WorldWideScience

Sample records for relativistic solar cosmic

  1. Relativistic transport theory for cosmic-rays

    International Nuclear Information System (INIS)

    Webb, G.M.

    1985-01-01

    Various aspects of the transport of cosmic-rays in a relativistically moving magnetized plasma supporting a spectrum of hydromagnetic waves that scatter the cosmic-rays are presented. A local Lorentz frame moving with the waves or turbulence scattering the cosmic-rays is used to specify the individual particle momentum. The comoving frame is in general a noninertial frame in which the observer's volume element is expanding and shearing, geometric energy change terms appear in the cosmic-ray transport equation which consist of the relativistic generalization of the adiabatic deceleration term and a further term involving the acceleration vector of the scatterers. A relativistic version of the pitch angle evolution equation, including the effects of adiabatic focussing, pitch angle scattering, and energy changes is presented

  2. The cosmic-ray shock structure problem for relativistic shocks

    Science.gov (United States)

    Webb, G. M.

    1985-01-01

    The time asymptotic behaviour of a relativistic (parallel) shock wave significantly modified by the diffusive acceleration of cosmic-rays is investigated by means of relativistic hydrodynamical equations for both the cosmic-rays and thermal gas. The form of the shock structure equation and the dispersion relation for both long and short wavelength waves in the system are obtained. The dependence of the shock acceleration efficiency on the upstream fluid spped, long wavelength Mach number and the ratio N = P sub co/cP sub co+P sub go)(Psub co and P sub go are the upstream cosmic-ray and thermal gas pressures respectively) are studied.

  3. PROGNOSIS OF GLEs OF RELATIVISTIC SOLAR PROTONS

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Peraza, Jorge; Juárez-Zuñiga, Alan, E-mail: perperaz@geofisica.unam.mx, E-mail: z.alan.z@hotmail.com [Instituto de Geofísica, Universidad Nacional Autónoma de México, C.U., Coyoacán, 04510, México, D.F. (Mexico)

    2015-04-10

    Ground level enhancements (GLEs) are relativistic solar particles measured at ground level by the worldwide network of cosmic ray detectors. These sporadic events are associated with solar flares and are assumed to be of a quasi-random nature. Studying them gives information about their source and propagation processes, the maximum capacity of the Sun as a particle accelerator engine, the magnetic structure of the medium traversed, etc. Space vehicles, as well as electric transformers and gas pipes at high latitudes may be damaged by this kind of radiation. As a result, their prediction has turned out to be very important, but because of their random occurrence, up to now few efforts toward this goal have been made. The results of these efforts have been limited to possible warnings in real time, just before a GLE occurrence, but no specific dates have been predicted well enough in advance to prevent possible hazards. In this study we show that, in spite of the quasi-stochastic nature of GLEs, it is possible to predict them with relative precision, even for future solar cycles. Additionally, a previous study establishing synchronization among some periodicities of several layers of solar atmosphere argues against the full randomness of the phenomenon of relativistic particle production. Therefore, by means of wavelet spectral analysis combined with fuzzy logic tools, we reproduce previous known GLE events and present results for future events. The next GLE is expected to occur in the first semester of 2016.

  4. Cosmic ray variations of solar origin in relation to human physiological state during the December 2006 solar extreme events

    Science.gov (United States)

    Papailiou, M.; Mavromichalaki, H.; Vassilaki, A.; Kelesidis, K. M.; Mertzanos, G. A.; Petropoulos, B.

    2009-02-01

    There is an increasing amount of evidence linking biological effects to solar and geomagnetic disturbances. A series of studies is published referring to the changes in human physiological responses at different levels of geomagnetic activity. In this study, the possible relation between the daily variations of cosmic ray intensity, measured by the Neutron Monitor at the Cosmic Ray Station of the University of Athens (http://cosray.phys.uoa.gr) and the average daily and hourly heart rate variations of persons, with no symptoms or hospital admission, monitored by Holter electrocardiogram, is considered. This work refers to a group of persons admitted to the cardiological clinic of the KAT Hospital in Athens during the time period from 4th to 24th December 2006 that is characterized by extreme solar and geomagnetic activity. A series of Forbush decreases started on 6th December and lasted until the end of the month and a great solar proton event causing a Ground Level Enhancement (GLE) of the cosmic ray intensity on 13th December occurred. A sudden decrease of the cosmic ray intensity on 15th December, when a geomagnetic storm was registered, was also recorded in Athens Neutron Monitor station (cut-off rigidity 8.53 GV) with amplitude of 4%. It is noticed that during geomagnetically quiet days the heart rate and the cosmic ray intensity variations are positively correlated. When intense cosmic ray variations, like Forbush decreases and relativistic proton events produced by strong solar phenomena occur, cosmic ray intensity and heart rate get minimum values and their variations, also, coincide. During these events the correlation coefficient of these two parameters changes and follows the behavior of the cosmic ray intensity variations. This is only a small part of an extended investigation, which has begun using data from the year 2002 and is still in progress.

  5. Nonlocal relativistic diffusion (NoRD) model of cosmic ray propagation

    International Nuclear Information System (INIS)

    Uchaikin, V V; Sibatov, R T

    2017-01-01

    The problem of physical interpretation of the nonlocal relativistic diffusion (NoRD model) for cosmic ray transport in the Galaxy is discussed. The model accounts for the turbulent character of the interstellar medium and the relativistic principle of the speed limitation. Involving fractional calculus and non-Gaussian Lévy statistics yields numerical results compatible with observation data. A special attention is paid to the knee problem. The relativistic speed limit requirement steepens theoretical background spectrum at certain energies, and the position of the break, its sharpness and slopes of asymptotes depend on D α ( E ) and α . (paper)

  6. Solar flares and the cosmic ray intensity

    International Nuclear Information System (INIS)

    Hatton, C.J.

    1980-01-01

    The relationship between the cosmic ray intensity and solar activity during solar cycle 20 is discussed. A model is developed whereby it is possible to simulate the observed cosmic ray intensity from the observed number of solar flares of importance >= 1. This model leads to a radius for the modulation region of 60-70 AU. It is suggested that high speed solar streams also made a small contribution to the modulation of cosmic rays during solar cycle 20. (orig.)

  7. Cosmic gamma-ray burst from intergalactic relativistic dust grains

    International Nuclear Information System (INIS)

    Dasgupta, A.K.

    1979-01-01

    Charged dust grains of radii a approximately 3 x 10 -6 approximately 3 x 10 -5 cm may acquire relativistic energy (>10 18 eV) in the intergalactic medium. In order to attain relativistic energy, dust grains have to move in and out ('scattering') of the magnetic field of the medium. A relativistic grain of radius a -5 cm with Lorentz factor γ approximately 10 3 approaching the Earth will break up either due to electrostatic charge or due to sputtering about 150 approximately 100 km, and may scatter solar photons via a fluorescence process. Dust grains may also melt into droplets in the solar vicinity and may contribute towards observed gamma-ray bursts. (Auth.)

  8. Solar-cosmic-ray variability

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1976-01-01

    The maximum flux of particles from solar events that should be considered in designing the shielding for a space habitation is discussed. The activities of various radionuclides measured in the top few centimeters of lunar rocks are used to examine the variability of solar cosmic ray fluxes over the last five million years. 10 references

  9. Solar cycle variation of cosmic ray intensity along with interplanetary and solar wind plasma parameters

    International Nuclear Information System (INIS)

    Mishra, R.K.; Tiwari, S.; Agarwal, R.

    2008-01-01

    Galactic cosmic rays are modulated at their propagation in the heliosphere by the effect of the large-scale structure of the interplanetary medium. A comparison of the variations in the cosmic ray intensity data obtained by neutron monitoring stations with those in geomagnetic disturbance, solar wind velocity (V), interplanetary magnetic field (B), and their product (V , B) near the Earth for the period 1964-2004 has been presented so as to establish a possible correlation between them. We used the hourly averaged cosmic ray counts observed with the neutron monitor in Moscow. It is noteworthy that a significant negative correlation has been observed between the interplanetary magnetic field, product (V , B) and cosmic ray intensity during the solar cycles 21 and 22. The solar wind velocity has a good positive correlation with cosmic ray intensity during solar cycle 21, whereas it shows a weak correlation during cycles 20, 22 and 23. The interplanetary magnetic field shows a weak negative correlation with cosmic rays for solar cycle 20, and a good anti-correlation for solar cycles 21-23 with the cosmic ray intensity, which, in turn, shows a good positive correlation with disturbance time index (Dst) during solar cycles 21 and 22, and a weak correlation for cycles 20 and 23. (Authors)

  10. Cosmic matrix in the jubilee of relativistic astrophysics

    International Nuclear Information System (INIS)

    Ruffini, R.; Aimuratov, Y.; Enderli, M.; Kovacevic, M.; Belinski, V.; Bianco, C. L.; Izzo, L.; Moradi, R.; Muccino, M.; Rueda, J. A.; Vereshchagin, G. V.; Wang, Y.; Xue, S.-S.; Mathews, G. J.; Penacchioni, A. V.; Pisani, G. B.

    2015-01-01

    Following the classical works on Neutron Stars, Black Holes and Cosmology, I outline some recent results obtained in the IRAP-PhD program of ICRANet on the “Cosmic Matrix”: a new astrophysical phenomenon recorded by the X- and Gamma-Ray satellites and by the largest ground based optical telescopes all over our planet. In 3 minutes it has been recorded the occurrence of a “Supernova”, the “Induced-Gravitational-Collapse” on a Neutron Star binary, the formation of a “Black Hole”, and the creation of a “Newly Born Neutron Star”. This presentation is based on a document describing activities of ICRANet and recent developments of the paradigm of the Cosmic Matrix in the comprehension of Gamma Ray Bursts (GRBs) presented on the occasion of the Fourteenth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theory. A Portuguese version of this document can be downloaded at: http://www.icranet.org/documents/brochure_icranet_pt.pdf

  11. Solar modulation of galactic cosmic rays: techniques and applications

    International Nuclear Information System (INIS)

    Perko, J.S.

    1984-01-01

    This thesis covers four topics in the theory of interplanetary cosmic-ray propagation: the first part involves the time-dependent, spherically-symmetric, solar modulation of galactic cosmic rays. A numerical technique was introduced for the solution of this problem. A model for the solar cycle variation in cosmic-ray intensity illustrated this method using enhanced particle scattering regions. The second section contains an attempt to explain recent observations which show that cosmic-ray electrons are returning to higher intensities, characteristic of solar minimum, faster than cosmic-ray protons of about the same energy, the reverse of the previous eleven-year cycle. The third section involves the solar modulation of galactic antiprotons. Using a steady-state, spherically-symmetric, numerical modulation code, a solution that reasonably fits the observed 1980 galactic proton spectrum at 1 AU implied that the modulation used for the data interpretation has been significantly underestimated. The final section contains a spherically-symmetric steady-state calculation of the effects of a strong termination shock in the heliosphere. In the end, high-energy particles cooling down in the upstream solar wind overwhelmed any accelerated low-energy particles

  12. Cosmic matrix in the jubilee of relativistic astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Ruffini, R., E-mail: ruffini@icra.it [Dip. di Fisica, Sapienza University of Rome and ICRA Piazzale Aldo Moro 5, I–00185, Rome (Italy); ICRANet, Piazza della Repubblica 10, I–65122 Pescara (Italy); Université de Nice Sophie Antipolis, Nice, CEDEX 2, Grand Château Parc Valrose (France); ICRANet-Rio, Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Rio de Janeiro, RJ, 22290–180 (Brazil); Aimuratov, Y.; Enderli, M.; Kovacevic, M. [Dip. di Fisica, Sapienza University of Rome and ICRA Piazzale Aldo Moro 5, I–00185, Rome (Italy); Université de Nice Sophie Antipolis, Nice, CEDEX 2, Grand Château Parc Valrose (France); Belinski, V.; Bianco, C. L.; Izzo, L.; Moradi, R.; Muccino, M.; Rueda, J. A.; Vereshchagin, G. V.; Wang, Y.; Xue, S.-S. [Dip. di Fisica, Sapienza University of Rome and ICRA Piazzale Aldo Moro 5, I–00185, Rome (Italy); ICRANet, Piazza della Repubblica 10, I–65122 Pescara (Italy); Mathews, G. J. [ICRANet, Piazza della Repubblica 10, I–65122 Pescara (Italy); Center for Astrophysics, University of Notre Dame, US (United States); Penacchioni, A. V. [INPE - Av. dos Astronautas, 1758 - Sao Jose dos Campos - Sao Paulo – Brazil (Brazil); Pisani, G. B. [Dip. di Fisica, Sapienza University of Rome and ICRA Piazzale Aldo Moro 5, I–00185, Rome (Italy)

    2015-12-17

    Following the classical works on Neutron Stars, Black Holes and Cosmology, I outline some recent results obtained in the IRAP-PhD program of ICRANet on the “Cosmic Matrix”: a new astrophysical phenomenon recorded by the X- and Gamma-Ray satellites and by the largest ground based optical telescopes all over our planet. In 3 minutes it has been recorded the occurrence of a “Supernova”, the “Induced-Gravitational-Collapse” on a Neutron Star binary, the formation of a “Black Hole”, and the creation of a “Newly Born Neutron Star”. This presentation is based on a document describing activities of ICRANet and recent developments of the paradigm of the Cosmic Matrix in the comprehension of Gamma Ray Bursts (GRBs) presented on the occasion of the Fourteenth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theory. A Portuguese version of this document can be downloaded at: http://www.icranet.org/documents/brochure{sub i}cranet{sub p}t.pdf.

  13. DNDO Report: Predicting Solar Modulation Potentials for Modeling Cosmic Background Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Behne, Patrick Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-08

    The modeling of the detectability of special nuclear material (SNM) at ports and border crossings requires accurate knowledge of the background radiation at those locations. Background radiation originates from two main sources, cosmic and terrestrial. Cosmic background is produced by high-energy galactic cosmic rays (GCR) entering the atmosphere and inducing a cascade of particles that eventually impact the earth’s surface. The solar modulation potential represents one of the primary inputs to modeling cosmic background radiation. Usosokin et al. formally define solar modulation potential as “the mean energy loss [per unit charge] of a cosmic ray particle inside the heliosphere…” Modulation potential, a function of elevation, location, and time, shares an inverse relationship with cosmic background radiation. As a result, radiation detector thresholds require adjustment to account for differing background levels, caused partly by differing solar modulations. Failure to do so can result in higher rates of false positives and failed detection of SNM for low and high levels of solar modulation potential, respectively. This study focuses on solar modulation’s time dependence, and seeks the best method to predict modulation for future dates using Python. To address the task of predicting future solar modulation, we utilize both non-linear least squares sinusoidal curve fitting and cubic spline interpolation. This material will be published in transactions of the ANS winter meeting of November, 2016.

  14. Radiative hazard of solar flares in the nearterrestrial cosmic space

    International Nuclear Information System (INIS)

    Kolomenskij, A.V.; Petrov, V.M.; Zil', M.V.; Eremkina, T.M.

    1978-01-01

    Simulation of radiation enviroment due to solar cosmic rays was carried out in the near-terrestrial space. Systematized are the data on cosmic ray flux and spectra detected during 19-th and 20-th cycles of solar activity. 127 flares are considered with proton fluxes of more than 10 proton/cm 2 at energies higher than 30 MeV. Obtained are distribution functions of intervals between flares, flux distribution of flares and characteristic rigidity, and also distribution of magnetic disturbances over Dsub(st)-variation amplitude. The totality of these distributions presents the statistic model of radiation enviroment caused by solar flare protons for the period of maximum solar .activity. This model is intended for estimation of radiation hazard at manned cosmic flights

  15. Signatures of cosmic-ray interactions on the solar surface

    Science.gov (United States)

    Seckel, D.; Stanev, Todor; Gaisser, T. K.

    1991-01-01

    The fluxes of neutrinos, gamma rays, antiprotons, neutrons, and antineutrons that result from collisions of high-energy Galactic cosmic rays with the solar atmosphere are estimated. The results are sensitive to assumptions about cosmic-ray transport in the magnetic fields of the inner solar system. The high-energy photon flux should be observable by the Gamma Ray Observatory. The neutrino flux should produce less than one event per year in the next generation of neutrino telescopes. The antiproton flux is unobservable against the Galactic background. The neutron and antineutron fluxes are detectable only if neutrons produced in terrestrial cosmic-ray events may be discriminated against.

  16. Multi-parametric Effect of Solar Activity on Cosmic Rays V. K. Mishra ...

    Indian Academy of Sciences (India)

    Key words. Sun—solar parameters—cosmic ray modulation—running ... Neutron monitors are most sensitive to cosmic rays in the energy range. 0.5–20 GeV ... been considered as a primary indicator to define the level of solar activity, which.

  17. Cosmic ray modulation and radiation dose of aircrews during the solar cycle 24/25

    Science.gov (United States)

    Miyake, Shoko; Kataoka, Ryuho; Sato, Tatsuhiko

    2017-04-01

    Weak solar activity and high cosmic ray flux during the coming solar cycle are qualitatively anticipated by the recent observations that show the decline in the solar activity levels. We predict the cosmic ray modulation and resultant radiation exposure at flight altitude by using the time-dependent and three-dimensional model of the cosmic ray modulation. Our galactic cosmic ray (GCR) model is based on the variations of the solar wind speed, the strength of the heliospheric magnetic field, and the tilt angle of the heliospheric current sheet. We reproduce the 22 year variation of the cosmic ray modulation from 1980 to 2015 taking into account the gradient-curvature drift motion of GCRs. The energy spectra of GCR protons obtained by our model show good agreement with the observations by the Balloon-borne Experiment with a Superconducting magnetic rigidity Spectrometer (BESS) and the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) except for a discrepancy at the solar maximum. Five-year annual radiation dose around the solar minimum at the solar cycle 24/25 will be approximately 19% higher than that in the last cycle. This is caused by the charge sign dependence of the cosmic ray modulation, such as the flattop profiles in a positive polarity.

  18. Cosmic rays, solar activity and the climate

    International Nuclear Information System (INIS)

    Sloan, T; Wolfendale, A W

    2013-01-01

    Although it is generally believed that the increase in the mean global surface temperature since industrialization is caused by the increase in green house gases in the atmosphere, some people cite solar activity, either directly or through its effect on cosmic rays, as an underestimated contributor to such global warming. In this letter a simplified version of the standard picture of the role of greenhouse gases in causing the global warming since industrialization is described. The conditions necessary for this picture to be wholly or partially wrong are then introduced. Evidence is presented from which the contributions of either cosmic rays or solar activity to this warming is deduced. The contribution is shown to be less than 10% of the warming seen in the twentieth century. (letter)

  19. CAN ULTRAHIGH-ENERGY COSMIC RAYS COME FROM GAMMA-RAY BURSTS? COSMIC RAYS BELOW THE ANKLE AND GALACTIC GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Eichler, David; Pohl, Martin

    2011-01-01

    The maximum cosmic-ray energy achievable by acceleration by a relativistic blast wave is derived. It is shown that forward shocks from long gamma-ray bursts (GRBs) in the interstellar medium accelerate protons to large enough energies, and have a sufficient energy budget, to produce the Galactic cosmic-ray component just below the ankle at 4 x 10 18 eV, as per an earlier suggestion. It is further argued that, were extragalactic long GRBs responsible for the component above the ankle as well, the occasional Galactic GRB within the solar circle would contribute more than the observational limits on the outward flux from the solar circle, unless an avoidance scenario, such as intermittency and/or beaming, allows the present-day local flux to be less than 10 -3 of the average. Difficulties with these avoidance scenarios are noted.

  20. Solar flare neon and solar cosmic ray fluxes in the past using gas-rich meteorites

    International Nuclear Information System (INIS)

    Nautiyal, C.M.; Rao, M.N.

    1986-01-01

    Methods were developed earlier to deduce the composition of solar flare neon and to determine the solar cosmic ray proton fluxes in the past using etched lunar samples and at present, these techniques are extended to gas rich meteorites. By considering high temperature Ne data points for Pantar, Fayetteville and other gas rich meteorites and by applying the three component Ne-decomposition methods, the solar cosmic ray and galactic cosmic ray produced spallation Ne components from the trapped SF-Ne was resolved. Using appropiate SCR and GCR production rates, in the case of Pantar, for example, a GCR exposure age of 2 m.y. was estimated for Pantar-Dark while Pantar-Light yielded a GCR age of approx. 3 m.y. However the SCR exposure age of Pantar-Dark is two orders of magnitude higher than the average surface exposure ages of lunar soils. The possibility of higher proton fluxes in the past is discussed

  1. Observations of recurrent cosmic ray decreases during solar cycles 22 and 23

    International Nuclear Information System (INIS)

    Dunzlaff, P.; Heber, B.; Kopp, A.; Rother, O.; Mueller-Mellin, R.; Klassen, A.; Gomez-Herrero, R.; Wimmer-Schweingruber, R.

    2008-01-01

    During solar cycle 22, the modulation of several hundred MeV galactic cosmic rays (GCRs) by recurrent and transient cosmic ray decreases was observed by the Ulysses spacecraft on its descent towards the solar south pole. In solar cycle 23, Ulysses repeated this trajectory segment during a similar phase of the solar cycle, but with opposite heliospheric magnetic field polarity. Since cosmic ray propagation in the heliosphere should depend on drift effects, we determine in this study the latitudinal distribution of the amplitude of recurrent cosmic ray decreases in solar cycles 22 and 23. As long as we measure the recurrent plasma structures in situ, we find that these decreases behave nearly the same in both cycles. Measurements in the fast solar wind, however, show differences: in cycle 22 (A>0) the recurrent cosmic ray decreases show a clear maximum near 25 and are still present beyond 40 , whereas we see in cycle 23 (A<0) neither such a pronounced maximum nor significant decreases above 40 . In other words: the periodicity in the cosmic ray intensity, which can be clearly seen in the slow solar wind, appears to vanish there. Theoretical models for drift effects, however, predict quite the opposite behaviour for the two solar cycles. To closer investigate this apparent contradiction, we first put the visual inspection of the data onto a more solid basis by performing a detailed Lomb (spectral) analysis. The next step consists of an analysis of the resulting periodicities at 1 AU in order to distinguish between spatial and temporal variations, so that we can obtain statements about the question in how far there is a correlation between the in-situ data at 1 AU and those measured by Ulysses at larger latitudes. We find a good correlation being present during cycle 22, but not for cycle 23. As one potential explanation for this behaviour, we suggest the difference in the coronal hole structures between the cycles 22 and 23 due to a large, stable coronal hole

  2. Cosmic ray intensity distribution in the vertical direction to solar equator plane

    International Nuclear Information System (INIS)

    Nosaka, Toru; Mori, Satoru; Sagisaka, Shuji.

    1983-01-01

    The data of the annual variation of cosmic ray intensity measured by neutron detectors were used to study the distribution of cosmic ray intensity vertical to the solar equator plane and its long term variation. The data used were obtained at Deep River, Kiel, Kerguelen Island, McMurdo, Ottawa, and Mt. Washington. All data showed annual variation. The patterns and degree of variation obtained in northern and southern hemisphere were similar. The summation dial representation of the annual variation and semi-annual variation of cosmic ray was obtained. The inversion of annual variation in 1958 - 1959 and 1968 - 1969 corresponded to the inversion of polarity of solar pole magnetic field. The semi-annual variation showed a complex behavior. The helio-latitudial distribution of cosmic ray intensity was obtained. The asymmetric distribution in relation to the solar equator was observed in the annual variation. The northward gradient of density in 1955 - 1958 and southward gradient in 1959 - 1968 were seen. (Kato, T.)

  3. Constraining sources of ultrahigh energy cosmic rays and shear acceleration mechanism of particles in relativistic jets

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ruoyu

    2015-06-10

    Ultrahigh energy cosmic rays are extreme energetic particles from outer space. They have aroused great interest among scientists for more than fifty years. However, due to the rarity of the events and complexity of the process of their propagation to Earth, they are still one of the biggest puzzles in modern high energy astrophysics. This dissertation is dedicated to study the origin of ultrahigh energy cosmic rays from various aspects. Firstly, we discuss a possible link between recently discovered sub-PeV/PeV neutrinos and ultrahigh energy cosmic rays. If these two kinds of particles share the same origin, the observation of neutrinos may provide additional and non-trivial constraints on the sources of ultrahigh energy cosmic rays. Secondly, we jointly employ the chemical composition measurement and the arrival directions of ultrahigh energy cosmic rays, and find a robust upper limit for distances of sources of ultrahigh energy cosmic rays above ∝55 EeV, as well as a lower limit for their metallicities. Finally, we study the shear acceleration mechanism in relativistic jets, which is a more efficient mechanism for the acceleration of higher energy particle. We compute the acceleration efficiency and the time-dependent particle energy spectrum, and explore the feature of synchrotron radiation of the accelerated particles. The possible realizations of this mechanism for acceleration of ultrahigh energy cosmic rays in different astrophysical environments is also discussed.

  4. Solar cosmic ray events at large radial distances from the sun

    International Nuclear Information System (INIS)

    Zwickl, R.; Webber, W.R.; McDonald, F.B.; Teegarden, B.; Trainor, J.

    1975-01-01

    Using the GSFC-UNH cosmic ray telescope on Pioneer 10 and 11 we have examined solar cosmic ray events out to a distance approximately 5 AU from the sun. Here we consider two aspects of this work, both related to our anisotropy studies. First, a detailed error analysis of the cosine fit to the anisotropy is presented. Second, we look at the anisotropy and intensity time characteristics during solar events as a function of radial distance. (orig.) [de

  5. Rotation of the Earth, solar activity and cosmic ray intensity

    Energy Technology Data Exchange (ETDEWEB)

    Barlyaeva, T.; Bard, E. [Aix-Marseille Univ., CNRS, IRD, Aix-en-Provence (France). CEREGE, College de France; Abarca-del-Rio, R. [Universidad de Concepcion (UDEC) (Chile). Dept. de Geofisica (DGEO)

    2014-10-01

    We analyse phase lags between the 11-year variations of three records: the semi-annual oscillation of the length of day (LOD), the solar activity (SA) and the cosmic ray intensity (CRI). The analysis was done for solar cycles 20-23. Observed relationships between LOD, CRI and SA are discussed separately for even and odd solar cycles. Phase lags were calculated using different methods (comparison of maximal points of cycles, maximal correlation coefficient, line of synchronization of cross-recurrence plots). We have found different phase lags between SA and CRI for even and odd solar cycles, confirming previous studies. The evolution of phase lags between SA and LOD as well as between CRI and LOD shows a positive trend with additional variations of phase lag values. For solar cycle 20, phase lags between SA and CRI, between SA and LOD, and between CRI and LOD were found to be negative. Overall, our study suggests that, if anything, the length of day could be influenced by solar irradiance rather than by cosmic rays.

  6. Rotation of the Earth, solar activity and cosmic ray intensity

    International Nuclear Information System (INIS)

    Barlyaeva, T.; Bard, E.

    2014-01-01

    We analyse phase lags between the 11-year variations of three records: the semi-annual oscillation of the length of day (LOD), the solar activity (SA) and the cosmic ray intensity (CRI). The analysis was done for solar cycles 20-23. Observed relationships between LOD, CRI and SA are discussed separately for even and odd solar cycles. Phase lags were calculated using different methods (comparison of maximal points of cycles, maximal correlation coefficient, line of synchronization of cross-recurrence plots). We have found different phase lags between SA and CRI for even and odd solar cycles, confirming previous studies. The evolution of phase lags between SA and LOD as well as between CRI and LOD shows a positive trend with additional variations of phase lag values. For solar cycle 20, phase lags between SA and CRI, between SA and LOD, and between CRI and LOD were found to be negative. Overall, our study suggests that, if anything, the length of day could be influenced by solar irradiance rather than by cosmic rays.

  7. Lunar radionuclide records of average solar-cosmic-ray fluxes over the last ten million years

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1980-01-01

    Because changes in solar activity can modify the fluxes of cosmic-ray particles in the solar system, the nature of the galactic and solar cosmic rays and their interactions with matter are described and used to study the ancient sun. The use of cosmogenic nuclides in meteorites and lunar samples as detectors of past cosmic-ray variations are discussed. Meteorite records of the history of the galactic cosmic rays are reviewed. The fluxes of solar protons over various time periods as determined from lunar radionuclide data are presented and examined. The intensities of solar protons emitted during 1954 to 1964 (11-year solar cycle number 19) were much larger than those for 1965 to 1975 (solar cycle 20). Average solar-proton fluxes determined for the last one to ten million years from lunar 26 Al and 53 Mn data show little variation and are similar to the fluxes for recent solar cycles. Lunar activities of 14 C (and preliminary results for 81 Kr) indicate that the average fluxes of solar protons over the last 10 4 (and 10 5 ) years are several times larger than those for the last 10 6 to 10 7 years; however, cross-section measurements and other work are needed to confirm these flux variations

  8. The radial distribution of cosmic rays in the heliosphere at solar maximum

    Science.gov (United States)

    McDonald, F. B.; Fujii, Z.; Heikkila, B.; Lal, N.

    2003-08-01

    To obtain a more detailed profile of the radial distribution of galactic (GCRs) and anomalous (ACRs) cosmic rays, a unique time in the 11-year solar activity cycle has been selected - that of solar maximum. At this time of minimum cosmic ray intensity a simple, straight-forward normalization technique has been found that allows the cosmic ray data from IMP 8, Pioneer 10 (P-10) and Voyagers 1 and 2 (V1, V2) to be combined for the solar maxima of cycles 21, 22 and 23. This combined distribution reveals a functional form of the radial gradient that varies as G 0/r with G 0 being constant and relatively small in the inner heliosphere. After a transition region between ˜10 and 20 AU, G 0 increases to a much larger value that remains constant between ˜25 and 82 AU. This implies that at solar maximum the changes that produce the 11-year modulation cycle are mainly occurring in the outer heliosphere between ˜15 AU and the termination shock. These observations are not inconsistent with the concept that Global Merged Interaction. regions (GMIRs) are the principal agent of modulation between solar minimum and solar maximum. There does not appear to be a significant change in the amount of heliosheath modulation occurring between the 1997 solar minimum and the cycle 23 solar maximum.

  9. Relativistic Anandan quantum phase and the Aharonov–Casher effect under Lorentz symmetry breaking effects in the cosmic string spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Bakke, K., E-mail: kbakke@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa-PB (Brazil); Furtado, C., E-mail: furtado@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa-PB (Brazil); Belich, H., E-mail: belichjr@gmail.com [Departamento de Física e Química, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, 29060-900, Vitória, ES (Brazil)

    2016-09-15

    From the modified Maxwell theory coupled to gravity, we establish a possible scenario of the violation of the Lorentz symmetry and write an effective metric for the cosmic string spacetime. Then, we investigate the arising of an analogue of the Anandan quantum phase for a relativistic Dirac neutral particle with a permanent magnetic dipole moment in the cosmic string spacetime under Lorentz symmetry breaking effects. Besides, we analyse the influence of the effects of the Lorentz symmetry violation and the topology of the defect on the Aharonov–Casher geometric quantum phase in the nonrelativistic limit.

  10. From the solar system fo hidden cosmic structures

    Energy Technology Data Exchange (ETDEWEB)

    Benes, K

    1987-01-01

    The development of experimental astrophysics showed that in the evolution of planets, natural processes of a common nature take place. They include, e.g., radiogenic heat, the production of magmas, volcanic activity, degassing, etc. The solar system is a cosmic formation in an advanced stage of development and it is a realistic assumption that in the Galaxy other hidden planetary systems in various stages of development exist. The views on the possibility of the origination of life in other systems differ; life, however, is seen as a hidden property of cosmic matter. (M.D.).

  11. Limits and signatures of relativistic spaceflight

    Science.gov (United States)

    Yurtsever, Ulvi; Wilkinson, Steven

    2018-01-01

    While special relativity imposes an absolute speed limit at the speed of light, our Universe is not empty Minkowski spacetime. The constituents that fill the interstellar/intergalactic vacuum, including the cosmic microwave background photons, impose a lower speed limit on any object travelling at relativistic velocities. Scattering of cosmic microwave photons from an ultra-relativistic object may create radiation with a characteristic signature allowing the detection of such objects at large distances.

  12. Solar flare location effect on the spectral characteristics of the diurnal anisotropy of cosmic ray intensity

    Energy Technology Data Exchange (ETDEWEB)

    Yadava, R S; Kumar, S; Naqvi, T N [Aligarh Muslim Univ. (India)

    1977-01-01

    The spectral parameters of the diurnal anisotropy of cosmic ray intensity are studied separately for days where the solar flares have occurred on the western limb as well as on the eastern limb of the solar disc for both nucleonic as well as mesonic components of the cosmic rays. It is observed that the diurnal amplitude of the cosmic ray intensity in space is larger for days where solar flares have occurred on the western limb of the solar disc as compared to the days where solar flares have occurred on the eartern limb of the solar disc. This is true in both nucleonic as well as mesonic components of the cosmic ray intensity. The average value of the direction in space of diurnal anisotropy in local asymptotic time for various stations is almost same and is observed at around the same hours for flares which occur on the western as well as eastern limb of the solar disc. When these results are compared with the direction of the diurnal anisotropy in space on quiet days, it is found that the direction of the diurnal anisotropy on days where solar flares have occurred on the western limb as well as eastern limb of the solar disc is earlier in comparison to quiet days. This phase shift towards earlier hours is about three hours for nucleonic as well as mesonic components of the cosmic rays intensity. The variation of the rigidity exponent observed on different types of days for the nucleonic component has also been discussed.

  13. Cosmic Ray Daily Variation And SOLAR Activity On Anomalous Days

    International Nuclear Information System (INIS)

    Mishra, Rajesh Kumar; Mishra, Rekha Agarwal

    2008-01-01

    A study is carried out on the long-term changes in the diurnal anisotropy of cosmic rays using the ground based Deep River neutron monitor data during significantly low amplitude anisotropic wave train events in cosmic ray intensity for the period 1981-94. It has been observed that the phase of the diurnal anisotropy for majority of the low amplitude anisotropic wave train events significantly shifts towards earlier hours as compared to the co-rotational direction. The long-term behaviour of the amplitude of the diurnal anisotropy can be explained in terms of the occurrence of low amplitude anisotropic wave train events. The occurrence of these events is dominant during solar activity minimum years. The amplitude of the diurnal anisotropy is well correlated with the solar cycle but the direction of the anisotropy is not correlated with the solar cycle and shows a systematic shift to earlier hours. (authors)

  14. Does electromagnetic radiation accelerate galactic cosmic rays

    Science.gov (United States)

    Eichler, D.

    1977-01-01

    The 'reactor' theories of Tsytovich and collaborators (1973) of cosmic-ray acceleration by electromagnetic radiation are examined in the context of galactic cosmic rays. It is shown that any isotropic synchrotron or Compton reactors with reasonable astrophysical parameters can yield particles with a maximum relativistic factor of only about 10,000. If they are to produce particles with higher relativistic factors, the losses due to inverse Compton scattering of the electromagnetic radiation in them outweigh the acceleration, and this violates the assumptions of the theory. This is a critical restriction in the context of galactic cosmic rays, which have a power-law spectrum extending up to a relativistic factor of 1 million.

  15. Long-lived sources of solar cosmic rays

    International Nuclear Information System (INIS)

    Mullan, D.J.

    1979-01-01

    The high correlation between prompt solar cosmic rays and a flare-induced MHD shock is well known. We point out that the propagation properties of such a shock cause shock heating of the solar atmosphere to be confined to a unipolar magnetic region. As a result, if particles can be accelerated within the shock-processed part of the corona, the fluxes of suc particles will exhibit sharp spatial gradients near quiescent filaments. The passage of an MHD shock leads to the rapid collapse of magnetic neutral regions which prior to shock passage were collapsing too slowly to accelerate particles. We suggest that these newly triggered magnetic acceleration regions provide a third phase of solar flare acceleration regions provide a third phase of solar flare acceleration which may persist for many days after a flare. Collapsing magnetic regions with lengths scales of order 100 km can explain a variety of coronal phenomena

  16. STATISTICAL STUDY ON THE DECAY PHASE OF SOLAR NEAR-RELATIVISTIC ELECTRON EVENTS

    International Nuclear Information System (INIS)

    Lario, D.

    2010-01-01

    We study the decay phase of solar near-relativistic (53-315 keV) electron events as observed by the Advanced Composition Explorer (ACE) and the Ulysses spacecraft during solar cycle 23. By fitting an exponential function (exp - t/τ) to the time-intensity profile in the late phase of selected solar near-relativistic electron events, we examine the dependence of τ on electron energy, electron intensity spectra, event peak intensity, event fluence, and solar wind velocity, as well as heliocentric radial distance, heliolatitude, and heliolongitude of the spacecraft with respect to the parent solar event. The decay rates are found to be either independent or slightly decrease with the electron energy. No clear dependence is found between τ and the heliolongitude of the parent solar event, with the exception of well-connected events for which low values of τ are more commonly observed than for poorly-connected events. For those events concurrently observed by ACE and Ulysses, decay rates increase at distances >3 AU. Events with similar decay rates at ACE and Ulysses were observed mainly when Ulysses was at high heliographic latitudes. We discuss the basic physical mechanisms that control the decay phase of the electron events and conclude that both solar wind convection and adiabatic deceleration effects influence the final shape of the decay phase of solar energetic particle events, but not as expressed by the models based on diffusive transport acting on an isotropic particle population.

  17. Acceleration of relativistic electrons in plasma reactors and non-linear spectra of cosmic radio sources

    International Nuclear Information System (INIS)

    Kaplan, S.A.; Lomadze, R.D.

    1978-01-01

    A second approximation to the theory of turbulent plasma reactors in connection with the problem of interpretation of the non-linear spectra of cosmic radio sources has been investigated by the authors (Kaplan and Lomadze, 1977; Lomadze, 1977). The present paper discusses the basic results received for a Compton reactor with plasma waves of phase velocities smaller than the velocity of light, as well as for the synchrotron reactor. The distortion of the distribution function of relativistic electrons caused by their diffusion from the reactor is also presented as an example. (Auth.)

  18. Variations in Solar Parameters and Cosmic Rays with Solar Magnetic Polarity

    Energy Technology Data Exchange (ETDEWEB)

    Oh, S. [Department of Earth Science Education, Chonnam National University, Gwangju, 61186 (Korea, Republic of); Yi, Y., E-mail: suyeonoh@jnu.ac.kr [Department of Astronomy, Space Science and Geology, Chungnam National University, Daejeon, 34134 (Korea, Republic of)

    2017-05-01

    The sunspot number varies with the 11-year Schwabe cycle, and the solar magnetic polarity reverses every 11 years approximately at the solar maximum. Because of polarity reversal, the difference between odd and even solar cycles is seen in solar activity. In this study, we create the mean solar cycle expressed by phase using the monthly sunspot number for all solar cycles 1–23. We also generate the mean solar cycle for sunspot area, solar radio flux, and cosmic ray flux within the allowance of observational range. The mean solar cycle has one large peak at solar maximum for odd solar cycles and two small peaks for most even solar cycles. The odd and even solar cycles have the statistical difference in value and shape at a confidence level of at least 98%. For solar cycles 19–23, the second peak in the even solar cycle is larger than the first peak. This result is consistent with the frequent solar events during the declining phase after the solar maximum. The difference between odd and even solar cycles can be explained by a combined model of polarity reversal and solar rotation. In the positive/negative polarity, the polar magnetic field introduces angular momentum in the same/opposite direction as/to the solar rotation. Thus the addition/subtraction of angular momentum can increase/decrease the motion of plasma to support the formation of sunspots. Since the polarity reverses at the solar maximum, the opposite phenomenon occurs in the declining phase.

  19. Solar cosmic rays in the system of solar terrestrial relations

    Science.gov (United States)

    Miroshnichenko, Leonty I.

    2008-02-01

    In this brief review, we discuss a number of geophysical effects of solar energetic particles (SEPs) or solar cosmic rays (SCR). We concentrate mainly on the observational evidence and proposed mechanisms of some expected effects and/or poor-studied phenomena discovered within the last three decades, in particular, depletion of the ozone layer, perturbations in the global electric current, effects on the winter storm vorticity, change of the atmospheric transparency and production of nitrates. Some "archaeological" data on SCR fluxes in the past and upper limit of total energy induced by SEPs are also discussed. Due attention is paid to the periodicities in the solar particle fluxes. Actually, many solar, heliospheric and terrestrial parameters changing generally in phase with the solar activity are subjected to a temporary depression close to the solar maximum ("Gnevyshev Gap"). A similar gap has been found recently in the yearly numbers of the >10 MeV proton events. All the above-mentioned findings are evidently of great importance in the studies of general proton emissivity of the Sun and long-term trends in the behaviour of solar magnetic fields. In addition, these data can be very helpful for elaborating the methods for prediction of the radiation conditions in space and for estimation of the SEPs' contribution to solar effects on the geosphere, their relative role in the formation of terrestrial weather and climate and in the problem of solar-terrestrial relations (STR) on the whole.

  20. Galactic Cosmic-Ray Energy Spectra and Composition during the 2009-2010 Solar Minimum Period

    Science.gov (United States)

    Lave, K. A.; Wiedenbeck, Mark E.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; deNolfo, G. A.; Israel, M. H..; Leske, R. A.; Mewaldt, R. A.; hide

    2013-01-01

    We report new measurements of the elemental energy spectra and composition of galactic cosmic rays during the 2009-2010 solar minimum period using observations from the Cosmic Ray Isotope Spectrometer (CRIS) onboard the Advanced Composition Explorer. This period of time exhibited record-setting cosmic-ray intensities and very low levels of solar activity. Results are given for particles with nuclear charge 5 solar minimum and 2001-2003 solar maximum are also given here. For most species, the reported intensities changed by less than approx. 7%, and the relative abundances changed by less than approx. 4%. Compared with the 1997-1998 solar minimum relative abundances, the 2009-2010 abundances differ by less than 2sigma, with a trend of fewer secondary species observed in the more recent time period. The new 2009-2010 data are also compared with results of a simple "leaky-box" galactic transport model combined with a spherically symmetric solar modulation model. We demonstrate that this model is able to give reasonable fits to the energy spectra and the secondary-to-primary ratios B/C and (Sc+Ti+V)/Fe. These results are also shown to be comparable to a GALPROP numerical model that includes the effects of diffusive reacceleration in the interstellar medium.

  1. Nuclear and atomic physics governing changes in the composition of relativistic cosmic rays

    International Nuclear Information System (INIS)

    Wilson, L.W.

    1978-05-01

    Many quantitative studies of relativistic cosmic ray propagation exist in which ''standard'' values for the input quantities are adopted in an uncritical manner. In contrast, the major emphasis of this study is on developing the proper set of formulae and error estimates for each of the atomic and nuclear processes that govern the composition of the cosmic rays between lithium and nickel. In particular, it is shown that errors of approximately a factor of two exist in the standard (Bohr) cross sections for stripping, that the correction function from high energy photoionization needs to be introduced into the standard cross section for radiative attachment, and that because the half-life of a fast nucleus with at most one K-shell electron can differ from the half-life of a neutral atom, several laboratory-based values need correction. The framework used to assemble and correct these quantities is a matrix formalism for the leaky box model similar to that used by Cowsik and Wilson in their ''nested leaky box'' model. It is shown that once the assumption of species-independent leakage is introduced, the matrix formalism becomes virtually identical with the standard exponential path length formalism. 87 references

  2. Inconstant sun: how solar evolution has affected cosmic and ultraviolet radiation exposure over the history of life on Earth.

    Science.gov (United States)

    Karam, P Andrew

    2003-03-01

    Four billion years ago, sea-level UV exposure was more than 400 times as intense as today, the dose from solar cosmic rays was five times present levels, and galactic cosmic rays accounted for only about 10% their current contribution to sea-level radiation doses. Exposure to cosmic radiation accounts for about 10% of natural background radiation exposure today and includes dose from galactic cosmic rays and solar charged particles. There is little exposure to ionizing wavelengths of UV due to absorption by ozone. The sun has evolved significantly over its life; in the past there were higher levels of particulate radiation and lower UV emissions from the sun, and a stronger solar wind reduced radiation dose in the inner solar system from galactic cosmic rays. Finally, since the early atmosphere contained little to no oxygen, surface levels of UV radiation were far higher in the past.

  3. The Local Time Dependence of the Anisotropic Solar Cosmic Ray Flux

    National Research Council Canada - National Science Library

    Smart, D. F

    2003-01-01

    The distribution of the solar cosmic radiation flux over the earth is not uniform, but the result of complex phenomena involving the interplanetary magnetic field, the geomagnetic field and latitude...

  4. Cosmic anisotropy with reduced relativistic gas

    Energy Technology Data Exchange (ETDEWEB)

    Castardelli dos Reis, Simpliciano [Universidade Federal de Juiz de Fora, Departamento de Fisica, ICE, Juiz de Fora, MG (Brazil); Shapiro, Ilya L. [Universidade Federal de Juiz de Fora, Departamento de Fisica, ICE, Juiz de Fora, MG (Brazil); Tomsk State Pedagogical University, Tomsk (Russian Federation); Tomsk State University, Tomsk (Russian Federation)

    2018-02-15

    The dynamics of cosmological anisotropies is investigated for Bianchi type I universe filled by a relativistic matter represented by the reduced relativistic gas model (RRG), with equation of state interpolating between radiation and matter. Previously it was shown that the interpolation is observed in the background cosmological solutions for homogeneous and isotropic universe and also for the linear cosmological perturbations. We extend the application of RRG to the Bianchi type I anisotropic model and find that the solutions evolve to the isotropic universe with the pressureless matter contents. (orig.)

