quark vertex. The S-matrix elements are expressed by a set of Feynman quark-diagrams. The model contains only few parameters, namely, the cut-off parameter of the Gaussian quark distribution and the free quark propagator, which are unambiguously determined from the best fit to the data. The heavy quark limit within this

  16. Electromagnetic properties of light and heavy baryons in the relativistic quark model

    Energy Technology Data Exchange (ETDEWEB)

    Nicmorus Marinescu, Diana

    2007-06-14

    One of the main challenges of nowadays low-energy physics remains the description of the internal structure of hadrons, strongly connected to the electromagnetic properties of matter. In this vein, the success of the relativistic quark model in the analysis of the hadron structure constitutes a solid motivation for the study carried out throughout this work. The relativistic quark model is extended to the investigation of static electromagnetic properties of both heavy and light baryons. The bare contributions to the magnetic moments of the single-, double- and triple-heavy baryons are calculated. Moreover, the relativistic quark model allows the study of the electromagnetic properties of the light baryon octet incorporating meson cloud contributions in a perturbative manner. The long disputed values of the multipole ratios E2/M1 and C2/M1 and the electromagnetic form factors of the N{yields}{delta}{gamma} transition are successfully reproduced. The relativistic quark model can be viewed as a quantum field theory approach based on a phenomenological Lagrangian coupling light and heavy baryons to their constituent quarks. In our approach the baryon is a composite object of three constituent quarks, at least in leading order. The effective interaction Lagrangian is written in terms of baryon and constituent quark fields. The effective action preserves Lorentz covariance and gauge invariance. The main ingredients of the model are already introduced at the level of the interaction Lagrangian: the three-quark baryon currents, the Gaussian distribution of the constituent quarks inside the baryon and the compositeness condition which sets an upper limit for the baryon-quark vertex. The S-matrix elements are expressed by a set of Feynman quark-diagrams. The model contains only few parameters, namely, the cut-off parameter of the Gaussian quark distribution and the free quark propagator, which are unambiguously determined from the best fit to the data. The heavy quark limit

  17. Systematic approximation of multi-scale Feynman integrals arXiv

    CERN Document Server

    Borowka, Sophia; Hulme, Daniel

    An algorithm for the systematic analytical approximation of multi-scale Feynman integrals is presented. The algorithm produces algebraic expressions as functions of the kinematical parameters and mass scales appearing in the Feynman integrals, allowing for fast numerical evaluation. The results are valid in all kinematical regions, both above and below thresholds, up to in principle arbitrary orders in the dimensional regulator. The scope of the algorithm is demonstrated by presenting results for selected two-loop three-point and four-point integrals with an internal mass scale that appear in the two-loop amplitudes for Higgs+jet production.

  18. A modified Wheeler cap method for radiation efficiency measurement of balanced electrically small antennas

    DEFF Research Database (Denmark)

    Zhang, Jiaying; Pivnenko, Sergey; Breinbjerg, Olav

    2010-01-01

    , but not for balanced antennas like loops or dipoles. In this paper, a modified Wheeler cap method is proposed for the radiation efficiency measurement of balanced electrically small antennas and a three-port network model of the Wheeler cap measurement is introduced. The advantage of the modified method...... is that it is wideband, thus does not require any balun, and both the antenna input impedance and radiation efficiency can be obtained. An electrically small loop antenna and a wideband dipole were simulated and measured according to the proposed method and the results of measurements and simulations are presented...

  19. Statistical error estimation of the Feynman-α method using the bootstrap method

    International Nuclear Information System (INIS)

    Endo, Tomohiro; Yamamoto, Akio; Yagi, Takahiro; Pyeon, Cheol Ho

    2016-01-01

    Applicability of the bootstrap method is investigated to estimate the statistical error of the Feynman-α method, which is one of the subcritical measurement techniques on the basis of reactor noise analysis. In the Feynman-α method, the statistical error can be simply estimated from multiple measurements of reactor noise, however it requires additional measurement time to repeat the multiple times of measurements. Using a resampling technique called 'bootstrap method' standard deviation and confidence interval of measurement results obtained by the Feynman-α method can be estimated as the statistical error, using only a single measurement of reactor noise. In order to validate our proposed technique, we carried out a passive measurement of reactor noise without any external source, i.e. with only inherent neutron source by spontaneous fission and (α,n) reactions in nuclear fuels at the Kyoto University Criticality Assembly. Through the actual measurement, it is confirmed that the bootstrap method is applicable to approximately estimate the statistical error of measurement results obtained by the Feynman-α method. (author)

  20. Feynman integrals and difference equations

    International Nuclear Information System (INIS)

    Moch, S.; Schneider, C.

    2007-09-01

    We report on the calculation of multi-loop Feynman integrals for single-scale problems by means of difference equations in Mellin space. The solution to these difference equations in terms of harmonic sums can be constructed algorithmically over difference fields, the so-called ΠΣ * -fields. We test the implementation of the Mathematica package Sigma on examples from recent higher order perturbative calculations in Quantum Chromodynamics. (orig.)

  1. Connection between Feynman integrals having different values of the space-time dimension

    International Nuclear Information System (INIS)

    Tarasov, O.V.

    1996-05-01

    A systematic algorithm for obtaining recurrence relations for dimensionally regularized Feynman integrals w.r.t. the space-time dimension d is proposed. The relation between d and d-2 dimensional integrals is given in terms of a differential operator for which an explicit formula can be obtained for each Feynman diagram. We show how the method works for one-, two- and three-loop integrals. The new recurrence relations w.r.t. d are complementary to the recurrence relations which derive from the method of integration by parts. We find that the problem of the irreducible numerators in Feynman integrals can be naturally solved in the framework of the proposed generalized recurrence relations. (orig.)

  2. Lectures on differential equations for Feynman integrals

    International Nuclear Information System (INIS)

    Henn, Johannes M

    2015-01-01

    Over the last year significant progress was made in the understanding of the computation of Feynman integrals using differential equations (DE). These lectures give a review of these developments, while not assuming any prior knowledge of the subject. After an introduction to DE for Feynman integrals, we point out how they can be simplified using algorithms available in the mathematical literature. We discuss how this is related to a recent conjecture for a canonical form of the equations. We also discuss a complementary approach that is based on properties of the space–time loop integrands, and explain how the ideas of leading singularities and d-log representations can be used to find an optimal basis for the DE. Finally, as an application of these ideas we show how single-scale integrals can be bootstrapped using the Drinfeld associator of a DE. (topical review)

  3. A recursive reduction of tensor Feynman integrals

    International Nuclear Information System (INIS)

    Diakonidis, T.; Riemann, T.; Tausk, J.B.; Fleischer, J.

    2009-07-01

    We perform a recursive reduction of one-loop n-point rank R tensor Feynman integrals [in short: (n,R)-integrals] for n≤6 with R≤n by representing (n,R)-integrals in terms of (n,R-1)- and (n-1,R-1)-integrals. We use the known representation of tensor integrals in terms of scalar integrals in higher dimension, which are then reduced by recurrence relations to integrals in generic dimension. With a systematic application of metric tensor representations in terms of chords, and by decomposing and recombining these representations, we find the recursive reduction for the tensors. The procedure represents a compact, sequential algorithm for numerical evaluations of tensor Feynman integrals appearing in next-to-leading order contributions to massless and massive three- and four-particle production at LHC and ILC, as well as at meson factories. (orig.)

  4. Non-planar Feynman diagrams and Mellin-Barnes representations with AMBRE 3.0

    International Nuclear Information System (INIS)

    Dubovyk, Ievgen; Gluza, Janusz; Riemann, Tord

    2016-04-01

    We introduce the Mellin-Barnes representation of general Feynman integrals and discuss their evaluation. The Mathematica package AMBRE has been recently extended in order to cover consistently non-planar Feynman integrals with two loops. Prospects for the near future are outlined. This write-up is an introduction to new results which have also been presented elsewhere.

  5. A Topological Extension of General Relativity to Explore the Nature of Quantum Spacetime, Dark Energy and Inflation

    NARCIS (Netherlands)

    Spaans, M.

    General Relativity is extended into the quantum domain. A thought experiment is explored to derive a specific topological build-up for Planckian spacetime. The presented arguments are inspired by Feynman's path integral for superposition and Wheeler's quantum foam of Planck mass mini black holes

  6. Solving recurrence relations for multi-loop Feynman integrals

    International Nuclear Information System (INIS)

    Smirnov, Vladimir A.; Steinhauser, Matthias

    2003-01-01

    We study the problem of solving integration-by-parts recurrence relations for a given class of Feynman integrals which is characterized by an arbitrary polynomial in the numerator and arbitrary integer powers of propagators, i.e., the problem of expressing any Feynman integral from this class as a linear combination of master integrals. We show how the parametric representation invented by Baikov [Phys. Lett. B 385 (1996) 404, Nucl. Instrum. Methods A 389 (1997) 347] can be used to characterize the master integrals and to construct an algorithm for evaluating the corresponding coefficient functions. To illustrate this procedure we use simple one-loop examples as well as the class of diagrams appearing in the calculation of the two-loop heavy quark potential

  7. Automatic Hydraulic Jack Inbuilt In A Four Wheeler

    Directory of Open Access Journals (Sweden)

    Parth M. Patel

    2015-08-01

    Full Text Available With increasing levels of technology efforts being put to increase the comfort and safety. These can be done by implementation of better design. This paper describes Implementation of Automatic hydraulic jack Mechanism in a four wheeler itself. The jack will be powered by the battery. So at a time of puncture to replace the wheel one has to just press the button and the jack which is fitted in the car itself will lift the car.

  8. Feynman integrals and difference equations

    Energy Technology Data Exchange (ETDEWEB)

    Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation

    2007-09-15

    We report on the calculation of multi-loop Feynman integrals for single-scale problems by means of difference equations in Mellin space. The solution to these difference equations in terms of harmonic sums can be constructed algorithmically over difference fields, the so-called {pi}{sigma}{sup *}-fields. We test the implementation of the Mathematica package Sigma on examples from recent higher order perturbative calculations in Quantum Chromodynamics. (orig.)

  9. S-bases as a tool to solve reduction problems for Feynman integrals

    International Nuclear Information System (INIS)

    Smirnov, A.V.; Smirnov, V.A.

    2006-01-01

    We suggest a mathematical definition of the notion of master integrals and present a brief review of algorithmic methods to solve reduction problems for Feynman integrals based on integration by parts relations. In particular, we discuss a recently suggested reduction algorithm which uses Groebner bases. New results obtained with its help for a family of three-loop Feynman integrals are outlined

  10. S-bases as a tool to solve reduction problems for Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A.V. [Scientific Research Computing Center of Moscow State University, Moscow 119992 (Russian Federation); Smirnov, V.A. [Nuclear Physics Institute of Moscow State University, Moscow 119992 (Russian Federation)

    2006-10-15

    We suggest a mathematical definition of the notion of master integrals and present a brief review of algorithmic methods to solve reduction problems for Feynman integrals based on integration by parts relations. In particular, we discuss a recently suggested reduction algorithm which uses Groebner bases. New results obtained with its help for a family of three-loop Feynman integrals are outlined.

  11. Cuts of Feynman Integrals in Baikov representation

    Energy Technology Data Exchange (ETDEWEB)

    Frellesvig, Hjalte; Papadopoulos, Costas G. [Institute of Nuclear and Particle Physics, NCSR ‘Demokritos’,P.O. Box 60037, Agia Paraskevi, 15310 (Greece)

    2017-04-13

    Based on the Baikov representation, we present a systematic approach to compute cuts of Feynman Integrals, appropriately defined in d dimensions. The information provided by these computations may be used to determine the class of functions needed to analytically express the full integrals.

  12. Cuts of Feynman Integrals in Baikov representation

    International Nuclear Information System (INIS)

    Frellesvig, Hjalte; Papadopoulos, Costas G.

    2017-01-01

    Based on the Baikov representation, we present a systematic approach to compute cuts of Feynman Integrals, appropriately defined in d dimensions. The information provided by these computations may be used to determine the class of functions needed to analytically express the full integrals.

  13. Quadratic forms for Feynman-Kac semigroups

    International Nuclear Information System (INIS)

    Hibey, Joseph L.; Charalambous, Charalambos D.

    2006-01-01

    Some problems in a stochastic setting often involve the need to evaluate the Feynman-Kac formula that follows from models described in terms of stochastic differential equations. Equivalent representations in terms of partial differential equations are also of interest, and these establish the well-known connection between probabilistic and deterministic formulations of these problems. In this Letter, this connection is studied in terms of the quadratic form associated with the Feynman-Kac semigroup. The probability measures that naturally arise in this approach, and thus define how Brownian motion is killed at a specified rate while exiting a set, are interpreted as a random time change of the original stochastic differential equation. Furthermore, since random time changes alter the diffusion coefficients in stochastic differential equations while Girsanov-type measure transformations alter their drift coefficients, their simultaneous use should lead to more tractable solutions for some classes of problems. For example, the minimization of some quadratic forms leads to solutions that satisfy certain partial differential equations and, therefore, the techniques discussed provide a variational approach for finding these solutions

  14. Construction of renormalized coefficient functions of the Feynman diagrams by means of a computer

    International Nuclear Information System (INIS)

    Tarasov, O.V.

    1978-01-01

    An algorithm and short description of computer program, written in SCHOONSCHIP, are given. The program is assigned for construction of integrands of renormalized coefficient functions of the Feynman diagrams in scalar theories in the case of arbitrary subtraction point. For the given Feynman graph computer completely realizes the R-operation of Bogolubov-Parasjuk and gives the result as an integral over Feynman parameters. With the help of the program the time construction of the whole renormalized coefficient function is equal approximately 30 s on the CDC-6500 computer

  15. The two-fermion relativistic wave equations of Constraint Theory in the Pauli-Schroedinger form

    International Nuclear Information System (INIS)

    Mourad, J.; Sazdjian, H.

    1994-01-01

    The two-fermion relativistic wave equations of Constraint Theory are reduced, after expressing the components of the 4x4 matrix wave function in terms of one of the 2x2 components, to a single equation of the Pauli-Schroedinger type, valid for all sectors of quantum numbers. The potentials that are present belong to the general classes of scalar, pseudoscalar and vector interactions and are calculable in perturbation theory from Feynman diagrams. In the limit when one of the masses becomes infinite, the equation reduces to the two-component form of the one-particle Dirac equation with external static potentials. The Hamiltonian, to order 1/c 2 , reproduces most of the known theoretical results obtained by other methods. The gauge invariance of the wave equation is checked, to that order, in the case of QED. The role of the c.m. energy dependence of the relativistic interquark confining potential is emphasized and the structure of the Hamiltonian, to order 1/c 2 , corresponding to confining scalar potentials, is displayed. (authors). 32 refs., 2 figs

  16. Feynman and physics. Life and research of an exceptional man; Feynman und die Physik. Leben und Forschung eines aussergewoehnlichen Menschen

    Energy Technology Data Exchange (ETDEWEB)

    Resag, Joerg

    2018-04-01

    The life of Feynman is described together with his work on path integrals, quantum electrodynmaics, helium at low temperatures, the weak interaction, the quark model, and computer-calculation methods, and his contribution to the Manhattan project. (HSI)

  17. A mapping between Feynman and string motivated one-loop rules in gauge theories

    International Nuclear Information System (INIS)

    Bern, Z.

    1992-01-01

    Recently, computationally efficient rules for one-loop gauge theory amplitudes have been derived from string theory. We demonstrate the relationship of the compact string organization of the amplitude to Feynman diagrams. In particular, we explicitly show how large cancellations inherent in conventional Feynman diagram computations are avoided by the string motivated rules. (orig.)

  18. On the Regge-Wheeler Tortoise and the Kruskal-Szekeres Coordinates

    Directory of Open Access Journals (Sweden)

    Crothers S. J.

    2006-07-01

    Full Text Available The Regge-Wheeler tortoise “coordinate” and the the Kruskal-Szekeres “extension” are built upon a latent set of invalid assumptions. Consequently, they have led to fallacious conclusions about Einstein’s gravitational field. The persistent unjustified claims made for the aforesaid alleged coordinates are not sustained by mathematical rigour. They must therefore be discarded.

  19. Feynman Integrals with Absorbing Boundaries

    OpenAIRE

    Marchewka, A.; Schuss, Z.

    1997-01-01

    We propose a formulation of an absorbing boundary for a quantum particle. The formulation is based on a Feynman-type integral over trajectories that are confined to the non-absorbing region. Trajectories that reach the absorbing wall are discounted from the population of the surviving trajectories with a certain weighting factor. Under the assumption that absorbed trajectories do not interfere with the surviving trajectories, we obtain a time dependent absorption law. Two examples are worked ...

  20. Perturbative calculations for the HISQ action: the gluon action at Ο(Nfαsa2)

    International Nuclear Information System (INIS)

    Hart, A.; Hippel, G.M. von; Horgan, R.R.

    2008-08-01

    We present a new (and general) algorithm for deriving lattice Feynman rules which is capable of handling actions as complex as the Highly Improved Staggered Quark (HISQ) action. This enables us to perform a perturbative calculation of the influence of dynamical HISQ fermions on the perturbative improvement of the gluonic action in the same way as we have previously done for asqtad fermions. We find the fermionic contributions to the radiative corrections in the Luescher-Weisz gauge action to be somewhat larger for HISQ fermions than for asqtad. (orig.)

  1. The Errors of Feynman and Hibbs

    Indian Academy of Sciences (India)

    rors simply because he was so smart. He would write down equations that got to the gist of the difficult ... work at a level somewhat below Feynman's, these fac- tors and limits and so forth are not obvious, and their ... an interview with Hibbs in which he said he's working on a book to be titled Quantum Mechanics and Path In-.

  2. Drawing theories apart the dispersion of Feynman diagrams in postwar physics

    CERN Document Server

    Kaiser, David

    2005-01-01

    Winner of the 2007 Pfizer Prize from the History of Science Society. Feynman diagrams have revolutionized nearly every aspect of theoretical physics since the middle of the twentieth century. Introduced by the American physicist Richard Feynman (1918-88) soon after World War II as a means of simplifying lengthy calculations in quantum electrodynamics, they soon gained adherents in many branches of the discipline. Yet as new physicists adopted the tiny line drawings, they also adapted the diagrams and introduced their own interpretations. Drawing Theories Apart traces how generations of young theorists learned to frame their research in terms of the diagrams—and how both the diagrams and their users were molded in the process.Drawing on rich archival materials, interviews, and more than five hundred scientific articles from the period, Drawing Theories Apart uses the Feynman diagrams as a means to explore the development of American postwar physics. By focusing on the ways young physicists learned new calcul...

  3. Probing finite coarse-grained virtual Feynman histories with sequential weak values

    Science.gov (United States)

    Georgiev, Danko; Cohen, Eliahu

    2018-05-01

    Feynman's sum-over-histories formulation of quantum mechanics has been considered a useful calculational tool in which virtual Feynman histories entering into a coherent quantum superposition cannot be individually measured. Here we show that sequential weak values, inferred by consecutive weak measurements of projectors, allow direct experimental probing of individual virtual Feynman histories, thereby revealing the exact nature of quantum interference of coherently superposed histories. Because the total sum of sequential weak values of multitime projection operators for a complete set of orthogonal quantum histories is unity, complete sets of weak values could be interpreted in agreement with the standard quantum mechanical picture. We also elucidate the relationship between sequential weak values of quantum histories with different coarse graining in time and establish the incompatibility of weak values for nonorthogonal quantum histories in history Hilbert space. Bridging theory and experiment, the presented results may enhance our understanding of both weak values and quantum histories.

  4. Exact Maximum-Entropy Estimation with Feynman Diagrams

    Science.gov (United States)

    Netser Zernik, Amitai; Schlank, Tomer M.; Tessler, Ran J.

    2018-02-01

    A longstanding open problem in statistics is finding an explicit expression for the probability measure which maximizes entropy with respect to given constraints. In this paper a solution to this problem is found, using perturbative Feynman calculus. The explicit expression is given as a sum over weighted trees.

  5. Le cours de physique de Feynman

    CERN Document Server

    Feynman, Richard; Sands, Matthew

    L’ampleur du succès qu’a rencontré le « Cours de physique de Feynman » dès sa parution s’explique par son caractère fondamentalement novateur. Richard Feynman, qui fut professeur d’université dès l’âge de vingt-quatre ans, a exprimé dans ce cours, avant d’obtenir le prix Nobel de Physique, une vision expérimentale et extrêmement personnelle de l’enseignement de la physique. Cette vision a, depuis, remporté l’adhésion des physiciens du monde entier, faisant de cet ouvrage un grand classique. Ce cours en cinq volumes (Électromagnétisme 1 et 2, Mécanique 1 et 2, Mécanique quantique) s’adresse aux étudiants de tous niveaux qui y trouveront aussi bien les notions de base débarrassées de tout appareil mathématique inutile, que les avancées les plus modernes de cette science passionnante qu’est la physique. Cette nouvelle édition corrigée bénéficie d’une mise en page plus aérée pour un meilleur confort de lecture.

  6. AMBRE - a mathematica package for the construction of Mellin-Barnes representations for Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Gluza, J.; Kajda, K. [Silesia Univ, Katowice (Poland). Dept. of Field Theory and Particle Physics, Inst. of Phsyics; Riemann, T. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2007-05-15

    The Mathematica toolkit AMBRE derives Mellin-Barnes (MB) representations for Feynman integrals in d=4-2{epsilon} dimensions. It may be applied for tadpoles as well as for multi-leg multi-loop scalar and tensor integrals. AMBRE uses a loop-by-loop approach and aims at lowest dimensions of the final MB representations. The present version of AMBRE works fine for planar Feynman diagrams. The output may be further processed by the package MB for the determination of its singularity structure in {epsilon}. The AMBRE package contains various sample applications for Feynman integrals with up to six external particles and up to four loops. (orig.)

  7. The stimulated Breit–Wheeler process as a source of background e+ ...

    Indian Academy of Sciences (India)

    ... at the international linear collider. A Hartin. Machine Detector Interface Volume 69 Issue 6 December 2007 pp 1159-1164 ... A full QED calculation of this stimulated Breit-Wheeler process reveals cross-section resonances due to the virtual particle reaching the mass shell. The one-loop electron self-energy in the bunch ...

  8. Computer generation of integrands for Feynman parametric integrals

    International Nuclear Information System (INIS)

    Cvitanovic, Predrag

    1973-01-01

    TECO text editing language, available on PDP-10 computers, is used for the generation and simplification of Feynman integrals. This example shows that TECO can be a useful computational tool in complicated calculations where similar algebraic structures recur many times

  9. A complete algebraic reduction of one-loop tensor Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Fleischer, J. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Bielefeld Univ. (Germany). Fakultaet fuer Physik; Riemann, T. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2010-09-15

    Guided by the need to eliminate inverse Gram determinants (){sub 5} from tensorial 5-point functions and sub-Gram determinants (){sub 4} from tensorial 4-point functions, we set up a new and very efficient approach for the tensor reduction of Feynman integrals. We eliminate all Gram determinants for one-loop 5-point integrals up to tensors of rank R=5 by reducing their tensor coefficients to higherdimensional 4-point tensor coefficients. These in turn are reduced to expressions which are free of inverse powers of (){sub 4}, but depend on higher-dimensional integrals I{sub 4}{sup (d)} with d{<=}2R. Their expression in terms of scalar integrals defined in the generic dimension, I{sub 4}; I{sub 3}; I{sub 2}; I{sub 1}, however, introduces coefficients [1=(){sub 4}]{sup R} for tensors of rank R. For small or vanishing (){sub 4}, an efficient expansion is found so that a stable numerical evaluation of massive and massless Feynman integrals at arbitrary values of the Gram determinants is made possible. Finally, some relations are mentioned which may be useful for analytic simplifications of the original Feynman diagrams. (orig.)

  10. Asymptotic behaviour of Feynman integrals

    International Nuclear Information System (INIS)

    Bergere, M.C.

    1980-01-01

    In these lecture notes, we describe how to obtain the asymptotic behaviour of Feynman amplitudes; this technique has been already applied in several cases, but the general solution for any kind of asymptotic behaviour has not yet been found. From the mathematical point of view, the problem to solve is close to the following problem: find the asymptotic expansion at large lambda of the integral ∫...∫ [dx] esup(-LambdaP[x]) where P[x] is a polynomial of several variables. (orig.)

  11. Feynman path integrals - from the prodistribution definition to the calculation of glory scattering

    International Nuclear Information System (INIS)

    DeWitt-Morette, C.

    1984-01-01

    In these lectures I present a path integral calculation, starting from a global definition of Feynman path integrals and ending at a scattering cross section formula. Along the way I discuss some basic issues which had to be resolved to exploit the computational power of the proposed definition of Feynman integrals. I propose to compute the glory scattering of gravitational waves by black holes. (orig./HSI)

  12. Dr Percy Charles Edward d'Erf Wheeler (1859-1944): a notable medical missionary of the Holy Land.

    Science.gov (United States)

    Perry, Yaron; Lev, Efraim

    2008-05-01

    Dr Percy Charles Edward d'Erf Wheeler, a medical missionary of the London Society for Promoting Christianity Amongst the Jews, spent 24 years (1885-1909) as head of the English medical institution in Jerusalem. Wheeler dedicated the years he served in Palestine to promote the medical condition of the Jews as a means of missionary work. The most significant of his achievements was his leading role in the founding of the new British Hospital for the Jews in Jerusalem, the flagship of the British presence in Palestine, to be inaugurated in 1897.

  13. Feynman propagator in curved space-time

    International Nuclear Information System (INIS)

    Candelas, P.; Raine, D.J.

    1977-01-01

    The Wick rotation is generalized in a covariant manner so as to apply to curved manifolds in a way that is independent of the analytic properties of the manifold. This enables us to show that various methods for defining a Feynman propagator to be found in the literature are equivalent where they are applicable. We are also able to discuss the relation between certain regularization methods that have been employed

  14. Perturbation theory via Feynman diagrams in classical mechanics

    OpenAIRE

    Penco, R.; Mauro, D.

    2006-01-01

    In this paper we show how Feynman diagrams, which are used as a tool to implement perturbation theory in quantum field theory, can be very useful also in classical mechanics, provided we introduce also at the classical level concepts like path integrals and generating functionals.

  15. Novel complete non-compact symmetries for the Wheeler-DeWitt equation in a wormhole scalar model and axion-dilaton string cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Cordero, Ruben; Granados, Victor D [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del IPN, Unidad Profesional Adolfo Lopez Mateos, Edificio 9, 07738 Mexico DF (Mexico); Mota, Roberto D, E-mail: cordero@esfm.ipn.mx, E-mail: granados@esfm.ipn.mx, E-mail: rmotae@ipn.mx [Departamento de ICE de la Escuela Superior de IngenierIa Mecanica y Electrica del IPN, Unidad Culhuacan. Av. Santa Ana No 1000, San Francisco Culhuacan, Coyoacan Mexico DF, CP 04430 (Mexico)

    2011-09-21

    We find the full symmetries of the Wheeler-DeWitt equation for the Hawking and Page wormhole model and an axion-dilaton string cosmology. We show that the Wheeler-DeWitt Hamiltonian admits a U(1, 1) hidden symmetry for the Hawking and Page model and U(2, 1) for the axion-dilaton string cosmology. If we consider the existence of matter-energy renormalization, for each of these models we find that the Wheeler-DeWitt Hamiltonian accepts an additional SL(2, R) dynamical symmetry. In this case, we show that the SL(2, R) dynamical symmetry generators transform the states from one energy Hilbert eigensubspace to another. Some new wormhole-type solutions for both models are found.

  16. Feynman path integral formulation of quantum mechanics

    International Nuclear Information System (INIS)

    Mizrahi, M.M.

    1975-01-01

    The subject of this investigation is Feynman's path integral quantization scheme, which is a powerful global formalism with great intuitive appeal. It stems from the simple idea that a probability amplitude for a system to make a transition between two states is the ''sum'' of the amplitudes for all the possible ways the transition can take place

  17. How one can construct a consistent relativistic quantum mechanics on the base of a relativistic wave equation

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P. [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil); Gitman, D.M. [Sao Paulo Univ. (USP), SP (Brazil). Inst. de Fisica

    2000-07-01

    Full text follows: There is a common opinion that the construction of a consistent relativistic quantum mechanics on the base of a relativistic wave equation meets well-known difficulties related to the existence of infinite number of negative energy levels, to the existence of negative vector norms, and so on, which may be only solved in a second-quantized theory, see, for example, two basic papers devoted to the problem L.Foldy, S.Wouthuysen, Phys. Rep.78 (1950) 29; H.Feshbach, F.Villars, Rev. Mod. Phys. 30 (1958) 24, whose arguments are repeated in all handbooks in relativistic quantum theory. Even Dirac trying to solve the problem had turned last years to infinite-component relativistic wave equations, see P.A.M. Dirac, Proc. R. Soc. London, A328 (1972) 1. We believe that a consistent relativistic quantum mechanics may be constructed on the base of an extended (charge symmetric) equation, which unite both a relativistic wave equation for a particle and for an antiparticle. We present explicitly the corresponding construction, see for details hep-th/0003112. We support such a construction by two demonstrations: first, in course of a careful canonical quantization of the corresponding classical action of a relativistic particle we arrive just to such a consistent quantum mechanics; second, we demonstrate that a reduction of the QFT of a corresponding field (scalar, spinor, etc.) to one-particle sector, if such a reduction may be done, present namely this quantum mechanics. (author)

  18. Evaluation of energy requirements for all-electric range of plug-in hybrid electric two-wheeler

    International Nuclear Information System (INIS)

    Amjad, Shaik; Rudramoorthy, R.; Neelakrishnan, S.; Sri Raja Varman, K.; Arjunan, T.V.

    2011-01-01

    Recently plug-in hybrid electric vehicles (PHEVs) are emerging as one of the promising alternative to improve the sustainability of transportation energy and air quality especially in urban areas. The all-electric range in PHEV design plays a significant role in sizing of battery pack and cost. This paper presents the evaluation of battery energy and power requirements for a plug-in hybrid electric two-wheeler for different all-electric ranges. An analytical vehicle model and MATLAB simulation analysis has been discussed. The MATLAB simulation results estimate the impact of driving cycle and all-electric range on energy capacity, additional mass and initial cost of lead-acid, nickel-metal hydride and lithium-ion batteries. This paper also focuses on influence of cycle life on annual cost of battery pack and recommended suitable battery pack for implementing in plug-in hybrid electric two-wheelers. -- Research highlights: → Evaluates the battery energy and power requirements for a plug-in hybrid electric two-wheeler. → Simulation results reveal that the IDC demand more energy and cost of battery compared to ECE R40. → If cycle life is considered, the annual cost of Ni-MH battery pack is lower than lead-acid and Li-ion.

  19. Foster Wheeler experience with biomass and other CO{sub 2}-neutral fuels in large CFBs

    Energy Technology Data Exchange (ETDEWEB)

    Zabetta, E.; Kauppinen, K.; Slotte, M. (Foster Wheeler Power Group Europe, Varkaus (Finland)), Email: edgardo.coda@fwfin.fwc.com

    2009-07-01

    Foster Wheeler is a global engineering and construction contractor and a power equipment supplier. Among other products, the company offers state-of-the-art boilers for heat and electricity generation. During the past 30 years Foster Wheeler has booked over 350 circulating fluidized bed boilers (CFBs) ranging from 7 to nearly 1000 MW{sub th}. Of these, over 50 are designed for biomass (or bio-mix) and nearly 50 for waste (or waste-mix) containing biodegradable fractions, which are considered CO{sub 2}-neutral. The biggest challenges encountered in biomass (co-)firing are the tendency towards bed agglomeration and fouling of convective heat surfaces, often associated to corrosion. Such problems are marginal with certain woody biomass, but they intensify when other biomass or waste are fired, and further grow when boilers must operate at highest efficiency while firing erratic fuel mixtures. This paper describes the designs and tools developed at Foster Wheeler to fire different types of biomass and wastes in large CFB boilers. Latest references are then described, showing the ever growing performances achievable when firing CO{sub 2}-neutral fuels, but also highlighting the challenges of boilers that must maintain high performance throughout unprecedentedly broad fuel ranges. (orig.)

