Instabilities in a Relativistic Viscous Fluid
Corona-Galindo, M. G.; Klapp, J.; Vazquez, A.
1990-11-01
RESUMEN. Las ecuaciones hidrodinamicas de un fluido imperfecto relativista son resueltas, y los modos hidrodinamicos son analizados con el prop6sito de estabiecer correlaciones con las estructuras cosmol6gicas. ABSTRACT The hydrodynamical equations of a relativistic imperfect fluid are solved, and the hydrodynamical modes are analysed with the aim to establish correlations with cosmological structures. Ke, words: COSMOLOGY - HYDRODYNAMICS - RELATIVITY
Special-relativistic model flows of viscous fluid
Rogava, A D
1996-01-01
Two, the most simple cases of special-relativistic flows of a viscous, incompressible fluid are considered: plane Couette flow and plane Poiseuille flow. Considering only the regular motion of the fluid we found the distribution of velocity in the fluid (velocity profiles) and the friction force, acting on immovable wall. The results are expressed through simple analytical functions for the Couette flow, while for the Poiseiulle flow they are expressed by higher transcendental functions (Jacobi's elliptic functions).
Solutions of Conformal Israel-Stewart Relativistic Viscous Fluid Dynamics
Marrochio, Hugo; Denicol, Gabriel S; Luzum, Matthew; Jeon, Sangyong; Gale, Charles
2013-01-01
We use symmetry arguments developed by Gubser to construct the first radially-expanding explicit solutions of the Israel-Stewart formulation of hydrodynamics. Along with a general semi-analytical solution, an exact analytical solution is given which is valid in the cold plasma limit where viscous effects from shear viscosity and the relaxation time coefficient are important. The radially expanding solutions presented in this paper can be used as nontrivial checks of numerical algorithms employed in hydrodynamic simulations of the quark-gluon plasma formed in ultra-relativistic heavy ion collisions. We show this explicitly by comparing such analytic and semi-analytic solutions with the corresponding numerical solutions obtained using the MUSIC viscous hydrodynamics simulation code.
Solutions of conformal Israel-Stewart relativistic viscous fluid dynamics
Marrochio, Hugo; Noronha, Jorge; Denicol, Gabriel S.; Luzum, Matthew; Jeon, Sangyong; Gale, Charles
2015-01-01
We use symmetry arguments developed by Gubser to construct the first radially expanding explicit solutions of the Israel-Stewart formulation of hydrodynamics. Along with a general semi-analytical solution, an exact analytical solution is given which is valid in the cold plasma limit where viscous effects from shear viscosity and the relaxation time coefficient are important. The radially expanding solutions presented in this paper can be used as nontrivial checks of numerical algorithms employed in hydrodynamic simulations of the quark-gluon plasma formed in ultrarelativistic heavy ion collisions. We show this explicitly by comparing such analytic and semi-analytic solutions with the corresponding numerical solutions obtained using the music viscous hydrodynamics simulation code.
Muronga, A
2007-01-01
Relativistic non-ideal fluid dynamics is formulated in 3+1 space--time dimensions. The equations governing dissipative relativistic hydrodynamics are given in terms of the time and the 3-space quantities which correspond to those familiar from non-relativistic physics. Dissipation is accounted for by applying the causal theory of relativistic dissipative fluid dynamics. As a special case we consider a fluid without viscous/heat couplings in the causal system of transport/relaxation equations. For the study of physical systems we consider pure (1+1)-dimensional expansion in planar geometry, (1+1)-dimensional spherically symmetric ({\\em fireball}) expansion, (1+1)-dimensional cylindrically symmetric expansion and a (2+1)-dimensional expansion with cylindrical symmetry in the transverse plane ({\\em firebarell} expansion). The transport/relaxation equations are given in terms of the spatial components of the dissipative fluxes, since these are not independent. The choice for the independent components is analogou...
Muronga, A
2007-01-01
In the causal theory of relativistic dissipative fluid dynamics, there are conditions on the equation of state and other thermodynamic properties such as the second-order coefficients of a fluid that need to be satisfied to guarantee that the fluid perturbations propagate causally and obey hyperbolic equations. The second-order coefficients in the causal theory, which are the relaxation times for the dissipative degrees of freedom and coupling constants between different forms of dissipation (relaxation lengths), are presented for partonic and hadronic systems. These coefficients involves relativistic thermodynamic integrals. The integrals are presented for general case and also for different regimes in the temperature--chemical potential plane. It is shown that for a given equation of state these second-order coefficients are not additional parameters but they are determined by the equation of state. We also present the prescription on the calculation of the freeze-out particle spectra from the dynamics of r...
Viscous fluid dynamics in Au+Au collisions at RHIC
Chaudhuri, A K
2008-01-01
We have studied the space-time evolution of minimally viscous ($\\frac{\\eta}{s}$=0.08) QGP fluid, undergoing boost-invariant longitudinal motion and arbitrary transverse expansion. Relaxation equations for the shear stress tensor components, derived from the phenomenological Israel-Stewart's theory of dissipative relativistic fluid, are solved simultaneously with the energy-momentum conservation equations. Comparison of evolution of ideal and viscous fluid, both initialized under the similar conditions, e.g. same equilibration time, energy density and velocity profile, indicate that in viscous fluid, energy density or temperature of the fluid evolve slowly than in an ideal fluid. Transverse expansion is also more in viscous evolution. We have also studied particle production in viscous dynamics. Compared to ideal dynamics, in viscous dynamics, particle yield at high $p_T$ is increased. Elliptic flow on the other hand decreases. Minimally viscous QGP fluid, initialized at entropy density $s_{ini}$=110 $fm^{-3}$...
Chakrabarti, Brato
2015-01-01
This work explores a simple model of a slender, flexible structure in a uniform flow, providing analytical solutions for the translating, axially flowing equilibria of strings subjected to a uniform body force and drag forces linear in the velocities. The classical catenaries are extended to a five-parameter family of curves. A sixth parameter affects the tension in the curves. Generic configurations are planar, represented by a single first order equation for the tangential angle. The effects of varying parameters on representative shapes, orbits in angle-curvature space, and stress distributions are shown. As limiting cases, the solutions include configurations corresponding to "lariat chains" and the towing, reeling, and sedimentation of flexible cables in a highly viscous fluid. Regions of parameter space corresponding to infinitely long, semi-infinite, and finite length curves are delineated. Almost all curves subtend an angle less than $\\pi$ radians, but curious special cases with doubled or infinite ra...
New Developments in Relativistic Viscous Hydrodynamics
Romatschke, Paul
2009-01-01
Starting with a brief introduction into the basics of relativistic fluid dynamics, I discuss our current knowledge of a relativistic theory of fluid dynamics in the presence of (mostly shear) viscosity. Derivations based on the generalized second law of thermodynamics, kinetic theory, and a complete second-order gradient expansion are reviewed. The resulting fluid dynamic equations are shown to be consistent for all these derivations, when properly accounting for the respective region of appl...
Abdurakhmanov, U U
2013-01-01
By the methods of mathematical statistics we test a qualitative prediction of the old theory of relativistic hydrodynamics non-viscous liquid which can be used as a part of the process of hadronization within the modern hydrodynamical approach for the description of the quark-gluon plasma. Experimental data on the interaction of protons with the energies of 0.8 TeV with emulsion nuclei are used. Results do not contradict the formation of relativistic ideal non-viscous liquid in rare central collisions.
Relativistic viscoelastic fluid mechanics.
Fukuma, Masafumi; Sakatani, Yuho
2011-08-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Viscous Stability of Relativistic Keplerian Accretion Disks
Ghosh, P
1998-01-01
We investigate the viscous stability of thin, Keplerian accretion disks in regions where general relativistic (GR) effects are essential. For gas pressure dominated (GPD) disks, we show that the Newtonian conclusion that such disks are viscously stable is reversed by GR modifications in the behaviors of viscous stress and surface density over a significantly large annular region not far from the innermost stable orbit at $r=\\rms$. For slowly-rotating central objects, this region spans a range of radii $14\\lo r\\lo 19$ in units of the central object's mass $M$. For radiation pressure dominated (RPD) disks, the Newtonian conclusion that they are viscously unstable remains valid after including the above GR modifications, except in a very small annulus around $r\\approx 14M$, which has a negligible influence. Inclusion of the stabilizing effect of the mass-inflow through the disk's inner edge via a GR analogue of Roche-lobe overflow adds a small, stable region around \\rms~for RPD disks, but leaves GPD disks unchan...
Galilean relativistic fluid mechanics
Ván, Péter
2015-01-01
Single component Galilean-relativistic (nonrelativistic) fluids are treated independently of reference frames. The basic fields are given, their balances, thermodynamic relations and the entropy production is calculated. The usual relative basic fields, the mass, momentum and energy densities, the diffusion current density, the pressure tensor and the heat flux are the time- and spacelike components of the third order mass-momentum-energy density tensor according to a velocity field. The transformation rules of the basic fields are derived and prove that the non-equilibrium thermodynamic background theory, that is the Gibbs relation, extensivity condition and the entropy production is absolute, that is independent of the reference frame and also of the fluid velocity. --- Az egykomponensu Galilei-relativisztikus (azaz nemrelativisztikus) disszipativ folyadekokat vonatkoztatasi rendszertol fuggetlenul targyaljuk. Megadjuk az alapmennyisegeket, ezek merlegeit, a termodinamikai osszefuggeseket es kiszamoljuk az ...
Nonlinear waves in strongly interacting relativistic fluids
Fogaça, D A; Filho, L G Ferreira
2013-01-01
During the past decades the study of strongly interacting fluids experienced a tremendous progress. In the relativistic heavy ion accelerators, specially the RHIC and LHC colliders, it became possible to study not only fluids made of hadronic matter but also fluids of quarks and gluons. Part of the physics program of these machines is the observation of waves in this strongly interacting medium. From the theoretical point of view, these waves are often treated with li-nearized hydrodynamics. In this text we review the attempts to go beyond linearization. We show how to use the Reductive Perturbation Method to expand the equations of (ideal and viscous) relativistic hydrodynamics to obtain nonlinear wave equations. These nonlinear wave equations govern the evolution of energy density perturbations (in hot quark gluon plasma) or baryon density perturbations (in cold quark gluon plasma and nuclear matter). Different nonlinear wave equations, such as the breaking wave, Korteweg-de Vries and Burgers equations, are...
Cattaneo, Carlo
2011-01-01
This title includes: Pham Mau Quam: Problemes mathematiques en hydrodynamique relativiste; A. Lichnerowicz: Ondes de choc, ondes infinitesimales et rayons en hydrodynamique et magnetohydrodynamique relativistes; A.H. Taub: Variational principles in general relativity; J. Ehlers: General relativistic kinetic theory of gases; K. Marathe: Abstract Minkowski spaces as fibre bundles; and, G. Boillat: Sur la propagation de la chaleur en relativite.
Viscous fingering with partial miscible fluids
Fu, Xiaojing; Cueto-Felgueroso, Luis; Juanes, Ruben
2015-11-01
When a less viscous fluid displaces a more viscous fluid, the contrast in viscosity destabilizes the interface between the two fluids, leading to the formation of fingers. Studies of viscous fingering have focused on fluids that are either fully miscible or perfectly immiscible. In practice, however, the miscibility of two fluids can change appreciably with temperature and pressure, and often falls into the case of partial miscibility, where two fluids have limited solubility in each other. Following our recent work for miscible (Jha et al., PRL 2011, 2013) and immiscible systems (Cueto-Felgueroso and Juanes, PRL 2012, JFM 2014), here we propose a phase-field model for fluid-fluid displacements in a Hele-Shaw cell, when the two fluids have limited (but nonzero) solubility in one another. Partial miscibility is characterized through the design of thermodynamic free energy of the two-fluid system. We elucidate the key dimensionless groups that control the behavior of the system. We present high-resolution numerical simulations of the model applied to the viscous fingering problem. On one hand, we demonstrate the effect of partial miscibility on the hydrodynamic instability. On the other, we elucidate the role of the degree of fingering on the rate of mutual fluid dissolution.
Viscous fingering with partially miscible fluids
Fu, X.; Cueto-Felgueroso, L.; Juanes, R.
2015-12-01
When a less viscous fluid displaces a more viscous fluid, the contrast in viscosity destabilizes the interface between the two fluids, leading to the formation of fingers. Experimental and numerical studies of viscous fingering have focused on fluids that are either fully miscible (e.g. water and glycerol) or perfectly immiscible (e.g. water and oil). In practice, however, the miscibility of two fluids can change appreciably with temperature and pressure, and often falls into the case of partial miscibility, where two fluids have limited solubility in each other (e.g. CO2 and water). Following our recent work for miscible systems (Jha et al., PRL 2011, 2013) and immiscible systems (Cueto-Felgueroso and Juanes, PRL 2012, JFM 2014), here we propose a phase-field model for fluid-fluid displacements in a porous medium, when the two fluids have limited (but nonzero) solubility in one another. In our model, partial miscibility is characterized through the design of the thermodynamic free energy of the two-fluid system. We express the model in dimensionless form and elucidate the key dimensionless groups that control the behavior of the system. We present high-resolution numerical simulations of the model applied to the viscous fingering problem. On one hand, we demonstrate the effect of partial miscibility on the hydrodynamic instability. On the other, we elucidate the role of the degree of fingering on the rate of mutual fluid dissolution. Figure caption: final snapshots in simulations of viscous fingering with a two-fluid system mimicking that of CO2 and water. The colormap corresponds to the concentration of CO2. A band of less viscous gas phase rich in CO2 (red) displaces through the more viscous liquid phase that is undersaturated with CO2 (blue). At the fluid interface, an exchange of CO2 occurs as a result of local chemical potentials that drives the system towards thermodynamic equilibrium. This results in a shrinkage of gas phase as well as a local increase in
Thermodynamics and flow-frames for dissipative relativistic fluids
Ván, P. [Dept. of Theoretical Physics, Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, H-1525 Budapest, Konkoly Thege Miklós út 29-33, Hungary and Dept. of Energy Engineering, Budapest Univ. of Technology and Econ (Hungary); Biró, T. S. [Dept. of Theoretical Physics, Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, H-1525 Budapest, Konkoly Thege Miklós út 29-33 (Hungary)
2014-01-14
A general thermodynamic treatment of dissipative relativistic fluids is introduced, where the temperature four vector is not parallel to the velocity field of the fluid. Generic stability and kinetic equilibrium points out a particular thermodynamics, where the temperature vector is parallel to the enthalpy flow vector and the choice of the flow fixes the constitutive functions for viscous stress and heat. The linear stability of the homogeneous equilibrium is proved in a mixed particle-energy flow-frame.
Galilean relativistic fluid mechanics
Ván, Péter
2015-01-01
Single component nonrelativistic dissipative fluids are treated independently of reference frames and flow-frames. First the basic fields and their balances, then the related thermodynamic relations and the entropy production are calculated and the linear constitutive relations are given. The usual basic fields of mass, momentum, energy and their current densities, the heat flux, pressure tensor and diffusion flux are the time- and spacelike components of the third order mass-momentum-energy ...
Galilean relativistic fluid mechanics
Ván, P.
2017-01-01
Single-component nonrelativistic dissipative fluids are treated independently of reference frames and flow-frames. First the basic fields and their balances are derived, then the related thermodynamic relations and the entropy production are calculated and the linear constitutive relations are given. The usual basic fields of mass, momentum, energy and their current densities, the heat flux, pressure tensor and diffusion flux are the time- and spacelike components of the third-order mass-momentum-energy density-flux four-tensor. The corresponding Galilean transformation rules of the physical quantities are derived. It is proved that the non-equilibrium thermodynamic frame theory, including the thermostatic Gibbs relation and extensivity condition and also the entropy production, is independent of the reference frame and also the flow-frame of the fluid. The continuity-Fourier-Navier-Stokes equations are obtained almost in the traditional form if the flow of the fluid is fixed to the temperature. This choice of the flow-frame is the thermo-flow. A simple consequence of the theory is that the relation between the total, kinetic and internal energies is a Galilean transformation rule.
Cochlear perfusion with a viscous fluid.
Wang, Yi; Olson, Elizabeth S
2016-07-01
The flow of viscous fluid in the cochlea induces shear forces, which could provide benefit in clinical practice, for example to guide cochlear implant insertion or produce static pressure to the cochlear partition or wall. From a research standpoint, studying the effects of a viscous fluid in the cochlea provides data for better understanding cochlear fluid mechanics. However, cochlear perfusion with a viscous fluid may damage the cochlea. In this work we studied the physiological and anatomical effects of perfusing the cochlea with a viscous fluid. Gerbil cochleae were perfused at a rate of 2.4 μL/min with artificial perilymph (AP) and sodium hyaluronate (Healon, HA) in four different concentrations (0.0625%, 0.125%, 0.25%, 0.5%). The different HA concentrations were applied either sequentially in the same cochlea or individually in different cochleae. The perfusion fluid entered from the round window and was withdrawn from basal scala vestibuli, in order to perfuse the entire perilymphatic space. Compound action potentials (CAP) were measured after each perfusion. After perfusion with increasing concentrations of HA in the order of increasing viscosity, the CAP thresholds generally increased. The threshold elevation after AP and 0.0625% HA perfusion was small or almost zero, and the 0.125% HA was a borderline case, while the higher concentrations significantly elevated CAP thresholds. Histology of the cochleae perfused with the 0.0625% HA showed an intact Reissner's membrane (RM), while in cochleae perfused with 0.125% and 0.25% HA RM was torn. Thus, the CAP threshold elevation was likely due to the broken RM, likely caused by the shear stress produced by the flow of the viscous fluid. Our results and analysis indicate that the cochlea can sustain, without a significant CAP threshold shift, up to a 1.5 Pa shear stress. Beside these finding, in the 0.125% and 0.25% HA perfusion cases, a temporary CAP threshold shift was observed, perhaps due to the presence and
Cochlear perfusion with a viscous fluid
Wang, Yi; Olson, Elizabeth S.
2016-01-01
The flow of viscous fluid in the cochlea induces shear forces, which could provide benefit in clinical practice, for example to guide cochlear implant insertion or produce static pressure to the cochlear partition or wall. From a research standpoint, studying the effects of a viscous fluid in the cochlea provides data for better understanding cochlear fluid mechanics. However, cochlear perfusion with a viscous fluid may damage the cochlea. In this work we studied the physiological and anatomical effects of perfusing the cochlea with a viscous fluid. Gerbil cochleae were perfused at a rate of 2.4 μL/min with artificial perilymph (AP) and sodium hyaluronate (Healon, HA) in four different concentrations (0.0625%, 0.125%, 0.25%, 0.5%). The different HA concentrations were applied either sequentially in the same cochlea or individually in different cochleae. The perfusion fluid entered from the round window and was withdrawnfrom basal scala vestibuli, in order to perfuse the entire perilymphatic space. Compound action potentials (CAP) were measured after each perfusion. After perfusion with increasing concentrations of HA in the order of increasing viscosity, the CAP thresholds generally increased. The threshold elevation after AP and 0.0625% HA perfusion was small or almost zero, and the 0.125% HA was a borderline case, while the higher concentrations significantly elevated CAP thresholds. Histology of the cochleae perfused with the 0.0625% HA showed an intact Reissner’s membrane, while in cochleae perfused with 0.125% and 0.25% HA Reissner’s membrane (RM) was torn. Thus, the CAP threshold elevation was likely due to the broken of RM, which likely caused by the shear stress produced by the flow of the viscous fluid. Our results and analysis indicate that the cochlea can sustain, without a significant CAP threshold shift, up to a 1.5 Pa shear stress. Beside these finding, in the 0.125% and 0.25% HA perfusion cases, a temporary CAP threshold shift was observed
Simple waves in relativistic fluids.
Lyutikov, Maxim
2010-11-01
We consider the Riemann problem for relativistic flows of polytropic fluids and find relations for the flow characteristics. Evolution of physical quantities takes especially simple form for the case of cold magnetized plasmas. We find exact explicit analytical solutions for one-dimensional expansion of magnetized plasma into vacuum, valid for arbitrary magnetization. We also consider expansion into cold unmagnetized external medium both for stationary initial conditions and for initially moving plasma, as well as reflection of rarefaction wave from a wall. We also find self-similar structure of three-dimensional magnetized outflows into vacuum, valid close to the plasma-vacuum interface.
LUBRICATED TRANSPORT OF VISCOUS FLUIDS
JOSEPH, DANIEL D
2004-06-21
We became the acknowledged world leaders in the science fundamentals of the technology of water lubricated pipelines focusing on stability, numerical and experimental studies. We completed the first direct numerical simulation of axisymmetric core flow. We showed that the pressure at the front of the wave is large (the fluid enters a converging region) and it pushes the interface in, steepening the wave at its front. At the backside of the wave, behind the crest, the pressure is low (diverging flow) and it pulls the interface to the wall, smoothing the backside of the wave. The steepening of the wave can be regarded as a shock up by inertia and it shows that dynamics works against the formation of long waves which are often assumed but not justified in the analysis of such problems. We showed that the steep wave persists even as the gap between the core and the wall decreases to zero. The wave length also decreases in proportion, so that the wave shape is preserved in this limit. This leads to the first mathematical solution giving rise sharkskin. The analysis also showed that there is a threshold Reynolds number below which the total force reckoned relative to a zero at the wave crest is negative, positive above, and we conjectured, therefore that inertia is required to center a density matched core and to levitate the core off the wall when the density is not matched. Other work relates to self-lubricated transport of bitumen froth and self-lubricated transport of bitumen froth.
Entropy current for non-relativistic fluid
Banerjee, Nabamita; Jain, Akash; Roychowdhury, Dibakar
2014-01-01
We study transport properties of a parity-odd, non-relativistic charged fluid in presence of background electric and magnetic fields. To obtain stress tensor and charged current for the non-relativistic system we start with the most generic relativistic fluid, living in one higher dimension and reduce the constituent equations along the light-cone direction. We also reduce the equation satisfied by the entropy current of the relativistic theory and obtain a consistent entropy current for the non-relativistic system (we call it "canonical form" of the entropy current). Demanding that the non-relativistic fluid satisfies the second law of thermodynamics we impose constraints on various first order transport coefficients. For parity even fluid, this is straight forward; it tells us positive definiteness of different transport coefficients like viscosity, thermal conductivity, electric conductivity etc. However for parity-odd fluid, canonical form of the entropy current fails to confirm the second law of thermody...
Bożek, Piotr
2008-03-01
The longitudinal hydrodynamic expansion of the fluid created in relativistic heavy-ion collisions is considered taking into account shear viscosity. We consider the dynamics of a non-boost-invariant energy density of the fluid in 1+1 dimensions, using the proper time and the space-time rapidity. Both a nonvanishing viscosity and a soft equation of state make the final particle distributions in rapidity narrower. The width of the initial Gaussian rapidity distribution and its central energy density are fitted to reproduce the rapidity distributions of pions and kaons as measured by the BRAHMS Collaboration. The presence of viscosity has dramatic consequences on the value of the initial energy density. Dissipative processes and the reduction of the longitudinal work due to the shear viscosity increase the total entropy and the particle multiplicity at central rapidities. Viscous corrections make the longitudinal velocity of the fluid stay close to the Bjorken scaling flow vz=z/t through the evolution.
Free fingering at the contact between spreading viscous fluids
Neufeld, Jerome; Gell, Laura; Box, Finn
2015-11-01
The spreading of viscous fluids is an everyday phenomena with large-scale applications to the flow of glaciers and the dynamics of mountain formation in continental collisions. When viscous fluids spread on an undeformable base the contact line is stable to perturbations. In contrast, when less viscous fluids displace more viscous fluids, as in a Hele-Shaw cell or porous matrix, the contact line is unstable to a fingering phenomena. Here we show, experimentally and theoretically, that when a viscous fluid spreads on a pre-existing layer of fixed depth and differing viscosity the geometry of the contact line depends sensitively on the ratio of fluid viscosities, the input flux and the initial layer depth. When the injected fluid is less viscous the contact line may become unstable to a fingering pattern reminiscent of Saffman-Taylor fingering. We explore the parameter space of this new instability, and highlight its applicability to understanding mountain formation and glacial ice streams.
Self-consistent conversion of a viscous fluid to particles
Molnar, Denes; Wolff, Zack
2017-02-01
Comparison of hydrodynamic and "hybrid" hydrodynamics+transport calculations with heavy-ion data inevitably requires the conversion of the fluid to particles. For dissipative fluids the conversion is ambiguous without additional theory input complementing hydrodynamics. We obtain self-consistent shear viscous phase-space corrections from linearized Boltzmann transport theory for a gas of hadrons. These corrections depend on the particle species, and incorporating them in Cooper-Frye freeze-out affects identified particle observables. For example, with additive quark model cross sections, proton elliptic flow is larger than pion elliptic flow at moderately high pT in Au+Au collisions at the BNL Relativistic Heavy Ion Collider. This is in contrast to Cooper-Frye freeze-out with the commonly used "democratic Grad" ansatz that assumes no species dependence. Various analytic and numerical results are also presented for massless and massive two-component mixtures to better elucidate how species dependence arises. For convenient inclusion in pure hydrodynamic and hybrid calculations, Appendix G contains self-consistent viscous corrections for each species both in tabulated and parametrized form.
Non-Newtonian Properties of Relativistic Fluids
Koide, Tomoi
2010-01-01
We show that relativistic fluids behave as non-Newtonian fluids. First, we discuss the problem of acausal propagation in the diffusion equation and introduce the modified Maxwell-Cattaneo-Vernotte (MCV) equation. By using the modified MCV equation, we obtain the causal dissipative relativistic (CDR) fluid dynamics, where unphysical propagation with infinite velocity does not exist. We further show that the problems of the violation of causality and instability are intimately related, and the relativistic Navier-Stokes equation is inadequate as the theory of relativistic fluids. Finally, the new microscopic formula to calculate the transport coefficients of the CDR fluid dynamics is discussed. The result of the microscopic formula is consistent with that of the Boltzmann equation, i.e., Grad's moment method.
Rehinging biflagellar locomotion in a viscous fluid.
Spagnolie, Saverio E
2009-10-01
A means of swimming in a viscous fluid is presented, in which a swimmer with only two links rotates around a joint and then rehinges in a periodic fashion in what is here termed rehinging locomotion. This two-link rigid swimmer is shown to locomote with an efficiency similar to that of Purcell's well-studied three-link swimmer, but with a simpler morphology. The hydrodynamically optimal stroke of an analogous flexible biflagellated swimmer is also considered. The introduction of flexibility is found to increase the swimming efficiency by up to 520% as the body begins to exhibit wavelike dynamics, with an upper bound on the efficiency determined by a degeneracy in the limit of infinite flexibility.
Diffusion on Viscous Fluids, Existence and Asymptotic Properties of Solutions,
1983-09-01
Matematica - Politecuico di Milano (1982). 11.* P. Secchi "On the Initial Value ProbleM for the Nquations of Notion of Viscous Incompressible Fluids In...of two viscous Incompressible Fluids’, preprint DepartLmento dl matematica - Politecuico di Milano (1982). -15- 11. P. Secchi 00n the XnitiaI Value
Viscous boundary layers of radiation-dominated, relativistic jets. I. The two-stream model
Coughlin, Eric R
2015-01-01
Using the relativistic equations of radiation hydrodynamics in the viscous limit, we analyze the boundary layers that develop between radiation-dominated jets and their environments. In this paper we present the solution for the self-similar, 2-D, plane-parallel two-stream problem, wherein the jet and the ambient medium are considered to be separate, interacting fluids, and we compare our results to those of previous authors. (In a companion paper we investigate an alternative scenario, known as the free-streaming jet model.) Consistent with past findings, we show that the boundary layer that develops between the jet and its surroundings creates a region of low-density material. These models may be applicable to sources such as super-Eddington tidal disruption events and long gamma-ray bursts.
Dark Viscous Fluid coupled with Dark Matter and future singularity
Sebastiani, Lorenzo
2010-01-01
We study effects of viscous fluid coupled with dark matter in our universe. We consider bulk viscosity in the cosmic fluid and we suppose the existence of a coupling between fluid and dark matter, in order to reproduce a stable de Sitter universe protected against future-time singularities. More general inhomogeneous fluids are studied related to future singularities.
Benedicks effect in a relativistic simple fluid
Garcia-Perciante, A L; Garcia-Colin, L S
2013-01-01
According to standard thermophysical theories, cross effects are mostly present in multicomponent systems. In this paper we show that for relativistic fluids an electric field generates a heat flux even in the single component case. In the non-relativistic limit the effect vanishes and Fourier's law is recovered. This result is novel and may have applications in the transport properties of very hot plasmas.
DYNAMICS OF RELATIVISTIC FLUID FOR COMPRESSIBLE GAS
无
2011-01-01
In this paper the relativistic fluid dynamics for compressible gas is studied.We show that the strict convexity of the negative thermodynamical entropy preserves invariant under the Lorentz transformation if and only if the local speed of sound in this gas is strictly less than that of light in the vacuum.A symmetric form for the equations of relativistic hydrodynamics is presented,and thus the local classical solutions to these equations can be deduced.At last,the non-relativistic limits of these local cla...
Electromagnetic properties of viscous charged fluids
Forcella, Davide; Zaanen, Jan; Valentinis, Davide; van der Marel, Dirk
2014-07-01
We provide a general theoretical framework to describe the electromagnetic properties of viscous charged fluids, consisting, for example, of electrons in certain solids or plasmas. We confirm that finite viscosity leads to multiple modes of evanescent electromagnetic waves at a given frequency, one of which is characterized by a negative index of refraction, as previously discussed in a simplified model by one of the authors. In particular, we explain how optical spectroscopy can be used to probe the viscosity. We concentrate on the impact of this on the coefficients of refraction and reflection at the sample-vacuum interface. Analytical expressions are obtained relating the viscosity parameter to the reflection and transmission coefficients of light. We demonstrate that finite viscosity has the effect to decrease the reflectivity of a metallic surface, while the electromagnetic field penetrates more deeply. While on a phenomenological level there are similarities to the anomalous skin effect, the model presented here requires no particular assumptions regarding the corpuscular nature of the charge liquid. A striking consequence of the branching phenomenon into two degenerate modes is the occurrence in a half-infinite sample of oscillations of the electromagnetic field intensity as a function of distance from the interface.
Relabeling symmetry in relativistic fluids and plasmas
Kawazura, Yohei; Fukumoto, Yasuhide
2014-01-01
The conservation of the recently formulated relativistic canonical helicity [Yoshida Z, Kawazura Y, and Yokoyama T 2014 J. Math. Phys. 55 043101] is derived from Noether's theorem by constructing an action principle on the relativistic Lagrangian coordinates (we obtain general cross helicities that include the helicity of the canonical vorticity). The conservation law is, then, explained by the relabeling symmetry pertinent to the Lagrangian label of fluid elements. Upon Eulerianizing the Noether current, the purely spatial volume integral on the Lagrangian coordinates is mapped to a space-time mixed three-dimensional integral on the four-dimensional Eulerian coordinates. The relativistic conservation law in the Eulerian coordinates is no longer represented by any divergence-free current; hence, it is not adequate to regard the relativistic helicity (represented by the Eulerian variables) as a Noether charge, and this stands the reason why the "conventional helicity" is no longer a constant of motion. We have...
Magnetohydrodynamics of Chiral Relativistic Fluids
Boyarsky, Alexey; Ruchayskiy, Oleg
2015-01-01
We study the dynamics of a plasma of charged relativistic fermions at very high temperature $T\\gg m$, where $m$ is the fermion mass, coupled to the electromagnetic field. In particular, we derive a magneto-hydrodynamical description of the evolution of such a plasma. We show that, as compared to conventional MHD for a plasma of non-relativistic particles, the hydrodynamical description of the relativistic plasma involves new degrees of freedom described by a pseudo-scalar field originating in a local asymmetry in the densities of left-handed and right-handed fermions. This field can be interpreted as an effective axion field. Taking into account the chiral anomaly we present dynamical equations for the evolution of this field, as well as of other fields appearing in the MHD description of the plasma. Due to its non-linear coupling to helical magnetic fields, the axion field significantly affects the dynamics of a magnetized plasma and can give rise to a novel type of inverse cascade.
Experimental study on viscous fingering with partial miscible fluids
Suzuki, Ryuta; Nagatsu, Yuichiro; Mishra, Manoranjan; Ban, Takahiko
2016-11-01
Viscous fingering (VF) instability occurs when a more viscous fluid is displaced by a less viscous one in porous media or Hele-Shaw cells. So far, studies of VF have focused on fluids that are either fully miscible or immiscible. However, little attention has been paid to VF in partially miscible fluids. Here, we have experimentally investigated VF in a radial Hele-Shaw cell using an aqueous two phase system (Ban et al. Soft Matter, 2012) which is an example of partially miscible fluids system. We have found novel instabilities that are counter-intuitive in miscible and immiscible systems. These include multiple droplets formation for low flow rate and widening of fingers at intermediate flow rate. The occurrence of the new instability patterns is induced by Korteweg effect in which convection is induced during phase separation in partially miscible systems.
Relativistic quantum transport coefficients for second-order viscous hydrodynamics
Florkowski, Wojciech; Maksymiuk, Ewa; Ryblewski, Radoslaw; Strickland, Michael
2015-01-01
We express the transport coefficients appearing in the second-order evolution equations for bulk viscous pressure and shear stress tensor using Bose-Einstein, Boltzmann, and Fermi-Dirac statistics for the equilibrium distribution function and Grad's 14-moment approximation as well as the method of Chapman-Enskog expansion for the non-equilibrium part. Specializing to the case of boost-invariant and transversally homogeneous longitudinal expansion of the viscous medium, we compare the results obtained using the above methods with those obtained from the exact solution of massive 0+1d Boltzmann equation in the relaxation-time approximation. We show that compared to the 14-moment approximation, the hydrodynamic transport coefficients obtained using the Chapman-Enskog method result in better agreement with the exact solution of the Boltzmann equation in relaxation-time approximation.
Relativistic perfect fluids in local thermal equilibrium
Coll, Bartolomé; Sáez, Juan Antonio
2016-01-01
The inverse problem for conservative perfect fluid energy tensors provides a striking result. Namely that, in spite of its name, its historic origin or its usual conceptualization, the notion of {\\em local thermal equilibrium} for a perfect fluid is a {\\em purely hydrodynamic}, not thermodynamic, notion. This means that it may be thought, defined and detected using exclusively hydrodynamic quantities, without reference to temperature or any other thermodynamic concept, either of equilibrium or irreversible: a relativistic perfect fluid evolves in local thermal equilibrium if, and only if, its hydrodynamic variables evolve keeping a certain relation among them. This relation fixes, but only fixes, a precise fraction of the thermodynamics of the fluid, namely that relating the speed of its sound waves to the hydrodynamic variables. All thermodynamic schemes (sets of thermodynamic variables and their mutual relations) compatible with such a relation on the sole hydrodynamic variables are obtained. This hydrodyna...
Inflation in a viscous fluid model
Bamba, Kazuharu [Fukushima University, Division of Human Support System, Faculty of Symbiotic Systems Science, Fukushima (Japan); Odintsov, Sergei D. [Campus UAB, Carrer de Can Magrans, Institut de Ciencies de lEspai (IEEC-CSIC), Barcelona (Spain); Passeig Lluis Companys, Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain)
2016-01-15
We explore a fluid description of the inflationary universe. In particular, we investigate a fluid model in which the equation of state (EoS) for a fluid includes bulk viscosity. We find that the three observables of inflationary cosmology, i.e., the spectral index of the curvature perturbations, the tensor-to-scalar ratio of the density perturbations, and the running of the spectral index, can be consistent with the recent Planck results. We also reconstruct the explicit EoS for a fluid from the spectral index of the curvature perturbations compatible with the Planck analysis. In the reconstructed models of a fluid, the tensor-to-scalar ratio of the density perturbations can satisfy the constraints obtained from the Planck satellite. The running of the spectral index can explain the Planck data. In addition, it is demonstrated that in the reconstructed models of a fluid, the graceful exit from inflation can be realized. Moreover, we show that the singular inflation can occur in a fluid model. Furthermore, we show that a fluid description of inflation can be equivalent to the description of inflation in terms of scalar field theories. (orig.)
Zimdahl, W; Zimdahl, Winfried; Balakin, Alexander B.
1998-01-01
The particles of a classical relativistic gas are supposed to move under the influence of a quasilinear (in the particle four-momenta), self-interacting force inbetween elastic, binary collisions. This force which is completely fixed by the equilibrium conditions of the gas, gives rise to an effective viscous pressure on the fluid phenomenological level. Earlier results concerning the possibility of accelerated expansion of the universe due to cosmological particle production are reinterpreted. A phenomenon such as power law inflation may be traced back to specific self-interacting forces keeping the particles of a gas universe in states of generalized equilibrium.
A 3+1 dimensional viscous hydrodynamic code for relativistic heavy ion collisions
Karpenko, Iu.; Huovinen, P.; Bleicher, M.
2014-11-01
We describe the details of 3+1 dimensional relativistic hydrodynamic code for the simulations of quark-gluon/hadron matter expansion in ultra-relativistic heavy ion collisions. The code solves the equations of relativistic viscous hydrodynamics in the Israel-Stewart framework. With the help of ideal-viscous splitting, we keep the ability to solve the equations of ideal hydrodynamics in the limit of zero viscosities using a Godunov-type algorithm. Milne coordinates are used to treat the predominant expansion in longitudinal (beam) direction effectively. The results are successfully tested against known analytical relativistic inviscid and viscous solutions, as well as against existing 2+1D relativistic viscous code. Catalogue identifier: AETZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETZ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 13 825 No. of bytes in distributed program, including test data, etc.: 92 750 Distribution format: tar.gz Programming language: C++. Computer: any with a C++ compiler and the CERN ROOT libraries. Operating system: tested on GNU/Linux Ubuntu 12.04 x64 (gcc 4.6.3), GNU/Linux Ubuntu 13.10 (gcc 4.8.2), Red Hat Linux 6 (gcc 4.4.7). RAM: scales with the number of cells in hydrodynamic grid; 1900 Mbytes for 3D 160×160×100 grid. Classification: 1.5, 4.3, 12. External routines: CERN ROOT (http://root.cern.ch), Gnuplot (http://www.gnuplot.info/) for plotting the results. Nature of problem: relativistic hydrodynamical description of the 3-dimensional quark-gluon/hadron matter expansion in ultra-relativistic heavy ion collisions. Solution method: finite volume Godunov-type method. Running time: scales with the number of hydrodynamic cells; typical running times on Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz, single thread mode, 160
Inflationary Universe with a Viscous Fluid Avoiding Self-Reproduction
Brevik, I; Obukhov, V V; Timoshkin, A V
2016-01-01
We consider a universe with a bulk viscous cosmic fluid, in a flat Friedmann-Lemaitre-Robertson-Walker geometry. We derive the conditions for the existence of inflation, and those which at the same time prevent the occurrence of self-reproduction. Our theoretical model gives results which are in perfect agreement with the most recent data from the PLANCK surveyor.
Topological Fluid Dynamics For Free and Viscous Surfaces
Balci, Adnan
In an incompressible fluid flow, streamline patterns and their bifurcations are investigated close to wall for two-dimensional system and close to free and viscous surfaces in three-dimensional system. Expanding the velocity field in a Taylor series, we conduct a local analysis at the given...
Effective description of dark matter as a viscous fluid
Floerchinger Stefan
2016-01-01
Full Text Available Treating dark matter at large scales as an effectively viscous fluid provides an improved framework for the calculation of the density and velocity power spectra compared to the standard assumption of an ideal pressureless fluid. We discuss how this framework can be made concrete through an appropriate coarse-graining procedure. We also review results that demonstrate that it improves the convergence of cosmological perturbation theory.
Effective description of dark matter as a viscous fluid
Floerchinger, Stefan; Garny, Mathias; Tetradis, Nikolaos; Wiedemann, Urs Achim
2016-10-01
Treating dark matter at large scales as an effectively viscous fluid provides an improved framework for the calculation of the density and velocity power spectra compared to the standard assumption of an ideal pressureless fluid. We discuss how this framework can be made concrete through an appropriate coarse-graining procedure. We also review results that demonstrate that it improves the convergence of cosmological perturbation theory.
Effective description of dark matter as a viscous fluid
Floerchinger, S.; Tetradis, N.; Wiedemann, U.A.
2016-01-01
Treating dark matter at large scales as an effectively viscous fluid provides an improved framework for the calculation of the density and velocity power spectra compared to the standard assumption of an ideal pressureless fluid. We discuss how this framework can be made concrete through an appropriate coarse-graining procedure. We also review results that demonstrate that it improves the convergence of cosmological perturbation theory.
Characterization of magnetically actuated resonant cantilevers in viscous fluids
Vančura, Cyril; Lichtenberg, Jan; Hierlemann, Andreas; Josse, Fabien
2005-10-01
The vibration behavior of magnetically actuated resonant microcantilevers immersed in viscous fluids has been studied. A dependence of the resonance frequency and the quality factor (Q factor) on the fluid properties, such as density and viscosity and on the cantilever geometry is described. Various cantilever geometries are analyzed in pure water and glycerol solutions, and the results are explained in terms of the added displaced fluid mass and the fluid damping force for both the resonance frequency and the quality factor. An in-depth knowledge and understanding of such systems is necessary when analyzing resonant cantilevers as biochemical sensors in liquid environments.
New interior solution describing relativistic fluid sphere
KSH NEWTON SINGH; NARENDRA PRADHAN; NEERAJ PANT
2017-08-01
Anewexact solution of embedding class I is presented for a relativistic anisotropicmassive fluid sphere. The new exact solution satisfies Karmarkar condition, is well-behaved in all respects, and therefore is suitable for the modelling of superdense stars. Consequently, using this solution, we have studied in detail two compact stars, namely, XTE J1739-289 (strange star 1.51$M_{\\odot}$, 10.9 km) and PSR J1614-2230 (neutron star 1.97$M_{\\odot}$, 14 km). The solution also satisfies all energy conditions with the compactness parameter lying within the Buchdahl limit.
A two-fluid model for relativistic heat conduction
López-Monsalvo, César S. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (Mexico)
2014-01-14
Three years ago it was presented in these proceedings the relativistic dynamics of a multi-fluid system together with various applications to a set of topical problems [1]. In this talk, I will start from such dynamics and present a covariant formulation of relativistic thermodynamics which provides us with a causal constitutive equation for the propagation of heat in a relativistic setting.
Massively parallel simulations of relativistic fluid dynamics on graphics processing units with CUDA
Bazow, Dennis; Strickland, Michael
2016-01-01
Relativistic fluid dynamics is a major component in dynamical simulations of the quark-gluon plasma created in relativistic heavy-ion collisions. Simulations of the full three-dimensional dissipative dynamics of the quark-gluon plasma with fluctuating initial conditions are computationally expensive and typically require some degree of parallelization. In this paper, we present a GPU implementation of the Kurganov-Tadmor algorithm which solves the 3+1d relativistic viscous hydrodynamics equations including the effects of both bulk and shear viscosities. We demonstrate that the resulting CUDA-based GPU code is approximately two orders of magnitude faster than the corresponding serial implementation of the Kurganov-Tadmor algorithm. We validate the code using (semi-)analytic tests such as the relativistic shock-tube and Gubser flow.
Relativistic fluid dynamics in heavy ion collisions
Pu, Shi
2011-01-01
This dissertation is about the study of three important issues in the theory of relativistic fluid dynamics: the stability of dissipative fluid dynamics, the shear viscosity, and fluid dynamics with triangle anomaly.(1)The second order theory of fluid dynamics is necessary for causality. However the causality cannot be guaranteed for all parameters. The constraints for parameters are then given. We also point out that the causality and the stability are inter-correlated. It is found that a causal system must be stable, but an acausal system in the boost frame at high speed must be unstable. (2)The transport coefficients can be determined in kinetic theory. We will firstly discuss about derivation of the shear viscosity via variational method in the Boltzmann equation. Secondly, we will compute the shear viscosity via AdS/CFT duality in a Bjorken boost invariant fluid with radial flow. It is found that the ratio of the shear viscosity to entropy density is consistent with the work of Policastro, Son and Starin...
Controlling Wavebreaking in a Viscous Fluid Conduit
Anderson, Dalton; Maiden, Michelle; Hoefer, Mark
2015-11-01
This poster will present a new technique in the experimental investigation of dispersive hydrodynamics. In shallow water flows, internal ocean waves, superfluids, and optical media, wave breaking can be resolved by a dispersive shock wave (DSW). In this work, an experimental method to control the location of DSW formation (gradient catastrophe) is explained. The central idea is to convert an initial value problem (Riemann problem) into an equivalent boundary value problem. The system to which this technique is applied is a fluid conduit resulting from high viscosity contrast between a buoyant interior and heavier exterior fluid. The conduit cross-sectional area is modeled by a nonlinear, conservative, dispersive, third order partial differential equation. Using this model, the aim is to predict the breaking location of a DSW by controlling one boundary condition. An analytical expression for this boundary condition is derived by solving the dispersionless equation backward in time from the desired step via the method of characteristics. This is used in experiment to generate an injection rate profile for a high precision piston pump. This translates to the desired conduit shape. Varying the jump height and desired breaking location indicates good control of DSW formation. This result can be improved by deriving a conduit profile by numerical simulation of the full model equation. Controlling the breaking location of a DSW allows for the investigation of dynamics independent of the boundary. Support provided by NSF CAREER DMS-1255422 , NSF EXTREEMS.
Viscous Flow with Large Fluid-Fluid Interface Displacement
Rasmussen, Henrik Koblitz; Hassager, Ole; Saasen, Arild
1998-01-01
The arbitrary Lagrange-Euler (ALE) kinematic description has been implemented in a 3D transient finite element program to simulate multiple fluid flows with fluid-fluid interface or surface displacements. The description of fluid interfaces includes variable interfacial tension, and the formulation...
Spectral analysis of viscous static compressible fluid equilibria
Nunez, Manuel [Departamento de Analisis Matematico, Universidad de Valladolid, Valladolid (Spain)
2001-05-25
It is generally assumed that the study of the spectrum of the linearized Navier-Stokes equations around a static state will provide information about the stability of the equilibrium. This is obvious for inviscid barotropic compressible fluids by the self-adjoint character of the relevant operator, and rather easy for viscous incompressible fluids by the compact character of the resolvent. The viscous compressible linearized system, both for periodic and homogeneous Dirichlet boundary problems, satisfies neither condition, but it does turn out to be the generator of an immediately continuous, almost stable semigroup, which justifies the analysis of the spectrum as predictive of the initial behaviour of the flow. As for the spectrum itself, except for a unique negative finite accumulation point, it is formed by eigenvalues with negative real part, and nonreal eigenvalues are confined to a certain bounded subset of complex numbers. (author)
The Finiteness of vortices in steady incompressible viscous fluid flow
Kalita, Jiten C; Panda, Swapnendu
2016-01-01
In this work, we provide two novel approaches to show that incompressible fluid flow in a finite domain contains at most a finite number vortices. We use a recently developed geometric theory of incompressible viscous flows along with an existing mathematical analysis concept to establish the finiteness. We also offer a second proof of finiteness by roping in the Kolmogorov's length scale criterion in conjunction with the notion of diametric disks.
A Note on Viscous Capillary Fluids in Fast Rotation
Francesco Fanelli
2015-12-01
Full Text Available The present note is devoted to the study of singular perturbation problems for a Navier-Stokes-Korteweg system with Coriolis force. Such a model describes the motion of viscous compressible capillary fluids under the action of the Earth rotation. We are interested in the asymptotic behavior of a family of weak solutions in the limit for the Mach, the Rossby and the Weber numbers going to 0.
Mathematical Theory of Compressible Viscous Fluids: Analysis and Numerics
Feireisl, E. (Eduard); Karper, T.; Pokorný, M.
2016-01-01
This book offers an essential introduction to the mathematical theory of compressible viscous fluids. The main goal is to present analytical methods from the perspective of their numerical applications. Accordingly, we introduce the principal theoretical tools needed to handle well-posedness of the underlying Navier-Stokes system, study the problems of sequential stability, and, lastly, construct solutions by means of an implicit numerical scheme. Offering a unique contribution – by exploring...
Dynamic wetting with viscous Newtonian and non-Newtonian fluids.
Wei, Y; Rame, E; Walker, L M; Garoff, S
2009-11-18
We examine various aspects of dynamic wetting with viscous Newtonian and non-Newtonian fluids. Rather than concentrating on the mechanisms that relieve the classic contact line stress singularity, we focus on the behavior in the wedge flow near the contact line which has the dominant influence on wetting with these fluids. Our experiments show that a Newtonian polymer melt composed of highly flexible molecules exhibits dynamic wetting behavior described very well by hydrodynamic models that capture the critical properties of the Newtonian wedge flow near the contact line. We find that shear thinning has a strong impact on dynamic wetting, by reducing the drag of the solid on the fluid near the contact line, while the elasticity of a Boger fluid has a weaker impact on dynamic wetting. Finally, we find that other polymeric fluids, nominally Newtonian in rheometric measurements, exhibit deviations from Newtonian dynamic wetting behavior.
Effective actions for relativistic fluids from holography
de Boer, Jan; Pinzani-Fokeeva, Natalia
2015-01-01
Motivated by recent progress in developing action formulations of relativistic hydrodynamics, we use holography to derive the low energy dissipationless effective action for strongly coupled conformal fluids. Our analysis is based on the study of novel double Dirichlet problems for the gravitational field, in which the boundary conditions are set on two codimension one timelike hypersurfaces (branes). We provide a geometric interpretation of the Goldstone bosons appearing in such constructions in terms of a family of spatial geodesics extending between the ultraviolet and the infrared brane. Furthermore, we discuss supplementing double Dirichlet problems with information about the near-horizon geometry. We show that upon coupling to a membrane paradigm boundary condition, our approach reproduces correctly the complex dispersion relation for both sound and shear waves. We also demonstrate that upon a Wick rotation, our formulation reproduces the equilibrium partition function formalism, provided the near-horiz...
A viscous blast-wave model for relativistic heavy-ion collisions
Jaiswal, Amaresh
2015-01-01
Using a viscosity-based survival scale for geometrical perturbations formed in the early stages of relativistic heavy-ion collisions, we model the radial flow velocity during freeze-out. Subsequently, we employ the Cooper-Frye freeze-out prescription, with first-order viscous corrections to the distribution function, to obtain the transverse momentum distribution of particle yields and flow harmonics. For initial eccentricities, we use the results of Monte Carlo Glauber model. We fix the blast-wave model parameters by fitting the transverse momentum spectra of identified particles at the Large Hadron Collider (LHC) and demonstrate that this leads to a fairly good agreement with transverse momentum distribution of elliptic and triangular flow for various centralities. Within this viscous blast-wave model, we estimate the shear viscosity to entropy density ratio $\\eta/s\\simeq 0.24$ at the LHC.
Mathematical theory of compressible viscous fluids analysis and numerics
Feireisl, Eduard; Pokorný, Milan
2016-01-01
This book offers an essential introduction to the mathematical theory of compressible viscous fluids. The main goal is to present analytical methods from the perspective of their numerical applications. Accordingly, we introduce the principal theoretical tools needed to handle well-posedness of the underlying Navier-Stokes system, study the problems of sequential stability, and, lastly, construct solutions by means of an implicit numerical scheme. Offering a unique contribution – by exploring in detail the “synergy” of analytical and numerical methods – the book offers a valuable resource for graduate students in mathematics and researchers working in mathematical fluid mechanics. Mathematical fluid mechanics concerns problems that are closely connected to real-world applications and is also an important part of the theory of partial differential equations and numerical analysis in general. This book highlights the fact that numerical and mathematical analysis are not two separate fields of mathematic...
Rayleigh-Taylor instability of viscous fluids with phase change
Kim, Byoung Jae; Kim, Kyung Doo
2016-04-01
Film boiling on a horizontal surface is a typical example of the Rayleigh-Taylor instability. During the film boiling, phase changes take place at the interface, and thus heat and mass transfer must be taken into consideration in the stability analysis. Moreover, since the vapor layer is not quite thick, a viscous flow must be analyzed. Existing studies assumed equal kinematic viscosities of two fluids, and/or considered thin viscous fluids. The purpose of this study is to derive the analytical dispersion relation of the Rayleigh-Taylor instability for more general conditions. The two fluids have different properties. The thickness of the vapor layer is finite, but the liquid layer is thick enough to be nearly semi-infinite in view of perturbation. Initially, the vapor is in equilibrium with the liquid at the interface, and the direction of heat transfer is from the vapor side to the liquid side. In this case, the phase change has a stabilizing effect on the growth rate of the interface. When the vapor layer is thin, there is a coupled effect of the vapor viscosity, phase change, and vapor thickness on the critical wave number. For the other limit of a thick vapor, both the liquid and vapor viscosities influence the critical wave number. Finally, the most unstable wavelength is investigated. When the vapor layer is thin, the most unstable wavelength is not affected by phase change. When the vapor layer is thick, however, it increases with the increasing rate of phase change.
Swarms of particles settling under gravity in a viscous fluid
Ekiel-Jezewska, Maria L
2012-01-01
We investigate swarms made of a small number of particles settling under gravity in a viscous fluid. The particles do not touch each other and can move relative to each other. The dynamics is analyzed in the point-particle approximation. A family of swarms is found with periodic oscillations of all the settling particles. In the presence of an additional particle above the swarm, the trajectories are horizontally repelled from the symmetry axis, and flattened vertically. The results are used to explain how a spherical cloud, made of a large number of particles distributed at random, evolves and destabilizes.
Exact anisotropic viscous fluid solutions of Einstein's equations
Goenner, H. F. M.; Kowalewski, F.
1989-05-01
A method for obtaining anisotropic, rotationless viscous fluid matter solutions of Bianchi type I and Segré type [1, 111] with the barotropic equation of state is presented. Solutions for which the anisotropy decreases exponentially or with a power law as well as solutions with average Hubble parameterH ˜t -1 are discussed. Also, a class of solutions with constant anisotropy and Bianchi type VIh is found. The dominant energy condition holds and the transport coefficients show the right sign.
Compressible forced viscous fluid from product Einstein manifolds
Hao, Xin; Zhao, Liu
2015-01-01
We consider the fluctuation modes around a hypersurface $\\Sigma_c$ in a $(d+2)$-dimensional product Einstein manifold, with $\\Sigma_c$ taken either near the horizon or at some finite cutoff from the horizon. By mapping the equations that governs the lowest nontrivial order of the fluctuation modes into a system of partial differential equations on a flat Newtonian spacetime, a system of compressible, forced viscous fluid is realized. This result generalizes the non bulk/boundary holographic duality constructed by us recently to the case of a different background geometry.
