Relativistic Guiding Center Equations
White, R. B. [PPPL; Gobbin, M. [Euratom-ENEA Association
2014-10-01
In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.
Relativistic and non-relativistic geodesic equations
Giambo' , R.; Mangiarotti, L.; Sardanashvily, G. [Camerino Univ., Camerino, MC (Italy). Dipt. di Matematica e Fisica
1999-07-01
It is shown that any dynamic equation on a configuration space of non-relativistic time-dependent mechanics is associated with connections on its tangent bundle. As a consequence, every non-relativistic dynamic equation can be seen as a geodesic equation with respect to a (non-linear) connection on this tangent bundle. Using this fact, the relationships between relativistic and non-relativistic equations of motion is studied.
MALFLIET, R
1993-01-01
We discuss the present status of relativistic transport theory. Special emphasis is put on problems of topical interest: hadronic features, thermodynamical consistent approximations and spectral properties.
Relativistic and Non-relativistic Equations of Motion
Mangiarotti, L
1998-01-01
It is shown that any second order dynamic equation on a configuration space $X$ of non-relativistic time-dependent mechanics can be seen as a geodesic equation with respect to some (non-linear) connection on the tangent bundle $TX\\to X$ of relativistic velocities. Using this fact, the relationship between relativistic and non-relativistic equations of motion is studied.
Solutions of relativistic radial quasipotential equations
Minh, V.X.; Kadyshevskii, V.G.; Zhidkov, E.P.
1985-11-01
A systematic approach to the investigation of relativistic radial quasipotential equations is developed. The quasipotential equations can be interpreted either as linear equations in finite differences of fourth and second orders, respectively, or as differential equations of infinite order.
Relativistic effects and quasipotential equations
Ramalho, G; Peña, M T
2002-01-01
We compare the scattering amplitude resulting from the several quasipotential equations for scalar particles. We consider the Blankenbecler-Sugar, Spectator, Thompson, Erkelenz-Holinde and Equal-Time equations, which were solved numerically without decomposition into partial waves. We analyze both negative-energy state components of the propagators and retardation effects. We found that the scattering solutions of the Spectator and the Equal-Time equations are very close to the nonrelativistic solution even at high energies. The overall relativistic effect increases with the energy. The width of the band for the relative uncertainty in the real part of the scattering $T$ matrix, due to different dynamical equations, is largest for backward-scattering angles where it can be as large as 40%.
Lattice Boltzmann equation for relativistic quantum mechanics.
Succi, Sauro
2002-03-15
Relativistic versions of the quantum lattice Boltzmann equation are discussed. It is shown that the inclusion of nonlinear interactions requires the standard collision operator to be replaced by a pair of dynamic fields coupling to the relativistic wave function in a way which can be described by a multicomponent complex lattice Boltzmann equation.
Bruce, Adam L
2015-01-01
We show the traditional rocket problem, where the ejecta velocity is assumed constant, can be reduced to an integral quadrature of which the completely non-relativistic equation of Tsiolkovsky, as well as the fully relativistic equation derived by Ackeret, are limiting cases. By expanding this quadrature in series, it is shown explicitly how relativistic corrections to the mass ratio equation as the rocket transitions from the Newtonian to the relativistic regime can be represented as products of exponential functions of the rocket velocity, ejecta velocity, and the speed of light. We find that even low order correction products approximate the traditional relativistic equation to a high accuracy in flight regimes up to $0.5c$ while retaining a clear distinction between the non-relativistic base-case and relativistic corrections. We furthermore use the results developed to consider the case where the rocket is not moving relativistically but the ejecta stream is, and where the ejecta stream is massless.
General relativistic Boltzmann equation, I: Covariant treatment
Debbasch, F.; van Leeuwen, W.A.
2009-01-01
This series of two articles aims at dissipating the rather dense haze existing in the present literature around the General Relativistic Boltzmann equation. In this first article, the general relativistic one-particle distribution function in phase space is defined as an average of delta functions.
Relativistic Langevin equation for runaway electrons
Mier, J. A.; Martin-Solis, J. R.; Sanchez, R.
2016-10-01
The Langevin approach to the kinetics of a collisional plasma is developed for relativistic electrons such as runaway electrons in tokamak plasmas. In this work, we consider Coulomb collisions between very fast, relativistic electrons and a relatively cool, thermal background plasma. The model is developed using the stochastic equivalence of the Fokker-Planck and Langevin equations. The resulting Langevin model equation for relativistic electrons is an stochastic differential equation, amenable to numerical simulations by means of Monte-Carlo type codes. Results of the simulations will be presented and compared with the non-relativistic Langevin equation for RE electrons used in the past. Supported by MINECO (Spain), Projects ENE2012-31753, ENE2015-66444-R.
Relativistic diffusion equation from stochastic quantization
Kazinski, P O
2007-01-01
The new scheme of stochastic quantization is proposed. This quantization procedure is equivalent to the deformation of an algebra of observables in the manner of deformation quantization with an imaginary deformation parameter (the Planck constant). We apply this method to the models of nonrelativistic and relativistic particles interacting with an electromagnetic field. In the first case we establish the equivalence of such a quantization to the Fokker-Planck equation with a special force. The application of the proposed quantization procedure to the model of a relativistic particle results in a relativistic generalization of the Fokker-Planck equation in the coordinate space, which in the absence of the electromagnetic field reduces to the relativistic diffusion (heat) equation. The stationary probability distribution functions for a stochastically quantized particle diffusing under a barrier and a particle in the potential of a harmonic oscillator are derived.
Relativistic wave equations: an operational approach
Dattoli, G.; Sabia, E.; Górska, K.; Horzela, A.; Penson, K. A.
2015-03-01
The use of operator methods of an algebraic nature is shown to be a very powerful tool to deal with different forms of relativistic wave equations. The methods provide either exact or approximate solutions for various forms of differential equations, such as relativistic Schrödinger, Klein-Gordon, and Dirac. We discuss the free-particle hypotheses and those relevant to particles subject to non-trivial potentials. In the latter case we will show how the proposed method leads to easily implementable numerical algorithms.
Transport coefficients of a relativistic plasma
Pike, O. J.; Rose, S. J.
2016-05-01
In this work, a self-consistent transport theory for a relativistic plasma is developed. Using the notation of Braginskii [S. I. Braginskii, in Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, p. 174], we provide semianalytical forms of the electrical resistivity, thermoelectric, and thermal conductivity tensors for a Lorentzian plasma in a magnetic field. This treatment is then generalized to plasmas with arbitrary atomic number by numerically solving the linearized Boltzmann equation. The corresponding transport coefficients are fitted by rational functions in order to make them suitable for use in radiation-hydrodynamic simulations and transport calculations. Within the confines of linear transport theory and on the assumption that the plasma is optically thin, our results are valid for temperatures up to a few MeV. By contrast, classical transport theory begins to incur significant errors above kBT ˜10 keV, e.g., the parallel thermal conductivity is suppressed by 15% at kBT =20 keV due to relativistic effects.
BIRKHOFF'S EQUATIONS AND GEOMETRICAL THEORY OF ROTATIONAL RELATIVISTIC SYSTEM
LUO SHAO-KAI; CHEN XIANG-WEI; FU JING-LI
2001-01-01
The Birkhoffian and Birkhoff's functions of a rotational relativistic system are constructed, the Pfaff action of rotational relativistic system is defined, the Pfaff-Birkhoff principle of a rotational relativistic system is given, and the Pfaff-Birkhoff-D'Alembert principles and Birkhoff's equations of rotational relativistic system are constructed. The geometrical description of a rotational relativistic system is studied, and the exact properties of Birkhoff's equations and their forms onR × T*M for a rotational relativistic system are obtained. The global analysis of Birkhoff's equations for a rotational relativistic system is studied, the global properties of autonomous, semi-autonomous and non-autonomous rotational relativistic Birkhoff's equations, and the geometrical properties of energy change for rotational relativistic Birkhoff's equations are given.
Minimal relativistic three-particle equations
Lindesay, J.
1981-07-01
A minimal self-consistent set of covariant and unitary three-particle equations is presented. Numerical results are obtained for three-particle bound states, elastic scattering and rearrangement of bound pairs with a third particle, and amplitudes for breakup into states of three free particles. The mathematical form of the three-particle bound state equations is explored; constraints are set upon the range of eigenvalues and number of eigenstates of these one parameter equations. The behavior of the number of eigenstates as the two-body binding energy decreases to zero in a covariant context generalizes results previously obtained non-relativistically by V. Efimov.
LOCAL CLASSICAL SOLUTIONS TO THE EQUATIONS OF RELATIVISTIC HYDRODYNAMICS
史一蓬
2001-01-01
In this paper, we prove that the convexity of the negative thermodynamical entropy of the equations of relativistic hydrodynamics for ideal gas keeps its invariance under the Lorentz transformation if and only if the local sound speed is less than the light speed in vacuum. Then a symmetric form for the equations of relativistic hydrodynamics is presented and the local classical solution is obtained. Based on this,we prove that the nonrelativistic limit of the local classical solution to the relativistic hydrodynamics equations for relativistic gas is the local classical solution of the Euler equations for polytropic gas.
A relativistic correlationless kinetic equation with radiation reaction fully incorporated
Lai, H. M.
1984-06-01
The Landau-Lifshitz expression for the Lorentz-Dirac equation is used to derive a relativistic correlationless kinetic equation for a system of electrons with radiation reaction fully incorporated. Various situations and possible applications are discussed.
Relativistic bound-state equations for fermions with instantaneous interactions
Suttorp, L.G.
1979-01-01
Three types of relativistic bound-state equations for a fermion pair with instantaneous interaction are studied, viz., the instantaneous Bethe-Salpeter equation, the quasi-potential equation, and the two-particle Dirac equation. General forms for the equations describing bound states with arbitrary
Balance equations in semi-relativistic quantum hydrodynamics
Ivanov, A Yu; Kuz'menkov, L S
2014-01-01
Method of the quantum hydrodynamics has been applied in quantum plasmas studies. As the first step in our consideration, derivation of classical semi-relativistic (i. e. described by the Darwin Lagrangian on microscopic level) hydrodynamical equations is given after a brief review of method development. It provides better distinguishing between classic and quantum semi-relativistic effects. Derivation of the classical equations is interesting since it is made by a natural, but not very widespread method. This derivation contains explicit averaging of the microscopic dynamics. Derivation of corresponding quantum hydrodynamic equations is presented further. Equations are obtained in the five-momentum approximation including the continuity equation, Euler and energy balance equations. It is shown that relativistic corrections lead to presence of new quantum terms in expressions for a force field, a work field etc. The semi-relativistic generalization of the quantum Bohm potential is obtained. Quantum part of the...
Time-dependent closure relations for relativistic collisionless fluid equations.
Bendib-Kalache, K; Bendib, A; El Hadj, K Mohammed
2010-11-01
Linear fluid equations for relativistic and collisionless plasmas are derived. Closure relations for the fluid equations are analytically computed from the relativistic Vlasov equation in the Fourier space (ω,k), where ω and k are the conjugate variables of time t and space x variables, respectively. The mathematical method used is based on the projection operator techniques and the continued fraction mathematical tools. The generalized heat flux and stress tensor are calculated for arbitrary parameter ω/kc where c is the speed of light, and for arbitrary relativistic parameter z=mc²/T , where m is the particle rest mass and T, the plasma temperature in energy units.
Relativistic wave equation for hypothetic composite quarks
Krolikowski, W. [Institute of Theoretical Physics, Warsaw University, Warsaw (Poland)
1997-05-01
A two-body wave equation is derived, corresponding to the hypothesis (discussed already in the past) that u and d current quarks are relativistic bound states of a spin-1/2 preon existing in two weak flavors and three colors, and a spin-0 preon with no weak flavor nor color, held together by a new strong but Abelian, vectorlike gauge force. Some non-conventional (though somewhat nostalgic) consequences of this strong Abelian binding within composite quarks are pointed out. Among them are: new tiny magnetic-type moments of quarks (and nucleons) and new isomeric nucleon states possibly excitable at some high energies. The letter may arise through a rearrangement mechanism for quark preons inside nucleons. In the interaction q (anti)q{yields}q (anti)q of preon-composite quarks, beside the color forces, there act additional exchange forces corresponding to diagrams analogical to the so called dual diagrams for the interaction {pi}{pi}{yields}{pi}{pi} of quark-composite pions. (author)
Equations of motion in relativistic gravity
Lämmerzahl, Claus; Schutz, Bernard
2015-01-01
The present volume aims to be a comprehensive survey on the derivation of the equations of motion, both in General Relativity as well as in alternative gravity theories. The topics covered range from the description of test bodies, to self-gravitating (heavy) bodies, to current and future observations. Emphasis is put on the coverage of various approximation methods (e.g., multipolar, post-Newtonian, self-force methods) which are extensively used in the context of the relativistic problem of motion. Applications discussed in this volume range from the motion of binary systems -- and the gravitational waves emitted by such systems -- to observations of the galactic center. In particular the impact of choices at a fundamental theoretical level on the interpretation of experiments is highlighted. This book provides a broad and up-do-date status report, which will not only be of value for the experts working in this field, but also may serve as a guideline for students with background in General Relativity who ...
Electric Conductivity from the solution of the Relativistic Boltzmann Equation
Puglisi, A; Greco, V
2014-01-01
We present numerical results of electric conductivity $\\sigma_{el}$ of a fluid obtained solving the Relativistic Transport Boltzmann equation in a box with periodic boundary conditions. We compute $\\sigma_{el}$ using two methods: the definition itself, i.e. applying an external electric field, and the evaluation of the Green-Kubo relation based on the time evolution of the current-current correlator. We find a very good agreement between the two methods. We also compare numerical results with analytic formulas in Relaxation Time Approximation (RTA) where the relaxation time for $\\sigma_{el}$ is determined by the transport cross section $\\sigma_{tr}$, i.e. the differential cross section weighted with the collisional momentum transfer. We investigate the electric conductivity dependence on the microscopic details of the 2-body scatterings: isotropic and anisotropic cross-section, and massless and massive particles. We find that the RTA underestimates considerably $\\sigma_{el}$; for example at screening masses $...
Equations of motion for a relativistic wave packet
L Kocis
2012-05-01
The time derivative of the position of a relativistic wave packet is evaluated. It is found that it is equal to the mean value of the momentum of the wave packet divided by the mass of the particle. The equation derived represents a relativistic version of the second Ehrenfest theorem.
A causality analysis of the linearized relativistic Navier-Stokes equations
Sandoval-Villalbazo, A
2010-01-01
It is shown by means of a simple analysis that the linearized system of transport equations for a relativistic, single component ideal gas at rest obeys the \\textit{antecedence principle}, which is often referred to as causality principle. This task is accomplished by examining the roots of the dispersion relation for such a system. This result is important for recent experiments performed in relativistic heavy ion colliders, since it suggests that the Israel-Stewart like formalisms may be unnecessary in order to describe relativistic fluids.
Non-Relativistic Limit of the Dirac Equation
Ajaib, Muhammad Adeel
2016-01-01
We show that the first order form of the Schrodinger equation proposed in [1] can be obtained from the Dirac equation in the non-relativistic limit. We also show that the Pauli Hamiltonian is obtained from this equation by requiring local gauge invariance. In addition, we study the problem of a spin up particle incident on a finite potential barrier and show that the known quantum mechanical results are obtained. Finally, we consider the symmetric potential well and show that the quantum mechanical expression for the quantized energy levels of a particle is obtained with periodic boundary conditions. Based on these conclusions, we propose that the equation introduced in [1] is the non-relativistic limit of the Dirac equation and more appropriately describes spin 1/2 particles in the non-relativistic limit.
Generalized Relativistic Chapman-Enskog Solution of the Boltzmann Equation
García-Perciante, A L; García-Colin, L S
2007-01-01
The Chapman-Enskog method of solution of the relativistic Boltzmann equation is generalized in order to admit a time-derivative term associated to the thermodynamic force in its first order solution. Both existence and uniqueness of such a solution are proved based on the standard theory of integral equations. The mathematical implications of the generalization here introduced are briefly explored.
Relativistic Spinning Particle without Grassmann Variables and the Dirac Equation
A. A. Deriglazov
2011-01-01
Full Text Available We present the relativistic particle model without Grassmann variables which, being canonically quantized, leads to the Dirac equation. Classical dynamics of the model is in correspondence with the dynamics of mean values of the corresponding operators in the Dirac theory. Classical equations for the spin tensor are the same as those of the Barut-Zanghi model of spinning particle.
Hot QCD equations of state and relativistic heavy ion collisions
Chandra, Vinod; Kumar, Ravindra; Ravishankar, V.
2007-11-01
We study two recently proposed equations of state obtained from high-temperature QCD and show how they can be adapted to use them for making predictions for relativistic heavy ion collisions. The method involves extracting equilibrium distribution functions for quarks and gluons from the equation of state (EOS), which in turn will allow a determination of the transport and other bulk properties of the quark gluon-plasma. Simultaneously, the method also yields a quasiparticle description of interacting quarks and gluons. The first EOS is perturbative in the QCD coupling constant and has contributions of O(g5). The second EOS is an improvement over the first, with contributions up to O[g6ln(1/g)]; it incorporates the nonperturbative hard thermal contributions. The interaction effects are shown to be captured entirely by the effective chemical potentials for the gluons and the quarks, in both cases. The chemical potential is seen to be highly sensitive to the EOS. As an application, we determine the screening lengths, which are, indeed, the most important diagnostics for QGP. The screening lengths are seen to behave drastically differently depending on the EOS considered and therefore yield a way to distinguish the two equations of state in heavy ion collisions.
General relativistic neutrino transport using spectral methods
Peres, Bruno; Penner, Andrew Jason; Novak, Jérôme; Bonazzola, Silvano
2014-02-01
We present a new code, Lorene's Ghost (for Lorene's gravitational handling of spectral transport) developed to treat the problem of neutrino transport in supernovae with the use of spectral methods. First, we derive the expression for the nonrelativistic Liouville operator in doubly spherical coordinates (r, θ, ϕ, ɛ, Θ, Φ), and further its general relativistic counterpart. We use the 3 + 1 formalism with the conformally flat approximation for the spatial metric, to express the Liouville operator in the Eulerian frame. Our formulation does not use any approximations when dealing with the angular arguments (θ, ϕ, Θ, Φ), and is fully energy-dependent. This approach is implemented in a spherical shell, using either Chebyshev polynomials or Fourier series as decomposition bases. It is here restricted to simplified collision terms (isoenergetic scattering) and to the case of a static fluid. We finish this paper by presenting test results using basic configurations, including general relativistic ones in the Schwarzschild metric, in order to demonstrate the convergence properties, the conservation of particle number and correct treatment of some general relativistic effects of our code. The use of spectral methods enables to run our test cases in a six-dimensional setting on a single processor.
On numerical relativistic hydrodynamics and barotropic equations of state
Ibáñez, José María; Miralles, Juan Antornio
2012-01-01
The characteristic formulation of the relativistic hydrodynamic equations (Donat et al 1998 J. Comput. Phys. 146 58), which has been implemented in many relativistic hydro-codes that make use of Godunov-type methods, has to be slightly modified in the case of evolving barotropic flows. For a barotropic equation of state, a removable singularity appears in one of the eigenvectors. The singularity can be avoided by means of a simple renormalization which makes the system of eigenvectors well defined and complete. An alternative strategy for the particular case of barotropic flows is discussed.
General relativistic Boltzmann equation, II: Manifestly covariant treatment
Debbasch, F.; van Leeuwen, W.A.
2009-01-01
In a preceding article we presented a general relativistic treatment of the derivation of the Boltzmann equation. The four-momenta occurring in this formalism were all on-shell four-momenta, verifying the mass-shell restriction p(2) = m(2)c(2). Due to this restriction, the resulting Boltzmann equati
Derivation of relativistic wave equation from the Poisson process
Tomoshige Kudo; Ichiro Ohba
2002-08-01
A Poisson process is one of the fundamental descriptions for relativistic particles: both fermions and bosons. A generalized linear photon wave equation in dispersive and homogeneous medium with dissipation is derived using the formulation of the Poisson process. This formulation provides a possible interpretation of the passage time of a photon moving in the medium, which never exceeds the speed of light in vacuum.
General relativistic Boltzmann equation, II: Manifestly covariant treatment
Debbasch, F.; van Leeuwen, W.A.
2009-01-01
In a preceding article we presented a general relativistic treatment of the derivation of the Boltzmann equation. The four-momenta occurring in this formalism were all on-shell four-momenta, verifying the mass-shell restriction p(2) = m(2)c(2). Due to this restriction, the resulting Boltzmann
General Relativistic Transfer Equation on a Kerr Black Hole
Zannias, T.
1998-12-01
The general relativistic transfer equation describing the interaction of a massless gas with a hot plasma is analyzed on the background of a Kerr black hole. On physical grounds we single out two natural orthonormal frames relative to which the radiative transfer equation takes its simplest form. First the field of the local rest frame defined by the plasma and secondly the local rest frame associated with Bardeens-ZAMOS observers. Applications of the formalism to accretion problems will also briefly discussed.
General relativistic neutrino transport using spectral methods
Peres, Bruno; Novak, Jerome; Bonazzola, Silvano
2014-01-01
We present a new code, Lorene's Ghost (for Lorene's gravitational handling of spectral transport) developed to treat the problem of neutrino transport in supernovae with the use of spectral methods. First, we derive the expression for the nonrelativistic Liouville operator in doubly spherical coordinates (r, theta, phi, epsilon, Theta, Phi)$, and further its general relativistic counterpart. We use the 3 + 1 formalism with the conformally flat approximation for the spatial metric, to express the Liouville operator in the Eulerian frame. Our formulation does not use any approximations when dealing with the angular arguments (theta, phi, Theta, Phi), and is fully energy-dependent. This approach is implemented in a spherical shell, using either Chebyshev polynomials or Fourier series as decomposition bases. It is here restricted to simplified collision terms (isoenergetic scattering) and to the case of a static fluid. We finish this paper by presenting test results using basic configurations, including general r...
Hot QCD equation of state and relativistic heavy ion collisions
Chandra, Vinod; Ravishankar, V
2007-01-01
We study two recently proposed equations of state (EOS) which are obtained from high temperature QCD, and show how they can be adapted to use them for making predictions for relativistic heavy ion collisions. The method involves extracting equilibrium distribution functions for quarks and gluons from the EOS, which in turn will allow a determination of the transport and other bulk properties of the quark gluon plasma. Simultaneously, the method also yields a quasi particle description of interacting quarks and gluons. The first EOS is perturbative in the QCD coupling constant and has contributions of $O(g^5)$. The second EOS is an improvement over the first, with contributions upto $ O(g^6 ln(\\frac{1}{g}))$; it incorporates the nonperturbative hard thermal contributions. The interaction effects are shown to be captured entirely by the effective chemical potentials for the gluons and the quarks, in both the cases. The chemical potential is seen to be highly sensitive to the EOS. As an application, we determine...
Estakhr, Ahmad Reza
2016-10-01
DJ̲μ/Dτ =J̲ν ∂νU̲μ + ∂νT̲μν +Γαβμ J̲αU̲β ︷ Steady Component + ∂νRμν +Γαβμ Rαβ ︷ Perturbations EAMG equations are proper time-averaged equations of relativistic motion for fluid flow and used to describe Relativistic Turbulent Flows. The EAMG equations are used to describe Relativistic Jet.
A reduced model for relativistic electron beam transport in solids and dense plasmas
Touati, M.; Feugeas, J.-L.; Nicolaï, Ph; Santos, J. J.; Gremillet, L.; Tikhonchuk, V. T.
2014-07-01
A hybrid reduced model for relativistic electron beam transport based on the angular moments of the relativistic kinetic equation with a special closure is presented. It takes into account collective effects with the self-generated electromagnetic fields as well as collisional effects with the slowing down of the relativistic electrons by plasmons, bound and free electrons and their angular scattering on both ions and electrons. This model allows for fast computations of relativistic electron beam transport while describing their energy distribution evolution. Despite the loss of information concerning the angular distribution of the electron beam, the model reproduces analytical estimates in the academic case of a monodirectional and monoenergetic electron beam propagating through a warm and dense plasma and hybrid particle-in-cell simulation results in a realistic laser-generated electron beam transport case.
Relativistic transport theory for simple fluids at first order in the gradients: a stable picture
Sandoval-Villalbazo, A; García-Colin, L S
2008-01-01
In this paper we show how using a relativistic kinetic equation. The ensuing expression for the heat flux can be casted in the form required by Classical Irreversible Thermodynamics. Indeed, it is linearly related to the temperature and number density gradients and not to the acceleration as the so called first order in the gradients theories contend. Since the specific expressions for the transport coefficients are irrelevant for our purposes, the BGK form of the kinetic equation is used. Moreover, from the resulting hydrodynamic equations it is readily seen that no instabilities are present in the transverse hydrodynamic velocity mode of the simple relativistic fluid.
Relativistic five-quark equations and u, d- pentaquark spectroscopy
Gerasyuta, S M
2003-01-01
The relativistic five-quark equations are found in the framework of the dispersion relation technique. The five-quark amplitudes for the low-lying pentaquarks including u, d quarks are calculated. The poles of the five-quark amplitudes determine the masses of the lowest pentaquarks. The calculation of pentaquark amplitudes estimates the contributions of four subamplitudes. The main contributions to the pentaquark amplitude are determined by the subamplitudes, which include the meson states M.
The heat flux from a relativistic kinetic equation with a simplified collision kernel
Sandoval-Villalbazo, A; García-Colin, L S
2009-01-01
We show how using a special relativistic kinetic equation with a BGK- like collision operator the ensuing expression for the heat flux can be casted in the form required by Classical Irreversible Thermodynamics. Indeed, it is linearly related to the temperature and number density gradients and not to the acceleration as the so-called "first order in the gradients theories" contend. Here we calculate explicitly the ensuing transport coefficients and compare them with the results obtained by other authors.
Relativistic Lagrangians for the Lorentz–Dirac equation
Deguchi, Shinichi, E-mail: deguchi@phys.cst.nihon-u.ac.jp [Institute of Quantum Science, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo 101-8308 (Japan); Nakano, Kunihiko [Institute of Quantum Science, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo 101-8308 (Japan); Suzuki, Takafumi [Junior College Funabashi Campus, Nihon University, Narashinodai, Funabashi, Chiba 274-8501 (Japan)
2015-09-15
We present two types of relativistic Lagrangians for the Lorentz–Dirac equation written in terms of an arbitrary world-line parameter. One of the Lagrangians contains an exponential damping function of the proper time and explicitly depends on the world-line parameter. Another Lagrangian includes additional cross-terms consisting of auxiliary dynamical variables and does not depend explicitly on the world-line parameter. We demonstrate that both the Lagrangians actually yield the Lorentz–Dirac equation with a source-like term.
Generalized Relativistic Wave Equations with Intrinsic Maximum Momentum
Ching, Chee Leong
2013-01-01
We examine the nonperturbative effect of maximum momentum on the relativistic wave equations. In momentum representation, we obtain the exact eigen-energies and wavefunctions of one-dimensional Klein-Gordon and Dirac equation with linear confining potentials, and the Dirac oscillator. Bound state solutions are only possible when the strength of scalar potential are stronger than vector potential. The energy spectrum of the systems studied are bounded from above, whereby classical characteristics are observed in the uncertainties of position and momentum operators. Also, there is a truncation in the maximum number of bound states that is allowed. Some of these quantum-gravitational features may have future applications.
Generalized relativistic wave equations with intrinsic maximum momentum
Ching, Chee Leong; Ng, Wei Khim
2014-05-01
We examine the nonperturbative effect of maximum momentum on the relativistic wave equations. In momentum representation, we obtain the exact eigen-energies and wave functions of one-dimensional Klein-Gordon and Dirac equation with linear confining potentials, and the Dirac oscillator. Bound state solutions are only possible when the strength of scalar potential is stronger than vector potential. The energy spectrum of the systems studied is bounded from above, whereby classical characteristics are observed in the uncertainties of position and momentum operators. Also, there is a truncation in the maximum number of bound states that is allowed. Some of these quantum-gravitational features may have future applications.
Relativistic five-quark equations and hybrid baryon spectroscopy
Gerasyuta, S M
2002-01-01
The relativistic five-quark equations are found in the framework of the dispersion relation technique. The Behavior of the low-energy five-particle amplitude is determined by its leading singularities in the pair invariant masses. The solutions of these equations using the method based on the extraction leading singularities of the amplitudes are obtained. The mass spectra of nucleon and delta-isobar hybrid baryons are calculated. The calculations of hybrid baryon amplitudes estimate the contributions of four subamplitudes. The main contributions to the hybrid baryon amplitude are determined by the subamplitudes, which include the excited gluon states.
Relativistic (Dirac equation) effects in microscopic elastic scattering calculations
Hynes, M. V.; Picklesimer, A.; Tandy, P. C.; Thaler, R. M.
1985-04-01
A simple relativistic extension of the first-order multiple scattering mechanism for the optical potential is employed within the context of a Dirac equation description of elastic nucleon-nucleus scattering. A formulation of this problem in terms of a momentum-space integral equation displaying an identifiable nonrelativistic sector is described and applied. Extensive calculations are presented for proton scattering from 40Ca and 16O at energies between 100 and 500 MeV. Effects arising from the relativistic description of the propagation of the projectile are isolated and are shown to be responsible for most of the departures from typical nonrelativistic (Schrödinger) results. Off-shell and nonlocal effects are included and these, together with uncertainties in the nuclear densities, are shown not to compromise the characteristic improvement of forward angle spin observable predictions provided by the relativistic approach. The sensitivity to ambiguities in the Lorentz scalar and vector composition of the optical potential is displayed and discussed.
Relativistic (Dirac equation) effects in microscopic elastic scattering calculations
Hynes, M.V.; Picklesimer, A.; Tandy, P.C.; Thaler, R.M.
1985-04-01
A simple relativistic extension of the first-order multiple scattering mechanism for the optical potential is employed within the context of a Dirac equation description of elastic nucleon-nucleus scattering. A formulation of this problem in terms of a momentum-space integral equation displaying an identifiable nonrelativistic sector is described and applied. Extensive calculations are presented for proton scattering from /sup 40/Ca and /sup 16/O at energies between 100 and 500 MeV. Effects arising from the relativistic description of the propagation of the projectile are isolated and are shown to be responsible for most of the departures from typical nonrelativistic (Schroedinger) results. Off-shell and nonlocal effects are included and these, together with uncertainties in the nuclear densities, are shown not to compromise the characteristic improvement of forward angle spin observable predictions provided by the relativistic approach. The sensitivity to ambiguities in the Lorentz scalar and vector composition of the optical potential is displayed and discussed.
Equation of State in a Generalized Relativistic Density Functional Approach
Typel, Stefan
2015-01-01
The basic concepts of a generalized relativistic density functional approach to the equation of state of dense matter are presented. The model is an extension of relativistic mean-field models with density-dependent couplings. It includes explicit cluster degrees of freedom. The formation and dissolution of nuclei is described with the help of mass shifts. The model can be adapted to the description of finite nuclei in order to study the effect of $\\alpha$-particle correlations at the nuclear surface on the neutron skin thickness of heavy nuclei. Further extensions of the model to include quark degrees of freedom or an energy dependence of the nucleon self-energies are outlined.
Relativistic quantum transport theory for electrodynamics
Zhuang, P; Zhuang, P; Heinz, U
1995-01-01
We investigate the relationship between the covariant and the three-dimensional (equal-time) formulations of quantum kinetic theory. We show that the three-dimensional approach can be obtained as the energy average of the covariant formulation. We illustrate this statement in scalar and spinor QED. For scalar QED we derive Lorentz covariant transport and constraint equations directly from the Klein-Gordon equation rather than through the previously used Feshbach-Villars representation. We then consider pair production in a spatially homogeneous but time-dependent electric field and show that the pair density is derived much more easily via the energy averaging method than in the equal-time representation. Proceeding to spinor QED, we derive the covariant version of the equal-time equation derived by Bialynicki-Birula et al. We show that it must be supplemented by another self-adjoint equation to obtain a complete description of the covariant spinor Wigner operator. After spinor decomposition and energy averag...
Transport coefficients for relativistic gas mixtures of hard-sphere particles
Kremer, Gilberto M.; Moratto, Valdemar
2017-04-01
In the present work, we calculate the transport coefficients for a relativistic binary mixture of diluted gases of hard-sphere particles. The gas mixture under consideration is studied within the relativistic Boltzmann equation in the presence of a gravitational field described by the isotropic Schwarzschild metric. We obtain the linear constitutive equations for the thermodynamic fluxes. The driving forces for the fluxes of particles and heat will appear with terms proportional to the gradient of gravitational potential. We discuss the consequences of the gravitational dependence on the driving forces. We obtain general integral expressions for the transport coefficients and evaluate them by assuming a hard-sphere interaction amongst the particles when they collide and not very disparate masses and diameters of the particles of each species. The obtained results are expressed in terms of their temperature dependence through the relativistic parameter which gives the ratio of the rest energy of the particles and the thermal energy of the gas mixture. Plots are given to analyze the behavior of the transport coefficients with respect to the temperature when small variations in masses and diameters of the particles of the species are present. We also analyze for each coefficient the corresponding limits to a single gas so the non-relativistic and ultra-relativistic limiting cases are recovered as well. Furthermore, we show that the transport coefficients have a dependence on the gravitational field.
Rębilas, Krzysztof
2014-01-01
Starting from the classical Newton's second law which, according to our assumption, is valid in any instantaneous inertial rest frame of body that moves in Minkowskian space-time we get the relativistic equation of motion $\\vec{F}=d\\vec{p}/dt$, where $\\vec{p}$ is the relativistic momentum. The relativistic momentum is then derived without referring to any additional assumptions concerning elastic collisions of bodies. Lorentz-invariance of the relativistic law is proved without tensor formalism. Some new method of force transformation is also presented.
Classical Equation of State for Dilute Relativistic Plasma
Hussein, N. A.; Eisa, D. A.; Sayed, E. G.
2016-06-01
The aim of this paper is to calculate the analytical form of the equation of state for dilute relativistic plasma. We obtained the excess free energy and pressure in the form of a convergent series expansion in terms of the thermal parameter μ where μ = {{m{c^2}} over {KT}}, m is the mass of charge, c is the speed of light, K is the Boltzmann's constant, and T is the absolute temperature. The results are discussed and compared with previous work of other authors.
Mueller, Bernhard
2009-05-07
In this thesis, we have presented the first multi-dimensional models of core-collapse supernovae that combine a detailed, up-to-date treatment of neutrino transport, the equation of state, and - in particular - general relativistic gravity. Building on the well-tested neutrino transport code VERTEX and the GR hydrodynamics code CoCoNuT, we developed and implemented a relativistic generalization of a ray-by-ray-plus method for energy-dependent neutrino transport. The result of these effort, the VERTEX-CoCoNuT code, also incorporates a number of improved numerical techniques that have not been used in the code components VERTEX and CoCoNuT before. In order to validate the VERTEX-CoCoNuT code, we conducted several test simulations in spherical symmetry, most notably a comparison with the one-dimensional relativistic supernova code AGILE-BOLTZTRAN and the Newtonian PROMETHEUSVERTEX code. (orig.)
Relativistic simulation of the Vlasov equation for plasma expansion into vacuum
H Abbasi
2012-12-01
Full Text Available In this study, relativistic Vlasov simulation of plasma for expansion of collisionless plasma for into vacuum is presented. The model is based on 1+1 dimensional phase space and electrostatic approximation. For this purpose, the electron dynamics is studied by the relativistic Vlasov equation. Regardless of the ions temperature, fluid equations are used for their dynamics. The initial electrons distribution function is the relativistic Maxwellian. The results show that due to the electrons relativistic temperature, the process of the plasma expansion takes place faster, the resulting electric field is stronger and the ions are accelerated to higher velocities, in comparison to the non-relativistic case.
Relativistic simulation of the Vlasov equation for plasma expansion into vacuum
H ABBASI; R Shokoohi; Moridi, M.
2012-01-01
In this study, relativistic Vlasov simulation of plasma for expansion of collisionless plasma for into vacuum is presented. The model is based on 1+1 dimensional phase space and electrostatic approximation. For this purpose, the electron dynamics is studied by the relativistic Vlasov equation. Regardless of the ions temperature, fluid equations are used for their dynamics. The initial electrons distribution function is the relativistic Maxwellian. The results show that due to the electrons ...
Massless and Massive Gauge-Invariant Fields in the Theory of Relativistic Wave Equations
Pletyukhov, V A
2010-01-01
In this work consideration is given to massless and massive gauge-invariant spin 0 and spin 1 fields (particles) within the scope of a theory of the generalized relativistic wave equations with an extended set of the Lorentz group representations. The results obtained may be useful as regards the application of a relativistic wave-equation theory in modern field models.
Heinz, U; Denicol, G S; Martinez, M; Nopoush, M; Noronha, J; Ryblewski, R; Strickland, M
2015-01-01
Several recent results are reported from work aiming to improve the quantitative precision of relativistic viscous fluid dynamics for relativistic heavy-ion collisions. The dense matter created in such collisions expands in a highly anisotropic manner. Due to viscous effects this also renders the local momentum distribution anisotropic. Optimized hydrodynamic approaches account for these anisotropies already at leading order in a gradient expansion. Recently discovered exact solutions of the relativistic Boltzmann equation in anisotropically expanding systems provide a powerful testbed for such improved hydrodynamic approximations. We present the latest status of our quest for a formulation of relativistic viscous fluid dynamics that is optimized for applications to relativistic heavy-ion collisions.
Arzeliès, Henri
1972-01-01
Relativistic Point Dynamics focuses on the principles of relativistic dynamics. The book first discusses fundamental equations. The impulse postulate and its consequences and the kinetic energy theorem are then explained. The text also touches on the transformation of main quantities and relativistic decomposition of force, and then discusses fields of force derivable from scalar potentials; fields of force derivable from a scalar potential and a vector potential; and equations of motion. Other concerns include equations for fields; transfer of the equations obtained by variational methods int
Ding, Min; Li, Yachun
2017-04-01
We study the 1-D piston problem for the relativistic Euler equations under the assumption that the total variations of both the initial data and the velocity of the piston are sufficiently small. By a modified wave front tracking method, we establish the global existence of entropy solutions including a strong rarefaction wave without restriction on the strength. Meanwhile, we consider the convergence of the entropy solutions to the corresponding entropy solutions of the classical non-relativistic Euler equations as the light speed c→ +∞.
Equation of state of the relativistic free electron gas at arbitrary degeneracy
Faussurier, Gérald
2016-12-01
We study the problem of the relativistic free electron gas at arbitrary degeneracy. The specific heat at constant volume and particle number CV and the specific heat at constant pressure and particle number CP are calculated. The question of equation of state is also studied. Non degenerate and degenerate limits are considered. We generalize the formulas obtained in the non-relativistic and ultra-relativistic regimes.
A new exact solution of the relativistic Boltzmann equation and its hydrodynamic limit
Denicol, Gabriel S; Martinez, Mauricio; Noronha, Jorge; Strickland, Michael
2014-01-01
We present an exact solution of the relativistic Boltzmann equation for a system undergoing boost-invariant longitudinal and azimuthally symmetric transverse flow ("Gubser flow"). The resulting exact non-equilibrium dynamics is compared to 1st- and 2nd-order relativistic hydrodynamic approximations for various shear viscosity to entropy density ratios. This novel solution can be used to test the validity and accuracy of different hydrodynamic approximations in conditions similar to those generated in relativistic heavy-ion collisions.
Modeling the QCD Equation of State in Relativistic Heavy Ion Collisions on BlueGene/L
Soltz, R; Grady, J; Hartouni, E P; Gupta, R; Vitev, I; Mottola, E; Petreczky, P; Karsch, F; Christ, N; Mawhinney, R; Bass, S; Mueller, B; Vranas, P; Levkova, L; Molnar, D; Teaney, D; De Tar, C; Toussaint, D; Sugar, R
2006-04-10
On 9,10 Feb 2006 a workshop was held at LLNL to discuss how a 10% allocation of the ASC BG/L supercomputer performing a finite temperature Lattice QCD (LQCD) calculation of the equation of state and non-equilibrium properties of the quark-gluon state of matter could lead to a breakthrough in our understanding of recent data from the Relativistic Heavy Ion Collider at Brookhaven National Lab. From this meeting and subsequent discussions we present a detailed plan for this calculation, including mechanisms for working in a secure computing environment and inserting the resulting equation of state into hydrodynamic transport models that will be compared directly to the RHIC data. We discuss expected benefits for DOE Office of Science research programs within the context of the NNSA mission.
Non relativistic limit of the Landau-Lifshitz equation: A new equation
Ares de Parga, G.; Domínguez-Hernández, S.; Salinas-Hernández, E.
2016-06-01
It is shown that Ford equation is not adequate in general to describe the motion of a charged particle including the reaction force in the non relativistic limit. As in General Relativity where a post-Newtonian method is developed in order to describe the gravitational effects at low velocities and small energies, an extra term inherited from Special Relativity must be added to the Ford equation. This is due to that the new term is greater than the reaction force in many physical situations. The Coulombic case is analyzed showing the necessity of including the new term. Comparison with General Relativity results is analyzed. The Vlasov equation to first order in 1 /c2 is proposed for the constant electric and magnetic fields.
Relativistic n-body wave equations in scalar quantum field theory
Emami-Razavi, Mohsen [Centre for Research in Earth and Space Science, York University, Toronto, Ontario, M3J 1P3 (Canada)]. E-mail: mohsen@yorku.ca
2006-09-21
The variational method in a reformulated Hamiltonian formalism of Quantum Field Theory (QFT) is used to derive relativistic n-body wave equations for scalar particles (bosons) interacting via a massive or massless mediating scalar field (the scalar Yukawa model). Simple Fock-space variational trial states are used to derive relativistic n-body wave equations. The equations are shown to have the Schroedinger non-relativistic limits, with Coulombic interparticle potentials in the case of a massless mediating field and Yukawa interparticle potentials in the case of a massive mediating field. Some examples of approximate ground state solutions of the n-body relativistic equations are obtained for various strengths of coupling, for both massive and massless mediating fields.
Donker, H. C.; Katsnelson, M. I.; De Raedt, H.; Michielsen, K.
2016-09-01
The logical inference approach to quantum theory, proposed earlier De Raedt et al. (2014), is considered in a relativistic setting. It is shown that the Klein-Gordon equation for a massive, charged, and spinless particle derives from the combination of the requirements that the space-time data collected by probing the particle is obtained from the most robust experiment and that on average, the classical relativistic equation of motion of a particle holds.
Optical principles of beam transport for relativistic electron cooling
A. Burov
2000-09-01
Full Text Available In conventional low energy electron coolers, the electron beam is immersed in a continuous solenoid, which provides a calm and tightly focused beam in a cooling section. While suitable for low energies, the continuity of the accompanying magnetic field is hardly realizable at relativistic energies. We consider the possibility of using an extended solenoid in the gun and the cooling section only, applying lumped focusing for the rest of the electron transport line.
On the spectrum of relativistic Schrödinger equation in finite differences
Berezin, V A; Neronov, Andrii Yu
1999-01-01
We develop a method for constructing asymptotic solutions of finite-difference equations and implement it to a relativistic Schroedinger equation which describes motion of a selfgravitating spherically symmetric dust shell. Exact mass spectrum of black hole formed due to the collapse of the shell is determined from the analysis of asymptotic solutions of the equation.
Equation of State in Relativistic Magnetohydrodynamics: variable versus constant adiabatic index
Mignone, A
2007-01-01
The role of the equation of state for a perfectly conducting, relativistic magnetized fluid is the main subject of this work. The ideal constant $\\Gamma$-law equation of state, commonly adopted in a wide range of astrophysical applications, is compared with a more realistic equation of state that better approximates the single-specie relativistic gas. The paper focus on three different topics. First, the influence of a more realistic equation of state on the propagation of fast magneto-sonic shocks is investigated. This calls into question the validity of the constant $\\Gamma$-law equation of state in problems where the temperature of the gas substantially changes across hydromagnetic waves. Second, we present a new inversion scheme to recover primitive variables (such as rest-mass density and pressure) from conservative ones that allows for a general equation of state and avoids catastrophic numerical cancellations in the non-relativistic and ultrarelativistic limits. Finally, selected numerical tests of ast...
Matrix Continued Fraction Solution to the Relativistic Spin-0 Feshbach-Villars Equations
Brown, N. C.; Papp, Z.; Woodhouse, R.
2016-03-01
The Feshbach-Villars equations, like the Klein-Gordon equation, are relativistic quantum mechanical equations for spin-0 particles.We write the Feshbach-Villars equations into an integral equation form and solve them by applying the Coulomb-Sturmian potential separable expansion method. We consider boundstate problems in a Coulomb plus short range potential. The corresponding Feshbach-Villars CoulombGreen's operator is represented by a matrix continued fraction.
Particle transport in microturbulence and acceleration performances of relativistic shocks
Plotnikov, Illya; Lemoine, Martin
2012-01-01
Collisionless relativistic shocks have been the focus of intense theoretical and numerical investigations and these interesting physics have a direct impact on the generation of energetic particles and the interpretation of gamma ray spectra. The Fermi acceleration process that takes place in these shocks is intimately linked with the excitation of micro-turbulence responsible for the shock formation, electron heating and supra-thermal tail generation that in turn excites micro-turbulence, developing thus a self-sustaining phenomenon. In this paper we discuss the development of the micro-turbulence and we investigate two important issues: firstly the transport of supra-thermal particles in the excited microturbulence upstream of the shock and its consequences for the efficiency of the Fermi process; secondly, the preheating process of the incoming background electrons as they cross the shock precursor and experience relativistic oscillations in the electric field of the micro-turbulence.We emphasize the impor...
Dynamics of low dimensional model for weakly relativistic Zakharov equations for plasmas
Sahu, Biswajit [Department of Mathematics, West Bengal State University, Barasat, Kolkata-700126 (India); Pal, Barnali; Poria, Swarup [Department of Applied Mathematics, University of Calcutta, Kolkata-700009 (India); Roychoudhury, Rajkumar [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India)
2013-05-15
In the present paper, the nonlinear interaction between Langmuir waves and ion acoustic waves described by the one-dimensional Zakharov equations (ZEs) for relativistic plasmas are investigated formulating a low dimensional model. Equilibrium points of the model are found and it is shown that the existence and stability conditions of the equilibrium point depend on the relativistic parameter. Computational investigations are carried out to examine the effects of relativistic parameter and other plasma parameters on the dynamics of the model. Power spectrum analysis using fast fourier transform and also construction of first return map confirm that periodic, quasi-periodic, and chaotic type solution exist for both relativistic as well as in non-relativistic case. Existence of supercritical Hopf bifurcation is noted in the system for two critical plasmon numbers.
A remark concerning Chandrasekhar's derivation of the pulsation equation for relativistic stars
Knutsen, Henning; Pedersen, Janne [Stavanger University, 4036 Stavanger (Norway)
2007-01-15
It is shown that Chandrasekhar gives some misleading comments concerning his method to derive the pulsation equation for relativistic stars. Strictly following his procedure and approximations, we find that this equation should contain an extra term which destroys the beauty and simplicity of the pulsation equation. However, using a better approximation, we find that just this extra term cancels, and the nice original version of the pulsation equation is correct after all.
A time-implicit numerical method and benchmarks for the relativistic Vlasov–Ampere equations
Carrié, Michael, E-mail: mcarrie2@unl.edu; Shadwick, B. A., E-mail: shadwick@mailaps.org [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States)
2016-01-15
We present a time-implicit numerical method to solve the relativistic Vlasov–Ampere system of equations on a two dimensional phase space grid. The time-splitting algorithm we use allows the generalization of the work presented here to higher dimensions keeping the linear aspect of the resulting discrete set of equations. The implicit method is benchmarked against linear theory results for the relativistic Landau damping for which analytical expressions using the Maxwell-Jüttner distribution function are derived. We note that, independently from the shape of the distribution function, the relativistic treatment features collective behaviours that do not exist in the nonrelativistic case. The numerical study of the relativistic two-stream instability completes the set of benchmarking tests.
Hafez, M. G.; Talukder, M. R.; Hossain Ali, M.