  20. Auxiliary fields in the geometrical relativistic particle dynamics

    International Nuclear Information System (INIS)

    Amador, A; Bagatella, N; Rojas, E; Cordero, R

    2008-01-01

    We describe how to construct the dynamics of relativistic particles, following either timelike or null curves, by means of an auxiliary variables method instead of the standard theory of deformations for curves. There are interesting physical particle models governed by actions that involve higher order derivatives of the embedding functions of the worldline. We point out that the mechanical content of such models can be extracted wisely from a lower order action, which can be performed by implementing in the action a finite number of constraints that involve the geometrical relationship structures inherent to a curve and by using a covariant formalism. We emphasize our approach for null curves. For such systems, the natural time parameter is a pseudo-arclength whose properties resemble those of the standard proper time. We illustrate the formalism by applying it to some models for relativistic particles

  1. Auxiliary fields in the geometrical relativistic particle dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Amador, A; Bagatella, N; Rojas, E [Departamento de Fisica, Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico); Cordero, R [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del I.P.N, Edificio 9, 07738 Mexico D.F (Mexico)], E-mail: aramador@gmail.com, E-mail: nbagatella@uv.mx, E-mail: cordero@esfm.ipn.mx, E-mail: efrojas@uv.mx

    2008-03-21

    We describe how to construct the dynamics of relativistic particles, following either timelike or null curves, by means of an auxiliary variables method instead of the standard theory of deformations for curves. There are interesting physical particle models governed by actions that involve higher order derivatives of the embedding functions of the worldline. We point out that the mechanical content of such models can be extracted wisely from a lower order action, which can be performed by implementing in the action a finite number of constraints that involve the geometrical relationship structures inherent to a curve and by using a covariant formalism. We emphasize our approach for null curves. For such systems, the natural time parameter is a pseudo-arclength whose properties resemble those of the standard proper time. We illustrate the formalism by applying it to some models for relativistic particles.

  2. A quantum formulation of the Feynman-Kac formula

    International Nuclear Information System (INIS)

    Accardi, L.

    1981-01-01

    The author discusses a formulation, in the general setting of W*- (or C*)-algebras, of the classical Feynman-Kac formula. The equivalence, in the commutative case, of the present formulation and the usual one is based on the identification between stochastic processes and local algebras. (Auth.)

  3. The ε-form of the differential equations for Feynman integrals in the elliptic case

    Science.gov (United States)

    Adams, Luise; Weinzierl, Stefan

    2018-06-01

    Feynman integrals are easily solved if their system of differential equations is in ε-form. In this letter we show by the explicit example of the kite integral family that an ε-form can even be achieved, if the Feynman integrals do not evaluate to multiple polylogarithms. The ε-form is obtained by a (non-algebraic) change of basis for the master integrals.

  4. SPECIAL RELATIVISTIC HYDRODYNAMICS WITH GRAVITATION

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejon (Korea, Republic of)

    2016-12-20

    Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.

  5. The Everett-Wheeler interpretation and the open future

    International Nuclear Information System (INIS)

    Sudbery, Anthony

    2011-01-01

    I discuss the meaning of probability in the Everett-Wheeler interpretation of quantum mechanics, together with the problem of defining histories. To resolve these, I propose an understanding of probability arising from a form of temporal logic: the probability of a future-tense proposition is identified with its truth value in a many-valued and context-dependent logic. In short, probability is degree of truth. These ideas relate to traditional naive ideas of time and chance. Indeed, I argue that Everettian quantum mechanics is the only form of scientific theory that truly incorporates the perception that the future is open.

  6. A partial solution for Feynman's problem: A new derivation of the Weyl equation

    Directory of Open Access Journals (Sweden)

    Atsushi Inoue

    2000-07-01

    Full Text Available Associating classical mechanics to a system of partial differential equations, we give a procedure for Feynman-type quantization of a "Schrodinger-type equation with spin." Mathematically, we construct a "good parametrix" for the Weyl equation with an external electromagnetic field. Main ingredients are (i a new interpretation of the matrix structure using superanalysis and (ii another interpretation of the method of characteristics as a quantization procedure of Feynman type.

  7. Relativistic mechanics of two interacting particles and bilocal theory

    International Nuclear Information System (INIS)

    Takabayasi, Takehiko

    1975-01-01

    New relativistic mechanics of two-particle system is set forth, where the two constituent particles are interacting by an arbitrary (central) action-at-a-distance. The fundamental equations are presented in a form covariant under general transformation of parameters parametrizing the world lines of constituent particles. The theory represents the proper relativistic generalization of the usual Newtonian mechanics in the sense that it tends in the non-relativistic (and weak interaction) limit to the usual mechanics of two particles moving under a corresponding non-relativistic potential. For the analysis of theory it is convenient to choose a certain particular gauge (i.e., parametrization) fixed by two gauge relations. This brings the theory to a canonical formalism accompanied by two weak equations, and in this gauge quantization can be performed. The result verifies that the relativistic quantum mechanics for two particles interacting by an action-at-a-distance is just represented by a bilocal wave equation and a subsidiary condition, with the clarification of its correspondence-theoretical foundation and internal dynamics. As an example the case of Hooke-type force is illustrated, where the internal motions are elliptic oscillations in the center-of-mass frame. Its quantum theory just reproduces the original form of bilocal theory giving bound states lying on a straightly rising trajectory and on its daughter trajectories. (auth.)

  8. On the electrification of road transportation – A review of the environmental, economic, and social performance of electric two-wheelers

    OpenAIRE

    WEISS MARTIN; DEKKER Peter; MORO ALBERTO; SCHOLZ Harald; MARTIN Patel

    2015-01-01

    Electrification is widely considered as a viable strategy for reducing the oil dependency and environmental impacts of road transportation. In pursuit of this strategy, most attention has been paid to electric cars. However, substantial, yet untapped, potentials could be realized in urban areas through the large-scale introduction of electric two-wheelers. Here, we review the environmental, economic, and social performance of electric two-wheelers, demonstrating that these are generally more ...

  9. Mellin-Barnes representations of Feynman diagrams, linear systems of differential equations, and polynomial solutions

    International Nuclear Information System (INIS)

    Kalmykov, Mikhail Yu.; Kniehl, Bernd A.

    2012-05-01

    We argue that the Mellin-Barnes representations of Feynman diagrams can be used for obtaining linear systems of homogeneous differential equations for the original Feynman diagrams with arbitrary powers of propagators without recourse to the integration-by-parts technique. These systems of differential equation can be used (i) for the differential reductions to sets of basic functions and (ii) for counting the numbers of master-integrals.

  10. Picard-Fuchs equations of dimensionally regulated Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Zayadeh, Raphael

    2013-12-15

    This thesis is devoted to studying differential equations of Feynman integrals. A Feynman integral depends on a dimension D. For integer values of D it can be written as a projective integral, which is called the Feynman parameter prescription. A major complication arises from the fact that for some values of D the integral can diverge. This problem is solved within dimensional regularization by continuing the integral as a meromorphic function on the complex plane and replacing the ill-defined quantity by a Laurent series in a dimensional regularization parameter. All terms in such a Laurent expansion are periods in the sense of Kontsevich and Zagier. We describe a new method to compute differential equations of Feynman integrals. So far, the standard has been to use integration-by-parts (IBP) identities to obtain coupled systems of linear differential equations for the master integrals. Our method is based on the theory of Picard-Fuchs equations. In the case we are interested in, that of projective and quasiprojective families, a Picard-Fuchs equation can be computed by means of the Griffiths-Dwork reduction. We describe a method that is designed for fixed integer dimension. After a suitable integer shift of dimension we obtain a period of a family of hypersurfaces, hence a Picard-Fuchs equation. This equation is inhomogeneous because the domain of integration has a boundary and we only obtain a relative cycle. As a second step we shift back the dimension using Tarasov's generalized dimensional recurrence relations. Furthermore, we describe a method to directly compute the differential equation for general D without shifting the dimension. This is based on the Griffiths-Dwork reduction. The success of this method depends on the ability to solve large systems of linear equations. We give examples of two and three-loop graphs. Tarasov classifies two-loop two-point functions and we give differential equations for these. For us the most interesting example is

  11. Picard-Fuchs equations of dimensionally regulated Feynman integrals

    International Nuclear Information System (INIS)

    Zayadeh, Raphael

    2013-12-01

    This thesis is devoted to studying differential equations of Feynman integrals. A Feynman integral depends on a dimension D. For integer values of D it can be written as a projective integral, which is called the Feynman parameter prescription. A major complication arises from the fact that for some values of D the integral can diverge. This problem is solved within dimensional regularization by continuing the integral as a meromorphic function on the complex plane and replacing the ill-defined quantity by a Laurent series in a dimensional regularization parameter. All terms in such a Laurent expansion are periods in the sense of Kontsevich and Zagier. We describe a new method to compute differential equations of Feynman integrals. So far, the standard has been to use integration-by-parts (IBP) identities to obtain coupled systems of linear differential equations for the master integrals. Our method is based on the theory of Picard-Fuchs equations. In the case we are interested in, that of projective and quasiprojective families, a Picard-Fuchs equation can be computed by means of the Griffiths-Dwork reduction. We describe a method that is designed for fixed integer dimension. After a suitable integer shift of dimension we obtain a period of a family of hypersurfaces, hence a Picard-Fuchs equation. This equation is inhomogeneous because the domain of integration has a boundary and we only obtain a relative cycle. As a second step we shift back the dimension using Tarasov's generalized dimensional recurrence relations. Furthermore, we describe a method to directly compute the differential equation for general D without shifting the dimension. This is based on the Griffiths-Dwork reduction. The success of this method depends on the ability to solve large systems of linear equations. We give examples of two and three-loop graphs. Tarasov classifies two-loop two-point functions and we give differential equations for these. For us the most interesting example is the two

  12. The algebraic locus of Feynman integrals

    OpenAIRE

    Kol, Barak

    2016-01-01

    In the Symmetries of Feynman Integrals (SFI) approach, a diagram's parameter space is foliated by orbits of a Lie group associated with the diagram. SFI is related to the important methods of Integrations By Parts and of Differential Equations. It is shown that sometimes there exist a locus in parameter space where the set of SFI differential equations degenerates into an algebraic equation, thereby enabling a solution in terms of integrals associated with degenerations of the diagram. This i...

  13. Perturbative calculations for the HISQ action. The gluon action at O(N{sub f}{alpha}{sub s}a{sup 2})

    Energy Technology Data Exchange (ETDEWEB)

    Hart, A [School of Physics and Astronomy, Univ. of Edinburgh (United Kingdom); Hippel, G.M. von [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Horgan, R R [DAMTP, CMS, Univ. of Cambridge (United Kingdom)

    2008-08-15

    We present a new (and general) algorithm for deriving lattice Feynman rules which is capable of handling actions as complex as the Highly Improved Staggered Quark (HISQ) action. This enables us to perform a perturbative calculation of the influence of dynamical HISQ fermions on the perturbative improvement of the gluonic action in the same way as we have previously done for asqtad fermions. We find the fermionic contributions to the radiative corrections in the Luescher-Weisz gauge action to be somewhat larger for HISQ fermions than for asqtad. (orig.)

  14. Remark on the solution of the Schroedinger equation for anharmonic oscillators via the Feynman path integral

    International Nuclear Information System (INIS)

    Rezende, J.

    1983-01-01

    We give a simple proof of Feynman's formula for the Green's function of the n-dimensional harmonic oscillator valid for every time t with Im t<=0. As a consequence the Schroedinger equation for the anharmonic oscillator is integrated and expressed by the Feynman path integral on Hilbert space. (orig.)

  15. Differential reduction of generalized hypergeometric functions from Feynman diagrams. One-variable case

    Energy Technology Data Exchange (ETDEWEB)

    Bytev, Vladimir V.; Kalmykov, Mikhail Yu.; Kniehl, Bernd A. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik

    2010-03-15

    The differential-reduction algorithm, which allows one to express generalized hypergeometric functions with parameters of arbitrary values in terms of such functions with parameters whose values differ from the original ones by integers, is discussed in the context of evaluating Feynman diagrams. Where this is possible, we compare our results with those obtained using standard techniques. It is shown that the criterion of reducibility of multiloop Feynman integrals can be reformulated in terms of the criterion of reducibility of hypergeometric functions. The relation between the numbers of master integrals obtained by differential reduction and integration by parts is discussed. (orig.)

  16. Duncan Wheeler, Golden Age Drama in Contemporary Spain. The Comedia on Page, Stage and Screen

    Directory of Open Access Journals (Sweden)

    Alba Carmona

    2014-01-01

    Full Text Available Review of Duncan Wheeler, Golden Age Drama in Contemporary Spain. The Comedia on Page, Stage and Screen, University of Wales Press, Cardiff, 2012, 295 pp. ISBN: 978-0-7083-2474-5.

  17. Feynman path integral related to stochastic schroedinger equation

    International Nuclear Information System (INIS)

    Belavkin, V.P.; Smolyanov, O.G.

    1998-01-01

    The derivation of the Schroedinger equation describing the continuous measurement process is presented. The representation of the solution of the stochastic Schroedinger equation for continuous measurements is obtained by means of the Feynman path integral. The connection with the heuristic approach to the description of continuous measurements is considered. The connection with the Senon paradox is established [ru

  18. Application of the modified Wheeler cap method for radiation efficiency measurement of balanced electrically small antennas in complex environment

    DEFF Research Database (Denmark)

    Zhang, Jiaying; Pivnenko, Sergey; Breinbjerg, Olav

    2010-01-01

    In this paper, application of a modified Wheeler cap method for the radiation efficiency measurement of balanced electrically small antennas is presented. It is shown that the limitations on the cavity dimension can be overcome and thus measurement in a large cavity is possible. The cavity loss...... is investigated, and a modified radiation efficiency formula that includes the cavity loss is introduced. Moreover, a modification of the technique is proposed that involves the antenna working complex environment inside the Wheeler Cap and thus makes possible measurement of an antenna close to a hand or head...

  19. The power counting theorem for Feynman integrals with massless propagators

    International Nuclear Information System (INIS)

    Lowenstein, J.H.

    2000-01-01

    Dyson's power counting theorem is extended to the case where some of the mass parameters vanish. Weinberg's ultraviolet convergence conditions are supplemented by infrared convergence conditions which combined are sufficient for the convergence of Feynman integrals. (orig.)

  20. Feynman and physics. Life and research of an exceptional man

    International Nuclear Information System (INIS)

    Resag, Joerg

    2018-01-01

    The life of Feynman is described together with his work on path integrals, quantum electrodynmaics, helium at low temperatures, the weak interaction, the quark model, and computer-calculation methods, and his contribution to the Manhattan project. (HSI)

  1. Reactivity determination in accelerator driven nuclear reactors by statistics from neutron detectors (Feynman-Alpha Method)

    International Nuclear Information System (INIS)

    Ceder, M.

    2002-03-01

    The Feynman-alpha method is used in traditional nuclear reactors to determine the subcritical reactivity of a system. The method is based on the measurement of the mean number and the variance of detector counts for different measurement times. The measurement is performed while a steady-state neutron flux is maintained in the reactor by an external neutron source, as a rule a radioactive source. From a plot of the variance-to-mean ratio as a function of measurement time ('gate length'), the reactivity can be determined by fitting the measured curve to the analytical solution. A new situation arises in the planned accelerator driven systems (ADS). An ADS will be run in a subcritical mode, and the steady flux will be maintained by an accelerator based source. Such a source has statistical properties that are different from those of a steady radioactive source. As one example, in a currently running European Community project for ADS research, the MUSE project, the source will be a periodically pulsed neutron generator. The theory of Feynman-alpha method needs to be extended to such nonstationary sources. There are two ways of performing and evaluating such pulsed source experiments. One is to synchronise the detector time gate start with the beginning of an incoming pulse. The Feynman-alpha method has been elaborated for such a case recently. The other method can be called stochastic pulsing. It means that there is no synchronisation between the detector time gate start and the source pulsing, i.e. the start of each measurement is chosen at a random time. The analytical solution to the Feynman-alpha formula from this latter method is the subject of this report. We have obtained an analytical Feynman-alpha formula for the case of stochastic pulsing by two different methods. One is completely based on the use of the symbolic algebra code Mathematica, whereas the other is based on complex function techniques. Closed form solutions could be obtained by both methods

  2. Reactivity determination in accelerator driven nuclear reactors by statistics from neutron detectors (Feynman-Alpha Method)

    Energy Technology Data Exchange (ETDEWEB)

    Ceder, M

    2002-03-01

    The Feynman-alpha method is used in traditional nuclear reactors to determine the subcritical reactivity of a system. The method is based on the measurement of the mean number and the variance of detector counts for different measurement times. The measurement is performed while a steady-state neutron flux is maintained in the reactor by an external neutron source, as a rule a radioactive source. From a plot of the variance-to-mean ratio as a function of measurement time ('gate length'), the reactivity can be determined by fitting the measured curve to the analytical solution. A new situation arises in the planned accelerator driven systems (ADS). An ADS will be run in a subcritical mode, and the steady flux will be maintained by an accelerator based source. Such a source has statistical properties that are different from those of a steady radioactive source. As one example, in a currently running European Community project for ADS research, the MUSE project, the source will be a periodically pulsed neutron generator. The theory of Feynman-alpha method needs to be extended to such nonstationary sources. There are two ways of performing and evaluating such pulsed source experiments. One is to synchronise the detector time gate start with the beginning of an incoming pulse. The Feynman-alpha method has been elaborated for such a case recently. The other method can be called stochastic pulsing. It means that there is no synchronisation between the detector time gate start and the source pulsing, i.e. the start of each measurement is chosen at a random time. The analytical solution to the Feynman-alpha formula from this latter method is the subject of this report. We have obtained an analytical Feynman-alpha formula for the case of stochastic pulsing by two different methods. One is completely based on the use of the symbolic algebra code Mathematica, whereas the other is based on complex function techniques. Closed form solutions could be obtained by both methods

  3. Derivation and analysis of the Feynman-alpha formula for deterministically pulsed sources

    International Nuclear Information System (INIS)

    Wright, J.; Pazsit, I.

    2004-03-01

    The purpose or this report is to give a detailed description of the calculation of the Feynman-alpha formula with deterministically pulsed sources. In contrast to previous calculations, Laplace transform and complex function methods are used to arrive at a compact solution in form of a Fourier series-like expansion. The advantage of this method is that it is capable to treat various pulse shapes. In particular, in addition to square- and Dirac delta pulses, a more realistic Gauss-shaped pulse is also considered here. The final solution of the modified variance-to-mean, that is the Feynman Y(t) function, can be quantitatively evaluated fast and with little computational effort. The analytical solutions obtained are then analysed quantitatively. The behaviour of the number or neutrons in the system is investigated in detail, together with the transient that follows the switching on of the source. An analysis of the behaviour of the Feynman Y(t) function was made with respect to the pulse width and repetition frequency. Lastly, the possibility of using me formulae for the extraction of the parameter alpha from a simulated measurement is also investigated

  4. Destructive interferences results in bosons anti bunching: refining Feynman's argument

    Science.gov (United States)

    Marchewka, Avi; Granot, Er'el

    2014-09-01

    The effect of boson bunching is frequently mentioned and discussed in the literature. This effect is the manifestation of bosons tendency to "travel" in clusters. One of the core arguments for boson bunching was formulated by Feynman in his well-known lecture series and has been frequently used ever since. By comparing the scattering probabilities of two bosons and of two distinguishable particles, he concluded: "We have the result that it is twice as likely to find two identical Bose particles scattered into the same state as you would calculate assuming the particles were different" [R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics: Quantum mechanics (Addison-Wesley, 1965)]. This argument was rooted in the scientific community (see for example [C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (John Wiley & Sons, Paris, 1977); W. Pauli, Exclusion Principle and Quantum Mechanics, Nobel Lecture (1946)]), however, while this sentence is completely valid, as is proved in [C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (John Wiley & Sons, Paris, 1977)], it is not a synonym of bunching. In fact, as it is shown in this paper, wherever one of the wavefunctions has a zero, bosons can anti-bunch and fermions can bunch. It should be stressed that zeros in the wavefunctions are ubiquitous in Quantum Mechanics and therefore the effect should be common. Several scenarios are suggested to witness the effect.

  5. The power counting theorem for Feynman integrals with massless propagators

    International Nuclear Information System (INIS)

    Lowenstein, J.H.

    1975-01-01

    Dyson's power counting theorem is extended to the case where some of the mass parameters vanish. Weinberg's ultraviolet convergence conditions are supplemented by infrared convergence conditions which combined are sufficient for the convergence of Feynman integrals. (orig.) [de

  6. FF. A package to evaluate one-loop Feynman diagrams

    International Nuclear Information System (INIS)

    Oldenborgh, G.J. van

    1990-09-01

    A short description and a user's guide of the FF package are given. This package contains routines to evaluate numerically the scalar one-loop integrals occurring in the evaluation in one-loop Feynman diagrams. The algorithms chosen are numerically stable over most parameter space. (author). 5 refs.; 1 tab

  7. Advanced computer algebra algorithms for the expansion of Feynman integrals

    International Nuclear Information System (INIS)

    Ablinger, Jakob; Round, Mark; Schneider, Carsten

    2012-10-01

    Two-point Feynman parameter integrals, with at most one mass and containing local operator insertions in 4+ε-dimensional Minkowski space, can be transformed to multi-integrals or multi-sums over hyperexponential and/or hypergeometric functions depending on a discrete parameter n. Given such a specific representation, we utilize an enhanced version of the multivariate Almkvist-Zeilberger algorithm (for multi-integrals) and a common summation framework of the holonomic and difference field approach (for multi-sums) to calculate recurrence relations in n. Finally, solving the recurrence we can decide efficiently if the first coefficients of the Laurent series expansion of a given Feynman integral can be expressed in terms of indefinite nested sums and products; if yes, the all n solution is returned in compact representations, i.e., no algebraic relations exist among the occurring sums and products.

  8. Advanced computer algebra algorithms for the expansion of Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, Jakob; Round, Mark; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2012-10-15

    Two-point Feynman parameter integrals, with at most one mass and containing local operator insertions in 4+{epsilon}-dimensional Minkowski space, can be transformed to multi-integrals or multi-sums over hyperexponential and/or hypergeometric functions depending on a discrete parameter n. Given such a specific representation, we utilize an enhanced version of the multivariate Almkvist-Zeilberger algorithm (for multi-integrals) and a common summation framework of the holonomic and difference field approach (for multi-sums) to calculate recurrence relations in n. Finally, solving the recurrence we can decide efficiently if the first coefficients of the Laurent series expansion of a given Feynman integral can be expressed in terms of indefinite nested sums and products; if yes, the all n solution is returned in compact representations, i.e., no algebraic relations exist among the occurring sums and products.

  9. Path integral representations in noncommutative quantum mechanics and noncommutative version of Berezin-Marinov action

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil); Kupriyanov, V.G. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil); Tomsk State University, Physics Department, Tomsk (Russian Federation)

    2008-03-15

    It is known that the actions of field theories on a noncommutative space-time can be written as some modified (we call them {theta}-modified) classical actions already on the commutative space-time (introducing a star product). Then the quantization of such modified actions reproduces both space-time noncommutativity and the usual quantum mechanical features of the corresponding field theory. In the present article, we discuss the problem of constructing {theta}-modified actions for relativistic QM. We construct such actions for relativistic spinless and spinning particles. The key idea is to extract {theta}-modified actions of the relativistic particles from path-integral representations of the corresponding noncommutative field theory propagators. We consider the Klein-Gordon and Dirac equations for the causal propagators in such theories. Then we construct for the propagators path-integral representations. Effective actions in such representations we treat as {theta}-modified actions of the relativistic particles. To confirm the interpretation, we canonically quantize these actions. Thus, we obtain the Klein-Gordon and Dirac equations in the noncommutative field theories. The {theta}-modified action of the relativistic spinning particle is just a generalization of the Berezin-Marinov pseudoclassical action for the noncommutative case. (orig.)

  10. Holographic stress tensor for non-relativistic theories

    International Nuclear Information System (INIS)

    Ross, Simon F.; Saremi, Omid

    2009-01-01

    We discuss the calculation of the field theory stress tensor from the dual geometry for two recent proposals for gravity duals of non-relativistic conformal field theories. The first of these has a Schroedinger symmetry including Galilean boosts, while the second has just an anisotropic scale invariance (the Lifshitz case). For the Lifshitz case, we construct an appropriate action principle. We propose a definition of the non-relativistic stress tensor complex for the field theory as an appropriate variation of the action in both cases. In the Schroedinger case, we show that this gives physically reasonable results for a simple black hole solution and agrees with an earlier proposal to determine the stress tensor from the familiar AdS prescription. In the Lifshitz case, we solve the linearised equations of motion for a general perturbation around the background, showing that our stress tensor is finite on-shell.

  11. Solving differential equations for Feynman integrals by expansions near singular points

    Science.gov (United States)

    Lee, Roman N.; Smirnov, Alexander V.; Smirnov, Vladimir A.

    2018-03-01

    We describe a strategy to solve differential equations for Feynman integrals by powers series expansions near singular points and to obtain high precision results for the corresponding master integrals. We consider Feynman integrals with two scales, i.e. non-trivially depending on one variable. The corresponding algorithm is oriented at situations where canonical form of the differential equations is impossible. We provide a computer code constructed with the help of our algorithm for a simple example of four-loop generalized sunset integrals with three equal non-zero masses and two zero masses. Our code gives values of the master integrals at any given point on the real axis with a required accuracy and a given order of expansion in the regularization parameter ɛ.

  12. Mean energy of some interacting bosonic systems derived by virtue of the generalized Hellmann-Feynman theorem

    Science.gov (United States)

    Fan, Hong-yi; Xu, Xue-xiang

    2009-06-01

    By virtue of the generalized Hellmann-Feynman theorem [H. Y. Fan and B. Z. Chen, Phys. Lett. A 203, 95 (1995)], we derive the mean energy of some interacting bosonic systems for some Hamiltonian models without proceeding with diagonalizing the Hamiltonians. Our work extends the field of applications of the Hellmann-Feynman theorem and may enrich the theory of quantum statistics.

  13. Prospects of inspection and maintenance of two-wheelers in India.

    Science.gov (United States)

    Das, S; Schmoyer, R; Harrison, G; Hausker, K

    2001-10-01

    Two-wheeler vehicles in Delhi, India--roughly 70% of the total vehicle fleet--are responsible for a significant portion of the city's vehicle emissions and petroleum consumption. An inspection and maintenance (I/M) program that ensures vehicle emission control systems are well maintained can complement other emission reduction strategies. This paper presents the initial findings of extensive data collected on vehicle characteristics and emissions for two-wheeler vehicles operating in Delhi in a series of I/M camps conducted by the Society of Indian Automobile Manufacturers and various partners in late 1999. The analysis shows idle HC and CO emissions [measured in terms of parts per million (ppm) and volume % (vol %), respectively] in a slow declining trend with subsequent model years, reflecting tighter emission standards and more advanced emission technologies. The I/M benefits--3 vol % and 39% reduction in idle and mass CO, respectively; 40 vol % and 22% reduction in idle and mass HC, respectively; and a 10-20% increase in fuel efficiency--were higher than those reported in the literature. Although these benefits are substantial, any implementation strategy needs to consider cost-effectiveness. In the present study, only 10% of vehicles--contributing 22% of the total vehicle emissions--failed the idle CO standard. Fleet emissions data variability necessitates a large sample size to develop a baseline for the vehicle fleet, but a smaller, scientifically designed sample and better data collection quality could periodically track the benefits at future camps.

  14. The incompressible non-relativistic Navier-Stokes equation from gravity

    International Nuclear Information System (INIS)

    Bhattacharyya, Sayantani; Minwalla, Shiraz; Wadia, Spenta R.

    2009-01-01

    We note that the equations of relativistic hydrodynamics reduce to the incompressible Navier-Stokes equations in a particular scaling limit. In this limit boundary metric fluctuations of the underlying relativistic system turn into a forcing function identical to the action of a background electromagnetic field on the effectively charged fluid. We demonstrate that special conformal symmetries of the parent relativistic theory descend to 'accelerated boost' symmetries of the Navier-Stokes equations, uncovering a conformal symmetry structure of these equations. Applying our scaling limit to holographically induced fluid dynamics, we find gravity dual descriptions of an arbitrary solution of the forced non-relativistic incompressible Navier-Stokes equations. In the holographic context we also find a simple forced steady state shear solution to the Navier-Stokes equations, and demonstrate that this solution turns unstable at high enough Reynolds numbers, indicating a possible eventual transition to turbulence.

  15. Some remarks on non-planar Feynman diagrams

    International Nuclear Information System (INIS)

    Bielas, Krzysztof; Dubovyk, Ievgen; Gluza, Janusz

    2013-12-01

    Two criteria for planarity of a Feynman diagram upon its propagators (momentum ows) are presented. Instructive Mathematica programs that solve the problem and examples are provided. A simple geometric argument is used to show that while one can planarize non-planar graphs by embedding them on higher-genus surfaces (in the example it is a torus), there is still a problem with defining appropriate dual variables since the corresponding faces of the graph are absorbed by torus generators.

  16. Some remarks on non-planar Feynman diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Bielas, Krzysztof; Dubovyk, Ievgen; Gluza, Janusz [Silesia Univ., Katowice (Poland). Inst. of Physics; Riemann, Tord [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2013-12-15

    Two criteria for planarity of a Feynman diagram upon its propagators (momentum ows) are presented. Instructive Mathematica programs that solve the problem and examples are provided. A simple geometric argument is used to show that while one can planarize non-planar graphs by embedding them on higher-genus surfaces (in the example it is a torus), there is still a problem with defining appropriate dual variables since the corresponding faces of the graph are absorbed by torus generators.

  17. Huygens-Feynman-Fresnel principle as the basis of applied optics.

    Science.gov (United States)

    Gitin, Andrey V

    2013-11-01

    The main relationships of wave optics are derived from a combination of the Huygens-Fresnel principle and the Feynman integral over all paths. The stationary-phase approximation of the wave relations gives the correspondent relations from the point of view of geometrical optics.

  18. Feynman's path integrals and Bohm's particle paths

    International Nuclear Information System (INIS)

    Tumulka, Roderich

    2005-01-01

    Both Bohmian mechanics, a version of quantum mechanics with trajectories, and Feynman's path integral formalism have something to do with particle paths in space and time. The question thus arises how the two ideas relate to each other. In short, the answer is, path integrals provide a re-formulation of Schroedinger's equation, which is half of the defining equations of Bohmian mechanics. I try to give a clear and concise description of the various aspects of the situation. (letters and comments)

  19. Richard Feynman a life in science

    CERN Document Server

    Gribbin, John

    1998-01-01

    This text is a portrayal of one of the greatest scientists of the late 20th-century, which also provides a picture of the significant physics of the period. It combines personal anecdotes, writings and recollections with narrative. Richard Feynman's career included: war-time work on the atomic bomb at Los Alamos; a theory of quantum mechanics for which he won the Nobel prize; and major contributions to the sciences of gravity, nuclear physics and particle theory. In 1986, he was able to show that the Challenger disaster was due to the effect of cold on the booster rocket rubber sealings.

  20. WheelerLab: An interactive program for sequence stratigraphic analysis of seismic sections, outcrops and well sections and the generation of chronostratigraphic sections and dynamic chronostratigraphic sections

    Science.gov (United States)

    Amosu, Adewale; Sun, Yuefeng

    WheelerLab is an interactive program that facilitates the interpretation of stratigraphic data (seismic sections, outcrop data and well sections) within a sequence stratigraphic framework and the subsequent transformation of the data into the chronostratigraphic domain. The transformation enables the identification of significant geological features, particularly erosional and non-depositional features that are not obvious in the original seismic domain. Although there are some software products that contain interactive environments for carrying out chronostratigraphic analysis, none of them are open-source codes. In addition to being open source, WheelerLab adds two important functionalities not present in currently available software: (1) WheelerLab generates a dynamic chronostratigraphic section and (2) WheelerLab enables chronostratigraphic analysis of older seismic data sets that exist only as images and not in the standard seismic file formats; it can also be used for the chronostratigraphic analysis of outcrop images and interpreted well sections. The dynamic chronostratigraphic section sequentially depicts the evolution of the chronostratigraphic chronosomes concurrently with the evolution of identified genetic stratal packages. This facilitates a better communication of the sequence-stratigraphic process. WheelerLab is designed to give the user both interactive and interpretational control over the transformation; this is most useful when determining the correct stratigraphic order for laterally separated genetic stratal packages. The program can also be used to generate synthetic sequence stratigraphic sections for chronostratigraphic analysis.

  1. WheelerLab: An interactive program for sequence stratigraphic analysis of seismic sections, outcrops and well sections and the generation of chronostratigraphic sections and dynamic chronostratigraphic sections

    Directory of Open Access Journals (Sweden)

    Adewale Amosu

    2017-01-01

    Full Text Available WheelerLab is an interactive program that facilitates the interpretation of stratigraphic data (seismic sections, outcrop data and well sections within a sequence stratigraphic framework and the subsequent transformation of the data into the chronostratigraphic domain. The transformation enables the identification of significant geological features, particularly erosional and non-depositional features that are not obvious in the original seismic domain. Although there are some software products that contain interactive environments for carrying out chronostratigraphic analysis, none of them are open-source codes. In addition to being open source, WheelerLab adds two important functionalities not present in currently available software: (1 WheelerLab generates a dynamic chronostratigraphic section and (2 WheelerLab enables chronostratigraphic analysis of older seismic data sets that exist only as images and not in the standard seismic file formats; it can also be used for the chronostratigraphic analysis of outcrop images and interpreted well sections. The dynamic chronostratigraphic section sequentially depicts the evolution of the chronostratigraphic chronosomes concurrently with the evolution of identified genetic stratal packages. This facilitates a better communication of the sequence-stratigraphic process. WheelerLab is designed to give the user both interactive and interpretational control over the transformation; this is most useful when determining the correct stratigraphic order for laterally separated genetic stratal packages. The program can also be used to generate synthetic sequence stratigraphic sections for chronostratigraphic analysis.