Slow Waves in Fractures Filled with Viscous Fluid
Korneev, Valeri
2008-01-08
Stoneley guided waves in a fluid-filled fracture generally have larger amplitudes than other waves, and therefore, their properties need to be incorporated in more realistic models. In this study, a fracture is modeled as an infinite layer of viscous fluid bounded by two elastic half-spaces with identical parameters. For small fracture thickness, I obtain a simple dispersion equation for wave-propagation velocity. This velocity is much smaller than the velocity of a fluid wave in a Biot-type solution, in which fracture walls are assumed to be rigid. At seismic prospecting frequencies and realistic fracture thicknesses, the Stoneley guided wave has wavelengths on the order of several meters and an attenuation Q factor exceeding 10, which indicates the possibility of resonance excitation in fluid-bearing rocks. The velocity and attenuation of Stoneley guided waves are distinctly different at low frequencies for water and oil. The predominant role of fractures in fluid flow at field scales is supported by permeability data showing an increase of several orders of magnitude when compared to values obtained at laboratory scales. These data suggest that Stoneley guided waves should be taken into account in theories describing seismic wave propagation in fluid-saturated rocks.
Flow of a viscous nematic fluid around a sphere
Gómez-González, Manuel
2013-01-01
We analyze the creeping flow generated by a spherical particle moving through a viscous fluid with nematic directional order, in which momentum diffusivity is anisotropic and which opposes resistance to bending. Specifically, we provide closed-form analytical expressions for the response function, i.e. the equivalent to Stokes's drag formula for nematic fluids. Particular attention is given to the rotationally pseudo-isotropic condition defined by zero resistance to bending, and to the strain pseudo-isotropic condition defined by isotropic momentum diffusivity. We find the former to be consistent with the rheology of biopolymer networks and the latter to be closer to the rheology of nematic liquid crystals. These "pure" anisotropic conditions are used to benchmark existing particle tracking microrheology methods that provide effective directional viscosities by applying Stokes's drag law separately in different directions. We find that the effective viscosity approach is phenomenologically justified in rotati...
Quantifying Chiral Magnetic Effect from Anomalous-Viscous Fluid Dynamics
Jiang, Yin; Yin, Yi; Liao, Jinfeng
2016-01-01
Chiral Magnetic Effect (CME) is the macroscopic manifestation of the fundamental chiral anomaly in a many-body system of chiral fermions, and emerges as anomalous transport current in the fluid dynamics framework. Experimental observation of CME is of great interest and has been reported in Dirac and Weyl semimetals. Significant efforts have also been made to search for CME in heavy ion collisions. Encouraging evidence of CME-induced charge separation in those collisions has been reported, albeit with ambiguity due to background contamination. Crucial for addressing such issue, is the need of quantitative predictions for CME signal with sophisticated modelings. In this paper we develop such a tool, the Anomalous Viscous Fluid Dynamics (AVFD) framework, which simulates the evolution of fermion currents in QGP on top of the data-validated VISHNU bulk hydrodynamic flow. With realistic initial conditions and magnetic field lifetime, the AVFD-predicted CME signal could be quantitatively consistent with measured ch...
Wall laws for viscous fluids near rough surfaces
Dalibard Anne-Laure
2012-09-01
Full Text Available In this paper, we review recent results on wall laws for viscous fluids near rough surfaces, of small amplitude and wavelength ε. When the surface is “genuinely rough”, the wall law at first order is the Dirichlet wall law: the fluid satisfies a “no-slip” boundary condition on the homogenized surface. We compare the various mathematical characterizations of genuine roughness, and the corresponding homogenization results. At the next order, under ergodicity properties of the roughness distribution, a Navier wall law with a slip length of order ε can be derived, that leads to better error estimates. We also discuss the relationship beween the slip length and the position of the homogenized surface. In particular, we prove that for adherent rough walls, the Navier wall law associated to the roughness does not correspond to any tangible slip.
Buckling of a beam extruded into highly viscous fluid
Gosselin, F. P.; Neetzow, P.; Paak, M.
2014-11-01
Inspired by microscopic Paramecia which use trichocyst extrusion to propel themselves away from thermal aggression, we propose a macroscopic experiment to study the stability of a slender beam extruded in a highly viscous fluid. Piano wires were extruded axially at constant speed in a tank filled with corn syrup. The force necessary to extrude the wire was measured to increase linearly at first until the compressive viscous force causes the wire to buckle. A numerical model, coupling a lengthening elastica formulation with resistive-force theory, predicts a similar behavior. The model is used to study the dynamics at large time when the beam is highly deformed. It is found that at large time, a large deformation regime exists in which the force necessary to extrude the beam at constant speed becomes constant and length independent. With a proper dimensional analysis, the beam can be shown to buckle at a critical length based on the extrusion speed, the bending rigidity, and the dynamic viscosity of the fluid. Hypothesizing that the trichocysts of Paramecia must be sized to maximize their thrust per unit volume as well as avoid buckling instabilities, we predict that their bending rigidity must be about 3 ×10-9N μ m2 . The verification of this prediction is left for future work.
Time-dependent closure relations for relativistic collisionless fluid equations.
Bendib-Kalache, K; Bendib, A; El Hadj, K Mohammed
2010-11-01
Linear fluid equations for relativistic and collisionless plasmas are derived. Closure relations for the fluid equations are analytically computed from the relativistic Vlasov equation in the Fourier space (ω,k), where ω and k are the conjugate variables of time t and space x variables, respectively. The mathematical method used is based on the projection operator techniques and the continued fraction mathematical tools. The generalized heat flux and stress tensor are calculated for arbitrary parameter ω/kc where c is the speed of light, and for arbitrary relativistic parameter z=mc²/T , where m is the particle rest mass and T, the plasma temperature in energy units.
Multiscale Behavior of Viscous Fluids Dynamics: Experimental Observations
Arciniega-Ceballos, Alejandra; Spina, Laura; Scheu, Bettina; Dingwell, Donald B.
2016-04-01
The dynamics of Newtonian fluids with viscosities of mafic to intermediate silicate melts (10-1000 Pa s) during slow decompression present multi-time scale processes. To observe these processes we have performed several experiments on silicon oil saturated with Argon gas for 72 hours, in a Plexiglas autoclave. The slow decompression, dropping from 10 MPa to ambient pressure, acting as the excitation mechanism, triggered several processes with their own distinct timescales. These processes generate complex non-stationary microseismic signals, which have been recorded with 7 high-dynamic piezoelectric sensors located along the conduit flanked by high-speed video recordings. The analysis in time and frequency of these time series and their correlation with the associated high-speed imaging enables the characterization of distinct phases and the extraction of the individual processes during the evolution of decompression of these viscous fluids. We have observed fluid-solid elastic interaction, degassing, fluid mass expansion and flow, bubble nucleation, growth, coalescence and collapse, foam building and vertical wagging. All these processes (in fine and coarse scales) are sequentially coupled in time, occur within specific pressure intervals, and exhibit a localized distribution along the conduit. Their coexistence and interactions constitute the stress field and driving forces that determine the dynamics of the conduit system. Our observations point to the great potential of this experimental approach in the understanding of volcanic conduit dynamics and volcanic seismicity.
Vujanovic, Gojko; Denicol, Gabriel S; Luzum, Matthew; Jeon, Sangyong; Gale, Charles
2016-01-01
The penetrating nature of electromagnetic signals makes them suitable probes to explore the properties of the strongly-interacting medium created in relativistic nuclear collisions. We examine the effects of the initial conditions and shear relaxation time on the spectra and flow coefficients of electromagnetic probes, using an event-by-event 3+1D viscous hydrodynamic simulation (MUSIC).
Viscous Fluid Conduits as a Prototypical Nonlinear Dispersive Wave Platform
Lowman, Nicholas K.
This thesis is devoted to the comprehensive characterization of slowly modulated, nonlinear waves in dispersive media for physically-relevant systems using a threefold approach: analytical, long-time asymptotics, careful numerical simulations, and quantitative laboratory experiments. In particular, we use this interdisciplinary approach to establish a two-fluid, interfacial fluid flow setting known as viscous fluid conduits as an ideal platform for the experimental study of truly one dimensional, unidirectional solitary waves and dispersively regularized shock waves (DSWs). Starting from the full set of fluid equations for mass and linear momentum conservation, we use a multiple-scales, perturbation approach to derive a scalar, nonlinear, dispersive wave equation for the leading order interfacial dynamics of the system. Using a generalized form of the approximate model equation, we use numerical simulations and an analytical, nonlinear wave averaging technique, Whitham-El modulation theory, to derive the key physical features of interacting large amplitude solitary waves and DSWs. We then present the results of quantitative, experimental investigations into large amplitude solitary wave interactions and DSWs. Overtaking interactions of large amplitude solitary waves are shown to exhibit nearly elastic collisions and universal interaction geometries according to the Lax categories for KdV solitons, and to be in excellent agreement with the dynamics described by the approximate asymptotic model. The dispersive shock wave experiments presented here represent the most extensive comparison to date between theory and data of the key wavetrain parameters predicted by modulation theory. We observe strong agreement. Based on the work in this thesis, viscous fluid conduits provide a well-understood, controlled, table-top environment in which to study universal properties of dispersive hydrodynamics. Motivated by the study of wave propagation in the conduit system, we
Viscous boundary layers of radiation-dominated, relativistic jets. II. The free-streaming jet model
Coughlin, Eric R
2015-01-01
We analyze the interaction of a radiation-dominated jet and its surroundings using the equations of radiation hydrodynamics in the viscous limit. In a previous paper we considered the two-stream scenario, which treats the jet and its surroundings as distinct media interacting through radiation viscous forces. Here we present an alternative boundary layer model, known as the free-streaming jet model -- where a narrow stream of fluid is injected into a static medium -- and present solutions where the flow is ultrarelativistic and the boundary layer is dominated by radiation. It is shown that these jets entrain material from their surroundings and that their cores have a lower density of scatterers and a harder spectrum of photons, leading to observational consequences for lines of sight that look "down the barrel of the jet." These jetted outflow models may be applicable to the jets produced during long gamma-ray bursts and super-Eddington phases of tidal disruption events.
The case for hyperbolic theories of dissipation in relativistic fluids
Anile, A M; Romano, V; Anile, Angelo Marcello; Pavon, Diego; Romano, Vittorio
1998-01-01
In this paper we higlight the fact that the physical content of hyperbolic theories of relativistic dissipative fluids is, in general, much broader than that of the hyperbolic ones. This is substantiated by presenting an ample range of dissipative fluids whose behavior noticeably departs from Navier-Stokes.
Hyperchaotic Intermittent Convection in a Magnetized Viscous Fluid
Macek, Wieslaw M
2014-01-01
We consider a low-dimensional model of convection in a horizontally magnetized layer of a viscous fluid heated from below. We analyze in detail the stability of hydromagnetic convection for a wide range of two control parameters. Namely, when changing the initially applied temperature difference or magnetic field strength, one can see transitions from regular to irregular long-term behavior of the system, switching between chaotic, periodic, and equilibrium asymptotic solutions. It is worth noting that owing to the induced magnetic field a transition to hyperchaotic dynamics is possible for some parameters of the model. We also reveal new features of the generalized Lorenz model, including both type I and III intermittency.
Evolution of a universe filled with a causal viscous fluid
Chimento, Luis P
2012-01-01
The behaviour of solutions to the Einstein equations with a causal viscous fluid source is investigated. In this model we consider a spatially flat Robertson-Walker metric, the bulk viscosity coefficient is related to the energy density as $\\zeta = \\alpha \\rho^{m}$, and the relaxation time is given by $\\zeta/\\rho$. In the case $m = 1/2$ we find the exact solutions and we verify whether they satisfy the energy conditions. Besides, we study analytically the asymptotic stability of several families of solutions for arbitrary $m$. We find that the qualitative asymptotic behaviour in the far future is not altered by relaxation processes, but they change the behaviour in the past, introducing singular instead of deflationary evolutions or making the Universe bounce due to the violation of the energy conditions.
Energy Dissipation by Metamorphic Micro-Robots in Viscous Fluids
Hogg, Tad
2015-01-01
Microscopic robots could perform tasks with high spatial precision, such as acting on precisely-targeted cells in biological tissues. Some tasks may benefit from robots that change shape, such as elongating to improve chemical gradient sensing or contracting to squeeze through narrow channels. This paper evaluates the energy dissipation for shape-changing (i.e., metamorphic) robots whose size is comparable to bacteria. Unlike larger robots, surface forces dominate the dissipation. Theoretical estimates indicate that the power likely to be available to the robots, as determined by previous studies, is sufficient to change shape fairly rapidly even in highly-viscous biological fluids. Achieving this performance will require significant improvements in manufacturing and material properties compared to current micromachines. Furthermore, optimally varying the speed of shape change only slightly reduces energy use compared to uniform speed, thereby simplifying robot controllers.
Study of the Motion of a Vertically Falling Sphere in a Viscous Fluid
Soares, A. A.; Caramelo, L.; Andrade, M. A. P. M.
2012-01-01
This paper aims at contributing to a better understanding of the motion of spherical particles in viscous fluids. The classical problem of spheres falling through viscous fluids for small Reynolds numbers was solved taking into account the effects of added mass. The analytical solution for the motion of a falling sphere, from the beginning to the…
Relativistic Fluid Dynamics: Physics for Many Different Scales
Comer Gregory L.
2007-01-01
Full Text Available The relativistic fluid is a highly successful model used to describe the dynamics of many-particle, relativistic systems. It takes as input basic physics from microscopic scales and yields as output predictions of bulk, macroscopic motion. By inverting the process, an understanding of bulk features can lead to insight into physics on the microscopic scale. Relativistic fluids have been used to model systems as “small” as heavy ions in collisions, and as large as the Universe itself, with “intermediate” sized objects like neutron stars being considered along the way. The purpose of this review is to discuss the mathematical and theoretical physics underpinnings of the relativistic (multiple fluid model. We focus on the variational principle approach championed by Brandon Carter and his collaborators, in which a crucial element is to distinguish the momenta that are conjugate to the particle number density currents. This approach differs from the “standard” text-book derivation of the equations of motion from the divergence of the stress-energy tensor in that one explicitly obtains the relativistic Euler equation as an “integrability” condition on the relativistic vorticity. We discuss the conservation laws and the equations of motion in detail, and provide a number of (in our opinion interesting and relevant applications of the general theory.
General relativistic aspects of ferromagneto-fluid
Asgekar, G.G.; Patwardhan, C.G.
1988-03-01
The implications of Bianchi identities pertaining to the spacetime of relativistic ferrofluid with infinite conductivity and variable magnetic permeability are investigated. Some kinematical and dynamical corollaries emerging out of a preferred geometrical symmetry called an isometry with respect to the flow vector and the magnetic field vector are developed.
General relativistic aspects of ferromagneto-fluid.
Asgekar, G. G.; Patwardhan, C. G.
1988-03-01
The implications of Bianchi identities pertaining to the spacetime of relativistic ferrofluid with infinite conductivity and variable magnetic permeability are investigated. Some kinematical and dynamical corollaries emerging out of a preferred geometrical symmetry called an isometry with respect to the flow vector and the magnetic field vector are developed.
Time-dependent cavitation in a viscous fluid
Shneidman, Vitaly A.
2016-12-01
Kinetics of nucleation and growth of empty bubbles in a nonvolatile incompressible fluid under negative pressure is considered within the generalized Zeldovich framework. The transient matched asymptotic solution obtained earlier for predominantly viscous nucleation is used to evaluate the distribution of growing cavities over sizes. Inertial effects described by the Rayleigh-Plesset equation are further included. The distributions are used to estimate the volume occupied by cavities, which leads to increase of pressure and eventual self-quenching of nucleation. Numerical solutions are obtained and compared with analytics. Due to rapid expansion of cavities the conventional separation of the nucleation and the growth time scales can be less distinct, which increases the role of transient effects. In particular, in the case of dominant viscosity a typical power-law tail of the quasistationary distribution is replaced by a time-dependent exponential tail. For fluids of the glycerin type such distributions can extend into the micrometer region, while in low-viscosity liquids (water, mercury) exponential distributions are short lived and are restricted to nanometer scales due to inertial effects.
The stochastic dynamics of tethered microcantilevers in a viscous fluid
Robbins, Brian A.; Paul, Mark R. [Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Radiom, Milad; Ducker, William A. [Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Walz, John Y. [Department of Chemical Engineering, University of Kentucky, Lexington, Kentucky 40506 (United States)
2014-10-28
We explore and quantify the coupled dynamics of a pair of micron scale cantilevers immersed in a viscous fluid that are also directly tethered to one another at their tips by a spring force. The spring force, for example, could represent the molecular stiffness or elasticity of a biomolecule or material tethered between the cantilevers. We use deterministic numerical simulations with the fluctuation-dissipation theorem to compute the stochastic dynamics of the cantilever pair for the conditions of experiment when driven only by Brownian motion. We validate our approach by comparing directly with experimental measurements in the absence of the tether which shows excellent agreement. Using numerical simulations, we quantify the correlated dynamics of the cantilever pair over a range of tether stiffness. Our results quantify the sensitivity of the auto- and cross-correlations of equilibrium fluctuations in cantilever displacement to the stiffness of the tether. We show that the tether affects the magnitude of the correlations which can be used in a measurement to probe the properties of an attached tethering substance. For the configurations of current interest using micron scale cantilevers in water, we show that the magnitude of the fluid coupling between the cantilevers is sufficiently small such that the influence of the tether can be significant. Our results show that the cross-correlation is more sensitive to tether stiffness than the auto-correlation indicating that a two-cantilever measurement has improved sensitivity when compared with a measurement using a single cantilever.
Viscous fluid motion in a spinning and nutating cylinder
Herbert, T.
1986-06-01
Spin-stabilized projectiles with liquid payloads can experience a severe flight instability characterized by a rapid yaw-angle growth and a simultaneous loss in spin rate. Laboratory experiments and field tests have shown that this instability originates from the internal fluid motion in the range of high viscosity. After evaluation of the experimental data and analysis of the equations for the fluid motion in a spinning and nutating cylinder, a simple model of this flow has been developed. Disregarding the finite length of the cylinder, this model provides the flow field and the viscous contribution to the liquid moments in analytical form. At low Reynolds number, the flow field agrees well with computational results for the center section of a cylinder of aspect ratio 4.3. The roll moment caused by this flow largely agrees with experimental data for a wide range of Reynolds numbers. Estimates of the temperature variation indicate that discrepancies at very low Reynolds numbers may originate from associated changes of the viscosity during the experiments.
Highly viscous fluid flow in a spinning and nutating cylinder
Herbert, T.
1985-02-01
Spin-stabilized projectiles with liquid payloads can experience a severe flight instability characterized by a rapid yaw angle growth and a simultaneous loss in spin rate. Laboratory experiments and field tests have shown that this instability originates from the internal fluid motion in the range of high viscosity. Evaluation of the experimental data and analysis of the equations for the fluid motion in a spinning and nutating cylinder suggest a theoretical approach in three major steps: (1) analysis of the steady viscous flow in an infinitely long cylinder, (2) hydrodynamic stability analysis of this basic flow, and (3) analysis of the end effects. The basic flow has been found in analytical form. At low Reynolds number, this flow agrees well with computational results for the center section of a cylinder of aspect ratio 4.3. The despin moment caused by this flow largely agrees with experimental data for a wide range of Reynolds numbers. Current work aims at the stability of this flow.
Instabilities in relativistic two-component (super)fluids
Haber, Alexander; Stetina, Stephan
2016-01-01
We study two-fluid systems with nonzero fluid velocities and compute their sound modes, which indicate various instabilities. For the case of two zero-temperature superfluids we employ a microscopic field-theoretical model of two coupled bosonic fields, including an entrainment coupling and a non-entrainment coupling. We analyse the onset of the various instabilities systematically and point out that the dynamical two-stream instability can only occur beyond Landau's critical velocity, i.e., in an already energetically unstable regime. A qualitative difference is found for the case of two normal fluids, where certain transverse modes suffer a two-stream instability in an energetically stable regime if there is entrainment between the fluids. Since we work in a fully relativistic setup, our results are very general and of potential relevance for (super)fluids in neutron stars and, in the non-relativistic limit of our results, in the laboratory.
Fields and fluids on curved non-relativistic spacetimes
Geracie, Michael; Roberts, Matthew M
2015-01-01
We consider non-relativistic curved geometries and argue that the background structure should be generalized from that considered in previous works. In this approach the derivative operator is defined by a Galilean spin connection valued in the Lie algebra of the Galilean group. This includes the usual spin connection plus an additional "boost connection" which parameterizes the freedom in the derivative operator not fixed by torsion or metric compatibility. As an example of this approach we develop the theory of non-relativistic dissipative fluids and find significant differences in both equations of motion and allowed transport coefficients from those found previously. Our approach also immediately generalizes to systems with independent mass and charge currents as would arise in multicomponent fluids. Along the way we also discuss how to write general locally Galilean invariant non-relativistic actions for multiple particle species at any order in derivatives. A detailed review of the geometry and its rela...
Damping of a fluid-conveying pipe surrounded by a viscous annulus fluid
Kjolsing, Eric J.; Todd, Michael D.
2017-04-01
To further the development of a downhole vibration based energy harvester, this study explores how fluid velocity affects damping in a fluid-conveying pipe stemming from a viscous annulus fluid. A linearized equation of motion is formed which employs a hydrodynamic forcing function to model the annulus fluid. The system is solved in the frequency domain through the use of the spectral element method. The three independent variables investigated are the conveyed fluid velocity, the rotational stiffness of the boundary (using elastic springs), and the annulus fluid viscosity. It was found that, due to the hydrodynamic functions frequency-dependence, increasing the conveyed fluid velocity increases the systems damping ratio. It was also noted that stiffer systems saw the damping ratio increase at a slower rate when compared to flexible systems as the conveyed fluid velocity was increased. The results indicate that overestimating the stiffness of a system can lead to underestimated damping ratios and that this error is made worse if the produced fluid velocity or annulus fluid viscosity is underestimated. A numeric example was provided to graphically illustrate these errors. Approved for publication, LA-UR-15-28006.
Fluid viscous damping as an alternative to base isolation
Haskell, G. [Hawn Engineering, Modesto, CA (United States); Lee, D. [Taylor Devices, Santa Monica, CA (United States). West Coast Div.
1996-12-01
Base isolation is an effective way to protect large structures from earthquake damage. It is a costly approach, as the entire structure must be supported on elastomeric or sliding bearings. Viscous dampers distributed throughout the otherwise conventional structure can achieve the same result at significantly lower cost. This paper describes how to install viscous dampers in a structure, and gives several examples.
Relativistic elasticity of stationary fluid branes
Armas, J.; Obers, N.A.
2013-01-01
Fluid mechanics can be formulated on dynamical surfaces of arbitrary codimension embedded in a background space-time. This has been the main object of study of the blackfold approach in which the emphasis has primarily been on stationary fluid configurations. Motivated by this approach we show...... under certain conditions that a given stationary fluid configuration living on a dynamical surface of vanishing thickness and satisfying locally the first law of thermodynamics will behave like an elastic brane when the surface is subject to small deformations. These results, which are independent...... of the number of space-time dimensions and of the fluid arising from a gravitational dual, reveal the (electro)elastic character of (charged) black branes when considering extrinsic perturbations....
Relativistic Elasticity of Stationary Fluid Branes
Armas, Jay
2012-01-01
Fluid mechanics can be formulated on dynamical surfaces of arbitrary co-dimension embedded in a background space-time. This has been the main object of study of the blackfold approach in which the emphasis has primarily been on stationary fluid configurations. Motivated by this approach we show under certain conditions that a given stationary fluid configuration living on a dynamical surface of vanishing thickness and satisfying locally the first law of thermodynamics will behave like an elastic brane when the surface is subject to small deformations. These results, which are independent of the number of space-time dimensions and of the fluid arising from a gravitational dual, reveal the (electro)elastic character of (charged) black branes when considering extrinsic perturbations.
Existence and Uniqueness of Stationary Solutions of Non—Newtonian Viscous Incompressible Fluids
BolingGUO; GuoguangLIN; 等
1999-01-01
The existence and uniqueness of stationary solution a bipolar incompressible viscous fluids is established .It is also obtained that the every solution of the system converges to the statonary solution as time t→∞
LRS Bianchi Type-V Viscous Fluid Universe With a Time Dependent Cosmological Term $\\Lambda$
Pradhan, Anirudh; Singh, C V
2007-01-01
An LRS Bianchi type-V cosmological models representing a viscous fluid distribution with a time dependent cosmological term $\\Lambda$ is investigated. To get a determinate solution, the viscosity coefficient of bulk viscous fluid is assumed to be a power function of mass density. It turns out that the cosmological term $\\Lambda(t)$ is a decreasing function of time, which is consistent with recent observations of type Ia supernovae. Various physical and kinematic features of these models have also been explored.
Fluid flow of incompressible viscous fluid through a non-linear elastic tube
Lazopoulos, A.; Tsangaris, S. [National Technical University of Athens, Fluids Section, School of Mechanical Engineering, Zografou, Athens (Greece)
2008-11-15
The study of viscous flow in tubes with deformable walls is of specific interest in industry and biomedical technology and in understanding various phenomena in medicine and biology (atherosclerosis, artery replacement by a graft, etc) as well. The present work describes numerically the behavior of a viscous incompressible fluid through a tube with a non-linear elastic membrane insertion. The membrane insertion in the solid tube is composed by non-linear elastic material, following Fung's (Biomechanics: mechanical properties of living tissue, 2nd edn. Springer, New York, 1993) type strain-energy density function. The fluid is described through a Navier-Stokes code coupled with a system of non linear equations, governing the interaction with the membrane deformation. The objective of this work is the study of the deformation of a non-linear elastic membrane insertion interacting with the fluid flow. The case of the linear elastic material of the membrane is also considered. These two cases are compared and the results are evaluated. The advantages of considering membrane nonlinear elastic material are well established. Finally, the case of an axisymmetric elastic tube with variable stiffness along the tube and membrane sections is studied, trying to substitute the solid tube with a membrane of high stiffness, exhibiting more realistic response. (orig.)
Quasiadiabatic modes from viscous inhomogeneities
Giovannini, Massimo
2016-01-01
The viscous inhomogeneities of a relativistic plasma determine a further class of entropic modes whose amplitude must be sufficiently small since curvature perturbations are observed to be predominantly adiabatic and Gaussian over large scales. When the viscous coefficients only depend on the energy density of the fluid the corresponding curvature fluctuations are shown to be almost adiabatic. After addressing the problem in a gauge-invariant perturbative expansion, the same analysis is repea...
Combined Effect of Pressure and Temperature on the Viscous Behaviour of All-Oil Drilling Fluids
Hermoso J.
2014-12-01
Full Text Available The overall objective of this research was to study the combined influence of pressure and temperature on the complex viscous behaviour of two oil-based drilling fluids. The oil-based fluids were formulated by dispersing selected organobentonites in mineral oil, using a high-shear mixer, at room temperature. Drilling fluid viscous flow characterization was performed with a controlled-stress rheometer, using both conventional coaxial cylinder and non-conventional geometries for High Pressure/High Temperature (HPHT measurements. The rheological data obtained confirm that a helical ribbon geometry is a very useful tool to characterise the complex viscous flow behaviour of these fluids under extreme conditions. The different viscous flow behaviours encountered for both all-oil drilling fluids, as a function of temperature, are related to changes in polymer-oil pair solvency and oil viscosity. Hence, the resulting structures have been principally attributed to changes in the effective volume fraction of disperse phase due to thermally induced processes. Bingham’s and Herschel-Bulkley’s models describe the rheological properties of these drilling fluids, at different pressures and temperatures, fairly well. It was found that Herschel-Bulkley’s model fits much better B34-based oil drilling fluid viscous flow behaviour under HPHT conditions. Yield stress values increase linearly with pressure in the range of temperature studied. The pressure influence on yielding behaviour has been associated with the compression effect of different resulting organoclay microstructures. A factorial WLF-Barus model fitted the combined effect of temperature and pressure on the plastic viscosity of both drilling fluids fairly well, being this effect mainly influenced by the piezo-viscous properties of the continuous phase.
Taylor stability of viscous fluids with application to film boiling
Dhir, V. K.; Lienhard, J. H.
1973-01-01
The dispersion relation is evaluated numerically for Taylor waves in a viscous unstable interface with surface tension. The solution takes account of transverse curvature and the numerical evaluations apply to horizontal cylindrical, as well as to plane, interfaces. The result is verified with frequency and wavelength data obtained during film boiling on horizontal wires. A very general empirical correlation is given, en passant, for the vapor blanket thickness during film boiling.
Relativistic vortex dynamics in axisymmetric stationary perfect fluid configuration
Prasad, G.
2017-06-01
Relativistic formulation of Helmholtz's vorticity transport equation is presented on the basis of Maxwell-like version of Euler's equation of motion. Entangled characteristics associated with vorticity flux conservation in a vortex tube and in a stream tube are displayed on basis of Greenberg's theory of spacelike congruence of vortex lines and 1+1+(2) decomposition of the gradient of fluid's 4-velocity. Vorticity flux surfaces are surfaces of revolution about the rotation axis and are rotating with fluid's angular velocity due to gravitational isorotation in a stationary axisymmetric perfect fluid configuration. Fluid's angular velocity, angular momentum per baryon, injection energy, and invariant rotational potential are constant on such vorticity flux surfaces. Gravitation causes distortion of coaxial cylindrical vorticity flux surfaces in the limit of post-Newtonian approximation. The rotation of the fluid with angular velocity relative to vorticity flux surfaces generates swirl which causes the stretching of material vortex lines being wrapped on vorticity flux surfaces. Fluid helicity which is conserved in the fluid's rest frame does not remain conserved in a locally nonrotating frame because of the existence of swirl. Vortex lines are twist free in the absence of meridional circulations, but the twisting of spacetime due to dragging effect leads to the increase in vorticity flux in a vortex tube.
Bulk viscous Zel'dovich fluid model and its asymptotic behavior
Nair, K.R.; Mathew, Titus K. [Cochin University of Science and Technology, Department of Physics, Kochi (India)
2016-10-15
In this paper we consider a flat FLRW universe with bulk viscous Zel'dovich fluid as the cosmic component. Considering the bulk viscosity as characterized by a constant bulk viscous coefficient, we analyze the evolution of the Hubble parameter. Type Ia Supernovae data is used for constraining the model and for extracting the constant bulk viscous parameter and present the Hubble parameter. We also present the analysis of the scale factor, equation of state, and deceleration parameter. The model predicts the later time acceleration and is also compatible with the age of the universe as given by the oldest globular clusters. Study of the phase-space behavior of the model shows that a universe dominated by bulk viscous Zel'dovich fluid is stable. But the inclusion of a radiation component in addition to the Zel'dovich fluid makes the model unstable. Hence, even though the bulk viscous Zel'dovich fluid dominated universe is a feasible one, the model as such fails to predict a prior radiation dominated phase. (orig.)
Heinz, U; Denicol, G S; Martinez, M; Nopoush, M; Noronha, J; Ryblewski, R; Strickland, M
2015-01-01
Several recent results are reported from work aiming to improve the quantitative precision of relativistic viscous fluid dynamics for relativistic heavy-ion collisions. The dense matter created in such collisions expands in a highly anisotropic manner. Due to viscous effects this also renders the local momentum distribution anisotropic. Optimized hydrodynamic approaches account for these anisotropies already at leading order in a gradient expansion. Recently discovered exact solutions of the relativistic Boltzmann equation in anisotropically expanding systems provide a powerful testbed for such improved hydrodynamic approximations. We present the latest status of our quest for a formulation of relativistic viscous fluid dynamics that is optimized for applications to relativistic heavy-ion collisions.
Quantum relativistic fluid at global thermodynamic equilibrium in curved spacetime
Becattini, F
2015-01-01
We present a new approach to the problem of the thermodynamical equilibrium of a quantum relativistic fluid in a curved spacetime in the limit of small curvature. We calculate the mean value of local operators by expanding the four-temperature Killing vector field in Riemann normal coordinates about the same spacetime point and we derive corrections with respect to the flat spacetime expressions. Thereby, we clarify the origin of the terms proportional to Riemann and Ricci tensors introduced in general hydrodynamic expansion of the stress-energy tensor.
VISCOUS FORCES BETWEEN TWO SPHERES COLLIDING THROUGH INTERSTITIAL POWER-LAW FLUID
Yong; Xu; Hongyan; Li; Wenbin; Huang
2005-01-01
Interaction between two spheres with an interstitial fluid is essential in Discrete Element modeling for simulating the behaviors of ‘wet' particulate materials. In this paper the interaction between two spheres with an interstitial Power-law fluid was approximately resolved as normal and tangential interactive models respectively, for which the governing equations were simplified on the basis of Reynolds approximation. These equations were then solved analytically together with the boundary conditions to obtain the pressure distributions for each individual model, and event ually solutions of the viscous squeeze force and the tangential viscous resistance were obtained, which provide a set of solutions for implementing into DEM code or other purposes.
Khan Aiyub
2008-01-01
Full Text Available The Kelvin-Helmholtz discontinuity in two superposed viscous conducting fluids has been investigated in the taking account of effects of surface tension, when the whole system is immersed in a uniform horizontal magnetic field. The streaming motion is assumed to be two-dimensional. The stability analysis has been carried out for two highly viscous fluid of uniform densities. The dispersion relation has been derived and solved numerically. It is found that the effect of viscosity, porosity and surface tension have stabilizing influence on the growth rate of the unstable mode, while streaming velocity has a destabilizing influence on the system.
One-Dimensional Problem of a Conducting Viscous Fluid with One Relaxation Time
Angail A. Samaan
2011-01-01
Full Text Available We introduce a magnetohydrodynamic model of boundary-layer equations for conducting viscous fluids. This model is applied to study the effects of free convection currents with thermal relaxation time on the flow of a viscous conducting fluid. The method of the matrix exponential formulation for these equations is introduced. The resulting formulation together with the Laplace transform technique is applied to a variety problems. The effects of a plane distribution of heat sources on the whole and semispace are studied. Numerical results are given and illustrated graphically for the problem.
The cylindrical magnetic Rayleigh-Taylor instability for viscous fluids
Chambers, K.; Forbes, L. K. [School of Mathematics and Physics, University of Tasmania, Private Bag 37-Hobart, Tasmania 7005 (Australia)
2012-10-15
This paper considers a cylindrical Rayleigh-Taylor instability, in which a heavy fluid surrounds a light fluid, and gravity is directed radially inwards. A massive object is located at the centre of the light fluid, and it behaves like a line dipole both for fluid flow and magnetic field strength. The initially circular interface between the two conducting fluids evolves into plumes, dependent on the magnetic and fluid dipole strengths and the nature of the initial disturbance to the interface. A spectral method is presented to solve the time-dependent interface shapes, and results are presented and discussed. Bipolar solutions are possible, and these are of particular relevance to astrophysics. The solutions obtained resemble structures of some HII regions and nebulae.
Fingering induced by a solid sphere impact to viscous fluid
Katsuragi, H
2014-01-01
The number of splashed fingers generated by a solid projectile's impact onto a viscous liquid layer is experimentally studied. A steel sphere is dropped onto a viscous liquid pool. Then, a fingering instability occurs around the crater's rim, depending on the experimental conditions such as projectile's inertia and the viscosity of the target liquid. When the impact inertia is not sufficient, any fingering structure cannot be observed. Contrastively, if the impact inertia is too much, the random splashing is induced and the counting of fingers becomes difficult. The clear fingering instability is observable in between these two regimes. The number of fingers $N$ is counted by using high-speed video data. The scaling of $N$ is discussed on the basis of dimensionless numbers. By assuming Rayleigh-Taylor instability, scaling laws for $N$ can be derived using Reynolds number $Re$, Weber number $We$, and Froude number $Fr$. Particularly, the scaling $N=(\\rho_r Fr)^{1/4}We^{1/2}/3^{3/4}$ is obtained for the gravity...
Bulk viscous cosmological model with interacting dark fluids
Kremer, Gilberto M
2012-01-01
The objective of the present work is to study a cosmological model for a spatially flat Universe whose constituents are a dark energy field and a matter field which includes baryons and dark matter. The constituents are supposed to be in interaction and irreversible processes are taken into account through the inclusion of a non-equilibrium pressure. The non-equilibrium pressure is considered to be proportional to the Hubble parameter within the framework of a first order thermodynamic theory. The dark energy and matter fields are coupled by their barotropic indexes, which are considered as functions of the ratio between their energy densities. The free parameters of the model are adjusted from the best fits of the Hubble parameter data. A comparison of the viscous model with the non-viscous one is performed. It is shown that the equality of the dark energy and matter density parameters and the decelerated-accelerated transition occur at earlier times when the irreversible processes are present. Furthermore, ...
Bulk viscous cosmological model with interacting dark fluids
Kremer, Gilberto M.; Sobreiro, Octavio A.S., E-mail: kremer@fisica.ufpr.br [Departamento de Fisica, Universidade Federal do Parana, Curitiba, PR (Brazil)
2012-04-15
We study a cosmological model for a spatially flat Universe whose constituents are a dark energy field and a matter field comprising baryons and dark matter. The constituents are assumed to interact with each other, and a non-equilibrium pressure is introduced to account for irreversible processes. We take the nonequilibrium pressure to be proportional to the Hubble parameter within the framework of a first-order thermodynamic theory. The dark energy and matter fields are coupled by their barotropic indexes, which depend on the ratio between their energy densities. We adjust the free parameters of the model to optimize the fits to the Hubble parameter data. We compare the viscous model with the non-viscous one, and show that the irreversible processes cause the dark-energy and matter-density parameters to become equal and the decelerated-accelerated transition to occur at earlier times. Furthermore, the density and deceleration parameters and the distance modulus have the correct behavior, consistent with a viable scenario of the present status of the Universe . (author)
Fingering induced by a solid sphere impact to viscous fluid
Katsuragi Hiroaki
2015-01-01
Full Text Available The number of splashed fingers generated by a solid projectile’s impact onto a viscous liquid layer is experimentally studied. A steel sphere is dropped onto a viscous liquid pool. Then, a fingering instability occurs around the crater’s rim, depending on the experimental conditions such as projectile’s inertia and the viscosity of the target liquid. When the impact inertia is not sufficient, any fingering structure cannot be observed. Contrastively, if the impact inertia is too much, the random splashing is induced and the counting of fingers becomes difficult. The clear fingering instability is observable in between these two regimes. The number of fingers N is counted by using high-speed video data. The scaling of N is discussed on the basis of dimensionless numbers. By assuming Rayleigh-Taylor instability, scaling laws for N can be derived using Reynolds number Re, Weber number We, and Froude number Fr. Particularly, the scaling N = (ρrFr1/4We1/2/33/4 is obtained for the gravity-dominant cratering regime, where ρr is the density ratio between a projectile and a target. Although the experimental data considerably scatters, the scaling law is consistent with the global trend of the data behavior. Using one of the scaling laws, planetary nano crater’s rim structure is also evaluated.
Peeling flexible beams in viscous fluids: Rigidity and extensional compliance
Dhong, Charles; Fréchette, Joëlle
2017-01-01
We describe small angle peeling measurements in completely submerged environments to study the coupling between viscous forces and the mechanical properties of the plates being peeled. During the experiments, the plates resist motion because of lubrication forces while van der Waals forces between the plates and the static surface are negligible. In particular, we study the role played by flexural rigidity in the force-displacement curves and in the energy release rate. We show that the coupling between the viscous forces and the flexural rigidity of the plates dictates the shape and magnitude of the force-displacement curves. We develop simple scaling relationships that combine the lubrication forces with an Euler-Bernoulli beam to extract how the peak force and energy release rates depend on the ratio between rigidity and viscosity, and show good agreement between the predictions and experimental results. We also show that increasing the extensional compliance leads to a decrease in both the force-displacement curve and in the energy release rate. We then demonstrate that this reduction can be interpreted in terms of a stress decay length.
Modelling general relativistic perfect fluids in field theoretic language
Mitskievich, N V
1999-01-01
Skew-symmetric massless fields, their potentials being $r$-forms, are close analogues of Maxwell's field (though the non-linear cases also should be considered). We observe that only two of them ($r=$2 and 3) automatically yield stress-energy tensors characteristic to normal perfect fluids. It is shown that they naturally describe both non-rotating ($r=2$) and rotating (then a combination of $r=2$ and $r=3$ fields is indispensable) general relativistic perfect fluids possessing every type of equations of state. Meanwile, a free $r=3$ field is completely equivalent to appearance of the cosmological term in Einstein's equations. Sound waves represent perturbations propagating on the background of the $r=2$ field. Some exotic properties of these two fields are outlined.
grim: A Flexible, Conservative Scheme for Relativistic Fluid Theories
Chandra, Mani; Foucart, Francois; Gammie, Charles F.
2017-03-01
Hot, diffuse, relativistic plasmas such as sub-Eddington black-hole accretion flows are expected to be collisionless, yet are commonly modeled as a fluid using ideal general relativistic magnetohydrodynamics (GRMHD). Dissipative effects such as heat conduction and viscosity can be important in a collisionless plasma and will potentially alter the dynamics and radiative properties of the flow from that in ideal fluid models; we refer to models that include these processes as Extended GRMHD. Here we describe a new conservative code, grim, that enables all of the above and additional physics to be efficiently incorporated. grim combines time evolution and primitive variable inversion needed for conservative schemes into a single step using an algorithm that only requires the residuals of the governing equations as inputs. This algorithm enables the code to be physics agnostic as well as flexibility regarding time-stepping schemes. grim runs on CPUs, as well as on GPUs, using the same code. We formulate a performance model and use it to show that our implementation runs optimally on both architectures. grim correctly captures classical GRMHD test problems as well as a new suite of linear and nonlinear test problems with anisotropic conduction and viscosity in special and general relativity. As tests and example applications, we resolve the shock substructure due to the presence of dissipation, and report on relativistic versions of the magneto-thermal instability and heat flux driven buoyancy instability, which arise due to anisotropic heat conduction, and of the firehose instability, which occurs due to anisotropic pressure (i.e., viscosity). Finally, we show an example integration of an accretion flow around a Kerr black hole, using Extended GRMHD.
Effect of intrinsic angular momentum in the capillary filling dynamics of viscous fluids.
Gheshlaghi, Behnam; Nazaripoor, Hadi; Kumar, Aloke; Sadrzadeh, Mohtada
2016-10-01
In this study, an analytical model is provided to describe the filling dynamics of a capillary filled with a viscous fluid containing spinning particles. The aim is to demonstrate the effect of angular momentum on the capillary filling dynamics of molecular fluids which has not been explored before. The presence of spinning particles generates additional coefficients of viscosity, namely, spin viscosity and vortex viscosity, which couples rotational and translational movements. Three different time stages have been noticed during the capillary filling phenomenon: inertia force dominated, visco-inertial, and viscous-dominated regions. The last two regions are found to be mainly affected by the spinning particles. An increase in the spin and vortex viscosities is found to increase the viscous force and thus reduce the front position of the moving liquid. The results of this study are validated using the literature no-angular-momentum (NAM) base-case results and an excellent agreement is observed.
A Qualitative Analysis of The Bianchi Type IV Viscous Fluid Model
Kohli, Ikjyot Singh
2012-01-01
We are interested in formulating a viscous model of the universe based on The Bianchi Type IV algebra. We first begin by considering a congruence of fluid lines in spacetime, upon which, analyzing their propagation behaviour, we derive the famous Raychaudhuri equation, but, in the context of viscous fluids. We will then go through in great detail the topological and algebraic structure of a Bianchi Type IV algebra, by which we will derive the corresponding structure and constraint equations. From this, we will look at The Einstein field equations in the context of orthonormal frames, and derive the resulting dynamical equations: The Raychaudhuri Equation, generalized Friedmann equation, shear propagation equations, and a set of non-trivial constraint equations. We show that for cases in which the bulk viscous pressure is significantly larger than the shear viscosity, this cosmological model isotropizes asymptotically.
Fabrication of Microdots Using Piezoelectric Dispensing Technique for Viscous Fluids
Ho-Lin Tsai; Weng-Sing Hwang; Jhih-Kai Wang; Wen-Chih Peng; Shin-Hau Chen
2015-01-01
.... Investigations were conducted at room temperature (25 °C). For each bipolar waveform, fluid was extruded in the form of a stretching liquid column, which eventually retracted into the dispenser orifice...
Numerical simulation of orbitally shaken viscous fluids with free surface
Discacciati, Marco; Hacker, David; Quarteroni, A.; Quinodoz, Samuel; Tissot, Stéphanie; Wurm, M. Florian
2013-01-01
Orbitally shaken bioreactors are an emerging alternative to stirred-tank bioreactors for large-scale mam- malian cell culture, but their fluid dynamics is still not well defined. Among the theoretical and practical issues that remain to be resolved, the characterization of the liquid free surface during orbital shaking remains a major challenge because it is an essential aspect of gas transfer and mixing in these reactors. To simulate the fluid behavior and the free surface shape, we develope...
Motion control of a rotor with a cavity with a viscous fluid
Gurchenkov, A. A.; Esenkov, A. S.; Tsurkov, V. I.
2007-01-01
A formulation and solution procedure of optimal control problems for perturbed relative uniform motion of a body with a cavity filled with a viscous incompressible fluid are proposed. In this paper, the case with a cylinder is considered; however, this approach is basically true for the a cavity of
Limiting flows of a viscous fluid with stationary separation zones with Re approaching infinity
Taganov, G. I.
1982-01-01
The limiting flows of a viscous noncondensable fluid, which are approached by flows with stationary separation zones behind planar symmetrical bodies, with an unlimited increase in the Reynolds number are studied. Quantitative results are obtained in the case of a circulation flow inside of a separation zone.
Self-propulsion of a counter-rotating cylinder pair in a viscous fluid
Van Rees, W.M.; Novati, G.; Koumoutsakos, P.
2015-01-01
We study a self-propelling pair of steadily counter-rotating cylinders in simulations of a two-dimensional viscous fluid. We find two strikingly, opposite directions for the motion of the pair that is characterized by its width and rotational Reynolds number. At low Reynolds numbers and large widths
Low-frequency oscillations of a cylinder in a viscous fluid
Amin, Norsarahaida
1988-05-01
The flow induced by a circular cylinder oscillating in a viscous fluid when the amplitude of the oscillation is small and the frequecy is low is considered. This solution, obtained by the method of matched asymptotic expansions, is compared with the solution obtained from an Oseen approximation to the governing equations by Andres and Ingard (1953).
Liang, Zhilei; Wu, Shanqiu
2017-02-01
This paper deals with the initial boundary value problem for one-dimensional (1D) viscous, compressible and heat conducting fluids. We establish the global existence and uniqueness of classical solutions, with large data and possible vacuum at initial time. Our approach is based on the Calderón-Zygmund decomposition technique and allows that the viscosity and heat conductivity are both constant.
Bianchi Type-IX viscous fluid cosmological model in general relativity
Raj Bali; Mahesh Kumar Yadav
2005-02-01
Bianchi Type-IX viscous fluid cosmological model is investigated. To get a deterministic model, we have assumed the condition = ( is a constant) between metric potentials and where is the coefficient of shear viscosity and the scalar of expansion in the model. The coefficient of bulk viscosity () is taken as constant. The physical and geometrical aspects of the model are also discussed.
Pressure development due to viscous fluid flow through a converging gap
Imhamed, Ahmed
2004-01-01
The behaviour of fluid flow in industrial processes is essential for numerous applications and there have been vast amount of work on the hydrodynamic pressure generated due to the flow of viscous fluid. One major manifestation of hydrodynamic pressure application is the wire coating/drawing process, where the wire is pulled through a unit either conical or cylindrical bore filled with a polymer melt that gives rise to the hydrodynamic pressure inside the unit. The hydrodynamic pressure distr...
Local thermodynamical equilibrium and the β frame for a quantum relativistic fluid
Becattini, Francesco; Bucciantini, Leda; Grossi, Eduardo; Tinti, Leonardo
2015-01-01
We discuss the concept of local thermodynamical equilibrium in relativistic hydrodynamics in flat spacetime in a quantum statistical framework without an underlying kinetic description, suitable for strongly interacting fluids. We show that the appropriate definition of local equilibrium naturally leads to the introduction of a relativistic hydrodynamical frame in which the four-velocity vector is the one of a relativistic thermometer at equilibrium with the fluid, parallel to the inverse tem...
Modelling of fluid-structure interaction with multiphase viscous flows using an immersed-body method
Yang, P.; Xiang, J.; Fang, F.; Pavlidis, D.; Latham, J.-P.; Pain, C. C.
2016-09-01
An immersed-body method is developed here to model fluid-structure interaction for multiphase viscous flows. It does this by coupling a finite element multiphase fluid model and a combined finite-discrete element solid model. A coupling term containing the fluid stresses is introduced within a thin shell mesh surrounding the solid surface. The thin shell mesh acts as a numerical delta function in order to help apply the solid-fluid boundary conditions. When used with an advanced interface capturing method, the immersed-body method has the capability to solve problems with fluid-solid interfaces in the presence of multiphase fluid-fluid interfaces. Importantly, the solid-fluid coupling terms are treated implicitly to enable larger time steps to be used. This two-way coupling method has been validated by three numerical test cases: a free falling cylinder in a fluid at rest, elastic membrane and a collapsing column of water moving an initially stationary solid square. A fourth simulation example is of a water-air interface with a floating solid square being moved around by complex hydrodynamic flows including wave breaking. The results show that the immersed-body method is an effective approach for two-way solid-fluid coupling in multiphase viscous flows.
Amooie, Mohammad Amin; Soltanian, Mohammad Reza; Moortgat, Joachim
2016-11-01
Fluid mixing and its interplay with viscous fingering as well as flow channeling through heterogeneous media have been traditionally studied for fully (im)miscible conditions in which a (two-) single-phase system is represented by two components, e.g. a solvent and a solute, with (zero) infinite mutual solubility. However, many subsurface problems, e.g. gas injection/migration in hydrocarbon reservoirs, involve multiple species transfer. Multicomponent fluid properties behave non-linearly, through an equation of state, as a function of temperature, pressure, and compositions. Depending on the minimum miscibility pressure, a two-phase region with finite, non-zero mutual solubility may develop, e.g. in a partially-miscible system. Here we study mixing of fluids with partial mutual solubility, induced by viscous flow fingering, channeling, and species transport within and between phases. We uncover non-linear mixing dynamics of a finite-size slug of a less viscous fluid attenuated by a carrier fluid during rectilinear displacement. We perform accurate numerical simulations that are thermodynamically-consistent to capture fingering patterns and complex phase behavior of mixtures. The results provide a broad perspective into how multiphase flow can alter fluid mixing in porous media.
Akamatsu, Yukinao; Nonaka, Chiho; Takamoto, Makoto
2013-01-01
In this article, we present a state-of-the-art algorithm for solving the relativistic viscous hydrodynamic equation with QCD equation of state. The numerical method is based on the second-order Godunov method and has less numerical dissipation, which are crucial in describing of quark-gluon plasma in high energy heavy-ion collisions. We apply the algorithm to several numerical test problems such as sound wave propagation, shock tube and blast wave problems. In the sound wave propagation, the intrinsic {\\em numerical} viscosity is measured and its explicit expression is shown, which is the second-order of spatial resolution both in the presence and absence of {\\em physical} viscosity. The expression of the numerical viscosity can be used to determine the maximum cell size in order to accurately measure the effect of physical viscosity in the numerical simulation.
On the Regularity of Shear Thickening Viscous Fluids
Francesca CRISPO
2009-01-01
The aim of this note is to improve the regularity results obtained by H. Beirao da Veiga in 2008 for a class of p-fluid flows in a cubic domain. The key idea is exploiting the better regularity of solutions in the tangential directions with respect to the normal one, by appealing to anisotropic Sobolev embeddings.
Viscous-elastic dynamics of power-law fluids within an elastic cylinder
Boyko, Evgeniy; Bercovici, Moran; Gat, Amir D.
2017-07-01
In a wide range of applications, microfluidic channels are implemented in soft substrates. In such configurations, where fluidic inertia and compressibility are negligible, the propagation of fluids in channels is governed by a balance between fluid viscosity and elasticity of the surrounding solid. The viscous-elastic interactions between elastic substrates and non-Newtonian fluids are particularly of interest due to the dependence of viscosity on the state of the system. In this work, we study the fluid-structure interaction dynamics between an incompressible non-Newtonian fluid and a slender linearly elastic cylinder under the creeping flow regime. Considering power-law fluids and applying the thin shell approximation for the elastic cylinder, we obtain a nonhomogeneous p-Laplacian equation governing the viscous-elastic dynamics. We present exact solutions for the pressure and deformation fields for various initial and boundary conditions for both shear-thinning and shear-thickening fluids. We show that in contrast to Stokes' problem where a compactly supported front is obtained for shear-thickening fluids, here the role of viscosity is inversed and such fronts are obtained for shear-thinning fluids. Furthermore, we demonstrate that for the case of a step in inlet pressure, the propagation rate of the front has a tn/n +1 dependence on time (t ), suggesting the ability to indirectly measure the power-law index (n ) of shear-thinning liquids through measurements of elastic deformation.
Bulk viscous Zel'dovich fluid model and it's asymptotic behavior
K., Rajagopalan Nair
2015-01-01
In this paper we have considered a flat FLRW universe with bulk viscous Zel'dovich as the cosmic component. Being considered the bulk viscosity as per the Eckart formalism, we have analyzed the evolution of the Hubble parameter and constrained the model with the Type Ia Supernovae data thus extracting the constant bulk viscous parameter and present Hubble parameter. Further we have analyzed the scale factor, equation of state and deceleration parameter. The model predicts the late time acceleration and is also compatible with the age of the universe as given by the oldest globular clusters. We have also studied the phase-space behavior of the model and found that a universe dominated by bulk viscous Zel'dovich fluid is stable. But on the inclusion of radiation component in addition to the Zel'dovich fluid, makes the model unstable. Hence, even though the bulk viscous Zel'dovich fluid dominated universe is a feasible one, the model as such failed to predict a prior radiation dominated phase.
Hamiltonian formulation towards minimization of viscous fluid fingering.