2017-04-01
The Burgers equation is obtained to study the characteristics of nonlinear propagation of ionacoustic shock, singular kink, and periodic waves in weakly relativistic plasmas containing relativistic thermal ions, nonextensive distributed electrons, Boltzmann distributed positrons, and kinematic viscosity of ions using the well-known reductive perturbation technique. This equation is solved by employing the ( G'/ G)-expansion method taking unperturbed positron-to-electron concentration ratio, electron-to-positron temperature ratio, strength of electrons nonextensivity, ion kinematic viscosity, and weakly relativistic streaming factor. The influences of plasma parameters on nonlinear propagation of ion-acoustic shock, periodic, and singular kink waves are displayed graphically and the relevant physical explanations are described. It is found that these parameters extensively modify the shock structures excitation. The obtained results may be useful in understanding the features of small but finite amplitude localized relativistic ion-acoustic shock waves in an unmagnetized plasma system for some astrophysical compact objects and space plasmas.
Self-consistent retardation in a three-dimensional relativistic equation
Crawford, G.A.; Thaler, R.M.
1988-12-01
A new technique for approximating solutions of the two-body Bethe-Salpeter equation is presented. Coupled equations for the relative energy dependence and the relative three-momentum dependence of the relativistic T matrix are derived. These equations are solved self consistently for the Wick-rotated T matrix in a simple model problem and the numerical results are compared with exact as well as usual three-dimensional reduction results.
Relativistic Dirac equation for particles with arbitrary half-integral spin
Guseinov, I I
2008-01-01
The sets of 2(2s+1)-component matrices through the four-component Dirac matrices are suggested, where s=3/2, 5/2,.... Using these matrices sets the Dirac relativistic equation for a description of arbitrary half-integral spin particles is constructed. The new Dirac equation of motion leads to an equation of continuity with a positive-definite probability density.
Relativistic superfluidity and vorticity from the nonlinear Klein-Gordon equation
Xiong, Chi; Guo, Yulong; Liu, Xiaopei; Huang, Kerson
2014-01-01
We investigate superfluidity, and the mechanism for creation of quantized vortices, in the relativistic regime. The general framework is a nonlinear Klein-Gordon equation in curved spacetime for a complex scalar field, whose phase dynamics gives rise to superfluidity. The mechanisms discussed are local inertial forces (Coriolis and centrifugal), and current-current interaction with an external source. The primary application is to cosmology, but we also discuss the reduction to the non-relativistic nonlinear Schr\\"{o}dinger equation, which is widely used in describing superfluidity and vorticity in liquid helium and cold-trapped atomic gases.
Numerical solutions of general-relativistic field equations for rapidly rotating neutron stars
吴雪君; 须重明
1997-01-01
Stationary axial symmetric equilibrium configurations rapidly rotating with uniform angular velocity in the framework of genera! relativity are considered. Sequences of models are numerically computed by means of a computer code that solves the full Einstein equations exactly. This code employs Neugebauer’s minimal surface formalism, where the field equations are equivalent to two-dimensional minimal surface equations for 4 metric potentials. The calculations are based upon 10 different equations of state. Results of various structures of neutron stars and the rotational effects on stellar structures and properties are reported. Finally some limits to equations of state of neutron stars and the stability for rapidly rotating relativistic neutron stars are discussed.
Relativistic wave equations with fractional derivatives and pseudo-differential operators
Závada, P
2000-01-01
The class of the free relativistic covariant equations generated by the fractional powers of the D'Alambertian operator $(\\Box ^{1/n})$ is studied. Meanwhile the equations corresponding to n=1 and 2 (Klein-Gordon and Dirac equations) are local in their nature, the multicomponent equations for arbitrary n>2 are non-local. It is shown, how the representation of generalized algebra of Pauli and Dirac matrices looks like and how these matrices are related to the algebra of SU(n) group. The corresponding representations of the Poincar\\'e group and further symmetry transformations on the obtained equations are discussed. The construction of the related Green functions is suggested.
Nonequilibrium Spin Magnetization Quantum Transport Equations
Buot, F A; Otadoy, R E S; Villarin, D L
2011-01-01
The classical Bloch equations of spin magnetization transport is extended to fully time-dependent and highly-nonlinear nonequilibrium quantum distribution function (QDF) transport equations. The leading terms consist of the Boltzmann kinetic equation with spin-orbit coupling in a magnetic field together with spin-dependent scattering terms which do not have any classical analogue, but should incorporate the spatio-temporal-dependent phase-space dynamics of Elliot-Yafet and D'yakonov-Perel scatterings. The resulting magnetization QDF transport equation serves as a foundation for computational spintronic and nanomagnetic device applications, in performing simulation of ultrafast-switching-speed/low-power performance and reliability analyses.
Symmetries of Differential equations and Applications in Relativistic Physics
Paliathanasis, Andronikos
2015-01-01
In this thesis, we study the one parameter point transformations which leave invariant the differential equations. In particular we study the Lie and the Noether point symmetries of second order differential equations. We establish a new geometric method which relates the point symmetries of the differential equations with the collineations of the underlying manifold where the motion occurs. This geometric method is applied in order the two and three dimensional Newtonian dynamical systems to be classified in relation to the point symmetries; to generalize the Newtonian Kepler-Ermakov system in Riemannian spaces; to study the symmetries between classical and quantum systems and to investigate the geometric origin of the Type II hidden symmetries for the homogeneous heat equation and for the Laplace equation in Riemannian spaces. At last but not least, we apply this geometric approach in order to determine the dark energy models by use the Noether symmetries as a geometric criterion in modified theories of gra...
Essén, Hanno; Nordmark, Arne B.
2016-09-01
The canonical Poisson bracket algebra of four-dimensional relativistic mechanics is used to derive the equation of motion for a charged particle, with the Lorentz force, and the homogeneous Maxwell equations.
Role of retardation in three-dimensional relativistic equations
Lahiff, A.D.; Afnan, I.R. [Department of Physics, The Flinders University of South Australia, GPO Box 2100, Adelaide 5001 (Australia)
1997-11-01
Equal-time Green{close_quote}s function is used to derive a three-dimensional integral equation from the Bethe-Salpeter equation. The resultant equation, in the absence of antiparticles, is identical to the use of time-ordered diagrams, and has been used within the framework of {phi}{sup 2}{sigma} coupling to study the role of energy dependence and nonlocality when the two-body potential is the sum of {sigma} exchange and crossed {sigma} exchange. The results show that nonlocality and energy dependence make a substantial contribution to both the on-shell and off-shell amplitudes. {copyright} {ital 1997} {ital The American Physical Society}
Role of retardation in three-dimensional relativistic equations
Lahiff, A. D.; Afnan, I. R.
1997-11-01
Equal-time Green's function is used to derive a three-dimensional integral equation from the Bethe-Salpeter equation. The resultant equation, in the absence of antiparticles, is identical to the use of time-ordered diagrams, and has been used within the framework of φ2σ coupling to study the role of energy dependence and nonlocality when the two-body potential is the sum of σ exchange and crossed σ exchange. The results show that nonlocality and energy dependence make a substantial contribution to both the on-shell and off-shell amplitudes.
Harko, T
2016-01-01
Obtaining exact solutions of the spherically symmetric general relativistic gravitational field equations describing the interior structure of an isotropic fluid sphere is a long standing problem in theoretical and mathematical physics. The usual approach to this problem consists mainly in the numerical investigation of the Tolman-Oppenheimer-Volkoff and of the mass continuity equations, which describes the hydrostatic stability of the dense stars. In the present paper we introduce an alternative approach for the study of the relativistic fluid sphere, based on the relativistic mass equation, obtained by eliminating the energy density in the Tolman-Oppenheimer-Volkoff equation. Despite its apparent complexity, the relativistic mass equation can be solved exactly by using a power series representation for the mass, and the Cauchy convolution for infinite power series. We obtain exact series solutions for general relativistic dense astrophysical objects described by the linear barotropic and the polytropic equa...
Relativistic two-, three- and four-body wave equations in scalar QFT
Emami-Razavi, Mohsen; Darewych, Jurij W [Centre for Research in Earth and Space Science and Department of Physics and Astronomy, York University, Toronto, Ontario M3J 1P3 (Canada)
2005-09-01
We use the variational method within the Hamiltonian formalism of QFT to derive relativistic two-, three- and four-body wave equations for scalar particles interacting via a massive or massless mediating scalar field (the scalar Yukawa model). The Lagrangian of the theory is reformulated by using Green's functions to express the mediating field in terms of the particle fields. The QFT is then constructed from the resulting reformulated Hamiltonian. Simple Fock-space variational trial states are used to derive relativistic two-, three- and four-body equations. The equations are shown to have the Schroedinger non-relativistic limit, with Coulombic interparticle potentials in the case of a massless mediating field and Yukawa interparticle potentials in the case of a massive mediating field. Ground-state solutions of the relativistic equations are obtained approximately for various strengths of coupling, for both massive and massless mediating fields, and a comparison of the two-, three- and four-particle binding energies is presented.
Donker, H. C.; Katsnelson, M. I.; De Raedt, H.; Michielsen, K.
The logical inference approach to quantum theory, proposed earlier De Raedt et al. (2014), is considered in a relativistic setting. It is shown that the Klein-Gordon equation for a massive, charged, and spinless particle derives from the combination of the requirements that the space-time data
Donker, H. C.; Katsnelson, M. I.; De Raedt, H.; Michielsen, K.
2016-01-01
The logical inference approach to quantum theory, proposed earlier De Raedt et al. (2014), is considered in a relativistic setting. It is shown that the Klein-Gordon equation for a massive, charged, and spinless particle derives from the combination of the requirements that the space-time data colle
Relativistic wave equations for interacting massive particles with arbitrary half-intreger spins
Niederle, J
2001-01-01
New formulation of relativistic wave equations (RWE) for massive particles with arbitrary half-integer spins $s$ interacting with external electromagnetic fields are proposed. They are based on wave functions which are irreducible tensors of rank $2n$ ($n=s-\\frac12$) antisymmetric w.r.t. $n$ pairs of indices, whose components are bispinors. The form of RWE is straightforward and free of inconsistencies associated with the other approaches to equations describing interacting higher spin particles.
Transport Properties of the Universal Quantum Equation
A.I.Arbab
2012-01-01
The universal quantum equation (UQE) is found to describe the transport properties of the quantum particles.This equation describes a wave equation interacting with constant scalar and vector potentials propagating in spacetime.A new transformation that sends the Schr(o)dinger equation with a potential energy V =-1/2mc2 to Dirac's equation is proposed.The Cattaneo telegraph equation as well as a one-dimensional UQE are compatible with our recently proposed generalized continuity equations.Furthermore,a new wave equation resulted from the invariance of the UQE under the post-Galilean transformations is derived.This equation is found to govern a Klein Gordon's particle interacting with a photon-like vector field (ether) whose magnitude is proportional to the particle's mass.
Relativistic quantum transport coefficients for second-order viscous hydrodynamics
Florkowski, Wojciech; Maksymiuk, Ewa; Ryblewski, Radoslaw; Strickland, Michael
2015-01-01
We express the transport coefficients appearing in the second-order evolution equations for bulk viscous pressure and shear stress tensor using Bose-Einstein, Boltzmann, and Fermi-Dirac statistics for the equilibrium distribution function and Grad's 14-moment approximation as well as the method of Chapman-Enskog expansion for the non-equilibrium part. Specializing to the case of boost-invariant and transversally homogeneous longitudinal expansion of the viscous medium, we compare the results obtained using the above methods with those obtained from the exact solution of massive 0+1d Boltzmann equation in the relaxation-time approximation. We show that compared to the 14-moment approximation, the hydrodynamic transport coefficients obtained using the Chapman-Enskog method result in better agreement with the exact solution of the Boltzmann equation in relaxation-time approximation.
Non-relativistic Limit of Dirac Equations in Gravitational Field and Quantum Effects of Gravity
无
2006-01-01
Based on unified theory of electromagnetic interactions and gravitational interactions, the non-relativistic limit of the equation of motion of a charged Dirac particle in gravitational field is studied. From the Schrodinger equation obtained from this non-relativistic limit, we can see that the classical Newtonian gravitational potential appears as a part of the potential in the Schrodinger equation, which can explain the gravitational phase effects found in COW experiments.And because of this Newtonian gravitational potential, a quantum particle in the earth's gravitational field may form a gravitationally bound quantized state, which has already been detected in experiments. Three different kinds of phase effects related to gravitational interactions are studied in this paper, and these phase effects should be observable in some astrophysical processes. Besides, there exists direct coupling between gravitomagnetic field and quantum spin, and radiation caused by this coupling can be used to directly determine the gravitomagnetic field on the surface of a star.
Subrata Pal
2015-05-01
We review the transport models that are widely used to study the properties of the quark-gluon plasma formed in relativistic heavy-ion collisions at RHIC and LHC. We show that transport model analysis of two important and complementary observables, the anisotropic flow of bulk hadrons and suppression of hadron yields at high transverse momentum, provide exciting new information on the properties of the plasma formed.
Relativistic Brownian motion: from a microscopic binary collision model to the Langevin equation.
Dunkel, Jörn; Hänggi, Peter
2006-11-01
The Langevin equation (LE) for the one-dimensional relativistic Brownian motion is derived from a microscopic collision model. The model assumes that a heavy pointlike Brownian particle interacts with the lighter heat bath particles via elastic hard-core collisions. First, the commonly known, nonrelativistic LE is deduced from this model, by taking into account the nonrelativistic conservation laws for momentum and kinetic energy. Subsequently, this procedure is generalized to the relativistic case. There, it is found that the relativistic stochastic force is still delta correlated (white noise) but no longer corresponds to a Gaussian white noise process. Explicit results for the friction and momentum-space diffusion coefficients are presented and discussed.
Analytic Representation of Relativistic Wave Equations I The Dirac Case
Tepper, L; Zachary, W W
2003-01-01
In this paper we construct an analytical separation (diagonalization) of the full (minimal coupling) Dirac equation into particle and antiparticle components. The diagonalization is analytic in that it is achieved without transforming the wave functions, as is done by the Foldy-Wouthuysen method, and reveals the nonlocal time behavior of the particle-antiparticle relationship. It is well known that the Foldy-Wouthuysen transformation leads to a diagonalization that is nonlocal in space. We interpret the zitterbewegung, and the result that a velocity measurement (of a Dirac particle) at any instant in time is +(-)c, as reflections of the fact that the Dirac equation makes a spatially extended particle appear as a point in the present by forcing it to oscillate between the past and future at speed c. This suggests that although the Dirac Hamiltonian and the square-root Hamiltonian, are mathematically, they are not physically, equivalent. Furthermore, we see that alt! ho! ugh the form of the Dirac equation serve...
Relativistic quantum mechanical spin-1 wave equation in 2+1 dimensional spacetime
Dernek, Mustafa; Sucu, Yusuf; Unal, Nuri
2016-01-01
In the study, we introduce a relativistic quantum mechanical wave equation of the spin-1 particle as an excited state of the zitterbewegung and show that it is consistent with the 2+1 dimensional Proca theory. At the same time, we see that this equation has two eigenstates, particle and antiparticle states or negative and positive energy eigenstates, respectively, in the rest frame and the spin-1 matrices satisfy $SO(2,1)$ spin algebra. As practical applications, we derive the exact solutions of the equation in the presence of a constant magnetic field and a curved spacetime. From these solutions, we construct the current components of the spin-1 particle.
Crouseilles, Nicolas; Faou, Erwan
2016-01-01
We consider the relativistic Vlasov--Maxwell (RVM) equations in the limit when the light velocity $c$ goes to infinity. In this regime, the RVM system converges towards the Vlasov--Poisson system and the aim of this paper is to construct asymptotic preserving numerical schemes that are robust with respect to this limit. Our approach relies on a time splitting approach for the RVM system employing an implicit time integrator for Maxwell's equations in order to damp the higher and higher frequencies present in the numerical solution. It turns out that the choice of this implicit method is crucial as even $L$-stable methods can lead to numerical instabilities for large values of $c$. A number of numerical simulations are conducted in order to investigate the performances of our numerical scheme both in the relativistic as well as in the classical limit regime. In addition, we derive the dispersion relation of the Weibel instability for the continuous and the discretized problem.
An asymptotic preserving scheme for the relativistic Vlasov-Maxwell equations in the classical limit
Crouseilles, Nicolas; Einkemmer, Lukas; Faou, Erwan
2016-12-01
We consider the relativistic Vlasov-Maxwell (RVM) equations in the limit when the light velocity c goes to infinity. In this regime, the RVM system converges towards the Vlasov-Poisson system and the aim of this paper is to construct asymptotic preserving numerical schemes that are robust with respect to this limit. Our approach relies on a time splitting approach for the RVM system employing an implicit time integrator for Maxwell's equations in order to damp the higher and higher frequencies present in the numerical solution. A number of numerical simulations are conducted in order to investigate the performances of our numerical scheme both in the relativistic as well as in the classical limit regime. In addition, we derive the dispersion relation of the Weibel instability for the continuous and the discretized problem.
Gan YIN; Wancheng SHENG
2008-01-01
The Riemann problems for the Euler system of conservation laws of energy and momentum in special relativity as pressure vanishes are considered. The Riemann solutions for the pressureless relativistic Euler equations are obtained constructively. There are two kinds of solutions, the one involves delta shock wave and the other involves vacuum. The authors prove that these two kinds of solutions are the limits of the solutions as pressure vanishes in the Euler system of conservation laws of energy and momentum in special relativity.
Inhomogeneous relativistic Boltzmann equation near vacuum in the Robertson-Walker space-time
Takou, Etienne
2016-01-01
In this paper, we consider the Cauchy problem for the relativistic Boltzmann equation with near vacuum initial data where the distribution function depends on the time, the position and the impulsion. The collision kernel considered here is for the hard potentials case and the background space-time in which the study is done is the Robertson-Walker space-time. Unique global (in time) mild solution is obtained in a suitable weighted space.
The Relativistic Boltzmann Equation on Bianchi Type I Space Time for Hard Potentials
Noutchegueme, Norbert; Takou, Etienne; Tchuengue, E. Kamdem
2017-08-01
In this paper, we consider the Cauchy problem for the spatially homogeneous relativistic Boltzmann equation with small initial data. The collision kernel considered here is for a hard potentials case. The background space-time in which the study is done is the Bianchi type I space-time. Under certain conditions made on the scattering kernel and on the metric, a uniqueness global (in time) solution is obtained in a suitable weighted functional space.
Gallo, Emanuel
2016-01-01
We present a general approach for the formulation of equations of motion for compact objects in general relativistic theories. The particle is assumed to be moving in a geometric background which in turn is asymptotically flat. By construction, the model incorporates the back reaction due to gravitational radiation generated by the motion of the particle. Our approach differs from other constructions tackling the same kind of problem.
Application of Central Upwind Scheme for Solving Special Relativistic Hydrodynamic Equations.
Muhammad Yousaf
Full Text Available The accurate modeling of various features in high energy astrophysical scenarios requires the solution of the Einstein equations together with those of special relativistic hydrodynamics (SRHD. Such models are more complicated than the non-relativistic ones due to the nonlinear relations between the conserved and state variables. A high-resolution shock-capturing central upwind scheme is implemented to solve the given set of equations. The proposed technique uses the precise information of local propagation speeds to avoid the excessive numerical diffusion. The second order accuracy of the scheme is obtained with the use of MUSCL-type initial reconstruction and Runge-Kutta time stepping method. After a discussion of the equations solved and of the techniques employed, a series of one and two-dimensional test problems are carried out. To validate the method and assess its accuracy, the staggered central and the kinetic flux-vector splitting schemes are also applied to the same model. The scheme is robust and efficient. Its results are comparable to those obtained from the sophisticated algorithms, even in the case of highly relativistic two-dimensional test problems.
Bazow, D; Heinz, U; Martinez, M; Noronha, J
2016-01-01
The dissipative dynamics of an expanding massless gas with constant cross section in a spatially flat Friedmann-Lema\\^itre-Robertson-Walker (FLRW) universe is studied. The mathematical problem of solving the full nonlinear relativistic Boltzmann equation is recast into an infinite set of nonlinear ordinary differential equations for the moments of the one-particle distribution function. Momentum-space resolution is determined by the number of non-hydrodynamic modes included in the moment hierarchy, i.e., by the truncation order. We show that in the FLRW spacetime the non-hydrodynamic modes decouple completely from the hydrodynamic degrees of freedom. This results in the system flowing as an ideal fluid while at the same time producing entropy. The solutions to the nonlinear Boltzmann equation exhibit transient tails of the distribution function with nontrivial momentum dependence. The evolution of this tail is not correctly captured by the relaxation time approximation nor by the linearized Boltzmann equation...
Superluminal Neutrinos and a Curious Phenomenon in the Relativistic Quantum Hamilton-Jacobi Equation
Matone, Marco
2011-01-01
OPERA's results, if confirmed, pose the question of superluminal neutrinos. We investigate the kinematics defined by the quantum version of the relativistic Hamilton-Jacobi equation, i.e. E^2=p^2c^2+m^2c^4+2mQc^2, with Q the quantum potential of the free particle. The key point is that the quantum version of the Hamilton-Jacobi equation is a third-order differential equation, so that it has integration constants which are missing in the Schr\\"odinger and Klein-Gordon equations. In particular, a non-vanishing imaginary part of an integration constant leads to a quantum correction to the expression of the velocity which is curiously in agreement with OPERA's results.
Equation of state in relativistic magnetohydrodynamics: variable versus constant adiabatic index
Mignone, A.; McKinney, Jonathan C.
2007-07-01
The role of the equation of state (EoS) for a perfectly conducting, relativistic magnetized fluid is the main subject of this work. The ideal constant Γ-law EoS, commonly adopted in a wide range of astrophysical applications, is compared with a more realistic EoS that better approximates the single-specie relativistic gas. The paper focuses on three different topics. First, the influence of a more realistic EoS on the propagation of fast magnetosonic shocks is investigated. This calls into question the validity of the constant Γ-law EoS in problems where the temperature of the gas substantially changes across hydromagnetic waves. Secondly, we present a new inversion scheme to recover primitive variables (such as rest-mass density and pressure) from conservative ones that allows for a general EoS and avoids catastrophic numerical cancellations in the non-relativistic and ultrarelativistic limits. Finally, selected numerical tests of astrophysical relevance (including magnetized accretion flows around Kerr black holes) are compared using different equations of state. Our main conclusion is that the choice of a realistic EoS can considerably bear upon the solution when transitions from cold to hot gas (or vice versa) are present. Under these circumstances, a polytropic EoS can significantly endanger the solution.
Relativistic equation-of-motion coupled-cluster method using open-shell reference wavefunction
Pathak, Himadri; Nayak, Malaya K; Vaval, Nayana; Pal, Sourav
2016-01-01
The open-shell reference relativistic equation-of-motion coupled-cluster method within its four-component description is successfully implemented with the consideration of single- and double- excitation approximation. The one-body and two-body matrix elements required for the correlation calculation are generated using Dirac-Coulomb Hamiltonian. As a first attempt, the implemented method is employed to calculate a few of the low-lying ionized states of heavy atomic (Ag, Cs, Au, Fr, Lr) and valence ionization potential of molecular (HgH, PbF) systems, where the effect of relativity does really matter to obtain highly accurate results. Not only the relativistic effect, but also the effect of electron correlation is crucial in these heavy atomic and molecular systems. To justify the fact, we have taken two further approximations in the four-component relativistic equation-of-motion framework to quantify how the effect of electron correlation plays a role in the calculated values at different level of the approxi...
Aspheric surface testing by irradiance transport equation
Shomali, Ramin; Darudi, Ahmad; Nasiri, Sadollah; Asgharsharghi Bonab, Armir
2010-10-01
In this paper a method for aspheric surface testing is presented. The method is based on solving the Irradiance Transport Equation (ITE).The accuracy of ITE normally depends on the amount of the pick to valley of the phase distribution. This subject is investigated by a simulation procedure.
Ways to constrain neutron star equation of state models using relativistic disc lines
Bhattacharyya, Sudip
2011-01-01
Relativistic spectral lines from the accretion disc of a neutron star low-mass X-ray binary can be modelled to infer the disc inner edge radius. A small value of this radius tentatively implies that the disc terminates either at the neutron star hard surface, or at the innermost stable circular orbit (ISCO). Therefore an inferred disc inner edge radius either provides the stellar radius, or can directly constrain stellar equation of state (EoS) models using the theoretically computed ISCO radius for the spacetime of a rapidly spinning neutron star. However, this procedure requires numerical computation of stellar and ISCO radii for various EoS models and neutron star configurations using an appropriate rapidly spinning stellar spacetime. We have fully general relativistically calculated about 16000 stable neutron star structures to explore and establish the above mentioned procedure, and to show that the Kerr spacetime is inadequate for this purpose. Our work systematically studies the methods to constrain Eo...
B-Spline Finite Elements and their Efficiency in Solving Relativistic Mean Field Equations
Pöschl, W
1997-01-01
A finite element method using B-splines is presented and compared with a conventional finite element method of Lagrangian type. The efficiency of both methods has been investigated at the example of a coupled non-linear system of Dirac eigenvalue equations and inhomogeneous Klein-Gordon equations which describe a nuclear system in the framework of relativistic mean field theory. Although, FEM has been applied with great success in nuclear RMF recently, a well known problem is the appearance of spurious solutions in the spectra of the Dirac equation. The question, whether B-splines lead to a reduction of spurious solutions is analyzed. Numerical expenses, precision and behavior of convergence are compared for both methods in view of their use in large scale computation on FEM grids with more dimensions. A B-spline version of the object oriented C++ code for spherical nuclei has been used for this investigation.
Brown, Natalie
In this thesis we solve the Feshbach-Villars equations for spin-zero particles through use of matrix continued fractions. The Feshbach-Villars equations are derived from the Klein-Gordon equation and admit, for the Coulomb potential on an appropriate basis, a Hamiltonian form that has infinite symmetric band-matrix structure. The corresponding representation of the Green's operator of such a matrix can be given as a matrix continued fraction. Furthermore, we propose a finite dimensional representation for the potential operator such that it retains some information about the whole Hilbert space. Combining these two techniques, we are able to solve relativistic quantum mechanical problems of a spin-zero particle in a Coulomb-like potential with a high level of accuracy.
Harko, T.; Mak, M. K.
2016-09-01
Obtaining exact solutions of the spherically symmetric general relativistic gravitational field equations describing the interior structure of an isotropic fluid sphere is a long standing problem in theoretical and mathematical physics. The usual approach to this problem consists mainly in the numerical investigation of the Tolman-Oppenheimer-Volkoff and of the mass continuity equations, which describes the hydrostatic stability of the dense stars. In the present paper we introduce an alternative approach for the study of the relativistic fluid sphere, based on the relativistic mass equation, obtained by eliminating the energy density in the Tolman-Oppenheimer-Volkoff equation. Despite its apparent complexity, the relativistic mass equation can be solved exactly by using a power series representation for the mass, and the Cauchy convolution for infinite power series. We obtain exact series solutions for general relativistic dense astrophysical objects described by the linear barotropic and the polytropic equations of state, respectively. For the polytropic case we obtain the exact power series solution corresponding to arbitrary values of the polytropic index n. The explicit form of the solution is presented for the polytropic index n=1, and for the indexes n=1/2 and n=1/5, respectively. The case of n=3 is also considered. In each case the exact power series solution is compared with the exact numerical solutions, which are reproduced by the power series solutions truncated to seven terms only. The power series representations of the geometric and physical properties of the linear barotropic and polytropic stars are also obtained.
PADÉ APPROXIMANTS FOR THE EQUATION OF STATE FOR RELATIVISTIC HYDRODYNAMICS BY KINETIC THEORY
Tsai, Shang-Hsi; Yang, Jaw-Yen, E-mail: shanghsi@gmail.com [Institute of Applied Mechanics, National Taiwan University, Taipei 10764, Taiwan (China)
2015-07-20
A two-point Padé approximant (TPPA) algorithm is developed for the equation of state (EOS) for relativistic hydrodynamic systems, which are described by the classical Maxwell–Boltzmann statistics and the semiclassical Fermi–Dirac statistics with complete degeneracy. The underlying rational function is determined by the ratios of the macroscopic state variables with various orders of accuracy taken at the extreme relativistic limits. The nonunique TPPAs are validated by Taub's inequality for the consistency of the kinetic theory and the special theory of relativity. The proposed TPPA is utilized in deriving the EOS of the dilute gas and in calculating the specific heat capacity, the adiabatic index function, and the isentropic sound speed of the ideal gas. Some general guidelines are provided for the application of an arbitrary accuracy requirement. The superiority of the proposed TPPA is manifested in manipulating the constituent polynomials of the approximants, which avoids the arithmetic complexity of struggling with the modified Bessel functions and the hyperbolic trigonometric functions arising from the relativistic kinetic theory.
The lifespan of 3D radial solutions to the non-isentropic relativistic Euler equations
Wei, Changhua
2017-10-01
This paper investigates the lower bound of the lifespan of three-dimensional spherically symmetric solutions to the non-isentropic relativistic Euler equations, when the initial data are prescribed as a small perturbation with compact support to a constant state. Based on the structure of the hyperbolic system, we show the almost global existence of the smooth solutions to Eulerian flows (polytropic gases and generalized Chaplygin gases) with genuinely nonlinear characteristics. While for the Eulerian flows (Chaplygin gas and stiff matter) with mild linearly degenerate characteristics, we show the global existence of the radial solutions, moreover, for the non-strictly hyperbolic system (pressureless perfect fluid) satisfying the mild linearly degenerate condition, we prove the blowup phenomenon of the radial solutions and show that the lifespan of the solutions is of order O(ɛ ^{-1}), where ɛ denotes the width of the perturbation. This work can be seen as a complement of our work (Lei and Wei in Math Ann 367:1363-1401, 2017) for relativistic Chaplygin gas and can also be seen as a generalization of the classical Eulerian fluids (Godin in Arch Ration Mech Anal 177:497-511, 2005, J Math Pures Appl 87:91-117, 2007) to the relativistic Eulerian fluids.
Leung, Chun Sing; Harko, Tiberiu
2013-01-01
We consider a description of the stochastic oscillations of the general relativistic accretion disks around compact astrophysical objects based on the generalized Langevin equation, which accounts for the general retarded effects of the frictional force, and on the fluctuation-dissipation theorems. The vertical displacements, velocities and luminosities of the stochastically perturbed disks are explicitly obtained for both the Schwarzschild and the Kerr cases. The Power Spectral Distribution of the luminosity it is also obtained, and it is shown that it has non-standard values. The theoretical predictions of the model are compared with the observational data for the luminosity time variation of the BL Lac S5 0716+714 object.
Generalized Langevin Equation Description of Stochastic Oscillations of General Relativistic Disks
Chun Sing Leung; Gabriela Mocanu; Tiberiu Harko
2014-09-01
We consider a description of the stochastic oscillations of the general relativistic accretion disks around compact astrophysical objects based on the generalized Langevin equation, which accounts for the general retarded effects of the frictional force, and on the fluctuation–dissipation theorems. The vertical displacements, velocities and luminosities of the stochastically perturbed disks are explicitly obtained for both the Schwarzschild and Kerr cases. The power spectral distribution of the luminosity is also obtained, and it is shown that it has non-standard values. The theoretical predictions of the model are compared with the observational data for the luminosity time variation of the BL Lac S5 0716+714 object.
Wang Zhi-Yun; Chen Pei-Jie
2016-06-01
A generalized Langevin equation driven by fractional Brownian motion is used to describe the vertical oscillations of general relativistic disks. By means of numerical calculation method, the displacements, velocities and luminosities of oscillating disks are explicitly obtained for different Hurst exponent $H$. The results show that as $H$ increases, the energies and luminosities of oscillating disk are enhanced, and the spectral slope at high frequencies of the power spectrum density of disk luminosity is also increased. This could explain the observational features related to the Intra Day Variability of the BL Lac objects.
Hadron Mass Spectra and Decay Rates in a Potential Model with Relativistic Wave Equations.
Namgung, Wuk
Hadron properties of mass spectra and decay rates are calculated in a quark potential model. Wave equations based on the Klein-Gordon and Todorov equations both of which incorporate the feature of relativistic two-body kinematics are used. The wave equations are modified to contain potentials which transform either like a Lorentz scalar or like a time-component of a four-vector. Potentials based on the Fogleman-Lichtenberg-Wills potential which has the properties suggested by QCD of both confinement and asymptotic freedom are used. The potentials, motivated by QCD but otherwise phenomenological, are further generalized to forms which can apply to any color representation. To break the degeneracy between vector and pseudoscalar mesons or between spin-3/2 and spin-1/2 baryons, the essential feature of spin dependence is included in the potentials. The masses of vector and pseudoscalar mesons are calculated with only a small number of adjustable parameters, and good qualitative agreement with experiment is obtained for both heavy and light mesons. Baryons are treated in this framework by making use of a quark-diquark two-body model of baryons. First, diquark properties are calculated without any additional parameters. The g-factors of diquarks and spin-flavor configuration of baryons, which are necessary for the calculation of baryons, are given. Then baryon masses are calculated also without additional parameters. The results of the masses of ground-state baryons are in good qualitative agreement with experiment. Also effective constituent quark masses are obtained using current quark masses as input. The calculated effective constituent quark masses are in the right range of the values that most theoretical estimates have given. The general qualitative features of hadron spectra are similar with the two relativistic wave equations, although there are differences in detail. The Van Royen-Weisskopf formula for electromagnetic decay widths of vector mesons into lepton
Tidal deformability of neutron and hyperon star with relativistic mean field equations of state
Kumar, Bharat; Patra, S K
2016-01-01
We systematically study the tidal deformability for neutron and hyperon stars using relativistic mean field (RMF) equations of state (EOSs). The tidal effect plays an important role during the early part of the evolution of compact binaries. Although, the deformability associated with the EOSs has a small correction, it gives a clean gravitational wave signature in binary inspiral. These are characterized by various love numbers kl (l=2, 3, 4), that depend on the EOS of a star for a given mass and radius. The tidal effect of star could be efficiently measured through advanced LIGO detector from the final stages of inspiraling binary neutron star (BNS) merger.
Avron, Joseph
2016-01-01
We derive the relativistically exact Eikonal equation for ring interferometers undergoing adiabatic deformations. The leading term in the adiabatic expansion of the phase shift is independent of the refraction index $n$ and is given by a line integral generalizing results going back to Sagnac to all orders in $\\beta$. The next term in the adiabaticity is of lower order in $\\beta$ and may be as important as the first in nonrelativistic cases. This term is proportional to $n^2$ and has the form of a double integral. It generalizes previous results to fibers with chromatic dispersion and puts Sagnac and Fizeau interferometers under a single umbrella.
Tidal deformability of neutron and hyperon stars within relativistic mean field equations of state
Kumar, Bharat; Biswal, S. K.; Patra, S. K.
2017-01-01
We systematically study the tidal deformability for neutron and hyperon stars using relativistic mean field equations of state (EOSs). The tidal effect plays an important role during the early part of the evolution of compact binaries. Although, the deformability associated with the EOSs has a small correction, it gives a clean gravitational wave signature in binary inspiral. These are characterized by various Love numbers kl(l =2 ,3 ,4 ), that depend on the EOS of a star for a given mass and radius. The tidal effect of star could be efficiently measured through an advanced LIGO detector from the final stages of an inspiraling binary neutron star merger.
Wells, J C; Eichler, J
1999-01-01
We discuss the two-center, time-dependent Dirac equation describing the dynamics of an electron during a peripheral, relativistic heavy-ion collision at extreme energies. We derive a factored form, which is exact in the high-energy limit, for the asymptotic channel solutions of the Dirac equation, and elucidate their close connection with gauge transformations which transform the dynamics into a representation in which the interaction between the electron and a distant ion is of short range. We describe the implications of this relationship for solving the time-dependent Dirac equation for extremely relativistic collisions.
Exact solution of the neutron transport equation in spherical geometry
Anli, Fikret; Akkurt, Abdullah; Yildirim, Hueseyin; Ates, Kemal [Kahramanmaras Suetcue Imam Univ. (Turkey). Faculty of Sciences and Letters
2017-03-15
Solution of the neutron transport equation in one dimensional slab geometry construct a basis for the solution of neutron transport equation in a curvilinear geometry. Therefore, in this work, we attempt to derive an exact analytical benchmark solution for both neutron transport equations in slab and spherical medium by using P{sub N} approximation which is widely used in neutron transport theory.
Amirkhanov, I V; Zhidkova, I E; Vasilev, S A
2000-01-01
Asymptotics of eigenfunctions and eigenvalues has been obtained for a singular perturbated relativistic analog of Schr`dinger equation. A singular convergence of asymptotic expansions of the boundary problems to degenerated problems is shown for a nonrelativistic Schr`dinger equation. The expansions obtained are in a good agreement with a numeric experiment.
Noise Prevents Singularities in Linear Transport Equations
Fedrizzi, Ennio; Flandoli, Franco
2012-01-01
A stochastic linear transport equation with multiplicative noise is considered and the question of no-blow-up is investigated. The drift is assumed only integrable to a certain power. Opposite to the deterministic case where smooth initial conditions may develop discontinuities, we prove that a certain Sobolev degree of regularity is maintained, which implies H\\"older continuity of solutions. The proof is based on a careful analysis of the associated stochastic flow of characteristics.
Relativistic integro-differential form of the Lorentz-Dirac equation in 3D without runaways
Ibison, Michael; Puthoff, Harold E.
2001-04-01
It is well known that the third-order Lorentz-Dirac equation admits runaway solutions wherein the energy of the particle grows without limit, even when there is no external force. These solutions can be denied simply on physical grounds, and on the basis of careful analysis of the correspondence between classical and quantum theory. Nonetheless, one would prefer an equation that did not admit unphysical behavior at the outset. Such an equation - an integro-differential version of the Lorentz-Dirac equation - is currently available either in 1 dimension only, or in 3 dimensions only in the non-relativistic limit. It is shown herein how the Lorentz-Dirac equation may be integrated without approximation, and is thereby converted to a second-order integro-differential equation in 3D satisfying the above requirement. I.E., as a result, no additional constraints on the solutions are required because runaway solutions are intrinsically absent. The derivation is placed within the historical context established by standard works on classical electrodynamics by Rohrlich, and by Jackson.
Pdf - Transport equations for chemically reacting flows
Kollmann, W.
1989-01-01
The closure problem for the transport equations for pdf and the characteristic functions of turbulent, chemically reacting flows is addressed. The properties of the linear and closed equations for the characteristic functional for Eulerian and Lagrangian variables are established, and the closure problem for the finite-dimensional case is discussed for pdf and characteristic functions. It is shown that the closure for the scalar dissipation term in the pdf equation developed by Dopazo (1979) and Kollmann et al. (1982) results in a single integral, in contrast to the pdf, where double integration is required. Some recent results using pdf methods obtained for turbulent flows with combustion, including effects of chemical nonequilibrium, are discussed.
Equation of state of a relativistic theory from a moving frame.
Giusti, Leonardo; Pepe, Michele
2014-07-18
We propose a new strategy for determining the equation of state of a relativistic thermal quantum field theory by considering it in a moving reference system. In this frame, an observer can measure the entropy density of the system directly from its average total momentum. In the Euclidean path integral formalism, this amounts to computing the expectation value of the off-diagonal components T(0k) of the energy-momentum tensor in the presence of shifted boundary conditions. The entropy is, thus, easily measured from the expectation value of a local observable computed at the target temperature T only. At large T, the temperature itself is the only scale which drives the systematic errors, and the lattice spacing can be tuned to perform a reliable continuum limit extrapolation while keeping finite-size effects under control. We test this strategy for the four-dimensional SU(3) Yang-Mills theory. We present precise results for the entropy density and its step-scaling function in the temperature range 0.9T(c)-20T(c). At each temperature, we consider four lattice spacings in order to extrapolate the results to the continuum limit. As a by-product, we also determine the ultraviolet finite renormalization constant of T(0k) by imposing suitable Ward identities. These findings establish this strategy as a solid, simple, and efficient method for an accurate determination of the equation of state of a relativistic thermal field theory over several orders of magnitude in T.
Berry curvature and four-dimensional monopoles in the relativistic chiral kinetic equation.
Chen, Jiunn-Wei; Pu, Shi; Wang, Qun; Wang, Xin-Nian
2013-06-28
We derive a relativistic chiral kinetic equation with manifest Lorentz covariance from Wigner functions of spin-1/2 massless fermions in a constant background electromagnetic field. It contains vorticity terms and a four-dimensional Euclidean Berry monopole which gives an axial anomaly. By integrating out the zeroth component of the 4-momentum p, we reproduce the previous three-dimensional results derived from the Hamiltonian approach, together with the newly derived vorticity terms. The phase space continuity equation has an anomalous source term proportional to the product of electric and magnetic fields (FσρF[over ˜]σρ∼EσBσ). This provides a unified interpretation of the chiral magnetic and vortical effects, chiral anomaly, Berry curvature, and the Berry monopole in the framework of Wigner functions.
Mondal, Ritwik; Berritta, Marco; Oppeneer, Peter M.
2016-10-01
Starting from the Dirac-Kohn-Sham equation, we derive the relativistic equation of motion of spin angular momentum in a magnetic solid under an external electromagnetic field. This equation of motion can be rewritten in the form of the well-known Landau-Lifshitz-Gilbert equation for a harmonic external magnetic field and leads to a more general magnetization dynamics equation for a general time-dependent magnetic field. In both cases there is an electronic spin-relaxation term which stems from the spin-orbit interaction. We thus rigorously derive, from fundamental principles, a general expression for the anisotropic damping tensor which is shown to contain an isotropic Gilbert contribution as well as an anisotropic Ising-like and a chiral, Dzyaloshinskii-Moriya-like contribution. The expression for the spin relaxation tensor comprises furthermore both electronic interband and intraband transitions. We also show that when the externally applied electromagnetic field possesses spin angular momentum, this will lead to an optical spin torque exerted on the spin moment.
Relativistic magnetohydrodynamics
Hernandez, Juan; Kovtun, Pavel
2017-05-01
We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the "conventional" magnetohydrodynamics (formulated using Maxwell's equations in matter) to those in the "dual" version of magnetohydrodynamics (formulated using the conserved magnetic flux).
Weberszpil, J; Cherman, A; Helayël-Neto, J A
2012-01-01
The main goal of this paper is to set up the coarse-grained formulation of a fractional Schr\\"odinger equation that incorporates a higher (spatial) derivative term which accounts for relativistic effects at a lowest order. The corresponding continuity equation is worked out and we also identify the contribution of the relativistic correction the quantum potential in the coarse-grained treatment. As a consequence, in the classical regime, we derive the sort of fractional Newtonian law with the quantum potential included and the fractional conterparts of the De Broglies's energy and momentum relations.
Entropy current for non-relativistic fluid
Banerjee, Nabamita; Jain, Akash; Roychowdhury, Dibakar
2014-01-01
We study transport properties of a parity-odd, non-relativistic charged fluid in presence of background electric and magnetic fields. To obtain stress tensor and charged current for the non-relativistic system we start with the most generic relativistic fluid, living in one higher dimension and reduce the constituent equations along the light-cone direction. We also reduce the equation satisfied by the entropy current of the relativistic theory and obtain a consistent entropy current for the non-relativistic system (we call it "canonical form" of the entropy current). Demanding that the non-relativistic fluid satisfies the second law of thermodynamics we impose constraints on various first order transport coefficients. For parity even fluid, this is straight forward; it tells us positive definiteness of different transport coefficients like viscosity, thermal conductivity, electric conductivity etc. However for parity-odd fluid, canonical form of the entropy current fails to confirm the second law of thermody...
Relativistic equation-of-motion coupled-cluster method for the electron attachment problem
Pathak, Himadri; Nayak, Malaya K; Vaval, Nayana; Pal, Sourav
2016-01-01
The article considers the successful implementation of relativistic equation-of-motion coupled clus- ter method for the electron attachment problem (EA-EOMCC) at the level of single- and double- excitation approximation. The Dirac-Coulomb Hamiltonian is used to generate the single particle orbitals and two-body matrix elements. The implemented relativistic EA-EOMCC method is em- ployed to calculate ionization potential values of alkali metal atoms (Li, Na, K, Rb, Cs, Fr) and the vertical electron affinity values of LiX (X=H, F, Cl, Br), NaY (Y=H, F, Cl) starting from their closed-shell configuration. We have taken C 2 as an example to understand what should be the na- ture of the basis and cut off in the orbital energies that can be used for the correlation calculations without loosing a considerable amount of accuracy in the computed values. Both four-component and X2C calculations are done for all the opted systems to understand the effect of relativity in our calculations as well as to justify the fact tha...
Maximal stochastic transport in the Lorenz equations
Agarwal, Sahil, E-mail: sahil.agarwal@yale.edu [Program in Applied Mathematics, Yale University, New Haven (United States); Wettlaufer, J.S., E-mail: john.wettlaufer@yale.edu [Program in Applied Mathematics, Yale University, New Haven (United States); Departments of Geology & Geophysics, Mathematics and Physics, Yale University, New Haven (United States); Mathematical Institute, University of Oxford, Oxford (United Kingdom); Nordita, Royal Institute of Technology and Stockholm University, Stockholm (Sweden)
2016-01-08
We calculate the stochastic upper bounds for the Lorenz equations using an extension of the background method. In analogy with Rayleigh–Bénard convection the upper bounds are for heat transport versus Rayleigh number. As might be expected, the stochastic upper bounds are larger than the deterministic counterpart of Souza and Doering [1], but their variation with noise amplitude exhibits interesting behavior. Below the transition to chaotic dynamics the upper bounds increase monotonically with noise amplitude. However, in the chaotic regime this monotonicity depends on the number of realizations in the ensemble; at a particular Rayleigh number the bound may increase or decrease with noise amplitude. The origin of this behavior is the coupling between the noise and unstable periodic orbits, the degree of which depends on the degree to which the ensemble represents the ergodic set. This is confirmed by examining the close returns plots of the full solutions to the stochastic equations and the numerical convergence of the noise correlations. The numerical convergence of both the ensemble and time averages of the noise correlations is sufficiently slow that it is the limiting aspect of the realization of these bounds. Finally, we note that the full solutions of the stochastic equations demonstrate that the effect of noise is equivalent to the effect of chaos.
Complete equation of state for neutron stars using the relativistic Hartree-Fock approximation
Miyatsu, Tsuyoshi; Cheoun, Myung-Ki [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Yamamuro, Sachiko; Nakazato, Ken' ichiro [Department of Physics, Faculty of Science and Technology, Tokyo University of Science (TUS), Noda 278-8510 (Japan)
2014-05-02
We construct the equation of state in a wide-density range for neutron stars within relativistic Hartree-Fock approximation. The properties of uniform and nonuniform nuclear matter are studied consistently. The tensor couplings of vector mesons to baryons due to exchange contributions (Fock terms) are included, and the change of baryon internal structure in matter is also taken into account using the quark-meson coupling model. The Thomas-Fermi calculation is adopted to describe nonuniform matter, where the lattice of nuclei and the neutron drip out of nuclei are considered. Even if hyperons exist in the core of a neutron star, we obtain the maximum neutron-star mass of 1.95M{sub ⊙}, which is consistent with the recently observed massive pulsar, PSR J1614-2230. In addition, the strange vector (φ) meson also plays a important role in supporting a massive neutron star.
Very High Order $\\PNM$ Schemes on Unstructured Meshes for the Resistive Relativistic MHD Equations
Dumbser, Michael
2009-01-01
In this paper we propose the first better than second order accurate method in space and time for the numerical solution of the resistive relativistic magnetohydrodynamics (RRMHD) equations on unstructured meshes in multiple space dimensions. The nonlinear system under consideration is purely hyperbolic and contains a source term, the one for the evolution of the electric field, that becomes stiff for low values of the resistivity. For the spatial discretization we propose to use high order $\\PNM$ schemes as introduced in \\cite{Dumbser2008} for hyperbolic conservation laws and a high order accurate unsplit time discretization is achieved using the element-local space-time discontinuous Galerkin approach proposed in \\cite{DumbserEnauxToro} for one-dimensional balance laws with stiff source terms. The divergence free character of the magnetic field is accounted for through the divergence cleaning procedure of Dedner et al. \\cite{Dedneretal}. To validate our high order method we first solve some numerical test c...