  2. Relativistic and non-relativistic studies of nuclear matter

    NARCIS (Netherlands)

    Banerjee, MK; Tjon, JA

    2002-01-01

    We point out that the differences between the results of the non-relativistic lowest order Brueckner theory (LOBT) and the relativistic Dirac-Brueckner analysis predominantly arise from two sources. Besides effects from a nucleon mass modification M* in nuclear medium we have in a relativistic

  3. A practical criterion of irreducibility of multi-loop Feynman integrals

    International Nuclear Information System (INIS)

    Baikov, P.A.

    2006-01-01

    A practical criterion for the irreducibility (with respect to integration by part identities) of a particular Feynman integral to a given set of integrals is presented. The irreducibility is shown to be related to the existence of stable (with zero gradient) points of a specially constructed polynomial

  4. Academic Training Lecture | Beyond Feynman Diagrams (1/3) | 24 April

    CERN Multimedia

    2013-01-01

    by Prof. Lance Dixon (SLAC National Accelerator Laboratory (US)). Wednesday 24 April 2013, from 11 a.m. to 12 p.m. at CERN (222-R-001 - Filtration Plant) Description: The search for new physics at the LHC, and accurate measurements of Standard Model processes, all benefit from precise theoretical predictions of collider event rates, which in turn rely on higher order computations in QCD, the theory of the strong interactions. Key ingredients for such computations are scattering amplitudes, the quantum-mechanical transition amplitudes between the incoming quarks and gluons and the outgoing produced particles. To go beyond leading order, we need both classical tree amplitudes and quantum loop amplitudes. For decades the central theoretical tool for computing scattering amplitudes has been the Feynman diagram. However, Feynman diagrams are just too slow, even on fast computers, to be able to go beyond the leading order in QCD, for complicated events with many jets of hadrons in the final state. Such events ...

  5. You err, Einstein.. Newton, Einstein, Heisenberg, and Feynman discuss quantum physics

    International Nuclear Information System (INIS)

    Fritzsch, Harald

    2008-01-01

    Harald Fritzsch and his star physicists Einstein, Heisenberg, and Feynman explain the central concept of nowadays physics, quantum mechanics, without it nothing goes in modern world. And the great Isaac newton puts the questions, which all would put

  6. Local supersymmetry in non-relativistic systems

    International Nuclear Information System (INIS)

    Urrutia, L.F.; Zanelli, J.

    1989-10-01

    Classical and quantum non-relativistic interacting systems invariant under local supersymmetry are constructed by the method of taking square roots of the bosonic constraints which generate timelike reparametrization, leaving the action unchanged. In particular, the square root of the Schroedinger constraint is shown to be the non-relativistic limit of the Dirac constraint. Contact is made with the standard models of Supersymmetric Quantum Mechanics through the reformulation of the locally invariant systems in terms of their true degrees of freedom. Contrary to the field theory case, it is shown that the locally invariant systems are completely equivalent to the corresponding globally invariant ones, the latter being the Heisenberg picture description of the former, with respect to some fermionic time. (author). 14 refs

  7. Positron annihilation and Wheeler complexes in semiconductors

    International Nuclear Information System (INIS)

    Prokop'ev, E.P.

    1995-01-01

    Properties of Ps-Ex (positron-exciton) complex nature Wheeler complexes that may be formed at irradiation of semiconductors and ion crystals by positrons at low temperature under conditions of optical excitation by excitons are studied. Binding energy of similar and more complex systems regarding decomposition in Ps and Ex and/or Ex ± exceeds, at least, 0.1 eV, while lifetime regarding biquantum-self-annihilation constitutes τ 2γ ∼5.02x10 - 10 κ c 3 c (κ c -phenomenological parameter of the effective mass method). The lifetime estimations enabled to conclude that Ps-Ex complexes may be detected in some oxide semiconductors, in zinc sulfide, as well as, in alkaline-haloid crystals. At the same time, in silicon, gallium arsenide and in other semiconductors of A 3 B 5 and A 2 B 6 it is highly improbable to observe these complexes. 27 refs

  8. Convergence theorems for renormalized Feynman integrals with zero-mass propagators

    International Nuclear Information System (INIS)

    Lowenstein, J.H.

    1976-01-01

    A general momentum-space subtraction procedure is proposed for the removal of both ultraviolet and infrared divergences of Feynman integrals. Convergence theorems are proved which allow one to define time-ordered Green functions, as tempered distributions for a wide class of theories with zero-mass propagators. (orig.) [de

  9. Automatic calculation of Feynman amplitude - GRACE/CHANEL

    International Nuclear Information System (INIS)

    Kurihara, Yoshimasa

    1992-01-01

    To investigate feasibility of physics at TeV energy region, cross sections from Feynman amplitudes have to be calculated for processes with multi-particle final state. Event generation and detector simulation must also be carried out to determine a detector design and a requirement of necessary luminosity. The JLC (Japan Linear Collider) working group has developed useful software and hardware tools for above purposes. An overview of the tools developed for the physics study at the JLC is given in this report. (author) 7 refs.; 2 figs

  10. Feynman rules of quantum chromodynamics inside a hadron

    International Nuclear Information System (INIS)

    Lee, T.D.

    1979-01-01

    We start from quantum chromodynamics in a finite volume of linear size L and examine its color-dielectric constant kappa/sub L/, especially the limit kappa/sub infinity/ as L → infinity. By choosing as our standard kappa/sub L/ = 1 when L = some hadron size R, we conclude that kappa/sub infinity/ must be -2 α where α is the fine-structure constant of QCD inside the hadron. A permanent quark confinement corresponds to the limit kappa/sub infinity/ = 0. The hadrons are viewed as small domain structures (with color-dielectric constant = 1) immersed in a perfect, or nearly perfect, color-dia-electric medium, which is the vacuum. The Feynman rules of QCD inside the hadron are derived; they are found to depend on the color-dielectric constant kappa/sub infinity/ of the vacuum that lies outside. We show that, when kappa/sub infinity/ → 0, the mass of any color-nonsinglet state becomes infinity, but for color-singlet states their masses and scattering amplitudes remain finite. These new Feynman rules also depend on the hadron size R. Only at high energy and large four-momentum transfer can such R dependence be neglected and, for color-singlet states, these new rules be reduced to the usual ones

  11. Path probability distribution of stochastic motion of non dissipative systems: a classical analog of Feynman factor of path integral

    International Nuclear Information System (INIS)

    Lin, T.L.; Wang, R.; Bi, W.P.; El Kaabouchi, A.; Pujos, C.; Calvayrac, F.; Wang, Q.A.

    2013-01-01

    We investigate, by numerical simulation, the path probability of non dissipative mechanical systems undergoing stochastic motion. The aim is to search for the relationship between this probability and the usual mechanical action. The model of simulation is a one-dimensional particle subject to conservative force and Gaussian random displacement. The probability that a sample path between two fixed points is taken is computed from the number of particles moving along this path, an output of the simulation, divided by the total number of particles arriving at the final point. It is found that the path probability decays exponentially with increasing action of the sample paths. The decay rate increases with decreasing randomness. This result supports the existence of a classical analog of the Feynman factor in the path integral formulation of quantum mechanics for Hamiltonian systems

  12. Coexistence of full which-path information and interference in Wheeler's delayed-choice experiment with photons

    NARCIS (Netherlands)

    Michielsen, K.; Yuan, S.; Zhao, S.; Jin, F.; De Raedt, H.

    We present a computer simulation model that is a one-to-one copy of an experimental realization of Wheeler's delayed-choice experiment that employs a single photon source and a Mach-Zehnder interferometer composed of a 50/50 input beam splitter and a variable output beam splitter with adjustable

  13. A guide to Feynman diagrams in the many-body problem

    CERN Document Server

    Mattuck, Richard D

    1976-01-01

    Until this book, most treatments of this topic were inaccessible to nonspecialists. A superb introduction to important areas of modern physics, it covers Feynman diagrams, quasi particles, Fermi systems at finite temperature, superconductivity, vacuum amplitude, Dyson's equation, ladder approximation, and much more. ""A great delight to read."" - Physics Today. 1974 edition.

  14. Tachyonless models of relativistic particles with curvature and torsion

    International Nuclear Information System (INIS)

    Kuznetsov, Yu.A.; Plyushchaj, M.S.

    1992-01-01

    The problem of construction (2+1)-dimensional tachyonless models of relativistic particles with an action depending on the world-trajectory curvature and torsion is investigated. The special class of models, described by maximum symmetric action and comprising only spin internal degrees of freedom is found. The examples of systems from the special class are given, whose classical and quantum spectra contain only massive states. 23 refs

  15. Wheeler-DeWitt equation and Lie symmetries in Bianchi scalar-field cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Paliathanasis, A. [Universidad Austral de Chile, Instituto de Ciencias Fisicas y Matematicas, Valdivia (Chile); Karpathopoulos, L. [University of Athens, Faculty of Physics, Department of Astronomy-Astrophysics-Mechanics, Athens (Greece); Wojnar, A. [Institute for Theoretical Physics, Wroclaw (Poland); Universita' di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Complesso Universitario di Monte S. Angelo, Naples (Italy); Istituto Nazionale di Fisica Nucleare (INFN) Sez. di Napoli, Naples (Italy); Capozziello, S. [Universita' di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Complesso Universitario di Monte S. Angelo, Naples (Italy); Gran Sasso Science Institute (INFN), L' Aquila (Italy); Istituto Nazionale di Fisica Nucleare (INFN) Sez. di Napoli, Naples (Italy)

    2016-04-15

    Lie symmetries are discussed for the Wheeler-De Witt equation in Bianchi Class A cosmologies. In particular, we consider general relativity, minimally coupled scalar-field gravity and hybrid gravity as paradigmatic examples of the approach. Several invariant solutions are determined and classified according to the form of the scalar-field potential. The approach gives rise to a suitable method to select classical solutions and it is based on the first principle of the existence of symmetries. (orig.)

  16. A power counting theorem for Feynman integrals on the lattice

    International Nuclear Information System (INIS)

    Reisz, T.

    1988-01-01

    A convergence theorem is proved, which states sufficient conditions for the existence of the continuum limit for a wide class of Feynman integrals on a space-time lattice. A new kind of a UV-divergence degree is introduced, which allows the formulation of the theorem in terms of power counting conditions. (orig.)

  17. Positron annihilation and Wheeler complexes in semiconductors

    International Nuclear Information System (INIS)

    Prokob'ev, E.P.

    1995-01-01

    The Wheeler complexes Ps-Ex (positronium-exciton) were studied. These complexes are formed during irradiation of semiconductors and ionic crystals with positrons at low temperatures under optical excitation by excitons. The binding energy of these and more complex entities preventing dissociation into Ps and Ex and/or Ex ± is at least 0.1 eV, and the lifetime for the two-photon self-annihilation is τ 2γ ∼ 5.02 x 10 -10 x c 3 s (x c is the phenomenological parameter of the effective-mass method). The estimation of lifetimes τ 2γ and τ 2γ t (the total lifetime of Ps-Ex complexes with account for positron annihilation on valence electrons) led to the conclusion that Ps-Ex complexes can be observed in a number of oxide semiconductors, in zinc sulfide, and in alkali halide crystals; however, it was difficult to observe such complexes in silicon, gallium arsenide, and other A 3 B 5 and A 2 B 6 semiconductors

  18. Decoherence and discrete symmetries in deformed relativistic kinematics

    Science.gov (United States)

    Arzano, Michele

    2018-01-01

    Models of deformed Poincaré symmetries based on group valued momenta have long been studied as effective modifications of relativistic kinematics possibly capturing quantum gravity effects. In this contribution we show how they naturally lead to a generalized quantum time evolution of the type proposed to model fundamental decoherence for quantum systems in the presence of an evaporating black hole. The same structures which determine such generalized evolution also lead to a modification of the action of discrete symmetries and of the CPT operator. These features can in principle be used to put phenomenological constraints on models of deformed relativistic symmetries using precision measurements of neutral kaons.

  19. Relativistic predictive quantum potential: the N-body case

    International Nuclear Information System (INIS)

    Garuccio, A.; Kyprianidis, A.; Vigier, J.P.

    1984-01-01

    It is generalized to a system of N scalar particles the casual description with action at a distance already given for two-particle systems in EPR type of experiments. The many body quantum potential is shown to satisfy the predictivity constraints established by Droz-Vincent for relativistic mechanics

  20. Wilsonian effective action of superstring theory

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ashoke [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India); Homi Bhabha National Institute,Training School Complex, Anushakti Nagar, Mumbai 400085 (India)

    2017-01-25

    By integrating out the heavy fields in type II or heterotic string field theory one can construct the effective action for the light fields. This effective theory inherits all the algebraic structures of the parent theory and the effective action automatically satisfies the Batalin-Vilkovisky quantum master equation. This theory is manifestly ultraviolet finite, has only light fields as its explicit degrees of freedom, and the Feynman diagrams of this theory reproduce the exact scattering amplitudes of light states in string theory to any arbitrary order in perturbation theory. Furthermore in this theory the degrees of freedom of light fields above certain energy scale are also implicitly integrated out. This energy scale is determined by a particular parameter labelling a family of equivalent actions, and can be made arbitrarily low, leading to the interpretation of the effective action as the Wilsonian effective action.

  1. Feynman's Operational Calculi: Spectral Theory for Noncommuting Self-adjoint Operators

    International Nuclear Information System (INIS)

    Jefferies, Brian; Johnson, Gerald W.; Nielsen, Lance

    2007-01-01

    The spectral theorem for commuting self-adjoint operators along with the associated functional (or operational) calculus is among the most useful and beautiful results of analysis. It is well known that forming a functional calculus for noncommuting self-adjoint operators is far more problematic. The central result of this paper establishes a rich functional calculus for any finite number of noncommuting (i.e. not necessarily commuting) bounded, self-adjoint operators A 1 ,..., A n and associated continuous Borel probability measures μ 1 , ?, μ n on [0,1]. Fix A 1 ,..., A n . Then each choice of an n-tuple (μ 1 ,...,μ n ) of measures determines one of Feynman's operational calculi acting on a certain Banach algebra of analytic functions even when A 1 , ..., A n are just bounded linear operators on a Banach space. The Hilbert space setting along with self-adjointness allows us to extend the operational calculi well beyond the analytic functions. Using results and ideas drawn largely from the proof of our main theorem, we also establish a family of Trotter product type formulas suitable for Feynman's operational calculi

  2. Path integral for a relativistic-particle theory

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Gitman, D.M.; Shvartsman, S.M.

    1991-01-01

    An action of a relativistic spinning particle written in reparametrization and local super-invariant form is consistently determined by using the path integral representation for the Green's function of the spinor field. It is shown that, to obtain the causal propagator, the integration over the null mode of the onebein variable must be performed in the (0, + ∞ limits

  3. Relativistic rapprochement of electromagnetic and strong interactions

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1995-01-01

    On the basis of the Lienard-Wiechert potential and the relativistic Yukawa potential it is shown that the corresponding interactions with velocity growth increase differently (the electromagnetic one increases faster). According to preliminary estimations they are equivalent, at distances of the 'action radius' of nuclear forces, at γ≅ 960, where γ is the Lorentz factor. 2 refs

  4. From LZ77 to the run-length encoded burrows-wheeler transform, and back

    DEFF Research Database (Denmark)

    Policriti, Alberto; Prezza, Nicola

    2017-01-01

    The Lempel-Ziv factorization (LZ77) and the Run-Length encoded Burrows-Wheeler Transform (RLBWT) are two important tools in text compression and indexing, being their sizes z and r closely related to the amount of text self-repetitiveness. In this paper we consider the problem of converting the t......(r + z) words of working space. Note that r and z can be constant if the text is highly repetitive, and our algorithms can operate with (up to) exponentially less space than naive solutions based on full decompression.......The Lempel-Ziv factorization (LZ77) and the Run-Length encoded Burrows-Wheeler Transform (RLBWT) are two important tools in text compression and indexing, being their sizes z and r closely related to the amount of text self-repetitiveness. In this paper we consider the problem of converting the two...... representations into each other within a working space proportional to the input and the output. Let n be the text length. We show that RLBWT can be converted to LZ77 in O(n log r) time and O(r) words of working space. Conversely, we provide an algorithm to convert LZ77 to RLBWT in O(n(log r + log z)) time and O...

  5. The Feynman integrand as a white noise distribution beyond perturbation theory

    International Nuclear Information System (INIS)

    Grothaus, Martin; Vogel, Anna

    2008-01-01

    In this note the concepts of path integrals and techniques how to construct them are presented. Here we concentrate on a White Noise approach. Combining White Noise techniques with a generalized time-dependent Doss' formula Feynman integrands are constructed as white noise distributions beyond perturbation theory

  6. Relativistic equations

    International Nuclear Information System (INIS)

    Gross, F.

    1986-01-01

    Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs

  7. Teaching Electron--Positron--Photon Interactions with Hands-on Feynman Diagrams

    Science.gov (United States)

    Kontokostas, George; Kalkanis, George

    2013-01-01

    Feynman diagrams are introduced in many physics textbooks, such as those by Alonso and Finn and Serway, and their use in physics education has been discussed by various authors. They have an appealing simplicity and can give insight into events in the microworld. Yet students often do not understand their significance and often cannot combine the…

  8. Theory of Feynman-alpha technique with masking window for accelerator-driven systems

    International Nuclear Information System (INIS)

    Kitamura, Yasunori; Misawa, Tsuyoshi

    2017-01-01

    Highlights: • A theory of the modified Feynman-alpha technique for the ADS was developed. • The experimental conditions under which this technique works were discussed. • It is expected this technique is applied to the subcriticality monitor for the ADS. - Abstract: Recently, a modified Feynman-alpha technique for the subcritical system driven by periodically triggered neutron bursts was developed. One of the main features of this technique is utilization of a simple formula that is advantageous in evaluating the subcriticality. However, owing to the absence of the theory of this technique, this feature has not been fully investigated yet. In the present study, a theory of this technique is provided. Furthermore, the experimental conditions under which the simple formula works are discussed to apply this technique to the subcriticality monitor for the accelerator-driven system.

  9. ALOHA: Automatic libraries of helicity amplitudes for Feynman diagram computations

    Science.gov (United States)

    de Aquino, Priscila; Link, William; Maltoni, Fabio; Mattelaer, Olivier; Stelzer, Tim

    2012-10-01

    We present an application that automatically writes the HELAS (HELicity Amplitude Subroutines) library corresponding to the Feynman rules of any quantum field theory Lagrangian. The code is written in Python and takes the Universal FeynRules Output (UFO) as an input. From this input it produces the complete set of routines, wave-functions and amplitudes, that are needed for the computation of Feynman diagrams at leading as well as at higher orders. The representation is language independent and currently it can output routines in Fortran, C++, and Python. A few sample applications implemented in the MADGRAPH 5 framework are presented. Program summary Program title: ALOHA Catalogue identifier: AEMS_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: http://www.opensource.org/licenses/UoI-NCSA.php No. of lines in distributed program, including test data, etc.: 6094320 No. of bytes in distributed program, including test data, etc.: 7479819 Distribution format: tar.gz Programming language: Python2.6 Computer: 32/64 bit Operating system: Linux/Mac/Windows RAM: 512 Mbytes Classification: 4.4, 11.6 Nature of problem: An effcient numerical evaluation of a squared matrix element can be done with the help of the helicity routines implemented in the HELAS library [1]. This static library contains a limited number of helicity functions and is therefore not always able to provide the needed routine in the presence of an arbitrary interaction. This program provides a way to automatically create the corresponding routines for any given model. Solution method: ALOHA takes the Feynman rules associated to the vertex obtained from the model information (in the UFO format [2]), and multiplies it by the different wavefunctions or propagators. As a result the analytical expression of the helicity routines is obtained. Subsequently, this expression is

  10. On the classical Maxwell-Lorentz electrodynamics, the electron inertia problem, and the Feynman proper time paradigm

    International Nuclear Information System (INIS)

    Prykarpatsky, A.K.; Bogolubov, J.R.

    2016-01-01

    The classical Maxwell electromagnetic field and the Lorentz-type force equations are rederived in the framework of the Feynman proper time paradigm and the related vacuum field theory approach. The classical Ampere law origin is rederived, and its relationship with the Feynman proper time paradigm is discussed. The electron inertia problem is analyzed in detail within the Lagrangian and Hamiltonian formalisms and the related pressure-energy compensation principle of stochastic electrodynamics. The modified Abraham-Lorentz damping radiation force is derived and the electromagnetic electron mass origin is argued

  11. Path integral for a relativistic-particle theory

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, E.S. (AN SSSR, Moscow (SU)); Gitman, D.M. (Moskovskij Inst. Radiotekhniki, Ehlektroniki i Automatiki, Moscow (SU)); Shvartsman, S.M. (Tomskij Pedagogicheskij Inst., Tomsk (SU))

    1991-06-01

    An action of a relativistic spinning particle written in reparametrization and local super-invariant form is consistently determined by using the path integral representation for the Green's function of the spinor field. It is shown that, to obtain the causal propagator, the integration over the null mode of the onebein variable must be performed in the (0, + {infinity}) limits.

  12. The Hellmann–Feynman theorem, the comparison theorem, and the envelope theory

    Directory of Open Access Journals (Sweden)

    Claude Semay

    2015-01-01

    Full Text Available The envelope theory is a convenient method to compute approximate solutions for bound state equations in quantum mechanics. It is shown that these approximate solutions obey a kind of Hellmann–Feynman theorem, and that the comparison theorem can be applied to these approximate solutions for two ordered Hamiltonians.

  13. Asymptotic expansions of Feynman diagrams and the Mellin-Barnes representation

    International Nuclear Information System (INIS)

    Friot, Samuel; Greynat, David

    2007-01-01

    In this talk, we describe part of our recent work [S. Friot, D. Greynat and E. de Rafael, Phys. Lett. B 628 (2005) 73 [ (arXiv:hep-ph/0505038)] (see also [S. Friot, PhD Thesis (2005); D. Greynat, PhD Thesis (2005)]) that gives new results in the context of asymptotic expansions of Feynman diagrams using the Mellin-Barnes representation

  14. Relation between Feynman Cycles and Off-Diagonal Long-Range Order

    International Nuclear Information System (INIS)

    Ueltschi, Daniel

    2006-01-01

    The usual order parameter for Bose-Einstein condensation involves the off-diagonal correlation function of Penrose and Onsager, but an alternative is Feynman's notion of infinite cycles. We present a formula that relates both order parameters. We discuss its validity with the help of rigorous results and heuristic arguments. The conclusion is that infinite cycles do not always represent the Bose condensate

  15. Feynman propagator for a particle with arbitrary spin

    International Nuclear Information System (INIS)

    Huang Shi-Zhong; Zhang Peng-Fei; Ruan Tu-Nan; Zhu Yu-Can; Zheng Zhi-Peng

    2005-01-01

    Based on the solution to the Rarita-Schwinger equations, a direct derivation of the projection operator and propagator for a particle with arbitrary spin is worked out. The projection operator constructed by Behrends and Fronsdal is re-deduced and confirmed, and simplified in the case of half-integral spin; the general commutation rules and Feynman propagator for a free particle of any spin are derived, and explicit expressions for the propagators for spins 3/2, 2, 5/2, 3, 7/2, 4 are provided. (orig.)

  16. Relativistic particle with the action dependent on the torsion of its world trajectory

    International Nuclear Information System (INIS)

    Nesterenko, V.V.

    1990-01-01

    The generalized Hamiltonian formalism for the relativistic particle with a torsion in a D-dimensional space-time is constructed. A complete set of the constraints in the phase space is obtained and their division into the first-class and the second-class constraints is accomplished. On this basis the canonical quantization of the model is fulfilled. For D=3 the mass spectrum is obtained explicitly, the mass of the state being dependent on its spin. The possibility of describing in the framework of this model the states with integer, half-integer and continuous spins is discussed. The wave equation and the propagator are found in the operator form. The mass formula is obtained also in the model of a relativistic particles with curvature in a D-dimensional space-time. 34 refs

  17. Point form relativistic quantum mechanics and relativistic SU(6)

    Science.gov (United States)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  18. A unified treatment of the non-relativistic and relativistic hydrogen atom: Pt. 2

    International Nuclear Information System (INIS)

    Swainson, R.A.; Drake, G.W.F.

    1991-01-01

    This is the second in a series of three papers in which it is shown how the radial part of non-relativistic and relativistic hydrogenic bound-state calculations involving the Green functions can be presented in a unified manner. In this paper the non-relativistic Green function is examined in detail; new functional forms are presented and a clear mathematical progression is show to link these and most other known forms. A linear transformation of the four radial parts of the relativistic Green function is given which allows for the presentation of this function as a simple generalization of the non-relativistic Green function. Thus, many properties of the non-relativistic Green function are shown to have simple relativistic generalizations. In particular, new recursion relations of the radial parts of both the non-relativistic and relativistic Green functions are presented, along with new expressions for the double Laplace transforms and recursion relations between the radial matrix elements. (author)

  19. Closure of the gauge algebra, generalized Lie equations and Feynman rules

    International Nuclear Information System (INIS)

    Batalin, I.A.

    1984-01-01

    A method is given by which an open gauge algebra can always be closed and even made abelian. As a preliminary the generalized Lie equations for the open group are obtained. The Feynman rules for gauge theories with open algebras are derived by reducing the gauge theory to a non-gauge one. (orig.)

  20. Non-relativistic AdS branes and Newton-Hooke superalgebra

    International Nuclear Information System (INIS)

    Sakaguchi, Makoto; Yoshida, Kentaroh

    2006-01-01

    We examine a non-relativistic limit of D-branes in AdS 5 x S 5 and M-branes in AdS 4/7 x S 7/4 . First, Newton-Hooke superalgebras for the AdS branes are derived from AdS x S superalgebras as Inoenue-Wigner contractions. It is shown that the directions along which the AdS-brane worldvolume extends are restricted by requiring that the isometry on the AdS-brane worldvolume and the Lorentz symmetry in the transverse space naturally extend to the super-isometry. We also derive Newton-Hooke superalgebras for pp-wave branes and show that the directions along which a brane worldvolume extends are restricted. Then the Wess-Zumino terms of the AdS branes are derived by using the Chevalley-Eilenberg cohomology on the super-AdS x S algebra, and the non-relativistic limit of the AdS-brane actions is considered. We show that the consistent limit is possible for the following branes: Dp (even,even) for p = 1 mod 4 and Dp (odd,odd) for p = 3 mod 4 in AdS 5 x S 5 , and M2 (0,3), M2 (2,1), M5 (1,5) and M5 (3,3) in AdS 4 x S 7 and S 4 x AdS 7 . We furthermore present non-relativistic actions for the AdS branes

  1. Axiomatic derivation of Feynman rules and related topics

    International Nuclear Information System (INIS)

    Dorfmeister, G.K.

    1992-01-01

    Previous results in axiomatic field theory by Steinmann and Epstein-Glaser establish the existence of the retarded and time ordered Green's functions in every order of perturbation. To connect these Green's functions with the ones calculated in canonical field theories via the Feynman rules, one has to consistently build them not just for every order of perturbation but for each specific graph. (open-quotes Consisentlyclose quotes means here that the Green functions associated with two open-quotes smallclose quotes graphs build up to the Green's functions of the open-quotes bigclose quotes graph formed by connecting the two open-quotes smallclose quotes ones). This paper shows that this can indeed be done; that in this sense the Feynman rules of perturbative Lagrangian field theory can be derived from the abstract, but physically very basic, principles of axiomatic field theory. All results hold only for massive field theories. The LSZ formalism, to the best knowledge of the author, has so far not been modified to admit mass zero fields. To make the representation simpler and more transparent, the author restricts the discussion to a single component, scalar Φ 4 interaction which is a part of the Standard Model of Particle Physics. Motivated by its role in particle physics, the author complements the perturbative study of Φ 4 -theory by reviewing the status of non-perturbative solutions to the theory in the final chapter

  2. Hellmann–Feynman connection for the relative Fisher information

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesan, R.C., E-mail: ravi@systemsresearchcorp.com [Systems Research Corporation, Aundh, Pune 411007 (India); Plastino, A., E-mail: plastino@fisica.unlp.edu.ar [IFLP, National University La Plata & National Research (CONICET) C. C., 727 1900, La Plata (Argentina)

    2015-08-15

    The (i) reciprocity relations for the relative Fisher information (RFI, hereafter) and (ii) a generalized RFI–Euler theorem are self-consistently derived from the Hellmann–Feynman theorem. These new reciprocity relations generalize the RFI–Euler theorem and constitute the basis for building up a mathematical Legendre transform structure (LTS, hereafter), akin to that of thermodynamics, that underlies the RFI scenario. This demonstrates the possibility of translating the entire mathematical structure of thermodynamics into a RFI-based theoretical framework. Virial theorems play a prominent role in this endeavor, as a Schrödinger-like equation can be associated to the RFI. Lagrange multipliers are determined invoking the RFI–LTS link and the quantum mechanical virial theorem. An appropriate ansatz allows for the inference of probability density functions (pdf’s, hereafter) and energy-eigenvalues of the above mentioned Schrödinger-like equation. The energy-eigenvalues obtained here via inference are benchmarked against established theoretical and numerical results. A principled theoretical basis to reconstruct the RFI-framework from the FIM framework is established. Numerical examples for exemplary cases are provided. - Highlights: • Legendre transform structure for the RFI is obtained with the Hellmann–Feynman theorem. • Inference of the energy-eigenvalues of the SWE-like equation for the RFI is accomplished. • Basis for reconstruction of the RFI framework from the FIM-case is established. • Substantial qualitative and quantitative distinctions with prior studies are discussed.

  3. SELF-REPORTED DIFFERENCES BETWEEN CRASH-INVOLVED AND NON-CRASH-INVOLVED THREE-WHEELER DRIVERS IN SRI LANKA

    Directory of Open Access Journals (Sweden)

    A.K. SOMASUNDARASWARAN, Dr.

    2006-01-01

    Full Text Available Despite being an important mode of transportation in the developing world, little research has been conducted to understand the factors contributing to crashes involving three wheel vehicles. This study surveyed a convenient sample of 505 professional three-wheeler drivers in Sri Lanka to explore the similarities and differences in the demographic and work characteristics between three-wheeler drivers who reported experiencing at least one collision in the past twelve months and those who reported that they were not involved in any collisions. Our study revealed some interesting results that were quite different from those obtained in the studies on professional drivers in developed countries. In particular, both drivers with less than one year and more than five years of driving experience in our study were found to be associated with higher probability of crash involvement. Also, the number of trips per day and the average travel distance per trip were found to be insignificant in delineating between crash-involved and non-crash-involved drivers. Moreover, crash-involved drivers, on average, have significantly fewer working days per week and fewer hours per day, suggesting that the conventional approach used in most developed countries to tackle fatigue among professional drivers do not appear to be suitable for solving the road safety problem involving three-wheeler drivers in a developing country. Also, since the age of most drivers falls in a narrow range, this U-shaped relationship is not likely to be a result of youth and ageing but of inexperience in newer drivers and complacency in more experienced drivers. Lastly, since a relatively large proportion of the drivers had driven without a valid driving license, legislation and enforcement interventions are likely to be less effective than education and engineering countermeasures.

  4. The Feynman fluid analogy in e+e- annihilation

    International Nuclear Information System (INIS)

    Hegyi, S.; Krasznovszky, S.

    1990-07-01

    An analysis of the charged particle multiplicity distributions observed in e + e - annihilation is given using the generalized Feynman fluid analogy of multiparticle production. Only the two-and three-particle integrated correlation functions are included into the scheme. It is shown that the model correctly describes the available experimental data from the TASSO and HRS collaborations. Some properties of the fluid of the analogy are computed and a prediction is made for the multiplicity distribution at √s = 91 GeV. (author) 19 refs.; 5 figs.; 1 tab

  5. Extended Hellmann-Feynman theorem for degenerate eigenstates

    Science.gov (United States)

    Zhang, G. P.; George, Thomas F.

    2004-04-01

    In a previous paper, we reported a failure of the traditional Hellmann-Feynman theorem (HFT) for degenerate eigenstates. This has generated enormous interest among different groups. In four independent papers by Fernandez, by Balawender, Hola, and March, by Vatsya, and by Alon and Cederbaum, an elegant method to solve the problem was devised. The main idea is that one has to construct and diagonalize the force matrix for the degenerate case, and only the eigenforces are well defined. We believe this is an important extension to HFT. Using our previous example for an energy level of fivefold degeneracy, we find that those eigenforces correctly reflect the symmetry of the molecule.