Batista, Carlos; Dias, Eduardo O; Miranda, José A
2016-07-01
A variational approach has been recently employed to determine the ideal time-dependent injection rate Q(t) that minimizes fingering formation when a fluid is injected in a Hele-Shaw cell filled with another fluid of much greater viscosity. However, such a calculation is approximate in nature, since it has been performed by assuming a high capillary number regime. In this work, we go one step further, and utilize a Hamiltonian formulation to obtain an analytical exact solution for Q(t), now valid for arbitrary values of the capillary number. Moreover, this Hamiltonian scheme is applied to calculate the corresponding injection rate that minimizes fingering formation in a uniform three-dimensional porous media. An analysis of the improvement offered by these exact injection rate expressions in comparison with previous approximate results is also provided.
Hamiltonian formulation towards minimization of viscous fluid fingering
Batista, Carlos; Miranda, José A
2016-01-01
A variational approach has been recently employed to determine the ideal time-dependent injection rate Q(t) that minimizes fingering formation when a fluid is injected in a Hele-Shaw cell filled with another fluid of much greater viscosity. However, such a calculation is approximate in nature, since it has been performed by assuming a high capillary number regime. In this work, we go one step further, and utilize a Hamiltonian formulation to obtain an analytical exact solution for Q(t), now valid for arbitrary values of the capillary number. Moreover, this Hamiltonian scheme is applied to calculate the corresponding injection rate that minimizes fingering formation in a uniform three-dimensional porous media. An analysis of the improvement offered by these exact injection rate expressions in comparison with previous approximate results is also provided.
VELOCITY FIELD IN SHIP WAVES ON THE VISCOUS FLUID
刘敏嘉; 陶明德
2002-01-01
From the Navier-Stokes equations, the integral expressions of the free-surface elevation and the velocity field in ship waves of a moving waterborne body are obtained.Next, Lighthill's two-stage scheme is employed to change the above-mentioned integral expressions to algebraic expressions.Compared with the results obtained when the seawater is idealized to an inviscid fluid, the singularities are dispelled or weakened, and the accuracy of the digit information of ship waves is improved.
THEORY AND EXPERIMENT ON THE VISCOUS HEATING OF FLUID DAMPER UNDER SHOCK ENVIRONMENT
CHU Deying; ZHANG Zhiyi; WANG Gongxian; HUA Hongxing; WANG Yu
2008-01-01
A specially designed fluid damper used as negative shock pulse generator in the shock resistance test system to dissipate the shock input energy in transient time duration is presented. The theoretical modeling based on the three-dimensional equation of heat transfer through a fluid element is created to predict the viscous heating in the fluid damper under shock conditions. A comprehensive experimental program that investigates the problem of viscous heating in the fluid damper under different shock conditions is conducted on the shock test machine to validate the analytical expression. Temperature histories for the fluid within the damper at two locations, the annular-orifice and the-end-of stroke of the damper, are recorded. The experimental results show that the theoretical model can offer a very dependable prediction for the temperature histories in the damper for increasing input velocity. The theoretical model and experimental data both clearly indicate that the viscous heating in the damper is directly related to the maximum shock velocity input and the pressure between the two sides of the piston head.
The regular conducting fluid model for relativistic thermodynamics
Carter, Brandon
2012-01-01
The "regular" model presented here can be considered to be the most natural solution to the problem of constructing the simplest possible relativistic analogue of the category of classical Fourier--Euler thermally conducting fluid models as characterised by a pair of equations of state for just two dependent variables (an equilibrium density and a conducting scalar). The historically established but causally unsatisfactory solution to this problem due to Eckart is shown to be based on an ansatz that is interpretable as postulating a most unnatural relation between the (particle and entropy) velocities and their associated momenta, which accounts for the well known bad behaviour of that model which has recently been shown to have very pathological mixed-elliptic-hyperbolic comportments. The newer (and more elegant) solution of Landau and Lifshitz has a more mathematically respectable parabolic-hyperbolic comportment, but is still compatible with a well posed initial value problem only in such a restricted limi...
Ideal relativistic fluid limit for a medium with polarization
Montenegro, David; Tinti, Leonardo; Torrieri, Giorgio
2017-09-01
We use Lagrangian effective field theory techniques to construct the equations of motion for an ideal relativistic fluid of which the constituent degrees of freedom have microscopic polarization. We discuss the meaning of such a system and argue that it is the first term in the Effective Field Theory (EFT) appropriate for describing polarization observables in heavy ion collisions, such as final-state particle polarization and chiral magnetic and vortaic effects. We show that this system will generally require nondissipative dynamics at higher order in the gradient than second order, leading to potential stability issues known with such systems. We comment on the significance of this in the light of conjectured lower limits on viscosity.
Linear Rayleigh-Taylor instability for viscous, compressible fluids
Guo, Yan
2009-01-01
We study the equations obtained from linearizing the compressible Navier-Stokes equations around a steady-state profile with a heavier fluid lying above a lighter fluid along a planar interface, i.e. a Rayleigh-Taylor instability. We consider the equations with or without surface tension, with the viscosity allowed to depend on the density, and in both periodic and non-periodic settings. In the presence of viscosity there is no natural variational framework for constructing growing mode solutions to the linearized problem. We develop a general method of studying a family of modified variational problems in order to produce maximal growing modes. Using these growing modes, we construct smooth (when restricted to each fluid domain) solutions to the linear equations that grow exponentially in time in Sobolev spaces. We then prove an estimate for arbitrary solutions to the linearized equations in terms of the fastest possible growth rate for the growing modes. In the periodic setting, we show that sufficiently sm...
UNSTEADY FREE-SURFACE WAVES GENERATED BY BODIES IN A VISCOUS FLUID
LU Dong-qiang
2004-01-01
The interaction of laminar flows with free sur face waves generated by submerged bodies in an incompressible viscous fluid of infinite depth is investigated analytically.The analysis is based on the linearized Navier-Stokes equations for disturbed flows. The kinematic and dynamic boundary conditions are linearized for the small amplitude free-surface waves, and the initial values of the flow are taken to be those of the steady state cases. The submerged bodies are mathematically represented by fundamental singularities of viscous flows. The asymptotic representations for unsteady free-surface waves produced by the Stokeslets and Oseenlets are derived analytically. It is found that the unsteady waves generated by a body consist of steady-state and transient responses.As time tends to infinity, the transient waves vanish due to the presence of a viscous decay factor. Thus. an ultimate steady state can be attained.
Inhomogeneous Viscous Fluids in a Friedmann-Robertson-Walker (FRW Universe
Ratbay Myrzakulov
2013-07-01
Full Text Available We give a brief review of some aspects of inhomogeneous viscous fluids in a flat Friedmann-Robertson-Walker Universe. In general, it is pointed out that several fluid models may bring the future Universe evolution to become singular, with the appearance of the so-called Big Rip scenario. We investigate the effects of fluids coupled with dark matter in a de Sitter Universe, by considering several cases. Due to this coupling, the coincidence problem may be solved, and if the de Sitter solution is stable, the model is also protected against the Big Rip singularity.
Sinking, wedging, spreading - viscous spreading on a layer of fluid
Bergemann, Nico; Juel, Anne; Heil, Matthias
2016-11-01
We study the axisymmetric spreading of a sessile drop on a pre-existing layer of the same fluid in a regime where the drop is sufficiently large so that the spreading is driven by gravity while capillary and inertial effects are negligible. Experiments performed with 5 ml drops and layer thicknesses in the range 0.1 mm drop evolves as R tn , where the spreading exponent n increases with the layer thickness h. Numerical simulations, based on the axisymmetric free-surface Navier-Stokes equations, reveal three distinct spreading regimes depending on the layer thickness. For thick layers the drop sinks into the layer, accompanied by significant flow in the layer. By contrast, for thin layers the layer ahead of the propagating front is at rest and the spreading behaviour resembles that of a gravity-driven drop spreading on a dry substrate. In the intermediate regime the spreading is characterised by an advancing wedge, which is sustained by fluid flow from the drop into the layer.
Swimming speeds of filaments in viscous fluids with resistance
Ho, Nguyenho; Olson, Sarah D.; Leiderman, Karin
2016-04-01
Many microorganisms swim in a highly heterogeneous environment with obstacles such as fibers or polymers. To better understand how this environment affects microorganism swimming, we study propulsion of a cylinder or filament in a fluid with a sparse, stationary network of obstructions modeled by the Brinkman equation. The mathematical analysis of swimming speeds is investigated by studying an infinite-length cylinder propagating lateral or spiral displacement waves. For fixed bending kinematics, we find that swimming speeds are enhanced due to the added resistance from the fibers. In addition, we examine the work and the torque exerted on the cylinder in relation to the resistance. The solutions for the torque, swimming speed, and work of an infinite-length cylinder in a Stokesian fluid are recovered as the resistance is reduced to zero. Finally, we compare the asymptotic solutions with numerical results for the Brinkman flow with regularized forces. The swimming speed of a finite-length filament decreases as its length decreases and planar bending induces an angular velocity that increases linearly with added resistance. The comparisons between the asymptotic analysis and computation give insight on the effect of the length of the filament, the permeability, and the thickness of the cylinder in terms of the overall performance of planar and helical swimmers.
Magnetic separation of micro-spheres from viscous biological fluids.
Chen, Haitao; Kaminski, Michael D; Caviness, Patricia L; Liu, Xianqiao; Dhar, Promila; Torno, Michael; Rosengart, Axel J
2007-02-21
A magnetically based detoxification system is being developed as a therapeutic tool for selective and rapid removal of biohazards, i.e. chemicals and radioactive substances, from human blood. One of the key components of this system is a portable magnetic separator capable of separating polymer-based magnetic nano/micro-spheres from arterial blood flow in an ex vivo unit. The magnetic separator consists of an array of alternating and parallel capillary tubing and magnetizable wires, which is exposed to an applied magnetic field created by two parallel permanent magnets such that the magnetic field is perpendicular to both the wires and the fluid flow. In this paper, the performance of this separator was evaluated via preliminary in vitro flow experiments using a separator unit consisting of single capillary glass tubing and two metal wires. Pure water, ethylene glycol-water solution (v:v=39:61 and v:v=49:51) and human whole blood were used as the fluids. The results showed that when the viscosity increased from 1.0 cp to 3.0 cp, the capture efficiency (CE) decreased from 90% to 56%. However, it is still feasible to obtain >90% CE in blood flow if the separator design is optimized to create higher magnetic gradients and magnetic fields in the separation area.
Miscible viscous fingering involving viscosity changes of the displacing fluid by chemical reactions
Nagatsu, Yuichiro; Iguchi, Chika; Matsuda, Kenji; Kato, Yoshihito; Tada, Yutaka
2010-02-01
In our previous study, we experimentally studied the effects of changes in the viscosity of the displaced more-viscous liquid by instantaneous reactions on miscible viscous fingering pattern [Y. Nagatsu, K. Matsuda, Y. Kato, and Y. Tada, "Experimental study on miscible viscous fingering involving viscosity changes induced by variations in chemical species concentrations due to chemical reactions," J. Fluid Mech. 571, 475 (2007)]. In the present study, experiments have been performed on the miscible viscous fingering involving changes in the viscosity of the displacing less-viscous liquid by instantaneous reactions in a radial Hele-Shaw cell. We have found that the shielding effect is suppressed and the fingers are widened when the viscosity is increased. As a result, the reaction makes the fingering pattern denser. In contrast, the shielding effect is enhanced, and the fingers are narrowed when the viscosity is decreased. As a result, the reaction makes the fingering pattern less dense. These results are essentially same as those obtained by the above-mentioned previous study. This shows that the effects of changes in the viscosity due to the instantaneous reactions are independent of whether the changes occur in the displaced liquid or in the displacing liquid. A mechanism for the independence is discussed.
Viscous cavity damping of a microlever in a simple fluid.
Siria, A; Drezet, A; Marchi, F; Comin, F; Huant, S; Chevrier, J
2009-06-26
We consider the problem of oscillation damping in air of a thermally actuated microlever as it gradually approaches an infinite wall in parallel geometry. As the gap is decreased from 20 microm down to 400 nm, we observe the increasing damping of the lever Brownian motion in the fluid laminar regime. This manifests itself as a linear decrease in the lever quality factor accompanied by a dramatic softening of its resonance, and eventually leads to the freezing of the CL oscillation. We are able to quantitatively explain this behavior by analytically solving the Navier-Stokes equation with perfect slip boundary conditions. Our findings may have implications for microfluidics and micro- and nanoelectromechanical applications.
Nonlocal viscous transport and the effect on fluid stress.
Todd, B D; Hansen, J S
2008-11-01
We demonstrate that, in general, only for fluid flows in which the gradient of the strain rate is constant or zero can the classical Navier-Stokes equations with constant transport coefficients be considered exact. This is typical of two of the most common types of flow: Couette and Poiseuille. For more complicated flow fields in which the streaming velocity involves higher order nonlinear terms, the use of nonlocal constitutive equations gives an exact description of the flow. These constitutive equations involve nonlocal transport kernels. For momentum transport we demonstrate that nonlocality will be significant for any particular flow field if the even moments of the nonlocal viscosity kernel are non-negligible. This corresponds to the condition that the strain rate varies appreciably over the width of the kernel in real space. Such conditions are likely to be dominant for nanofluidic flows.
Viscous cavity damping of a microlever in a simple fluid
Siria, A; Marchi, F; Comin, F; Chevrier, J; Huant, S
2009-01-01
We consider the problem of oscillation damping in air of a thermally actuated microlever as it is gradually approached towards an infinite wall in parallel geometry. As the gap is decreased from 20 nm down to 400 nm, we observe the increasing damping of the lever Brownian motion in the fluid laminar regime. This manifests itself as a linear decrease with distance of the lever quality factor accompanied by a dramatic softening of its resonance, and eventually leads to the freezing of the CL oscillation. We are able to quantitatively explain this behavior by analytically solving the Navier-Stokes equation with perfect slip boundary conditions. Our findings may have implications for microfluidics and micro- nano-electromechanical applications.
Use of Emulsions with Surfactant Solutions for Viscous Fluids Transportation
Erich Martínez Martín
2015-01-01
Full Text Available The needs for improving the fluidity of fluids is present in the industry, because of the expenses that it takes and its relation with the achievement of the consumers’ demand according to volumes required for its different uses. In this way, the Oil Industry shows several methods to achieve this purpose, taking into account the characteristics of this substance. A method that can be used is the oil emulsions. Emulsions provide good results if they gather certain requirements for its use. In thispaper are shown the results of a research about the use of surfactant solutions in emulsions W/O. Oil transmission is used in this work because of its similar properties to oil.
Three Dimensional Viscous Finite Element Formulation For Acoustic Fluid Structure Interaction
Cheng, Lei; White, Robert D.; Grosh, Karl
2010-01-01
A three dimensional viscous finite element model is presented in this paper for the analysis of the acoustic fluid structure interaction systems including, but not limited to, the cochlear-based transducers. The model consists of a three dimensional viscous acoustic fluid medium interacting with a two dimensional flat structure domain. The fluid field is governed by the linearized Navier-Stokes equation with the fluid displacements and the pressure chosen as independent variables. The mixed displacement/pressure based formulation is used in the fluid field in order to alleviate the locking in the nearly incompressible fluid. The structure is modeled as a Mindlin plate with or without residual stress. The Hinton-Huang’s 9-noded Lagrangian plate element is chosen in order to be compatible with 27/4 u/p fluid elements. The results from the full 3d FEM model are in good agreement with experimental results and other FEM results including Beltman’s thin film viscoacoustic element [2] and two and half dimensional inviscid elements [21]. Although it is computationally expensive, it provides a benchmark solution for other numerical models or approximations to compare to besides experiments and it is capable of modeling any irregular geometries and material properties while other numerical models may not be applicable. PMID:20174602
Chan, B; Donzelli, P S; Spilker, R L
2000-06-01
The fluid viscosity term of the fluid phase constitutive equation and the interface boundary conditions between biphasic, solid and fluid domains have been incorporated into a mixed-penalty finite element formulation of the linear biphasic theory for hydrated soft tissue. The finite element code can now model a single-phase viscous incompressible fluid, or a single-phase elastic solid, as limiting cases of a biphasic material. Interface boundary conditions allow the solution of problems involving combinations of biphasic, fluid and solid regions. To incorporate these conditions, the volume-weighted mixture velocity is introduced as a degree of freedom at interface nodes so that the kinematic continuity conditions are satisfied by conventional finite element assembly techniques. Results comparing our numerical method with an independent, analytic solution for the problem of Couette flow over rigid and deformable porous biphasic layers show that the finite element code accurately predicts the viscous fluid flows and deformation in the porous biphasic region. Thus, the analysis can be used to model the interface between synovial fluid and articular cartilage in diarthrodial joints. This is an important step toward modeling and understanding the mechanisms of joint lubrication and another step toward fully modeling the in vivo behavior of a diarthrodial joint.
Tip Velocity of Viscous Fingers in Shear-Thinning Fluids in a Hele-Shaw Cell
Yamamoto, Takehiro; Kimoto, Ryusuke; Mori, Noriyasu
Viscous fingering in non-Newtonian fluids in a rectangular Hele-Shaw cell was investigated. The cell was filled with a 0.5 or 1.0wt% aqueous solution of carboxymethylcellulose (CMC), a shear-thinning fluid. Air was injected into the cell and the growth of viscous fingers was observed. The velocity of finger tip was characterized by the pressure gradient. A modified Darcy law was able to describe the characteristics of the tip velocity that the growth rate of the tip velocity increased with increasing pressure gradient in the CMC solutions. The prediction of tip velocity with the modified Darcy law indicated that an effective pressure gradient near the tip was larger than the average pressure gradient between the finger tip and the cell exit and that the rate of increase depended on the cell gap width.
Bianchi Type VI1 Viscous Fluid Cosmological Model in Wesson´s Theory of Gravitation
Khadekar, G. S.; Avachar, G. R.
2007-03-01
Field equations of a scale invariant theory of gravitation proposed by Wesson [1, 2] are obtained in the presence of viscous fluid with the aid of Bianchi type VIh space-time with the time dependent gauge function (Dirac gauge). It is found that Bianchi type VIh (h = 1) space-time with viscous fluid is feasible in this theory, whereas Bianchi type VIh (h = -1, 0) space-times are not feasible in this theory, even in the presence of viscosity. For the feasible case, by assuming a relation connecting viscosity and metric coefficient, we have obtained a nonsingular-radiating model. We have discussed some physical and kinematical properties of the models.
Instability of a conducting viscous fluid layer surrounding a solid rod
Prudnikov, V.V.
1979-04-25
Stabilization of MHD instabilities serves to introduce into a conductor sufficient energy to achieve a rapid and uniform vaporization of the conductor surface. In this connection, axisymmetric perturbations of a layer of viscous fluid with current flowing along its surface are analyzed in linear terms. The small-perturbation method is used to formulate the corresponding dispersion formula, from which estimates of the increment of instability in the presence of low and high wave numbers are derived. These estimates point to the existence of a certain wave number at which that increment is minimal. In both cases (low and high wave numbers) the increment is directly proportional to the square of current intensity, inversely proportional to viscosity, and independent of density. At high wave numbers this increment is also independent of the layer thickness (coincides with the Taylor estimate for a compressible viscous fluid column with surface current). 6 references.
Bianchi Type-I bulk viscous fluid string dust magnetized cosmological model in general relativity
Raj Bali; Anjali
2004-09-01
Bianchi Type-I magnetized bulk viscous fluid string dust cosmological model is investigated. To get a determinate model, we have assumed the conditions and = constant where is the shear, the expansion in the model and the coefficient of bulk viscosity. The behaviour of the model in the presence and absence of magnetic field together with physical and geometrical aspects of the model are also discussed.
Wei, Zhiyuan; Ding, Lijie; Wei, Kai; Wang,Ziwei; Dai, Rucheng
2016-01-01
The case of a rotating object traveling through viscous fluid appears in many phenomena like the banana ball and missile movement. In this work, we build a model to predict the trajectory of such rotating objects with near-cylinder geometry. The analytical expression of Magnus force is given and a wind tunnel experiment is carried out, which shows the Magnus force is well proportional to the product of angular velocity and centroid velocity. The trajectory prediction is consistent with the tr...
Vapor-Gas Bubble Evolution and Growth in Extremely Viscous Fluids Under Vacuum
Kizito, John; Balasubramaniam, R.; Nahra, Henry; Agui, Juan; Truong, Duc
2008-01-01
Formation of vapor and gas bubbles and voids is normal and expected in flow processes involving extremely viscous fluids in normal gravity. Practical examples of extremely viscous fluids are epoxy-like filler materials before the epoxy fluids cure to their permanent form to create a mechanical bond between two substrates. When these fluids flow with a free liquid interface exposed to vacuum, rapid bubble expansion process may ensue. Bubble expansion might compromise the mechanical bond strength. The potential sources for the origin of the gases might be incomplete out-gassing process prior to filler application; regasification due to seal leakage in the filler applicator; and/or volatiles evolved from cure reaction products formed in the hardening process. We embarked on a study that involved conducting laboratory experiments with imaging diagnostics in order to deduce the seriousness of bubbling caused by entrained air and volatile fluids under space vacuum and low gravity environment. We used clear fluids with the similar physical properties as the epoxy-like filler material to mimic the dynamics of bubbles. Another aspect of the present study was to determine the likelihood of bubbling resulting from dissolved gases nucleating from solution. These experimental studies of the bubble expansion are compared with predictions using a modified Rayleigh- Plesset equation, which models the bubble expansion.
Wind-induced vibration control of Hefei TV tower with fluid viscous damper
ZHANG Zhiqiang; Aiqun LI; Jianping HE; Jianlei WANG
2009-01-01
The Hefei TV tower is taken as an analytical case to examine the control method with a fluid viscous damper under wind load fluctuation. Firstly, according to the random vibration theory, the effect of fluctuating wind on the tower can be modeled as a 19-dimensional correlated random process, and the wind-induced vibration analysis of the tower subjected to dynamic wind load was further obtained. On the basis of the others' works, a bi-model dynamic model is proposed. Finally, a dynamic model is proposed to study the wind-induced vibration control analysis using viscous fluid dampers, and the optimal damping coefficient is obtained regarding the wind-induced response of the upper turret as optimization objectives. Analysis results show that the maximum peak response of the tower under dynamic wind load is far beyond the allowable range of the code. The wind-induced responses and the wind vibration input energy of the tower are decreased greatly by using a fluid viscous damper, and the peak acceleration responses of the upper turret is reduced by 43.4%.
VBM with viscous fluid registration of grey matter segments in SPM.
João M. S. Pereira
2013-07-01
Full Text Available Improved registration of grey matter segments in SPM has been achieved with the DARTEL algorithm. Previous work from our group suggested, however, that such improvements may not translate to studies of clinical groups. To address the registration issue in atrophic brains, this paper relaxed the condition of diffeomorphism, central to DARTEL, and made use of a viscous fluid registration model with limited regularisation constraints to register the modulated grey matter probability maps to an intra-population template. Quantitative analysis of the registration results after the additional viscous fluid step showed no worsening of co-localisation of fiducials compared to DARTEL or unified segmentation methods, and the resulting voxel based morphometry (VBM analyses were able to better identify atrophic regions and to produce results with fewer apparent false positives. DARTEL showed great sensitivity to atrophy, but the resulting VBM maps presented broad, amorphous regions of significance that are hard to interpret. We propose that the condition of diffeomorphism is not necessary for basic VBM studies in atrophic populations, but also that it has disadvantages that must be taken into consideration before a study. The presented viscous fluid registration method is proposed for VBM studies to enhance sensitivity and localizing power.
VBM with viscous fluid registration of gray matter segments in SPM.
Pereira, Joao M S; Acosta-Cabronero, Julio; Pengas, George; Xiong, Li; Nestor, Peter J; Williams, Guy B
2013-01-01
Improved registration of gray matter segments in SPM has been achieved with the DARTEL algorithm. Previous work from our group suggested, however, that such improvements may not translate to studies of clinical groups. To address the registration issue in atrophic brains, this paper relaxed the condition of diffeomorphism, central to DARTEL, and made use of a viscous fluid registration model with limited regularization constraints to register the modulated gray matter probability maps to an intra-population template. Quantitative analysis of the registration results after the additional viscous fluid step showed no worsening of co-localization of fiducials compared to DARTEL or unified segmentation methods, and the resulting voxel based morphometry (VBM) analyses were able to better identify atrophic regions and to produce results with fewer apparent false positives. DARTEL showed great sensitivity to atrophy, but the resulting VBM maps presented broad, amorphous regions of significance that are hard to interpret. We propose that the condition of diffeomorphism is not necessary for basic VBM studies in atrophic populations, but also that it has disadvantages that must be taken into consideration before a study. The presented viscous fluid registration method is proposed for VBM studies to enhance sensitivity and localizing power.
Transport properties of the fluid produced at Relativistic Heavy-Ion Collider
Rajeev S Bhalerao
2010-08-01
It is by now well known that the relativistic heavy-ion collisions at RHIC, BNL have produced a strongly interacting fluid with remarkable properties, among them the lowest ever observed ratio of the coefficient of shear viscosity to entropy density. Arguments based on ideas from the string theory, in particular the AdS/CFT correspondence, led to the conjecture – now known to be violated – that there is an absolute lower limit 1/4 on the value of this ratio. Causal viscous hydrodynamics calculations together with the RHIC data have put an upper limit on this ratio, a small multiple of 1/4, in the relevant temperature regime. Less well-determined is the ratio of the coefficient of bulk viscosity to entropy density. These transport coefficients have also been studied non-perturbatively in the lattice QCD framework, and perturbatively in the limit of high-temperature QCD. Another interesting transport coefficient is the coefficient of diffusion which is also being studied in this context. In this paper some of these recent developments are reviewed and then the opportunities presented by the anticipated LHC data are discussed, for the general nuclear physics audience.
Estimation of mass outflow rates from viscous relativistic accretion discs around black holes
Chattopadhyay, Indranil; Kumar, Rajiv
2016-07-01
We investigated flow in Schwarzschild metric, around a non-rotating black hole and obtained self-consistent accretion-ejection solution in full general relativity. We covered the whole of parameter space in the advective regime to obtain shocked, as well as, shock-free accretion solution. We computed the jet streamline using von Zeipel surfaces and projected the jet equations of motion on to the streamline and solved them simultaneously with the accretion disc equations of motion. We found that steady shock cannot exist beyond α ≳ 0.06 in the general relativistic prescription, but is lower if mass-loss is considered too. We showed that for fixed outer boundary, the shock moves closer to the horizon with increasing viscosity parameter. The mass outflow rate increases as the shock moves closer to the black hole, but eventually decreases, maximizing at some intermediate value of shock location. The jet terminal speed increases with stronger shocks; quantitatively speaking, the terminal speed of jets vj∞ > 0.1 if rsh < 20rg. The maximum of the outflow rate obtained in the general relativistic regime is less than 6 per cent of the mass accretion rate.
Data on mixing of viscous fluids by helical screw impellers in cylindrical vessels
Houari Ameur
2016-09-01
Full Text Available In this article, the data assembled regarding the mixing of Newtonian and shear thinning fluids by screw impellers in a cylindrical tank is disclosed. The data summarizing some information on the efficiency of such impellers are obtained via 3D calculations of velocities and viscous dissipation in the whole vessel volume. The data presented herein may be useful for those who want to outline the mixing characteristics in terms of fluid circulation and power consumption for this kind of impellers, therefore, avoiding a great effort for achieving a high number of experiments.
Estimation of mass outflow rates from viscous relativistic accretion discs around black holes
Chattopadhyay, Indranil
2016-01-01
We investigated flow in Schwarzschild metric, around a non-rotating black hole and obtained self-consistent accretion - ejection solution in full general relativity. We covered the whole of parameter space in the advective regime to obtain shocked, as well as, shock-free accretion solution. We computed the jet streamline using von - Zeipel surfaces and projected the jet equations of motion on to the streamline and solved them simultaneously with the accretion disc equations of motion. We found that steady shock cannot exist {for $\\alpha \\gsim0.06$} in the general relativistic prescription, but is lower if mass - loss is considered too. We showed that for fixed outer boundary, the shock moves closer to the horizon with increasing viscosity parameter. The mass outflow rate increases as the shock moves closer to the black hole, but eventually decreases, maximizing at some intermediate value of shock {location}. The jet terminal speed increases with stronger shocks, quantitatively speaking, the terminal speed of ...
Charged relativistic fluids and non-linear electrodynamics
Dereli, T.; Tucker, R. W.
2010-01-01
The electromagnetic fields in Maxwell's theory satisfy linear equations in the classical vacuum. This is modified in classical non-linear electrodynamic theories. To date there has been little experimental evidence that any of these modified theories are tenable. However with the advent of high-intensity lasers and powerful laboratory magnetic fields this situation may be changing. We argue that an approach involving the self-consistent relativistic motion of a smooth fluid-like distribution of matter (composed of a large number of charged or neutral particles) in an electromagnetic field offers a viable theoretical framework in which to explore the experimental consequences of non-linear electrodynamics. We construct such a model based on the theory of Born and Infeld and suggest that a simple laboratory experiment involving the propagation of light in a static magnetic field could be used to place bounds on the fundamental coupling in that theory. Such a framework has many applications including a new description of the motion of particles in modern accelerators and plasmas as well as phenomena in astrophysical contexts such as in the environment of magnetars, quasars and gamma-ray bursts.
Viscous-elastic dynamics of power-law fluids within an elastic cylinder
Gat, Amir; Boyko, Evgeniy; Bercovici, Moran
2016-11-01
We study the fluid-structure interaction dynamics of non-Newtonian flow through a slender linearly elastic cylinder at the creeping flow regime. Specifically, considering power-law fluids and applying the thin shell approximation for the elastic cylinder, we obtain a non-homogeneous p-Laplacian equation governing the viscous-elastic dynamics. We obtain exact solutions for the pressure and deformation fields for various initial and boundary conditions, for both shear thinning and shear thickening fluids. In particular, impulse or a step in inlet pressure yield self-similar solutions, which exhibit a compactly supported propagation front solely for shear thinning fluids. Applying asymptotic expansions, we provide approximations for weakly non-Newtonian behavior showing good agreement with the exact solutions sufficiently far from the front.
Flow harmonics from self-consistent particlization of a viscous fluid
Wolff, Zack
2016-01-01
The quantitative extraction of quark-gluon plasma (QGP) properties from heavy-ion data, such as its specific shear viscosity $\\eta /s$, typically requires comparison to viscous hydrodynamic or "hybrid" hydrodynamics+transport simulations. In either case, one has to convert the fluid to hadrons, yet without additional theory input the conversion is ambiguous for dissipative fluids. Here, shear viscous phase-space corrections calculated using linearized transport theory are applied in Cooper-Frye freezeout to quantify the effects on anisotropic flow coefficients $v_n(p_T)$ at both RHIC and LHC energies. Expanding upon our previous flow harmonics studies [1,2], we calculate pion and proton $v_2(p_T)$, $v_4(p_T)$, and $v_6(p_T)$. Unlike in Ref. [1], we incorporate a hadron gas that is chemically frozen below a temperature of 175 MeV, and use hypersurfaces from realistic viscous hydrodynamic simulations. With additive quark model cross sections and relative phase-space corrections with $p^{3/2}$ momentum dependenc...
S. Srinivas
2016-01-01
Full Text Available The present work investigates the effects of thermal-diffusion and diffusion-thermo on MHD flow of viscous fluid between expanding or contracting rotating porous disks with viscous dissipation. The partial differential equations governing the flow problem under consideration have been transformed by a similarity transformation into a system of coupled nonlinear ordinary differential equations. An analytical approach, namely the homotopy analysis method is employed in order to obtain the solutions of the ordinary differential equations. The effects of various emerging parameters on flow variables have been discussed numerically and explained graphically. Comparison of the HAM solutions with the numerical solutions is performed.
Asghar, S.; Hussain, Q.; Hayat, T.; Alsaedi, A.
2015-07-01
This article addresses the heat transfer in a peristaltic flow of a reactive combustible viscous fluid through a porous saturated medium. The flow here is induced because of travelling waves along the channel walls. It is assumed that exothermic chemical reactions take place within the channel under the Arrhenius kinetics and the convective heat exchange with the ambient medium at the surfaces of the channel walls follows Newton's law of cooling. The analysis is carried out in the presence of viscous dissipation and without consumption of the material. The governing equations are formulated by employing the long-wavelength approximation. Closed-form solutions for the stream function, axial velocity, and axial pressure gradient are obtained. It is found that the temperature decreases at high Biot numbers, and the Nusselt number increases with increasing reaction parameter. The Biot number and reaction parameter produce the opposite effects on the Nusselt number.
Viscous dark fluid Universe: a unified model of the dark sector?
Zimdahl, W; Hipólito-Ricaldi, W S; 10.1142/S2010194511001413
2011-01-01
The Universe is modeled as consisting of pressureless baryonic matter and a bulk viscous fluid which is supposed to represent a unified description of the dark sector. In the homogeneous and isotropic background the \\textit{total} energy density of this mixture behaves as a generalized Chaplygin gas. The perturbations of this energy density are intrinsically nonadiabatic and source relative entropy perturbations. The resulting baryonic matter power spectrum is shown to be compatible with the 2dFGRS and SDSS (DR7) data. A joint statistical analysis, using also Hubble-function and supernovae Ia data, shows that, different from other studies, there exists a maximum in the probability distribution for a negative present value of the deceleration parameter. Moreover, the unified model presented here favors a matter content that is of the order of the baryonic matter abundance suggested by big-bang nucleosynthesis. A problem of simple bulk viscous models, however, is the behavior of the gravitational potential and ...
Lo, Wei-Cheng; Yeh, Chao-Lung; Lee, Jhe-Wei
2015-09-01
A central issue in the theoretical treatment of a multiphase system is the proper mathematical description of momentum transfer across fluid-solid and fluid-fluid interfaces. Although recent studies have advanced our knowledge on modeling the coupling behavior between a porous framework and the fluids permeating it, the effect of viscous resistance caused by two-fluid flow on elastic wave behavior in unsaturated porous media still remains elusive. In the present study, the theoretical model developed for describing immiscible two-phase fluid flows in a deformable porous medium related to harmonic wave perturbation is generalized to account for viscous cross coupling due to relative velocity between two adjacent fluids. The corresponding dispersion relations whose coefficients feature all elasticity, inertial-drag, and viscous-drag parameters are then precisely formulated, in a physical context characterizing three compressional waves and one shear wave. To evaluate quantitatively this as-yet unknown effect, numerical calculations are conducted to solve the dispersion relations for Columbia fine sandy loam bearing an oil-water mixture as a function of water saturation and excitation frequency. Our results show that the phase speed and attenuation coefficient of the P3 wave which has the smallest speed is strongly sensitive to the presence of viscous cross coupling, as expected since this wave is attributed primarily to the out-of-phase motion of the two pore fluids. Viscous cross coupling also exerts an impact on the attenuation coefficient of the shear wave and the P1 wave whose speed is greatest, which exhibits two opposite trends at different ranges of low and high water contents. Relative differences in these wave attributes are principally independent of excitation frequency. A sensitivity analysis is carried out to assess how changes in viscous cross coupling affect these differences, revealing that some of them become more significant as viscous cross
Quasiadiabatic modes from viscous inhomogeneities
Giovannini, Massimo
2016-04-01
The viscous inhomogeneities of a relativistic plasma determine a further class of entropic modes whose amplitude must be sufficiently small since curvature perturbations are observed to be predominantly adiabatic and Gaussian over large scales. When the viscous coefficients only depend on the energy density of the fluid the corresponding curvature fluctuations are shown to be almost adiabatic. After addressing the problem in a gauge-invariant perturbative expansion, the same analysis is repeated at a nonperturbative level by investigating the nonlinear curvature inhomogeneities induced by the spatial variation of the viscous coefficients. It is demonstrated that the quasiadiabatic modes are suppressed in comparison with a bona fide adiabatic solution. Because of its anomalously large tensor to scalar ratio the quasiadiabatic mode cannot be a substitute for the conventional adiabatic paradigm so that, ultimately, the present findings seems to exclude the possibility of a successful accelerated dynamics solely based on relativistic viscous fluids. If the dominant adiabatic mode is not affected by the viscosity of the background a sufficiently small fraction of entropic fluctuations of viscous origin cannot be a priori ruled out.
On the viscous dissipation modeling of thermal fluid flow in a porous medium
Salama, Amgad
2011-02-24
The problem of viscous dissipation and thermal dispersion in saturated porous medium is numerically investigated for the case of non-Darcy flow regime. The fluid is induced to flow upward by natural convection as a result of a semi-infinite vertical wall that is immersed in the porous medium and is kept at constant higher temperature. The boundary layer approximations were used to simplify the set of the governing, nonlinear partial differential equations, which were then non-dimensionalized and solved using the finite elements method. The results for the details of the governing parameters are presented and investigated. It is found that the irreversible process of transforming the kinetic energy of the moving fluid to heat energy via the viscosity of the moving fluid (i.e.; viscous dissipation) resulted in insignificant generation of heat for the range of parameters considered in this study. On the other hand, thermal dispersion has shown to disperse heat energy normal to the wall more effectively compared with the normal diffusion mechanism. © 2011 Springer-Verlag.
Ma, Ye; Ng, Chiu-On
2009-05-01
The oscillatory and time-mean motions induced by a propagating wave of small amplitude through a viscous incompressible fluid contained in a prestressed and viscoelastic (modeled as a Voigt material) tube are studied by a perturbation analysis based on equations of motion in the Lagrangian system. The classical problem of oscillatory viscous flow in a flexible tube is re-examined in the contexts of blood flow in arteries or pulmonary gas flow in airways. The wave kinematics and dynamics, including wavenumber, wave attenuation, velocity, and stress fields, are found as analytical functions of the wall and fluid properties, prestress, and the Womersley number for the cases of a free or tethered tube. On extending the analysis to the second order in terms of the small wave steepness, it is shown that the time-mean motion of the viscoelastic tube with sufficient strength is short lived and dies out quickly as a limit of finite deformation is approached. Once the tube has attained its steady deformation, the steady streaming in the fluid can be solved analytically. Results are generated to illustrate the combined effects on the first-order oscillatory flow and the second-order steady streaming due to elasticity, viscosity, and initial stresses of the wall. The present model as applied to blood flow in arteries and gas flow in pulmonary airways during high-frequency ventilation is examined in detail through comparison with models in the literature.
Wei, Zhiyuan; Wei, Kai; Wang, Ziwei; Dai, Rucheng
2016-01-01
The case of a rotating object traveling through viscous fluid appears in many phenomena like the banana ball and missile movement. In this work, we build a model to predict the trajectory of such rotating objects with near-cylinder geometry. The analytical expression of Magnus force is given and a wind tunnel experiment is carried out, which shows the Magnus force is well proportional to the product of angular velocity and centroid velocity. The trajectory prediction is consistent with the trajectory record experiment of Magnus glider, which implies the validity and robustness of this model.
Atlan, Michael; Gross, Michel; Coppey-Moisan, Maite; 10.1364/OL.35.000787
2010-01-01
We developed a microscope intended to probe, using a parallel heterodyne receiver, the fluctuation spectrum of light quasi-elastically scattered by gold nanoparticles diffusing in viscous fluids. The cutoff frequencies of the recorded spectra scale up linearly with those expected from single scattering formalism in a wide range of dynamic viscosities (1 to 15 times water viscosity at room temperature). Our scheme enables ensemble-averaged optical fluctuations measurements over multispeckle recordings in low light, at temporal frequencies up to 10 kHz, with a 12 Hz framerate array detector.
The flow and heat transfer in a viscous fluid over an unsteady stretching surface
Ene, Remus-Daniel; Marinca, Bogdan
2015-01-01
In this paper we have studied the flow and heat transfer in a viscous fluid by a horizontal sheet. The stretching rate and temperature of the sheet vary with time. The governing equations for momentum and thermal energy are reduced to ordinary differential equations by means of similarity transformation. These equations are solved approximately by means of the Optimal Homotopy Asymptotic Method (OHAM) which provides us with a convenient way to control the convergence of approximation solutions and adjust convergence rigorous when necessary. Some examples are given and the results obtained reveal that the proposed method is effective and easy to use.
MHD flow of a viscous fluid on a nonlinear porous shrinking sheet with homotopy analysis method
S. Nadeem; Anwar Hussain
2009-01-01
The present paper investigates the magnetohydrodynamic (MHD) flow of a viscous fluid towards a nonlinear porous shrinking sheet. The governing equations are simplified by similarity transformations. The reduced problem is then solved by the homotopy analysis method. The pertinent parameters appearing in the problem are discussed graphically and presented in tables. It is found that the shrinking solutions exist in the presence of MHD. It is also observed from the tables that the solutions for f"(0) with different values of parameters are convergent.
Interacting two-fluid viscous dark energy models in a non-flat universe
Hassan Amirhashchi; Anirudh Pradhan; Hishamuddin Zainuddin
2013-01-01
We study the evolution of the dark energy parameter within the scope of a spatially non-flat and isotropic Friedmann-Robertson-Walker model filled with barotropic fluid and bulk viscous stresses.We have obtained cosmological solutions that do not have a Big Rip singularity,and concluded that in both non-interacting and interacting cases the non-flat open Universe crosses the phantom region.We find that during the evolution of the Universe,the equation of state for dark energy ωD changes from ωDeff ＞-1 to ωDeff ＜-1,which is consistent with recent observations.
Ferromagnetic Flow of Viscous Fluid in a Slot between Fixed Surfaces of Revolution
Jerzy Sawicki
2016-12-01
Full Text Available In this paper the steady laminar flow of viscous incompressible ferromagnetic fluid is considered in a slot between fixed surfaces of revolution having a common axis of symmetry. The boundary layer ferromagnetic equations for axial symmetry are expressed in terms of the intrinsic curvilinear orthogonal coordinate system x, θ ,y.The method of perturbation is used to solve the boundary layer equations. As a result, the formulae defining such parameters of the flow as the velocity components vx, vy, and the pressure , were obtained.
Swimming of a deformable slab in a viscous incompressible fluid with inertia
Felderhof, B U
2015-01-01
The swimming of a deformable planar slab in a viscous incompressible fluid is studied on the basis of the Navier-Stokes equations. A continuum of plane wave displacements, symmetric on both sides of the slab and characterized by a polarization angle, allows optimization of the swimming efficiency with respect to polarization. The mean swimming velocity and mean rate of dissipation are calculated to second order in the amplitude of the stroke. The optimum efficiency depends on the ratio of viscosity and mass density of the fluid. For high viscosity a stroke is found with significantly higher efficiency than Taylor's solution for a swimming sheet. For low viscosity the efficiency is optimal for a nearly irrotational flow pattern.
Frequency dispersion of small-amplitude capillary waves in viscous fluids
Denner, Fabian
2016-01-01
This work presents a detailed study of the dispersion of capillary waves with small amplitude in viscous fluids using an analytically derived solution to the initial value problem of a small-amplitude capillary wave as well as direct numerical simulation. A rational parametrization for the dispersion of capillary waves in the underdamped regime is proposed, including predictions for the wavenumber of critical damping based on a harmonic oscillator model. The scaling resulting from this parametrization leads to a self-similar solution of the frequency dispersion of capillary waves that covers the entire underdamped regime, which allows an accurate evaluation of the frequency at a given wavenumber, irrespective of the fluid properties. This similarity also reveals characteristic features of capillary waves, for instance that critical damping occurs when the characteristic timescales of dispersive and dissipative mechanisms are balanced. In addition, the presented results suggest that the widely adopted hydrodyn...
Felderhof, B U
2016-01-01
Swimming at small Reynolds number of a linear assembly of identical spheres immersed in a viscous fluid is studied on the basis of a set of equations of motion for the individual spheres. The motion of the spheres is caused by actuating forces and forces derived from a direct interaction potential, as well as hydrodynamic forces exerted by the fluid as frictional and added mass hydrodynamic interactions. The swimming velocity is deduced from the momentum balance equation for the assembly of spheres, and the mean power required during a period is calculated from an instantaneous power equation. Expressions are derived for the mean swimming velocity and the mean power, valid to second order in the amplitude of displacements from the relative equilibrium positions. Hence these quantities can be evaluated in terms of prescribed periodic displacements. Explicit calculations are performed for a linear chain of three identical spheres.
Self-consistent Cooper-Frye freeze-out of a viscous fluid to particles
Wolff, Zack
2014-01-01
Comparing hydrodynamic simulations to heavy-ion data inevitably requires the conversion of the fluid to particles. This conversion, typically done in the Cooper-Frye formalism, is ambiguous for viscous fluids. We compute self-consistent phase space corrections by solving the linearized Boltzmann equation and contrast the solutions to those obtained using the ad-hoc "democratic Grad" ansatz typically employed in the literature where coefficients are independent of particle dynamics. Solutions are calculated analytically for a massless gas and numerically for both a pion-nucleon gas and for the general case of a hadron resonance gas. We find that the momentum dependence of the corrections in all systems investigated is best fit by a power close to 3/2 rather than the typically used quadratic ansatz. The effects on harmonic flow coefficients $v_2$ and $v_4$ are substantial, and should be taken into account when extracting medium properties from experimental data.
Swimming of a sphere in a viscous incompressible fluid with inertia
Felderhof, B U
2015-01-01
The swimming of a sphere immersed in a viscous incompressible fluid with inertia is studied for surface modulations of small amplitude on the basis of the Navier-Stokes equations. The mean swimming velocity and the mean rate of dissipation are expressed as quadratic forms in term of the surface displacements. With a choice of a basis set of modes the quadratic forms correspond to two hermitian matrices. Optimization of the mean swimming velocity for given rate of dissipation requires the solution of a generalized eigenvalue problem involving the two matrices. It is found for surface modulations of low multipole order that the optimal swimming efficiency depends in intricate fashion on a dimensionless scale number involving the radius of the sphere, the period of the cycle, and the kinematic viscosity of the fluid.
Formulation of relativistic dissipative fluid dynamics and its applications in heavy-ion collisions
Jaiswal, Amaresh
2014-01-01
Relativistic fluid dynamics finds application in astrophysics, cosmology and the physics of high-energy heavy-ion collisions. In this thesis, we present our work on the formulation of relativistic dissipative fluid dynamics within the framework of relativistic kinetic theory. We employ the second law of thermodynamics as well as the relativistic Boltzmann equation to obtain the dissipative evolution equations. We present a new derivation of the dissipative hydrodynamic equations using the second law of thermodynamics wherein all the second-order transport coefficients get determined uniquely within a single theoretical framework. An alternate derivation of the dissipative equations which does not make use of the two major approximations/assumptions namely, Grad's 14-moment approximation and second moment of Boltzmann equation, inherent in the Israel-Stewart theory, is also presented. Moreover, by solving the Boltzmann equation iteratively in a Chapman-Enskog like expansion, we have derived the form of second-...
Prescribed Velocity Gradients for Highly Viscous SPH Fluids with Vorticity Diffusion.
Peer, Andreas; Teschner, Matthias
2016-12-06
Working with prescribed velocity gradients is a promising approach to efficiently and robustly simulate highly viscous SPH fluids. Such approaches allow to explicitly and independently process shear rate, spin, and expansion rate. This can be used to, e.g., avoid interferences between pressure and viscosity solvers. Another interesting aspect is the possibility to explicitly process the vorticity, e.g. to preserve the vorticity. In this context, this paper proposes a novel variant of the prescribed-gradient idea that handles vorticity in a physically motivated way. In contrast to a less appropriate vorticity preservation that has been used in a previous approach, vorticity is diffused. The paper illustrates the utility of the vorticity diffusion. Therefore, comparisons of the proposed vorticity diffusion with vorticity preservation and additionally with vorticity damping are presented. The paper further discusses the relation between prescribed velocity gradients and prescribed velocity Laplacians which improves the intuition behind the prescribed-gradient method for highly viscous SPH fluids. Finally, the paper discusses the relation of the proposed method to a physically correct implicit viscosity formulation.
Soft Dynamics simulation. 2. Elastic spheres undergoing a T(1) process in a viscous fluid.
Rognon, P; Gay, C
2009-11-01
Robust empirical constitutive laws for granular materials in air or in a viscous fluid have been expressed in terms of timescales based on the dynamics of a single particle. However, some behaviours such as viscosity bifurcation or shear localization, observed also in foams, emulsions, and block copolymer cubic phases, seem to involve other micro-timescales which may be related to the dynamics of local particle reorganizations. In the present work, we consider a T(1) process as an example of a rearrangement. Using the Soft Dynamics simulation method introduced in the first paper of this series, we describe theoretically and numerically the motion of four elastic spheres in a viscous fluid. Hydrodynamic interactions are described at the level of lubrication (Poiseuille squeezing and Couette shear flow) and the elastic deflection of the particle surface is modeled as Hertzian. The duration of the simulated T(1) process can vary substantially as a consequence of minute changes in the initial separations, consistently with predictions. For the first time, a collective behaviour is thus found to depend on a parameter other than the typical volume fraction of particles.
Nonlocal vibration of Y-shaped CNT conveying nano-magnetic viscous fluid under magnetic field
A. Ghorbanpour Arani
2015-06-01
Full Text Available This study deals with the vibration and stability analysis of a Y-shaped single-walled carbon nanotube (SWCNT embedded in visco-Pasternak foundation and conveying nano-magnetic viscous fluid (NMF based on nonlocal elasticity theory and Euler–Bernoulli beam model. The fluid is two-phases due to the existence of magnetic nanoparticles which its volume fraction is much little in comparison with the base fluid where the influence of 2D magnetic field is taken into account. Also, Knudsen number is used to correct the velocity profile of fluid. The Galerkin method is applied to solve the equation of motion which is obtained by employing Hamilton’s principle. The detail parametric study is conducted, focusing on the combined effects of carbon nanotube and Y-shaped junction fitted at the downstream end, fluid velocity, Knudsen number and elastic medium. The results indicate that increasing the angle between centerline of the CNT and the downstream elbows decreases stability of system.
Arciniega-Ceballos, A.; Spina, L.; Scheu, B.; Dingwell, D. B.
2015-12-01
We have investigated the dynamics of Newtonian fluids with viscosities (10-1000 Pa s; corresponding to mafic to intermediate silicate melts) during slow decompression, in a Plexiglas shock tube. As an analogue fluid we used silicon oil saturated with Argon gas for 72 hours. Slow decompression, dropping from 10 MPa to ambient pressure, acts as the excitation mechanism, initiating several processes with their own distinct timescales. The evolution of this multi-timescale phenomenon generates complex non-stationary microseismic signals, which have been recorded with 7 high-dynamic piezoelectric sensors located along the conduit. Correlation analysis of these time series with the associated high-speed imaging enables characterization of distinct phases of the dynamics of these viscous fluids and the extraction of the time and the frequency characteristics of the individual processes. We have identified fluid-solid elastic interaction, degassing, fluid mass expansion and flow, bubble nucleation, growth, coalescence and collapse, foam building and vertical wagging. All these processes (in fine and coarse scales) are sequentially coupled in time, occur within specific pressure intervals, and exhibit a localized distribution in space. Their coexistence and interactions constitute the stress field and driving forces that determine the dynamics of the system. Our observations point to the great potential of this experimental approach in the understanding of volcanic processes and volcanic seismicity.
Direct numerical simulation of gravity-driven avalanches immersed in a viscous fluid
Bonometti, Thomas; Izard, Edouard; Lacaze, Laurent; OTE Team
2014-11-01
This work deals with direct numerical simulations of sediment transport at the scale of O(103) grains. A soft-sphere discrete element method is coupled to an immersed boundary method in order to compute the flow around moving and colliding grains in an incompressible Newtonian fluid. A lubrication force is added for representing fluid-particles interaction near contact. The numerical method is shown to adequately reproduce the effective coefficient of restitution measured in experiments of the normal and oblique rebound of a grain on a wall. An analytical model is proposed and highlights the importance of the grain roughness and Stokes number on the rebound phenomenon. Three-dimensional configurations of gravity-driven dense granular flows in a fluid, namely the granular avalanche on an inclined plane and the collapse of a granular column, are performed. The granular flow regimes (viscous, inertial and dry) observed in experiments are identified as a function of the grain-to-fluid density ratio and the Stokes number. In particular, the simulations provide insights on the grain and fluid velocity profiles and force balance in each regime. In the second case, results agree well with experiments and the pore pressure feedback is observed for the first time in direct numerical simulations.
Kaluza-Klein reduction of relativistic fluids and their gravity duals
Di Dato, Adriana
2013-01-01
We study the hydrodynamics of relativistic fluids with several conserved global charges (i.e., several species of particles) by performing a Kaluza-Klein dimensional reduction of a neutral fluid on a N-torus. Via fluid/gravity correspondence, this allows us to describe the long-wavelength dynamics of black branes with several Kaluza-Klein charges. We obtain the equation of state and transport coefficients of the charged fluid directly from those of the higher-dimensional neutral fluid. We specialize these results for the fluids dual to Kaluza-Klein black branes.
Waves in General Relativistic Two-fluid Plasma around a Schwarzschild Black Hole
Rahman, M Atiqur
2010-01-01
Waves propagating in the relativistic electron-positron or ions plasma are investigated in a frame of two-fluid equations using the 3+1 formalism of general relativity developed by Thorne, Price and Macdonald (TPM). The plasma is assumed to be freefalling in the radial direction toward the event horizon due to the strong gravitational field of a Schwarzschild black hole. The local dispersion relations for transverse and longitudinal waves have been derived, in analogy with the special relativistic formulation as explained in an earlier paper, to take account of relativistic effects due to the event horizon using WKB approximation
De Pauw, Ruben; Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken
2014-10-24
The study of radial and axial temperature profiles always has been an area interest both in liquid chromatography (LC) and supercritical fluid chromatography (SFC). Whereas in LC always an increase in temperature is observed due to the dominance of viscous heating, in SFC, especially for low modifier content, a decrease in temperature is found due to the much larger decompression cooling. However, for higher modifier content and higher operating pressure, the temperature effects become a trade-off between viscous heating and decompression cooling, since in SFC the latter is a strong function of operating pressure and mobile phase composition. At a temperature of 40°C and for neat CO2, the effect of decompression cooling and viscous heating cancel each other out at a pressure 450bar. This pressure decreases almost linearly with volume fraction of methanol to 150bar at 25vol%. As a result, both cooling and heating effects can be observed when operating at high back pressure, large column pressure drops or high modifier content. For example at a back pressure of 150bar and a column pressure drop of 270bar decompression cooling is observed throughout the column. However at 300bar back pressure and the same pressure drop, the mobile phase heats up in the first part of the column due to viscous heating and then cools in the second part due to decompression cooling. When coupling columns (2.1mm×150mm, 1.8μm fully porous particles) at very high operating pressure (e.g. 750bar for 8vol%), the situation is even more complex. E.g. at a back pressure of 150bar and using 8vol% methanol, viscous heating is only observed in the first column whereas only decompression cooling in the second. Further increasing the inlet pressure up to 1050bar resulted in no excessive temperature differences along the column. This implies that the inlet pressure of SFC instrumentation could be expanded above 600bar without additional band broadening caused by excessive radial temperature
Steady fall of isothermal, resistive-viscous, compressible fluid across magnetic field
Low, B. C.; Egan, A. K.