  5. Study of solar activity by measuring cosmic rays with a water Cherenkov detector

    International Nuclear Information System (INIS)

    Bahena Bias, Angelica; Villasenor, Luis

    2011-01-01

    We report on an indirect study of solar activity by using the Forbush effect which consists on the anti-correlation between the intensity of solar activity and the intensity of secondary cosmic radiation detected at ground level at the Earth. We have used a cylindrical water Cherenkov detector to measure the rate of arrival of secondary cosmic rays in Morelia Mich., Mexico, at 1950 m.a.s.l. We describe the analysis required to unfold the effect of atmospheric pressure and the search for Forbush decreases in our data, the latter correspond to more than one year of continuous data collection.

  6. Observational and theoretical aspects of relativistic astrophysics and cosmology

    International Nuclear Information System (INIS)

    Sanz, J.L.; Goicoechea, L.J.

    1985-01-01

    The studies of relativistic astrophysics and cosmology in these proceedings include primordial nucleosynthesis, nonluminous matter, star and galaxy evolution, cosmic microwave background, and general relativistic models of the universe

  7. Cosmic Accelerators: An Introduction

    International Nuclear Information System (INIS)

    Kanbach, Gottfried

    2005-01-01

    High energy, relativistic, particles are an essential component of the Universe and play a major role in astrophysics. In a few years we will reach the centennial of the discovery of cosmic rays; all through this century the properties, origin, and effects of this radiation have intrigued researchers in astrophysics and elementary particles alike. We briefly review the history, current status, and future perspectives of cosmic ray research. Emphasis will be placed on the multitude of cosmic accelerators, direct observations of these objects, and the effects of cosmic rays in the Galaxy and beyond

  8. Muon Production in Relativistic Cosmic-Ray Interactions

    OpenAIRE

    Klein, Spencer

    2009-01-01

    Cosmic-rays with energies up to $3\\times10^{20}$ eV have been observed. The nuclear composition of these cosmic rays is unknown but if the incident nuclei are protons then the corresponding center of mass energy is $\\sqrt{s_{nn}} = 700$ TeV. High energy muons can be used to probe the composition of these incident nuclei. The energy spectra of high-energy ($>$ 1 TeV) cosmic ray induced muons have been measured with deep underground or under-ice detectors. These muons come from pion and kaon de...

  9. Solar activity effects on cosmic ray intensity and geomagnetic field variation

    International Nuclear Information System (INIS)

    Shukla, A.K.; Shukla, J.P.; Sharma, S.M.; Singh, R.L.; Agrawal, S.P.

    1978-01-01

    An analysis has been performed to statistically correlate the date of solar flare occurrence and its importance with the short term cosmic ray intensity decreases (observed by the high latitude neutron monitors) as well as with the geomagnetic field fluctuation indices (Asub(p) and Dsub(st)), during the period 1973-1976. This period has the particular advantage of being close to a solar minimum to avoid the ambiguity due to closely spaced solar flares. It is found that the intensity decrease starts at least 2-3 days after the date of bright solar flares of Imp 1B, 2B or 3B and the amplitude of the decrease increases with the importance of the solar flare. (author)

  10. Evolution of cosmic ray fluxes during the rising phase of solar cycle 23: ULYSSES EPAC and COSPIN/KET observations

    International Nuclear Information System (INIS)

    Heber, B.; Keppler, E.; Blake, J.B.; Fraenz, M.; Kunow, H.

    2000-01-01

    Galactic cosmic rays are entering the heliosphere from the interstellar medium, while anomalous cosmic rays are believed to be pickup ions accelerated at the heliospheric termination shock. Both particle species are modulated by the solar wind and the heliospheric magnetic field. Since 1997 solar activity increased and as a consequence the flux of galactic and anomalous cosmic ray decreased. In this paper we will discuss the variation of low energy anomalous cosmic rays as measured by the Ulysses Energetic Particle Composition Experiment (EPAC) and the Kiel Electron Telescope (KET) on board Ulysses. Specifically we are addressing the question: Are there differences in the modulation of galactic and anomalous cosmic rays and what are possible implication for the modulation of cosmic rays in the heliosphere?

  11. Lightning initiation mechanism based on the development of relativistic runaway electron avalanches triggered by background cosmic radiation: Numerical simulation

    International Nuclear Information System (INIS)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.

    2011-01-01

    The mechanism of lightning initiation due to electric field enhancement by the polarization of a conducting channel produced by relativistic runaway electron avalanches triggered by background cosmic radiation has been simulated numerically. It is shown that the fields at which the start of a lightning leader is possible even in the absence of precipitations are locally realized for realistic thundercloud configurations and charges. The computational results agree with the in-situ observations of penetrating radiation enhancement in thunderclouds.

  12. Lightning initiation mechanism based on the development of relativistic runaway electron avalanches triggered by background cosmic radiation: Numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Babich, L. P., E-mail: babich@elph.vniief.ru; Bochkov, E. I.; Kutsyk, I. M. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation)

    2011-05-15

    The mechanism of lightning initiation due to electric field enhancement by the polarization of a conducting channel produced by relativistic runaway electron avalanches triggered by background cosmic radiation has been simulated numerically. It is shown that the fields at which the start of a lightning leader is possible even in the absence of precipitations are locally realized for realistic thundercloud configurations and charges. The computational results agree with the in-situ observations of penetrating radiation enhancement in thunderclouds.

  13. Period and phase comparisons of near-decadal oscillations in solar, geomagnetic, and cosmic ray time series

    Science.gov (United States)

    Juckett, David A.

    2001-09-01

    A more complete understanding of the periodic dynamics of the Sun requires continued exploration of non-11-year oscillations in addition to the benchmark 11-year sunspot cycle. In this regard, several solar, geomagnetic, and cosmic ray time series were examined to identify common spectral components and their relative phase relationships. Several non-11-year oscillations were identified within the near-decadal range with periods of ~8, 10, 12, 15, 18, 22, and 29 years. To test whether these frequency components were simply low-level noise or were related to a common source, the phases were extracted for each component in each series. The phases were nearly identical across the solar and geomagnetic series, while the corresponding components in four cosmic ray surrogate series exhibited inverted phases, similar to the known phase relationship with the 11-year sunspot cycle. Cluster analysis revealed that this pattern was unlikely to occur by chance. It was concluded that many non-11-year oscillations truly exist in the solar dynamical environment and that these contribute to the complex variations observed in geomagnetic and cosmic ray time series. Using the different energy sensitivities of the four cosmic ray surrogate series, a preliminary indication of the relative intensities of the various solar-induced oscillations was observed. It provides evidence that many of the non-11-year oscillations result from weak interplanetary magnetic field/solar wind oscillations that originate from corresponding variations in the open-field regions of the Sun.

  14. Highly relativistic magnetospheric electrons: A role in coupling to the middle atmosphere?

    International Nuclear Information System (INIS)

    Baker, D.N.; Blake, J.B.; Gorney, D.J.; Higbie, P.R.; Klebesadel, R.W.; King, J.H.

    1987-01-01

    Long-term (1979-present) observations of relativistic electrons (2--15 MeV) at geostationary orbit show a strong solar cycle dependence. Such electrons were largely absent near the last solar maximum (1979--80), while they were prominent during the approach to solar minimum (1983--85). This population now is dwindling as solar minimum has been reached. The strong magnetospheric presence of high-speed solar wind streams which results from solar coronal hole structures during the approach to solar activity (sunspot) minimum. We clearly observe 27-day periodic enhancements of the relativistic electrons in association with concurrently measured solar wind streams (V/sub S//sub W/approx. >600 km/s). We have used a numerical transport code to study the coupling of these high-energy electrons to earth's upper and middle atmosphere. We calculate using the observed energy spectra of the electrons that, when precipitated, these electrons show a large (maximum of ∼100 keV/cm 3 -s) energy deposition at 40--60 km altitude, which is 3--4 orders of magnitude greater than the galactic cosmic ray or solar EUV energy deposition at these altitudes. We also find that the global energy deposition in the mid-latitudes totals nearly 10 21 ergs for a typical 2--3 day event period. We conclude that this previously unrecognized electron population could play an important role in coupling solar wind and magnetospheric variability (on 27--day and 11--year cycles) to the middle atmosphere through a modulating effect on lower D-region ionization and, possibly, on upper level ozone chemistry. These electrons also may contribute to the recent Antarctic polar ozone depletion phenomenon. copyright American Geophysical Union 1987

  15. Cosmic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Capdevielle, J N

    1984-01-01

    First, the different instruments and techniques of cosmic particle detection are presented. Then the passage of the cosmic particles through the atmosphere is studied: electrons, photons, muons. The collective behavior of the different categories is also studied, the electromagnetic cascade is distinguished from the hadron cascade. Through the principal physical properties of the radiation and the medium, the ''mean'' aspects of the radiation are then successively dealt with out of the atmosphere, at different altitudes until the sea level, then at great depths. A chapter is devoted to cosmic radiation of more than 10,000 GeV, studied separately. Then solar radiation in universe is studied through their propagation in solar system and their origin. At last, the cosmic radiation effects are studied in environment (cosmic biophysics) and some applications of cosmic radiation are presented.

  16. Relativistic Celestial Mechanics of the Solar System

    Science.gov (United States)

    Kopeikin, Sergei; Efroimsky, Michael; Kaplan, George

    2011-09-01

    The general theory of relativity was developed by Einstein a century ago. Since then, it has become the standard theory of gravity, especially important to the fields of fundamental astronomy, astrophysics, cosmology, and experimental gravitational physics. Today, the application of general relativity is also essential for many practical purposes involving astrometry, navigation, geodesy, and time synchronization. Numerous experiments have successfully tested general relativity to a remarkable level of precision. Exploring relativistic gravity in the solar system now involves a variety of high-accuracy techniques, for example, very long baseline radio interferometry, pulsar timing, spacecraft Doppler tracking, planetary radio ranging, lunar laser ranging, the global positioning system (GPS), torsion balances and atomic clocks. Over the last few decades, various groups within the International Astronomical Union have been active in exploring the application of the general theory of relativity to the modeling and interpretation of high-accuracy astronomical observations in the solar system and beyond. A Working Group on Relativity in Celestial Mechanics and Astrometry was formed in 1994 to define and implement a relativistic theory of reference frames and time scales. This task was successfully completed with the adoption of a series of resolutions on astronomical reference systems, time scales, and Earth rotation models by the 24th General Assembly of the IAU, held in Manchester, UK, in 2000. However, these resolutions only form a framework for the practical application of relativity theory, and there have been continuing questions on the details of the proper application of relativity theory to many common astronomical problems. To ensure that these questions are properly addressed, the 26th General Assembly of the IAU, held in Prague in August 2006, established the IAU Commission 52, "Relativity in Fundamental Astronomy". The general scientific goals of the new

  17. Cosmic rays and global warming

    Energy Technology Data Exchange (ETDEWEB)

    Erlykin, A.D. [P.N. Lebedev Physical Institute, Moscow (Russian Federation); Sloan, T. [Lancaster University (United Kingdom); Wolfendale, A.W. [Durham University (United Kingdom)

    2010-07-01

    The possible effects of cosmic rays on clouds could contribute to global warming. The argument is that the observed increased solar activity during the last century caused a decrease in the ionization due to cosmic rays since the lower energy cosmic particles are deflected by the magnetic field created by the increasing solar wind. This would lead to a decrease in cloud cover allowing more heating of the earth by the sun. Meteorological data combined to solar activity observations and simulations show that any effect of solar activity on clouds and the climate is likely to be through irradiance rather than cosmic rays. Since solar irradiance transfers 8 orders of magnitude more energy to the atmosphere than cosmic rays it is more plausible that this can produce a real effect. The total contribution of variable solar activity to global warming is shown to be less than 14% of the total temperature rise. (A.C.)

  18. Origin of the highest energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Biermann, Peter L.; Ahn, Eun-Joo; Medina-Tanco, Gustavo; Stanev, Todor

    2000-06-01

    Introducing a simple Galactic wind model patterned after the solar wind we show that back-tracing the orbits of the highest energy cosmic events suggests that they may all come from the Virgo cluster, and so probably from the active radio galaxy M87. This confirms a long standing expectation. Those powerful radio galaxies that have their relativistic jets stuck in the interstellar medium of the host galaxy, such as 3C147, will then enable us to derive limits on the production of any new kind of particle, expected in some extensions of the standard model in particle physics. New data from HIRES will be crucial in testing the model proposed here.

  19. Relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Barz, H.W.; Kaempfer, B.; Schulz, H.

    1984-12-01

    An elementary introduction is given into the scenario of relativistic heavy ion collisions. It deals with relativistic kinematics and estimates of energy densities, extrapolations of the present knowledge of hadron-hadron and hadron-nuleus to nucleus-nucleus collisions, the properties of the quark-gluon plasma and the formation of the plasma and possible experimental signatures. Comments are made on a cosmic ray experiment which could be interpreted as a first indication of the quark-gluon phase of the matter. (author)

  20. Average profiles of the solar wind and outer radiation belt during the extreme flux enhancement of relativistic electrons at geosynchronous orbit

    Directory of Open Access Journals (Sweden)

    R. Kataoka

    2008-06-01

    Full Text Available We report average profiles of the solar wind and outer radiation belt during the extreme flux enhancement of relativistic electrons at geosynchronous orbit (GEO. It is found that seven of top ten extreme events at GEO during solar cycle 23 are associated with the magnetosphere inflation during the storm recovery phase as caused by the large-scale solar wind structure of very low dynamic pressure (<1.0 nPa during rapid speed decrease from very high (>650 km/s to typical (400–500 km/s in a few days. For the seven events, the solar wind parameters, geomagnetic activity indices, and relativistic electron flux and geomagnetic field at GEO are superposed at the local noon period of GOES satellites to investigate the physical cause. The average profiles support the "double inflation" mechanism that the rarefaction of the solar wind and subsequent magnetosphere inflation are one of the best conditions to produce the extreme flux enhancement at GEO because of the excellent magnetic confinement of relativistic electrons by reducing the drift loss of trapped electrons at dayside magnetopause.

  1. Neutron monitor latitude survey of cosmic ray intensity during the 1986/1987 solar minimum

    International Nuclear Information System (INIS)

    Moraal, H.; Potgieter, M.S.; Stoker, P.H.; van der Walt, A.J.

    1989-01-01

    A latitude survey of the cosmic ray intensity at sea level was conducted during the 1986/1987 solar minimum period on commercial vessels of the South African Marine Corporation (SAFMARINE). The results show that the differential response function for the 1986/1987 solar minimum agrees well with that measured in 1965. Both these response functions are significantly lower than those for 1976 and 1954. This result supports the 22-year modulation cycle as predicted, for example, by models including drift effects of the charged cosmic ray particles in the large-scale interplanetary magnetic field. A crossover of the spectra at rigidities of about 7 GV was also observed. Such a crossover is necessary to explain both the stationary neutron monitor counting rates and the lower-energy balloon and space observations in consecutive solar cycles. copyright American Geophysical Union 1989

  2. Solar induced long- and short-term variations of the cosmic ray intensity in the past, and predictions and opportunities for the future

    Science.gov (United States)

    McCracken, K. G.; McDonald, F. B.; Beer, J.

    2009-12-01

    The cosmogenic radionuclide data from the past 10,000 years, and the instrumental cosmic ray data since 1936 provide detailed information on the possible consequences of the present long and deep solar minimum. Furthermore, the cosmic ray transport equation has been used to estimate the strength of the interplanetary magnetic field (IMF) throughout the past 10,000 years. This paper presents a series of figures that document the behavior of both the cosmic radiation and the IMF at Earth in the past. In particular, the 11-year cycles in both quantities for the past 600 years are displayed; and estimates given of the cosmic ray spectrum at Earth for situations that history tells us may occur in the near future. Over the longer term, a minimum of the Hallstatt cycle (2200 yr periodicity) of solar activity occurred ~500 years ago and the Sun is now on a steadily rising plane of activity. The historic record shows that the cosmic ray intensity has decreased extremely rapidly after earlier prolonged deep minima and this suggests rapid and large changes in the heliospheric conditions that we may see replicated. The paper will also display data from the deep, isolated solar minimum of 1956 that exhibited unusual low energy cosmic ray fluxes, and a highly anomalous cosmic ray gradient in the inner heliosphere. Paleo-cosmic ray evidence will also be displayed of an episode of intense solar energetic particle (SEP) events in the interval of reduced solar activity, 1892-1900, that may possibly be repeated. If the present long, deep solar minimum is a precursor to a “Grand Minimum” such as the Dalton minimum, it will provide a much improved insight into the spectrum of the cosmic radiation in interstellar space, and to the cosmic ray modulation process in the heliosphere. With this in mind, the paper suggests key measurements, and speculates on experimental conditions that may be markedly different from those encountered in the instrumental era.

  3. Cosmic ray modulation

    International Nuclear Information System (INIS)

    Ueno, Hirosachi

    1974-01-01

    It is important to know the physical state of solar plasma region by the observation of intensity variation of cosmic ray which passed through the solar plasma region, because earth magnetosphere is formed by the interaction between geomagnetic field and solar plasma flow. The observation of cosmic ray intensity is useful to know the average condition of the space of 0.1--3 A.U., and gives the structure of the magnetic field in solar wind affecting the earth magnetosphere. The observation of neutron component in cosmic ray has been carried out at Norikura, Tokyo, Fukushima and Morioka. The lower limit of the energy of incident cosmic ray which can be observed at each station is different, and the fine structure of the variation can be known by comparison. The intensity of meson component in cosmic ray has been measured in underground, and the state of solar plasma region 2--3 A.U. from the earth can be known. The underground measurement has been made at Takeyama and Matsumoto, and a new station at Sakashita is proposed. The measurement at Sakashita will be made by proportional counters at the depth of 100m (water equivalent). Arrangement of detectors is shown. (Kato, T.)

  4. Cosmic ray acceleration mechanisms

    International Nuclear Information System (INIS)

    Cesarsky, C.J.

    1982-09-01

    We present a brief summary of some of the most popular theories of cosmic ray acceleration: Fermi acceleration, its application to acceleration by shocks in a scattering medium, and impulsive acceleration by relativistic shocks

  5. Distinct Pattern of Solar Modulation of Galactic Cosmic Rays above a High Geomagnetic Cutoff Rigidity

    Science.gov (United States)

    Mangeard, Pierre-Simon; Clem, John; Evenson, Paul; Pyle, Roger; Mitthumsiri, Warit; Ruffolo, David; Sáiz, Alejandro; Nutaro, Tanin

    2018-05-01

    Solar modulation refers to Galactic cosmic-ray variations with the ∼11 yr sunspot cycle and ∼22 yr solar magnetic cycle and is relevant to the space radiation environment and effects on Earth’s atmosphere. Its complicated dependence on solar and heliospheric conditions is only roughly understood and has been empirically modeled in terms of a single modulation parameter. Most analyses of solar modulation use neutron monitor (NM) data from locations with relatively low geomagnetic cutoff rigidity, i.e., the threshold for cosmic rays to penetrate Earth’s magnetic field. The Princess Sirindhorn Neutron Monitor at Doi Inthanon, Thailand, has the world’s highest cutoff rigidity (≈17 GV) where observations span a complete solar modulation cycle (since late 2007). The pattern of solar modulation at Doi Inthanon during 2011–2014 was qualitatively very different from that at a low geomagnetic cutoff and is not well described by the same modulation parameter. At other times, NM count rates from Doi Inthanon and McMurdo, Antarctica (cutoff ∼1 GV), were linearly correlated and confirm the observation from latitude surveys in the previous solar cycle that the slope of the correlation changes with solar magnetic polarity. Low solar magnetic tilt angles (magnetic field, which is consistent with an increase in diffusion at high rigidity short-circuiting the effects of drifts and the heliospheric current sheet.

  6. Solar /flare/ cosmic ray proton fluxes in the recent past

    International Nuclear Information System (INIS)

    Venkatesan, T.R.; Nautiyal, C.M.; Padia, J.T.; Rao, M.N.

    1980-01-01

    A method for determining the average solar cosmic ray (SCR) proton fluxes which occurred in the last few million yr from He-3 samples from suitable lunar rocks is presented. Specimens removed from 0.3-1.5, 5-7, and 7-9 mm depths of the lunar surface were cleaned to reveal the feldspar grains of interest and heated for stepwise mass-spectrometric analyses. The 200 micron or greater grains were outgassed at 600, 1000, 1200, and 1600 C and noble gas data were recorded, along with isotopic ratio data. He-3 is assumed to have been degassed completely from rocks shocked by an impact event and diffusion losses are negligible due to the 90 C or less temperature exposures on the lunar surface. Thus the presence of He-3 is indicative of cosmic ray incidence, and known galactic cosmic ray production abundances for He-3 can be subtracted from the total He-3 observed, yielding the SCR flux results, which, when combined with exposure data, yield a history of SCR events

  7. A Shifting Shield Provides Protection Against Cosmic Rays

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    The Sun plays an important role in protecting us from cosmic rays, energetic particles that pelt us from outside our solar system. But can we predict when and how it will provide the most protection, and use this to minimize the damage to both pilotedand roboticspace missions?The Challenge of Cosmic RaysSpacecraft outside of Earths atmosphere and magnetic field are at risk of damage from cosmic rays. [ESA]Galactic cosmic rays are high-energy, charged particles that originate from astrophysical processes like supernovae or even distant active galactic nuclei outside of our solar system.One reason to care about the cosmic rays arriving near Earth is because these particles can provide a significant challenge for space missions traveling above Earths protective atmosphere and magnetic field. Since impacts from cosmic rays can damage human DNA, this risk poses a major barrier to plans for interplanetary travel by crewed spacecraft. And roboticmissions arent safe either: cosmic rays can flip bits, wreaking havoc on spacecraft electronics as well.The magnetic field carried by the solar wind provides a protective shield, deflecting galactic cosmic rays from our solar system. [Walt Feimer/NASA GSFCs Conceptual Image Lab]Shielded by the SunConveniently, we do have some broader protection against galactic cosmic rays: a built-in shield provided by the Sun. The interplanetary magnetic field, which is embedded in the solar wind, deflects low-energy cosmic rays from us at the outer reaches of our solar system, decreasing the flux of these cosmic rays that reach us at Earth.This shield, however, isnt stationary; instead, it moves and changes as the strength and direction of the solar wind moves and changes. This results in a much lower cosmic-ray flux at Earth when solar activity is high i.e., at the peak of the 11-year solar cycle than when solar activity is low. This visible change in local cosmic-ray flux with solar activity is known as solar modulation of the cosmic ray flux

  8. Muon Production in Relativistic Cosmic-Ray Interactions

    International Nuclear Information System (INIS)

    Klein, Spencer

    2009-01-01

    Cosmic-rays with energies up to 3 x 10 20 eV have been observed. The nuclear composition of these cosmic rays is unknown but if the incident nuclei are protons then the corresponding center of mass energy is √s nn = 700 TeV. High energy muons can be used to probe the composition of these incident nuclei. The energy spectra of high-energy (> 1 TeV) cosmic ray induced muons have been measured with deep underground or under-ice detectors. These muons come from pion and kaon decays and from charm production in the atmosphere. Terrestrial experiments are most sensitive to far-forward muons so the production rates aresensitive to high-x partons in the incident nucleus and low-x partons in the nitrogen/oxygen targets. Muon measurements can complement the central-particle data collected at colliders. This paper will review muon production data and discuss some non-perturbative (soft) models that have been used to interpret the data. I will show measurements of TeV muon transverse momentum (p T ) spectra in cosmic-ray air showers from MACRO, and describe how the IceCube neutrino observatory and the proposed Km3Net detector will extend these measurements to a higher p T region where perturbative QCD should apply. With a 1 km 2 surface area, the full IceCube detector should observe hundreds of muons/year with p T in the pQCD regime.

  9. Muon Production in Relativistic Cosmic-Ray Interactions

    International Nuclear Information System (INIS)

    Klein, Spencer R.

    2009-01-01

    Cosmic-rays with energies up to 3x10 20 eV have been observed. The nuclear composition of these cosmic rays is unknown but if the incident nuclei are protons then the corresponding center of mass energy is √(s nn )=700TeV. High energy muons can be used to probe the composition of these incident nuclei. The energy spectra of high-energy (>1TeV) cosmic ray induced muons have been measured with deep underground or under-ice detectors. These muons come from pion and kaon decays and from charm production in the atmosphere. Terrestrial experiments are most sensitive to far-forward muons so the production rates are sensitive to high-x partons in the incident nucleus and low-x partons in the nitrogen/oxygen targets. Muon measurements can complement the central-particle data collected at colliders. This paper will review muon production data and discuss some non-perturbative (soft) models that have been used to interpret the data. I will show measurements of TeV muon transverse momentum (p T ) spectra in cosmic-ray air showers from MACRO, and describe how the IceCube neutrino observatory and the proposed Km3Net detector will extend these measurements to a higher p T region where perturbative QCD should apply. With a 1 km 2 surface area, the full IceCube detector should observe hundreds of muons/year with p T in the pQCD regime.

  10. Cosmic Rays in Thunderstorms

    Science.gov (United States)

    Buitink, Stijn; Scholten, Olaf; van den Berg, Ad; Ebert, Ute

    2013-04-01

    Cosmic Rays in Thunderstorms Cosmic rays are protons and heavier nuclei that constantly bombard the Earth's atmosphere with energies spanning a vast range from 109 to 1021 eV. At typical altitudes up to 10-20 km they initiate large particle cascades, called extensive air showers, that contain millions to billions of secondary particles depending on their initial energy. These particles include electrons, positrons, hadrons and muons, and are concentrated in a compact particle front that propagates at relativistic speed. In addition, the shower leaves behind a trail of lower energy electrons from ionization of air molecules. Under thunderstorm conditions these electrons contribute to the electrical and ionization processes in the cloud. When the local electric field is strong enough the secondary electrons can create relativistic electron run-away avalanches [1] or even non-relativistic avalanches. Cosmic rays could even trigger lightning inception. Conversely, strong electric fields also influence the development of the air shower [2]. Extensive air showers emit a short (tens of nanoseconds) radio pulse due to deflection of the shower particles in the Earth's magnetic field [3]. Antenna arrays, such as AERA, LOFAR and LOPES detect these pulses in a frequency window of roughly 10-100 MHz. These systems are also sensitive to the radiation from discharges associated to thunderstorms, and provide a means to study the interaction of cosmic ray air showers and the electrical processes in thunderstorms [4]. In this presentation we discuss the involved radiation mechanisms and present analyses of thunderstorm data from air shower arrays [1] A. Gurevich et al., Phys. Lett. A 165, 463 (1992) [2] S. Buitink et al., Astropart. Phys. 33, 1 (2010) [3] H. Falcke et al., Nature 435, 313 (2005) [4] S. Buitink et al., Astron. & Astrophys. 467, 385 (2007)

  11. Impact of cosmic rays and solar energetic particles on the Earth’s ionosphere and atmosphere

    Czech Academy of Sciences Publication Activity Database

    Velinov, P. I. Y.; Asenovski, S.; Kudela, K.; Laštovička, Jan; Mateev, L.; Mishev, A.; Tonev, P.

    2013-01-01

    Roč. 3, 26 March (2013), A14/1-A14/17 ISSN 2115-7251 Grant - others:European COST Action(XE) ES0803 Institutional support: RVO:68378289 Keywords : cosmic rays * solar energetic particles * ionization * ionosphere * atmosphere * solar activity * solar-terrestrial relationships Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.519, year: 2013 http://www.swsc-journal.org/articles/swsc/abs/2013/01/swsc120040/swsc120040.html

  12. Average properties of cosmic ray diffusion in solar wind streams

    International Nuclear Information System (INIS)

    Morfill, G.; Richter, A.K.; Scholer, M.

    1979-01-01

    Applying a superposed epoch analysis to the Mariner 5 plasma and magnetic field observations of 13 corotating high speed solar wind streams, we obtain the average azimuthal distribution of all relevant parameters of the background interplanetary medium, as well as those of superimposed Alfven waves. Using these measurements in model calculations allows us to determine the radial and azimuthal variation of the background and fluctuation parameters between 1 and 5 AU, and thus to calculate the cosmic ray diffusion coefficient kappa from the plasma and field properties. The calculation of kappa assumes that quasi-linear wave-particle interaction theory is applicable, and that the Alfven waves responsible for the scattering are propagating in the azimuthally varying solar wind according to geometrical optics. The consequences of these calculations regarding the occurrence of solar wind stream associated Forbush decreases are discussed

  13. MODULATION OF GALACTIC COSMIC RAY PROTONS AND ELECTRONS DURING AN UNUSUAL SOLAR MINIMUM

    International Nuclear Information System (INIS)

    Heber, B.; Kopp, A.; Gieseler, J.; Mueller-Mellin, R.; Fichtner, H.; Scherer, K.; Potgieter, M. S.; Ferreira, S. E. S.

    2009-01-01

    During the latest Ulysses out-of-ecliptic orbit the solar wind density, pressure, and magnetic field strength have been the lowest ever observed in the history of space exploration. Since cosmic ray particles respond to the heliospheric magnetic field in the expanding solar wind and its turbulence, the weak heliospheric magnetic field as well as the low plasma density and pressure are expected to cause the smallest modulation since the 1970s. In contrast to this expectation, the galactic cosmic ray (GCR) proton flux at 2.5 GV measured by Ulysses in 2008 does not exceed the one observed in the 1990s significantly, while the 2.5 GV GCR electron intensity exceeds the one measured during the 1990s by 30%-40%. At true solar minimum conditions, however, the intensities of both electrons and protons are expected to be the same. In contrast to the 1987 solar minimum, the tilt angle of the solar magnetic field has remained at about 30 deg. in 2008. In order to compare the Ulysses measurements during the 2000 solar magnetic epoch with those obtained 20 years ago, the former have been corrected for the spacecraft trajectory using latitudinal gradients of 0.25% deg. -1 and 0.19% deg. -1 for protons and electrons, respectively, and a radial gradient of 3% AU -1 . In 2008 and 1987, solar activity, as indicated by the sunspot number, was low. Thus, our observations confirm the prediction of modulation models that current sheet and gradient drifts prevent the GCR flux to rise to typical solar minimum values. In addition, measurements of electrons and protons allow us to predict that the 2.5 GV GCR proton intensity will increase by a factor of 1.3 if the tilt angle reaches values below 10 deg.

  14. Solar panels as air Cherenkov detectors for extremely high energy cosmic rays

    International Nuclear Information System (INIS)

    Cecchini, S.; D'Antone, I.; Degli Esposti, L.; Giacomelli, G.; Guerra, M.; Lax, I.; Mandrioli, G.; Parretta, A.; Sarno, A.; Schioppo, R.; Sorel, M.; Spurio, M.

    2000-01-01

    Increasing interest towards the observation of the highest energy cosmic rays has motivated the development of new detection techniques. The properties of the Cherenkov photon pulse emitted in the atmosphere by these very rare particles indicate low-cost semiconductor detectors as good candidates for their optical read-out. The aim of this paper is to evaluate the viability of solar panels for this purpose. The experimental framework resulting from measurements performed with suitably-designed solar cells and large conventional photovoltaic areas is presented. A discussion on the obtained and achievable sensitivities follows

  15. Heliospheric Impact on Cosmic Rays Modulation

    Science.gov (United States)

    Tiwari, Bhupendra Kumar

    2016-07-01

    Heliospheric Impact on Cosmic RaysModulation B. K. Tiwari Department of Physics, A. P. S. University, Rewa (M.P.), btiwari70@yahoo.com Cosmic rays (CRs) flux at earth is modulated by the heliosphereric magnetic field and the structure of the heliosphere, controls by solar outputs and their variability. Sunspots numbers (SSN) is often treated as a primary indicator of solar activity (SA). GCRs entering the helioshphere are affected by the interplanetary magnetic field (IMF) and solar wind speed, their modulation varies with the varying solar activity. The observation based on data recoded from Omniweb data Centre for solar- interplanetary activity indices and monthly mean count rate of cosmic ray intensity (CRI) data from neutron monitors of different cut-off rigidities(Rc) (Moscow Rc=2.42Gv and Oulu Rc=0.80Gv). During minimum solar activity periodof solar cycle 23/24, the sun is remarkably quiet, weakest strength of the IMF and least dense and slowest, solar wind speed, whereas, in 2003, highest value of yearly averaged solar wind speed (~568 Km/sec) associated with several coronal holes, which generate high speed wind stream has been recorded. It is observed that GCRs fluxes reduces and is high anti-correlated with SSN (0.80) and IMF (0.86). CRI modulation produces by a strong solar flare, however, CME associated solar flare produce more disturbance in the interplanetary medium as well as in geomagnetic field. It is found that count rate of cosmic ray intensity and solar- interplanetary parameters were inverse correlated and solar indices were positive correlated. Keywords- Galactic Cosmic rays (GCRs), Sunspot number (SSN), Solar activity (SA), Coronal Mass Ejection (CME), Interplanetary magnetic field (IMF)

  16. Observation of Galactic and Solar Cosmic Rays from October 13, 1959 to February 17, 1961 with Explorer VII (Satellite 1959 Iota)

    Science.gov (United States)

    Lin, Wei Ching

    1961-01-01

    This paper gives a comprehensive summary of cosmic-ray intensity observations at high latitudes over North America and over Australia in the altitude range 550 to 1100 km by means of Geiger tubes in Explorer VII (Earth satellite 1959 Iota). The time period covered is October 13, 1959 to February 17, 1961. Of special interest are the observational data on some 20 solar cosmic-ray events including major events of early April 1960, early September 1960, and of mid-November 1960. Detailed study of the latitude dependence of solar cosmic ray intensity will be presented in a later companion paper.

  17. Cosmic Rays and Climate

    CERN Document Server

    Kirkby, Jasper

    2007-01-01

    Among the most puzzling questions in climate change is that of solar-climate variability, which has attracted the attention of scientists for more than two centuries. Until recently, even the existence of solar-climate variability has been controversial—perhaps because the observations had largely involved correlations between climate and the sunspot cycle that had persisted for only a few decades. Over the last few years, however, diverse reconstructions of past climate change have revealed clear associations with cosmic ray variations recorded in cosmogenic isotope archives, providing persuasive evidence for solar or cosmic ray forcing of the climate. However, despite the increasing evidence of its importance, solar-climate variability is likely to remain controversial until a physical mechanism is established. Although this remains a mystery, observations suggest that cloud cover may be influenced by cosmic rays, which are modulated by the solar wind and, on longer time scales, by the geomagnetic fiel...

  18. Relativistic positioning systems: perspectives and prospects

    Science.gov (United States)

    Coll Bartolomé

    2013-11-01

    Relativistic positioning systems are interesting technical objects for applications around the Earth and in the Solar system. But above all else, they are basic scientific objects allowing developing relativity from its own concepts. Some past and future features of relativistic positioning sys- tems, with special attention to the developments that they suggest for an epistemic relativity (relativistic experimental approach to physics), are analyzed. This includes relativistic stereometry, which, together with relativistic positioning systems, allows to introduce the general relativistic notion of (finite) laboratory (space-time region able to perform experiments of finite size).

  19. Latitude survey investigation of galactic cosmic ray solar modulation during 1994-2007

    Energy Technology Data Exchange (ETDEWEB)

    Nuntiyakul, W.; Ruffolo, D.; Sáiz, A. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Evenson, P.; Bieber, J. W.; Clem, J.; Pyle, R. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Duldig, M. L.; Humble, J. E., E-mail: w.nuntiyakul@gmail.com, E-mail: david.ruf@mahidol.ac.th, E-mail: alejandro.sai@mahidol.ac.th, E-mail: evenson@udel.edu, E-mail: jwbieber@bartol.udel.edu, E-mail: clem@bartol.udel.edu, E-mail: pyle@bartol.udel.edu, E-mail: John.Humble@utas.edu.au, E-mail: Marc.Duldig@utas.edu.au [School of Physical Sciences, University of Tasmania, Hobart, Tasmania 7001 (Australia)

    2014-11-01

    The Galactic cosmic ray spectrum exhibits subtle variations over the 22 yr solar magnetic cycle in addition to the more dramatic variations over the 11 yr sunspot cycle. Neutron monitors are large ground-based detectors that provide accurate measurements of variations in the cosmic ray flux at the top of the atmosphere above the detector. At any given location the magnetic field of the Earth excludes particles below a well-defined rigidity (momentum per unit charge) known as the cutoff rigidity, which can be accurately calculated using detailed models of the geomagnetic field. By carrying a neutron monitor to different locations, e.g., on a ship, the Earth itself serves as a magnet spectrometer. By repeating such latitude surveys with identical equipment, a sensitive measurement of changes in the spectrum can be made. In this work, we analyze data from the 1994 through 2007 series of latitude surveys conducted by the Bartol Research Institute, the University of Tasmania, and the Australian Antarctic Division. We confirm the curious 'crossover' in spectra measured near solar minima during epochs of opposite solar magnetic polarity, and show that it is directly related to a sudden change in the spectral behavior of solar modulation at the time of the polarity reversal, as revealed from contemporaneous variations in the survey data and a fixed station. We suggest that the spectral change and crossover result from the interaction of effects due to gradient/curvature drifts with a systematic change in the interplanetary diffusion coefficient caused by turbulent magnetic helicity.

  20. RECORD-SETTING COSMIC-RAY INTENSITIES IN 2009 AND 2010

    International Nuclear Information System (INIS)

    Mewaldt, R. A.; Davis, A. J.; Leske, R. A.; Stone, E. C.; Cummings, A. C.; Labrador, A. W.; Lave, K. A.; Binns, W. R.; Israel, M. H.; Wiedenbeck, M. E.; Christian, E. R.; De Nolfo, G. A.; Von Rosenvinge, T. T.

    2010-01-01

    We report measurements of record-setting intensities of cosmic-ray nuclei from C to Fe, made with the Cosmic Ray Isotope Spectrometer carried on the Advanced Composition Explorer in orbit about the inner Sun-Earth Lagrangian point. In the energy interval from ∼70 to ∼450 MeV nucleon -1 , near the peak in the near-Earth cosmic-ray spectrum, the measured intensities of major species from C to Fe were each 20%-26% greater in late 2009 than in the 1997-1998 minimum and previous solar minima of the space age (1957-1997). The elevated intensities reported here and also at neutron monitor energies were undoubtedly due to several unusual aspects of the solar cycle 23/24 minimum, including record-low interplanetary magnetic field (IMF) intensities, an extended period of reduced IMF turbulence, reduced solar-wind dynamic pressure, and extremely low solar activity during an extended solar minimum. The estimated parallel diffusion coefficient for cosmic-ray transport based on measured solar-wind properties was 44% greater in 2009 than in the 1997-1998 solar-minimum period. In addition, the weaker IMF should result in higher cosmic-ray drift velocities. Cosmic-ray intensity variations at 1 AU are found to lag IMF variations by 2-3 solar rotations, indicating that significant solar modulation occurs inside ∼20 AU, consistent with earlier galactic cosmic-ray radial-gradient measurements. In 2010, the intensities suddenly decreased to 1997 levels following increases in solar activity and in the inclination of the heliospheric current sheet. We describe the conditions that gave cosmic rays greater access to the inner solar system and discuss some of their implications.

  1. Alteration of Organic Compounds in Small Bodies and Cosmic Dusts by Cosmic Rays and Solar Radiation

    Science.gov (United States)

    Kobayashi, Kensei; Kaneko, Takeo; Mita, Hajime; Obayashi, Yumiko; Takahashi, Jun-ichi; Sarker, Palash K.; Kawamoto, Yukinori; Okabe, Takuto; Eto, Midori; Kanda, Kazuhiro

    2012-07-01

    A wide variety of complex organic compounds have been detected in extraterrestrial bodies like carbonaceous chondrites and comets, and their roles in the generation of terrestrial life are discussed. It was suggested that organics in small bodies were originally formed in ice mantles of interstellar dusts in dense cloud. Irradiation of frozen mixture of possible interstellar molecules including CO (or CH _{3}OH), NH _{3} and H _{2}O with high-energy particles gave complex amino acid precursors with high molecular weights [1]. Such complex organic molecules were taken in planetesimals or comets in the early solar system. In prior to the generation of the terrestrial life, extraterrestrial organics were delivered to the primitive Earth by such small bodies as meteorites, comets and space dusts. These organics would have been altered by cosmic rays and solar radiation (UV, X-rays) before the delivery to the Earth. We examined possible alteration of amino acids, their precursors and nucleic acid bases in interplanetary space by irradiation with high energy photons and heavy ions. A mixture of CO, NH _{3} and H _{2}O was irradiated with high-energy protons from a van de Graaff accelerator (TIT, Japan). The resulting products (hereafter referred to as CAW) are complex precursors of amino acids. CAW, amino acids (dl-Isovaline, glycine), hydantoins (amino acid precursors) and nucleic acid bases were irradiated with continuous emission (soft X-rays to IR; hereafter referred to as soft X-rays irradiation) from BL-6 of NewSUBARU synchrotron radiation facility (Univ. Hyogo). They were also irradiated with heavy ions (eg., 290 MeV/u C ^{6+}) from HIMAC accelerator (NIRS, Japan). After soft X-rays irradiation, water insoluble materials were formed. After irradiation with soft X-rays or heavy ions, amino acid precursors (CAW and hydantoins) gave higher ratio of amino acids were recovered after hydrolysis than free amino acids. Nucleic acid bases showed higher stability than free

  2. Solar modulation of hydrogen and helium cosmic ray nuclei spectra above 400 MeV/Nucleon, from 1976 to 1993

    Energy Technology Data Exchange (ETDEWEB)

    Morselli, A.; Picozza, P. [Rome Univ. `Tor Vergata` (Italy)]|[INFN, Rome (Italy); Barbiellini, G. [Trieste Univ. (Italy)]|[INFN, Sezione Univ.Trieste (Italy); Golden, R.L.; Paradis, P.J.; Stochaj, S.J. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Laboratory; Mauger, B.G.; Horan, S. [Physical Science laboratory, Las Cruces, NM (United States); Badwhar, G.D.; Daniel, R.R. [NASA Johnson Space Center, Houston, TX (United States)

    1995-09-01

    Hydrogen and helium cosmic ray nuclei spectra gathered from 1976 to 1993 have been corrected to the top of the atmosphere and normalized at high rigidities. The variation of these primary cosmic ray fluxes above 400 MeV/nucleon has been examined as a function of the phase of the solar cycle with the force-field approximation model. The intensity of the normalized fluxes between solar maximum and minimum conditions varies by a factor of 6 for hydrogen and a factor of 4.3 for helium at the lowest rigidities considered.

  3. Cosmic Ether

    CERN Document Server

    Tomaschitz, R

    1998-01-01

    A prerelativistic approach to particle dynamics is explored in an expanding Robertson-Walker cosmology. The receding galactic background provides a distinguished frame of reference and a unique cosmic time. In this context the relativistic, purely geometric space-time concept is criticized. Physical space is regarded as a permeable medium, the cosmic ether, which effects the world-lines of particles and rays. We study in detail a Robertson-Walker universe with linear expansion factor and negatively curved, open three-space; we choose the permeability tensor of the ether in such a way that the semiclassical approximation is exact. Galactic red-shifts depend on the refractive index of the ether. In the local Minkowskian limit the ether causes a time variation of mass, which scales inversely proportional to cosmic time. In the globally geodesic rest frames of galactic observers the ether manifests itself in an unbounded speed of signal transfer, in bifurcations of world-lines, and in time inversion effects.

  4. The DKP oscillator with a linear interaction in the cosmic string space-time

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinpour, Mansoureh; Hassanabadi, Hassan [Shahrood University of Technology, Faculty of Physics, Shahrood (Iran, Islamic Republic of); Andrade, Fabiano M. [Universidade Estadual de Ponta Grossa, Departamento de Matematica e Estatistica, Ponta Grossa, Parana (Brazil)

    2018-02-15

    We study the relativistic quantum dynamics of a DKP oscillator field subject to a linear interaction in cosmic string space-time in order to better understand the effects of gravitational fields produced by topological defects on the scalar field. We obtain the solution of DKP oscillator in the cosmic string background. Also, we solve it with an ansatz in the presence of a linear interaction. We obtain the wave functions and the energy levels of the relativistic field in that background. (orig.)

  5. Scale-relativistic cosmology

    International Nuclear Information System (INIS)

    Nottale, Laurent

    2003-01-01

    The principle of relativity, when it is applied to scale transformations, leads to the suggestion of a generalization of fundamental dilations laws. These new special scale-relativistic resolution transformations involve log-Lorentz factors and lead to the occurrence of a minimal and of a maximal length-scale in nature, which are invariant under dilations. The minimal length-scale, that replaces the zero from the viewpoint of its physical properties, is identified with the Planck length l P , and the maximal scale, that replaces infinity, is identified with the cosmic scale L=Λ -1/2 , where Λ is the cosmological constant.The new interpretation of the Planck scale has several implications for the structure and history of the early Universe: we consider the questions of the origin, of the status of physical laws at very early times, of the horizon/causality problem and of fluctuations at recombination epoch.The new interpretation of the cosmic scale has consequences for our knowledge of the present universe, concerning in particular Mach's principle, the large number coincidence, the problem of the vacuum energy density, the nature and the value of the cosmological constant. The value (theoretically predicted ten years ago) of the scaled cosmological constant Ω Λ =0.75+/-0.15 is now supported by several different experiments (Hubble diagram of Supernovae, Boomerang measurements, gravitational lensing by clusters of galaxies).The scale-relativity framework also allows one to suggest a solution to the missing mass problem, and to make theoretical predictions of fundamental energy scales, thanks to the interpretation of new structures in scale space: fractal/classical transitions as Compton lengths, mass-coupling relations and critical value 4π 2 of inverse couplings. Among them, we find a structure at 3.27+/-0.26x10 20 eV, which agrees closely with the observed highest energy cosmic rays at 3.2+/-0.9x10 20 eV, and another at 5.3x10 -3 eV, which corresponds to the

  6. Experiments on studying solar cosmic radiation nuclear composition and energy spectra on the Prognoz-9 sattelite

    International Nuclear Information System (INIS)

    Belyakov, S.A.; Gordeev, Yu.P.; Denisov, Yu.I.; Kolesov, G.Ya; Podorol'skij, A.N.; Nikitin, B.A.