  6. A new approach to the Taylor expansion of multiloop Feynman diagrams

    International Nuclear Information System (INIS)

    Tarasov, O.V.

    1996-01-01

    We present a new method for the Taylor expansion of Feynman integrals with arbitrary masses and any number of loops and external momenta. By using the parametric representation we derive a generating function for the coefficients of the small momentum expansion of an arbitrary diagram. The method is applicable for the expansion with respect to all or a subset of external momenta. The coefficients of the expansion are obtained by applying a differential operator to a given integral with shifted value of the space-time dimension d and the expansion momenta set equal to zero. Integrals with changed d are evaluated by using the generalized recurrence relations recently proposed [O.V. Tarasov, Connection between Feynman integrals having different values of the space-time dimension, preprint DESY 96-068, JINR E2-96-62 (hep-th/9606018), to be published in Phys. Rev. D 54, No. 10 (1996)]. We show how the method works for one- and two-loop integrals. It is also illustrated that our method is simpler and more efficient than others. (orig.)

  7. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  8. The dependence of J/ψ-nucleon inelastic cross section on the Feynman variable

    International Nuclear Information System (INIS)

    Duan Chungui; Liu Na; Miao Wendan

    2011-01-01

    By means of two typical sets of nuclear parton distribution functions, meanwhile taking account of the energy loss of the beam proton and the nuclear absorption of the charmonium states traversing the nuclear matter in the uniform framework of the Glauber model, a leading order phenomenological analysis is given in the color evaporation model of the E866 experimental data on J/ψ production differential cross section ratios R Fe/Be (x F ). It is shown that the energy loss effect of beam proton on R Fe/Be (x F ) is more important than the nuclear effects on parton distribution functions in the high Feynman variable x F region. It is found that the J/ψ-nucleon inelastic cross section depends on the Feynman variable x F and increases linearly with x F in the region x F > 0.2. (authors)

  9. Relativistic total and differential cross section proton--proton electron--positron pair production calculation

    International Nuclear Information System (INIS)

    Rubinstein, J.E.

    1976-01-01

    Circle Feynman diagrams for a specific permutation of variables along with their corresponding algebraic expressions are presented to evaluate [H] 2 for proton-proton electron-positron pair production. A Monte Carlo integration technique is introduced and is used to set up the multiple integral expression for the total pair production cross section. The technique is first applied to the Compton scattering problem and then to an arbitrary multiple integral. The relativistic total cross section for proton-proton electron-positron pair production was calculated for eight different values of incident proton energy. A variety of differential cross sections were calculated for the above energies. Angular differential cross section distributions are presented for the electron, positron, and proton. Invariant mass differential cross section distributions are done both with and without the presence of [H] 2 . Both WGHT and log 10 (TOTAL) distributions were also obtained. The general behavioral trends of the total and differential cross sections for proton-proton electron-positron pair production are presented. The range of validity for this calculation is from 0 to about 200 MeV

  10. Specific features of the REDUCE system and calculation of QCD Feynman graphs

    International Nuclear Information System (INIS)

    Dulyan, L.S.

    1990-01-01

    The ways and methods used in calculation of one class of the QCD Feynman graphs with the help of the REDUCE system are described. It is shown how by introducing new constructions and operations the user could avoid difficulties connected with specific restrictions and features of the REDUCE system

  11. Relativistic quantum logic

    International Nuclear Information System (INIS)

    Mittelstaedt, P.

    1983-01-01

    on the basis of the well-known quantum logic and quantum probability a formal language of relativistic quantum physics is developed. This language incorporates quantum logical as well as relativistic restrictions. It is shown that relativity imposes serious restrictions on the validity regions of propositions in space-time. By an additional postulate this relativistic quantum logic can be made consistent. The results of this paper are derived exclusively within the formal quantum language; they are, however, in accordance with well-known facts of relativistic quantum physics in Hilbert space. (author)

  12. Relativistic quantum mechanics; Mecanique quantique relativiste

    Energy Technology Data Exchange (ETDEWEB)

    Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.

  13. Do we need Feynman diagrams for higher order perturbation theory?

    International Nuclear Information System (INIS)

    Jora, Renata

    2012-01-01

    We compute the two loop and three loop corrections to the beta function for Yang-Mills theories in the background gauge field method and using the background gauge field as the only source. The calculations are based on the separation of the one loop effective potential into zero and positive modes contributions and are entirely analytical. No two or three loop Feynman diagrams are considered in the process.

  14. Numerical calculations in elementary quantum mechanics using Feynman path integrals

    International Nuclear Information System (INIS)

    Scher, G.; Smith, M.; Baranger, M.

    1980-01-01

    We show that it is possible to do numerical calculations in elementary quantum mechanics using Feynman path integrals. Our method involves discretizing both time and space, and summing paths through matrix multiplication. We give numerical results for various one-dimensional potentials. The calculations of energy levels and wavefunctions take approximately 100 times longer than with standard methods, but there are other problems for which such an approach should be more efficient

  15. Dissipative relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Imshennik, V.S.; Morozov, Yu.I.

    1989-01-01

    Using the comoving reference frame in the general non-inertial case, the relativistic hydrodynamics equations are derived with an account for dissipative effects in the matter. From the entropy production equation, the exact from for the dissipative tensor components is obtained. As a result, the closed system of equations of dissipative relativistic hydrodynamics is obtained in the comoving reference frame as a relativistic generalization of the known Navier-Stokes equations for Lagrange coordinates. Equations of relativistic hydrodynamics with account for dissipative effects in the matter are derived using the assocoated reference system in general non-inertial case. True form of the dissipative tensor components is obtained from entropy production equation. Closed system of equations for dissipative relativistic hydrodynamics is obtained as a result in the assocoated reference system (ARS) - relativistic generalization of well-known Navier-Stokes equations for Lagrange coordinates. Equation system, obtained in this paper for ARS, may be effectively used in numerical models of explosive processes with 10 51 erg energy releases which are characteristic for flashes of supernovae, if white dwarf type compact target suggested as presupernova

  16. Empirical microeconomics action functionals

    Science.gov (United States)

    Baaquie, Belal E.; Du, Xin; Tanputraman, Winson

    2015-06-01

    A statistical generalization of microeconomics has been made in Baaquie (2013), where the market price of every traded commodity, at each instant of time, is considered to be an independent random variable. The dynamics of commodity market prices is modeled by an action functional-and the focus of this paper is to empirically determine the action functionals for different commodities. The correlation functions of the model are defined using a Feynman path integral. The model is calibrated using the unequal time correlation of the market commodity prices as well as their cubic and quartic moments using a perturbation expansion. The consistency of the perturbation expansion is verified by a numerical evaluation of the path integral. Nine commodities drawn from the energy, metal and grain sectors are studied and their market behavior is described by the model to an accuracy of over 90% using only six parameters. The paper empirically establishes the existence of the action functional for commodity prices that was postulated to exist in Baaquie (2013).

  17. Foster Wheeler Solar Development Corporation modular industrial solar retrofit qualification test results

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, C.P.; Dudley, V.E.; Lewandoski, A.A.

    1986-10-01

    Under the Department of Energy's Modular Industrial Solar Retrofit project, industrial process steam systems incorporating line-focus solar thermal collectors were designed and hardware was installed and tested. This report describes the test results for the system designed by Foster Wheeler Solar Development Corporation. The test series included function and safety tests to determine that the system operated as specified, an unattended operations test to demonstrate automatic operation, performance tests to provide a database for predicting system performance, and life cycle tests to evaluate component and maintenance requirements. Component-level modifications to improve system performance and reliability were also evaluated.

  18. Foster Wheeler Solar Development Corporation Modular Industrial Solar Retrofit qualification test results

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, C.P.; Dudley, V.E.; Lewandowski, A.A.

    1987-04-01

    Under the Department of Energy's Modular Industrial Solar Retrofit project, industrial process steam systems incorporating line-focus solar thermal collectors were designed and hardware was installed and tested. This report describes the test results for the system designed by Foster Wheeler Solar Development Corporation. The test series included function and safety tests to determine that the system operated as specified, an unattended operations test to demonstrate automatic operation, performance tests to provide a database for predicting system performance, and life cycle tests to evaluate component and maintenance requirements. Component-level modifications to improve system performance and reliability were also evaluated.

  19. Vous voulez rire, monsieur Feynman !

    CERN Document Server

    Feynman, Richard P

    2000-01-01

    Richard Feynman fut un scientifique hors norme. Non seulement il contribua en profondeur à la grande aventure de la physique des particules élémentaires, depuis la fabrication de la bombe atomique pendant la guerre alors qu'il n'a pas 25 ans, jusqu'à ses diagrammes qui permettent d'y voir un peu plus clair dans les processus physiques de base. Non seulement il fut un professeur génial, n'hésitant pas à faire le clown pour garder l'attention de ses étudiants et à simplifier pour aller à l'essentiel. Mais il mena une vie excentrique - collectionneur, bouffon, impertinent, joueur de bongo, amateur de strip-tease, séducteur impénitent, déchiffreur de codes secrets et de textes mayas, explorateur en Asie centrale -, qu'il raconte ici avec l'humour du gamin des rues de New York qu'il n'a jamais cessé d'être.

  20. Experimental demonstration of the finite measurement time effect on the Feynman-{alpha} technique

    Energy Technology Data Exchange (ETDEWEB)

    Wallerbos, E.J.M.; Hoogenboom, J.E

    1998-09-01

    The reactivity of a subcritical system is determined by fitting two different theoretical models to a measured Feynman-{alpha} curve. The first model is the expression usually found in the literature, which can be shown to be the expectation value of the experimental quality if the measurement time is infinite. The second model is a new expression which is the expectation value of the experimental quantity for a finite measurement time. The reactivity inferred with the new model is seen to be independent of the length of the fitting interval, whereas the reactivity inferred with the conventional model is seen to vary. This difference demonstrates the effect of the finite measurement time. As a reference, the reactivity is also measured with the pulsed-neutron source method. It is seen to be in good agreement with the reactivity obtained with the Feynman-{alpha} technique when the new expression is applied.

  1. The diamond rule for multi-loop Feynman diagrams

    International Nuclear Information System (INIS)

    Ruijl, B.; Ueda, T.; Vermaseren, J.A.M.

    2015-01-01

    An important aspect of improving perturbative predictions in high energy physics is efficiently reducing dimensionally regularised Feynman integrals through integration by parts (IBP) relations. The well-known triangle rule has been used to achieve simple reduction schemes. In this work we introduce an extensible, multi-loop version of the triangle rule, which we refer to as the diamond rule. Such a structure appears frequently in higher-loop calculations. We derive an explicit solution for the recursion, which prevents spurious poles in intermediate steps of the computations. Applications for massless propagator type diagrams at three, four, and five loops are discussed

  2. A development of an accelerator board dedicated for multi-precision arithmetic operations and its application to Feynman loop integrals

    International Nuclear Information System (INIS)

    Motoki, S; Ishikawa, T; Yuasa, F; Daisaka, H; Nakasato, N; Fukushige, T; Kawai, A; Makino, J

    2015-01-01

    Higher order corrections in perturbative quantum field theory are required for precise theoretical analysis to investigate new physics beyond the Standard Model. This indicates that we need to evaluate Feynman loop diagrams with multi-loop integrals which may require multi-precision calculation. We developed a dedicated accelerator system for multiprecision calculations (GRAPE9-MPX). We present performance results of our system for the case of Feynman two-loop box and three-loop selfenergy diagrams with multi-precision. (paper)

  3. Hellmann-Feynman theorem and the definition of forces in quantum time-dependent and transport problems

    International Nuclear Information System (INIS)

    Di Ventra, Massimiliano; Pantelides, Sokrates T.

    2000-01-01

    The conventional Hellmann-Feynman theorem for the definition of forces on nuclei is not directly applicable to quantum time-dependent and transport problems. We present a rigorous derivation of a general Hellmann-Feynman-like theorem that applies to all quantum mechanical systems and reduces to well-known results for ground-state problems. It provides a rigorous definition of forces in time-dependent and transport problems. Explicit forms of Pulay-like forces are derived and the conditions for them to be zero are identified. A practical scheme for ab initio calculations of current-induced forces is described and the study of the transfer of a Si atom between two electrodes is presented as an example. (c) 2000 The American Physical Society

  4. Lagrangian formulation of the general relativistic Poynting-Robertson effect

    Science.gov (United States)

    De Falco, Vittorio; Battista, Emmanuele; Falanga, Maurizio

    2018-04-01

    We propose the Lagrangian formulation for describing the motion of a test particle in a general relativistic, stationary, and axially symmetric spacetime. The test particle is also affected by a radiation field, modeled as a coherent flux of photons traveling along the null geodesics of the background spacetime, including the general relativistic Poynting-Robertson effect. The innovative part of this work is to prove the existence of the potential linked to the dissipative action caused by the Poynting-Robertson effect in general relativity through the help of an integrating factor, depending on the energy of the system. Generally, such kinds of inverse problems involving dissipative effects might not admit a Lagrangian formulation; especially, in general relativity, there are no examples of such attempts in the literature so far. We reduce this general relativistic Lagrangian formulation to the classic case in the weak-field limit. This approach facilitates further studies in improving the treatment of the radiation field, and it contains, for example, some implications for a deeper comprehension of the gravitational waves.

  5. Expressing Solutions of the Dirac Equation in Terms of Feynman Path Integral

    CERN Document Server

    Hose, R D

    2006-01-01

    Using the separation of the variables technique, the free particle solutions of the Dirac equation in the momentum space are shown to be actually providing the definition of Delta function for the Schr dinger picture. Further, the said solution is shown to be derivable on the sole strength of geometrical argument that the Dirac equation for free particle is an equation of a plane in momentum space. During the evolution of time in the Schr dinger picture, the normal to the said Dirac equation plane is shown to be constantly changing in direction due to the uncertainty principle and thereby, leading to a zigzag path for the Dirac particle in the momentum space. Further, the time evolution of the said Delta function solutions of the Dirac equation is shown to provide Feynman integral of all such zigzag paths in the momentum space. Towards the end of the paper, Feynman path integral between two fixed spatial points in the co-ordinate space during a certain time interv! al is shown to be composed, in time sequence...

  6. Radiatively driven relativistic spherical winds under relativistic radiative transfer

    Science.gov (United States)

    Fukue, J.

    2018-05-01

    We numerically investigate radiatively driven relativistic spherical winds from the central luminous object with mass M and luminosity L* under Newtonian gravity, special relativity, and relativistic radiative transfer. We solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double-iteration processes, to obtain the intensity and velocity fields simultaneously. We found that the momentum-driven winds with scattering are quickly accelerated near the central object to reach the terminal speed. The results of numerical solutions are roughly fitted by a relation of \\dot{m}=0.7(Γ _*-1)\\tau _* β _* β _out^{-2.6}, where \\dot{m} is the mass-loss rate normalized by the critical one, Γ* the central luminosity normalized by the critical one, τ* the typical optical depth, β* the initial flow speed at the central core of radius R*, and βout the terminal speed normalized by the speed of light. This relation is close to the non-relativistic analytical solution, \\dot{m} = 2(Γ _*-1)\\tau _* β _* β _out^{-2}, which can be re-expressed as β _out^2/2 = (Γ _*-1)GM/c^2 R_*. That is, the present solution with small optical depth is similar to that of the radiatively driven free outflow. Furthermore, we found that the normalized luminosity (Eddington parameter) must be larger than unity for the relativistic spherical wind to blow off with intermediate or small optical depth, i.e. Γ _* ≳ \\sqrt{(1+β _out)^3/(1-β _out)}. We briefly investigate and discuss an isothermal wind.

  7. Feynman rules and generalized ward identities in phase space functional integral

    International Nuclear Information System (INIS)

    Li Ziping

    1996-01-01

    Based on the phase-space generating functional of Green function, the generalized canonical Ward identities are derived. It is point out that one can deduce Feynman rules in tree approximation without carrying out explicit integration over canonical momenta in phase-space generating functional. If one adds a four-dimensional divergence term to a Lagrangian of the field, then, the propagator of the field can be changed

  8. Handbook of relativistic quantum chemistry

    International Nuclear Information System (INIS)

    Liu, Wenjian

    2017-01-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  9. Relativistic many-body theory of atomic transitions. The relativistic equation-of-motion approach

    International Nuclear Information System (INIS)

    Huang, K.

    1982-01-01

    An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated with the use of techniques of quantum-field theory. To reduce the equations of motion to a tractable form which is appropriate for numerical calculations, a graphical method to resolve the complication arising from the antisymmetrization and angular-momentum coupling is employed. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation

  10. Relativistic many-body theory of atomic transitions: the relativistic equation-of-motion approach

    International Nuclear Information System (INIS)

    Huang, K.N.

    1981-01-01

    An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated using techniques of quantum field theory. To reduce the equation of motion to a tractable form which is appropriate for numerical calculations, a graphical method is employed to resolve the complication arising from the antisymmetrization and angular momentum coupling. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation

  11. Closed-form solutions of the Wheeler-DeWitt equation in a scalar-vector field cosmological model by Lie symmetries

    Science.gov (United States)

    Paliathanasis, Andronikos; Vakili, Babak

    2016-01-01

    We apply as selection rule to determine the unknown functions of a cosmological model the existence of Lie point symmetries for the Wheeler-DeWitt equation of quantum gravity. Our cosmological setting consists of a flat Friedmann-Robertson-Walker metric having the scale factor a( t), a scalar field with potential function V(φ ) minimally coupled to gravity and a vector field of its kinetic energy is coupled with the scalar field by a coupling function f(φ ). Then, the Lie symmetries of this dynamical system are investigated by utilizing the behavior of the corresponding minisuperspace under the infinitesimal generator of the desired symmetries. It is shown that by applying the Lie symmetry condition the form of the coupling function and also the scalar field potential function may be explicitly determined so that we are able to solve the Wheeler-DeWitt equation. Finally, we show how we can use the Lie symmetries in order to construct conservation laws and exact solutions for the field equations.

  12. Feynman propagator for spin foam quantum gravity.

    Science.gov (United States)

    Oriti, Daniele

    2005-03-25

    We link the notion causality with the orientation of the spin foam 2-complex. We show that all current spin foam models are orientation independent. Using the technology of evolution kernels for quantum fields on Lie groups, we construct a generalized version of spin foam models, introducing an extra proper time variable. We prove that different ranges of integration for this variable lead to different classes of spin foam models: the usual ones, interpreted as the quantum gravity analogue of the Hadamard function of quantum field theory (QFT) or as inner products between quantum gravity states; and a new class of causal models, the quantum gravity analogue of the Feynman propagator in QFT, nontrivial function of the orientation data, and implying a notion of "timeless ordering".

  13. Relativistic duality, and relativistic and radiative corrections for heavy-quark systems

    International Nuclear Information System (INIS)

    Durand, B.; Durand, L.

    1982-01-01

    We give a JWKB proof of a relativistic duality relation which relates an appropriate energy average of the physical cross section for e + e - →qq-bar bound states→hadrons to the same energy average of the perturbative cross section for e + e - →qq-bar. We show that the duality relation can be used effectively to estimate relativistic and radiative corrections for bound-quark systems to order α/sub s//sup ts2/. We also present a formula which relates the square of the ''large'' 3 S 1 Salpeter-Bethe-Schwinger wave function for zero space-time separation of the quarks to the square of the nonrelativistic Schroedinger wave function at the origin for an effective potential which reproduces the relativistic spectrum. This formula allows one to use the nonrelativistic wave functions obtained in potential models fitted to the psi and UPSILON spectra to calculate relativistic leptonic widths for qq-bar states via a relativistic version of the van Royen--Weisskopf formula

  14. Handbook of relativistic quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering

    2017-03-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  15. Teaching Basic Quantum Mechanics in Secondary School Using Concepts of Feynman Path Integrals Method

    Science.gov (United States)

    Fanaro, Maria de los Angeles; Otero, Maria Rita; Arlego, Marcelo

    2012-01-01

    This paper discusses the teaching of basic quantum mechanics in high school. Rather than following the usual formalism, our approach is based on Feynman's path integral method. Our presentation makes use of simulation software and avoids sophisticated mathematical formalism. (Contains 3 figures.)

  16. On the model of the relativistic particle with curvature and torsion

    International Nuclear Information System (INIS)

    Nesterenko, V.V.

    1992-01-01

    Two integrals along the world trajectory of its curvature and torsion are added to the standard action for the point-like spinless relativistic particle. This enables one to quantize the model canonically and to derive exactly the relation between the spin and mass of the states. 10 refs

  17. Anomaly detection in random heterogeneous media Feynman-Kac formulae, stochastic homogenization and statistical inversion

    CERN Document Server

    Simon, Martin

    2015-01-01

    This monograph is concerned with the analysis and numerical solution of a stochastic inverse anomaly detection problem in electrical impedance tomography (EIT). Martin Simon studies the problem of detecting a parameterized anomaly in an isotropic, stationary and ergodic conductivity random field whose realizations are rapidly oscillating. For this purpose, he derives Feynman-Kac formulae to rigorously justify stochastic homogenization in the case of the underlying stochastic boundary value problem. The author combines techniques from the theory of partial differential equations and functional analysis with probabilistic ideas, paving the way to new mathematical theorems which may be fruitfully used in the treatment of the problem at hand. Moreover, the author proposes an efficient numerical method in the framework of Bayesian inversion for the practical solution of the stochastic inverse anomaly detection problem.   Contents Feynman-Kac formulae Stochastic homogenization Statistical inverse problems  Targe...

  18. Non-relativistic holography and singular black hole

    International Nuclear Information System (INIS)

    Lin Fengli; Wu Shangyu

    2009-01-01

    We provide a framework for non-relativistic holography so that a covariant action principle ensuring the Galilean symmetry for dual conformal field theory is given. This framework is based on the Bargmann lift of the Newton-Cartan gravity to the one-dimensional higher Einstein gravity, or reversely, the null-like Kaluza-Klein reduction. We reproduce the previous zero temperature results, and our framework provides a natural explanation about why the holography is co-dimension 2. We then construct the black hole solution dual to the thermal CFT, and find the horizon is curvature singular. However, we are able to derive the sensible thermodynamics for the dual non-relativistic CFT with correct thermodynamical relations. Besides, our construction admits a null Killing vector in the bulk such that the Galilean symmetry is preserved under the holographic RG flow. Finally, we evaluate the viscosity and find it zero if we neglect the back reaction of the singular horizon, otherwise, it could be non-zero.

  19. Self-acceleration of relativistic modulated beams

    International Nuclear Information System (INIS)

    Ajzatskij, N.I.

    1989-01-01

    Unlike the case of self-acceleration of continuous beams, the self-acceleration of relativistic modulated beams requires the energy redistribution between the particles not at the period of excited oscillations but rather between the bunches. This may occur only in the case when the electron beam creates a multifrequency equilibrium state in the passive structure. In this case, there is a possibility for some bunches to be captured in the accelerating phase of the field without any external action. The authors have analyzed this possibility both theoretically and experimentally. 12 refs., 2 figs

  20. Recent development of relativistic molecular theory

    International Nuclear Information System (INIS)

    Takahito, Nakajima; Kimihiko, Hirao

    2005-01-01

    Today it is common knowledge that relativistic effects are important in the heavy-element chemistry. The continuing development of the relativistic molecular theory is opening up rows of the periodic table that are impossible to treat with the non-relativistic approach. The most straightforward way to treat relativistic effects on heavy-element systems is to use the four-component Dirac-Hartree-Fock approach and its electron-correlation methods based on the Dirac-Coulomb(-Breit) Hamiltonian. The Dirac-Hartree-Fock (DHF) or Dirac-Kohn-Sham (DKS) equation with the four-component spinors composed of the large- and small-components demands severe computational efforts to solve, and its applications to molecules including heavy elements have been limited to small- to medium-size systems. Recently, we have developed a very efficient algorithm for the four-component DHF and DKS approaches. As an alternative approach, several quasi-relativistic approximations have also been proposed instead of explicitly solving the four-component relativistic equation. We have developed the relativistic elimination of small components (RESC) and higher-order Douglas-Kroll (DK) Hamiltonians within the framework of the two-component quasi-relativistic approach. The developing four-component relativistic and approximate quasi-relativistic methods have been implemented into a program suite named REL4D. In this article, we will introduce the efficient relativistic molecular theories to treat heavy-atomic molecular systems accurately via the four-component relativistic and the two-component quasi-relativistic approaches. We will also show several chemical applications including heavy-element systems with our relativistic molecular approaches. (author)

  1. Complete algebraic reduction of one-loop tensor Feynman integrals

    International Nuclear Information System (INIS)

    Fleischer, J.; Riemann, T.

    2011-01-01

    We set up a new, flexible approach for the tensor reduction of one-loop Feynman integrals. The 5-point tensor integrals up to rank R=5 are expressed by 4-point tensor integrals of rank R-1, such that the appearance of the inverse 5-point Gram determinant is avoided. The 4-point tensor coefficients are represented in terms of 4-point integrals, defined in d dimensions, 4-2ε≤d≤4-2ε+2(R-1), with higher powers of the propagators. They can be further reduced to expressions which stay free of the inverse 4-point Gram determinants but contain higher-dimensional 4-point integrals with only the first power of scalar propagators, plus 3-point tensor coefficients. A direct evaluation of the higher-dimensional 4-point functions would avoid the appearance of inverse powers of the Gram determinants completely. The simplest approach, however, is to apply here dimensional recurrence relations in order to reduce them to the familiar 2- to 4-point functions in generic dimension d=4-2ε, introducing thereby coefficients with inverse 4-point Gram determinants up to power R for tensors of rank R. For small or vanishing Gram determinants--where this reduction is not applicable--we use analytic expansions in positive powers of the Gram determinants. Improving the convergence of the expansions substantially with Pade approximants we close up to the evaluation of the 4-point tensor coefficients for larger Gram determinants. Finally, some relations are discussed which may be useful for analytic simplifications of Feynman diagrams.

  2. The emergence of gravity as a retro-causal post-inflation macro-quantum-coherent holographic vacuum Higgs-Goldstone field

    International Nuclear Information System (INIS)

    Sarfatti, Jack; Levit, Creon

    2009-01-01

    We present a model for the origin of gravity, dark energy and dark matter: Dark energy and dark matter are residual pre-inflation false vacuum random zero point energy (w = - 1) of large-scale negative, and short-scale positive pressure, respectively, corresponding to the 'zero point' (incoherent) component of a superfluid (supersolid) ground state. Gravity, in contrast, arises from the 2nd order topological defects in the post-inflation virtual 'condensate' (coherent) component. We predict, as a consequence, that the LHC will never detect exotic real on-mass-shell particles that can explain dark matter ΩM DM ∼ 0.23. We also point out that the future holographic dark energy de Sitter horizon is a total absorber (in the sense of retro-causal Wheeler-Feynman action-at-a-distance electrodynamics) because it is an infinite redshift surface for static detectors. Therefore, the advanced Hawking-Unruh thermal radiation from the future de Sitter horizon is a candidate for the negative pressure dark vacuum energy.

  3. Semiclassical approximation of the Wheeler-DeWitt equation: arbitrary orders and the question of unitarity

    Science.gov (United States)

    Kiefer, Claus; Wichmann, David

    2018-06-01

    We extend the Born-Oppenheimer type of approximation scheme for the Wheeler-DeWitt equation of canonical quantum gravity to arbitrary orders in the inverse Planck mass squared. We discuss in detail the origin of unitarity violation in this scheme and show that unitarity can be restored by an appropriate modification which requires back reaction from matter onto the gravitational sector. In our analysis, we heavily rely on the gauge aspects of the standard Born-Oppenheimer scheme in molecular physics.

  4. Shifts of integration variable within four- and N-dimensional Feynman integrals

    International Nuclear Information System (INIS)

    Elias, V.; McKeon, G.; Mann, R.B.

    1983-01-01

    We resolve inconsistencies between integration in four dimensions, where shifts of integration variable may lead to surface terms, and dimensional regularization, where no surface terms accompany such shifts, by showing that surface terms arise only for discrete values of the dimension parameter. General formulas for variable-of-integration shifts within N-dimensional Feynman integrals are presented, and the VVA triangle anomaly is interpreted as a manifestation of surface terms occurring in exactly four dimensions

  5. Studies of particles statistics in one and two dimensions, based on the quantization methods of Heisenberg, Schroedinger and Feynman

    International Nuclear Information System (INIS)

    Myrheim, J.

    1993-06-01

    The thesis deals with the application of different methods to the quantization problem for system of identical particles in one and two dimensions. The standard method is the analytic quantization method due to Schroedinger, which leads to the concept of fractional statistics in one and two dimensions. Two-dimensional particles with fractional statistics are well known by the name of anyons. Two alternative quantization methods are shown by the author, the algebraic method of Heisenberg and the Feynman path integral method. The Feynman method is closely related to the Schroedinger method, whereas the Heisenberg and Schroedinger methods may give different results. The relation between the Heisenberg and Schroedinger methods is discussed. The Heisenberg method is applied to the equations of motion of vortices in superfluid helium, which have the form of Hamiltonian equations for a one-dimensional system. The same method is also discussed more generally for systems of identical particles in one and two dimensions. An application of the Feynman method to the problem of computing the equation of state for a gas of anyons is presented. 104 refs., 4 figs

  6. 10th Biennial Conference on Classical and Quantum Relativistic Dynamics of Particles and Fields

    International Nuclear Information System (INIS)

    2017-01-01

    thermodynamics with relevance for the dark matter and dark energy problems, for example, in the context of Wheeler’s quantum foam and its associated thermodynamics. There are also studies of the dynamics of a perfect fluid of point particles, a treatment of surface tension analog in spacetime, and advances in conformal gravity, as well as the possibility of dark matter phenomena emerging from metric modifications which change dynamically the relation between inertial and gravitational masses. The dynamics of deformed neutron stars and the effects of acceleration, expressed in a modified metric relation is studied. Work is also reported on a fundamental development of a generalization of Newtonian mechanics, and a study is made of relativistic Coulomb systems in velocity space, providing new insight into the relativistic Kepler problem. A fundamental study of the structure of spacetime is reported which provides an interpretation of time in the presence of matter, and results in an estimate for the size of the observable universe. Discussions of electromagnetism, including a “skewon” modification (a covariant tensor quadratic term in field strengths) of the standard electrodynamics, and a study of the field equations for moving media in covariant form, a continuum dynamics in the scalar ether theory of gravitation, as well a wave equations of massless particles of any spin. There are discussions of Pizzella’s experiment apparently demonstrating instantaneous Coulomb interaction. Quantum and particle physics are discussed in a proposed spin-charge family theory as a successor to the standard model, and a study of branes and quantized fields. A geometrical model for electro-gravity, the quantum dynamics of bound states with spacetime fluctuations, and quantum models as classical cellular automata are also reported. Integrability of geodesics with the use of action angle variables is studied, and a study of the Feynman-Dyson theory, with a justification of the Feynman

  7. Appell functions and the scalar one-loop three-point integrals in Feynman diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Cabral-Rosetti, L G [Departamento de Posgrado, Centro Interdisciplinario de Investigacion y Docencia en Educacion Tecnica (CIIDET), Av. Universidad 282 Pte., Col. Centro, A. Postal 752, C.P. 76000, Santiago de Queretaro, Qro. (Mexico); Sanchis-Lozano, M A [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, 46100 Burjassot, Valencia (Spain)

    2006-05-15

    The scalar three-point function appearing in one-loop Feynman diagrams is compactly expressed in terms of a generalized hypergeometric function of two variables. Use is made of the connection between such Appell function and dilogarithms coming from a previous investigation. Special cases are obtained for particular values of internal masses and external momenta.

  8. A symbolic summation approach to Feynman integral calculus

    International Nuclear Information System (INIS)

    Bluemlein, Johannes; Klein, Sebastian

    2010-11-01

    Given a Feynman parameter integral, depending on a single discrete variable N and a real parameter ε, we discuss a new algorithmic framework to compute the first coefficients of its Laurent series expansion in ε. In a first step, the integrals are expressed by hypergeometric multi sums by means of symbolic transformations. Given this sum format, we develop new summation tools to extract the first coefficients of its series expansion whenever they are expressible in terms of indefinite nested product-sum expressions. In particular, we enhance the known multi-sum algorithms to derive recurrences for sums with complicated boundary conditions, and we present new algorithms to find formal Laurent series solutions of a given recurrence relation. (orig.)