2014-06-01
This is a basic MHD study of the steady fall of an infinite, vertical slab of isothermal, resistive-viscous, compressible fluid across a dipped magnetic field in uniform gravity. This double-diffusion steady flow in unbounded space poses a nonlinear but numerically tractable, one-dimensional (1D) free-boundary problem, assuming constant coefficients of resistivity and viscosity. The steady flow is determined by a dimensionless number μ1 proportional to the triple product of the two diffusion coefficients and the square of the linear total mass. For a sufficiently large μ1, the Lorentz, viscous, fluid-pressure, and gravitational forces pack and collimate the fluid into a steady flow of a finite width defined by the two zero-pressure free-boundaries of the slab with vacuum. The viscous force is essential in this collimation effect. The study conjectures that in the regime μ1→0, the 1D steady state exists only for μ1∈Ω, a spectrum of an infinite number of discrete values, including μ1 = 0 that corresponds to two steady states, the classical zero-resistivity static slab of Kippenhahn and Schlüter [R. Kippenhahn and A. Schlüter, Z. Astrophys. 43, 36 (1957)] and its recent generalization [B. C. Low et al., Astrophys. J. 755, 34 (2012)] to admit an inviscid resistive flow. The pair of zero-pressure boundaries of each of the μ1→0 steady-state slabs are located at infinity. Computational evidence suggests that the Ω steady-states are densely distributed around μ1 = 0, as an accumulation point, but are sparsely separated by open intervals of μ1-values for which the slab must be either time-dependent or spatially multi-dimensional. The widths of these intervals are vanishingly small as μ1→0. This topological structure of physical states is similar to that described by Landau and Liftshitz [L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Addison-Wesley, Reading, MA, 1959)] to explain the onset of hydrodynamic turbulence. The implications of this MHD
Boualit, A.; Boualit, S. [Unite de recherche appliquee en energies renouvelables, Ghardaia (Algeria); Zeraibi, N. [Universite de Boumerdes, Faculte des hydrocarbures dept. Transport et equipement, Boumerdes (Algeria); Amoura, M. [Universite des Sciences et de la Technologie Houari Boumedienne, Faculte de Physique, Dept. Energetique, Alger (Algeria)
2011-01-15
The thermal development of the hydrodynamically developing laminar flow of a viscoplastic fluid (fluid of Bingham) between two plane plates maintained at a constant temperature has been studied numerically. This analysis has shown the effect caused by inertia and the rheological behaviour of the fluid on the velocity, pressure and temperature fields. The effects of Bingham and Peclet numbers on the Nusselt values with the inclusion of viscous dissipation are also discussed. (authors)
Brittle-viscous deformation of vein quartz under fluid-rich low greenschist facies conditions
Jørgen Kjøll, Hans; Viola, Giulio; Menegon, Luca; Sørensen, Bjørn
2015-04-01
A coarse grained, statically crystallized quartz vein with a random CPO, embedded in a phyllonitic matrix, was studied by optical microscopy, SEM imaging and EBSD to gain insights into the processes of strain localization in quartz deformed under low greenschist facies conditions at the frictional-viscous transition. The vein is located in a high strain zone at the front of an imbricate stack of Caledonian age along the northwesternmost edge of the Repparfjord Tectonic Window in northern Norway. The vein was deformed within the Nussirjavrri Fault Zone (NFZ), an out-of-sequence thrust with a phyllonitic core characterized by a ramp-flat-ramp geometry, NNW plunging stretching lineations and top-to-the SSE thrusting kinematics. Deformation conditions are typical of the frictional-viscous transition. The phyllonitic core formed at the expense of metabasalt wherein feldspar broke down to form interconnected layers of fine, synkinematic phyllosilicates. In the mechanically weak framework of the phyllonite, the studied quartz vein acted as a relatively rigid body deforming mainly by coaxial strain. Viscous deformation, related to the development of a mesoscopic pervasive extensional crenulation cleavage, was accommodated within the vein initially by basal slip of suitably oriented quartz crystals, which produced e.g. undulose extinction, extinction bands and bulging grain boundaries. In the case of misoriented quartz crystals, however, glide-accommodated dislocation creep resulted soon inefficient and led to localized dislocation tangling and strain hardening. In response to 1) hardening, 2) progressive increase of fluid pressure within the actively deforming vein and 3) increasing competence contrast between the vein and the surrounding weak, foliated phyllonitic fault core, quartz crystals began to deform frictionally along specific lattice planes oriented optimally with respect to the imposed stress field. Microfaulting generated small volumes of gouge along
Amano, Takanobu
2016-01-01
A new multidimensional simulation code for relativistic two-fluid electrodynamics (RTFED) is described. The basic equations consist of the full set of Maxwell's equations coupled with relativistic hydrodynamic equations for separate two charged fluids, representing the dynamics of either an electron-positron or an electron-proton plasma. It can be recognized as an extension of conventional relativistic magnetohydrodynamics (RMHD). Finite resistivity may be introduced as a friction between the two species, which reduces to resistive RMHD in the long wavelength limit without suffering from a singularity at infinite conductivity. A numerical scheme based on HLL (Harten-Lax-Van Leer) Riemann solver is proposed that exactly preserves the two divergence constraints for Maxwell's equations simultaneously. Several benchmark problems demonstrate that it is capable of describing RMHD shocks/discontinuities at long wavelength limit, as well as dispersive characteristics due to the two-fluid effect appearing at small sca...
Modeling polymorphic transformation of rotating bacterial flagella in a viscous fluid
Ko, William; Lim, Sookkyung; Lee, Wanho; Kim, Yongsam; Berg, Howard C.; Peskin, Charles S.
2017-06-01
The helical flagella that are attached to the cell body of bacteria such as Escherichia coli and Salmonella typhimurium allow the cell to swim in a fluid environment. These flagella are capable of polymorphic transformation in that they take on various helical shapes that differ in helical pitch, radius, and chirality. We present a mathematical model of a single flagellum described by Kirchhoff rod theory that is immersed in a fluid governed by Stokes equations. We perform numerical simulations to demonstrate two mechanisms by which polymorphic transformation can occur, as observed in experiments. First, we consider a flagellar filament attached to a rotary motor in which transformations are triggered by a reversal of the direction of motor rotation [L. Turner et al., J. Bacteriol. 182, 2793 (2000), 10.1128/JB.182.10.2793-2801.2000]. We then consider a filament that is fixed on one end and immersed in an external fluid flow [H. Hotani, J. Mol. Biol. 156, 791 (1982), 10.1016/0022-2836(82)90142-5]. The detailed dynamics of the helical flagellum interacting with a viscous fluid is discussed and comparisons with experimental and theoretical results are provided.
Observation of Dispersive Shock Waves, Solitons, and Their Interactions in Viscous Fluid Conduits.
Maiden, Michelle D; Lowman, Nicholas K; Anderson, Dalton V; Schubert, Marika E; Hoefer, Mark A
2016-04-29
Dispersive shock waves and solitons are fundamental nonlinear excitations in dispersive media, but dispersive shock wave studies to date have been severely constrained. Here, we report on a novel dispersive hydrodynamic test bed: the effectively frictionless dynamics of interfacial waves between two high viscosity contrast, miscible, low Reynolds number Stokes fluids. This scenario is realized by injecting from below a lighter, viscous fluid into a column filled with high viscosity fluid. The injected fluid forms a deformable pipe whose diameter is proportional to the injection rate, enabling precise control over the generation of symmetric interfacial waves. Buoyancy drives nonlinear interfacial self-steepening, while normal stresses give rise to the dispersion of interfacial waves. Extremely slow mass diffusion and mass conservation imply that the interfacial waves are effectively dissipationless. This enables high fidelity observations of large amplitude dispersive shock waves in this spatially extended system, found to agree quantitatively with a nonlinear wave averaging theory. Furthermore, several highly coherent phenomena are investigated including dispersive shock wave backflow, the refraction or absorption of solitons by dispersive shock waves, and the multiphase merging of two dispersive shock waves. The complex, coherent, nonlinear mixing of dispersive shock waves and solitons observed here are universal features of dissipationless, dispersive hydrodynamic flows.
The role of angular momentum in the laminar motion of viscous fluids
Paglietti, A.
2017-03-01
In laminar flow, viscous fluids must exert appropriate elastic shear stresses normal to the flow direction. This is a direct consequence of the balance of angular momentum. There is a limit, however, to the maximum elastic shear stress that a fluid can exert. This is the ultimate shear stress, τ _y, of the fluid. If this limit is exceeded, laminar flow becomes dynamically incompatible. The ultimate shear stress of a fluid can be determined from experiments on plane Couette flow. For water at 20°, the data available in the literature indicate a value of τ _y of about 14.4× 10^{-3} Pa. This study applies this value to determine the Reynolds numbers at which flowing water reaches its ultimate shear stress in the case of Taylor-Couette flow and circular pipe flow. The Reynolds numbers thus obtained turn out to be reasonably close to those corresponding to the onset of turbulence in the considered flows. This suggests a connection between the limit to laminar flow, on the one hand, and the occurrence of turbulence, on the other.
Bianchi I cosmology in the presence of a causally regularized viscous fluid
Venanzi, Marta
2016-01-01
We analyze the dynamics of a Bianchi I cosmology in the presence of a viscous fluid, causally regularized according to the Lichnerowicz approach. We show how the effect induced by shear viscosity is still able to produce a matter creation phenomenon, meaning that also in the regularized theory we observe the Universe emerges from a singularity with a vanishing energy density value. We discuss the structure of the singularity in the isotropic limit, when bulk viscosity is the only retained contribution. We see that, in the regularized theory we address, as far as viscosity is not a dominant effect, the dynamics of the isotropic Universe possesses the usual inviscid power-law behavior, but in correspondence of an effective equation of state, depending on the bulk viscosity coefficient. Finally, we show that in the limit of a strong non-thermodynamical equilibrium of the Universe, mimiced by a dominant contribution of the effective viscous pressure, a power-law inflation behavior of the Universe appears and the ...
UNSTEADY WAVES DUE TO AN IMPULSIVE OSEENLET BENEATH THE CAPILLARY SURFACE OF A VISCOUS FLUID
LU Dong-qiang; CHEN Xiao-bo
2008-01-01
The two-dimensional free-surface waves due to a point force steadily moving beneath the capillary surface of an incompressible viscous fluid of infinite depth were analytically investigated. The unsteady Oseen equations were taken as the governing equations for the viscous flows. The kinematic and dynamic conditions including the combined effects of surface tension and viscosity were linearized for small-amplitude waves on the free-surface. The point force is modeled as an impulsive Oseenlet. The complex dispersion relation for the capillary-gravity waves shows that the wave patterns are characterized by the Weber number and the Reynolds number. The asymptotic expansions for the wave profiles were explicitly derived by means of Lighthill's theorem for the Fourier transform of a function with a finite number of singularities. Furthermore, it is found that the unsteady wave system consists of four families, that is, the steady-state gravity wave, the steady-state capillary wave, the transient gravity wave, and the transient capillary wave. The effect of viscosity on the capillary-gravity was analytically expressed.
Thin-Film Magnetic-Field-Response Fluid-Level Sensor for Non-Viscous Fluids
Woodard, Stanley E.; Shams, Qamar A.; Fox, Robert L.; Taylor, Bryant D.
2008-01-01
An innovative method has been developed for acquiring fluid-level measurements. This method eliminates the need for the fluid-level sensor to have a physical connection to a power source or to data acquisition equipment. The complete system consists of a lightweight, thin-film magnetic-field-response fluid-level sensor (see Figure 1) and a magnetic field response recorder that was described in Magnetic-Field-Response Measurement-Acquisition System (LAR-16908-1), NASA Tech Briefs, Vol. 30, No. 6 (June 2006), page 28. The sensor circuit is a capacitor connected to an inductor. The response recorder powers the sensor using a series of oscillating magnetic fields. Once electrically active, the sensor responds with its own harmonic magnetic field. The sensor will oscillate at its resonant electrical frequency, which is dependent upon the capacitance and inductance values of the circuit.
INVERSE CASCADE OF NONHELICAL MAGNETIC TURBULENCE IN A RELATIVISTIC FLUID
Zrake, Jonathan [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Menlo Park, CA 94025 (United States)
2014-10-20
The free decay of nonhelical relativistic magnetohydrodynamic turbulence is studied numerically, and found to exhibit cascading of magnetic energy toward large scales. Evolution of the magnetic energy spectrum P{sub M} (k, t) is self-similar in time and well modeled by a broken power law with subinertial and inertial range indices very close to 7/2 and –2, respectively. The magnetic coherence scale is found to grow in time as t {sup 2/5}, much too slow to account for optical polarization of gamma-ray burst afterglow emission if magnetic energy is to be supplied only at microphysical length scales. No bursty or explosive energy loss is observed in relativistic MHD turbulence having modest magnetization, which constrains magnetic reconnection models for rapid time variability of GRB prompt emission, blazars, and the Crab nebula.
Resistive relativistic magnetohydrodynamics from a charged multi-fluids perspective
Andersson, N
2012-01-01
We consider general relativistic magnetohydrodynamics from a charged multifluids point-of-view, taking a variational approach as our starting point. We develop the case of two charged components in detail, accounting for a phenomenological resistivity, providing specific examples for pair plasmas and proton-electron systems. We discuss both cold, low velocity, plasmas and hot systems where we account for a dynamical entropy component. The results for the cold case (which accord with recent work in the literature) provide a complete model for resistive relativistic magnetohydrodynamics, clarifying the assumptions that lead to various models that have been used in astrophysical applications. The analysis of the hot case is (as far as we are aware) novel, accounting for the relaxation times that are required to ensure causality and demonstrating the explicit coupling between fluxes of heat and charge.
Willis, Keeney; Orme, Melissa
1997-11-01
An experimental investigation of the collisional dynamics of equal sized drops of a viscous, silicone based oil, DC 200, has been conducted for head-on impacts in a vacuum. Results show that the range of droplet Weber numbers necessary to describe the boundaries between permanent coalescence and what has been previously described as reflexive separation, is several orders of magnitude higher than has been reported in studies involving water and hydrocarbon fuel droplets. Energy dissipation during the deformation process has been measured, and the results show a wide discrepancy with available theory. Detailed observations of the post-impact deformation process reveals that in this case, the formation of multiple drops is due solely to the growth of Rayleigh instabilities on the extended fluid ligament.
Diffuse interface models of locally inextensible vesicles in a viscous fluid
Aland, Sebastian; Lowengrub, John; Voigt, Axel
2013-01-01
We present a new diffuse interface model for the dynamics of inextensible vesicles in a viscous fluid. A new feature of this work is the implementation of the local inextensibility condition in the diffuse interface context. Local inextensibility is enforced by using a local Lagrange multiplier, which provides the necessary tension force at the interface. To solve for the local Lagrange multiplier, we introduce a new equation whose solution essentially provides a harmonic extension of the local Lagrange multiplier off the interface while maintaining the local inextensibility constraint near the interface. To make the method more robust, we develop a local relaxation scheme that dynamically corrects local stretching/compression errors thereby preventing their accumulation. Asymptotic analysis is presented that shows that our new system converges to a relaxed version of the inextensible sharp interface model. This is also verified numerically. Although the model does not depend on dimension, we present numerica...
Sound synchronization of bubble trains in a viscous fluid: experiment and modeling.
Pereira, Felipe Augusto Cardoso; Baptista, Murilo da Silva; Sartorelli, José Carlos
2014-10-01
We investigate the dynamics of formation of air bubbles expelled from a nozzle immersed in a viscous fluid under the influence of sound waves. We have obtained bifurcation diagrams by measuring the time between successive bubbles, having the air flow (Q) as a parameter control for many values of the sound wave amplitude (A), the height (H) of the solution above the top of the nozzle, and three values of the sound frequency (fs). Our parameter spaces (Q,A) revealed a scenario for the onset of synchronization dominated by Arnold tongues (frequency locking) which gives place to chaotic phase synchronization for sufficiently large A. The experimental results were accurately reproduced by numerical simulations of a model combining a simple bubble growth model for the bubble train and a coupling term with the sound wave added to the equilibrium pressure.
ANALYTICAL MODEL OF MHD MIXED CONVECTIVE RADIATING FLUID WITH VISCOUS DISSIPATIVE HEAT
Sahin Ahmed,
2010-09-01
Full Text Available The objective of this investigation is to study the influence of thermal radiation and magnetic Prandtl number on the steady MHD heat and mass transfer by mixed convection flow of a viscous, incompressible, electrically-conducting, Newtonian fluid which is an optically thin gray gas over a vertical porous plate taking into account the induced magnetic field. The similarity solutions of the transformed dimensionless governing equations are obtained by seriessolution. It is found that, velocity is reduced considerably with a rise in conduction-radiation parameter (R or Hartmann number (M whereas the rate of heat transfer is found to be markedly boosted with an increase in Hartmann number (M or radiation (R or Eckert number (
FREE-SURFACE WAVES AND FAR WAKES GENERATED BY A FLOATING BODY IN A VISCOUS FLUID
Lu Dong-qiang
2003-01-01
The free-surface waves and the flow field due to a body moving on the surface of an incompressible viscous fluid of infinite depth were studied analytically. The floating body was modeled as a normal point pressure on the free surface. Based on the Oseen approximation for governing equations and the linearity assumption for boundary conditions, the exact solutions in integral form for the free-surface elevation, the velocities and the pressure were given. By employing Lighthill's two-stage scheme, the asymptotic representations in far field for large Reynolds numbers were derived explicitly. The effect of viscosity on the wave profiles was expressed by an exponential decay factor, which removes the singular behavior predicted by the potential theory.
Bianchi Type-Ⅴ Bulk Viscous Barotropic Fluid Cosmological Model with Variable G and A
Raj Bali; Seema Tinker
2008-01-01
@@ We investigate the Bianehi type-Ⅴ bulk viscous barotropic fluid cosmological model with variable gravitational constant G and the cosmological constant A, assuming the condition on metric potential as A/A=B/B=C/C=m/ln, where A, B, and C are functions of time t, while m and n are constants. To obtain the deterministic model, we also assume the relations P= p-3ηH, p =γρ, η = ηoρs, where p is the isotropic pressure, η the bulk viscosity, 0 ≤γ≤1, H the Hubble constant, ηo and s are constants. Various physical aspects of the model are discussed. The case of n = 1 is also discussed to compare the results with the actual universe.
Dynamic Wrinkling and Strengthening of an Elastic Filament in a Viscous Fluid
Chopin, Julien; Dasgupta, Moumita; Kudrolli, Arshad
2017-08-01
We investigate the wrinkling dynamics of an elastic filament immersed in a viscous fluid submitted to compression at a finite rate with experiments and by combining geometric nonlinearities, elasticity, and slender body theory. The drag induces a dynamic lateral reinforcement of the filament leading to growth of wrinkles that coarsen over time. We discover a new dynamical regime characterized by a time scale with a nontrivial dependence on the loading rate, where the growth of the instability is superexponential and the wave number is an increasing function of the loading rate. We find that this time scale can be interpreted as the characteristic time over which the filament transitions from the extensible to the inextensible regime. In contrast with our analysis with moving boundary conditions, Biot's analysis in the limit of infinitely fast loading leads to rate independent exponential growth and wavelength.
Effect of slip boundary conditions on interfacial stability of two-layer viscous fluids under shear
Patlazhan, Stanislav
2015-01-01
The traditional approach in the study of hydrodynamic stability of stratified fluids includes the stick boundary conditions between layers. However, this rule may be violated in polymer systems and as a consequence various instabilities may arise. The main objective of this paper is to analyze theoretically the influence of slip boundary conditions on the hydrodynamic stability of the interface between two immiscible viscous layers subjected to simple shear flow. It is found that the growth rate of long-wave disturbances is fairly sensitive to the slip at the interface between layers as well as at the external boundary. These phenomena are shown to give different contributions to the stability of shear flow depending on viscosity, thickness, and density ratios of the layers. Particularly, the interfacial slip can increase the perturbation growth rate and lead to unstable flow. An important consequence of this effect is the violation of stability for sheared layers with equal viscosities and densities in a bro...
Existence of strong solutions in critical spaces for barotropic viscous fluids in larger spaces
HASPOT; Boris
2012-01-01
This paper is dedicated to the study of viscous compressible barotropic fluids in dimension N 2.We address the question of well-posedness for large data having critical Besov regularity.Our result improves the analysis of Danchin and of the author inasmuch as we may take initial density in B N p p,1 with 1 p +∞.Our result relies on a new a priori estimate for the velocity,where we introduce a new unknown called effective velocity to weaken one of the couplings between the density and the velocity.In particular,our result is the first in which we obtain uniqueness without imposing hypothesis on the gradient of the density.
Wang, K. W.; Kim, Y. S.; Shea, D. B.
1994-10-01
It has been recognized that the semi-active control concept is promising for vibration suppression of flexible structures and that the electrorheological (ER) fluid-based device is a good candidate for such applications. In this research, a new control law is developed to maximize the damping effect of ER dampers for structural vibration suppression under actuator constraints and viscous-frictional-combined damping. Numerical simulations and experimental work are carried out to evaluate the semi-active concept. It is illustrated that the performance of the semi-active system is superior to those of the critical damping and maximum damping variety. It is also concluded that the actuator frictional effect is significant, and should be considered in the controller design process.
Unsteady interaction of a viscous fluid with an elastic shell modeled by full von Karman equations
Chueshov, Igor; Ryzhkova, Iryna
We study well-posedness and asymptotic dynamics of a coupled system consisting of linearized 3D Navier-Stokes equations in a bounded domain and a classical (nonlinear) full von Karman shallow shell equation that accounts for both transversal and lateral displacements on a flexible part of the boundary. We also take into account rotational inertia of filaments of the shell. Our main result shows that the problem generates a semiflow in an appropriate phase space. The regularity provided by viscous dissipation in the fluid allows us to consider simultaneously both cases of presence inertia in the lateral displacements and its absence. Our second result states the existence of a compact global attractor for this semiflow in the case of presence of (rotational) damping in the transversal component and a particular structure of external forces.
Unsteady interaction of a viscous fluid with an elastic shell modeled by full von Karman equations
Chueshov, Igor
2011-01-01
We study well-posedness and asymptotic dynamics of a coupled system consisting of linearized 3D Navier--Stokes equations in a bounded domain and a classical (nonlinear) full von Karman shallow shell equations that accounts for both transversal and lateral displacements on a flexible part of the boundary. We also take into account rotational inertia of filaments of the shell. Out main result shows that the problem generates a semiflow in an appropriate phase space. The regularity provided by viscous dissipation in the fluid allows us to consider simultaneously both cases of presence inertia in the lateral displacements and its absence. Our second result states the existence of a compact global attractor for this semiflow in the case of presence of (rotational) damping in the transversal component and a particular structure of external forces.
Flow of an Elastico-viscous Fluid Past an Infinite Platewith Variable Suction
Ch. V. Ramana Murthy
2007-07-01
Full Text Available Unsteady state flow of an incompressible elastico-viscous fluid of second-order type pastan infinite vertical porous flat plate by considering uniform and variable suction normal to theplate has been studied and an exact solution is obtained for the velocity field. In the presentsituation, only two prescribed boundary conditions are available while the governing equationof motion is of third-order due to the presence of elastico-viscosity parameter. The conceptfollowing Walters has been used for a much more meaningful solution. The results for thevelocity distribution and skin friction have been analysed and discussed for different values ofthe parameters encountered in the governing equation of motion and skin friction on the plate.It is found that the effect of elastico-viscosity and suction has significant contribution on thebackflow at the wall
Laser-assisted inkjet printing of highly viscous fluids with sub-nozzle resolution
Delrot, Paul; Modestino, Miguel A.; Psaltis, Demetri; Moser, Christophe
2016-04-01
Drop-on-demand inkjet printing is mostly based on thermal and piezo-actuation, allowing for densely packed nozzles in inkjet printers. However, the droplet diameter is typically defined by the nozzle diameter, thus limiting the range of viscosity that can be jetted to 10-100 mPa.s to prevent nozzle clogging. Here, we present a laser-assisted system for the delivery of micro-droplets of highly viscous fluids with sub-nozzle resolution. Highly focused supersonic jets have recently been demonstrated by focusing a nanosecond pulse of light into a micro-capillary filled with dyed water, hence generating a cavitation bubble. The consequent pressure wave impact on the concave free surface of the liquid generated flow-focused micro-jets. We implemented this technique for the production of low velocity micro-droplets with photopolymer inks of increasing viscosity (0.6-148 mPa.s) into a 300 μm-wide glass capillary using low laser energies (3-70 μJ). Time-resolved imaging provided details on the droplet generation. Single micro-droplets of diameter 70-80 μm were produced on demand with inks of viscosity 0.6-9 mPa.s with good controllability and reproducibility, thus enabling to print two-dimensional patterns with a precision of 13 μm. Furthermore, the primary droplet produced with the most viscous fluid was about 66% of the capillary diameter. Preliminary results also showed that the process is linearly scalable to narrower capillaries (100-200 μm), thus paving the way for a compact laser-assisted inkjet printer. A possible application of the device would be additive manufacturing as the printed patterns could be consequently cured.
I. J. Uwanta
2014-01-01
Full Text Available This study investigates the unsteady natural convection and mass transfer flow of viscous reactive, heat generating/absorbing fluid in a vertical channel formed by two infinite parallel porous plates having temperature dependent thermal conductivity. The motion of the fluid is induced due to natural convection caused by the reactive property as well as the heat generating/absorbing nature of the fluid. The solutions for unsteady state temperature, concentration, and velocity fields are obtained using semi-implicit finite difference schemes. Perturbation techniques are used to get steady state expressions of velocity, concentration, temperature, skin friction, Nusselt number, and Sherwood number. The effects of various flow parameters such as suction/injection (γ, heat source/sinks (S, Soret number (Sr, variable thermal conductivity δ, Frank-Kamenetskii parameter λ, Prandtl number (Pr, and nondimensional time t on the dynamics are analyzed. The skin friction, heat transfer coefficients, and Sherwood number are graphically presented for a range of values of the said parameters.
Velocity relaxation of an ellipsoid immersed in a viscous incompressible fluid
Felderhof, B. U.
2013-01-01
The motion of an ellipsoid in a viscous incompressible fluid, caused by a small time-dependent applied force, is studied on the basis of the linearized Navier-Stokes equations in terms of the frequency-dependence of the friction tensor. The asymptotic behavior of the hydrodynamic force at high frequency contains a term linear in frequency, with an added mass coefficient, and a term proportional to the square root of frequency, with a Basset coefficient. The latter is calculated from an expression derived by Batchelor [An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1967)]. A simple approximate three-pole expression is proposed for the frequency-dependent admittance for each principal direction, embodying added mass, particle mass, the steady state friction coefficient, and the Basset coefficient. It is suggested that a remaining unknown coefficient in the expression be determined by experiment, computer simulation, or numerical solution of an integral equation derived by Pozrikidis ["A study of linearized oscillatory flow past particles by the boundary-integral method," J. Fluid Mech. 202, 17 (1989), 10.1017/S0022112089001084].
Quasiadiabatic modes from viscous inhomogeneities
Giovannini, Massimo
2016-01-01
The viscous inhomogeneities of a relativistic plasma determine a further class of entropic modes whose amplitude must be sufficiently small since curvature perturbations are observed to be predominantly adiabatic and Gaussian over large scales. When the viscous coefficients only depend on the energy density of the fluid the corresponding curvature fluctuations are shown to be almost adiabatic. After addressing the problem in a gauge-invariant perturbative expansion, the same analysis is repeated at a non-perturbative level by investigating the nonlinear curvature inhomogeneities induced by the spatial variation of the viscous coefficients. It is demonstrated that the quasiadiabatic modes are suppressed in comparison with a bona fide adiabatic solution. Because of its anomalously large tensor to scalar ratio the quasiadiabatic mode cannot be a substitute for the conventional adiabatic paradigm so that, ultimately, the present findings seems to exclude the possibility of a successful accelerated dynamics solely...
Brittle–viscous deformation of vein quartz under fluid-rich low greenschist facies conditions
H. J. Kjøll
2015-01-01
Full Text Available A coarse grained, statically crystallized quartz vein, embedded in a phyllonitic matrix, was studied by EBSD and optical microscopy to gain insights into the processes of strain localization in quartz deformed under low-grade conditions, broadly coincident with the frictional–viscous transition. The vein is from a high strain zone at the front of the Porsa Imbricate Stack in the Paleoproterozoic Repparfjord Tectonic Window in northern Norway. The vein was deformed under lower greenschist facies conditions during deformation along a large out-of-sequence phyllonitic thrust of Caledonian age. The host phyllonite formed at the expense of metabasalt wherein feldspar broke down to form interconnected layers of fine, synkinematic phyllosilicates. In the mechanically weak framework of the phyllonite, the studied quartz vein acted as a relatively rigid body deforming mainly by coaxial strain. Viscous deformation was initially accommodated by basal ⟨a⟩ slip of quartz during the development of a mesoscopic pervasive extensional crenulation cleavage. Under the prevailing boundary conditions, however, dislocation glide-accommodated deformation of quartz resulted inefficient and led to dislocation tangling and strain hardening of the vein. In response to hardening, to the progressive increase of fluid pressure and the increasing competence contrast between the vein and the weak foliated host phyllonite, quartz crystals began to deform frictionally along specific, optimally oriented lattice planes, creating microgouges along microfractures. These were, however, rapidly sealed by nucleation of new grains as transiently over pressured fluids penetrated the deforming system. The new nucleated grains grew initially by solution-precipitation and later by grain boundary migration. Due to the random initial orientation of the vein crystals, strain was accommodated differently in the individual crystals, leading to the development of remarkably different
Local thermodynamical equilibrium and the β frame for a quantum relativistic fluid
Becattini, Francesco; Grossi, Eduardo [Universita di Firenze, Florence (Italy); INFN, Florence (Italy); Bucciantini, Leda [Dipartimento di Fisica, Universita di Pisa (Italy); INFN, Pisa (Italy); Tinti, Leonardo [Jan Kochanowski University, Kielce (Poland)
2015-05-15
We discuss the concept of local thermodynamical equilibrium in relativistic hydrodynamics in flat spacetime in a quantum statistical framework without an underlying kinetic description, suitable for strongly interacting fluids. We show that the appropriate definition of local equilibrium naturally leads to the introduction of a relativistic hydrodynamical frame in which the four-velocity vector is the one of a relativistic thermometer at equilibrium with the fluid, parallel to the inverse temperature four-vector β, which then becomes a primary quantity. We show that this frame is the most appropriate for the expansion of the stress-energy tensor from local thermodynamical equilibrium and that therein the local laws of thermodynamics take on their simplest form. We discuss the difference between the β frame and Landau frame and present an instance where they differ. (orig.)
Local thermodynamical equilibrium and the β frame for a quantum relativistic fluid
Becattini, Francesco, E-mail: becattini@fi.infn.it [Università di Firenze and INFN Sezione di Firenze, Florence (Italy); Bucciantini, Leda, E-mail: leda.bucciantini@df.unipi.it [Dipartimento di Fisica dell’Università di Pisa and INFN, 56127, Pisa (Italy); Grossi, Eduardo, E-mail: grossi@fi.infn.it [Università di Firenze and INFN Sezione di Firenze, Florence (Italy); Tinti, Leonardo, E-mail: dr.leonardo.tinti@gmail.com [Jan Kochanowski University, Kielce (Poland)
2015-05-05
We discuss the concept of local thermodynamical equilibrium in relativistic hydrodynamics in flat spacetime in a quantum statistical framework without an underlying kinetic description, suitable for strongly interacting fluids. We show that the appropriate definition of local equilibrium naturally leads to the introduction of a relativistic hydrodynamical frame in which the four-velocity vector is the one of a relativistic thermometer at equilibrium with the fluid, parallel to the inverse temperature four-vector β, which then becomes a primary quantity. We show that this frame is the most appropriate for the expansion of the stress-energy tensor from local thermodynamical equilibrium and that therein the local laws of thermodynamics take on their simplest form. We discuss the difference between the β frame and Landau frame and present an instance where they differ.
On the relative importance of second-order terms in relativistic dissipative fluid dynamics
Molnár, E; Denicol, G S; Rischke, D H
2013-01-01
In Denicol et al., Phys. Rev. D 85, 114047 (2012), the equations of motion of relativistic dissipative fluid dynamics were derived from the relativistic Boltzmann equation. These equations contain a multitude of terms of second order in Knudsen number, in inverse Reynolds number, or their product. Terms of second order in Knudsen number give rise to non-hyperbolic (and thus acausal) behavior and must be neglected in (numerical) solutions of relativistic dissipative fluid dynamics. The coefficients of the terms which are of the order of the product of Knudsen and inverse Reynolds numbers have been explicitly computed in the above reference, in the limit of a massless Boltzmann gas. Terms of second order in inverse Reynolds number arise from the collision term in the Boltzmann equation, upon expansion to second order in deviations from the single-particle distribution function in local thermodynamical equilibrium. In this work, we compute these second-order terms for a massless Boltzmann gas with constant scatt...
M. H.S. Fard
2007-01-01
Full Text Available In this study the centrifugal pump performances with different blade outlet angles are tested when handling water and viscous oils as Newtonian fluids. Also, this study shows a numerical simulation of the three-dimensional fluid flows inside the centrifugal pump with different blade outlet angles. For these numerical simulations the SIMPLEC algorithm is used for solving governing equations of incompressible viscous/turbulent flows through the pump at different operating conditions. The k-ε turbulence model is adopted to describe the turbulent flow process. These simulations have been made with a steady calculation using the multiple reference frames (MRF technique to take into account the impeller- volute interaction. Numerical results are compared with the experimental characteristic curve for each viscous fluid. The results show that when the outlet angle increases, the centrifugal pump performance handling viscous fluids improves. This improvement is due to decrease of wake at the exit of impeller. Also the results show that the well-known jet/wake flow model is not found in the impeller simulations.
A Dynamical Approach to the Exterior Geometry of a Perfect Fluid as a Relativistic Star
Fathi, Mohsen
2011-01-01
The aim of this article is to compare some of the solution classes, which were presented for a perfect charged fluid in Ref. [8], through studying the motion of a test charged particle on a relativistic charged star. We will show that how the interior solutions of such star, can affect its exterior geometry, by illustrating the corresponding effective potentials.
Open/closed string duality and relativistic fluids
Niarchos, Vasilis
2016-07-01
We propose an open/closed string duality in general backgrounds extending previous ideas about open string completeness by Ashoke Sen. Our proposal sets up a general version of holography that works in gravity as a tomographic principle. We argue, in particular, that previous expectations of a supergravity/Dirac-Born-Infeld (DBI) correspondence are naturally embedded in this conjecture and can be tested in a well-defined manner. As an example, we consider the correspondence between open string field theories on extremal D-brane setups in flat space in the large-N , large 't Hooft limit, and asymptotically flat solutions in ten-dimensional type II supergravity. We focus on a convenient long-wavelength regime, where specific effects of higher-spin open string modes can be traced explicitly in the dual supergravity computation. For instance, in this regime we show how the full Abelian DBI action arises from supergravity as a straightforward reformulation of relativistic hydrodynamics. In the example of a (2 +1 )-dimensional open string theory this reformulation involves an Abelian Hodge duality. We also point out how different deformations of the DBI action, related to higher-derivative corrections and non-Abelian effects, can arise in this context as deformations in corresponding relativistic hydrodynamics.
Completeness of Inertial Modes of an Incompressible Non-Viscous Fluid in a Corotating Ellipsoid
Backus, George
2016-01-01
Inertial modes are the eigenmodes of contained rotating fluids restored by the Coriolis force. They satisfy Poincar\\'e equation that has the peculiarity of being hyperbolic with boundary conditions. Inertial modes are therefore solutions of an ill-posed boundary-value problem. Using the Hilbert space $\\underline{\\bf\\Lambda}$ of physically admissible velocity fields ${\\bf v}$ of infinitesimal disturbance in a non-viscous constant-density fluid filling and rotating with a region $E$ and its rigid boundary, we prove that $\\underline{\\bf\\Lambda}$ has a complete orthonormal basis of polynomial normal modes when $E$ is an ellipsoid. When the ellipsoid is rotating about a symmetry axis, the eigenfrequencies are dense, and an explicit polynomial basis for $\\underline{\\bf\\Lambda}$ is obtained by combining the classical Poincar\\'e modes and some geostrophic Jacobi modes. For arbitrary containers, even if the normal modes are not complete, there is a bounded, self-adjoint linear operator $L$ on $\\underline{\\bf\\Lambda}$ ...
Self-propulsion of a counter-rotating cylinder pair in a viscous fluid
van Rees, Wim M.; Novati, Guido; Koumoutsakos, Petros
2015-06-01
We study a self-propelling pair of steadily counter-rotating cylinders in simulations of a two-dimensional viscous fluid. We find two strikingly, opposite directions for the motion of the pair that is characterized by its width and rotational Reynolds number. At low Reynolds numbers and large widths, the cylinder pair moves similarly to an inviscid point vortex pair, while at higher Reynolds numbers and smaller widths, the pair moves in the opposite direction through a jet-like propulsion mechanism. Increasing further the Reynolds number, or decreasing the width, gives rise to non-polarised motion governed by the shedding direction and frequency of the boundary-layer vorticity. We discuss the fundamental physical mechanisms for these two types of motion and the transitions in the corresponding phase diagram. We discuss the fluid dynamics of each regime based on streamline plots, tracer particles, and the vorticity field. The counter rotating cylinder pair serves as a prototype for self-propelled bodies and suggests possible engineering devices composed of simple components and tunable by the rotation and width of the cylinder pair.
Analytical solution for the lubrication force between two spheres in a bi-viscous fluid
Vázquez-Quesada, A.; Ellero, M.
2016-07-01
An analytical solution for the calculation of the normal lubrication force acting between two moving spheres embedded in a shear-thinning fluid represented by a bi-viscous model is provided. The resulting force between the suspended spheres exhibits a consistent transition between the Newtonian constant-viscosity limits and it reduces to the well-known standard Newtonian lubrication theory for viscosity-ratio approaching one. Effects of several physical parameters of the theory are analyzed under relevant physical conditions, i.e., for a prototypical case of two non-colloidal spheres immersed in a non-Newtonian fluid with rheology parameterized by a bi-viscosity model. Topological results for high/low-viscosity regions in the gap between spheres are also analyzed in detail showing a rich phenomenology. The presented model enables the extension of lubrication dynamics for suspensions interacting with non-Newtonian matrices and provides a clean theoretical framework for new numerical computations of flow of dense complex particulate systems.
On the pressure and stress singularities induced by steady flows of incompressible viscous fluids
G.B.Sinclair; X.Chi; T.I-P.Shih
2009-01-01
Design for structural integrity requires an appreciation of where stress singularities can occur in structural configurations. While there is a rich literature devoted to the identification of such singular behavior in solid mechanics, to date there has been relatively little explicit identification of stress singularities caused by fluid flows. In this study, stress and pressure singularities induced by steady flows of viscous incompressible fluids are asymptotically identified. This is done by taking advantage of an earlier result that the Navier-Stokes equations are locally governed by Stokes flow in angular corners. Findings for power singularities are confirmed by developing and using an analogy with solid mechanics. This analogy also facilitates the identification of flow-induced log singularities. Both types of singularity are further confirmed for two global configurations by applying convergence-divergence checks to numerical results. Even though these flow-induced stress singularities are analogous to singularities in solid mechanics, they nonetheless render a number of structural configurations singular that were not previously appreciated as such from identifications within solid mechanics alone.
Viscous-Fluid-Spring Damper Retrofit of a Steel Moment Frame Structure
Hussain, Saif; Van Benschoten, Paul; Al Satari, Mohamed; Lin, Silian
2008-07-01
The subject building is a peculiar pre-Northridge steel moment resisting frame building. Upon investigating the existing lateral resisting system, numerous significant deficiencies were identified; inherent lack of redundancy, poor geometry and inadequate stiffness of the lateral resisting system. All of which resulted in an extremely soft 5-story structure with a primary torsional mode of vibration at T1 = 5.46 s. Significant structural modifications were deemed necessary to meet the "life-safety" performance objective as outlined in rehabilitation standards such as ASCE 41. Both increased stiffness and damping were required to adequately retrofit the building. Furthermore, adjacent building separation as well as deformation compatibility issues needed to be addressed and resolved. A three-dimensional computer model of the building was created using ETABS mathematically simulating the building's dynamic characteristics in its current condition. Multiple seismic retrofit systems were investigated such as Buckling Restrained Braced Frames (BRBF's). However, based on the performance effectiveness and constructability of the retrofit schemes studied, the Viscous-Fluid-Spring Damper (VFSD) system was proposed as the "optimum" solution for the building. The VFSD, was chosen because it combines the relatively compact size and minimally invasive constructability with the required properties (an elastomeric spring in parallel with a nonlinear velocity dependent viscous damper). A site-specific response spectrum was developed for the Design Basis Earthquake (DBE, 475 year return period) event, and three pairs of representative earthquake horizontal ground motion time-histories were scaled to match this DBE. The proposed scheme reduced the building maximum inter-story drift ratio from 5.4% to about 1%. Similarly, the maximum roof displacement was reduced by about 70% (23" to 7").
Sohail, Ayesha; Maqbool, K.; Sher Akbar, Noreen; Younas, Muhammad
2017-03-01
This paper investigate the effect of slip boundary condition, thermal radiation, heat source, Dufour number, chemical reaction and viscous dissipation on heat and mass transfer of unsteady free convective MHD flow of a viscous fluid past through a vertical plate embedded in a porous media. Numerical results are obtained for solving the nonlinear governing momentum, energy and concentration equations with slip boundary condition, ramped wall temperature and ramped wall concentration on the surface of the vertical plate. The influence of emerging parameters on velocity, temperature and concentration fields are shown graphically.
Fluid-magnetic helicity in axisymmetric stationary relativistic magnetohydrodynamics
Prasad, G.
2017-10-01
The present work is intended to gain a fruitful insight into the understanding of the formations of magneto-vortex configurations and their role in the physical processes of mutual exchange of energies associated with fluid's motion and the magnetic fields in an axisymmetric stationary hydromagnetic system subject to strong gravitational field (e.g., neutron star/magnetar). It is found that the vorticity flux vector field associated with vorticity 2-form is a linear combination of fluid's vorticity vector and of magnetic vorticity vector. The vorticity flux vector obeys Helmholtz's flux conservation. The energy equation associated with the vorticity flux vector field is deduced. It is shown that the mechanical rotation of vorticity flux surfaces contributes to the formation of vorticity flux vector field. The dynamo action for the generation of toroidal components of vorticity flux vector field is described in the presence of meridional circulations. It is shown that the stretching of twisting magnetic lines due to differential rotation leads to the breakdown of gravitational isorotation in the absence of meridional circulations. An explicit expression consists of rotation of vorticity flux surface, energy and angular momentum per baryon for the fluid-magnetic helicity current vector is obtained. The conservation of fluid-magnetic helicity is demonstrated. It is found that the fluid-magnetic helicity displays the energy spectrum arising due to the interaction between the mechanical rotation of vorticity flux surfaces and the fluid's motion obeying Euler's equations. The dissipation of a linear combination of modified fluid helicity and magnetic twist is shown to occur due to coupled effect of frame dragging and meridional circulation. It is found that the growing twist of magnetic lines causes the dissipation of modified fluid helicity in the absence of meridional circulations.
Relativistic transport theory for simple fluids at first order in the gradients: a stable picture
Sandoval-Villalbazo, A; García-Colin, L S
2008-01-01
In this paper we show how using a relativistic kinetic equation. The ensuing expression for the heat flux can be casted in the form required by Classical Irreversible Thermodynamics. Indeed, it is linearly related to the temperature and number density gradients and not to the acceleration as the so called first order in the gradients theories contend. Since the specific expressions for the transport coefficients are irrelevant for our purposes, the BGK form of the kinetic equation is used. Moreover, from the resulting hydrodynamic equations it is readily seen that no instabilities are present in the transverse hydrodynamic velocity mode of the simple relativistic fluid.
Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri
2014-01-01
Accurate multi-phase flow solvers at low Reynolds number are of particular interest for the simulation of interface instabilities in the co-processing of multilayered material. We present a two-phase flow solver for incompressible viscous fluids which uses the streamfunction as the primary variab...
Georgievskii, D. V.
2007-06-01
physical parameter α can be imposed. These variations imply perturbations of the tensor function itself. The components of such perturbations linear and quadratic in α are determined. In each of the approximations, we write out a closed system of equations consisting of the equations of motion (linear in the variables of the respective approximation) and the incompressibility condition. We analyze tensor-linear functions with arbitrary scalar rheology inmore detail. Materials with such constitutive relations include non-Newtonian viscous fluids and viscoplastic materials. Viscoplastic materials are characterized by the existence of rigidity zones, where the stress intensity is less than the yield strength. We derive equations for the boundaries of the rigidity zones in the perturbed motion, in particular, for the case in which the unperturbed medium is a viscous Newtonian fluid. Throughout the paper, index-free notation is used.
Zhang, Xiongwen; Li, Jun; Xu, Hui; Li, Guojun
2006-11-01
This paper investigates the usage of an interior inlay viscous fluid unit as a new vibration suppression method for flexible structures via numerical simulations. The first and second modes of vibration for a beam have been calculated using the commercial computational fluid dynamic package Fluent6.1, together with the liquid surface distribution and the fluid force. The calculated results show that the inlay fluid unit has suppressive effects on flexible structures. The liquid converges self-adaptively to locations of larger vibrations. The fluid force varies with the beam vibration at a phase difference of more than 180°. Thus the fluid force suppresses the beam vibration at most of the time.
Open/closed string duality and relativistic fluids
Niarchos, Vasilis
2015-01-01
We propose an open/closed string duality in general backgrounds extending previous ideas about open string completeness by Ashoke Sen. Our proposal sets up a general version of holography that works in gravity as a tomographic principle. We argue, in particular, that previous expectations of a supergravity/Dirac-Born-Infeld (DBI) correspondence are naturally embedded in this conjecture and can be tested in a well-defined manner. As an example, we consider the correspondence between open string field theories on extremal D-brane setups in flat space in the large-N, large 't Hooft limit, and asymptotically flat solutions in ten-dimensional type II supergravity. We focus on a convenient long-wavelength regime, where specific effects of higher-spin open string modes can be traced explicitly in the dual supergravity computation. For instance, in this regime we show how the full abelian DBI action arises from supergravity as a straightforward reformulation of relativistic hydrodynamics. In the example of a (2+1)-di...
Seismic energy dissipation study of linear fluid viscous dampers in steel structure design
A. Ras
2016-09-01
Full Text Available Energy dissipation systems in civil engineering structures are sought when it comes to removing unwanted energy such as earthquake and wind. Among these systems, there is combination of structural steel frames with passive energy dissipation provided by Fluid Viscous Dampers (FVD. This device is increasingly used to provide better seismic protection for existing as well as new buildings and bridges. A 3D numerical investigation is done considering the seismic response of a twelve-storey steel building moment frame with diagonal FVD that have linear force versus velocity behaviour. Nonlinear time history, which is being calculated by Fast nonlinear analysis (FNA, of Boumerdes earthquake (Algeria, May 2003 is considered for the analysis and carried out using the SAP2000 software and comparisons between unbraced, braced and damped structure are shown in a tabulated and graphical format. The results of the various systems are studied to compare the structural response with and without this device of the energy dissipation thus obtained. The conclusions showed the formidable potential of the FVD to improve the dissipative capacities of the structure without increasing its rigidity. It is contributing significantly to reduce the quantity of steel necessary for its general stability.
Ice Shelves as Floating Channel Flows of Viscous Power-Law Fluids
Banik, Indranil
2013-01-01
We attempt to better understand the flow of marine ice sheets. Treating ice as a viscous shear-thinning power law fluid, we develop an asymptotic (late-time) theory in two cases - the presence or absence of contact with sidewalls. Most real-world situations fall somewhere between the two extreme cases considered. When sidewalls are absent, we obtain the equilibrium grounding line thickness using a simple computer model and have an analytic approximation. For shelves in contact with sidewalls, we obtain an asymptotic theory, valid for long shelves. Our theory is based on the velocity profile across the channel being a generalised version of Poiseuille flow, which works when lateral shear dominates the force balance. We determine when this is. We conducted experiments using a laboratory model for ice. This was a suspension of xanthan in water, at a concentration of 0.5% by mass. The lab model has $n \\approx 3.8$ (similar to that of ice). The experiments agreed extremely well with our theories for all relevant p...
Seismic Retrofitting of an Existing Steel Railway Bridge by Fluid Viscous Dampers
Gangopadhyay, Avijit; Ghosh, Aparna Dey
2016-06-01
There are over a lakh of bridges in the Indian Railways, many of which have become seismically deficient, either through aging or due to inadequate seismic design considerations. The extensive damage of bridges all over the world in recent earthquakes has propelled significant advancement in earthquake protection and retrofitting of bridges. Amongst various passive control systems that are reliable as well as cost-effective, Fluid Viscous Dampers (FVDs) are proving to be successful in bridge vibration control. Orificed FVDs, commercially available as Taylor Devices, have already been successfully installed in several bridges worldwide. However, there has been no such application or study related to Indian railway bridges. In this paper, an existing thirty years' old railway bridge in Jharkhand, India, has been analyzed in SAP2000v14 considering reduced stiffness and found deficient when subjected to spectrum-compatible accelerograms. Subsequent retrofitting of the bridge superstructure with FVDs has been carried out and the results indicate substantial reductions in the responses of the bridge deck.
Comparing particle-resolved simulation methods for moving particles in a viscous fluid
Wang, Lian-Ping; Gao, Hui; Luo, Li-Shi; Peng, Yan; Yeo, Kyong Min; Maxey, Martin R.
2008-11-01
In recent years, quite a few particle-resolved simulation methods have emerged for treating moving solid particles in a viscous fluid. A common advantageous feature shared by these methods is the use of a simple fixed mesh. The no-slip boundary condition on the surface of a particle is handled locally by a consistent coupling or interaction scheme. Here we examine four such methods: lattice Boltzmann equation (LBE) with interpolated bounce back scheme, LBE with immersed boundary method, a hybrid method (Physalis) developed by Prosperetti and co-workers, and a force-coupling method. Our main objective is to inter-compare these methods in terms of accuracy of the simulated flow field, force / torque, and computational efficiency. Two benchmark cases are used: a particle moving in a 3D Couette flow and a 3D flow induced by a spinning sphere at finite Reynolds number. The results are discussed in terms of flow Reynolds number and geometric parameters. We will also comment on the range of relevant physical parameters accessible in these methods.
Seismic Retrofitting of an Existing Steel Railway Bridge by Fluid Viscous Dampers
Gangopadhyay, Avijit; Ghosh, Aparna Dey
2016-09-01
There are over a lakh of bridges in the Indian Railways, many of which have become seismically deficient, either through aging or due to inadequate seismic design considerations. The extensive damage of bridges all over the world in recent earthquakes has propelled significant advancement in earthquake protection and retrofitting of bridges. Amongst various passive control systems that are reliable as well as cost-effective, Fluid Viscous Dampers (FVDs) are proving to be successful in bridge vibration control. Orificed FVDs, commercially available as Taylor Devices, have already been successfully installed in several bridges worldwide. However, there has been no such application or study related to Indian railway bridges. In this paper, an existing thirty years' old railway bridge in Jharkhand, India, has been analyzed in SAP2000v14 considering reduced stiffness and found deficient when subjected to spectrum-compatible accelerograms. Subsequent retrofitting of the bridge superstructure with FVDs has been carried out and the results indicate substantial reductions in the responses of the bridge deck.
Diffuse interface models of locally inextensible vesicles in a viscous fluid
Aland, Sebastian; Egerer, Sabine; Lowengrub, John; Voigt, Axel
2014-11-01
We present a new diffuse interface model for the dynamics of inextensible vesicles in a viscous fluid with inertial forces. A new feature of this work is the implementation of the local inextensibility condition in the diffuse interface context. Local inextensibility is enforced by using a local Lagrange multiplier, which provides the necessary tension force at the interface. We introduce a new equation for the local Lagrange multiplier whose solution essentially provides a harmonic extension of the multiplier off the interface while maintaining the local inextensibility constraint near the interface. We also develop a local relaxation scheme that dynamically corrects local stretching/compression errors thereby preventing their accumulation. Asymptotic analysis is presented that shows that our new system converges to a relaxed version of the inextensible sharp interface model. This is also verified numerically. To solve the equations, we use an adaptive finite element method with implicit coupling between the Navier-Stokes and the diffuse interface inextensibility equations. Numerical simulations of a single vesicle in a shear flow at different Reynolds numbers demonstrate that errors in enforcing local inextensibility may accumulate and lead to large differences in the dynamics in the tumbling regime and smaller differences in the inclination angle of vesicles in the tank-treading regime. The local relaxation algorithm is shown to prevent the accumulation of stretching and compression errors very effectively. Simulations of two vesicles in an extensional flow show that local inextensibility plays an important role when vesicles are in close proximity by inhibiting fluid drainage in the near contact region.
Hubble Parameter in Bulk Viscous Cosmology
Tawfik, A; Wahba, M
2009-01-01
We discuss influences of bulk viscosity on the Early Universe, which is modeled by Friedmann-Robertson-Walker metric and Einstein field equations. We assume that the matter filling the isotropic and homogeneous background is relativistic viscous characterized by ultra-relativistic equations of state deduced from recent lattice QCD simulations. We obtain a set of complicated differential equations, for which we suggest approximate solutions for Hubble parameter $H$. We find that finite viscosity in Eckart and Israel-Stewart fluids would significantly modify our picture about the Early Universe.
Norfifah Bachok
Full Text Available The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface.