Avron, Joseph; Kenneth, Oded
2016-12-01
We derive the relativistically exact eikonal equation for ring interferometers undergoing deformation. For ring interferometers that undergo slow deformation we describe the two leading terms in the adiabatic expansion of the phase shift. The leading term is independent of the refraction index n and is given by a line integral generalizing results going back to Sagnac for nondeforming interferometers to all orders in β =|v |/c . In the nonrelativistic limit this term is O (β ) . The next term in the adiabaticity has the form of a double integral, it is of order β0 and depends on the refractive index n . It accounts for nonreciprocity due to changing circumstances in the fiber. The adiabatic correction is often comparable to the Sagnac term. In particular, this is the case in Fizeau's interferometer. Besides providing a mathematical framework that puts all ring interferometers under a single umbrella, our results strengthen earlier results and generalize them to fibers with chromatic dispersion.
Abada, A; Zhuang, P; Heinz, Ulrich W; Abada, Abdellatif; Birse, Michael C; Zhuang, Pengfei; Heinz, Ulrich
1996-01-01
It is found that the extra quantum constraints to the spinor components of the equal-time Wigner function given in a recent paper by Zhuang and Heinz should vanish identically. We point out here the origin of the error and give an interpretation of the result. However, the principal idea of obtaining a complete equal-time transport theory by energy averaging the covariant theory remains valid. The classical transport equation for the spin density is also found to be incorrect. We give here the correct form of that equation and discuss briefly its structure.
M, G. Hafez; N, C. Roy; M, R. Talukder; M Hossain, Ali
2017-01-01
A comparative study is carried out for the nonlinear propagation of ion acoustic shock waves both for the weakly and highly relativistic plasmas consisting of relativistic ions and q-distributed electrons and positions. The Burgers equation is derived to reveal the physical phenomena using the well known reductive perturbation technique. The integration of the Burgers equation is performed by the (G\\prime /G)-expansion method. The effects of positron concentration, ion–electron temperature ratio, electron–positron temperature ratio, ion viscosity coefficient, relativistic streaming factor and the strength of the electron and positron nonextensivity on the nonlinear propagation of ion acoustic shock and periodic waves are presented graphically and the relevant physical explanations are provided.
Mir-Kasimov, R M
1994-01-01
The concept of the one -- dimensional quantum mechanics in the relativistic configurational space (RQM) is reviewed briefly. The Relativistic Schroedinger equation (RSE) arising here is the finite -- difference equation with the step equal to the Compton wave length of the particle. The different generalizations of the Dirac -- Infeld-- Hall factorizarion method for this case are constructed. This method enables us to find out all possible finite-difference generalizations of the most important nonrelativistic integrable case -- the harmonic oscillator. As it was shown in \\cite{kmn},\\cite{mir6} the case of RQM the harmonic oscillator = q -- oscillator. It is also shown that the relativistic and nonrelativistic QM's are different representations of the same theory. The transformation connecting these two representations is found in explicit form. It could be considered as the generalization of the Kontorovich -- Lebedev transformation.
Goncalves, Bruno; Dias Junior, Mario Marcio [Instituto Federal de Educacacao, Ciencia e Tecnologia Sudeste de Minas Gerais, Juiz de Fora, MG (Brazil)
2013-07-01
Full text: The discussion of experimental manifestations of torsion at low energies is mainly related to the torsion-spin interaction. In this respect the behavior of Dirac field and the spinning particle in an external torsion field deserves and received very special attention. In this work, we consider the combined action of torsion and magnetic field on the massive spinor field. In this case, the Dirac equation is not straightforward solved. We suppose that the spinor has two components. The equations have mixed terms between the two components. The electromagnetic field is introduced in the action by the usual gauge transformation. The torsion field is described by the field S{sub μ}. The main purpose of the work is to get an explicit form to the equation of motion that shows the possible interactions between the external fields and the spinor in a Hamiltonian that is independent to each component. We consider that S{sub 0} is constant and is the unique non-vanishing term of S{sub μ}. This simplification is taken just to simplify the algebra, as our main point is not to describe the torsion field itself. In order to get physical analysis of the problem, we consider the non-relativistic approximation. The final result is a Hamiltonian that describes a half spin field in the presence of electromagnetic and torsion external fields. (author)
Fan, Peifeng; Liu, Jian; Xiang, Nong; Yu, Zhi
2016-01-01
A manifestly covariant, or geometric, field theory for relativistic classical particle-field system is developed. The connection between space-time symmetry and energy-momentum conservation laws for the system is established geometrically without splitting the space and time coordinates, i.e., space-time is treated as one identity without choosing a coordinate system. To achieve this goal, we need to overcome two difficulties. The first difficulty arises from the fact that particles and field reside on different manifold. As a result, the geometric Lagrangian density of the system is a function of the 4-potential of electromagnetic fields and also a functional of particles' world-lines. The other difficulty associated with the geometric setting is due to the mass-shell condition. The standard Euler-Lagrange (EL) equation for a particle is generalized into the geometric EL equation when the mass-shell condition is imposed. For the particle-field system, the geometric EL equation is further generalized into a w...
Anomalous Fractional Diffusion Equation for Transport Phenomena
QiuhuaZENG; HouqiangLI; 等
1999-01-01
We derive the standard diffusion equation from the continuity equation and by discussing the defectiveness of earlier proposed equations,we get the generalized fractional diffusion equation for anomalous diffusion.
Noutchegueme, N; Noutchegueme, Norbert; Tetsadjio, Mesmin Erick
2003-01-01
We prove, for the relativistic Boltzmann equation in the homogeneous case, on the Minkowski space-time, a global in time existence and uniqueness theorem. The method we develop extends to the cases of some curved space-times such as the flat Robertson-Walker space-time and some Bianchi type I space-times.
Asymptotic Analysis of Transport Equation in Annulus
Wu, Lei; Yang, Xiongfeng; Guo, Yan
2016-09-01
We consider the diffusive limit of a steady neutron transport equation with one-speed velocity in a two-dimensional annulus. A classical theorem in Bensoussan et al. (Publ Res Inst Math Sci 15:53-157, 1979) states that the solution can be approximated in L^{∞} by the sum of the interior solution and Knudsen layer derived from Milne problem. However, this result was disproved in Wu and Guo (Commun Math Phys 336:1473-1553, 2015) in a plate via a different boundary layer expansion with geometric correction. In this paper, we established the diffusive limit and provide a counterexample to Bensoussan et al. (1979) in non-convex domains.
A Second Relativistic Mean Field and Virial Equation of State for Astrophysical Simulations
Shen, G; O'Connor, E
2011-01-01
We generate a second equation of state (EOS) of nuclear matter for a wide range of temperatures, densities, and proton fractions for use in supernovae, neutron star mergers, and black hole formation simulations. We employ full relativistic mean field (RMF) calculations for matter at intermediate density and high density, and the Virial expansion of a non-ideal gas for matter at low density. For this EOS we use the RMF effective interaction FSUGold, whereas our earlier EOS was based on the RMF effective interaction NL3. The FSUGold interaction has a lower pressure at high densities compared to the NL3 interaction. We calculate the resulting EOS at over 100,000 grid points in the temperature range $T$ = 0 to 80 MeV, the density range $n_B$ = 10$^{-8}$ to 1.6 fm$^{-3}$, and the proton fraction range $Y_p$ = 0 to 0.56. We then interpolate these data points using a suitable scheme to generate a thermodynamically consistent equation of state table on a finer grid. We discuss differences between this EOS, our NL3 ba...
Relativistic heat conduction and thermoelectric properties of nonuniform plasmas
Honda, M
2003-01-01
Relativistic heat transport in electron-two-temperature plasmas with density gradients has been investigated. The Legendre expansion analysis of relativistically modified kinetic equations shows that strong inhibition of heat flux appears in relativistic temperature regimes, suppressing the classical Spitzer-H{\\"a}rm conduction. The Seebeck coefficient, the Wiedemann-Franz law, and the thermoelectric figure of merit are derived in the relativistic regimes.
Muronga, A
2007-01-01
In the causal theory of relativistic dissipative fluid dynamics, there are conditions on the equation of state and other thermodynamic properties such as the second-order coefficients of a fluid that need to be satisfied to guarantee that the fluid perturbations propagate causally and obey hyperbolic equations. The second-order coefficients in the causal theory, which are the relaxation times for the dissipative degrees of freedom and coupling constants between different forms of dissipation (relaxation lengths), are presented for partonic and hadronic systems. These coefficients involves relativistic thermodynamic integrals. The integrals are presented for general case and also for different regimes in the temperature--chemical potential plane. It is shown that for a given equation of state these second-order coefficients are not additional parameters but they are determined by the equation of state. We also present the prescription on the calculation of the freeze-out particle spectra from the dynamics of r...
Al-Hashimi, M H
2015-01-01
We study the relativistic version of Schr\\"odinger equation for a point particle in 1-d with potential of the first derivative of the delta function. The momentum cutoff regularization is used to study the bound state and scattering states. The initial calculations show that the reciprocal of the bare coupling constant is ultra-violet divergent, and the resultant expression cannot be renormalized in the usual sense. Therefore a general procedure has been developed to derive different physical properties of the system. The procedure is used first on the non-relativistic case for the purpose of clarification and comparisons. The results from the relativistic case show that this system behaves exactly like the delta function potential, which means it also shares the same features with quantum field theories, like being asymptotically free, and in the massless limit, it undergoes dimensional transmutation and it possesses an infrared conformal fixed point.
Relativistic gas in a Schwarzschild metric
Kremer, Gilberto M
2013-01-01
A relativistic gas in a Schwarzschild metric is studied within the framework of a relativistic Boltzmann equation in the presence of gravitational fields, where Marle's model for the collision operator of the Boltzmann equation is employed. The transport coefficients of bulk and shear viscosities and thermal conductivity are determined from the Chapman-Enskog method. It is shown that the transport coefficients depend on the gravitational potential. Expressions for the transport coefficients in the presence of weak gravitational fields in the non-relativistic (low temperatures) and ultra-relativistic (high temperatures) limiting cases are given. Apart from the temperature gradient the heat flux has two relativistic terms. The first one, proposed by Eckart, is due to the inertia of energy and represents an isothermal heat flux when matter is accelerated. The other, suggested by Tolman, is proportional to the gravitational potential gradient and indicates that -- in the absence of an acceleration field -- a stat...
Quarkonium and hydrogen spectra with spin-dependent relativistic wave equation
V H Zaveri
2010-10-01
The non-linear non-perturbative relativistic atomic theory introduces spin in the dynamics of particle motion. The resulting energy levels of hydrogen atom are exactly the same as that of Dirac theory. The theory accounts for the energy due to spin-orbit interaction and for the additional potential energy due to spin and spin-orbit coupling. Spin angular momentum operator is integrated into the equation of motion. This requires modification to classical Laplacian operator. Consequently, the Dirac matrices and the k operator of Dirac’s theory are dispensed with. The theory points out that the curvature of the orbit draws on certain amount of kinetic and potential energies affecting the momentum of electron and the spin-orbit interaction energy constitutes a part of this energy. The theory is developed for spin-1/2 bound state single electron in Coulomb potential and then extended further to quarkonium physics by introducing the linear confining potential. The unique feature of this quarkonium model is that the radial distance can be exactly determined and does not have a statistical interpretation. The established radial distance is then used to determine the wave function. The observed energy levels are used as the input parameters and the radial distance and the string tension are predicted. This ensures 100% conformance to all observed energy levels for the heavy quarkonium.
Equation of state of a relativistic theory from a moving frame
Giusti, Leonardo
2014-01-01
We propose a new strategy for determining the equation of state of a relativistic thermal quantum field theory by considering it in a moving reference system. In this frame an observer can measure the entropy density of the system directly from its average total momentum. In the Euclidean path integral formalism, this amounts to compute the expectation value of the off-diagonal components T_{0k} of the energy-momentum tensor in presence of shifted boundary conditions. The entropy is thus easily measured from the expectation value of a local observable computed at the target temperature T only. At large T, the temperature itself is the only scale which drives the systematic errors, and the lattice spacing can be tuned to perform a reliable continuum limit extrapolation while keeping finite-size effects under control. We test this strategy for the four-dimensional SU(3) Yang-Mills theory. We present precise results for the entropy density and its step-scaling function in the temperature range 0.9 T_c - 20 T_c. ...
Murad, Mohammad Hassan; Pant, Neeraj
2014-03-01
In this paper we have studied a particular class of exact solutions of Einstein's gravitational field equations for spherically symmetric and static perfect fluid distribution in isotropic coordinates. The Schwarzschild compactness parameter, GM/ c 2 R, can attain the maximum value 0.1956 up to which the solution satisfies the elementary tests of physical relevance. The solution also found to have monotonic decreasing adiabatic sound speed from the centre to the boundary of the fluid sphere. A wide range of fluid spheres of different mass and radius for a given compactness is possible. The maximum mass of the fluid distribution is calculated by using stellar surface density as parameter. The values of different physical variables obtained for some potential strange star candidates like Her X-1, 4U 1538-52, LMC X-4, SAX J1808.4-3658 given by our analytical model demonstrate the astrophysical significance of our class of relativistic stellar models in the study of internal structure of compact star such as self-bound strange quark star.
Endrizzi, A.; Ciolfi, R.; Giacomazzo, B.; Kastaun, W.; Kawamura, T.
2016-08-01
We present new results of fully general relativistic magnetohydrodynamic simulations of binary neutron star (BNS) mergers performed with the Whisky code. All the models use a piecewise polytropic approximation of the APR4 equation of state for cold matter, together with a ‘hybrid’ part to incorporate thermal effects during the evolution. We consider both equal and unequal-mass models, with total masses such that either a supramassive NS or a black hole is formed after merger. Each model is evolved with and without a magnetic field initially confined to the stellar interior. We present the different gravitational wave (GW) signals as well as a detailed description of the matter dynamics (magnetic field evolution, ejected mass, post-merger remnant/disk properties). Our simulations provide new insights into BNS mergers, the associated GW emission and the possible connection with the engine of short gamma-ray bursts (both in the ‘standard’ and in the ‘time-reversal’ scenarios) and other electromagnetic counterparts.
Endrizzi, Andrea; Giacomazzo, Bruno; Kastaun, Wolfgang; Kawamura, Takumu
2016-01-01
We present new results of fully general relativistic magnetohydrodynamic (GRMHD) simulations of binary neutron star (BNS) mergers performed with the Whisky code. All the models use a piecewise polytropic approximation of the APR4 equation of state (EOS) for cold matter, together with a "hybrid" part to incorporate thermal effects during the evolution. We consider both equal and unequal-mass models, with total masses such that either a supramassive NS or a black hole (BH) is formed after merger. Each model is evolved with and without a magnetic field initially confined to the stellar interior. We present the different gravitational wave (GW) signals as well as a detailed description of the matter dynamics (magnetic field evolution, ejected mass, post-merger remnant/disk properties). Our simulations provide new insights into BNS mergers, the associated GW emission and the possible connection with the engine of short gamma-ray bursts (both in the "standard" and in the "time-reversal" scenarios) and other electro...
Chandra, S.K.
1976-01-01
The perturbation method of Lindstedt is applied to study the relativistic nonlinear effects for an elliptically polarized transverse monochromatic wave in a cold dissipative plasma in the absence of a static magnetic field. Amplitude-dependent wavelength and frequency shifts including relativistic correlations are derived.
Hot electrons in superlattices: quantum transport versus Boltzmann equation
Wacker, Andreas; Jauho, Antti-Pekka; Rott, S.;
1999-01-01
A self-consistent solution of the transport equation is presented for semiconductor superlattices within different approaches: (i) a full quantum transport model based on nonequilibrium Green functions, (ii) the semiclassical Boltzmann equation for electrons in a miniband, and (iii) Boltzmann...
A stochastic method of solution of the Parker transport equation
Wawrzynczak, A; Gil, A
2015-01-01
We present the stochastic model of the galactic cosmic ray (GCR) particles transport in the heliosphere. Based on the solution of the Parker transport equation we developed models of the short-time variation of the GCR intensity, i.e. the Forbush decrease (Fd) and the 27-day variation of the GCR intensity. Parker transport equation being the Fokker-Planck type equation delineates non-stationary transport of charged particles in the turbulent medium. The presented approach of the numerical solution is grounded on solving of the set of equivalent stochastic differential equations (SDEs). We demonstrate the method of deriving from Parker transport equation the corresponding SDEs in the heliocentric spherical coordinate system for the backward approach. Features indicative the preeminence of the backward approach over the forward is stressed. We compare the outcomes of the stochastic model of the Fd and 27-day variation of the GCR intensity with our former models established by the finite difference method. Both ...
Relay transport of relativistic flows in extreme magnetic fields of stars
Yao, W. P.; Qiao, B.; Xu, Z.; Zhang, H.; Chang, H. X.; Zhou, C. T.; Zhu, S. P.; Wang, X. G.; He, X. T.
2017-08-01
We find that the transport of relativistic flows in extreme magnetic fields can be achieved in a relay manner by considering the quantum electromagnetic cascade process, where photons play a key role as a medium. During the transport, the flow emits particle energy into photons via quantum synchrotron radiation, and then gains particles back by magnetic pair creation, forming a "particle-photon-particle" relay. Particle-in-cell simulations demonstrate that forward transport of the flow density is realized by a self-replenishment process with photon-pair cascades, while that of the flow energy is accomplished due to a new coupling path through radiation of photons. This novel transport mechanism is closely associated with jet generation and disk accretion around the neutron star of X-Ray Binaries, offering a potential explanation for the powerful jets observed there.
Non-Newtonian Properties of Relativistic Fluids
Koide, Tomoi
2010-01-01
We show that relativistic fluids behave as non-Newtonian fluids. First, we discuss the problem of acausal propagation in the diffusion equation and introduce the modified Maxwell-Cattaneo-Vernotte (MCV) equation. By using the modified MCV equation, we obtain the causal dissipative relativistic (CDR) fluid dynamics, where unphysical propagation with infinite velocity does not exist. We further show that the problems of the violation of causality and instability are intimately related, and the relativistic Navier-Stokes equation is inadequate as the theory of relativistic fluids. Finally, the new microscopic formula to calculate the transport coefficients of the CDR fluid dynamics is discussed. The result of the microscopic formula is consistent with that of the Boltzmann equation, i.e., Grad's moment method.
Pathak, Himadri; Sasmal, Sudip; Nayak, Malaya K.; Vaval, Nayana; Pal, Sourav
2016-08-01
The open-shell reference relativistic equation-of-motion coupled-cluster method within its four-component description is successfully implemented with the consideration of single- and double- excitation approximations using the Dirac-Coulomb Hamiltonian. At the first attempt, the implemented method is employed to calculate ionization potential value of heavy atomic (Ag, Cs, Au, Fr, and Lr) and molecular (HgH and PbF) systems, where the effect of relativity does really matter to obtain highly accurate results. Not only the relativistic effect but also the effect of electron correlation is crucial in these heavy atomic and molecular systems. To justify the fact, we have taken two further approximations in the four-component relativistic equation-of-motion framework to quantify how the effect of electron correlation plays a role in the calculated values at different levels of theory. All these calculated results are compared with the available experimental data as well as with other theoretically calculated values to judge the extent of accuracy obtained in our calculations.
Chavanis, Pierre-Henri
2014-01-01
Because of their superfluid properties, some compact astrophysical objects such as neutron stars may contain a significant part of their matter in the form of a Bose-Einstein condensate (BEC). We consider a partially-relativistic model of self-gravitating BECs where the relation between the pressure and the rest-mass density is assumed to be quadratic (as in the case of classical BECs) but pressure effects are taken into account in the relation between the energy density and the rest-mass density. At high densities, we get a stiff equation of state similar to the one considered by Zel'dovich (1961) in the context of baryon stars in which the baryons interact through a vector meson field. We determine the maximum mass of general relativistic BEC stars described by this equation of state by using the formalism of Tooper (1965). This maximum mass is slightly larger than the maximum mass obtained by Chavanis and Harko (2012) using a fully-relativistic model. We also consider the possibility that dark matter is ma...
Discontinuous Galerkin for the Radiative Transport Equation
Guermond, Jean-Luc
2013-10-11
This note presents some recent results regarding the approximation of the linear radiative transfer equation using discontinuous Galerkin methods. The locking effect occurring in the diffusion limit with the upwind numerical flux is investigated and a correction technique is proposed.
M. G. Hafez
2016-01-01
Full Text Available Two-dimensional three-component plasma system consisting of nonextensive electrons, positrons, and relativistic thermal ions is considered. The well-known Kadomtsev-Petviashvili-Burgers and Kadomtsev-Petviashvili equations are derived to study the basic characteristics of small but finite amplitude ion acoustic waves of the plasmas by using the reductive perturbation method. The influences of positron concentration, electron-positron and ion-electron temperature ratios, strength of electron and positrons nonextensivity, and relativistic streaming factor on the propagation of ion acoustic waves in the plasmas are investigated. It is revealed that the electrostatic compressive and rarefactive ion acoustic waves are obtained for superthermal electrons and positrons, but only compressive ion acoustic waves are found and the potential profiles become steeper in case of subthermal positrons and electrons.
Stahl, A.; Landreman, M.; Embréus, O.; Fülöp, T.
2017-03-01
Energetic electrons are of interest in many types of plasmas, however previous modeling of their properties has been restricted to the use of linear Fokker-Planck collision operators or non-relativistic formulations. Here, we describe a fully non-linear kinetic-equation solver, capable of handling large electric-field strengths (compared to the Dreicer field) and relativistic temperatures. This tool allows modeling of the momentum-space dynamics of the electrons in cases where strong departures from Maxwellian distributions may arise. As an example, we consider electron runaway in magnetic-confinement fusion plasmas and describe a transition to electron slide-away at field strengths significantly lower than previously predicted.
Stahl, A; Embréus, O; Fülöp, T
2016-01-01
Energetic electrons are of interest in many types of plasmas, however previous modelling of their properties have been restricted to the use of linear Fokker-Planck collision operators or non-relativistic formulations. Here, we describe a fully non-linear kinetic-equation solver, capable of handling large electric-field strengths (compared to the Dreicer field) and relativistic temperatures. This tool allows modelling of the momentum-space dynamics of the electrons in cases where strong departures from Maxwellian distributions may arise. As an example, we consider electron runaway in magnetic-confinement fusion plasmas and describe a transition to electron slide-away at field strengths significantly lower than previously predicted.
Maezawa, Yu; Hatsuda, Tetsuo; Koide, Tomoi
2010-01-01
Transport coefficients of causal dissipative relativistic fluid dynamics (CDR) are studied in quenched lattice simulations. CDR describes the behavior of relativistic non-Newtonian fluids in which the relaxation time appears as a new transport coefficient besides the shear and bulk viscosities. It was recently shown that these coefficients can be given by the temporal-correlation functions of the energy-momentum tensors as in the case of the Green-Kubo-Nakano formula. By using the new formula in CDR, we study the transport coefficients with lattice simulations in pure SU(3) gauge theory. After defining the energy-momentum tensor on the lattice, we extract a ratio of the shear viscosity to the relaxation time which is given only in terms of the static correlation functions. The simulations are performed on $24^3 \\times 4$--16 lattices with $\\beta_{_{\\rm LAT}} = 6.0$, which corresponds to the temperature range of $0.5 \\simle T/T_c \\simle 1.8$, where $T_c$ is the critical temperature.
Three-Dimensional PIC-MC Modeling for Relativistic Electron Beam Transport Through Dense Plasma
CAO Lihua; CHANG Tieqiang; PEI Wenbing; LIU Zhanjun; LI Meng; ZHENG Chunyang
2008-01-01
We have developed a three dimensional (3D) PIC (particle-in-cell)-MC (Monte Carlo) code in order to simulate an electron beam transported into the dense matter based on our previous two dimensional code. The relativistic motion of fast electrons is treated by the particle-in-cell method under the influence of both a self-generated transverse magnetic field and an axial electric field, as well as collisions. The electric field generated by return current is ex-pressed by Ohm's law and the magnetic field is calculated from Faraday's law. The slowing down of monoenergy electrons in DT plasma is calculated and discussed.
Blaizot, Jean-Paul; McLerran, Larry
2013-01-01
In this paper, we study the evolution of a dense system of gluons, such as those produced in the early stages of ultra-relativistic heavy ion collisions. We describe the approach to thermal equilibrium using the small angle approximation for gluon scattering in a Boltzmann equation that includes the effects of Bose statistics. In the present study we ignore the effect of the longitudinal expansion, i.e., we restrict ourselves to spatially uniform systems, with spherically symmetric momentum distributions. Furthermore we take into account only elastic scattering, i.e., we neglect inelastic, number changing, processes. We solve the transport equation for various initial conditions that correspond to small or large initial gluon phase-space densities. For a small initial phase-space density, the system evolves towards thermal equilibrium, as expected. For a large enough initial phase-space density the equilibrium state contains a Bose condensate. We present numerical evidence that such over-populated systems rea...
Compressible turbulence transport equations for generalized second order closure
Cloutman, L D
1999-05-01
Progress on the theory of second order closure in turbulence models of various types requires knowledge of the transport equations for various turbulence correlations. This report documents a procedure that provides such equations for a wide variety of turbulence averages for compressible flows of a multicomponent fluid. Generalizing some work by Germano for incompressible flows, we introduce an appropriate extension of his generalized second order correlations and use a generalized mass-weighted averaging procedure to derive transport equations for the correlations. The averaging procedure includes all of the commonly used averages as special cases. The resulting equations provide an internally consistent starting point for future work in developing single-point statistical turbulence transport models for fluid flows. The form invariance of the in-compressible equations also holds for the compressible case, and we discuss some of the closure issues and frequently ignored complications of statistical turbulence models of compressible flows.
UPWIND DISCONTINUOUS GALERKIN METHODS FOR TWO DIMENSIONAL NEUTRON TRANSPORT EQUATIONS
袁光伟; 沈智军; 闫伟
2003-01-01
In this paper the upwind discontinuous Galerkin methods with triangle meshes for two dimensional neutron transport equations will be studied.The stability for both of the semi-discrete and full-discrete method will be proved.
Development of interfacial area transport equation - modeling and experimental benchmark
Ishii, M. [Purdue Univ., West Lafayette, Indiana (United States)
2011-07-01
A dynamic treatment of interfacial area concentration has been studied over the last decade by employing the interfacial area transport equation. When coupled with the two-fluid model, the interfacial area transport equation replaces the flow regime dependent correlations for interfacial area concentration and eliminates potential artificial bifurcation or numerical oscillations stemming from these static correlations. An extensive database has been established to evaluate the model under various two-phase flow conditions. These include adiabatic and heated conditions, vertical and horizontal flow orientations, round, rectangular, annulus and 8×8 rod bundle channel geometries, and normal-gravity and simulated reduced-gravity conditions. This paper reviews the current state-of-the-art in the development of the interfacial area transport equation, available experimental databases and 1D and 3D benchmarking work of the interfacial area transport equation. (author)
SPECTRAL FINITE ELEMENT METHOD FOR A UNSTEADY TRANSPORT EQUATION
MeiLiquan
1999-01-01
In this paper,a new numerical method,the coupling method of spherical harmonic function spectral and finite elements,for a unsteady transport equation is dlscussed,and the error analysis of this scheme is proved.
STABILITY OF P2 METHODS FOR NEUTRON TRANSPORT EQUATIONS
袁光伟; 沈智军; 沈隆钧; 周毓麟
2002-01-01
In this paper the P2 approximation to the one-group planar neutron transport theory is discussed. The stability of the solutions for P2 equations with general boundary conditions, including the Marshak boundary condition, is proved. Moreover,the stability of the up-wind difference scheme for the P2 equation is demonstrated.
Saturation effects in QCD from linear transport equation
Kutak, Krzysztof
2010-01-01
We show that the GBW saturation model provides an exact solution to the one-dimensional linear transport equation. We also show that it is motivated by the BK equation considered in the saturated regime when the diffusion and the splitting term in the diffusive approximation are balanced by the nonlinear term.
Onsager's-principle-consistent 13-moment transport equations.
Singh, Narendra; Agrawal, Amit
2016-06-01
A new set of generalized transport equations is derived for higher-order moments which are generated in evolution equation for stress tensor and heat flux vector in 13-moment equations. The closure we employ satisfies Onsager's symmetry principle. In the derivation, we do not employ a phase density function based on Hermite polynomial series in terms of higher-order moments, unlike Grad's approach. The distribution function is rather chosen to satisfy collision invariance, and H-theorem and capture relatively strong deviations from equilibrium. The phase density function satisfies the linearized Boltzmann equation and provides the correct value of the Prandtl number for monatomic gas. The derived equations are compared with Grad's 13-moments equations for gas modeled as Maxwellian molecule. The merits of the proposed equations against Grad's and R13 equations are discussed. In particular, it is noted that the proposed equations contain higher-order terms compared to these equations but require a fewer number of boundary conditions as compared to the R13 equations. The Knudsen number envelope which can be covered to describe flows with these equations is therefore expected to be larger as compared to the earlier equations.
Bargmann-Michel-Telegdi equation and one-particle relativistic approach
Della Selva, A; Masperi, L
1995-01-01
A reexamination of the semiclassical approach of the relativistic electron indicates a possible variation of its helicity for electric and magnetic static fields applied along its global motion due to zitterbewegung effects, proportional to the anomalous part of the magnetic moment.
Macroscopic heat transport equations and heat waves in nonequilibrium states
Guo, Yangyu; Jou, David; Wang, Moran
2017-03-01
Heat transport may behave as wave propagation when the time scale of processes decreases to be comparable to or smaller than the relaxation time of heat carriers. In this work, a generalized heat transport equation including nonlinear, nonlocal and relaxation terms is proposed, which sums up the Cattaneo-Vernotte, dual-phase-lag and phonon hydrodynamic models as special cases. In the frame of this equation, the heat wave propagations are investigated systematically in nonequilibrium steady states, which were usually studied around equilibrium states. The phase (or front) speed of heat waves is obtained through a perturbation solution to the heat differential equation, and found to be intimately related to the nonlinear and nonlocal terms. Thus, potential heat wave experiments in nonequilibrium states are devised to measure the coefficients in the generalized equation, which may throw light on understanding the physical mechanisms and macroscopic modeling of nanoscale heat transport.
Le Bourdiec, S
2007-03-15
Artificial satellites operate in an hostile radiation environment, the Van Allen radiation belts, which partly condition their reliability and their lifespan. In order to protect them, it is necessary to characterize the dynamics of the energetic electrons trapped in these radiation belts. This dynamics is essentially determined by the interactions between the energetic electrons and the existing electromagnetic waves. This work consisted in designing a numerical scheme to solve the equations modelling these interactions: the relativistic Vlasov-Maxwell system of equations. Our choice was directed towards methods of direct integration. We propose three new spectral methods for the momentum discretization: a Galerkin method and two collocation methods. All of them are based on scaled Hermite functions. The scaling factor is chosen in order to obtain the proper velocity resolution. We present in this thesis the discretization of the one-dimensional Vlasov-Poisson system and the numerical results obtained. Then we study the possible extensions of the methods to the complete relativistic problem. In order to reduce the computing time, parallelization and optimization of the algorithms were carried out. Finally, we present 1Dx-3Dv (mono-dimensional for x and three-dimensional for velocity) computations of Weibel and whistler instabilities with one or two electrons species. (author)
Volume transport and generalized hydrodynamic equations for monatomic fluids.
Eu, Byung Chan
2008-10-01
In this paper, the effects of volume transport on the generalized hydrodynamic equations for a pure simple fluid are examined from the standpoint of statistical mechanics and, in particular, kinetic theory of fluids. First, we derive the generalized hydrodynamic equations, namely, the constitutive equations for the stress tensor and heat flux for a single-component monatomic fluid, from the generalized Boltzmann equation in the presence of volume transport. Then their linear steady-state solutions are derived and examined with regard to the effects of volume transport on them. The generalized hydrodynamic equations and linear constitutive relations obtained for nonconserved variables make it possible to assess Brenner's proposition [Physica A 349, 11 (2005); Physica A 349, 60 (2005)] for volume transport and attendant mass and volume velocities as well as the effects of volume transport on the Newtonian law of viscosity, compression/dilatation (bulk viscosity) phenomena, and Fourier's law of heat conduction. On the basis of study made, it is concluded that the notion of volume transport is sufficiently significant to retain in irreversible thermodynamics of fluids and fluid mechanics.
Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.
2016-08-01
We compute analytically the masses, binding energies and hamiltonians of gravitationally bound Bohr-type states via the rotating relativistic lepton model which utilizes the de Broglie wavelength equation in conjunction with special relativity and Newton's relativistic gravitational law. The latter uses the inertial-gravitational masses, rather than the rest masses, of the rotating particles. The model also accounts for the electrostatic charge- induced dipole interactions between a central charged lepton, which is usually a positron, with the rotating relativistic lepton ring. We use three rotating relativistic neutrinos to model baryons, two rotating relativistic neutrinos to model mesons, and a rotating relativistic electron neutrino - positron (or electron) pair to model the W± bosons. It is found that gravitationally bound ground states comprising three relativistic neutrinos have masses in the baryon mass range (∼⃒ 0.9 to 1 GeV/c2), while ground states comprising two neutrinos have masses in the meson mass range (∼⃒ 0.4 to 0.8 GeV/c2). It is also found that the rest mass values of quarks are in good agreement with the heaviest neutrino mass value of 0.05 eV/c2 and that the mass of W± bosons (∼⃒ 81 GeV/c2) corresponds to the mass of a rotating gravitationally confined e± — ve pair. A generalized expression is also derived for the gravitational potential energy of such relativistic Bohr-type structures.
Wu, Kailiang; Tang, Huazhong
2017-01-01
The ideal gas equation of state (EOS) with a constant adiabatic index is a poor approximation for most relativistic astrophysical flows, although it is commonly used in relativistic hydrodynamics (RHD). This paper develops high-order accurate, physical-constraints-preserving (PCP), central, discontinuous Galerkin (DG) methods for the one- and two-dimensional special RHD equations with a general EOS. It is built on our theoretical analysis of the admissible states for RHD and the PCP limiting procedure that enforce the admissibility of central DG solutions. The convexity, scaling invariance, orthogonal invariance, and Lax–Friedrichs splitting property of the admissible state set are first proved with the aid of its equivalent form. Then, the high-order central DG methods with the PCP limiting procedure and strong stability-preserving time discretization are proved, to preserve the positivity of the density, pressure, specific internal energy, and the bound of the fluid velocity, maintain high-order accuracy, and be L1-stable. The accuracy, robustness, and effectiveness of the proposed methods are demonstrated by several 1D and 2D numerical examples involving large Lorentz factor, strong discontinuities, or low density/pressure, etc.
Inversion of Source and Transport Parameters of Relativistic SEPs from Neutron Monitor Data
Agueda, Neus; Bütikofer, Rolf; Vainio, Rami; Heber, Bernd; Afanasiev, Alexander; Malandraki, Olga E.
2016-04-01
We present a new methodology to study the release processes of relativistic solar energetic particles (SEPs) based on the direct inversion of Ground Level Enhancements (GLEs) observed by the worldwide network of neutron monitors (NMs). The new approach makes use of several models, including: the propagation of relativistic SEPs from the Sun to the Earth, their transport in the Earth's magnetosphere and atmosphere, as well as the detection of the nucleon component of the secondary cosmic rays by ground based NMs. The combination of these models allows us to compute the expected ground-level NM counting rates for a series of instantaneous releases from the Sun. The amplitudes of the source components are then inferred by fitting the NM observations with the modeled NM counting rate increases. Within the HESPERIA project, we will develop the first software package for the direct inversion of GLEs and we will make it freely available for the solar and heliospheric communities. Acknowledgement: This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324.
Itoh, Y
2004-01-01
An equation of motion for relativistic compact binaries is derived through the third post-Newtonian (3 PN) approximation of general relativity. The strong field point particle limit and multipole expansion of the stars are used to solve iteratively the harmonically relaxed Einstein equations. We take into account the Lorentz contraction on the multipole moments defined in our previous works. We then derive a 3 PN acceleration of the binary orbital motion of the two spherical compact stars based on a surface integral approach which is a direct consequence of local energy momentum conservation. Our resulting equation of motion admits a conserved energy (neglecting the 2.5 PN radiation reaction effect), is Lorentz invariant and is unambiguous: there exist no undetermined parameter reported in the previous works. We shall show that our 3 PN equation of motion agrees physically with the Blanchet and Faye 3 PN equation of motion if $\\lambda = - 1987/3080$, where $\\lambda$ is the parameter which is undetermined with...
Development of a relativistic Particle In Cell code PARTDYN for linear accelerator beam transport
Phadte, D.; Patidar, C. B.; Pal, M. K.
2017-04-01
A relativistic Particle In Cell (PIC) code PARTDYN is developed for the beam dynamics simulation of z-continuous and bunched beams. The code is implemented in MATLAB using its MEX functionality which allows both ease of development as well higher performance similar to a compiled language like C. The beam dynamics calculations carried out by the code are compared with analytical results and with other well developed codes like PARMELA and BEAMPATH. The effect of finite number of simulation particles on the emittance growth of intense beams has been studied. Corrections to the RF cavity field expressions were incorporated in the code so that the fields could be calculated correctly. The deviations of the beam dynamics results between PARTDYN and BEAMPATH for a cavity driven in zero-mode have been discussed. The beam dynamics studies of the Low Energy Beam Transport (LEBT) using PARTDYN have been presented.
Thermodynamic framework for a generalized heat transport equation
Guo Yangyu
2016-06-01
Full Text Available In this paper, a generalized heat transport equation including relaxational, nonlocal and nonlinear effects is provided, which contains diverse previous phenomenological models as particular cases. The aim of the present work is to establish an extended irreversible thermodynamic framework, with generalized expressions of entropy and entropy flux. Nonlinear thermodynamic force-flux relation is proposed as an extension of the usual linear one, giving rise to the nonlinear terms in the heat transport equation and ensuring compatibility with the second law. Several previous results are recovered in the linear case, and some additional results related to nonlinear terms are also obtained.
Properties of an affine transport equation and its holonomy
Vines, Justin; Nichols, David A.
2016-10-01
An affine transport equation was used recently to study properties of angular momentum and gravitational-wave memory effects in general relativity. In this paper, we investigate local properties of this transport equation in greater detail. Associated with this transport equation is a map between the tangent spaces at two points on a curve. This map consists of a homogeneous (linear) part given by the parallel transport map along the curve plus an inhomogeneous part, which is related to the development of a curve in a manifold into an affine tangent space. For closed curves, the affine transport equation defines a "generalized holonomy" that takes the form of an affine map on the tangent space. We explore the local properties of this generalized holonomy by using covariant bitensor methods to compute the generalized holonomy around geodesic polygon loops. We focus on triangles and "parallelogramoids" with sides formed from geodesic segments. For small loops, we recover the well-known result for the leading-order linear holonomy (˜ Riemann × area), and we derive the leading-order inhomogeneous part of the generalized holonomy (˜ Riemann × area^{3/2}). Our bitensor methods let us naturally compute higher-order corrections to these leading results. These corrections reveal the form of the finite-size effects that enter into the holonomy for larger loops; they could also provide quantitative errors on the leading-order results for finite loops.
Relativistic diffusive motion in random electromagnetic fields
Haba, Z, E-mail: zhab@ift.uni.wroc.pl [Institute of Theoretical Physics, University of Wroclaw, 50-204 Wroclaw, Plac Maxa Borna 9 (Poland)
2011-08-19
We show that the relativistic dynamics in a Gaussian random electromagnetic field can be approximated by the relativistic diffusion of Schay and Dudley. Lorentz invariant dynamics in the proper time leads to the diffusion in the proper time. The dynamics in the laboratory time gives the diffusive transport equation corresponding to the Juettner equilibrium at the inverse temperature {beta}{sup -1} = mc{sup 2}. The diffusion constant is expressed by the field strength correlation function (Kubo's formula).
The numerical solution of the vorticity transport equation
Dennis, S C R
1973-01-01
A method of approximating the two-dimensional vorticity transport equation in which the matrix associated with the difference equations is diagonally dominant and the truncation error is the same as that of the fully central-difference approximation, is discussed. An example from boundary layer theory is given by calculating the viscous stagnation point flow at the nose of a cylinder. Some new solutions of the Navier-Stokes equations are obtained for symmetrical flow past a flat plate of finite length. (16 refs).
Bazow, D.; Denicol, G. S.; Heinz, U.; Martinez, M.; Noronha, J.
2016-12-01
The dissipative dynamics of an expanding massless gas with constant cross section in a spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) universe is studied. The mathematical problem of solving the full nonlinear relativistic Boltzmann equation is recast into an infinite set of nonlinear ordinary differential equations for the moments of the one-particle distribution function. Momentum-space resolution is determined by the number of nonhydrodynamic modes included in the moment hierarchy, i.e., by the truncation order. We show that in the FLRW spacetime the nonhydrodynamic modes decouple completely from the hydrodynamic degrees of freedom. This results in the system flowing as an ideal fluid while at the same time producing entropy. The solutions to the nonlinear Boltzmann equation exhibit transient tails of the distribution function with nontrivial momentum dependence. The evolution of this tail is not correctly captured by the relaxation time approximation nor by the linearized Boltzmann equation. However, the latter probes additional high-momentum details unresolved by the relaxation time approximation. While the expansion of the FLRW spacetime is slow enough for the system to move towards (and not away from) local thermal equilibrium, it is not sufficiently slow for the system to actually ever reach complete local equilibrium. Equilibration is fastest in the relaxation time approximation, followed, in turn, by kinetic evolution with a linearized and a fully nonlinear Boltzmann collision term.
Unitary representations of the Poincaré group and relativistic wave equations
Ohnuki, Yoshio
1976-01-01
This book is devoted to an extensive and systematic study on unitary representations of the Poincaré group. The Poincaré group plays an important role in understanding the relativistic picture of particles in quantum mechanics. Complete knowledge of every free particle states and their behaviour can be obtained once all the unitary irreducible representations of the Poincaré group are found. It is a surprising fact that a simple framework such as the Poincaré group, when unified with quantum theory, fixes our possible picture of particles severely and without exception. In this connection, the
Effect of the plasma-generated magnetic field on relativistic electron transport.
Nicolaï, Ph; Feugeas, J-L; Regan, C; Olazabal-Loumé, M; Breil, J; Dubroca, B; Morreeuw, J-P; Tikhonchuk, V
2011-07-01
In the fast-ignition scheme, relativistic electrons transport energy from the laser deposition zone to the dense part of the target where the fusion reactions can be ignited. The magnetic fields and electron collisions play an important role in the collimation or defocusing of this electron beam. Detailed description of these effects requires large-scale kinetic calculations and is limited to short time intervals. In this paper, a reduced kinetic model of fast electron transport coupled to the radiation hydrodynamic code is presented. It opens the possibility to carry on hybrid simulations in a time scale of tens of picoseconds or more. It is shown with this code that plasma-generated magnetic fields induced by noncollinear temperature and density gradients may strongly modify electron transport in a time scale of a few picoseconds. These fields tend to defocus the electron beam, reducing the coupling efficiency to the target. This effect, that was not seen before in shorter time simulations, has to be accounted for in any ignition design using electrons as a driver.
Krauland, C. M.; Wei, M.; Zhang, S.; Santos, J.; Nicolai, P.; Theobald, W.; Kim, J.; Forestier-Colleoni, P.; Beg, F.
2016-10-01
Understanding the transport physics of a relativistic electron beam in various plasma regimes is crucial for many high-energy-density applications, such as fast heating for advanced ICF schemes and ion sources. Most short pulse laser-matter interaction experiments for transport studies have been performed with initially cold targets where the resistivity is far from that in warm dense plasmas. We present three experiments that have been performed on OMEGA EP in order to extend fast electron transport and energy coupling studies in pre-assembled plasmas from different carbon samples. Each experiment has used one 4 ns long pulse UV beam (1014 W/cm2) to drive a shockwave through the target and a 10 ps IR beam (1019 W/cm2) to create an electron beam moving opposite the shock propagation direction. These shots were compared with initially cold target shots without the UV beam. We fielded three different samples including 340 mg/cc CRF foam, vitreous carbon at 1.4 g/cc, and high density carbon at 3.4 g/cc. Electrons were diagnosed via x-ray fluorescence measurements from a buried Cu tracer in the target, as well as bremsstrahlung emission and escaped electrons reaching an electron spectrometer. Proton radiograph was also performed in the foam shots. Details of each experiment, available data and particle-in-cell simulations will be presented. This work is supported by US DOE NLUF Program, Grant Number DE-NA0002728.
Meliani, Z; Giacomazzo, B
2008-01-01
The deceleration mechanisms for relativistic jets in active galactic nuclei remain an open question, and in this paper we propose a model which could explain sudden jet deceleration, invoking density discontinuities. This is particularly motivated by recent indications from HYMORS. Exploiting high resolution, numerical simulations, we demonstrate that for both high and low energy jets, always at high Lorentz factor, a transition to a higher density environment can cause a significant fraction of the directed jet energy to be lost on reflection. This can explain how one-sided jet deceleration and a transition to FR I type can occur in HYMORS, which start as FR II (and remain so on the other side). For that purpose, we implemented in the relativistic hydrodynamic grid-adaptive AMRVAC code, the Synge-type equation of state introduced in the general polytropic case by Meliani et al. (2004). We present results for 10 model computations, varying the inlet Lorentz factor from 10 to 20, including uniform or decreasin...
Nonlinear relativistic and quantum equations with a common type of solution.
Nobre, F D; Rego-Monteiro, M A; Tsallis, C
2011-04-08
Generalizations of the three main equations of quantum physics, namely, the Schrödinger, Klein-Gordon, and Dirac equations, are proposed. Nonlinear terms, characterized by exponents depending on an index q, are considered in such a way that the standard linear equations are recovered in the limit q→1. Interestingly, these equations present a common, solitonlike, traveling solution, which is written in terms of the q-exponential function that naturally emerges within nonextensive statistical mechanics. In all cases, the well-known Einstein energy-momentum relation is preserved for arbitrary values of q.
Transport modelling in coastal waters using stochastic differential equations
Charles, W.M.
2007-01-01
In this thesis, the particle model that takes into account the short term correlation behaviour of pollutants dispersion has been developed. An efficient particle model for sediment transport has been developed. We have modified the existing particle model by adding extra equations for the suspensio
Numerical Solution of the Equation of Electron Transport in Matter
Golovin, A I
2002-01-01
One introduces a numerical approach to solve equation of fast electron transport in a matter in plane and spherical geometry with regard to fluctuations of energy losses and generation of secondary electrons. Calculation results are shown to be in line with the experimental data. One compared the introduced approach with the method of moments
Wang, Chi-Jen [Iowa State Univ., Ames, IA (United States)
2013-01-01
In this thesis, we analyze both the spatiotemporal behavior of: (A) non-linear “reaction” models utilizing (discrete) reaction-diffusion equations; and (B) spatial transport problems on surfaces and in nanopores utilizing the relevant (continuum) diffusion or Fokker-Planck equations. Thus, there are some common themes in these studies, as they all involve partial differential equations or their discrete analogues which incorporate a description of diffusion-type processes. However, there are also some qualitative differences, as shall be discussed below.
MSSM electroweak baryogenesis and flavour mixing in transport equations
Konstandin, Thomas [Institut fuer Theoretische Physik, Heidelberg University, Philosophenweg 16, D-69120 Heidelberg (Germany)]. E-mail: t.konstandin@thphys.uni-heidelberg.de; Prokopec, Tomislav [Institute for Theoretical Physics (ITF) and Spinoza Institute, Utrecht University, Leuvenlaan 4, Postbus 80.195, 3508 TD Utrecht (Netherlands)]. E-mail: t.prokopec@phys.uu.nl; Schmidt, Michael G. [Institut fuer Theoretische Physik, Heidelberg University, Philosophenweg 16, D-69120 Heidelberg (Germany)]. E-mail: m.g.schmidt@thphys.uni-heidelberg.de; Seco, Marcos [Institut fuer Theoretische Physik, Heidelberg University, Philosophenweg 16, D-69120 Heidelberg (Germany)]. E-mail: m.seco@thphys.uni-heidelberg.de
2006-03-20
We make use of the formalism of [T. Konstandin, et al., hep-ph/0410135], and calculate the chargino-mediated baryogenesis in the Minimal Supersymmetric Standard Model. The formalism makes use of a gradient expansion of the Kadanoff-Baym equations for mixing fermions. For illustrative purposes, we first discuss the semiclassical transport equations for mixing bosons in a space-time-dependent Higgs background. To calculate the baryon asymmetry, we solve a standard set of diffusion equations, according to which the chargino asymmetry is transported to the top sector, where it biases sphaleron transitions. At the end we make a qualitative and quantitative comparison of our results with the existing work. We find that the production of the baryon asymmetry of the universe by CP-violating currents in the chargino sector is strongly constrained by measurements of electric dipole moments.