  9. A symbolic summation approach to Feynman integral calculus

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Klein, Sebastian [Technische Hochschule Aachen (Germany). Inst. fuer Theoretische Teilchenphysik und Kosmologie; Schneider, Carsten; Stan, Flavia [Johannes Kepler Univ. Linz (AT). Research Inst. for Symbolic Computation (RISC)

    2010-11-15

    Given a Feynman parameter integral, depending on a single discrete variable N and a real parameter {epsilon}, we discuss a new algorithmic framework to compute the first coefficients of its Laurent series expansion in {epsilon}. In a first step, the integrals are expressed by hypergeometric multi sums by means of symbolic transformations. Given this sum format, we develop new summation tools to extract the first coefficients of its series expansion whenever they are expressible in terms of indefinite nested product-sum expressions. In particular, we enhance the known multi-sum algorithms to derive recurrences for sums with complicated boundary conditions, and we present new algorithms to find formal Laurent series solutions of a given recurrence relation. (orig.)

  10. Fuchsia. A tool for reducing differential equations for Feynman master integral to epsilon form

    Energy Technology Data Exchange (ETDEWEB)

    Gituliar, Oleksandr [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Magerya, Vitaly

    2017-01-15

    We present Fuchsia - an implementation of the Lee algorithm, which for a given system of ordinary differential equations with rational coefficients ∂{sub x}f(x,ε)=A(x,ε)f(x,ε) finds a basis transformation T(x,ε), i.e., f(x,ε)=T(x,ε)g(x,ε), such that the system turns into the epsilon form: ∂{sub x}g(x,ε)=εS(x)g(x,ε), where S(x) is a Fuchsian matrix. A system of this form can be trivially solved in terms of polylogarithms as a Laurent series in the dimensional regulator ε. That makes the construction of the transformation T(x,ε) crucial for obtaining solutions of the initial system. In principle, Fuchsia can deal with any regular systems, however its primary task is to reduce differential equations for Feynman master integrals. It ensures that solutions contain only regular singularities due to the properties of Feynman integrals.

  11. Fuchsia. A tool for reducing differential equations for Feynman master integral to epsilon form

    International Nuclear Information System (INIS)

    Gituliar, Oleksandr; Magerya, Vitaly

    2017-01-01

    We present Fuchsia - an implementation of the Lee algorithm, which for a given system of ordinary differential equations with rational coefficients ∂ x f(x,ε)=A(x,ε)f(x,ε) finds a basis transformation T(x,ε), i.e., f(x,ε)=T(x,ε)g(x,ε), such that the system turns into the epsilon form: ∂ x g(x,ε)=εS(x)g(x,ε), where S(x) is a Fuchsian matrix. A system of this form can be trivially solved in terms of polylogarithms as a Laurent series in the dimensional regulator ε. That makes the construction of the transformation T(x,ε) crucial for obtaining solutions of the initial system. In principle, Fuchsia can deal with any regular systems, however its primary task is to reduce differential equations for Feynman master integrals. It ensures that solutions contain only regular singularities due to the properties of Feynman integrals.

  12. Photo- and electro-disintegration of the deuteron in the GeV range

    International Nuclear Information System (INIS)

    Kang, Y.

    1991-12-01

    The process γ (*) d→pn is investigated up to photon lab.-energies of 1.6 GeV in a relativistic covariant approach based on conventional quantum field theory. Using effective lagrangians for the hadron interactions we have applied consequently the method of Feynman graphs to approximate the dynamics of deuteron photo- and electro-disintegration. It is demonstrated that in the considered energy region the relativistic structure of the dNN-vertex, the usually neglected offshell effects and the contributions of the higher nucleon resonances play a significant role. A central point in our calculations is the treatment of Feynman box diagrams where the exchange of π-, ρ-, ω- and η-meson and all nucleon- and delta-resonances of the data booklet with mass m * [de

  13. Relativistic Kinetic Theory

    Science.gov (United States)

    Vereshchagin, Gregory V.; Aksenov, Alexey G.

    2017-02-01

    Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.

  14. Relativistic Linear Restoring Force

    Science.gov (United States)

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  15. Relativistic decay widths of autoionization processes: The relativistic FanoADC-Stieltjes method

    Energy Technology Data Exchange (ETDEWEB)

    Fasshauer, Elke, E-mail: Elke.Fasshauer@uit.no [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø–The Arctic University of Norway, N-9037 Tromsø (Norway); Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany); Kolorenč, Přemysl [Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 180 00 Prague (Czech Republic); Pernpointner, Markus [Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)

    2015-04-14

    Electronic decay processes of ionized systems are, for example, the Auger decay or the Interatomic/ Intermolecular Coulombic Decay. In both processes, an energetically low lying vacancy is filled by an electron of an energetically higher lying orbital and a secondary electron is instantaneously emitted to the continuum. Whether or not such a process occurs depends both on the energetic accessibility and the corresponding lifetime compared to the lifetime of competing decay mechanisms. We present a realization of the non-relativistically established FanoADC-Stieltjes method for the description of autoionization decay widths including relativistic effects. This procedure, being based on the Algebraic Diagrammatic Construction (ADC), was adapted to the relativistic framework and implemented into the relativistic quantum chemistry program package Dirac. It is, in contrast to other existing relativistic atomic codes, not limited to the description of autoionization lifetimes in spherically symmetric systems, but is instead also applicable to molecules and clusters. We employ this method to the Auger processes following the Kr3d{sup −1}, Xe4d{sup −1}, and Rn5d{sup −1} ionization. Based on the results, we show a pronounced influence of mainly scalar-relativistic effects on the decay widths of autoionization processes.

  16. Relativistic positioning systems: perspectives and prospects

    Science.gov (United States)

    Coll Bartolomé

    2013-11-01

    Relativistic positioning systems are interesting technical objects for applications around the Earth and in the Solar system. But above all else, they are basic scientific objects allowing developing relativity from its own concepts. Some past and future features of relativistic positioning sys- tems, with special attention to the developments that they suggest for an epistemic relativity (relativistic experimental approach to physics), are analyzed. This includes relativistic stereometry, which, together with relativistic positioning systems, allows to introduce the general relativistic notion of (finite) laboratory (space-time region able to perform experiments of finite size).

  17. Feynman variance-to-mean in the context of passive neutron coincidence counting

    Energy Technology Data Exchange (ETDEWEB)

    Croft, S., E-mail: scroft@lanl.gov [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States); Favalli, A.; Hauck, D.K.; Henzlova, D.; Santi, P.A. [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States)

    2012-09-11

    Passive Neutron Coincidence Counting (PNCC) based on shift register autocorrelation time analysis of the detected neutron pulse train is an important Nondestructive Assay (NDA) method. It is used extensively in the quantification of plutonium and other spontaneously fissile materials for purposes of nuclear materials accountancy. In addition to the totals count rate, which is also referred to as the singles, gross or trigger rate, a quantity known as the reals coincidence rate, also called the pairs or doubles, is obtained from the difference between the measured neutron multiplicities in two measurement gates triggered by the incoming events on the pulse train. The reals rate is a measure of the number of time correlated pairs present on the pulse train and this can be related to the fission rates (and hence material mass) since fissions emit neutrons in bursts which are also detected in characteristic clusters. A closely related measurement objective is the determination of the reactivity of systems as they approach criticality. In this field an alternative autocorrelation signature is popular, the so called Feynman variance-to-mean technique which makes use of the multiplicity histogram formed the periodic, or clock-triggered opening of a coincidence gate. Workers in these two application areas share common challenges and improvement opportunities but are often separated by tradition, problem focus and technical language. The purpose of this paper is to recognize the close link between the Feynman variance-to-mean metric and traditional PNCC using shift register logic applied to correlated pulse trains. We, show using relationships for the late-gate (or accidentals) histogram recorded using a multiplicity shift register, how the Feynman Y-statistic, defined as the excess variance-to-mean ratio, can be expressed in terms of the singles and doubles rates familiar to the safeguards and waste assay communities. These two specialisms now have a direct bridge between

  18. Bosonization of non-relativistic fermions and W-infinity algebra

    International Nuclear Information System (INIS)

    Das, S.R.; Dhar, A.; Mandal, G.; Wadia, S.R.

    1992-01-01

    In this paper the authors discuss the bosonization of non-relativistic fermions in one-space dimension in terms of bilocal operators which are naturally related to the generators of W-infinity algebra. The resulting system is analogous to the problem of a spin in a magnetic field for the group W-infinity. The new dynamical variables turn out to be W-infinity group elements valued in the coset W-infinity/H where H is a Cartan subalgebra. A classical action with an H gauge invariance is presented. This action is three-dimensional. It turns out to be similar to the action that describes the color degrees of freedom of a Yang-Mills particle in a fixed external field. The authors also discuss the relation of this action with the one recently arrived at in the Euclidean continuation of the theory using different coordinates

  19. Electronic structure of FeTiSb using relativistic and scalar-relativistic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Sahariya, Jagrati [Department of Physics, Manipal University Jaipur, Jaipur-303007, Rajasthan (India); Mund, H. S., E-mail: hmoond@gmail.com [Department of Physics, M. L. Sukhadia University, Udaipur-313001, Rajasthan (India)

    2016-05-06

    Electronic and magnetic properties of FeTiSb have been reported. The calculations are performed using spin polarized relativistic Korringa-Kohn-Rostoker scheme based on Green’s function method. Within SPR-KKR a fully relativistic and scalar-relativistic approaches have been used to investigate electronic structure of FeTiSb. Energy bands, total and partial density of states, atom specific magnetic moment along with total moment of FeTiSb alloys are presented.

  20. Unlimited Relativistic Shock Surfing Acceleration

    International Nuclear Information System (INIS)

    Ucer, D.; Shapiro, V. D.

    2001-01-01

    Nonrelativistic shock surfing acceleration at quasiperpendicular shocks is usually considered to be a preacceleration mechanism for slow pickup ions to initiate diffusive shock acceleration. In shock surfing, the particle accelerates along the shock front under the action of the convective electric field of the plasma flow. However, the particle also gains kinetic energy normal to the shock and eventually escapes downstream. We consider the case when ions are accelerated to relativistic velocities. In this case, the ions are likely to be trapped for infinitely long times, because the energy of bounce oscillations tends to decrease during acceleration. This suggests the possibility of unlimited acceleration by shock surfing

  1. Modern Summation Methods and the Computation of 2- and 3-loop Feynman Diagrams

    International Nuclear Information System (INIS)

    Ablinger, Jakob; Bluemlein, Johannes; Klein, Sebastian; Schneider, Carsten

    2010-01-01

    By symbolic summation methods based on difference fields we present a general strategy that transforms definite multi-sums, e.g., in terms of hypergeometric terms and harmonic sums, to indefinite nested sums and products. We succeeded in this task with all our concrete calculations of 2-loop and 3-loop massive single scale Feynman diagrams with local operator insertion.

  2. Relativistic actions for bound-states and applications in the meson spectroscopy; Acoes relativisticas para estados ligados e aplicacoes na espectroscopia de mesons

    Energy Technology Data Exchange (ETDEWEB)

    Silva Carvalho, Hendly da

    1991-08-01

    We study relativistic equations for bound states of two-body systems using Dirac`s constraint formalism and supersymmetry. The two-body system can be of spinless particles, one of them spinning and the other one spinless, or both of them spinning. The interaction is described by scalar, timelike four-vector and spacelike four-vector potentials under Lorentz transformations. As an application we use the relativistic wave equation for two scalar particles and calculate the mass spectra of the mesons treating them as spinless quark-antiquark bound states. The interaction potential in this case is a convenient adaptation of the potential employed in non-relativistic calculations. Finally, we compare our results with more recent experimental data and with theoretical results obtained with the same potential used by us but with a non-relativistic wave equation. We also compare our results with results obtained with the relativistic wave equation but with a different interaction potential. (author). 38 refs, 9 figs, 8 tabs.

  3. Measurement of advanced electromagnetic radiation

    OpenAIRE

    Bajlo, Darko

    2017-01-01

    For the purpose of detecting advanced electromagnetic radiation predicted by Wheeler-Feynman absorber theory for the case of incomplete absorption of retarded electromagnetic radiation, pulses in duration of 6 ns to 24 ns, wavelength from 91 cm to 200 cm where supplied to three different transmitting antennas. Detection was done with a λ/20 monopole antenna in the advanced time window at a time 2r/c before the arrival of the center of the retarded pulse. At distances ranging from 430 cm to 18...

  4. An approach to the calculation of many-loop massless Feynman integrals

    International Nuclear Information System (INIS)

    Gorishnii, S.G.; Isaev, A.P.

    1985-01-01

    A generalization of the identity of dimensionless regular-zation is proposed. The generalization is used to divide the complete set of dimensionally (and analytically) regularized Feynman integrals with one external momentum into classes of equal integrals, and also for calculating some of them. A nontrivial symmetry of the propagator integrals is revealed, on the basis of which a complete system of functional equations for determining two-loop integrals is derived. Possible generalizations of these equations are discussed

  5. Euclidean quantum field theory and the Hawking effect

    International Nuclear Information System (INIS)

    Lapedes, A.S.

    1978-01-01

    Complex analytic continuation in a time variable in order to define a Feynman propagator is investigated in a general relativistic context. When external electric fields are present a complex analytic continuation in the electric charge is also introduced. The new Euclidean formalism is checked by reproducing Schwinger's special relativistic result for pair creation by an external, homogenous, electric field, and then applied to the Robinson-Bertotti universe. The Robinson-Bertotti universe, although unphysical, provides an interesting theoretical laboratory in which to investigate quantum effects, much as the unphysical Taub-NUT (Newman-Unti-Tamburino) universe does for purely classical general relativity. A conformally related problem of pair creation by a supercritically charged nucleus is also considered, and a sensible resolution is obtained to this classic problem. The essential mathematical point throughout is the use of the Feynman path-integral form of the propagator to motivate replacing hyperbolic equations by elliptic equations. The unique, bounded solution for the elliptic Green's function is then analytically continued back to physical values to define the Feynman Green's function

  6. Relativistic entanglement from relativistic quantum mechanics in the rest-frame instant form of dynamics

    International Nuclear Information System (INIS)

    Lusanna, Luca

    2011-01-01

    After a review of the problems induced by the Lorentz signature of Minkowski space-time, like the need of a clock synchronization convention for the definition of 3-space and the complexity of the notion of relativistic center of mass, there is the introduction of a new formulation of relativistic quantum mechanics compatible with the theory of relativistic bound states. In it the zeroth postulate of non-relativistic quantum mechanics is not valid and the physics is described in the rest frame by a Hilbert space containing only relative variables. The non-locality of the Poincare' generators imply a kinematical non-locality and non-separability influencing the theory of relativistic entanglement and not connected with the standard quantum non-locality.

  7. Quantum mechanics in the cold war; Quantenmechanik im Kalten Krieg. David Bohm und Richard Feynman

    Energy Technology Data Exchange (ETDEWEB)

    Forstner, C.

    2007-07-01

    In the middle of the 20th century David Bohm and Richard Feynman developed two fundamentally different approaches of modern quantum mechanics: Bohm a realistic interpretation by means of hidden parameters and Feynman the path-integral formalism. This is by this more remarakable, because both physicists started from similar conditions and originated from similar connections. By its comparing approach this study presents more than a contribution to the history of the quantum theory. By the question for the social and cultural conditions of the formation of theories it is furthermore of science-sociological and science-theoretical interest. The in the beginning similar and later different binding of both scientists into the scientific community allows furthermore to study, which adapting pressure each group puts on the individual scientist and the fundamental parts of his research, and which new degrees of freedom in the formation of theories arise, when this constraint is cancelled.

  8. Improved parametrization of K+ production in p-Be collisions at low energy using Feynman scaling

    International Nuclear Information System (INIS)

    Mariani, C.; Cheng, G.; Shaevitz, M. H.; Conrad, J. M.

    2011-01-01

    This paper describes an improved parametrization for proton-beryllium production of secondary K + mesons for experiments with primary proton beams from 8.89 to 24 GeV/c. The parametrization is based on Feynman scaling in which the invariant cross section is described as a function of x F and p T . This method is theoretically motivated and provides a better description of the energy dependence of kaon production at low beam energies than other parametrizations such as the commonly used modified Sanford-Wang model. This Feynman scaling parametrization has been used for the simulation of the neutrino flux from the Booster Neutrino Beam at Fermilab and has been shown to agree with the neutrino interaction data from the SciBooNE experiment. This parametrization will also be useful for future neutrino experiments with low primary beam energies, such as those planned for the Project X accelerator.

  9. Newtonian hydrodynamic equations with relativistic pressure and velocity

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Fabris, Júlio; Piattella, Oliver F.; Zimdahl, Winfried, E-mail: jchan@knu.ac.kr, E-mail: hr@kasi.re.kr, E-mail: fabris@pq.cnpq.br, E-mail: oliver.piattella@pq.cnpq.br, E-mail: winfried.zimdahl@pq.cnpq.br [Departamento de Fisica, Universidade Federal do Espirito Santo, Vitória (Brazil)

    2016-07-01

    We present a new approximation to include fully general relativistic pressure and velocity in Newtonian hydrodynamics. The energy conservation, momentum conservation and two Poisson's equations are consistently derived from Einstein's gravity in the zero-shear gauge assuming weak gravity and action-at-a-distance limit. The equations show proper special relativity limit in the absence of gravity. Our approximation is complementary to the post-Newtonian approximation and the equations are valid in fully nonlinear situations.

  10. Classical trajectory in non-relativistic scattering

    International Nuclear Information System (INIS)

    Williams, A.C.

    1978-01-01

    With the statistical interpretation of quantum mechanics as a guide, the classical trajectory is incorporated into quantum scattering theory. The Feynman path integral formalism is used as a starting point, and classical transformation theory is applied to the phase of the wave function so derived. This approach is then used to derive an expression for the scattering amplitude for potential scattering. It is found that the amplitude can be expressed in an impact parameter representation similar to the Glauber formalism. Connections are then made to the Glauber approximation and to semiclassical approximations derived from the Feynman path integral formalism. In extending this analysis to projectile-nucleus scattering, an approximation scheme is given with the first term being the same as in Glauber's multiple scattering theory. Higher-order approximations, thus, are found to give corrections to the fixed scatterer form of the impulse approximation inherent in the Glauber theory

  11. Numerical Feynman integrals with physically inspired interpolation: Faster convergence and significant reduction of computational cost

    Directory of Open Access Journals (Sweden)

    Nikesh S. Dattani

    2012-03-01

    Full Text Available One of the most successful methods for calculating reduced density operator dynamics in open quantum systems, that can give numerically exact results, uses Feynman integrals. However, when simulating the dynamics for a given amount of time, the number of time steps that can realistically be used with this method is always limited, therefore one often obtains an approximation of the reduced density operator at a sparse grid of points in time. Instead of relying only on ad hoc interpolation methods (such as splines to estimate the system density operator in between these points, I propose a method that uses physical information to assist with this interpolation. This method is tested on a physically significant system, on which its use allows important qualitative features of the density operator dynamics to be captured with as little as two time steps in the Feynman integral. This method allows for an enormous reduction in the amount of memory and CPU time required for approximating density operator dynamics within a desired accuracy. Since this method does not change the way the Feynman integral itself is calculated, the value of the density operator approximation at the points in time used to discretize the Feynamn integral will be the same whether or not this method is used, but its approximation in between these points in time is considerably improved by this method. A list of ways in which this proposed method can be further improved is presented in the last section of the article.

  12. Relativistic Descriptions of Few-Body Systems

    International Nuclear Information System (INIS)

    Karmanov, V. A.

    2011-01-01

    A brief review of relativistic effects in few-body systems, of theoretical approaches, recent developments and applications is given. Manifestations of relativistic effects in the binding energies, in the electromagnetic form factors and in three-body observables are demonstrated. The three-body forces of relativistic origin are also discussed. We conclude that relativistic effects in nuclei can be important in spite of small binding energy. At high momenta they clearly manifest themselves and are necessary to describe the deuteron e.m. form factors. At the same time, there is still a discrepancy in three-body observables which might be a result of less clarity in understanding the corresponding relativistic effects, the relativistic NN kernel and the three-body forces. Relativistic few-body physics remains to be a field of very intensive and fruitful researches. (author)

  13. Modern summation methods and the computation of 2- and 3-loop Feynman diagrams

    International Nuclear Information System (INIS)

    Ablinger, Jakob; Schneider, Carsten; Bluemlein, Johannes; Klein, Sebastian

    2010-06-01

    By symbolic summation methods based on difference fields we present a general strategy that transforms definite multi-sums, e.g., in terms of hypergeometric terms and harmonic sums, to indefinite nested sums and products. We succeeded in this task with all our concrete calculations of 2-loop and 3-loop massive single scale Feynman diagrams with local operator insertion. (orig.)

  14. Modern summation methods and the computation of 2- and 3-loop Feynman diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, Jakob; Schneider, Carsten [Linz Univ. (AT). Research Inst. for Symbolic Computation (RISC); Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Klein, Sebastian [RWTH Aachen (Germany). Inst. fuer Theoretische Teilchenphysik und Kosmologie

    2010-06-15

    By symbolic summation methods based on difference fields we present a general strategy that transforms definite multi-sums, e.g., in terms of hypergeometric terms and harmonic sums, to indefinite nested sums and products. We succeeded in this task with all our concrete calculations of 2-loop and 3-loop massive single scale Feynman diagrams with local operator insertion. (orig.)

  15. ON-SHELL IMPROVEMENT OF THE MASSIVE WILSON QUARK ACTION.

    Energy Technology Data Exchange (ETDEWEB)

    AOKI, S.; KAYABA, Y.; KURAMASHI, Y.; YAMADA, N.

    2005-04-01

    We review a relativistic approach to the heavy quark physics in lattice QCD by applying a relativistic O(a) improvement to the massive Wilson quark action on the lattice. After explaining how power corrections of m{sub Q}a can be avoided and remaining uncertainties are reduced to be of order (a{Lambda}{sub QCD}){sup 2}, we demonstrate a determination of four improvement coefficients in the action up to one-loop level in a mass dependent way. We also show a perturbative determination of mass dependent renormalization factors and O(a) improvement coefficients for the vector and axial vector currents. Some preliminary results of numerical simulations are also presented.

  16. Sensitivity of relativistic impulse approximation proton-nucleus elastic scattering calculations on relativistic mean-field parameterizations

    International Nuclear Information System (INIS)

    Hojsik, M.; Gmuca, S.

    1998-01-01

    Relativistic microscopic calculations are presented for proton elastic scattering from 40 Ca at 500 MeV. The underlying target densities are calculated within the framework of the relativistic mean-field theory with several parameter sets commonly in use. The self consistency of the scalar and vector densities (and thus to relativistic mean-field parameters) is investigated. Recently, the relativistic impulse approximation (RIA) has been widely and repeatedly used for the calculations of proton-nucleus scattering at intermediate energies. These calculations have exhibited significant improvements over the nonrelativistic approaches. The relativistic impulse approximation calculations. in particular, provide a dramatically better description of the spin observables, namely the analyzing power, A y , and the spin-rotation function, Q, at least for energies higher than 400 MeV. In the relativistic impulse approximation, the Dirac optical potential is obtained by folding of the local Lorentz-invariant amplitudes with the corresponding nuclear densities. For the spin zero targets the scalar and vector terms give the dominant contributions. Thus the scalar and vector nuclear densities (both, proton and neutron ones) play the dominant role in the relativistic impulse approximation. While the proton vector densities can be obtained by unfolding from the empirically known charge densities, all other densities used rely to a great extent on theoretical models. The various recipes are used to construct the neutron vector densities and the scalar densities for both, neutrons and protons. In this paper we will study the sensitivity of the relativistic impulse approximation results on the various sets of relativistic mean-field parameters currently in use

  17. Information and interaction Eddington, Wheeler, and the limits of knowledge

    CERN Document Server

    Rickles, Dean

    2017-01-01

    In this essay collection, leading physicists, philosophers, and historians attempt to fill the empty theoretical ground in the foundations of information and address the related question of the limits to our knowledge of the world. Over recent decades, our practical approach to information and its exploitation has radically outpaced our theoretical understanding - to such a degree that reflection on the foundations may seem futile. But it is exactly fields such as quantum information, which are shifting the boundaries of the physically possible, that make a foundational understanding of information increasingly important. One of the recurring themes of the book is the claim by Eddington and Wheeler that information involves interaction and putting agents or observers centre stage. Thus, physical reality, in their view, is shaped by the questions we choose to put to it and is built up from the information residing at its core. This is the root of Wheeler’s famous phrase “it from bit.” After reading the s...

  18. Relativistic rapprochement of weak and strong interactions

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1995-01-01

    On the basis of the relativistic Yukawa potentials for the nuclear (quark) field and the field of intermediate vector W-, Z-bosons, it is shown that the interactions described by them increase differently with growing velocity (the weak one increases more rapidly). According to the estimates, they are compared (at distances of the 'action radius' of nuclear forces) at an energy of about 10 12 GeV (10 6 GeV for the pion field) what is smaller than the corresponding value in the model of 'grand unification'. 3 refs., 2 tabs

  19. Bremsstrahlung from relativistic heavy ions in matter

    DEFF Research Database (Denmark)

    Sørensen, Allan Hvidkjær

    2010-01-01

    The emission of electromagnetic radiation by relativistic bare heavy ions penetrating ordinary matter is investigated. Our main aim is to determine the bremsstrahlung which we define as the radiation emitted when the projectile does not break up. It pertains to collisions without nuclear contact....... As a result of its relative softness, bremsstrahlung never dominates the energy-loss process for heavy ions. As to the emission of electromagnetic radiation in collisions with nuclear break-up, it appears modest when pertaining to incoherent action of the projectile nucleons in noncontact collisions...

  20. Feynman diagrams sampling for quantum field theories on the QPACE 2 supercomputer

    Energy Technology Data Exchange (ETDEWEB)

    Rappl, Florian

    2016-08-01

    This work discusses the application of Feynman diagram sampling in quantum field theories. The method uses a computer simulation to sample the diagrammatic space obtained in a series expansion. For running large physical simulations powerful computers are obligatory, effectively splitting the thesis in two parts. The first part deals with the method of Feynman diagram sampling. Here the theoretical background of the method itself is discussed. Additionally, important statistical concepts and the theory of the strong force, quantum chromodynamics, are introduced. This sets the context of the simulations. We create and evaluate a variety of models to estimate the applicability of diagrammatic methods. The method is then applied to sample the perturbative expansion of the vertex correction. In the end we obtain the value for the anomalous magnetic moment of the electron. The second part looks at the QPACE 2 supercomputer. This includes a short introduction to supercomputers in general, as well as a closer look at the architecture and the cooling system of QPACE 2. Guiding benchmarks of the InfiniBand network are presented. At the core of this part, a collection of best practices and useful programming concepts are outlined, which enables the development of efficient, yet easily portable, applications for the QPACE 2 system.

  1. The relativistic virial theorem

    International Nuclear Information System (INIS)

    Lucha, W.; Schoeberl, F.F.

    1989-11-01

    The relativistic generalization of the quantum-mechanical virial theorem is derived and used to clarify the connection between the nonrelativistic and (semi-)relativistic treatment of bound states. 12 refs. (Authors)

  2. Feynman graph derivation of Einstein quadrupole formula

    International Nuclear Information System (INIS)

    Dass, N.D.H.; Soni, V.

    1980-11-01

    The one graviton transition operator, and consequently, the classical energy loss formula for gravitational radiation are derived from the Feynman graphs of helicity +- 2 theories of gravitation. The calculations are done both for the case of electromagnetic and gravitational scattering. The departure of the in and out states from plane waves owing to the long range nature of gravitation is taken into account to improve the Born approximation calculations. This also includes a long range modification of the graviton wave function which is shown to be equivalent to the classical problem of the true light cones deviating logarithmically at large distances from the flat space light cones. The transition from the S-matrix elements calculated graphically to the graviton transition operator is done by using complimentarity of space-time and momentum descriptions. The energy loss formula derived originally by Einstein is shown to be correct. (Auth.)

  3. Contraint's theory and relativistic dynamics

    International Nuclear Information System (INIS)

    Longhi, G.; Lusanna, L.

    1987-01-01

    The purpose of this Workshop was to examine the current situation of relativistic dynamics. In particular, Dirac-Bergmann's theory of constraints, which lies at the heart of gauge theories, general relativity, relativistic mechanics and string theories, was chosen as the unifying theoretical framework best suited to investigate such a field. The papers discussed were on general relativity; relativistic mechanics; particle physics and mathematical physics. Also discussed were the problems of classical and quantum level, namely the identification of the classical observables of constrained systems, the equivalence of the nonequivalence of the various ways to quantize such systems; the problem of the anomalies; the best geometrical approach to the theory of constraints; the possibility of unifying all the treatments of relativistic mechanics. This book compiles the papers presented at proceedings of relativistic dynamics and constraints theory

  4. Multiwavelength Observations of Relativistic Jets from General Relativistic Magnetohydrodynamic Simulations

    Directory of Open Access Journals (Sweden)

    Richard Anantua

    2018-03-01

    Full Text Available This work summarizes a program intended to unify three burgeoning branches of the high-energy astrophysics of relativistic jets: general relativistic magnetohydrodynamic (GRMHD simulations of ever-increasing dynamical range, the microphysical theory of particle acceleration under relativistic conditions, and multiwavelength observations resolving ever-decreasing spatiotemporal scales. The process, which involves converting simulation output into time series of images and polarization maps that can be directly compared to observations, is performed by (1 self-consistently prescribing models for emission, absorption, and particle acceleration and (2 performing time-dependent polarized radiative transfer. M87 serves as an exemplary prototype for this investigation due to its prominent and well-studied jet and the imminent prospect of learning much more from Event Horizon Telescope (EHT observations this year. Synthetic observations can be directly compared with real observations for observational signatures such as jet instabilities, collimation, relativistic beaming, and polarization. The simplest models described adopt the standard equipartition hypothesis; other models calculate emission by relating it to current density or shear. These models are intended for application to the radio jet instead of the higher frequency emission, the disk and the wind, which will be subjects of future investigations.

  5. Use of Dirac-Coulomb Sturmians of the first-order for relativistic calculations of two-photon bound-bound transition amplitudes in hydrogenic-like ions

    International Nuclear Information System (INIS)

    Tetchou Nganso, H.M.; Kwato Njock, M.G.

    2005-08-01

    A fully relativistic treatment of the S-matrix elements describing two-photon bound-bound transition amplitudes in hydrogenic-like ions is undertaken in the present work. Several selected transitions from the ground state vertical bar 1 2 S> towards the L and M shells (vertical bar 2 2 S>, vertical bar 3 2 S>,vertical bar 3 2 D 1/2 >, and vertical bar 3 2 D 5/2 ) are described. For that purpose, we use the complete set of relativistic Sturmian functions derived by Szmytkowski from the first-order Sturm- Liouville problems for the Dirac equation. The method followed consists in writing the matrix elements in terms of Green functions expanded over the first-order Dirac-Coulomb Sturmians. Previous approaches used the Sturmian basis associated with the Gell-Mann-Feynman equation. However these latter second-order Sturmian functions do not form a complete set and cannot rigorously describe the process under study. On the other hand, a distinctive feature of our tensor treatment is that the expressions derived are quite general and could be applied to any multipole of the two photon bound-bound transitions. In the case of dipole transitions considered by Szymanowski et al., in their calculations, the selection rules derived from our method lead to two additional terms related to l lp =2 and l 2p =2. (author)

  6. Feynman quasi probability distribution for spin-(1/2), and its generalizations

    International Nuclear Information System (INIS)

    Colucci, M.

    1999-01-01

    It has been examined the Feynman's paper Negative probability, in which, after a discussion about the possibility of attributing a real physical meaning to quasi probability distributions, he introduces a new kind of distribution for spin-(1/2), with a possible method of generalization to systems with arbitrary number of states. The principal aim of this article is to shed light upon the method of construction of these distributions, taking into consideration their application to some experiments, and discussing their positive and negative aspects

  7. An introduction to relativistic hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Font, Jose A [Departamento de AstronomIa y AstrofIsica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot (Valencia) (Spain)

    2007-11-15

    We review formulations of the equations of (inviscid) general relativistic hydrodynamics and (ideal) magnetohydrodynamics, along with methods for their numerical solution. Both systems can be cast as first-order, hyperbolic systems of conservation laws, following the explicit choice of an Eulerian observer and suitable fluid and magnetic field variables. During the last fifteen years, the so-called (upwind) high-resolution shock-capturing schemes based on Riemann solvers have been successfully extended from classical to relativistic fluid dynamics, both special and general. Nowadays, general relativistic hydrodynamical simulations in relativistic astrophysics are routinely performed, particularly within the test-fluid approximation but also for dynamical spacetimes. While such advances also hold true in the case of the MHD equations, the astrophysical applications investigated so far are still limited, yet the field is bound to witness major developments in the near future. The article also presents a brief overview of numerical techniques, providing state-of-the-art examples of their applicability to general relativistic fluids and magneto-fluids in characteristic scenarios of relativistic astrophysics.

  8. Plasma relativistic microwave electronics

    International Nuclear Information System (INIS)

    Kuzelev, M.V.; Loza, O.T.; Rukhadze, A.A.; Strelkov, P.S.; Shkvarunets, A.G.