Features of the Viscous Fluids Effluent Through Non-round Shape Edge Orifices
V. N. Pil'gunov
2015-01-01
Full Text Available The knowledge of features of viscous fluid effluent through the sharp-edged orifices and nozzles is necessary when calculating the heat engine fuel feed systems, device designs of chemical production, as well as in designing the components of hydraulic actuators and hydraulic control systems.Process of fluid effluent through the round shape orifices is rather well studied: in technical publications experimental values of fluid effluent coefficients and their dependence on Reynolds's number are widely presented. The process of fluid effluent through the sharp-edged nonround shape orifices is a little studied, and there is no quantitative assessment of the orifice shape influence on the fluid effluent coefficients. This work to some extent fills shortage of information in issue under consideration.As an object of study, conditionally sharp-edged equilateral, triangular, square, rectangular, and crosswise orifices were chosen. The inversion process effects on the shape of stream outflowing through the non-round orifice: this process is caused by interaction of surface tension force, aiming to minimize the external surface area of a stream, and force of inertia aimed at momentum conservation of the fluid particle mass being on the trajectory of an elementary stream. Unevenness of field of radial stream rates leaking towards the orifice has essential impact on the shape of the inverted stream.To raise a flow rate capacity of the non-round shape orifices, was used an external tubular non-expanding nozzle representing a short pipe section the length of which is about three - four diameters of the orifice. Control of the absolute pressure value in the camera of open external tubular non-expanding nozzle with a triangular intake orifice allows us to change its flow rate capacity in the certain, rather narrow range. Pressure in the camera of tubular non-expanding nozzle was changed through its regimented opening to atmosphere using an adjustable precision
Azma, Sahra; Rezazadeh, Ghader; Shabani, Rasoul; Alizadeh-Haghighi, Elnaz
2016-06-01
Viscous damping is a dominant source of energy dissipation in laterally oscillating micro-structures. In micro-resonators in which the characteristic dimensions are comparable to the dimensions of the fluid molecules, the assumption of the continuum fluid theory is no longer justified and the use of micro-polar fluid theory is indispensable. In this paper a mathematical model was presented in order to predict the viscous fluid damping in a laterally oscillating finger of a micro-resonator considering micro-polar fluid theory. The coupled governing partial differential equations of motion for the vibration of the finger and the micro-polar fluid field have been derived. Considering spin and no-spin boundary conditions, the related shape functions for the fluid field were presented. The obtained governing differential equations with time varying boundary conditions have been transformed to an enhanced form with homogenous boundary conditions and have been discretized using a Galerkin-based reduced order model. The effects of physical properties of the micro-polar fluid and geometrical parameters of the oscillating structure on the damping ratio of the system have been investigated.
Sahra Azma; Ghader Rezazadeh; Rasoul Shabani; Elnaz Alizadeh-Haghighi
2016-01-01
Viscous damping is a dominant source of energy dissipation in laterally oscillating micro-structures. In micro-resonators in which the characteristic dimensions are compa-rable to the dimensions of the fluid molecules, the assumption of the continuum fluid theory is no longer justified and the use of micro-polar fluid theory is indispensable. In this paper a mathematical model was presented in order to predict the viscous fluid damping in a laterally oscillating finger of a micro-resonator considering micro-polar fluid theory. The coupled governing partial differential equations of motion for the vibration of the finger and the micro-polar fluid field have been derived. Considering spin and no-spin boundary conditions, the related shape functions for the fluid field were presented. The obtained governing differential equations with time varying boundary conditions have been trans-formed to an enhanced form with homogenous boundary conditions and have been discretized using a Galerkin-based reduced order model. The effects of physical properties of the micro-polar fluid and geometrical parameters of the oscillat-ing structure on the damping ratio of the system have been investigated.
Composite self-similar solutions for relativistic shocks: The transition to cold fluid temperatures
Pan, Margaret [School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540 (United States); Sari, Re' em [California Institute of Technology, MS 130-33, Pasadena, California 91125 (United States) and Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)
2009-11-15
The flow resulting from a strong ultrarelativistic shock moving through a stellar envelope with a polytropelike density profile has been studied analytically and numerically at early times while the fluid temperature is relativistic--that is, just before and after the shock breaks out of the star. Such a flow should expand and accelerate as its internal energy is converted to bulk kinetic energy; at late enough times, the assumption of relativistic temperatures becomes invalid. Here we present a new self-similar solution for the postbreakout flow when the accelerating fluid has bulk kinetic Lorentz factors much larger than unity but is cooling through p/n of order unity to subrelativistic temperatures. This solution gives a relation between a fluid element's terminal Lorentz factor and that element's Lorentz factor just after it is shocked. Our numerical integrations agree well with the solution. While our solution assumes a planar flow, we show that corrections due to spherical geometry are important only for extremely fast ejecta originating in a region very close to the stellar surface. This region grows if the shock becomes relativistic deeper in the star.
Amano, Takanobu
2016-11-01
A new multidimensional simulation code for relativistic two-fluid electrodynamics (RTFED) is described. The basic equations consist of the full set of Maxwell’s equations coupled with relativistic hydrodynamic equations for separate two charged fluids, representing the dynamics of either an electron-positron or an electron-proton plasma. It can be recognized as an extension of conventional relativistic magnetohydrodynamics (RMHD). Finite resistivity may be introduced as a friction between the two species, which reduces to resistive RMHD in the long wavelength limit without suffering from a singularity at infinite conductivity. A numerical scheme based on HLL (Harten-Lax-Van Leer) Riemann solver is proposed that exactly preserves the two divergence constraints for Maxwell’s equations simultaneously. Several benchmark problems demonstrate that it is capable of describing RMHD shocks/discontinuities at long wavelength limit, as well as dispersive characteristics due to the two-fluid effect appearing at small scales. This shows that the RTFED model is a promising tool for high energy astrophysics application.
A Note on Differencing the Viscous Dissipation Terms for a Newtonian Fluid
Cloutman, L
2001-05-30
We compare two finite difference approximations for the viscous dissipation terms in the energy equation. We focus on the strain produced by the every-other-zone (e.g., hour-glass and herringbone) modes in the velocity field. Care must be exercised to produce a viscous dissipation rate consistent with the viscous forces. The examples given are for a rectangular staggered grid, but similar considerations apply to other types of grids. Also, these considerations apply to certain algebraic eddy viscosity models and to the shear creation terms in turbulence transport models.
Bianchi Type Ⅲ Bulk Viscous Barotropic Fluid Cosmological Models with Variable G and A
Raj Ba-li; Seema Tinker
2009-01-01
Bianchi type-Ⅲ bulk viscous barotropic fluid cosmological model with variables G and A is investigated. To obtainthe realistic model, we assume the conditions between the metric potentials A, B, C as A/A = B/B = m1/tnand C/C = m2/tn, P = p - 3ηH, η= ηops, p =γp, 0 γ 1, where p is isotropic pressure, η the coefficient of bulk viscosity, ηo and S the constants, H the Hubble constant, m1= 2m2 where m1 0, m2 0. The solutions obtained lead to inflationary phase and the results obtained match with the observations. The case n = 1 for S = 1 is also discussed, relating the results with the observations.PACS: 98. 80. Hω, 04.50. +h, 98.80. CqSpatially homogeneous and anisotropic cosmologi-cal models play a significant role in description of the large scale behaviour of the universe. The choice of anisotropic model in the Einstein system of field equa-tions permits us to obtain cosmological model more general than the Robertson-Walker model. Tikekar and Patel[1] have investigated some exact solutions of massive string for Bianchi type-Ⅲ spacetime in the presence and absence of magnetic field. They have also discussed the behaviour of the model in the ab-sence of magnetic field. Bali and Dave[2] investigated the Bianchi type-Ⅲ string cosmological model with bulk viscosity. Recently Bali and Pradhan[3] investi-gated the Bianchi type-Ⅲ string cosmological models with time-dependent bulk viscosity.
Viscosity spectral function of a scale invariant non-relativistic fluid from holography
Schaefer, Thomas
2014-01-01
We study the viscosity spectral function of a holographic 2+1 dimensional fluid with Schroedinger symmetry. The model is based on a twisted compactification of $Ads_5\\times S_5$. We numerically compute the spectral function of the stress tensor correlator for all frequencies, and analytically study the limits of high and low frequency. We compute the shear viscosity, the viscous relaxation time, and the quasi-normal mode spectrum in the shear channel. We find a number of unexpected results: The high frequency behavior is governed by a fractional 1/3 power law, the viscous relaxation time is negative, and the quasi-normal mode spectrum in the shear channel is not doubled.
Chen, Yong; Huang, Yiyong; Chen, Xiaoqian
2013-02-01
Ultrasonic flow meter with non-invasive no-moving-parts construction has good prospective application for space on-orbit fluid gauging. In traditional pulse transit time flow meter, inconsistency of ultrasonic transducers leads to measurement error and plane wave theory, bases of transit time flow meter, is valuable only for low-frequency wave propagation in inviscid fluid and will lose feasibility when fluid viscosity is considered. In this paper, based on the hydrodynamics of viscous fluid, wave propagation with uniform flow profile is mathematically formulated and a novel solution for viscous fluid using potential theory is firstly presented. Then a novel design methodology of continuous ultrasonic flow meter is proposed, where high measurement rangeability and accuracy are guaranteed individually by solving the integral ambiguity using multi-tone wide laning strategy and the fractional phase shift using phase lock loop tracking method. A comparison with transit time ultrasonic flow meter shows the advantage of proposed methodology. In the end, parametric analysis of viscosity on wave propagation and ultrasonic flow meter is compressively investigated.
Local Existence of Solutions of Self Gravitating Relativistic Perfect Fluids
Brauer, Uwe; Karp, Lavi
2014-01-01
This paper deals with the evolution of the Einstein gravitational fields which are coupled to a perfect fluid. We consider the Einstein-Euler system in asymptotically flat spacestimes and therefore use the condition that the energy density might vanish or tend to zero at infinity, and that the pressure is a fractional power of the energy density. In this setting we prove local in time existence, uniqueness and well-posedness of classical solutions. The zero order term of our system contains an expression which might not be a C ∞ function and therefore causes an additional technical difficulty. In order to achieve our goals we use a certain type of weighted Sobolev space of fractional order. In Brauer and Karp (J Diff Eqs 251:1428-1446, 2011) we constructed an initial data set for these of systems in the same type of weighted Sobolev spaces. We obtain the same lower bound for the regularity as Hughes et al. (Arch Ratl Mech Anal 63(3):273-294, 1977) got for the vacuum Einstein equations. However, due to the presence of an equation of state with fractional power, the regularity is bounded from above.
Local Existence of Solutions of Self Gravitating Relativistic Perfect Fluids
Brauer, Uwe
2011-01-01
This paper deals with the evolution of the Einstein gravitational fields which are coupled to a perfect fluid. We consider the Einstein--Euler system in asymptotically flat spacestimes and therefore use the condition that the energy density might vanish or tend to zero at infinity, and that the pressure is a fractional power of the energy density. In this setting we prove a local in time existence, uniqueness and well-posedness of classical solutions. The zero order term of our system contains an expression which might not be a $C^\\infty$ function and therefore causes an additional technical difficulty. In order to achieve our goals we use a certain type of weighted Sobolev space of fractional order. Previously the authors constructed an initial data set for these of systems in the same type of weighted Sobolev spaces. We obtain the same lower bound for the regularity as the one of the classical result of Hughes, Kato and Marsden for the vacuum Einstein equations. However, due to the presence of an equation o...
Mode-by-mode fluid dynamics for relativistic heavy ion collisions
Floerchinger, Stefan
2014-01-01
We propose to study the fluid dynamic propagation of fluctuations in relativistic heavy ion collisions differentially with respect to their azimuthal, radial and longitudinal wavelength. To this end, we introduce a background-fluctuation splitting and a Bessel-Fourier decomposition of the fluctuating modes. We demonstrate how the fluid dynamic evolution of realistic events can be build up from the propagation of individual modes. We describe the main elements of this mode-by-mode fluid dynamics, and we discuss its use in the fluid dynamic analysis of heavy ion collisions. As a first illustration, we quantify to what extent only fluctuations of sufficiently large radial wave length contribute to harmonic flow coefficients. We find that fluctuations of short wave length are suppressed not only due to larger dissipative effects, but also due to a geometrical averaging over the freeze-out hyper surface. In this way, our study further substantiates the picture that harmonic flow coefficients give access to a coars...
Entropy production for a relativistic simple fluid in a weak electromagnetic field
García-Perciante, A. L.; Sandoval-Villalbazo, A.; Brun-Battistini, D.
2016-11-01
Thermal dissipation in plasmas includes a variety of effects, most of them arising from the fact that these gases are usually composed of at least two species. In the case of a mild temperature single component charged fluid kinetic theory indicates that the temperature gradient is the only source of vector-type dissipation. However, if the temperature increases to a point in which the molecule's velocities approach the speed of light, electrothermal dissipation is possible even for the single component charged gas. The modification to the structure of the entropy production introduced by this effect is established in order to address the second law of thermodynamics for such a system. The entropy balance equation is obtained from the relativistic Boltzmann equation and the vector contribution to the entropy production is calculated in terms of the thermodynamic forces and the electromagnetic field using Chapman-Enskog's expansion. It is shown that the structure is consistent with the constitutive equation previously reported, in which a thermoelectric effect was found for a single component relativistic fluid. This effect does not have a non-relativistic counterpart and presents no ambiguity regarding the frame chosen as the comoving frame, which is an issue in the mixture case.
Shogin, Dmitry
2015-01-01
We test the physical relevance of the full and truncated versions of the Israel-Stewart theory of irreversible thermodynamics in a cosmological setting. Using a dynamical systems method, we determine the asymptotic future of plane symmetric Bianchi type I spacetimes filled with a viscous {\\gamma}-fluid, keeping track of the magnitude of relative dissipative fluxes, which determines the applicability of the Israel-Stewart theory. We consider the situations when the dissipative mechanisms of shear and bulk viscosity are involved separately and simultaneously. Also, we apply two different temperature models in the full version of the theory in order to compare the results. We demonstrate that the only case when the fluid asymptotically approaches local equilibrium, and the underlying assumptions of the IS theory are therefore not violated, is that of a dissipative fluid with vanishing bulk viscosity. The truncated Israel-Stewart equations for shear viscosity are found to produce solutions which manifest patholog...
Seddeek, M A
2006-01-01
Mixed convection flow, heat, and mass transfer about an isothermal vertical flat plate embedded in a fluid-saturated porous medium and the effects of viscous dissipation and thermophoresis in both aiding and opposing flows are analyzed. The similarity solution is used to transform the problem under consideration into a boundary value problem of coupled ordinary differential equations, which are solved numerically by using the shooting method. Numerical computations are carried out for the non-dimensional physical parameter. The results are analyzed for the effect of different physical parameters such as thermophoretic, mixed convection, inertia parameter, buoyancy ratio, and Schmid number on the flow, heat, and mass transfer characteristics. Two cases are considered, one corresponding to the presence of viscous dissipation and the other to the absence of it.
Numerical Construction of Magnetosphere with Relativistic Two-fluid Plasma Flows
Kojima, Yasufumi
2009-01-01
We present a numerical model in which a cold pair plasma is ejected with relativistic speed through a polar cap region and flows almost radially outside the light cylinder. Stationary axisymmetric structures of electromagnetic fields and plasma flows are self-consistently calculated. In our model, motions of positively and negatively charged particles are assumed to be determined by electromagnetic forces and inertial terms, without pair creation and annihilation or radiation loss. The global electromagnetic fields are calculated by the Maxwell's equations for the plasma density and velocity, without using ideal MHD condition. Numerical result demonstrates the acceleration and deceleration of plasma due to parallel component of the electric fields. Numerical model is successfully constructed for weak magnetic fields or highly relativistic fluid velocity, i.e, kinetic energy dominated outflow. It is found that appropriate choices of boundary conditions and plasma injection model at the polar cap should be expl...
A Shock-Patching Code for Ultra-Relativistic Fluid Flows
Wen, L; Laguna, P
1996-01-01
We have developed a one-dimensional code to solve ultra-relativistic hydrodynamic problems, using the Glimm method for an accurate treatment of shocks and contact discontinuities. The implementation of the Glimm method is based on an exact Riemann solver and van der Corput sampling sequence. In order to improve computational efficiency, the Glimm method is replaced by a finite differencing scheme in those regions where the fluid flow is sufficiently smooth. The accuracy and convergence of this hybrid method is investigated in tests involving planar, cylindrically and spherically symmetric flows that exhibit strong shocks and Lorentz factors of up to $\\sim 2000$. This hybrid code has proven to be successful in simulating the interaction between a thin, ultra-relativistic, spherical shell and a low density stationary medium, a situation likely to appear in Gamma-Ray Bursts, supernovae explosions, pulsar winds and AGNs.
Domínguez-García, P; Jeney, Sylvia
2016-01-01
We provide a detailed study of the interplay between the different interactions which appear in the Brownian motion of a micronsized sphere immersed in a viscoelastic fluid measured with optical trapping interferometry. To explore a wide range of viscous, elastic and optical forces, we analyze two different viscoelastic solutions at various concentrations, which provide a dynamic polymeric structure surrounding the Brownian sphere. Our experiments show that, depending of the fluid, optical forces, even if small, slightly modify the complex modulus at low frequencies. Based on our findings, we propose an alternative methodology to calibrate this kind of experimental set-up when non-Newtonian fluids are used. Understanding the influence of the optical potential is essential for a correct interpretation of the mechanical properties obtained by optically-trapped probe-based studies of biomaterials and living matter.
Two-Phase Flow in Wire Coating with Heat Transfer Analysis of an Elastic-Viscous Fluid
Zeeshan Khan
2016-01-01
Full Text Available This work considers two-phase flow of an elastic-viscous fluid for double-layer coating of wire. The wet-on-wet (WOW coating process is used in this study. The analytical solution of the theoretical model is obtained by Optimal Homotopy Asymptotic Method (OHAM. The expression for the velocity field and temperature distribution for both layers is obtained. The convergence of the obtained series solution is established. The analytical results are verified by Adomian Decomposition Method (ADM. The obtained velocity field is compared with the existing exact solution of the same flow problem of second-grade fluid and with analytical solution of a third-grade fluid. Also, emerging parameters on the solutions are discussed and appropriate conclusions are drawn.
Domínguez-García, P.; Forró, László; Jeney, Sylvia
2016-10-01
We provide a detailed study of the interplay between the different interactions which appear in the Brownian motion of a micronsized sphere immersed in a viscoelastic fluid measured with optical trapping interferometry. To explore a wide range of viscous, elastic, and optical forces, we analyze two different viscoelastic solutions at various concentrations, which provide a dynamic polymeric structure surrounding the Brownian sphere. Our experiments show that, depending on the fluid, optical forces, even if small, slightly modify the complex modulus at low frequencies. Based on our findings, we propose an alternative methodology to calibrate this kind of experimental set-up when non-Newtonian fluids are used. Understanding the influence of the optical potential is essential for a correct interpretation of the mechanical properties obtained by optically-trapped probe-based studies of biomaterials and living matter.
J.P Kumar
2012-01-01
Full Text Available The paper presents an analytical solution for the dispersion of a solute of two immiscible viscous fluids in the presence of an irreversible first-order chemical reaction. The effects of both homogeneous and heterogeneous reactions on the dispersion are studied. The results are presented graphically and in tabular form for various values of viscosity ratio and pressure gradients on the volumetric flow rate and effective Taylor dispersion coefficient. It is found that for homogeneous chemical reaction, the effective Taylor dispersion coefficient decreases as reaction rate parameter increases. The validity of the results obtained from an analytical method for two fluid models is verified by comparison with the available one fluid model results, and good agreement is found.
Heavy flavor $R_\\text{AA}$ and $v_n$ in event-by-event viscous relativistic hydrodynamics
Prado, Caio A G; Cosentino, Mauro R; Munhoz, Marcelo G; Noronha, Jorge; Suaide, Alexandre A P
2016-01-01
Recently it has been shown that a realistic description of the medium via event-by-event viscous hydrodynamics plays an important role in the long-standing $R_\\text{AA}$ vs. $v_2$ puzzle at high $p_T$. In this proceedings we begin to extend this approach to the heavy flavor sector by investigating the effects of full event-by-event fluctuating hydrodynamic backgrounds on the nuclear suppression factor and $v_2\\{2\\}$ of heavy flavor mesons and non-photonic electrons at intermediate to high $p_T$. We also show results for $v_3\\{2\\}$ of $B^0$ and D$^0$ for PbPb collisions at $\\sqrt{s}=2.76$ TeV.
Composite self-similar solutions for relativistic shocks: the transition to cold fluid temperatures
Pan, Margaret
2008-01-01
The flow resulting from a strong ultrarelativistic shock moving through a stellar envelope with a polytrope-like density profile has been studied analytically and numerically at early times while the fluid temperature is relativistic--that is, just before and just after the shock breaks out of the star. Such a flow should expand and accelerate as its internal energy is converted to bulk kinetic energy; at late enough times, the assumption of relativistic temperatures becomes invalid. Here we present a new self-similar solution for the post-breakout flow when the accelerating fluid has bulk kinetic Lorentz factors much larger than unity but is cooling through $p/n$ of order unity to subrelativistic temperatures. This solution gives a relation between a fluid element's terminal Lorentz factor and that element's Lorentz factor just after it is shocked. Our numerical integrations agree well with the solution. While our solution assumes a planar flow, we show that corrections due to spherical geometry are importan...
High order numerical simulations of the Richtmyer Meshkov instability in a relativistic fluid
Zanotti, Olindo
2014-01-01
We study the Richtmyer--Meshkov (RM) instability of a relativistic perfect fluid by means of high order numerical simulations with adaptive mesh refinement (AMR). The numerical scheme adopts a finite volume Weighted Essentially Non-Oscillatory (WENO) reconstruction to increase accuracy in space, a local space-time discontinuous Galerkin predictor method to obtain high order of accuracy in time and a high order one-step time update scheme together with a "cell-by-cell" space-time AMR strategy with time-accurate local time stepping. In this way, third order accurate (both in space and in time) numerical simulations of the RM instability are performed, spanning a wide parameter space. We present results both for the case in which a light fluid penetrates into a higher density one (Atwood number $A>0$), and for the case in which a heavy fluid penetrates into a lower density one (Atwood number $A<0$). We find that, for large Lorentz factors \\gamma_s of the incident shock wave, the relativistic RM instability is...
Dr. G. Prabhakara Rao,
2015-04-01
Full Text Available We consider a two-dimensional MHD natural convection flow of an incompressible viscous and electrically conducting fluid through porous medium past a vertical impermeable flat plate is considered in presence of a uniform transverse magnetic field. The governing equations of velocity and temperature fields with appropriate boundary conditions are solved by the ordinary differential equations by introducing appropriate coordinate transformations. We solve that ordinary differential equations and find the velocity profiles, temperature profile, the skin friction and nusselt number. The effects of Grashof number (Gr, Hartmann number (M and Prandtl number (Pr, Darcy parameter (D-1 on velocity profiles and temperature profiles are shown graphically.
Abbas, Z.; Naveed, M., E-mail: rana.m.naveed@gmail.com [Department of Mathematics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Sajid, M. [Theoretical Physics Division, PINSTECH, P.O. Nilore, Islamabad 44000 (Pakistan)
2015-10-15
In this paper, effects of Hall currents and nonlinear radiative heat transfer in a viscous fluid passing through a semi-porous curved channel coiled in a circle of radius R are analyzed. A curvilinear coordinate system is used to develop the mathematical model of the considered problem in the form partial differential equations. Similarity solutions of the governing boundary value problems are obtained numerically using shooting method. The results are also validated with the well-known finite difference technique known as the Keller-Box method. The analysis of the involved pertinent parameters on the velocity and temperature distributions is presented through graphs and tables.
A.S. Idowu
2015-03-01
Full Text Available Radiation on magnetohydrodynamic (MHD boundary layer flow of a viscous fluid over an exponentially stretching sheet was considered together with it’s effects. The new technique of homotopy analysis method (nHAM was used to obtain the convergent series expressions for velocity and temperature, where the governig system of partial differential equations has been transformed into ordinary differential equations. The interpretation to these expressions is shown physically through graphs. We observed that the effects of Prandtl and Magnetic number acts in opposite to each other on the temperature.
Kim Gaik Tay
2010-04-01
Full Text Available In the present work, by considering the artery as a prestressed thin-walled elastic tube with a symmetrical stenosis and the blood as an incompressible viscous fluid, we have studied the amplitude modulation of nonlinear waves in such a composite medium through the use of the reductive perturbation method [23]. The governing evolutions can be reduced to the dissipative non-linear Schrodinger (NLS equation with variable coefficient. The progressive wave solution to the above non-linear evolution equation is then sought.
Is there solid-on-solid contact in a sphere-wall collision in a viscous fluid?
Birwa, Sumit Kumar; Govindarajan, Rama; Menon, Narayanan
2016-01-01
We study experimentally the process of normal collision between a sphere falling through a viscous fluid, and a solid plate below. As has previously been discovered, there is a well-defined threshold Stokes number above which the sphere rebounds from such a collision. Our experiment tests for direct contact between the colliding bodies, and contrary to prior expectations shows that solid-on-solid contact occurs even for Stokes numbers just above the threshold for rebounding. The details of the contact mechanics depend on the surface quality of the solids, but our experiments and a model calculation indicate that such contact is generic and will occur for any realistic surface roughness.
Cutanda Henriquez, Vicente; Juhl, Peter Møller
2013-01-01
The formulation presented in this paper is based on the Boundary Element Method (BEM) and implements Kirchhoff’s decomposition into viscous, thermal and acoustic components, which can be treated independently everywhere in the domain except on the boundaries. The acoustic variables with losses ar...
Shogin, Dmitry; Amund Amundsen, Per
2016-10-01
We test the physical relevance of the full and the truncated versions of the Israel–Stewart (IS) theory of irreversible thermodynamics in a cosmological setting. Using a dynamical systems method, we determine the asymptotic future of plane symmetric Bianchi type I spacetimes with a viscous mathematical fluid, keeping track of the magnitude of the relative dissipative fluxes, which determines the applicability of the IS theory. We consider the situations where the dissipative mechanisms of shear and bulk viscosity are involved separately and simultaneously. It is demonstrated that the only case in the given model when the fluid asymptotically approaches local thermal equilibrium, and the underlying assumptions of the IS theory are therefore not violated, is that of a dissipative fluid with vanishing bulk viscosity. The truncated IS equations for shear viscosity are found to produce solutions which manifest pathological dynamical features and, in addition, to be strongly sensitive to the choice of initial conditions. Since these features are observed already in the case of an oversimplified mathematical fluid model, we have no reason to assume that the truncation of the IS transport equations will produce relevant results for physically more realistic fluids. The possible role of bulk and shear viscosity in cosmological evolution is also discussed.
S. N. Maitra
1986-01-01
Full Text Available A magnetohydrodynamic flow of a viscous, incompressible and slightly conducting fluid is developed between a parallel flat wall and a wavy wall whereas at the same time fluid is continuously sucked through the flat wall with a constant suction velocity. The velocity and temperature distribution are determined alongwith the pressure gradient and co-efficient of skin friction.
Propagation of an ultra-short, intense laser in a relativistic fluid
Ritchie, A.B.; Decker, C.D. [Lawrence Livermore National Lab., CA (United States)
1997-12-31
A Maxwell-relativistic fluid model is developed to describe the propagation of an ultrashort, intense laser pulse through an underdense plasma. The model makes use of numerically stabilizing fast Fourier transform (FFT) computational methods for both the Maxwell and fluid equations, and it is benchmarked against particle-in-cell (PIC) simulations. Strong fields generated in the wake of the laser are calculated, and the authors observe coherent wake-field radiation generated at harmonics of the plasma frequency due to nonlinearities in the laser-plasma interaction. For a plasma whose density is 10% of critical, the highest members of the plasma harmonic series begin to overlap with the first laser harmonic, suggesting that widely used multiple-scales-theory, by which the laser and plasma frequencies are assumed to be separable, ceases to be a useful approximation.
The velocity of the arterial pulse wave: a viscous-fluid shock wave in an elastic tube
Painter Page R
2008-07-01
Full Text Available Abstract Background The arterial pulse is a viscous-fluid shock wave that is initiated by blood ejected from the heart. This wave travels away from the heart at a speed termed the pulse wave velocity (PWV. The PWV increases during the course of a number of diseases, and this increase is often attributed to arterial stiffness. As the pulse wave approaches a point in an artery, the pressure rises as does the pressure gradient. This pressure gradient increases the rate of blood flow ahead of the wave. The rate of blood flow ahead of the wave decreases with distance because the pressure gradient also decreases with distance ahead of the wave. Consequently, the amount of blood per unit length in a segment of an artery increases ahead of the wave, and this increase stretches the wall of the artery. As a result, the tension in the wall increases, and this results in an increase in the pressure of blood in the artery. Methods An expression for the PWV is derived from an equation describing the flow-pressure coupling (FPC for a pulse wave in an incompressible, viscous fluid in an elastic tube. The initial increase in force of the fluid in the tube is described by an increasing exponential function of time. The relationship between force gradient and fluid flow is approximated by an expression known to hold for a rigid tube. Results For large arteries, the PWV derived by this method agrees with the Korteweg-Moens equation for the PWV in a non-viscous fluid. For small arteries, the PWV is approximately proportional to the Korteweg-Moens velocity divided by the radius of the artery. The PWV in small arteries is also predicted to increase when the specific rate of increase in pressure as a function of time decreases. This rate decreases with increasing myocardial ischemia, suggesting an explanation for the observation that an increase in the PWV is a predictor of future myocardial infarction. The derivation of the equation for the PWV that has been used for
Reza Hosseini
2012-01-01
Full Text Available The flow of an incompressible electrically conducting viscous fluid in convergent or divergent channels under the influence of an externally applied homogeneous magnetic field is studied both analytically and numerically. Navier-Stokes equations of fluid mechanics and Maxwell’s electromagnetism equations are reduced into highly non-linear ordinary differential equation. The resulting non-linear equation has been solved analytically using a very efficient technique, namely, differential transform method (DTM. The DTM solution is compared with the results obtained by a numerical method (shooting method, coupled with fourth-order Runge-Kutta scheme. The plots have revealed the physical characteristics of flow by changing angles of the channel, Hartmann and Reynolds numbers.
Felderhof, B U
2016-01-01
Translational and rotational swimming at small Reynolds number of a planar assembly of identical spheres immersed in an incompressible viscous fluid is studied on the basis of a set of equations of motion for the individual spheres. The motion of the spheres is caused by actuating forces and forces derived from a direct interaction potential, as well as hydrodynamic forces exerted by the fluid as frictional and added mass hydrodynamic interactions. The translational and rotational swimming velocities of the assembly are deduced from momentum and angular momentum balance equations. The mean power required during a period is calculated from an instantaneous power equation. Expressions are derived for the mean swimming velocities and the power, valid to second order in the amplitude of displacements from the relative equilibrium positions. Hence these quantities can be evaluated for prescribed periodic displacements. Explicit calculations are performed for three spheres interacting such that they form an equilat...
Ledesma-Aguilar, R; Hernández-Machado, A
2007-01-01
We perform a three-dimensional study of steady state viscous fingers that develop in linear channels. By means of a three-dimensional Lattice-Boltzmann scheme that mimics the full macroscopic equations of motion of the fluid momentum and order parameter, we study the effect of the thickness of the channel in two cases. First, for total displacement of the fluids in the channel thickness direction, we find that the steady state finger is effectively two-dimensional and that previous two-dimensional results can be recovered by taking into account the effect of a curved meniscus across the channel thickness as a contribution to surface stresses. Secondly, when a thin film develops in the channel thickness direction, the finger narrows with increasing channel aspect ratio in agreement with experimental results. The effect of the thin film renders the problem three-dimensional and results deviate from the two-dimensional prediction.
Cutanda-Henríquez, Vicente; Juhl, Peter Møller
2013-11-01
The formulation presented in this paper is based on the boundary element method (BEM) and implements Kirchhoff's decomposition into viscous, thermal, and acoustic components, which can be treated independently everywhere in the domain except on the boundaries. The acoustic variables with losses are solved using extended boundary conditions that assume (i) negligible temperature fluctuations at the boundary and (ii) normal and tangential matching of the boundary's particle velocity. The proposed model does not require constructing a special mesh for the viscous and thermal boundary layers as is the case with the existing finite element method (FEM) implementations with losses. The suitability of this approach is demonstrated using an axisymmetrical BEM and two test cases where the numerical results are compared with analytical solutions.
Viscous Chaplygin Gas Models as a Spherical Top-Hat Collapsing Fluids
Jawad, Abdul
2016-01-01
We study the spherical top-hat collapse in Einstein gravity and loop quantum cosmology by taking the non-linear evolution of viscous modified variable chaplygin gas and viscous generalized cosmic chaplygin gas. We calculate the equation of state parameter, square speed of sound, perturbed equation of state parameter, perturbed square speed of sound, density contrast and divergence of peculiar velocity in perturbed region and discussed their behavior. It is observed that both chaplygin gas models support the spherical collapse in Einstein as well as loop quantum cosmology because density contrast remains positive in both cases and the perturbed equation of state parameter remains positive at the present epoch as well as near future. It is remarked here that these parameters provide the consistence results for both chaplygin gas models in both gravities.
Saadatmand, Mehrrad; Kawaji, Masahiro
2014-04-01
Experiments and three-dimensional direct numerical simulations were performed to investigate the effects of physical parameters on the repulsion or attraction force affecting the motion of a particle oscillating near a solid wall of a fluid cell under microgravity. The following physical parameters were investigated: fluid cell amplitude, fluid and particle densities, angular frequency of the cell vibration, initial distance between the particle centroid and the closest cell wall, particle radius, and dynamic viscosity. Based on the simulations, a nondimensional relation was developed to relate those physical parameters to the repulsion or attraction force affecting the particle. The relation shows that the repulsion or attraction force is increased by the increase in the cell vibration amplitude and frequency and also the force direction would change from attraction to repulsion above a threshold fluid viscosity. Relations to other physical parameters were also studied and are reported. This paper follows our previous work on the physical mechanism of observed repulsion force on a particle in a viscous fluid cell [M. Saadatmand and M. Kawaji, Phys. Rev. E 88, 023019 (2013)].
Mode-by-mode fluid dynamics for relativistic heavy ion collisions
Floerchinger, Stefan, E-mail: stefan.floerchinger@cern.ch; Wiedemann, Urs Achim, E-mail: urs.wiedemann@cern.ch
2014-01-20
We propose to study the fluid dynamic propagation of fluctuations in relativistic heavy ion collisions differentially with respect to their azimuthal, radial and longitudinal wavelength. To this end, we introduce a background-fluctuation splitting and a Bessel–Fourier decomposition of the fluctuating modes. We demonstrate how the fluid dynamic evolution of realistic events can be built up from the propagation of individual modes. We describe the main elements of this mode-by-mode fluid dynamics, and we discuss its use in the fluid dynamic analysis of heavy ion collisions. As a first illustration, we quantify to what extent only fluctuations of sufficiently large radial wave length contribute to harmonic flow coefficients. We find that fluctuations of short wave length are suppressed not only due to larger dissipative effects, but also due to a geometrical averaging over the freeze-out hyper-surface. In this way, our study further substantiates the picture that harmonic flow coefficients give access to a coarse-grained version of the initial conditions for heavy ion collisions, only.
Mode-by-mode fluid dynamics for relativistic heavy ion collisions
Floerchinger, Stefan; Wiedemann, Urs Achim
2014-01-01
We propose to study the fluid dynamic propagation of fluctuations in relativistic heavy ion collisions differentially with respect to their azimuthal, radial and longitudinal wavelength. To this end, we introduce a background-fluctuation splitting and a Bessel-Fourier decomposition of the fluctuating modes. We demonstrate how the fluid dynamic evolution of realistic events can be built up from the propagation of individual modes. We describe the main elements of this mode-by-mode fluid dynamics, and we discuss its use in the fluid dynamic analysis of heavy ion collisions. As a first illustration, we quantify to what extent only fluctuations of sufficiently large radial wave length contribute to harmonic flow coefficients. We find that fluctuations of short wave length are suppressed not only due to larger dissipative effects, but also due to a geometrical averaging over the freeze-out hyper-surface. In this way, our study further substantiates the picture that harmonic flow coefficients give access to a coarse-grained version of the initial conditions for heavy ion collisions, only.
Simulation of a viscous fluid spreading by a bidimensional shallow water model
Di Martino, Bernard; Paoli, Jean-Martin; Simonnet, Pierre; 10.1016/j.apm.2011.01.015
2011-01-01
In this paper we propose a numerical method to solve the Cauchy problem based on the viscous shallow water equations in an horizontally moving domain. More precisely, we are interested in a flooding and drying model, used to modelize the overflow of a river or the intrusion of a tsunami on ground. We use a non conservative form of the two-dimensional shallow water equations, in eight velocity formulation and we build a numerical approximation, based on the Arbitrary Lagrangian Eulerian formulation, in order to compute the solution in the moving domain.
McHugh, P.R.; Ramshaw, J.D.
1991-11-01
MAGMA is a FORTRAN computer code designed to viscous flow in in situ vitrification melt pools. It models three-dimensional, incompressible, viscous flow and heat transfer. The momentum equation is coupled to the temperature field through the buoyancy force terms arising from the Boussinesq approximation. All fluid properties, except density, are assumed variable. Density is assumed constant except in the buoyancy force terms in the momentum equation. A simple melting model based on the enthalpy method allows the study of the melt front progression and latent heat effects. An indirect addressing scheme used in the numerical solution of the momentum equation voids unnecessary calculations in cells devoid of liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical coordinates, while three-dimensional calculations use rectangular coordinates. All derivatives are approximated by finite differences. The incompressible Navier-Stokes equations are solved using a new fully implicit iterative technique, while the energy equation is differenced explicitly in time. Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh based on the marker and cell placement of variables. Convective terms are differenced using a weighted average of centered and donor cell differencing to ensure numerical stability. Complete descriptions of MAGMA governing equations, numerics, code structure, and code verification are provided. 14 refs.
The effect of a two-fluid atmosphere on relativistic stars
Govender, Gabriel; Maharaj, Sunil D
2015-01-01
We model the physical behaviour at the surface of a relativistic radiating star in the strong gravity limit. The spacetime in the interior is taken to be spherically symmetrical and shear-free. The heat conduction in the interior of the star is governed by the geodesic motion of fluid particles and a nonvanishing radially directed heat flux. The local atmosphere in the exterior region is a two-component system consisting of standard pressureless (null) radiation and an additional null fluid with nonzero pressure and constant energy density. We analyse the generalised junction condition for the matter and gravitational variables on the stellar surface and generate an exact solution. We investigate the effect of the exterior energy density on the temporal evolution of the radiating fluid pressure, luminosty, gravitational redshift and mass flow at the boundary of the star. The influence of the density on the rate of gravitational collapse is also probed and the strong, dominant and weak energy conditions are al...
B Sreedhara Rao
2015-04-01
Full Text Available In the present investigation heat transfer studies are conducted in corrugated plate heat exchangers (PHEs having three different corrugation angles of 300, 400 and 500. The plate heat exchangers have a length of 30 cm and a width of 10 cm with a spacing of 5 mm. Water and 20% glycerol solution are taken as test fluids and hot fluid is considered as heating medium. The wall temperatures are measured along the length of exchanger at seven different locations by means of thermocouples. The inlet and outlet temperatures of test fluid and hot fluid are measured by means of four more thermocouples. The experiments are conducted at a flowrate ranging from 0.5 lpm to 6 lpm with the test fluid. Film heat transfer coefficient and Nusselt number are determined from the experimental data. These values are compared with different corrugation angles. The effects of corrugation angles on heat transfer rates are discussed.
Rajneesh Kumar; Rajani Rani Gupta
2009-01-01
In this paper, the effect of angle inclination at the interface of a viscous fluid and thermoelastic micropolar honeycomb solid due to inclined load is investigated. The inclined load is assumed to be a linear combination of normal load and tangential load. Laplace transform with respect to time variable and Fourier transform with respect to space variable are applied to solve the problem. Expressions of stresses, temperature distribution, and pressures in the transformed domain are obtained by introducing po-tential functions. The numerical inversion technique is used to obtain the solution in the physical domain. The frequency domain expressions for steady state are also obtained with appropriate change of variables. Graphic representations due to the response of different sources and changes of angle inclination are shown. Some particular cases are also discussed.
Felderhof, B U
2015-01-01
A mechanical model of swimming and flying in an incompressible viscous fluid is studied on the basis of assumed equations of motion. The system is modeled as an assembly of rigid spheres subject to elastic direct interactions and to periodic actuating forces which sum to zero. Hydrodynamic interactions are taken into account in the virtual mass matrix and in the friction matrix of the assembly. An equation of motion is derived for the velocity of the geometric center of the assembly. The mean power is calculated as the sum of the mean rate of dissipation and a mean energy loss which is related to the rate of change of the virtual mass. The full range of viscosity is covered, so that the theory can be applied to the flying of birds, as well as to the swimming of fish or bacteria. As an example a system of three equal spheres moving along a common axis is studied.
Uddin, M. J., E-mail: josim.phys2007@gmail.com; Alam, M. S.; Mamun, A. A. [Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh)
2015-06-15
A theoretical investigation is made on the positron-acoustic (PA) shock waves (SHWs) in an unmagnetized electron-positron-ion plasma containing immobile positive ions, cold mobile positrons, and hot positrons and electrons following the kappa (κ) distribution. The cold positron kinematic viscosity is taken into account, and the reductive perturbation method is used to derive the Burgers equation. It is found that the viscous force acting on cold mobile positron fluid is a source of dissipation and is responsible for the formation of the PA SHWs. It is also observed that the fundamental properties of the PA SHWs are significantly modified by the effects of different parameters associated with superthermal (κ distributed) hot positrons and electrons.
T HAYAT; S ASAD; A ALSAEDI
2014-01-01
The aim of the present study is to investigate the flow of the Casson fluid by an inclined stretching cylinder. A heat transfer analysis is carried out in the presence of thermal radiation and viscous dissipation effects. The temperature dependent thermal conductivity of the Casson fluid is considered. The relevant equations are first simplified under usual boundary layer assumptions, and then transformed into ordinary differential equations by suitable transformations. The transformed ordinary differential equations are computed for the series solutions of velocity and temperature. A convergence analysis is shown explicitly. Velocity and temperature fields are discussed for different physical parameters by graphs and numerical values. It is found that the velocity decreases with the increase in the angle of inclination while increases with the increase in the mixed convection parameter. The enhancement in the thermal conductivity and radiation effects corresponds to a higher fluid temperature. It is also found that heat transfer is more pronounced in a cylinder when it is compared with a flat plate. The thermal boundary layer thickness increases with the increase in the Eckert number. The radiation and variable thermal conductivity decreases the heat transfer rate at the surface.
Gupta, Anoop Kumar; Gupta, Sanjay; Chhabra, Rajendra Prasad
2017-08-01
In this work, the buoyancy-induced convection from an isothermal spheroid is studied in a Bingham plastic fluid. Extensive results on the morphology of approximate yield surfaces, temperature profiles, and the local and average Nusselt numbers are reported to elucidate the effects of the pertinent dimensionless parameters: Rayleigh number, 102 ≤ Ra ≤ 106; Prandtl number, 20 ≤ Pr ≤ 100; Bingham number, 0 ≤ Bn ≤ 103, and aspect ratio, 0.2 ≤ e ≤ 5. Due to the fluid yield stress, fluid-like (yielded) and solid-like (unyielded) regions coexist in the flow domain depending upon the prevailing stress levels vis-a-vis the value of the fluid yield stress. The yielded parts progressively grow in size with the rising Rayleigh number while this tendency is countered by the increasing Bingham and Prandtl numbers. Due to these two competing effects, a limiting value of the Bingham number ( Bn max) is observed beyond which heat transfer occurs solely by conduction due to the solid-like behaviour of the fluid everywhere in the domain. Such limiting values bear a positive dependence on the Rayleigh number ( Ra) and aspect ratio ( e). In addition to this, oblate shapes ( e 1) impede it. Finally, simple predictive expressions for the maximum Bingham number and the average Nusselt number are developed which can be used to predict a priori the overall heat transfer coefficient in a new application. Also, a criterion is developed in terms of the composite parameter Bn• Gr-1/2 which predicts the onset of convection in such fluids. Similarly, another criterion is developed which delineates the conditions for the onset of settling due to buoyancy effects. The paper is concluded by presenting limited results to delineate the effects of viscous dissipation and the temperature-dependent viscosity on the Nusselt number. Both these effects are seen to be rather small in Bingham plastic fluids.
Optimal reservoir conditions for fluid extraction through permeable walls in the viscous limit
Herschlag, Gregory; Layton, Anita T
2015-01-01
In biological transport mechanisms such as insect respiration and renal filtration, fluid travels along a leaky channel allowing exchange with systems exterior the the channel. The channels in these systems may undergo peristaltic pumping which is thought to enhance the material exchange. To date, little analytic work has been done to study the effect of pumping on material extraction across the channel walls. In this paper, we examine a fluid extraction model in which fluid flowing through a leaky channel is exchanged with fluid in a reservoir. The channel walls are allowed to contract and expand uniformly, simulating a pumping mechanism. In order to efficiently determine solutions of the model, we derive a formal power series solution for the Stokes equations in a finite channel with uniformly contracting/expanding permeable walls. This flow has been well studied in the case of weakly permeable channel walls in which the normal velocity at the channel walls is proportional to the wall velocity. In contrast ...
M. Cibiş (Merih); K. Jarvis (Kelly); M. Markl (Michael); M. Rose (Michael); C. Rigsby (Cynthia); A.J. Barker (Alex J.); J.J. Wentzel (Jolanda)
2015-01-01
textabstractViscous dissipation inside Fontan circulation, a parameter associated with the exercise intolerance of Fontan patients, can be derived from computational fluid dynamics (CFD) or 4D flow MRI velocities. However, the impact of spatial resolution and measurement noise on the estimation of
Uniqueness of Landau-Lifshitz energy frame in relativistic dissipative hydrodynamics.
Tsumura, Kyosuke; Kunihiro, Teiji
2013-05-01
We show that the relativistic dissipative hydrodynamic equation derived from the relativistic Boltzmann equation by the renormalization-group method uniquely leads to the one in the energy frame proposed by Landau and Lifshitz, provided that the macroscopic-frame vector, which defines the local rest frame of the flow velocity, is independent of the momenta of constituent particles, as it should. We argue that the relativistic hydrodynamic equations for viscous fluids must be defined on the energy frame if consistent with the underlying relativistic kinetic equation.
Kelly; Humphrey
1998-03-01
Considerable debate has occurred over the use of hydrofoil impellers in large-scale fermentors to improve mixing and mass transfer in highly viscous non-Newtonian systems. Using a computational fluid dynamics software package (Fluent, version 4.30) extensive calculations were performed to study the effect of impeller speed (70-130 rpm), broth rheology (value of power law flow behavior index from 0.2 to 0.6), and distance between the cooling coil bank and the fermentor wall (6-18 in.) on flow near the perimeter of a large (75-m3) fermentor equipped with A315 impellers. A quadratic model utilizing the data was developed in an attempt to correlate the effect of A315 impeller speed, power law flow behavior index, and distance between the cooling coil bank and the fermentor wall on the average axial velocity in the coil bank-wall region. The results suggest that there is a potential for slow or stagnant flow in the coil bank-wall region which could result in poor oxygen and heat transfer for highly viscous fermentations. The results also indicate that there is the potential for slow or stagnant flow in the region between the top impeller and the gas headspace when flow through the coil bank-wall region is slow. Finally, a simple guideline was developed to allow fermentor design engineers to predict the degree of flow behind a bank of helical cooling coils in a large fermentor with hydrofoil flow impellers.
Longitudinal vibration and stability analysis of carbon nanotubes conveying viscous fluid
Oveissi, Soheil; Toghraie, Davood; Eftekhari, Seyyed Ali
2016-09-01
Nowadays, carbon nanotubes (CNT) play an important role in practical applications in fluidic devices. To this end, researchers have studied various aspects of vibration analysis of a behavior of CNT conveying fluid. In this paper, based on nonlocal elasticity theory, single-walled carbon nanotube (SWCNT) is simulated. To investigate and analyze the effect of internal fluid flow on the longitudinal vibration and stability of SWCNT, the equation of motion for longitudinal vibration is obtained by using Navier-Stokes equations. In the governing equation of motion, the interaction of fluid-structure, dynamic and fluid flow velocity along the axial coordinate of the nanotube and the nano-scale effect of the structure are considered. To solve the nonlocal longitudinal vibration equation, the approximate Galerkin method is employed and appropriate simply supported boundary conditions are applied. The results show that the axial vibrations of the nanotubesstrongly depend on the small-size effect. In addition, the fluid flowing in nanotube causes a decrease in the natural frequency of the system. It is obvious that the system natural frequencies reach zero at lower critical flow velocities as the wave number increases. Moreover, the critical flow velocity decreases as the nonlocal parameter increases.
Tidal Interaction between a Fluid Star and a Kerr Black Hole Relativistic Roche-Riemann Model
Wiggins, P; Wiggins, Paul; Lai, Dong
1999-01-01
We present a semi-analytic study of the equilibrium models of close binary systems containing a fluid star (mass $m$ and radius $R_0$) and a Kerr black hole (mass $M$) in circular orbit. We consider the limit $M\\gg m$ where spacetime is described by the Kerr metric. The tidally deformed star is approximated by an ellipsoid, and satisfies the polytropic equation of state. The models also include fluid motion in the stellar interior, allowing binary models with nonsynchronized stellar spin (as expected for coalescing neutron star--black hole binaries) to be constructed. Tidal disruption occurs at orbital radius $r_{\\rm tide}\\sim R_0(M/m)^{1/3}$, but the dimensionless ratio of the black hole as well as on the equation of state and the internal rotation of the star. We find that the general relativistic tidal field disrupts the star at a larger $\\hat r_{\\rm tide}$ than the Newtonian tide; the difference is particularly prominent if the disruption occurs in the vicinity of the black hole's horizon. In general, $\\h...
Swimming Speeds of Waving Cylindrical Tails in Viscous Fluids with Resistance
Ho, Nguyenho
2015-01-01
The mathematical analysis of swimming speeds for microorganisms in a 3D fluid is investigated by studying a cylinder propagating lateral or spiral waves of displacement at zero Reynolds number. Since many microorganisms swim in a highly heterogeneous environment with obstacles to swimming, we study swimming speeds of an infinite cylinder in a fluid governed by the Brinkman equation. This represents the effective flow due to a sparse, stationary network of obstructions (e.g. fibers or polymers) in a Newtonian fluid. For a fixed propagating wave of bending, we find that swimming speeds are enhanced due to the resistance from the obstructions. Additionally, we examine the work done per unit area on the surface of a cylindrical filament and recover the limit for the Stokes case as the resistance goes to zero.
Self-propulsion of a spherical electric or magnetic microbot in a polar viscous fluid
Felderhof, B U
2014-01-01
The self-propulsion of a sphere immersed in a polar liquid or ferrofluid is studied on the basis of ferrohydrodynamics. In the electrical case an oscillating charge density located inside the sphere generates an electrical field which polarizes the fluid. The lag of polarization with respect to the electrical field due to relaxation generates a time-independent electrical torque density acting on the fluid causing it to move. The resulting propulsion velocity of the sphere is calculated in perturbation theory to second order in powers of the charge density.
A General Approach to Time Periodic Incompressible Viscous Fluid Flow Problems
Geissert, Matthias; Hieber, Matthias; Nguyen, Thieu Huy
2016-06-01
This article develops a general approach to time periodic incompressible fluid flow problems and semilinear evolution equations. It yields, on the one hand, a unified approach to various classical problems in incompressible fluid flow and, on the other hand, gives new results for periodic solutions to the Navier-Stokes-Oseen flow, the Navier-Stokes flow past rotating obstacles, and, in the geophysical setting, for Ornstein-Uhlenbeck and various diffusion equations with rough coefficients. The method is based on a combination of interpolation and topological arguments, as well as on the smoothing properties of the linearized equation.
Fereidoon, A.; Andalib, E.; Mirafzal, A.
2016-07-01
This article studies the nonlinear vibration of viscoelastic embedded nano-sandwich structures containing of a double walled carbon nanotube (DWCNT) integrated with two piezoelectric Zinc oxide (ZnO) layers. DWCNT and ZnO layers are subjected to magnetic and electric fields, respectively. This system is conveying viscous fluid and the related force is calculated by modified Navier-Stokes relation considering slip boundary condition and Knudsen number. Visco-Pasternak model with three parameters of the Winkler modulus, shear modulus, and damp coefficient is used for simulation of viscoelastic medium. The nano-structure is simulated as an orthotropic Timoshenko beam (TB) and the effects of small scale, structural damping and surface stress are considered based on Eringen's, Kelvin-voigt and Gurtin-Murdoch theories. Energy method and Hamilton's principle are employed to derive motion equations which are then solved using differential quadrature method (DQM). The detailed parametric study is conducted, focusing on the combined effects of small scale effect, fluid velocity, thickness of piezoelectric layer, boundary condition, surface effects, van der Waals (vdW) force on the frequency and critical velocity of nano-structure. Results indicate that the frequency and critical velocity increases with assume of surface effects.
Chen, Yong; Huang, Yiyong; Chen, Xiaoqian
2013-11-01
This paper deals with the problem of wave propagation in a compressible viscous fluid confined by a rigid-walled circular pipeline in the presence of a shear mean flow. On the assumption of isentropic and axisymmetric wave propagation, the convected acoustic equations are mathematically deduced from the conservations of continuity and momentum, leading to a set of coupled second-order differential equations with respect of the acoustic pressure and velocity components in radial and axial directions. A solution based on the Fourier-Bessel theory, which is complete and orthogonal in Lebesgue space, is introduced to transform the differential equations to an infinite set of homogeneous algebraic equations, thus the wave number can be calculated due to the existence condition of a non-trivial solution. After the discussion of the method's convergence, the cut-off frequency of the wave mode is theoretically analyzed. Furthermore, wave attenuation of the first four wave modes due to fluid viscosity is numerically studied in the presence of the laminar and turbulent flow profiles. Meanwhile, the measurement performance of an ultrasonic flow meter based on the difference of downstream and upstream wave propagations is parametrically addressed.
Sdowski, Aleksander; Tchekhovskoy, Alexander; Zhu, Yucong
2012-01-01
A numerical scheme is described for including radiation in multi-dimensional general-relativistic conservative fluid dynamics codes. In this method, a covariant form of the M1 closure scheme is used to close the radiation moments, and the radiative source terms are treated semi-implicitly in order to handle both optically thin and optically thick regimes. The scheme has been implemented in a conservative general relativistic radiation hydrodynamics code KORAL. The robustness of the code is demonstrated on a number of test problems, including radiative relativistic shock tubes, static radiation pressure supported atmosphere, shadows, beams of light in curved spacetime, and radiative Bondi accretion. The advantages of M1 closure relative to other approaches such as Eddington closure and flux-limited diffusion are discussed, and its limitations are also highlighted.