Transport equations for a general class of evolution equations with random perturbations
Guo, Maozheng; Wang, Xiao-Ping
1999-10-01
We derive transport equations from a general class of equations of form iut=H(X,D)u+V(X,D)u where H(X,D) and V(X,D) are pseudodifferential operators (Weyl operator) with symbols H(x,k) and V(x,k), where H(x,k) being polynomial in k and smooth in x,V(x,k) is a mean zero random function and is stationary in space variable. We also consider system of equations in the above form. Such equations cover many of the equations that arise in wave propagations, such as those considered in a paper by Ryzhik, Papanicolaou, and Keller [Wave Motion 24, 327-370 (1996)]. Our results generalize those by Ryzhik, Papanicolau, and Keller.
Potekhin, A Yu
2000-01-01
The analytic equation of state of nonideal Coulomb plasmas consisting of pointlike ions immersed in a polarizable electron background (physics/9807042) is improved, and its applicability range is considerably extended. First, the fit of the electron screening contribution in the free energy of the Coulomb liquid is refined at high densities where the electrons are relativistic. Second, we calculate the screening contribution for the Coulomb solid (bcc and fcc) and derive an analytic fitting expression. Third, we propose a simple approximation to the internal and free energy of the liquid one-component plasma of ions, accurate within the numerical errors of the most recent Monte Carlo simulations. We obtain an updated value of the coupling parameter at the solid-liquid phase transition for the one-component plasma: Gamma_m = 175.0 (+/- 0.4).
Diffusion equation and spin drag in spin-polarized transport
Flensberg, Karsten; Jensen, Thomas Stibius; Mortensen, Asger
2001-01-01
We study the role of electron-electron interactions for spin-polarized transport using the Boltzmann equation, and derive a set of coupled transport equations. For spin-polarized transport the electron-electron interactions are important, because they tend to equilibrate the momentum of the two-spin...... species. This "spin drag" effect enhances the resistivity of the system. The enhancement is stronger the lower the dimension is, and should be measurable in, for example, a two-dimensional electron gas with ferromagnetic contacts. We also include spin-flip scattering, which has two effects......: it equilibrates the spin density imbalance and, provided it has a non-s-wave component, also a current imbalance....
Gholibeigian, Hassan; Amirshahkarami, Abdolazim; Gholibeigian, Kazem
2017-01-01
In special relativity theory, time dilates in velocity of near light speed. Also based on ``Substantial motion'' theory of Sadra, relative time (time flux); R = f (mv , σ , τ) , for each atom is momentum of its involved fundamental particles, which is different from the other atoms. In this way, for modification of the relativistic classical equation of string theory and getting more precise results, we should use effect of dilation and contraction of time in equation. So we propose to add two derivatives of the time's flux to the equation as follows: n.tp∂/R ∂ τ +∂2Xμ/(σ , τ) ∂τ2 = n .tp (∂/R ∂ σ ) +c2∂2Xμ/(σ , τ) ∂σ2 In which, Xμ is space-time coordinates of the string, σ & τ are coordinates on the string world sheet, respectively space and time along the string, string's mass m , velocity of string's motion v , factor n depends on geometry of each hidden extra dimension which relates to its own flux time, and tp is Planck's time. AmirKabir University of Technology, Tehran, Iran.
Haba, Z
2009-02-01
We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.
Relativistic equation of state at subnuclear densities in the Thomas-Fermi approximation
Zhang, Z W
2014-01-01
We study the non-uniform nuclear matter using the self-consistent Thomas--Fermi approximation with a relativistic mean-field model. The non-uniform matter is assumed to be composed of a lattice of heavy nuclei surrounded by dripped nucleons. At each temperature $T$, proton fraction $Y_p$, and baryon mass density $\\rho_B$, we determine the thermodynamically favored state by minimizing the free energy with respect to the radius of the Wigner--Seitz cell, while the nucleon distribution in the cell can be determined self-consistently in the Thomas--Fermi approximation. A detailed comparison is made between the present results and previous calculations in the Thomas--Fermi approximation with a parameterized nucleon distribution that has been adopted in the widely used Shen EOS.
Relativistic electron transport in wire and foil targets driven by intense short pulse lasers
Mason, R. J.; Stephens, R. B.; Wei, M.; Freeman, R. R.; Hill, J.; van Woerkom, L. D.
2006-10-01
We model intense laser driven electron transport in wires and foils with the new implicit hybrid code e-PLAS. We focus on background plasma heating for Fast Ignitor applications. The model tracks collisional relativistic PIC electrons undergoing scatter and drag in a background plasma of colliding cold electron and ion Eulerian fluids. Application to 10 μm diameter, 250 μm long, fully ionized carbon wires with an attached cone [Kodama et al. Nature 432 1005 (2004)], exposed to 1 ps, 10^19 W/cm^2 pulses in a 30 μm centered spot, directly calculates resistive Joule heating of the background electrons in the wire to 1.7 KeV. 150 MG magnetic fields arise at the wire surfaces corresponding to hot electron flow outside the wire and a return electron flow just within it. Shorter wires (25 μm) exhibit hot electron recycling. Preliminary simulations indicate that reduction of the cone to a 30 μm diameter nail head produces little change in these results. We also report on tapered wires, wires attached to foils, and the modifying effects of pre-plasma on electron transport into the foils.
Transport properties of the fluid produced at Relativistic Heavy-Ion Collider
Rajeev S Bhalerao
2010-08-01
It is by now well known that the relativistic heavy-ion collisions at RHIC, BNL have produced a strongly interacting fluid with remarkable properties, among them the lowest ever observed ratio of the coefficient of shear viscosity to entropy density. Arguments based on ideas from the string theory, in particular the AdS/CFT correspondence, led to the conjecture – now known to be violated – that there is an absolute lower limit 1/4 on the value of this ratio. Causal viscous hydrodynamics calculations together with the RHIC data have put an upper limit on this ratio, a small multiple of 1/4, in the relevant temperature regime. Less well-determined is the ratio of the coefficient of bulk viscosity to entropy density. These transport coefficients have also been studied non-perturbatively in the lattice QCD framework, and perturbatively in the limit of high-temperature QCD. Another interesting transport coefficient is the coefficient of diffusion which is also being studied in this context. In this paper some of these recent developments are reviewed and then the opportunities presented by the anticipated LHC data are discussed, for the general nuclear physics audience.
Fedon-Magnaud, C.
1994-01-01
The general ideas which are applied to introduce the resolution of the neutron transport equation in CRONOS code are given in this paper. They are: - the even parity formulation; - the symmetry boundary treatment; - an angle condensation acceleration. The first qualifying results are also presented. (author). 15 refs., 14 figs., 9 tab.
Relativistic particle transport in extragalactic jets: I. Coupling MHD and kinetic theory
Casse, F
2003-01-01
Multidimensional magneto-hydrodynamical (MHD) simulations coupled with stochastic differential equations (SDEs) adapted to test particle acceleration and transport in complex astrophysical flows are presented. The numerical scheme allows the investigation of shock acceleration, adiabatic and radiative losses as well as diffusive spatial transport in various diffusion regimes. The applicability of SDEs to astrophysics is first discussed in regards to the different regimes and the MHD code spatial resolution. The procedure is then applied to 2.5D MHD-SDE simulations of kilo-parsec scale extragalactic jets. The ability of SDE to reproduce analytical solutions of the diffusion-convection equation for electrons is tested through the incorporation of an increasing number of effects: shock acceleration, spatially dependent diffusion coefficients and synchrotron losses. The SDEs prove to be efficient in various shock configuration occurring in the inner jet during the development of the Kelvin-Helmholtz instability. ...
The Existence and Uniqueness Result for a Relativistic Nonlinear Schrödinger Equation
Yongkuan Cheng; Jun Yang
2014-01-01
We study the existence and uniqueness of positive solutions for a class of quasilinear elliptic equations. This model has been proposed in the self-channeling of a high-power ultrashort laser in matter.
Deriglazov, Alexei A
2015-01-01
MPTD-equations in the Lagrangian formulation correspond to the minimal interaction of spin with gravity. Due to the interaction, in the Lagrangian equations instead of the original metric $g$ emerges spin-dependent effective metric $G=g+h(S)$. So we need to decide, which of them the MPTD-particle sees as the space-time metric. We show that MPTD-equations, if considered with respect to original metric, have no physically admissible solutions: acceleration of the particle grows up to infinity as its speed approximates to the speed of light. If considered with respect to $G$, the theory is consistent. But the metric now depends on spin, so there is no unique space-time manifold for the Universe of spinning particles: each particle probes his own three-dimensional geometry. This can be improved by adding a non-minimal interaction, and gives the modified MPTD-equations with reasonable behavior within the original metric.
Kershaw-type transport equations for fermionic radiation
Banach, Zbigniew; Larecki, Wieslaw
2017-08-01
Besides the maximum entropy closure procedure, other procedures can be used to close the systems of spectral moment equations. In the case of classical and bosonic radiation, the closed-form analytic Kershaw-type and B-distribution closure procedures have been used. It is shown that the Kershaw-type closure procedure can also be applied to the spectral moment equations of fermionic radiation. First, a description of the Kershaw-type closure for the system consisting of an arbitrary number of one-dimensional moment equations is presented. Next, the Kershaw-type two-field and three-field transport equations for fermionic radiation are analyzed. In the first case, the independent variables are the energy density and the heat flux. The second case includes additionally the flux of the heat flux as an independent variable. The generalization of the former two-field case to three space dimensions is also presented. The fermionic Kershaw-type closures differ from those previously derived for classical and bosonic radiation. It is proved that the obtained one-dimensional systems of transport equations are strictly hyperbolic and causal. The fermionic Kershaw-type closure functions behave qualitatively in the same way as the fermionic maximum entropy closure functions, but attain different numerical values.
An anisotropic scattering treatment for the even parity transport equation
Akherraz, B. (Commissariat a l' Energie Atomique, DRN/DMT/SERMA/CEN Saclay, 91 - Gif-sur-Yvette (France)); Fedon-Magnaud, C. (Commissariat a l' Energie Atomique, DRN/DMT/SERMA/CEN Saclay, 91 - Gif-sur-Yvette (France)); Lautard, J.J. (Commissariat a l' Energie Atomique, DRN/DMT/SERMA/CEN Saclay, 91 - Gif-sur-Yvette (France))
1993-04-01
This work introduces an extension of the even-odd parity flux formulation to the treatment of anisotropic scattering with the finite element formulation. To keep a similar form to the even parity transport equation in the isotropic case, we define a 'direction-dependent cross section'. We have only two unkown functions (the even parity flux, and the direction dependent cross section), that are calculated via an iterative process. We consider the multigroup equation for the eigenvalue problem and we present some numerical tests to prove the effectiveness of this method. (orig.)
An anisotropic scattering treatment for the even parity transport equation
Akherraz, B.; Fedon-Magnaud, C.; Lautard, J.J.
1993-06-01
This work introduces an extension of the even-odd parity flux formulation to the treatment of anisotropic scattering with the finite element formulation. To keep a similar form to the even parity transport equation in the isotropic case, we define a `direction-dependent cross section`. We have only two unknown functions (the even parity flux, and the direction dependent cross section), that are calculated via an iterative process. We consider the multigroup equation for the eigenvalue problem and we present some numerical tests to prove the effectiveness of this method.
Seki, K.; Amano, T.; Saito, S.; Miyoshi, Y.; Matsumoto, Y.; Umeda, T.; Keika, K.; Miyashita, Y.
2014-12-01
Mechanism to cause drastic variation of the Earth's outer radiation belt is one of outstanding problems of the magnetospheric researches. While the radial diffusion of the electrons driven by ULF waves in Pc5 frequency range has been considered as one of the candidate mechanisms, it is pointed out that the radial transport of relativistic electrons by ULF waves is not necessarily reach the radial diffusion limit and collective motion of the outer belt electrons can exhibit large deviations from the radial diffusion [Ukhorskiy et al., JATSP, 2008]. Thus it is important to understand the form of radial transport of electrons under realistic ULF distribution in the inner magnetosphere. We have developed a physics-based model for the global dynamics of the ring current (GEMSIS-RC model). The GEMSIS-RC model is a self-consistent numerical simulation code solving the five-dimensional collisionless drift-kinetic equation for the ring-current ions in the inner-magnetosphere coupled with Maxwell equations [Amano et al., JGR, 2011]. We applied the GEMSIS-RC model for simulation of global distribution of ULF Pc5 waves. Comparison between runs with/without ring current ions show that the existence of hot ring current ions can deform the original sinusoidal waveforms. The deformation causes the energy cascade to higher frequency range (Pc4 and Pc3 ranges). The cascade is more pronounced in the high beta case. It is also shown that the existence of plasmapause strengthens ULFs outside the plasmapause and widens the MLT region where the E_r (toroidal) component is excited from initially-given E_phi (poloidal) component. In order to investigate the characteristics of radial transport of relativistic electrons, we then use the global magnetic and electric fields variation obtained by the GEMNIS-RC model as input field models for the test particle simulations of radiation belt electrons (GEMSIS-RB) [Saito et al., JGR, 2010]. The combination of GEMSIS-RC and RB models reproduced
The many facets of the (non relativistic) Nuclear Equation of State
Giuliani, G; Bonasera, A
2013-01-01
A nucleus is a quantum many body system made of strongly interacting Fermions, protons and neutrons (nucleons). This produces a rich Nuclear Equation of State whose knowledge is crucial to our understanding of the composition and evolution of celestial objects. The nuclear equation of state displays many different features; first neutrons and protons might be treated as identical particles or nucleons, but when the differences between protons and neutrons are spelled out, we can have completely different scenarios, just by changing slightly their interactions. At zero temperature and for neutron rich matter, a quantum liquid gas phase transition at low densities or a quark-gluon plasma at high densities might occur. Furthermore, the large binding energy of the $\\alpha$ particle, a Boson, might also open the possibility of studying a system made of a mixture of Bosons and Fermions, which adds to the open problems of the nuclear equation of state.
Point-particle effective field theory III: relativistic fermions and the Dirac equation
Burgess, C. P.; Hayman, Peter; Rummel, Markus; Zalavári, László
2017-09-01
We formulate point-particle effective field theory (PPEFT) for relativistic spin-half fermions interacting with a massive, charged finite-sized source using a first-quantized effective field theory for the heavy compact object and a second-quantized language for the lighter fermion with which it interacts. This description shows how to determine the near-source boundary condition for the Dirac field in terms of the relevant physical properties of the source, and reduces to the standard choices in the limit of a point source. Using a first-quantized effective description is appropriate when the compact object is sufficiently heavy, and is simpler than (though equivalent to) the effective theory that treats the compact source in a second-quantized way. As an application we use the PPEFT to parameterize the leading energy shift for the bound energy levels due to finite-sized source effects in a model-independent way, allowing these effects to be fit in precision measurements. Besides capturing finite-source-size effects, the PPEFT treatment also efficiently captures how other short-distance source interactions can shift bound-state energy levels, such as due to vacuum polarization (through the Uehling potential) or strong interactions for Coulomb bound states of hadrons, or any hypothetical new short-range forces sourced by nuclei.
Denicol, Gabriel S; Martinez, Mauricio; Noronha, Jorge; Strickland, Michael
2014-01-01
We present an exact solution to the Boltzmann equation which describes a system undergoing boost-invariant longitudinal and azimuthally symmetric radial expansion for arbitrary shear viscosity to entropy density ratio. This new solution is constructed by considering the conformal map between Minkowski space and the direct product of three dimensional de Sitter space with a line. The resulting solution respects SO(3)_q x SO(1,1) x Z_2 symmetry. We compare the exact kinetic solution with exact solutions of the corresponding macroscopic equations with the same symmetry that were obtained from the kinetic theory in ideal and second-order viscous hydrodynamic approximations.
Wang, Yahui; Yan, Liming; Ma, Yu
2017-06-01
Applications of the transient Boltzmann transport equation (BTE) have undergone much investigation, such as radiative heat transfer and neutron transport. This paper provides a lattice Boltzmann model to efficiently resolve the multidimensional transient BTE. For a higher angular resolution, enough transport directions are considered while the transient BTE in each direction is treated as a conservation law equation and solved independently. Both macroscopic equations recovered from a Chapman-Enskog expansion and simulated results of typical benchmark problems show not only the second-order accuracy but also the flexibility and applicability of the proposed lattice Boltzmann model. This approach may contribute a powerful technique for the parallel simulation of large-scale engineering and some alternative perspectives for solving the nonlinear transport problem further.
,
2016-01-01
With Einstein's inertial motion (free-falling and non-rotating relative to gyroscopes), geodesics for non-relativistic particles can intersect repeatedly, allowing one to compute the space-time curvature $R^{\\hat{0} \\hat{0}}$ exactly. Einstein's $R^{\\hat{0} \\hat{0}}$ for strong gravitational fields and for relativistic source-matter is identical with the Newtonian expression for the relative radial acceleration of neighboring free-falling test-particles, spherically averaged.--- Einstein's field equations follow from Newtonian experiments, local Lorentz-covariance, and energy-momentum conservation combined with the Bianchi identity.
Moment transport equations and their application to the perturbed universe
Sierra, Carlos A
2015-01-01
There are many inflationary models that allow the formation of the large-scale structure of the observable universe. The non-gaussianity parameter $f_{NL}$ is a useful tool to discriminate among these cosmological models when comparing the theoretical predictions with the satellite survey results like those from WMAP and Planck. The goal of this proceeding contribution is to review the moment transport equations methodology and the subsequent calculation of the $f_{NL}$ parameter.
Flavour Covariant Transport Equations: an Application to Resonant Leptogenesis
Dev, P S Bhupal; Pilaftsis, Apostolos; Teresi, Daniele
2014-01-01
We present a fully flavour-covariant formalism for transport phenomena, by deriving Markovian master equations that describe the time-evolution of particle number densities in a statistical ensemble with arbitrary flavour content. As an application of this general formalism, we study flavour effects in a scenario of resonant leptogenesis (RL) and obtain the flavour-covariant evolution equations for heavy-neutrino and lepton number densities. This provides a complete and unified description of RL, capturing three relevant physical phenomena: (i) the resonant mixing between the heavy-neutrino states, (ii) coherent oscillations between different heavy-neutrino flavours, and (iii) quantum decoherence effects in the charged-lepton sector. To illustrate the importance of this formalism, we numerically solve the flavour-covariant rate equations for a minimal RL model and show that the total lepton asymmetry can be enhanced up to one order of magnitude, as compared to that obtained from flavour-diagonal or partially ...
An Introduction to Relativistic Quantum Mechanics. I. From Relativity to Dirac Equation
De Sanctis, M
2007-01-01
By using the general concepts of special relativity and the requirements of quantum mechanics, Dirac equation is derived and studied. Only elementary knowledge of spin and rotations in quantum mechanics and standard handlings of linear algebra are employed for the development of the present work.
Itoh, Y; Asada, H; Itoh, Yousuke; Futamase, Toshifumi; Asada, Hideki
2001-01-01
We study the equation of motion appropriate to an inspiralling binary star system whose constituent stars have strong internal gravity. We use the post-Newtonian approximation with the strong field point particle limit by which we can introduce into general relativity a notion of a point-like particle with strong internal gravity without using Dirac delta distribution. Besides this limit, to deal with strong internal gravity we express the equation of motion in surface integral forms and calculate these integrals explicitly. As a result we obtain the equation of motion for a binary of compact bodies accurate through the second and half post-Newtonian (2.5 PN) order. This equation is derived in the harmonic coordinate. Our resulting equation perfectly agrees with Damour and Deruelle 2.5 PN equation of motion. Hence it is found that the 2.5 PN equation of motion is applicable to a relativistic compact binary.
Kuroda, Takami; Takiwaki, Tomoya
2012-01-01
We present results from the first generation of multi-dimensional hydrodynamic core-collapse simulations in full general relativity (GR) that include an approximate treatment of neutrino transport. Using a M1 closure scheme with an analytic variable Eddington factor, we solve the energy-independent set of radiation energy and momentum based on the Thorne's momentum formalism. To simplify the source terms of the transport equations, a methodology of multiflavour neutrino leakage scheme is partly employed. Our newly developed code is designed to evolve the Einstein field equation together with the GR radiation hydrodynamic equations. We follow the dynamics starting from the onset of gravitational core-collapse of a 15 $M_{\\odot}$ star, through bounce, up to about 100 ms postbounce in this study to study how the spacial multi-dimensionality and GR would affect the dynamics in the early postbounce phase. Our 3D results support the anticipation in previous 1D results that the neutrino luminosity and average neutri...
Error transport equation boundary conditions for the Euler and Navier-Stokes equations
Phillips, Tyrone S.; Derlaga, Joseph M.; Roy, Christopher J.; Borggaard, Jeff
2017-02-01
Discretization error is usually the largest and most difficult numerical error source to estimate for computational fluid dynamics, and boundary conditions often contribute a significant source of error. Boundary conditions are described with a governing equation to prescribe particular behavior at the boundary of a computational domain. Boundary condition implementations are considered sufficient when discretized with the same order of accuracy as the primary governing equations; however, careless implementations of boundary conditions can result in significantly larger numerical error. Investigations into different numerical implementations of Dirichlet and Neumann boundary conditions for Burgers' equation show a significant impact on the accuracy of Richardson extrapolation and error transport equation discretization error estimates. The development of boundary conditions for Burgers' equation shows significant improvements in discretization error estimates in general and a significant improvement in truncation error estimation. The latter of which is key to accurate residual-based discretization error estimation. This research investigates scheme consistent and scheme inconsistent implementations of inflow and outflow boundary conditions up to fourth order accurate and a formulation for a slip wall boundary condition for truncation error estimation are developed for the Navier-Stokes and Euler equations. The scheme consistent implementation resulted in much smoother truncation error near the boundaries and more accurate discretization error estimates.
Blaizot, Jean-Paul [Institut de Physique Théorique, CNRS/URA 2306, CEA Saclay, F-91191 Gif-sur-Yvette (France); Liao, Jinfeng [Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); McLerran, Larry [RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Physics Department, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Physics Department, China Central Normal University, Wuhan (China)
2013-12-20
In this paper, we study the evolution of a dense system of gluons, such as those produced in the early stages of ultra-relativistic heavy ion collisions. We describe the approach to thermal equilibrium using the small angle approximation for gluon scattering in a Boltzmann equation that includes the effects of Bose statistics. In the present study we ignore the effect of the longitudinal expansion, i.e., we restrict ourselves to spatially uniform systems, with spherically symmetric momentum distributions. Furthermore we take into account only elastic scattering, i.e., we neglect inelastic, number changing, processes. We solve the transport equation for various initial conditions that correspond to small or large initial gluon phase-space densities. For a small initial phase-space density, the system evolves towards thermal equilibrium, as expected. For a large enough initial phase-space density the equilibrium state contains a Bose condensate. We present numerical evidence that such over-populated systems reach the onset of Bose–Einstein condensation in a finite time. The approach to condensation is characterized by a scaling behavior that we briefly analyze.
Blaizot, Jean-Paul [Institut de Physique Théorique, CNRS/URA 2306, CEA Saclay, F-91191 Gif-sur-Yvette (France); Liao, Jinfeng [Physics Dept. and CEEM, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); McLerran, Larry [Physics Dept., Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Physics Department, China Central Normal University, Wuhan (China)
2014-11-15
To understand the evolution of a dense system of gluons, such as those produced in the early stages of ultra-relativistic heavy ion collisions, is an important and challenging problem. We describe the approach to thermal equilibrium using the small angle approximation for gluon scattering in a Boltzmann equation that includes the effects of Bose statistics. The role of Bose statistical factors in amplifying the rapid growth of the population of the soft modes is essential. With these factors properly taken into account, one finds that elastic scattering alone provides an efficient mechanism for populating soft modes, and in fact leads to rapid infrared local thermalization. Furthermore, recent developments suggest that high initial overpopulation plays a key role and may lead to dynamical Bose–Einstein condensation. The kinetics of condensation is an interesting problem in itself. By solving the transport equation for initial conditions with a large enough initial phase-space density the equilibrium state contains a Bose condensate, and we present numerical evidence that such over-occupied systems reach the onset of Bose–Einstein condensation in a finite time. It is also found that the approach to condensation is characterized by a scaling behavior. Finally we discuss a number of extensions of the present study.
A transport theory of relativistic nucleon-nucleon collisions with confinement
Vetter, T; Mosel, U
1994-01-01
A transport theory is developed on the quark level to describe nucleon--nucleon collisions. We treat the strong interaction effectively by the Friedberg-Lee model both in its original and in its modified confining version. First we study the stability of the static three-dimensional semiclassical configuration, then we present results of the time evolution given by a Vlasov equation for the quarks coupled to a Klein-Gordon equation for the mean field. We find at higher energies that the nucleons are almost transparent, whereas at lower energies we observe a substantial interaction. At very low energies we see a fusion of our bags, which is due to the purely attractive nature of the mean field and hence is an artifact of our model. We test the confinement mechanism and find that at higher energies the nucleons are restored shortly after the collision.
Static solution of the general relativistic nonlinear $\\sigma$model equation
Lee, C H; Lee, H K; Lee, Chul H; Kim, Joon Ha; Lee, Hyun Kyu
1994-01-01
The nonlinear \\sigma-model is considered to be useful in describing hadrons (Skyrmions) in low energy hadron physics and the approximate behavior of the global texture. Here we investigate the properties of the static solution of the nonlinear \\sigma-model equation coupled with gravity. As in the case where gravity is ignored, there is still no scale parameter that determines the size of the static solution and the winding number of the solution is 1/2. The geometry of the spatial hyperspace in the asymptotic region of large r is explicitly shown to be that of a flat space with some missing solid angle.
Prediction of discretization error using the error transport equation
Celik, Ismail B.; Parsons, Don Roscoe
2017-06-01
This study focuses on an approach to quantify the discretization error associated with numerical solutions of partial differential equations by solving an error transport equation (ETE). The goal is to develop a method that can be used to adequately predict the discretization error using the numerical solution on only one grid/mesh. The primary problem associated with solving the ETE is the formulation of the error source term which is required for accurately predicting the transport of the error. In this study, a novel approach is considered which involves fitting the numerical solution with a series of locally smooth curves and then blending them together with a weighted spline approach. The result is a continuously differentiable analytic expression that can be used to determine the error source term. Once the source term has been developed, the ETE can easily be solved using the same solver that is used to obtain the original numerical solution. The new methodology is applied to the two-dimensional Navier-Stokes equations in the laminar flow regime. A simple unsteady flow case is also considered. The discretization error predictions based on the methodology presented in this study are in good agreement with the 'true error'. While in most cases the error predictions are not quite as accurate as those from Richardson extrapolation, the results are reasonable and only require one numerical grid. The current results indicate that there is much promise going forward with the newly developed error source term evaluation technique and the ETE.
Renormalization group methods for the Reynolds stress transport equations
Rubinstein, R.
1992-01-01
The Yakhot-Orszag renormalization group is used to analyze the pressure gradient-velocity correlation and return to isotropy terms in the Reynolds stress transport equations. The perturbation series for the relevant correlations, evaluated to lowest order in the epsilon-expansion of the Yakhot-Orszag theory, are infinite series in tensor product powers of the mean velocity gradient and its transpose. Formal lowest order Pade approximations to the sums of these series produce a rapid pressure strain model of the form proposed by Launder, Reece, and Rodi, and a return to isotropy model of the form proposed by Rotta. In both cases, the model constants are computed theoretically. The predicted Reynolds stress ratios in simple shear flows are evaluated and compared with experimental data. The possibility is discussed of deriving higher order nonlinear models by approximating the sums more accurately. The Yakhot-Orszag renormalization group provides a systematic procedure for deriving turbulence models. Typical applications have included theoretical derivation of the universal constants of isotropic turbulence theory, such as the Kolmogorov constant, and derivation of two equation models, again with theoretically computed constants and low Reynolds number forms of the equations. Recent work has applied this formalism to Reynolds stress modeling, previously in the form of a nonlinear eddy viscosity representation of the Reynolds stresses, which can be used to model the simplest normal stress effects. The present work attempts to apply the Yakhot-Orszag formalism to Reynolds stress transport modeling.
Conformal anisotropic relativistic charged fluid spheres with a linear equation of state
Esculpi, M.; Alomá, E.
2010-06-01
We obtain two new families of compact solutions for a spherically symmetric distribution of matter consisting of an electrically charged anisotropic fluid sphere joined to the Reissner-Nordstrom static solution through a zero pressure surface. The static inner region also admits a one parameter group of conformal motions. First, to study the effect of the anisotropy in the sense of the pressures of the charged fluid, besides assuming a linear equation of state to hold for the fluid, we consider the tangential pressure p ⊥ to be proportional to the radial pressure p r , the proportionality factor C measuring the grade of anisotropy. We analyze the resulting charge distribution and the features of the obtained family of solutions. These families of solutions reproduce for the value C=1, the conformal isotropic solution for quark stars, previously obtained by Mak and Harko. The second family of solutions is obtained assuming the electrical charge inside the sphere to be a known function of the radial coordinate. The allowed values of the parameters pertained to these solutions are constrained by the physical conditions imposed. We study the effect of anisotropy in the allowed compactness ratios and in the values of the charge. The Glazer’s pulsation equation for isotropic charged spheres is extended to the case of anisotropic and charged fluid spheres in order to study the behavior of the solutions under linear adiabatic radial oscillations. These solutions could model some stage of the evolution of strange quark matter fluid stars.
Shprits, Yuri Y.; Elkington, Scot R.; Meredith, Nigel P.; Subbotin, Dmitriy A.
2008-11-01
In this paper, we focus on the modeling of radial transport in the Earth's outer radiation belt. A historical overview of the first observations of the radiation belts is presented, followed by a brief description of radial diffusion. We describe how resonant interactions with poloidal and toroidal components of the ULF waves can change the electron's energy and provide radial displacements. We also present radial diffusion and guiding center simulations that show the importance of radial transport in redistributing relativistic electron fluxes and also in accelerating and decelerating radiation belt electrons. We conclude by presenting guiding center simulations of the coupled particle tracing and magnetohydrodynamic (MHD) codes and by discussing the origin of relativistic electrons at geosynchronous orbit. Local acceleration and losses and 3D simulations of the dynamics of the radiation belt fluxes are discussed in the companion paper [Shprits, Y.Y., Subbotin, D.A., Meredith, N.P., Elkington, S.R., 2008. Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss. Journal of Atmospheric and Solar-Terrestrial Physics, this issue. doi:10.1016/j.jastp.2008.06.014].
Decker, J.; Peysson, Y
2004-12-01
A new original code for solving the 3-D relativistic and bounce-averaged electron drift kinetic equation is presented. It designed for the current drive problem in tokamak with an arbitrary magnetic equilibrium. This tool allows self-consistent calculations of the bootstrap current in presence of other external current sources. RF current drive for arbitrary type of waves may be used. Several moments of the electron distribution function are determined, like the exact and effective fractions of trapped electrons, the plasma current, absorbed RF power, runaway and magnetic ripple loss rates and non-thermal Bremsstrahlung. Advanced numerical techniques have been used to make it the first fully implicit (reverse time) 3-D solver, particularly well designed for implementation in a chain of code for realistic current drive calculations in high {beta}{sub p} plasmas. All the details of the physics background and the numerical scheme are presented, as well a some examples to illustrate main code capabilities. Several important numerical points are addressed concerning code stability and potential numerical and physical limitations. (authors)
Zanotti, Olindo; Dumbser, Michael
2015-01-01
We present a new numerical tool for solving the special relativistic ideal MHD equations that is based on the combination of the following three key features: (i) a one-step ADER discontinuous Galerkin (DG) scheme that allows for an arbitrary order of accuracy in both space and time, (ii) an a posteriori subcell finite volume limiter that is activated to avoid spurious oscillations at discontinuities without destroying the natural subcell resolution capabilities of the DG finite element framework and finally (iii) a space-time adaptive mesh refinement (AMR) framework with time-accurate local time-stepping. The divergence-free character of the magnetic field is instead taken into account through the so-called 'divergence-cleaning' approach. The convergence of the new scheme is verified up to 5th order in space and time and the results for a sample of significant numerical tests including shock tube problems, the RMHD rotor problem and the Orszag-Tang vortex system are shown. We also consider a simple case of t...
Classical Simulation of Relativistic Quantum Mechanics in Periodic Optical Structures
Longhi, Stefano
2011-01-01
Spatial and/or temporal propagation of light waves in periodic optical structures offers a rather unique possibility to realize in a purely classical setting the optical analogues of a wide variety of quantum phenomena rooted in relativistic wave equations. In this work a brief overview of a few optical analogues of relativistic quantum phenomena, based on either spatial light transport in engineered photonic lattices or on temporal pulse propagation in Bragg grating structures, is presented. Examples include spatial and temporal photonic analogues of the Zitterbewegung of a relativistic electron, Klein tunneling, vacuum decay and pair-production, the Dirac oscillator, the relativistic Kronig-Penney model, and optical realizations of non-Hermitian extensions of relativistic wave equations.
Momentum and charge transport in non-relativistic holographic fluids from Ho\\v{r}ava gravity
Davison, Richard A; Janiszewski, Stefan; Kaminski, Matthias
2016-01-01
We study the linearized transport of transverse momentum and charge in a conjectured field theory dual to a black brane solution of Ho\\v{r}ava gravity with Lifshitz exponent $z=1$. As expected from general hydrodynamic reasoning, we find that both of these quantities are diffusive over distance and time scales larger than the inverse temperature. We compute the diffusion constants and conductivities of transverse momentum and charge, as well the ratio of shear viscosity to entropy density, and find that they differ from their relativistic counterparts. To derive these results, we propose how the holographic dictionary should be modified to deal with the multiple horizons and differing propagation speeds of bulk excitations in Ho\\v{r}ava gravity. When possible, as a check on our methods and results, we use the covariant Einstein-Aether formulation of Ho\\v{r}ava gravity, along with field redefinitions, to re-derive our results from a relativistic bulk theory.
Bal, G.
1995-07-01
To achieve whole core calculations of the neutron transport equation, we have to follow this 2 step method: space and energy homogenization of the assemblies; resolution of the homogenized equation on the whole core. However, this is no more valid when accidents occur (for instance depressurization causing locally strong heterogeneous media). One solution consists then in coupling two kinds of resolutions: a fine computation on the damaged cell (fine mesh, high number of energy groups) coupled with a coarse one everywhere else. We only deal here with steady state solutions (which already live in 6D spaces). We present here two such methods: The coupling by transmission of homogenized sections and the coupling by transmission of boundary conditions. To understand what this coupling is, we first restrict ourselves to 1D with respect to space in one energy group. The first two chapters deal with a recall of basic properties of the neutron transport equation. We give at chapter 3 some indications of the behaviour of the flux with respect to the cross sections. We present at chapter 4 some couplings and give some properties. Chapter 5 is devoted to a presentation of some numerical applications. (author). 9 refs., 7 figs.
Morales-Casique, E.; Lezama-Campos, J. L.; Guadagnini, A.; Neuman, S. P.
2013-05-01
Modeling tracer transport in geologic porous media suffers from the corrupt characterization of the spatial distribution of hydrogeologic properties of the system and the incomplete knowledge of processes governing transport at multiple scales. Representations of transport dynamics based on a Fickian model of the kind considered in the advection-dispersion equation (ADE) fail to capture (a) the temporal variation associated with the rate of spreading of a tracer, and (b) the distribution of early and late arrival times which are often observed in field and/or laboratory scenarios and are considered as the signature of anomalous transport. Elsewhere we have presented exact stochastic moment equations to model tracer transport in randomly heterogeneous aquifers. We have also developed a closure scheme which enables one to provide numerical solutions of such moment equations at different orders of approximations. The resulting (ensemble) average and variance of concentration fields were found to display a good agreement against Monte Carlo - based simulation results for mildly heterogeneous (or well-conditioned strongly heterogeneous) media. Here we explore the ability of the moment equations approach to describe the distribution of early arrival times and late time tailing effects which can be observed in Monte-Carlo based breakthrough curves (BTCs) of the (ensemble) mean concentration. We show that BTCs of mean resident concentration calculated at a fixed space location through higher-order approximations of moment equations display long tailing features of the kind which is typically associated with anomalous transport behavior and are not represented by an ADE model with constant dispersive parameter, such as the zero-order approximation.
A New 2D-Transport, 1D-Diffusion Approximation of the Boltzmann Transport equation
Larsen, Edward
2013-06-17
The work performed in this project consisted of the derivation, implementation, and testing of a new, computationally advantageous approximation to the 3D Boltz- mann transport equation. The solution of the Boltzmann equation is the neutron flux in nuclear reactor cores and shields, but solving this equation is difficult and costly. The new “2D/1D” approximation takes advantage of a special geometric feature of typical 3D reactors to approximate the neutron transport physics in a specific (ax- ial) direction, but not in the other two (radial) directions. The resulting equation is much less expensive to solve computationally, and its solutions are expected to be sufficiently accurate for many practical problems. In this project we formulated the new equation, discretized it using standard methods, developed a stable itera- tion scheme for solving the equation, implemented the new numerical scheme in the MPACT code, and tested the method on several realistic problems. All the hoped- for features of this new approximation were seen. For large, difficult problems, the resulting 2D/1D solution is highly accurate, and is calculated about 100 times faster than a 3D discrete ordinates simulation.
Classical transport equations for burning gas-metal plasmas
Molvig, Kim; Simakov, Andrei N.; Vold, Erik L.
2014-09-01
Thermonuclear inertial confinement fusion plasmas confined by a heavy metal shell may be subject to the mixing of metal into the gas with a resulting degradation of fusion yield. Classical plasma diffusion driven by a number of gradients can provide a physical mechanism to produce atomic mix, possibly in concert with complex hydrodynamic structures and/or turbulence. This paper gives a derivation of the complete dissipative plasma hydrodynamics equations from kinetic theory, for a binary ionic mixture plasma consisting of electrons, e, a light (hydrogenic gas) ion species, i, and a heavy, high ZI plasma metal species, I. A single mean ionization state for the heavy metal, ZI, is assumed to be provided by some independent thermodynamic model of the heavy metal Z I = Z I ( n i , n I , T e ). The kinetic equations are solved by a generalized Chapman-Enskog expansion that assumes small Knudsen numbers for all species: N K e ≡ λ e / L ≪ 1 , N K i ≡ λ i / L ≪ 1. The small electron to ion mass ratio, m e / m i ≪ 1, is utilized to account for electron-ion temperature separation, T e ≠ T i, and to decouple the electron and ion transport coefficient calculations. This produces a well ordered perturbation theory for the electrons, resulting in the well known "Spitzer" problem of Spitzer and collaborators and solved independently by Braginskii. The formulation in this paper makes clear the inherent symmetry of the transport and gives an analytic solution for all values of the effective charge Z eff, including Z eff replaces the Z eff of the electron problem, but has an extended domain, 0≤ Δ I < ∞, to cover all mixture fractions from the pure gas to the pure metal plasma. The extension of the Spitzer problem to include this extended domain is given in this work. The resulting transport equations for the binary gas-metal plasma mixture are complete and accurate through second order. All transport coefficients are provided in analytic form.
A unified transport equation for both cosmic rays and thermal particles
Williams, L. L.; Schwadron, N.; Jokipii, J. R.; Gombosi, T. I.
1993-01-01
We present a unified transport equation that is valid for particles of all energies if the particle mean free paths are much smaller than macroscopic fluid length scales. If restricted to particles with random speeds much greater than fluid flow speeds, this equation reduces to the previously discussed extended cosmic-ray transport equation. It is significant that this allows one to describe the acceleration of particles from thermal energies to cosmic-ray energies using one transport equation. This is in contrast to previous transport equations (the Parker equation and the extended cosmic-ray transport equation), which were restricted to fast particles. The close connection to the extended cosmic-ray transport equation is demonstrated.
Neglected transport equations: extended Rankine-Hugoniot conditions and J -integrals for fracture
Davey, K.; Darvizeh, R.
2016-09-01
Transport equations in integral form are well established for analysis in continuum fluid dynamics but less so for solid mechanics. Four classical continuum mechanics transport equations exist, which describe the transport of mass, momentum, energy and entropy and thus describe the behaviour of density, velocity, temperature and disorder, respectively. However, one transport equation absent from the list is particularly pertinent to solid mechanics and that is a transport equation for movement, from which displacement is described. This paper introduces the fifth transport equation along with a transport equation for mechanical energy and explores some of the corollaries resulting from the existence of these equations. The general applicability of transport equations to discontinuous physics is discussed with particular focus on fracture mechanics. It is well established that bulk properties can be determined from transport equations by application of a control volume methodology. A control volume can be selected to be moving, stationary, mass tracking, part of, or enclosing the whole system domain. The flexibility of transport equations arises from their ability to tolerate discontinuities. It is insightful thus to explore the benefits derived from the displacement and mechanical energy transport equations, which are shown to be beneficial for capturing the physics of fracture arising from a displacement discontinuity. Extended forms of the Rankine-Hugoniot conditions for fracture are established along with extended forms of J -integrals.
Flavour covariant transport equations: An application to resonant leptogenesis
P.S. Bhupal Dev
2014-09-01
Full Text Available We present a fully flavour-covariant formalism for transport phenomena, by deriving Markovian master equations that describe the time-evolution of particle number densities in a statistical ensemble with arbitrary flavour content. As an application of this general formalism, we study flavour effects in a scenario of resonant leptogenesis (RL and obtain the flavour-covariant evolution equations for heavy-neutrino and lepton number densities. This provides a complete and unified description of RL, capturing three distinct physical phenomena: (i the resonant mixing between the heavy-neutrino states, (ii coherent oscillations between different heavy-neutrino flavours, and (iii quantum decoherence effects in the charged-lepton sector. To illustrate the importance of this formalism, we numerically solve the flavour-covariant rate equations for a minimal RL model and show that the total lepton asymmetry can be enhanced by up to one order of magnitude, as compared to that obtained from flavour-diagonal or partially flavour off-diagonal rate equations. Thus, the viable RL model parameter space is enlarged, thereby enhancing further the prospects of probing a common origin of neutrino masses and the baryon asymmetry in the Universe at the LHC, as well as in low-energy experiments searching for lepton flavour and number violation. The key new ingredients in our flavour-covariant formalism are rank-4 rate tensors, which are required for the consistency of our flavour-mixing treatment, as shown by an explicit calculation of the relevant transition amplitudes by generalizing the optical theorem. We also provide a geometric and physical interpretation of the heavy-neutrino degeneracy limits in the minimal RL scenario. Finally, we comment on the consistency of various suggested forms for the heavy-neutrino self-energy regulator in the lepton-number conserving limit.
Simplified P$_N$ Equations for Nonclassical Transport with Isotropic Scattering
Vasques, R
2016-01-01
A nonclassical diffusion approximation has been previously derived for the the one-speed nonclassical transport equation with isotropic scattering. In this paper we use an asymptotic analysis to derive more accurate diffusion approximations to the nonclassical transport equation. If the free-path distribution is given by an exponential (classical transport), these approximations reduce to the simplified P$_N$ (SP$_N$) equations; therefore, they are labeled nonclassical SP$_N$ equations.
Verdu, G. [Departamento de Ingenieria Quimica Y Nuclear, Universitat Politecnica de Valencia, Cami de Vera, 14, 46022. Valencia (Spain); Capilla, M.; Talavera, C. F.; Ginestar, D. [Dept. of Nuclear Engineering, Departamento de Matematica Aplicada, Universitat Politecnica de Valencia, Cami de Vera, 14, 46022. Valencia (Spain)
2012-07-01
PL equations are classical high order approximations to the transport equations which are based on the expansion of the angular dependence of the angular neutron flux and the nuclear cross sections in terms of spherical harmonics. A nodal collocation method is used to discretize the PL equations associated with a neutron source transport problem. The performance of the method is tested solving two 1D problems with analytical solution for the transport equation and a classical 2D problem. (authors)
Relativistic Radiation Mediated Shocks
Budnik, Ran; Sagiv, Amir; Waxman, Eli
2010-01-01
The structure of relativistic radiation mediated shocks (RRMS) propagating into a cold electron-proton plasma is calculated and analyzed. A qualitative discussion of the physics of relativistic and non relativistic shocks, including order of magnitude estimates for the relevant temperature and length scales, is presented. Detailed numerical solutions are derived for shock Lorentz factors $\\Gamma_u$ in the range $6\\le\\Gamma_u\\le30$, using a novel iteration technique solving the hydrodynamics and radiation transport equations (the protons, electrons and positrons are argued to be coupled by collective plasma processes and are treated as a fluid). The shock transition (deceleration) region, where the Lorentz factor $ \\Gamma $ drops from $ \\Gamma_u $ to $ \\sim 1 $, is characterized by high plasma temperatures $ T\\sim \\Gamma m_ec^2 $ and highly anisotropic radiation, with characteristic shock-frame energy of upstream and downstream going photons of a few~$\\times\\, m_ec^2$ and $\\sim \\Gamma^2 m_ec^2$, respectively.P...
Itoh, Yousuke
2009-01-01
We report our rederivation of the equations of motion for relativistic compact binaries through the third-and-a-half post-Newtonian (3.5 PN) order approximation to general relativity using the strong field point particle limit to describe self-gravitating stars instead of the Dirac delta functional. The computation is done in harmonic coordinates. Our equations of motion describe the orbital motion of the binary consisting of spherically symmetric non-rotating stars. The resulting equations of motion fully agree with the 3.5 PN equations of motion derived in the previous works. We also show that the locally defined energy of the star has a simple relation with its mass up to the 3.5 PN order.
Riccati equation for simulation of leads in quantum transport
Bravi, M.; Farchioni, R.; Grosso, G.; Pastori Parravicini, G.
2014-10-01
We present a theoretical procedure with numerical demonstration of a workable and efficient method to evaluate the surface Green's function of semi-infinite leads connected to a device. Such a problem always occurs in quantum transport calculations but also in the study of surfaces and heterojunctions. We show here that these semi-infinite leads can be properly described by real-energy Green's functions obtained analytically by a smart solution of the Riccati matrix equation. The performance of our method is demonstrated in the case of a multichain two-dimensional electron-gas system, composed of a central ribbon connected to two semi-infinite leads, pierced by two opposite magnetic fields.
Transport coefficients from the boson Uehling-Uhlenbeck equation.
Gust, Erich D; Reichl, L E
2013-04-01
Expressions for the bulk viscosity, shear viscosity, and thermal conductivity of a quantum degenerate Bose gas above the critical temperature for Bose-Einstein condensation are derived using the Uehling-Uhlenbeck kinetic equation. For contact potentials and hard sphere interactions, the eigenvalues (relaxation rates) of the Uehling-Uhlenbeck collision operator have an upper cutoff. This cutoff requires summation over all discrete eigenvalues and eigenvectors of the collision operator when computing transport coefficients. We numerically compute the shear viscosity and thermal conductivity for any boson gas that interacts via a contact potential. We find that the bulk viscosity of the degenerate boson gas remains identically zero, as it is for the classical gas.
Application study of transport intensity equation in quantitative phase reconstruction
Song, Xiaojun; Cheng, Wei; Wei, Chunjuan; Xue, Liang; Liu, Weijing; Bai, Baodan; Chu, Fenghong
2016-10-01
In order to improve detection speed and accuracy of biological cells, a quantitative non-interference optical phase recovery method is proposed in commercial microscope, taking the red blood cells as the classical phase objects. Three bright field micrographs were collected in the experiment. Utilizing the transport intensity equation (TIE), the quantitative phase distributions of red blood cell are gained and agree well with the previous optical phase models. Analysis shows that the resolution of introduced system reaches sub-micron. This method not only quickly gives quantitative phase distribution of cells, but also measures a large number of cells simultaneously. So it is potential in the use of real-time observing and quantitative analyzing of cells in vivo.