    1986-01-01

    Performances of the SKI-1 device installed on board the artificial satellite of the Earth ''Prognoz-9'' and intended for measurements of a nuclear component of solar cosmic radiation are considered. The device permits to determine intensites of proton fluxes in the 10-30, 30-60, 60-90 and 90-120 MeV energy ranges and nuclei with charges z=1-30 and the following energies: 5-20 MeV for 1 H and 4 He nuclei, 10-26 MeV for C nuclei, 12-42 MeV for O nuclei, 23-80 MeV for Fe nuclei. The SKI-1 comprises two similar telescopes. The telescope includes 4 silicon semiconducting detectors. Energy spectra of solar cosmic radiation and data characterizing time dependence of their intensity are given

  7. Modulation of Galactic Cosmic Rays in the Inner Heliosphere over Solar Cycles

    Science.gov (United States)

    Shen, Z.-N.; Qin, G.

    2018-02-01

    The 11- and 22-year modulation of galactic cosmic rays (GCRs) in the inner heliosphere is studied using a numerical model developed by Qin and Shen in 2017. Based on the numerical solutions of Parker’s transport equations, the model incorporates a modified Parker heliospheric magnetic field, a locally static time-delayed heliosphere, and a time-dependent diffusion coefficients model in which an analytical expression of the variation of magnetic turbulence magnitude throughout the inner heliosphere is applied. Furthermore, during solar maximum, the solar magnetic polarity is determined randomly with the possibility of A > 0 decided by the percentage of the solar north polar magnetic field being outward and the solar south polar magnetic field being inward. The computed results are compared at various energies with several GCR observations, e.g., the Interplanetary Monitoring Platform 8 (IMP 8), EPHIN on board the Solar and Heliospheric Observatory (SOHO), Ulysses, and Voyager 1 and 2, and they show good agreement. We show that our model has successfully reproduced the 11- and 22-year modulation cycles.

  8. Cosmic rays, clouds and climate

    Energy Technology Data Exchange (ETDEWEB)

    Svensmark, Henrik [Danish Space Research Institute, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark)

    2007-07-01

    Changes in the intensity of galactic cosmic rays seems alter the Earth's cloudiness. A recent experiment has shown how electrons liberated by cosmic rays assist in making aerosols, the building blocks of cloud condensation nuclei, while anomalous climatic trends in Antarctica confirm the role of clouds in helping to drive climate change. Variations in the cosmic-ray influx due to solar magnetic activity account well for climatic fluctuations on decadal, centennial and millennial timescales. Over longer intervals, the changing galactic environment of the Solar System has had dramatic consequences, including Snowball Earth episodes.

  9. Observation of terrestrial orbital motion using the cosmic-ray Compton-Getting effect

    International Nuclear Information System (INIS)

    Cutler, D.J.; Groom, D.E.

    1986-01-01

    Using underground observations, the authors have found a small diurnal amplitude modulation of the cosmic-ray muon intensity which agrees in amplitude and phase with a first-order relativistic effect due to the Earth's motion, as discussed by Compton and Getting :1935, Phys. Rev., 47, 817:. Analysis of the arrival times of 5x10 8 muons during a period of 5.4 yr yields a fractional amplitude variation of 2.5sub(-0.6) sup(+0.7) x 10 -4 , with a maximum near dawn, at 08:18+-1.0 h local mean solar time (LT). The expected amplitude is 3.40 x 10 -4 , with the maximum at 06:00LT. (author)

  10. New Target for Cosmic Axion Searches

    NARCIS (Netherlands)

    Baumann, D.; Green, D.; Wallisch, B.

    2016-01-01

    Future cosmic microwave background experiments have the potential to probe the density of relativistic species at the subpercent level. This sensitivity allows light thermal relics to be detected up to arbitrarily high decoupling temperatures. Conversely, the absence of a detection would require

  11. Constraints on the cosmological relativistic energy density

    International Nuclear Information System (INIS)

    Zentner, Andrew R.; Walker, Terry P.

    2002-01-01

    We discuss bounds on the cosmological relativistic energy density as a function of redshift, reviewing the big bang nucleosynthesis and cosmic microwave background bounds, updating bounds from large scale structure, and introducing a new bound from the magnitude-redshift relation for type Ia supernovae. We conclude that the standard and well-motivated assumption that relativistic energy is negligible during recent epochs is not necessitated by extant data. We then demonstrate the utility of these bounds by constraining the mass and lifetime of a hypothetical massive big bang relic particle

  12. Cosmic ray modulation

    Science.gov (United States)

    Agarwal Mishra, Rekha; Mishra, Rajesh Kumar

    2016-07-01

    Propagation of cosmic rays to and inside the heliosphere, encounter an outward moving solar wind with cyclic magnetic field fluctuation and turbulence, causing convection and diffusion in the heliosphere. Cosmic ray counts from the ground ground-based neutron monitors at different cut of rigidity show intensity changes, which are anti-correlated with sunspot numbers. They also lose energy as they propagate towards the Earth and experience various types of modulations due to different solar activity indices. In this work, we study the first three harmonics of cosmic ray intensity on geo-magnetically quiet days over the period 1965-2014 for Beijing, Moscow and Tokyo neutron monitoring stations located at different cut off rigidity. The amplitude of first harmonic remains high for low cutoff rigidity as compared to high cutoff rigidity on quiet days. The diurnal amplitude significantly decreases during solar activity minimum years. The diurnal time of maximum significantly shifts to an earlier time as compared to the corotational direction having different cutoff rigidities. The time of maximum for first harmonic significantly shifts towards later hours and for second harmonic it shifts towards earlier hours at low cutoff rigidity station as compared to the high cut off rigidity station on quiet days. The amplitude of second/third harmonics shows a good positive correlation with solar wind velocity, while the others (i.e. amplitude and phase) have no significant correlation on quiet days. The amplitude and direction of the anisotropy on quiet days does not show any significant dependence on high-speed solar wind streams for these neutron monitoring stations of different cutoff rigidity threshold. Keywords: cosmic ray, cut off rigidity, quiet days, harmonics, amplitude, phase.

  13. Cosmic rays and Earth's climate

    DEFF Research Database (Denmark)

    Svensmark, Henrik

    2000-01-01

    During the last solar cycle the Earth's cloud cover underwent a modulation in phase with the cosmic ray flux. Assuming that there is a causal relationship between the two, it is expected and found that the Earth's temperature follows more closely decade variations in cosmic ray flux than other...... solar activity parameters. If the relationship is real the state of the Heliosphere affects the Earth's climate....

  14. Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation

    Directory of Open Access Journals (Sweden)

    M. Kulmala

    2010-02-01

    Full Text Available Aerosol particles affect the Earth's radiative balance by directly scattering and absorbing solar radiation and, indirectly, through their activation into cloud droplets. Both effects are known with considerable uncertainty only, and translate into even bigger uncertainties in future climate predictions. More than a decade ago, variations in galactic cosmic rays were suggested to closely correlate with variations in atmospheric cloud cover and therefore constitute a driving force behind aerosol-cloud-climate interactions. Later, the enhancement of atmospheric aerosol particle formation by ions generated from cosmic rays was proposed as a physical mechanism explaining this correlation. Here, we report unique observations on atmospheric aerosol formation based on measurements at the SMEAR II station, Finland, over a solar cycle (years 1996–2008 that shed new light on these presumed relationships. Our analysis shows that none of the quantities related to aerosol formation correlates with the cosmic ray-induced ionisation intensity (CRII. We also examined the contribution of ions to new particle formation on the basis of novel ground-based and airborne observations. A consistent result is that ion-induced formation contributes typically significantly less than 10% to the number of new particles, which would explain the missing correlation between CRII and aerosol formation. Our main conclusion is that galactic cosmic rays appear to play a minor role for atmospheric aerosol formation events, and so for the connected aerosol-climate effects as well.

  15. Cosmic Topology

    Science.gov (United States)

    Luminet, Jean-Pierre

    2015-08-01

    Cosmic Topology is the name given to the study of the overall shape of the universe, which involves both global topological features and more local geometrical properties such as curvature. Whether space is finite or infinite, simply-connected or multi-connected like a torus, smaller or greater than the portion of the universe that we can directly observe, are questions that refer to topology rather than curvature. A striking feature of some relativistic, multi-connected "small" universe models is to create multiples images of faraway cosmic sources. While the most recent cosmological data fit the simplest model of a zero-curvature, infinite space model, they are also consistent with compact topologies of the three homogeneous and isotropic geometries of constant curvature, such as, for instance, the spherical Poincaré Dodecahedral Space, the flat hypertorus or the hyperbolic Picard horn. After a "dark age" period, the field of Cosmic Topology has recently become one of the major concerns in cosmology, not only for theorists but also for observational astronomers, leaving open a number of unsolved issues.

  16. To the problem of superfluous cosmic radiation

    International Nuclear Information System (INIS)

    Savenko, I.A.; Saraeva, M.A.; Shavrin, P.I.

    1979-01-01

    From consideration of a number of basic works on the excessive cosmic radiation given is the most probable composition (electron, proton, and nuclear components) of this radiation in equatorial regions at altitudes corresponding to minimum altitudes of the drift trajectories hsub(min) <= 0, in case of detecting by detector on the artificial satellite of the Earth (ASE) with the mass up to 1t and of the heavier ASE. The disagreement in spectra of solar cosmic rays obtained along the latitude effect on the ASE. ''Molniya-1'' and in the experiments out of the magnetosphere on the ASE ''Explorer-41'' is explained by excessive radiation production of solar cosmic rays. The comparison of readings of the neutron channel with those of the charged particle channels of the apparatus on the ASE ''Molniya-1'' during the proton event on 25.01.1971 does not contradict to the supposition on the similarity of excessive cosmic radiation production of galactic and solar cosmic rays

  17. Geometric phase for a neutral particle in rotating frames in a cosmic string spacetime

    International Nuclear Information System (INIS)

    Bakke, Knut; Furtado, Claudio

    2009-01-01

    We study of the appearance of geometric quantum phases in the dynamics of a neutral particle that possess a permanent magnetic dipole moment in rotating frames in a cosmic string spacetime. The relativistic dynamics of spin-1/2 particle in this frame is investigated and we obtain several contributions to relativistic geometric phase due rotation and topology of spacetime. We also study the geometric phase in the nonrelativistic limit. We obtain effects analogous to the Sagnac effect and Mashhoon effect in a rotating frame in the background of a cosmic string.

  18. Galatic and solar cosmic ray - produced rare gas isotopes in lunar fines

    International Nuclear Information System (INIS)

    Bhushan, B.N.; Rao, M.N.; Venkatesan, T.R.

    1979-01-01

    Lunar fines 10084, 14163 and 14148 from Apollo 11 and 14 missions as well as 24087 from Soviet Luna 24 mission have been studied for elemental and isotopic composition of He, Ne, Ar, Kr and Xe using milligram amounts by step-wise heating techniques. From these studies, the isotopic composition of solar wind has been determined and it is found to be in good agreement with the results reported by other workers. The experimental procedure adopted for studying these samples is described in brief. The use of a gas glass spectrometer for detecting the subtle galatic and solar cosmic ray xenon is explained. Data on the concentration and isotopic composition of selected isotopes of Xe and Ne in lunar fines is presented. (K.B.)

  19. Models of f(R) cosmic acceleration that evade solar system tests

    International Nuclear Information System (INIS)

    Hu, Wayne; Sawicki, Ignacy

    2007-01-01

    We study a class of metric-variation f(R) models that accelerates the expansion without a cosmological constant and satisfies both cosmological and solar-system tests in the small-field limit of the parameter space. Solar-system tests alone place only weak bounds on these models, since the additional scalar degree of freedom is locked to the high-curvature general-relativistic prediction across more than 25 orders of magnitude in density, out through the solar corona. This agreement requires that the galactic halo be of sufficient extent to maintain the galaxy at high curvature in the presence of the low-curvature cosmological background. If the galactic halo and local environment in f(R) models do not have substantially deeper potentials than expected in ΛCDM, then cosmological field amplitudes |f R | > or approx.10 -6 will cause the galactic interior to evolve to low curvature during the acceleration epoch. Viability of large-deviation models therefore rests on the structure and evolution of the galactic halo, requiring cosmological simulations of f(R) models, and not directly on solar-system tests. Even small deviations that conservatively satisfy both galactic and solar-system constraints can still be tested by future, percent-level measurements of the linear power spectrum, while they remain undetectable to cosmological-distance measures. Although we illustrate these effects in a specific class of models, the requirements on f(R) are phrased in a nearly model-independent manner

  20. Solar Drivers of 11-yr and Long-Term Cosmic Ray Modulation

    Science.gov (United States)

    Cliver, E. W.; Richardson, I. G.; Ling, A. G.

    2011-01-01

    In the current paradigm for the modulation of galactic cosmic rays (GCRs), diffusion is taken to be the dominant process during solar maxima while drift dominates at minima. Observations during the recent solar minimum challenge the pre-eminence of drift: at such times. In 2009, the approx.2 GV GCR intensity measured by the Newark neutron monitor increased by approx.5% relative to its maximum value two cycles earlier even though the average tilt angle in 2009 was slightly larger than that in 1986 (approx.20deg vs. approx.14deg), while solar wind B was significantly lower (approx.3.9 nT vs. approx.5.4 nT). A decomposition of the solar wind into high-speed streams, slow solar wind, and coronal mass ejections (CMEs; including postshock flows) reveals that the Sun transmits its message of changing magnetic field (diffusion coefficient) to the heliosphere primarily through CMEs at solar maximum and high-speed streams at solar minimum. Long-term reconstructions of solar wind B are in general agreement for the approx. 1900-present interval and can be used to reliably estimate GCR intensity over this period. For earlier epochs, however, a recent Be-10-based reconstruction covering the past approx. 10(exp 4) years shows nine abrupt and relatively short-lived drops of B to value of approx.2.8 nT. A floor in solar wind B implies a ceiling in the GCR intensity (a permanent modulation of the local interstellar spectrum) at a given energy/rigidity. The 30-40% increase in the intensity of 2.5 GV electrons observed by Ulysses during the recent solar minimum raises an interesting paradox that will need to be resolved.

  1. 12th Italian-Korean Symposium on Relativistic Astrophysics

    International Nuclear Information System (INIS)

    Won Lee, Hyung; Remo Riffini; Vereshchagin

    2013-01-01

    This series of biannual symposia, since 1987, has been boosting exchange of information and collaborations between Italian and Korean astrophysicists on new and hot issues in the field of Relativistic Astrophysics. These symposia cover relativistic field theories, astrophysics and cosmology, topics such as gamma-ray bursts and compact stars, high energy cosmic rays, dark energy and dark matter, general relativity, black holes, and new physics related to cosmology. The organizers are confident that this symposium could deepen the understanding of not only astrophysics and cosmology but also Eastern and Western cultures.

  2. Simple description of the 3K cosmic microwave background

    International Nuclear Information System (INIS)

    Henry, P.S.

    1980-01-01

    An intuitive model for the expansion of the universe is developed in which special relativity is used to describe events seen by a hypothetical observer in a Lorentz frame of reference. The cosmic microwave background photons he sees are the red-shifted remnants of hot photons emitted from the matter flying rapidly away from him. This special relativistic model, also called the Milne model, represents the extreme case of a Friedmann (general relativistic) universe in the limit of vanishingly small density of matter. The special relativistic model approximates an open universe (one that expands forever) with increasing accuracy as time evolves

  3. A theory of Cosmic Rays

    CERN Document Server

    Dar, Arnon; Dar, Arnon; Rújula, Alvaro De

    2008-01-01

    We present a theory of non-solar cosmic rays (CRs) based on a single type of CR source at all energies. The total luminosity of the Galaxy, the broken power-law spectra with their observed slopes, the position of the `knee(s)' and `ankle', and the CR composition and its variation with energy are all predicted in terms of very simple and completely `standard' physics. The source of CRs is extremely `economical': it has only one parameter to be fitted to the ensemble of all of the mentioned data. All other inputs are `priors', that is, theoretical or observational items of information independent of the properties of the source of CRs, and chosen to lie in their pre-established ranges. The theory is part of a `unified view of high-energy astrophysics' --based on the `Cannonball' model of the relativistic ejecta of accreting black holes and neutron stars. If correct, this model is only lacking a satisfactory theoretical understanding of the `cannon' that emits the cannonballs in catastrophic processes of accreti...

  4. Measurement of secondary cosmic ray intensity at Regener-Pfotzer height using low-cost weather balloons and its correlation with solar activity

    OpenAIRE

    Sarkar, Ritabrata; Chakrabarti, Sandip K.; Pal, Partha Sarathi; Bhowmick, Debashis; Bhattacharya, Arnab

    2017-01-01

    Cosmic ray flux in our planetary system is primarily modulated by solar activity. Radiation effects of cosmic rays on the Earth strongly depend on latitude due to the variation of the geomagnetic field strength. To study these effects we carried out a series of measurements of the radiation characteristics in the atmosphere due to cosmic rays from various places (geomagnetic latitude: ~ 14.50 deg N) in West Bengal, India, located near the Tropic of Cancer, for several years (2012-2016) partic...

  5. Cosmic and solar gamma-ray x-ray and particle measurements from high altitude balloons in Antarctica

    International Nuclear Information System (INIS)

    Lin, R.P.

    1990-01-01

    For measurements of cosmic and solar gamma-rays, hard X-rays, and particles, Antarctica offers the potential for very long, 10--20 day, continuous, twenty-four-hour-a-day observations, with balloon flights circling the South Pole during austral summer. For X-ray/gamma-ray sources at high south latitude the overlying atmosphere is minimized, and for cosmic ray measurements the low geomagnetic cutoff permits entry of low rigidity particles. The first Antarctic flight of a heavy (∼2400 lb.) payload on a large (11.6x10 6 cu. ft.) balloon took place in January, 1988, to search for the gamma-ray lines of 56 Co produced in the new supernova SN 1987A in the Large Magellanic Cloud. The long duration balloon flights presently planned from Antarctica include those for further gamma-ray/hard X-ray studies of SN 1987A and for the NASA Max '91 program for solar flare studies

  6. Cosmic Rays in the Heliosphere: Requirements for Future Observations

    Science.gov (United States)

    Mewaldt, R. A.

    2013-06-01

    Since the publication of Cosmic Rays in the Heliosphere in 1998 there has been great progress in understanding how and why cosmic rays vary in space and time. This paper discusses measurements that are needed to continue advances in relating cosmic ray variations to changes in solar and interplanetary activity and variations in the local interstellar environment. Cosmic ray acceleration and transport is an important discipline in space physics and astrophysics, but it also plays a critical role in defining the radiation environment for humans and hardware in space, and is critical to efforts to unravel the history of solar activity. Cosmic rays are measured directly by balloon-borne and space instruments, and indirectly by ground-based neutron, muon and neutrino detectors, and by measurements of cosmogenic isotopes in ice cores, tree-rings, sediments, and meteorites. The topics covered here include: what we can learn from the deep 2008-2009 solar minimum, when cosmic rays reached the highest intensities of the space era; the implications of 10Be and 14C isotope archives for past and future solar activity; the effects of variations in the size of the heliosphere; opportunities provided by the Voyagers for discovering the origin of anomalous cosmic rays and measuring cosmic-ray spectra in interstellar space; and future space missions that can continue the exciting exploration of the heliosphere that has occurred over the past 50 years.

  7. Explaining the Diverse Response of the Ultra-relativistic Van Allen Radiation Belt to Solar Wind Forcing

    Science.gov (United States)

    Mann, I. R.; Ozeke, L.; Murphy, K. R.; Claudepierre, S. G.; Rae, J.; Milling, D. K.; Kale, A.; Baker, D. N.

    2017-12-01

    The NASA Van Allen Probes have opened a new window on the dynamics of ultra-relativistic electrons in the Van Allen radiation belts. Under different solar wind forcing the outer belt is seen to respond in a variety of apparently diverse and sometimes remarkable ways. For example, sometimes a third radiation belt is carved out (e.g., September 2012), or the belts can remain depleted for 10 days or more (September 2014). More usually there is a sequential response of a strong and sometimes rapid depletion followed by a re-energization, the latter increasing outer belt electron flux by orders of magnitude on hour timescales during some of the strongest storms of this solar cycle (e.g., March 2013, March 2015). Such dynamics also appear to be often bounded at low-L by an apparently impenetrable barrier at L 2.8 through which ultra-relativistic electrons do not penetrate. Many studies in the Van Allen Probes era have sought explanations for these apparently diverse features, often incorporating the effects from multiple plasma waves. In contrast, we show how this apparently diverse behaviour can instead be explained by one dominant process: ULF wave radial transport. Once ULF wave transport rates are accurately specified by observations, and coupled to the dynamical variation of the outer boundary condition at the edge of the outer belt, the observed diverse responses can all be explained. However, in order to get good agreement with observations, the modeling reveals the importance of still currently unexplained very fast loss in the main phase which results in an almost total extinction of the belts and decouples pre- and post-storm ultra-relativistic electron flux on hour timescales. Similarly, varying plasmasheet source populations are seen to be of critical importance such that near-tail dynamics play a crucial role in Van Allen belt dynamics. Nonetheless, simple models incorporating accurate transport rates derived directly from ULF wave measurements are shown to

  8. The acceleration and propagation of energetic particles in turbulent cosmic plasmas

    International Nuclear Information System (INIS)

    Achterberg, A.

    1981-01-01

    This thesis concentrates on the acceleration and propagation of energetic particles in turbulent cosmic plasmas. The stochastic acceleration of relativistic electrons by long-wavelength weak magnetohydrodynamic turbulence is considered and a model is discussed that allows the determination of both the electron energy spectrum and the wavenumber spectrum of the magnetohydrodynamic turbulence in a consistent way. The question of second phase acceleration in large solar flares and the precise form of the force exerted on the background plasma when Alfven waves are generated by fast particles are considered. The energy balance in the shock wave acceleration, the propagation of energetic particles in a high β plasma (β>10 2 ) and sheared flow as a possible source of plasma turbulence for a magnetized plasma with field-aligned flow, are discussed. (Auth./C.F.)

  9. The role of cosmic rays in the atmospheric processes

    Energy Technology Data Exchange (ETDEWEB)

    Stozhkov, Y I [Lebedev Physical Institute, Russian Academy of Sciences, 119991, Leninsky Prospect, 53, Moscow (Russian Federation)

    2003-05-01

    The energy flux of galactic cosmic rays falling on the earth's atmosphere is small in comparison with solar electromagnetic irradiation (by 10{sup 8} times). But at altitudes of h {approx} 3 to 35 km in the atmosphere, cosmic rays are the only ionization source (from the ground level up to h {approx} 3 km, natural radioactivity is an additional source of ionization). Solar activity modulates cosmic ray flux. The cosmic rays produce atmospheric ions that define the electrical properties of the atmosphere. The electric charges play a very important role in the processes of cloud and thundercloud formation in the operation of the global electric circuit. The changes in electric properties of the atmosphere influence weather and climate. Thus, we have the following chain of the solar terrestrial relationship: solar activity - cosmic ray modulation - changes in the global electric properties of the atmosphere - changes in weather and climate. The following questions are discussed in this paper: light ion production in the atmosphere, role of electric charges in the formation of clouds and thunderclouds, experimental evidences of the relationships between cosmic ray flux and atmospheric current and lightning.

  10. The role of cosmic rays in the atmospheric processes

    International Nuclear Information System (INIS)

    Stozhkov, Y I

    2003-01-01

    The energy flux of galactic cosmic rays falling on the earth's atmosphere is small in comparison with solar electromagnetic irradiation (by 10 8 times). But at altitudes of h ∼ 3 to 35 km in the atmosphere, cosmic rays are the only ionization source (from the ground level up to h ∼ 3 km, natural radioactivity is an additional source of ionization). Solar activity modulates cosmic ray flux. The cosmic rays produce atmospheric ions that define the electrical properties of the atmosphere. The electric charges play a very important role in the processes of cloud and thundercloud formation in the operation of the global electric circuit. The changes in electric properties of the atmosphere influence weather and climate. Thus, we have the following chain of the solar terrestrial relationship: solar activity - cosmic ray modulation - changes in the global electric properties of the atmosphere - changes in weather and climate. The following questions are discussed in this paper: light ion production in the atmosphere, role of electric charges in the formation of clouds and thunderclouds, experimental evidences of the relationships between cosmic ray flux and atmospheric current and lightning

  11. Some ways for the investigation of the solar modulation of cosmic electrons

    International Nuclear Information System (INIS)

    Mercier, J.

    1969-01-01

    In this report, we are investigating the solar modulation of cosmic electrons, in different ways. By comparing the calculated intensity with the measured intensity of positrons, we can evaluate the solar modulation of positrons, hence the modulation of negatons, since the modulation of negatons is probably the same that for positrons. By comparing the electron spectrum in interstellar space needed to explain the galactic background radio emission with that observed near the earth, we can deduce information about the modulation of electrons. We can investigate the modulation through the observation of its variations during the solar cycle. This different ways lead us to compatible results. In spite of the fact that the precision of the experimental data is poor, the modulation can be represented by: a constant or a form in exp(- K/Roβ) under the rigidity Ro ≅ 0,5 BV; a form in exp(- K/R) or exp(- K/Rβ) above this rigidity. In addition, the investigation of both electrons and protons displays that the diffusion-convection theory is inadequate to explain all the features of the solar modulation. (author) [fr

  12. Solar flare and galactic cosmic ray tracks in lunar samples and meteorites - What they tell us about the ancient sun

    International Nuclear Information System (INIS)

    Crozaz, G.

    1980-01-01

    Evidence regarding the past activity of the sun in the form of nuclear particle tracks in lunar samples and meteorites produced by heavy ions in galactic cosmic rays and solar flares is reviewed. Observations of track-rich grains found in deep lunar cores and meteorite interiors are discussed which demonstrate the presence of solar flare activity for at least the past 4 billion years, and the similarity of track density profiles from various lunar and meteoritic samples with those in a glass filter from Surveyor 3 exposed at the lunar surface for almost three years is presented as evidence of the relative constancy of the solar flare energy spectrum over the same period. Indications of a heavy ion enrichment in solar flares are considered which are confirmed by recent satellite measurements, although difficult to quantify in lunar soil grains. Finally, it is argued that, despite previous claims, there exists as yet no conclusive evidence for either a higher solar activity during the early history of the moon or a change in galactic cosmic ray intensity, average composition or spectrum over the last 50 million years

  13. Possible influence of cosmic ray Cerenkov photons on infrared interferometric search for non-solar planets

    International Nuclear Information System (INIS)

    Lerche, I.

    1980-01-01

    It is shown that the pervasive cosmic-ray protons in the vicinity of the Earth would produce infrared photons by Cerenkov radiation in the material walls, and mirrors, of an orbiting infrared interferometer designed to search for non-solar planets. The flux of such photons is at least comparable to the zodiacal infrared background radiation. It is found that for the worst possible conditions a minimum time of about six weeks is indicated for planetary detection using a fourth-harmonic noise analysis. It is suggested that direct laboratory measurement of a simulated cosmic-ray-induced Cerenkov flux be undertaken to settle the question of the background contaminant produced by this effect. (Auth.)

  14. Oscillations in the open solar magnetic flux with a period of 1.68 years: imprint on galactic cosmic rays and implications for heliospheric shielding

    Directory of Open Access Journals (Sweden)

    A. Rouillard

    2004-12-01

    Full Text Available An understanding of how the heliosphere modulates galactic cosmic ray (GCR fluxes and spectra is important, not only for studies of their origin, acceleration and propagation in our galaxy, but also for predicting their effects (on technology and on the Earth's environment and organisms and for interpreting abundances of cosmogenic isotopes in meteorites and terrestrial reservoirs. In contrast to the early interplanetary measurements, there is growing evidence for a dominant role in GCR shielding of the total open magnetic flux, which emerges from the solar atmosphere and enters the heliosphere. In this paper, we relate a strong 1.68-year oscillation in GCR fluxes to a corresponding oscillation in the open solar magnetic flux and infer cosmic-ray propagation paths confirming the predictions of theories in which drift is important in modulating the cosmic ray flux. Key words. Interplanetary physics (Cosmic rays, Interplanetary magnetic fields

  15. Performance of the SciBar cosmic ray telescope (SciCRT) toward the detection of high-energy solar neutrons in solar cycle 24

    Science.gov (United States)

    Sasai, Yoshinori; Nagai, Yuya; Itow, Yoshitaka; Matsubara, Yutaka; Sako, Takashi; Lopez, Diego; Itow, Tsukasa; Munakata, Kazuoki; Kato, Chihiro; Kozai, Masayoshi; Miyazaki, Takahiro; Shibata, Shoichi; Oshima, Akitoshi; Kojima, Hiroshi; Tsuchiya, Harufumi; Watanabe, Kyoko; Koi, Tatsumi; Valdés-Galicia, Jose Francisco; González, Luis Xavier; Ortiz, Ernesto; Musalem, Octavio; Hurtado, Alejandro; Garcia, Rocio; Anzorena, Marcos

    2014-12-01

    We plan to observe solar neutrons at Mt. Sierra Negra (4,600 m above sea level) in Mexico using the SciBar detector. This project is named the SciBar Cosmic Ray Telescope (SciCRT). The main aims of the SciCRT project are to observe solar neutrons to study the mechanism of ion acceleration on the surface of the sun and to monitor the anisotropy of galactic cosmic-ray muons. The SciBar detector, a fully active tracker, is composed of 14,848 scintillator bars, whose dimension is 300 cm × 2.5 cm × 1.3 cm. The structure of the detector enables us to obtain the particle trajectory and its total deposited energy. This information is useful for the energy reconstruction of primary neutrons and particle identification. The total volume of the detector is 3.0 m × 3.0 m × 1.7 m. Since this volume is much larger than the solar neutron telescope (SNT) in Mexico, the detection efficiency of the SciCRT for neutrons is highly enhanced. We performed the calibration of the SciCRT at Instituto Nacional de Astrofisica, Optica y Electronica (INAOE) located at 2,150 m above sea level in Mexico in 2012. We installed the SciCRT at Mt. Sierra Negra in April 2013 and calibrated this detector in May and August 2013. We started continuous observation in March 2014. In this paper, we report the detector performance as a solar neutron telescope and the current status of the SciCRT.

  16. Low cloud properties influenced by cosmic rays

    DEFF Research Database (Denmark)

    Marsh, Nigel; Svensmark, Henrik

    2000-01-01

    The influence of solar variability on climate is currently uncertain. Recent observations have indicated a possible mechanism via the influence of solar modulated cosmic rays on global cloud cover. Surprisingly the influence of solar variability is strongest in low clouds (less than or equal to3 km......), which points to a microphysical mechanism involving aerosol formation that is enhanced by ionization due to cosmic rays. If confirmed it suggests that the average state of the heliosphere is important for climate on Earth....

  17. Abnormal increase of cosmic ray on August 7th, 1972

    International Nuclear Information System (INIS)

    Kodama, Masahiro; Murakami, Kazuaki; Wada, Masami

    1974-01-01

    The abnormal increase of cosmic ray on Aug. 7th particularly the dependence of its starting time on local time was studied. Cosmic ray increased twice before and after the greatest Forbush decrease in history on August 4th and 7th, 1972. This study is a trial to estimate the anisotropic flow of solar cosmic ray from the time difference time at different places. Further, the past instance of 23 ground-level events were statistically restudied, and the relationship between the time of generation of solar cosmic ray and the time of transmission to the earth was investigated. A list is given regarding the solar cosmic ray of more than 10 9 eV which occurred since the observation had started. The list shows definite three groups. Attention is paid to the transmission time of F type which is considered to have the most simplest transmission mechanism. The dispersion of the transmission time is large regarding flare-starting time and peak wave intensity time, but is small regarding solar wave-starting time, but the dependence on the longitude is systematic. After all, cosmic ray is accelerated after 10 minutes since solar electric wave has started, and arrives at the earth most early in the case of a flare occurred at the root of garden force line toward the earth. In conclusion, the method of studying the difference of the starting time of abnormal increase according to local time may be an effective means for examining in the characteristics of anisotropic flow of solar cosmic ray. (Iwakiri, K.)

  18. Role of cosmic ray protons in two types of extragalactic objects

    International Nuclear Information System (INIS)

    Vestrand, W.T.

    1980-01-01

    For many years the physics of galactic cosmic rays has been studied in detail. Very little work, however, has been done concerning cosmic ray protons in extragalactic objects. Here the role cosmic ray protons can play in two types of extragalactic sites are examined: (1) clusters of galaxies, and (2) the active nuclei of Quasars that produce superluminal radio components. Models of Coma-type radio halos must explain both their large extent and their rarity. A model is presented wherein secondary electrons produced by the interaction of cosmic ray protons with the observed intracluster gas are responsible for the diffuse radio emission. This model predicts a correlation between a cluster's evolutionary state and the presence of Coma-type halos. If a cluster's x-ray morphology is an indication of the cluster's evolutionary state, this prediction is supported by observations. This model also predicts that clusters with Coma-type halos will emit π 0 γ-rays. If the intracluster magnetic field in Coma has the strength favored by many authors, B/sub c/ = 0.2 microgauss, these γ-rays should be detectable with the proposed GRO satellite. Superluminal radio sources may originate in highly compact and relativistically hot plasmas. The production of mesons and their secondaries in an ultrarelativistic plasma is examined. Source functions from a relativistic Maxwellian distribution of protons are numerically calculated for conditions likely during the formation of superluminal radio components. Analytic expressions for the source functions from a power law distribution of relativistic protons are also presented

  19. Do cosmic ray air showers initiate lightning? : A statistical analysis of cosmic ray air showers and lightning mapping array data

    NARCIS (Netherlands)

    Hare, B. M.; Dwyer, J. R.; Winner, L. H.; Uman, M. A.; Jordan, D. M.; Kotovsky, D. A.; Caicedo, J. A.; Wilkes, R. A.; Carvalho, F. L.; Pilkey, J. T.; Ngin, T. K.; Gamerota, W. R.; Rassoul, H. K.

    2017-01-01

    It has been argued in the technical literature, and widely reported in the popular press, that cosmic ray air showers (CRASs) can initiate lightning via a mechanism known as relativistic runaway electron avalanche (RREA), where large numbers of high-energy and low-energy electrons can, somehow,

  20. Long-term and transient time variation of cosmic ray fluxes detected in Argentina by CARPET cosmic ray detector

    Science.gov (United States)

    De Mendonça, R. R. S.; Raulin, J.-P.; Bertoni, F. C. P.; Echer, E.; Makhmutov, V. S.; Fernandez, G.

    2011-07-01

    We present results obtained at El Leoncito (CASLEO, San Juan, Argentina) with the CARPET charged particles detector installed in April 2006. The observed modulation of the cosmic ray flux is discussed as a function of its time variability and it is related to longer solar activity variations and to shorter variations during solar and geomagnetic transient activity. Short period (few minutes, few hours) cosmic ray modulation events are observed during rain time (precipitation) and significant variations of the atmospheric electric field. Complementary observations of the atmospheric electric field indicate that its time variations play an important role in the detected cosmic ray event.

  1. Cosmic rays and climate

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    The current understanding of climate change in the industrial age is that it is predominantly caused by anthropogenic greenhouse gases, with relatively small natural contributions due to solar irradiance and volcanoes. However, palaeoclimatic reconstructions show that the climate has frequently varied on 100-year time scales during the Holocene (last 10 kyr) by amounts comparable to the present warming - and yet the mechanism or mechanisms are not understood. Some of these reconstructions show clear associations with solar variability, which is recorded in the light radio-isotope archives that measure past variations of cosmic ray intensity. However, despite the increasing evidence of its importance, solar-climate variability is likely to remain controversial until a physical mechanism is established. Estimated changes of solar irradiance on these time scales appear to be too small to account for the climate observations. This raises the question of whether cosmic rays may directly affect the climate, provi...

  2. Relativistic Celestial Mechanics of the Solar System

    CERN Document Server

    Kopeikin, Sergei; Kaplan, George

    2011-01-01

    This authoritative book presents the theoretical development of gravitational physics as it applies to the dynamics of celestial bodies and the analysis of precise astronomical observations. In so doing, it fills the need for a textbook that teaches modern dynamical astronomy with a strong emphasis on the relativistic aspects of the subject produced by the curved geometry of four-dimensional spacetime. The first three chapters review the fundamental principles of celestial mechanics and of special and general relativity. This background material forms the basis for understanding relativistic r

  3. Cosmic radio-noise absorption bursts caused by solar wind shocks

    Directory of Open Access Journals (Sweden)

    A. Osepian

    2004-09-01

    Full Text Available Bursts of cosmic noise absorption observed at times of sudden commencements (SC of geomagnetic storms are examined. About 300SC events in absorption for the period 1967-1990 have been considered. It is found that the response of cosmic radio-noise absorption to the passage of an interplanetary shock depends on the level of the planetary magnetic activity preceding the SC event and on the magnitude of the magnetic field perturbation associated with the SC (as measured in the equatorial magnetosphere. It is shown that for SC events observed against a quiet background (Kp<2, the effects of the SC on absorption can be seen only if the magnitude of the geomagnetic field perturbation caused by the solar wind shock exceeds a threshold value ΔBth. It is further demonstrated that the existence of this threshold value, ΔBth, deduced from experimental data, can be related to the existence of a threshold for exciting and maintaining the whistler cyclotron instability, as predicted by quasi-linear theory. SC events observed against an active background (Kp<2 are accompanied by absorption bursts for all magnetic field perturbations, however small. A quantitative description of absorption bursts associated with SC events is provided by the whistler cyclotron instability theory.

  4. The effects of low solar activity upon the cosmic radiation and the interplanetary magnetic field over the past 10,000 years, and implications for the future. (Invited)

    Science.gov (United States)

    McCracken, K. G.; McDonald, F. B.; Beer, J.; Abreu, J.; Steinhilber, F.

    2009-12-01

    The paleo-cosmic ray records based on the radionuclides 10Be and 14 C show that the Sun has experienced twenty two extended periods of low activity (similar to, or longer than the Maunder Minimum) in the past 10,000 years, and many more periods of reduced activity for 2 or more solar cycles similar to the period 1880-1910. The 10,000 yr record shows that solar activity has exhibited three persistent periodicities that modulate the amplitude of the Hale (11/22 year) cycle. They are the Gleissberg (~85 yr); the de Vries (~208 yr); and the Hallstatt (~2200 yr) periodicities. It is possible that the Sun is entering a somewhat delayed Gleissberg repetition of the 1880-1910 period of reduced activity or a de Vries repetition of the Dalton Minimum of 1800-1820; or a combination of both. The historic record shows that the cosmic ray intensity at sunspot minimum increases substantially during periods of reduced solar activity- during the Dalton minimum it was twice the present-day sunspot minimum intensity at 2GeV/nucleon ; and 10 times greater at 100 MeV/nucleon. The Hale cycle of solar activity continued throughout the Spoerer (1420-1540) and Maunder Minima, and it appears possible that the local interstellar cosmic ray spectrum was occasionally incident on Earth. Using the cosmic ray transport equation to invert the paleo-cosmic ray record shows that the magnetic field was Dalton Minimum.

  5. SELF-CONSISTENT EVOLUTION OF GAS AND COSMIC RAYS IN CYGNUS A AND SIMILAR FR II CLASSICAL DOUBLE RADIO SOURCES

    International Nuclear Information System (INIS)

    Mathews, William G.; Guo Fulai

    2010-01-01

    In Cygnus A and other classical FR II double radio sources, powerful opposing jets from the cores of halo-centered galaxies drive out into the surrounding cluster gas, forming hotspots of shocked and compressed cluster gas at the jet extremities. The moving hotspots are sandwiched between two shocks. An inner-facing shock receives momentum and cosmic rays from the jet and creates additional cosmic rays that form a radio lobe elongated along the jet axis. An outer-facing bow shock moves directly into the undisturbed group or cluster gas, creating a cocoon of shocked gas enclosing the radio lobe. We describe computations that follow the self-consistent dynamical evolution of the shocked cluster gas and the relativistic synchrotron-emitting gas inside the lobes. Relativistic and non-relativistic components exchange momentum by interacting with small magnetic fields having dynamically negligible energy densities. The evolution of Cygnus A is governed almost entirely by cosmic ray energy flowing from the hotspots. Mass flowing into hotspots from the jets is assumed to be small, greatly reducing the mass of gas flowing back along the jet, common in previous calculations, that would disrupt the spatial segregation of synchrotron-loss ages observed inside FR II radio lobes. We compute the evolution of the cocoon when the velocity and cosmic ray luminosity of the hotspots are constant and when they vary with time. If cosmic rays mix with cluster gas in hotspots before flowing into the radio lobe, the thermal gas is heated to mildly relativistic temperatures, producing an unobserved pressure inside the lobe.

  6. Atmospheric nitrous oxide produced by solar protons and relativistic electrons

    International Nuclear Information System (INIS)

    Prasad, S.S.; Zipf, E.C.

    1981-01-01

    An alternative means of nitric oxide production in the stratosphere to that of direct formation in the upper atmosphere by solar proton (SP) events and by relativistic electron precipitation (REP) events from the Earth's radiation belt, is described. It is suggested that nitrous oxide is produced in the mesosphere and then migrates downward and is converted in the stratosphere to NO by the reaction N 2 O + O( 1 D) → 2 NO. Such a process could amplify the direct NO production by >10%. Mesospheric nitrous oxide mixing ratios increase to values as high as 6 x 10 -7 due to REP- and SP- related production. Lateral transport will reduce these high values but mesospheric mixing ratios of N 2 O in the high latitudes would approach 10 -7 , considerably greater than those expected on the basis of theories which neglect REP- and SP-related production of this species. (U.K.)

  7. Geosynchronous Relativistic Electron Events Associated with High-Speed Solar Wind Streams in 2006

    Directory of Open Access Journals (Sweden)

    Sungeun Lee

    2009-12-01

    Full Text Available Recurrent enhancements of relativistic electron events at geosynchronous orbit (GREEs were observed in 2006. These GREE enhancements were associated with high-speed solar wind streams coming from the same coronal hole. For the first six months of 2006, the occurrence of GREEs has 27 day periodicity and the GREEs were enhanced with various flux levels. Several factors have been studied to be related to GREEs: (1 High speed stream, (2 Pc5 ULF wave activity, (3 Southward IMF Bz, (4 substorm occurrence, (5 Whistler mode chorus wave, and (6 Dynamic pressure. In this paper, we have examined the effectiveness about those parameters in selected periods.

  8. Solar Modulation of Atmospheric Cosmic Radiation:. Comparison Between In-Flight and Ground-Level Measurements

    Science.gov (United States)

    Iles, R. H. A.; Taylor, G. C.; Jones, J. B. L.

    January 2000 saw the start of a collaborative study involving the Mullard Space Science Laboratory, Virgin Atlantic Airways, the Civil Aviation Authority and the National Physical Laboratory in a program to investigate the cosmic radiation exposure to aircrew. The study has been undertaken in view of EU Directive 96/291 (May 2000) which requires the assessment of the level of radiation exposure to aircrew. The project's aims include validation of radiation dose models and evaluation of space weather effects on atmospheric cosmic radiation levels, in particular those effects not accounted for by the models. Ground level measurements are often used as a proxy for variations in cosmic radiation dose levels at aircraft altitudes, especially during Forbush Decreases (FDs) and Solar Energetic Particle (SEP) events. Is this estimation realistic and does the ground level data accurately represent what is happening at altitude? We have investigated the effect of a FD during a flight from Hong Kong to London Heathrow on the 15th July 2000 and compared count rate and dose measurements with simultaneous variations measured at ground level. We have also compared the results with model outputs.

  9. The basis for cosmic ray feedback: Written on the wind

    Science.gov (United States)

    Zweibel, Ellen G.

    2017-05-01

    Star formation and supermassive black hole growth in galaxies appear to be self-limiting. The mechanisms for self-regulation are known as feedback. Cosmic rays, the relativistic particle component of interstellar and intergalactic plasma, are among the agents of feedback. Because cosmic rays are virtually collisionless in the plasma environments of interest, their interaction with the ambient medium is primarily mediated by large scale magnetic fields and kinetic scale plasma waves. Because kinetic scales are much smaller than global scales, this interaction is most conveniently described by fluid models. In this paper, I discuss the kinetic theory and the classical theory of cosmic ray hydrodynamics (CCRH) which follows from assuming cosmic rays interact only with self-excited waves. I generalize CCRH to generalized cosmic ray hydrodynamics, which accommodates interactions with extrinsic turbulence, present examples of cosmic ray feedback, and assess where progress is needed.

  10. Solar tri-diurnal variation of cosmic rays in a wide range of rigidity

    Science.gov (United States)

    Mori, S.; Ueno, H.; Fujii, Z.; Morishita, I.; Nagashima, K.

    1985-01-01

    Solar tri-diurnal variations of cosmic rays have been analyzed in a wide range of rigidity, using data from neutron monitors, and the surface and underground muon telescopes for the period 1978-1983. The rigidity spectrum of the anisotropy in space is assumed to be of power-exponential type as (P/gamma P sub o) to the gamma exp (gamma-P/P sub o). By means of the best-fit method between the observed and the expected variations, it is obtained that the spectrum has a peak at P (=gamma P sub o) approx = 90 GV, where gamma=approx 3.0 and P sub o approx. 30 GV. The phase in space of the tri-diurnal variation is also obtained as 7.0 hr (15 hr and 23 hr LT), which is quite different from that of approx. 1 hr. arising from the axisymmetric distribution of cosmic rays with respect to the IMF.