Bao, Luyao; Priezjev, Nikolai V.; Hu, Haibao; Luo, Kai
2017-09-01
Molecular dynamics simulations are used to investigate the rate and temperature dependence of the slip length in thin liquid films confined by smooth, thermal substrates. In our setup, the heat generated in a force-driven flow is removed by the thermostat applied on several wall layers away from liquid-solid interfaces. We found that for both high and low wall-fluid interaction (WFI) energies, the temperature of the fluid phase rises significantly as the shear rate increases. Surprisingly, with increasing shear rate, the slip length approaches a constant value from above for high WFI energies and from below for low WFI energies. The two distinct trends of the rate-dependent slip length are rationalized by examining S ( G1) , the height of the main peak of the in-plane structure factor of the first fluid layer (FFL) together with DWF, which is the average distance between the wall and FFL. The results of numerical simulations demonstrate that reduced values of the structure factor, S ( G1) , correlate with the enhanced slip, while smaller distances DWF indicate that fluid atoms penetrate deeper into the surface potential leading to larger friction and smaller slip. Interestingly, at the lowest WFI energy, the combined effect of the increase of S ( G1) and decrease of DWF with increasing shear rate results in a dramatic reduction of the slip length.
Relaxation dynamics of a compressible bilayer vesicle containing highly viscous fluid.
Sachin Krishnan, T V; Okamoto, Ryuichi; Komura, Shigeyuki
2016-12-01
We study the relaxation dynamics of a compressible bilayer vesicle with an asymmetry in the viscosity of the inner and outer fluid medium. First we explore the stability of the vesicle free energy which includes a coupling between the membrane curvature and the local density difference between the two monolayers. Two types of instabilities are identified: a small wavelength instability and a larger wavelength instability. Considering the bulk fluid viscosity and the inter-monolayer friction as the dissipation sources, we next employ Onsager's variational principle to derive the coupled equations both for the membrane and the bulk fluid. The three relaxation modes are coupled to each other due to the bilayer and the spherical structure of the vesicle. Most importantly, a higher fluid viscosity inside the vesicle shifts the crossover mode between the bending and the slipping to a larger value. As the vesicle parameters approach the unstable regions, the relaxation dynamics is dramatically slowed down, and the corresponding mode structure changes significantly. In some limiting cases, our general result reduces to the previously obtained relaxation rates.
An Introduction to Dimensionless Parameters in the Study of Viscous Fluid Flows
Guerra, David; Corley, Kevin; Giacometti, Paolo; Holland, Eric; Humphreys, Michael; Nicotera, Michael
2011-01-01
It has been suggested that there is a need to deepen the understanding of fluid dynamics in the introductory physics course and to offer interesting experiments to do so. To address this need we have developed a laboratory experiment and the supporting analysis to demonstrate the role of viscosity and the interestingly mysterious use of…
Relaxation dynamics of a compressible bilayer vesicle containing highly viscous fluid
Sachin Krishnan, T. V.; Okamoto, Ryuichi; Komura, Shigeyuki
2016-12-01
We study the relaxation dynamics of a compressible bilayer vesicle with an asymmetry in the viscosity of the inner and outer fluid medium. First we explore the stability of the vesicle free energy which includes a coupling between the membrane curvature and the local density difference between the two monolayers. Two types of instabilities are identified: a small wavelength instability and a larger wavelength instability. Considering the bulk fluid viscosity and the inter-monolayer friction as the dissipation sources, we next employ Onsager's variational principle to derive the coupled equations both for the membrane and the bulk fluid. The three relaxation modes are coupled to each other due to the bilayer and the spherical structure of the vesicle. Most importantly, a higher fluid viscosity inside the vesicle shifts the crossover mode between the bending and the slipping to a larger value. As the vesicle parameters approach the unstable regions, the relaxation dynamics is dramatically slowed down, and the corresponding mode structure changes significantly. In some limiting cases, our general result reduces to the previously obtained relaxation rates.
Fluid extraction across pumping and permeable walls in the viscous limit
Herschlag, G.; Liu, J.-G.; Layton, A. T.
2016-04-01
In biological transport mechanisms such as insect respiration and renal filtration, fluid travels along a leaky channel allowing material exchange with systems exterior to the channel. The channels in these systems may undergo peristaltic pumping which is thought to enhance the material exchange. To date, little analytic work has been done to study the effect of pumping on material extraction across the channel walls. In this paper, we examine a fluid extraction model in which fluid flowing through a leaky channel is exchanged with fluid in a reservoir. The channel walls are allowed to contract and expand uniformly, simulating a pumping mechanism. In order to efficiently determine solutions of the model, we derive a formal power series solution for the Stokes equations in a finite channel with uniformly contracting/expanding permeable walls. This flow has been well studied in the case in which the normal velocity at the channel walls is proportional to the wall velocity. In contrast we do not assume flow that is proportional to the wall velocity, but flow that is driven by hydrostatic pressure, and we use Darcy's law to close our system for normal wall velocity. We incorporate our flow solution into a model that tracks the material pressure exterior to the channel. We use this model to examine flux across the channel-reservoir barrier and demonstrate that pumping can either enhance or impede fluid extraction across channel walls. We find that associated with each set of physical flow and pumping parameters, there are optimal reservoir conditions that maximize the amount of material flowing from the channel into the reservoir.
M.R. Krishnamurthy
2015-12-01
Full Text Available This paper considers the problem of steady, boundary layer flow and heat transfer of a nanofluid with fluid-particle suspension over an exponentially stretching surface in the presence of transverse magnetic field and viscous dissipation. The stretching velocity and wall temperature are assumed to vary according to specific exponential form. The governing equations in partial forms are reduced to a system of coupled non-linear ordinary differential equations using suitable similarity transformations. An effective Runge–Kutta–Fehlberg (RKF-45 is used to solve the obtained differential equations with the help of a symbolic software MAPLE. The effects of flow parameters—such as nanofluid interaction parameter, magnetic parameter, solid volume fraction of nanoparticle parameter, Prandtl number and Eckert number—on the flow field and heat-transfer characteristics were obtained and are tabulated. Useful discussions were carried out with the help of plotted graphs and tables. Under the limiting cases, comparison with the existing results was made and found to be in good agreement. The results demonstrate that the skin friction coefficient increases for both magnetic and solid volume fraction nanoparticle parameters. However, dusty fluid with copper (Cu nanoparticles has the appreciable cooling performance than other fluids.
Magnetic interaction of Janus magnetic particles suspended in a viscous fluid.
Seong, Yujin; Kang, Tae Gon; Hulsen, Martien A; den Toonder, Jaap M J; Anderson, Patrick D
2016-02-01
We studied the magnetic interaction between circular Janus magnetic particles suspended in a Newtonian fluid under the influence of an externally applied uniform magnetic field. The particles are equally compartmentalized into paramagnetic and nonmagnetic sides. A direct numerical scheme is employed to solve the magnetic particulate flow in the Stokes flow regime. Upon applying the magnetic field, contrary to isotropic paramagnetic particles, a single Janus particle can rotate due to the magnetic torque created by the magnetic anisotropy of the particle. In a two-particle problem, the orientation of each particle is found to be an additional factor that affects the critical angle separating the nature of magnetic interaction. Using multiparticle problems, we show that the orientation of the particles has a significant influence on the dynamics of the particles, the fluid flow induced by the actuated particles, and the final conformation of the particles. Straight and staggered chain structures observed experimentally can be reproduced numerically in a multiple particle problem.
Self-propulsion of flapping bodies in viscous fluids:Recent advances and perspectives
Shizhao Wang; Guowei He; Xing Zhang
2016-01-01
Flapping-powered propulsion is used by many animals to locomote through air or water. Here we review recent experimental and numerical studies on self-propelled mechanical systems powered by a flapping motion. These studies improve our understanding of the mutual interaction between actively flapping bodies and surrounding fluids. The results obtained in these works provide not only new insights into biolocomotion but also useful information for the bio-mimetic design of artificial flyers and swimmers.
Self-propulsion of flapping bodies in viscous fluids: Recent advances and perspectives
Wang, Shizhao; He, Guowei; Zhang, Xing
2016-12-01
Flapping-powered propulsion is used by many animals to locomote through air or water. Here we review recent experimental and numerical studies on self-propelled mechanical systems powered by a flapping motion. These studies improve our understanding of the mutual interaction between actively flapping bodies and surrounding fluids. The results obtained in these works provide not only new insights into biolocomotion but also useful information for the biomimetic design of artificial flyers and swimmers.
Slow Rotation of a Sphere with Source at its Centre in a Viscous Fluid
Sunil Datta; Deepak Kumar Srivastava
2000-02-01
In this note, the problem of a sphere carrying a fluid source at its centre and rotating with slow uniform angular velocity about a diameter is studied. The analysis reveals that only the azimuthal component of velocity exists and is seen that the effect of the source is to decrease it. Also, the couple on the sphere is found to decrease on account of the source.
Mirigian, Stephen; Schweizer, Kenneth S.
2014-01-01
Building on the elastically collective nonlinear Langevin equation theory developed for hard spheres in the preceding paper I, we propose and implement a quasi-universal theory for the alpha relaxation of thermal liquids based on mapping them to an effective hard sphere fluid via the dimensionless compressibility. The result is a zero adjustable parameter theory that can quantitatively address in a unified manner the alpha relaxation time over 14 or more decades. The theory has no singulariti...
Viscous liquid sloshing damping in cylindrical container using a volume of fluid method
无
2009-01-01
Liquid sloshing is a kind of very complicated free surface flow and exists widely in many fields.In order to calculate liquid sloshing damping precisely a volume of fluid method based on finite volume scheme is used to simulate free surface flows in partly filled cylindrical containers.A numerical method is pre-sented to simulate the movement of the free surface flow,in which a piecewise linear interface con-struction scheme and an unsplit Lagrangian advection scheme instead of Eulerian advection scheme are used.The damping performance of liquid sloshing in cylindrical containers under fundamental sloshing mode is investigated.There are four factors determining the surface-wave damping:free surface,boundary-layer,interior fluid and contact line.In order to study different contributions from these four factors to whole damping,several examples are simulated.No-slip and slip wall boundary conditions on both side wall and bottom wall of the cylindrical containers are studied to compare with the published results obtained by solving Stokes equations.In the present method the first three main factors can be considered.The simulation results show that the boundary-layer damping contribution increases while the interior fluid damping contribution decreases with increase of Reynolds number.
Viscous liquid sloshing damping in cylindrical container using a volume of fluid method
YANG Wei; LIU ShuHong; LIN Hong
2009-01-01
Liquid sloshing is a kind of very complicated free surface flow and exists widely in many fields. In order to calculate liquid sloshing damping precisely a volume of fluid method based on finite volume scheme is used to simulate free surface flows in partly filled cylindrical containers. A numerical method is pre-sented to simulate the movement of the free surface flow, in which a piecewise linear interface con-struction scheme and an unsplit Lagrangian advection scheme instead of Eulerian advection scheme are used. The damping performance of liquid sloshing in cylindrical containers under fundamental sloshing mode is investigated. There are four factors determining the surface-wave damping: free surface, boundary-layer, interior fluid and contact line. In order to study different contributions from these four factors to whole damping, several examples ere simulated. No-slip and slip wall boundary conditions on both side wall and bottom wall of the cylindrical containers are studied to compare with the published results obtained by solving Stokes equations. In the present method the first three main factors can be considered. The simulation results show that the boundary-layer damping contribution increases while the interior fluid damping contribution decreases with increase of Reynolds number.
Probing the early-time dynamics of relativistic heavy-ion collisions with electromagnetic radiation
Vujanovic, Gojko; Denicol, Gabriel S; Luzum, Matthew; Schenke, Bjoern; Jeon, Sangyong; Gale, Charles
2014-01-01
Using 3+1D viscous relativistic fluid dynamics, we show that electromagnetic probes are sensitive to the initial conditions and to the out-of-equilibrium features of relativistic heavy-ion collisions. Within the same approach, we find that hadronic observables show a much lesser sensitivity to these aspects. We conclude that electromagnetic observables allow access to dynamical regions that are beyond the reach of soft hadronic probes.
Lubricated viscous gravity currents
Kowal, Katarzyna N.; Worster, M. Grae
2015-01-01
This is the author accepted manuscript. The final version is available via CUP at http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9553100&fileId=S0022112015000300. We present a theoretical and experimental study of viscous gravity currents lubricated by another viscous fluid from below. We use lubrication theory to model both layers as Newtonian fluids spreading under their own weight in two-dimensional and axisymmetric settings over a smooth rigid horizontal surfa...
Guha, Abhijit; Sengupta, Sayantan
2014-03-01
In this article, the fluid dynamics of work transfer within the narrow spacing (usually of the order of 100 μm) of multiple concentric discs of a Tesla disc turbomachine (turbine or compressor) has been analysed theoretically and computationally. Both the overall work transfer and its spatial development have been considered. It has been established that the work transfer mechanism in a Tesla disc turbomachine is very different from that in a conventional turbomachine, and the formulation of the Euler's work equation for the disc turbomachine contains several conceptual subtleties because of the existence of complex, three dimensional, non-uniform, viscous flow features. A work equivalence principle has been enunciated, which establishes the equality between the magnitudes of work transfer determined rigorously from two different approaches—one based on the shear stress acting on the disc surfaces and the other based on the change in angular momentum of the fluid. Care is needed in identifying the shear stress components that are responsible for the generation or absorption of useful power. It is shown from the Reynolds transport theorem that mass-flow-averaged tangential velocities (as opposed to the normally used area-averaged values) must be used in determining the change in angular momentum; the calculation has to be carefully formulated since both radial velocity (that determines throughput) and tangential velocity (that generates torque) depend strongly on the coordinate perpendicular to the disc surfaces. The principle of work transfer has been examined both in the absolute and relative frames of reference, revealing the subtle role played by Coriolis force. The concept of a new non-dimensional quantity called the torque potential fraction (Δ tilde H) is introduced. The value of Δ tilde H at any radial position increases with a decrease in inter-disc spacing. The computational fluid dynamic analysis shows that, for small value of inter-disc spacing and
Murad, Mohammad Hassan
2014-01-01
In this work some families of relativistic anisotropic charged fluid spheres have been obtained by solving Einstein-Maxwell field equations with preferred form of one of the metric potentials, a suitable forms of electric charge distribution and pressure anisotropy functions. The resulting equation of state (EOS) of the matter distribution has been obtained. Physical analysis shows that the relativistic stellar structure for matter distribution obtained in this work may reasonably model an electrically charged compact star whose energy density associated with the electric fields is on the same order of magnitude as the energy density of fluid matter itself (e.g. electrically charged bare strange stars). These models permit a simple method of systematically fixing bounds on the maximum possible mass of cold compact electrically charged self-bound stars. It has been demonstrated numerically that the maximum compactness and mass increase in the presence of electric field and anisotropic pressures. Based on the a...
Observation of dispersive shock waves, solitons, and their interactions in viscous fluid conduits
Anderson, Dalton; Maiden, Michelle; Lowman, Nicholas; Schubert, Marika; Hoefer, Mark
2016-11-01
Dispersive shock waves (DSWs) and solitons are fundamental structures in dispersive hydrodynamics, but studies have been severely constrained. Here we report on a novel testbed called the conduit system where one fluid is moved through another via a fluid pipe with virtually no mass diffusion. The interfacial dynamics of this pipe are conservative and are modeled by a scalar, nonlinear, dispersive wave equation, similar to those describing a superfluid. Resultantly, the interfacial waves are effectively dissipationless, which enables high fidelity observations of coherent phenomena such as large amplitude DSWs. Experiments involving solitons, wavebreaking leading to DSWs, and their interactions will be presented. The results include the refraction and absorption of a soliton by a DSW and the refraction of a DSW by a second DSW, resulting in two-phase behavior. Excellent agreement between nonlinear wave averaging, numerics, and laboratory experiments will be presented. The nonlinear wave dynamics observed in this model system have implications for a broad range of other conservative dispersive hydrodynamic systems. NSF.
Molteni, Diego; Battaglia, Onofrio Rosario
2016-01-01
We study the phenomenon of the "walking droplet", by means of numerical fluid dynamics simulations using a standard version of the Smoothed Particle Hydrodynamics method. The phenomenon occurs when a millimetric drop is released on the surface of an oil of the same composition contained in a container subjected to vertical oscillations of frequency and amplitude close to the Faraday instability threshold. At appropriate values of the parameters of the system under study, the liquid drop jumps permanently on the surface of the vibrating fluid forming a localized wave-particle system, reminding the behavior of a wave particle quantum system as suggested by de Broglie. In the simulations, the drop and the wave travel at nearly constant speed, as observed in experiments. In our study we made relevant simplifying assumptions, however we observe that the wave-drop coupling is easily obtained. This fact suggests that the phenomenon may occur in many contexts and opens the possibility to study the phenomenon in an ex...
Numerical simulation of fluid/structure interaction phenomena in viscous dominated flows
Tran, Hai Duong
2001-12-01
The accurate prediction of buffet boundaries is essential in modern military aircraft and suspension bridge design in order to avoid the potentially disastrous consequences of unsteady loads. The design of lightweight structures and thermal protection systems for supersonic and hypersonic vehicles depends on the accurate prediction of the aerothermal loads, the structural temperatures and their gradients, and the structural deformations and stresses. Despite their bounded nature, limit-cycle oscillations can exhibit important amplitudes which affect the fatigue life of aircraft structures. Therefore, the main objective of this thesis is to develop and design an integrated multidisciplinary computational methodology for the analyses of the coupled responses exhibited by these phenomena. To simulate fluid/structure interaction problems in turbulent flows, we formulate the k--epsilon turbulence model and Reichardt's wall law in ALE form for dynamic meshes. This law is used with the generalized boundary conditions on k and epsilon of Jaeger and Dhatt and allows a closer integration to the wall compared to standard logarithmic laws and boundary conditions on k and epsilon. In order to apply the methodology to buffeting problems dominated by vortex shedding, we validate our solution approach on the square cylinder benchmark problem. There, we stress the minimization of numerical dissipation induced by an upwinding scheme, and apply our methodology to the aeroelastic stability analysis of a sectional dynamic model of the Tacoma Narrows Bridge. Then, we extend the three field formulation of aeroelasticity to a four-field formulation of aerothermoelasticity for the analysis of aerodynamic heating on structures. With a k--epsilon model, the time-averaged Navier-Stokes equations are integrated up to a distance delta from the real wall. This gap creates a problem for the transmission of the structural temperature to the fluid system. To resolve this problem, we exchange the
Gong, Yuezheng; Zhao, Jia; Wang, Qi
2017-10-01
A quasi-incompressible hydrodynamic phase field model for flows of fluid mixtures of two incompressible viscous fluids of distinct densities and viscosities is derived by using the generalized Onsager principle, which warrants the variational structure, the mass conservation and energy dissipation law. We recast the model in an equivalent form and discretize the equivalent system in space firstly to arrive at a time-dependent ordinary differential and algebraic equation (DAE) system, which preserves the mass conservation and energy dissipation law at the semi-discrete level. Then, we develop a temporal discretization scheme for the DAE system, where the mass conservation and the energy dissipation law are once again preserved at the fully discretized level. We prove that the fully discretized algorithm is unconditionally energy stable. Several numerical examples, including drop dynamics of viscous fluid drops immersed in another viscous fluid matrix and mixing dynamics of binary polymeric solutions, are presented to show the convergence property as well as the accuracy and efficiency of the new scheme.
Magri, Fabien; Cacace, Mauro; Fischer, Thomas; Kolditz, Olaf; Wang, Wenqing; Watanabe, Norihiro
2017-04-01
In contrast to simple homogeneous 1D and 2D systems, no appropriate analytical solutions exist to test onset of thermal convection against numerical models of complex 3D systems that account for variable fluid density and viscosity as well as permeability heterogeneity (e.g. presence of faults). Owing to the importance of thermal convection for the transport of energy and minerals, the development of a benchmark test for density/viscosity driven flow is crucial to ensure that the applied numerical models accurately simulate the physical processes at hands. The presented study proposes a 3D test case for the simulation of thermal convection in a faulted system that accounts for temperature dependent fluid density and viscosity. The linear stability analysis recently developed by Malkovsky and Magri (2016) is used to estimate the critical Rayleigh number above which thermal convection of viscous fluids is triggered. The numerical simulations are carried out using the finite element technique. OpenGeoSys (Kolditz et al., 2012) and Moose (Gaston et al., 2009) results are compared to those obtained using the commercial software FEFLOW (Diersch, 2014) to test the ability of widely applied codes in matching both the critical Rayleigh number and the dynamical features of convective processes. The methodology and Rayleigh expressions given in this study can be applied to any numerical model that deals with 3D geothermal processes in faulted basins as by example the Tiberas Basin (Magri et al., 2016). References Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J. O., Fischer, T., U. J. Görke, T. Kalbacher, G. Kosakowski, McDermott, C. I., Park, C. H., Radu, F., Rink, K., Shao, H., Shao, H.B., Sun, F., Sun, Y., Sun, A., Singh, K., Taron, J., Walther, M., Wang,W., Watanabe, N., Wu, Y., Xie, M., Xu, W., Zehner, B., 2012. OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environmental
Rasool Alizadeh
2016-03-01
Full Text Available The steady-state viscous flow and heat transfer in the vicinity of an unaxisymmetric stagnation-point of an infinite stationary cylinder with non-uniform normal transpiration U0φ and uniform transverse magnetic field and constant wall temperature are investigated. The impinging free-stream is steady and with a constant strain rate k¯. A reduction of Navier–Stokes and energy equations is obtained by use of appropriate similarity transformations. The semi-similar solution of the Navier–Stokes equations and energy equation has been obtained numerically using an implicit finite-difference scheme. All the solutions aforesaid are presented for Reynolds numbers, Re=k¯a2/2υ, ranging from 0.01 to 100 for different values of Prandtl number and magnetic parameter and for selected values of transpiration rate function, S(φ=U0(φ/k¯a, where a is cylinder radius and υ is kinematic viscosity of the fluid. Dimensionless shear-stresses corresponding to all the cases increase with the increase in Reynolds number and transpiration rate function while dimensionless shear-stresses decrease with the increase in magnetic parameter. The local coefficient of heat transfer (Nusselt number increases with the increasing transpiration rate function and Prandtl number.
K. V. Litvinov
2016-01-01
Full Text Available In this paper, we analyzed the flat non-isothermal stationary flow of abnormally viscous fluid in the channels with asymmetric boundary conditions and an unknown output boundary. The geometry of the channels in which the problem is considered, is such regions, that at the transition to bipolar a system of coordinates map into rectangles. This greatly simplifies the boundary conditions, since it is possible to use an orthogonal grid and boundary conditions are given in its nodes. Fields of this type are often found in applications. The boundary conditions are set as follows: the liquid sticks to the boundaries of the channels, which rotate at different speeds and have different radius and temperature; moreover, temperature at the entrance to deformation is known, while on the boundary with the surface the material has the surface temperature; the pressure on the enter and exit of the region becomes zero. The rheological model only takes into account the anomaly of viscosity. The material is not compressible. This process can be described by a system consisting of continuity equations, the equations of conservation of momentum and an energy equation: ∇
Harko, T
2016-01-01
Obtaining exact solutions of the spherically symmetric general relativistic gravitational field equations describing the interior structure of an isotropic fluid sphere is a long standing problem in theoretical and mathematical physics. The usual approach to this problem consists mainly in the numerical investigation of the Tolman-Oppenheimer-Volkoff and of the mass continuity equations, which describes the hydrostatic stability of the dense stars. In the present paper we introduce an alternative approach for the study of the relativistic fluid sphere, based on the relativistic mass equation, obtained by eliminating the energy density in the Tolman-Oppenheimer-Volkoff equation. Despite its apparent complexity, the relativistic mass equation can be solved exactly by using a power series representation for the mass, and the Cauchy convolution for infinite power series. We obtain exact series solutions for general relativistic dense astrophysical objects described by the linear barotropic and the polytropic equa...
Comparison of predicting drag methods using computational fluid dynamics in 2d/3d viscous flow
ZHU; ZiQiang; WANG; XiaoLu; LIU; Jie; LIU; Zhou
2007-01-01
As a result of the necessity of aircraft engineering design and the progress of computational fluid dynamics (CFD), techniques of accurately predicting aerodynamic drag are being increasingly explored. According to the momentum balance, the drag can be represented by an integral over a cross-flow plane (called wake integration method) at an arbitrary distance behind the configuration. A formulation to reduce the size of the wake cross plane region required for calculating the drag is developed by using cutoff parameters of vorticity and entropy. This increases the calculation accuracy and decreases the computation time required. Numerical experiments are made to obtain the threshold values of these cutoff parameters. The wake integration method is applied to predict drags of some examples including airfoil, a variety of wings and wing-body combination. Numerical results are compared with those of traditional surface integration method, showing that the predicting drag values with the wake integration method are closer to the experimental data. The results also show that drag prediction within engineering accuracy is possible by using CFD and the numerical drag optimization of complex aircraft configurations is possible, too.
Performance of Twin-Fluid Atomizers for Atomization of Viscous Solutions
Mlkvik Marek
2015-01-01
Full Text Available Presented paper deals with a comparison of two internally mixing twin fluid atomizers. The well - known Y- jet atomizer and so called outside-in-liquid effervescent atomizer (OUIL were investigated. The working regimes were defined by the pressure drop (Δp and the gas to the liquid ratio (GLR. The internal and the external two-phase flows of both atomizers were studied. The influence of the mixing mechanism on the internal flow was evaluated by the gas to the liquid momentum ratio (Φ. In advance, the stability of the separated flow (liquid film was examined in term of the critical wavelength of the surface disturbances (λc. The external flow was observed by the high – speed camera. The influence of the basic forces on the deformation of the liquid was determined by a dimensionless criterion w·μ / σ. The values of Φ 3, where the liquid momentum overcomes the gas momentum. The values of w·μ / σ> 20 for both atomizers indicates the dominant influence of the viscosity and the drag force on the breakup process.
Film Flow Dominated Simultaneous Flow of Two Viscous Incompressible Fluids Through a Porous Medium
Olav eAursjø
2014-11-01
Full Text Available We present an experimental study of two-phase flow in a quasi-two-dimensional porous medium. The two phases, a water-glycerol solution and a commercial food grade rapeseed/canola oil, having an oil to water-glycerol viscosity ratio of 1.3, are injected simultaneously into a Hele-Shaw cell with a mono-layer of randomly distributed glass beads. The two liquids are injected into the model from alternating point inlets. Initially, the porous model is filled with the water-glycerol solution. We observe that after an initial transient state, an overall static cluster configuration is obtained. While the oil is found to create a connected system spanning cluster, a large part of the water-glycerol clusters left behind the initial invasion front is observed to remain immobile throughout the rest of the experiment. This could suggest that the water-glycerol flow-dynamics is largely dominated by film flow. The flow pathways are thus given through the dynamics of the initial invasion. This behavior is quite different from that observed in systems with large viscosity differences between the two fluids, and where compressibility plays an important part of the process.
On Renormalizing Viscous Fluids as Models for Large Scale Structure Formation
Führer, Florian
2015-01-01
We consider renormalization of the Adhesion Model for cosmic structure formation. This is a simple model that shares many relevant features of recent approaches which add effective viscosity and noise terms to the fluid equations of Cold Dark Matter, offering itself as a pedagogical playground to study the removal of the cutoff dependence from loop integrals. We show in this context that if the viscosity and noise terms are treated as perturbative corrections to the standard eulerian perturbation theory, as is done for example in the Effective Field Theory of Large Scale Structure (EFToLSS) approach, they are necessarily non-local in time. To ensure Galilean Invariance higher order vertices related to the viscosity and the noise must be added. We explicitly show at one-loop that these terms act as counter terms for vertex diagrams, while the Ward Identities ensure that the non-local theory can be renormalized consistently. A local-in-time theory is renormalizable if the viscosity is included in the linear pro...
Analytical study on accelerating falling of non-spherical particle in viscous fluid
Amir MALVANDI; Davood Domairry GANJI; Ali MALVANDI
2014-01-01
Unsteady motion of a vertically falling non-spherical particle has attracted considerable attention due to its frequent applications in nature and industry. A series of semi-analytical methods have been used to raise the results’ accuracy as well as widening the region of convergence. The current study pursued a new analytical solution for the unsteady motion of a rigid non-spherical particle in a quiescent Newtonian fluid, based on the Optimal Homotopy Analysis Method. With a view towards obtaining the highest level of accuracy and ensuring the convergence of the analytical results, the averaged residual errors were obtained and minimized. In addition to flexibility, it was also proven that the proposed method can lead to completely reliable and precisely accurate results. Based on the series solution, the effects of physical parameters on the terminal settling velocity (i.e. the greatest velocity that a falling body may reach) and the acceleration time (i.e. the time that a particle reaches the settling velocity) are investigated.
Technology of complex new type of viscous fluids/short fibers%新型粘流体/短纤维复合生产工艺
霍力超
2012-01-01
本文介绍了一种使用双螺杆聚合反应器替代传统生产装置,解决现有粘流体掺混生产周期长、真空脱气不彻底、不易放料等工艺技术难题.讨论了生产工艺对粘流体/短纤维复合产品的影响因素和产品稳定性.%The traditional device was displaced by twin screw reactor for polymerization to solve the problems of long production cycle of viscous fluids, vacuum degassing incompletely and feed hard. The effect influence and stability of technology to viscous fluids/short fibers were discussed.
Zhao, Jia; Yang, Xiaofeng; Shen, Jie; Wang, Qi
2016-01-01
We develop a linear, first-order, decoupled, energy-stable scheme for a binary hydrodynamic phase field model of mixtures of nematic liquid crystals and viscous fluids that satisfies an energy dissipation law. We show that the semi-discrete scheme in time satisfies an analogous, semi-discrete energy-dissipation law for any time-step and is therefore unconditionally stable. We then discretize the spatial operators in the scheme by a finite-difference method and implement the fully discrete scheme in a simplified version using CUDA on GPUs in 3 dimensions in space and time. Two numerical examples for rupture of nematic liquid crystal filaments immersed in a viscous fluid matrix are given, illustrating the effectiveness of this new scheme in resolving complex interfacial phenomena in free surface flows of nematic liquid crystals.
Fedosin, Sergey G
2016-01-01
From the principle of least action the equation of motion for viscous compressible and charged fluid is derived. The viscosity effect is described by the 4-potential of the energy dissipation field, dissipation tensor and dissipation stress-energy tensor. In the weak field limit it is shown that the obtained equation is equivalent to the Navier-Stokes equation. The equation for the power of the kinetic energy loss is provided, the equation of motion is integrated, and the dependence of the velocity magnitude is determined. A complete set of equations is presented, which suffices to solve the problem of motion of viscous compressible and charged fluid in the gravitational and electromagnetic fields.
Theory of two-dimensional Fourier transform electron spin resonance for ordered and viscous fluids
Lee, Sanghyuk; Budil, David E.; Freed, Jack H.
1994-10-01
A comprehensive theory for interpreting two-dimensional Fourier transform (2D-FT) electron spin resonance (ESR) experiments that is based on the stochastic Liouville equation is presented. It encompasses the full range of motional rates from fast through very slow motions, and it also provides for microscopic as well as macroscopic molecular ordering. In these respects it is as sophisticated in its treatment of molecular dynamics as the theory currently employed for analyzing cw ESR spectra. The general properties of the pulse propagator superoperator, which describes the microwave pulses in Liouville space, are analyzed in terms of the coherence transfer pathways appropriate for COSY (correlation spectroscopy), SECSY (spin-echo correlation spectroscopy), and 2D-ELDOR (electron-electron double resonance) sequences wherein either the free-induction decay (FID) or echo decay is sampled. Important distinctions are made among the sources of inhomogeneous broadening, which include (a) incomplete spectral averaging in the slow-motional regime, (b) unresolved superhyperfine structure and related sources, and (c) microscopic molecular ordering but macroscopic disorder (MOMD). The differing effects these sources of inhomogeneous broadening have on the two mirror image coherence pathways observed in the dual quadrature 2D experiments, as well as on the auto vs crosspeaks of 2D-ELDOR, is described. The theory is applied to simulate experiments of nitroxide spin labels in complex fluids such as membrane vesicles, where the MOMD model applies and these distinctions are particularly relevant, in order to extract dynamic and ordering parameters. The recovery of homogeneous linewidths from FID-based COSY experiments on complex fluids with significant inhomogeneous broadening is also described. The theory is applied to the ultraslow motional regime, and a simple method is developed to determine rotational rates from the broadening of the autopeaks of the 2D-ELDOR spectra as a
Theory of activated penetrant diffusion in viscous fluids and colloidal suspensions.
Zhang, Rui; Schweizer, Kenneth S
2015-10-14
We heuristically formulate a microscopic, force level, self-consistent nonlinear Langevin equation theory for activated barrier hopping and non-hydrodynamic diffusion of a hard sphere penetrant in very dense hard sphere fluid matrices. Penetrant dynamics is controlled by a rich competition between force relaxation due to penetrant self-motion and collective matrix structural (alpha) relaxation. In the absence of penetrant-matrix attraction, three activated dynamical regimes are predicted as a function of penetrant-matrix size ratio which are physically distinguished by penetrant jump distance and the nature of matrix motion required to facilitate its hopping. The penetrant diffusion constant decreases the fastest with size ratio for relatively small penetrants where the matrix effectively acts as a vibrating amorphous solid. Increasing penetrant-matrix attraction strength reduces penetrant diffusivity due to physical bonding. For size ratios approaching unity, a distinct dynamical regime emerges associated with strong slaving of penetrant hopping to matrix structural relaxation. A crossover regime at intermediate penetrant-matrix size ratio connects the two limiting behaviors for hard penetrants, but essentially disappears if there are strong attractions with the matrix. Activated penetrant diffusivity decreases strongly with matrix volume fraction in a manner that intensifies as the size ratio increases. We propose and implement a quasi-universal approach for activated diffusion of a rigid atomic/molecular penetrant in a supercooled liquid based on a mapping between the hard sphere system and thermal liquids. Calculations for specific systems agree reasonably well with experiments over a wide range of temperature, covering more than 10 orders of magnitude of variation of the penetrant diffusion constant.
Theory of activated penetrant diffusion in viscous fluids and colloidal suspensions
Zhang, Rui; Schweizer, Kenneth S.
2015-10-01
We heuristically formulate a microscopic, force level, self-consistent nonlinear Langevin equation theory for activated barrier hopping and non-hydrodynamic diffusion of a hard sphere penetrant in very dense hard sphere fluid matrices. Penetrant dynamics is controlled by a rich competition between force relaxation due to penetrant self-motion and collective matrix structural (alpha) relaxation. In the absence of penetrant-matrix attraction, three activated dynamical regimes are predicted as a function of penetrant-matrix size ratio which are physically distinguished by penetrant jump distance and the nature of matrix motion required to facilitate its hopping. The penetrant diffusion constant decreases the fastest with size ratio for relatively small penetrants where the matrix effectively acts as a vibrating amorphous solid. Increasing penetrant-matrix attraction strength reduces penetrant diffusivity due to physical bonding. For size ratios approaching unity, a distinct dynamical regime emerges associated with strong slaving of penetrant hopping to matrix structural relaxation. A crossover regime at intermediate penetrant-matrix size ratio connects the two limiting behaviors for hard penetrants, but essentially disappears if there are strong attractions with the matrix. Activated penetrant diffusivity decreases strongly with matrix volume fraction in a manner that intensifies as the size ratio increases. We propose and implement a quasi-universal approach for activated diffusion of a rigid atomic/molecular penetrant in a supercooled liquid based on a mapping between the hard sphere system and thermal liquids. Calculations for specific systems agree reasonably well with experiments over a wide range of temperature, covering more than 10 orders of magnitude of variation of the penetrant diffusion constant.
Theory of activated penetrant diffusion in viscous fluids and colloidal suspensions
Zhang, Rui; Schweizer, Kenneth S., E-mail: kschweiz@illinois.edu [Department of Materials Science and Frederick Seitz Materials Research Laboratory, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801 (United States)
2015-10-14
We heuristically formulate a microscopic, force level, self-consistent nonlinear Langevin equation theory for activated barrier hopping and non-hydrodynamic diffusion of a hard sphere penetrant in very dense hard sphere fluid matrices. Penetrant dynamics is controlled by a rich competition between force relaxation due to penetrant self-motion and collective matrix structural (alpha) relaxation. In the absence of penetrant-matrix attraction, three activated dynamical regimes are predicted as a function of penetrant-matrix size ratio which are physically distinguished by penetrant jump distance and the nature of matrix motion required to facilitate its hopping. The penetrant diffusion constant decreases the fastest with size ratio for relatively small penetrants where the matrix effectively acts as a vibrating amorphous solid. Increasing penetrant-matrix attraction strength reduces penetrant diffusivity due to physical bonding. For size ratios approaching unity, a distinct dynamical regime emerges associated with strong slaving of penetrant hopping to matrix structural relaxation. A crossover regime at intermediate penetrant-matrix size ratio connects the two limiting behaviors for hard penetrants, but essentially disappears if there are strong attractions with the matrix. Activated penetrant diffusivity decreases strongly with matrix volume fraction in a manner that intensifies as the size ratio increases. We propose and implement a quasi-universal approach for activated diffusion of a rigid atomic/molecular penetrant in a supercooled liquid based on a mapping between the hard sphere system and thermal liquids. Calculations for specific systems agree reasonably well with experiments over a wide range of temperature, covering more than 10 orders of magnitude of variation of the penetrant diffusion constant.
Mirigian, Stephen [University of Illinois, Urbana-Champaign; Schweizer, Kenneth [University of Illinois
2014-01-01
Building on the elastically collective nonlinear Langevin equation theory developed for hard spheres in Paper I, we propose and implement a quasi-universal theory for the alpha relaxation of thermal liquids based on mapping them to an effective hard sphere fluid via the dimensionless compressibility. The result is a zero adjustable parameter theory that can quantitatively address in a unified manner the alpha relaxation time over 14 or more decades. The theory has no singularities above zero Kelvin, and relaxation in the equilibrium low temperature limit is predicted to be of a roughly Arrhenius form. The two-barrier (local cage and long range collective elastic) description results in a rich dynamic behavior including apparent Arrhenius, narrow crossover, and deeply supercooled regimes, and multiple characteristic or crossover times and temperatures of clear physical meaning. Application of the theory to nonpolar molecules, alcohols, rare gases, and liquids metals is carried out. Overall, the agreement with experiment is quite good for the temperature dependence of the alpha time, plateau shear modulus, and Boson-like peak frequency for van der Waals liquids, though less so for hydrogen-bonding molecules. The theory predicts multiple growing length scales upon cooling, which reflect distinct aspects of the coupled local hopping and cooperative elastic physics. Calculations of the growth with cooling of an activation volume, which is strongly correlated with a measure of dynamic cooperativity, agree quantitatively with experiment. Comparisons with elastic, entropy crisis, dynamic facilitation, and other approaches are performed, and a fundamental basis for empirically extracted crossover temperatures is established. The present work sets the stage for addressing distinctive glassy phenomena in polymer melts, and diverse liquids under strong confinement.
Mirigian, Stephen; Schweizer, Kenneth S.
2014-05-01
Building on the elastically collective nonlinear Langevin equation theory developed for hard spheres in Paper I, we propose and implement a quasi-universal theory for the alpha relaxation of thermal liquids based on mapping them to an effective hard sphere fluid via the dimensionless compressibility. The result is a zero adjustable parameter theory that can quantitatively address in a unified manner the alpha relaxation time over 14 or more decades. The theory has no singularities above zero Kelvin, and relaxation in the equilibrium low temperature limit is predicted to be of a roughly Arrhenius form. The two-barrier (local cage and long range collective elastic) description results in a rich dynamic behavior including apparent Arrhenius, narrow crossover, and deeply supercooled regimes, and multiple characteristic or crossover times and temperatures of clear physical meaning. Application of the theory to nonpolar molecules, alcohols, rare gases, and liquids metals is carried out. Overall, the agreement with experiment is quite good for the temperature dependence of the alpha time, plateau shear modulus, and Boson-like peak frequency for van der Waals liquids, though less so for hydrogen-bonding molecules. The theory predicts multiple growing length scales upon cooling, which reflect distinct aspects of the coupled local hopping and cooperative elastic physics. Calculations of the growth with cooling of an activation volume, which is strongly correlated with a measure of dynamic cooperativity, agree quantitatively with experiment. Comparisons with elastic, entropy crisis, dynamic facilitation, and other approaches are performed, and a fundamental basis for empirically extracted crossover temperatures is established. The present work sets the stage for addressing distinctive glassy phenomena in polymer melts, and diverse liquids under strong confinement.
Khosravian, N; Rafii-Tabar, H
2008-07-09
In the design of nanotube-based fluidic devices, a critical issue is the effect of the induced vibrations in the nanotube arising from the fluid flow, since these vibrations can promote structural instabilities, such as buckling transitions. It is known that the induced resonant frequencies depend on the fluid flow velocity in a significant manner. We have studied, for the first time, the flow of a non-viscous fluid in stubby multi-walled carbon nanotubes, using the Timoshenko classical beam theory to model the nanotubes as a continuum structure. We have obtained the variations of the resonant frequencies with the fluid flow velocity under several experimentally interesting boundary conditions and aspect ratios of the nanotube. The main finding from our work is that, compared to an Euler-Bernoulli classical beam model of a nanotube, the Timoshenko beam predicts the loss of stability at lower fluid flow velocities.
Jamaludin, Anuar; Nazar, Roslinda; Shafie, Sharidan
2017-08-01
This study presents the numerical solutions of boundary layer flow and heat transfer over a stretching sheet with viscous dissipation and internal heat generation. Thermal boundary condition on the surface, namely prescribed heat flux (PHF) is used. The governing nonlinear partial differential equations are transformed into nonlinear ordinary differential equations by applying the similarity transformations before reduced to the system of first order ordinary differential equations. Then the system of first order ordinary differential equations is solved numerically using an implicit finite difference scheme, known as the Keller-box method. The numerical solutions are generated using MATLAB. Temperature profiles and the temperature gradient for some values of the Prandtl number, Eckert number and heat/source sink parameter are presented in figures and discussed in details.
Microbubble oscillating in a microvessel filled with viscous fluid: A finite element modeling study.
Chen, Chuyi; Gu, Yuyang; Tu, Juan; Guo, Xiasheng; Zhang, Dong
2016-03-01
Understanding the dynamics of coated-microbubble oscillating in an elastic microvessel is important for effective and safe applications of ultrasound contrast agents (UCAs) in imaging and therapy. Numerical simulations are performed based on a two-dimensional (2D) asymmetric finite element model to investigate the influences of both acoustic driving parameters (e.g., pressure and frequency) and material properties (vessel size, microbubble shell visco-elastic parameters and fluid viscosity) on the dynamic interactions in the bubble-blood-vessel system. The results show that, the constrained effect of the blood vessel along the radial direction will induce the asymmetric bubble oscillation and vessel deformation, as well as shifting the bubble resonance frequency toward the higher frequency range. For a bubble (1.5-μm radius) activated by 1-MHz ultrasound pulses in a microvessel with a radius varying between 2 and 6.5 μm, up to 26.95 kPa shear stress could be generated on the vessel wall at a driving pressure of 0.2 MPa, which should be high enough to damage the vascular endothelial cells. The asymmetrical oscillation ratio of the bubble can be aggravated from 0.12% to 79.94% with the increasing acoustic driving pressure and blood viscosity, or the decreasing vessel size and microbubble shell visco-elastic properties. The maximum compression velocity on the bubble shell will be enhanced from 0.19 to 22.79 m/s by the increasing vessel size and acoustic pressure, or the decreasing microbubble shell visco-elasticity and blood viscosity. As the results, the peak values of microstreaming-induced shear stress on the vessel wall increases from 0.003 to 26.95 kPa and the deformation degree of vessel is raised from 1.01 to 1.49, due to the enhanced acoustic amplitude, or the decreasing vessel size, blood viscosity and microbubble shell visco-elasticity. Moreover, it also suggests that, among above impact parameters, microbubble resonance frequency and UCA shell elasticity
Uwanta, I. J.; Hamza, M. M.
2014-01-01
An investigation is performed to study the effect of suction/injection on unsteady hydromagnetic natural convection flow of viscous reactive fluid between two vertical porous plates in the presence of thermal diffusion. The partial differential equations governing the flow have been solved numerically using semi-implicit finite-difference scheme. For steady case, analytical solutions have been derived using perturbation series method. Suction/injection is used to control the fluid flow in the channel, and an exothermic chemical reaction of Arrhenius kinetic is considered. Numerical results are presented graphically and discussed quantitatively with respect to various parameters embedded in the problem. PMID:27382632
Causal viscous cosmology without singularities
Laciana, Carlos E
2016-01-01
An isotropic and homogeneous cosmological model with a source of dark energy is studied. That source is simulated with a viscous relativistic fluid with minimal causal correction. In this model the restrictions on the parameters coming from the following conditions are analized: a) energy density without singularities along time, b) scale factor increasing with time, c) universe accelerated at present time, d) state equation for dark energy with "w" bounded and close to -1. It is found that those conditions are satified for the following two cases. i) When the transport coefficient ({\\tau}_{{\\Pi}}), associated to the causal correction, is negative, with the aditional restriction {\\zeta}|{\\tau}_{{\\Pi}}|>2/3, where {\\zeta} is the relativistic bulk viscosity coefficient. The state equation is in the "phantom" energy sector. ii) For {\\tau}_{{\\Pi}} positive, in the "k-essence" sector. It is performed an exact calculation for the case where the equation of state is constant, finding that option (ii) is favored in r...
Wehrens, Philip; Berger, Alfons; Peters, Max; Spillmann, Thomas; Herwegh, Marco
2016-12-01
Mid-crustal deformation is classically characterized by the transition from ductile to brittle deformation defining the frictional-to-viscous transition (FVT). Here we investigate an exhumed continental mid-crustal basement section in order to envisage the relationship between ductile and brittle deformation at the FVT. Our detailed study from km- to micro-scale shows that, under greenschist metamorphic conditions, deformation is accommodated by a dense network of highly-localized ductile shear zones. In the investigated case it is not quartz which defines the overall ductile deformation behavior but the viscous granular deformation in shear zones with an ultrafine-grained polymineralic matrix consisting of quartz, feldspar, sheet silicates and epidote. During viscous granular flow mass transfer processes under the presence of fluids promote a chemo-mechanical mixing, resulting in grain size reduction and reaction softening. Coeval with this ductile deformation, fluid-assisted embrittlement occurs, as indicated by biotite-coated fractures, cataclasites and injection of non-cohesive polymineralic gouge material into secondary fractures inside the host rock. The embrittlement during predominant ductile deformation occurs in cycles, i.e. prolonged periods of slow viscous granular flow are interrupted by rapid brittle deformation. We interpret this fluid-assisted cyclic embrittlement evidenced by injection of the fluidized material into off-fault fractures as an alternative equivalent to pseudotachylites and as a microstructural indicator for paleo-seismic activity. With exhumation and associated cooling, localized deformation persists in the ultrafine-grained polymineralic shear zones but progressively transitions to cataclastic flow and finally to pressure-dependent frictional flow; always showing cycles of slow interseismic flow and fast seismic injection events. Overall, in the granitic crust of the Aar-massif, brittle and ductile deformation coexist up to
Mitri, F G
2016-12-01
The goal of this work is to demonstrate the emergence of a spin torque singularity (i.e. zero spin torque) and a spin rotation reversal of a small Rayleigh lipid/fat viscous fluid sphere located arbitrarily in space in the field of an acoustical Bessel vortex beam. This counter-intuitive property of negative spin torque generation suggests a direction of spin rotation in opposite handedness of the angular momentum carried by the incident beam. Such effects may open new capabilities in methods of quantitative characterization to determine physical properties such as viscosity, viscoelasticity, compressibility, stiffness, etc., and other techniques for the rotation and positioning using acoustical tractor beams and tweezers, invisibility cloaks, and acoustically-engineered composite metamaterials to name a few examples. Based on the descriptions for the velocity potential of the incident beam and the scattering coefficients of the sphere in the long-wavelength approximation limit, simplified expressions for the spin and orbital radiation torque components are derived. For beams with (positive or negative) unit topological charge (m=±1), the axial spin torque component for a Rayleigh absorptive sphere is maximal at the center of the beam, while it vanishes for |m|>1 therein. Moreover, the longitudinal orbital torque component, causing the sphere to rotate around the center of the beam is evaluated based on the mathematical decomposition using the gradient, scattering and absorption transverse radiation force vector components. It is shown that there is no contribution of the gradient transverse force to the orbital torque, which is only caused by the scattering and absorption transverse force components. Though the incident acoustical vortex beam carrying angular momentum causes the sphere to rotate in the same orbital direction of the beam handedness, it induces a spin torque singularity (i.e. zero spin torque) and subsequent sign reversal. This phenomenon of
K.C. Saha
2015-04-01
Full Text Available The effects of MHD free convection heat and mass transfer of power-law Non-Newtonian fluids along a stretching sheet with viscous dissipation has been analyzed. This has been done under the simultaneous action of suction, thermal radiation and uniform transverse magnetic field. The stretching sheet is assumed to continuously moving with a power-law velocity and maintaining a uniform surface heat-flux. The governing non-linear partial differential equations are transformed into non-linear ordinary differential equations, using appropriate similarity transformations and the resulting problem is solved numerically using Nachtsheim-Swigert shooting iteration technique along with sixth order Runge-Kutta integration scheme. A parametric study of the parameters arising in the problem such as the Eckert number due to viscous dissipation, radiation number, buoyancy parameter, Schmidt number, Prandtl number etc are studied and the obtained results are shown graphically and the physical aspects of the problem are discussed.
Ivo Stachiv
2015-11-01
Full Text Available Vibrating micro-/nanosized cantilever beams under an applied axial force are the key components of various devices used in nanotechnology. In this study, we perform a complete theoretical investigation of the cantilever beams under an arbitrary value of the axial force vibrating in a specific environment such as vacuum, air or viscous fluid. Based on the results easy accessible expressions enabling one the fast and highly accurate estimations of changes in the Q-factor and resonant frequencies of beam oscillating in viscous fluid caused by the applied axial force are derived and analyzed. It has been also shown that for beam-to-string and string vibrational regimes the mode shape starts to significantly deviate from the one known for a beam without axial force. Moreover, a linear dependency of the vibrational amplitude in resonance on the dimensionless tension parameter has been found. We revealed that only a large axial force, i.e. the string vibrational regime, significantly improves the Q-factor of beams submerged in fluid, while an increase of the axial force in beam and beam-to-string transition regimes has a negligibly small impact on the Q-factor enhancement. Experiments carried out on the carbon nanotubes and nanowires are in a good agreement with present theoretical predictions.
Stachiv, Ivo, E-mail: stachiv@fzu.cz [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan (China); Institute of Physics, Czech Academy of Sciences, Prague (Czech Republic); Fang, Te-Hua; Chen, Tao-Hsing [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan (China)
2015-11-15
Vibrating micro-/nanosized cantilever beams under an applied axial force are the key components of various devices used in nanotechnology. In this study, we perform a complete theoretical investigation of the cantilever beams under an arbitrary value of the axial force vibrating in a specific environment such as vacuum, air or viscous fluid. Based on the results easy accessible expressions enabling one the fast and highly accurate estimations of changes in the Q-factor and resonant frequencies of beam oscillating in viscous fluid caused by the applied axial force are derived and analyzed. It has been also shown that for beam-to-string and string vibrational regimes the mode shape starts to significantly deviate from the one known for a beam without axial force. Moreover, a linear dependency of the vibrational amplitude in resonance on the dimensionless tension parameter has been found. We revealed that only a large axial force, i.e. the string vibrational regime, significantly improves the Q-factor of beams submerged in fluid, while an increase of the axial force in beam and beam-to-string transition regimes has a negligibly small impact on the Q-factor enhancement. Experiments carried out on the carbon nanotubes and nanowires are in a good agreement with present theoretical predictions.
Murad, Mohammad Hassan [BRAC University, Department of Mathematics and Natural Sciences, Dhaka (Bangladesh); Fatema, Saba [Daffodil International University, Department of Natural Sciences, Dhaka (Bangladesh)
2015-11-15
In this work some families of relativistic anisotropic charged fluid spheres have been obtained by solving the Einstein-Maxwell field equations with a preferred form of one of the metric potentials, and suitable forms of electric charge distribution and pressure anisotropy functions. The resulting equation of state (EOS) of the matter distribution has been obtained. Physical analysis shows that the relativistic stellar structure for the matter distribution considered in this work may reasonably model an electrically charged compact star whose energy density associated with the electric fields is on the same order of magnitude as the energy density of fluid matter itself (e.g., electrically charged bare strange stars). Furthermore these models permit a simple method of systematically fixing bounds on the maximum possible mass of cold compact electrically charged self-bound stars. It has been demonstrated, numerically, that the maximum compactness and mass increase in the presence of an electric field and anisotropic pressures. Based on the analytic models developed in this present work, the values of some relevant physical quantities have been calculated by assuming the estimated masses and radii of some well-known potential strange star candidates like PSR J1614-2230, PSR J1903+327, Vela X-1, and 4U 1820-30. (orig.)
Olivares-Rivas, Wilmer; Colmenares, Pedro J.
2016-09-01
The non-static generalized Langevin equation and its corresponding Fokker-Planck equation for the position of a viscous fluid particle were solved in closed form for a time dependent external force. Its solution for a constant external force was obtained analytically. The non-Markovian stochastic differential equation, associated to the dynamics of the position under a colored noise, was then applied to the description of the dynamics and persistence time of particles constrained within absorbing barriers. Comparisons with molecular dynamics were very satisfactory.
Prabhakar Reddy B.
2016-02-01
Full Text Available In this paper, a numerical solution of mass transfer effects on an unsteady free convection flow of an incompressible electrically conducting viscous dissipative fluid past an infinite vertical porous plate under the influence of a uniform magnetic field considered normal to the plate has been obtained. The non-dimensional governing equations for this investigation are solved numerically by using the Ritz finite element method. The effects of flow parameters on the velocity, temperature and concentration fields are presented through the graphs and numerical data for the skin-friction, Nusselt and Sherwood numbers are presented in tables and then discussed.