Formulation of relativistic dissipative fluid dynamics and its applications in heavy-ion collisions
Jaiswal, Amaresh
2014-01-01
Relativistic fluid dynamics finds application in astrophysics, cosmology and the physics of high-energy heavy-ion collisions. In this thesis, we present our work on the formulation of relativistic dissipative fluid dynamics within the framework of relativistic kinetic theory. We employ the second law of thermodynamics as well as the relativistic Boltzmann equation to obtain the dissipative evolution equations. We present a new derivation of the dissipative hydrodynamic equations using the second law of thermodynamics wherein all the second-order transport coefficients get determined uniquely within a single theoretical framework. An alternate derivation of the dissipative equations which does not make use of the two major approximations/assumptions namely, Grad's 14-moment approximation and second moment of Boltzmann equation, inherent in the Israel-Stewart theory, is also presented. Moreover, by solving the Boltzmann equation iteratively in a Chapman-Enskog like expansion, we have derived the form of second-...
Martinolli, E
2003-04-15
This work is dedicated to the study of the energy deposition of fast electrons in matter. This topic is of prime importance for inertial fusion driven by laser since relativistic electrons are produced in laser-matter interaction for a laser operating in ultra-intense regime. This thesis is made up of: a theoretical chapter dealing with the generation and transport of fast electrons, of 2 chapters reporting experimental data obtained with optical and X-rays diagnostics at the laser facilities of LULI in France and RAL in U.K., and of a chapter dedicated to the simulation of electron transport by using a Monte-Carlo code combined to a hybrid collisional-electromagnetic PIC code. A new spectrometer has been designed: the detection of K{alpha} rays coming from a fluorescent layer embedded in the target has allowed us to assess the size of the electron beam and the level of ionisation. (A.C.)
Nandy, D K; Sahoo, B K
2014-01-01
We report the implementation of equation-of-motion coupled-cluster (EOMCC) method in the four-component relativistic framework with the spherical atomic potential to generate the excited states from a closed-shell atomic configuration. This theoretical development will be very useful to carry out high precision calculations of varieties of atomic properties in many atomic systems. We employ this method to calculate excitation energies of many low-lying states in a few Ne-like highly charged ions, such as Cr XV, Fe XVII, Co XVIII and Ni XIX ions, and compare them against their corresponding experimental values to demonstrate the accomplishment of the EOMCC implementation. The considered ions are apt to substantiate accurate inclusion of the relativistic effects in the evaluation of the atomic properties and are also interesting for the astrophysical studies. Investigation of the temporal variation of the fine structure constant (\\alpha) from the astrophysical observations is one of the modern research problems...
Mohammadi, Vahid; Chenaghlou, Alireza
2017-09-01
The two-dimensional Dirac equation with spin and pseudo-spin symmetries is investigated in the presence of the maximally superintegrable potentials. The integrals of motion and the quadratic algebras of the superintegrable quantum E3‧, anisotropic oscillator and the Holt potentials are studied. The corresponding Casimir operators and the structure functions of the mentioned superintegrable systems are found. Also, we obtain the relativistic energy spectra of the corresponding superintegrable systems. Finally, the relativistic energy eigenvalues of the generalized Yang-Coulomb monopole (YCM) superintegrable system (a SU(2) non-Abelian monopole) are calculated by the energy spectrum of the eight-dimensional oscillator which is dual to the former system by Hurwitz transformation.
Covariant geometric quantization of non-relativistic Hamiltonian mechanics
Giachetta, G; Sardanashvily, G
2000-01-01
We provide geometric quantization of the vertical cotangent bundle V^*Q equipped with the canonical Poisson structure. This is a momentum phase space of non-relativistic mechanics with the configuration bundle Q -> R. The goal is the Schrodinger representation of V^*Q. We show that this quantization is equivalent to the fibrewise quantization of symplectic fibres of V^*Q -> R, that makes the quantum algebra of non-relativistic mechanics an instantwise algebra. Quantization of the classical evolution equation defines a connection on this instantwise algebra, which provides quantum evolution in non-relativistic mechanics as a parallel transport along time.
Stochastic oscillations of general relativistic disks
Harko, Tiberiu
2012-01-01
We analyze the general relativistic oscillations of thin accretion disks around compact astrophysical objects interacting with the surrounding medium through non-gravitational forces. The interaction with the external medium (a thermal bath) is modeled via a friction force, and a random force, respectively. The general equations describing the stochastically perturbed disks are derived by considering the perturbations of trajectories of the test particles in equatorial orbits, assumed to move along the geodesic lines. By taking into account the presence of a viscous dissipation and of a stochastic force we show that the dynamics of the stochastically perturbed disks can be formulated in terms of a general relativistic Langevin equation. The stochastic energy transport equation is also obtained. The vertical oscillations of the disks in the Schwarzschild and Kerr geometries are considered in detail, and they are analyzed by numerically integrating the corresponding Langevin equations. The vertical displacement...
Turner, Drew; Mann, Ian; Usanova, Maria; Rodriguez, Juan; Henderson, Mike; Angelopoulos, Vassilis; Morley, Steven; Claudepierre, Seth; Li, Wen; Kellerman, Adam; Boyd, Alexander; Kim, Kyung-Chan
Earth’s outer electron radiation belt is a region of extreme variability, with relativistic electron intensities changing by orders of magnitude over time scales ranging from minutes to years. Extreme variations of outer belt electrons ultimately result from the relative impacts of various competing source (and acceleration), loss, and transport processes. Most of these processes involve wave-particle interactions between outer belt electrons and different types of plasma waves in the inner magnetosphere, and in turn, the activity of these waves depends on different solar wind and magnetospheric driving conditions and thus can vary drastically from event to event. Using multipoint analysis with data from NASA’s Van Allen Probes, THEMIS, and SAMPEX missions, NOAA’s GOES and POES constellations, and ground-based observatories, we present results from case studies revealing how different source/acceleration and loss mechanisms compete during active periods to result in drastically different distributions of outer belt electrons. By using a combination of low-Earth orbiting and high-altitude-equatorial orbiting satellites, we briefly review how it is possible to get a much more complete picture of certain wave activity and electron losses over the full range of MLTs and L-shells throughout the radiation belt. We then show example cases highlighting the importance of particular mechanisms, including: substorm injections and whistler-mode chorus waves for the source and acceleration of relativistic electrons; magnetopause shadowing and wave-particle interactions with EMIC waves for sudden losses; and ULF wave activity for driving radial transport, a process which is important for redistributing relativistic electrons, contributing both to acceleration and loss processes. We show how relativistic electron enhancement events involve local acceleration that is consistent with wave-particle interactions between a seed population of 10s to 100s of keV electrons, with a
Relativistic magnetohydrodynamics in one dimension.
Lyutikov, Maxim; Hadden, Samuel
2012-02-01
We derive a number of solutions for one-dimensional dynamics of relativistic magnetized plasma that can be used as benchmark estimates in relativistic hydrodynamic and magnetohydrodynamic numerical codes. First, we analyze the properties of simple waves of fast modes propagating orthogonally to the magnetic field in relativistically hot plasma. The magnetic and kinetic pressures obey different equations of state, so that the system behaves as a mixture of gases with different polytropic indices. We find the self-similar solutions for the expansion of hot strongly magnetized plasma into vacuum. Second, we derive linear hodograph and Darboux equations for the relativistic Khalatnikov potential, which describe arbitrary one-dimensional isentropic relativistic motion of cold magnetized plasma and find their general and particular solutions. The obtained hodograph and Darboux equations are very powerful: A system of highly nonlinear, relativistic, time-dependent equations describing arbitrary (not necessarily self-similar) dynamics of highly magnetized plasma reduces to a single linear differential equation.
Relativistic radiative transfer in relativistic spherical flows
Fukue, Jun
2017-02-01
Relativistic radiative transfer in relativistic spherical flows is numerically examined under the fully special relativistic treatment. We first derive relativistic formal solutions for the relativistic radiative transfer equation in relativistic spherical flows. We then iteratively solve the relativistic radiative transfer equation, using an impact parameter method/tangent ray method, and obtain specific intensities in the inertial and comoving frames, as well as moment quantities, and the Eddington factor. We consider several cases; a scattering wind with a luminous central core, an isothermal wind without a core, a scattering accretion on to a luminous core, and an adiabatic accretion on to a dark core. In the typical wind case with a luminous core, the emergent intensity is enhanced at the center due to the Doppler boost, while it reduces at the outskirts due to the transverse Doppler effect. In contrast to the plane-parallel case, the behavior of the Eddington factor is rather complicated in each case, since the Eddington factor depends on the optical depth, the flow velocity, and other parameters.
Probabilistic Analysis of the Upwind Scheme for Transport Equations
Delarue, François; Lagoutière, Frédéric
2011-01-01
We provide a probabilistic analysis of the upwind scheme for d-dimensional transport equations. We associate a Markov chain with the numerical scheme and then obtain a backward representation formula of Kolmogorov type for the numerical solution. We then understand that the error induced by the scheme is governed by the fluctuations of the Markov chain around the characteristics of the flow. We show, in various situations, that the fluctuations are of diffusive type. As a by-product, we recover recent results due to Merlet and Vovelle (Numer Math 106: 129-155, 2007) and Merlet (SIAM J Numer Anal 46(1):124-150, 2007): we prove that the scheme is of order 1/2 in {L^{infty}([0,T],L^1(mathbb R^d))} for an integrable initial datum of bounded variation and of order 1/2- ɛ, for all ɛ > 0, in {L^{infty}([0,T] × mathbb R^d)} for an initial datum of Lipschitz regularity. Our analysis provides a new interpretation of the numerical diffusion phenomenon.
Temperature dependence of ion transport: the compensated Arrhenius equation.
Petrowsky, Matt; Frech, Roger
2009-04-30
The temperature-dependent conductivity originating in a thermally activated process is often described by a simple Arrhenius expression. However, this expression provides a poor description of the data for organic liquid electrolytes and amorphous polymer electrolytes. Here, we write the temperature dependence of the conductivity as an Arrhenius expression and show that the experimentally observed non-Arrhenius behavior is due to the temperature dependence of the dielectric constant contained in the exponential prefactor. Scaling the experimentally measured conductivities to conductivities at a chosen reference temperature leads to a "compensated" Arrhenius equation that provides an excellent description of temperature-dependent conductivities. A plot of the prefactors as a function of the solvent dielectric constant results in a single master curve for each family of solvents. These data suggest that ion transport in these and related systems is governed by a single activated process differing only in the activation energy for each family of solvents. Connection is made to the shift factor used to describe electrical and mechanical relaxation in a wide range of phenomena, suggesting that this scaling procedure might have broad applications.
Relativistic Remnants of Non-Relativistic Electrons
Kashiwa, Taro
2015-01-01
Electrons obeying the Dirac equation are investigated under the non-relativistic $c \\mapsto \\infty$ limit. General solutions are given by derivatives of the relativistic invariant functions whose forms are different in the time- and the space-like region, yielding the delta function of $(ct)^2 - x^2$. This light-cone singularity does survive to show that the charge and the current density of electrons travel with the speed of light in spite of their massiveness.
Cheverry, Christophe
2017-02-01
This article is concerned with the relativistic Vlasov equation, for collisionless axisymmetric plasmas immersed in a strong magnetic field, like in tokamaks. It provides a consistent kinetic treatment of the microscopic particle phase-space dynamics. It shows that the turbulent transport can be completely described through WKB expansions.
Elliptic random-walk equation for suspension and tracer transport in porous media
Shapiro, Alexander; Bedrikovetsky, P. G.
2008-01-01
We propose a new approach to transport of the suspensions and tracers in porous media. The approach is based on a modified version of the continuous time random walk (CTRW) theory. In the framework of this theory we derive an elliptic transport equation. The new equation contains the time...
Spherical harmonics method for neutron transport equation based on unstructured-meshes
CAO Liang-Zhi; WU Hong-Chun
2004-01-01
Based on a new second-order neutron transport equation, self-adjoint angular flux (SAAF) equation, the spherical harmonics (PN) method for neutron transport equation on unstructured-meshes is derived. The spherical harmonics function is used to expand the angular flux. A set of differential equations about the spatial variable, which are coupled with each other, can be obtained. They are solved iteratively by using the finite element method on unstructured-meshes. A two-dimension transport calculation program is coded according to the model. The numerical results of some benchmark problems demonstrate that this method can give high precision results and avoid the ray effect very well.
R. J. England
2005-01-01
Full Text Available We examine the use of sextupole magnets to correct nonlinearities in the longitudinal phase space transformation of a relativistic beam of charged particles in a dispersionless translating section, or dogleg. Through heuristic analytical arguments and examples derived from recent experimental efforts, augmented by simulations using the particle tracking codes PARMELA and ELEGANT, sextupole corrections are found to be effective in optimizing the use of such structures for beam compression or for shaping the current profile of the beam, by manipulation of the second-order longitudinal dispersion. Recent experimental evidence of the use of sextupoles to manipulate second-order horizontal and longitudinal dispersion of the beam is presented. The theoretical and experimental results indicate that these manipulations can be used to create an electron bunch with a current profile having a long ramp followed by a sharp cutoff, which is optimal for driving large-amplitude wake fields in a plasma wake field accelerator.
Relativistic neoclassical radial fluxes in the 1/nu regime
Marushchenko, I; Marushchenko, N B
2013-01-01
The radial neoclassical fluxes of electrons in the 1/nu-regime are calculated with relativistic effects taken into account and compared with those in the non-relativistic approach. The treatment is based on the relativistic drift-kinetic equation with the thermodynamic equilibrium given by the relativistic J\\"uttner-Maxwellian distribution function. It is found that for the range of fusion temperatures, T_e < 100 keV, the relativistic effects produce a reduction of the radial fluxes which does not exceed 10%. This rather small effect is a consequence of the non-monotonic temperature dependence of the relativistic correction caused by two counteracting factors: a reduction of the contribution from the bulk and a significant broadening with the temperature growth of the energy range of electrons contributing to transport. The relativistic formulation for the radial fluxes given in this paper is expressed in terms a set of relativistic thermodynamic forces which is not identical to the canonical set since it ...
High Order Numerical Solution of Integral Transport Equation in Slab Geometry
沈智军; 袁光伟; 沈隆钧
2002-01-01
@@ There are some common numerical methods for solving neutron transport equation, which including the well-known discrete ordinates method, PN approximation and integral transport methods[1]. There exists certain singularities in the solution of transport equation near the boundary and interface[2]. It gives rise to the difficulty in the construction of high order accurate numerical methods. The numerical solution obtained by now can not attain the second order convergent accuracy[3,4].
Schiller, Q.; Tu, W.; Ali, A. F.; Li, X.; Godinez, H. C.; Turner, D. L.; Morley, S. K.; Henderson, M. G.
2017-03-01
The most significant unknown regarding relativistic electrons in Earth's outer Van Allen radiation belt is the relative contribution of loss, transport, and acceleration processes within the inner magnetosphere. Detangling each individual process is critical to improve the understanding of radiation belt dynamics, but determining a single component is challenging due to sparse measurements in diverse spatial and temporal regimes. However, there are currently an unprecedented number of spacecraft taking measurements that sample different regions of the inner magnetosphere. With the increasing number of varied observational platforms, system dynamics can begin to be unraveled. In this work, we employ in situ measurements during the 13-14 January 2013 enhancement event to isolate transport, loss, and source dynamics in a one-dimensional radial diffusion model. We then validate the results by comparing them to Van Allen Probes and Time History of Events and Macroscale Interactions during Substorms observations, indicating that the three terms have been accurately and individually quantified for the event. Finally, a direct comparison is performed between the model containing event-specific terms and various models containing terms parameterized by geomagnetic index. Models using a simple 3/Kp loss time scale show deviation from the event-specific model of nearly 2 orders of magnitude within 72 h of the enhancement event. However, models using alternative loss time scales closely resemble the event-specific model.
Lykke, Lars; Iversen, Bo Brummerstedt; Madsen, Georg
2006-01-01
The band structure of the low-temperature thermoelectric material, CsBi4Te6, is calculated and analyzed using the semiclassic transport equations. It is shown that to obtain a quantitative agreement with measured transport properties, a band gap of 0.08 eV must be enforced. A gap in reasonable...
Nonlocal Transport Processes and the Fractional Cattaneo-Vernotte Equation
J. F. Gómez Aguilar
2016-01-01
Full Text Available The Cattaneo-Vernotte equation is a generalization of the heat and particle diffusion equations; this mathematical model combines waves and diffusion with a finite velocity of propagation. In disordered systems the diffusion can be anomalous. In these kinds of systems, the mean-square displacement is proportional to a fractional power of time not equal to one. The anomalous diffusion concept is naturally obtained from diffusion equations using the fractional calculus approach. In this paper we present an alternative representation of the Cattaneo-Vernotte equation using the fractional calculus approach; the spatial-time derivatives of fractional order are approximated using the Caputo-type derivative in the range (0,2]. In this alternative representation we introduce the appropriate fractional dimensional parameters which characterize consistently the existence of the fractional space-time derivatives into the fractional Cattaneo-Vernotte equation. Finally, consider the Dirichlet conditions, the Fourier method was used to find the full solution of the fractional Cattaneo-Vernotte equation in analytic way, and Caputo and Riesz fractional derivatives are considered. The advantage of our representation appears according to the comparison between our model and models presented in the literature, which are not acceptable physically due to the dimensional incompatibility of the solutions. The classical cases are recovered when the fractional derivative exponents are equal to 1.
A COMPARATIVE STUDY OF SOME OF THE SEDIMENT TRANSPORT EQUATIONS FOR AN ALLUVIAL CHANNEL WITH DUNES
Vajapeyam Srirangachar Srinivasan
2008-06-01
Full Text Available The present work is a comparative evaluation of some of the well known sediment transport equations for the condition of dunes on the bed. It is fairly clear that no single equation provides reliable estimates of the total load of sediment transported for all types of bed forms. The most frequently occurring bed form being dunes, only this case is considered in this paper. The measurements of sediment transport were realized in the laboratory for various sediment sizes, utilizing a computerized tilting recirculation flume. The Yang equation (1973 was found to provide the best results for dunes.
Sun, Shuyu
2012-06-02
A new technique for the numerical solution of the partial differential equations governing transport phenomena in porous media is introduced. In this technique, the governing equations as depicted from the physics of the problem are used without extra manipulations. In other words, there is no need to reduce the number of governing equations by some sort of mathematical manipulations. This technique enables the separation of the physics part of the problem and the solver part, which makes coding more robust and could be used in several other applications with little or no modifications (e.g., multi-phase flow in porous media). In this method, one abandons the need to construct the coefficient matrix for the pressure equation. Alternatively, the coefficients are automatically generated within the solver routine. We show examples of using this technique to solving several flow problems in porous media.
Barik, N; Mohanty, D K; Panda, P K; Frederico, T
2013-01-01
We have calculated the properties of nuclear matter in a self-consistent manner with quark-meson coupling mechanism incorporating structure of nucleons in vacuum through a relativistic potential model; where the dominant confining interaction for the free independent quarks inside a nucleon, is represented by a phenomenologically average potential in equally mixed scalar-vector harmonic form. Corrections due to spurious centre of mass motion as well as those due to other residual interactions such as the one gluon exchange at short distances and quark-pion coupling arising out of chiral symmetry restoration; have been considered in a perturbation manner to obtain the nucleon mass in vacuum. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to sigma and omega mesons through mean field approximations. The relevant parameters of the interaction are obtained self consistently while realizing the saturation properties such as the binding energy, pressure a...
Wachter, H
2007-01-01
The aim of these three papers (I, II, and III) is to develop a q-deformed version of non-relativistic Schroedinger theory. Paper I introduces the fundamental mathematical and physical concepts. The braided line and the three-dimensional q-deformed Euclidean space play the role of position space. For both cases the algebraic framework is extended by a time element. A short review of the elements of q-deformed analysis on the spaces under consideration is given. The time evolution operator is introduced in a consistent way and its basic properties are discussed. These reasonings are continued by proposing q-deformed analogs of the Schroedinger and the Heisenberg picture.
Spherical-Harmonic Expansion Solution of Classical Transport Equations of Quark
CHEN Xiang-Jun; WANG Gang
2003-01-01
The spherical-harmonic method of solving classical transport equation of quark is investigated. Thehydrodynamics description of QGP as well as the relation between diffusion approximation and collective flow in nuclearcollisions are discussed.
Spherical-Harmonic Expansion Solution of Classical Transport Equations of Quark
CHENXiang-Jun; WANGGang
2003-01-01
The spherical-harmonic method of solving classical transport equation of quark is investigated. The hydrodynamics description of QGP as well as the relation between diffusion approximation and collective flow in nuclear collisions are discussed.
An introduction to the Boltzmann equation and transport processes in gases
Kremer, Gilberto M; Colton, David
2010-01-01
This book covers classical kinetic theory of gases, presenting basic principles in a self-contained framework and from a more rigorous approach based on the Boltzmann equation. Uses methods in kinetic theory for determining the transport coefficients of gases.
Gluon transport equations with condensate in the small angle approximation
Blaizot, Jean-Paul [Institut de Physique Théorique (IPhT), CNRS/URA2306, CEA Saclay, F-91191 Gif-sur-Yvette (France); Liao, Jinfeng [Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States)
2016-05-15
We derive the set of kinetic equations that control the evolution of gluons in the presence of a condensate. We show that the dominant singularities remain logarithmic when the scattering involves particles in the condensate. This allows us to define a consistent small angle approximation.
Discrete Ordinates Approximations to the First- and Second-Order Radiation Transport Equations
Fan, W C; Powell, J L
2002-01-01
The conventional discrete ordinates approximation to the Boltzmann transport equation can be described in a matrix form. Specifically, the within-group scattering integral can be represented by three components: a moment-to-discrete matrix, a scattering cross-section matrix and a discrete-to-moment matrix. Using and extending these entities, we derive and summarize the matrix representations of the second-order transport equations.
A Monte Carlo Code for Relativistic Radiation Transport Around Kerr Black Holes
Schnittman, Jeremy David; Krolik, Julian H.
2013-01-01
We present a new code for radiation transport around Kerr black holes, including arbitrary emission and absorption mechanisms, as well as electron scattering and polarization. The code is particularly useful for analyzing accretion flows made up of optically thick disks and optically thin coronae. We give a detailed description of the methods employed in the code and also present results from a number of numerical tests to assess its accuracy and convergence.
Transition study of 3D aerodynamic configures using improved transport equations modeling
Xu Jiakuan
2016-08-01
Full Text Available As boundary layer transition plays an important role in aerodynamic drag prediction, the proposal and study of transition prediction methods simulating the complex flow phenomena are prerequisite for aerodynamic design. In this paper, with the application of the linear stability theory based on amplification factor transport transition equations on the two-equation shear stress transport (SST eddy-viscosity model, a new method, the SST-NTS-NCF model, is yielded. The new amplification factor transport equation for the crossflow instability induced transition is proposed to add to the NTS equation proposed by Coder, which simulates Tollmien–Schlichting wave transition. The turbulent kinetic energy equation is modified by introducing a new source term that simulates the transition process without the intermittency factor equation. Finally, coupled with these two amplification factor transport equations and SST turbulence model, a four-equation transition turbulence model is built. Comparisons between predictions using the new model and wind-tunnel experiments of NACA64(2A015, NLF(2-0415 and ONERA-D infinite swept wing and ONERA-M6 swept wing validate the predictive quality of the new SST-NTS-NCF model.
Transition study of 3D aerodynamic configures using improved transport equations modeling
Xu Jiakuan; Bai Junqiang; Zhang Yang; Qiao Lei
2016-01-01
As boundary layer transition plays an important role in aerodynamic drag prediction, the proposal and study of transition prediction methods simulating the complex flow phenomena are prerequisite for aerodynamic design. In this paper, with the application of the linear stability theory based on amplification factor transport transition equations on the two-equation shear stress transport (SST) eddy-viscosity model, a new method, the SST-NTS-NCF model, is yielded. The new amplification factor transport equation for the crossflow instability induced transition is proposed to add to the NTS equation proposed by Coder, which simulates Tollmien–Schlichting wave tran-sition. The turbulent kinetic energy equation is modified by introducing a new source term that sim-ulates the transition process without the intermittency factor equation. Finally, coupled with these two amplification factor transport equations and SST turbulence model, a four-equation transition turbulence model is built. Comparisons between predictions using the new model and wind-tunnel experiments of NACA64(2)A015, NLF(2)-0415 and ONERA-D infinite swept wing and ONERA-M6 swept wing validate the predictive quality of the new SST-NTS-NCF model.
Self-similar Solutions for a Transport Equation with Non-local Flux
Angel CASTRO; Diego C(O)RDOBA
2009-01-01
The authors construct self-similar solutions for an N-dimensional transport equation,where the velocity is given by the Riezs transform.These solutions imply nonuniqueness of weak solution.In addition,self-similar solution for a one-dimensional conservative equation involving the Hilbert transform is obtained.
Study of transport of laser-driven relativistic electrons in solid materials
Leblanc, Philippe
With the ultra intense lasers available today, it is possible to generate very hot electron beams in solid density materials. These intense laser-matter interactions result in many applications which include the generation of ultrashort secondary sources of particles and radiation such as ions, neutrons, positrons, x-rays, or even laser-driven hadron therapy. For these applications to become reality, a comprehensive understanding of laser-driven energy transport including hot electron generation through the various mechanisms of ionization, and their subsequent transport in solid density media is required. This study will focus on the characterization of electron transport effects in solid density targets using the state-of- the-art particle-in-cell code PICLS. A number of simulation results will be presented on the topics of ionization propagation in insulator glass targets, non-equilibrium ionization modeling featuring electron impact ionization, and electron beam guiding by the self-generated resistive magnetic field. An empirically derived scaling relation for the resistive magnetic in terms of the laser parameters and material properties is presented and used to derive a guiding condition. This condition may prove useful for the design of future laser-matter interaction experiments.
Xu, Peng
2016-01-01
With continuous advances in technologies related to deep space ranging and satellite gravity gradiometry, corrections from general relativity to the dynamics of relative orbital motions will certainly become important. In this work, we extend,in a systematic way, the Hill-Clohessy-Wiltshire Equations to include the complete first order post-Newtonian effects from general relativity. Within certain short time limit, post-Newtonian corrections to general periodic solutions of the Hill-Clohessy-Wiltshire Equations are also worked out.
Campos-García, Manuel; Granados-Agustín, Fermín.; Cornejo-Rodríguez, Alejandro; Estrada-Molina, Amilcar; Avendaño-Alejo, Maximino; Moreno-Oliva, Víctor Iván.
2013-11-01
In order to obtain a clearer interpretation of the Intensity Transport Equation (ITE), in this work, we propose an algorithm to solve it for some particular wavefronts and its corresponding intensity distributions. By simulating intensity distributions in some planes, the ITE is turns into a Poisson equation with Neumann boundary conditions. The Poisson equation is solved by means of the iterative algorithm SOR (Simultaneous Over-Relaxation).
Pastor, J
2004-07-01
We have determined the equation of state of nuclear matter according to relativistic non-linear models. In particular, we are interested in regions of high density and/or high temperature, in which the thermodynamic functions have very different behaviours depending on which model one uses. The high-density behaviour is, for example, a fundamental ingredient for the determination of the maximum mass of neutron stars. As an application, we have studied the process of two-pion annihilation into e{sup +}e{sup -} pairs in dense and hot matter. Accordingly, we have determined the way in which the non-linear terms modify the meson propagators occurring in this process. Our results have been compared with those obtained for the meson propagators in free space. We have found models that give an enhancement of the dilepton production rate in the low invariant mass region. Such an enhancement is in good agreement with the invariant mass dependence of the data obtained in heavy ions collisions at CERN/SPS energies. (author)
Bal, G. [Electricite de France (EDF), Direction des Etudes et Recherches, 92 - Clamart (France)
1997-12-31
Neutron transport in nuclear reactors is well modeled by the linear Boltzmann transport equation. Its resolution is relatively easy but very expensive. To achieve whole core calculations, one has to consider simpler models, such as diffusion or homogeneous transport equations. However, the solutions may become inaccurate in particular situations (as accidents for instance). That is the reason why we wish to solve the equations on small area accurately and more coarsely on the remaining part of the core. It is than necessary to introduce some links between different discretizations or modelizations. In this note, we give some results on the coupling of different discretizations of all degrees of freedom of the integral-differential neutron transport equation (two degrees for the angular variable, on for the energy component, and two or three degrees for spatial position respectively in 2D (cylindrical symmetry) and 3D). Two chapters are devoted to the coupling of discrete ordinates methods (for angular discretization). The first one is theoretical and shows the well posing of the coupled problem, whereas the second one deals with numerical applications of practical interest (the results have been obtained from the neutron transport code developed at the R and D, which has been modified for introducing the coupling). Next, we present the nodal scheme RTN0, used for the spatial discretization. We show well posing results for the non-coupled and the coupled problems. At the end, we deal with the coupling of energy discretizations for the multigroup equations obtained by homogenization. Some theoretical results of the discretization of the velocity variable (well-posing of problems), which do not deal directly with the purposes of coupling, are presented in the annexes. (author). 34 refs.
Soliton propagation in relativistic hydrodynamics
Fogaça, D A; 10.1016/j.nuclphysa.2007.03.104
2013-01-01
We study the conditions for the formation and propagation of Korteweg-de Vries (KdV) solitons in nuclear matter. In a previous work we have derived a KdV equation from Euler and continuity equations in non-relativistic hydrodynamics. In the present contribution we extend our formalism to relativistic fluids. We present results for a given equation of state, which is based on quantum hadrodynamics (QHD).
Role of Dielectric Constant on Ion Transport: Reformulated Arrhenius Equation
Shujahadeen B. Aziz
2016-01-01
Full Text Available Solid and nanocomposite polymer electrolytes based on chitosan have been prepared by solution cast technique. The XRD results reveal the occurrence of complexation between chitosan (CS and the LiTf salt. The deconvolution of the diffractogram of nanocomposite solid polymer electrolytes demonstrates the increase of amorphous domain with increasing alumina content up to 4 wt.%. Further incorporation of alumina nanoparticles (6 to 10 wt.% Al2O3 results in crystallinity increase (large crystallite size. The morphological (SEM and EDX analysis well supported the XRD results. Similar trends of DC conductivity and dielectric constant with Al2O3 concentration were explained. The TEM images were used to explain the phenomena of space charge and blocking effects. The reformulated Arrhenius equation (σ(ε′,T=σoexp(-Ea/KBε′T was proposed from the smooth exponential behavior of DC conductivity versus dielectric constant at different temperatures. The more linear behavior of DC conductivity versus 1000/(ɛ′×T reveals the crucial role of dielectric constant in Arrhenius equation. The drawbacks of Arrhenius equation can be understood from the less linear behavior of DC conductivity versus 1000/T. The relaxation processes have been interpreted in terms of Argand plots.
Barik, N.; Mishra, R. N.; Mohanty, D. K.; Panda, P. K.; Frederico, T.
2013-07-01
We have calculated the properties of nuclear matter in a self-consistent manner with a quark-meson coupling mechanism incorporating the structure of nucleons in vacuum through a relativistic potential model; where the dominant confining interaction for the free independent quarks inside a nucleon is represented by a phenomenologically average potential in equally mixed scalar-vector harmonic form. Corrections due to spurious center of mass motion as well as those due to other residual interactions, such as the one gluon exchange at short distances and quark-pion coupling arising out of chiral symmetry restoration, have been considered in a perturbative manner to obtain the nucleon mass in vacuum. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to σ and ω mesons through mean field approximations. The relevant parameters of the interaction are obtained self-consistently while realizing the saturation properties such as the binding energy, pressure, and compressibility of the nuclear matter. We also discuss some implications of chiral symmetry in nuclear matter along with the nucleon and nuclear σ term and the sensitivity of nuclear matter binding energy with variations in the light quark mass.
The adjoint neutron transport equation and the statistical approach for its solution
Saracco, Paolo; Ravetto, Piero
2016-01-01
The adjoint equation was introduced in the early days of neutron transport and its solution, the neutron importance, has ben used for several applications in neutronics. The work presents at first a critical review of the adjoint neutron transport equation. Afterwards, the adjont model is constructed for a reference physical situation, for which an analytical approach is viable, i.e. an infinite homogeneous scattering medium. This problem leads to an equation that is the adjoint of the slowing-down equation that is well-known in nuclear reactor physics. A general closed-form analytical solution to such adjoint equation is obtained by a procedure that can be used also to derive the classical Placzek functions. This solution constitutes a benchmark for any statistical or numerical approach to the adjoint equation. A sampling technique to evaluate the adjoint flux for the transport equation is then proposed and physically interpreted as a transport model for pseudo-particles. This can be done by introducing appr...
A numerical method for the elliptic Monge-Amp\\`ere equation with transport boundary conditions
Froese, Brittany D
2011-01-01
The problem of optimal mass transport arises in numerous applications including image registration, mesh generation, reflector design, and astrophysics. One approach to solving this problem is via the Monge-Amp\\`ere equation. While recent years have seen much work in the development of numerical methods for solving this equation, very little has been done on the implementation of the transport boundary conditions. In this paper, we propose a method for solving the transport problem by iteratively solving a Monge-Amp\\`ere equation with Neumann boundary conditions. We present a new discretization for the equation, which converges to the viscosity solution. The resulting system is solved efficiently with Newton's method. We provide several challenging computational examples that demonstrate the effectiveness and efficiency ($O(M)-O(M^{1.3})$ time) of the proposed method.
Least-squares finite element discretizations of neutron transport equations in 3 dimensions
Manteuffel, T.A [Univ. of Colorado, Boulder, CO (United States); Ressel, K.J. [Interdisciplinary Project Center for Supercomputing, Zurich (Switzerland); Starkes, G. [Universtaet Karlsruhe (Germany)
1996-12-31
The least-squares finite element framework to the neutron transport equation introduced in is based on the minimization of a least-squares functional applied to the properly scaled neutron transport equation. Here we report on some practical aspects of this approach for neutron transport calculations in three space dimensions. The systems of partial differential equations resulting from a P{sub 1} and P{sub 2} approximation of the angular dependence are derived. In the diffusive limit, the system is essentially a Poisson equation for zeroth moment and has a divergence structure for the set of moments of order 1. One of the key features of the least-squares approach is that it produces a posteriori error bounds. We report on the numerical results obtained for the minimum of the least-squares functional augmented by an additional boundary term using trilinear finite elements on a uniform tesselation into cubes.
New developments in energy transfer and transport studies in relativistic laser-plasma interactions
Norreys, P. A.; Green, J. S.; Lancaster, K. L.; Robinson, A. P. L.; Scott, R. H. H.; Perez, F.; Schlenvoight, H.-P.; Baton, S.; Hulin, S.; Vauzour, B.; Santos, J. J.; Adams, D. J.; Markey, K.; Ramakrishna, B.; Zepf, M.; Quinn, M. N.; Yuan, X. H.; McKenna, P.; Schreiber, J.; Davies, J. R.; Higginson, D. P.; Beg, F. N.; Chen, C.; Ma, T.; Patel, P.
2010-12-01
Two critical issues related to the success of fast ignition inertial fusion have been vigorously investigated in a co-ordinated campaign in the European Union and the United States. These are the divergence of the fast electron beam generated in intense, PW laser-plasma interactions and the fast electron energy transport with the use of high intensity contrast ratio laser pulses. Proof is presented that resistivity gradient-induced magnetic fields can guide fast electrons over significant distances in (initially) cold metallic targets. Comparison of experiments undertaken in both France and the United States suggests that an important factor in obtaining efficient coupling into dense plasma is the irradiation with high intensity contrast ratio laser pulses, rather than the colour of the laser pulse itself.
Relativistic viscoelastic fluid mechanics.
Fukuma, Masafumi; Sakatani, Yuho
2011-08-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Explicit solutions of the radiative transport equation in the P{sub 3} approximation
Liemert, André, E-mail: andre.liemert@ilm.uni-ulm.de; Kienle, Alwin [Institut für Lasertechnologien in der Medizin und Meßtechnik an der Universität Ulm, Helmholtzstr.12, Ulm D-89081 (Germany)
2014-11-01
Purpose: Explicit solutions of the monoenergetic radiative transport equation in the P{sub 3} approximation have been derived which can be evaluated with nearly the same computational effort as needed for solving the standard diffusion equation (DE). In detail, the authors considered the important case of a semi-infinite medium which is illuminated by a collimated beam of light. Methods: A combination of the classic spherical harmonics method and the recently developed method of rotated reference frames is used for solving the P{sub 3} equations in closed form. Results: The derived solutions are illustrated and compared to exact solutions of the radiative transport equation obtained via the Monte Carlo (MC) method as well as with other approximated analytical solutions. It is shown that for the considered cases which are relevant for biomedical optics applications, the P{sub 3} approximation is close to the exact solution of the radiative transport equation. Conclusions: The authors derived exact analytical solutions of the P{sub 3} equations under consideration of boundary conditions for defining a semi-infinite medium. The good agreement to Monte Carlo simulations in the investigated domains, for example, in the steady-state and time domains, as well as the short evaluation time needed suggests that the derived equations can replace the often applied solutions of the diffusion equation for the homogeneous semi-infinite medium.
Asch, M.
1990-01-01
The author studies analytically and numerically a transport equation arising from acoustic wave propagation due to a point source in a randomly layered half space. Random material properties whose fluctuations are not restricted in magnitude, but are on a specific length scale are included in the acoustic equations. Analysis of the resulting stochastic differential equations by asymptotic methods lead to the derivation of a transport equation which describes the moments of the reflected pressure field. This equation is an infinite system of linear hyperbolic partial differential equations. A probabilistic interpretation of the transport equation by random walks leads to an existence and uniqueness proof. This interpretation is also the basis of numerical simulations by a Monte Carlo method for a plane wave problem. This is not an efficient numerical method, but provides insight into the mechanism of multiple scattering in the limit studied here. Finite difference methods must be used in the point source case. Due to the singular nature of the initial conditions he prefers to desingularize the system by substituting a progressing wave expansion. This desingularization is a prerequisite for solving an inverse problem. The regularized equations are then integrated and discretized using simple numerical methods. The resulting problem is extremely large (four dimensions plus time) and sophisticated vectorization and parallelization techniques must be applied in order to solve it efficiently. The results obtained are in good agreement with known explicit solutions for statistically homogeneous media.
Barakat, A. R.; Schunk, R. W.
1982-01-01
A wide variety of plasma flow conditions is found in aeronomy and space plasma physics. Transport equations based on an isotropic Maxwellian vilecity distribution function can be used to describe plasma flows which contain 'small' temperature anisotropies. However, for plasma flows characterized by large temperature anisotropies, transport equations based on an anisotropic bi-Maxwellian (or two-temperature) velocity distribution function are expected to provide a much better description of the plasma transport properties. The present investigation is concerned with the extent to which transport equations based on both Maxwellian and bi-Maxwellian series expansions can describe plasma flows characterized by non-Maxwellian velocity distributions, giving particular attention to a modelling of the anisotropic character of the distribution function. The obtained results should provide clues as to the extent to which a given series expansion can account for the anisotropic character of a plasma.
2008-01-01
A discrete ordinates method for a threedimensional first-order neutron transport equation based on unstructured-meshes that avoids the singularity of the second-order neutron transport equation in void regions was derived.The finite element variation equation was obtained using the least-squares method.A three-dimensional transport calculation code was developed.Both the triangular-z and the tetrahedron elements were included.The numerical results of some benchmark problems demonstrated that this method can solve neutron transport problems in unstructuredmeshes very well.For most problems,the error of the eigenvalue and the angular flux is less than 0.3% and 3.0% respectively.
Lee, Roman N
2016-01-01
We apply the differential equation method to the calculation of the total Born cross section of the process $Z_1Z_2\\to Z_1Z_2e^+e^-$. We obtain explicit expression for the cross section exact in the relative velocity of the nuclei.
Pérez Guerrero, J. S.; Skaggs, T. H.
2010-08-01
SummaryMathematical models describing contaminant transport in heterogeneous porous media are often formulated as an advection-dispersion transport equation with distance-dependent transport coefficients. In this work, a general analytical solution is presented for the linear, one-dimensional advection-dispersion equation with distance-dependent coefficients. An integrating factor is employed to obtain a transport equation that has a self-adjoint differential operator, and a solution is found using the generalized integral transform technique (GITT). It is demonstrated that an analytical expression for the integrating factor exists for several transport equation formulations of practical importance in groundwater transport modeling. Unlike nearly all solutions available in the literature, the current solution is developed for a finite spatial domain. As an illustration, solutions for the particular case of a linearly increasing dispersivity are developed in detail and results are compared with solutions from the literature. Among other applications, the current analytical solution will be particularly useful for testing or benchmarking numerical transport codes because of the incorporation of a finite spatial domain.
Ma, Tammy Yee Wing [Univ. of California, San Diego, CA (United States)
2010-01-01
The reentrant cone approach to Fast Ignition, an advanced Inertial Confinement Fusion scheme, remains one of the most attractive because of the potential to efficiently collect and guide the laser light into the cone tip and direct energetic electrons into the high density core of the fuel. However, in the presence of a preformed plasma, the laser energy is largely absorbed before it can reach the cone tip. Full scale fast ignition laser systems are envisioned to have prepulses ranging between 100 mJ to 1 J. A few of the imperative issues facing fast ignition, then, are the conversion efficiency with which the laser light is converted to hot electrons, the subsequent transport characteristics of those electrons, and requirements for maximum allowable prepulse this may put on the laser system. This dissertation examines the laser-to-fast electron conversion efficiency scaling with prepulse for cone-guided fast ignition. Work in developing an extreme ultraviolet imager diagnostic for the temperature measurements of electron-heated targets, as well as the validation of the use of a thin wire for simultaneous determination of electron number density and electron temperature will be discussed.
DYNAMIQUE DE LA FISSION PAR LES EQUATIONS DE TRANSPORT
F BENRACHI
2000-06-01
Full Text Available A haute énergie d’excitation, le modèle statistique utilisé pour décrire la compétition entre la fission et l’évaporation de particules légères cesse d’être valable. Le désaccord entre les prédictions du modèle statistique et l’expérience est très grand et atteint jusqu’à trois fois l’ordre de grandeur. Du point de vue physique, la fission est un processus dynamique et pas purement statistique. Un autre outil mathématique est alors introduit: les équations de transport. La description de la dynamique de la fission à l’aide des équations de transport a permis d’obtenir des résultats satisfaisants pour les multiplicités des neutrons. Pour les particules chargées, il faut prendre en compte la déformation et la rotation collective du noyau dans l’évaluation des largeurs d’émission.
Schinabeck, C.; Erpenbeck, A.; Härtle, R.; Thoss, M.
2016-11-01
Within the hierarchical quantum master equation (HQME) framework, an approach is presented, which allows a numerically exact description of nonequilibrium charge transport in nanosystems with strong electronic-vibrational coupling. The method is applied to a generic model of vibrationally coupled transport considering a broad spectrum of parameters ranging from the nonadiabatic to the adiabatic regime and including both resonant and off-resonant transport. We show that nonequilibrium effects are important in all these regimes. In particular, in the off-resonant transport regime, the inelastic cotunneling signal is analyzed for a vibrational mode in full nonequilibrium, revealing a complex interplay of different transport processes and deviations from the commonly used G0/2 rule of thumb. In addition, the HQME approach is used to benchmark approximate master equation and nonequilibrium Green's function methods.
Maassen, Jesse; Lundstrom, Mark
2016-03-01
Understanding ballistic phonon transport effects in transient thermoreflectance experiments and explaining the observed deviations from classical theory remains a challenge. Diffusion equations are simple and computationally efficient but are widely believed to break down when the characteristic length scale is similar or less than the phonon mean-free-path. Building on our prior work, we demonstrate how well-known diffusion equations, namely, the hyperbolic heat equation and the Cattaneo equation, can be used to model ballistic phonon effects in frequency-dependent periodic steady-state thermal transport. Our analytical solutions are found to compare excellently to rigorous numerical results of the phonon Boltzmann transport equation. The correct physical boundary conditions can be different from those traditionally used and are paramount for accurately capturing ballistic effects. To illustrate the technique, we consider a simple model problem using two different, commonly used heating conditions. We demonstrate how this framework can easily handle detailed material properties, by considering the case of bulk silicon using a full phonon dispersion and mean-free-path distribution. This physically transparent approach provides clear insights into the nonequilibrium physics of quasi-ballistic phonon transport and its impact on thermal transport properties.
The suspended sediment transport equation and its near-bed sediment flux
无
2009-01-01
The suspended sediment transport equation and its near-bed sediment flux are one of the key problems of sediment transport research under nonequilibrium condition. Based on the three-dimensional primitive suspended transport equation, the two-dimensional suspended sediment transport equation is deduced. The derived process indicates that the physical essence of the near-bed sediment flux is right the bottom boundary condition for the suspended sediment transport equation. This paper analyzes the internal relations between the two methods of sediment carrying capacity and shear stress in common use, points out the consistency of these two methods in terms of form and physical meaning, and unifies these two methods theoretically. Furthermore, based on the analysis and comparison of the expressions of the near-bed sediment flux, this paper summarizes some problems to which attention should be paid, thus offering a novel approach to the study and the solution of the problems of suspended sediment transport and exchange flux of near-bed water sediment.
The suspended sediment transport equation and its near-bed sediment flux
LI RuiJie; LUO Feng; ZHU WenJin
2009-01-01
The suspended sediment transport equation and its near-bed sediment flux are one of the key prob-lems of sediment transport research under nonequilibrium condition. Based on the three-dimensional primitive suspended transport equation, the two-dimensional suspended sediment transport equation is deduced. The derived process indicates that the physical essence of the near-bed sediment flux is right the bottom boundary condition for the suspended sediment transport equation. This paper ana-lyzes the internal relations between the two methods of sediment carrying capacity and shear stress in common use, points out the consistency of these two methods in terms of form and physical meaning, and unifies these two methods theoretically. Furthermore, based on the analysis and comparison of the expressions of the near-bed sediment flux, this paper summarizes some problems to which attention should be paid, thus offering a novel approach to the study and the solution of the problems of sus-pended sediment transport and exchange flux of near-bed water sediment.
Stokes, Peter W.; Philippa, Bronson; Cocks, Daniel; White, Ronald D.
2017-04-01
A generalized phase-space kinetic Boltzmann equation for highly nonequilibrium charged particle transport via localized and delocalized states is used to develop continuity, momentum, and energy balance equations, accounting explicitly for scattering, trapping and detrapping, and recombination loss processes. Analytic expressions detail the effect of these microscopic processes on mobility and diffusivity. Generalized Einstein relations (GER) are developed that enable the anisotropic nature of diffusion to be determined in terms of the measured field dependence of the mobility. Interesting phenomena such as negative differential conductivity and recombination heating and cooling are shown to arise from recombination loss processes and the localized and delocalized nature of transport. Fractional transport emerges naturally within this framework through the appropriate choice of divergent mean waiting time distributions for localized states, and fractional generalizations of the GER and mobility are presented. Signature impacts on time-of-flight current transients of recombination loss processes via both localized and delocalized states are presented.
Tervo, J; Frank, M; Herty, M
2016-01-01
The paper considers a coupled system of linear Boltzmann transport equation (BTE), and its Continuous Slowing Down Approximation (CSDA). This system can be used to model the relevant transport of particles used e.g. in dose calculation in radiation therapy. The evolution of charged particles (e.g. electrons and positrons) are in practice often modelled using the CSDA version of BTE because of the so-called forward peakedness of scattering events contributing to the particle fluencies (or particle densities), which causes severe problems for numerical methods. First, we prove the existence and uniqueness of solutions, under sufficient criteria and in appropriate $L^2$-based spaces, of a single (particle) CSDA-equation by using two complementary techniques, the Lions-Lax-Milgram Theorem (variational approach), and the theory evolution operators (semigroup approach). The necessary a priori estimates are shown. In addition, we prove the corresponding results and estimates for the system of coupled transport equat...
A time dependent mixing model to close PDF equations for transport in heterogeneous aquifers
Schüler, L.; Suciu, N.; Knabner, P.; Attinger, S.
2016-10-01
Probability density function (PDF) methods are a promising alternative to predicting the transport of solutes in groundwater under uncertainty. They make it possible to derive the evolution equations of the mean concentration and the concentration variance, used in moment methods. The mixing model, describing the transport of the PDF in concentration space, is essential for both methods. Finding a satisfactory mixing model is still an open question and due to the rather elaborate PDF methods, a difficult undertaking. Both the PDF equation and the concentration variance equation depend on the same mixing model. This connection is used to find and test an improved mixing model for the much easier to handle concentration variance. Subsequently, this mixing model is transferred to the PDF equation and tested. The newly proposed mixing model yields significantly improved results for both variance modelling and PDF modelling.