  11. The Pierre Auger Observatory scaler mode for the study of solar activity modulation of galactic cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, P.; /Lisbon, LIFEP /Lisbon, IST; Aglietta, M.; /Turin Observ. /Turin U. /INFN, Turin; Ahn, E.J.; /Fermilab; Allard, D.; /APC, Paris; Allekotte, I.; /Centro Atomico Bariloche /Balseiro Inst., San Carlos de Bariloche; Allen, J.; /New York U.; Alvarez Castillo, J.; /Mexico U.; Alvarez-Muniz, J.; /Santiago de Compostela U.; Ambrosio, M.; /Naples U. /INFN, Naples; Aminaei, A.; /Nijmegen U., IMAPP; Anchordoqui, L.; /Wisconsin U., Milwaukee /Lisbon, LIFEP /Lisbon, IST

    2011-01-01

    Since data-taking began in January 2004, the Pierre Auger Observatory has been recording the count rates of low energy secondary cosmic ray particles for the self-calibration of the ground detectors of its surface detector array. After correcting for atmospheric effects, modulations of galactic cosmic rays due to solar activity and transient events are observed. Temporal variations related with the activity of the heliosphere can be determined with high accuracy due to the high total count rates. In this study, the available data are presented together with an analysis focused on the observation of Forbush decreases, where a strong correlation with neutron monitor data is found.

  12. Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence

    CERN Document Server

    Colpi, Monica; Gorini, Vittorio; Moschella, Ugo; Possenti, Andrea

    2009-01-01

    This book provides a comprehensive, authoritative and timely review of the astrophysical approach to the investigation of gravity theories. Particular attention is paid to strong-field tests of general relativity and alternative theories of gravity, performed using collapsed objects (neutron stars, black holes and white dwarfs) in relativistic binaries as laboratories. The book starts with an introduction which gives the background linking experimental gravity in cosmic laboratories to astrophysics and fundamental physics. Subsequent chapters cover observational and theoretical aspects of the following topics: from binaries as test-beds of gravity theories to binary pulsars as cosmic laboratories; from binary star evolution to the formation of relativistic binaries; from short gamma-ray bursts to low mass X-ray binaries; from stellar-mass black hole binaries to coalescing super-massive black holes in galaxy mergers. The book will be useful to researchers, PhD and graduate students in Astrophysics, Cosmology, ...

  13. Heliospheric modulation of cosmic rays: model and observation

    Directory of Open Access Journals (Sweden)

    Gerasimova S.K.

    2017-03-01

    Full Text Available This paper presents the basic model of cosmic ray modulation in the heliosphere, developed in Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy of the Siberian Branch of the Russian Academy of Sciences. The model has only one free modulation parameter: the ratio of the regular magnetic field to the turbulent one. It may also be applied to the description of cosmic ray intensity variations in a wide energy range from 100 MeV to 100 GeV. Possible mechanisms of generation of the turbulent field are considered. The primary assumption about the electrical neutrality of the heliosphere appears to be wrong, and the zero potential needed to match the model with observations in the solar equatorial plane can be achieved if the frontal point of the heliosphere, which is flowed around by interstellar gas, lies near the plane. We have revealed that the abnormal rise of cosmic ray intensity at the end of solar cycle 23 is related to the residual modulation produced by the subsonic solar wind behind the front of a standing shock wave. The model is used to describe features of cosmic ray intensity variations in several solar activity cycles.

  14. Cosmic rays, clouds, and climate

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2000-01-01

    cloud radiative properties. Thus, a moderate influence on atmospheric aerosol distributions from cosmic ray ionisation would have a strong influence on the Earth's radiation budget. Historical evidence over the past 1000 years indicates that changes in climate have occurred in accord with variability......A correlation between a global average of low cloud cover and the flux of cosmic rays incident in the atmosphere has been observed during the last solar cycle. The ionising potential of Earth bound cosmic rays are modulated by the state of the heliosphere, while clouds play an important role...... in the Earth's radiation budget through trapping outgoing radiation and reflecting incoming radiation. If a physical link between these two features can be established, it would provide a mechanism linking solar activity and Earth's climate. Recent satellite observations have further revealed a correlation...

  15. Influence of the Solar Cycle on Turbulence Properties and Cosmic-Ray Diffusion

    Science.gov (United States)

    Zhao, L.-L.; Adhikari, L.; Zank, G. P.; Hu, Q.; Feng, X. S.

    2018-04-01

    The solar cycle dependence of various turbulence quantities and cosmic-ray (CR) diffusion coefficients is investigated by using OMNI 1 minute resolution data over 22 years. We employ Elsässer variables z ± to calculate the magnetic field turbulence energy and correlation lengths for both the inwardly and outwardly directed interplanetary magnetic field (IMF). We present the temporal evolution of both large-scale solar wind (SW) plasma variables and small-scale magnetic fluctuations. Based on these observed quantities, we study the influence of solar activity on CR parallel and perpendicular diffusion using quasi-linear theory and nonlinear guiding center theory, respectively. We also evaluate the radial evolution of the CR diffusion coefficients by using the boundary conditions for different solar activity levels. We find that in the ecliptic plane at 1 au (1), the large-scale SW temperature T, velocity V sw, Alfvén speed V A , and IMF magnitude B 0 are positively related to solar activity; (2) the fluctuating magnetic energy density , residual energy E D , and corresponding correlation functions all have an obvious solar cycle dependence. The residual energy E D is always negative, which indicates that the energy in magnetic fluctuations is larger than the energy in kinetic fluctuations, especially at solar maximum; (3) the correlation length λ for magnetic fluctuations does not show significant solar cycle variation; (4) the temporally varying shear source of turbulence, which is most important in the inner heliosphere, depends on the solar cycle; (5) small-scale fluctuations may not depend on the direction of the background magnetic field; and (6) high levels of SW fluctuations will increase CR perpendicular diffusion and decrease CR parallel diffusion, but this trend can be masked if the background IMF changes in concert with turbulence in response to solar activity. These results provide quantitative inputs for both turbulence transport models and CR

  16. Heliospheric Modulation of Galactic Cosmic Rays; Diurnal Variability Abstract Details

    Science.gov (United States)

    Kalu, D. F.; Okpala, K. C.

    2017-12-01

    We have studied the variability of Cosmic rays flux during solar quiet days at mid and high latitudes in the Northern Hemisphere. By using the five (5) quietest days for each month and the five disturbed days for each month, the monthly mean diurnal variation of cosmic ray anisotropy have been derived for the period 1999-2015, which covers part of cycles 23, and cycle 24. This study seeks to understand the heliospheric contribution to the variation of these Cosmic rays on quietest days, three stations (Inuvik, Moscow, Rome) Neutron Monitors were employed. This study seeks to understand the important features of the high latitude and mid latitude diurnal wave, and how solar and geomagnetic activity may be influencing the wave characteristics. Cosmic ray wave characteristics were obtained by discrete Fourier transform (DFT). The mean, diurnal amplitude, phase and dispersion for each month's diurnal wave were calculated and profiled. There was clear indication that the terrestrial effect on the variability of the monthly mean was more associated with geomagnetic activity rather than rigidity of the cosmic rays. Correlation of the time series of these wave characteristic with solar and geomagnetic activity index showed better association with solar activity.

  17. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2008-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high energy Cosmic Ray field. Cosmic Rays are energetic particles from outside the Solar System. Most of the studies of Cosmic Rays address fundamental problems: · the nature of the physical and astrophysical processes responsible for high energies of particles · an estimation of the astrophysical conditions at the acceleration sites and/or search for sources of Cosmic Rays, · properties of high energy particle interactions at very high energies. Some Cosmic Ray studies might have practical (commercial) implications, e.g. · '' cosmic weather '' forecast - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares / events of Coronal Mass Ejection); these are important for large electricity networks, gas pipes, radio-wave connections, space missions and satellite experiments. Presentation of Cosmic Ray registration to high school students becomes a popular way to introduce particle physics detectors and elementary particle detection techniques to young people. We organize in Lodz several workshops on particle physics for high school students. This is a part of European activity: EPPOG's Masterclass - Hands on CERN. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering EAS and their properties is the main way of experimental studies of very high energy Cosmic Rays. In Lodz Department we run Extensive Air Shower array where EAS are continuously being registered. We concentrate on the studies of detection of neutrons correlated with EAS and interpretation of this phenomenon. In 2004 we started realisation of the Roland Maze Project, the network of EAS detectors placed on the roofs of high schools in Lodz. We received funds from the City of Lodz budget to make a pilot project and equip 10 high schools, each with four 1m 2 detectors and GPS. The network is

  18. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J

    2005-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high energy Cosmic Ray field. Cosmic Rays are energetic particles from outside the Solar System. The energy spectrum (power law energy dependence) suggests a non-thermal origin of these particles. Most studies of Cosmic Rays address fundamental problems: - the nature of the physical and astrophysical processes responsible for high energies of particles (up to about 10 20 eV/particle), - estimation of the astrophysical conditions at the acceleration sites and/or search for sources of Cosmic Rays, - properties of high energy particle interactions at very high energies (nuclear interactions at energies exceeding energy available in laboratories). - Some Cosmic Ray studies might have practical (commercial) implications, e.g. - ''cosmic weather'' forecast - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares / events of Coronal Mass Ejection); these are important for large electricity networks, gas pipes, radio-wave connections, space missions and satellite experiments. Presentation of Cosmic Ray registration to high school students is a popular way to introduce particle physics detectors and elementary particle detection techniques to young people. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering the EAS and their properties is the main way of experimental studies of very high energy Cosmic Rays. In our Lodz Department we run an Extensive Air Shower array where EAS are continuously being registered. We concentrate on the studies of detection of neutrons correlated with EAS and interpretation of this phenomenon. In 2004 we started realisation of the Roland Maze Project, the network of EAS detectors placed on the roofs of high schools in Lodz. We received funds from the City of Lodz's budget to make a pilot project and equip 10 high schools, each with

  19. General relativistic model of a spinning cosmic string

    International Nuclear Information System (INIS)

    Jensen, B.; Soleng, H.H.

    1991-11-01

    The authors investigate the infinite, straight, rotating cosmic string within the framework of Einstein's General Theory of Relativity. A class of exact interior solutions is derived for which the source satisfies the weak and the dominant energy conditions. The interior metric is matched smoothly to the exterior vacuum. A subclass of these solutions has closed time-like curves both in the interior and the exterior geometry. 39 refs., 2 figs

  20. Low cloud properties influenced by cosmic rays

    Science.gov (United States)

    Marsh; Svensmark

    2000-12-04

    The influence of solar variability on climate is currently uncertain. Recent observations have indicated a possible mechanism via the influence of solar modulated cosmic rays on global cloud cover. Surprisingly the influence of solar variability is strongest in low clouds (climate on Earth.

  1. Measuring the cosmological background of relativistic particles with WMAP

    CERN Document Server

    Crotty, P; Pastor, S; Crotty, Patrick; Lesgourgues, Julien; Pastor, Sergio

    2003-01-01

    We show that the first year results of the Wilkinson Microwave Anisotropy Probe (WMAP) constrain very efficiently the energy density in relativistic particles in the universe. We derive new bounds on additional relativistic degrees of freedom expressed in terms of an excess in the effective number of light neutrinos Delta N_eff. Within the flat LambdaCDM scenario, the allowed range is Delta N_eff < 6 (95% CL) using WMAP data only, or -2.6 < Delta N_eff < 4 with the prior H_0= 72 \\pm 8 km/s/Mpc. When other cosmic microwave background and large scale structure experiments are taken into account, the window shrinks to -1.5 < Delta N_eff < 4.2. These results are in perfect agreement with the bounds from primordial nucleosynthesis. Non-minimal cosmological models with extra relativistic degrees of freedom are now severely restricted.

  2. Extrapolating cosmic ray variations and impacts on life: Morlet wavelet analysis

    Science.gov (United States)

    Zarrouk, N.; Bennaceur, R.

    2009-07-01

    Exposure to cosmic rays may have both a direct and indirect effect on Earth's organisms. The radiation may lead to higher rates of genetic mutations in organisms, or interfere with their ability to repair DNA damage, potentially leading to diseases such as cancer. Increased cloud cover, which may cool the planet by blocking out more of the Sun's rays, is also associated with cosmic rays. They also interact with molecules in the atmosphere to create nitrogen oxide, a gas that eats away at our planet's ozone layer, which protects us from the Sun's harmful ultraviolet rays. On the ground, humans are protected from cosmic particles by the planet's atmosphere. In this paper we give estimated results of wavelet analysis from solar modulation and cosmic ray data incorporated in time-dependent cosmic ray variation. Since solar activity can be described as a non-linear chaotic dynamic system, methods such as neural networks and wavelet methods should be very suitable analytical tools. Thus we have computed our results using Morlet wavelets. Many have used wavelet techniques for studying solar activity. Here we have analysed and reconstructed cosmic ray variation, and we have better depicted periods or harmonics other than the 11-year solar modulation cycles.

  3. Solar cycle dependence of the radial gradient of cosmic ray intensity

    International Nuclear Information System (INIS)

    Allen, J.A.V.

    1988-01-01

    Observation of the interplanetary intensity of cosmic rays (E/sub p/>80 MeV) by Pioneers 10 and 11 now spans a sixteen-year time period 1972--1988 and heliocentric radial distances, r/sub 10/ and r/sub 11/, out to 43.7 AU for Pioneer 10 and 25.8 AU for Pioneer 11. Solar modulation continues to be present at the current distances of both spacecraft. The radial gradient of intensity is measured continuously over the slowly varying, outward moving radial segment Δr = r/sub 10/--r/sub 11/. The 50-day mean values of the gradient G vary systematically and cyclically in phase with solar activity as measured by sunspot number, with a maximum value of about 2.1 percent (AU)/sup -1/ at sunspot maximum and a miminum value of about 1.2 percent (AU)/sup -1/ at sunspot minimum. Thus, the apparent scale size of the heliospheric modulation region as measured by 1/G is about 48 AU at solar max and about 83 AU at solar min: a result that is the inverse of the conjectural inference of Randall and Van Allen [1986] using most of the same body of data but a different analytical point of view. There is persuasive evidence that G is independent of radial distance over the range 2.5 to 34 AU in the mid-point of the segment Δr. No dependence of G on heliographic latitude is evident, but this result does not lend itself to a quantitative statement. copyright American Geophysical Union 1988

  4. The stationary non-equilibrium plasma of cosmic-ray electrons and positrons

    Science.gov (United States)

    Tomaschitz, Roman

    2016-06-01

    The statistical properties of the two-component plasma of cosmic-ray electrons and positrons measured by the AMS-02 experiment on the International Space Station and the HESS array of imaging atmospheric Cherenkov telescopes are analyzed. Stationary non-equilibrium distributions defining the relativistic electron-positron plasma are derived semi-empirically by performing spectral fits to the flux data and reconstructing the spectral number densities of the electronic and positronic components in phase space. These distributions are relativistic power-law densities with exponential cutoff, admitting an extensive entropy variable and converging to the Maxwell-Boltzmann or Fermi-Dirac distributions in the non-relativistic limit. Cosmic-ray electrons and positrons constitute a classical (low-density high-temperature) plasma due to the low fugacity in the quantized partition function. The positron fraction is assembled from the flux densities inferred from least-squares fits to the electron and positron spectra and is subjected to test by comparing with the AMS-02 flux ratio measured in the GeV interval. The calculated positron fraction extends to TeV energies, predicting a broad spectral peak at about 1 TeV followed by exponential decay.

  5. Modelling cosmic ray intensities along the Ulysses trajectory

    Directory of Open Access Journals (Sweden)

    D. C. Ndiitwani

    2005-03-01

    Full Text Available Time dependent cosmic ray modulation in the inner heliosphere is studied by comparing results from a 2-D, time-dependent cosmic ray transport model with Ulysses observations. A compound approach, which combines the effects of the global changes in the heliospheric magnetic field magnitude with drifts to establish a realistic time-dependence, in the diffusion and drift coefficients, are used. We show that this model results in realistic cosmic ray modulation from the Ulysses launch (1990 until recently (2004 when compared to 2.5-GV electron and proton and 1.2-GV electron and Helium observations from this spacecraft. This approach is also applied to compute radial gradients present in 2.5-GV cosmic ray electron and protons in the inner heliosphere. The observed latitude dependence for both positive and negative charged particles during both the fast latitude scan periods, corresponding to different solar activity conditions, could also be realistically computed. For this an additional reduction in particle drifts (compared to diffusion toward solar maximum is needed. This results in a realistic charge-sign dependent modulation at solar maximum and the model is also applied to predict charge-sign dependent modulation up to the next expected solar minimum.

  6. Cosmic ray nucleonic intensity in low-amplitude days during the passage of high-speed solar wind streams

    International Nuclear Information System (INIS)

    Agarwal, R.; Mishra, R.K.; Tiwari, S.; or rm_jbp@yahoo.co.in

    2008-01-01

    One of the most striking features of solar wind is its organization into high- and low- speed streams. It is now well established that the passage over the Earth of high-speed solar wind streams leads to geomagnetic disturbances. The high-speed plasma streams are thus a key element in the complex chain of events that link geomagnetic activity to the solar activity and are therefore of great interest to the solar terrestrial physics. Two types of high-speed solar wind streams - coronal-hole-associated (or corotating) and flare-generated - were studied based on magnetic field and solar wind plasma parameters. In the work, the dependence was obtained for cosmic ray (CR) depressions due to high-speed solar wind streams during low-amplitude days. The CR nucleonic intensity data were subjected to the superposed epoch analysis with respect to the start time of high-speed solar wind streams. It was found that streams of both types produce significant deviations in the CR intensity during low-amplitude anisotropic wave train events. At the onset of such streams the CR intensity reaches its minimum during low-amplitude events and then increases statistically. (Authors)

  7. Robustness of cosmic neutrino background detection in the cosmic microwave background

    CERN Document Server

    Audren, Benjamin; Cuesta, Antonio J; Gontcho, Satya Gontcho A; Lesgourgues, Julien; Niro, Viviana; Pellejero-Ibanez, Marcos; Pérez-Ràfols, Ignasi; Poulin, Vivian; Tram, Thomas; Tramonte, Denis; Verde, Licia

    2015-01-01

    The existence of a cosmic neutrino background can be probed indirectly by CMB experiments, not only by measuring the background density of radiation in the universe, but also by searching for the typical signatures of the fluctuations of free-streaming species in the temperature and polarisation power spectrum. Previous studies have already proposed a rather generic parametrisation of these fluctuations, that could help to discriminate between the signature of ordinary free-streaming neutrinos, or of more exotic dark radiation models. Current data are compatible with standard values of these parameters, which seems to bring further evidence for the existence of a cosmic neutrino background. In this work, we investigate the robustness of this conclusion under various assumptions. We generalise the definition of an effective sound speed and viscosity speed to the case of massive neutrinos or other dark radiation components experiencing a non-relativistic transition. We show that current bounds on these effectiv...

  8. Recent perspectives in solar physics - Elemental composition, coronal structure and magnetic fields, solar activity

    Science.gov (United States)

    Newkirk, G., Jr.

    1975-01-01

    Elemental abundances in the solar corona are studied. Abundances in the corona, solar wind and solar cosmic rays are compared to those in the photosphere. The variation in silicon and iron abundance in the solar wind as compared to helium is studied. The coronal small and large scale structure is investigated, emphasizing magnetic field activity and examining cosmic ray generation mechanisms. The corona is observed in the X-ray and EUV regions. The nature of coronal transients is discussed with emphasis on solar-wind modulation of galactic cosmic rays. A schematic plan view of the interplanetary magnetic field during sunspot minimum is given showing the presence of magnetic bubbles and their concentration in the region around 4-5 AU by a fast solar wind stream.

  9. The Status of Cosmic Topology after Planck Data

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Luminet

    2016-01-01

    Full Text Available In the last decade, the study of the overall shape of the universe, called Cosmic Topology, has become testable by astronomical observations, especially the data from the Cosmic Microwave Background (hereafter CMB obtained by WMAP and Planck telescopes. Cosmic Topology involves both global topological features and more local geometrical properties such as curvature. It deals with questions such as whether space is finite or infinite, simply-connected or multi-connected, and smaller or greater than its observable counterpart. A striking feature of some relativistic, multi-connected small universe models is to create multiples images of faraway cosmic sources. While the last CMB (Planck data fit well the simplest model of a zero-curvature, infinite space model, they remain consistent with more complex shapes such as the spherical Poincaré Dodecahedral Space, the flat hypertorus or the hyperbolic Picard horn. We review the theoretical and observational status of the field.

  10. Searches for relativistic magnetic monopoles in IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G.; Hill, G.C.; Robertson, S.; Wallace, A.; Whelan, B.J. [University of Adelaide, Department of Physics, Adelaide (Australia); Abraham, K.; Bernhard, A.; Coenders, S.; Gross, A.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Turcati, A.; Veenkamp, J. [Technische Universitaet Muenchen, Garching (Germany); Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H.P.; Cruz Silva, A.H.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Karg, T.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N.L.; Terliuk, A.; Usner, M.; Santen, J. van; Yanez, J.P. [DESY, Zeuthen (Germany); Adams, J. [University of Canterbury, Department of Physics and Astronomy, Christchurch (New Zealand); Aguilar, J.A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O' Murchadha, A.; Pinat, E.; Raab, C. [Universite Libre de Bruxelles, Brussels (Belgium); Ahlers, M.; Arguelles, C.; Beiser, E.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kelley, J.L.; Kheirandish, A.; McNally, F.; Merino, G.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D.L. [University of Wisconsin, Department of Physics and Wisconsin IceCube Particle Astrophysics Center, Madison, WI (United States); Ahrens, M.; Bohm, C.; Dumm, J.P.; Finley, C.; Flis, S.; Hulth, P.O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M. [Stockholm University, Department of Physics, Oskar Klein Centre, Stockholm (Sweden); Altmann, D.; Classen, L.; Kappes, A.; Tselengidou, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Anderson, T.; Arlen, T.C.; Dunkman, M.; Huang, F.; Keivani, A.; Lanfranchi, J.L.; Pankova, D.V.; Quinnan, M.; Tesic, G. [Pennsylvania State University, Department of Physics, University Park, PA (United States); Archinger, M.; Baum, V.; Boeser, S.; Del Pino Rosendo, E.; Di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Foesig, C.C.; Koepke, L.; Kroll, G.; Krueckl, G.; Sander, H.G.; Sandroos, J.; Schatto, K.; Steuer, A.; Wiebe, K. [University of Mainz, Institute of Physics, Mainz (Germany); Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gier, D.; Glagla, M.; Haack, C.; Hansmann, B.; Kemp, J.; Konietz, R.; Leuermann, M.; Leuner, J.; Paul, L.; Puetz, J.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schumacher, L.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wiebusch, C.H. [RWTH Aachen University, III. Physikalisches Institut, Aachen (Germany); Bai, X. [South Dakota School of Mines and Technology, Physics Department, Rapid City, SD (United States); Barwick, S.W.; Yodh, G. [University of California, Department of Physics and Astronomy, Irvine, CA (United States); Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K. [University of California, Department of Physics, Berkeley, CA (United States); Beatty, J.J. [Ohio State University, Department of Physics and Center for Cosmology and Astro-Particle Physics, Columbus, OH (United States); Ohio State University, Department of Astronomy, Columbus, OH (United States); Tjus, J.B.; Bos, F.; Eichmann, B.; Kroll, M.; Mandelartz, M.; Schoeneberg, S. [Ruhr-Universitaet Bochum, Fakultaet fuer Physik and Astronomie, Bochum (Germany); Becker, K.H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hickford, S.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke Pollmann, A.; Omairat, A.; Posselt, J.; Soldin, D. [University of Wuppertal, Department of Physics, Wuppertal (Germany); Benabderrahmane, M.L. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Hellauer, R.; Hoffman, K.D.; Huelsnitz, W.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G.W.; Wissing, H. [University of Maryland, Department of Physics, College Park, MD (United States); Besson, D.Z. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States); Binder, G.; Gerhardt, L.; Ha, C.; Klein, S.R.; Miarecki, S.; Tatar, J. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Boersma, D.J.; Botner, O.; Euler, S.; Hallgren, A.; Perez de los Heros, C.; Stroem, R.; Taavola, H.; Unger, E. [Uppsala University, Department of Physics and Astronomy, Box 516, Uppsala (Sweden); and others

    2016-03-15

    Various extensions of the Standard Model motivate the existence of stable magnetic monopoles that could have been created during an early high-energy epoch of the Universe. These primordial magnetic monopoles would be gradually accelerated by cosmic magnetic fields and could reach high velocities that make them visible in Cherenkov detectors such as IceCube. Equivalently to electrically charged particles, magnetic monopoles produce direct and indirect Cherenkov light while traversing through matter at relativistic velocities. This paper describes searches for relativistic (v ≥ 0.76 c) and mildly relativistic (v ≥ 0.51 c) monopoles, each using one year of data taken in 2008/2009 and 2011/2012, respectively. No monopole candidate was detected. For a velocity above 0.51 c the monopole flux is constrained down to a level of 1.55 x 10{sup -18} cm{sup -2} s{sup -1} sr{sup -1}. This is an improvement of almost two orders of magnitude over previous limits. (orig.)

  11. Searches for relativistic magnetic monopoles in IceCube

    International Nuclear Information System (INIS)

    Aartsen, M.G.; Hill, G.C.; Robertson, S.; Wallace, A.; Whelan, B.J.; Abraham, K.; Bernhard, A.; Coenders, S.; Gross, A.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Turcati, A.; Veenkamp, J.; Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H.P.; Cruz Silva, A.H.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Karg, T.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N.L.; Terliuk, A.; Usner, M.; Santen, J. van; Yanez, J.P.; Adams, J.; Aguilar, J.A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O'Murchadha, A.; Pinat, E.; Raab, C.; Ahlers, M.; Arguelles, C.; Beiser, E.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kelley, J.L.; Kheirandish, A.; McNally, F.; Merino, G.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D.L.; Ahrens, M.; Bohm, C.; Dumm, J.P.; Finley, C.; Flis, S.; Hulth, P.O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.; Altmann, D.; Classen, L.; Kappes, A.; Tselengidou, M.; Anderson, T.; Arlen, T.C.; Dunkman, M.; Huang, F.; Keivani, A.; Lanfranchi, J.L.; Pankova, D.V.; Quinnan, M.; Tesic, G.; Archinger, M.; Baum, V.; Boeser, S.; Del Pino Rosendo, E.; Di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Foesig, C.C.; Koepke, L.; Kroll, G.; Krueckl, G.; Sander, H.G.; Sandroos, J.; Schatto, K.; Steuer, A.; Wiebe, K.; Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gier, D.; Glagla, M.; Haack, C.; Hansmann, B.; Kemp, J.; Konietz, R.; Leuermann, M.; Leuner, J.; Paul, L.; Puetz, J.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schumacher, L.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wiebusch, C.H.; Bai, X.; Barwick, S.W.; Yodh, G.; Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K.; Beatty, J.J.; Tjus, J.B.; Bos, F.; Eichmann, B.; Kroll, M.; Mandelartz, M.; Schoeneberg, S.; Becker, K.H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hickford, S.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke Pollmann, A.; Omairat, A.; Posselt, J.; Soldin, D.; Benabderrahmane, M.L.; Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Hellauer, R.; Hoffman, K.D.; Huelsnitz, W.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G.W.; Wissing, H.; Besson, D.Z.; Binder, G.; Gerhardt, L.; Ha, C.; Klein, S.R.; Miarecki, S.; Tatar, J.; Boersma, D.J.; Botner, O.; Euler, S.; Hallgren, A.; Perez de los Heros, C.; Stroem, R.; Taavola, H.; Unger, E.

    2016-01-01

    Various extensions of the Standard Model motivate the existence of stable magnetic monopoles that could have been created during an early high-energy epoch of the Universe. These primordial magnetic monopoles would be gradually accelerated by cosmic magnetic fields and could reach high velocities that make them visible in Cherenkov detectors such as IceCube. Equivalently to electrically charged particles, magnetic monopoles produce direct and indirect Cherenkov light while traversing through matter at relativistic velocities. This paper describes searches for relativistic (v ≥ 0.76 c) and mildly relativistic (v ≥ 0.51 c) monopoles, each using one year of data taken in 2008/2009 and 2011/2012, respectively. No monopole candidate was detected. For a velocity above 0.51 c the monopole flux is constrained down to a level of 1.55 x 10 -18 cm -2 s -1 sr -1 . This is an improvement of almost two orders of magnitude over previous limits. (orig.)

  12. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2007-01-01

    The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high energy Cosmic Ray field. Cosmic Rays are energetic particles from outside the Solar System. The energy spectrum (power law energy dependence) suggests non-thermal origin of these particles. Most of the studies of Cosmic Rays address fundamental problems: · the nature of the physical and astrophysical processes responsible for high energies of particles (up to about 1020 eV/particle), · an estimation of the astrophysical conditions at the acceleration sites and/or search for sources of Cosmic Rays, · properties of high energy particle interactions at very high energies (nuclear interactions at energies exceeding energy available in the laboratories). Some Cosmic Ray studies might have practical (commercial) implications, e.g.: · '' cosmic weather '' forecast - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares / events of Coronal Mass Ejection); these are important for large electricity networks, gas pipes, radio-wave connections, space missions and satellite experiments. Presentation of Cosmic Ray registration to high school students becomes a popular way to introduce particle physics detectors and elementary particle detection techniques to young people. We organize in Lodz several workshops on particle physics for high school students. This is a part of European activity: Masterclass - Hands on CERN. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering EAS and their properties is the main way of experimental studies of very high energy Cosmic Rays. In Lodz Department we run Extensive Air Shower array where EAS are continuously being registered. We concentrate on the studies of detection of neutrons correlated with EAS and interpretation of this phenomenon. Back in 2004 we started realisation of the Roland Maze Project, the network of EAS detectors

  13. Galactic cosmic ray spectra during solar cycle 23 and 24. Measurement capabilities of the electron proton helium telescope on board SOHO

    Energy Technology Data Exchange (ETDEWEB)

    Kuehl, Patrick; Dresing, Nina; Gieseler, Jan; Heber, Bernd; Klassen, Andreas [Christian-Albrechts Universitaet zu Kiel (Germany)

    2016-07-01

    The solar modulation of galactic cosmic rays (GCR) can be studied in detail by long term variations of the GCR energy spectrum (e.g. on the scales of a solar cycle). With almost 20 years of data, the Electron Proton Helium INstrument (EPHIN) aboard SOHO is well suited for these kind of investigations. Although the design of the instrument is optimized to measure proton and helium isotope spectra up to 50 MeV/nucleon the capability exist that allow to determine energy spectra above 1.5 GeV/nucleon. Therefore we developed a sophisticated inversion method to calculate such proton spectra. The method relies on a GEANT4 Monte Carlo simulation of the instrument and a simplified spacecraft model that calculates the energy response function of EPHIN for electrons, protons and heavier ions. As a result we present galactic cosmic ray spectra from 1995 to 2015. For validation, the derived spectra are compared to AMS, BESS and PAMELA data. Furthermore we discuss the spectra with respect to the solar modulation.

  14. Correlation between ionospheric potential and the intensity of cosmic rays

    International Nuclear Information System (INIS)

    Meyerott, R.E.; Reagan, J.B.; Evans, J.E.

    1983-01-01

    Ionospheric potential variations with a period of about 10 yr have been observed in the data that have been acquired to date. Previous studies have shown that these variations appear to be correlated inversely with sunspot number and with solar wind velocity, and directly with cosmic ray intensity. Since the cosmic ray intensity is inversely correlated with sunspot number and solar wind velocity, these correlations all suggest that the long period variations are of solar origin. In this report it is shown that, over the limited period for which ionospheric potential measurements exist, the long period variations are better correlated with the aerosol burden injected into the stratosphere by large volcanic eruptions than with the intensity of cosmic rays. This result indicates that the long period variations in ionospheric potential are of terrestrial rather than solar origin. 20 references

  15. THE EFFECT OF A DYNAMIC INNER HELIOSHEATH THICKNESS ON COSMIC-RAY MODULATION

    International Nuclear Information System (INIS)

    Manuel, R.; Ferreira, S. E. S.; Potgieter, M. S.

    2015-01-01

    The time-dependent modulation of galactic cosmic rays in the heliosphere is studied over different polarity cycles by computing 2.5 GV proton intensities using a two-dimensional, time-dependent modulation model. By incorporating recent theoretical advances in the relevant transport parameters in the model, we showed in previous work that this approach gave realistic computed intensities over a solar cycle. New in this work is that a time dependence of the solar wind termination shock (TS) position is implemented in our model to study the effect of a dynamic inner heliosheath thickness (the region between the TS and heliopause) on the solar modulation of galactic cosmic rays. The study reveals that changes in the inner heliosheath thickness, arising from a time-dependent shock position, does affect cosmic-ray intensities everywhere in the heliosphere over a solar cycle, with the smallest effect in the innermost heliosphere. A time-dependent TS position causes a phase difference between the solar activity periods and the corresponding intensity periods. The maximum intensities in response to a solar minimum activity period are found to be dependent on the time-dependent TS profile. It is found that changing the width of the inner heliosheath with time over a solar cycle can shift the time of when the maximum or minimum cosmic-ray intensities occur at various distances throughout the heliosphere, but more significantly in the outer heliosphere. The time-dependent extent of the inner heliosheath, as affected by solar activity conditions, is thus an additional time-dependent factor to be considered in the long-term modulation of cosmic rays

  16. Origin of transient cosmic ray intensity variations

    International Nuclear Information System (INIS)

    Duggal, S.P.; Pomerantz, M.A.

    1977-01-01

    A new approach to determining the solar progenitor of transient cosmic ray intensity variations has revealed that in a statistical sense, solar flares, heretofore regarded as the predominant source of the modulation, actually do not precede the reduction in flux observed at earth. Superposed epoch analysis of the cosmic ray data with respect to the time of occurrence of all 379 solar flares of importance (Imp) < or =2 observed during solar cycle 20 (1964-1974 inclusive) shows that the onset of a decrease in the composite nucleonic intensity at polar stations occurs prior to the zero day (i.e., time of the flare) well before the arrival in the vicinity of earth of the associated solar plasma. The statistical significance of this result is confirmed by comparing the pooled variance determined from Chree analysis of an equal number of random epochs with that of the curve representing the flare epochs. Subdivision of the latter into three groups according to the heliographic longitude of the flares shows that whereas eastern flares might be associated with cosmic ray decreases, central (30degree to -30degree) and western flares cannot be thus related. A similar analysis of all flares of Imp< or =2 that occurred in a selected set of 24 extraordinary flare-rich active centers during 1964--1974 confirms these results and shows that the observed cosmic ray intensity decrease is, in fact, associated with the central meridian passage ( +- 1 day) of the active regions. Thus earlier conclusions concerning relationships between the heliolongitude of flares and their apparent effectiveness in producing Forbush decreases require reevaluation. The specific feature associated with solar active centers that is actually the principal source of transient modulations remanins to be identified

  17. Carl Sagan's Cosmic Connection

    Science.gov (United States)

    Sagan, Carl; Agel, Jerome

    2000-08-01

    Foreword Freeman Dyson; Personal reflections Ann Druyan; Preface; Part I. Cosmic Perspective: 1. A transitional animal; 2. The Unicorn of Cetus; 3. A message from earth; 4. A message to earth; 5. Experiments in utopias; 6. Chauvinism; 7. Space exploration as a human enterprise I. The scientific interest; 8. Space exploration as a human enterprise II. The public interest; 9. Space exploration as a human enterprise III. The historical interest; Part II. The Solar System: 10. On teaching the first grade; 11. 'The ancient and legendary Gods of old'; 12. The Venus detective story; 13. Venus is hell; 14. Science and 'intelligence'; 15. The moons of Barsoom; 16. The mountains of Mars I. Observations from earth; 17. The mountains of Mars II. Observations from space; 18. The canals of Mars; 19. The lost pictures of Mars; 20. The Ice Age and the cauldron; 21. Beginnings and ends of the Earth; 22. Terraforming the plants; 23. The exploration and utlization of the solar system; Part III. Beyond the Solar System: 24. Some of my best friends are dolphins; 25. 'Hello, central casting? Send me twenty extraterrestrials'; 26. The cosmic connection; 27. Extraterrestrial life: an idea whose time has come; 28. Has the Earth been visited?; 29. A search strategy for detecting extraterrestrial intelligence; 30. If we succeed 31. Cables, drums, and seashells; 32. The night freight to the stars; 33. Astroengineering; 34. Twenty questions: a classification of cosmic civilisations; 35. Galactic cultural exchanges; 36. A passage to elsewhere; 37. Starfolk I. A Fable; 38. Starfolk II. A future; 39. Starfolk III. The cosmic Cheshire cats; Epilog David Morrison; Index.

  18. Galactic cosmic rays in the periods of an inversion of the total solar magnetic field

    International Nuclear Information System (INIS)

    Krajnev, M.B.; Stozhkov, Yu.I.; Charakhch'yan, T.N.

    1984-01-01

    Anomalies in galactic cosmic ray (GCR) behaviour in the periods of the total solar magnetic field (TSMF) inversion are considered according to the data of neutron monitors and stratospheric measurements. These anomalies are interpreted as superpositions of two phenomena: phenomenon 1 and phenomenon 2. Phenomenon 1 is conditioned by the decrease and following strengthening of the regular interplanetary field strong strength in heliosphere in the periods of TSMF inversion. Phenomenon 2 consists in exess of GCR nuclei intensity over the expeited one, corresponding to the level of solar activity after TSMF inversion with dMsub(Z)/dt > 0 (inversion of 1969-1971) and also in decrease of observed GCR nuclei intensity as compared to the expected one after TSMF inversion with dMsub(Z)/dt < 0 (Msub(Z)-projection of magnetic field dipole moment on solar axis of rotation). The phenomenon 1 is slightly late in respect to TSMF inversion, as the phenomenon 2 takes part in the process only approximately 1 year after inversion completing

  19. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2006-01-01

    The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high energy Cosmic Ray field. Cosmic Rays are energetic particles from outside the Solar System. The energy spectrum (power law energy dependence) suggests a non-thermal origin of these particles. Most of the studies of Cosmic Rays address fundamental problems: · The nature of the physical and astrophysical processes responsible for the high energies of the particles (up to about 1020 eV/particle), · An estimation of the astrophysical conditions at the acceleration sites and/or search for sources of Cosmic Rays, · properties of high energy particle interactions at very high energies (nuclear interactions at energies exceeding energy available in the laboratories). Some Cosmic Ray studies might have practical (commercial) implications, e.g. · 'cosmic weather' forecast - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares / events of Coronal Mass Ejection); these are important for large electricity networks, gas pipes, radio-wave connections, space missions and satellite experiments. Presentation of Cosmic Ray registration to high school students becomes a popular way to introduce particle physics detectors and elementary particle detection techniques to young people. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering EAS and their properties is the main way of experimental studies of very high energy Cosmic Rays. In the Lodz Department we run the Extensive Air Shower array where EAS are being registered. We concentrate on the studies of detection of neutrons correlated with EAS and interpretation of this phenomenon. In 2004, we started realisation of the Roland Maze Project, the network of EAS detectors placed on roofs of high schools in Lodz. We received funds from the City of Lodz budget to make a pilot project and equip 10 high schools, each with four 1 m

  20. Robustness of cosmic neutrino background detection in the cosmic microwave background

    Energy Technology Data Exchange (ETDEWEB)

    Audren, Benjamin [Institut de Théorie des Phénomènes Physiques, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne (Switzerland); Bellini, Emilio; Cuesta, Antonio J.; Verde, Licia [Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès 1, E08028 Barcelona (Spain); Gontcho, Satya Gontcho A; Pérez-Ràfols, Ignasi [Dept. d' Astronomia i Meteorologia, Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès 1, E08028 Barcelona (Spain); Lesgourgues, Julien [CERN, Theory Division, CH-1211 Geneva 23 (Switzerland); Niro, Viviana [Departamento de Física Teórica, Universidad Autónoma de Madrid and Instituto de Física Teórica UAM/CSIC, Calle Nicolás Cabrera 13-15, Cantoblanco, E-28049 Madrid (Spain); Pellejero-Ibanez, Marcos; Tramonte, Denis [Instituto de Astrofísica de Canarias (IAC), C/Vía Láctea s/n, E-38200, La Laguna, Tenerife (Spain); Poulin, Vivian [LAPTh, Université de Savoie, CNRS, B.P.110, Annecy-le-Vieux F-74941 (France); Tram, Thomas, E-mail: emilio.bellini@icc.ub.edu [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom)

    2015-03-01

    The existence of a cosmic neutrino background can be probed indirectly by CMB experiments, not only by measuring the background density of radiation in the universe, but also by searching for the typical signatures of the fluctuations of free-streaming species in the temperature and polarisation power spectrum. Previous studies have already proposed a rather generic parametrisation of these fluctuations, that could help to discriminate between the signature of ordinary free-streaming neutrinos, or of more exotic dark radiation models. Current data are compatible with standard values of these parameters, which seems to bring further evidence for the existence of a cosmic neutrino background. In this work, we investigate the robustness of this conclusion under various assumptions. We generalise the definition of an effective sound speed and viscosity speed to the case of massive neutrinos or other dark radiation components experiencing a non-relativistic transition. We show that current bounds on these effective parameters do not vary significantly when considering an arbitrary value of the particle mass, or extended cosmological models with a free effective neutrino number, dynamical dark energy or a running of the primordial spectrum tilt. We conclude that it is possible to make a robust statement about the detection of the cosmic neutrino background by CMB experiments.

  1. Proceedings of the 21. European Cosmic Ray Symposium

    International Nuclear Information System (INIS)

    Kiraly, P.; Kudela, K.; Wolfendale, A. W.

    2008-09-01

    Scientific symposium deals with problems of cosmic ray. The Symposium included the following sessions: (1): Relationship of cosmic rays to the environment; (2) Energetic particles and the magnetosphere of the Earth; (3) Energetic particles in the heliosphere; (4) Solar-terrestrial effects on different time scales; (5) Cosmic rays below the knee; (6) Cosmic rays above the knee (7) High energy interactions; (8) GeV and TeV gamma ray astronomy; (9) European projects related to cosmic rays; Future perspectives. Proceedings contains 122 papers dealing with the scope of INIS.

  2. Towards understanding the nature of any relationship between Solar Activity and Cosmic Rays with thunderstorm activity and lightning discharge

    Science.gov (United States)

    O'Regan, J.; Muller, J.-P.; Matthews, S.

    2012-04-01

    The runaway breakdown hypothesis of lightning discharge has predicted relationships between cosmic rays' interactions with the atmosphere and thunderstorm production and lightning activity. Precipitating energetic particles lead to the injection of MeV-energy electrons into electrified thunderclouds [1,2], resulting in runaway breakdown occurring, and assisting in the process of charge separation [2]. Previous lightning studies show that correlations to solar activity are weak but significant, with better correlations to solar activity and cosmic rays when carried out over smaller geographical areas [3,4,5,6] and over longer timescales [6]. In this work, correlations are explored between variations of SEPs and lightning activity levels at various spatio-temporal scales. Temporal scales span from short-term (days) scales surrounding large Earth-directed coronal mass ejection (CME) events to long-term (years) scales. Similarly, spatial scales span from 1-degree x 1-degree latitudinal-longitudinal grid scales to an entirely global study, for varying timescales. Additionally, investigation of correlation sign and statistical significance by 1-degree latitudinal bands is also employed, allowing a comparative study of lightning activity relative to regions of greatest - and contrasting regions of relative absence of - energetic particle precipitation. These regions are determined from electron and proton flux maps, derived from measurements from the Medium Energy Proton and Electron Detector (MEPED) onboard the Polar Orbiting Environmental Satellite (POES) system. Lightning data is obtained from the World Wide Lightning Location Network (WWLLN) for the period 2005 to 2011. The correlations of lightning strike rates are carried out with respect to Relative Sunspot Number (R), 10.7cm Solar radio flux (F10.7), Galactic Cosmic Ray (GCR) neutron monitor flux, the Ap geomagnetic activity index, and Disturbance Storm Time (DST) index. Correlations show dramatic variations in

  3. Nuclear collisions in measurements of the cosmic ray charge spectrum with a counter telescope

    International Nuclear Information System (INIS)

    Lindstam, S.

    1975-06-01

    The importance of nuclear collisions of cosmic ray particles in a counter detector telescope is studied by simple Monte Carlo techniques. The interest concentrates on the charge region just below iron and the calculations are restricted to fully relativistic cosmic rays. It is found that it is difficult to avoid a blurring in the charge spectrum from nuclear collisions leading to considerable systematic errors in some abundance ratios. (Auth.)

  4. Department of Cosmic Ray Physics; Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2004-01-01

    Full text: Cosmic Rays are energetic particles from outside the Solar System. The energy spectrum (power law energy dependence) suggests a non-thermal origin of these particles. Most of the studies of Cosmic Rays address fundamental problems such as: - the nature of the physical and astrophysical processes responsible for the high energies of particles (up to about 10 20 eV/particle), - estimation of the astrophysical conditions at the acceleration sites and/or a search for sources of Cosmic Rays, - properties of high energy particle interactions at very high energies (nuclear interactions at energies exceeding energies available in the laboratories). Some Cosmic Ray studies might have practical (commercial) implications, e.g. - ''cosmic weather'' forecast - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares / events of Coronal Mass Ejections); these are important for large electricity networks, gas pipes, radio-wave connections, space missions and satellite experiments. The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high energy Cosmic Ray field. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering EAS and their properties is the main theme of experimental studies of very high energy Cosmic Rays. In the Lodz Department we run an Extensive Air Shower array where EAS are registered. We concentrate our experimental research on the explanation of particle detection delayed by hundreds of microseconds with respect to the main EAS signals. In the underground (I5 meters) laboratory we continuously register muon (5 GeV energy threshold) flux with the multidirectional telescope. We have observed several disturbances (Forbush Decreases) in muon counting rates. The interpretation of these events for ''cosmic weather'' and for Cosmic Ray transport models in the interplanetary plasma are on going in collaboration with

  5. Ultra-relativistic heavy ions and cosmic rays

    International Nuclear Information System (INIS)

    McLerran, L.