Bonfiglio, Andrea; Repetto, Rodolfo; Siggers, Jennifer H.; Stocchino, Alessandro
2013-03-01
Intravitreal drug delivery is a commonly used treatment for several retinal diseases. The objective of this research is to characterize and quantify the role of the vitreous humor motion, induced by saccadic movements, on drug transport processes in the vitreous chamber. A Perspex model of the human vitreous chamber was created, and filled with a purely viscous fluid, representing eyes with a liquefied vitreous humor or those containing viscous tamponade fluids. Periodic movements were applied to the model and the resulting three-dimensional (3D) flow fields were measured. Drug delivery within the vitreous chamber was investigated by calculating particle trajectories using integration over time of the experimental velocity fields. The motion of the vitreous humor generated by saccadic eye movements is intrinsically 3D. Advective mass transport largely overcomes molecular diffusive transport and is significantly anisotropic, leading to a much faster drug dispersion than in the case of stationary vitreous humor. Disregarding the effects of vitreous humor motion due to eye movements when predicting the efficiency of drug delivery treatments leads to significant underestimation of the drug transport coefficients, and this, in turn, will lead to significantly erroneous predictions of the concentration levels on the retina.
Viscous Quark-Gluon Plasma in the Early Universe
Tawfik, A; Mansour, H; Harko, T
2010-01-01
We consider the evolution of a flat, isotropic and homogeneous Friedmann-Robertson-Walker Universe, filled with a causal bulk viscous cosmological fluid, that can be characterized by an ultra-relativistic equation of state and bulk viscosity coefficient obtained from recent lattice QCD calculations. The basic equation for the Hubble parameter is derived under the assumption that the total energy in the Universe is conserved. By assuming a power law dependence of bulk viscosity coefficient, temperature and relaxation time on energy density, an approximate solution of the field equations has been obtained, in which we utilized equations of state from recent lattice QCD simulations QCD and heavy-ion collisions to derive an evolution equation. In this treatment for the viscous cosmology, we found no evidence for singularity. For example, both Hubble parameter and scale factor are finite at $t=0$, $t$ is the comoving time. Furthermore, their time evolution essentially differs from the one associated with non-visco...
Balsara, Dinshaw S; Garain, Sudip; Kim, Jinho
2016-01-01
In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equations is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. Three important innovations are reported here. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our seco...
Soltani, P; Farshidianfar, A [Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Taherian, M M, E-mail: payam.soltani@gmail.co [Department of Mechanical Engineering, Islamic Azad University-Semnan Branch, Semnan (Iran, Islamic Republic of)
2010-10-27
In this study, for the first time, the transverse vibrational model of a viscous-fluid-conveying single-walled carbon nanotube (SWCNT) embedded in biological soft tissue is developed. Nonlocal Euler-Bernoulli beam theory has been used to investigate fluid-induced vibration of the SWCNT while visco-elastic behaviour of the surrounding tissue is simulated by the Kelvin-Voigt model. The results indicate that the resonant frequencies and the critical flow velocity at which structural instability of nanotubes emerges are significantly dependent on the properties of the medium around the nanotube, the boundary conditions, the viscosity of the fluid and the nonlocal parameter. Detailed results are demonstrated for the dependence of damping and elastic properties of the medium on the resonant frequencies and the critical flow velocity. Three standard boundary conditions, namely clamped-clamped, clamped-pinned and pinned-pinned, are applied to study the effect of the supported end conditions. Furthermore, it is found that the visco-elastic foundation causes an obvious reduction in the critical velocity in comparison with the elastic foundation, in particular for a compliant medium, pinned-pinned boundary condition, high viscosity of the fluid and small values of the nonlocal coefficient.
T. M. Ajayi
2017-01-01
Full Text Available The problem of a non-Newtonian fluid flow past an upper surface of an object that is neither a perfect horizontal/vertical nor inclined/cone in which dissipation of energy is associated with temperature-dependent plastic dynamic viscosity is considered. An attempt has been made to focus on the case of two-dimensional Casson fluid flow over a horizontal melting surface embedded in a thermally stratified medium. Since the viscosity of the non-Newtonian fluid tends to take energy from the motion (kinetic energy and transform it into internal energy, the viscous dissipation term is accommodated in the energy equation. Due to the existence of internal space-dependent heat source; plastic dynamic viscosity and thermal conductivity of the non-Newtonian fluid are assumed to vary linearly with temperature. Based on the boundary layer assumptions, suitable similarity variables are applied to nondimensionalized, parameterized and reduce the governing partial differential equations into a coupled ordinary differential equations. These equations along with the boundary conditions are solved numerically using the shooting method together with the Runge-Kutta technique. The effects of pertinent parameters are established. A significant increases in Rex1/2Cfx is guaranteed with St when magnitude of β is large. Rex1/2Cfx decreases with Ec and m.
Harko, T.; Mak, M. K.
2016-09-01
Obtaining exact solutions of the spherically symmetric general relativistic gravitational field equations describing the interior structure of an isotropic fluid sphere is a long standing problem in theoretical and mathematical physics. The usual approach to this problem consists mainly in the numerical investigation of the Tolman-Oppenheimer-Volkoff and of the mass continuity equations, which describes the hydrostatic stability of the dense stars. In the present paper we introduce an alternative approach for the study of the relativistic fluid sphere, based on the relativistic mass equation, obtained by eliminating the energy density in the Tolman-Oppenheimer-Volkoff equation. Despite its apparent complexity, the relativistic mass equation can be solved exactly by using a power series representation for the mass, and the Cauchy convolution for infinite power series. We obtain exact series solutions for general relativistic dense astrophysical objects described by the linear barotropic and the polytropic equations of state, respectively. For the polytropic case we obtain the exact power series solution corresponding to arbitrary values of the polytropic index n. The explicit form of the solution is presented for the polytropic index n=1, and for the indexes n=1/2 and n=1/5, respectively. The case of n=3 is also considered. In each case the exact power series solution is compared with the exact numerical solutions, which are reproduced by the power series solutions truncated to seven terms only. The power series representations of the geometric and physical properties of the linear barotropic and polytropic stars are also obtained.
Dumbser, Michael; Peshkov, Ilya; Romenski, Evgeniy; Zanotti, Olindo
2016-06-01
This paper is concerned with the numerical solution of the unified first order hyperbolic formulation of continuum mechanics recently proposed by Peshkov and Romenski [110], further denoted as HPR model. In that framework, the viscous stresses are computed from the so-called distortion tensor A, which is one of the primary state variables in the proposed first order system. A very important key feature of the HPR model is its ability to describe at the same time the behavior of inviscid and viscous compressible Newtonian and non-Newtonian fluids with heat conduction, as well as the behavior of elastic and visco-plastic solids. Actually, the model treats viscous and inviscid fluids as generalized visco-plastic solids. This is achieved via a stiff source term that accounts for strain relaxation in the evolution equations of A. Also heat conduction is included via a first order hyperbolic system for the thermal impulse, from which the heat flux is computed. The governing PDE system is hyperbolic and fully consistent with the first and the second principle of thermodynamics. It is also fundamentally different from first order Maxwell-Cattaneo-type relaxation models based on extended irreversible thermodynamics. The HPR model represents therefore a novel and unified description of continuum mechanics, which applies at the same time to fluid mechanics and solid mechanics. In this paper, the direct connection between the HPR model and the classical hyperbolic-parabolic Navier-Stokes-Fourier theory is established for the first time via a formal asymptotic analysis in the stiff relaxation limit. From a numerical point of view, the governing partial differential equations are very challenging, since they form a large nonlinear hyperbolic PDE system that includes stiff source terms and non-conservative products. We apply the successful family of one-step ADER-WENO finite volume (FV) and ADER discontinuous Galerkin (DG) finite element schemes to the HPR model in the stiff
Dumbser, Michael, E-mail: michael.dumbser@unitn.it [Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Peshkov, Ilya, E-mail: peshkov@math.nsc.ru [Open and Experimental Center for Heavy Oil, Université de Pau et des Pays de l' Adour, Avenue de l' Université, 64012 Pau (France); Romenski, Evgeniy, E-mail: evrom@math.nsc.ru [Sobolev Institute of Mathematics, 4 Acad. Koptyug Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk (Russian Federation); Zanotti, Olindo, E-mail: olindo.zanotti@unitn.it [Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy)
2016-06-01
Highlights: • High order schemes for a unified first order hyperbolic formulation of continuum mechanics. • The mathematical model applies simultaneously to fluid mechanics and solid mechanics. • Viscous fluids are treated in the frame of hyper-elasticity as generalized visco-plastic solids. • Formal asymptotic analysis reveals the connection with the Navier–Stokes equations. • The distortion tensor A in the model appears to be well-suited for flow visualization. - Abstract: This paper is concerned with the numerical solution of the unified first order hyperbolic formulation of continuum mechanics recently proposed by Peshkov and Romenski [110], further denoted as HPR model. In that framework, the viscous stresses are computed from the so-called distortion tensor A, which is one of the primary state variables in the proposed first order system. A very important key feature of the HPR model is its ability to describe at the same time the behavior of inviscid and viscous compressible Newtonian and non-Newtonian fluids with heat conduction, as well as the behavior of elastic and visco-plastic solids. Actually, the model treats viscous and inviscid fluids as generalized visco-plastic solids. This is achieved via a stiff source term that accounts for strain relaxation in the evolution equations of A. Also heat conduction is included via a first order hyperbolic system for the thermal impulse, from which the heat flux is computed. The governing PDE system is hyperbolic and fully consistent with the first and the second principle of thermodynamics. It is also fundamentally different from first order Maxwell–Cattaneo-type relaxation models based on extended irreversible thermodynamics. The HPR model represents therefore a novel and unified description of continuum mechanics, which applies at the same time to fluid mechanics and solid mechanics. In this paper, the direct connection between the HPR model and the classical hyperbolic–parabolic Navier
Viscous quark-gluon plasma in the early universe
Tawfik, A.; Wahba, M. [Egyptian Center for Theoretical Physics (ECTP), MTI University, Al-Mukkatam, Cairo 11212 (Egypt); Mansour, H. [Department of Physics, Cairo University, Giza 12613 (Egypt); Harko, T. [Department of Physics and Center for Theoretical and Computational Physics, The University of Hong Kong, Pok Fu Lam Road (China)
2011-03-15
In the present work a study is given for the evolution of a flat, isotropic and homogeneous Universe, which is filled with a causal bulk viscous cosmological fluid. We describe the viscous properties by an ultra-relativistic equation of state, and bulk viscosity coefficient obtained from recent lattice QCD calculations. The basic equation for the Hubble parameter is derived by using the energy equation obtained from the assumption of the covariant conservation of the energy-momentum tensor of the matter in the Universe. By assuming a power law dependence of the bulk viscosity coefficient, temperature and relaxation time on the energy density, we derive the evolution equation for the Hubble function. By using the equations of state from recent lattice QCD simulations and heavy-ion collisions we obtain an approximate solution of the field equations. In this treatment for the viscous cosmology, no evidence for singularity is observed. For example, both the Hubble parameter and the scale factor are finite at t=0, where t is the comoving time. Furthermore, their time evolution essentially differs from the one associated with non-viscous and ideal gas. Also it is noticed that the thermodynamic quantities, like temperature, energy density and bulk pressure remain finite. Particular solutions are also considered in order to prove that the free parameter in this model does qualitatively influence the final results. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Borisov, A. V.; Kuznetsov, S. P.; Mamaev, I. S.; Tenenev, V. A.
2016-09-01
From analysis of time series obtained on the numerical solution of a plane problem on the motion of a body with an elliptic cross section under the action of gravity force in an incompressible viscous fluid, a system of ordinary differential equations approximately describing the dynamics of the body is reconstructed. To this end, coefficients responsible for the added mass, the force caused by the circulation of the velocity field, and the resisting force are found by the least square adjustment. The agreement between the finitedimensional description and the simulation on the basis of the Navier-Stokes equations is illustrated by images of attractors in regular and chaotic modes. The coefficients found make it possible to estimate the actual contribution of different effects to the dynamics of the body.
Nuriev, A. N.; Zakharova, O. S.; Zaitseva, O. N.; Yunusova, A. I.
2016-11-01
A rectilinear motion of a two-mass system in a viscous incompressible fluid is considered. The system consists of a shell having the form of an equilateral triangular cylinder and a movable internal mass. The motion of the system as a whole is forced by longitudinal oscillations of the internal mass relative to the shell. This mechanical system simulates a vibration-driven robot, i.e. a mobile device capable to move in a resistive medium without external moving parts. Investigation of the system is carried out by a direct numerical simulation. A comparative analysis of the characteristics of the motion and flow regimes around the vibration-driven robot is carried out for different internal mass oscillation laws.
Khilap Singh
2016-01-01
Full Text Available A numerical model is developed to examine the effects of thermal radiation on unsteady mixed convection flow of a viscous dissipating incompressible micropolar fluid adjacent to a heated vertical stretching surface in the presence of the buoyancy force and heat generation/absorption. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The model contains nonlinear coupled partial differential equations which have been converted into ordinary differential equation by using the similarity transformations. The dimensionless governing equations for this investigation are solved by Runge-Kutta-Fehlberg fourth fifth-order method with shooting technique. Numerical solutions are then obtained and investigated in detail for different interesting parameters such as the local skin-friction coefficient, wall couple stress, and Nusselt number as well as other parametric values such as the velocity, angular velocity, and temperature.
Kishan, N.; Shashidar Reddy, B.
2013-06-01
The problem of a magneto-hydro dynamic flow and heat transfer to a non-Newtonian power-law fluid flow past a continuously moving flat porous plate in the presence of sucion/injection with heat flux by taking into consideration the viscous dissipation is analysed. The non-linear partial differential equations governing the flow and heat transfer are transformed into non-linear ordinary differential equations using appropriate transformations and then solved numerically by an implicit finite difference scheme. The solution is found to be dependent on various governing parameters including the magnetic field parameter M, power-law index n, suction/injection parameter ƒw, Prandtl number Pr and Eckert number Ec. A systematical study is carried out to illustrate the effects of these major parameters on the velocity profiles, temperature profile, skin friction coefficient and rate of heat transfer and the local Nusslet number.
Singh M.
2016-02-01
Full Text Available The instability of the plane interface between two uniform, superposed and streaming Rivlin-Ericksen elastico-viscous fluids through porous media, including the ‘effective interfacial tension’ effect, is considered. In the absence of the ‘effective interfacial tension’ stability/instability of the system as well as perturbations transverse to the direction of streaming are found to be unaffected by the presence of streaming if perturbations in the direction of streaming are ignored, whereas for perturbation in all other directions, there exists instability for a certain wave number range. The ‘effective interfacial tension’ is able to suppress this Kelvin-Helmholtz instability for small wavelength perturbations, the medium porosity reduces the stability range given in terms of a difference in streaming velocities.
Gruca, Marta; Division of Complex Fluids Team
2014-11-01
We investigate dynamics of many particles settling under gravity in a viscous fluid within the Stokes flow regime. We consider several families of regular initial configurations of a large number of point-particles which lead to periodic and quasi-periodic motions of the particles. We vary the relative distance between particles and observe how does it affect the dynamics. We observe the oscillations under some out-of-phase rearrangements of the particles. We also see a large influence of initial conditions on the system stability. By perturbating the regular configurations we obtain the dynamics corresponding to the dynamics of drop of suspension. We also explore the dynamics of such system in porous media where analogous quasi-periodic motions have been found.
Conformal anisotropic relativistic charged fluid spheres with a linear equation of state
Esculpi, M.; Alomá, E.
2010-06-01
We obtain two new families of compact solutions for a spherically symmetric distribution of matter consisting of an electrically charged anisotropic fluid sphere joined to the Reissner-Nordstrom static solution through a zero pressure surface. The static inner region also admits a one parameter group of conformal motions. First, to study the effect of the anisotropy in the sense of the pressures of the charged fluid, besides assuming a linear equation of state to hold for the fluid, we consider the tangential pressure p ⊥ to be proportional to the radial pressure p r , the proportionality factor C measuring the grade of anisotropy. We analyze the resulting charge distribution and the features of the obtained family of solutions. These families of solutions reproduce for the value C=1, the conformal isotropic solution for quark stars, previously obtained by Mak and Harko. The second family of solutions is obtained assuming the electrical charge inside the sphere to be a known function of the radial coordinate. The allowed values of the parameters pertained to these solutions are constrained by the physical conditions imposed. We study the effect of anisotropy in the allowed compactness ratios and in the values of the charge. The Glazer’s pulsation equation for isotropic charged spheres is extended to the case of anisotropic and charged fluid spheres in order to study the behavior of the solutions under linear adiabatic radial oscillations. These solutions could model some stage of the evolution of strange quark matter fluid stars.
Kishan N.
2014-05-01
Full Text Available A fluid flow and heat transfer analysis of an electrically conducting non-Newtonian power law fluid flowing over a non-linear stretching surface in the presence of a transverse magnetic field taking into consideration viscous dissipation effects is investigated. The stretching velocity, the temperature and the transverse magnetic field are assumed to vary in a power-law with the distance from the origin. The flow is induced due to an infinite elastic sheet which is stretched in its own plane. The governing equations are reduced to non-linear ordinary differential equations by means of similarity transformations. By using quasi-linearization techniques first linearize the non linear momentum equation is linearized and then the coupled ordinary differential equations are solved numerically by an implicit finite difference scheme. The numerical solution is found to be dependent on several governing parameters, including the magnetic field parameter, power-law index, Eckert number, velocity exponent parameter, temperature exponent parameter, modified Prandtl number and heat source/sink parameter. A systematic study is carried out to illustrate the effects of these parameters on the fluid velocity and the temperature distribution in the boundary layer. The results for the local skin-friction coefficient and the local Nusselt number are tabulated and discussed.
Mahmood H. Ali
2013-05-01
Full Text Available A numerical study of non-Darcian natural convection heat transfer in a rectangular enclosure filled with porous medium saturated with viscous fluid was carried out. The effects of medium Rayleigh number, porosity, particle to fluid thermal conductivity ratio, Darcy number and enclosure aspect ratio on heat transfer were examined to demonstrate the ability of using this construction in thermal insulation of buildings walls.A modified Brinkman-Forchheimer-extended Darcy flow model was used and no-slip boundary conditions were imposed for velocity at the walls and the governing equations were expressed in dimensionless stream function, vorticity, and temperature formulation. The resulting algebraic equations obtained from finite difference discritization of vorticity and temperature equations are solved using (ADI method which uses Three Diagonal Matrix Algorithm (TDMA in each direction, while that of the stream function equation solved using successive iteration method.The study was done for the range of enclosure aspect ratio ( which is in the tall layers region at medium Rayleigh number ( , Darcy number (Da=10-3, 10-4, 10-5 , porosity (e=0.35, 0.45, 0.55, particle to fluid thermal conductivity (kS/kf=5.77, 38.5, 1385.5.The results showed that the Nusselt number is direct proportional to medium Rayleigh number and porosity and reversely proportional to Darcy number, ratio of particle to fluid thermal conductivity and enclosure aspect ratio. The variables that affect the heat transfer in the above arrangement was correlated in a mathematical equation that account better for their affects on heat transfer which is represented by mean Nusselt number (Nu.
Hussain, Arif; Malik, M. Y.; Bilal, S.; Awais, M.; Salahuddin, T.
Present communication presents numerical investigation of magnetohydrodynamic Sisko fluid flow over linearly stretching cylinder along with combined effects of temperature depending thermal conductivity and viscous dissipation. The arising set of flow govern equations are simplified under usual boundary layer assumptions. A set of variable similarity transforms are employed to shift the governing partial differential equations into ordinary differential equations. The solution of attained highly nonlinear simultaneous equations is computed by an efficient technique (shooting method). Numerical computations are accomplished and interesting aspects of flow velocity and temperature are visualized via graphs for different parametric conditions. A comprehensive discussion is presented to reveal the influence of flow parameters on wall shear stress and local Nusselt number via figures and tables.Furthermore, it is observed that magnetic field provides noticeable resistance to the fluid motion while both material parameter and curvature accelerates it. The progressing values of both Eckert number and thermal conductivity parameter have qualitively same effects i.e. they rise the temperature. Additionally, material parameter and curvature parameter increase the coefficient of skin friction absolutely and qualitively similar effects are noticed for Nusselt number against variations in Prandtl number and curvature parameter. On the other hand local Nusselt diminishes for larger values of Eckert number and power law index. The present results are compared with existing literature via tables, they have good covenant with previous results.
Vanishing condition for the heat flux of a relativistic fluid in a moving frame
Romero-Muñoz, Martín; Dagdug, Leonardo; Chacón-Acosta, Guillermo
2014-11-01
It has been asked if is appropriate to introduce the heat flow in the energy- momentum tensor, due to the non-mechanical nature of heat [1]. Although this could be answered by both kinetic and symmetry arguments, we address the problem by checking the validity of the second law of thermodynamics in a fluid that is boosted by a Lorentz transformation to a non comoving frame. In this contribution we found that this only can happen under certain conditions. Indeed, we found that there are a family of reference frames that satisfies these conditions, where Landau-Lifshitz frame is one of those. Additionally we relate such conditions with the null energy condition and the entropy production.
Studies of Entanglement Entropy, and Relativistic Fluids for Thermal Field Theories
Spillane, Michael
In this dissertation we consider physical consequences of adding a finite temperature to quantum field theories. At small length scales entanglement is a critically important feature. It is therefore unsurprising that entanglement entropy and Renyi entropy are useful tools in studying quantum phase transition, and quantum information. In this thesis we consider the corrections to entanglement and Renyi entropies due to addition of a finite temperature. More specifically, we investigate the entanglement entropy of a massive scalar field in 1+1 dimensions at nonzero temperature. In the small mass ( m) and temperature (T) limit, we put upper and lower bounds on the two largest eigenvalues of the covariance matrix used to compute the entanglement entropy. We argue that the entanglement entropy has e-m/T scaling in the limit T blackhole. We discuss the "phase diagram" associated with the steady state of the dual, dynamical black hole and its relation to the fluid/gravity correspondence.
Rasool Alizadeh
2016-06-01
Full Text Available Existing solutions of the problem of axisymmetric stagnation-point flow and heat transfer on either a cylinder or a flat plate are for incompressible fluid. Here, fluid with viscosity proportional to a linear function of temperature is considered in the problem of an unaxisymmetric stagnation-point flow and heat transfer of an infinite stationary cylinder with non-uniform normal transpiration U0(φ and constant heat flux. The impinging free-stream is steady and with a constant strain rate k¯. A reduction of Navier–Stokes and energy equations is obtained by use of appropriate similarity transformations. The semi-similar solution of the Navier–Stokes equations and energy equation has been obtained numerically using an implicit finite-difference scheme. All the solutions aforesaid are presented for Reynolds numbers, Re=k¯a2/2υ∞, ranging from 0.01 to 100 for different values of Prandtl number and viscosity-variation parameter and for selected values of transpiration rate function, S(φ=U0(φ/k¯a, where a is cylinder radius and υ∞ is the reference kinematic viscosity of the fluid. Dimensionless shear-stresses corresponding to all the cases increase with the increase in Reynolds number and transpiration rate function while dimensionless shear stresses decrease with the increase in viscosity-variation parameter. The local coefficient of heat transfer (Nusselt number increases with increasing the transpiration rate function and Prandtl number.
粘滞流体阻尼器冲击缓冲特性研究%Shock absorption characteristics of a viscous fluid damper
孙靖雅; 焦素娟; 张磊; 华宏星
2013-01-01
为获得粘滞流体阻尼器冲击缓冲特性,设计并制作一种非牛顿流体粘滞阻尼器样机,而后对其进行了不同高度下的冲击缓冲实验.为从流体力学角度分析阻尼力机理,建立改进幂律模型来描述硅油的粘度特性,并通过对实验数据的拟合获得其中待定参数.采用FLUENT软件并结合动网格技术,对阻尼器流场仿真后获得冲击载荷作用下阻尼力输出特性,将之与实验结果相对比,发现结果基本一致,可用于指导阻尼器初步设计.%To obtain shock absorption characteristics of a viscous fluid damper,a non-Newtonian fluid damper was designed and made,and then shock tests were performed for it under various height conditions.To analyze the damping force mechanism from the aspect of fluid dynamics,a modified power law function model was used to describe the viscosity of silicone oil,and the parameters of the model was determined with the measured viscosity data under various shear rates.CFD software FLUENT was adopted and combined with the dynamic meshing technology to obtain the characteristics of damping force under shock conditions.By comparing the results of tests and those of simulations,it was indicated that both the results approximately match each other and they can be used to guide damper designs.
Vlahinic, Ivan
It has been said that porous materials are like music: the gaps are as important as the filled-in bits. In other words, in addition to the solid structure, pore characteristics such as size and morphology play a crucial role in defining the overall physical properties of the porous materials. This work goes a step further and examines the behaviors of some porous media that arise when the pore network is occupied by two fluids, principally air and water, as a result of drying or wetting. Such a state gives rise to fluid capillarity which can generate significant negative fluid pressures. In the first part, a constitutive model for drying of an elastic porous medium is proposed and then extended to derive a novel expression for effective stress in partially saturated media. The model is motivated by the fact that in a system that is saturated by two different fluids, two different pressure inherently act on the surfaces of the pore network. This causes a non-uniform strain field in the solid structure, something that is not explicitly accounted for in the classic formulations of this problem. We use some standard micromechanical homogenization techniques to estimate the extent of the 'non-uniformity' and on this basis, evaluate the validity of the classic Bishop effective stress expression for partially saturated materials. In the second part, we examine a diverse class of porous materials which behave in an unexpected (and even counterintuitive) way under the internal moisture fluctuations. In particular, during wetting and drying alike, the solid viscosity of these materials appears to soften, sometimes by an order of magnitude or more. Under load, this can lead to significantly increased rates of deformations. On account of the recent experimental and theoretical findings on the nature of water flow in nanometer-size hydrophillic spaces, we provide a physical explanation for the viscous softening and propose a constitutive law on this basis. To this end, it also
Mikellides, Ioannis G.; Steltzner, Adam D.; Blakkolb, Brian K.; Matthews, Rebecca C.; Kipp, Kristina A.; Bernard, Douglas E.; Stricker, Moogega; Benardini, James N.; Shah, Parthiv; Robinson, Albert
2017-08-01
The Mars 2020 mission will land a rover on the surface of Mars that will acquire, encapsulate, and cache scientifically selected samples of martian material for possible return to Earth by a future mission. The samples will be individually encapsulated and sealed in sample tubes. Each sample, and therefore each sample tube, must be kept clean of viable organisms with a terrestrial origin, which may adhere to the rover on their own and/or on other abiological particles. It is shown that contamination of the tubes by such terrestrial remnant particles as small as 0.15 μm on the rover will be prevented using the Fluid Mechanical Particle Barrier (FMPB), a cylindrical enclosure within which each tube will be housed. The FMPB takes advantage of fluid viscosity to slow down the speed of the flow through a main thin annular orifice at the bottom of the device. An analytical solution of the fluid and particle dynamics in the FMPB has been developed and validated using 2-D and 3-D CFD simulations. Water tunnel tests have also been conducted that demonstrate the effectiveness of the FMPB to slow down the fluid through the orifice. It is found that for the flow speeds expected at the various phases of the mission, penetration of the smallest particles is not expected to exceed 10% of the orifice height. No penetration of particles >5 μm is expected inside the orifice. Large margins on the already low contamination probability of the tubes are allowed by the presence of a large-volume cavity immediately downstream of the long annular orifice. The cavity further slows down the expanding flow and, in turn, minimizes particle penetration even at the most extreme conditions expected on Mars. For example at wind speeds of 75 m/s, characteristic of the largest and rarest dust devils that can form on Mars, 0.15-μm particles are not expected to exceed a height larger than 3% of the cavity.
Langlois, William E
2014-01-01
Leonardo wrote, 'Mechanics is the paradise of the mathematical sciences, because by means of it one comes to the fruits of mathematics' ; replace 'Mechanics' by 'Fluid mechanics' and here we are." - from the Preface to the Second Edition Although the exponential growth of computer power has advanced the importance of simulations and visualization tools for elaborating new models, designs and technologies, the discipline of fluid mechanics is still large, and turbulence in flows remains a challenging problem in classical physics. Like its predecessor, the revised and expanded Second Edition of this book addresses the basic principles of fluid mechanics and solves fluid flow problems where viscous effects are the dominant physical phenomena. Much progress has occurred in the nearly half a century that has passed since the edition of 1964. As predicted, aspects of hydrodynamics once considered offbeat have risen to importance. For example, the authors have worked on problems where variations in viscosity a...
Well-Posed Stokes/Brinkman and Stokes/Darcy Problems for Coupled Fluid-Porous Viscous Flows
Angot, Philippe
2010-09-01
We present a well-posed model for the Stokes/Brinkman problem with a family of jump embedded boundary conditions (J.E.B.C.) on an immersed interface with weak regularity assumptions. It is issued from a general framework recently proposed for fictitious domain problems. Our model is based on algebraic transmission conditions combining the stress and velocity jumps on the interface Σ separating the fluid and porous domains. These conditions, well chosen to get the coercivity of the operator, are sufficiently general to get the usual immersed boundary conditions on Σ when fictitious domain methods are concerned: Stefan-like, Robin (Fourier), Neumann or Dirichlet… Moreover, the general framework allows to prove the global solvability of some models with physically relevant stress or velocity jump boundary conditions for the momentum transport at a fluid-porous interface. The Stokes/Brinkman problem with Ochoa-Tapia & Whitaker (1995) interface conditions and the Stokes/Darcy problem with Beavers & Joseph (1967) conditions are both proved to be well-posed by an asymptotic analysis. Up to our knowledge, only the Stokes/Darcy problem with Saffman (1971) approximate interface conditions was known to be well-posed.
Etienne, St.
1999-09-01
To compute the viscous flow around flexible circular cylinders arrays, a numerical model has been set up so solve the Reynolds averaged Navier-Stokes equations (RANSE). A domain decomposition method has been chosen to ensure the great flexibility of structures in the fluid domain. It consists in solving the RANS equations in a Eulerian way near the bodies and in a Lagrangian way in the wake(s). Then, we concentrate calculations in interest areas and we avoid mesh distortions. The resolution in the turbulent regime has been realized with k - {omega} and k - {epsilon} models. Compared with experiments, mix k - {omega} and k - {epsilon} models give the best results. Applications concern with the modeling of shielding and vortex-induced vibrations (VIV) phenomena in arrays of flexible cylinders. Results are validated by comparisons with experimental data. (authors)
Brun-Battistini, D; Sandoval-Villalbazo, A
2016-01-01
Richard C. Tolman analyzed the relation between a temperature gradient and a gravitational field in an equilibrium situation. In 2012, Tolman\\textquoteright s law was generalized to a non-equilibrium situation for a simple dilute relativistic fluid. The result in that scenario, obtained by introducing the gravitational force through the molecular acceleration, couples the heat flux with the metric coefficients and the gradients of the state variables. In the present paper it is shown, by \\textquotedblleft suppressing\\textquotedblright{} the molecular acceleration in Boltzmann\\textquoteright s equation, that a gravitational field drives a heat flux. This procedure corresponds to the description of particle motion through geodesics, in which a Newtonian limit to the Schwarzschild metric is assumed. The effect vanishes in the non-relativistic regime, as evidenced by the direct evaluation of the corresponding limit.
Mustapha Lahmar
2015-04-01
Full Text Available On the basis of the V. K. Stokes micro-continuum theory, the effects of couple stresses on the nonlinear dynamic response of the unbalanced Jeffcott’s flexible rotor supported by layered hydrodynamic journal bearings is presented in this paper. A nonlinear transient modified Reynolds’ equation is derived and discretized by the finite element method to obtain the fluid-film pressure field as well as the film thickness by means of the implicit Euler method. The nonlinear orbits of the rotor center are determined by solving the nonlinear differential equations of motion with the explicit Euler’s scheme taking into account the flexibility of rotor. According to the obtained results, the combined effects of couple stresses due to the presence of polymer additives in lubricant and the pressure dependent viscosity on the nonlinear dynamic response of the rotor-bearing system are significant and cannot be ignored or overlooked. As expected, these effects are more noticeable for polymers characterized by higher length molecular chains.
Speeds of Propagation in Classical and Relativistic Extended Thermodynamics
Müller Ingo
1999-01-01
Full Text Available The Navier-Stokes-Fourier theory of viscous, heat-conducting fluids provides parabolic equations and thus predicts infinite pulse speeds. Naturally this feature has disqualified the theory for relativistic thermodynamics which must insist on finite speeds and, moreover, on speeds smaller than $c$. The attempts at a remedy have proved heuristically important for a new systematic type of thermodynamics: Extended thermodynamics. That new theory has symmetric hyperbolic field equations and thus it provides finite pulse speeds. Extended thermodynamics is a whole hierarchy of theories with an increasing number of fields when gradients and rates of thermodynamic processes become steeper and faster. The first stage in this hierarchy is the 14-field theory which may already be a useful tool for the relativist in many applications. The 14 fields -- and further fields -- are conveniently chosen from the moments of the kinetic theory of gases. The hierarchy is complete only when the number of fields tends to infinity. In that case the pulse speed of non-relativistic extended thermodynamics tends to infinity while the pulse speed of relativistic extended thermodynamics tends to $c$, the speed of light. In extended thermodynamics symmetric hyperbolicity -- and finite speeds -- are implied by the concavity of the entropy density. This is still true in relativistic thermodynamics for a privileged entropy density which is the entropy density of the rest frame for non-degenerate gases.
Nonlinear wavetrains in viscous conduits
Maiden, Michelle; Hoefer, Mark
2016-11-01
Viscous fluid conduits provide an ideal system for the study of dissipationless, dispersive hydrodynamics. A dense, viscous fluid serves as the background medium through which a lighter, less viscous fluid buoyantly rises. If the interior fluid is continuously injected, a deformable pipe forms. The long wave interfacial dynamics are well-described by a dispersive nonlinear partial differential equation. In this talk, experiments, numerics, and asymptotics of the viscous fluid conduit system will be presented. Structures at multiple length scales are discussed, including solitons, dispersive shock waves, and periodic waves. Modulations of periodic waves will be explored in the weakly nonlinear regime with the Nonlinear Schrödinger (NLS) equation. Modulational instability (stability) is identified for sufficiently short (long) periodic waves due to a change in dispersion curvature. These asymptotic results are confirmed by numerical simulations of perturbed nonlinear periodic wave solutions. Also, numerically observed are envelope bright and dark solitons well approximated by NLS. This work was partially supported by NSF CAREER DMS-1255422 (M.A.H.) and NSF GRFP (M.D.M.).
Balsara, Dinshaw S.; Amano, Takanobu; Garain, Sudip; Kim, Jinho
2016-08-01
In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equations is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. The primary variables in the Maxwell solver are taken to be the facially-collocated components of the electric and magnetic fields. Consistent with such a collocation, three important innovations are reported here. The first two pertain to the Maxwell solver. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our second innovation, a multidimensionally upwinded strategy is presented which ensures that the magnetic field can be updated via a discrete interpretation of Faraday's law and the electric field can be updated via a discrete interpretation of the generalized Ampere's law. This multidimensional upwinding is achieved via a multidimensional Riemann solver. The multidimensional Riemann solver automatically provides edge-centered electric field components for the Stokes law-based update of the magnetic field. It also provides edge-centered magnetic field components for the Stokes law-based update of the electric field. The update strategy ensures that the electric field is always consistent with Gauss' law and the magnetic field is always divergence-free. This
Balsara, Dinshaw S., E-mail: dbalsara@nd.edu [Physics Department, University of Notre Dame (United States); Amano, Takanobu, E-mail: amano@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, University of Tokyo, Tokyo 113-0033 (Japan); Garain, Sudip, E-mail: sgarain@nd.edu [Physics Department, University of Notre Dame (United States); Kim, Jinho, E-mail: jkim46@nd.edu [Physics Department, University of Notre Dame (United States)
2016-08-01
In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equations is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. The primary variables in the Maxwell solver are taken to be the facially-collocated components of the electric and magnetic fields. Consistent with such a collocation, three important innovations are reported here. The first two pertain to the Maxwell solver. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our second innovation, a multidimensionally upwinded strategy is presented which ensures that the magnetic field can be updated via a discrete interpretation of Faraday's law and the electric field can be updated via a discrete interpretation of the generalized Ampere's law. This multidimensional upwinding is achieved via a multidimensional Riemann solver. The multidimensional Riemann solver automatically provides edge-centered electric field components for the Stokes law-based update of the magnetic field. It also provides edge-centered magnetic field components for the Stokes law-based update of the electric field. The update strategy ensures that the electric field is always consistent with Gauss' law and the magnetic field is
Bonnaud, G.; Dussy, S.; Lefebvre, E. [CEA Bruyeres-le-Chatel, 91 (France). Dept. de Physique Theorique et Appliquee; Bouchut, F. [Orleans Univ., 45 (France). Dept. de Mathematiques, UMR CNRS
1998-12-31
This report presents a numerical model to simulate the electromagnetic processes involved by electrically-charged relativistic fluids. The physical model is first given. Second, the numerical methods are explained with the various packages of the code RHEA, with indication methods are explained with the various packages of the code RHEA, with indication of its performances, within a 1.5.- dimensional framework. Results from test-simulations are shown to validate the use of the code, for both academic situations and realistic context of laser-plasma interaction, for which the code has been designed: the non-linear phenomena in the context of inertial confinement fusion and the ultra-intense laser pulses. (author) 25 refs.
Bonnaud, G.; Dussy, S.; Lefebvre, E. [CEA Bruyeres-le-Chatel, 91 (France). Dept. de Physique Theorique et Appliquee; Bouchut, F. [Orleans Univ., 45 (France). Dept. de Mathematiques, UMR CNRS
1998-12-31
This report presents a numerical model to simulate the electromagnetic processes involved by electrically-charged relativistic fluids. The physical model is first given. Second, the numerical methods are explained with the various packages of the code RHEA, with indication methods are explained with the various packages of the code RHEA, with indication of its performances, within a 1.5.- dimensional framework. Results from test-simulations are shown to validate the use of the code, for both academic situations and realistic context of laser-plasma interaction, for which the code has been designed: the non-linear phenomena in the context of inertial confinement fusion and the ultra-intense laser pulses. (author) 25 refs.
Viscous extended holographic Ricci dark energy in the framework of standard Eckart theory
Chattopadhyay, Surajit
2016-11-01
In this paper, we report a study on the viscous extended holographic Ricci dark energy (EHRDE) model under the assumption of existence of bulk viscosity in the linear barotropic fluid and the EHRDE in the framework of standard Eckart theory of relativistic irreversible thermodynamics and it has been observed that the non-equilibrium bulk viscous pressure is significantly smaller than the local equilibrium pressure. We have studied the equation of state (EoS) parameter and observed that the EoS behaves like “quintom” and is consistent with the constraints set by observational data sets from SNLS3, BAO and Planck + WMAP9 + WiggleZ measurements in [S. Kumar and L. Xu, Phys. Lett. B 737, 244 (2014)]. Analysis of statefinder parameters has shown the possibility of attainment of Lambda cold dark matter (ΛCDM) phase under current model and at the same time it has been pointed out that the redshift z = 0, i.e. the current universe, the statefinder pair is different from that of ΛCDM and the ΛCDM can be attained in a later stage of the universe. An analysis of stability has shown that although the viscous EHRDE along with viscous barotropic is classically unstable in the present epoch, it can lead to a stable universe in very late stage. Considering an universe enveloped by event horizon, we have observed validity of generalized second law (GSL) of thermodynamics.
Fast lattice Boltzmann solver for relativistic hydrodynamics.
Mendoza, M; Boghosian, B M; Herrmann, H J; Succi, S
2010-07-01
A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.
S. A. El-Wakil
2012-01-01
Full Text Available The reductive perturbation method has been employed to derive the Korteweg-de Vries (KdV equation for small- but finite-amplitude electrostatic ion-acoustic waves in weakly relativistic plasma consisting of warm ions and isothermal electrons. An algebraic method with computerized symbolic computation is applied in obtaining a series of exact solutions of the KdV equation. Numerical studies have been made using plasma parameters which reveal different solutions, that is, bell-shaped solitary pulses, rational pulses, and solutions with singularity at finite points, which called “blowup” solutions in addition to the propagation of an explosive pulses. The weakly relativistic effect is found to significantly change the basic properties (namely, the amplitude and the width of the ion-acoustic waves. The result of the present investigation may be applicable to some plasma environments, such as ionosphere region.
Momentum and charge transport in non-relativistic holographic fluids from Ho\\v{r}ava gravity
Davison, Richard A; Janiszewski, Stefan; Kaminski, Matthias
2016-01-01
We study the linearized transport of transverse momentum and charge in a conjectured field theory dual to a black brane solution of Ho\\v{r}ava gravity with Lifshitz exponent $z=1$. As expected from general hydrodynamic reasoning, we find that both of these quantities are diffusive over distance and time scales larger than the inverse temperature. We compute the diffusion constants and conductivities of transverse momentum and charge, as well the ratio of shear viscosity to entropy density, and find that they differ from their relativistic counterparts. To derive these results, we propose how the holographic dictionary should be modified to deal with the multiple horizons and differing propagation speeds of bulk excitations in Ho\\v{r}ava gravity. When possible, as a check on our methods and results, we use the covariant Einstein-Aether formulation of Ho\\v{r}ava gravity, along with field redefinitions, to re-derive our results from a relativistic bulk theory.
Rotationally symmetric viscous gas flows
Weigant, W.; Plotnikov, P. I.
2017-03-01
The Dirichlet boundary value problem for the Navier-Stokes equations of a barotropic viscous compressible fluid is considered. The flow region and the data of the problem are assumed to be invariant under rotations about a fixed axis. The existence of rotationally symmetric weak solutions for all adiabatic exponents from the interval (γ*,∞) with a critical exponent γ* < 4/3 is proved.
唐晓旭; 马跃; 孙永涛
2011-01-01
In order to break through the bottleneck of thermal recovery technology for offshore viscous oil, the complex thermal fluid huff and puff tech-nology has been researched, the facilities of complex thermal fluids and the thermal production wellhead equipment have been modified, the thermal insulation technology of borehole has been improved, and the injection-production parameters have heen optimized. The technology was tested in NB35-2 oilfield with the obvious stimulation effectiveness. It laid a foundation for large-scale application in the offshore viscous oil thermal recovery in our counlry.%为突破海上稠油热采技术瓶颈,开展了多元热流体吞吐工艺研究,改造了多元热流体设备和热采井井口设备、改进了井筒隔热工艺、优化了多元热流体注采参数.该工艺已在渤海南堡35-2油田成功进行了现场试验,增产效果显著,从而为稠油热采技术在我国海上的规模化应用奠定了基础.
Ganesh Kumar, K.; Rudraswamy, N. G.; Gireesha, B. J.; Krishnamurthy, M. R.
2017-09-01
Present exploration discusses the combined effect of viscous dissipation and Joule heating on three dimensional flow and heat transfer of a Jeffrey nanofluid in the presence of nonlinear thermal radiation. Here the flow is generated over bidirectional stretching sheet in the presence of applied magnetic field by accounting thermophoresis and Brownian motion of nanoparticles. Suitable similarity transformations are employed to reduce the governing partial differential equations into coupled nonlinear ordinary differential equations. These nonlinear ordinary differential equations are solved numerically by using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. Graphically results are presented and discussed for various parameters. Validation of the current method is proved by comparing our results with the existing results under limiting situations. It can be concluded that combined effect of Joule and viscous heating increases the temperature profile and thermal boundary layer thickness.
Mitri, F. G.
2016-10-01
Stemming from the law of the conservation of energy in an elastic medium, this work extends the scope of the previous analysis for a scatterer immersed in a nonviscous liquid [F. G. Mitri, Ultrasonics 62, 20-26 (2015)] to the case of a (viscous) fluid circular cylinder cross-section encased in a homogeneous, isotropic, elastic matrix. Analytical expressions for the absorption, scattering, and extinction efficiencies (or cross-sections) are derived for "elastic-sheets" (i.e., finite beams in 2D propagating in elastic media) of arbitrary wavefront, in contrast to the ideal case of plane waves of infinite extent. The mathematical expressions are formulated in generalized partial-wave series expansions in cylindrical coordinates involving the beam-shape coefficients of finite elastic-sheet beams with arbitrary wavefront, and the scattering coefficients of the fluid cylinder encased in the elastic matrix. The analysis shows that in elastodynamic scattering, both the scattered L-wave as well as the scattered T-wave contribute to the time-averaged scattered efficiency (or power). However, the extinction efficiency only depends on the scattering coefficients characterizing the same type (L or T) as the incident wave. Numerical computations for the (non-dimensional energy) efficiency factors such as the absorption, scattering, and extinction efficiencies of a circular cylindrical viscous fluid cavity embedded in an elastic aluminum matrix are performed for nonparaxial focused Gaussian and Airy elastic-sheet beams with arbitrary longitudinal and transverse normally-polarized (shear) wave incidences in the Rayleigh and resonance regimes. A series of elastic resonances are manifested in the plots of the efficiencies as the non-dimensional size parameters for the L- and T-waves are varied. As the beam waist for the nonparaxial Gaussian beam increases, the plane wave result is recovered, while for a tightly focused wavefront, some of the elastic resonances can be suppressed
Herrera, L
2011-01-01
We identify the factors responsible for the appearance of energy-density inhomogeneities in a self-gravitating fluid, and describe the evolution of those factors from an initially homogeneous distribution. It is shown that a specific combination of the Weyl tensor and/or local anisotropy of pressure and/or dissipative fluxes entails the formation of energy-density inhomogeneities. Different cases are analyzed in detail and in the particular case of dissipative fluids, the role of relaxational processes as well as non-local effects are brought out.
Demianski, Marek
2013-01-01
Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity
Computation of Viscous Incompressible Flows
Kwak, Dochan
2011-01-01
This monograph is intended as a concise and self-contained guide to practitioners and graduate students for applying approaches in computational fluid dynamics (CFD) to real-world problems that require a quantification of viscous incompressible flows. In various projects related to NASA missions, the authors have gained CFD expertise over many years by developing and utilizing tools especially related to viscous incompressible flows. They are looking at CFD from an engineering perspective, which is especially useful when working on real-world applications. From that point of view, CFD requires two major elements, namely methods/algorithm and engineering/physical modeling. As for the methods, CFD research has been performed with great successes. In terms of modeling/simulation, mission applications require a deeper understanding of CFD and flow physics, which has only been debated in technical conferences and to a limited scope. This monograph fills the gap by offering in-depth examples for students and engine...
Talygin, E A; Zazybo, N A; Zhorzholiany, S T; Krestinich, I M; Mironov, A A; Kiknadze, G I; Bokerya, L A; Gorodkov, A Y; Makarenko, V N; Alexandrova, S A
2016-01-01
New approach to intracardiac blood flow condition analysis based on geometric parameters of left ventricle flow channel has been suggested. Parameters, that used in this method, follow from exact solutions of nonstationary Navier-Stocks equations for selforganized tornado-like flows of viscous incompressible fluid. The main advantage of this method is considering dynamic anatomy of intracardiac cavity and trabeculae relief of left ventricle streamlined surface, both registered in a common mri-process, as flow condition indicator. Calculated quantity options that characterizes blood flow condition can be use as diagnostic criterias for estimation of violation in blood circulation function which entails heart ejection reduction. Developed approach allows to clarify heart jet organization mechanism and estimate the share of the tornado-like flow self-organization in heart ejection structure.
Light scattering test regarding the relativistic nature of heat
Sandoval-Villalbazo, A
2006-01-01
The dynamic structure factor of a simple relativistic fluid is calculated. The coupling of acceleration with the heat flux present in Eckart's version of irreversible relativistic thermodynamics is examined using the Rayleigh-Brillouin spectrum of the fluid. A modification of the width of the Rayleigh peak associated to Eckart's picture of the relativistic nature of heat is predicted and estimated.
Light scattering test regarding the relativistic nature of heat
2005-01-01
The dynamic structure factor of a simple relativistic fluid is calculated. The coupling of acceleration with the heat flux present in Eckart's version of irreversible relativistic thermodynamics is examined using the Rayleigh-Brillouin spectrum of the fluid. A modification of the width of the Rayleigh peak associated to Eckart's picture of the relativistic nature of heat is predicted and estimated.
Tautz, R. C., E-mail: robert.c.tautz@gmail.com [Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin (Germany); Lerche, I., E-mail: lercheian@yahoo.com [Institut für Geowissenschaften, Naturwissenschaftliche Fakultät III, Martin-Luther-Universität Halle, D-06099 Halle (Germany)
2015-11-15
This note considers the evolution of steady isothermal flow across a uniform magnetic field from an analytic standpoint. This problem is of concern in developments of magnetic fields in the solar corona and for prominence dynamics. Limiting behaviors are obtained to the nonlinear equation describing the flow depending on the value of a single parameter. For the situation where the viscous drag is a small correction to the inviscid flow limiting structures are also outlined. The purpose of the note is to show how one can evaluate some of the analytic properties of the highly nonlinear equation that are of use in considering the numerical evolution as done in Low and Egan [Phys. Plasmas 21, 062105 (2014)].
Relativistic theories of materials
Bressan, Aldo
1978-01-01
The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...
Soliton propagation in relativistic hydrodynamics
Fogaça, D A; 10.1016/j.nuclphysa.2007.03.104
2013-01-01
We study the conditions for the formation and propagation of Korteweg-de Vries (KdV) solitons in nuclear matter. In a previous work we have derived a KdV equation from Euler and continuity equations in non-relativistic hydrodynamics. In the present contribution we extend our formalism to relativistic fluids. We present results for a given equation of state, which is based on quantum hadrodynamics (QHD).
Wuensch, O.; Boehme, G. [Universitaet der Bundeswehr, Hamburg (Germany). Inst. fuer Stroemungslehre und Stroemungsmaschinen
2001-05-01
Peoples running screw machines are strongly interested in a detailed theoretical analysis of the transport processes for real highly viscous liquids which are non-Newtonian in general. The paper deals with an unconventional strategy which enables to simulate the three-dimensional unsteady flow in the kneading zone of intermeshing twin-screw extruders numerically. The concept is pointed at a finite element approximation of the flow field at particular times well chosen after the computation domain has been minimized with the aid of periodicities and symmetries existing in space and time. The method has been realized numerically and proved by means of a typical kneading geometry. Selected results show that the flow and deformation processes in the kneading element differ substantially from those in a screwed segment. (orig.) [German] Es besteht ein erhebliches Interesse daran, die Transportprozesse in Schneckenmaschinen fuer reale hochviskose, nichtnewtonsche Fluessigkeiten im Detail theoretisch zu analysieren und berechenbar zu machen. In der Arbeit wird eine unkonventionelle Strategie beschrieben, nach der die dreidimensionale instationaere Stroemung im Knetbereich kaemmender Doppelschnecken numerisch simuliert werden kann. Das theoretisch fundierte Konzept zielt auf eine Finite-Elemente-Approximation des Stroemungsfelds zu gewissen Zeitpunkten, wobei das Berechnungsgebiet mit Hilfe raeumlicher und zeitlicher Periodizitaeten und Symmetrien minimiert wird. Das Konzept wurde numerisch realisiert und an einer typischen Knetgeometrie erprobt. Ausgewaehlte Ergebnisse machen deutlich, da paragraph sich die Stroemungs- und Deformationsprozesse in einem Knetelement wesentlich von denen in einem Schraubenelement gleicher Geometrie unterscheiden. (orig.)
On the convexity of Relativistic Hydrodynamics
Ibáñez, José María; Martí, José María; Miralles, Juan Antonio; 10.1088/0264-9381/30/5/057002
2013-01-01
The relativistic hydrodynamic system of equations for a perfect fluid obeying a causal equation of state is hyperbolic (Anile 1989 {\\it Relativistic Fluids and Magneto-Fluids} (Cambridge: Cambridge University Press)). In this report, we derive the conditions for this system to be convex in terms of the fundamental derivative of the equation of state (Menikoff and Plohr 1989 {\\it Rev. Mod. Phys.} {\\bf 61} 75). The classical limit is recovered.
Mean Velocity Estimation of Viscous Debris Flows
Hongjuan Yang; Fangqiang Wei; Kaiheng Hu
2014-01-01
The mean velocity estimation of debris flows, especially viscous debris flows, is an impor-tant part in the debris flow dynamics research and in the design of control structures. In this study, theoretical equations for computing debris flow velocity with the one-phase flow assumption were re-viewed and used to analyze field data of viscous debris flows. Results show that the viscous debris flow is difficult to be classified as a Newtonian laminar flow, a Newtonian turbulent flow, a Bingham fluid, or a dilatant fluid in the strict sense. However, we can establish empirical formulas to compute its mean velocity following equations for Newtonian turbulent flows, because most viscous debris flows are tur-bulent. Factors that potentially influence debris flow velocity were chosen according to two-phase flow theories. Through correlation analysis and data fitting, two empirical formulas were proposed. In the first one, velocity is expressed as a function of clay content, flow depth and channel slope. In the second one, a coefficient representing the grain size nonuniformity is used instead of clay content. Both formu-las can give reasonable estimate of the mean velocity of the viscous debris flow.
Unsteady Viscous Flow Past an Impulsively Started Porous Vertical ...
Journal of the Nigerian Association of Mathematical Physics ... Open Access DOWNLOAD FULL TEXT ... Past an Impulsively Started Porous Vertical Surface with Variable Viscosity Fluid in the Presence of Viscous Dissipation: BSRM Approach.
Zhou, Yijie [ORNL; Lim, Hyun-Kyung [ORNL; de Almeida, Valmor F [ORNL; Navamita, Ray [State University of New York, Stony Brook; Wang, Shuqiang [State University of New York, Stony Brook; Glimm, James G [ORNL; Li, Xiao-lin [State University of New York, Stony Brook; Jiao, Xiangmin [ORNL
2012-06-01
This progress report describes the development of a front tracking method for the solution of the governing equations of motion for two-phase micromixing of incompressible, viscous, liquid-liquid solvent extraction processes. The ability to compute the detailed local interfacial structure of the mixture allows characterization of the statistical properties of the two-phase mixture in terms of droplets, filaments, and other structures which emerge as a dispersed phase embedded into a continuous phase. Such a statistical picture provides the information needed for building a consistent coarsened model applicable to the entire mixing device. Coarsening is an undertaking for a future mathematical development and is outside the scope of the present work. We present here a method for accurate simulation of the micromixing dynamics of an aqueous and an organic phase exposed to intense centrifugal force and shearing stress. The onset of mixing is the result of the combination of the classical Rayleigh- Taylor and Kelvin-Helmholtz instabilities. A mixing environment that emulates a sector of the annular mixing zone of a centrifugal contactor is used for the mathematical domain. The domain is small enough to allow for resolution of the individual interfacial structures and large enough to allow for an analysis of their statistical distribution of sizes and shapes. A set of accurate algorithms for this application requires an advanced front tracking approach constrained by the incompressibility condition. This research is aimed at designing and implementing these algorithms. We demonstrate verification and convergence results for one-phase and unmixed, two-phase flows. In addition we report on preliminary results for mixed, two-phase flow for realistic operating flow parameters.