Examination of transport equations pertaining to permeable elastic tubules such as Henle's loop.
Basmadjian, D; Baines, A D
1978-01-01
The transport equations applicable to loops of Henle and similar elastic permeable tubules were re-examined to assess the effect of radial transport resistance in the lumen and tubule geometry on solute transport. Active transport at the wall as well as external gradients equivalent to a 2--1,000-fold concentration increase per centimeter of distance were considered. Wall permeabilities and active transport constants were varied up to 2 . 10(-2) cm/s. It is shown that for conditions applicable to the loop of Henle, resistance to radial solute transfer in the lumen is negligible, both for passive and active transmural transport with concomitant water flux, and that axial dispersion further reduces that resistance. These conclusions apply equally to conical and elliptical geometries likely to arise in loop operation. The validity of Poiseuille's equation for these geometries is discussed. Ii is concluded that the one-dimensional transport equations are a valid representation of loop operation. Images FIGURE 1 PMID:737282
Bouchard, Hugo; Bielajew, Alex
2015-07-07
To establish a theoretical framework for generalizing Monte Carlo transport algorithms by adding external electromagnetic fields to the Boltzmann radiation transport equation in a rigorous and consistent fashion. Using first principles, the Boltzmann radiation transport equation is modified by adding a term describing the variation of the particle distribution due to the Lorentz force. The implications of this new equation are evaluated by investigating the validity of Fano's theorem. Additionally, Lewis' approach to multiple scattering theory in infinite homogeneous media is redefined to account for the presence of external electromagnetic fields. The equation is modified and yields a description consistent with the deterministic laws of motion as well as probabilistic methods of solution. The time-independent Boltzmann radiation transport equation is generalized to account for the electromagnetic forces in an additional operator similar to the interaction term. Fano's and Lewis' approaches are stated in this new equation. Fano's theorem is found not to apply in the presence of electromagnetic fields. Lewis' theory for electron multiple scattering and moments, accounting for the coupling between the Lorentz force and multiple elastic scattering, is found. However, further investigation is required to develop useful algorithms for Monte Carlo and deterministic transport methods. To test the accuracy of Monte Carlo transport algorithms in the presence of electromagnetic fields, the Fano cavity test, as currently defined, cannot be applied. Therefore, new tests must be designed for this specific application. A multiple scattering theory that accurately couples the Lorentz force with elastic scattering could improve Monte Carlo efficiency. The present study proposes a new theoretical framework to develop such algorithms.
The H sub N method for solving linear transport equation: theory and applications
Tezcan, C; Guelecyuez, M C
2003-01-01
The system of singular integral equations which is obtained from the integro-differential form of the linear transport equation using the Placzek lemma is solved. The exit distributions at the boundaries of the various media and the infinite medium Green's function are used. The process is applied to the half-space and finite slab problems. The neutron angular density in terms of singular eigenfunctions of the method of elementary solutions is also used to derive the same analytical expressions.
Stability analysis of a system coupled to a transport equation using integral inequalities
Baudouin, Lucie; Seuret, Alexandre; Safi, Mohammed
2016-01-01
International audience; We address the stability of a system of ordinary differential equations coupled with a transport partial differential equation, using a Lyapunov functional approach. This system can also be interpreted as a finite dimensional system subject to a state delay. Inspired from recent developments on time-delay systems, a novel method to assess stability of such a class of coupled systems is developed here. We will specifically take advantage of a polynomial approximation of...
The Transport Equation in Optically Thick Media: Discussion of IMC and its Diffusion Limit
Szoke, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brooks, E. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-07-12
We discuss the limits of validity of the Implicit Monte Carlo (IMC) method for the transport of thermally emitted radiation. The weakened coupling between the radiation and material energy of the IMC method causes defects in handling problems with strong transients. We introduce an approach to asymptotic analysis for the transport equation that emphasizes the fact that the radiation and material temperatures are always different in time-dependent problems, and we use it to show that IMC does not produce the correct diffusion limit. As this is a defect of IMC in the continuous equations, no improvement to its discretization can remedy it.
Solving the transport equation with quadratic finite elements: Theory and applications
Ferguson, J.M. [Lawrence Livermore National Lab., CA (United States)
1997-12-31
At the 4th Joint Conference on Computational Mathematics, the author presented a paper introducing a new quadratic finite element scheme (QFEM) for solving the transport equation. In the ensuing year the author has obtained considerable experience in the application of this method, including solution of eigenvalue problems, transmission problems, and solution of the adjoint form of the equation as well as the usual forward solution. He will present detailed results, and will also discuss other refinements of his transport codes, particularly for 3-dimensional problems on rectilinear and non-rectilinear grids.
Kinetic theory the Chapman-Enskog solution of the transport equation for moderately dense gases
Brush, S G
1972-01-01
Kinetic Theory, Volume 3: The Chapman-Enskog Solution of the Transport Equation for Moderately Dense Gases describes the Chapman-Enskog solution of the transport equation for moderately dense gases. Topics covered range from the propagation of sound in monatomic gases to the kinetic theory of simple and composite monatomic gases and generalizations of the theory to higher densities. The application of kinetic theory to the determination of intermolecular forces is also discussed. This volume is divided into two sections and begins with an introduction to the work of Hilbert, Chapman, and Ensko
h-Refinement for simple corner balance scheme of SN transport equation on distorted meshes
Yang, Rong; Yuan, Guangwei
2016-11-01
The transport sweep algorithm is a common method for solving discrete ordinate transport equation, but it breaks down once a concave cell appears in spatial meshes. To deal with this issue a local h-refinement for simple corner balance (SCB) scheme of SN transport equation on arbitrary quadrilateral meshes is presented in this paper by using a new subcell partition. It follows that a hybrid mesh with both triangle and quadrilateral cells is generated, and the geometric quality of these cells improves, especially it is ensured that all cells become convex. Combining with the original SCB scheme, an adaptive transfer algorithm based on the hybrid mesh is constructed. Numerical experiments are presented to verify the utility and accuracy of the new algorithm, especially for some application problems such as radiation transport coupled with Lagrangian hydrodynamic flow. The results show that it performs well on extremely distorted meshes with concave cells, on which the original SCB scheme does not work.
Demianski, Marek
2013-01-01
Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity
Shulin Wu
2009-01-01
Full Text Available We propose a new idea to construct an effective algorithm to compute the minimal positive solution of the nonsymmetric algebraic Riccati equations arising from transport theory. For a class of these equations, an important feature is that the minimal positive solution can be obtained by computing the minimal positive solution of a couple of fixed-point equations with vector form. Based on the fixed-point vector equations, we introduce a new algorithm, namely, two-step relaxation Newton, derived by combining two different relaxation Newton methods to compute the minimal positive solution. The monotone convergence of the solution sequence generated by this new algorithm is established. Numerical results are given to show the advantages of the new algorithm for the nonsymmetric algebraic Riccati equations in vector form.
New Travelling Wave Solutions of Burgers Equation with Finite Transport Memory
Sakthivel, Rathinasamy; Chun, Changbum; Lee, Jonu
2010-09-01
The nonlinear evolution equations with finite memory have a wide range of applications in science and engineering. The Burgers equation with finite memory transport (time-delayed) describes convection-diffusion processes. In this paper, we establish the new solitary wave solutions for the time-delayed Burgers equation. The extended tanh method and the exp-function method have been employed to reveal these new solutions. Further, we have calculated the numerical solutions of the time-delayed Burgers equation with initial conditions by using the homotopy perturbation method (HPM). Our results show that the extended tanh and exp-function methods are very effective in finding exact solutions of the considered problem and HPM is very powerful in finding numerical solutions with good accuracy for nonlinear partial differential equations without any need of transformation or perturbation
Chang, B
2004-03-22
This paper contains three analytical solutions of transport problems which can be used to test ray-effect errors in the numerical solutions of the Boltzmann Transport Equation (BTE). We derived the first two solutions and the third was shown to us by M. Prasad. Since this paper is intended to be an internal LLNL report, no attempt was made to find the original derivations of the solutions in the literature in order to cite the authors for their work.
Xinzhi Liu
1998-01-01
Full Text Available This paper studies a class of high order delay partial differential equations. Employing high order delay differential inequalities, several oscillation criteria are established for such equations subject to two different boundary conditions. Two examples are also given.
Zhang, Dong-Rui; Wei, Si-Na; Yang, Rong-Yao; Xiang, Qian-Fei
2016-01-01
It has been a puzzle whether quarks may exist in the interior of massive neutron stars, since the hadron-quark phase transition softens the equation of state (EOS) and reduce the neutron star (NS) maximum mass very significantly. In this work, we consider the light U-boson that increases the NS maximum mass appreciably through its weak coupling to fermions. The inclusion of the U-boson may thus allow the existence of the quark degrees of freedom in the interior of large mass neutron stars. Unlike the consequence of the U-boson in hadronic matter, the stiffening role of the U-boson in the hybrid EOS is not sensitive to the choice of the hadron phase models. In addition, we have also investigated the effect of the effective QCD correction on the hybrid EOS. This correction may reduce the coupling strength of the U-boson that is needed to satisfy NS maximum mass constraint. While the inclusion of the U-boson also increases the NS radius significantly, we find that appropriate in-medium effects of the U-boson may...
Zhang, Dong-Rui; Jiang, Wei-Zhou; Wei, Si-Na; Yang, Rong-Yao [Southeast University, Department of Physics, Nanjing (China); Xiang, Qian-Fei [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China)
2016-05-15
It has been a puzzle whether quarks may exist in the interior of massive neutron stars, since the hadron-quark phase transition softens the equation of state (EOS) and reduce the neutron star (NS) maximum mass very significantly. In this work, we consider the light U-boson that increases the NS maximum mass appreciably through its weak coupling to fermions. The inclusion of the U-boson may thus allow the existence of the quark degrees of freedom in the interior of large mass neutron stars. Unlike the consequence of the U-boson in hadronic matter, the stiffening role of the U-boson in the hybrid EOS is not sensitive to the choice of the hadron phase models. In addition, we have also investigated the effect of the effective QCD correction on the hybrid EOS. This correction may reduce the coupling strength of the U-boson that is needed to satisfy NS maximum mass constraint. While the inclusion of the U-boson also increases the NS radius significantly, we find that appropriate in-medium effects of the U-boson may reduce the NS radii significantly, satisfying both the NS radius and mass constraints well. (orig.)
Muronga, A
2007-01-01
Relativistic non-ideal fluid dynamics is formulated in 3+1 space--time dimensions. The equations governing dissipative relativistic hydrodynamics are given in terms of the time and the 3-space quantities which correspond to those familiar from non-relativistic physics. Dissipation is accounted for by applying the causal theory of relativistic dissipative fluid dynamics. As a special case we consider a fluid without viscous/heat couplings in the causal system of transport/relaxation equations. For the study of physical systems we consider pure (1+1)-dimensional expansion in planar geometry, (1+1)-dimensional spherically symmetric ({\\em fireball}) expansion, (1+1)-dimensional cylindrically symmetric expansion and a (2+1)-dimensional expansion with cylindrical symmetry in the transverse plane ({\\em firebarell} expansion). The transport/relaxation equations are given in terms of the spatial components of the dissipative fluxes, since these are not independent. The choice for the independent components is analogou...
A Derivation of the Nonlocal Volume-Averaged Equations for Two-Phase Flow Transport
Gilberto Espinosa-Paredes
2012-01-01
Full Text Available In this paper a detailed derivation of the general transport equations for two-phase systems using a method based on nonlocal volume averaging is presented. The local volume averaging equations are commonly applied in nuclear reactor system for optimal design and safe operation. Unfortunately, these equations are limited to length-scale restriction and according with the theory of the averaging volume method, these fail in transition of the flow patterns and boundaries between two-phase flow and solid, which produce rapid changes in the physical properties and void fraction. The non-local volume averaging equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection diffusion and transport properties for two-phase flow; for instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail.
Jin, Jinshuang; Zheng, Xiao; Yan, YiJing
2008-06-21
A generalized quantum master equation theory that governs the exact, nonperturbative quantum dissipation and quantum transport is formulated in terms of hierarchically coupled equations of motion for an arbitrary electronic system in contact with electrodes under either a stationary or a nonstationary electrochemical potential bias. The theoretical construction starts with the influence functional in path integral, in which the electron creation and annihilation operators are Grassmann variables. Time derivatives on the influence functionals are then performed in a hierarchical manner. Both the multiple-frequency dispersion and the non-Markovian reservoir parametrization schemes are considered for the desired hierarchy construction. The resulting hierarchical equations of motion formalism is in principle exact and applicable to arbitrary electronic systems, including Coulomb interactions, under the influence of arbitrary time-dependent applied bias voltage and external fields. Both the conventional quantum master equation and the real-time diagrammatic formalism of Schon and co-workers can be readily obtained at well defined limits of the present theory. We also show that for a noninteracting electron system, the present hierarchical equations of motion formalism terminates at the second tier exactly, and the Landuer-Buttiker transport current expression is recovered. The present theory renders an exact and numerically tractable tool to evaluate various transient and stationary quantum transport properties of many-electron systems, together with the involving nonperturbative dissipative dynamics.
Measuring the contour of a wavefront using the Irradiance Transport Equation (ITE)
Castillo-Rodríguez, Luis; Granados-Agustín, Fermín; Fernández-Guasti, Manuel; Cornejo-Rodríguez, Alejandro
2006-01-01
The Irradiance Transport Equation (ITE), found by Teague, had been used in optics with different applications. One of the field where had been used is in optical testing, for example, with the method developed by Takeda. In this paper following the idea of using different optical and mathematical analysis method, theorical and experimental results are presented.
An analytical approach to the solution of the transport equation for photons
Reichert, Janice Teresinha, E-mail: janice.reichert@gmail.com [Universidade Tecnologica Federal do Parana (UTFPR), Pato Branco, PR (Brazil); Barichello, Liliane Basso, E-mail: lbaric@mat.ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre, RS (Brazil)
2011-07-01
An analytical solution is developed to the one-dimensional transport equation for photons, for the case which includes spectral dependence. The Klein-Nishina kernel for Compton scattering is considered and an analytical discrete ordinates method, the ADO method, is used to solve the resulting angular dependent problem. Numerical simulations are performed to evaluate the buildup factor. (author)
Stochastic approach to the numerical solution of the non-stationary Parker's transport equation
Wawrzynczak, A; Gil, A
2015-01-01
We present the newly developed stochastic model of the galactic cosmic ray (GCR) particles transport in the heliosphere. Mathematically Parker transport equation (PTE) describing non-stationary transport of charged particles in the turbulent medium is the Fokker-Planck type. It is the second order parabolic time-dependent 4-dimensional (3 spatial coordinates and particles energy/rigidity) partial differential equation. It is worth to mention that, if we assume the stationary case it remains as the 3-D parabolic type problem with respect to the particles rigidity R. If we fix the energy it still remains as the 3-D parabolic type problem with respect to time. The proposed method of numerical solution is based on the solution of the system of stochastic differential equations (SDEs) being equivalent to the Parker's transport equation. We present the method of deriving from PTE the equivalent SDEs in the heliocentric spherical coordinate system for the backward approach. The obtained stochastic model of the Forbu...
Bal, Guillaume; Schotland, John C
2015-01-01
We propose a method to reconstruct the density of an optical source in a highly scattering medium from ultrasound-modulated optical measurements. Our approach is based on the solution to a hybrid inverse source problem for the radiative transport equation (RTE). A controllability result for the RTE plays an essential role in the analysis.
Quantum transport in 1d systems via a master equation approach: numerics and an exact solution
Znidaric, Marko
2010-01-01
We discuss recent findings about properties of quantum nonequilibrium steady states. In particular we focus on transport properties. It is shown that the time dependent density matrix renormalization method can be used successfully to find a stationary solution of Lindblad master equation. Furthermore, for a specific model an exact solution is presented.
Stochastic approach to the numerical solution of the non-stationary Parker's transport equation
Wawrzynczak, A.; Modzelewska, R.; Gil, A.
2015-01-01
We present the newly developed stochastic model of the galactic cosmic ray (GCR) particles transport in the heliosphere. Mathematically Parker transport equation (PTE) describing non-stationary transport of charged particles in the turbulent medium is the Fokker-Planck type. It is the second order parabolic time-dependent 4-dimensional (3 spatial coordinates and particles energy/rigidity) partial differential equation. It is worth to mention that, if we assume the stationary case it remains as the 3-D parabolic type problem with respect to the particles rigidity R. If we fix the energy/rigidity it still remains as the 3-D parabolic type problem with respect to time. The proposed method of numerical solution is based on the solution of the system of stochastic differential equations (SDEs) being equivalent to the Parker's transport equation. We present the method of deriving from PTE the equivalent SDEs in the heliocentric spherical coordinate system for the backward approach. The advantages and disadvantages of the forward and the backward solution of the PTE are discussed. The obtained stochastic model of the Forbush decrease of the GCR intensity is in an agreement with the experimental data.
Cobos, Agustín C.; Poma, Ana L.; Alvarez, Guillermo D.; Sanz, Darío E.
2016-10-01
We introduce an alternative method to calculate the steady state solution of the angular photon flux after a numerical evolution of the time-dependent Boltzmann transport equation (BTE). After a proper discretization the transport equation was converted into an ordinary system of differential equations that can be iterated as a weighted Richardson algorithm. As a different approach, in this work the time variable regulates the iteration process and convergence criteria is based on physical parameters. Positivity and convergence was assessed from first principles and a modified Courant-Friedrichs-Lewy condition was devised to guarantee convergence. The Penelope Monte Carlo method was used to test the convergence and accuracy of our approach for different phase space discretizations. Benchmarking was performed by calculation of total fluence and photon spectra in different one-dimensional geometries irradiated with 60Co and 6 MV photon beams and radiological applications were devised.
Analogy betwen dislocation creep and relativistic cosmology
J.A. Montemayor-Aldrete; J.D. Muñoz-Andrade; Mendoza-Allende, A.; Montemayor-Varela, A.
2005-01-01
A formal, physical analogy between plastic deformation, mainly dislocation creep, and Relativistic Cosmology is presented. The physical analogy between eight expressions for dislocation creep and Relativistic Cosmology have been obtained. By comparing the mathematical expressions and by using a physical analysis, two new equations have been obtained for dislocation creep. Also, four new expressions have been obtained for Relativistic Cosmology. From these four new equations, one may determine...
Fields and fluids on curved non-relativistic spacetimes
Geracie, Michael; Roberts, Matthew M
2015-01-01
We consider non-relativistic curved geometries and argue that the background structure should be generalized from that considered in previous works. In this approach the derivative operator is defined by a Galilean spin connection valued in the Lie algebra of the Galilean group. This includes the usual spin connection plus an additional "boost connection" which parameterizes the freedom in the derivative operator not fixed by torsion or metric compatibility. As an example of this approach we develop the theory of non-relativistic dissipative fluids and find significant differences in both equations of motion and allowed transport coefficients from those found previously. Our approach also immediately generalizes to systems with independent mass and charge currents as would arise in multicomponent fluids. Along the way we also discuss how to write general locally Galilean invariant non-relativistic actions for multiple particle species at any order in derivatives. A detailed review of the geometry and its rela...
Homogenization of the Poisson-Nernst-Planck Equations for Ion Transport in Charged Porous Media
Schmuck, Markus
2012-01-01
Effective Poisson-Nernst-Planck (PNP) equations are derived for macroscopic ion transport in charged porous media. Homogenization analysis is performed for a two-component pe- riodic composite consisting of a dilute electrolyte continuum (described by standard PNP equations) and a continuous dielectric matrix, which is impermeable to the ions and carries a given surface charge. Three new features arise in the upscaled equations: (i) the effective ionic diffusivities and mobilities become tensors, related to the microstructure; (ii) the effective permittivity is also a tensor, depending on the electrolyte/matrix permittivity ratio and the ratio of the Debye screening length to mean pore size; and (iii) the surface charge per volume appears as a continuous "background charge density". The coeffcient tensors in the macroscopic PNP equations can be calculated from periodic reference cell problem, and several examples are considered. For an insulating solid matrix, all gradients are corrected by a single tortuosit...
Besnard, D. (Los Alamos National Lab., NM (United States) CEA Centre d' Etudes de Limeil, 94 - Villeneuve-Saint-Georges (France)); Harlow, F.H.; Rauenzahn, R.M.; Zemach, C. (Los Alamos National Lab., NM (United States))
1992-06-01
This study gives an updated account of our current ability to describe multimaterial compressible turbulent flows by means of a one-point transport model. Evolution equations are developed for a number of second-order correlations of turbulent data, and approximations of the gradient type are applied to additional correlations to close the system of equations. The principal fields of interest are the one- point Reynolds tensor for variable-density flow, the turbulent energy dissipation rate, and correlations for density-velocity and density- density fluctuations. This single-field description of turbulent flows is compared in some detail to two-field flow equations for nonturbulent, highly dispersed flow with separate variables for each field. This comparison suggests means for improved modeling of some correlations not subjected to evolution equations.
Relativistic suppression of wave packet spreading.
Su, Q; Smetanko, B; Grobe, R
1998-03-30
We investigate numerically the solution of Dirac equation and analytically the Klein-Gordon equation and discuss the relativistic motion of an electron wave packet in the presence of an intense static electric field. In contrast to the predictions of the (non-relativistic) Schroedinger theory, the spreading rate in the field's polarization direction as well as in the transverse directions is reduced.
Relativistic theories of materials
Bressan, Aldo
1978-01-01
The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...
Morel, J.E.
1981-01-01
A collocation method is developed for the solution of the one-dimensional neutron transport equation in slab geometry with both symmetric and polarly asymmetric scattering. For the symmetric scattering case, it is found that the collocation method offers a combination of some of the best characteristics of the finite-element and discrete-ordinates methods. For the asymmetric scattering case, it is found that the computational cost of cross-section data processing under the collocation approach can be significantly less than that associated with the discrete-ordinates approach. A general diffusion equation treating both symmetric and asymmetric scattering is developed and used in a synthetic acceleration algorithm to accelerate the iterative convergence of collocation solutions. It is shown that a certain type of asymmetric scattering can radically alter the asymptotic behavior of the transport solution and is mathematically equivalent within the diffusion approximation to particle transport under the influence of an electric field. The method is easily extended to other geometries and higher dimensions. Applications exist in the areas of neutron transport with highly anisotropic scattering (such as that associated with hydrogenous media), charged-particle transport, and particle transport in controlled-fusion plasmas. 23 figures, 6 tables.
Averaging of Stochastic Equations for Flow and Transport in PorousMedia
Shvidler, Mark; Karasaki, Kenzi
2005-01-07
It is well known that at present exact averaging of theequations of flow and transport in random porous media have been realizedfor only a small number of special fields. Moreover, the approximateaveraging methods are not yet fully understood. For example, theconvergence behavior and the accuracy of truncated perturbation seriesare not well known; and in addition, the calculation of the high-orderperturbations is very complicated. These problems for a long time havestimulated attempts to find the answer for the question: Are there inexistence some exact general and sufficiently universal forms of averagedequations? If the answer is positive, there arises the problem of theconstruction of these equations and analyzing them. There are manypublications on different applications of this problem to various fields,including: Hydrodynamics, flow and transport in porous media, theory ofelasticity, acoustic and electromagnetic waves in random fields, etc.Here, we present a method of finding some general form of exactlyaveraged equations for flow and transport in random fields by using (1)some general properties of the Green s functions for appropriatestochastic problems, and (2) some basic information about the randomfields of the conductivity, porosity and flow velocity. We presentgeneral forms of exactly averaged non-local equations for the followingcases: (1) steady-state flow with sources in porous media with randomconductivity, (2) transient flow with sources in compressible media withrandom conductivity and porosity; and (3) Nonreactive solute transport inrandom porous media. We discuss the problem of uniqueness and theproperties of the non-local averaged equations for cases with some typeof symmetry (isotropic, transversal isotropic and orthotropic), and weanalyze the structure of the nonlocal equations in the general case ofstochastically homogeneous fields.
Lewin, Mathieu
2011-01-01
In a recent paper published in Nonlinear Analysis: Theory, Methods & Applications, C. Argaez and M. Melgaard studied excited states for pseudo-relativistic multi-configuration methods. Their paper follows a previous work of mine in the non-relativistic case (Arch. Rat. Mech. Anal., 171, 2004). The main results of the paper of C. Argaez and M. Melgaard are correct, but the proofs are both wrong and incomplete.
Fractional Dynamics of Relativistic Particle
Tarasov, Vasily E
2011-01-01
Fractional dynamics of relativistic particle is discussed. Derivatives of fractional orders with respect to proper time describe long-term memory effects that correspond to intrinsic dissipative processes. Relativistic particle subjected to a non-potential four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u_{\\mu} u^{\\mu}+c^2=0, where c is a speed of light in vacuum. In the general case, the fractional dynamics of relativistic particle is described as non-Hamiltonian and dissipative. Conditions for fractional relativistic particle to be a Hamiltonian system are considered.
Note on the Solution of Transport Equation by Tau Method and Walsh Functions
Abdelouahab Kadem
2010-01-01
Full Text Available We consider the combined Walsh function for the three-dimensional case. A method for the solution of the neutron transport equation in three-dimensional case by using the Walsh function, Chebyshev polynomials, and the Legendre polynomials are considered. We also present Tau method, and it was proved that it is a good approximate to exact solutions. This method is based on expansion of the angular flux in a truncated series of Walsh function in the angular variable. The main characteristic of this technique is that it reduces the problems to those of solving a system of algebraic equations; thus, it is greatly simplifying the problem.
Relativistic elastic differential cross sections for equal mass nuclei
C.M. Werneth
2015-10-01
Full Text Available The effects of relativistic kinematics are studied for nuclear collisions of equal mass nuclei. It is found that the relativistic and non-relativistic elastic scattering amplitudes are nearly indistinguishable, and, hence, the relativistic and non-relativistic differential cross sections become indistinguishable. These results are explained by analyzing the Lippmann–Schwinger equation with the first order optical potential that was employed in the calculation.
Relativistic elastic differential cross sections for equal mass nuclei
Werneth, C.M., E-mail: charles.m.werneth@nasa.gov [NASA Langley Research Center, 2 West Reid Street, Hampton, VA 23681 (United States); Maung, K.M.; Ford, W.P. [The University of Southern Mississippi, 118 College Drive, Box 5046, Hattiesburg, MS 39406 (United States)
2015-10-07
The effects of relativistic kinematics are studied for nuclear collisions of equal mass nuclei. It is found that the relativistic and non-relativistic elastic scattering amplitudes are nearly indistinguishable, and, hence, the relativistic and non-relativistic differential cross sections become indistinguishable. These results are explained by analyzing the Lippmann–Schwinger equation with the first order optical potential that was employed in the calculation.
Thermal transport at the nanoscale: A Fourier's law vs. phonon Boltzmann equation study
Kaiser, J.; Feng, T.; Maassen, J.; Wang, X.; Ruan, X.; Lundstrom, M.
2017-01-01
Steady-state thermal transport in nanostructures with dimensions comparable to the phonon mean-free-path is examined. Both the case of contacts at different temperatures with no internal heat generation and contacts at the same temperature with internal heat generation are considered. Fourier's law results are compared to finite volume method solutions of the phonon Boltzmann equation in the gray approximation. When the boundary conditions are properly specified, results obtained using Fourier's law without modifying the bulk thermal conductivity are in essentially exact quantitative agreement with the phonon Boltzmann equation in the ballistic and diffusive limits. The errors between these two limits are examined in this paper. For the four cases examined, the error in the apparent thermal conductivity as deduced from a correct application of Fourier's law is less than 6%. We also find that the Fourier's law results presented here are nearly identical to those obtained from a widely used ballistic-diffusive approach but analytically much simpler. Although limited to steady-state conditions with spatial variations in one dimension and to a gray model of phonon transport, the results show that Fourier's law can be used for linear transport from the diffusive to the ballistic limit. The results also contribute to an understanding of how heat transport at the nanoscale can be understood in terms of the conceptual framework that has been established for electron transport at the nanoscale.
Electron and ion transport equations in computational weakly-ionized plasmadynamics
Parent, Bernard [Department of Aerospace Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Macheret, Sergey O.; Shneider, Mikhail N. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544-5263 (United States)
2014-02-15
A new set of ion and electron transport equations is proposed to simulate steady or unsteady quasi-neutral or non-neutral multicomponent weakly-ionized plasmas through the drift–diffusion approximation. The proposed set of equations is advantaged over the conventional one by being considerably less stiff in quasi-neutral regions because it can be integrated in conjunction with a potential equation based on Ohm's law rather than Gauss's law. The present approach is advantaged over previous attempts at recasting the system by being applicable to plasmas with several types of positive ions and negative ions and by not requiring changes to the boundary conditions. Several test cases of plasmas enclosed by dielectrics and of glow discharges between electrodes show that the proposed equations yield the same solution as the standard equations but require 10 to 100 times fewer iterations to reach convergence whenever a quasi-neutral region forms. Further, several grid convergence studies indicate that the present approach exhibits a higher resolution (and hence requires fewer nodes to reach a given level of accuracy) when ambipolar diffusion is present. Because the proposed equations are not intrinsically linked to specific discretization or integration schemes and exhibit substantial advantages with no apparent disadvantage, they are generally recommended as a substitute to the fluid models in which the electric field is obtained from Gauss's law as long as the plasma remains weakly-ionized and unmagnetized.
Special Relativistic Hydrodynamics with Gravitation
Hwang, Jai-chan; Noh, Hyerim
2016-12-01
Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.
Special relativistic hydrodynamics with gravitation
Hwang, Jai-chan
2016-01-01
The special relativistic hydrodynamics with weak gravity is hitherto unknown in the literature. Whether such an asymmetric combination is possible was unclear. Here, the hydrodynamic equations with Poisson-type gravity considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit are consistently derived from Einstein's general relativity. Analysis is made in the maximal slicing where the Poisson's equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the {\\it general} hypersurface condition. Our formulation includes the anisotropic stress.
Jin, Jinshuang, E-mail: jsjin@hznu.edu.cn [Department of Physics, Hangzhou Normal University, Hangzhou 310036 (China); Li, Jun [Department of Physics, Hangzhou Normal University, Hangzhou 310036 (China); College of Physics and Electronic Engineering, Dezhou University, Dezhou 253023 (China); Liu, Yu [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Li, Xin-Qi, E-mail: lixinqi@bnu.edu.cn [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Department of Physics, Beijing Normal University, Beijing 100875 (China); Department of Chemistry, Hong Kong University of Science and Technology, Kowloon (Hong Kong); Yan, YiJing, E-mail: yyan@ust.hk [Department of Chemistry, Hong Kong University of Science and Technology, Kowloon (Hong Kong); Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China)
2014-06-28
Beyond the second-order Born approximation, we propose an improved master equation approach to quantum transport under self-consistent Born approximation. The basic idea is to replace the free Green's function in the tunneling self-energy diagram by an effective reduced propagator under the Born approximation. This simple modification has remarkable consequences. It not only recovers the exact results for quantum transport through noninteracting systems under arbitrary voltages, but also predicts the challenging nonequilibrium Kondo effect. Compared to the nonequilibrium Green's function technique that formulates the calculation of specific correlation functions, the master equation approach contains richer dynamical information to allow more efficient studies for such as the shot noise and full counting statistics.
Jin, Jinshuang; Li, Jun; Liu, Yu; Li, Xin-Qi; Yan, YiJing
2014-06-28
Beyond the second-order Born approximation, we propose an improved master equation approach to quantum transport under self-consistent Born approximation. The basic idea is to replace the free Green's function in the tunneling self-energy diagram by an effective reduced propagator under the Born approximation. This simple modification has remarkable consequences. It not only recovers the exact results for quantum transport through noninteracting systems under arbitrary voltages, but also predicts the challenging nonequilibrium Kondo effect. Compared to the nonequilibrium Green's function technique that formulates the calculation of specific correlation functions, the master equation approach contains richer dynamical information to allow more efficient studies for such as the shot noise and full counting statistics.
Talamo, Alberto
2013-05-01
This study presents three numerical algorithms to solve the time dependent neutron transport equation by the method of the characteristics. The algorithms have been developed taking into account delayed neutrons and they have been implemented into the novel MCART code, which solves the neutron transport equation for two-dimensional geometry and an arbitrary number of energy groups. The MCART code uses regular mesh for the representation of the spatial domain, it models up-scattering, and takes advantage of OPENMP and OPENGL algorithms for parallel computing and plotting, respectively. The code has been benchmarked with the multiplication factor results of a Boiling Water Reactor, with the analytical results for a prompt jump transient in an infinite medium, and with PARTISN and TDTORT results for cross section and source transients. The numerical simulations have shown that only two numerical algorithms are stable for small time steps.
Investigation on shock waves stability in relativistic gas dynamics
Alexander Blokhin
1993-05-01
Full Text Available This paper is devoted to investigation of the linearized mixed problem of shock waves stability in relativistic gas dynamics. The problem of symmetrization of relativistic gas dynamics equations is also discussed.
Modeling of the subgrid-scale term of the filtered magnetic field transport equation
Balarac, Guillaume; Kosovichev, Alexander; Brugière, Olivier; Wray, Alan; Mansour, Nagi
2010-01-01
Accurate subgrid-scale turbulence models are needed to perform realistic numerical magnetohydrodynamic (MHD) simulations of the subsurface flows of the Sun. To perform large-eddy simulations (LES) of turbulent MHD flows, three unknown terms have to be modeled. As a first step, this work proposes to use a priori tests to measure the accuracy of various models proposed to predict the SGS term appearing in the transport equation of the filtered magnetic field. It is proposed to evaluate the SGS ...
A stable scheme for computation of coupled transport and equilibrium equations in tokamaks
Fable, E.; Angioni, C.; Ivanov, A. A.; Lackner, K.; Maj, O.; Yu, S.; Medvedev; Pautasso, G.; Pereverzev, G. V.
2013-03-01
The coupled system consisting of 1D radial transport equations and the quasi-static 2D magnetic equilibrium equation for axisymmetric systems (tokamaks) is known to be prone to numerical instabilities, either due to propagation of numerical errors in the iteration process, or due to the choice of the numerical scheme itself. In this paper, a possible origin of these instabilities, specifically associated with the latter condition, is discussed and an approach is chosen, which is shown to have good accuracy and stability properties. This scheme is proposed to be used within those codes for which the poloidal flux ψ is the quantity solved for in the current diffusion equation. Mathematical arguments are used to study the convergence properties of the proposed scheme.
Anisotropic scattering treatment for the neutron transport equation with primal finite elements
Akherraz, B.; Fedon-Magnaud, C.; Lautard, J.J.; Sanchez, R. [Commissariat a l`Energie Atomique, Gif-sur-Yvette (France)
1995-07-01
Three approaches are presented to treat anisotropic scattering in neutron transport. The approaches are based on the even-odd-parity flux formalism and yield three different second-order equations for the even-parity flux. The first one is based on the total elimination of the odd-parity flux of the second-order equation. In the other two approaches, anisotropic scattering contributions are homogenized and incorporated into the collision term. The numerical solutions of these equations are implemented in the CRONOS code for pressurized water reactor core calculations and are done with a finite element spatial approximation and the discrete ordinates methods (S{sub N}) for the angular variable. Numerical results are presented for critical problems (k{sub eff}) in x-y geometry. Comparisons with the APOLLO2 assembly code show the accuracy and the efficiency of the proposed algorithms.
Hagelaar, G J M; Pitchford, L C [Centre de Physique des Plasmas et de leurs Applications de Toulouse, Universite Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9 (France)
2005-11-15
Fluid models of gas discharges require the input of transport coefficients and rate coefficients that depend on the electron energy distribution function. Such coefficients are usually calculated from collision cross-section data by solving the electron Boltzmann equation (BE). In this paper we present a new user-friendly BE solver developed especially for this purpose, freely available under the name BOLSIG+, which is more general and easier to use than most other BE solvers available. The solver provides steady-state solutions of the BE for electrons in a uniform electric field, using the classical two-term expansion, and is able to account for different growth models, quasi-stationary and oscillating fields, electron-neutral collisions and electron-electron collisions. We show that for the approximations we use, the BE takes the form of a convection-diffusion continuity-equation with a non-local source term in energy space. To solve this equation we use an exponential scheme commonly used for convection-diffusion problems. The calculated electron transport coefficients and rate coefficients are defined so as to ensure maximum consistency with the fluid equations. We discuss how these coefficients are best used in fluid models and illustrate the influence of some essential parameters and approximations.
Quantum transport equations for low-dimensional multiband electronic systems: I.
Kupčić, I; Rukelj, Z; Barišić, S
2013-04-10
A systematic method of calculating the dynamical conductivity tensor in a general multiband electronic model with strong boson-mediated electron-electron interactions is described. The theory is based on the exact semiclassical expression for the coupling between valence electrons and electromagnetic fields and on the self-consistent Bethe-Salpeter equations for the electron-hole propagators. The general diagrammatic perturbation expressions for the intraband and interband single-particle conductivity are determined. The relations between the intraband Bethe-Salpeter equation, the quantum transport equation and the ordinary transport equation are briefly discussed within the memory-function approximation. The effects of the Lorentz dipole-dipole interactions on the dynamical conductivity of low-dimensional spα models are described in the same approximation. Such formalism proves useful in studies of different (pseudo)gapped states of quasi-one-dimensional systems with the metal-to-insulator phase transitions and can be easily extended to underdoped two-dimensional high-Tc superconductors.
Peng Wei
2016-01-01
Full Text Available Tight schedules, multifunctional scopes, and colossal sizes usually characterize transportation megaprojects as challenging tasks for completion. In order to address these situations, a schedule risk management method was developed in this paper based on the structural equation model. In the proposed method, risk identification, evaluation and response were arranged as a sequence, and the expert elicitation technique was adopted in order to quantify the schedule risk status. To demonstrate the applicability of the proposed model, a megaproject case in China, the Shanghai Hongqiao Integrated Transport Hub (SHITH, was chosen. Information within the expanded risk register was collected including the probability and consequence of risk events, the complexity of risk responsible owners, the reaction time, and the time lasting for risk countermeasures. Final risk control results showed that the method could not only address the schedule risks correlations effectively, but also maintained the simplicity for construction management practices.
Relativistic Hydrodynamics with Wavelets
DeBuhr, Jackson; Anderson, Matthew; Neilsen, David; Hirschmann, Eric W
2015-01-01
Methods to solve the relativistic hydrodynamic equations are a key computational kernel in a large number of astrophysics simulations and are crucial to understanding the electromagnetic signals that originate from the merger of astrophysical compact objects. Because of the many physical length scales present when simulating such mergers, these methods must be highly adaptive and capable of automatically resolving numerous localized features and instabilities that emerge throughout the computational domain across many temporal scales. While this has been historically accomplished with adaptive mesh refinement (AMR) based methods, alternatives based on wavelet bases and the wavelet transformation have recently achieved significant success in adaptive representation for advanced engineering applications. This work presents a new method for the integration of the relativistic hydrodynamic equations using iterated interpolating wavelets and introduces a highly adaptive implementation for multidimensional simulati...
Keenan, Brett; Ford, Alex; Medvedev, Mikhail
2014-10-01
Plasma turbulence in some astrophysical objects (e.g., weakly magnetized collisionless shocks in GRBs and SN) has small-scale electro-magnetic field fluctuations. We study spectral characteristics of radiation produced by particles moving in such turbulence and relate it to transport properties (diffusion) of these particles. It was shown earlier that relativistic particles produce jitter radiation, which spectral characteristics are markedly different from synchrotron radiation. Here we study radiation produced by non-relativistic particles. Unlike radiation in homogeneous field, which spectrum consists of a single cyclotron harmonic, radiation in the sub-Larmor-scale turbulence reflects statistical properties of the underlying magnetic field. We present both analytical estimates and results of ab initio numerical simulations. We also show that particle propagation in such turbulence is diffusive and evaluate the diffusion coefficient. We demonstrate that the diffusion coefficient correlates with some spectral parameters. These results can be very valuable for remote diagnostics of laboratory and astrophysical plasmas. Supported by grant DOE grant DE-FG02-07ER54940 and NSF grant AST-1209665.
Relativistic cosmological hydrodynamics
Hwang, J
1997-01-01
We investigate the relativistic cosmological hydrodynamic perturbations. We present the general large scale solutions of the perturbation variables valid for the general sign of three space curvature, the cosmological constant, and generally evolving background equation of state. The large scale evolution is characterized by a conserved gauge invariant quantity which is the same as a perturbed potential (or three-space curvature) in the comoving gauge.
Collins, Kimberlee C.; Maznev, Alexei A.; Tian, Zhiting; Esfarjani, Keivan; Nelson, Keith A.; Chen, Gang
2013-09-01
The relaxation of an one-dimensional transient thermal grating (TTG) in a medium with phonon-mediated thermal transport is analyzed within the framework of the Boltzmann transport equation (BTE), with the goal of extracting phonon mean free path (MFP) information from TTG measurements of non-diffusive phonon transport. Both gray-medium (constant MFP) and spectrally dependent MFP models are considered. In the gray-medium approximation, an analytical solution is derived. For large TTG periods compared to the MFP, the model yields an exponential decay of grating amplitude with time in agreement with Fourier's heat diffusion equation, and at shorter periods, phonon transport transitions to the ballistic regime, with the decay becoming strongly non-exponential. Spectral solutions are obtained for Si and PbSe at 300 K using phonon dispersion and lifetime data from density functional theory calculations. The spectral decay behaviors are compared to several approximate models: a single MFP solution, a frequency-integrated gray-medium model, and a "two-fluid" BTE solution. We investigate the utility of using the approximate models for the reconstruction of phonon MFP distributions from non-diffusive TTG measurements.
Analytical solutions of a fractional diffusion-advection equation for solar cosmic-ray transport
Litvinenko, Yuri E.; Effenberger, Frederic, E-mail: yuril@waikato.ac.nz [Department of Mathematics, University of Waikato, P.B. 3105 Hamilton (New Zealand)
2014-12-01
Motivated by recent applications of superdiffusive transport models to shock-accelerated particle distributions in the heliosphere, we analytically solve a one-dimensional fractional diffusion-advection equation for the particle density. We derive an exact Fourier transform solution, simplify it in a weak diffusion approximation, and compare the new solution with previously available analytical results and with a semi-numerical solution based on a Fourier series expansion. We apply the results to the problem of describing the transport of energetic particles, accelerated at a traveling heliospheric shock. Our analysis shows that significant errors may result from assuming an infinite initial distance between the shock and the observer. We argue that the shock travel time should be a parameter of a realistic superdiffusive transport model.
libmpdata++ 0.1: a library of parallel MPDATA solvers for systems of generalised transport equations
Jaruga, Anna; Jarecka, Dorota; Pawlowska, Hanna; Smolarkiewicz, Piotr K; Waruszewski, Maciej
2014-01-01
This paper accompanies first release of libmpdata++, a C++ library implementing the Multidimensional Positive-Definite Advection Transport Algorithm (MPDATA). The library offers basic numerical solvers for systems of generalised transport equations. The solvers are forward-in-time, conservative and non-linearly stable. The libmpdata++ library covers the basic second-order-accurate formulation of MPDATA, its third-order variant, the infinite-gauge option for variable-sign fields and a flux-corrected transport extension to guarantee non-oscillatory solutions. The library is equipped with a non-symmetric variational elliptic solver for implicit evaluation of pressure gradient terms. All solvers offer parallelisation through domain decomposition using shared-memory parallelisation. The paper describes the library programming interface, and serves as a user guide. Supported options are illustrated with benchmarks discussed in the MPDATA literature. Benchmark descriptions include code snippets as well as quantitati...
HUANG; Guanhua; HUANG; Quanzhong; ZHAN; Hongbin
2005-01-01
The newly developed Fractional Advection-Dispersion Equation (FADE), which is FADE was extended and used in this paper for modelling adsorbing contaminant transport by adding an adsorbing term. A parameter estimation method and its corresponding FORTRAN based program named FADEMain were developed on the basis of Nonlinear Least Square Algorithm and the analytical solution for one-dimensional FADE under the conditions of step input and steady state flow. Data sets of adsorbing contaminants Cd and NH4+-N transport in short homogeneous soil columns and conservative solute NaCI transport in a long homogeneous soil column, respectively were used to estimate the transport parameters both by FADEMain and the advection-dispersion equation (ADE) based program CXTFIT2.1. Results indicated that the concentration simulated by FADE agreed well with the measured data. Compared to the ADE model, FADE can provide better simulation for the concentration in the initial lower concentration part and the late higher concentration part of the breakthrough curves for both adsorbing contaminants. The dispersion coefficients for ADE were from 0.13 to 7.06 cm2/min, while the dispersion coefficients for FADE ranged from 0.119 to 3.05 cm1.856/min for NaCI transport in the long homogeneous soil column. We found that the dispersion coefficient of FADE increased with the transport distance, and the relationship between them can be quantified with an exponential function. Less scale-dependent was also found for the dispersion coefficient of FADE with respect to ADE.
Numerical solution of transport equation for applications in environmental hydraulics and hydrology
Rashidul Islam, M.; Hanif Chaudhry, M.
1997-04-01
The advective term in the one-dimensional transport equation, when numerically discretized, produces artificial diffusion. To minimize such artificial diffusion, which vanishes only for Courant number equal to unity, transport owing to advection has been modeled separately. The numerical solution of the advection equation for a Gaussian initial distribution is well established; however, large oscillations are observed when applied to an initial distribution with sleep gradients, such as trapezoidal distribution of a constituent or propagation of mass from a continuous input. In this study, the application of seven finite-difference schemes and one polynomial interpolation scheme is investigated to solve the transport equation for both Gaussian and non-Gaussian (trapezoidal) initial distributions. The results obtained from the numerical schemes are compared with the exact solutions. A constant advective velocity is assumed throughout the transport process. For a Gaussian distribution initial condition, all eight schemes give excellent results, except the Lax scheme which is diffusive. In application to the trapezoidal initial distribution, explicit finite-difference schemes prove to be superior to implicit finite-difference schemes because the latter produce large numerical oscillations near the steep gradients. The Warming-Kutler-Lomax (WKL) explicit scheme is found to be better among this group. The Hermite polynomial interpolation scheme yields the best result for a trapezoidal distribution among all eight schemes investigated. The second-order accurate schemes are sufficiently accurate for most practical problems, but the solution of unusual problems (concentration with steep gradient) requires the application of higher-order (e.g. third- and fourth-order) accurate schemes.
On the convexity of Relativistic Hydrodynamics
Ibáñez, José María; Martí, José María; Miralles, Juan Antonio; 10.1088/0264-9381/30/5/057002
2013-01-01
The relativistic hydrodynamic system of equations for a perfect fluid obeying a causal equation of state is hyperbolic (Anile 1989 {\\it Relativistic Fluids and Magneto-Fluids} (Cambridge: Cambridge University Press)). In this report, we derive the conditions for this system to be convex in terms of the fundamental derivative of the equation of state (Menikoff and Plohr 1989 {\\it Rev. Mod. Phys.} {\\bf 61} 75). The classical limit is recovered.
Luciano, Rezzolla
2013-01-01
Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...
Humphrey, E. [Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Phatak, C.; Petford-Long, A.K. [Argonne National Laboratory, Argonne, IL 60439 (United States); De Graef, M. [Carnegie Mellon University, Pittsburgh, PA 15213 (United States)
2014-04-01
We introduce a new approach for the separation of the electrostatic and magnetic components of the electron wave phase shift, based on the transport-of-intensity equation (TIE) formalism. We derive two separate TIE-like equations, one for each of the phase shift components. We use experimental results on FeCoB and Permalloy patterned islands to illustrate how the magnetic and electrostatic longitudinal derivatives can be computed. The main advantage of this new approach is the fact that the differences in the power spectra of the two phase components (electrostatic phase shifts often have significant power in the higher frequencies) can be accommodated by the selection of two different Tikhonov regularization parameters for the two phase reconstructions. The extra computational demands of the method are more than compensated by the improved phase reconstruction results. - Highlights: • We provide a new way to separate electrostatic and magnetic phase shifts in Lorentz microscopy. • We derive two new transport-of-intensity style equations, one for electrostatic phase shifts and the other for magnetic phase shifts. • We provide a new way to determine the longitudinal intensity derivative that automatically includes time reversal symmetry. • This approach allows for the Tikhonov regularization parameter to be selected for each phase shift separately. • We provide two example application on Permalloy and CoFeB patterned islands.