    1983-05-01

    The collisions of ultra-relativistic heavy ions, E/sub /N/ greater than or equal to 1 TeV/nucleon are most interesting, since, at these energies, matter is produced at sufficiently high energy density that a quark-gluon plasma has a good chance to form. Very heavy ions are also most interesting since the matter forms in a larger volume than for light ions, and the matter is at a somewhat higher energy density. At very high energies with very heavy ions there is great flexibility in the experimental signals which might be studied, as well as the nature of the matter which is produced. The fragmentation region and central region provide different environments where a plasma might form. The former is baryon rich while the central region is high temperature with low baryon number density and is not accessible except at very high energies

  6. Solar variability and clouds

    CERN Document Server

    Kirkby, Jasper

    2000-01-01

    Satellite observations have revealed a surprising imprint of the 11- year solar cycle on global low cloud cover. The cloud data suggest a correlation with the intensity of Galactic cosmic rays. If this apparent connection between cosmic rays and clouds is real, variations of the cosmic ray flux caused by long-term changes in the solar wind could have a significant influence on the global energy radiation budget and the climate. However a direct link between cosmic rays and clouds has not been unambiguously established and, moreover, the microphysical mechanism is poorly understood. New experiments are being planned to find out whether cosmic rays can affect cloud formation, and if so how. (37 refs).

  7. Hungarian activity in cosmic physics in the last 20 years

    International Nuclear Information System (INIS)

    Szabo, Ferenc.

    1987-01-01

    The Hungarian activity in cosmic physics is reviewed. Hungary is participant of the Interkosmos collaboration and participates in research programs to study the Earth's magnetosphere, interplanetary space, solar activity, planets of the Solar system, comets (e.g. Vega project to study Halley's comet). Cosmic geodesy is also cultivated in Hungary. A broadening field of the Hungarian cosmic physical activity is the design and construction of measuring intstruments used on board of probes and those of other space probe components, e.g. power supplies, telemetric and telecommunication systems. A brief summary of recent and future projects is also presented. (D.Gy.)

  8. Observation of superheavy primary cosmic ray nuclei with solid state track detectors and x-ray films

    International Nuclear Information System (INIS)

    Doke, Tadayoshi; Hayashi, Takayoshi; Ito, Kensai; Yanagimachi, Tomoki; Kobayashi, Shigeru.

    1977-01-01

    The measurements of energy spectra and the nuclear charge distribution of superheavy nuclei heavier than iron in primary cosmic ray can provide information on the origin, propagation and life time of the cosmic ray. Since incident particles are in the region of relativistic velocity (the low energy cosmic ray below the cutoff energy is forbidden from entering), the charges of cosmic ray nuclei can be determined without knowing the energy of particles. The balloon-borne solid state track detector and plastic and X-ray films were employed for the detection of superheavy cosmic ray, and the five events were detected with the cellulose nitrate film. The flux of superheavy nuclei is predicted from the present analysis. (Yoshimori, M.)

  9. Interplanetary Magnetic Field Guiding Relativistic Particles

    Science.gov (United States)

    Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.

    2011-01-01

    The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.

  10. Modulation of Cosmic Ray Precipitation Related to Climate

    Science.gov (United States)

    Feynman, J.; Ruzmaikin, A.

    1998-01-01

    High energy cosmic rays may influence the formation of clouds, and thus can have an impact on weather and climate. Cosmic rays in the solar wind are incident on the magnetosphere boundary and are then transmitted through the magnetosphere and atmosphere to reach the upper troposphere.

  11. Exposure of Plastic Track Detectors to Relativistic Pb Beam for the Purpose of Providing Calibration for the DUBLIN-ESTEC Ultra Heavy Cosmic Ray Experiment Which was Exposed for Sixty-Nine Months in Earth Orbit

    CERN Multimedia

    2002-01-01

    % WA100 \\\\ \\\\ Solid state nuclear track detectors which formed part of the Dublin-ESTEC ultra heavy~cosmic~ray experiment aboard LDEF (Long Duration Exposure Facility) and which was deployed in Earth orbit for sixty-nine months, will be exposed to relativistic Pb ions. The experiment was the largest of its kind ever undertaken in space and has successfully accumulated more than fifteen times the world sample of cosmic ray nuclei in the region above Z~=~70. The data include the first significant sample of cosmic ray actinide elements and is of major astrophysical importance. The total number of ultra heavy nuclei (Z~$>$~70) in the Dublin-ESTEC sample is $\\sim$~2800. \\\\ \\\\The exposure will be very simple. A stack of detectors (20.5~cm~x~26~cm x~3~cm in size) will be irradiated with a low density beam of Pb ions (a few hundred per cm$^2$ would be ideal, but a wide range of densities and areas could be tolerated). The response of the detectors to these ions of known charge and velocity will be measured and the da...

  12. Primary cosmic radiation

    International Nuclear Information System (INIS)

    Anderson, H.R.

    1972-01-01

    The term cosmic radiation means the charged particle flux that reaches the earth from outside its magnetosphere with energies above the solar wind energy of a few keV. There are two sources of flux. Sporadically the sun produces such particles, generally within the energy range 1--200 MeV, and these solar cosmic rays arrive at the earth for a period ranging from hours to days. There may be a small, rather constant flux from the sun also, but the bulk of the steady flux originates outside the earth's orbit. Although some have conjectured that part of this latter flux may be accelerated in the outer portions of the solar system where the outward flowing interplanetary medium meets the interstellar medium, it is generally thought that most or all of it arises in unique systems such as supernovae, and is distributed throughout the galaxy. These galactic particles range in energy from a few MeV to at least 10 13 MeV and consist primarily of protons with significant numbers of heavier nuclei, positrons and electrons. They are supposed to fill our galaxy, or at least the disc, more or less uniformly. However, the flux with energies below a few GeV that reaches earth's orbit is modulated by the interplanetary medium so that the number at earth varies inversely with solar activity and is always somewhat below the interstellar flux. A discussion is presented of primary galactic radiation at earth, its modulation by solar activity, and its interaction with the geomagnetic field. (U.S.)

  13. Deriving the solar activity cycle modulation on cosmic ray intensity observed by Nagoya muon detector from October 1970 until December 2012

    Science.gov (United States)

    de Mendonça, Rafael R. S.; Braga, Carlos. R.; Echer, Ezequiel; Dal Lago, Alisson; Rockenbach, Marlos; Schuch, Nelson J.; Munakata, Kazuoki

    2017-10-01

    It is well known that the cosmic ray intensity observed at the Earth's surface presents an 11 and 22-yr variations associated with the solar activity cycle. However, the observation and analysis of this modulation through ground muon detectors datahave been difficult due to the temperature effect. Furthermore, instrumental changes or temporary problems may difficult the analysis of these variations. In this work, we analyze the cosmic ray intensity observed since October 1970 until December 2012 by the Nagoya muon detector. We show the results obtained after analyzing all discontinuities and gaps present in this data and removing changes not related to natural phenomena. We also show the results found using the mass weighted method for eliminate the influence of atmospheric temperature changes on muon intensity observed at ground. As a preliminary result of our analyses, we show the solar cycle modulation in the muon intensity observed for more than 40 years.

  14. A cosmic ray-climate link and cloud observations

    Directory of Open Access Journals (Sweden)

    Dunne Eimear M.

    2012-11-01

    Full Text Available Despite over 35 years of constant satellite-based measurements of cloud, reliable evidence of a long-hypothesized link between changes in solar activity and Earth’s cloud cover remains elusive. This work examines evidence of a cosmic ray cloud link from a range of sources, including satellite-based cloud measurements and long-term ground-based climatological measurements. The satellite-based studies can be divided into two categories: (1 monthly to decadal timescale analysis and (2 daily timescale epoch-superpositional (composite analysis. The latter analyses frequently focus on sudden high-magnitude reductions in the cosmic ray flux known as Forbush decrease events. At present, two long-term independent global satellite cloud datasets are available (ISCCP and MODIS. Although the differences between them are considerable, neither shows evidence of a solar-cloud link at either long or short timescales. Furthermore, reports of observed correlations between solar activity and cloud over the 1983–1995 period are attributed to the chance agreement between solar changes and artificially induced cloud trends. It is possible that the satellite cloud datasets and analysis methods may simply be too insensitive to detect a small solar signal. Evidence from ground-based studies suggests that some weak but statistically significant cosmic ray-cloud relationships may exist at regional scales, involving mechanisms related to the global electric circuit. However, a poor understanding of these mechanisms and their effects on cloud makes the net impacts of such links uncertain. Regardless of this, it is clear that there is no robust evidence of a widespread link between the cosmic ray flux and clouds.

  15. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2009-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high-energy Cosmic Ray field. Cosmic Rays are energetic particles from outside the Solar System. Most of the studies of Cosmic Rays address fundamental problems: - the nature of the physical and astrophysical processes responsible for the high energies of the particles - an estimation of the astrophysical conditions at the acceleration sites and/or the search for sources of Cosmic Rays, - properties of high-energy particle interactions at very high energies. Some Cosmic Ray studies might have practical (commercial) implications, e.g. - '' cosmic weather '' forecasting - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares/Coronal Mass Ejection events); these are important for large electricity networks, gas pipelines, radio-wave connections, space missions and satellite experiments. Presentation of Cosmic Ray registration to high school students has become a popular way to introduce particle physics detectors and elementary particle detection techniques to young people. We organize in Lodz and Poznan workshops on particle physics for high school students. This is a part of the European activity: EPPOG's Masterclass - Hands on CERN. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering EAS and their properties is the main way of experimentally study's very high energy Cosmic Rays. Locally in Lodz we concentrate on methodological studies of the detection of neutrons correlated with EAS and the interpretation of this phenomenon. We have also performed two series of neutron background measurements in the deep underground Gran Sasso Laboratory in Italy (within the ILIAS-TA Project). In 2004, we began the Roland Maze Project, a network of EAS detectors placed on the roofs of high schools in Lodz. The pilot project is to equip 10 high schools, each with four 1m

  16. Studies in cosmic rays

    International Nuclear Information System (INIS)

    Bemalkhedkar, M.M.

    1974-03-01

    The investigation of the diurnal variation in the cosmic ray intensity on individual days has revealed a new class of diurnal variation showing a maximum around 09 hour direction in the interplanetary space. It is shown to occur during the recovery phase of Forbush decreases as well as during quiet periods. The rigidity spectrum of the anomalous diurnal variation has an exponent around zero, the same as that for the average diurnal variation exhibiting maximum around 18 hours in the interplanetary space. It is shown that the Forbush decreases associated with the diurnal variation exhibiting morning maximum, are 27 day recurrent in nature and are preceded by east limb solar flares on most of the occasions. A qualitative model of the transient modulation by solar corotating corpuscular streams of enhanced solar wind velocity, emanating from the active regions on the solar disc, is proposed to explain the anomalous diurnal anisotropy in the recovery phase of 27 day recurrent Forbush decreases. From this model, the cosmic ray diffusion coefficients, parallel and perpendicular to the interplanetary magnetic field inside the corotating stream, are derived and compared with the average values. To investigate the possibility of determining the energy spectra of cosmic ray intensity variations from a single station, a continuous record of neutron multiplicity spectrum has been obtained for the period October, 1967 - October, 1971, using the Gulmarg neutron monitor. The average multiplicity spectrum in the Gulmarg neutron monitor shows a mean multiplicity approximately equal to 1.4 for 12 Boron-tri-fluoride counters and is an increasing function of the number of counters used. The mean multiplicity measured in various other neutron monitors, when normalized to the cutoff rigidity of Gulmurg (11.91 GV), shows a systematic increase with the altitude of the station. (author)

  17. Cosmic rays,Climate and the CERN CLOUD Experiment

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    For more than two centuries, scientists have been puzzled by observations of solar-climate variability yet the lack of any established physical mechanism. Some recent observations, although disputed, suggest that clouds may be influenced by cosmic rays, which are modulated by the solar wind. The CLOUD experiment aims to settle the question of whether or not cosmic rays have a climatically-significant effect on clouds by carrying out a series of carefully-controlled measurements in a large cloud chamber exposed to a beam from the CERN PS. This talk will present the scientific motivation for CLOUD and the first results, which have recently been published in Nature (Kirkby et al. (2011). Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476, 429-433).

  18. Detecting non-relativistic cosmic neutrinos by capture on tritium: phenomenology and physics potential

    Energy Technology Data Exchange (ETDEWEB)

    Long, Andrew J.; Lunardini, Cecilia; Sabancilar, Eray, E-mail: andrewjlong@asu.edu, E-mail: Cecilia.Lunardini@asu.edu, E-mail: Eray.Sabancilar@asu.edu [Physics Department, Arizona State University, Tempe, Arizona 85287 (United States)

    2014-08-01

    We study the physics potential of the detection of the Cosmic Neutrino Background via neutrino capture on tritium, taking the proposed PTOLEMY experiment as a case study. With the projected energy resolution of Δ ∼ 0.15 eV, the experiment will be sensitive to neutrino masses with degenerate spectrum, m{sub 1} ≅ m{sub 2} ≅ m{sub 3} = m{sub ν} ∼> 0.1 eV. These neutrinos are non-relativistic today; detecting them would be a unique opportunity to probe this unexplored kinematical regime. The signature of neutrino capture is a peak in the electron spectrum that is displaced by 2 m{sub ν} above the beta decay endpoint. The signal would exceed the background from beta decay if the energy resolution is Δ ∼< 0.7 m{sub ν} . Interestingly, the total capture rate depends on the origin of the neutrino mass, being Γ{sup D} ≅ 4 and Γ{sup M} ≅ 8 events per year (for a 100 g tritium target) for unclustered Dirac and Majorana neutrinos, respectively. An enhancement of the rate of up to O(1) is expected due to gravitational clustering, with the unique potential to probe the local overdensity of neutrinos. Turning to more exotic neutrino physics, PTOLEMY could be sensitive to a lepton asymmetry, and reveal the eV-scale sterile neutrino that is favored by short baseline oscillation searches. The experiment would also be sensitive to a neutrino lifetime on the order of the age of the universe and break the degeneracy between neutrino mass and lifetime which affects existing bounds.

  19. Average Anisotropy Characteristics of High Energy Cosmic Ray ...

    Indian Academy of Sciences (India)

    Further Shrivastava & Shukla (1996) reported that there is a high correlation between solar wind velocity and Ap index. As we know from convection diffusion approximate theory, solar wind velocity plays an important role in cosmic ray modulation. In the absence of solar wind data, one can use the daily values of Ap index.

  20. Solar influence on Earth's climate

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2003-01-01

    An increasing number of studies indicate that variations in solar activity have had a significant influence on Earth's climate. However, the mechanisms responsible for a solar influence are still not known. One possibility is that atmospheric transparency is influenced by changing cloud properties...... and thereby influence the radiative properties of clouds. If the GCR-Cloud link is confirmed variations in galactic cosmic ray flux, caused by changes in solar activity and the space environment, could influence Earth's radiation budget....... via cosmic ray ionisation (the latter being modulated by solar activity). Support for this idea is found from satellite observations of cloud cover. Such data have revealed a striking correlation between the intensity of galactic cosmic rays (GCR) and low liquid clouds (

  1. Study of cosmic rays reveals secrets of solar-terrestrial science

    Science.gov (United States)

    Jokipii, J. R.

    For many years cosmic rays provided the most important source of energetic particles for studies of subatomic physics. Today, cosmic rays are being studied as a natural phenomenon that can tell us much about both the Earth's environment in space and distant astrophysical processes. Cosmic rays are naturally occurring energetic particles—mainly ions—with kinetic energies extending from just above thermal energies to more than 1020 electron volts (eV). They constantly bombard the Earth from all directions, with more than 1018 particles having energies >1 MeV striking the top of the Earth's atmosphere each second. Figure 1 illustrates the continuous cosmic ray energy spectrum.

  2. Heliospheric current sheet and effects of its interaction with solar cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Malova, H. V., E-mail: hmalova@yandex.ru [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation); Popov, V. Yu.; Grigorenko, E. E.; Dunko, A. V.; Petrukovich, A. A. [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2016-08-15

    The effects of interaction of solar cosmic rays (SCRs) with the heliospheric current sheet (HCS) in the solar wind are analyzed. A self-consistent kinetic model of the HCS is developed in which ions with quasiadiabatic dynamics can present. The HCS is considered an equilibrium embedded current structure in which two main plasma species with different temperatures (the low-energy background plasma of the solar wind and the higher energy SCR component) contribute to the current. The obtained results are verified by comparing with the results of numerical simulations based on solving equations of motion by the particle tracing method in the given HCS magnetic field with allowance for SCR particles. It is shown that the HCS is a relatively thin multiscale current configuration embedded in a thicker plasma layer. In this case, as a rule, the shear (tangential to the sheet current) component of the magnetic field is present in the HCS. Taking into account high-energy SCR particles in the HCS can lead to a change of its configuration and the formation of a multiscale embedded structure. Parametric family of solutions is considered in which the current balance in the HCS is provided at different SCR temperatures and different densities of the high-energy plasma. The SCR densities are determined at which an appreciable (detectable by satellites) HCS thickening can occur. Possible applications of this modeling to explain experimental observations are discussed.

  3. Variations of interplanetary parameters and cosmic-ray intensities

    International Nuclear Information System (INIS)

    Geranios, A.

    1980-01-01

    Observations of cosmic ray intensity depressions by earth bound neutron monitors and measurements of interplanetary parameter's variations aboard geocentric satellites in the period January 1972-July 1974 are analysed and grouped according to their correlation among them. From this analysis of about 30 cases it came out that the majority of the depressions correlates with the average propagation speed of interplanetary shocks as well as with the amplitude of the interplanetary magnetic field after the eruption of a solar flare. About one fourth of the events correlates with corotating fast solar wind streams. As the recovery time of the shock-related depressions depends strongly on the heliographic longitude of the causitive solar flare, it seems that the cosmic ray modulation region has a corotative-like feature. (Auth.)

  4. Cloud a particle beam facility to investigate the influence of cosmic rays on clouds

    CERN Document Server

    Kirkby, Jasper

    2001-01-01

    Palaeoclimatic data provide extensive evidence for solar forcing of the climate during the Holocene and the last ice age, but the underlying mechanism remains a mystery. However recent observations suggest that cosmic rays may play a key role. Satellite data have revealed a surprising correlation between cosmic ray intensity and the fraction of the Earth covered by low clouds \\cite{svensmark97,marsh}. Since the cosmic ray intensity is modulated by the solar wind, this may be an important clue to the long-sought mechanism for solar-climate variability. In order to test whether cosmic rays and clouds are causally linked and, if so, to understand the microphysical mechanisms, a novel experiment known as CLOUD\\footnotemark\\ has been proposed \\cite{cloud_proposal}--\\cite{cloud_addendum_2}. CLOUD proposes to investigate ion-aerosol-cloud microphysics under controlled laboratory conditions using a beam from a particle accelerator, which provides a precisely adjustable and measurable artificial source of cosmic rays....

  5. Cosmic time dilation: The clock paradox revisited

    International Nuclear Information System (INIS)

    Tomaschitz, Roman

    2004-01-01

    The relativistic time dilation is reviewed in a cosmological context. We show that a clock or twin paradox does not arise if cosmic time is properly taken into account. The receding galaxy background provides a unique frame of reference, and the proper times of geodesic as well as accelerated observers can be linked to the universal cosmic time parameter. This suggests to compare the proper time differentials of the respective observers by determining their state of motion in the galaxy grid. In this way, each observer can figure out whether his proper time is dilated or contracted relative to any other. In particular one can come to unambiguous conclusions on the aging of uniformly moving observers, without reference to asymmetries in measurement procedures or accelerations they may have undergone

  6. Impact of relativistic effects on cosmological parameter estimation

    Science.gov (United States)

    Lorenz, Christiane S.; Alonso, David; Ferreira, Pedro G.

    2018-01-01

    Future surveys will access large volumes of space and hence very long wavelength fluctuations of the matter density and gravitational field. It has been argued that the set of secondary effects that affect the galaxy distribution, relativistic in nature, will bring new, complementary cosmological constraints. We study this claim in detail by focusing on a subset of wide-area future surveys: Stage-4 cosmic microwave background experiments and photometric redshift surveys. In particular, we look at the magnification lensing contribution to galaxy clustering and general-relativistic corrections to all observables. We quantify the amount of information encoded in these effects in terms of the tightening of the final cosmological constraints as well as the potential bias in inferred parameters associated with neglecting them. We do so for a wide range of cosmological parameters, covering neutrino masses, standard dark-energy parametrizations and scalar-tensor gravity theories. Our results show that, while the effect of lensing magnification to number counts does not contain a significant amount of information when galaxy clustering is combined with cosmic shear measurements, this contribution does play a significant role in biasing estimates on a host of parameter families if unaccounted for. Since the amplitude of the magnification term is controlled by the slope of the source number counts with apparent magnitude, s (z ), we also estimate the accuracy to which this quantity must be known to avoid systematic parameter biases, finding that future surveys will need to determine s (z ) to the ˜5 %- 10 % level. On the contrary, large-scale general-relativistic corrections are irrelevant both in terms of information content and parameter bias for most cosmological parameters but significant for the level of primordial non-Gaussianity.

  7. Cosmic Ray Modulation in the Outer Heliosphere During the Minimum of Solar Cycle 23/24

    Science.gov (United States)

    Adams, James H., Jr.; Florinski, V.; Washimi, H.; Pogorelov, N. V.

    2011-01-01

    We report a next generation model of galactic cosmic ray (GCR) transport in the three dimensional heliosphere. Our model is based on an accurate three-dimensional representation of the heliospheric interface. This representation is obtained by taking into account the interaction between partially ionized, magnetized plasma flows of the solar wind and the local interstellar medium. Our model reveals that after entering the heliosphere GCRs are stored in the heliosheath for several years. The preferred GCR entry locations are near the nose of the heliopause and at high latitudes. Low-energy (hundreds of MeV) galactic ions observed in the heliosheath have spent, on average, a longer time in the solar wind than those observed in the inner heliosphere, which would explain their cooled-off spectra at these energies. We also discuss radial gradients in the heliosheath and the implications for future Voyager observations.

  8. Cosmic Ray Modulation and Radiation Dose of Aircrews During Possible Grand Minimum

    Science.gov (United States)

    Miyake, S.; Kataoka, R.; Sato, T.; Imada, S.; Miyahara, H.; Shiota, D.; Matsumoto, T.; Ueno, H.

    2017-12-01

    The Sun is exhibiting low solar activity levels since the descending phase of the last solar cycle, and it is likely to be continued as well as in the case of the past grand solar minima. The cosmic-ray modulation, which is the variation of the galactic cosmic ray (GCR) spectrum caused by the heliospheric environmental change, is basically anti-correlated with the solar activity. In the recent weak solar cycle, we thus expect that the flux of GCRs is getting higher than that in the previous solar cycles, leading to the increase in the radiation exposure in the space and atmosphere. In order to quantitatively evaluate the possible solar modulation of GCRs and resultant radiation exposure at flight altitude, we have developed the time-dependent and three-dimensional model of the cosmic-ray modulation. Our model can give the flux of GCRs anywhere in the heliosphere by assuming the variation of the solar wind speed, the strength of the heliospheric magnetic field (HMF), and its tilt angle. We solve the gradient-curvature drift motion of GCRs in the HMF, and therefore reproduce the 22-year variation of the cosmic-ray modulation. We also calculate the neutron monitor counting rate and the radiation dose of aircrews at flight altitude, by the air-shower simulation performed by PHITS (Particle and Heavy Ion Transport code System). In our previous study [1], we calculated the radiation dose at a flight altitude during the coming solar cycle by assuming the variation of the solar wind speed and the strength of the HMF expressed by sinusoidal curve, and obtained that an annual radiation dose of aircrews in 5 years around the next solar minimum will be up to 19% higher than that at the last cycle. In this study, we predict the new model of the heliospheric environmental change on the basis of a prediction model for the sunspot number. The quantitative predictions of the cosmic-ray modulation and the radiation dose at a flight altitude during possible Grand Minimum considering

  9. Department of Cosmic Ray Physics; Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2003-01-01

    Full text: Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high-energy physics and cosmic ray physics related to: - Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. - Studies of ultra-high energy (above 10 19 eV) cosmic rays: determination of energy spectrum and mass composition of primary particles - Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation through the atmosphere. - Studies of mass composition of cosmic rays in the energy range 10 15 - 10 17 eV. - Registration of cosmic ray intensity variation correlated with solar activity. Theoretical and experimental studies of Extensive Air Shower properties are performed mostly basing on the results obtained by the Lodz Extensive Air Shower Array. We have noticed unexplainable delayed signals registered about 500-900 microseconds after the main EAS pulse. Neutron transport simulations were performed in collaboration with JINR in Dubna. We prepared hardware for further experimental study of this effect. Continuous registrations of 5 GeV muon flux with the underground muon telescope have been carried on over the year 2001. We have detected several changes of muon intensity correlated with Forbush decreases registered at lower energies. We have also started registrations of muon counting rate in the on-surface scintillation detectors. These measurements will be included to the analysis of the disturbed energy spectrum of primary cosmic rays and its dependence on interplanetary disturbances related to the solar activity. In construction and data interpretation of cosmic ray experiments the Lodz group collaborates with many foreign institutes and laboratories: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Sciences, JINR in Dubna (Russia), Uppsala University (Sweden) and DESY (Germany). We have prepared a

  10. Department of Cosmic Ray Physics: Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2002-01-01

    Full text:The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high-energy physics and cosmic ray physics related to: * Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. * Studies of ultra-high energy (above 10 19 eV) cosmic rays: determination of energy spectrum and mass composition of primary particles * Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation through the atmosphere. * Studies of mass composition of cosmic rays in the energy range 10 15 -10 17 eV. * Registration of cosmic ray intensity variation correlated with solar activity. Theoretical and experimental studies of Extensive Air Shower properties are performed mostly based on the results obtained by the Lodz Extensive Air Shower Array. We have noticed unexplainable delayed signals registered about 500-900 microseconds after the main EAS pulse. We prepared hardware for further experimental study of this effect. Continuous registrations of 5 GeV muon flux with the underground muon telescope have been carried on during 2001. We detected several changes of muon intensity correlated with Forbush decreases registered at lower energies. We have also started registration of the muon counting rate in on-surface scintillation detectors. These measurements will be included to the analysis of the disturbed energy spectrum of primary cosmic rays and its dependence on interplanetary disturbances related to solar activity. In construction and data interpretation of cosmic ray experiments the Lodz group collaborates with many foreign institutes and laboratories: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Sciences, Uppsala University (Sweden) and DESY (Germany). We have prepared a project of large air shower array for studies of cosmic rays up to 10 20 eV. Detectors would be placed on the roofs of high

  11. Sequential measurements of spectrum and dose for cosmic-ray neutrons on the ground

    International Nuclear Information System (INIS)

    Hirabayashi, N.; Nunomiya, T.; Suzuki, H.; Nakamura, T.

    2002-01-01

    The earth is continually bathed in high-energy particles that come from outside the solar system, known as galactic cosmic rays. When these particles penetrate the magnetic fields of the solar system and the Earth and reach the Earth's atmosphere, they collide with atomic nuclei in air and secondary cosmic rays of every kind. On the other hand, levels of accumulation of the semiconductor increase recently, and the soft error that the cosmic-ray neutrons cause has been regarded as questionable. There have been long-term measurements of cosmic-ray neutron fluence at several places in the world, but no systematic study on cosmic-ray neutron spectrum measurements. This study aimed to measure the cosmic-ray neutron spectrum and dose on the ground during the solar maximum period of 2000 to 2002. Measurements have been continuing in a cabin of Tohoku University Kawauchi campus, by using five multi-moderator spectrometers (Bonner sphere), 12.7 cm diam by 12.7 cm long NE213 scintillator, and rem counter. The Bonner sphere uses a 5.08 cm diam spherical 3 He gas proportional counter and the rem counter uses a 12.7 cm diam 3 He gas counter. The neutron spectra were obtained by unfolding from the count rates measured with the Bonner sphere using the SAND code and the pulse height spectra measured with the NE213 scintillator using the FORIST code . The cosmic- ray neutron spectrum and ambient dose rates have been measured sequentially from April 2001. Furthermore, the correlation between ambient dose rate and the atmospheric pressure was investigated with a barometer. We are also very much interested in the variation of neutron spectrum following big solar flares. From the sequential measurements, we found that the cosmic-ray neutron spectrum has two peaks at around 1 MeV and at around 100 MeV, and the higher energy peak increases with a big solar flare

  12. Latitudinal and longitudinal dependence of the cosmic ray diurnal anisotropy during 2001-2014

    International Nuclear Information System (INIS)

    Tezari, Anastasia; Mavromichalaki, Helen; Katsinis, Dimitrios; Kanellakopoulos, Anastasios; Kolovi, Sofia; Plainaki, Christina; National and Kapodistrian Univ. of Athens; Andriopoulou, Maria

    2016-01-01

    The diurnal anisotropy of cosmic ray intensity for the time period 2001 to 2014 is studied, covering the maximum and the descending phase of solar cycle 23, the minimum between solar cycles 23 and 24, and the ascending phase and maximum of solar cycle 24. Cosmic ray intensity data from 11 neutron monitor stations located at different places around the Northern Hemisphere obtained from the high-resolution Neutron Monitor Database (NMDB) were used. Special software was developed for the calculations of the amplitude and the phase of the diurnal anisotropy vectors on annual and monthly basis using Fourier analysis and for the creation of the harmonic dial diagrams. The geomagnetic bending for each station was taken into account in our calculations determined from the asymptotic cones of each station via the Tsyganenko96 (Tsyganenko and Stern, 1996) magnetospheric model. From our analysis, it was resulted that there is a different behavior of the diurnal anisotropy vectors during the different phases of the solar cycles depending on the solar magnetic field polarity. The latitudinal and longitudinal distribution of the cosmic ray diurnal anisotropy was also examined by grouping the stations according to their geographic coordinates, and it was shown that diurnal variation is modulated not only by the latitude but also by the longitude of the stations. The diurnal anisotropy during strong events of solar and/or cosmic ray activity is discussed.

  13. Latitudinal and longitudinal dependence of the cosmic ray diurnal anisotropy during 2001-2014

    Energy Technology Data Exchange (ETDEWEB)

    Tezari, Anastasia; Mavromichalaki, Helen; Katsinis, Dimitrios; Kanellakopoulos, Anastasios; Kolovi, Sofia [National and Kapodistrian Univ. of Athens (Greece). Nuclear and Particle Physics Dept.; Plainaki, Christina [INAF-IAPS, Rome (Italy); National and Kapodistrian Univ. of Athens (Greece). Nuclear and Particle Physics Dept.; Andriopoulou, Maria [Austrian Academy of Sciences, Graz (Austria). Space Research Inst.

    2016-07-01

    The diurnal anisotropy of cosmic ray intensity for the time period 2001 to 2014 is studied, covering the maximum and the descending phase of solar cycle 23, the minimum between solar cycles 23 and 24, and the ascending phase and maximum of solar cycle 24. Cosmic ray intensity data from 11 neutron monitor stations located at different places around the Northern Hemisphere obtained from the high-resolution Neutron Monitor Database (NMDB) were used. Special software was developed for the calculations of the amplitude and the phase of the diurnal anisotropy vectors on annual and monthly basis using Fourier analysis and for the creation of the harmonic dial diagrams. The geomagnetic bending for each station was taken into account in our calculations determined from the asymptotic cones of each station via the Tsyganenko96 (Tsyganenko and Stern, 1996) magnetospheric model. From our analysis, it was resulted that there is a different behavior of the diurnal anisotropy vectors during the different phases of the solar cycles depending on the solar magnetic field polarity. The latitudinal and longitudinal distribution of the cosmic ray diurnal anisotropy was also examined by grouping the stations according to their geographic coordinates, and it was shown that diurnal variation is modulated not only by the latitude but also by the longitude of the stations. The diurnal anisotropy during strong events of solar and/or cosmic ray activity is discussed.

  14. Second-stage acceleration in solar flares

    International Nuclear Information System (INIS)

    Mullan, D.J.

    1976-01-01

    A model proposed by Chevalier and Scott to account for cosmic ray acceleration in an expanding supernova remnant is applied to the case of a shock wave injected into the solar corona by a flare. Certain features of solar cosmic rays can be explained by this model. (orig.) [de

  15. Sulphur mountain: Cosmic ray intensity records

    International Nuclear Information System (INIS)

    Venkatesan, D.; Mathews, T.

    1985-01-01

    This book deals with the comic ray intensity registrations at the Sulphur Mountain Cosmic Ray Laboratory. The time series of intensity form a valuable data-set, for studying cosmic ray intensity variations and their dependence on solar activity. The IGY neutron monitor started operating from July 1, 1957 and continued through 1963. Daily mean values are tabulated for the period and these are also represented in plots. This monitor was set up by the National Research Council of Canada

  16. High-energy particles associated with solar flares

    International Nuclear Information System (INIS)

    Sakurai, K.; Klimas, A.J.

    1974-05-01

    High energy particles, the so-called solar cosmic rays, are often generated in association with solar flares, and then emitted into interplanetary space. These particles, consisting of electrons, protons, and other heavier nuclei, including the iron-group, are accelerated in the vicinity of the flare. By studying the temporal and spatial variation of these particles near the earth's orbit, their storage and release mechanisms in the solar corona and their propagation mechanism can be understood. The details of the nuclear composition and the rigidity spectrum for each nuclear component of the solar cosmic rays are important for investigating the acceleration mechanism in solar flares. The timing and efficiency of the acceleration process can also be investigated by using this information. These problems are described in some detail by using observational results on solar cosmic rays and associated phenomena. (U.S.)

  17. PAMELA mission: heralding a new era in cosmic ray physics

    Directory of Open Access Journals (Sweden)

    Ricciarini S. B.

    2014-04-01

    Full Text Available After seven years of data taking in space, the experiment PAMELA is showing very interesting features in cosmic rays, namely in the fluxes of protons, helium, electrons, that might change our basic vision of the mechanisms of production, acceleration and propagation of cosmic rays in the galaxy. In addition, PAMELA measurements of cosmic antiproton and positron fluxes are setting strong constraints to the nature of Dark Matter. The continuous particle detection is allowing a constant monitoring of the solar activity and detailed study of the solar modulation for a long period, giving important improvements to the comprehension of the heliosphere mechanisms. PAMELA is also measuring the radiation environment around the Earth, and has recently discovered an antiproton radiation belt.

  18. Constraining Relativistic Generalizations of Modified Newtonian Dynamics with Gravitational Waves.

    Science.gov (United States)

    Chesler, Paul M; Loeb, Abraham

    2017-07-21

    In the weak-field limit of general relativity, gravitational waves obey linear equations and propagate at the speed of light. These properties of general relativity are supported by the observation of ultrahigh-energy cosmic rays as well as by LIGO's recent detection of gravitation waves. We argue that two existing relativistic generalizations of modified Newtonian dynamics, namely, the generalized Einstein-aether theory and bimetric modified Newtonian dynamics, display fatal inconsistencies with these observations.

  19. Energetic solar particles

    International Nuclear Information System (INIS)

    Biswas, M.

    1975-01-01

    In this review, some of the important aspects of energetic solar particles and their relation to solar physics are discussed. The major aspects of solar cosmic ray studies currently under investigation are identified and attention is focussed on the problems of the physical processes in the sun which may be responsible for these phenomena. The studies of the composition and energy spectra of solar cosmic ray nuclei are related to the basic problem of particle acceleration process in sun and to the composition of elements in solar atmosphere. The composition of higher energy (>20 MeV/amu) multiply charged nuclei of He, C, N, O, Ne, Mg, Si and Fe give information on the abundance of elements in the solar atmosphere. At lower energies (approximately 1-10 MeV/amu), the abundances of these elements show enhancements relative to solar abundances and these enhancements are believed to be due to particle acceleration mechanisms operative in the sun which are not fully understood at present. Studies of the relative abundances of H 2 , H 3 and He 3 isotopes and Li, Be, B nuclei in the solar cosmic rays can also be studied. The question of the relationship of the accelerated particles in the sun to the optical flare phenomena is discussed. Further studies of different aspects of these phenomena may give important clues to a wide ranging phenomena in the active sun. The observational methods employed for these studies are mentioned. (A.K.)

  20. Solar activity and heliosphere-wide cosmic ray modulation in mid-1982

    International Nuclear Information System (INIS)

    Cliver, E.W.; Mihalov, J.D.; Sheeley, N.R. Jr.; Howard, R.A.; Koomen, M.J.; Schwenn, R.

    1987-01-01

    A major episode of flare activity in June and July 1982 was accompaniedby a pair of heliosphere-wide cosmic ray modulation events. In each case, a large Forbush decrease (FD) at earth was followed in turn by apparently related decreases at Pioneer 11 (P11) and Pioneer 10 (P10). The Pioneer spacecraft were separated by --155 0 in ecliptic longitude. We reviewed white light coronagraph and near-sun (≤1 AU) satellite data to identify plausible solar origins of these modulation events. The first widespread intensity decrease (FD 1) can be attributed to the combined effects of a backside flare on June 3 from solar active region 18382/18383, located 23 0 in ecliptic longitude from Pioneer 10, and a visible disk flare from 18405 on June 6, when this region was 9 0 from Pioneer 11. The second widespread modulation event during this period (FD 2) may be linked to flares from active region 18474 on July 12 and 22. The July 12 flare was located 34 0 in azimuth from Pioneer 11, and the July 22 flare was 24 0 from Pioneer 10. Since even fast shocks would take --1 month to propagate to Pioneer 11 (12 AU) and --2 months to reach Pioneer 10 (28 AU) in mid-1982, these ''one-to-one'' associations must be regarded with caution. The processes of entrainment and coalescence can cause a given traveling interplanetary disturbance to lose its identify enroute to the outer heliosphere. The fact that we were able to identify plausible solar flare candidates for each of the four Forbushlike decreases observed at the Pioneer satellites (two each at P10 and P11), however, removes the need to invoke a chock from a single flare as the sole cause of either FD 1 (at both P10 and P11) or FD 2

  1. Radio Ranging Techniques to test Relativistic Gravitation

    OpenAIRE

    Cowsik, R.

    1999-01-01

    It is suggested that modern techniques of radio ranging when applied to study the motion of the Moon, can improve the accuracy of tests of relativistic gravitation obtained with currently operating laser ranging techniques. Other auxillary information relevant to the Solar system would also emerge from such a study.

  2. MODULATION OF GALACTIC COSMIC RAYS OBSERVED AT L1 IN SOLAR CYCLE 23

    Energy Technology Data Exchange (ETDEWEB)

    Fludra, A., E-mail: Andrzej.Fludra@stfc.ac.uk [RAL Space, STFC Rutherford Appleton Laboratory, Harwell, Didcot OX11 0QX (United Kingdom)

    2015-01-20

    We analyze a unique 15 yr record of galactic cosmic-ray (GCR) measurements made by the SOHO Coronal Diagnostic Spectrometer NIS detectors, recording integrated GCR numbers with energies above 1.0 GeV between 1996 July and 2011 June. We are able to closely reproduce the main features of the SOHO/CDS GCR record using the modulation potential calculated from neutron monitor data by Usoskin et al. The GCR numbers show a clear solar cycle modulation: they decrease by 50% from the 1997 minimum to the 2000 maximum of the solar cycle, then return to the 1997 level in 2007 and continue to rise, in 2009 December reaching a level 25% higher than in 1997. This 25% increase is in contrast with the behavior of Ulysses/KET GCR protons extrapolated to 1 AU in the ecliptic plane, showing the same level in 2008-2009 as in 1997. The GCR numbers are inversely correlated with the tilt angle of the heliospheric current sheet. In particular, the continued increase of SOHO/CDS GCRs from 2007 until 2009 is correlated with the decrease of the minimum tilt angle from 30° in mid-2008 to 5° in late 2009. The GCR level then drops sharply from 2010 January, again consistent with a rapid increase of the tilt angle to over 35°. This shows that the extended 2008 solar minimum was different from the 1997 minimum in terms of the structure of the heliospheric current sheet.

  3. Summary of daily observational results of solar phenomena, cosmic ray, geomagnetic variation, ionosphere, radio wave propagation and airglow

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The diagrams in this section of the publication illustrate the summary of daily observational results of solar phenomena, cosmic ray, geomagnetic variation, ionosphere, radio wave propagation and airglow observed in Japan. For convenience, the observational results are arranged by the solar rotation number. The aim of this illustration is to disseminate an outline of daily events observed in Japan for the benefit of active research workers who plan to make detailed study of the specific solar and terrestrial events. Therefore, the illustrations do not show all observational results in Japan but only representative ones at some key stations in Japan. They will suffice for the present purpose. The method of illustration shown in the instruction on the next page is still a preliminary one, and it is subject to change resulting from the kind advice of the users of this part of the publication. We welcome any advice for making the data arrangement and expression better and more convenient. (auth.)

  4. Relativistic Landau levels in the rotating cosmic string spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, M.S. [Universidade Estadual do Ceara, Grupo de Fisica Teorica (GFT), Fortaleza, CE (Brazil); Muniz, C.R. [Universidade Estadual do Ceara, Faculdade de Educacao, Ciencias e Letras de Iguatu, Iguatu, CE (Brazil); Christiansen, H.R. [Instituto Federal de Ciencia, Educacao e Tecnologia, IFCE Departamento de Fisica, Sobral (Brazil); Bezerra, V.B. [Universidade Federal da Paraiba-UFPB, Departamento de Fisica, Caixa Postal 5008, Joao Pessoa, PB (Brazil)

    2016-09-15

    In the spacetime induced by a rotating cosmic string we compute the energy levels of a massive spinless particle coupled covariantly to a homogeneous magnetic field parallel to the string. Afterwards, we consider the addition of a scalar potential with a Coulomb-type and a linear confining term and completely solve the Klein-Gordon equations for each configuration. Finally, assuming rigid-wall boundary conditions, we find the Landau levels when the linear defect is itself magnetized. Remarkably, our analysis reveals that the Landau quantization occurs even in the absence of gauge fields provided the string is endowed with spin. (orig.)

  5. New General Relativistic Contribution to Mercury's Perihelion Advance

    Science.gov (United States)

    Will, Clifford M.

    2018-05-01

    We point out the existence of a new general relativistic contribution to the perihelion advance of Mercury that, while smaller than the contributions arising from the solar quadrupole moment and angular momentum, is 100 times larger than the second-post-Newtonian contribution. It arises in part from relativistic "crossterms" in the post-Newtonian equations of motion between Mercury's interaction with the Sun and with the other planets, and in part from an interaction between Mercury's motion and the gravitomagnetic field of the moving planets. At a few parts in 1 06 of the leading general relativistic precession of 42.98 arcseconds per century, these effects are likely to be detectable by the BepiColombo mission to place and track two orbiters around Mercury, scheduled for launch around 2018.

  6. New General Relativistic Contribution to Mercury's Perihelion Advance.

    Science.gov (United States)

    Will, Clifford M

    2018-05-11

    We point out the existence of a new general relativistic contribution to the perihelion advance of Mercury that, while smaller than the contributions arising from the solar quadrupole moment and angular momentum, is 100 times larger than the second-post-Newtonian contribution. It arises in part from relativistic "crossterms" in the post-Newtonian equations of motion between Mercury's interaction with the Sun and with the other planets, and in part from an interaction between Mercury's motion and the gravitomagnetic field of the moving planets. At a few parts in 10^{6} of the leading general relativistic precession of 42.98 arcseconds per century, these effects are likely to be detectable by the BepiColombo mission to place and track two orbiters around Mercury, scheduled for launch around 2018.

  7. Forecasting of integral parameters of solar cosmic ray events according to initial characteristics of an event

    International Nuclear Information System (INIS)

    Belovskij, M.N.; Ochelkov, Yu.P.

    1981-01-01

    The forecasting method for an integral proton flux of solar cosmic rays (SCR) based on the initial characteristics of the phe-- nomenon is proposed. The efficiency of the method is grounded. The accuracy of forecasting is estimated and the retrospective forecasting of real events is carried out. The parameters of the universal function describing the time progress of the SCR events are pre-- sented. The proposed method is suitable for forecasting practically all the SCR events. The timeliness of the given forecasting is not worse than that of the forecasting based on utilization of the SCR propagation models [ru

  8. Cosmic-ray modulation: an ab initio approach

    Energy Technology Data Exchange (ETDEWEB)

    Engelbrecht, N.E.; Burger, R.A., E-mail: 12580996@nwu.ac.za [Center for Space Research, North-West University, Potchefstroom (South Africa)

    2014-07-01

    A better understanding of cosmic-ray modulation in the heliosphere can only be gained through a proper understanding of the effects of turbulence on the diffusion and drift of cosmic rays. We present an ab initio model for cosmic-ray modulation, incorporating for the first time the results yielded by a two-component turbulence transport model. This model is solved for periods of minimum solar activity, utilizing boundary values chosen so that model results are in fair to good agreement with spacecraft observations of turbulence quantities, not only in the solar ecliptic plane but also along the out-of-ecliptic trajectory of the Ulysses spacecraft. These results are employed as inputs for modelled slab and 2D turbulence energy spectra. The latter spectrum is chosen based on physical considerations, with a drop-off at the very lowest wavenumbers commencing at the 2D outerscale. There currently exist no models or observations for this quantity, and it is the only free parameter in this study. The modelled turbulence spectra are used as inputs for parallel mean free path expressions based on those derived from quasi-linear theory and perpendicular mean free paths from extended nonlinear guiding center theory. Furthermore, the effects of turbulence on cosmic-ray drifts are modelled in a self-consistent way, employing a recently developed model for drift along the wavy current sheet. The resulting diffusion coefficients and drift expressions are applied to the study of galactic cosmic-ray protons and antiprotons using a three dimensional, steady-state cosmic-ray modulation code, and sample solutions in fair agreement with multiple spacecraft observations are presented. (author)

  9. Cosmic-ray modulation: an ab initio approach

    International Nuclear Information System (INIS)

    Engelbrecht, N.E.; Burger, R.A.