    2001-01-01

    One formulated the principles of plasma relativistic microwave electronics based on the induced Cherenkov radiation of electromagnetic waves at interaction of a relativistic electron beam with plasma. One developed the theory of plasma relativistic generators and accelerators of microwave radiation, designed and studied the prototypes of such devices. One studied theoretically the mechanisms of radiation, calculated the efficiencies and the frequency spectra of plasma relativistic microwave generators and accelerators. The theory findings are proved by the experiment: intensity of the designed sources of microwave radiation is equal to 500 μW, the frequency of microwave radiation is increased by 7 times (from 4 up to 28 GHz), the width of radiation frequency band may vary from several up to 100%. The designed sources of microwave radiation are no else compared in the electronics [ru

  9. Mécanique quantique relativiste théories de jauge : cours et exercices corrigés

    CERN Document Server

    Klasen, Michael

    2009-01-01

    Avec la mise en service du plus grand accélérateur du monde, le LHC au CERN, cet ouvrage propose de manière pertinente une introduction pédagogique aux théories décrivant les particules élémentaires à haute énergie. Des rappels de relativité restreinte et du formalisme de Lagrange et Hamilton permettent d'établir une base commune et une notation covariante. Sont ensuite présentées la mécanique quantique relativiste avec les équations de Klein-Gordon et de Dirac, les fonctions de Green et les propagateurs, les théories de jauge abéliennes, comme l'électrodynamique quantique (QED), et non-abéliennes, comme la chromodynamique quantique (QCD), et le mécanisme de Higgs. Les règles de Feynman, qui en sont déduites, offrent une description intuitive sur les interactions entre les constituants fondamentaux et un outil de calcul efficace pour les processus physiques. Chaque chapitre se termine par une série d'exercices corrigés. Le cours reste accessible aux étudiants de master qui ne souhait...

  10. Relativistic Quantum Mechanics

    International Nuclear Information System (INIS)

    Antoine, J-P

    2004-01-01

    The aim of relativistic quantum mechanics is to describe the finer details of the structure of atoms and molecules, where relativistic effects become nonnegligible. It is a sort of intermediate realm, between the familiar nonrelativistic quantum mechanics and fully relativistic quantum field theory, and thus it lacks the simplicity and elegance of both. Yet it is a necessary tool, mostly for quantum chemists. Pilkuhn's book offers to this audience an up-to-date survey of these methods, which is quite welcome since most previous textbooks are at least ten years old. The point of view of the author is to start immediately in the relativistic domain, following the lead of Maxwell's equations rather than classical mechanics, and thus to treat the nonrelativistic version as an approximation. Thus Chapter 1 takes off from Maxwell's equations (in the noncovariant Coulomb gauge) and gradually derives the basic aspects of Quantum Mechanics in a rather pedestrian way (states and observables, Hilbert space, operators, quantum measurement, scattering,. Chapter 2 starts with the Lorentz transformations, then continues with the Pauli spin equation and the Dirac equation and some of their applications (notably the hydrogen atom). Chapter 3 is entitled 'Quantum fields and particles', but falls short of treating quantum field theory properly: only creation/annihilation operators are considered, for a particle in a box. The emphasis is on two-electron states (the Pauli principle, the Foldy--Wouthuysen elimination of small components of Dirac spinors, Breit projection operators. Chapter 4 is devoted to scattering theory and the description of relativistic bound states. Chapter 5, finally, covers hyperfine interactions and radiative corrections. As we said above, relativistic quantum mechanics is by nature limited in scope and rather inelegant and Pilkuhn's book is no exception. The notation is often heavy (mostly noncovariant) and the mathematical level rather low. The central topic

  11. Relativistic particle in a box

    OpenAIRE

    Alberto, P.; Fiolhais, Carlos; Gil, Victor

    1996-01-01

    The problem of a relativistic spin 1/2 particle confined to a one-dimensional box is solved in a way that resembles closely the solution of the well known quantum-mechanical textbook problem of a non-relativistic particle in a box. The energy levels and probability density are computed and compared with the non-relativistic case

  12. Some remarks on Feynman rules for non-commutative gauge theories based on groups G≠U(N)

    International Nuclear Information System (INIS)

    Dorn, Harald; Sieg, Christoph

    2002-01-01

    We study for subgroups G is a subset of U(N) partial summations of the θ-expanded perturbation theory. On diagrammatic level a summation procedure is established, which in the U(N) case delivers the full star-product induced rules. Thereby we uncover a cancellation mechanism between certain diagrams, which is crucial in the U(N) case, but set out of work for G is a subset of U(N). In addition, an explicit proof is given that for G is a subset of U(N), G≠U(M), M< N there is no partial summation of the θ-expanded rules resulting in new Feynman rules using the U(N) star-product vertices and besides suitable modified propagators at most a finite number of additional building blocks. Finally, we show that certain SO(N) Feynman rules conjectured in the literature cannot be derived from the enveloping algebra approach. (author)

  13. Relativistic hydrodynamics

    CERN Document Server

    Luciano, Rezzolla

    2013-01-01

    Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...

  14. Infrared finite ghost propagator in the Feynman gauge

    International Nuclear Information System (INIS)

    Aguilar, A. C.; Papavassiliou, J.

    2008-01-01

    We demonstrate how to obtain from the Schwinger-Dyson equations of QCD an infrared finite ghost propagator in the Feynman gauge. The key ingredient in this construction is the longitudinal form factor of the nonperturbative gluon-ghost vertex, which, contrary to what happens in the Landau gauge, contributes nontrivially to the gap equation of the ghost. The detailed study of the corresponding vertex equation reveals that in the presence of a dynamical infrared cutoff this form factor remains finite in the limit of vanishing ghost momentum. This, in turn, allows the ghost self-energy to reach a finite value in the infrared, without having to assume any additional properties for the gluon-ghost vertex, such as the presence of massless poles. The implications of this result and possible future directions are briefly outlined

  15. Study of quantum spin correlations of relativistic electron pairs - Testing nonlocality of relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Bodek, K.; Rozpędzik, D.; Zejma, J.; Caban, P.; Rembieliński, J.; Włodarczyk, M.; Ciborowski, J.; Enders, J.; Köhler, A.; Kozela, A.

    2013-01-01

    The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass

  16. Sociodemographic factors associated with aggressive driving behaviors of 3-wheeler taxi drivers in Sri Lanka.

    Science.gov (United States)

    Akalanka, Ediriweera Chintana; Fujiwara, Takeo; Desapriya, Ediriweera; Peiris, Dinithi C; Scime, Giulia

    2012-01-01

    Little is known about the nature and scope of aggressive driving in developing countries. The objective of this study is to specifically examine the sociodemographic factors associated with aggressive driving behavior among 3-wheeler taxi drivers in Sri Lanka. Convenience samples of 3-wheeler taxi drivers from Rathnapura, Ahaliyagoda, Sri Lanka were surveyed from June to August 2006. Analyses included bivariate and multivariate logistic regression. Drivers with less than high school education were 3.5 times more likely to drive aggressively (odds ratio [OR] = 3.46; 95% confidence interval [CI] = 1.08, 11.1). Single drivers were 9 times more likely to run red lights (OR = 8.74; 95% CI = 2.18, 35.0), and being single was a major risk factor for drunk driving (OR = 4.80; 95% CI = 1.23, 18.7). Furthermore, high school completers were 4 times more likely to bribe a policeman (OR = 4.27; 95% CI = 1.23, 14.9) when caught violating the road rules. Aggressive driving and risk-taking behavior are amenable to policy initiatives, and preventive programs targeted at key groups could be used to improve road safety in Sri Lanka. This study demonstrates that aggressive driving behavior is associated with sociodemographic factors, including the level of education, marital status, and other socioeconomic factors. Hence, economic factors should be addressed to find solutions to traffic-related issues. It will be the government's and policy makers' responsibility to try and understand the economic factors behind risky road behavior and bribe-taking behavior prior to legislating or enforcing new laws.

  17. Effective action for reggeized gluons, classical gluon field of relativistic color charge and color glass condensate approach

    Energy Technology Data Exchange (ETDEWEB)

    Bondarenko, S.; Prygarin, A. [Ariel University, Physics Department, Ariel (Israel); Lipatov, L. [St. Petersburg Nuclear Physics Institute, Saint Petersburg (Russian Federation); Hamburg University, II Institute of Theoretical Physics, Hamburg (Germany)

    2017-08-15

    We discuss application of formalism of small-x effective action for reggeized gluons (Gribov, Sov. Phys. JETP 26:414, 1968; Lipatov, Nucl. Phys. B 452:369, 1995; Lipatov, Phys. Rep. 286:131, 1997; Lipatov, Subnucl. Ser. 49:131, 2013; Lipatov, Int. J. Mod. Phys. Conf. Ser. 39:1560082, 2015; Lipatov, Int. J. Mod. Phys. A 31(28/29):1645011, 2016; Lipatov, EPJ Web Conf. 125:01010, 2016; Lipatov, Sov. J. Nucl. Phys. 23:338, 1976; Kuraev et al., Sov. Phys. JETP 45:199, 1977; Kuraev et al., Zh Eksp, Teor. Fiz. 72:377, 1977; Balitsky and Lipatov, Sov. J. Nucl. Phys. 28:822, 1978; Balitsky and Lipatov, Yad. Fiz. 28:1597 1978), for the calculation of classical gluon field of relativistic color charge, similarly to that done in CGC approach of McLerran and Venugopalan, Phys. Rev. D 49:2233 (1994), Jalilian-Marian et al., Phys. Rev. D 55:5414 (1997), Jalilian-Marian et al., Nucl. Phys. B 504:415 (1997), Jalilian-Marian et al., Phys. Rev. D 59:014014 (1998), Jalilian-Marian et al., Phys. Rev. D 59:014015 (1998), Iancu et al., Nucl. Phys. A 692:583 (2001), Iancu et al., Phys. Lett. B 510:133 (2001), Ferreiro et al., Nucl. Phys. A 703:489 (2002). The equations of motion with the reggeon fields are solved in LO and NLO approximations and new solutions are found. The results are compared to the calculations performed in the CGC framework and it is demonstrated that the LO CGC results for the classical field are reproduced in our calculations. Possible applications of the NLO solution in the effective action and CGC frameworks are discussed as well. (orig.)

  18. Relativistic viscoelastic fluid mechanics

    International Nuclear Information System (INIS)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-01-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  19. Relativistic viscoelastic fluid mechanics.

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  20. Mellin-Barnes meets Method of Brackets: a novel approach to Mellin-Barnes representations of Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Prausa, Mario [RWTH Aachen University, Institute for Theoretical Particle Physics and Cosmology, Aachen (Germany)

    2017-09-15

    In this paper, we present a new approach to the construction of Mellin-Barnes representations for Feynman integrals inspired by the Method of Brackets. The novel technique is helpful to lower the dimensionality of Mellin-Barnes representations in complicated cases, some examples are given. (orig.)

  1. Relativistic Coulomb Fission

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.

  2. Relativistic Shock Acceleration

    International Nuclear Information System (INIS)

    Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.

    1999-01-01

    In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)

  3. Dark-matter bound states from Feynman diagrams

    NARCIS (Netherlands)

    Petraki, K.; Postma, M.; Wiechers, M.

    2015-01-01

    If dark matter couples directly to a light force mediator, then it may form bound states in the early universe and in the non-relativistic environment of haloes today. In this work, we establish a field-theoretic framework for the computation of bound-state formation cross-sections, de-excitation

  4. Occurrence of parsonite, a secondary uranium mineral, in alaskite of the Wheeler Creek pluton, Alaska

    International Nuclear Information System (INIS)

    Miller, T.P.; Johnson, B.

    1978-01-01

    Reconnaissance investigations in the Purcell Mountains of westcentral Alaska in 1977 revealed the presence of parsonite, a hydrous phosphate of lead and uranium with the formula Pb 2 UO 2 (PO 4 ) 2 2H 2 O. This is the first reported occurrence of parsonite in Alaska. The parsonite occurs as a soft, yellow to chocolate brown coating closely associated with green muscovite on fracture surfaces in a shear zone in alaskite of the Wheeler Creek pluton. Thin magnetite veinlets are also present. The identification of parsonite was confirmed by x-ray diffraction. Delayed neutron analysis were run on samples of the Alaskite

  5. Modified Feynman ratchet with velocity-dependent fluctuations

    Directory of Open Access Journals (Sweden)

    Jack Denur

    2004-03-01

    Full Text Available Abstract: The randomness of Brownian motion at thermodynamic equilibrium can be spontaneously broken by velocity-dependence of fluctuations, i.e., by dependence of values or probability distributions of fluctuating properties on Brownian-motional velocity. Such randomness-breaking can spontaneously obtain via interaction between Brownian-motional Doppler effects --- which manifest the required velocity-dependence --- and system geometrical asymmetry. A non random walk is thereby spontaneously superposed on Brownian motion, resulting in a systematic net drift velocity despite thermodynamic equilibrium. The time evolution of this systematic net drift velocity --- and of velocity probability density, force, and power output --- is derived for a velocity-dependent modification of Feynman's ratchet. We show that said spontaneous randomness-breaking, and consequent systematic net drift velocity, imply: bias from the Maxwellian of the system's velocity probability density, the force that tends to accelerate it, and its power output. Maximization, especially of power output, is discussed. Uncompensated decreases in total entropy, challenging the second law of thermodynamics, are thereby implied.

  6. Scattering in relativistic particle mechanics

    International Nuclear Information System (INIS)

    De Bievre, S.

    1986-01-01

    The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis the authors studied scattering in the relativistic two-body problem. He uses the results to analyze gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. A general geometric framework that underlies approaches to relativistic particle mechanics is presented and the kinematic properties of the scattering transformation, i.e., those properties that arise solely from the invariance of the theory under the Poincare group are studied. The second part of the analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Using general geometric arguments, gauge invariance of the scattering transformation in the Todorov-Komar Hamiltonian constraint model is proved. Finally, quantization of the models is discussed

  7. Non-negative Feynman endash Kac kernels in Schroedinger close-quote s interpolation problem

    International Nuclear Information System (INIS)

    Blanchard, P.; Garbaczewski, P.; Olkiewicz, R.

    1997-01-01

    The local formulations of the Markovian interpolating dynamics, which is constrained by the prescribed input-output statistics data, usually utilize strictly positive Feynman endash Kac kernels. This implies that the related Markov diffusion processes admit vanishing probability densities only at the boundaries of the spatial volume confining the process. We discuss an extension of the framework to encompass singular potentials and associated non-negative Feynman endash Kac-type kernels. It allows us to deal with a class of continuous interpolations admitted by general non-negative solutions of the Schroedinger boundary data problem. The resulting nonstationary stochastic processes are capable of both developing and destroying nodes (zeros) of probability densities in the course of their evolution, also away from the spatial boundaries. This observation conforms with the general mathematical theory (due to M. Nagasawa and R. Aebi) that is based on the notion of multiplicative functionals, extending in turn the well known Doob close-quote s h-transformation technique. In view of emphasizing the role of the theory of non-negative solutions of parabolic partial differential equations and the link with open-quotes Wiener exclusionclose quotes techniques used to evaluate certain Wiener functionals, we give an alternative insight into the issue, that opens a transparent route towards applications.copyright 1997 American Institute of Physics

  8. Equivalence between the Arquès-Walsh sequence formula and the number of connected Feynman diagrams for every perturbation order in the fermionic many-body problem

    Science.gov (United States)

    Castro, E.

    2018-02-01

    From the perturbative expansion of the exact Green function, an exact counting formula is derived to determine the number of different types of connected Feynman diagrams. This formula coincides with the Arquès-Walsh sequence formula in the rooted map theory, supporting the topological connection between Feynman diagrams and rooted maps. A classificatory summing-terms approach is used, in connection to discrete mathematical theory.

  9. Relativistic gravitation theory

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1984-01-01

    On the basis of the special relativity and geometrization principle a relativistic gravitation theory (RGT) is unambiguously constructed with the help of a notion of a gravitational field as a physical field in Faraday-Maxwell spirit, which posesses energy momentum and spins 2 and 0. The source of gravitation field is a total conserved energy-momentum tensor for matter and for gravitation field in Minkowski space. In the RGT conservation laws for the energy momentum and angular momentum of matter and gravitational field hold rigorously. The theory explains the whole set of gravitation experiments. Here, due to the geometrization principle the Riemannian space is of a field origin since this space arises effectively as a result of the gravitation field origin since this space arises effectively as a result of the gravitation field action on the matter. The RGT astonishing prediction is that the Universe is not closed but ''flat''. It means that in the Universe there should exist a ''missing'' mass in some form of matter

  10. Relativistic finite-temperature Thomas-Fermi model

    Science.gov (United States)

    Faussurier, Gérald

    2017-11-01

    We investigate the relativistic finite-temperature Thomas-Fermi model, which has been proposed recently in an astrophysical context. Assuming a constant distribution of protons inside the nucleus of finite size avoids severe divergence of the electron density with respect to a point-like nucleus. A formula for the nuclear radius is chosen to treat any element. The relativistic finite-temperature Thomas-Fermi model matches the two asymptotic regimes, i.e., the non-relativistic and the ultra-relativistic finite-temperature Thomas-Fermi models. The equation of state is considered in detail. For each version of the finite-temperature Thomas-Fermi model, the pressure, the kinetic energy, and the entropy are calculated. The internal energy and free energy are also considered. The thermodynamic consistency of the three models is considered by working from the free energy. The virial question is also studied in the three cases as well as the relationship with the density functional theory. The relativistic finite-temperature Thomas-Fermi model is far more involved than the non-relativistic and ultra-relativistic finite-temperature Thomas-Fermi models that are very close to each other from a mathematical point of view.

  11. Relativistic description of atomic nuclei

    International Nuclear Information System (INIS)

    Krutov, V.A.

    1985-01-01

    Papers on the relativistic description of nuclei are reviewed. The Brown and Rho ''small'' bag'' model is accepted for hardrons. Meson exchange potentials of the nucleon-nucleon interaction have been considered. Then the transition from a system of two interacting nucleons has been performed to the relativistic nucleus description as a multinucleon system on the basis of OBEP (one-boson exchange potential). The proboem of OPEP (one-pion-exchange potential) inclusion to a relativistic scheme is discussed. Simplicity of calculations and attractiveness of the Walecka model for specific computations and calculations was noted. The relativistic model of nucleons interacting through ''effective'' scalar and vector boson fields was used in the Walacka model for describing neutronaand nuclear mater matters

  12. Situation report: Heavy DDT contamination at Wheeler National Wildlife Refuge

    Science.gov (United States)

    Fleming, W.J.; Atkeson, T.Z.

    1980-01-01

    A DDT manufacturing plant that operated on the Redstone Arsenal near Huntsville, Alabama discharged DDT-Iaden effluent from 1947 to 1970 into a creek on Wheeler National Wildlife Refuge. Seven to 9 years after the plant closed, high DDT, DDE, and DDD levels were reported in soils, river sediments, and fish in the area. Eleven of 27 mallards (Anas platyrhynchos) collected on the Refuge during February 1979 had carcass DDE residues that exceeded levels associated with eggshell thinning. DDE residues in a smaller number of mallards exceeded levels associated with egg breakage, poor hatchability, and abnormal hehavior and poor survival of offspring. Several avian species have disappeared from the Refuge since 1950, probably due to both industrial discharges of DDT from the plant and insecticidal use of DDT in the area. The contamination still presents a threat to herons, waterfowl, and raptors including occasional wintering or migrant eagles (Haliaeetus leucocephalus), and probably many other avian species. A maternity colony of endangered gray bats (Myotis grisescens) is also threatened by this contamination.

  13. Relativistic Jahn-Teller effect in tetrahedral systems

    International Nuclear Information System (INIS)

    Opalka, Daniel; Domcke, Wolfgang; Segado, Mireia; Poluyanov, Leonid V.

    2010-01-01

    It is shown that orbitally degenerate states in highly symmetric systems are split by Jahn-Teller forces which are of relativistic origin (that is, they arise from the spin-orbit coupling operator). For the example of tetrahedral systems, the relativistic Jahn-Teller Hamiltonians of orbitally degenerate electronic states with spin 1/2 are derived. While both electrostatic and relativistic forces contribute to the Jahn-Teller activity of vibrational modes of E and T 2 symmetry in 2 T 2 states of tetrahedral systems, the electrostatic and relativistic Jahn-Teller couplings are complementary for 2 E states: The E mode is Jahn-Teller active through electrostatic forces, while the T 2 mode is Jahn-Teller active through the relativistic forces. The relativistic Jahn-Teller parameters have been computed with ab initio relativistic electronic-structure methods. It is shown for the example of the tetrahedral cluster cations of the group V elements that the relativistic Jahn-Teller couplings can be of the same order of magnitude as the familiar electrostatic Jahn-Teller couplings for the heavier elements.

  14. The relativistic rocket

    Energy Technology Data Exchange (ETDEWEB)

    Antippa, Adel F [Departement de Physique, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, Quebec G9A 5H7 (Canada)

    2009-05-15

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful method that can be applied to a wide range of special relativistic problems of linear acceleration.

  15. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  16. Energy conservation in two wheeler head tube welding fixture by modeling

    Science.gov (United States)

    Kamalanathan, S.; Guruprasad, B.; Elango, A.

    2018-05-01

    Energy conservation in automotive industry plays a significant role to increase the productivity which reduces the Men, Material, and Machinery. The Automotive industry sector is one of the major sector which works in two or more times of loading of work pieces in welding fixture. It consumes more energy. This project focuses on reduce the energy consumption by applying single time loading of work pieces with minimum number of labours, machine and reduces scrap. Welding fixtures are designed for the components which are difficult to weld in normal way or without any holding unit. The fixture is to be designed for the two wheeler head tube assembly which is to be welded with its companion for its application. It is demonstrated by modelling in Uni-graphics Software and FEA analysis will be done by ANSYS and experimentally products are tested and execute in industry. A code of practice suggested establishing acceptable standard for energy used in Automotive industry.

  17. An investigation of relativistic microscopic optical potential in terms of relativistic Brueckner-Bethe-Goldstone equation

    International Nuclear Information System (INIS)

    Chen Baoqiu; Ma Zhongyu

    1992-01-01

    Relativistic microscopic optical potential of nucleon-nucleus is derived from the relativistic Brueckner-Bethe-Goldstone (RBBG) equation. The complex effective mass of a nucleon is determined by a fit to 200 MeV p- 40 Ca scattering data. The relativistic microscopic optical potentials with this effective mass are obtained from RBBG for p- 16O , 40 Ca, 90 Zr and 208 Pb scattering in energy range from 160 to 800 MeV. The microscopic optical potential is used to study the proton- 40 Ca scattering problem at 200 MeV. The results, such as differential cross section, analyzing power and spin rotation function are compared with those calculated from phenomenological relativistic optical potential

  18. Leading order relativistic chiral nucleon-nucleon interaction

    Science.gov (United States)

    Ren, Xiu-Lei; Li, Kai-Wen; Geng, Li-Sheng; Long, Bingwei; Ring, Peter; Meng, Jie

    2018-01-01

    Motivated by the successes of relativistic theories in studies of atomic/molecular and nuclear systems and the need for a relativistic chiral force in relativistic nuclear structure studies, we explore a new relativistic scheme to construct the nucleon-nucleon interaction in the framework of covariant chiral effective field theory. The chiral interaction is formulated up to leading order with covariant power counting and a Lorentz invariant chiral Lagrangian. We find that the relativistic scheme induces all six spin operators needed to describe the nuclear force. A detailed investigation of the partial wave potentials shows a better description of the {}1S0 and {}3P0 phase shifts than the leading order Weinberg approach, and similar to that of the next-to-leading order Weinberg approach. For the other partial waves with angular momenta J≥slant 1, the relativistic results are almost the same as their leading order non-relativistic counterparts. )

  19. RANKINE-HUGONIOT RELATIONS IN RELATIVISTIC COMBUSTION WAVES

    International Nuclear Information System (INIS)

    Gao Yang; Law, Chung K.

    2012-01-01

    As a foundational element describing relativistic reacting waves of relevance to astrophysical phenomena, the Rankine-Hugoniot relations classifying the various propagation modes of detonation and deflagration are analyzed in the relativistic regime, with the results properly degenerating to the non-relativistic and highly relativistic limits. The existence of negative-pressure downstream flows is noted for relativistic shocks, which could be of interest in the understanding of the nature of dark energy. Entropy analysis for relativistic shock waves is also performed for relativistic fluids with different equations of state (EoS), denoting the existence of rarefaction shocks in fluids with adiabatic index Γ < 1 in their EoS. The analysis further shows that weak detonations and strong deflagrations, which are rare phenomena in terrestrial environments, are expected to exist more commonly in astrophysical systems because of the various endothermic reactions present therein. Additional topics of relevance to astrophysical phenomena are also discussed.

  20. Polygonal-path approximation on the path spaces of quantum mechanical systems: extended Feynman maps

    International Nuclear Information System (INIS)

    Exner, R.; Kolerov, G.I.

    1981-01-01

    Various types of polygonal-path approximations appearing in the functional-integration theory are discussed. The uniform approximation is applied to extend the definition of the Feynman maps from our previous paper and to prove consistency of this extension. Relations of the extended Fsub(-i)-map to the Wiener integral are given. In particular, the basic theorem about the sequential Wiener integral by Cameron is improved [ru

  1. Integral Hellmann--Feynman analysis of nonisoelectronic processes and the determination of local ionization potentials

    International Nuclear Information System (INIS)

    Simons, G.

    1975-01-01

    The integral Hellmann--Feynmann theorem is extended to apply to nonisoelectronic processes. A local ionization potential formula is proposed, and test calculations on three different approximate helium wavefunctions are reported which suggest that it may be numerically superior to the standard difference of expectation values. Arguments for the physical utility of the new concept are presented, and an integral Hellmann--Feynman analysis of transition energies is begun

  2. Optimized negative dimensional integration method (NDIM) and multiloop Feynman diagram calculation

    International Nuclear Information System (INIS)

    Gonzalez, Ivan; Schmidt, Ivan

    2007-01-01

    We present an improved form of the integration technique known as NDIM (negative dimensional integration method), which is a powerful tool in the analytical evaluation of Feynman diagrams. Using this technique we study a φ 3 +φ 4 theory in D=4-2ε dimensions, considering generic topologies of L loops and E independent external momenta, and where the propagator powers are arbitrary. The method transforms the Schwinger parametric integral associated to the diagram into a multiple series expansion, whose main characteristic is that the argument contains several Kronecker deltas which appear naturally in the application of the method, and which we call diagram presolution. The optimization we present here consists in a procedure that minimizes the series multiplicity, through appropriate factorizations in the multinomials that appear in the parametric integral, and which maximizes the number of Kronecker deltas that are generated in the process. The solutions are presented in terms of generalized hypergeometric functions, obtained once the Kronecker deltas have been used in the series. Although the technique is general, we apply it to cases in which there are 2 or 3 different energy scales (masses or kinematic variables associated to the external momenta), obtaining solutions in terms of a finite sum of generalized hypergeometric series 1 and 2 variables respectively, each of them expressible as ratios between the different energy scales that characterize the topology. The main result is a method capable of solving Feynman integrals, expressing the solutions as hypergeometric series of multiplicity (n-1), where n is the number of energy scales present in the diagram

  3. Definitions of mass in special relativity

    International Nuclear Information System (INIS)

    Whitaker, M.A.B.

    1976-01-01

    Reference is made to the textbook on special relativity by Taylor and Wheeler (Space-time Physics. San Francisco. W H Freeman) in which the concept of relativistic mass is not used but momentum and energy are defined as γm 0 ν and γm 0 c 2 . The two approaches are compared and the particular problem of inelastic collisions between two particles with zero coefficient of restitution is used to demonstrate that the Taylor Wheeler definition of the rest mass of a system may lead to lack of clarity of thought, and even error. Alternative definitions of the rest mass of a system are proposed. (U.K.)

  4. Relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Ollitrault, J.Y.

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.)

  5. Non-abelian bosonization in two-dimensional condensed matter physics

    International Nuclear Information System (INIS)

    Froehlich, J.; Kerler, T.; Marchetti, P.A.

    1992-01-01

    We derive mathematical identities proving that some systems of interacting, non-relativistic fermions of spin or 'isospin' S=1/2, 3/3, 5/2, ... confined to a plane (e.g. a heterojuncture) can be described in terms of a complex boson of spin or isospin S coupled to statistical U(1) and SU(2) gauge fields. In a Feynman path integral formulation, the U(1) gauge field has a Chern-Simons action with coupling constant k=2/(2l+1), l=0, 1, 2, ..., while the SU(2) gauge field has a Chern-Simons action with level 2S. Generalization to internal symmetry groups other than SU(2) are sketched, and applications of our formalism to an analysis of excitations with braid statistics in incompressible quantum fluids and of holons and spinons in the t-J model are discussed. (orig.)

  6. Relativistic Quantum Revivals

    International Nuclear Information System (INIS)

    Strange, P.

    2010-01-01

    Quantum revivals are now a well-known phenomena within nonrelativistic quantum theory. In this Letter we display the effects of relativity on revivals and quantum carpets. It is generally believed that revivals do not occur within a relativistic regime. Here we show that while this is generally true, it is possible, in principle, to set up wave packets with specific mathematical properties that do exhibit exact revivals within a fully relativistic theory.

  7. Towards relativistic quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)

    2015-12-17

    We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.

  8. Fuchsia : A tool for reducing differential equations for Feynman master integrals to epsilon form

    Science.gov (United States)

    Gituliar, Oleksandr; Magerya, Vitaly

    2017-10-01

    We present Fuchsia - an implementation of the Lee algorithm, which for a given system of ordinary differential equations with rational coefficients ∂x J(x , ɛ) = A(x , ɛ) J(x , ɛ) finds a basis transformation T(x , ɛ) , i.e., J(x , ɛ) = T(x , ɛ) J‧(x , ɛ) , such that the system turns into the epsilon form : ∂xJ‧(x , ɛ) = ɛ S(x) J‧(x , ɛ) , where S(x) is a Fuchsian matrix. A system of this form can be trivially solved in terms of polylogarithms as a Laurent series in the dimensional regulator ɛ. That makes the construction of the transformation T(x , ɛ) crucial for obtaining solutions of the initial system. In principle, Fuchsia can deal with any regular systems, however its primary task is to reduce differential equations for Feynman master integrals. It ensures that solutions contain only regular singularities due to the properties of Feynman integrals. Program Files doi:http://dx.doi.org/10.17632/zj6zn9vfkh.1 Licensing provisions: MIT Programming language:Python 2.7 Nature of problem: Feynman master integrals may be calculated from solutions of a linear system of differential equations with rational coefficients. Such a system can be easily solved as an ɛ-series when its epsilon form is known. Hence, a tool which is able to find the epsilon form transformations can be used to evaluate Feynman master integrals. Solution method: The solution method is based on the Lee algorithm (Lee, 2015) which consists of three main steps: fuchsification, normalization, and factorization. During the fuchsification step a given system of differential equations is transformed into the Fuchsian form with the help of the Moser method (Moser, 1959). Next, during the normalization step the system is transformed to the form where eigenvalues of all residues are proportional to the dimensional regulator ɛ. Finally, the system is factorized to the epsilon form by finding an unknown transformation which satisfies a system of linear equations. Additional comments

  9. One of the many visiting theoreticians, R P Feynman, who gave lectures at CERN during the year

    CERN Multimedia

    CERN PhotoLab

    1970-01-01

    Visiting CERN in January was R P Feynman, who has recently been working on strong interaction theory. On 8 January, he packed the lecture theatre, as usual, when he gave a talk on inelastic hadron collisions and is here caught in a typically graphic pose.

  10. Feynman-Hellmann theorem for resonances and the quest for QCD exotica

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz de Elvira, J. [University of Bern, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland); Meissner, U.G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen-und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Juelich Center for Hadron Physics and JARA-HPC, Forschungszentrum Juelich, Institute for Advanced Simulation (IAS-4), Institut fuer Kernphysik (IKP-3), Juelich (Germany); Rusetsky, A. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen-und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Schierholz, G. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany)

    2017-10-15

    The generalization of the Feynman-Hellmann theorem for resonance states in quantum field theory is derived. On the basis of this theorem, a criterion is proposed to study the possible exotic nature of certain hadronic states emerging in QCD. It is shown that this proposal is supported by explicit calculations in chiral perturbation theory and by large-N{sub c} arguments. Analyzing recent lattice data on the quark mass dependence in the pseudoscalar, vector meson, baryon octet and baryon decuplet sectors, we conclude that, as expected, these are predominately quark-model states, albeit the corrections are non-negligible. (orig.)