Non-Relativistic Spacetimes with Cosmological Constant
Aldrovandi, R.; Barbosa, A. L.; Crispino, L.C.B.; Pereira, J. G.
1998-01-01
Recent data on supernovae favor high values of the cosmological constant. Spacetimes with a cosmological constant have non-relativistic kinematics quite different from Galilean kinematics. De Sitter spacetimes, vacuum solutions of Einstein's equations with a cosmological constant, reduce in the non-relativistic limit to Newton-Hooke spacetimes, which are non-metric homogeneous spacetimes with non-vanishing curvature. The whole non-relativistic kinematics would then be modified, with possible ...
Relativistic non-equilibrium thermodynamics revisited
García-Colin, L S
2006-01-01
Relativistic irreversible thermodynamics is reformulated following the conventional approach proposed by Meixner in the non-relativistic case. Clear separation between mechanical and non-mechanical energy fluxes is made. The resulting equations for the entropy production and the local internal energy have the same structure as the non-relativistic ones. Assuming linear constitutive laws, it is shown that consistency is obtained both with the laws of thermodynamics and causality.
Usang, M. D.; Ivanyuk, F. A.; Ishizuka, C.; Chiba, S.
2016-10-01
Nuclear fission is treated by using the Langevin dynamical description with macroscopic and microscopic transport coefficients (mass and friction tensors), and it is elucidated how the microscopic (shell and pairing) effects in the transport coefficients, especially their dependence on temperature, affects various fission observables. We found that the microscopic transport coefficients, calculated by linear response theory, change drastically as a function of temperature: in general, the friction increases with growing temperature while the mass tensor decreases. This temperature dependence brings a noticeable change in the mass distribution and kinetic energies of fission fragments from nuclei around 236U at an excitation energy of 20 MeV. The prescission kinetic energy decreases from 25 MeV at low temperature to about 2.5 MeV at high temperature. In contrast, the Coulomb kinetic energy increases as the temperature increases. Interpolating the microscopic transport coefficients among the various temperatures enabled our Langevin equation to use the microscopic transport coefficients at a deformation-dependent local temperature of the dynamical evolution. This allowed us to compare directly the fission observables of both macroscopic and microscopic calculations, and we found almost identical results under the conditions considered in this work.
Merton, S.R. [Computational Physics Group, AWE, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom)], E-mail: simon.merton@awe.co.uk; Pain, C.C. [Computational Physics and Geophysics Group, Department of Earth Science and Engineering, Imperial College London, London SW7 2A7 (United Kingdom); Smedley-Stevenson, R.P. [Computational Physics Group, AWE, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Buchan, A.G.; Eaton, M.D. [Computational Physics and Geophysics Group, Department of Earth Science and Engineering, Imperial College London, London SW7 2A7 (United Kingdom)
2008-09-15
This paper describes the development of two optimal discontinuous finite element (FE) Riemann methods and their application to the one-speed Boltzmann transport equation in the steady-state. The proposed methods optimise the amount of dissipation applied in the streamline direction. This dissipation is applied within an element using a novel Riemann FE method, which is based on an analogy between control volume discretisation methods and finite element methods when integration by parts is applied to the transport terms. In one-dimension the optimal finite element solutions match the analytical solution exactly at each outlet node. Both schemes couple elements in space via a Riemann approach. The first of the two schemes is a Petrov-Galerkin (PG) method which introduces dissipation via the equation residual. The second scheme uses a streamline diffusion stabilisation term in the discretisation. These two methods provide a discontinuous Petrov-Galerkin (DPG) scheme that can stabilise an element across the full range of radiation regimes, obtaining robust solutions with suppressed oscillation. Three basis functions in angle of particle travel have been implemented in an optimal DPG Riemann solver, which include the P{sub N} (spherical harmonic), S{sub N} (discrete ordinate) and LW{sub N} (linear octahedral wavelet) angular expansions. These methods are applied to a series of demanding two-dimensional radiation transport problems.
Steven M. Lund
2004-06-01
Full Text Available In typical diagnostic applications, intense ion beams are intercepted by a conducting plate associated with devices used to measure beam phase-space projections. This results in the transverse space-charge field near the plate being shorted out, rendering simple envelope models with constant space-charge strength inaccurate. Here we develop corrected envelope models based on analytical calculations to account for this effect on the space-charge term of the envelope equations, thereby removing a systematic source of error in the equations and enabling more accurate comparisons with experiment. For common intense beam parameters, we find that the envelope correction occurs primarily in the envelope angles near the plate and that the effect can be large enough to degrade precision beam matching in periodic transport lattices. Results are verified with 3D self-consistent particle-in-cell simulations based on intense beam experiments associated with driver development for heavy-ion fusion.
Bernal García, Álvaro; Abarca Giménez, Agustín; Barrachina Celda, Teresa María; Miró Herrero, Rafael
2014-01-01
This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Computer Mathematics in 2014, available online: http://www.tandfonline.com/10.1080/00207160.2013.799668 Resolution of the steady-state Neutron Transport Equation in a nuclear pool reactor is usually achieved by means of two different numerical methods: Monte Carlo (stochastic) and Discrete Ordinates (deterministic). The Discrete Ordinates method solves the Neutron Transport Equation for a...
Gluon Transport Equation with Effective Mass and Dynamical Onset of Bose-Einstein Condensation
Blaizot, Jean-Paul; Liao, Jinfeng
2015-01-01
We study the transport equation describing a dense system of gluons, in the small scattering angle approximation, taking into account medium-generated effective masses of the gluons. We focus on the case of overpopulated systems that are driven to Bose-Einstein condensation on their way to thermalization. The presence of a mass modifies the dispersion relation of the gluon, as compared to the massless case, but it is shown that this does not change qualitatively the scaling behavior in the vicinity of the onset.
Numerical modeling of photon migration in human neck based on the radiative transport equation
Fujii, Hiroyuki; Nadamoto, Ken; Okada, Eiji; Yamada, Yukio; Hoshi, Yoko; Watanabe, Masao
2016-01-01
Biomedical optical imaging has a possibility of a comprehensive diagnosis of thyroid cancer in conjunction with ultrasound imaging. For improvement of the optical imaging, this study develops a higher order scheme for solving the time-dependent radiative transport equation (RTE) by use of the finite-difference and discrete-ordinate methods. The accuracy and efficiency of the developed scheme are examined by comparison with the analytical solutions of the RTE in homogeneous media. Then, the developed scheme is applied to describing photon migration in the human neck model. The numerical simulations show complex behaviors of photon migration in the human neck model due to multiple diffusive reflection near the trachea.
The Slab Albedo Problem Using Singular Eigenfunctions and the Third Form of the Transport Equation
Kaskas, Ayþe; Tezcan, Cevdet
1997-01-01
The albedo and the transmission factor for slabs are obtained using the infinite medium Green's function in terms of the singular eigenfunctions in the third form of the transport equation. Our analytical results are simple as in FN-method and the convergence of the numerical results is as faster as in the CN-method. Calculations are also carried out by various incoming angular fluxes and uncollided neutrons are taken into account. Our numerical results are in very good agreement with the results of the CN method.
Solution of transport equations in layered media with refractive index mismatch using the PN-method.
Phillips, Kevin G; Jacques, Steven L
2009-10-01
The PN-method is a spectral discretization technique used to obtain numerical solutions to the radiative transport equation. To the best of our knowledge, the PN-method has yet to be generalized to the case of refractive index mismatch in layered slabs used to numerically simulate skin. Our main contribution is the application of a collocation method that takes into account refractive index mismatch at layer interfaces. The stability, convergence, and accuracy of the method are established. Example calculations demonstrating the flexibility of the method are performed.
Sahoo, Raghunath
2016-01-01
This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.
Finite-element discretization of 3D energy-transport equations for semiconductors
Gadau, Stephan
2007-07-01
In this thesis a mathematical model was derived that describes the charge and energy transport in semiconductor devices like transistors. Moreover, numerical simulations of these physical processes are performed. In order to accomplish this, methods of theoretical physics, functional analysis, numerical mathematics and computer programming are applied. After an introduction to the status quo of semiconductor device simulation methods and a brief review of historical facts up to now, the attention is shifted to the construction of a model, which serves as the basis of the subsequent derivations in the thesis. Thereby the starting point is an important equation of the theory of dilute gases. From this equation the model equations are derived and specified by means of a series expansion method. This is done in a multi-stage derivation process, which is mainly taken from a scientific paper and which does not constitute the focus of this thesis. In the following phase we specify the mathematical setting and make precise the model assumptions. Thereby we make use of methods of functional analysis. Since the equations we deal with are coupled, we are concerned with a nonstandard problem. In contrary, the theory of scalar elliptic equations is established meanwhile. Subsequently, we are preoccupied with the numerical discretization of the equations. A special finite-element method is used for the discretization. This special approach has to be done in order to make the numerical results appropriate for practical application. By a series of transformations from the discrete model we derive a system of algebraic equations that are eligible for numerical evaluation. Using self-made computer programs we solve the equations to get approximate solutions. These programs are based on new and specialized iteration procedures that are developed and thoroughly tested within the frame of this research work. Due to their importance and their novel status, they are explained and
Bailey, T S; Chang, J H; Warsa, J S; Adams, M L
2010-12-22
We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretizations that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems.
Zardini, D.M.
1996-12-31
The feasibility of neutron transport problems parallel resolution by CRONOS code`s SN module is here studied. In this report we give the first data about the parallel resolution by angular variable decomposition of the transport equation. Problems about parallel resolution by spatial variable decomposition and memory stage limits are also explained here. (author). 9 refs.
Sengers, J. V.; Basu, R. S.; Sengers, J. M. H. L.
1981-01-01
A survey is presented of representative equations for various thermophysical properties of fluids in the critical region. Representative equations for the transport properties are included. Semi-empirical modifications of the theoretically predicted asymtotic critical behavior that yield simple and practical representations of the fluid properties in the critical region are emphasized.
Ibnouzahir, M.
1995-03-01
The study of relativistic heavy ion collisions permit an approach of the properties of dense and not hadronic matter, and an analysis of the reaction mechanisms. Such studies are also interesting on the biological point of view, since there exist now well defined projects concerning the radiotherapy with high LET particles as neutrons, protons, heavy ions. It is thus necessary to have a good understanding of the processes which occur in the propagation of a relativistic heavy ion beam (E{>=} 100 A.MeV) in matter. We have elaborated a three dimensional transport code, using a Monte Carlo method, in order to describe the propagation of Ne and Ar ions in water. Violent nuclear collisions giving fragmentation process have been taken into account by use of the FREESCO program. We have tested the validity of our transport model and we show an important change of the energy deposition at the vicinity of the Bragg peak; such a distortion, due mainly to fragmentation reactions, is of a great interest for biological applications. (author).
Pinchedez, K
1999-06-01
Parallel computing meets the ever-increasing requirements for neutronic computer code speed and accuracy. In this work, two different approaches have been considered. We first parallelized the sequential algorithm used by the neutronics code CRONOS developed at the French Atomic Energy Commission. The algorithm computes the dominant eigenvalue associated with PN simplified transport equations by a mixed finite element method. Several parallel algorithms have been developed on distributed memory machines. The performances of the parallel algorithms have been studied experimentally by implementation on a T3D Cray and theoretically by complexity models. A comparison of various parallel algorithms has confirmed the chosen implementations. We next applied a domain sub-division technique to the two-group diffusion Eigen problem. In the modal synthesis-based method, the global spectrum is determined from the partial spectra associated with sub-domains. Then the Eigen problem is expanded on a family composed, on the one hand, from eigenfunctions associated with the sub-domains and, on the other hand, from functions corresponding to the contribution from the interface between the sub-domains. For a 2-D homogeneous core, this modal method has been validated and its accuracy has been measured. (author)
Al-Hashimi, M H; Shalaby, A M
2016-01-01
A general method has been developed to solve the Schr\\"odinger equation for an arbitrary derivative of the $\\delta$-function potential in 1-d using cutoff regularization. The work treats both the relativistic and nonrelativistic cases. A distinction in the treatment has been made between the case when the derivative $n$ is an even number from the one when $n$ is an odd number. A general gap equations for each case has been derived. The case of $\\delta^{(2)}$-function potential has been used as an example. The results from the relativistic case show that the $\\delta^{(2)}$-function system behaves exactly like the $\\delta$-function and the $\\delta'$-function potentials, which means it also shares the same features with quantum field theories, like being asymptotically free, in the massless limit, it undergoes dimensional transmutation and it possesses an infrared conformal fixed point. As a result the evidence of universality of contact interactions has been extended further to include the $\\delta^{(2)}$-functi...
黄时中; 方燕
2011-01-01
用一种简洁的数学形式给出了受恒力作用的粒子的相对论动力学方程的解,解决了相对论中的抛体运动问题,详细讨论了相对论粒子的加速度、速度和运动方程与牛顿力学中对应物理量的区别和联系.%A concise solution to the dynamic equation for a relativistic particle acted by a constant force is presented,which is corresponding to the projectile motion in special relativity,the acceleration,velocity and equation of motion are expressed by easy functions,the differences and relations between special relativity and Newton's Mechanics are analyzed in detail.
Relativistic top in the Ostrohrads'kyj dynamics
Matsyuk, Roman
2015-01-01
A variational equation of the fourth order for the free relativistic top is developed starting from the Dixon's system of equations for the motion of the relativistic dipole. The obtained equation is then cast into the homogeneous space-time Hamiltonian form.
On the microscopic nature of dissipative effects in special relativistic kinetic theory
Garcia-Perciante, A L; Garcia-Colin, L S
2010-01-01
A microscopic formulation of the definition of both the heat flux and the viscous stress tensor is proposed in the framework of kinetic theory for relativistic gases emphasizing on the physical nature of such fluxes. A Lorentz transformation is introduced as the link between the laboratory and local comoving frames and thus between molecular and chaotic velocities. With such transformation, the dissipative effects can be identified as the averages of the chaotic kinetic energy and the momentum flux out of equilibrium, respectively. Within this framework, a kinetic foundation of the ensuing transport equations for the relativistic gas is achieved. To our knowledge, this result is completely novel.
An Unstaggered Constrained Transport Method for the 3D Ideal Magnetohydrodynamic Equations
Helzel, Christiane; Taetz, Bertram
2010-01-01
Numerical methods for solving the ideal magnetohydrodynamic (MHD) equations in more than one space dimension must either confront the challenge of controlling errors in the discrete divergence of the magnetic field, or else be faced with nonlinear numerical instabilities. One approach for controlling the discrete divergence is through a so-called constrained transport method, which is based on first predicting a magnetic field through a standard finite volume solver, and then correcting this field through the appropriate use of a magnetic vector potential. In this work we develop a constrained transport method for the 3D ideal MHD equations that is based on a high-resolution wave propagation scheme. Our proposed scheme is the 3D extension of the 2D scheme developed by Rossmanith [SIAM J. Sci. Comp. 28, 1766 (2006)], and is based on the high-resolution wave propagation method of Langseth and LeVeque [J. Comp. Phys. 165, 126 (2000)]. In particular, in our extension we take great care to maintain the three most ...
Kovačić Nataša
2015-11-01
Full Text Available The paper addresses the effect of external integration (EI with transport suppliers on the efficiency of travel agencies in the tourism sector supply chains. The main aim is the comparison of different estimation methods used in the structural equation modeling (SEM, applied to discover possible relationships between EIs and efficiencies. The latter are calculated by the means of data envelopment analysis (DEA. While designing the structural equation model, the exploratory and confirmatory factor analyses are also used as preliminary statistical procedures. For the estimation of parameters of SEM model, three different methods are explained, analyzed and compared: maximum likelihood (ML method, Bayesian Markov Chain Monte Carlo (BMCMC method, and unweighted least squares (ULS method. The study reveals that all estimation methods calculate comparable estimated parameters. The results also give an evidence of good model fit performance. Besides, the research confirms that the amplified external integration with transport providers leads to increased efficiency of travel agencies, which might be a very interesting finding for the operational management.
Postnikov, Sergey
2013-01-01
This work extends the seminal work of Gottfried on the two-body quantum physics of particles interacting through a delta-shell potential to many-body physics by studying a system of non-relativistic particles when the thermal De-Broglie wavelength of a particle is smaller than the range of the potential and the density is such that average distance between particles is smaller than the range. The ability of the delta-shell potential to reproduce some basic properties of the deuteron are examined. Relations for moments of bound states are derived. The virial expansion is used to calculate the first quantum correction to the ideal gas pressure in the form of the second virial coefficient. Additionally, all thermodynamic functions are calculated up to the first order quantum corrections. For small departures from equilibrium, the net flows of mass, energy and momentum, characterized by the coefficients of diffusion, thermal conductivity and shear viscosity, respectively, are calculated. Properties of the gas are...
Quasirelativistic Langevin equation.
Plyukhin, A V
2013-11-01
We address the problem of a microscopic derivation of the Langevin equation for a weakly relativistic Brownian particle. A noncovariant Hamiltonian model is adopted, in which the free motion of particles is described relativistically while their interaction is treated classically, i.e., by means of action-to-a-distance interaction potentials. Relativistic corrections to the classical Langevin equation emerge as nonlinear dissipation terms and originate from the nonlinear dependence of the relativistic velocity on momentum. On the other hand, similar nonlinear dissipation forces also appear as classical (nonrelativistic) corrections to the weak-coupling approximation. It is shown that these classical corrections, which are usually ignored in phenomenological models, may be of the same order of magnitude, if not larger than, relativistic ones. The interplay of relativistic corrections and classical beyond-the-weak-coupling contributions determines the sign of the leading nonlinear dissipation term in the Langevin equation and thus is qualitatively important.
A two-fluid model for relativistic heat conduction
López-Monsalvo, César S. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (Mexico)
2014-01-14
Three years ago it was presented in these proceedings the relativistic dynamics of a multi-fluid system together with various applications to a set of topical problems [1]. In this talk, I will start from such dynamics and present a covariant formulation of relativistic thermodynamics which provides us with a causal constitutive equation for the propagation of heat in a relativistic setting.
Global Error Bounds for the Petrov-Galerkin Discretization of the Neutron Transport Equation
Chang, B; Brown, P; Greenbaum, A; Machorro, E
2005-01-21
In this paper, we prove that the numerical solution of the mono-directional neutron transport equation by the Petrov-Galerkin method converges to the true solution in the L{sup 2} norm at the rate of h{sup 2}. Since consistency has been shown elsewhere, the focus here is on stability. We prove that the system of Petrov-Galerkin equations is stable by showing that the 2-norm of the inverse of the matrix for the system of equations is bounded by a number that is independent of the order of the matrix. This bound is equal to the length of the longest path that it takes a neutron to cross the domain in a straight line. A consequence of this bound is that the global error of the Petrov-Galerkin approximation is of the same order of h as the local truncation error. We use this result to explain the widely held observation that the solution of the Petrov-Galerkin method is second accurate for one class of problems, but is only first order accurate for another class of problems.
Gaeuman, D.; Andrews, E.D.; Kraus, A.; Smith, W.
2009-01-01
Bed load samples from four locations in the Trinity River of northern California are analyzed to evaluate the performance of the Wilcock-Crowe bed load transport equations for predicting fractional bed load transport rates. Bed surface particles become smaller and the fraction of sand on the bed increases with distance downstream from Lewiston Dam. The dimensionless reference shear stress for the mean bed particle size (t*rm) is largest near the dam, but varies relatively little between the more downstream locations. The relation between t*rm and the reference shear stresses for other size fractions is constant across all locations. Total bed load transport rates predicted with the Wilcock-Crowe equations are within a factor of 2 of sampled transport rates for 68% of all samples. The Wilcock-Crowe equations nonetheless consistently under-predict the transport of particles larger than 128 mm, frequently by more than an order of magnitude. Accurate prediction of the transport rates of the largest particles is important for models in which the evolution of the surface grain size distribution determines subsequent bed load transport rates. Values of term estimated from bed load samples are up to 50% larger than those predicted with the Wilcock-Crowe equations, and sampled bed load transport approximates equal mobility across a wider range of grain sizes than is implied by the equations. Modifications to theWilcock-Crowe equation for determining t*rm and the hiding function used to scale term to other grain size fractions are proposed to achieve the best fit to observed bed load transport in the Trinity River. Copyright 2009 by the American eophysical Union.
On a nonlinear degenerate parabolic transport-diffusion equation with a discontinuous coefficient
John D. Towers
2002-10-01
Full Text Available We study the Cauchy problem for the nonlinear (possibly strongly degenerate parabolic transport-diffusion equation $$ partial_t u + partial_x (gamma(xf(u=partial_x^2 A(u, quad A'(cdotge 0, $$ where the coefficient $gamma(x$ is possibly discontinuous and $f(u$ is genuinely nonlinear, but not necessarily convex or concave. Existence of a weak solution is proved by passing to the limit as $varepsilondownarrow 0$ in a suitable sequence ${u_{varepsilon}}_{varepsilon>0}$ of smooth approximations solving the problem above with the transport flux $gamma(xf(cdot$ replaced by $gamma_{varepsilon}(xf(cdot$ and the diffusion function $A(cdot$ replaced by $A_{varepsilon}(cdot$, where $gamma_{varepsilon}(cdot$ is smooth and $A_{varepsilon}'(cdot>0$. The main technical challenge is to deal with the fact that the total variation $|u_{varepsilon}|_{BV}$ cannot be bounded uniformly in $varepsilon$, and hence one cannot derive directly strong convergence of ${u_{varepsilon}}_{varepsilon>0}$. In the purely hyperbolic case ($A'equiv 0$, where existence has already been established by a number of authors, all existence results to date have used a singular maolinebreak{}pping to overcome the lack of a variation bound. Here we derive instead strong convergence via a series of a priori (energy estimates that allow us to deduce convergence of the diffusion function and use the compensated compactness method to deal with the transport term. Submitted April 29, 2002. Published October 27, 2002. Math Subject Classifications: 35K65, 35D05, 35R05, 35L80 Key Words: Degenerate parabolic equation; nonconvex flux; weak solution; discontinuous coefficient; viscosity method; a priori estimates; compensated compactness
Hakim, Rémi
1994-01-01
Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.
Pireaux, S
2008-01-01
The Relativistic Motion Integrator (RMI) consists in integrating numerically the EXACT relativistic equations of motion, with respect to the appropriate gravitational metric, instead of Newtonian equations plus relativistic corrections. The aim of the present paper is to validate the method, and to illustrate how RMI can be used for space missions to produce relativistic ephemerides of satellites. Indeed, nowadays, relativistic effects have to be taken into account, and comparing a RMI ephemeris with a classical keplerian one helps to quantify such effects. LISA is a relevant example to use RMI. This mission is an interferometer formed by three spacecraft which aims at the detection of gravitational waves. Precise ephemerides of LISA spacecraft are needed not only for the sake of the orbitography but also to compute the photon flight time in laser links between spacecraft, required in LISA data pre-processing in order to reach the gravitational wave detection level. Relativistic effects in LISA orbitography n...
Jones, Bernard J. T.; Markovic, Dragoljub
1997-06-01
Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.
Equation of state dependence of directed flow in a microscopic transport model
Nara, Yasushi; Steinheimer, Jan; Stoecker, Horst
2016-01-01
We study the sensitivities of the directed flow in Au+Au collisions on the equation of state (EoS), employing the transport theoretical model JAM. The EoS is modified by introducing a new collision term in order to control the pressure of a system by appropriately selecting an azimuthal angle in two-body collisions according to a given EoS. It is shown that this approach is an efficient method to modify the EoS in a transport model. The beam energy dependence of the directed flow of protons is examined with two different EoS, a first-order phase transition and crossover. It is found that our approach yields quite similar results as hydrodynamical predictions on the beam energy dependence of the directed flow; Transport theory predicts a minimum in the excitation function of the slope of proton directed flow and does indeed yield negative directed flow, if the EoS with a first-order phase transition is employed. Our result strongly suggests that the highest sensitivity for the critical point can be seen in the...
Pawlasova Pavlina
2015-12-01
Full Text Available Satisfaction is one of the key factors which influences customer loyalty. We assume that the satisfied customer will be willing to use the ssame service provider again. The overall passengers´ satisfaction with public city transport may be affected by the overall service quality. Frequency, punctuality, cleanliness in the vehicle, proximity, speed, fare, accessibility and safety of transport, information and other factors can influence passengers´ satisfaction. The aim of this paper is to quantify factors and identify the most important factors influencing customer satisfaction with public city transport within conditions of the Czech Republic. Two methods of analysis are applied in order to fulfil the aim. The method of factor analysis and the method Varimax were used in order to categorize variables according to their mutual relations. The method of structural equation modelling was used to evaluate the factors and validate the model. Then, the optimal model was found. The logistic parameters, including service continuity and frequency, and service, including information rate, station proximity and vehicle cleanliness, are the factors influencing passengers´ satisfaction on a large scale.
Equation of state dependence of directed flow in a microscopic transport model
Yasushi Nara
2017-06-01
Full Text Available We study the sensitivities of the directed flow in Au+Au collisions on the equation of state (EoS, employing the transport theoretical model JAM. The EoS is modified by introducing a new collision term in order to control the pressure of a system by appropriately selecting an azimuthal angle in two-body collisions according to a given EoS. It is shown that this approach is an efficient method to modify the EoS in a transport model. The beam energy dependence of the directed flow of protons is examined with two different EoS, a first-order phase transition and crossover. It is found that our approach yields quite similar results as hydrodynamical predictions on the beam energy dependence of the directed flow; Transport theory predicts a minimum in the excitation function of the slope of proton directed flow and does indeed yield negative directed flow, if the EoS with a first-order phase transition is employed. Our result strongly suggests that the highest sensitivity for the critical point can be seen in the beam energy range of 4.7≤sNN≤11.5 GeV.
Theory of symmetry for a rotational relativistic Birkhoff system
罗绍凯; 陈向炜; 郭永新
2002-01-01
The theory of symmetry for a rotational relativistic Birkhoff system is studied. In terms of the invariance of therotational relativistic Pfaff-Birkhoff-D'Alembert principle under infinitesimal transformations, the Noether symmetriesand conserved quantities of a rotational relativistic Birkhoff system are given. In terms of the invariance of rotationalrelativistic Birkhoff equations under infinitesimal transformations, the Lie symmetries and conserved quantities of therotational relativistic Birkhoff system are given.
Chaos and Maps in Relativistic Dynamical Systems
Horwitz, L P
1999-01-01
The basic work of Zaslavskii et al showed that the classical non-relativistic electromagnetically kicked oscillator can be cast into the form of an iterative map on the phase space; the resulting evolution contains a stochastic flow to unbounded energy. Subsequent studies have formulated the problem in terms of a relativistic charged particle in interaction with the electromagnetic field. We review the structure of the covariant Lorentz force used to study this problem. We show that the Lorentz force equation can be derived as well from the manifestly covariant mechanics of Stueckelberg in the presence of a standard Maxwell field, establishing a connection between these equations and mass shell constraints. We argue that these relativistic generalizations of the problem are intrinsically inaccurate due to an inconsistency in the structure of the relativistic Lorentz force, and show that a reformulation of the relativistic problem, permitting variations (classically) in both the particle mass and the effective...
Can Mathisson-Papapetrou equations give clue to some problems in astrophysics?
Plyatsko, Roman
2011-01-01
First, we stress that for correct description of highly relativistic fermions in a gravitational field it is necessary to have an equation which in the limiting transition to the classical (non-quantum) case corresponds to the exact Mathisson-Papapetrou equations. According to these equations the spin in general relativity is Fermi-transported, and the parallel transport of spin is realized only in some approximation. The traditional general-relativistic Dirac equation (1929) is based on the parallel transported spinors and does not ensure the correspondent transition. Second, because in the range of very high velocity (close to the speed of light) of a spinning particle relative to the Schwarzschild or Kerr sources the Mathisson-Papapetrou equations have the solutions which reveal that the spin-gravity interaction acts as a strong antigravity force, we suppose that this fact can be useful for explanation some astrophysical phenomena. Some association with the OPERA results is possible.
Komissarov, S S; Lyutikov, M
2015-01-01
In this paper we describe a simple numerical approach which allows to study the structure of steady-state axisymmetric relativistic jets using one-dimensional time-dependent simulations. It is based on the fact that for narrow jets with v~c the steady-state equations of relativistic magnetohydrodynamics can be accurately approximated by the one-dimensional time-dependent equations after the substitution z=ct. Since only the time-dependent codes are now publicly available this is a valuable and efficient alternative to the development of a high-specialized code for the time-independent equations. The approach is also much cheaper and more robust compared to the relaxation method. We tested this technique against numerical and analytical solutions found in literature as well as solutions we obtained using the relaxation method and found it sufficiently accurate. In the process, we discovered the reason for the failure of the self-similar analytical model of the jet reconfinement in relatively flat atmospheres a...
Yoshinobu Tanaka
2012-01-01
Full Text Available The overall membrane pair characteristics included in the overall mass transport equation are understandable using the phenomenological equations expressed in the irreversible thermodynamics. In this investigation, the overall membrane pair characteristics (overall transport number , overall solute permeability , overall electro-osmotic permeability and overall hydraulic permeability were measured by seawater electrodialysis changing current density, temperature and salt concentration, and it was found that occasionally takes minus value. For understanding the above phenomenon, new concept of the overall concentration reflection coefficient ∗ is introduced from the phenomenological equation. This is the aim of this investigation. ∗ is defined for describing the permselectivity between solutes and water molecules in the electrodialysis system just after an electric current interruption. ∗ is expressed by the function of and . ∗ is generally larger than 1 and is positive, but occasionally ∗ becomes less than 1 and becomes negative. Negative means that ions are transferred with water molecules (solvent from desalting cells toward concentrating cells just after an electric current interruption, indicating up-hill transport or coupled transport between water molecules and solutes.
Equation with the many fathers
Kragh, Helge
1984-01-01
In this essay I discuss the origin and early development of the first relativistic wave equation, known as the Klein-Gordon equation. In 1926 several physicists, among them Klein, Fock, Schrödinger, and de Broglie, announced this equation as a candidate for a relativistic generalization of the us...
libmpdata++ 1.0: a library of parallel MPDATA solvers for systems of generalised transport equations
A. Jaruga
2015-04-01
Full Text Available This paper accompanies the first release of libmpdata++, a C++ library implementing the multi-dimensional positive-definite advection transport algorithm (MPDATA on regular structured grid. The library offers basic numerical solvers for systems of generalised transport equations. The solvers are forward-in-time, conservative and non-linearly stable. The libmpdata++ library covers the basic second-order-accurate formulation of MPDATA, its third-order variant, the infinite-gauge option for variable-sign fields and a flux-corrected transport extension to guarantee non-oscillatory solutions. The library is equipped with a non-symmetric variational elliptic solver for implicit evaluation of pressure gradient terms. All solvers offer parallelisation through domain decomposition using shared-memory parallelisation. The paper describes the library programming interface, and serves as a user guide. Supported options are illustrated with benchmarks discussed in the MPDATA literature. Benchmark descriptions include code snippets as well as quantitative representations of simulation results. Examples of applications include homogeneous transport in one, two and three dimensions in Cartesian and spherical domains; a shallow-water system compared with analytical solution (originally derived for a 2-D case; and a buoyant convection problem in an incompressible Boussinesq fluid with interfacial instability. All the examples are implemented out of the library tree. Regardless of the differences in the problem dimensionality, right-hand-side terms, boundary conditions and parallelisation approach, all the examples use the same unmodified library, which is a key goal of libmpdata++ design. The design, based on the principle of separation of concerns, prioritises the user and developer productivity. The libmpdata++ library is implemented in C++, making use of the Blitz++ multi-dimensional array containers, and is released as free/libre and open-source software.
libmpdata++ 1.0: a library of parallel MPDATA solvers for systems of generalised transport equations
Jaruga, A.; Arabas, S.; Jarecka, D.; Pawlowska, H.; Smolarkiewicz, P. K.; Waruszewski, M.
2015-04-01
This paper accompanies the first release of libmpdata++, a C++ library implementing the multi-dimensional positive-definite advection transport algorithm (MPDATA) on regular structured grid. The library offers basic numerical solvers for systems of generalised transport equations. The solvers are forward-in-time, conservative and non-linearly stable. The libmpdata++ library covers the basic second-order-accurate formulation of MPDATA, its third-order variant, the infinite-gauge option for variable-sign fields and a flux-corrected transport extension to guarantee non-oscillatory solutions. The library is equipped with a non-symmetric variational elliptic solver for implicit evaluation of pressure gradient terms. All solvers offer parallelisation through domain decomposition using shared-memory parallelisation. The paper describes the library programming interface, and serves as a user guide. Supported options are illustrated with benchmarks discussed in the MPDATA literature. Benchmark descriptions include code snippets as well as quantitative representations of simulation results. Examples of applications include homogeneous transport in one, two and three dimensions in Cartesian and spherical domains; a shallow-water system compared with analytical solution (originally derived for a 2-D case); and a buoyant convection problem in an incompressible Boussinesq fluid with interfacial instability. All the examples are implemented out of the library tree. Regardless of the differences in the problem dimensionality, right-hand-side terms, boundary conditions and parallelisation approach, all the examples use the same unmodified library, which is a key goal of libmpdata++ design. The design, based on the principle of separation of concerns, prioritises the user and developer productivity. The libmpdata++ library is implemented in C++, making use of the Blitz++ multi-dimensional array containers, and is released as free/libre and open-source software.
Corinaldesi, Ernesto
1963-01-01
Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat
Density perturbations with relativistic thermodynamics
Maartens, R
1997-01-01
We investigate cosmological density perturbations in a covariant and gauge- invariant formalism, incorporating relativistic causal thermodynamics to give a self-consistent description. The gradient of density inhomogeneities splits covariantly into a scalar part, a rotational vector part that is determined by the vorticity, and a tensor part that describes the shape. We give the evolution equations for these parts in the general dissipative case. Causal thermodynamics gives evolution equations for viswcous stress and heat flux, which are coupled to the density perturbation equation and to the entropy and temperature perturbation equations. We give the full coupled system in the general dissipative case, and simplify the system in certain cases.
DYNAMICS OF RELATIVISTIC FLUID FOR COMPRESSIBLE GAS
无
2011-01-01
In this paper the relativistic fluid dynamics for compressible gas is studied.We show that the strict convexity of the negative thermodynamical entropy preserves invariant under the Lorentz transformation if and only if the local speed of sound in this gas is strictly less than that of light in the vacuum.A symmetric form for the equations of relativistic hydrodynamics is presented,and thus the local classical solutions to these equations can be deduced.At last,the non-relativistic limits of these local cla...
Surface transport in plasma-balls
Armas, Jay; Kundu, Nilay
2015-01-01
We study the surface transport properties of stationary localized configurations of relativistic fluids to the first two non-trivial orders in a derivative expansion. By demanding that these finite lumps of relativistic fluid are described by a thermal partition function with arbitrary stationary background metric and gauge fields, we are able to find several constraints among surface transport coefficients. At leading order, besides recovering the surface thermodynamics, we obtain a generalization of the Young-Laplace equation for relativistic fluid surfaces, by considering a temperature dependence in the surface tension, which is further generalized in the context of superfluids. At the next order, for uncharged fluids in 3+1 dimensions, we show that besides the 3 independent bulk transport coefficients previously known, a generic localized configuration is characterized by 3 additional surface transport coefficients, one of which may be identified with the surface modulus of rigidity. Finally, as an applic...
Phase retrieval based on cosine grating modulation and transport of intensity equation
Chen, Ya-ping; Zhang, Quan-bing; Cheng, Hong; Qian, Yi; Lv, Qian-qian
2016-10-01
In order to calculate the lost phase from the intensity information effectively, a new method of phase retrieval which based on cosine grating modulation and transport of intensity equation is proposed. Firstly, the cosine grating is loaded on the spatial light modulator in the horizontal and vertical direction respectively, and the corresponding amplitude of the light field is modulated. Then the phase is calculated by its gradient which is extracted from different direction modulation light illumination. The capability of phase recovery of the proposed method in the presence of noise is tested by simulation experiments. And the results show that the proposed algorithm has a better resilience than the traditional Fourier transform algorithm at low frequency noise. Furthermore, the phase object of different scales can be retrieved using the proposed algorithm effectively by changing the frequency of cosine grating, which can control the imaging motion expediently.
A Transport Equation Approach to Green Functions and Self-force Calculations
Wardell, Barry
2010-01-01
In a recent work, we presented the first application of the Poisson-Wiseman-Anderson method of `matched expansions' to compute the self-force acting on a point particle moving in a curved spacetime. The method employs two expansions for the Green function which are respectively valid in the `quasilocal' and `distant past' regimes, and which may be matched together within the normal neighbourhood. In this article, we introduce the method of matched expansions and discuss transport equation methods for the calculation of the Green function in the quasilocal region. These methods allow the Green function to be evaluated throughout the normal neighborhood and are also relevant to a broad range of problems from radiation reaction to quantum field theory in curved spacetime and quantum gravity.
Silicon wafer microstructure imaging using InfraRed Transport of Intensity Equation
Li, Hongru; Feng, Guoying; Bourgade, Thomas; Zuo, Chao; Du, Yongzhao; Zhou, Shouhuan; Asundi, Anand
2015-03-01
A novel quantitative 3D imaging system of silicon microstructures using InfraRed Transport of Intensity Equation (IRTIE) is proposed in this paper. By recording the intensity at multiple planes and using FFT or DCT based TIE solver, fast and accurate phase retrieval for both uniform and non-uniform intensity distributions is proposed. Numerical simulation and experiments confirm the accuracy and reliability of the proposed method. The application of IR-TIE for inspection of micro-patterns in visibly opaque media using 1310 nm light source is demonstrated. For comparison, micro-patterns are also inspected by the contact scanning mode Taylor Hobson system. Quantitative agreement suggests the possibility of using IR-TIE for phase imaging of silicon wafers.
A non-equilibrium equation-of-motion approach to quantum transport utilizing projection operators.
Ochoa, Maicol A; Galperin, Michael; Ratner, Mark A
2014-11-12
We consider a projection operator approach to the non-equilibrium Green function equation-of-motion (PO-NEGF EOM) method. The technique resolves problems of arbitrariness in truncation of an infinite chain of EOMs and prevents violation of symmetry relations resulting from the truncation (equivalence of left- and right-sided EOMs is shown and symmetry with respect to interchange of Fermi or Bose operators before truncation is preserved). The approach, originally developed by Tserkovnikov (1999 Theor. Math. Phys. 118 85) for equilibrium systems, is reformulated to be applicable to time-dependent non-equilibrium situations. We derive a canonical form of EOMs, thus explicitly demonstrating a proper result for the non-equilibrium atomic limit in junction problems. A simple practical scheme applicable to quantum transport simulations is formulated. We perform numerical simulations within simple models and compare results of the approach to other techniques and (where available) also to exact results.
Zhang, Jialin; Chen, Qian; Li, Jiaji; Zuo, Chao
2017-02-01
The transport of intensity equation (TIE) is a powerful tool for direct quantitative phase retrieval in microscopy imaging. However, there may be some problems when dealing with the boundary condition of the TIE. The previous work introduces a hard-edged aperture to the camera port of the traditional bright field microscope to generate the boundary signal for the TIE solver. Under this Neumann boundary condition, we can obtain the quantitative phase without any assumption or prior knowledge about the test object and the setup. In this paper, we will demonstrate the effectiveness of this method based on some experiments in practice. The micro lens array will be used for the comparison of two TIE solvers results based on introducing the aperture or not and this accurate quantitative phase imaging technique allows measuring cell dry mass which is used in biology to follow cell cycle, to investigate cell metabolism, or to address effects of drugs.
Equation of state and transport properties of silicates under extreme conditions
Qi, T.; Hamel, S.
2014-12-01
Understanding the physical properties of silicates under high temperature and pressure is fundamental to an accurate description of planetary interiors and evolution models. For example, earth's mantle is a rocky silicate shell constituting about 84% of Earth's volume. Possible chemical compositions include SiO2 and some other silicates such as MgSiO3 and CaSiO3. Moreover, Moon forming scenarios often invoke giant impacts between silicate-rich objects.Similarly, the existence of a rocky core or mantle with silicate as the major component is frequently assumed in models of giant planets, such as Jupiter or Saturn and Uranus and Neptune.Consequently, constructing planetary interior and evolution models requires knowledge of silicate's equation of state and its optical and transport properties at high pressures and temperatures.
Boltzmann equations for neutrinos with flavor mixings
Yamada, Shoichi
2000-01-01
With a view of applications to the simulations of supernova explosion and proto neutron star cooling, we derive the Boltzmann equations for the neutrino transport with the flavor mixing based on the real time formalism of the nonequilibrium field theory and the gradient expansion of the Green function. The relativistic kinematics is properly taken into account. The advection terms are derived in the mean field approximation for the neutrino self-energy whiles the collision terms are obtained ...
Pais, Helena
2016-01-01
The Vlasov formalism is extended to relativistic mean-field hadron models with non-linear terms up to fourth order and applied to the calculation of the crust-core transition density. The effect of the nonlinear $\\omega\\rho$ and $\\sigma\\rho$ coupling terms on the crust-core transition density and pressure, and on the macroscopic properties of some families of hadronic stars is investigated. For that purpose, six families of relativistic mean field models are considered. Within each family, the members differ in the symmetry energy behavior. For all the models, the dynamical spinodals are calculated, and the crust-core transition density and pressure, and the neutron star mass-radius relations are obtained. The effect on the star radius of the inclusion of a pasta calculation in the inner crust is discussed. The set of six models that best satisfy terrestrial and observational constraints predicts a radius of 13.6$\\pm$0.3 km and a crust thickness of $1.36\\pm 0.06$km for a 1.4 $M_\\odot$ star.
Meng, Xin; Huang, Huachuan; Yan, Keding; Tian, Xiaolin; Yu, Wei; Cui, Haoyang; Kong, Yan; Xue, Liang; Liu, Cheng; Wang, Shouyu
2016-12-20
In order to realize high contrast imaging with portable devices for potential mobile healthcare, we demonstrate a hand-held smartphone based quantitative phase microscope using the transport of intensity equation method. With a cost-effective illumination source and compact microscope system, multi-focal images of samples can be captured by the smartphone's camera via manual focusing. Phase retrieval is performed using a self-developed Android application, which calculates sample phases from multi-plane intensities via solving the Poisson equation. We test the portable microscope using a random phase plate with known phases, and to further demonstrate its performance, a red blood cell smear, a Pap smear and monocot root and broad bean epidermis sections are also successfully imaged. Considering its advantages as an accurate, high-contrast, cost-effective and field-portable device, the smartphone based hand-held quantitative phase microscope is a promising tool which can be adopted in the future in remote healthcare and medical diagnosis.
Coupled force-balance and scattering equations for nonlinear transport in quantum wires
Huang, Danhong; Gumbs, Godfrey
2009-07-01
The coupled force-balance and scattering equations have been derived and applied to study nonlinear transport of electrons subjected to a strong dc electric field in an elastic-scattering-limited quantum wire. Numerical results have demonstrated both field-induced heating-up and cooling-down behaviors in the nonequilibrium part of the total electron-distribution function by varying the impurity density or the width of the quantum wire. The obtained asymmetric distribution function in momentum space invalidates the application of the energy-balance equation to our quantum-wire system in the center-of-mass frame. The experimentally observed suppression of mobility by a driving field for the center-of-mass motion in the quantum-wire system has been reproduced [see K. Tsubaki , Electr. Lett. 24, 1267 (1988); M. Hauser , Sci. Technol. 9, 951 (1994)]. In addition, the thermal enhancement of mobility in the elastic-scattering-limited system has been demonstrated, in accordance with a similar prediction made for graphene nanoribbons [see T. Fang , Phys. Rev. B 78, 205403 (2008)]. This thermal enhancement has been found to play a more and more significant role with higher lattice temperature and becomes stronger for a low-driving field.
Algebraic structure and Poisson integrals of a rotational relativistic Birkhoff system
罗绍凯; 陈向炜; 郭永新
2002-01-01
We have studied the algebraic structure of the dynamical equations of a rotational relativistic Birkhoff system. It is proven that autonomous and semi-autonomous rotational relativistic Birkhoff equations possess consistent algebraic structure and Lie algebraic structure. In general, non-autonomous rotational relativistic Birkhoff equations possess no algebraic structure, but a type of special non-autonomous rotational relativistic Birkhoff equation possesses consistent algebraic structure and consistent Lie algebraic structure. Then, we obtain the Poisson integrals of the dynamical equations of the rotational relativistic Birkhoff system. Finally, we give an example to illustrate the application of the results.
Tian, Xiaolin; Meng, Xin; Yu, Wei; Song, Xiaojun; Xue, Liang; Liu, Cheng; Wang, Shouyu
2016-10-01
Microscopy combined with the transport of intensity equation is capable of retrieving both intensity and phase distributions of samples from both in-focus and defocus intensities. However, during measurements, the focal plane is often decided artificially and the improper choice may induce errors in quantitative intensity and phase retrieval. In order to obtain accurate in-focus information, quantitative intensity and phase imaging with the numerical focusing transport of intensity equation method combined with cellular duty ratio criterion and numerical wavefront propagation is introduced in this paper. Both numerical simulations and experimental measurements are provided proving this designed method can increase both retrieved in-focus intensity and phase accuracy and reduce dependence of focal plane determination in transport of intensity equation measurements. It is believed that the proposed method can be potentially applied in various fields as in-focus compensation for quantitative phase imaging and automatic focal plane determination, etc.
Egami, Yoshiyuki; Iwase, Shigeru; Tsukamoto, Shigeru; Ono, Tomoya; Hirose, Kikuji
2015-09-01
We develop a first-principles electron-transport simulator based on the Lippmann-Schwinger (LS) equation within the framework of the real-space finite-difference scheme. In our fully real-space-based LS (grid LS) method, the ratio expression technique for the scattering wave functions and the Green's function elements of the reference system is employed to avoid numerical collapse. Furthermore, we present analytical expressions and/or prominent calculation procedures for the retarded Green's function, which are utilized in the grid LS approach. In order to demonstrate the performance of the grid LS method, we simulate the electron-transport properties of the semiconductor-oxide interfaces sandwiched between semi-infinite jellium electrodes. The results confirm that the leakage current through the (001)Si-SiO_{2} model becomes much larger when the dangling-bond state is induced by a defect in the oxygen layer, while that through the (001)Ge-GeO_{2} model is insensitive to the dangling bond state.
Relativistic RPA in axial symmetry
Arteaga, D Pena; 10.1103/PhysRevC.77.034317
2009-01-01
Covariant density functional theory, in the framework of self-consistent Relativistic Mean Field (RMF) and Relativistic Random Phase approximation (RPA), is for the first time applied to axially deformed nuclei. The fully self-consistent RMF+RRPA equations are posed for the case of axial symmetry and non-linear energy functionals, and solved with the help of a new parallel code. Formal properties of RPA theory are studied and special care is taken in order to validate the proper decoupling of spurious modes and their influence on the physical response. Sample applications to the magnetic and electric dipole transitions in $^{20}$Ne are presented and analyzed.
Azmy, Yousry
2014-06-10
We employ the Integral Transport Matrix Method (ITMM) as the kernel of new parallel solution methods for the discrete ordinates approximation of the within-group neutron transport equation. The ITMM abandons the repetitive mesh sweeps of the traditional source iterations (SI) scheme in favor of constructing stored operators that account for the direct coupling factors among all the cells' fluxes and between the cells' and boundary surfaces' fluxes. The main goals of this work are to develop the algorithms that construct these operators and employ them in the solution process, determine the most suitable way to parallelize the entire procedure, and evaluate the behavior and parallel performance of the developed methods with increasing number of processes, P. The fastest observed parallel solution method, Parallel Gauss-Seidel (PGS), was used in a weak scaling comparison with the PARTISN transport code, which uses the source iteration (SI) scheme parallelized with the Koch-baker-Alcouffe (KBA) method. Compared to the state-of-the-art SI-KBA with diffusion synthetic acceleration (DSA), this new method- even without acceleration/preconditioning-is completitive for optically thick problems as P is increased to the tens of thousands range. For the most optically thick cells tested, PGS reduced execution time by an approximate factor of three for problems with more than 130 million computational cells on P = 32,768. Moreover, the SI-DSA execution times's trend rises generally more steeply with increasing P than the PGS trend. Furthermore, the PGS method outperforms SI for the periodic heterogeneous layers (PHL) configuration problems. The PGS method outperforms SI and SI-DSA on as few as P = 16 for PHL problems and reduces execution time by a factor of ten or more for all problems considered with more than 2 million computational cells on P = 4.096.