    2014-01-01

    A better understanding of cosmic-ray modulation in the heliosphere can only be gained through a proper understanding of the effects of turbulence on the diffusion and drift of cosmic rays. We present an ab initio model for cosmic-ray modulation, incorporating for the first time the results yielded by a two-component turbulence transport model. This model is solved for periods of minimum solar activity, utilizing boundary values chosen so that model results are in fair to good agreement with spacecraft observations of turbulence quantities, not only in the solar ecliptic plane but also along the out-of-ecliptic trajectory of the Ulysses spacecraft. These results are employed as inputs for modelled slab and 2D turbulence energy spectra. The latter spectrum is chosen based on physical considerations, with a drop-off at the very lowest wavenumbers commencing at the 2D outerscale. There currently exist no models or observations for this quantity, and it is the only free parameter in this study. The modelled turbulence spectra are used as inputs for parallel mean free path expressions based on those derived from quasi-linear theory and perpendicular mean free paths from extended nonlinear guiding center theory. Furthermore, the effects of turbulence on cosmic-ray drifts are modelled in a self-consistent way, employing a recently developed model for drift along the wavy current sheet. The resulting diffusion coefficients and drift expressions are applied to the study of galactic cosmic-ray protons and antiprotons using a three dimensional, steady-state cosmic-ray modulation code, and sample solutions in fair agreement with multiple spacecraft observations are presented. (author)

  10. Examination of radioargon production by cosmic neutron interactions

    International Nuclear Information System (INIS)

    Johnson, Christine; Armstrong, Hirotatsu; Wilson, William H.; Biegalski, Steven R.

    2015-01-01

    Radioargon isotopes, particularly 37 Ar, are currently being considered for use as an On-Site Inspection (OSI) relevant radionuclide within the context of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). In order to understand any soil air measurements taken during an OSI, the radioargon background due to cosmic ray induced activation along with other sources must be understood. An MCNP6 model was developed using the cosmic ray source feature within the code to examine the neutron flux at ground level as a function of various conditions: date during the solar magnetic activity cycle, latitude of sampling location, geology of the sampling location, and sampling depth. Once the cosmic neutron flux was obtained, calculations were performed to determine the rate of radioargon production for the main interactions. Radioargon production was shown to be highly dependent on the soil composition, and a range of 37 Ar production values at 1 m depth was found with a maximum production rate of 4.012 atoms/sec/m 3 in carbonate geologies and a minimum production rate of 0.070 atoms/sec/m 3 in low calcium granite. The sampling location latitude was also shown to have a measurable effect on the radioargon production rate, where the production of 37 Ar in an average continental crust is shown to vary by a factor of two between the equator and the poles. The sampling date's position within the solar magnetic activity cycle was also shown to cause a smaller change, less than a factor of 1.2, in activation between solar maxima and solar minima. - Highlights: • Cosmic neutron flux modeled in various geologic materials using MCNP6. • Radioargon production rate calculated in various geologic materials. • Variations in production considered for latitude, date, material, and depth. • Geology and depth have greatest impact, some latitude effect, smaller date effect

  11. Measurement of Cosmic-Ray Antiproton Spectrum at Solar Minimum with a Long-Duration Balloon Flight in Antarctica

    Science.gov (United States)

    Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Kim, K. C.; Kusumoto, A.; Lee, M. H.; Makida, Y.; hide

    2011-01-01

    The energy spectrum of cosmic-ray antiprotons (p(raised bar)'s) collected by the BESS-Polar II instrument during a long-duration flight over Antarctica in the solar minimum period of December 2007 through January 2008. The p(raised bar) spectrum measured by BESS-Polar II shows good consistency with secondary p(raised bar) calculations. Cosmologically primary p(raised bar)'s have been searched for by comparing the observed and calculated p(raised bar) spectra. The BESSPolar II result shows no evidence of primary p(raised bar)'s originating from the evaporation of PBH.

  12. Improved model for solar cosmic ray exposure in manned Earth orbital flights

    International Nuclear Information System (INIS)

    Wilson, J.W.; Nealy, J.E.; Atwell, W.; Cucinotta, F.A.; Shinn, J.L.; Townsend, L.W.

    1990-06-01

    A calculational model is derived for use in estimating Solar cosmic ray exposure to critical body organs in low-Earth orbit at the center of a large spherical shield of fixed thickness. The effects of the Earth's geomagnetic field and the astronauts' self-shielding are evaluated explicitly. The geomagnetic field model is an approximate tilted eccentric dipole with geomagnetic storms represented as a uniform-impressed field. The storm field is related to the planetary geomagnetic index K(sub p). The code is applied to the Shuttle geometry using the Shuttle mass distribution surrounding two locations on the flight deck. The Shuttle is treated as pure aluminum and the astronaut as soft tissue. Short-term, average fluence over a single orbit is calculated as a function of the location of the lines of nodes or long-term averages over all lines of nodes for a fixed inclination

  13. Relativistic solar sails

    Science.gov (United States)

    Güémez, J.; Fiolhais, M.

    2018-05-01

    We apply the four-vector formalism of special relativity to describe various interaction processes of photons with a solar sail, in two cases: when the sail’s surface is a perfect mirror, and when it is a body coated with a totally absorbing material. We stress the pedagogical value of implementing simultaneously both the linear momentum and the energy conservation in a covariant fashion, as our formalism inherently does. It also allows for a straightforward change of the description of a certain process in different inertial reference frames.

  14. Chemical reactions in the nitrogen-acetone ice induced by cosmic ray analogues: relevance for the Solar system

    Science.gov (United States)

    de Barros, A. L. F.; Andrade, D. P. P.; da Silveira, E. F.; Alcantara, K. F.; Boduch, P.; Rothard, H.

    2018-02-01

    The radiolysis of 10:1 nitrogen:acetone mixture, condensed at 11 K, by 40 MeV 58Ni11 + ions is studied. These results are representative of studies concerning Solar system objects, such as transneptunian objects, exposed to cosmic rays. Bombardment by cosmic rays triggers chemical reactions leading to synthesis of larger molecules. In this work, destruction cross-sections of acetone and nitrogen molecules in solid phase are determined and compared with those for pure acetone. The N2 column density decreases very fast indicating that, under irradiation, nitrogen leaves quickly a porous sample. The most abundant molecular species formed in the radiolysis are C3H6, C2H6, N3, CO, CH4 and CO2. Some N-bearing species are also formed, but with low production yield. Dissolving acetone in nitrogen decreases the formation cross-sections of CH4, CO2 and H2CO, while increases those for CO and C2H6 species. This fact may explain the presence of C2H6 in Pluto's surface where CH4 is not pure, but diluted in an N2 matrix. The formation of more complex molecules, such as HNCO and, possibly, glycine is observed, suggesting the formation of small prebiotic species in objects beyond Neptune from acetone diluted in a N2 matrix irradiated by cosmic rays.

  15. Cosmic ray access at polar heliographic latitudes

    International Nuclear Information System (INIS)

    Voelk, H.J.

    1976-01-01

    Based on a modified WKB analysis of the interplanetary irregularity spectra, a discussion of the radial dependence of the radial cosmic ray diffusion coefficient at polar heliographic latitudes is presented. At l-AU radial distance the parameters are taken to equal those observed in the ecliptic. In the sense of a present best estimate it is argued that relativistic nuclei should have significantly easier access to 1 AU at the pole than in the ecliptic. The reverse may very well be true for the direct access of very low rigidity particles

  16. Particle acceleration and injection problem in relativistic and nonrelativistic shocks

    International Nuclear Information System (INIS)

    Hoshino, M.

    2008-01-01

    Acceleration of charged particles at the collisionless shock is believed to be responsible for production of cosmic rays in a variety of astrophysical objects such as supernova, AGN jet, and GRB etc., and the diffusive shock acceleration model is widely accepted as a key process for generating cosmic rays with non-thermal, power-law energy spectrum. Yet it is not well understood how the collisionless shock can produce such high energy particles. Among several unresolved issues, two major problems are the so-called '' injection '' problem of the supra-thermal particles and the generation of plasma waves and turbulence in and around the shock front. With recent advance of computer simulations, however, it is now possible to discuss those issues together with dynamical evolution of the kinetic shock structure. A wealth of modern astrophysical observations also inspires the dynamical shock structure and acceleration processes along with the theoretical and computational studies on shock. In this presentation, we focus on the plasma wave generation and the associated particle energization that directly links to the injection problem by taking into account the kinetic plasma processes of both non-relativistic and relativistic shocks by using a particle-in-cell simulation. We will also discuss some new particle acceleration mechanisms such as stochastic surfing acceleration and wakefield acceleration by the action of nonlinear electrostatic fields. (author)

  17. Energy spectrum of galactic cosmic ray modulation and dependence of modulation parameters on distance

    International Nuclear Information System (INIS)

    Erkhov, V.I.; Kolomeets, E.V.; Likhoded, V.A.; Sevast'yanov, V.N.; Stekol'nikov, N.V.

    1981-01-01

    The paper presents the results of numerical calculation of galactic cosmic ray modulation by solar wind. Calculations were carried out on the basis of diffusion model taking into account convection and adiabatic loss of particles in interplanetary space. Both isotropic and anisotropic models were used in calculations. Modulation coefficient was calculated using the data on intensity of neutron component of cosmic rays and primary cosmic rays in the stratosphere for the period 1958-1979. The form of modulation function was determined. Obtained results allow to determine the size of modulation region and dependence of solar wind speed and diffusion coefficient on distance

  18. Average features of cosmic ray variation associated with sudden commencement of magnetic storm

    International Nuclear Information System (INIS)

    Wada, Masami; Suda, Tomoshige.

    1980-01-01

    In order to obtain average features of cosmic ray variation associated with a passage of shock front in space, superposed epoch analysis of cosmic ray intensity with respect to the time of occurrence of sudden commencement (SC) of magnetic storm during solar cycle 20, 1964 - 1975, is carried out for hundreds of SC. When SC's are distributed evenly over the day, the onset in cosmic ray decrease is seen clearly within one hour of SC, followed by a sharp decrease in the intensity, but without any precursory fluctuation. The magnitude distribution and the rigidity spectrum for maximum depression show the features of Forbush decrease (FD). Superposed epoch analysis is also applied to solar wind and the interplanetary magnetic field data, and their relation to cosmic ray variation is studied. Effects of the superposition of the isotropic and anisotropic variations on the time profile of cosmic ray intensity observed at a station are discussed. (author)

  19. Special Relativity in the School Laboratory: A Simple Apparatus for Cosmic-Ray Muon Detection

    Science.gov (United States)

    Singh, P.; Hedgeland, H.

    2015-01-01

    We use apparatus based on two Geiger-Müller tubes, a simple electronic circuit and a Raspberry Pi computer to illustrate relativistic time dilation affecting cosmic-ray muons travelling through the atmosphere to the Earth's surface. The experiment we describe lends itself to both classroom demonstration to accompany the topic of special relativity…

  20. Measurement of the Cosmic-Ray Antiproton Spectrum at Solar Minimum with a Long-Duration Balloon Flight over Antarctica

    Science.gov (United States)

    Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Kim, K. C.; Kusumoto, A.; Lee, M. H.; Makida, Y.; hide

    2012-01-01

    The energy spectrum of cosmic-ray antiprotons (p-bar's) from 0.17 to 3.5 GeV has been measured using 7886 p-bar's detected by BESS-Polar II during a long-duration flight over Antarctica near solar minimum in December 2007 and January 2008. This shows good consistency with secondary p-bar calculations. Cosmologically primary p-bar's have been investigated by comparing measured and calculated p-bar spectra. BESS-Polar II data.show no evidence of primary p-bar's from the evaporation of primordial black holes.

  1. Long-term Modulation of Cosmic Ray Intensity in relation to Sunspot ...

    Indian Academy of Sciences (India)

    it should be more closely connected with cosmic ray modulation than with other solar characteristics (sunspot numbers or coronal emission intensity). The intensity of galactic cosmic rays varies inversely with sunspot numbers, having their maximum intensity at the minimum of the 11-year sunspot cycle (Forbush 1954, 1958) ...

  2. Cosmic-ray-produced stable nuclides: various production rates and their implications

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1981-01-01

    The rates for a number of reactions producing certain stable nuclides, such as 3 He and 4 He, and fission in the moon are calculated for galactic-cosmic-ray particles and for solar protons. Solar-proton-induced reactions with bromine usually are not an important source of cosmogenic Kr isotopes. The 130 Ba(n,p) reaction cannot account for the undercalculation of 130 Xe production rates. Calculated production rates of 15 N, 13 C, and 2 H agree fairly well with rates inferred from measured excesses of these isotopes in samples with long exposure ages. Cosmic-ray-induced fission of U and Th can produce significant amounts of fission tracks and of 86 Kr, 134 Xe, and 136 Xe, especially in samples with long exposures to cosmic-ray particles

  3. Cosmic ray intensity in the past

    International Nuclear Information System (INIS)

    Dergachev, V.A.

    1977-01-01

    Variations of cosmic rays have been investigated according to the data on the content of radiocarbon in the Earth atmosphere, on the solar activity and on the geomagnetic field. The results of spectral analysis of the data on radiocarbon (1688-1951 time interval) and the data on the numbers of sunspots have been compared. As a result of spectral analysis it has been established that the two main peaks coincide in periods (approximately 11 and approximately 80 years) and differ in amplitudes. The 11-year periods are the main periods for the solar activity, and the 80-year periods for the radiocarbon concentration. To elucidate the role of the geomagnetic field in the cosmic ray variations considered are extermal changes in the magnetic field and variations in the radiocarbon content for four time intervals: 0-500 years, 750-2200 years, 2200-4500 years and 4500-6800 years form the present. The following cycles have been revealed in the time spectra of radiocarbon; approximately 600, approximately 360, approximately 80, approximately 36 years, their relative amplitude decreasing with the period. The absence of short-range solar syscle is typical for the geomagnetic field intensity

  4. Mid-term periodicities and heliospheric modulation of coronal index and solar flare index during solar cycles 22-23

    Science.gov (United States)

    Singh, Prithvi Raj; Saxena, A. K.; Tiwari, C. M.

    2018-04-01

    We applied fast Fourier transform techniques and Morlet wavelet transform on the time series data of coronal index, solar flare index, and galactic cosmic ray, for the period 1986-2008, in order to investigate the long- and mid-term periodicities including the Rieger ({˜ }130 to {˜ }190 days), quasi-period ({˜ }200 to {˜ }374 days), and quasi-biennial periodicities ({˜ }1.20 to {˜ }3.27 years) during the combined solar cycles 22-23. We emphasize the fact that a lesser number of periodicities are found in the range of low frequencies, while the higher frequencies show a greater number of periodicities. The rotation rates at the base of convection zone have periods for coronal index of {˜ }1.43 years and for solar flare index of {˜ }1.41 year, and galactic cosmic ray, {˜ }1.35 year, during combined solar cycles 22-23. In relation to these two solar parameters (coronal index and solar flare index), for the solar cycles 22-23, we found that galactic cosmic ray modulation at mid cut-off rigidity (Rc = 2.43GV) is anti-correlated with time-lag of few months.

  5. ARGO-YBJ OBSERVATION OF THE LARGE-SCALE COSMIC RAY ANISOTROPY DURING THE SOLAR MINIMUM BETWEEN CYCLES 23 AND 24

    Energy Technology Data Exchange (ETDEWEB)

    Bartoli, B.; Catalanotti, S.; Piazzoli, B. D’Ettorre; Girolamo, T. Di [Dipartimento di Fisica dell’Università di Napoli “Federico II”, Complesso Universitario di Monte Sant’Angelo, via Cinthia, I-80126 Napoli (Italy); Bernardini, P.; D’Amone, A.; Mitri, I. De [Dipartimento Matematica e Fisica ”Ennio De Giorgi”, Università del Salento, via per Arnesano, I-73100 Lecce (Italy); Bi, X. J.; Cao, Z.; Chen, S. Z.; Feng, Zhaoyang; Gou, Q. B. [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, P.O. Box 918, 100049 Beijing (China); Chen, T. L.; Danzengluobu [Tibet University, 850000 Lhasa, Xizang (China); Cui, S. W.; Gao, W. [Hebei Normal University, 050024, Shijiazhuang Hebei (China); Dai, B. Z. [Yunnan University, 2 North Cuihu Road, 650091 Kunming, Yunnan (China); Sciascio, G. Di [Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tor Vergata, via della Ricerca Scientifica 1, I-00133 Roma (Italy); Feng, C. F. [Shandong University, 250100 Jinan, Shandong (China); Feng, Zhenyong, E-mail: cuisw@ihep.ac.cn [Southwest Jiaotong University, 610031 Chengdu, Sichuan (China); Collaboration: ARGO-YBJ Collaboration; and others

    2015-08-10

    This paper reports on the measurement of the large-scale anisotropy in the distribution of cosmic-ray arrival directions using the data collected by the air shower detector ARGO-YBJ from 2008 January to 2009 December, during the minimum of solar activity between cycles 23 and 24. In this period, more than 2 × 10{sup 11} showers were recorded with energies between ∼1 and 30 TeV. The observed two-dimensional distribution of cosmic rays is characterized by two wide regions of excess and deficit, respectively, both of relative intensity ∼10{sup −3} with respect to a uniform flux, superimposed on smaller size structures. The harmonic analysis shows that the large-scale cosmic-ray relative intensity as a function of R.A. can be described by the first and second terms of a Fouries series. The high event statistics allow the study of the energy dependence of the anistropy, showing that the amplitude increases with energy, with a maximum intensity at ∼10 TeV, and then decreases while the phase slowly shifts toward lower values of R.A. with increasing energy. The ARGO-YBJ data provide accurate observations over more than a decade of energy around this feature of the anisotropy spectrum.

  6. Cosmic noise: a history of early radio astronomy

    National Research Council Canada - National Science Library

    Sullivan, Woodruff Turner

    2009-01-01

    .... The whole of worldwide radio and radar astronomy is covered, beginning with the discoveries by Jansky and Reber of cosmic noise before World War II, through the wartime detections of solar noise...

  7. Galactic cosmic ray spectral index: the case of Forbush decreases of March 2012

    Science.gov (United States)

    Livada, M.; Mavromichalaki, H.; Plainaki, C.

    2018-01-01

    During the burst of solar activity in March 2012, close to the maximum of solar cycle 24, a number of X-class and M-class flares and halo CMEs with velocity up to 2684 km/s were recorded. During a relatively short period (7-21 March 2012) two Forbush decreases were registered in the ground-level neutron monitor data. In this work, after a short description of the solar and geomagnetic background of these Forbush decreases, we deduce the cosmic ray density and anisotropy variations based on the daily cosmic ray data of the neutron monitor network (http://www.nmdb.eu; http://cosray.phys.uoa.gr). Applying to our data two different coupling functions methods, the spectral index of these Forbush decreases was calculated following the technique of Wawrzynczak and Alania (Adv. Space Res. 45:622-631, 2010). We pointed out that the estimated values of the spectral index γ of these events are almost similar for both cases following the fluctuation of the Forbush decrease. The study and the calculation of the cosmic ray spectrum during such cosmic ray events are very important for Space Weather applications.

  8. Modulation of cosmic rays with particular reference to the Hermanus neutron monitor

    International Nuclear Information System (INIS)

    Stoker, P.H.

    1982-01-01

    Investigations at Potchefstroom has directed interest to the interaction between cosmic rays and the interplanetary magnetic field. In this paper the period of increasing modulation of cosmic rays from 1976 is discussed. The geomagnetic field as spectrometer for primary cosmic rays will be discussed and applied to the latitude surveys of 1975 and 1976. Features of the coronal magnetic field, the solar wind with interplanetary magnetic field and the transport of cosmic rays in the interplanetary magnetic field are outlined in order to relate cosmic ray recordings of fixed groundlevel stations to observations made in outerspace by space crafts and satellites and to explain these recordings in terms of cosmic ray modulation processes

  9. Examining Relativistic Electron Loss in the Outer Radiation Belt

    Science.gov (United States)

    Green, J. C.; Onsager, T. G.; O'Brien, P.

    2003-12-01

    Since the discovery of earth's radiation belts researchers have sought to identify the mechanisms that dictate the seemingly erratic relativistic electron flux levels in the outer belt. Contrary to intuition, relativistic electron flux levels do not always increase during geomagnetic storms even though these storms signify enhanced energy input from the solar wind to the magnetosphere [Reeves et al., 2003; O'Brien et al., 2001]. The fickle response of the radiation belt electrons to geomagnetic activity suggests that flux levels are determined by the outcome of a continuous competition between acceleration and loss. Some progress has been made developing and testing acceleration mechanisms but little is known about how relativistic electrons are lost. We examine relativistic electron losses in the outer belt focusing our attention on flux decrease events of the type first described by Onsager et al. [2002]. The study showed a sudden decrease of geosynchronous >2MeV electron flux occurring simultaneously with local stretching of the magnetic field. The decrease was first observed near 15:00 MLT and progressed to all local times after a period of ˜10 hours. Expanding on the work of Onsager et al. [2002], we have identified ˜ 51 such flux decrease events in the GOES and LANL data and present the results of a superposed epoch analysis of solar wind data, geomagnetic activity indicators, and locally measured magnetic field and plasma data. The analysis shows that flux decreases occur after 1-2 days of quiet condition. They begin when either the solar wind dynamic pressure increases or Bz turns southward pushing hot dense plasma earthward to form a partial ring current and stretched magnetic field at dusk. Adiabatic electron motion in response to the stretched magnetic field may explain the initial flux reduction; however, often the flux does not recover with the magnetic field recovery, indicating that true loss from the magnetosphere is occurring. Using Polar and

  10. Theory of geomagnetic effects of cosmic rays: its past and presence

    Energy Technology Data Exchange (ETDEWEB)

    Gall, R [Universidad Nacional Autonoma de Mexico, Mexico City. Inst. de Geofisica

    1981-03-01

    The interest expressed by Lemaitre and Vallarta in the nature of universal corpuscular radiation, remnant of the exploded primogenitive atom, culminated in 1932, in the development of their theory of the geomagnetic effects of cosmic rays, a tool since its publication, basic to cosmic radiation research and to the advancement of cosmic ray astronomy. Between 1940 and 1960 challenging experimental data from proliferating cosmic radiation stations and of direct detection techniques provided geomagnetic field models for greater theoretical precision. The discoveries since the advent of the space age of the Earth's cavity and geomagnetic tail, and of the nonrelativistic solar cosmic rays have resulted in a new branch of the theory dealing with magnetosphere effects in the propagation of low energy cosmic radiations. The theory's importance and application to cosmic bodies other than the Earth is discussed.

  11. Atomic properties of the elements and cosmic ray composition at the source

    International Nuclear Information System (INIS)

    Casse, M.; Goret, P.; Cesarsky, C.J.

    1975-01-01

    Possible correlations between the abundances of cosmic rays at the source and the solar system abundances are discussed. Cosmic ray source abundances could be explained if the particles are accelerated to injection energies in a dilute, moderately hot plasma, from which they escape in a rigidity dependant fashion [fr

  12. Isotopic composition of cosmic ray nuclei

    International Nuclear Information System (INIS)

    Enge, W.

    1976-01-01

    A review will be given on the role of cosmic ray isotopes as tracers of the astrophysical nucleo-synthesis. The products of every nuclear burning chain are first of all isotopes and not elements. Thus, it is the study of the isotopes rather than that of the elements that responds to the questions on these nucleo-synthetic reactions. The problems concerning the solar system isotopic abundances and the cosmic ray isotopic abundances as well as a comparison between both will be presented. Furthermore the present stage of the experimental techniques and the latest results will be discussed. (orig.) [de

  13. Cosmic-ray acceleration at stellar wind terminal shocks

    International Nuclear Information System (INIS)

    Webb, G.M.; Forman, M.A.; Axford, W.I.

    1985-01-01

    Steady-state, spherically symmetric, analytic solutions of the cosmic-ray transport equations, applicable to the problem of acceleration of cosmic rays at the terminal shock to a stellar wind, are studied. The spectra, gradients, and flow patterns of particle modulated and accelerated by the stellar wind and shock are investigated by means of monoenergetic-source solutions at finite radius, as well as solutions with monoenergetic and power-law Galactic spectra. The solutions obtained apply in the test particle limit in which the cosmic rays do not modify the background flow. The solutions show a characteristic power-law momentum spectrum for accelerated particles and a more complex spectrum of particles that are decelerated in the stellar wind. The power-law spectral index depends on the compression ratio of the shock and on the modulation parameters characterizing propagation conditions in the upstream and downstream regions of the shock. Solutions of the transport equations for the total density N (integrated over all energies), pressure P/sub c/, and energy flux F/sub c/ of Galactic cosmic rays interacting with a stellar wind and shock are also studied. The density N(r) increases with radius r, and for strong shocks with large enough modulation parameters, there may be a significant enhancement of the pressure of weakly relativistic particles near the shock compared to the cosmic-ray background pressure P/sub infinity/. The emergent energy flux at infinity is of the order of 4π R 2 V 1 P/sub infinity/ (V 1 is wind velocity upstream of the shock, R is shock radius)

  14. Department of Cosmic Ray Physics: Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2001-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high-energy physics and cosmic ray physics related to: Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. Studies of ultra-high energy (above 10 19 eV) cosmic rays: determination of energy and primary particle mass composition. Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation through the atmosphere. Studies of mass composition of cosmic rays in the energy range 10 15 -10 17 eV. Registration of cosmic ray intensity variation correlated with solar activity. Theoretical and experimental studies of Extensive Air Shower properties are performed mostly based on the results obtained by the Lodz Extensive Air Shower Array. We have noticed unexplainable delayed signals registered about 500-900 microseconds after the main EAS pulse. We prepared hardware for further experimental study of this effect. In September we have started registration of 5 GeV muon flux with the underground muon telescope. We registered 3 decreases of muon intensity correlated with Forbush decreases registered at lower energies. Variations of primary cosmic ray of energies up to about 100 GeV were responsible for our registrations. These set the upper limits for geometrical size of geomagnetic disturbances in interplanetary space. In construction and data interpretation of cosmic ray experiments, the Lodz group collaborates with many foreign institutes and laboratories: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Sciences and Uppsala University (Sweden). We have organised (together with the Physics Department of the University of Lodz) the 17 th European Cosmic Ray Symposium (24-?8 July 2000) in which about 150 physicists participated (about 100 from abroad). (author)

  15. Following solar activity with geomagnetic and cosmic-ray ground-based stations in the Iberian Peninsula region

    Science.gov (United States)

    Villasante-Marcos, Victor; José Blanco, Juan; Miquel Torta, Joan; Catalán, Manuel; Ribeiro, Paulo; Morozova, Anna; Tordesillas, José Manuel; Solé, Germán; Gomis-Moreno, Almudena

    2016-04-01

    The Iberian Peninsula is located in the South-West of Europe between 36°00' N and 43°47' N and between 9°29' W and 3°19' E. There are four Geomagnetic Observatories currently operative in this area devoted to the observation of the Earth's magnetic field: Observatori de l'Ebre (NE Spain); Observatorio de San Pablo de los Montes (central Spain); Observatorio de San Fernando (southern Spain); Observatório de Coimbra (central Portugal); plus another one, Observatorio de Güímar, in Tenerife (Canary Islands, Spain). There is also one neutron monitor located in Guadalajara (central Spain; 40°38' N, 3°9' W at 708 m asl) continuously measuring the arrival of cosmic rays to the Earth's surface. In this work we show combined observations of these six stations during events caused by solar activity. We analyze them looking for differences that could imply extremely local effects caused by the response of the Earth's magnetosphere and ionosphere to solar activity.

  16. Prediction Model for Relativistic Electrons at Geostationary Orbit

    Science.gov (United States)

    Khazanov, George V.; Lyatsky, Wladislaw

    2008-01-01

    We developed a new prediction model for forecasting relativistic (greater than 2MeV) electrons, which provides a VERY HIGH correlation between predicted and actually measured electron fluxes at geostationary orbit. This model implies the multi-step particle acceleration and is based on numerical integrating two linked continuity equations for primarily accelerated particles and relativistic electrons. The model includes a source and losses, and used solar wind data as only input parameters. We used the coupling function which is a best-fit combination of solar wind/interplanetary magnetic field parameters, responsible for the generation of geomagnetic activity, as a source. The loss function was derived from experimental data. We tested the model for four year period 2004-2007. The correlation coefficient between predicted and actual values of the electron fluxes for whole four year period as well as for each of these years is stable and incredibly high (about 0.9). The high and stable correlation between the computed and actual electron fluxes shows that the reliable forecasting these electrons at geostationary orbit is possible.

  17. Studying Heavy Ion Collisions Using Methods From Cosmic Microwave Background (CMB Analysis

    Directory of Open Access Journals (Sweden)

    Gaardhøje J. J.

    2014-04-01

    Full Text Available We present and discuss a framework for studying the morphology of high-multiplicity events from relativistic heavy ion collisions using methods commonly employed in the analysis of the photons from the Cosmic Microwave Background (CMB. The analysis is based on the decomposition of the distribution of the number density of (charged particles expressed in polar and azimuthal coordinates into a sum of spherical harmonic functions. We present an application of the method exploting relevant symmetries to the study of azimuthal correlations arizing from collective flow among charged particles produced in relativistic heavy ion collisions. We discuss perspectives for event-by- event analyses, which with increasing collision energy will eventually open entirely new dimensions in the study of ultrarelaticistic heavy ion reactions.

  18. Scientific results from the cosmic background explorer (COBE)

    International Nuclear Information System (INIS)

    Bennett, C.L.; Boggess, N.W.; Cheng, E.S.; Hauser, M.G.; Kelsall, T.; Mather, J.C.; Moseley, S.H. Jr.; Shafer, R.A.; Silverberg, R.F.; Murdock, T.L.; Smoot, G.F.; Weiss, R.; Wright, E.L.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has flown the COBE satellite to observe the Big Bang and the subsequent formation of galaxies and large-scale structure. Data from the Far-Infrared Absolute Spectrophotometer (FIRAS) show that the spectrum of the cosmic microwave background is that of a black body of temperature T = 2.73 ± 0.06 K, with no deviation from a black-body spectrum greater than 0.25% of the peak brightness. The data from the Differential Microwave Radiometers (DMR) show statistically significant cosmic microwave background anisotropy, consistent with a scale-invariant primordial density fluctuation spectrum. Measurements from the Diffuse Infrared Background Experiment (DIRBE) provide new conservation upper limits to the cosmic infrared background. Extensive modeling of solar system and galactic infrared foregrounds is required for further improvement in the cosmic infrared background limits. 104 refs., 1 tab

  19. Special relativity in the school laboratory: A simple apparatus for cosmic-ray muon detection

    OpenAIRE

    Singh, P.; Hedgeland, H.

    2015-01-01

    We use apparatus based on two Geiger-Müller tubes, a simple electronic circuit and a Raspberry Pi computer to illustrate relativistic time dilation affecting cosmic-ray muons travelling through the atmosphere to the Earth's surface. The experiment we describe lends itself to both classroom demonstration to accompany the topic of special relativity and to extended investigations for more inquisitive students.

  20. Initiation of non-tropical thunderstorms by solar activity

    Energy Technology Data Exchange (ETDEWEB)

    Herman, J R [Radio Sciences Co., Melbourne, Fla. (USA); Goldberg, R A

    1978-02-01

    Correlative evidence accumulating since 1926 suggests that there must be some physical coupling mechanism between solar activity and thunderstorm occurrence in middle to high latitudes. Such a link may be provided by alteration of atmospheric electric parameters through the influence of cosmic ray decreases and/or high-energy solar protons associated with active solar events. Galactic cosmic ray decreases tend to enhance the electric field at low heights. The protons produce excess ionization near and above 20 km, greatly increasing the atmospheric conductivity and possibly lowering the height of the electrosphere. Consequent effects near the solar proton cut-off latitude also lead to an enhancement of the atmospheric electric field near the surface. If appropriate meteorological conditions (warm moist air with updrafts) exist or develop during a solar event, the atmospheric electric field enhancement may be sufficient to trigger thunderstorm development. The suggested mechanism appears plausible enough to warrant a co-ordinated experimental effort involving satellite balloon and ground-based measurements of the possible forcing functions (solar protons and cosmic rays) and the responding atmospheric electrical and ionic species' characteristics.

  1. Anandan quantum phase for a neutral particle with Fermi-Walker reference frame in the cosmic string background

    International Nuclear Information System (INIS)

    Bakke, Knut; Furtado, C.

    2010-01-01

    We study geometric quantum phases in the relativistic and non-relativistic quantum dynamics of a neutral particle with a permanent magnetic dipole moment interacting with two distinct field configurations in a cosmic string spacetime. We consider the local reference frames of the observers are transported via Fermi-Walker transport and study the influence of the non-inertial effects on the phase shift of the wave function of the neutral particle due to the choice of this local frame. We show that the wave function of the neutral particle acquires non-dispersive relativistic and non-relativistic quantum geometric phases due to the topology of the spacetime, the interaction between the magnetic dipole moment with external fields and the spin-rotation coupling. However, due to the Fermi-Walker reference frame, no phase shift associated to the Sagnac effect appears in the quantum dynamics of a neutral particle. We show that in the absence of topological defect, the contribution to the quantum phase due to the spin-rotation coupling is equivalent to the Mashhoon effect in non-relativistic dynamics. (orig.)

  2. Solar Energetic Particles (SEP) and Galactic Cosmic Rays (GCR) as tracers of solar wind conditions near Saturn: Event lists and applications

    Science.gov (United States)

    Roussos, E.; Jackman, C. M.; Thomsen, M. F.; Kurth, W. S.; Badman, S. V.; Paranicas, C.; Kollmann, P.; Krupp, N.; Bučík, R.; Mitchell, D. G.; Krimigis, S. M.; Hamilton, D. C.; Radioti, A.

    2018-01-01

    The lack of an upstream solar wind monitor poses a major challenge to any study that investigates the influence of the solar wind on the configuration and the dynamics of Saturn's magnetosphere. Here we show how Cassini MIMI/LEMMS observations of Solar Energetic Particle (SEP) and Galactic Cosmic Ray (GCR) transients, that are both linked to energetic processes in the heliosphere such us Interplanetary Coronal Mass Ejections (ICMEs) and Corotating Interaction Regions (CIRs), can be used to trace enhanced solar wind conditions at Saturn's distance. SEP protons can be easily distinguished from magnetospheric ions, particularly at the MeV energy range. Many SEPs are also accompanied by strong GCR Forbush Decreases. GCRs are detectable as a low count-rate noise signal in a large number of LEMMS channels. As SEPs and GCRs can easily penetrate into the outer and middle magnetosphere, they can be monitored continuously, even when Cassini is not situated in the solar wind. A survey of the MIMI/LEMMS dataset between 2004 and 2016 resulted in the identification of 46 SEP events. Most events last more than two weeks and have their lowest occurrence rate around the extended solar minimum between 2008 and 2010, suggesting that they are associated to ICMEs rather than CIRs, which are the main source of activity during the declining phase and the minimum of the solar cycle. We also list of 17 time periods ( > 50 days each) where GCRs show a clear solar periodicity ( ∼ 13 or 26 days). The 13-day period that derives from two CIRs per solar rotation dominates over the 26-day period in only one of the 17 cases catalogued. This interval belongs to the second half of 2008 when expansions of Saturn's electron radiation belts were previously reported to show a similar periodicity. That observation not only links the variability of Saturn's electron belts to solar wind processes, but also indicates that the source of the observed periodicity in GCRs may be local. In this case GCR

  3. Relativistic Electrons Produced by Foreshock Disturbances Observed Upstream of Earth's Bow Shock

    Science.gov (United States)

    Wilson, L. B., III; Sibeck, D. G.; Turner, D. L.; Osmane, A.; Caprioli, D.; Angelopoulos, V.

    2016-01-01

    Charged particles can be reflected and accelerated by strong (i.e., high Mach number) astrophysical collisionless shock waves, streaming away to form a foreshock region in communication with the shock. Foreshocks are primarily populated by suprathermal ions that can generate foreshock disturbances-largescale (i.e., tens to thousands of thermal ion Larmor radii), transient (approximately 5-10 per day) structures. They have recently been found to accelerate ions to energies of several keV. Although electrons in Saturn's high Mach number (M > 40) bow shock can be accelerated to relativistic energies (nearly 1000 keV), it has hitherto been thought impossible to accelerate electrons beyond a few tens of keV at Earth's low Mach number (1 =M foreshock disturbances to energies up to at least approximately 300 keV. Although such energetic electrons have been previously observed, their presence has been attributed to escaping magnetospheric particles or solar events. These relativistic electrons are not associated with any solar or magnetospheric activity. Further, due to their relatively small Larmor radii (compared to magnetic gradient scale lengths) and large thermal speeds (compared to shock speeds), no known shock acceleration mechanism can energize thermal electrons up to relativistic energies. The discovery of relativistic electrons associated with foreshock structures commonly generated in astrophysical shocks could provide a new paradigm for electron injections and acceleration in collisionless plasmas.

  4. Self-similar spherical gravitational collapse and the cosmic censorship hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Ori, A.; Piran, T.

    1988-01-01

    The authors show that a self-similar general relativistic spherical collapse of a perfect fluid with an adiabatic equation of state p = (lambda -1)rho and low enough lambda values, results in a naked singularity. The singularity is tangent to an event horizon which surrounds a massive singularity and the redshift along a null geodesic from the singularity to an external observer is infinite. The authors believe that this is the most serious counter example to cosmic censorship obtained so far.

  5. Hazards of cosmic radiation

    International Nuclear Information System (INIS)

    Bonnet-Bidaud, J.M.; Dzitko, H.

    2000-06-01

    The main limitations on long-distance space transport is neither the energy source nor the propulsion system but appears to be the protection of cosmonauts from radiation. Cosmic radiation is made up of protons (87%), alpha particles (12%) and heavy nuclei (1%), all these particles travel through interstellar space and come from the explosion of stars at the end of their life. The earth is protected from cosmic radiation by 3 natural shields: i) the magnetic field generated by the solar wind, ii) the earth magnetic field (magnetosphere), and iii) the earth atmosphere, this elusive layer of air is equivalent to a 10 meter-high volume of water. Magnetosphere and atmosphere reduce the radiation dose by a factor 4000. According to a European directive (1996) air crews must be considered as radiation workers. (A.C.)

  6. Do coronal holes influence cosmic ray daily harmonics

    International Nuclear Information System (INIS)

    Ahluwalia, H.S.

    1977-01-01

    Coronal holes are identified by their low emissivity in either EUV (Munro and Withrobe, 1973) or in X-rays (Krieger et al, 1973). They are seats of unidirectional magnetic fields. Also, high speed solar wind streams originate in them. Also, high speed solar wind streams originate in then (Krieger et al, 1973; Neupert and Pizzo, 1974; Nolte et al, 1976). Coronal holes often extend over a wide range of heliolatitudes (Timothy et al, 1975). Elsewhere in the Proceedings we have presented results on the long term changes observed in the amplitudes and the times of maximum of the diurnal, the semidiurnal and the tridiurnal variations of cosmic rays, at low (neutrons) and at high (underground muons) primary rigidities (Ahluwalia, 1977). We have shown that a dramatic shift to early hours is noticeable in the times of maxima of the harmonics during 1971-72 period. In this paper we examine the nature of the contributions of off-ecliptic cosmic rays of high enough rigidity, streaming under the influence of large scale ordered interplanetary magnetic field set up by the coronal holes, to the cosmic ray daily harmonics. Some models are presented and discussed in a preliminary fashion. (author)

  7. Solar History An Introduction

    CERN Document Server

    Vita-Finzi, Claudio

    2013-01-01

    Beyond the four centuries of sunspot observation and the five decades during which artificial satellites have monitored the Sun – that is to say for 99.99999% of the Sun’s existence – our knowledge of solar history depends largely on analogy with kindred main sequence stars, on the outcome of various kinds of modelling, and on indirect measures of solar activity. They include the analysis of lunar rocks and meteorites for evidence of solar flares and other components of the solar cosmic-ray (SCR) flux, and the measurement of cosmogenic isotopes in wood, stratified ice and marine sediments to evaluate changes in the galactic cosmic-ray (GCR) flux and thus infer changes in the sheltering magnetic fields of the solar wind. In addition, shifts in the global atmospheric circulation which appear to result from cyclic fluctuations in solar irradiance have left their mark in river sediments and in the isotopic composition of cave deposits. In this volume the results these sources have already produced have bee...

  8. Instability of extremal relativistic charged spheres

    International Nuclear Information System (INIS)

    Anninos, Peter; Rothman, Tony

    2002-01-01

    With the question 'Can relativistic charged spheres form extremal black holes?' in mind, we investigate the properties of such spheres from a classical point of view. The investigation is carried out numerically by integrating the Oppenheimer-Volkov equation for relativistic charged fluid spheres and finding interior Reissner-Nordstroem solutions for these objects. We consider both constant density and adiabatic equations of state, as well as several possible charge distributions, and examine stability by both a normal mode and an energy analysis. In all cases, the stability limit for these spheres lies between the extremal (Q=M) limit and the black hole limit (R=R + ). That is, we find that charged spheres undergo gravitational collapse before they reach Q=M, suggesting that extremal Reissner-Nordstroem black holes produced by collapse are ruled out. A general proof of this statement would support a strong form of the cosmic censorship hypothesis, excluding not only stable naked singularities, but stable extremal black holes. The numerical results also indicate that although the interior mass-energy m(R) obeys the usual m/R + as Q→M. In the Appendix we also argue that Hawking radiation will not lead to an extremal Reissner-Nordstroem black hole. All our results are consistent with the third law of black hole dynamics, as currently understood

  9. CURRENT SHEET REGULATION OF SOLAR NEAR-RELATIVISTIC ELECTRON INJECTION HISTORIES

    Energy Technology Data Exchange (ETDEWEB)

    Agueda, N.; Sanahuja, B. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos, Universitat de Barcelona (Spain); Vainio, R. [Department of Physics, University of Helsinki (Finland); Dalla, S. [Jeremiah Horrocks Institute, University of Central Lancashire (United Kingdom); Lario, D. [Applied Physics Laboratory, Johns Hopkins University (United States)

    2013-03-10

    We present a sample of three large near-relativistic (>50 keV) electron events observed in 2001 by both the ACE and the Ulysses spacecraft, when Ulysses was at high-northern latitudes (>60 Degree-Sign ) and close to 2 AU. Despite the large latitudinal distance between the two spacecraft, electrons injected near the Sun reached both heliospheric locations. All three events were associated with large solar flares, strong decametric type II radio bursts and accompanied by wide (>212 Degree-Sign ) and fast (>1400 km s{sup -1}) coronal mass ejections (CMEs). We use advanced interplanetary transport simulations and make use of the directional intensities observed in situ by the spacecraft to infer the electron injection profile close to the Sun and the interplanetary transport conditions at both low and high latitudes. For the three selected events, we find similar interplanetary transport conditions at different heliolatitudes for a given event, with values of the mean free path ranging from 0.04 AU to 0.27 AU. We find differences in the injection profiles inferred for each spacecraft. We investigate the role that sector boundaries of the heliospheric current sheet (HCS) have on determining the characteristics of the electron injection profiles. Extended injection profiles, associated with coronal shocks, are found if the magnetic footpoints of the spacecraft lay in the same magnetic sector as the associated flare, while intermittent sparse injection episodes appear when the spacecraft footpoints are in the opposite sector or a wrap in the HCS bounded the CME structure.

  10. NEW APPROACHES: Measurement of the mean lifetime of cosmic ray muons in the A-level laboratory

    Science.gov (United States)

    Dunne, Peter; Costich, David; O'Sullivan, Sean

    1998-09-01

    The Turning Points in Physics module from the NEAB A-level Modular Physics syllabus requires students to have an understanding of relativistic time dilation and offers the measurement of the mean lifetime of cosmic ray muons as an example of supporting experimental evidence. This article describes a direct measurement of muon lifetime carried out in the A-level laboratory.