  11. Theoretical confirmation of Feynman's hypothesis on the creation of circular vortices in Bose-Einstein condensates: II

    Energy Technology Data Exchange (ETDEWEB)

    Senatorski, A; Infeld, E [Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland)

    2004-09-15

    In a recent paper (Infeld and Senatorski 2003 J. Phys.: Condens. Matter 15 5865) we confirmed Feynman's hypothesis on how circular vortices can be created from an oppositely polarized linear pair in a Bose-Einstein condensate. This was done by perturbing the original pair numerically, so that a circular vortex (or array of identical circular vortices) was created as a result of reconnection. These circular vortices were then checked against known theoretical relations binding velocities and radii. Agreement to a high degree of accuracy was found. Here in part II, we give examples of the creation of several different vortices from one linear pair. All are checked as above. We also confirm the limit of separation of the line vortices below which mutual attraction, followed by annihilation, prevents the Feynman metamorphosis. Other possible modes of behaviour are illustrated.

  12. Radiation dominated relativistic current sheets

    International Nuclear Information System (INIS)

    Jaroschek, C.H.

    2008-01-01

    Relativistic Current Sheets (RCS) feature plasma instabilities considered as potential key to magnetic energy dissipation and non-thermal particle generation in Poynting flux dominated plasma flows. We show in a series of kinetic plasma simulations that the physical nature of non-linear RCS evolution changes in the presence of incoherent radiation losses: In the ultra-relativistic regime (i.e. magnetization parameter sigma = 104 defined as the ratio of magnetic to plasma rest frame energy density) the combination of non-linear RCS dynamics and synchrotron emission introduces a temperature anisotropy triggering the growth of the Relativistic Tearing Mode (RTM). As direct consequence the RTM prevails over the Relativistic Drift Kink (RDK) Mode as competitive RCS instability. This is in contrast to the previously studied situation of weakly relativistic RCS (sigma ∼ 1) where the RDK is dominant and most of the plasma is thermalized. The simulations witness the typical life cycle of ultra-relativistic RCS evolving from a violent radiation induced collapse towards a radiation quiescent state in rather classical Sweet-Parker topology. Such a transition towards Sweet-Parker configuration in the late non-linear evolution has immediate consequences for the efficiency of magnetic energy dissipation and non-thermal particle generation. Ceasing dissipation rates directly affect our present understanding of non-linear RCS evolution in conventional striped wind scenarios. (author)

  13. Relativistic gas in a Schwarzschild metric

    International Nuclear Information System (INIS)

    Kremer, Gilberto M

    2013-01-01

    A relativistic gas in a Schwarzschild metric is studied within the framework of a relativistic Boltzmann equation in the presence of gravitational fields, where Marle’s model for the collision operator of the Boltzmann equation is employed. The transport coefficients of the bulk and shear viscosities and thermal conductivity are determined from the Chapman–Enskog method. It is shown that the transport coefficients depend on the gravitational potential. Expressions for the transport coefficients in the presence of weak gravitational fields in the non-relativistic (low temperature) and ultra-relativistic (high temperature) limiting cases are given. Apart from the temperature gradient the heat flux has two relativistic terms. The first one, proposed by Eckart, is due to the inertia of energy and represents an isothermal heat flux when matter is accelerated. The other, suggested by Tolman, is proportional to the gravitational potential gradient and indicates that—in the absence of an acceleration field—a state of equilibrium of a relativistic gas in a gravitational field can be attained only if the temperature gradient is counterbalanced by a gravitational potential gradient. (paper)

  14. The BRST formalism and the quantization of hamiltonian systems with first class constraints

    International Nuclear Information System (INIS)

    Gamboa, J.; Rivelles, V.O.

    1989-04-01

    The quantization of hamiltonian system with first class constraints using the BFV formalism is studied. Two examples, the quantization of the relativistic particle and the relativistic spinning particle, are worked out in detail, showing that the BFV formalism is a powerful method for quantizing theories with gauge freedom. Several points not discussed is the literature are pointed out and the correct expression for the Feynman propagator in both cases is found. (L.C.)

  15. Nonequilibrium quantum field theories

    International Nuclear Information System (INIS)

    Niemi, A.J.

    1988-01-01

    Combining the Feynman-Vernon influence functional formalism with the real-time formulation of finite-temperature quantum field theories we present a general approach to relativistic quantum field theories out of thermal equilibrium. We clarify the physical meaning of the additional fields encountered in the real-time formulation of quantum statistics and outline diagrammatic rules for perturbative nonequilibrium computations. We derive a generalization of Boltzmann's equation which gives a complete characterization of relativistic nonequilibrium phenomena. (orig.)

  16. Extended Galilean symmetries of non-relativistic strings

    Energy Technology Data Exchange (ETDEWEB)

    Batlle, Carles [Departament de Matemàtiques and IOC, Universitat Politècnica de Catalunya, EPSEVG,Av. V. Balaguer 1, E-08808 Vilanova i la Geltrú (Spain); Gomis, Joaquim; Not, Daniel [Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos (ICCUB),Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain)

    2017-02-09

    We consider two non-relativistic strings and their Galilean symmetries. These strings are obtained as the two possible non-relativistic (NR) limits of a relativistic string. One of them is non-vibrating and represents a continuum of non-relativistic massless particles, and the other one is a non-relativistic vibrating string. For both cases we write the generator of the most general point transformation and impose the condition of Noether symmetry. As a result we obtain two sets of non-relativistic Killing equations for the vector fields that generate the symmetry transformations. Solving these equations shows that NR strings exhibit two extended, infinite dimensional space-time symmetries which contain, as a subset, the Galilean symmetries. For each case, we compute the associated conserved charges and discuss the existence of non-central extensions.

  17. Relativistic generalization of strong plasma turbulence

    International Nuclear Information System (INIS)

    Chian, A.C.-L.

    1982-01-01

    Two fundamental electrostatic modes of an unmagnetized plasma, namely, ion acoustic mode and Langumir mode are studied. Previous theories are generalized to include the effect of relativistic mass variations. The existence of relativistic ion acoustic solitons is demonstrated. In addition, it is shown that simple, relativistic Langumir solitons do not exist in a infinite plasma. (L.C.) [pt

  18. The Wigner function in the relativistic quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, K., E-mail: kowalski@uni.lodz.pl; Rembieliński, J.

    2016-12-15

    A detailed study is presented of the relativistic Wigner function for a quantum spinless particle evolving in time according to the Salpeter equation. - Highlights: • We study the Wigner function for a quantum spinless relativistic particle. • We discuss the relativistic Wigner function introduced by Zavialov and Malokostov. • We introduce relativistic Wigner function based on the standard definition. • We find analytic expressions for relativistic Wigner functions.

  19. New relativistic generalization of the Heisenberg commutation relations

    International Nuclear Information System (INIS)

    Bohm, A.; Loewe, M.; Magnollay, P.; Tarlini, M.; Aldinger, R.R.; Kielanowski, P.

    1984-01-01

    A relativistic generalization of the Heisenberg commutation relations is suggested which is different from the conventional ones used for the intrinsic coordinates and momenta in the relativistic oscillator model and the relativistic string. This new quantum relativistic oscillator model is determined by the requirement that it gives a unified description of relativistic vibrations and rotations and contracts in the nonrelativistic limit c -1 →0 into the usual nonrelativistic harmonic oscillator

  20. Random phase approximation in relativistic approach

    International Nuclear Information System (INIS)

    Ma Zhongyu; Yang Ding; Tian Yuan; Cao Ligang

    2009-01-01

    Some special issues of the random phase approximation(RPA) in the relativistic approach are reviewed. A full consistency and proper treatment of coupling to the continuum are responsible for the successful application of the RPA in the description of dynamical properties of finite nuclei. The fully consistent relativistic RPA(RRPA) requires that the relativistic mean filed (RMF) wave function of the nucleus and the RRPA correlations are calculated in a same effective Lagrangian and the consistent treatment of the Dirac sea of negative energy states. The proper treatment of the single particle continuum with scattering asymptotic conditions in the RMF and RRPA is discussed. The full continuum spectrum can be described by the single particle Green's function and the relativistic continuum RPA is established. A separable form of the paring force is introduced in the relativistic quasi-particle RPA. (authors)

  1. Metaphysics of the principle of least action

    Science.gov (United States)

    Terekhovich, Vladislav

    2018-05-01

    Despite the importance of the variational principles of physics, there have been relatively few attempts to consider them for a realistic framework. In addition to the old teleological question, this paper continues the recent discussion regarding the modal involvement of the principle of least action and its relations with the Humean view of the laws of nature. The reality of possible paths in the principle of least action is examined from the perspectives of the contemporary metaphysics of modality and Leibniz's concept of essences or possibles striving for existence. I elaborate a modal interpretation of the principle of least action that replaces a classical representation of a system's motion along a single history in the actual modality by simultaneous motions along an infinite set of all possible histories in the possible modality. This model is based on an intuition that deep ontological connections exist between the possible paths in the principle of least action and possible quantum histories in the Feynman path integral. I interpret the action as a physical measure of the essence of every possible history. Therefore only one actual history has the highest degree of the essence and minimal action. To address the issue of necessity, I assume that the principle of least action has a general physical necessity and lies between the laws of motion with a limited physical necessity and certain laws with a metaphysical necessity.

  2. Emergence of advance waves in a steady-state universe

    Energy Technology Data Exchange (ETDEWEB)

    Hobart, R.H.

    1979-10-01

    In standard Wheeler-Feynman electrodynamics advanced waves from any source are absolutely canceled by the advanced waves from the absorber responding to that source. The present work shows this cancellation fails over cosmic distances in a steady-state universe. A test of the view proposed earlier, in a paper which assumed failure of cancellation ad hoc, that zero-point fluctuations of the electromagnetic field are such emergent advanced waves, is posed. The view entails anomalous slowing of spontaneous transition rates at longer emission wavelengths; available data go against this, furnishing additional argument against the suspect assumption that the universe is steady-state.

  3. Emergence of advance waves in a steady-state universe

    International Nuclear Information System (INIS)

    Hobart, R.H.

    1979-01-01

    In standard Wheeler-Feynman electrodynamics advanced waves from any source are absolutely canceled by the advanced waves from the absorber responding to that source. The present work shows this cancellation fails over cosmic distances in a steady-state universe. A test of the view proposed earlier, in a paper which assumed failure of cancellation ad hoc, that zero-point fluctuations of the electromagnetic field are such emergent advanced waves, is posed. The view entails anomalous slowing of spontaneous transition rates at longer emission wavelengths; available data go against this, furnishing additional argument against the suspect assumption that the universe is steady-state

  4. Relativistic mean field model for entrainment in general relativistic superfluid neutron stars

    International Nuclear Information System (INIS)

    Comer, G.L.; Joynt, R.

    2003-01-01

    General relativistic superfluid neutron stars have a significantly more intricate dynamics than their ordinary fluid counterparts. Superfluidity allows different superfluid (and superconducting) species of particles to have independent fluid flows, a consequence of which is that the fluid equations of motion contain as many fluid element velocities as superfluid species. Whenever the particles of one superfluid interact with those of another, the momentum of each superfluid will be a linear combination of both superfluid velocities. This leads to the so-called entrainment effect whereby the motion of one superfluid will induce a momentum in the other superfluid. We have constructed a fully relativistic model for entrainment between superfluid neutrons and superconducting protons using a relativistic σ-ω mean field model for the nucleons and their interactions. In this context there are two notions of 'relativistic': relativistic motion of the individual nucleons with respect to a local region of the star (i.e. a fluid element containing, say, an Avogadro's number of particles), and the motion of fluid elements with respect to the rest of the star. While it is the case that the fluid elements will typically maintain average speeds at a fraction of that of light, the supranuclear densities in the core of a neutron star can make the nucleons themselves have quite high average speeds within each fluid element. The formalism is applied to the problem of slowly rotating superfluid neutron star configurations, a distinguishing characteristic being that the neutrons can rotate at a rate different from that of the protons

  5. Quantum gates via relativistic remote control

    Energy Technology Data Exchange (ETDEWEB)

    Martín-Martínez, Eduardo, E-mail: emartinm@uwaterloo.ca [Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Dept. Applied Math., University of Waterloo, Ontario, N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada); Sutherland, Chris [Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada)

    2014-12-12

    We harness relativistic effects to gain quantum control on a stationary qubit in an optical cavity by controlling the non-inertial motion of a different probe atom. Furthermore, we show that by considering relativistic trajectories of the probe, we enhance the efficiency of the quantum control. We explore the possible use of these relativistic techniques to build 1-qubit quantum gates.

  6. Relativistic BCS-BEC Crossover at Quark Level

    Directory of Open Access Journals (Sweden)

    Zhuang P.

    2010-10-01

    Full Text Available The non-relativistic G0G formalism of BCS-BEC crossover at finite temperature is extended to relativistic fermion systems. The theory recovers the BCS mean field approximation at zero temperature and the non-relativistic results in a proper limit. For massive fermions, when the coupling strength increases, there exist two crossovers from the weak coupling BCS superfluid to the non-relativistic BEC state and then to the relativistic BEC state. For color superconductivity at moderate baryon density, the matter is in the BCS-BEC crossover region, and the behavior of the pseudogap is quite similar to that found in high temperature superconductors.

  7. The model of the relativistic particle with torsion

    International Nuclear Information System (INIS)

    Plyushchay, M.S.

    1991-01-01

    The model of the relativistic particle with torsion, whose action appears in the Bose-Fermi transmutation mechanism, is canonically quantized in the Minkowski and euclidean spaces. In the Minkowski space there are massive, massless and tachyonic states in the spectrum of the model. In the massive sector the spectrum contains an infinite number of states, whose spin can take integer, half-integer, or fractional values. In the euclidean space, the spectrum is finite and the spin can only be integer, or half-integer. The reasons for the differences of the quantum theory of the model in the two spaces are elucidated. (orig.)

  8. RELATIVISTIC CYCLOTRON INSTABILITY IN ANISOTROPIC PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A.; Moya, Pablo S.; Muñoz, Víctor; Valdivia, J. Alejandro [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Navarro, Roberto E.; Araneda, Jaime A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Viñas, Adolfo F., E-mail: rlopez186@gmail.com [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, MD 20771 (United States)

    2016-11-20

    A sufficiently large temperature anisotropy can sometimes drive various types of electromagnetic plasma micro-instabilities, which can play an important role in the dynamics of relativistic pair plasmas in space, astrophysics, and laboratory environments. Here, we provide a detailed description of the cyclotron instability of parallel propagating electromagnetic waves in relativistic pair plasmas on the basis of a relativistic anisotropic distribution function. Using plasma kinetic theory and particle-in-cell simulations, we study the influence of the relativistic temperature and the temperature anisotropy on the collective and noncollective modes of these plasmas. Growth rates and dispersion curves from the linear theory show a good agreement with simulations results.

  9. Relativistic quantum mechanics

    CERN Document Server

    Horwitz, Lawrence P

    2015-01-01

    This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...

  10. Apparent unambiguousness of relativistic time dilation

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1992-01-01

    It is indicated on the definite analogy between the dependence of visible sizes of relativistic objects and period of the wave, emitted by the moving source from the observation conditions ('retradition factor'). It is noted that the definition of time for moving extended objects, led to relativistic dilation, corresponds to the definition of the relativistic (radar) length led to the 'elongation formula'. 10 refs

  11. Slowly rotating general relativistic superfluid neutron stars with relativistic entrainment

    International Nuclear Information System (INIS)

    Comer, G.L.

    2004-01-01

    Neutron stars that are cold enough should have two or more superfluids or supercondutors in their inner crusts and cores. The implication of superfluidity or superconductivity for equilibrium and dynamical neutron star states is that each individual particle species that forms a condensate must have its own, independent number density current and equation of motion that determines that current. An important consequence of the quasiparticle nature of each condensate is the so-called entrainment effect; i.e., the momentum of a condensate is a linear combination of its own current and those of the other condensates. We present here the first fully relativistic modeling of slowly rotating superfluid neutron stars with entrainment that is accurate to the second-order in the rotation rates. The stars consist of superfluid neutrons, superconducting protons, and a highly degenerate, relativistic gas of electrons. We use a relativistic σ-ω mean field model for the equation of state of the matter and the entrainment. We determine the effect of a relative rotation between the neutrons and protons on a star's total mass, shape, and Kepler, mass-shedding limit

  12. Balance equations for a relativistic plasma. Pt. 1

    International Nuclear Information System (INIS)

    Hebenstreit, H.

    1983-01-01

    Relativistic power moments of the four-momentum are decomposed according to a macroscopic four-velocity. The thus obtained quantities are identified as relativistic generalization of the nonrelativistic orthogonal moments, e.g. diffusion flow, heat flow, pressure, etc. From the relativistic Boltzmann equation we then derive balance equations for these quantities. Explicit expressions for the relativistic mass conservation, energy balance, pressure balance, heat flow balance are presented. The weak relativistic limit is discussed. The derivation of higher order balance equations is sketched. (orig.)

  13. Loading relativistic Maxwell distributions in particle simulations

    Science.gov (United States)

    Zenitani, S.

    2015-12-01

    In order to study energetic plasma phenomena by using particle-in-cell (PIC) and Monte-Carlo simulations, we need to deal with relativistic velocity distributions in these simulations. However, numerical algorithms to deal with relativistic distributions are not well known. In this contribution, we overview basic algorithms to load relativistic Maxwell distributions in PIC and Monte-Carlo simulations. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are newly proposed in a physically transparent manner. Their acceptance efficiencies are 􏰅50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  14. Knowledge Management at AMEC Foster Wheeler: A Case Study on Managing ’Age Gap’ and ’Skills Gap’ in Nuclear Industry

    International Nuclear Information System (INIS)

    Prinja, N.

    2016-01-01

    Full text: This document describes the knowledge management (KM) process that has been developed at the Clean Energy business of AMEC Foster Wheeler plc to address the challenges of the “skills gap” and “age gap” that the nuclear industry is facing and to address the challenge of effectively managing the corporate knowledge within the organization and growing this to maintain class leading competencies. (author

  15. Relativistic solitons and pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Karpman, V I [Inst. of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Moscow; Norman, C A; ter Haar, D; Tsytovich, V N

    1975-05-01

    A production mechanism for stable electron bunches or sheets of localized electric fields is investigated which may account for pulsar radio emission. Possible soliton phenomena in a one-dimensional relativistic plasma are analyzed, and it is suggested that the motion of a relativistic soliton, or ''relaton'', along a curved magnetic-field line may produce radio emission with the correct polarization properties. A general MHD solution is obtained for relatons, the radiation produced by a relativistic particle colliding with a soliton is evaluated, and the emission by a soliton moving along a curved field line is estimated. It is noted that due to a number of severe physical restrictions, curvature radiation is not a very likely solution to the problem of pulsar radio emission. (IAA)

  16. Antigravity: Spin-gravity coupling in action

    Science.gov (United States)

    Plyatsko, Roman; Fenyk, Mykola

    2016-08-01

    The typical motions of a spinning test particle in Schwarzschild's background which show the strong repulsive action of the highly relativistic spin-gravity coupling are considered using the exact Mathisson-Papapetrou equations. An approximated approach to choice solutions of these equations which describe motions of the particle's proper center of mass is developed.

  17. Non-relativistic Limit of a Dirac Polaron in Relativistic Quantum Electrodynamics

    CERN Document Server

    Arai, A

    2006-01-01

    A quantum system of a Dirac particle interacting with the quantum radiation field is considered in the case where no external potentials exist. Then the total momentum of the system is conserved and the total Hamiltonian is unitarily equivalent to the direct integral $\\int_{{\\bf R}^3}^\\oplus\\overline{H({\\bf p})}d{\\bf p}$ of a family of self-adjoint operators $\\overline{H({\\bf p})}$ acting in the Hilbert space $\\oplus^4{\\cal F}_{\\rm rad}$, where ${\\cal F}_{\\rm rad}$ is the Hilbert space of the quantum radiation field. The fibre operator $\\overline{H({\\bf p})}$ is called the Hamiltonian of the Dirac polaron with total momentum ${\\bf p} \\in {\\bf R}^3$. The main result of this paper is concerned with the non-relativistic (scaling) limit of $\\overline{H({\\bf p})}$. It is proven that the non-relativistic limit of $\\overline{H({\\bf p})}$ yields a self-adjoint extension of a Hamiltonian of a polaron with spin $1/2$ in non-relativistic quantum electrodynamics.

  18. Nonlinear dynamics of the relativistic standard map

    International Nuclear Information System (INIS)

    Nomura, Y.; Ichikawa, Y.H.; Horton, W.

    1991-04-01

    Heating and acceleration of charged particles by RF fields have been extensively investigated by the standard map. The question arises as to how the relativistic effects change the nonlinear dynamical behavior described by the classical standard map. The relativistic standard map is a two parameter (K, Β = ω/kc) family of dynamical systems reducing to the standard map when Β → 0. For Β ≠ 0 the relativistic mass increase suppresses the onset of stochasticity. It shown that the speed of light limits the rate of advance of the phase in the relativistic standard map and introduces KAM surfaces persisting in the high momentum region. An intricate structure of mixing in the higher order periodic orbits and chaotic orbits is analyzed using the symmetry properties of the relativistic standard map. The interchange of the stability of the periodic orbits in the relativistic standard map is also observed and is explained by the local linear stability of the orbits. 12 refs., 16 figs

  19. Engineering and Environmental Study of DDT Contamination of Huntsville Spring Branch, Indian Creek, and Ajacent Lands and Waters, Wheeler Reservoir, Alabama. Revision

    Science.gov (United States)

    1984-05-04

    27. Endangered, Threatened and Special Concern Plants Possibly Occurring on Wheeler National Wildlife Refuge ALABAMA FEDERAL SPECIES FAMILY STATUS1...SSC NL Oxalis grandis Oxalidaceae SSC NL Actaea pachypoda Ranunculaceae SSC NL Anemone caroliniana Ranunculaceae SSC NL Veronica anoacalis - agutc...River Valley base camps and seasonally dispersing into small groups of nuclear families to exploit the uplands. Later, during the Woodland period, the

  20. Some problems in relativistic thermodynamics

    International Nuclear Information System (INIS)

    Veitsman, E. V.

    2007-01-01

    The relativistic equations of state for ideal and real gases, as well as for various interface regions, have been derived. These dependences help to eliminate some controversies in the relativistic thermodynamics based on the special theory of relativity. It is shown, in particular, that the temperature of system whose velocity tends to the velocity of light in vacuum varies in accordance with the Ott law T = T 0 /√1 - v 2 /c 2 . Relativistic dependences for heat and mass transfer, for Ohm's law, and for a viscous flow of a liquid have also been derived

  1. Self-consistence equations for extended Feynman rules in quantum chromodynamics

    International Nuclear Information System (INIS)

    Wielenberg, A.

    2005-01-01

    In this thesis improved solutions for Green's functions are obtained. First the for this thesis essential techniques and concepts of QCD as euclidean field theory are presented. After a discussion of the foundations of the extended approach for the Feynman rules of QCD with a systematic approach for the 4-gluon vertex a modified renormalization scheme for the extended approach is developed. Thereafter the resummation of the Dyson-Schwinger equations (DSE) by the appropriately modified Bethe-Salpeter equation is discussed. Then the leading divergences for the 1-loop graphs of the resummed DSE are determined. Thereafter the equation-of-motion condensate is defined as result of an operator-product expansion. Then the self-consistency equations for the extended approaches are defined and numerically solved. (HSI)

  2. Causal wave propagation for relativistic massive particles: physical asymptotics in action

    International Nuclear Information System (INIS)

    Berry, M V

    2012-01-01

    Wavepackets representing relativistic quantum particles injected into a half-space, from a source that is switched on at a definite time, are represented by superpositions of plane waves that must include negative frequencies. Propagation is causal: it is a consequence of analyticity that at time t no part of the wave has travelled farther than ct, corresponding to the front of the signal. Nevertheless, interference fringes behind the front travel superluminally. For Klein-Gordon and Dirac wavepackets, the spatially integrated density increases because current is injected at the boundary. Even in the simplest causal model, understanding the shape of the wave after long times is an instructive exercise in the asymptotics of integrals, illustrating several techniques at a level suitable for graduate students; different spatial features involve contributions from a pole and from two saddle points, the uniform asymptotics for the pole close to a saddle, and the coalescence of two saddles into the Sommerfeld precursor immediately behind the front. (paper)

  3. Tight connexion between the Einstein-Podolsky-Rosen non-separability and the non-locality in Feynman's theory of antiparticles

    International Nuclear Information System (INIS)

    Costa de Beauregard, Olivier

    1976-01-01

    The Feynman amplitude for the annihilation transition of an electron-positon pair contains the two polarization correlations of the photons respectively characterizing the 0-1-0 and 1-1-0 cascades. The overall system is in general neither P- nor C-, but is PC-invariant [fr

  4. Schwinger's quantum action principle from Dirac’s formulation through Feynman’s path integrals, the Schwinger-Keldysh method, quantum field theory, to source theory

    CERN Document Server

    Milton, Kimball A

    2015-01-01

    Starting from the earlier notions of stationary action principles, these tutorial notes shows how Schwinger’s Quantum Action Principle descended from Dirac’s formulation, which independently led Feynman to his path-integral formulation of quantum mechanics. Part I brings out in more detail the connection between the two formulations, and applications are discussed. Then, the Keldysh-Schwinger time-cycle method of extracting matrix elements is described. Part II will discuss the variational formulation of quantum electrodynamics and the development of source theory.

  5. Properties of the Feynman-alpha method applied to accelerator-driven subcritical systems.

    Science.gov (United States)

    Taczanowski, S; Domanska, G; Kopec, M; Janczyszyn, J

    2005-01-01

    A Monte Carlo study of the Feynman-method with a simple code simulating the multiplication chain, confined to pertinent time-dependent phenomena has been done. The significance of its key parameters (detector efficiency and dead time, k-source and spallation neutrons multiplicities, required number of fissions etc.) has been discussed. It has been demonstrated that this method can be insensitive to properties of the zones surrounding the core, whereas is strongly affected by the detector dead time. In turn, the influence of harmonics in the neutron field and of the dispersion of spallation neutrons has proven much less pronounced.

  6. Gamma beams generation with high intensity lasers for two photon Breit-Wheeler pair production

    Science.gov (United States)

    D'Humieres, Emmanuel; Ribeyre, Xavier; Jansen, Oliver; Esnault, Leo; Jequier, Sophie; Dubois, Jean-Luc; Hulin, Sebastien; Tikhonchuk, Vladimir; Arefiev, Alex; Toncian, Toma; Sentoku, Yasuhiko

    2017-10-01

    Linear Breit-Wheeler pair creation is the lowest threshold process in photon-photon interaction, controlling the energy release in Gamma Ray Bursts and Active Galactic Nuclei, but it has never been directly observed in the laboratory. Using numerical simulations, we demonstrate the possibility to produce collimated gamma beams with high energy conversion efficiency using high intensity lasers and innovative targets. When two of these beams collide at particular angles, our analytical calculations demonstrate a beaming effect easing the detection of the pairs in the laboratory. This effect has been confirmed in photon collision simulations using a recently developed innovative algorithm. An alternative scheme using Bremsstrahlung radiation produced by next generation high repetition rate laser systems is also being explored and the results of first optimization campaigns in this regime will be presented.

  7. Absolute measurement of β eff based on Feynman-α experiments and the two-region model in the IPEN/MB-01 research reactor

    International Nuclear Information System (INIS)

    Kuramoto, Renato Y.R.; Santos, Adimir dos; Jerez, Rogerio; Diniz, Ricardo

    2007-01-01

    A new methodology for absolute measurement of the effective delayed neutron fraction β eff based on Feynman-α experiments and the two-region model was developed. This method made use of Feynman-α experiments and the two-region model. To examine the present methodology, a series of Feynman-α experiments were conducted at the IPEN/MB-01 research reactor facility. In contrast with other techniques like the slope method, Nelson-number method and 252 Cf-source method, the main advantage of this new methodology is to obtain β eff with the required accuracy and without knowledge of any other parameter. By adopting the present approach, β eff was measured with a 0.67% uncertainty. In addition, the prompt neutron generation time, Λ, and other parameters, was also obtained in an absolute experimental way. In general, the measured parameters are in good agreement with the values found from frequency analysis experiments. The theory-experiment comparison for the β eff measured in this work shows that JENDL3.3 presented the best agreement (within 1%). The reduction of the 235 U thermal yield as proposed by Okajima and Sakurai is completely justified according to the β eff measurements performed in this work

  8. Parallel Implementation of Numerical Solution of Few-Body Problem Using Feynman's Continual Integrals

    Science.gov (United States)

    Naumenko, Mikhail; Samarin, Viacheslav

    2018-02-01

    Modern parallel computing algorithm has been applied to the solution of the few-body problem. The approach is based on Feynman's continual integrals method implemented in C++ programming language using NVIDIA CUDA technology. A wide range of 3-body and 4-body bound systems has been considered including nuclei described as consisting of protons and neutrons (e.g., 3,4He) and nuclei described as consisting of clusters and nucleons (e.g., 6He). The correctness of the results was checked by the comparison with the exactly solvable 4-body oscillatory system and experimental data.

  9. Relativistic ion acceleration by ultraintense laser interactions

    International Nuclear Information System (INIS)

    Nakajima, K.; Koga, J.K.; Nakagawa, K.

    2001-01-01

    There has been a great interest in relativistic particle generation by ultraintense laser interactions with matter. We propose the use of relativistically self-focused laser pulses for the acceleration of ions. Two dimensional PIC simulations are performed, which show the formation of a large positive electrostatic field near the front of a relativistically self-focused laser pulse. Several factors contribute to the acceleration including self-focusing distance, pulse depletion, and plasma density. Ultraintense laser-plasma interactions are capable of generating enormous electrostatic fields of ∼3 TV/m for acceleration of protons with relativistic energies exceeding 1 GeV

  10. Comparison of MCNP6 and experimental results for neutron counts, Rossi-α, and Feynman-α distributions

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, Y.; Sadovich, S.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.

    2013-01-01

    MCNP6, the general-purpose Monte Carlo N-Particle code, has the capability to perform time-dependent calculations by tracking the time interval between successive events of the neutron random walk. In fixed-source calculations for a subcritical assembly, the zero time value is assigned at the moment the neutron is emitted by the external neutron source. The PTRAC and F8 cards of MCNP allow to tally the time when a neutron is captured by 3 He(n, p) reactions in the neutron detector. From this information, it is possible to build three different time distributions: neutron counts, Rossi-α, and Feynman-α. The neutron counts time distribution represents the number of neutrons captured as a function of time. The Rossi-a distribution represents the number of neutron pairs captured as a function of the time interval between two capture events. The Feynman-a distribution represents the variance-to-mean ratio, minus one, of the neutron counts array as a function of a fixed time interval. The MCNP6 results for these three time distributions have been compared with the experimental data of the YALINA Thermal facility and have been found to be in quite good agreement. (authors)

  11. Quantum mechanics. 2. printing (paperback).

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1986-01-01

    Intended for a first year graduate course in quantum mechanics, this collection of topics can also be considered as a set of self-contained 'monographs for pedestrians' on the Moessbauer effect, many-body quantum mechanics, kaon physics, scattering theory, Feynman diagrams, symmetries and relativistic quantum mechanics. (Auth.)

  12. Traffic generated non-exhaust particulate emissions from concrete pavement: A mass and particle size study for two-wheelers and small cars

    Science.gov (United States)

    Aatmeeyata; Kaul, D. S.; Sharma, Mukesh

    This study aimed to understand the non-exhaust (NE) emission of particles from wear of summer tire and concrete pavement, especially for two wheelers and small cars. A fully enclosed laboratory-scale model was fabricated to simulate road tire interaction with a facility to collect particles in different sizes. A road was cast using the M-45 concrete mixture and the centrifugal casting method. It was observed that emission of large particle non exhaust emission (LPNE) as well as PM 10 and PM 2.5 increased with increasing load. The LPNE was 3.5 mg tire -1 km -1 for a two wheeler and 6.4 mg tire -1 km -1 for a small car. The LPNE can lead to water pollution through water run-off from the roads. The contribution of the PM 10 and PM 2.5 was smaller compared to the LPNE particles (less than 0.1%). About 32 percent of particle mass of PM 10 was present below 1 μm. The number as well as mass size distribution for PM 10 was observed to be bi-modal with peaks at 0.3 μm and 4-5 μm. The NE emissions did not show any significant trend with change in tire pressure.

  13. Relativistic collective diffusion in one-dimensional systems

    Science.gov (United States)

    Lin, Gui-Wu; Lam, Yu-Yiu; Zheng, Dong-Qin; Zhong, Wei-Rong

    2018-05-01

    The relativistic collective diffusion in one-dimensional molecular system is investigated through nonequilibrium molecular dynamics with Monte Carlo methods. We have proposed the relationship among the speed, the temperature, the density distribution and the collective diffusion coefficient of particles in a relativistic moving system. It is found that the relativistic speed of the system has no effect on the temperature, but the collective diffusion coefficient decreases to zero as the velocity of the system approaches to the speed of light. The collective diffusion coefficient is modified as D‧ = D(1 ‑w2 c2 )3 2 for satisfying the relativistic circumstances. The present results may contribute to the understanding of the behavior of the particles transport diffusion in a high speed system, as well as enlighten the study of biological metabolism at relativistic high speed situation.