HARM A Numerical Scheme for General Relativistic Magnetohydrodynamics
Gammie, C F; Tóth, G; Gammie, Charles F.; Kinney, Jonathan C. Mc
2003-01-01
We describe a conservative, shock-capturing scheme for evolving the equations of general relativistic magnetohydrodynamics. The fluxes are calculated using the Harten, Lax, and van Leer scheme. A variant of constrained transport, proposed earlier by T\\'oth, is used to maintain a divergence free magnetic field. Only the covariant form of the metric in a coordinate basis is required to specify the geometry. We describe code performance on a full suite of test problems in both special and general relativity. On smooth flows we show that it converges at second order. We conclude by showing some results from the evolution of a magnetized torus near a rotating black hole.
Cyclic integrals and reduction of rotational relativistic Birkhoffian system
罗绍凯
2003-01-01
The order reduction method of the rotational relativistic Birkhoffian equations is studied. For a rotational relativistic Birkhoffian system, the cyclic integrals can be found by using the perfect differential method. Through these cyclic integrals, the order of the system can be reduced. If the rotational relativistic Birkhoffian system has a cyclic integral, then the Birkhoffian equations can be reduced at least two degrees and the Birkhoffian form can be kept. An example is given to illustrate the application of the results.
Allaire, Gregoire; Dufreche, Jean-Francois; Mikelic, Andro; Piatnitski, Andrey
2013-01-01
This paper is devoted to the homogenization (or upscaling) of a system of partial differential equations describing the non-ideal transport of a N-component electrolyte in a dilute Newtonian solvent through a rigid porous medium. Realistic non-ideal effects are taken into account by an approach based on the mean spherical approximation (MSA) model which takes into account finite size ions and screening effects. We first consider equilibrium solutions in the absence of external forces. In such a case, the velocity and diffusive fluxes vanish and the equilibrium electrostatic potential is the solution of a variant of Poisson-Boltzmann equation coupled with algebraic equations. Contrary to the ideal case, this nonlinear equation has no monotone structure. However, based on invariant region estimates for Poisson-Boltzmann equation and for small characteristic value of the solute packing fraction, we prove existence of at least one solution. To our knowledge this existence result is new at this level of generality...
Xiao, Kai; Yi, Li; Liu, Feng; Wang, Fuqiang
2016-08-01
Momentum-space azimuthal harmonic event planes (EP) are constructed from final-state midrapidity particles binned in transverse momentum (pT) in √{sN N}=200 GeV Au+Au collisions in a multiphase transport (AMPT) model. The EP correlations between pT bins, corrected by EP resolutions, are smaller than unity. This indicates that the EP's decorrelate over pT in AMPT, qualitatively consistent with data and hydrodynamic calculations. It is further found that the EP correlations approximately factorize into single pT-bin EP correlations to a common plane. This common plane appears to be the momentum-space EP integrated over all pT, not the configuration-space participant plane (PP).
Agueda, N.; Lario, D.
2016-10-01
We study four consecutive 300-800 keV electron events observed on 1980 May 28 by Helios-1, when the spacecraft was located at 0.31 au from the Sun. We use two different techniques to extract the release time history of electrons at the Sun: (1) a data-driven method based on the assumption that particles conserve their magnetic moment as they propagate between the Sun and the spacecraft and (2) an inversion method that utilizes particle transport simulation results. Both methods make use of the particle angular distributions measured relative to the local direction of the magnetic field. The general characteristics of the release time profiles obtained by these two techniques are similar, especially during their rising phases. We find indications that the strength of the interplanetary scattering varies with the size of the solar parent event, suggesting that scattering processes are not necessarily an inherent property of the medium but are related to the amount of released particles at the Sun. We use the inferred release profiles to compute the expected intensities at 1 au. In contrast to simultaneous near-Earth observations by the Interplanetary Monitoring Platform (IMP-8), our simulations predict the observation of four separate events at 1 au. Processes that could contribute to the observation of one single time-extended event at 1 au include (1) distinct magnetic connections of the spacecraft to the particle sources, (2) the spatio-temporal evolution of the particle sources, and (3) different particle transport conditions, including a variation of {λ }r with radial distance and/or heliolongitude, as well as the possibility that electrons reached IMP-8 by diffusion perpendicular to the interplanetary magnetic field.
Whittaker Order Reduction Method of Relativistic Birkhoffian Systems
LUOShao-Kai; HUANGFei-Jiang; LUYi-Bing
2004-01-01
The order reduction method of the relativistic Birkhollian equations is studied. For a relativistic autonomous Birkhotffian system, if the conservative law of the Birkhotffian holds, the conservative quantity can be called the generalized energy integral. Through the generalized energy integral, the order of the system can be reduced. If the relativisticBirkhoffian system has a generalized energy integral, then the Birkhoffian equations can be reduced by at least twodegrees and the Birkhoffian form can be kept. The relations among the relativistic Birkhoffian mechanics, the relativistic Hamiltonian mechanics and the relativistic Lagrangian mechanics are discussed, and the Whittaker order reduction method of the relativistic Lagrangian system is obtained. And an example is given to illustrate the application of theresult.
Whittaker Order Reduction Method of Relativistic Birkhoffian Systems
LUO Shao-Kai; HUANG Fei-Jiang; LU Yi-Bing
2004-01-01
The order reduction method of the relativistic Birkhoffian equations is studied. For a relativistic autonomous Birkhoffian system, if the conservative law of the Birkhoffian holds, the conservative quantity can be called the generalized energy integral. Through the generalized energy integral, the order of the system can be reduced. If the relativistic Birkhoffian system has a generalized energy integral, then the Birkhoffian equations can be reduced by at least two degrees and the Birkhoffian form can be kept. The relations among the relativistic Birkhoffian mechanics, the relativistic Hamiltonian mechanics and the relativistic Lagrangian mechanics are discussed, and the Whittaker order reduction method of the relativistic Lagrangian system is obtained. And an example is given to illustrate the application of the result.
Routh Order Reduction Method of Relativistic Birkhoffian Systems
LUO Shao-Kai; GUO Yong-Xin
2007-01-01
Routh order reduction method of the relativistic Birkhoffian equations is studied.For a relativistic Birkhoffian system,the cyclic integrals can be found by using the perfect differential method.Through these cyclic integrals,the order of the system can be reduced.If the relativistic Birkhoffian system has a cyclic integral,then the Birkhoffian equations can be reduced at least by two degrees and the Birkhoffian form can be kept.The relations among the relativistic Birkhoffian mechanics,the relativistic Hamiltonian mechanics,and the relativistic Lagrangian mechanics are discussed,and the Routh order reduction method of the relativistic Lagrangian system is obtained.And an example is given to illustrate the application of the result.
Carella, Alfredo Raul
2012-09-15
Quantifying species transport rates is a main concern in chemical and petrochemical industries. In particular, the design and operation of many large-scale industrial chemical processes is as much dependent on diffusion as it is on reaction rates. However, the existing diffusion models sometimes fail to predict experimentally observed behaviors and their accuracy is usually insufficient for process optimization purposes. Fractional diffusion models offer multiple possibilities for generalizing Flick's law in a consistent manner in order to account for history dependence and nonlocal effects. These models have not been extensively applied to the study of real systems, mainly due to their computational cost and mathematical complexity. A least squares spectral formulation was developed for solving fractional differential equations. The proposed method was proven particularly well-suited for dealing with the numerical difficulties inherent to fractional differential operators. The practical implementation was explained in detail in order to enhance reproducibility, and directions were specified for extending it to multiple dimensions and arbitrarily shaped domains. A numerical framework based on the least-squares spectral element method was developed for studying and comparing anomalous diffusion models in pellets. This simulation tool is capable of solving arbitrary integro-differential equations and can be effortlessly adapted to various problems in any number of dimensions. Simulations of the flow around a cylindrical particle were achieved by extending the functionality of the developed framework. A test case was analyzed by coupling the boundary condition yielded by the fluid model with two families of anomalous diffusion models: hyperbolic diffusion and fractional diffusion. Qualitative guidelines for determining the suitability of diffusion models can be formulated by complementing experimental data with the results obtained from this approach.(Author)
CAFE: A NEW RELATIVISTIC MHD CODE
Lora-Clavijo, F. D.; Cruz-Osorio, A. [Instituto de Astronomía, Universidad Nacional Autónoma de México, AP 70-264, Distrito Federal 04510, México (Mexico); Guzmán, F. S., E-mail: fdlora@astro.unam.mx, E-mail: aosorio@astro.unam.mx, E-mail: guzman@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio C-3, Cd. Universitaria, 58040 Morelia, Michoacán, México (Mexico)
2015-06-22
We introduce CAFE, a new independent code designed to solve the equations of relativistic ideal magnetohydrodynamics (RMHD) in three dimensions. We present the standard tests for an RMHD code and for the relativistic hydrodynamics regime because we have not reported them before. The tests include the one-dimensional Riemann problems related to blast waves, head-on collisions of streams, and states with transverse velocities, with and without magnetic field, which is aligned or transverse, constant or discontinuous across the initial discontinuity. Among the two-dimensional (2D) and 3D tests without magnetic field, we include the 2D Riemann problem, a one-dimensional shock tube along a diagonal, the high-speed Emery wind tunnel, the Kelvin–Helmholtz (KH) instability, a set of jets, and a 3D spherical blast wave, whereas in the presence of a magnetic field we show the magnetic rotor, the cylindrical explosion, a case of Kelvin–Helmholtz instability, and a 3D magnetic field advection loop. The code uses high-resolution shock-capturing methods, and we present the error analysis for a combination that uses the Harten, Lax, van Leer, and Einfeldt (HLLE) flux formula combined with a linear, piecewise parabolic method and fifth-order weighted essentially nonoscillatory reconstructors. We use the flux-constrained transport and the divergence cleaning methods to control the divergence-free magnetic field constraint.
CAFE: A New Relativistic MHD Code
Lora-Clavijo, F. D.; Cruz-Osorio, A.; Guzmán, F. S.
2015-06-01
We introduce CAFE, a new independent code designed to solve the equations of relativistic ideal magnetohydrodynamics (RMHD) in three dimensions. We present the standard tests for an RMHD code and for the relativistic hydrodynamics regime because we have not reported them before. The tests include the one-dimensional Riemann problems related to blast waves, head-on collisions of streams, and states with transverse velocities, with and without magnetic field, which is aligned or transverse, constant or discontinuous across the initial discontinuity. Among the two-dimensional (2D) and 3D tests without magnetic field, we include the 2D Riemann problem, a one-dimensional shock tube along a diagonal, the high-speed Emery wind tunnel, the Kelvin-Helmholtz (KH) instability, a set of jets, and a 3D spherical blast wave, whereas in the presence of a magnetic field we show the magnetic rotor, the cylindrical explosion, a case of Kelvin-Helmholtz instability, and a 3D magnetic field advection loop. The code uses high-resolution shock-capturing methods, and we present the error analysis for a combination that uses the Harten, Lax, van Leer, and Einfeldt (HLLE) flux formula combined with a linear, piecewise parabolic method and fifth-order weighted essentially nonoscillatory reconstructors. We use the flux-constrained transport and the divergence cleaning methods to control the divergence-free magnetic field constraint.
A fast, parallel algorithm to solve the basic fluvial erosion/transport equations
Braun, J.
2012-04-01
Quantitative models of landform evolution are commonly based on the solution of a set of equations representing the processes of fluvial erosion, transport and deposition, which leads to predict the geometry of a river channel network and its evolution through time. The river network is often regarded as the backbone of any surface processes model (SPM) that might include other physical processes acting at a range of spatial and temporal scales along hill slopes. The basic laws of fluvial erosion requires the computation of local (slope) and non-local (drainage area) quantities at every point of a given landscape, a computationally expensive operation which limits the resolution of most SPMs. I present here an algorithm to compute the various components required in the parameterization of fluvial erosion (and transport) and thus solve the basic fluvial geomorphic equation, that is very efficient because it is O(n) (the number of required arithmetic operations is linearly proportional to the number of nodes defining the landscape), and is fully parallelizable (the computation cost decreases in a direct inverse proportion to the number of processors used to solve the problem). The algorithm is ideally suited for use on latest multi-core processors. Using this new technique, geomorphic problems can be solved at an unprecedented resolution (typically of the order of 10,000 X 10,000 nodes) while keeping the computational cost reasonable (order 1 sec per time step). Furthermore, I will show that the algorithm is applicable to any regular or irregular representation of the landform, and is such that the temporal evolution of the landform can be discretized by a fully implicit time-marching algorithm, making it unconditionally stable. I will demonstrate that such an efficient algorithm is ideally suited to produce a fully predictive SPM that links observationally based parameterizations of small-scale processes to the evolution of large-scale features of the landscapes on
Leardini, Fabrice
2013-01-01
This manuscript presents a problem on special relativity theory (SRT) which embodies an apparent paradox relying on the concept of simultaneity. The problem is represented in the framework of Greek epic poetry and structured in a didactic way. Owing to the characteristic properties of Lorenz transformations, three events which are simultaneous in a given inertial reference system, occur at different times in the other two reference frames. In contrast to the famous twin paradox, in the present case there are three, not two, different inertial observers. This feature provides a better framework to expose some of the main characteristics of SRT, in particular, the concept of velocity and the relativistic rule of addition of velocities.
On the relativistic anisotropic configurations
Shojai, F. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), Foundations of Physics Group, School of Physics, Tehran (Iran, Islamic Republic of); Kohandel, M. [Alzahra University, Department of Physics and Chemistry, Tehran (Iran, Islamic Republic of); Stepanian, A. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of)
2016-06-15
In this paper we study anisotropic spherical polytropes within the framework of general relativity. Using the anisotropic Tolman-Oppenheimer-Volkov equations, we explore the relativistic anisotropic Lane-Emden equations. We find how the anisotropic pressure affects the boundary conditions of these equations. Also we argue that the behavior of physical quantities near the center of star changes in the presence of anisotropy. For constant density, a class of exact solution is derived with the aid of a new ansatz and its physical properties are discussed. (orig.)
Baker, D N; Jaynes, A N; Kanekal, S G; Foster, J C; Erickson, P J; Fennell, J F; Blake, J B; Zhao, H; Li, X; Elkington, S R; Henderson, M G; Reeves, G D; Spence, H E; Kletzing, C A; Wygant, J R
2016-07-01
Two of the largest geomagnetic storms of the last decade were witnessed in 2015. On 17 March 2015, a coronal mass ejection-driven event occurred with a Dst (storm time ring current index) value reaching -223 nT. On 22 June 2015 another strong storm (Dst reaching -204 nT) was recorded. These two storms each produced almost total loss of radiation belt high-energy (E ≳ 1 MeV) electron fluxes. Following the dropouts of radiation belt fluxes there were complex and rather remarkable recoveries of the electrons extending up to nearly 10 MeV in kinetic energy. The energized outer zone electrons showed a rich variety of pitch angle features including strong "butterfly" distributions with deep minima in flux at α = 90°. However, despite strong driving of outer zone earthward radial diffusion in these storms, the previously reported "impenetrable barrier" at L ≈ 2.8 was pushed inward, but not significantly breached, and no E ≳ 2.0 MeV electrons were seen to pass through the radiation belt slot region to reach the inner Van Allen zone. Overall, these intense storms show a wealth of novel features of acceleration, transport, and loss that are demonstrated in the present detailed analysis.
Marko Žnidarič
2011-11-01
We discuss recent ﬁndings about properties of quantum nonequilibrium steady states. In particular we focus on transport properties. It is shown that the time-dependent density matrix renormalization method can be used successfully to ﬁnd a stationary solution of Lindblad master equation. Furthermore, for a speciﬁc model an exact solution is presented.
Dujko, S.; Ebert, U.; White, R.D.; Petrović, Z.L.
2010-01-01
A comprehensive investigation of electron transport in N$_{2}$-O$_{2}$ mixtures has been carried out using a multi term theory for solving the Boltzmann equation and Monte Carlo simulation technique instead of conventional two-term theory often employed in plasma modeling community. We focus on the
Liming WU; Zhengliang ZHANG
2006-01-01
We establish Talagrand's T2-transportation inequalities for infinite dimensional dissipative diffusions with sharp constants, through Galerkin type's approximations and the known results in the finite dimensional case. Furthermore in the additive noise case we prove also logarithmic Sobolev inequalities with sharp constants. Applications to ReactionDiffusion equations are provided.
Shadid, J.N.; Tuminaro, R.S. [Sandia National Labs., Albuquerque, NM (United States); Walker, H.F. [Utah State Univ., Logan, UT (United States). Dept. of Mathematics and Statistics
1997-02-01
The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript the authors focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context they use a particular spatial discretization based on a pressure stabilized Petrov-Galerkin finite element formulation of the low Mach number Navier-Stokes equations with heat and mass transport. The discussion considers computational efficiency, robustness and some implementation issues related to the proposed nonlinear solution scheme. Computational results are presented for several challenging CFD benchmark problems as well as two large scale 3D flow simulations.
Shadid, J.N.; Tuminaro, R.S. [Sandia National Labs., Albuquerque, NM (United States); Walker, H.F. [Utah State Univ., Logan, UT (United States). Dept. of Mathematics and Statistics
1997-02-01
The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript the authors focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context they use a particular spatial discretization based on a pressure stabilized Petrov-Galerkin finite element formulation of the low Mach number Navier-Stokes equations with heat and mass transport. The discussion considers computational efficiency, robustness and some implementation issues related to the proposed nonlinear solution scheme. Computational results are presented for several challenging CFD benchmark problems as well as two large scale 3D flow simulations.
Liu, Chongxuan; Szecsody, Jim E.; Zachara, John M.; Ball, William P.
The generalized integral transform technique (GITT) is applied to solve the one-dimensional advection-dispersion equation (ADE) in heterogeneous porous media coupled with either linear or nonlinear sorption and decay. When both sorption and decay are linear, analytical solutions are obtained using the GITT for one-dimensional ADEs with spatially and temporally variable flow and dispersion coefficient and arbitrary initial and boundary conditions. When either sorption or decay is nonlinear the solutions to ADEs with the GITT are hybrid analytical-numerical. In both linear and nonlinear cases, the forward and inverse integral transforms for the problems described in the paper are apparent and straightforward. Some illustrative examples with linear sorption and decay are presented to demonstrate the application and check the accuracy of the derived analytical solutions. The derived hybrid analytical-numerical solutions are checked against a numerical approach and demonstratively applied to a nonlinear transport example, which simulates a simplified system of iron oxide bioreduction with nonlinear sorption and nonlinear reaction kinetics.
Sari, Salih [Hacettepe University, Department of Nuclear Engineering, Beytepe, 06800 Ankara (Turkey); Erguen, Sule [Hacettepe University, Department of Nuclear Engineering, Beytepe, 06800 Ankara (Turkey)], E-mail: se@nuke.hacettepe.edu.tr; Barik, Muhammet; Kocar, Cemil; Soekmen, Cemal Niyazi [Hacettepe University, Department of Nuclear Engineering, Beytepe, 06800 Ankara (Turkey)
2009-03-15
In this study, isothermal turbulent bubbly flow is mechanistically modeled. For the modeling, Fluent version 6.3.26 is used as the computational fluid dynamics solver. First, the mechanistic models that simulate the interphase momentum transfer between the gas (bubbles) and liquid (continuous) phases are investigated, and proper models for the known flow conditions are selected. Second, an interfacial area transport equation (IATE) solution is added to Fluent's solution scheme in order to model the interphase momentum transfer mechanisms. In addition to solving IATE, bubble number density (BND) approach is also added to Fluent and this approach is also used in the simulations. Different source/sink models derived for the IATE and BND models are also investigated. The simulations of experiments based on the available data in literature are performed by using IATE and BND models in two and three-dimensions. The results show that the simulations performed by using IATE and BND models agree with each other and with the experimental data. The simulations performed in three-dimensions give better agreement with the experimental data.
Application of Exactly Linearized Error Transport Equations to AIAA CFD Prediction Workshops
Derlaga, Joseph M.; Park, Michael A.; Rallabhandi, Sriram
2017-01-01
The computational fluid dynamics (CFD) prediction workshops sponsored by the AIAA have created invaluable opportunities in which to discuss the predictive capabilities of CFD in areas in which it has struggled, e.g., cruise drag, high-lift, and sonic boom pre diction. While there are many factors that contribute to disagreement between simulated and experimental results, such as modeling or discretization error, quantifying the errors contained in a simulation is important for those who make decisions based on the computational results. The linearized error transport equations (ETE) combined with a truncation error estimate is a method to quantify one source of errors. The ETE are implemented with a complex-step method to provide an exact linearization with minimal source code modifications to CFD and multidisciplinary analysis methods. The equivalency of adjoint and linearized ETE functional error correction is demonstrated. Uniformly refined grids from a series of AIAA prediction workshops demonstrate the utility of ETE for multidisciplinary analysis with a connection between estimated discretization error and (resolved or under-resolved) flow features.
Buchan, Andrew G., E-mail: andrew.buchan@imperial.ac.uk [Applied Modelling and Computational Group, Department of Earth Science and Engineering, Imperial College of Science, Technology and Medicine (United Kingdom); Merton, Simon R. [AWE, Aldermaston, Reading RG7 4PR (United Kingdom); Pain, Christopher C. [Applied Modelling and Computational Group, Department of Earth Science and Engineering, Imperial College of Science, Technology and Medicine (United Kingdom); Smedley-Stevenson, Richard P. [AWE, Aldermaston, Reading RG7 4PR (United Kingdom)
2011-05-15
In this paper a method for resolving the various boundary conditions (BCs) for the first order Boltzmann transport equation (BTE) is described. The approach has been formulated to resolve general BCs using an arbitrary angular approximation method within any weighted residual finite element formulation. The method is based on a Riemann decomposition which is used to decompose the particles' angular dependence into in-coming and out-going information through a surface. This operation recasts the flux into a Riemann space which is used directly to remove any incoming information, and thus satisfy void boundary conditions. The method is then extended by its coupling with a set of mapping operators that redirect the outgoing flux to form incoming images resembling other specified boundary conditions. These operators are based on Galerkin projections and are defined to enable reflective and diffusive (white) BCs to be resolved. A small number of numerical examples are then presented to demonstrate the method's ability in resolving void, reflective and white BCs. These examples have been chosen in order to show the method working for arbitrary angled surfaces. Furthermore, as the method has been designed for an arbitrary angular approximation, both S{sub N} and P{sub N} calculations are presented.
Optimum plane selection for transport-of-intensity-equation-based solvers.
Martinez-Carranza, J; Falaggis, K; Kozacki, T
2014-10-20
Deterministic single beam phase retrieval techniques based on the transport of intensity equation (TIE) use the axial intensity derivative obtained from a series of intensities recorded along the propagation axis as an input to the TIE-based solver. The common belief is that, when reducing the error present in the axial intensity derivative, there will be minimal error in the retrieved phase. Thus, reported optimization schemes of measurement condition focuses on the minimization of error in the axial intensity derivative. As it is shown in this contribution, this assumption is not correct and leads to underestimating the value of plane separation, which increases the phase retrieval errors and sensitivity to noise of the TIE-based measurement system. Therefore, in this paper, a detailed analysis that shows the existence of an optimal separation that minimizes the error in the retrieved phase for a given TIE-based solver is carried out. The developed model is used to derive analytical expressions that provide an optimal plane separation for a given number of planes and level of noise for the case of equidistant plane separation. The obtained results are derived for the widely used Fourier-transform-based TIE solver, but it is shown that they can also be applied to multigrid-based techniques.
Wang, Cong; Long, Yao; Tian, Ming-Feng; He, Xian-Tu; Zhang, Ping
2013-04-01
We have calculated the equations of state, the viscosity and self-diffusion coefficients, and electronic transport coefficients of beryllium in the warm dense regime for densities from 4.0 to 6.0 g/cm(3) and temperatures from 1.0 to 10.0 eV by using quantum molecular dynamics simulations. The principal Hugoniot curve is in agreement with underground nuclear explosive and high-power laser experimental results up to ~20 Mbar. The calculated viscosity and self-diffusion coefficients are compared with the one-component plasma model, using effective charges given by the average-atom model. The Stokes-Einstein relationship, which connects viscosity and self-diffusion coefficients, is found to hold fairly well in the strong coupling regime. The Lorenz number, which is the ratio between thermal and electrical conductivities, is computed via Kubo-Greenwood formula and compared to the well-known Wiedemann-Franz law in the warm dense region.
Higher dimensional charged shear-free relativistic models with heat flux
Nyonyi, Y; Govinder, K S
2014-01-01
We analyse shear-free spherically symmetric relativistic models of gravitating fluids with heat flow and electric charge defined on higher dimensional manifolds. The solution to the Einstein-Maxwell system is governed by the pressure isotropy condition which depends on the spacetime dimension. We study this highly nonlinear partial differential equation using Lie's group theoretic approach. The Lie symmetry generators that leave the equation invariant are determined. We provide exact solutions to the gravitational potentials using the first symmetry admitted by the equation. Our new exact solutions contain the earlier results for the four-dimensional case. Using the other Lie generators, we are able to provide solutions to the gravitational potentials or reduce the order of the master equation to a first order nonlinear differential equation. We derive the temperature transport equation in higher dimensions and find expressions for the causal and Eckart temperatures showing their explicit dependance on the di...
André, Raíla
2014-01-01
In this work we analyze the dynamics of collisionless self-gravitating systems described by the f(R)-gravity and Boltzmann equation in the weak field approximation, focusing on the Jeans instability for theses systems. The field equations in this approximation were obtained within the Palatini formalism. Through the solution of coupled equations we achieved the collapse criterion for infinite homogeneous fluid and stellar systems, which is given by a dispersion relation. This result is compared with the results of the standard case and the case for f(R)-gravity in metric formalism, in order to see the difference among them. The limit of instability varies according to which theory of gravity is adopted.
Application of longshore transport equations to Andhra coast, East coast of India
Chandramohan, P.; Nayak, B.U.; RamaRaju, V.S.
during November to February. The longshore transport rate is high during the southwest monsoon period from June to September. A higher sediment transport rate is observed for the coastline oriented at 80 degrees east of north. The annual net transport...
Kulish Vladimir V.
2004-01-01
Full Text Available This paper presents an integral solution of the generalized one-dimensional equation of energy transport with the convective term.The solution of the problem has been achieved by the use of a novel technique that involves generalized derivatives (in particular, derivatives of noninteger orders. Confluent hypergeometric functions, known as Whittaker's functions, appear in the course of the solution procedure upon applying the Laplace transform to the original transport equation.The analytical solution of the problem is written in the integral form and provides a relationship between the local values of the transported property (e.g., temperature, mass, momentum, etc. and its flux.The solution is valid everywhere within the domain, including the domain boundary.
Transport Equations for CAD Modeling of Al(x)Ga(1-x)N/GaN HEMTs
Freeman, Jon C.
2003-01-01
BEMTs formed from Al(x)Ga(1-x)N/GaN heterostructures are being investigated for high RF power and efficiency around the world by many groups, both academic and industrial. In these devices, the 2DEG formation is dominated by both spontaneous and piezoelectric polarization fields, with each component having nearly the same order of magnitude. The piezoelectric portion is induced by the mechanical strain in the structure, and to analyze these devices, one must incorporate the stress/strain relationships, along with the standard semiconductor transport equations. These equations for Wurtzite GaN are not easily found in the open literature, hence this paper summarizes them, along with the constitutive equations for piezoelectric materials. The equations are cast into the format for the Wurtzite crystal class, which is the most common way GaN is grown epitaxially.
Relativistic MHD with Adaptive Mesh Refinement
Anderson, M; Liebling, S L; Neilsen, D; Anderson, Matthew; Hirschmann, Eric; Liebling, Steven L.; Neilsen, David
2006-01-01
We solve the relativistic magnetohydrodynamics (MHD) equations using a finite difference Convex ENO method (CENO) in 3+1 dimensions within a distributed parallel adaptive mesh refinement (AMR) infrastructure. In flat space we examine a Balsara blast wave problem along with a spherical blast wave and a relativistic rotor test both with unigrid and AMR simulations. The AMR simulations substantially improve performance while reproducing the resolution equivalent unigrid simulation results. We also investigate the impact of hyperbolic divergence cleaning for the spherical blast wave and relativistic rotor. We include unigrid and mesh refinement parallel performance measurements for the spherical blast wave.
New Developments in Relativistic Viscous Hydrodynamics
Romatschke, Paul
2009-01-01
Starting with a brief introduction into the basics of relativistic fluid dynamics, I discuss our current knowledge of a relativistic theory of fluid dynamics in the presence of (mostly shear) viscosity. Derivations based on the generalized second law of thermodynamics, kinetic theory, and a complete second-order gradient expansion are reviewed. The resulting fluid dynamic equations are shown to be consistent for all these derivations, when properly accounting for the respective region of appl...
Lloyd, S. A. M.; Ansbacher, W. [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6 (Canada); Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6 (Canada) and Department of Medical Physics, British Columbia Cancer Agency-Vancouver Island Centre, Victoria, British Columbia V8R 6V5 (Canada)
2013-01-15
Purpose: Acuros external beam (Acuros XB) is a novel dose calculation algorithm implemented through the ECLIPSE treatment planning system. The algorithm finds a deterministic solution to the linear Boltzmann transport equation, the same equation commonly solved stochastically by Monte Carlo methods. This work is an evaluation of Acuros XB, by comparison with Monte Carlo, for dose calculation applications involving high-density materials. Existing non-Monte Carlo clinical dose calculation algorithms, such as the analytic anisotropic algorithm (AAA), do not accurately model dose perturbations due to increased electron scatter within high-density volumes. Methods: Acuros XB, AAA, and EGSnrc based Monte Carlo are used to calculate dose distributions from 18 MV and 6 MV photon beams delivered to a cubic water phantom containing a rectangular high density (4.0-8.0 g/cm{sup 3}) volume at its center. The algorithms are also used to recalculate a clinical prostate treatment plan involving a unilateral hip prosthesis, originally evaluated using AAA. These results are compared graphically and numerically using gamma-index analysis. Radio-chromic film measurements are presented to augment Monte Carlo and Acuros XB dose perturbation data. Results: Using a 2% and 1 mm gamma-analysis, between 91.3% and 96.8% of Acuros XB dose voxels containing greater than 50% the normalized dose were in agreement with Monte Carlo data for virtual phantoms involving 18 MV and 6 MV photons, stainless steel and titanium alloy implants and for on-axis and oblique field delivery. A similar gamma-analysis of AAA against Monte Carlo data showed between 80.8% and 87.3% agreement. Comparing Acuros XB and AAA evaluations of a clinical prostate patient plan involving a unilateral hip prosthesis, Acuros XB showed good overall agreement with Monte Carlo while AAA underestimated dose on the upstream medial surface of the prosthesis due to electron scatter from the high-density material. Film measurements
Double Relativistic Electron Accelerating Mirror
Saltanat Sadykova
2013-02-01
Full Text Available In the present paper, the possibility of generation of thin dense relativistic electron layers is shown using the analytical and numerical modeling of laser pulse interaction with ultra-thin layers. It was shown that the maximum electron energy can be gained by optimal tuning between the target width, intensity and laser pulse duration. The optimal parameters were obtained from a self-consistent system of Maxwell equations and the equation of motion of electron layer. For thin relativistic electron layers, the gaining of maximum electron energies requires a second additional overdense plasma layer, thus cutting the laser radiation off the plasma screen at the instant of gaining the maximum energy (DREAM-schema.
Fluctuations in Relativistic Causal Hydrodynamics
Kumar, Avdhesh; Mishra, Ananta P
2013-01-01
The formalism to calculate the hydrodynamics fluctuation using the quasi-stationary fluctuation theory of Onsager to the relativistic Navier-Stokes hydrodynamics is already known. In this work we calculate hydrodynamic fluctuations in relativistic causal theory of Muller, Israel and Stewart and other related causal hydrodynamic theories. We show that expressions for the Onsager coefficients and the correlation functions have form similar to the ones obtained by using Navier-Stokes equation. However, temporal evolution of the correlation functions obtained using MIS and the other causal theories can be significantly different than the correlation functions obtained using the Navier-Stokes equation. Finally, as an illustrative example, we explicitly plot the correlation functions obtained using the causal-hydrodynamics theories and compare them with correlation functions obtained by earlier authors using the expanding boost-invariant (Bjorken) flows.
Elliptic equation for random walks. Application to transport in microporous media
Shapiro, Alexander
2007-01-01
We consider a process of random walks with arbitrary residence time distribution. We show that in many cases this process may not be described by the classical (Fick) parabolic diffusion equation, but an elliptic equation. An additional term proportional to the second time derivative takes...... into account the distribution of the residence times of molecules ill pores. The new elliptic diffusion equation is strictly derived by the operator approach. A criterion showing where the new equation should be applied instead of the standard diffusion equation is obtained. Boundary conditions are studied...
Li, Jiaji; Chen, Qian; Zhang, Jialin; Zhang, Zhao; Zhang, Yan; Zuo, Chao
2017-08-01
Optical diffraction tomography (ODT) is an effective label-free technique for quantitatively refractive index imaging, which enables long-term monitoring of the internal three-dimensional (3D) structures and molecular composition of biological cells with minimal perturbation. However, existing optical tomographic methods generally rely on interferometric configuration for phase measurement and sophisticated mechanical systems for sample rotation or beam scanning. Thereby, the measurement is suspect to phase error coming from the coherent speckle, environmental vibrations, and mechanical error during data acquisition process. To overcome these limitations, we present a new ODT technique based on non-interferometric phase retrieval and programmable illumination emitting from a light-emitting diode (LED) array. The experimental system is built based on a traditional bright field microscope, with the light source replaced by a programmable LED array, which provides angle-variable quasi-monochromatic illumination with an angular coverage of ±37 degrees in both x and y directions (corresponding to an illumination numerical aperture of ∼0.6). Transport of intensity equation (TIE) is utilized to recover the phase at different illumination angles, and the refractive index distribution is reconstructed based on the ODT framework under first Rytov approximation. The missing-cone problem in ODT is addressed by using the iterative non-negative constraint algorithm, and the misalignment of the LED array is further numerically corrected to improve the accuracy of refractive index quantification. Experiments on polystyrene beads and thick biological specimens show that the proposed approach allows accurate refractive index reconstruction while greatly reduced the system complexity and environmental sensitivity compared to conventional interferometric ODT approaches.
Light Cone analysis of relativistic first-order in the gradients hydrodynamics
Brun-Battistini, D
2010-01-01
This work applies a Rayleigh-Brillouin light spectrum analysis in order to establish a causality test by means of a frequency cone. This technique allows to identify forbidden and unforbidden regions in light scattering experiments and establishes if a set of linearized transport equations admits causal solutions. It is shown that, when studying a relativistic fluid with its acoustic modes interacting with light, Eckart's formalism yields a non causal behavior. In this case the solutions describing temperature, density and pressure fluctuations are located outside the frequency cone. In contrast, the set of equations that arises from modified Eckart's theory (based on relativistic kinetic theory) yields solutions that lie within the cone, so that they are causal.
Optical analogue of relativistic Dirac solitons in binary waveguide arrays
Tran, Truong X., E-mail: truong.tran@mpl.mpg.de [Department of Physics, Le Quy Don University, 236 Hoang Quoc Viet str., 10000 Hanoi (Viet Nam); Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen (Germany); Longhi, Stefano [Department of Physics, Politecnico di Milano and Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle Ricerche, Piazza L. da Vinci 32, I-20133 Milano (Italy); Biancalana, Fabio [Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen (Germany); School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS Edinburgh (United Kingdom)
2014-01-15
We study analytically and numerically an optical analogue of Dirac solitons in binary waveguide arrays in the presence of Kerr nonlinearity. Pseudo-relativistic soliton solutions of the coupled-mode equations describing dynamics in the array are analytically derived. We demonstrate that with the found soliton solutions, the coupled mode equations can be converted into the nonlinear relativistic 1D Dirac equation. This paves the way for using binary waveguide arrays as a classical simulator of quantum nonlinear effects arising from the Dirac equation, something that is thought to be impossible to achieve in conventional (i.e. linear) quantum field theory. -- Highlights: •An optical analogue of Dirac solitons in nonlinear binary waveguide arrays is suggested. •Analytical solutions to pseudo-relativistic solitons are presented. •A correspondence of optical coupled-mode equations with the nonlinear relativistic Dirac equation is established.
Relativistic Fractal Cosmologies
Ribeiro, Marcelo B
2009-01-01
This article reviews an approach for constructing a simple relativistic fractal cosmology whose main aim is to model the observed inhomogeneities of the distribution of galaxies by means of the Lemaitre-Tolman solution of Einstein's field equations for spherically symmetric dust in comoving coordinates. This model is based on earlier works developed by L. Pietronero and J.R. Wertz on Newtonian cosmology, whose main points are discussed. Observational relations in this spacetime are presented, together with a strategy for finding numerical solutions which approximate an averaged and smoothed out single fractal structure in the past light cone. Such fractal solutions are shown, with one of them being in agreement with some basic observational constraints, including the decay of the average density with the distance as a power law (the de Vaucouleurs' density power law) and the fractal dimension in the range 1 <= D <= 2. The spatially homogeneous Friedmann model is discussed as a special case of the Lemait...
Relativistic Gravothermal Instabilities
Roupas, Zacharias
2014-01-01
The thermodynamic instabilities of the self-gravitating, classical ideal gas are studied in the case of static, spherically symmetric configurations in General Relativity taking into account the Tolman-Ehrenfest effect. One type of instabilities is found at low energies, where thermal energy becomes too weak to halt gravity and another at high energies, where gravitational attraction of thermal pressure overcomes its stabilizing effect. These turning points of stability are found to depend on the total rest mass $\\mathcal{M}$ over the radius $R$. The low energy instability is the relativistic generalization of Antonov instability, which is recovered in the limit $G\\mathcal{M} \\ll R c^2$ and low temperatures, while in the same limit and high temperatures, the high energy instability recovers the instability of the radiation equation of state. In the temperature versus energy diagram of series of equilibria, the two types of gravothermal instabilities make themselves evident as a double spiral! The two energy l...
On the Generalized Mass Transport Equation to the Concept of Variable Fractional Derivative
Abdon Atangana
2014-01-01
Full Text Available The hydrodynamic dispersion equation was generalized using the concept of variational order derivative. The modified equation was numerically solved via the Crank-Nicholson scheme. The stability and convergence of the scheme in this case were presented. The numerical simulations showed that, the modified equation is more reliable in predicting the movement of pollution in the deformable aquifers, than the constant fractional and integer derivatives.
Anderson-Witting transport coefficients for flows in general relativity
Ambrus, Victor E
2016-01-01
The transport coefficients induced by the Anderson-Witting approximation of the collision term in the relativistic Boltzmann equation are derived for close to equilibrium flows in general relativity. Using the tetrad formalism, it is shown that the expression for these coefficients is the same as that obtained on flat space-time, in agreement with the generalized equivalence principle.
Di, Shaoyan; Shen, Lei; Chang, Pengying; Zhao, Kai; Lu, Tiao; Du, Gang; Liu, Xiaoyan
2017-04-01
A deterministic time-dependent Boltzmann transport equation (BTE) solver is employed to carry out a comparison work among 10 nm double-gate n-type MOSFETs with channel materials of Si, In0.53Ga0.47As, and GaSb in different surface orientations. Results show that the GaSb device has the highest drive current, while scattering affects carrier transport in the Si device the most. The InGaAs device exhibits the highest injection velocity but suffers from the density of state (DOS) bottleneck seriously.
Holographic Aspects of a Relativistic Nonconformal Theory
Chanyong Park
2013-01-01
Full Text Available We study a general D-dimensional Schwarzschild-type black brane solution of the Einstein-dilaton theory and derive, by using the holographic renormalization, its thermodynamics consistent with the geometric results. Using the membrane paradigm, we calculate the several hydrodynamic transport coefficients and compare them with the results obtained by the Kubo formula, which shows the self-consistency of the gauge/gravity duality in the relativistic nonconformal theory. In order to understand more about the relativistic non-conformal theory, we further investigate the binding energy, drag force, and holographic entanglement entropy of the relativistic non-conformal theory.
Application of the three-dimensional telegraph equation to cosmic-ray transport
Tautz, R C
2016-01-01
An analytical solution to the the three-dimensional telegraph equation is presented. This equation has recently received some attention but so far the treatment has been one-dimensional. By using the structural similarity to the Klein-Gordon equation, the telegraph equation can be solved in closed form. Illustrative examples are used to discuss the qualitative differences to the diffusion solution. The comparison with a numerical test-particle simulation reveals that some features of an intensity profile can be better explained using the telegraph approach.
Extended Galilean symmetries of non-relativistic strings
Batlle, Carles; Gomis, Joaquim; Not, Daniel
2017-02-01
We consider two non-relativistic strings and their Galilean symmetries. These strings are obtained as the two possible non-relativistic (NR) limits of a relativistic string. One of them is non-vibrating and represents a continuum of non-relativistic massless particles, and the other one is a non-relativistic vibrating string. For both cases we write the generator of the most general point transformation and impose the condition of Noether symmetry. As a result we obtain two sets of non-relativistic Killing equations for the vector fields that generate the symmetry transformations. Solving these equations shows that NR strings exhibit two extended, infinite dimensional space-time symmetries which contain, as a subset, the Galilean symmetries. For each case, we compute the associated conserved charges and discuss the existence of non-central extensions.
Extended Galilean symmetries of non-relativistic strings
Batlle, Carles; Not, Daniel
2016-01-01
We consider two non-relativistic strings and their Galilean symmetries. These strings are obtained as the two possible non-relativistic (NR) limits of a relativistic string. One of them is non-vibrating and represents a continuum of non-relativistic massless particles, and the other one is a non-relativistic vibrating string. For both cases we write the generator of the most general point transformation and impose the condition of Noether symmetry. As a result we obtain two sets of non-relativistic Killing equations for the vector fields that generate the symmetry transformations. Solving these equations shows that NR strings exhibit two extended, infinite dimensional space-time symmetries which contain, as a subset, the Galilean symmetries. For each case, we compute the associated conserved charges and discuss the existence of non-central extensions.
Relativistic solitons and superluminal signals
Maccari, Attilio [Technical Institute ' G. Cardano' , Piazza della Resistenza 1, Monterotondo, Rome 00015 (Italy)]. E-mail: solitone@yahoo.it
2005-02-01
Envelope solitons in the weakly nonlinear Klein-Gordon equation in 1 + 1 dimensions are investigated by the asymptotic perturbation (AP) method. Two different types of solitons are possible according to the properties of the dispersion relation. In the first case, solitons propagate with the group velocity (less than the light speed) of the carrier wave, on the contrary in the second case solitons always move with the group velocity of the carrier wave, but now this velocity is greater than the light speed. Superluminal signals are then possible in classical relativistic nonlinear field equations.
Benedicks effect in a relativistic simple fluid
Garcia-Perciante, A L; Garcia-Colin, L S
2013-01-01
According to standard thermophysical theories, cross effects are mostly present in multicomponent systems. In this paper we show that for relativistic fluids an electric field generates a heat flux even in the single component case. In the non-relativistic limit the effect vanishes and Fourier's law is recovered. This result is novel and may have applications in the transport properties of very hot plasmas.
Tricoli, Ugo; Da Silva, Anabela; Markel, Vadim A
2016-01-01
We derive a reciprocity relation for vector radiative transport equation (vRTE) that describes propagation of polarized light in multiple-scattering media. We then show how this result, together with translational invariance of a plane-parallel sample, can be used to compute efficiently the sensitivity kernel of diffuse optical tomography (DOT) by Monte Carlo simulations. Numerical examples of polarization-selective sensitivity kernels thus computed are given.
Schneider, Florian
2016-01-01
This paper provides a generalization of the realizability-preserving discontinuous-Galerkin scheme for quadrature-based minimum-entropy models to full-moment models of arbitrary order. It is applied to the class of Kershaw closures, which are able to provide a cheap closure of the moment problem. This results in an efficient algorithm for the underlying linear transport equation. The efficiency of high-order methods is demonstrated using numerical convergence tests and non-smooth benchmark problems.
Schneider, Florian
2016-10-01
This paper provides a generalization of the realizability-preserving discontinuous-Galerkin scheme given in [3] to general full-moment models that can be closed analytically. It is applied to the class of Kershaw closures, which are able to provide a cheap closure of the moment problem. This results in an efficient algorithm for the underlying linear transport equation. The efficiency of high-order methods is demonstrated using numerical convergence tests and non-smooth benchmark problems.
Sheng, W.; Chen, G.-J.; Lu, H.-C.
1989-01-01
An attempt is made in this work to combine the Enskog theory of transport properties with the simple cubic Peng-Robinson (PR) equation of state. The PR equation of state provides the density dependence of the equilibrium radial distribution function. A slight empirical modification of the Enskog equation is proposed to improve the accuracy of correlation of thermal conductivity and viscosity coefficient for dense gases and liquids. Extensive comparisons with experimental data of pure fluids are made for a wide range of fluid states with temperatures from 90 to 500 K and pressures from 1 to 740 atm. The total average absolute deviations are 2.67% and 2.02% for viscosity and thermal conductivity predictions, respectively. The proposed procedure for predicting viscosity and thermal conductivity is simple and straightforward. It requires only critical parameters and acentric factors for the fluids.
Wang, I. T.
A general method for determining the effective transport wind speed, overlineu, in the Gaussian plume equation is discussed. Physical arguments are given for using the generalized overlineu instead of the often adopted release-level wind speed with the plume diffusion equation. Simple analytical expressions for overlineu applicable to low-level point releases and a wide range of atmospheric conditions are developed. A non-linear plume kinematic equation is derived using these expressions. Crosswind-integrated SF 6 concentration data from the 1983 PNL tracer experiment are used to evaluate the proposed analytical procedures along with the usual approach of using the release-level wind speed. Results of the evaluation are briefly discussed.
On the relativistic mass function and averaging in cosmology
Ostrowski, Jan J; Roukema, Boudewijn F
2016-01-01
The general relativistic description of cosmological structure formation is an important challenge from both the theoretical and the numerical point of views. In this paper we present a brief prescription for a general relativistic treatment of structure formation and a resulting mass function on galaxy cluster scales in a highly generic scenario. To obtain this we use an exact scalar averaging scheme together with the relativistic generalization of Zel'dovich's approximation (RZA) that serves as a closure condition for the averaged equations.
Relativistic quantum mechanics and introduction to field theory
Yndurain, F.J. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica
1996-12-01
The following topics were dealt with: relativistic transformations, the Lorentz group, Klein-Gordon equation, spinless particles, spin 1/2 particles, Dirac particle in a potential, massive spin 1 particles, massless spin 1 particles, relativistic collisions, S matrix, cross sections, decay rates, partial wave analysis, electromagnetic field quantization, interaction of radiation with matter, interactions in quantum field theory and relativistic interactions with classical sources.
Fiorentini, Mattia; Bonini, Nicola
2016-08-01
We present a first-principles computational approach to calculate thermoelectric transport coefficients via the exact solution of the linearized Boltzmann transport equation, also including the effect of nonequilibrium phonon populations induced by a temperature gradient. We use density functional theory and density functional perturbation theory for an accurate description of the electronic and vibrational properties of a system, including electron-phonon interactions; carriers' scattering rates are computed using standard perturbation theory. We exploit Wannier interpolation (both for electronic bands and electron-phonon matrix elements) for an efficient sampling of the Brillouin zone, and the solution of the Boltzmann equation is achieved via a fast and stable conjugate gradient scheme. We discuss the application of this approach to n -doped silicon. In particular, we discuss a number of thermoelectric properties such as the thermal and electrical conductivities of electrons, the Lorenz number and the Seebeck coefficient, including the phonon drag effect, in a range of temperatures and carrier concentrations. This approach gives results in good agreement with experimental data and provides a detailed characterization of the nature and the relative importance of the individual scattering mechanisms. Moreover, the access to the exact solution of the Boltzmann equation for a realistic system provides a direct way to assess the accuracy of different flavors of relaxation time approximation, as well as of models that are popular in the thermoelectric community to estimate transport coefficients.