  11. Study of the Solar Anisotropy for Cosmic Ray Primaries of about 200 GeV Energy with the L3+C Muon Detector

    CERN Document Server

    Achard, P; Aguilar-Benitez, M; van den Akker, M; Alcaraz, J; Alemanni, G; Allaby, J; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, Valery P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Bahr, J; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillere, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, G J; Bohm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, M; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo, M; Chiarusi, T; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, L; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J; de Asmundis, R; Deglon, P; Debreczeni, J; Degre, A; Dehmelt, K; Deiters, K; della Volpe, D; Delmeire, E; Denes, P; DeNotaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Ding, L K; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Duran, I; Echenard, B; Eline, A; El Hage, A; El Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Faber, G; Falagan, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H; Fiandrini, E; Field, J H; Filthaut, F; Fisher, W; Fisk, I; Forconi, G; Freudenreich, K; Furetta, C; Galaktionov, Iouri; Ganguli, S N; Garcia-Abia, Pablo; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grabosch, H J; Grenier, G; Grimm, O; Groenstege, H; Gruenewald, M W; Guida, M; Guo, Y N; Gupta, S; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Haller, Ch; Hatzifotiadou, D; Hayashi, Y; He, Z X; Hebbeker, T; Herve, Alain; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Huo, A X; Hu, Y; Ito, N; Jin, B N; Jing, C L; Jones, Lawrence W; de Jong, P; Josa-Mutuberria, I; Kantserov, V; Kaur, M; Kawakami, S; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, W; Klimentov, A; Konig, A C; Kok, E; Korn, A; Kopal, M; Koutsenko, V; Kraber, M; Kuang, H H; Kraemer, R W; Kruger, A; Kuijpers, J; Kunin, A; Ladron de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Lei, Y; Leich, H; Leiste, R; Levtchenko, M; Levtchenko, P; Li, C; Li, L; Li, Z C; Likhoded, S; Lin, C H; Lin, W T; Linde, F L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, Y S; Luci, C; Luminari, L; Lustermann, W; Ma, W G; Ma, X H; Ma, Y Q; Malgeri, L; Malinin, A; Mana, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Meng, X W; Merola, L; Meschini, M; Metzger, W J; Mihul, A; van Mil, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Monteleoni, B; Muanza, y G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Nahnhauer, R; Naumov, V A; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novak, T; Kluge, Hannelies; Ofierzynski, R; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Parriaud, J -F; Passaleva, G; Patricelli, S; Paul, Thomas Cantzon; Pauluzzi, M; Paus, C; Pauss, F; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pieri, M; Pioppi, M; Piroue, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pojidaev, V; Pothier, J; Prokofev, D; Quartieri, J; Qing, C R; Rahal-Callot, G; Rahaman, Mohammad Azizur; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A; Ravindran, K C; Razis, P; Ren, D; Rescigno, M; Reucroft, S; Rewiersma, P; Riemann, y S; Riles, Keith; Roe, B P; Rojkov, A; Romero, L; Rosca, A; Rosemann, C; Rosenbleck, C; Rosier-Lees, S; Roth, Stefan; Rubio, J A; Ruggiero, G; Rykaczewski, H; Saidi, R; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sanchez, E; Schafer, C; Schegelsky, V; Schmitt, V; Schoeneich, B; Schopper, H; Schotanus, D J; Sciacca, C; Servoli, L; Shen, C Q; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Straessner, A; Sudhakar, K; Sulanke, H; Sultanov, G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillasi, Z; Tang, X W; Tarjan, P; Tauscher, L; Taylor, L; Tellili, B; Teyssier, D; Timmermans, Charles; Ting, Samuel C C; Ting, S M; Tonwar, S C; Toth, J; Trowitzsch, G; Tully, C; Tung, K L; Ulbricht, J; Unger, M; Valente, E; Verkooijen, H; Van de Walle, R T; Vasquez, R; Veszpremi, V; Vesztergombi, G; Vetlitsky, I; Vicinanza, D; Viertel, G; Villa, S; Vivargent, M; Vlachos, S; Vodopianov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, R G; Wang, Q; Wang, X L; Wang, X W; Wang, Z M; Weber, M; van Wijk, R; Wijnen, T A M; Wilkens, H; Wynhoff, S; Xia, L; Xu, Y P; Xu, J S; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yang, X F; Yao, Z G; Yeh, S C; Yu, Z Q; Zalite, An; Zalite, Yu; Zhang, C; Zhang, F; Zhang, J; Zhang, S; Zhang, Z P; Zhao, J; Zhou, S J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zhu, Q Q; Zichichi, A; Zimmermann, B; Zoller, M; Zwart, A N M

    2008-01-01

    Primary cosmic rays experience multiple deflections in the nonuniform galactic and heliospheric magnetic fields which may generate anisotropies. A study of anisotropies in the energy range between 100 and 500 GeV is performed. This energy range is not yet well explored. The L3 detector at the CERN electron-positron collider, LEP, is used for a study of the angular distribution of atmospheric muons with energies above 20 GeV. This distribution is used to investigate the isotropy of the time-dependent intensity of the primary cosmic-ray flux with a Fourier analysis. A small deviation from isotropy at energies around 200 GeV is observed for the second harmonics at the solar frequency. No sidereal anisotropy is found at a level above 10^-4. The measurements have been performed in the years 1999 and 2000.

  12. Dynamics of longitudinal-latitudinal asymmetry of solar activity at various solar cycle phases

    International Nuclear Information System (INIS)

    Baranov, D.G.; Vernova, E.S.; Grigoryan, M.S.; Tyasto, M.I.

    1995-01-01

    Solar activity longitudinal asymmetry in 1943-1984 was studied by means of the polar diagram technique. Longitudinal changes of the activity distribution for northern and southern hemispheres were considered separately. Heliolongitudinal asymmetry was compared with the first harmonic of the 27-days cosmic ray intensity variation and with phases of the Quasi-Biennial Oscillation. There is certain correspondence between the dominance of the asymmetry in one of the solar hemispheres and the phase of the Quasi-Biennial Oscillation. Correlation exists between the amplitude of the 27-days galactic cosmic ray variation and the phase of the Quasi-Biennial Oscillation. 8 refs.; 3 figs

  13. A GENERALIZED TWO-COMPONENT MODEL OF SOLAR WIND TURBULENCE AND AB INITIO DIFFUSION MEAN-FREE PATHS AND DRIFT LENGTHSCALES OF COSMIC RAYS

    Energy Technology Data Exchange (ETDEWEB)

    Wiengarten, T.; Fichtner, H.; Kleimann, J.; Scherer, K. [Institut für Theoretische Physik IV, Ruhr-Universität Bochum (Germany); Oughton, S. [Department of Mathematics, University of Waikato, Hamilton 3240 (New Zealand); Engelbrecht, N. E. [Center for Space Research, North-West University, Potchefstroom 2520 (South Africa)

    2016-12-10

    We extend a two-component model for the evolution of fluctuations in the solar wind plasma so that it is fully three-dimensional (3D) and also coupled self-consistently to the large-scale magnetohydrodynamic equations describing the background solar wind. The two classes of fluctuations considered are a high-frequency parallel-propagating wave-like piece and a low-frequency quasi-two-dimensional component. For both components, the nonlinear dynamics is dominanted by quasi-perpendicular spectral cascades of energy. Driving of the fluctuations by, for example, velocity shear and pickup ions is included. Numerical solutions to the new model are obtained using the Cronos framework, and validated against previous simpler models. Comparing results from the new model with spacecraft measurements, we find improved agreement relative to earlier models that employ prescribed background solar wind fields. Finally, the new results for the wave-like and quasi-two-dimensional fluctuations are used to calculate ab initio diffusion mean-free paths and drift lengthscales for the transport of cosmic rays in the turbulent solar wind.

  14. A GENERALIZED TWO-COMPONENT MODEL OF SOLAR WIND TURBULENCE AND AB INITIO DIFFUSION MEAN-FREE PATHS AND DRIFT LENGTHSCALES OF COSMIC RAYS

    International Nuclear Information System (INIS)

    Wiengarten, T.; Fichtner, H.; Kleimann, J.; Scherer, K.; Oughton, S.; Engelbrecht, N. E.

    2016-01-01

    We extend a two-component model for the evolution of fluctuations in the solar wind plasma so that it is fully three-dimensional (3D) and also coupled self-consistently to the large-scale magnetohydrodynamic equations describing the background solar wind. The two classes of fluctuations considered are a high-frequency parallel-propagating wave-like piece and a low-frequency quasi-two-dimensional component. For both components, the nonlinear dynamics is dominanted by quasi-perpendicular spectral cascades of energy. Driving of the fluctuations by, for example, velocity shear and pickup ions is included. Numerical solutions to the new model are obtained using the Cronos framework, and validated against previous simpler models. Comparing results from the new model with spacecraft measurements, we find improved agreement relative to earlier models that employ prescribed background solar wind fields. Finally, the new results for the wave-like and quasi-two-dimensional fluctuations are used to calculate ab initio diffusion mean-free paths and drift lengthscales for the transport of cosmic rays in the turbulent solar wind.

  15. Effects of solar activity and galactic cosmic ray cycles on the modulation of the annual average temperature at two sites in southern Brazil

    Science.gov (United States)

    Frigo, Everton; Antonelli, Francesco; da Silva, Djeniffer S. S.; Lima, Pedro C. M.; Pacca, Igor I. G.; Bageston, José V.

    2018-04-01

    Quasi-periodic variations in solar activity and galactic cosmic rays (GCRs) on decadal and bidecadal timescales have been suggested as a climate forcing mechanism for many regions on Earth. One of these regions is southern Brazil, where the lowest values during the last century were observed for the total geomagnetic field intensity at the Earth's surface. These low values are due to the passage of the center of the South Atlantic Magnetic Anomaly (SAMA), which crosses the Brazilian territory from east to west following a latitude of ˜ 26°. In areas with low geomagnetic intensity, such as the SAMA, the incidence of GCRs is increased. Consequently, possible climatic effects related to the GCRs tend to be maximized in this region. In this work, we investigate the relationship between the ˜ 11-year and ˜ 22-year cycles that are related to solar activity and GCRs and the annual average temperature recorded between 1936 and 2014 at two weather stations, both located near a latitude of 26° S but at different longitudes. The first of these stations (Torres - TOR) is located in the coastal region, and the other (Iraí - IRA) is located in the interior, around 450 km from the Atlantic Ocean. Sunspot data and the solar modulation potential for cosmic rays were used as proxies for the solar activity and the GCRs, respectively. Our investigation of the influence of decadal and bidecadal cycles in temperature data was carried out using the wavelet transform coherence (WTC) spectrum. The results indicate that periodicities of 11 years may have continuously modulated the climate at TOR via a nonlinear mechanism, while at IRA, the effects of this 11-year modulation period were intermittent. Four temperature maxima, separated by around 20 years, were detected in the same years at both weather stations. These temperature maxima are almost coincident with the maxima of the odd solar cycles. Furthermore, these maxima occur after transitions from even to odd solar cycles, that is

  16. Isotopic composition of neon in the galactic cosmic rays: a high resolution measurement

    International Nuclear Information System (INIS)

    Greiner, D.E.; Wiedenbeck, M.E.; Bieser, F.S.; Crawford, H.J.; Heckman, H.H.; Lindstrom, P.J.

    1979-06-01

    A measurement of the isotopic composition of galactic cosmic ray neon in the energy range 70 to 260 MeV/amu has been made using the U.C. Berkeley HKH instrument aboard ISEE-3. A combination of high resolution and good statistical accuracy makes possible a precise determination of the local interplanetary neon composition. We find 22 Ne/ 20 Ne = 0.64 +- 0.07 and 21 Ne/ 20 Ne < 0.30 in local interplanetary space. These ratios, when interpreted in using standard galactic propagation and solar modulation models, yield cosmic ray source abundances which are inconsistent with a solar-like source composition

  17. Cosmic disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y; Morisawa, S [Kyoto Univ. (Japan). Faculty of Engineering

    1975-03-01

    The technical and economical possibility and safety of the disposal of highly radioactive waste into cosmos are reviewed. The disposal of highly radioactive waste is serious problem to be solved in the near future, because it is produced in large amounts by the reprocessing of spent fuel. The promising methods proposed are (i) underground disposal, (ii) ocean disposal, (iii) cosmic disposal and (iv) extinguishing disposal. The final disposal method is not yet decided internationally. The radioactive waste contains very long life nuclides, for example transuranic elements and actinide elements. The author thinks the most perfect and safe disposal method for these very long life nuclides is the disposal into cosmos. The space vehicle carrying radioactive waste will be launched safely into outer space with recent space technology. The selection of orbit for vehicles (earth satellite or orbit around planets) or escape from solar system, selection of launching rocket type pretreatment of waste, launching weight, and the cost of cosmic disposal were investigated roughly and quantitatively. Safety problem of cosmic disposal should be examined from the reliable safety study data in the future.

  18. Interplanetary Parameters Leading to Relativistic Electron Enhancement and Persistent Depletion Events at Geosynchronous Orbit and Potential for Prediction

    Science.gov (United States)

    Pinto, Victor A.; Kim, Hee-Jeong; Lyons, Larry R.; Bortnik, Jacob

    2018-02-01

    We have identified 61 relativistic electron enhancement events and 21 relativistic electron persistent depletion events during 1996 to 2006 from the Geostationary Operational Environmental Satellite (GOES) 8 and 10 using data from the Energetic Particle Sensor (EPS) >2 MeV fluxes. We then performed a superposed epoch time analysis of the events to find the characteristic solar wind parameters that determine the occurrence of such events, using the OMNI database. We found that there are clear differences between the enhancement events and the persistent depletion events, and we used these to establish a set of threshold values in solar wind speed, proton density and interplanetary magnetic field (IMF) Bz that can potentially be useful to predict sudden increases in flux. Persistent depletion events are characterized by a low solar wind speed, a sudden increase in proton density that remains elevated for a few days, and a northward turning of IMF Bz shortly after the depletion starts. We have also found that all relativistic electron enhancement or persistent depletion events occur when some geomagnetic disturbance is present, either a coronal mass ejection or a corotational interaction region; however, the storm index, SYM-H, does not show a strong connection with relativistic electron enhancement events or persistent depletion events. We have tested a simple threshold method for predictability of relativistic electron enhancement events using data from GOES 11 for the years 2007-2010 and found that around 90% of large increases in electron fluxes can be identified with this method.

  19. PRECISE COSMIC RAYS MEASUREMENTS WITH PAMELA

    Directory of Open Access Journals (Sweden)

    A. Bruno

    2013-12-01

    Full Text Available The PAMELA experiment was launched on board the Resurs-DK1 satellite on June 15th 2006. The apparatus was designed to conduct precision studies of charged cosmic radiation over a wide energy range, from tens of MeV up to several hundred GeV, with unprecedented statistics. In five years of continuous data taking in space, PAMELA accurately measured the energy spectra of cosmic ray antiprotons and positrons, as well as protons, electrons and light nuclei, sometimes providing data in unexplored energetic regions. These important results have shed new light in several astrophysical fields like: an indirect search for Dark Matter, a search for cosmological antimatter (anti-Helium, and the validation of acceleration, transport and secondary production models of cosmic rays in the Galaxy. Some of the most important items of Solar and Magnetospheric physics were also investigated. Here we present the most recent results obtained by the PAMELA experiment.

  20. A study of the link between cosmic rays and clouds with a cloud chamber at the CERN PS

    CERN Document Server

    Fastrup, B; Lillestøl, Egil; Thorn, E; Bosteels, Michel; Gonidec, A; Harigel, G G; Kirkby, Jasper; Mele, S; Minginette, P; Nicquevert, Bertrand; Schinzel, D; Seidl, W; Grundsøe, P; Marsh, N D; Polny, J; Svensmark, H; Viisanen, Y; Kurvinen, K L; Orava, Risto; Hämeri, K; Kulmala, M; Laakso, I; Mäkelä, J M; O'Dowd, C D; Afrosimov, V; Basalaev, A; Panov, M; Laaksonen, B D; Joutsensaari, J; Ermakov, V; Makhmutov, V S; Maksumov, O; Pokrevsky, P; Stozhkov, Yu I; Svirzhevsky, N S; Carslaw, K; Yin, Y; Trautmann, T; Arnold, F; Wohlfrom, K H; Hagen, D; Schmitt, J; Whitefield, P; Aplin, K; Harrison, R G; Bingham, R; Close, Francis Edwin; Gibbins, C; Irving, A; Kellett, B; Lockwood, M; Petersen, D; Szymanski, W W; Wagner, P E; Vrtala, A; CERN. Geneva. SPS-PS Experiments Committee

    2000-01-01

    Recent satellite data have revealed a surprising correlation between galactic cosmic ray (GCR) intensity and the fraction of the Earth covered by clouds. If this correlation were to be established by a causal mechanism, it could provide a crucial step in understanding the long-sought mechanism connecting solar and climate variability. The Earth's climate seems to be remarkably sensitive to solar activity, but variations of the Sun's electromagnetic radiation appear to be too small to account for the observed climate variability. However, since the GCR intensity is strongly modulated by the solar wind, a GCR-cloud link may provide a sufficient amplifying mechanism. Moreover if this connection were to be confirmed, it could have profound consequences for our understanding of the solar contributions to the current global warming. The CLOUD (Cosmics Leaving OUtdoor Droplets) project proposes to test experimentally the existence a link between cosmic rays and cloud formation, and to understand the microphysical me...

  1. Cosmic rays and space weather: effects on global climate change

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2012-01-01

    Full Text Available We consider possible effects of cosmic rays and some other space factors on the Earth's climate change. It is well known that the system of internal and external factors formatting the climate is very unstable; decreasing planetary temperature leads to an increase of snow surface, and decrease of the total solar energy input into the system decreases the planetary temperature even more, etc. From this it follows that even energetically small factors may have a big influence on climate change. In our opinion, the most important of these factors are cosmic rays and cosmic dust through their influence on clouds, and thus, on climate.

  2. Cosmic rays and space weather. Effects on global climate change

    International Nuclear Information System (INIS)

    Dorman, L.I.; Israel Space Agency; Russian Academy of Sciences

    2012-01-01

    We consider possible effects of cosmic rays and some other space factors on the Earth's climate change. It is well known that the system of internal and external factors formatting the climate is very unstable; decreasing planetary temperature leads to an increase of snow surface, and decrease of the total solar energy input into the system decreases the planetary temperature even more, etc. From this it follows that even energetically small factors may have a big influence on climate change. In our opinion, the most important of these factors are cosmic rays and cosmic dust through their influence on clouds, and thus, on climate. (orig.)

  3. On the Non-Thermal Energy Content of Cosmic Structures

    Directory of Open Access Journals (Sweden)

    Franco Vazza

    2016-11-01

    Full Text Available (1 Background: the budget of non-thermal energy in galaxy clusters is not well constrained, owing to the observational and theoretical difficulties in studying these diluted plasmas on large scales; (2 Method: we use recent cosmological simulations with complex physics in order to connect the emergence of non-thermal energy to the underlying evolution of gas and dark matter; (3 Results: the impact of non-thermal energy (e.g., cosmic rays, magnetic fields and turbulent motions is found to increase in the outer region of galaxy clusters. Within numerical and theoretical uncertainties, turbulent motions dominate the budget of non-thermal energy in most of the cosmic volume; (4 Conclusion: assessing the distribution non-thermal energy in galaxy clusters is crucial to perform high-precision cosmology in the future. Constraining the level of non-thermal energy in cluster outskirts will improve our understanding of the acceleration of relativistic particles and of the origin of extragalactic magnetic fields.

  4. Reaction rate and energy-loss rate for photopair production by relativistic nuclei

    Science.gov (United States)

    Chodorowski, Michal J.; Zdziarski, Andrzej A.; Sikora, Marek

    1992-01-01

    The process of e(+/-) pair production by relativistic nuclei on ambient photons is considered. The process is important for cosmic-ray nuclei in interstellar and intergalactic space as well as in galactic and extragalactic compact objects. The rate of this process is given by an integral of the cross section over the photon angular and energy distribution. In the case of isotropic photons, the angular integration is performed to provide an expression for the rate at given photon energy in the nucleus rest frame. The total rate then becomes a single integral of that rate over the photon energy distribution. Formulas are also given for the fractional energy loss of a relativistic nucleus colliding with a photon of a given energy in the rest frame. The nucleus energy-loss rate is integrated over the photon angular distribution in the case of isotropic photons, and simple fits are provided.

  5. Relativistic and non-relativistic studies of nuclear matter

    NARCIS (Netherlands)

    Banerjee, MK; Tjon, JA

    2002-01-01

    We point out that the differences between the results of the non-relativistic lowest order Brueckner theory (LOBT) and the relativistic Dirac-Brueckner analysis predominantly arise from two sources. Besides effects from a nucleon mass modification M* in nuclear medium we have in a relativistic

  6. Relativistic Astrophysics and Cosmology: A Primer

    International Nuclear Information System (INIS)

    Abramowicz, Marek A

    2007-01-01

    'Relativistic Astrophysics and Cosmology: A Primer' by Peter Hoyng, was published last year by Springer. The book is based on lectures given by the author at University of Utrecht to advanced undergraduates. This is a short and scholarly book. In about 300 pages, the author has covered the most interesting and important applications of Albert Einstein's general relativity in present-day astrophysics and cosmology: black holes, neutron stars, gravitational waves, and the cosmic microwave background. The book stresses theory, but also discusses several experimental and observational topics, such as the Gravity Probe B mission, interferometer detectors of gravitational waves and the power spectrum of the cosmic microwave background. The coverage is not uniform. Some topics are discussed in depth, others are only briefly mentioned. The book obviously reflects the author's own research interests and his preferences for specific mathematical methods, and the choice of the original artwork that illustrates the book (and appears on its cover) is a very personal one. I consider this personal touch an advantage, even if I do not always agree with the author's choices. For example, I employ Killing vectors as a very useful mathematical tool not only in my research on black holes, but also in my classes. I find that my students prefer it when discussions of particle, photon and fluid motion in the Schwarzschild and Kerr spacetimes are based explicitly and directly on the Killing vectors rather than on coordinate calculations. The latter approach is, of course, the traditional one, and is used in Peter Hoyng's book. Reading the book is a stimulating experience, because the reader can almost feel the author's presence. The author's opinions, his mathematical taste, his research pleasures, and his pedagogical passion are apparent everywhere. Lecturers contemplating a new course on relativistic astrophysics could adopt Hoyng's book as the text. Their students will be in the author

  7. Cosmic Ray Antimatter

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Over the last decade, space-born experiments have delivered new measurements of high energy cosmic-ray (CR) antiprotons and positrons, opening new frontiers in energy reach and precision. While being a promising discovery tool for new physics or exotic astrophysical phenomena, an irreducible background of antimatter comes from CR collisions with interstellar matter in the Galaxy. Understanding this irreducible source or constraining it from first principles is an interesting challenge: a game of hide-and-seek where the objective is to identify the laws of basic particle physics among the forest of astrophysical uncertainties. I describe an attempt to obtain such understanding, combining information from a zoo of CR species including massive nuclei and relativistic radioisotopes. I show that: (i) CR antiprotons most likely come from CR-gas collisions; (ii) positron data is consistent with, and suggestive of the same astrophysical production mechanism responsible for antiprotons and dominated by proton-proton c...

  8. Cosmic odyssey

    International Nuclear Information System (INIS)

    Heidmann, J.

    1989-01-01

    The immensity of the cosmos, the richness of the universe, the limits of space and time: these are the themes of Cosmic Odyssey, which takes the reader on imaginary journeys through the past, present and future of our universe. After a first look at the starry night sky, the enigmas posed since ancient times by the universe are reviewed. There then follows a broadbrush view of the universe as we understand it today. Following this, a trio of chapters take us to ultimate questions about its nature. The author explores in turn the relativistic universe, the quantum universe and the inflationary universe. Finally the journey returns to questions that touch on our own presence in the universe. Cosmology, the science of understanding the nature of the universe as a whole, has gone through an extraordinary revolution in its approach. This book explains in detail the link between particle physics and cosmology, the very early universe, the significance of Grand Unified Theory and superstrings, the magical qualities of the inflationary universe, and the seemingly bleak scenarios for the farthest future. (author)

  9. From cosmic ray physics to cosmic ray astronomy: Bruno Rossi and the opening of new windows on the universe

    Science.gov (United States)

    Bonolis, Luisa

    2014-01-01

    Bruno Rossi is considered one of the fathers of modern physics, being also a pioneer in virtually every aspect of what is today called high-energy astrophysics. At the beginning of 1930s he was the pioneer of cosmic ray research in Italy, and, as one of the leading actors in the study of the nature and behavior of the cosmic radiation, he witnessed the birth of particle physics and was one of the main investigators in this fields for many years. While cosmic ray physics moved more and more towards astrophysics, Rossi continued to be one of the inspirers of this line of research. When outer space became a reality, he did not hesitate to leap into this new scientific dimension. Rossi's intuition on the importance of exploiting new technological windows to look at the universe with new eyes, is a fundamental key to understand the profound unity which guided his scientific research path up to its culminating moments at the beginning of 1960s, when his group at MIT performed the first in situ measurements of the density, speed and direction of the solar wind at the boundary of Earth's magnetosphere, and when he promoted the search for extra-solar sources of X rays. A visionary idea which eventually led to the breakthrough experiment which discovered Scorpius X-1 in 1962, and inaugurated X-ray astronomy.

  10. Towards a Unified Source-Propagation Model of Cosmic Rays

    Science.gov (United States)

    Taylor, M.; Molla, M.

    2010-07-01

    report that the entire spectrum, spanning cosmic rays of local solar origin and those eminating from galactic and extra-galactic sources can be explained using a new diagnostic — the gradient of the log-log plot. This diagnostic reveals the known Boltmann statistics in the solar-terrestrial neighbourhood but at the highest energies — presumably at the cosmic ray source, with clearly separated fractal scales in between. We interpret this as modulation at the source followed by Fermi acceleration facilitated by galactic and extra-galactic magnetic fields with a final modulation in the solar-terrestrial neighbourhood. We conclude that the gradient of multifractal curves appears to be an excellent detector of fractality.

  11. The NASA cosmic ray program for the 1990's and beyond Interim report of the NASA Cosmic Ray Program Working Group

    International Nuclear Information System (INIS)

    Ahlen, S.P.; Binns, W.R.; Cherry, M.L.; Gaisser, T.K.; Jones, W.V.; Ling, J.C.; Mewaldt, R.A.; Muller, D.; Ormes, J.O.; Ramaty, R.; Stone, E.C.; Waddington, C.J.; Webber, W.R.; Miedenbeck, M.E.

    1990-01-01

    The interim report of the 1989 NASA Cosmic Ray Program Working Group is presented. The report summarizes the cosmic ray program for the 1990's, including the recently approved ACE, Astromag, HNC, POEMS, and SAMPEX missions, as well as other key elements of the program. New science themes and candidate missions are identified for the first part of the 21st Century, including objectives that might be addressed as part of the Human Exploration Initiative. Among the suggested new thrusts for the 21st century are: an Interstellar Probe into the nearby interstellar medium; a Lunar-Based Calorimeter to measure the cosmic ray composition near ∼10 16 eV; high precision element and isotope spectroscopy of ultraheavy (Z≥30) elements; and new, more sensitive, studies of impulsive solar flare events

  12. Cosmic electrodynamics electrodynamics and magnetic hydrodynamics of cosmic plasmas

    CERN Document Server

    Fleishman, Gregory D

    2013-01-01

    This volume offers a deep and detailed overview of plasma behavior in diverse astrophysical conditions. The presentation is based on a solid science foundation that includes well established physical laws of electromagnetism, hydrodynamics, classical and quantum mechanics and other relevant fields of science. Qualitative ideas and descriptions are followed by quantitative derivations and estimates of key physical quantities, and the results of theories and models are confronted with modern observational data obtained from numerous international science programs. Fundamental astrophysical phenomena, such as charged particle acceleration and magnetic field generation, are presented along with spectacular phenomena, such as stellar winds (including ultra-relativistic pulsar wind), supernova explosions and evolution of its remnants, and solar flares.

  13. Asymptotic matching of the solar-system gravitational yields

    International Nuclear Information System (INIS)

    Kopejkin, S.M.

    1989-01-01

    In the framework of the general relativity, the structure of the Solar-system gravitational fields is investigated and the relativistic formulae of transformation between nonrotating in the dynamical sense harmonic reference systems - barycentric, planetocentric and topocentric (satelite) ones - are derived by the method of the asymptotic mathing of components of the metric tensor. The derived formulae generalize the linear Poincare transformation in the case of curved space-time. With the help of the asymptotic matching formulae, the relationships between relativistic time scales inside the Solar system have been established, the equations of relativistic precession of the space axis of one reference system with respect to another one have been derived, the equations of translational motion of the center-of-mass of planets (the Sun) and their satellites have been obtained

  14. New test of Lorentz symmetry using ultrahigh-energy cosmic rays

    Science.gov (United States)

    Anchordoqui, Luis A.; Soriano, Jorge F.

    2018-02-01

    We propose an innovative test of Lorentz symmetry by observing pairs of simultaneous parallel extensive air showers produced by the fragments of ultrahigh-energy cosmic ray nuclei which disintegrated in collisions with solar photons. We show that the search for a cross-correlation of showers in arrival time and direction becomes background free for an angular scale ≲3 ° and a time window O (10 s ) . We also show that if the solar photo-disintegration probability of helium is O (10-5.5) then the hunt for spatiotemporal coincident showers could be within range of existing cosmic ray facilities, such as the Pierre Auger Observatory. We demonstrate that the actual observation of a few events can be used to constrain Lorentz violating dispersion relations of the nucleon.

  15. Sun and solar flares

    Energy Technology Data Exchange (ETDEWEB)

    McKenna-Lawlor, S. (Saint Patrick' s Coll., Maynooth (Ireland))

    1982-07-01

    The subject is discussed under the headings: the sun's core (thermonuclear reactions, energy transfer from core through radiation zone, convection zone, photosphere, chromosphere and corona); the photosphere (convection, granulation, sunspots, magnetic fields, solar cycle, rotation of the sun); solar variability and paleoclimatic records (correlation of low solar activity with increased /sup 14/C production in atmosphere); the chromosphere and corona (turbulence, temperature, coronal streamers, energy transfer); solar flares (cosmic rays, aurorae, spectra, velocity of flares, prominences, mechanisms of flares); the solar wind.

  16. Observational investigation of the solar oblateness

    International Nuclear Information System (INIS)

    Stebbins, R.T.

    1975-01-01

    The solar oblateness provides important information for solar physics and experimental relativity. After the solar neutrino flux, the sun's shape is the most revealing probe of the solar interior. Rapidly rotating interiors suggested to explain the solar neutrino paradox produce sizeable oblatenesses. Certain types of surface phenomena can also be investigated with precision diameter measurements. The relativistic advance of Mercury's perihelion has long been the principal experimental support for Einstein's theory of general relativity. Recent measurements of the solar oblateness have suggested that the relativistic advance is smaller than originally thought due to a contribution from a solar mass quadrupole moment. This interpretation of the perihelion advance would shift the experimental support to the scalar-tensor theory of gravitation. A debate over the interpretation of the oblateness measurements has resulted. In light of these circumstances, solar oblateness observations have been attempted. Improved experimental techniques have been devised, including a daytime astrometric telescope and an explicit definition of the sun's edge. Observations reveal a time varying excess equatorial brightness, that is, a variation in the limb darkening function between equator and pole, which would preclude accurate interpretation of previous solar oblateness measurements. This vindicates the alternate interpretations of other solar oblateness measurements. From these results, it can be concluded that the Mercury perihelion evidence firmly supports Einstein's General Theory of Relativity, the solar interiors cannot be rotating fast enough to account for the low solar neutrino flux, and a time varying excess equatorial brightness exists

  17. Simulating cosmic radiation absorption and secondary particle production of solar panel layers of Low Earth Orbit (LEO) satellite with GEANT4

    Science.gov (United States)

    Yiǧitoǧlu, Merve; Veske, Doǧa; Nilüfer Öztürk, Zeynep; Bilge Demirköz, Melahat

    2016-07-01

    All devices which operate in space are exposed to cosmic rays during their operation. The resulting radiation may cause fatal damages in the solid structure of devices and the amount of absorbed radiation dose and secondary particle production for each component should be calculated carefully before the production. Solar panels are semiconductor solid state devices and are very sensitive to radiation. Even a short term power cut-off may yield a total failure of the satellite. Even little doses of radiation can change the characteristics of solar cells. This deviation can be caused by rarer high energetic particles as well as the total ionizing dose from the abundant low energy particles. In this study, solar panels planned for a specific LEO satellite, IMECE, are analyzed layer by layer. The Space Environment Information System (SPENVIS) database and GEANT4 simulation software are used to simulate the layers of the panels. The results obtained from the simulation will be taken in account to determine the amount of radiation protection and resistance needed for the panels or to revise the design of the panels.

  18. Galactic Cosmic-ray Transport in the Global Heliosphere: A Four-Dimensional Stochastic Model

    Science.gov (United States)

    Florinski, V.

    2009-04-01

    We study galactic cosmic-ray transport in the outer heliosphere and heliosheath using a newly developed transport model based on stochastic integration of the phase-space trajectories of Parker's equation. The model employs backward integration of the diffusion-convection transport equation using Ito calculus and is four-dimensional in space+momentum. We apply the model to the problem of galactic proton transport in the heliosphere during a negative solar minimum. Model results are compared with the Voyager measurements of galactic proton radial gradients and spectra in the heliosheath. We show that the heliosheath is not as efficient in diverting cosmic rays during solar minima as predicted by earlier two-dimensional models.

  19. Stellar origin of the 22Ne excess in cosmic rays

    International Nuclear Information System (INIS)

    Casse, M.; Paul, J.A.

    1982-01-01

    The 22 Ne excess at the cosmic-ray source is discussed in terms of a 22 Ne-rich component injected and accelerated by carbon-rich Wolf-Rayet stars. The overabundance of 22 Ne relative to 20 Ne predicted at the surface of these stars is estimated to a factor approx.120 with respect to solar system abundances. In order to give rise to a 22 Ne excess of about 3 at the cosmic-ray sources as inferred from observations, the carbon-rich Wolf-Rayet contribution to the primary cosmic-ray flux is to be at maximum 1/60. This component would be energized by strong stellar winds producing quasi-standing shocks around the Wolf-Rayet stars

  20. Modulation of galactic and anomalous cosmic rays in the inner heliosphere

    Science.gov (United States)

    Heber, B.

    Our knowledge on how galactic and anomalous cosmic rays are modulated in the inner heliosphere has been dramatically enlarged due to measurements provided by several missions launched in the past ten years. The current paradigma of singly charged anomalous cosmic rays has been confirmed by recent measurements from the SAMPEX and ACE satelite. Ulysses explored the inner heliosphere at polar regions during the last solar minimum period and is heading again to high heliographic latitudes during the time of the conference in July, 2000. The Sun approaches maximum activity when the spacecraft is at high heliographic latitudes giving us for the first time the possibility to explore modulation of cosmic rays in the inner three-dimensional heliosphere during such conditions. Ulysses electron measurements in addition to the 1 AU ICE electron and IMP helium measurements allows us to investigate charge sign dependent modulation over a full 22-year solar magnetic cycle. Implications of these observations for our understanding of different modulation processes in the inner three-dimensional heliosphere are presented.

  1. Acceleration and loss of relativistic electrons during small geomagnetic storms.

    Science.gov (United States)

    Anderson, B R; Millan, R M; Reeves, G D; Friedel, R H W

    2015-12-16

    Past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms ( D s t  > -50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result in flux depletion than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. Small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.

  2. Frontiers in In-Situ Cosmic Dust Detection and Analysis

    International Nuclear Information System (INIS)

    Sternovsky, Zoltan; Auer, Siegfried; Drake, Keith; Gruen, Eberhard; Horanyi, Mihaly; Le, Huy; Xie Jianfeng; Srama, Ralf

    2011-01-01

    In-situ cosmic dust instruments and measurements played a critical role in the emergence of the field of dusty plasmas. The major breakthroughs included the discovery of β-meteoroids, interstellar dust particles within the solar system, Jovian stream particles, and the detection and analysis of Enceladus's plumes. The science goals of cosmic dust research require the measurements of the charge, the spatial, size and velocity distributions, and the chemical and isotopic compositions of individual dust particles. In-situ dust instrument technology has improved significantly in the last decade. Modern dust instruments with high sensitivity can detect submicron-sized particles even at low impact velocities. Innovative ion optics methods deliver high mass resolution, m/dm>100, for chemical and isotopic analysis. The accurate trajectory measurement of cosmic dust is made possible even for submicron-sized grains using the Dust Trajectory Sensor (DTS). This article is a brief review of the current capabilities of modern dust instruments, future challenges and opportunities in cosmic dust research.

  3. SAMPEX mission overview

    International Nuclear Information System (INIS)

    Mason, G.M.; Baker, D.N.; Blake, J.B.; Callis, L.B.; Hamilton, D.C.; Hovestadt, D.; Klecker, B.; Mewaldt, R.A.; Scholer, M.; Stone, E.C.; von Rosenvinge, T.T.

    1990-01-01

    The Solar, Anomalous, and Magnetospheric Particle Explorer, SAMPEX, will carry out energetic particle studies of outstanding scientific questions in the fields of space plasma physics, solar physics, magnetospheric and middle atmospheric physics, and cosmic ray physics. SAMPEX will measure the electron and ion composition of energetic particle populations from ∼0.4 MeV/nucleon to hundreds of MeV/nucleon from a zenith-pointing small satellite in near-polar orbit, using a coordinate set of detectors with excellent charge and mass resolution, and with higher sensitivity than previously flown instruments. While over the magnetic poles, the instruments will study the composition of anomalous cosmic rays, solar energetic particles, and galactic cosmic rays. At lower magnetic latitudes, geomagnetic cutoff effects will allow determination of the ionization state of these particles at energies much higher than can be studied from interplanetary spacecraft. At subauroral latitudes, SAMPEX will also observe precipitating relativistic magnetospheric electrons, which undergo important interactions within the middle atmosphere

  4. The Bess Investigation of the Origin of Cosmic-ray Antiprotons and Search for Cosmological Antimatter

    Science.gov (United States)

    Mitchell, John; Yamamoto, Akira; Yoshimura, Koji; Makida, Yasuhiro; Matsuda, Shinya; Hasegawa, Masaya; Horikoshi, Atsushi; Tanaka,Ken-ichi; Suzuki, Junichi; Nishimura, Jun; hide

    2008-01-01

    The Balloon-borne Experiment with a Superconducting Spectrometer (BESS) collaboration has made precise measurements of the spectra of cosmic ray antiprotons and light nuclei and conducted a sensitive search for antinuclei. Ten BESS high-latitude flights, eight from Canada and two from Antarctica, span more than a Solar cycle between 1993 and 2007/2008. BESS measurements of low-energy antiprotons constrain candidate models for dark matter including the possible signature of primordial black hole evaporation. The stringent BESS measurements of antiprotons and the elemental and isotopic spectra of H and He provide strong constraints on models of cosmic-ray transport in the Galaxy and Solar System. BESS has also reported the first antideuterium upper limit. BESS employs a superconducting magnetic-rigity spectrometer with time-of-flight and aerogel Cherenkov detectors to identify incident particles by charge, charge sign, mass, and energy. The BESS-Polar long-duration instrument has reduced lower energy limit of 100 MeV (top of the atmosphere) to increase its sensitivity to possible primary antiproton sources. BESS-Polar II was rebuilt with extended magnet lifetime, improved detector and electronic performance, and greater data storage capacity. It was flown fro Antarctica December 2007-January 2008, recording about 4.6 bission events during 24.5 days at float altitude with the magnet on. During the flight the influence of a high-speed stream in the Solar wind was observed. Details of the BESS-Polar II instrument and flight performance are reported elsewhere at this conference. The successful BESS-Polar II flight at Solar minimum is especially important. Most cosmic-ray antiprotons are secondary products of nuclear interactions of primary cosmic-ray nuclei with the interstellar gas, giving a spectrum that peaks at about 2 GeV and falls rapidly to higher and lower energies. However, BESS data taken in the previous Solar minimum show a small excess over secondary

  5. Transient phenomena in cosmic ray intensity during extreme events

    Science.gov (United States)

    Agarwal, Rekha; Mishra, Rajesh K.

    2008-04-01

    In the present work an analysis has been made of the extreme events occurring during July 2005. Specifically, a rather intense Forbush decrease was observed at different neutron monitors all over the world during 16 July 2005. An effort has been made to study the effect of this unusual event on cosmic ray intensity as well as various solar and interplanetary plasma parameters. It is noteworthy that during 11 to 18 July 2005 the solar activity ranged from low to very active. Especially low levels occurred on 11, 15, and 17 July whereas high levels took place on 14 and 16 July 2005. The Sun is observed to be active during 11 to 18 July 2005, the interplanetary magnetic field intensity lies within 15 nT, and solar wind velocity was limited to ˜500 kms-1. The geomagnetic activity during this period remains very quiet, the Kp index did not exceed 5, the disturbance storm time Dst index remains ˜-70 nT and no sudden storm commencement has been detected during this period. It is noted that for the majority of the hours, the north/south component of the interplanetary magnetic field, Bz, remains negative, and the cosmic ray intensity increases and shows good/high correlation with Bz, as the polarity of Bz tends to shift from negative to positive values, the intensity decreases and shows good/high anti-correlation with Bz. The cosmic ray intensity tends to decrease with increase of interplanetary magnetic field strength (B) and shows anti-correlation for the majority of the days.

  6. Summary of daily observational results of solar phenomena, cosmic ray, geomagnetic variation, ionosphere, radio wave propagation and airglow. During October 1973 through September 1975

    Energy Technology Data Exchange (ETDEWEB)

    1976-12-01

    The diagrams in this section of the publication illustrate the summary of daily observational results of solar phenomena, cosmic ray, geomagnetic variation, ionosphere, radio wave propagation and airglow observed in Japan. For convenience, the observational results are arranged by the solar rotation number. The aim of this illustration is to disseminate an outline of daily events observed in Japan for the benefit of active research workers who plan to make detailed study of the specific solar and terrestrial events. Therefore, the illustrations do not show all observational results in Japan but only representative ones at some key stations in Japan. They will suffice for the present purpose. The method of illustration shown in the instruction on the next page is still a preliminary one, and it is subject to change resulting from the kind advice of the users of this part of the publication.

  7. The sun and solar flares

    International Nuclear Information System (INIS)

    McKenna-Lawlor, S.

    1982-01-01

    The subject is discussed under the headings: the sun's core (thermonuclear reactions, energy transfer from core through radiation zone, convection zone, photosphere, chromosphere and corona); the photosphere (convection, granulation, sunspots, magnetic fields, solar cycle, rotation of the sun); solar variability and paleoclimatic records (correlation of low solar activity with increased 14 C production in atmosphere); the chromosphere and corona (turbulence, temperature, coronal streamers, energy transfer); solar flares (cosmic rays, aurorae, spectra, velocity of flares, prominences, mechanisms of flares); the solar wind. (U.K.)

  8. Handbook of cosmic hazards and planetary defense

    CERN Document Server

    Allahdadi, Firooz

    2015-01-01

    Covers in a comprehensive fashion all aspects of cosmic hazards and possible strategies for contending with these threats through a comprehensive planetary defense strategy. This handbook brings together in a single reference work a rich blend of information about the various types of cosmic threats that are posed to human civilization by asteroids, comets, bolides, meteors, solar flares and coronal mass ejections, cosmic radiation and other types of threats that are only recently beginning to be understood and studied, such as investigation of the “cracks” in the protective shield provided by the Van Allen belts and the geomagnetosphere, of matter-antimatter collisions, orbital debris and radiological or biological contamination. Some areas that are addressed involve areas about which there is a good deal of information that has been collected for many decades by multiple space missions run by many different space agencies, observatories and scientific researchers. Other areas involving research and ...

  9. Two-dimensional numerical modeling of the cosmic ray storm

    International Nuclear Information System (INIS)

    Kadokura, A.; Nishida, A.

    1986-01-01

    A numerical model of the cosmic ray storm in the two-dimensional heliosphere is constructed incorporating the drift effect. We estimate the effect of a flare-associated interplanetary shock and the disturbed region behind it (characterized by enhancement in velocity and magnetic field, and decrease in mean free path) on the density and anisotropy of cosmic rays in the heliosphere. As the disturbance propagates outward, a density enhancement appears on the front side, and a density depression region is produced on the rear side. The effect of drift on the cosmic ray storm appears most clearly in the higher-latitude region. For the parallel (antiparallel) state of the solar magnetic field which corresponds to the pre(post-) 1980 period, the density in the higher-latitude region decreases (increases) before the shock arrival. The maximum density depression near the earth for the parallel state is greater than for the antiparallel state, and the energy spectrum of the density depression in percentage is softer for the parallel state than for the antiparallel state. Prior to the arrival of the shock, the phase of solar diurnal anisotropy begins to shift to the earlier hours, and its amplitude becomes greater for both polarity states. North-south anisotropy also becomes greater because of the enhanced drift for both polarity states

  10. Data processing in cosmic rays at the Institute of Physical and Chemical Research

    International Nuclear Information System (INIS)

    Wada, Masami

    1980-01-01

    Data processing performed by the World Data Center for Cosmic Rays, installed at the Institute of Physical and Chemical Research (IPCR) is reported. The Center was set up as a member of the World Data Center for Solar and Terrestrial Physics and performs assigned services. There are several C-level World Data Centers in Japan, and the DC for Cosmic Rays, IPCR, is described in detail, in the context of cosmic ray research itself. As to the future of the Center, IPCR, personal opinions and expectations are made. Thus a glimpse on a century of International Cooperative Observation and a quarter century of world data center operations are made from cosmic ray research side. (author)

  11. Measurements of cosmic-ray doses in commercial airline cabins

    International Nuclear Information System (INIS)

    Okano, M.; Fujitaka, K.; Izumo, K.