  14. Exact Relativistic `Antigravity' Propulsion

    Science.gov (United States)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  15. Relativistic Boltzmann theory for a plasma

    International Nuclear Information System (INIS)

    Erkelens, H. van.

    1984-01-01

    This thesis gives a self-contained treatment of the relativistic Boltzmann theory for a plasma. Here plasma means any mixture containing electrically charged particles. The relativistic Boltzmann equation is linearized for the case of a plasma. The Chapman-Enskog method is elaborated further for transport phenomena. Linear laws for viscous phenomena are derived. Then the collision term in the Boltzmann theory is dealt with. Using the transport equation, a kinetic theory of wave phenomena is developed and the dissipation of hydromagnetic waves in a relativistic plasma is investigated. In the final chapter, it is demonstrated how the relativistic Boltzmann theory can be applied in cosmology. In doing so, expressions are derived for the electric conductivity of the cosmological plasma in the lepton era, the plasma era and the annihilation era. (Auth.)

  16. Systematic implementation of implicit regularization for multi-loop Feynman Diagrams

    International Nuclear Information System (INIS)

    Cherchiglia, Adriano Lana; Sampaio, Marcos; Nemes, Maria Carolina

    2011-01-01

    Full text: Implicit Regularization (IR) is a candidate to become an invariant framework in momentum space to perform Feynman diagram calculations to arbitrary loop order. The essence of the method is to write the divergences in terms of loop integrals in one internal momentum which do not need to be explicitly evaluated. Moreover it acts in the physical dimension of the theory and gauge invariance is controlled by regularization dependent surface terms which when set to zero define a constrained version of IR (CIR) and deliver gauge invariant amplitudes automatically. Therefore it is in principle applicable to all physical relevant quantum field theories, supersymmetric gauge theories included. A non trivial question is whether we can generalize this program to arbitrary loop order in consonance with locality, unitarity and Lorentz invariance, especially when overlapping divergences occur. In this work we present a systematic implementation of our method that automatically displays the terms to be subtracted by Bogoliubov's recursion formula. Therefore, we achieve a twofold objective: we show that the IR program respects unitarity, locality and Lorentz invariance and we show that our method is consistent since we are able to display the divergent content of a multi-loop amplitude in a well defined set of basic divergent integrals in one internal momentum. We present several examples (from 1-loop to n-loops) using scalar φ 6 3 theory in order to help the reader understand and visualize the essence of the IR program. The choice of a scalar theory does not reduce the generality of the method presented since all other physical theories can be treated within the same strategy after space time and internal algebra are performed. Another result of this contribution is to show that if the surface terms are not set to zero they will contaminate the renormalization group coefficients. Thus, we are forced to adopt CIR which is equivalent to demand momentum routing invariance

  17. Theories of Matter, Space and Time, Volume 2; Quantum theories

    Science.gov (United States)

    Evans, N.; King, S. F.

    2018-06-01

    This book and its prequel Theories of Matter Space and Time: Classical Theories grew out of courses that we have both taught as part of the undergraduate degree program in Physics at Southampton University, UK. Our goal was to guide the full MPhys undergraduate cohort through some of the trickier areas of theoretical physics that we expect our undergraduates to master. Here we teach the student to understand first quantized relativistic quantum theories. We first quickly review the basics of quantum mechanics which should be familiar to the reader from a prior course. Then we will link the Schrödinger equation to the principle of least action introducing Feynman's path integral methods. Next, we present the relativistic wave equations of Klein, Gordon and Dirac. Finally, we convert Maxwell's equations of electromagnetism to a wave equation for photons and make contact with quantum electrodynamics (QED) at a first quantized level. Between the two volumes we hope to move a student's understanding from their prior courses to a place where they are ready, beyond, to embark on graduate level courses on quantum field theory.

  18. Relativistic effects in the Thomas--Fermi atom

    International Nuclear Information System (INIS)

    Waber, J.T.; Canfield, J.M.

    1975-01-01

    Two methods of applying relativistic corrections to the Thomas--Fermi atom are considered, and numerical calculations are discussed. Radial charge distributions calculated from a relativistic Thomas--Fermi equation agree in gross form with those from more complicated self-consistent calculations. Energy eigenvalues for mercury, as determined from the relativistic Thomas--Fermi solution, are compared with other calculated and experimental values

  19. Decoherence, determinism and chaos

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1994-01-01

    The author claims by now to have made his case that modern work on fractals and chaos theory has already removed the presumption that classical physics is 'deterministic'. Further, he claims that in so far as classical relativistic field theory (i.e. electromagnetism and gravitation) are scale invariant, they are self-consistent only if the idea of 'test-particle' is introduced from outside the theory. Einstein spent the last years of his life trying to use singularities in the metric as 'particles' or to get them out of the non-linearities in a grand unified theory -- in vain. So classical physics in this sense cannot be the fundamental theory. However, the author claims to have shown that if he introduces a 'scale invariance bounded from below' by measurement accuracy, then Tanimura's generalization of the Feynman proof as reconstructed by Dyson allows him to make a consistent classical theory for decoherent sources sinks. Restoring coherence to classical physics via relativistic action-at-a distance is left as a task for the future. Relativistic quantum mechanics, properly reconstructed from a finite and discrete basis, emerges in much better shape. The concept of 'particles has to be replaced by NO-YES particulate events, and particle-antiparticle pair creation and annihilation properly formulated

  20. Relativistic klystron research for linear colliders

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Morton, P.L.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Schwarz, H.D.; Vlieks, A.E.; Wilson, P.B.

    1989-01-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. The authors have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. In this paper the authors report on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future

  1. Relativistic klystron research for linear colliders

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.

    1988-09-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. We have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 9 figs., 1 tab

  2. Relativistic approach to nuclear structure

    International Nuclear Information System (INIS)

    Nguyen Van Giai; Bouyssy, A.

    1987-03-01

    Some recent works related with relativistic models of nuclear structure are briefly reviewed. The Dirac-Hartree-Fock and Dirac-Brueckner-Hartree-Fock are recalled and illustrated by some examples. The problem of isoscalar current and magnetic moments of odd nuclei is discussed. The application of the relativistic model to the nuclear response function is examined

  3. A Comprehensive Comparison of Relativistic Particle Integrators

    Science.gov (United States)

    Ripperda, B.; Bacchini, F.; Teunissen, J.; Xia, C.; Porth, O.; Sironi, L.; Lapenta, G.; Keppens, R.

    2018-03-01

    We compare relativistic particle integrators commonly used in plasma physics, showing several test cases relevant for astrophysics. Three explicit particle pushers are considered, namely, the Boris, Vay, and Higuera–Cary schemes. We also present a new relativistic fully implicit particle integrator that is energy conserving. Furthermore, a method based on the relativistic guiding center approximation is included. The algorithms are described such that they can be readily implemented in magnetohydrodynamics codes or Particle-in-Cell codes. Our comparison focuses on the strengths and key features of the particle integrators. We test the conservation of invariants of motion and the accuracy of particle drift dynamics in highly relativistic, mildly relativistic, and non-relativistic settings. The methods are compared in idealized test cases, i.e., without considering feedback onto the electrodynamic fields, collisions, pair creation, or radiation. The test cases include uniform electric and magnetic fields, {\\boldsymbol{E}}× {\\boldsymbol{B}} fields, force-free fields, and setups relevant for high-energy astrophysics, e.g., a magnetic mirror, a magnetic dipole, and a magnetic null. These tests have direct relevance for particle acceleration in shocks and in magnetic reconnection.

  4. Relativistic heavy-ion physics

    CERN Document Server

    Herrera Corral, G

    2010-01-01

    The study of relativistic heavy-ion collisions is an important part of the LHC research programme at CERN. This emerging field of research focuses on the study of matter under extreme conditions of temperature, density, and pressure. Here we present an introduction to the general aspects of relativistic heavy-ion physics. Afterwards we give an overview of the accelerator facility at CERN and then a quick look at the ALICE project as a dedicated experiment for heavy-ion collisions.

  5. Relativistic theories of materials

    CERN Document Server

    Bressan, Aldo

    1978-01-01

    The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...

  6. Relativistic dynamics without conservation laws

    OpenAIRE

    Rothenstein, Bernhard; Popescu, Stefan

    2006-01-01

    We show that relativistic dynamics can be approached without using conservation laws (conservation of momentum, of energy and of the centre of mass). Our approach avoids collisions that are not easy to teach without mnemonic aids. The derivations are based on the principle of relativity and on its direct consequence, the addition law of relativistic velocities.

  7. Time Operator in Relativistic Quantum Mechanics

    Science.gov (United States)

    Khorasani, Sina

    2017-07-01

    It is first shown that the Dirac’s equation in a relativistic frame could be modified to allow discrete time, in agreement to a recently published upper bound. Next, an exact self-adjoint 4 × 4 relativistic time operator for spin-1/2 particles is found and the time eigenstates for the non-relativistic case are obtained and discussed. Results confirm the quantum mechanical speculation that particles can indeed occupy negative energy levels with vanishingly small but non-zero probablity, contrary to the general expectation from classical physics. Hence, Wolfgang Pauli’s objection regarding the existence of a self-adjoint time operator is fully resolved. It is shown that using the time operator, a bosonic field referred here to as energons may be created, whose number state representations in non-relativistic momentum space can be explicitly found.

  8. Theory of direct interparticle action

    International Nuclear Information System (INIS)

    Vladimirov, Yu.S.; Turygin, A.Yu.

    1986-01-01

    Unusual point of view on the physical picture of the Universe and ratio between main physical categories is considered. Principal moments and theory peculiarities based on the conception of direct interparticle action are underlined. The direct interparticle action theory (DIAT) is considered from the position of choosing one or another axiomatics. At first the Fokker action principle is postulated there and then identical satisfiability of field equations is proved. All that relates to vacuum DIAT ignores and actions of matter formations are used as the basis. DIAT bears up against a global factor-account of absrbers of all surroundings (the Mach principle). The DIAT pretended to relativistic description of only additional concepts with the previously asigned space-time ratios. Concept for construction of the physical picture of the Universe, where classical space-time ratios being of secondary character, is suggested

  9. Relativistic klystron research for linear colliders

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannesfeldt, W.B.; Higo, T.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Morton, P.L.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Schwarz, H.D.; Takeuchi, Y.; Vlieks, A.E.; Wang, J.W.; Wilson, P.B.; Hopkins, D.B.; Sessler, A.M.; Ryne, R.D.; Westenskow, G.A.; Yu, S.S.

    1989-01-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. The authors have attained 200MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. They report here on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 9 figs., 1 tab

  10. Relativistic Theory of Few Body Systems

    Energy Technology Data Exchange (ETDEWEB)

    Franz Gross

    2002-11-01

    Very significant advances have been made in the relativistic theory of few body systems since I visited Peter Sauer and his group in Hannover in 1983. This talk provides an opportunity to review the progress in this field since then. Different methods for the relativistic calculation of few nucleon systems are briefly described. As an example, seven relativistic calculations of the deuteron elastic structure functions, A, B, and T{sub 20}, are compared. The covariant SPECTATOR {copyright} theory, among the more successful and complete of these methods, is described in more detail.

  11. Derivation of the Schrodinger Equation from the Hamilton-Jacobi Equation in Feynman's Path Integral Formulation of Quantum Mechanics

    Science.gov (United States)

    Field, J. H.

    2011-01-01

    It is shown how the time-dependent Schrodinger equation may be simply derived from the dynamical postulate of Feynman's path integral formulation of quantum mechanics and the Hamilton-Jacobi equation of classical mechanics. Schrodinger's own published derivations of quantum wave equations, the first of which was also based on the Hamilton-Jacobi…

  12. Relativistic few body calculations

    International Nuclear Information System (INIS)

    Gross, F.

    1988-01-01

    A modern treatment of the nuclear few-body problem must take into account both the quark structure of baryons and mesons, which should be important at short range, and the relativistic exchange of mesons, which describes the long range, peripheral interactions. A way to model both of these aspects is described. The long range, peripheral interactions are calculated using the spectator model, a general approach in which the spectators to nucleon interactions are put on their mass-shell. Recent numerical results for a relativistic OBE model of the NN interaction, obtained by solving a relativistic equation with one-particle on mass-shell, will be presented and discussed. Two meson exchange models, one with only four mesons (π,σ,/rho/,ω) but with a 25% admixture of γ 5 coupling for the pion, and a second with six mesons (π,σ,/rho/,ω,δ,/eta/) but pure γ 5 γ/sup μ/ pion coupling, are shown to give very good quantitative fits to the NN scattering phase shifts below 400 MeV, and also a good description of the /rvec p/ 40 Ca elastic scattering observables. Applications of this model to electromagnetic interactions of the two body system, with emphasis on the determination of relativistic current operators consistent with the dynamics and the exact treatment of current conservation in the presence of phenomenological form factors, will be described. 18 refs., 8 figs

  13. Relativistic Gas Drag on Dust Grains and Implications

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Thiem, E-mail: thiemhoang@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of); Korea University of Science and Technology, Daejeon, 34113 (Korea, Republic of)

    2017-09-20

    We study the drag force on grains moving at relativistic velocities through interstellar gas and explore its application. First, we derive a new analytical formula of the drag force at high energies and find that it is significantly reduced compared to the classical model. Second, we apply the obtained drag force to calculate the terminal velocities of interstellar grains by strong radiation sources such as supernovae and active galactic nuclei (AGNs). We find that grains can be accelerated to relativistic velocities by very luminous AGNs. We then quantify the deceleration of relativistic spacecraft proposed by the Breakthrough Starshot initiative due to gas drag on a relativistic lightsail. We find that the spacecraft’s decrease in speed is negligible because of the suppression of gas drag at relativistic velocities, suggesting that the lightsail may be open for communication during its journey to α Centauri without causing a considerable delay. Finally, we show that the damage to relativistic thin lightsails by interstellar dust is a minor effect.

  14. Relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Barz, H.W.; Kaempfer, B.; Schulz, H.

    1984-12-01

    An elementary introduction is given into the scenario of relativistic heavy ion collisions. It deals with relativistic kinematics and estimates of energy densities, extrapolations of the present knowledge of hadron-hadron and hadron-nuleus to nucleus-nucleus collisions, the properties of the quark-gluon plasma and the formation of the plasma and possible experimental signatures. Comments are made on a cosmic ray experiment which could be interpreted as a first indication of the quark-gluon phase of the matter. (author)

  15. Thermodynamic laws and equipartition theorem in relativistic Brownian motion.

    Science.gov (United States)

    Koide, T; Kodama, T

    2011-06-01

    We extend the stochastic energetics to a relativistic system. The thermodynamic laws and equipartition theorem are discussed for a relativistic Brownian particle and the first and the second law of thermodynamics in this formalism are derived. The relation between the relativistic equipartition relation and the rate of heat transfer is discussed in the relativistic case together with the nature of the noise term.

  16. Relativistic quantum similarities in atoms in position and momentum spaces

    International Nuclear Information System (INIS)

    Maldonado, P.; Sarsa, A.; Buendia, E.; Galvez, F.J.

    2011-01-01

    A study of different quantum similarity measures and their corresponding quantum similarity indices is carried out for the atoms from H to Lr (Z=1-103). Relativistic effects in both position and momentum spaces have been studied by comparing the relativistic values to the non-relativistic ones. We have used the atomic electron density in both position and momentum spaces obtained within relativistic and non-relativistic numerical-parameterized optimized effective potential approximations. -- Highlights: → Quantum similarity measures and indices in electronic structure of atoms. → Position and momentum electronic densities. → Similarity of relativistic and non-relativistic densities. → Similarity of core and valence regions of different atoms. → Dependence with Z along the Periodic Table.

  17. Kinetic analysis of thermally relativistic flow with dissipation

    International Nuclear Information System (INIS)

    Yano, Ryosuke; Suzuki, Kojiro

    2011-01-01

    Nonequilibrium flow of thermally relativistic matter with dissipation is considered in the framework of the relativistic kinetic theory. As an object of the analysis, the supersonic rarefied flow of thermally relativistic matter around the triangle prism is analyzed using the Anderson-Witting model. Obtained numerical results indicate that the flow field changes in accordance with the flow velocity and temperature of the uniform flow owing to both effects derived from the Lorentz contraction and thermally relativistic effects, even when the Mach number of the uniform flow is fixed. The profiles of the heat flux along the stagnation streamline can be approximated on the basis of the relativistic Navier-Stokes-Fourier (NSF) law except for a strong nonequilibrium regime such as the middle of the shock wave and the vicinity of the wall, whereas the profile of the heat flux behind the triangle prism cannot be approximated on the basis of the relativistic NSF law owing to rarefied effects via the expansion behind the triangle prism. Additionally, the heat flux via the gradient of the static pressure is non-negligible owing to thermally relativistic effects. The profile of the dynamic pressure is different from that approximated on the basis of the NSF law, which is obtained by the Eckart decomposition. Finally, variations of convections of the mass and momentum owing to the effects derived from the Lorentz contraction and thermally relativistic effects are numerically confirmed.

  18. Confined electron assemblies in intense electric and magnetic fields and a generalization of Emden's equation

    International Nuclear Information System (INIS)

    March, N.H.

    2003-09-01

    The Feynman propagator, and its parallel in statistical mechanics, namely the canonical density matrix, are first used to treat both homogeneous and confined electron assemblies in the presence of a static electric field of arbitrary strength. The models are relevant to plasmas having variable electron density and degeneracy. The second topic concerns atomic ions in intense magnetic fields. Semiclassical theory is here applied, non-relativistic and relativistic approximations being invoked. Both treatments are shown to be embraced by a generalization of Emden's equation. (author)

  19. Theoretical study of the relativistic molecular rotational g-tensor

    International Nuclear Information System (INIS)

    Aucar, I. Agustín; Gomez, Sergio S.; Giribet, Claudia G.; Ruiz de Azúa, Martín C.

    2014-01-01

    An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH + (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH + systems. Only for the sixth-row Rn atom a significant deviation of this relation is found

  20. Theoretical study of the relativistic molecular rotational g-tensor

    Energy Technology Data Exchange (ETDEWEB)

    Aucar, I. Agustín, E-mail: agustin.aucar@conicet.gov.ar; Gomez, Sergio S., E-mail: ssgomez@exa.unne.edu.ar [Institute for Modeling and Technological Innovation, IMIT (CONICET-UNNE) and Faculty of Exact and Natural Sciences, Northeastern University of Argentina, Avenida Libertad 5400, W3404AAS Corrientes (Argentina); Giribet, Claudia G.; Ruiz de Azúa, Martín C. [Physics Department, Faculty of Exact and Natural Sciences, University of Buenos Aires and IFIBA CONICET, Ciudad Universitaria, Pab. I, 1428 Buenos Aires (Argentina)

    2014-11-21

    An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH{sup +} (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH{sup +} systems. Only for the sixth-row Rn atom a significant deviation of this relation is found.

  1. Generalized internal multiple imaging (GIMI) using Feynman-like diagrams

    KAUST Repository

    Zuberi, M. A. H.; Alkhalifah, Tariq Ali

    2014-01-01

    Single scattering events recorded in surface seismic data do not fully illuminate the subsurface structure, especially if it is complicated. In such cases, multiple internal scatterings (internal multiples) can help improve the illumination. We devise a generalized internal multiple imaging (GIMI) procedure that maps internal multiple energy to their true location with a relatively mild addition to the computational cost. GIMI theory relies heavily on seismic interferometry, which often involves cumbersome algebra, especially when one is dealing with high-order terms in the perturbation series. To make the derivations, and inference of the results easier, we introduce Feynman-like diagrams to represent different terms of the perturbation series (solution to the Lippman–Schwinger equation). The rules we define for the diagrams allow operations like convolution and cross-correlation in the series to be compressed in diagram form. The application of the theory to a double scattering example demonstrates the power of the method.

  2. Generalized internal multiple imaging (GIMI) using Feynman-like diagrams

    KAUST Repository

    Zuberi, M. A. H.

    2014-05-19

    Single scattering events recorded in surface seismic data do not fully illuminate the subsurface structure, especially if it is complicated. In such cases, multiple internal scatterings (internal multiples) can help improve the illumination. We devise a generalized internal multiple imaging (GIMI) procedure that maps internal multiple energy to their true location with a relatively mild addition to the computational cost. GIMI theory relies heavily on seismic interferometry, which often involves cumbersome algebra, especially when one is dealing with high-order terms in the perturbation series. To make the derivations, and inference of the results easier, we introduce Feynman-like diagrams to represent different terms of the perturbation series (solution to the Lippman–Schwinger equation). The rules we define for the diagrams allow operations like convolution and cross-correlation in the series to be compressed in diagram form. The application of the theory to a double scattering example demonstrates the power of the method.

  3. Gravitational lensing of the CMB: A Feynman diagram approach

    Directory of Open Access Journals (Sweden)

    Elizabeth E. Jenkins

    2014-09-01

    Full Text Available We develop a Feynman diagram approach to calculating correlations of the Cosmic Microwave Background (CMB in the presence of distortions. As one application, we focus on CMB distortions due to gravitational lensing by Large Scale Structure (LSS. We study the Hu–Okamoto quadratic estimator for extracting lensing from the CMB and derive the noise of the estimator up to O(ϕ4 in the lensing potential ϕ. By identifying the diagrams responsible for the previously noted large O(ϕ4 term, we conclude that the lensing expansion does not break down. The convergence can be significantly improved by a reorganization of the ϕ expansion. Our approach makes it simple to obtain expressions for quadratic estimators based on any CMB channel, including many previously unexplored cases. We briefly discuss other applications to cosmology of this diagrammatic approach, such as distortions of the CMB due to patchy reionization, or due to Faraday rotation from primordial axion fields.

  4. New results for algebraic tensor reduction of Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Fleischer, Jochem [Bielefeld Univ. (Germany). Fakultaet fuer Physik; Riemann, Tord [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Yundin, Valery [Copenhagen Univ. (Denmark). Niels Bohr International Academy and Discovery Center

    2012-02-15

    We report on some recent developments in algebraic tensor reduction of one-loop Feynman integrals. For 5-point functions, an efficient tensor reduction was worked out recently and is now available as numerical C++ package, PJFry, covering tensor ranks until five. It is free of inverse 5- point Gram determinants and inverse small 4-point Gram determinants are treated by expansions in higher-dimensional 3-point functions. By exploiting sums over signed minors, weighted with scalar products of chords (or, equivalently, external momenta), extremely efficient expressions for tensor integrals contracted with external momenta were derived. The evaluation of 7-point functions is discussed. In the present approach one needs for the reductions a (d +2)-dimensional scalar 5-point function in addition to the usual scalar basis of 1- to 4-point functions in the generic dimension d=4-2{epsilon}. When exploiting the four-dimensionality of the kinematics, this basis is sufficient. We indicate how the (d+2)-dimensional 5-point function can be evaluated. (orig.)

  5. New results for algebraic tensor reduction of Feynman integrals

    International Nuclear Information System (INIS)

    Fleischer, Jochem; Yundin, Valery

    2012-02-01

    We report on some recent developments in algebraic tensor reduction of one-loop Feynman integrals. For 5-point functions, an efficient tensor reduction was worked out recently and is now available as numerical C++ package, PJFry, covering tensor ranks until five. It is free of inverse 5- point Gram determinants and inverse small 4-point Gram determinants are treated by expansions in higher-dimensional 3-point functions. By exploiting sums over signed minors, weighted with scalar products of chords (or, equivalently, external momenta), extremely efficient expressions for tensor integrals contracted with external momenta were derived. The evaluation of 7-point functions is discussed. In the present approach one needs for the reductions a (d +2)-dimensional scalar 5-point function in addition to the usual scalar basis of 1- to 4-point functions in the generic dimension d=4-2ε. When exploiting the four-dimensionality of the kinematics, this basis is sufficient. We indicate how the (d+2)-dimensional 5-point function can be evaluated. (orig.)

  6. Loading relativistic Maxwell distributions in particle simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zenitani, Seiji, E-mail: seiji.zenitani@nao.ac.jp [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2015-04-15

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  7. Loading relativistic Maxwell distributions in particle simulations

    International Nuclear Information System (INIS)

    Zenitani, Seiji

    2015-01-01

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms

  8. The de Sitter relativistic top theory

    International Nuclear Information System (INIS)

    Armenta, J.; Nieto, J.A.

    2005-01-01

    We discuss the relativistic top theory from the point of view of the de Sitter (or anti-de Sitter) group. Our treatment rests on the Hanson-Regge spherical relativistic top Lagrangian formulation. We propose an alternative method for studying spinning objects via Kaluza-Klein theory. In particular, we derive the relativistic top equations of motion starting with the geodesic equation for a point particle in 4+N dimensions. We compare our approach with Fukuyama's formulation of spinning objects, which is also based on Kaluza-Klein theory. We also report a generalization of our approach to a 4+N+D dimensional theory

  9. Biquaternions and relativistic kinematics

    International Nuclear Information System (INIS)

    Bogush, A.A.; Kurochkin, Yu.A.; Fedorov, F.I.

    1979-01-01

    The problems concerning the use of quaternion interpretation of the Lorentz group vector parametrization are considered for solving relativistic kinematics problems. A vector theory convenient for describing the characteristic features of the Lobachevsky space is suggested. The kinematics of elementary particle scattering is investigated on the basis of this theory. A synthesis of vector parametrization and of quaternion calculation has been shown to lead to natural formulation of the theory of vectors in the three-dimensional Lobachevsky space, realized on mass hyperboloids of relativistic particles

  10. Gauge invariant actions for string models

    International Nuclear Information System (INIS)

    Banks, T.

    1986-06-01

    String models of unified interactions are elegant sets of Feynman rules for the scattering of gravitons, gauge bosons, and a host of massive excitations. The purpose of these lectures is to describe the progress towards a nonperturbative formulation of the theory. Such a formulation should make the geometrical meaning of string theory manifest and explain the many ''miracles'' exhibited by the string Feynman rules. There are some new results on gauge invariant observables, on the cosmological constant, and on the symmetries of interacting string field theory. 49 refs

  11. Strong-field Breit–Wheeler pair production in two consecutive laser pulses with variable time delay

    Directory of Open Access Journals (Sweden)

    Martin J.A. Jansen

    2017-03-01

    Full Text Available Photoproduction of electron–positron pairs by the strong-field Breit–Wheeler process in an intense laser field is studied. The laser field is assumed to consist of two consecutive short pulses, with a variable time delay in between. By numerical calculations within the framework of scalar quantum electrodynamics, we demonstrate that the time delay exerts a strong impact on the pair-creation probability. For the case when both pulses are identical, the effect is traced back to the relative quantum phase of the interfering S-matrix amplitudes and explained within a simplified analytical model. Conversely, when the two laser pulses differ from each other, the pair-creation probability depends not only on the time delay but, in general, also on the temporal order of the pulses.

  12. The Feynman lectures on physics

    International Nuclear Information System (INIS)

    Feynman, R.P.

    1979-01-01

    This set of lectures tries to elucidate from the beginning those features of the quantum mechanics which are most general. The first lectures tackle head on the ideas of a probability amplitude, the interference of amplitudes, the abstract notion of a state, and the superposition and resolution of states - and the Dirac notation is used from the start. In each instance the ideas are introduced together with a detailed discussion of some specific examples - to try to make the physical ideas as real as possible. The time dependence of states including states of definite energy comes next, and the ideas are applied at once to the study of two-state systems. A detailed discussion of the ammonia maser provides the framework for the introduction to radiation absorption and induced transitions. The lectures then go on to consider more complex systems, leading to a discussion of the propagation of electrons in a crystal, and to a rather complete treatment of the quantum mechanics of angular momentum. Our introduction to quantum mechanics ends in Chapter 20 with a discussion of the Schroedinger wave function, its differential equation, and the solution for the hydrogen atom. The last Chapter of this volume is not intended to be a part of the 'course.' It is a 'seminar' on superconductivity and was given in the spirit of some of the entertainment lectures of the first two volumes, with the intent of opening to the students a broader view of the relation of what they were learning to the general culture of physics. Feynman's 'epilogue' serves as the period to the three-volume series [fr

  13. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1986-01-01

    In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter

  14. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvilli, M.A.

    1985-01-01

    In the present paper a relativistic theory of gravitation (RTG) is constructed in a unique way on the basis of the special relativity and geometrization principle. In this, a gravitational field is treated as the Faraday-Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG, the conservation laws are strictly fulfilled for the energy-momentum and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravitation. In virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTg leads to an exceptionally strong prediction: The Universe is not closed but just ''flat''. This suggests that in the Universe a ''hidden mass'' should exist in some form of matter

  15. Liouville equation of relativistic charged fermion

    International Nuclear Information System (INIS)

    Wang Renchuan; Zhu Dongpei; Huang Zhuoran; Ko Che-ming

    1991-01-01

    As a form of density martrix, the Wigner function is the distribution in quantum phase space. It is a 2 X 2 matrix function when one uses it to describe the non-relativistic fermion. While describing the relativistic fermion, it is usually represented by 4 x 4 matrix function. In this paper authors obtain a Wigner function for the relativistic fermion in the form of 2 x 2 matrix, and the Liouville equation satisfied by the Wigner function. this equivalent to the Dirac equation of changed fermion in QED. The equation is also equivalent to the Dirac equation in the Walecka model applied to the intermediate energy nuclear collision while the nucleon is coupled to the vector meson only (or taking mean field approximation for the scalar meson). Authors prove that the 2 x 2 Wigner function completely describes the quantum system just the same as the relativistic fermion wave function. All the information about the observables can be obtained with above Wigner function

  16. Comparison of MCNP6 and experimental results for neutron counts, Rossi-{alpha}, and Feynman-{alpha} distributions

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, Y. [Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL 60439 (United States); Sadovich, S.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C. [Joint Institute for Power and Nuclear Research-Sosny, 99 Academician A.K. Krasin Str., Minsk 220109 (Belarus)

    2013-07-01

    MCNP6, the general-purpose Monte Carlo N-Particle code, has the capability to perform time-dependent calculations by tracking the time interval between successive events of the neutron random walk. In fixed-source calculations for a subcritical assembly, the zero time value is assigned at the moment the neutron is emitted by the external neutron source. The PTRAC and F8 cards of MCNP allow to tally the time when a neutron is captured by {sup 3}He(n, p) reactions in the neutron detector. From this information, it is possible to build three different time distributions: neutron counts, Rossi-{alpha}, and Feynman-{alpha}. The neutron counts time distribution represents the number of neutrons captured as a function of time. The Rossi-a distribution represents the number of neutron pairs captured as a function of the time interval between two capture events. The Feynman-a distribution represents the variance-to-mean ratio, minus one, of the neutron counts array as a function of a fixed time interval. The MCNP6 results for these three time distributions have been compared with the experimental data of the YALINA Thermal facility and have been found to be in quite good agreement. (authors)

  17. An energy principle for two-dimensional collisionless relativistic plasmas

    International Nuclear Information System (INIS)

    Otto, A.; Schindler, K.

    1984-01-01

    Using relativistic Vlasov theory an energy principle for two-dimensional plasmas is derived, which provides a sufficient and necessary criterion for the stability of relativistic plasma equilibria. This energy principle includes charge separating effects since the exact Poisson equation was taken into consideration. Applying the variational principle to the case of the relativistic plane plasma sheet, the same marginal wave length is found as in the non-relativistic case. (author)

  18. Relativistic neoclassical transport coefficients with momentum correction

    International Nuclear Information System (INIS)

    Marushchenko, I.; Azarenkov, N.A.

    2016-01-01

    The parallel momentum correction technique is generalized for relativistic approach. It is required for proper calculation of the parallel neoclassical flows and, in particular, for the bootstrap current at fusion temperatures. It is shown that the obtained system of linear algebraic equations for parallel fluxes can be solved directly without calculation of the distribution function if the relativistic mono-energetic transport coefficients are already known. The first relativistic correction terms for Braginskii matrix coefficients are calculated.

  19. Penetration of relativistic heavy ions through matter

    International Nuclear Information System (INIS)

    Scheidenberger, C.; Geissel, H.

    1997-07-01

    New heavy-ion accelerators covering the relativistic and ultra-relativistic energy regime allow to study atomic collisions with bare and few-electron projectiles. High-resolution magnetic spectrometers are used for precise stopping-power and energy-loss straggling measurements. Refined theories beyond the Born approximation have been developed and are confirmed by experiments. This paper summarizes the large progress in the understanding of relativistic heavy-ion penetration through matter, which has been achieved in the last few years. (orig.)

  20. Relativistic Kinematics

    OpenAIRE

    Sahoo, Raghunath

    2016-01-01

    This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.