Zhang, Yan; Zhao, Hao-Jie; Bai, Yu
2017-06-01
In classical study on generalized viscoelastic fluid, the momentum equation was derived by considering the fractional constitutive model, while the energy equation was ignored its effect. This paper presents an investigation for the magnetohydrodynamic (MHD) flow and heat transfer of an incompressible generalized Burgers’ fluid due to an exponential accelerating plate with the effect of the second order velocity slip. The energy equation and momentum equation are coupled by the fractional Burgers’ fluid constitutive model. Numerical solutions for velocity, temperature and shear stress are obtained using the modified implicit finite difference method combined with the G1-algorithm, whose validity is confirmed by the comparison with the analytical solution. Our results show that the influences of the fractional parameters α and β on the flow are opposite each other, which is just like the effects of the two parameters on the temperature. Moreover, the impact trends of the relaxation time λ 1 and retardation time λ 3 on the velocity are opposite each other. Increasing the boundary parameter will promote the temperature, but has little effect on the temperature boundary layer thickness. Supported by the National Natural Science Foundations of China under Grant Nos. 21576023, 51406008, and the National Key Research Program of China under Grant Nos. 2016YFC0700601, 2016YFC0700603, and 2016YFE0115500
Khan, Zeeshan; Islam, Saeed; Shah, Rehan Ali; Khan, Muhammad Altaf; Bonyah, Ebenezer; Jan, Bilal; Khan, Aurangzeb
Modern optical fibers require a double-layer coating on the glass fiber in order to provide protection from signal attenuation and mechanical damage. The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride (PVC) and low and high density polyethylene (LDPE/HDPE), nylon and Polysulfone. One of the most important things which affect the final product after processing is the design of the coating die. In the present study, double-layer optical fiber coating is performed using melt polymer satisfying Oldroyd 8-constant fluid model in a pressure type die with the effect of magneto-hydrodynamic (MHD). Wet-on-wet coating process is applied for double-layer optical fiber coating. The coating process in the coating die is modeled as a simple two-layer Couette flow of two immiscible fluids in an annulus with an assigned pressure gradient. Based on the assumptions of fully developed laminar and MHD flow, the Oldroyd 8-constant model of non-Newtonian fluid of two immiscible resin layers is modeled. The governing nonlinear equations are solved analytically by the new technique of Optimal Homotopy Asymptotic Method (OHAM). The convergence of the series solution is established. The results are also verified by the Adomian Decomposition Method (ADM). The effect of important parameters such as magnetic parameter Mi , the dilatant constant α , the Pseodoplastic constant β , the radii ratio δ , the pressure gradient Ω , the speed of fiber optics V , and the viscosity ratio κ on the velocity profiles, thickness of coated fiber optics, volume flow rate, and shear stress on the fiber optics are investigated. At the end the result of the present work is also compared with the experimental results already available in the literature by taking non-Newtonian parameters tends to zero.
Some exact solutions of magnetized viscous model in string cosmology
C P Singh
2014-07-01
In this paper, we study anisotropic Bianchi-V Universe with magnetic field and bulk viscous fluid in string cosmology. Exact solutions of the field equations are obtained by using the equation of state (EoS) for a cloud of strings, and a relationship between bulk viscous coefficient and scalar expansion. The bulk viscous coefficient is assumed to be inversely proportional to the expansion scalar. It is interesting to examine the effects of magnetized bulk viscous string model in early and late stages of evolution of the Universe. This paper presents different string models like geometrical (Nambu string), Takabayasi (p-string) and Reddy string models by taking certain physical conditions. We discuss the nature of classical potential for viscous fluid with and without magnetic field. The presence of bulk viscosity stops the Universe from becoming empty in its future evolution. It is observed that the Universe expands with decelerated rate in the presence of viscous fluid with magnetic field whereas, it expands with marginal inflation in the presence of viscous fluid without magnetic field. The other physical and geometrical aspects of each string model are discussed in detail.
J Ghanbari
2009-12-01
Full Text Available Dynamics of stationary axisymmetric configuration of the viscous accreting fluids surrounding a non-rotating compact object in final stages of accretion flow is presented here. For the special case of thin disk approximation, the relativistic fluid equations ignoring self-gravity of the disk are derived in Schwarzschild geometry. For two different state equations, two sets of self-consistent analytical solutions of fully relativistic fluid equations are obtained separately. The effect of bulk viscosity coefficient on the physical functions are investigated for each state equation, as well as the bounds that exert on the free parameters due to the condition of accretion flow in the last stages. The solutions found show that the radial and azimuthal velocities, density and pressure of the fluid increase inwards for both state equations. Also, viscosity has no effect on the velocities and density distributions in both state equations. Two state equations show different types of behavior with respect to the bulk viscosity coefficient. For p=K state equation, if there is no bulk viscosity, the pressure remains constant throughout the disk, whereas with increasing bulk viscosity the pressure falls off in the inner regions but soon stabilizes at an almost constant value. However, for p=ρc2 state equation, the pressure is never constant, even in the absence of bulk viscosity. The larger the value of ηb, the higher the value of pressure in the inner regions.
Shinbrot, Marvin
2012-01-01
Readable and user-friendly, this high-level introduction explores the derivation of the equations of fluid motion from statistical mechanics, classical theory, and a portion of the modern mathematical theory of viscous, incompressible fluids. 1973 edition.
Luciano, Rezzolla
2013-01-01
Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...
B. Mahanthesh
2017-06-01
Full Text Available The purpose of this study is to investigate the unsteady magnetohydrodynamic three-dimensional flow induced by a stretching surface. An incompressible electrically conducting Eyring-Powell fluid fills the convectively heated stretching surface in the presence of nanoparticles. The effects of thermal radiation, viscous dissipation and Joule heating are accounted in heat transfer equation. The model used for the nanofluid includes the effects of Brownian motion and thermophoresis. The highly nonlinear partial differential equations are reduced to ordinary differential equations with the help of similarity method. The reduced complicated two-point boundary value problem is treated numerically using Runge–Kutta–Fehlberg 45 method with shooting technique. A comparison of the obtained numerical results with existing results in a limiting sense is also presented. At the end, the effects of influential parameters on velocity, temperature and nanoparticles concentration fields are also discussed comprehensively. Further, the physical quantities of engineering interest such as the Nusselt number and Sherwood number are also calculated.
A. M. Salem
2013-01-01
Full Text Available A numerical model is developed to study the effects of temperature-dependent viscosity on heat and mass transfer flow of magnetohydrodynamic(MHD micropolar fluids with medium molecular weight along a permeable stretching surface embedded in a non-Darcian porous medium in the presence of viscous dissipation and chemical reaction. The governing boundary equations for momentum, angular momentum (microrotation, and energy and mass transfer are transformed to a set of nonlinear ordinary differential equations by using similarity solutions which are then solved numerically by shooting technique. A comparison between the analytical and the numerical solutions has been included. The effects of the various physical parameters entering into the problem on velocity, microrotation, temperature and concentration profiles are presented graphically. Finally, the effects of pertinent parameters on local skin-friction coefficient, local Nusselt number and local Sherwood number are also presented graphically. One important observation is that for some kinds of mixtures (e.g., H2, air with light and medium molecular weight, the magnetic field and temperature-dependent viscosity effects play a significant role and should be taken into consideration as well.
Bulk viscous cosmology: statefinder and entropy
He, X
2006-01-01
The statefinder diagnostic pair is adopted to differentiate viscous cosmology models and it is found that the trajectories of these viscous cosmology models on the statefinder pair $s-r$ plane are quite different from those of the corresponding non-viscous cases. Particularly for the quiessence model, the singular properties of state parameter $w=-1$ are obviously demonstrated on the statefinder diagnostic pair planes. We then discuss the entropy of the viscous / dissipative cosmology system which may be more practical to describe the present cosmic observations as the perfect fluid is just a global approximation to the complicated cosmic media in current universe evolution. When the bulk viscosity takes the form of $\\zeta=\\zeta_{1}\\dot{a}/a$($\\zeta_{1}$ is constant), the relationship between the entropy $S$ and the redshift $z$ is explicitly given out. We find that the entropy of the viscous cosmology is always increasing and consistent with the thermodynamics arrow of time for the universe evolution. With t...
Haba, Z
2009-02-01
We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.
Sahoo, Raghunath
2016-01-01
This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.
Zhang, Yang; Toksöz, M Nafi
2012-08-01
The seismic response of saturated porous rocks is studied numerically using microtomographic images of three-dimensional digitized Berea sandstones. A stress-strain calculation is employed to compute the velocities and attenuations of rock samples whose sizes are much smaller than the seismic wavelength of interest. To compensate for the contributions of small cracks lost in the imaging process to the total velocity and attenuation, a hybrid method is developed to recover the crack distribution, in which the differential effective medium theory, the Kuster-Toksöz model, and a modified squirt-flow model are utilized in a two-step Monte Carlo inversion. In the inversion, the velocities of P- and S-waves measured for the dry and water-saturated cases, and the measured attenuation of P-waves for different fluids are used. By using such a hybrid method, both the velocities of saturated porous rocks and the attenuations are predicted accurately when compared to laboratory data. The hybrid method is a practical way to model numerically the seismic properties of saturated porous rocks until very high resolution digital data are available. Cracks lost in the imaging process are critical for accurately predicting velocities and attenuations of saturated porous rocks.
The Hubble parameter in the early universe with viscous QCD matter and finite cosmological constant
Tawfik, A
2011-01-01
The evolution of a flat, isotropic and homogeneous universe is studied. The background geometry in the early phases of the universe is conjectured to be filled with causal bulk viscous cosmological fluid and dark energy. The energy density relations obtained from the assumption of covariant conservation of energy-momentum tensor of the background matter in the early universe are used to derive the basic equation for the Hubble parameter $H$. The viscous properties described by ultra-relativistic equations of state and bulk viscosity taken from recent heavy-ion collisions and lattice QCD calculations have been utilized to give an approximate solution of the field equations. The cosmological constant is conjectured to be related to the energy density of the vacuum. In this treatment, there is a clear evidence for singularity at vanishing cosmic time $t$ indicating the dominant contribution from the dark energy. The time evolution of $H$ seems to last for much longer time than the ideal case, where both cosmolog...
The Hubble parameter in the early universe with viscous QCD matter and finite cosmological constant
Tawfik, A. [Egyptian Center for Theoretical Physics (ECTP), MTI University, Cairo (Egypt)
2011-05-15
The evolution of a flat, isotropic and homogeneous universe is studied. The background geometry in the early phases of the universe is conjectured to be filled with causal bulk viscous fluid and dark energy. The energy density relations obtained from the assumption of covariant conservation of energy-momentum tensor of the background matter in the early universe are used to derive the basic equation for the Hubble parameter H. The viscous properties described by ultra-relativistic equations of state and bulk viscosity taken from recent heavy-ion collisions and lattice QCD calculations have been utilized to give an approximate solution of the field equations. The cosmological constant is conjectured to be related to the energy density of the vacuum. In this treatment, there is a clear evidence for singularity at vanishing cosmic time t indicating the dominant contribution from the dark energy. The time evolution of H seems to last for much longer time than the ideal case, where both cosmological constant and viscosity coefficient are entirely vanishing. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Viscous extended holographic Ricci dark energy in the framework of standard Eckart theory
Chattopadhyay, Surajit
2016-01-01
In the present work we report a study on the viscous extended holographic Ricci dark energy (EHRDE) model under the assumption of existence of bulk viscosity in the linear barotropic fluid and the EHRDE in the framework of standard Eckart theory of relativistic irreversible thermodynamics and it has been observed that the non-equilibrium bulk viscous pressure is significantly smaller than the local equilibrium pressure. We have studied the equation of state (EoS) parameter and observed that the EoS behaves like "quintom" and is consistent with the constraints set by observational data sets from SNLS3, BAO and Planck + WMAP9 + WiggleZ measurements in the reference S. Kumar and L. Xu, \\emph{Phys. Lett. B},\\textbf{737}, 244 (2014). Analysis of statefinder parameters has shown the possibility of attainment of $\\Lambda$CDM phase under current model and at the same time it has been pointed out that the for $z=0$ i.e. current universe, the statefinder pair is different from that of $\\Lambda$CDM and the $\\Lambda$CDM ...
Viscous, Resistive Magnetorotational Modes
Pessah, Martin E
2008-01-01
We carry out a comprehensive analysis of the behavior of the magnetorotational instability (MRI) in viscous, resistive plasmas. We find exact, non-linear solutions of the non-ideal magnetohydrodynamic (MHD) equations describing the local dynamics of an incompressible, differentially rotating background threaded by a vertical magnetic field when disturbances with wavenumbers perpendicular to the shear are considered. We provide a geometrical description of these viscous, resistive MRI modes and show how their physical structure is modified as a function of the Reynolds and magnetic Reynolds numbers. We demonstrate that when finite dissipative effects are considered, velocity and magnetic field disturbances are no longer orthogonal (as it is the case in the ideal MHD limit) unless the magnetic Prandtl number is unity. We generalize previous results found in the ideal limit and show that a series of key properties of the mean Reynolds and Maxwell stresses also hold for the viscous, resistive MRI. In particular, ...
Wormholes in viscous cosmology
Wang, Deng
2016-01-01
We study the wormhole spacetime configurations in bulk viscosity cosmology. Considering three classes of viscous models, i.e., bulk viscosity as a function of Hubble parameter $H$, temperature $T$ and dark energy density $\\rho$, respectively, we obtain nine wormhole solutions. Through the analysis for the anisotropic solutions, we conclude that, to some extent, these three classes of viscous models have very high degeneracy with each other. Subsequently, without the loss of generality, to investigate the traversabilities, energy conditions and stability for the wormhole solution, we study the wormhole solution of the constant redshift function of the viscous $\\omega$CDM model with a constant bulk viscosity coefficient. We obtain the following conclusions: the value of traversal velocity decreases for decreasing bulk viscosity, and the traversal velocity for a traveler depends on not only the wormhole geometry but also the effects of cosmological background evolution; the null energy condition will be violated...
Viscous dissipative Chaplygin gas dominated homogenous and isotropic cosmological models
Pun, C S J; Mak, M K; Kovács, Z; Szabó, G M; Harko, T
2008-01-01
The generalized Chaplygin gas, which interpolates between a high density relativistic era and a non-relativistic matter phase, is a popular dark energy candidate. We consider a generalization of the Chaplygin gas model, by assuming the presence of a bulk viscous type dissipative term in the effective thermodynamic pressure of the gas. The dissipative effects are described by using the truncated Israel-Stewart model, with the bulk viscosity coefficient and the relaxation time functions of the energy density only. The corresponding cosmological dynamics of the bulk viscous Chaplygin gas dominated universe is considered in detail for a flat homogeneous isotropic Friedmann-Robertson-Walker geometry. For different values of the model parameters we consider the evolution of the cosmological parameters (scale factor, energy density, Hubble function, deceleration parameter and luminosity distance, respectively), by using both analytical and numerical methods. In the large time limit the model describes an acceleratin...
Investigating viscous damping using a webcam
Shamim, Sohaib; Anwar, Muhammad Sabieh
2011-01-01
We describe an experiment involving a mass oscillating in a viscous fluid and analyze viscous damping of harmonic motion. The mechanical oscillator is tracked using a simple webcam and an image processing algorithm records the position of the geometrical center as a function of time. Interesting information can be extracted from the displacement-time graphs, in particular for the underdamped case. For example, we use these oscillations to determine the viscosity of the fluid. Our mean value of 1.08 \\pm 0.07 mPa s for distilled water is in good agreement with the accepted value at 20\\circC. This experiment has been successfully employed in the freshman lab setting.
Hakim, Rémi
1994-01-01
Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.
Jones, Bernard J. T.; Markovic, Dragoljub
1997-06-01
Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.
Relativistic Radiation Mediated Shocks
Budnik, Ran; Sagiv, Amir; Waxman, Eli
2010-01-01
The structure of relativistic radiation mediated shocks (RRMS) propagating into a cold electron-proton plasma is calculated and analyzed. A qualitative discussion of the physics of relativistic and non relativistic shocks, including order of magnitude estimates for the relevant temperature and length scales, is presented. Detailed numerical solutions are derived for shock Lorentz factors $\\Gamma_u$ in the range $6\\le\\Gamma_u\\le30$, using a novel iteration technique solving the hydrodynamics and radiation transport equations (the protons, electrons and positrons are argued to be coupled by collective plasma processes and are treated as a fluid). The shock transition (deceleration) region, where the Lorentz factor $ \\Gamma $ drops from $ \\Gamma_u $ to $ \\sim 1 $, is characterized by high plasma temperatures $ T\\sim \\Gamma m_ec^2 $ and highly anisotropic radiation, with characteristic shock-frame energy of upstream and downstream going photons of a few~$\\times\\, m_ec^2$ and $\\sim \\Gamma^2 m_ec^2$, respectively.P...
Viscous, Resistive Magnetorotational Modes
Pessah, Martin Elias; Chan, Chi-kwan
2008-01-01
We carry out a comprehensive analysis of the behavior of the magnetorotational instability (MRI) in viscous, resistive plasmas. We find exact, non-linear solutions of the non-ideal magnetohydrodynamic (MHD) equations describing the local dynamics of an incompressible, differentially rotating...
Stokes’ and Lamb's viscous drag laws
Eames, I.; Klettner, C. A.
2017-03-01
Since Galileo used his pulse to measure the time period of a swinging chandelier in the 17th century, pendulums have fascinated scientists. It was not until Stokes' (1851 Camb. Phil. Soc. 9 8-106) (whose interest was spurred by the pendulur time pieces of the mid 19th century) treatise on viscous flow that a theoretical framework for the drag on a sphere at low Reynolds number was laid down. Stokes' famous drag law has been used to determine two fundamental physical constants—the charge on an electron and Avogadro's constant—and has been used in theories which have won three Nobel prizes. Considering its illustrious history it is then not surprising that the flow past a sphere and its two-dimensional analog, the flow past a cylinder, form the starting point of teaching flow past a rigid body in undergraduate level fluid mechanics courses. Usually starting with the two-dimensional potential flow past a cylinder, students progress to the three-dimensional potential flow past a sphere. However, when the viscous flow past rigid bodies is taught, the three-dimensional example of a sphere is first introduced, and followed by (but not often), the two-dimensional viscous flow past a cylinder. The reason why viscous flow past a cylinder is generally not taught is because it is usually explained from an asymptotic analysis perspective. In fact, this added mathematical complexity is why the drag on a cylinder was only solved in 1911, 60 years after the drag on a sphere. In this note, we show that the viscous flow past a cylinder can be explained without the need to introduce any asymptotic analysis while still capturing all the physical insight of this classic fluid mechanics problem.
Viscous flows the practical use of theory
Brenner, Howard
1988-01-01
Representing a unique approach to the study of fluid flows, Viscous Flows demonstrates the utility of theoretical concepts and solutions for interpreting and predicting fluid flow in practical applications. By critically comparing all relevant classes of theoretical solutions with experimental data and/or general numerical solutions, it focuses on the range of validity of theoretical expressions rather than on their intrinsic character.This book features extensive use of dimensional analysis on both models and variables, and extensive development of theoretically based correlating equations.
Locomotion of Microscopic Robots in Viscous Fluids
Hogg, Tad
2013-01-01
Microscopic robots could perform tasks with high spatial precision, such as acting in biological tissues on the scale of individual cells, provided they can reach precise locations. This paper evaluates the feasibility of in vivo locomotion for micron-size robots. Two appealing methods rely only on surface motions: steady tangential motion and small amplitude oscillations. These methods contrast with common microorganism propulsion based on flagella or cilia, which are more likely to damage nearby cells if used by robots made of stiff materials. The power available to robots, e.g., from oxygen and glucose in tissue, is sufficient to support speeds ranging from one to hundreds of microns per second, over the range of viscosities found in biological tissue. We discuss design trade-offs among propulsion method, speed, power, shear forces and robot shape, and relate those choices to robot task requirements.
Viscous fingering of miscible slices
De Wit, A; Martin, M; Wit, Anne De; Bertho, Yann; Martin, Michel
2005-01-01
Viscous fingering of a miscible high viscosity slice of fluid displaced by a lower viscosity fluid is studied in porous media by direct numerical simulations of Darcy's law coupled to the evolution equation for the concentration of a solute controlling the viscosity of miscible solutions. In contrast with fingering between two semi-infinite regions, fingering of finite slices is a transient phenomenon due to the decrease in time of the viscosity ratio across the interface induced by fingering and dispersion processes. We show that fingering contributes transiently to the broadening of the peak in time by increasing its variance. A quantitative analysis of the asymptotic contribution of fingering to this variance is conducted as a function of the four relevant parameters of the problem i.e. the log-mobility ratio R, the length of the slice l, the Peclet number Pe and the ratio between transverse and axial dispersion coefficients $\\epsilon$. Relevance of the results is discussed in relation with transport of vi...
Experimental study of highly viscous impinging jets
Gomon, M. [Univ. of Texas, Austin, TX (United States). Dept. of Mechanical Engineering
1998-12-01
The objective of this research is to study the behavior of highly viscous gravity-driven jets filling a container. Matters of interest are the formation of voids in the fluid pool during the filling process and the unstable behavior of the fluid in the landing region which manifests itself as an oscillating motion. The working fluids used in this research are intended to simulate the flow behavior of molten glass. Qualitative and quantitative results are obtained in a parametric study. The fraction of voids present in the fluid pool after the filling of the container is measured for different parameter values of viscosity and mass flow rate. Likewise, frequencies of the oscillating jet are measured. Results are inconclusive with regard to a correlation between parameter settings and void fractions. As for frequencies, power law correlations are established.
Relativistic and non-relativistic geodesic equations
Giambo' , R.; Mangiarotti, L.; Sardanashvily, G. [Camerino Univ., Camerino, MC (Italy). Dipt. di Matematica e Fisica
1999-07-01
It is shown that any dynamic equation on a configuration space of non-relativistic time-dependent mechanics is associated with connections on its tangent bundle. As a consequence, every non-relativistic dynamic equation can be seen as a geodesic equation with respect to a (non-linear) connection on this tangent bundle. Using this fact, the relationships between relativistic and non-relativistic equations of motion is studied.
Optimization of maxblend impeller diameter in high viscous fluid by CFD%高黏体系中最大叶片式搅拌桨直径的CFD优化
王令闪; 苏红军; 徐世艾
2011-01-01
The distribution of velocity, dead-zone volume, shear rates, apparent viscosity and overall flow status with different impeller diameters in tanks were studied by means of computational fluid dynamics ( CFD) in order to optimize the diameter of the maxblend impeller in high viscous xanthan gum solutions. The result shows that the circulation zone volume and average velocity in tank are increased, at the same time the uniformity of velocity distribution is improved, which leads to obvious decrease of dead volume in tank as the impeller diameter increases under the condition of constant agitation power. The optimum diameter of maxblend impeller is 0. 276 m for the studied system. When the impeller diameter is continued to increase more than 0. 276 m, the change of dead volume in tank is inconspicuous, and the shear performance of maxblend impeller evidently deteriorates.%以黄原胶溶液为研究体系,借助于计算流体力学( CFD)方法研究了采用不同直径的最大叶片式搅拌桨时釜内流体速率分布、死区体积、剪切速率、表观黏度和总体流体状况等参数.研究发现:在保持功率不变的前提下,随着桨径的增大,釜内循环区影响范围变广,全釜平均液相速率逐渐增加,速度分布均匀度有所提高,死区体积明显下降.对于研究的搅拌体系,最大叶片式桨适宜直径为0.276 m.当桨径再继续增大直径时,釜内死区减少不明显,同时搅拌桨的剪切性能恶化.
Fluids and vortex from constrained fluctuations around C-metric black hole
Hao, Xin; Zhao, Liu
2015-01-01
By foliating the four-dimensional C-metric black hole spacetime, we consider a kind of initial-value-like formulation of the vacuum Einstein's equation, the holographic inception data is a double consisting of the induced metric and the Brown-York energy momentum tensor on an arbitrary starter hypersurface. Then by perturbing the inception data that generates the background spacetime, it is shown that, in an appropriate limit, the fluctuation modes are governed by the continuity equation and the Cauchy momentum equation which describe the momentum transport in non-relativistic viscous fluid. Moreover, since the 2-dimensional near horizon hypersurface is always conformally flat, we can map the fluid system onto a flat Newtonian space and thus establishing yet another example of the Gravity/Flat space fluid correspondence found recently in our works. It turns out that the flat space fluid behaves as a pure vortex.
Viscous pumping inspired by flexible propulsion
Arco, Roger M; Lauga, Eric; Zenit, Roberto
2014-01-01
Fluid-suspended microorganisms have evolved different swimming and feeding strategies in order to cope with an environment dominated by viscous effects. For instance ciliated organisms rely on the collective motion of flexible appendices to move and feed. By performing a non-reciprocal motion, flexible filaments can produce a net propulsive force, or pump fluid, in the absence of inertia. Inspired by such fundamental concept, we propose a strategy to produce macroscopic pumping and mixing in creeping flow. We measure experimentally the net motion of a Newtonian viscous fluid induced by the reciprocal motion of a flapper. When the flapper is rigid no net motion is induced. In contrast, when the flapper is made of a flexible material, a net fluid pumping is measured. We quantify the effectiveness of this pumping strategy and show that optimal pumping is achieved when the length of the flapper is on the same order as the elasto-hydrodynamic penetration length. We finally discuss the possible applications of flex...
Relativistic magnetohydrodynamics
Hernandez, Juan; Kovtun, Pavel
2017-05-01
We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the "conventional" magnetohydrodynamics (formulated using Maxwell's equations in matter) to those in the "dual" version of magnetohydrodynamics (formulated using the conserved magnetic flux).
Leardini, Fabrice
2013-01-01
This manuscript presents a problem on special relativity theory (SRT) which embodies an apparent paradox relying on the concept of simultaneity. The problem is represented in the framework of Greek epic poetry and structured in a didactic way. Owing to the characteristic properties of Lorenz transformations, three events which are simultaneous in a given inertial reference system, occur at different times in the other two reference frames. In contrast to the famous twin paradox, in the present case there are three, not two, different inertial observers. This feature provides a better framework to expose some of the main characteristics of SRT, in particular, the concept of velocity and the relativistic rule of addition of velocities.
On Lorentz invariants in relativistic magnetic reconnection
Yang, Shu-Di; Wang, Xiao-Gang
2016-08-01
Lorentz invariants whose nonrelativistic correspondences play important roles in magnetic reconnection are discussed in this paper. Particularly, the relativistic invariant of the magnetic reconnection rate is defined and investigated in a covariant two-fluid model. Certain Lorentz covariant representations for energy conversion and magnetic structures in reconnection processes are also investigated. Furthermore, relativistic measures for topological features of reconnection sites, particularly magnetic nulls and separatrices, are analyzed.
Some Exact Solutions of Magnetized viscous model in String Cosmology
Singh, C P
2012-01-01
In this paper we study anisotropic Bianchi-V universe with magnetic field and bulk viscous fluid in string cosmology. Exact solutions of the field equations are obtained by using the equation of state for a cloud of strings and a relationship between bulk viscous coefficient and expansion scalar. The bulk viscous coefficient is assumed to be inversely proportional to the expansion scalar. It is interesting to examine the effects of magnetized bulk viscous string model in early and late stages of the evolution of the universe. This paper investigates the different string models like geometrical(Nambu string), Takabayashi (p-string) and Reddy string models by taking certain physical conditions. The introduction of magnetic field or bulk viscosity or both results in rapid change in scale factors as well as in the classical potential. The presence of viscosity prevents the universe to be empty in its future evolution. The physical and geometrical aspects of each string model are discussed in detail.
Variational thermodynamics of relativistic thin disks
Gutiérrez-Piñeres, Antonio C.; Lopez-Monsalvo, Cesar S.; Quevedo, Hernando
2015-12-01
We present a relativistic model describing a thin disk system composed of two fluids. The system is surrounded by a halo in the presence of a non-trivial electromagnetic field. We show that the model is compatible with the variational multifluid thermodynamics formalism, allowing us to determine all the thermodynamic variables associated with the matter content of the disk. The asymptotic behavior of these quantities indicates that the single fluid interpretation should be abandoned in favor of a two-fluid model.
M·纳瓦兹; T·哈亚特; A·阿尔舍德; 吴承平
2012-01-01
The Dufour and Soret effects on the two dimensional MHD steady flow of electrically conducting viscous fluid bounded by infinite sheets were examined. An incompressible viscous fluid filled the porous space. Mathematical analysis was performed in the presence of viscous dissipation, Joule heating and first order chemical reaction. By means of suitable transformations , the governing partial differential equations through momentum, energy and concentration laws were transformed into the ordinary differential equations. The resulting equations were solved by homotopy analysis method (HAM). Convergence of the series solutions was ensured. The effects of emerging parameters on the dimensionless velocities, temperature and concentration fields were analyzed. Skin friction coefficient, Nusselt number and Sherwood number were also analyzed.%在一个充满不可压缩、粘性、导电流体的多孔介质空间中,以两个无限伸展的薄片为边界,研究Dufour和Sorer数对其间二维磁流体动力学稳定流动的影响,数学分析是在有粘性耗散、Joule热和一级化学反应下进行.通过适当的变换,将动量、能量和浓度定律所表示的偏微分控制方程组,变换为常微分方程组.利用同伦分析法(HAM)求解该方程组,保证了级数解的收敛性.分析了显现参数对无量纲速度、温度和浓度场的影响,同时对表面摩擦因数、Nusselt数和Sherwood数的影响进行了分析.
Geometric approach to viscous fingering on a cone
Miranda, J A
2003-01-01
We study fluid flow and the formation of viscous fingering patterns on a two-dimensional conical background space, defined as the conical Hele-Shaw cell. We approach the problem geometrically and study how the nontrivial topological structure of the conical cell affects the evolution of the interface separating two viscous fluids. We perform a perturbative weakly nonlinear analysis of the problem and derive a mode-coupling differential equation which describes fluid-fluid interface behaviour. Our nonlinear study predicts the formation of fingering structures in which fingers of different lengths compete and split at their tips. The shape of the emerging patterns show a significant sensitivity to variations in the cell's topological features, which can be monitored by changing the cone opening angle. We find that for increasingly larger values of the opening angle, finger competition is inhibited while finger tip-splitting is enhanced.
Viscous QCD matter in a hybrid hydrodynamic+Boltzmann approach
Song, Huichao; Heinz, Ulrich W
2010-01-01
A hybrid transport approach for the bulk evolution of viscous QCD matter produced in ultra-relativistic heavy-ion collisions is presented. The expansion of the dense deconfined phase of the reaction is modeled with viscous hydrodynamics while the dilute late hadron gas stage is described microscopically by the Boltzmann equation. The advantages of such a hybrid approach lie in the improved capability of handling large dissipative corrections in the late dilute phase of the reaction, including a realistic treatment of the non-equilibrium hadronic chemistry and kinetic freeze-out. By varying the switching temperature at which the hydrodynamic output is converted to particles for further propagation with the Boltzmann cascade we test the ability of the macroscopic hydrodynamic approach to emulate the microscopic evolution during the hadronic stage and extract the temperature dependence of the effective shear viscosity of the hadron resonance gas produced in the collision. We find that the extracted values depend...
Vorticity and Λ polarization in event-by-event (3+1)D viscous hydrodynamics
Pang, Long-Gang; Fang, Ren-Hong; Petersen, Hannah; Wang, Qun; Wang, Xin-Nian
2017-01-01
We visualized the vortical fluid in fluctuating QGP using (3+1)D viscous hydrodynamics, computed the spin distribution and correlation of hyperons and estimated the polarization splitting between Λ and .
Relativistic r-modes and shear viscosity
Gualtieri, L; Miralles, J A; Ferrari, V
2006-01-01
We derive the relativistic equations for stellar perturbations, including in a consistent way shear viscosity in the stress-energy tensor, and we numerically integrate our equations in the case of large viscosity. We consider the slow rotation approximation, and we neglect the coupling between polar and axial perturbations. In our approach, the frequency and damping time of the emitted gravitational radiation are directly obtained. We find that, approaching the inviscid limit from the finite viscosity case, the continuous spectrum is regularized. Constant density stars, polytropic stars, and stars with realistic equations of state are considered. In the case of constant density stars and polytropic stars, our results for the viscous damping times agree, within a factor two, with the usual estimates obtained by using the eigenfunctions of the inviscid limit. For realistic neutron stars, our numerical results give viscous damping times with the same dependence on mass and radius as previously estimated, but sys...
Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics
Keppens, R.; Meliani, Z.; van Marle, A. J.; Delmont, P.; Vlasis, A.; van der Holst, B.
2012-01-01
Relativistic hydro and magnetohydrodynamics provide continuum fluid descriptions for gas and plasma dynamics throughout the visible universe. We present an overview of state-of-the-art modeling in special relativistic regimes, targeting strong shock-dominated flows with speeds approaching the speed
Bulk Viscous Matter-dominated Universes: Asymptotic Properties
Avelino, Arturo; Gonzalez, Tame; Nucamendi, Ulises; Quiros, Israel
2013-01-01
By means of a combined study of the type Ia supernovae test,together with a study of the asymptotic properties in the equivalent phase space -- through the use of the dynamical systems tools -- we demonstrate that the bulk viscous matter-dominated scenario is not a good model to explain the accepted cosmological paradigm, at least, under the parametrization of bulk viscosity considered in this paper. The main objection against such scenarios is the absence of conventional radiation and matter-dominated critical points in the phase space of the model. This entails that radiation and matter dominance are not generic solutions of the cosmological equations, so that these stages can be implemented only by means of very particular solutions. Such a behavior is in marked contradiction with the accepted cosmological paradigm which requires of an earlier stage dominated by relativistic species, followed by a period of conventional non-relativistic matter domination, during which the cosmic structure we see was formed...
Relativistic calculations of coalescing binary neutron stars
Joshua Faber; Phillippe Grandclément; Frederic Rasio
2004-10-01
We have designed and tested a new relativistic Lagrangian hydrodynamics code, which treats gravity in the conformally flat approximation to general relativity. We have tested the resulting code extensively, finding that it performs well for calculations of equilibrium single-star models, collapsing relativistic dust clouds, and quasi-circular orbits of equilibrium solutions. By adding a radiation reaction treatment, we compute the full evolution of a coalescing binary neutron star system. We find that the amount of mass ejected from the system, much less than a per cent, is greatly reduced by the inclusion of relativistic gravitation. The gravity wave energy spectrum shows a clear divergence away from the Newtonian point-mass form, consistent with the form derived from relativistic quasi-equilibrium fluid sequences.
MHD Flow and Heat Transfer Analysis in the Wire Coating Process Using Elastic-Viscous
Zeeshan Khan; Rehan Ali Shah; Saeed Islam; Hamid Jan; Bilal Jan; Haroon-Ur Rasheed; Aurangzeeb Khan
2017-01-01
The most important plastic resins used for wire coating are polyvinyl chloride (PVC), nylon, polysulfone, and low-/high-density polyethylene (LDPE/HDPE). In this article, the coating process is performed using elastic-viscous fluid as a coating material for wire coating in a pressure type coating die. The elastic-viscous fluid is electrically conducted in the presence of an applied magnetic field. The governing non-linear equations are modeled and then solved analytically by utilizing an Adom...
Stochastic oscillations of general relativistic disks
Harko, Tiberiu
2012-01-01
We analyze the general relativistic oscillations of thin accretion disks around compact astrophysical objects interacting with the surrounding medium through non-gravitational forces. The interaction with the external medium (a thermal bath) is modeled via a friction force, and a random force, respectively. The general equations describing the stochastically perturbed disks are derived by considering the perturbations of trajectories of the test particles in equatorial orbits, assumed to move along the geodesic lines. By taking into account the presence of a viscous dissipation and of a stochastic force we show that the dynamics of the stochastically perturbed disks can be formulated in terms of a general relativistic Langevin equation. The stochastic energy transport equation is also obtained. The vertical oscillations of the disks in the Schwarzschild and Kerr geometries are considered in detail, and they are analyzed by numerically integrating the corresponding Langevin equations. The vertical displacement...
Disappearance of a spout: self-similar scaling in viscous withdrawal
Zhang, Wendy
2002-11-01
Inspired by recent experiments (Cohen & Nagel, PRL, 2002) showing that steady flow past an interface between two layers of viscous liquids can draw out a thin tendril of fluid (a spout) above a critical flow rate, we present a long-wavelength model of axisymmetric, viscous withdrawal from a fluid-filled nozzle. The model suggests that the fluid interface develops a steady-state singularity as the exterior fluid withdrawal rate is increased pass a critical rate. In addition, the critical withdrawal rate does not depend on the viscosity contrast when the nozzle fluid is much less viscous than the exterior fluid. At the the critical withdrawal rate, the volume flux is zero, corresponding to a spout of zero thickness. At flow rates slightly above critical withdrawal rate, the steady-state spout profiles can be self-similar, with a scaling exponent determined by an interplay of local self-similarity and macroscopic boundary conditions.
Zero-field nuclear magnetic resonance spectroscopy of viscous liquids
Shimizu, Y.; Blanchard, J. W.; Pustelny, S.; Saielli, G.; Bagno, A.; Ledbetter, M. P.; Budker, D.; Pines, A.
2015-01-01
We report zero-field NMR measurements of a viscous organic liquid, ethylene glycol. Zero-field spectra were taken showing resolved scalar spin-spin coupling (J-coupling) for ethylene glycol at different temperatures and water contents. Molecular dynamics strongly affects the resonance linewidth, which closely follows viscosity. Quantum chemical calculations have been used to obtain the relative stability and coupling constants of all ethylene glycol conformers. The results show the potential of zero-field NMR as a probe of molecular structure and dynamics in a wide range of environments, including viscous fluids.
Numerical Solution of Boundary Layer MHD Flow with Viscous Dissipation
S. R. Mishra
2014-01-01
Full Text Available The present paper deals with a steady two-dimensional laminar flow of a viscous incompressible electrically conducting fluid over a shrinking sheet in the presence of uniform transverse magnetic field with viscous dissipation. Using suitable similarity transformations the governing partial differential equations are transformed into ordinary differential equations and then solved numerically by fourth-order Runge-Kutta method with shooting technique. Results for velocity and temperature profiles for different values of the governing parameters have been discussed in detail with graphical representation. The numerical evaluation of skin friction and Nusselt number are also given in this paper.
Zero-field nuclear magnetic resonance spectroscopy of viscous liquids.
Shimizu, Y; Blanchard, J W; Pustelny, S; Saielli, G; Bagno, A; Ledbetter, M P; Budker, D; Pines, A
2015-01-01
We report zero-field NMR measurements of a viscous organic liquid, ethylene glycol. Zero-field spectra were taken showing resolved scalar spin-spin coupling (J-coupling) for ethylene glycol at different temperatures and water contents. Molecular dynamics strongly affects the resonance linewidth, which closely follows viscosity. Quantum chemical calculations have been used to obtain the relative stability and coupling constants of all ethylene glycol conformers. The results show the potential of zero-field NMR as a probe of molecular structure and dynamics in a wide range of environments, including viscous fluids. Copyright © 2014 Elsevier Inc. All rights reserved.
OBJECTIVITY REQUIREMENT FOR FLUID DYNAMICS
邹文楠
2003-01-01
A new flow theory is established through the objectivity requirement on the fluid dynamics. It was known that inhomogeneous fluid motion gave rise to viscous force while the selection of observers on different space-time points would change such an inhomogeneous character. Therefore, when the viscous force was considered as an objective existence foreign to the selection of observers, the form invariances of viscous force and momentum equation under local rotation transformation required a new dynamic field,namely the vortex field to be introduced. Then the dynamical equations of all flow fields were obtained through constructing the Lagrangian density of fluid system and using the variational approach of energy.
Relativistic radiative transfer in relativistic spherical flows
Fukue, Jun
2017-02-01
Relativistic radiative transfer in relativistic spherical flows is numerically examined under the fully special relativistic treatment. We first derive relativistic formal solutions for the relativistic radiative transfer equation in relativistic spherical flows. We then iteratively solve the relativistic radiative transfer equation, using an impact parameter method/tangent ray method, and obtain specific intensities in the inertial and comoving frames, as well as moment quantities, and the Eddington factor. We consider several cases; a scattering wind with a luminous central core, an isothermal wind without a core, a scattering accretion on to a luminous core, and an adiabatic accretion on to a dark core. In the typical wind case with a luminous core, the emergent intensity is enhanced at the center due to the Doppler boost, while it reduces at the outskirts due to the transverse Doppler effect. In contrast to the plane-parallel case, the behavior of the Eddington factor is rather complicated in each case, since the Eddington factor depends on the optical depth, the flow velocity, and other parameters.
Variational thermodynamics of relativistic thin disks
Gutiérrez-Piñeres, A C; Quevedo, H
2013-01-01
We present a relativistic model describing a thin disk system composed of two fluids. The system is surrounded by a halo in the presence of a non-trivial electromagnetic field. We show that the model is compatible with the variational multi-fluid thermodynamics formalism, allowing us to determine all the thermodynamic variables associated with the matter content of the disk. The asymptotic behaviour of these quantities indicates that the single fluid interpretation should be abandoned in favour of a two-fluid model.
Radiative transfer in ultra-relativistic outflows
Beloborodov, Andrei M.
2010-01-01
Analytical and numerical solutions are obtained for the equation of radiative transfer in ultra-relativistic opaque jets. The solution describes the initial trapping of radiation, its adiabatic cooling, and the transition to transparency. Two opposite regimes are examined: (1) Matter-dominated outflow. Surprisingly, radiation develops enormous anisotropy in the fluid frame before decoupling from the fluid. The radiation is strongly polarized. (2) Radiation-dominated outflow. The transfer occu...
Linking Spatial Distributions of Potential and Current in Viscous Electronics
Falkovich, Gregory; Levitov, Leonid
2017-08-01
Viscous electronics is an emerging field dealing with systems in which strongly interacting electrons behave as a fluid. Electron viscous flows are governed by a nonlocal current-field relation which renders the spatial patterns of the current and electric field strikingly dissimilar. Notably, driven by the viscous friction force from adjacent layers, current can flow against the electric field, generating negative resistance, vorticity, and vortices. Moreover, different current flows can result in identical potential distributions. This sets a new situation where inferring the electron flow pattern from the measured potentials presents a nontrivial problem. Using the inherent relation between these patterns through complex analysis, here we propose a method for extracting the current flows from potential distributions measured in the presence of a magnetic field.
Relativistic Remnants of Non-Relativistic Electrons
Kashiwa, Taro
2015-01-01
Electrons obeying the Dirac equation are investigated under the non-relativistic $c \\mapsto \\infty$ limit. General solutions are given by derivatives of the relativistic invariant functions whose forms are different in the time- and the space-like region, yielding the delta function of $(ct)^2 - x^2$. This light-cone singularity does survive to show that the charge and the current density of electrons travel with the speed of light in spite of their massiveness.
Convexity and symmetrization in relativistic theories
Ruggeri, T.
1990-09-01
There is a strong motivation for the desire to have symmetric hyperbolic field equations in thermodynamics, because they guarantee well-posedness of Cauchy problems. A generic quasi-linear first order system of balance laws — in the non-relativistic case — can be shown to be symmetric hyperbolic, if the entropy density is concave with respect to the variables. In relativistic thermodynamics this is not so. This paper shows that there exists a scalar quantity in relativistic thermodynamics whose concavity guarantees a symmetric hyperbolic system. But that quantity — we call it —bar h — is not the entropy, although it is closely related to it. It is formed by contracting the entropy flux vector — ha with a privileged time-like congruencebar ξ _α . It is also shown that the convexity of h plus the requirement that all speeds be smaller than the speed of light c provide symmetric hyperbolic field equations for all choices of the direction of time. At this level of generality the physical meaning of —h is unknown. However, in many circumstances it is equal to the entropy. This is so, of course, in the non-relativistic limit but also in the non-dissipative relativistic fluid and even in relativistic extended thermodynamics for a non-degenerate gas.
Relativistic quantum mechanics
Wachter, Armin
2010-01-01
Which problems do arise within relativistic enhancements of the Schrödinger theory, especially if one adheres to the usual one-particle interpretation, and to what extent can these problems be overcome? And what is the physical necessity of quantum field theories? In many books, answers to these fundamental questions are given highly insufficiently by treating the relativistic quantum mechanical one-particle concept very superficially and instead introducing field quantization as soon as possible. By contrast, this monograph emphasizes relativistic quantum mechanics in the narrow sense: it extensively discusses relativistic one-particle concepts and reveals their problems and limitations, therefore motivating the necessity of quantized fields in a physically comprehensible way. The first chapters contain a detailed presentation and comparison of the Klein-Gordon and Dirac theory, always in view of the non-relativistic theory. In the third chapter, we consider relativistic scattering processes and develop the...
ZHANG Peng-Fei; RUAN Tu-Nan
2001-01-01
A systematic theory on the appropriate spin operators for the relativistic states is developed. For a massive relativistic particle with arbitrary nonzero spin, the spin operator should be replaced with the relativistic one, which is called in this paper as moving spin. Further the concept of moving spin is discussed in the quantum field theory. A new is constructed. It is shown that, in virtue of the two operators, problems in quantum field concerned spin can be neatly settled.
Relativistic Guiding Center Equations
White, R. B. [PPPL; Gobbin, M. [Euratom-ENEA Association
2014-10-01
In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.
Relativistic Linear Restoring Force
Clark, D.; Franklin, J.; Mann, N.
2012-01-01
We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…
Topological chaos in inviscid and viscous mixers
Finn, M. D.; Cox, S. M.; Byrne, H. M.
2003-10-01
Topological chaos may be used to generate highly effective laminar mixing in a simple batch stirring device. Boyland, Aref & Stremler (2000) have computed a material stretch rate that holds in a chaotic flow, provided it has appropriate topological properties, irrespective of the details of the flow. Their theoretical approach, while widely applicable, cannot predict the size of the region in which this stretch rate is achieved. Here, we present numerical simulations to support the observation of Boyland et al. that the region of high stretch is comparable with that through which the stirring elements move during operation of the device. We describe a fast technique for computing the velocity field for either inviscid, irrotational or highly viscous flow, which enables accurate numerical simulation of dye advection. We calculate material stretch rates, and find close agreement with those of Boyland et al., irrespective of whether the fluid is modelled as inviscid or viscous, even though there are significant differences between the flow fields generated in the two cases.
焦驰宇; 张恺; 张连普; 龙佩恒
2013-01-01
对桥梁阻尼器参数确定方法的相关文献进行了回顾,指出现有常用参数分析法费时费力；而简化分析法存在仅适用于结构保持在弹性阶段、无法考虑罕遇地震下支座摩擦及墩柱轻度损伤等复杂情况的弊端.以非线性静力分析获得的能力曲线为基础,利用性能点、目标点求解时获得的关键参数,结合等效弹性单自由度体系附加非线性粘滞阻尼器的参数确定公式,提出了考虑支座摩擦和墩柱损伤的桥用阻尼器参数确定方法.将该方法应用于某三跨连续梁桥抗震加固分析,验证了该方法的实用性及准确性.指出了该方法具有的优势及使用时需注意的问题.本文方法可用于中小跨径桥梁抗震加固时液体粘滞阻尼器的参数确定.%By reviewing parameter determination methods for fluid viscous damper ( FVD) applied in structural engineering, the defect of time consuming when using parameter analysis method, and the defect of not considering the bearing friction and other nonlinearity when using normal simplified method were pointed out. A new parameter determinations method which can easily and quickly consider the above effects was proposed. It can be expressed as follows; based on the pushover curve given by nonlinear static analysis, getting the key parameters when calculating performance point and target point, then substituting them into the structural dynamic formula of elastic SDF system with non - linear fluid viscous dampers, the approprite parameter of the viscous damper can be achieved. Taking a seismic retrofitting example of a three-span continuous girder bridge using FVD, the accuracy and practicality of the parameter determination method given in the paper was validated. The advantages and some problems which should be noticed when using this method were given. The parameter determination method can be used in similar seismic retrofit design of medium and small-span bridges when FVD were
MALFLIET, R
1993-01-01
We discuss the present status of relativistic transport theory. Special emphasis is put on problems of topical interest: hadronic features, thermodynamical consistent approximations and spectral properties.
Generalized magnetofluid connections in relativistic magnetohydrodynamics.
Asenjo, Felipe A; Comisso, Luca
2015-03-20
The concept of magnetic connections is extended to nonideal relativistic magnetohydrodynamical plasmas. Adopting a general set of equations for relativistic magnetohydrodynamics including thermal-inertial, thermal electromotive, Hall, and current-inertia effects, we derive a new covariant connection equation showing the existence of generalized magnetofluid connections that are preserved during the dissipationless plasma dynamics. These connections are intimately linked to a general antisymmetric tensor that unifies the electromagnetic and fluid fields, allowing the extension of the magnetic connection notion to a much broader concept.
Fluids and vortex from constrained fluctuations around C-metric black holes
Hao, Xin; Wu, Bin; Zhao, Liu
2017-08-01
By foliating the four-dimensional C-metric black hole spacetime, we consider a kind of initial-value-like formulation of the vacuum Einstein's equation, the holographic initial data is a double consisting of the induced metric and the Brown-York energy momentum tensor on an arbitrary initial hypersurface. Then by perturbing the initial data that generates the background spacetime, it is shown that, in an appropriate limit, the fluctuation modes are governed by the continuity equation and the compressible Navier-Stokes equation which describe the momentum transport in non-relativistic viscous fluid on a flat Newtonian space. It turns out that the flat space fluid behaves as a pure vortex and the viscosity to entropy ratio is subjected to the black hole acceleration.
Viscous Cosmology and Thermodynamics of Apparent Horizon
M. Akbar
2008-01-01
@@ It is shown that the differential form of Friedmann equations of Friedman-Robertson-Walker (FRW) universe can be recast as a similar form of the first law ThdSh=dE + W dV of thermodynamics at the apparent horizon of FRW universe filled with the viscous fluid.It is also shown that by employing the general expression of temperature Th=|k|/2π=1/2π(r)A(1-(r)A/2H(r)A) associated with the apparent horizon of an FRW universe and assumed that the temperature Tm of the energy inside the apparent horizon is proportional to the horizon temperature Tm = bTh,we are able to show that the generalized second law of thermodynamics holds in the Einstein gravity provided Th-Tm/(r)A≤(p+(P)).
Viscous erosion at low Reynolds number
Mitchell, William; Sagnolie, Saverio
2016-11-01
We study the shape evolution of immersed particles in a viscous fluid under several flow configurations, including uniform background flows and shear flows in wall-bounded or free domains. The surface recedes proportionally to local shear stress, which we compute using a new traction integral formulation of Newtonian Stokes flow. This opens the door to efficient numerical simulation of the evolving particle geometry. Analytical predictions from reduced-order models are then compared against the numerical simulations. For the case of particles held fixed against an oncoming background flow, the theory predicts the finite time required for complete particle dissolution as well as the emergence and locations of sharp corners on the eroding bodies. Simulations involving force- and torque-free particles and multibody systems are also presented.
Bounds on the Phase Velocity in the Linear Instability of Viscous Shear Flow Problem in the -Plane
R G Shandil; Jagjit Singh
2003-05-01
Results obtained by Joseph (J. Fluid Mech. 33 (1968) 617) for the viscous parallel shear flow problem are extended to the problem of viscous parallel, shear flow problem in the beta plane and a sufficient condition for stability has also been derived.
蒋涛; 任金莲; 徐磊; 陆林广
2014-01-01
为准确、有效地模拟非等温非牛顿黏性流体的流动问题，本文基于一种不含核导数计算的核梯度修正格式和不可压缩条件给出了一种改进光滑粒子动力学(SPH)离散格式，它较传统SPH离散格式具有较高精度和较好稳定性。同时，为准确地描述温度场的演化过程，建立了非牛顿黏性的SPH温度离散模型。通过对等温Poiseuille流、喷射流和非等温Couette流、4：1收缩流进行模拟，并与其他数值结果作对比，分别验证了改进SPH方法模拟非牛顿黏性流动问题的可靠性和提出的SPH温度离散模型求解非等温流动问题的有效性和准确性。随后，运用改进SPH方法结合SPH温度离散模型对环形腔和C形腔内非等温非牛顿黏性流体的充模过程进行了试探性模拟研究，分析了数值模拟的收敛性，讨论了不同位置处热流参数对温度和流动的影响。%In this paper, a corrected smoothed particle hydrodynamics (SPH) method is proposed to solve the problems of non-isothermal non-Newtonian viscous fluid. The proposed particle method is based on the corrected kernel derivative scheme under no kernel derivative and incompressible conditions, which possesses higher accuracy and better stability than the traditional SPH method. Meanwhile, a temperature-discretization scheme is deduced by the concept of SPH method for the purpose of precisely describing the evolutionary process of the temperature field. Reliability of the corrected SPH method for simulating the non-Newtonian viscous fluid flow is demonstrated by simulating the isothermal Poiseuille flow and the jet fluid of filling process; and the validity and accuracy of the proposed SPH discrete scheme in a temperature model for solving the non-isothermal fluid flow are tested by solving the non-isothermal Couette flow and 4:1 contraction flow. Subsequently, the proposed corrected SPH method combined with the SPH temperature
Vorticity production and survival in viscous and magnetized cosmologies
Dosopoulou, F; Tsagas, C G; Brandenburg, A
2011-01-01
We study the role of viscosity and the effects of a magnetic field on a rotating, self-gravitating fluid, using Newtonian theory and adopting the ideal magnetohydrodynamic approximation. Our results confirm that viscosity can generate vorticity in inhomogeneous environments, while the magnetic tension can produce vorticity even in the absence of fluid pressure and density gradients. Linearizing our equations around an Einstein-de Sitter cosmology, we find that viscosity adds to the diluting effect of the universal expansion. Typically, however, the dissipative viscous effects are confined to relatively small scales. We also identify the characteristic length bellow which the viscous dissipation is strong and beyond which viscosity is essentially negligible. In contrast, magnetism seems to favor cosmic rotation. The magnetic presence is found to slow down the standard decay-rate of linear vortices, thus leading to universes with more residual rotation than generally anticipated.
Relativistic quantum mechanics; Mecanique quantique relativiste
Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)
1998-12-01
These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.
Towards relativistic quantum geometry
Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)
2015-12-17
We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.