    1996-01-01

    Cosmic radiation doses which aircrew and air passengers receive in airplanes have been calling attention in many countries especially in the last decade. In this relation, various types of information had been reported on cosmic radiation intensity. In Japan, the cosmic radiation intensity had been measured in commercial airline cabins as well as chartered flights. While the intensity depends on altitude, geomagnetic latitude (or cutoff rigidity), and temporal variation of the solar activity, their doses are often speculated based on paper records on airflights combined with the intensity-altitude relationship. In this study, however, efforts were made to estimate more realistic integrated doses in airline cabins based on actual on-board measurements which had been conducted several dozens of times in each year (e.g., 45 times in 1994 and 27 times in 1995). (author)

  12. Solar wind charge exchange emission in the Chandra deep field north

    Energy Technology Data Exchange (ETDEWEB)

    Slavin, Jonathan D.; Wargelin, Bradford J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Koutroumpa, Dimitra [LATMOS/IPSL, CNRS, Université Versailles Saint Quentin, 11 Boulevard d' Alembert, F-78280, Guyancourt (France)

    2013-12-10

    The diffuse soft X-ray background comes from distant galaxies, from hot Galactic gas, and from within the solar system. The latter emission arises from charge exchange between highly charged solar wind ions and neutral gas. This so-called solar wind charge exchange (SWCX) emission is spatially and temporally variable and interferes with our measurements of more distant cosmic emission while also providing important information on the nature of the solar wind-interstellar medium interaction. We present the results of our analysis of eight Chandra observations of the Chandra Deep Field North (CDFN) with the goal of measuring the cosmic and SWCX contributions to the X-ray background. Our modeling of both geocoronal and heliospheric SWCX emission is the most detailed for any observation to date. After allowing for ∼30% uncertainty in the SWCX emission and subtracting it from the observational data, we estimate that the flux of cosmic background for the CDFN in the O VII Kα, Kβ, and O VIII Lyα lines totals 5.8 ± 1.1 photons s{sup –1} cm{sup –2} sr{sup –1} (or LU). Heliospheric SWCX emission varied for each observation due to differences in solar wind conditions and the line of sight through the solar system, but was typically about half as strong as the cosmic background (i.e., one-third of the total) in those lines. The modeled geocoronal emission was 0.82 LU in one observation but averaged only 0.15 LU in the others. Our measurement of the cosmic background is lower than but marginally consistent with previous estimates based on XMM-Newton data.

  13. Solar wind charge exchange emission in the Chandra deep field north

    International Nuclear Information System (INIS)

    Slavin, Jonathan D.; Wargelin, Bradford J.; Koutroumpa, Dimitra

    2013-01-01

    The diffuse soft X-ray background comes from distant galaxies, from hot Galactic gas, and from within the solar system. The latter emission arises from charge exchange between highly charged solar wind ions and neutral gas. This so-called solar wind charge exchange (SWCX) emission is spatially and temporally variable and interferes with our measurements of more distant cosmic emission while also providing important information on the nature of the solar wind-interstellar medium interaction. We present the results of our analysis of eight Chandra observations of the Chandra Deep Field North (CDFN) with the goal of measuring the cosmic and SWCX contributions to the X-ray background. Our modeling of both geocoronal and heliospheric SWCX emission is the most detailed for any observation to date. After allowing for ∼30% uncertainty in the SWCX emission and subtracting it from the observational data, we estimate that the flux of cosmic background for the CDFN in the O VII Kα, Kβ, and O VIII Lyα lines totals 5.8 ± 1.1 photons s –1 cm –2 sr –1 (or LU). Heliospheric SWCX emission varied for each observation due to differences in solar wind conditions and the line of sight through the solar system, but was typically about half as strong as the cosmic background (i.e., one-third of the total) in those lines. The modeled geocoronal emission was 0.82 LU in one observation but averaged only 0.15 LU in the others. Our measurement of the cosmic background is lower than but marginally consistent with previous estimates based on XMM-Newton data.

  14. Measuring extensive air showers with Cherenkov light detectors of the Yakutsk array: the energy spectrum of cosmic rays

    International Nuclear Information System (INIS)

    Ivanov, A A; Knurenko, S P; Sleptsov, I Ye

    2009-01-01

    The energy spectrum of cosmic rays in the range E∼10 15 eV to 6x10 19 eV is studied in this paper using air Cherenkov light detectors of the Yakutsk array. The total flux of photons produced by the relativistic electrons (including positrons as well, hereafter) of extensive air showers in the atmosphere is used as an energy estimator of the primary particle initiating a shower. The resultant differential flux of cosmic rays exhibits, in agreement with previous measurements, a knee and ankle feature at energies of 3x10 15 and ∼10 19 eV, respectively. A comparison of observational data with simulations is made in the knee and ankle regions in order to choose the models of galactic and extragalactic components of cosmic rays that describe well the energy spectrum measured.

  15. Measuring extensive air showers with Cherenkov light detectors of the Yakutsk array: the energy spectrum of cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A A; Knurenko, S P; Sleptsov, I Ye [Shafer Institute for Cosmophysical Research and Aeronomy, Yakutsk 677980 (Russian Federation)], E-mail: ivanov@ikfia.ysn.ru

    2009-06-15

    The energy spectrum of cosmic rays in the range E{approx}10{sup 15} eV to 6x10{sup 19} eV is studied in this paper using air Cherenkov light detectors of the Yakutsk array. The total flux of photons produced by the relativistic electrons (including positrons as well, hereafter) of extensive air showers in the atmosphere is used as an energy estimator of the primary particle initiating a shower. The resultant differential flux of cosmic rays exhibits, in agreement with previous measurements, a knee and ankle feature at energies of 3x10{sup 15} and {approx}10{sup 19} eV, respectively. A comparison of observational data with simulations is made in the knee and ankle regions in order to choose the models of galactic and extragalactic components of cosmic rays that describe well the energy spectrum measured.

  16. GALACTIC COSMIC-RAY INTENSITY MODULATION BY COROTATING INTERACTION REGION STREAM INTERFACES AT 1 au

    Energy Technology Data Exchange (ETDEWEB)

    Guo, X. [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing, 100190 (China); Florinski, V. [Center for Space Plasma and Aeronomic Research, University of Alabama, Huntsville, AL 35899 (United States)

    2016-07-20

    We present a new model that couples galactic cosmic-ray (GCR) propagation with magnetic turbulence transport and the MHD background evolution in the heliosphere. The model is applied to the problem of the formation of corotating interaction regions (CIRs) during the last solar minimum from the period between 2007 and 2009. The numerical model simultaneously calculates the large-scale supersonic solar wind properties and its small-scale turbulent content from 0.3 au to the termination shock. Cosmic rays are then transported through the background, and thus computed, with diffusion coefficients derived from the solar wind turbulent properties, using a stochastic Parker approach. Our results demonstrate that GCR variations depend on the ratio of diffusion coefficients in the fast and slow solar winds. Stream interfaces inside the CIRs always lead to depressions of the GCR intensity. On the other hand, heliospheric current sheet (HCS) crossings do not appreciably affect GCR intensities in the model, which is consistent with the two observations under quiet solar wind conditions. Therefore, variations in diffusion coefficients associated with CIR stream interfaces are more important for GCR propagation than the drift effects of the HCS during a negative solar minimum.

  17. GALACTIC COSMIC-RAY INTENSITY MODULATION BY COROTATING INTERACTION REGION STREAM INTERFACES AT 1 au

    International Nuclear Information System (INIS)

    Guo, X.; Florinski, V.

    2016-01-01

    We present a new model that couples galactic cosmic-ray (GCR) propagation with magnetic turbulence transport and the MHD background evolution in the heliosphere. The model is applied to the problem of the formation of corotating interaction regions (CIRs) during the last solar minimum from the period between 2007 and 2009. The numerical model simultaneously calculates the large-scale supersonic solar wind properties and its small-scale turbulent content from 0.3 au to the termination shock. Cosmic rays are then transported through the background, and thus computed, with diffusion coefficients derived from the solar wind turbulent properties, using a stochastic Parker approach. Our results demonstrate that GCR variations depend on the ratio of diffusion coefficients in the fast and slow solar winds. Stream interfaces inside the CIRs always lead to depressions of the GCR intensity. On the other hand, heliospheric current sheet (HCS) crossings do not appreciably affect GCR intensities in the model, which is consistent with the two observations under quiet solar wind conditions. Therefore, variations in diffusion coefficients associated with CIR stream interfaces are more important for GCR propagation than the drift effects of the HCS during a negative solar minimum.

  18. Results of cosmic ray intensity measurements by the ''Luna-19'' space probe

    International Nuclear Information System (INIS)

    Chuchkov, E.A.; Lyubimov, G.P.; Myagchenkova, O.G.; Novichkova, A.D.; Pereslegina, N.V.; Kontor, N.N.; Nikolaev, A.G.

    1975-01-01

    Results are reviewed of measurements of low energy cosmic-ray characteristics obtained by means of the equipment installed on the ''Luna-19'' space station over the period from 28 November, 1971 to August 20, 1972. Proton fluxes with the energy of 1-5, 5-10, 10-40 MeV were mainly detected. A brief analysis both of individual events in cosmic rays and the general variation of intensity over the period from 1971 to 1972 is presented. Solar and geophysical data are used for the analysis. It is demonstrated that the period of the ''Luna-19'' operation corresponded to the secondary (anomalous) maximum on the decay of the solar activity in the 20th cycle. Assumptions concerning the nature of this maximum are formulated

  19. Solar-Geophysical Data Number 553, September 1990. Part 1 (prompt reports). Data for August 1990, July 1990 and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1990-09-01

    ;Contents: Detailed index for 1990; Data for August 1990--Solar-terrestrial environment, IUWDS alert periods (Advance and Worldwide), Solar activity indices, Solar flares, Solar radio emission, Standford mean solar magnetic field; Data for July 1990--Solar active regions, Sudden ionospheric disturbances, Solar radio spectral observations, Cosmic ray measurements by neutron monitor, Geomagnetic indices; Late data--Solar radio spectral Bleien and Ondrejov Jun 90, Cosmic ray Huancayo Jun 90, Geomagnetic activity indices May-Jun 90

  20. Cosmic strings and cosmic structure

    International Nuclear Information System (INIS)

    Albrecht, A.; Brandenberger, R.; Turok, N.

    1987-01-01

    The paper concerns the application of the theory of cosmic strings to explain the structure of the Universe. The formation of cosmic strings in the early Universe is outlined, along with the Big Bang theory, Grand Unified theories, and the first three minutes after the Big Bang. A description is given of the shaping of the Universe by cosmic strings, including the evolution of the string. The possibility for direct observation of cosmic strings is discussed. (U.K.)

  1. Relativistic equations

    International Nuclear Information System (INIS)

    Gross, F.

    1986-01-01

    Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs

  2. The History of Cosmic Ray Studies after Hess

    Energy Technology Data Exchange (ETDEWEB)

    Grupen, Claus, E-mail: grupen@physik.uni-siegen.de

    2013-06-15

    The discovery of cosmic rays by Victor Hess was confirmed with balloon flights at higher altitudes by Kolhörster. Soon the interest turned into questions about the nature of cosmic rays: gamma rays or particles? Subsequent investigations have established cosmic rays as the birthplace of elementary particle physics. The 1936 Nobel prize was shared between Victor Hess and Carl Anderson. Anderson discovered the positron in a cloud chamber. The positron was predicted by Dirac several years earlier. Many new results came now from studies with cloud chambers and nuclear emulsions. Anderson and Neddermeyer saw the muon, which for some time was considered to be a candidate for the Yukawa particle responsible for nuclear binding. Lattes, Powell, Occhialini and Muirhead clarified the situation by the discovery of the charged pions in cosmic rays. Rochester and Butler found V's, which turned out to be short-lived neutral kaons decaying into a pair of charged pions. Λ's, Σ's and Ξ's were found in cosmic rays using nuclear emulsions. After that period, accelerators and storage rings took over. The unexpected renaissance of cosmic rays started with the search for solar neutrinos and the observation of the supernova 1987A and other accelerators in the sky. With the observation of neutrino oscillations one began to look beyond the standard model of elementary particles. After 100 years of cosmic ray research we are again at the beginning of a new era, and cosmic rays may contribute to solve the many open questions, like dark matter and dark energy, by providing energies well beyond those of earth-bound accelerators.

  3. Study of the capability for rapid warnings of solar flare radiation hazards to aircraft. Part I. Forecasts and warnings of solar flare radiation hazards. Part II. An FAA polar flight solar cosmic radiation forecast/warning communication system study. Technical memo

    International Nuclear Information System (INIS)

    Sauer, H.H.; Stonehocker, G.H.

    1977-04-01

    The first part of the report provides background information on the occurrence of solar activity and the consequent sporadic production of electromagnetic and particle emissions from the sun. A summary is given of the current procedures for the forecasting of solar activity together with procedures used to verify these forecasts as currently available. A summary of current forecasting of radiation hazards as provided in support of the Concorde SST program is also given. The second part of the report describes a forecast message distribution system developed in conjunction with solar cosmic radiation forecasts and warnings of the Space Environment Laboratory of NOAA for the Federal Aviation Administration's (FAA) Office of Aviation Medicine. The study analyzes the currently available and future aeronautical telecommunication system facilities to determine an optimum system to distribute forecasts to the preflight planning centers in the international flight service stations for polar-flying subsonic and supersonic transport (SST) type aircraft. Also recommended for the system are timely and reliable distribution of warnings to individual in-flight aircraft in polar areas by the responsible air traffic control authority

  4. Solar-Geophysical Data Number 571, March 1992. Part 1 (prompt reports). Data for February, January 1992 and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1992-03-01

    The contents include: Detailed index for 1991-1992; Data for February 1992--Solar-terrestrial environment, IUWDS alert periods (advance and worldwide), Solar activity indices, Solar flares, Solar radio emission, Stanford mean solar magnetic field; Data for January 1992--Solar active regions, Sudden ionospheric disturbances, Solar radio spectral observations, Cosmic ray measurements by neutron monitor, Geomagnetic indices; Late data--Cosmic rays Climax and Huancayo Jul-Dec 91, Sudden Commencements Jun-Aug 91, and Geomagnetic indices Dec 91

  5. Compression-amplified EMIC waves and their effects on relativistic electrons

    Energy Technology Data Exchange (ETDEWEB)

    Li, L. Y., E-mail: lyli-ssri@buaa.edu.cn; Yu, J.; Cao, J. B. [School of Space and Environment, Beihang University, Beijing (China); Yuan, Z. G. [School of Electronic Information, Wuhan University, Wuhan (China)

    2016-06-15

    During enhancement of solar wind dynamic pressure, we observe the periodic emissions of electromagnetic ion cyclotron (EMIC) waves near the nightside geosynchronous orbit (6.6R{sub E}). In the hydrogen and helium bands, the different polarized EMIC waves have different influences on relativistic electrons (>0.8 MeV). The flux of relativistic electrons is relatively stable if there are only the linearly polarized EMIC waves, but their flux decreases if the left-hand polarized (L-mode) EMIC waves are sufficiently amplified (power spectral density (PSD) ≥ 1 nT{sup 2}/Hz). The larger-amplitude L-mode waves can cause more electron losses. In contrast, the R-mode EMIC waves are very weak (PSD < 1 nT{sup 2}/Hz) during the electron flux dropouts; thus, their influence may be ignored here. During the electron flux dropouts, the relativistic electron precipitation is observed by POES satellite near the foot point (∼850 km) of the wave emission region. The quasi-linear simulation of wave-particle interactions indicates that the L-mode EMIC waves can cause the rapid precipitation loss of relativistic electrons, especially when the initial resonant electrons have a butterfly-like pitch angle distribution.

  6. Compression-amplified EMIC waves and their effects on relativistic electrons

    International Nuclear Information System (INIS)

    Li, L. Y.; Yu, J.; Cao, J. B.; Yuan, Z. G.

    2016-01-01

    During enhancement of solar wind dynamic pressure, we observe the periodic emissions of electromagnetic ion cyclotron (EMIC) waves near the nightside geosynchronous orbit (6.6R E ). In the hydrogen and helium bands, the different polarized EMIC waves have different influences on relativistic electrons (>0.8 MeV). The flux of relativistic electrons is relatively stable if there are only the linearly polarized EMIC waves, but their flux decreases if the left-hand polarized (L-mode) EMIC waves are sufficiently amplified (power spectral density (PSD) ≥ 1 nT 2 /Hz). The larger-amplitude L-mode waves can cause more electron losses. In contrast, the R-mode EMIC waves are very weak (PSD < 1 nT 2 /Hz) during the electron flux dropouts; thus, their influence may be ignored here. During the electron flux dropouts, the relativistic electron precipitation is observed by POES satellite near the foot point (∼850 km) of the wave emission region. The quasi-linear simulation of wave-particle interactions indicates that the L-mode EMIC waves can cause the rapid precipitation loss of relativistic electrons, especially when the initial resonant electrons have a butterfly-like pitch angle distribution.

  7. Solar-Geophysical Data Number 546, February 1990. Part 1 (prompt reports). data for January 1990, December 1989, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1990-02-01

    Contents include: detailed index for 1989-1990; data for January 1990--solar-terrestrial environment, IUWDS alert periods (advance and worldwide), solar activity indices, solar flares, solar radio emission, Stanford mean solar magnetic field; data for December 1989--solar-active regions, sudden ionospheric disturbances, solar radio spectral observations, cosmic-ray measurements by neutron monitor, geomagnetic indices; late data--cosmic-ray measurements by neutron monitor, reprint of halftone-page Kitt Peak solar magnetic field synoptic chart November 1989

  8. Cosmic microwave background radiation of black hole universe

    Science.gov (United States)

    Zhang, T. X.

    2010-11-01

    Modifying slightly the big bang theory, the author has recently developed a new cosmological model called black hole universe. This new cosmological model is consistent with the Mach principle, Einsteinian general theory of relativity, and observations of the universe. The origin, structure, evolution, and expansion of the black hole universe have been presented in the recent sequence of American Astronomical Society (AAS) meetings and published recently in a scientific journal: Progress in Physics. This paper explains the observed 2.725 K cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present universe with hundred billion-trillions of solar masses. According to the black hole universe model, the observed cosmic microwave background radiation can be explained as the black body radiation of the black hole universe, which can be considered as an ideal black body. When a hot and dense star-like black hole accretes its ambient materials and merges with other black holes, it expands and cools down. A governing equation that expresses the possible thermal history of the black hole universe is derived from the Planck law of black body radiation and radiation energy conservation. The result obtained by solving the governing equation indicates that the radiation temperature of the present universe can be ˜2.725 K if the universe originated from a hot star-like black hole, and is therefore consistent with the observation of the cosmic microwave background radiation. A smaller or younger black hole universe usually cools down faster. The characteristics of the original star-like or supermassive black hole are not critical to the physical properties of the black hole universe at present, because matter and radiation are mainly from the outside space, i.e., the mother universe.

  9. Relativistic numerical cosmology with silent universes

    Science.gov (United States)

    Bolejko, Krzysztof

    2018-01-01

    Relativistic numerical cosmology is most often based either on the exact solutions of the Einstein equations, or perturbation theory, or weak-field limit, or the BSSN formalism. The silent universe provides an alternative approach to investigate relativistic evolution of cosmological systems. The silent universe is based on the solution of the Einstein equations in 1  +  3 comoving coordinates with additional constraints imposed. These constraints include: the gravitational field is sourced by dust and cosmological constant only, both rotation and magnetic part of the Weyl tensor vanish, and the shear is diagnosable. This paper describes the code simsilun (free software distributed under the terms of the reposi General Public License), which implements the equations of the silent universe. The paper also discusses applications of the silent universe and it uses the Millennium simulation to set up the initial conditions for the code simsilun. The simulation obtained this way consists of 16 777 216 worldlines, which are evolved from z  =  80 to z  =  0. Initially, the mean evolution (averaged over the whole domain) follows the evolution of the background ΛCDM model. However, once the evolution of cosmic structures becomes nonlinear, the spatial curvature evolves from ΩK =0 to ΩK ≈ 0.1 at the present day. The emergence of the spatial curvature is associated with ΩM and Ω_Λ being smaller by approximately 0.05 compared to the ΛCDM.

  10. Solar flare activity in 2006 - 2016 according to PAMELA and ARINA spectrometers

    Science.gov (United States)

    Rodenko, S. A.; Borkut, I. K.; Mayorov, A. G.; Malakhov, V. V.; PAMELA Collaboration

    2018-01-01

    From 2006 to 2016 years on the board of RESURS-DK1 satellite PAMELA and ARINA cosmic rays experiments was carried out. The main goal of experiments is measurement of galactic component of cosmic rays; it also registers solar particles accelerated in powerful explosive processes on the sun (solar flares) in wide energy range. The article includes the list of solar events when PAMELA or ARINA spectrometers have registered increasing of proton flux intensities for energies more than 4 MeV.

  11. Galactic cosmic ray iron composition

    International Nuclear Information System (INIS)

    Scherzer, R.; Enge, W.; Beaujean, R.

    1980-11-01

    We have studied the isotopic compostition of galactic cosmic ray iron in the energy interval 500-750 MeV/nucleon with a visual track detector system consisting of nuclear emulsion and cellulose-nitrate platic. Stopping iron nuclei were identified from ionization - range measurements in the two detector parts. Cone lengths were measured in the plastic sheets and the residual ranges of the particles were measured in plastic and in emulsion. We have determined the mass of 17 iron nuclei with an uncertainty of about 0.3 amu. The isotopic composition at the detector level was found to be 52 Fe: 53 Fe: 54 Fe: 55 Fe: 56 Fe: 57 Fe: 58 Fe = 0:1: 4:3:8:1:0. These numbers are not in conflict with the assumption that the isotopic composition of cosmic ray iron at the source is similar to the solar system composition. (author)

  12. Solar-Geophysical Data Number 535, March 1989. Part 1 (prompt reports). Data for February, January 1989, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1989-03-01

    Contentsinclude: detailed index for 1988-1989; data for february 1989 (IUWDS alert periods (advance and worldwide), solar-activity indices, solar flares, solar radio emission, Stanford mean solar magnetic field); data for January 1989 (solar active regions, sudden ionospheric disturbances, solar radio spectral observations, cosmic-ray measurements by neutron monitor, geomagnetic indices, radio-propagation indices); late data (solar-active regions-- H-alpha synoptic charts 1806-1808 (September-November 1988), cosmic-ray measurements by neutron monitor--thule, December 1988, geomagnetic indices -- sudden commencements/solar flare effects December 1988)

  13. Yaku-cedar tells cosmic outbursts in ancient times. Anomalies of cosmic ray intensity in AD 774-775 and AD 993-994

    International Nuclear Information System (INIS)

    Miyake, Fusa; Masuda, Kimiaki

    2014-01-01

    Measurements of cosmogenic nuclides, which are radioisotopes produced by cosmic rays in the atmosphere, provide important information regarding extraterrestrial high-energy events. We present 14 C measurements in annual rings of Japanese cedar trees with 1- and 2-year resolutions, and a finding of two sudden increases of 14 C content by significant amount from AD 774 to 775 and AD 993 to 994. The short-term increases of radioactive nuclide production were also found in tree rings of Europe and Antarctic ice core. This strongly indicates that the anomalies were not due to local terrestrial events, but triggered by cosmic outbursts that affected the whole planet. Several conjectures have been made upon the origin of the events, e.g. nearby supernovae (∼200 pc), Galactic short gamma-ray bursts, and violent solar mass ejections like SPEs (solar proton events) or super flares. We investigated energetics and the frequencies of occurrence of the phenomena, and demonstrate that SPE is likely to be the origin of the two 14 C increase events. Astrophysical significances and impact to modern human society are also discussed. (author)

  14. A Simplified Ab Initio Cosmic-ray Modulation Model with Simulated Time Dependence and Predictive Capability

    Science.gov (United States)

    Moloto, K. D.; Engelbrecht, N. E.; Burger, R. A.

    2018-06-01

    A simplified ab initio approach is followed to model cosmic-ray proton modulation, using a steady-state three-dimensional stochastic solver of the Parker transport equation that simulates some effects of time dependence. Standard diffusion coefficients based on Quasilinear Theory and Nonlinear Guiding Center Theory are employed. The spatial and temporal dependences of the various turbulence quantities required as inputs for the diffusion, as well as the turbulence-reduced drift coefficients, follow from parametric fits to results from a turbulence transport model as well as from spacecraft observations of these turbulence quantities. Effective values are used for the solar wind speed, magnetic field magnitude, and tilt angle in the modulation model to simulate temporal effects due to changes in the large-scale heliospheric plasma. The unusually high cosmic-ray intensities observed during the 2009 solar minimum follow naturally from the current model for most of the energies considered. This demonstrates that changes in turbulence contribute significantly to the high intensities during that solar minimum. We also discuss and illustrate how this model can be used to predict future cosmic-ray intensities, and comment on the reliability of such predictions.

  15. Galactic and solar radiation exposure to aircrew during a solar cycle

    International Nuclear Information System (INIS)

    Lewis, B.J.; Bennett, L.G.I.; Green, A.R.; McCall, M.J.; Ellaschuk, B.; Butler, A.; Pierre, M.

    2002-01-01

    An on-going investigation using a tissue-equivalent proportional counter (TEPC) has been carried out to measure the ambient dose equivalent rate of the cosmic radiation exposure of aircrew during a solar cycle. A semi-empirical model has been derived from these data to allow for the interpolation of the dose rate for any global position. The model has been extended to an altitude of up to 32 km with further measurements made on board aircraft and several balloon flights. The effects of changing solar modulation during the solar cycle are characterised by correlating the dose rate data to different solar potential models. Through integration of the dose-rate function over a great circle flight path or between given waypoints, a Predictive Code for Aircrew Radiation Exposure has been further developed for estimation of the route dose from galactic cosmic radiation exposure. This estimate is provided in units of ambient dose equivalent as well as effective dose, based on E/H*(10) scaling functions as determined from transport code calculations with LUIN and FLUKA. This experimentally based treatment has also been compared with the CARI-6 and EPCARD codes that are derived solely from theoretical transport calculations. Using TEPC measurements taken aboard the International Space Station, ground based neutron monitoring, GOES satellite data and transport code analysis, an empirical model has been further proposed for estimation of aircrew exposure during solar particle events. This model has been compared to results obtained during recent solar flare events. (author)

  16. Influence of ions on relativistic double layers radiation in astrophysical plasmas

    Directory of Open Access Journals (Sweden)

    AM Ahadi

    2009-12-01

    Full Text Available As double layers (DLs are one of the most important acceleration mechanisms in space as well as in laboratory plasmas, they are studied from different points of view. In this paper, the emitted power and energy radiated from charged particles, accelerated in relativistic cosmic DLs are investigated. The effect of the presence of additional ions in a multi-species plasma, as a real example of astrophysical plasma, is also investigated. Considering the acceleration role of DLs, radiations from accelerated charged particles could be seen as a loss mechanism. These radiations are influenced directly by the additional ion species as well as their relative densities.

  17. Point form relativistic quantum mechanics and relativistic SU(6)

    Science.gov (United States)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  18. Field dependent cosmic ray streaming at high rigidities

    International Nuclear Information System (INIS)

    Swinson, D.B.

    1976-01-01

    Data from underground μ meson telescopes at depths of 25, 40, and 80 mwe covering the period 1965--1973 have been analyzed as a function of interplanetary magnetic field direction. Cosmic ray streaming both in and perpendicular to the ecliptic plane, with directions dependent on the sense of the interplanetary magnetic field, is observed throughout the period at all depths. The field dependent streaming in the ecliptic plane exhibits some variability in amplitude and phase but contains a component in the direction perpendicular to the interplanetary magnetic field direction which is consistent with B x delN streaming due to a perpendicular cosmic ray density gradient pointing southward (higher density below the ecliptic plane than above it). In the case of the field dependent streaming perpendicular to the ecliptic plane the direction of the streaming has remained remarkably consistent over the 9-year period. One possible source of this streaming is B x delN streaming due to a radial heliocentric cosmic ray density gradient; this possibility is discussed along with other possible sources. There does not appear to be an obvious variation in the amplitude of the field dependent streaming either in or perpendicular to the ecliptic plane with increasing rigidity; both effects are still apparent at rigidities well above the 52-GV threshold rigidity of the Socorro 80-mwe telescope. The amplitudes of both anisotropies appear larger at solar maximum than at solar minimum

  19. LISA Pathfinder test-mass charging during galactic cosmic-ray flux short-term variations

    Science.gov (United States)

    Grimani, C.; Fabi, M.; Lobo, A.; Mateos, I.; Telloni, D.

    2015-02-01

    Metal free-floating test masses aboard the future interferometers devoted to gravitational wave detection in space are charged by galactic and solar cosmic rays with energies \\gt 100 MeV/n. This process represents one of the main sources of noise in the lowest frequency band (\\lt 10-3 Hz) of these experiments. We study here the charging of the LISA Pathfinder (LISA-PF) gold-platinum test masses due to galactic cosmic-ray (GCR) protons and helium nuclei with the Fluka Monte Carlo toolkit. Projections of the energy spectra of GCRs during the LISA-PF operations in 2015 are considered. This work was carried out on the basis of the solar activity level and solar polarity epoch expected for LISA-PF. The effects of GCR short-term variations are evaluated here for the first time. Classical Forbush decreases, GCR variations induced by the Sun rotation, and fluctuations in the LISA-PF frequency bandwidth are discussed.

  20. A unified treatment of the non-relativistic and relativistic hydrogen atom: Pt. 2

    International Nuclear Information System (INIS)

    Swainson, R.A.; Drake, G.W.F.

    1991-01-01

    This is the second in a series of three papers in which it is shown how the radial part of non-relativistic and relativistic hydrogenic bound-state calculations involving the Green functions can be presented in a unified manner. In this paper the non-relativistic Green function is examined in detail; new functional forms are presented and a clear mathematical progression is show to link these and most other known forms. A linear transformation of the four radial parts of the relativistic Green function is given which allows for the presentation of this function as a simple generalization of the non-relativistic Green function. Thus, many properties of the non-relativistic Green function are shown to have simple relativistic generalizations. In particular, new recursion relations of the radial parts of both the non-relativistic and relativistic Green functions are presented, along with new expressions for the double Laplace transforms and recursion relations between the radial matrix elements. (author)

  1. Effects of cosmic ray decreases on cloud microphysics

    DEFF Research Database (Denmark)

    Svensmark, J.; Enghoff, M. B.; Svensmark, H.

    2012-01-01

    Using cloud data from MODIS we investigate the response of cloud microphysics to sudden decreases in galactic cosmic radiation – Forbush decreases – and find responses in effective emissivity, cloud fraction, liquid water content, and optical thickness above the 2–3 sigma level 6–9 days after...... the minimum in atmospheric ionization and less significant responses for effective radius and cloud condensation nuclei (... of the signal of 3.1 sigma. We also see a correlation between total solar irradiance and strong Forbush decreases but a clear mechanism connecting this to cloud properties is lacking. There is no signal in the UV radiation. The responses of the parameters correlate linearly with the reduction in the cosmic ray...

  2. Solar-Geophysical Data Number 568, December 1991. Part 1 (prompt reports). Data for November, October 1991 and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1991-12-01

    The contents include: Detailed index for 1991; Data for November 1991--Solar-terrestrial environment, IUWDS alert periods (advance and worldwide), Solar activity indices, Solar flares, Solar radio emission, Stanford mean solar magnetic field; Data for October 1991--Solar active regions, Sudden ionospheric disturbances, Solar radio spectral observations, Cosmic ray measurements by neutron monitor, Geomagnetic indices; Late data--Cosmic ray measurements by neutron monitor (Climax February and May 1990, Deep River May-August 1991), Geomagnetic indices (Sudden commencements/Solar flare effects January-May 1991); Errata--August 1991 Geomagnetic activity indices

  3. Third-order perturbations of a zero-pressure cosmological medium: Pure general relativistic nonlinear effects

    International Nuclear Information System (INIS)

    Hwang, Jai-chan; Noh, Hyerim

    2005-01-01

    We consider a general relativistic zero-pressure irrotational cosmological medium perturbed to the third order. We assume a flat Friedmann background but include the cosmological constant. We ignore the rotational perturbation which decays in expanding phase. In our previous studies we discovered that, to the second-order perturbation, except for the gravitational wave contributions, the relativistic equations coincide exactly with the previously known Newtonian ones. Since the Newtonian second-order equations are fully nonlinear, any nonvanishing third- and higher-order terms in the relativistic analyses are supposed to be pure relativistic corrections. In this work, we derive such correction terms appearing in the third order. Continuing our success in the second-order perturbations, we take the comoving gauge. We discover that the third-order correction terms are of φ v order higher than the second-order terms where φ v is a gauge-invariant combination related to the three-space curvature perturbation in the comoving gauge; compared with the Newtonian potential, we have δΦ∼(3/5)φ v to the linear order. Therefore, the pure general relativistic effects are of φ v order higher than the Newtonian ones. The corrections terms are independent of the horizon scale and depend only on the linear-order gravitational potential (curvature) perturbation strength. From the temperature anisotropy of cosmic microwave background, we have (δT/T)∼(1/3)δΦ∼(1/5)φ v ∼10 -5 . Therefore, our present result reinforces our previous important practical implication that near the current era one can use the large-scale Newtonian numerical simulation more reliably even as the simulation scale approaches near (and goes beyond) the horizon

  4. Cosmic ray electrons and protons, and their antiparticles

    International Nuclear Information System (INIS)

    Boezio, Mirko

    2014-01-01

    Cosmic rays are a sample of solar, galactic, and extragalactic matter. Their origin, acceleration mechanisms, and subsequent propagation toward Earth have intrigued scientists since their discovery. These issues can be studied via analysis of the energy spectra and composition of cosmic rays. Protons are the most abundant component of the cosmic radiation, and many experiments have been dedicated to the accurate measurement of their spectra. Complementary information is provided by electrons, which comprise about 1% of the cosmic radiation. Because of their low mass, electrons experience severe energy losses through synchrotron emission in the galactic magnetic field and inverse Compton scattering of radiation fields. Electrons therefore provide information on the local galactic environment that is not accessible from the study of the cosmic ray nuclei. Antiparticles, namely antiprotons and positrons, are produced in the interaction between cosmic ray nuclei and the interstellar matter. They are therefore intimately linked to the propagation mechanisms of the parent nuclei. Novel sources of primary cosmic ray antiparticles of either astrophysical (e.g., positrons from pulsars) or exotic origin (e.g., annihilation of dark matter particles) may exist. The nature of dark matter is one of the most prominent open questions in science today. An observation of positrons from pulsars would open a new observation window on these sources. Several experiments equipped with state-of-the art detector systems have recently presented results on the energy spectra of electrons, protons, and their antiparticles with a significant improvement in statistics and better control of systematics The status of the field will be reviewed, with a focus on these recent scientific results. (author)

  5. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2010-01-01

    Full text: The 31 st International Cosmic Ray Conference (31.ICRC) was held in Lodz on 7-15 July 2009. The Conference was organized by the University of Lodz (Department of High Energy Astrophysics and Department of Astrophysics) and IPJ (Department of Cosmic Ray Physics). ICRCs are held every two years and are the largest forums to present and discuss the current status of Cosmic Ray studies. The Conference we co-organized gathered about 750 scientists (including about 50 from Poland). This was a remarkable event. The Department of Cosmic Ray Physics in Lodz is involved in basic research in the field of high energy Cosmic Rays. Cosmic Rays are energetic panicles from outside the Solar System. Most studies of Cosmic Rays address fundamental problems: - the nature of the physical and astrophysical processes responsible for the high energies of the particles. - experimental search for sources of Cosmic Rays, - studies of the astrophysical conditions at the acceleration sites, - properties of particle interactions at very high energies. Presentation of Cosmic Ray registration to high school students has become a popular way to introduce panicle physics detectors and elementary particle detection techniques to young people, in Lodz and Poznan we organize workshops on particle physics for high school students. This is part of the European activity: EPPOG Masterclass - Hands on CERN. Energetic Cosmic Ray particles produce cascades of panicles in the atmosphere, called Extensive Air Showers (EAS). Registering EASs and their properties is the main means of studying experimentally high energy Cosmic Rays: · The satellite experiment JEM-EUSO will observe EASs from the International Space Station. The main target is to find Cosmic Ray Sources for the highest energy Cosmic Rays. JEM-EUSO will collect a large number of events since it will observe a large area of the atmosphere. We are participating in the preparation of this mission. · The KASCADE-Grande addresses

  6. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications.

    Science.gov (United States)

    Umari, Paolo; Mosconi, Edoardo; De Angelis, Filippo

    2014-03-26

    Hybrid AMX3 perovskites (A = Cs, CH3NH3; M = Sn, Pb; X = halide) have revolutionized the scenario of emerging photovoltaic technologies, with very recent results demonstrating 15% efficient solar cells. The CH3NH3PbI3/MAPb(I(1-x)Cl(x))3 perovskites have dominated the field, while the similar CH3NH3SnI3 has not been exploited for photovoltaic applications. Replacement of Pb by Sn would facilitate the large uptake of perovskite-based photovoltaics. Despite the extremely fast progress, the materials electronic properties which are key to the photovoltaic performance are relatively little understood. Density Functional Theory electronic structure methods have so far delivered an unbalanced description of Pb- and Sn-based perovskites. Here we develop an effective GW method incorporating spin-orbit coupling which allows us to accurately model the electronic, optical and transport properties of CH3NH3SnI3 and CH3NH3PbI3, opening the way to new materials design. The different CH3NH3SnI3 and CH3NH3PbI3 electronic properties are discussed in light of their exploitation for solar cells, and found to be dominantly due to relativistic effects. These effects stabilize the CH3NH3PbI3 material towards oxidation, by inducing a deeper valence band edge. Relativistic effects, however, also increase the material band-gap compared to CH3NH3SnI3, due to the valence band energy downshift (~0.7 eV) being only partly compensated by the conduction band downshift (~0.2 eV).

  7. Anomalous cosmic ray carbon and oxygen tracks in CN-Kodak.

    Science.gov (United States)

    Kondratyeva, M A; Tretyakova, C A; Tretyakova, S P; Zhuravlev, D A

    2001-06-01

    For observation of low energy cosmic ray particles we used CN-Kodak nuclear track detectors on Cosmos satellites. In solar quiet periods during solar minima conditions the detectors registered anomalous cosmic rays (ACRs). The ACRs are characterized by flux enhancements of several elements and it is known that the carbon enhancement is small compared with that of oxygen. In all of our quiet-time exposures the relation between carbon and oxygen was extremely small (C/O ~ 0.03). But in two quiet-time periods of 14.03.96-11.06.96 and of 15.12.97-14.04.98 we have identified many tracks as carbon in a L-R diagram. As a result the observed C/O ratio appears to be more than 0.5, whereas other experiments show no evidence of enhanced flux of carbon during these periods. The reason for the unexpected response of CN-Kodak is discussed. c2001 Elsevier Science Ltd. All rights reserved.

  8. Cosmic-ray production rates of neon isotopes in meteorite minerals

    International Nuclear Information System (INIS)

    Bhandari, N.

    1988-01-01

    The rates of production of 21 Ne and 22 Ne in spallation reactions, both due to solar as well as galactic cosmic rays, in some major meteoritic minerals, e.g. olivines, feldspars and pyroxenes, are calculated using their energy spectra and excitation functions. The production profiles of 21 Ne and 22 Ne due to galactic cosmic rays, and the 22 Ne/ 21 Ne ratio depend upon the size of the meteoroid. The 22 Ne/ 21 Ne ratio is very sensitive to the abundance of sodium and consequently its depth profile is distinctly different in feldspars, the ratio increasing with depth rather than decreasing as in pyroxenes and olivines. In the near-surface regions, up to a depth of 2 cm, production due to solar flare protons dominates, giving rise to a steep gradient in isotopic production as well as in the 22 Ne/ 21 Ne ratio. Composite production profiles are given and compared with measurements in some meteorites. (author). 22 refs

  9. Radiation protection of aviation personnel at exposure by cosmic radiation

    International Nuclear Information System (INIS)

    Vicanova, M.; Pinter, I.; Liskova, A.

    2008-01-01

    For determination of radiation dose of aviation personnel we used the software EPCARD (European Program Package for the Calculation of Aviation Route Doses) developed by National Research Center for Environmental Health - Institute of Radiation Protection (Neuherberg, Germany) and the software CARI 6, developed by the FAA's Civil Aerospace Medical Institute (USA). Both codes are accomplished by the Joint Aviation Authorities. Experimental measurement and estimation of radiation doses of aviation personnel at exposure by cosmic radiation were realised in the period of lowered solar activity. All-year effective dose of pilots, which worked off at least 11 months exceeds the value 1 mSv in 2007. The mean all-year effective dose of member of aviation personnel at exposure by cosmic radiation is 2.5 mSv and maximal all-year effective dose, which we measured in 2007 was 4 mSv. We assumed that in the period of increased solar activity the all-year effective doses may by higher

  10. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  11. Cosmic perspectives in space physics

    CERN Document Server

    Biswas, Sukumar

    2000-01-01

    In the early years of the twentieth century, Victor Hess of Germany flew instruments in balloons and so discovered in 1912 that an extra-~errestial radiation of unknown origin is incident on the earth with an almost constant intensity at all times. These penetrating non­ solar radiations which were called Cosmic Rays by Millikan, USA, opened the new frontier of space physics and many leading scientists were attracted to it. At the end of World War II a number of space vehicles, e.g. stratospheric balloons, rockets and satellites were developed. In 1950 and onwards, these vehicles enabled spectacular advances in space physics and space astrophysics. New horizons were opened in the explorations of cosmic rays, the earth's magnetosphere, the Sun and the heliosphere, the moon and the planets. Using space-borne instruments, exciting discoveries were made of stars, and galaxies in the infra-red, ultra violet, x-ray and gamma-ray wavelengths. In this text book these fascinating new findings are presented in depth a...

  12. Variation of cosmic-ray flux and global cloud-coverage

    CERN Document Server

    Svensmark, H

    1998-01-01

    There has long been a search for a physical link between solar activity and the earth's climate. The most direct way the Sun could affect the Earth's climate would be through temporal changes in its luminosity, but observations have shown that these small to explain the observed temperature changes. This does not, however exclude the possibility of an indirect physical mechanism. In the talk it will be shown that the excellent correlations observed between solar activity parameters and climate c link between cosmic ray flux and global cloud cover.

  13. PREFACE: 23rd European Cosmic Ray Symposium (and 32nd Russian Cosmic Ray Conference)

    Science.gov (United States)

    Erlykin, A. D.; Kokoulin, R. P.; Lidvansky, A. S.; Meroshnichenko, L. I.; Panasyuk, M. I.; Panov, A. D.; Wolfendale, A. W.

    2013-02-01

    The 23rd European Cosmic Ray Symposium (ECRS) took place in Moscow at the Lomonosov Moscow State University (3-7 July 2012), and was excellently organized by the Skobeltsyn Institute of Nuclear Physics of the Lomonosov Moscow State University, with the help of the Russian Academy of Sciences and the Council on the Complex Problem of Cosmic Rays of the Russian Academy of Sciences. The first symposia were held in 1968 in Lodz, Poland (high energy, extensive air showers and astrophysical aspects) and in Bern (solar and heliospheric phenomena) and the two 'strands' joined together in 1976 with the meeting in Leeds. Since then the symposia, which have been very successful, have covered all the major topics with some emphasis on European collaborations and on meeting the demands of young scientists. Initially, a driving force was the need to overcome the divisions caused by the 'Cold War' but the symposia continued even when that threat ceased and they have shown no sign of having outlived their usefulness. 2012 has been an important year in the history of cosmic ray studies, in that it marked the centenary of the discovery of enigmatic particles in the perilous balloon ascents of Victor Hess. A number of conferences have taken place in Western Europe during the year, but this one took place in Moscow as a tribute to the successful efforts of many former USSR and other Eastern European scientists in discovering the secrets of the subject, often under very difficult conditions. The symposium covers a wide range of scientific issues divided into the following topics: PCR-IPrimary cosmic rays I (E 1015 eV) MNCosmic ray muons and neutrinos GAGeV and TeV gamma astronomy SHEnergetic particles in the heliosphere (solar and anomalous CRs and GCR modulation) GEOCosmic rays and geophysics (energetic particles in the atmosphere and magnetosphere of the Earth) On a personal note, as I step down as co-founder and chairman of the International Advisory Committee, I should like to

  14. THE EFFECT OF INTERMITTENT GYRO-SCALE SLAB TURBULENCE ON PARALLEL AND PERPENDICULAR COSMIC-RAY TRANSPORT

    International Nuclear Information System (INIS)

    Le Roux, J. A.

    2011-01-01

    Earlier work based on nonlinear guiding center (NLGC) theory suggested that perpendicular cosmic-ray transport is diffusive when cosmic rays encounter random three-dimensional magnetohydrodynamic turbulence dominated by uniform two-dimensional (2D) turbulence with a minor uniform slab turbulence component. In this approach large-scale perpendicular cosmic-ray transport is due to cosmic rays microscopically diffusing along the meandering magnetic field dominated by 2D turbulence because of gyroresonant interactions with slab turbulence. However, turbulence in the solar wind is intermittent and it has been suggested that intermittent turbulence might be responsible for the observation of 'dropout' events in solar energetic particle fluxes on small scales. In a previous paper le Roux et al. suggested, using NLGC theory as a basis, that if gyro-scale slab turbulence is intermittent, large-scale perpendicular cosmic-ray transport in weak uniform 2D turbulence will be superdiffusive or subdiffusive depending on the statistical characteristics of the intermittent slab turbulence. In this paper we expand and refine our previous work further by investigating how both parallel and perpendicular transport are affected by intermittent slab turbulence for weak as well as strong uniform 2D turbulence. The main new finding is that both parallel and perpendicular transport are the net effect of an interplay between diffusive and nondiffusive (superdiffusive or subdiffusive) transport effects as a consequence of this intermittency.

  15. THE EFFECT OF INTERMITTENT GYRO-SCALE SLAB TURBULENCE ON PARALLEL AND PERPENDICULAR COSMIC-RAY TRANSPORT

    Energy Technology Data Exchange (ETDEWEB)

    Le Roux, J. A. [Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2011-12-10

    Earlier work based on nonlinear guiding center (NLGC) theory suggested that perpendicular cosmic-ray transport is diffusive when cosmic rays encounter random three-dimensional magnetohydrodynamic turbulence dominated by uniform two-dimensional (2D) turbulence with a minor uniform slab turbulence component. In this approach large-scale perpendicular cosmic-ray transport is due to cosmic rays microscopically diffusing along the meandering magnetic field dominated by 2D turbulence because of gyroresonant interactions with slab turbulence. However, turbulence in the solar wind is intermittent and it has been suggested that intermittent turbulence might be responsible for the observation of 'dropout' events in solar energetic particle fluxes on small scales. In a previous paper le Roux et al. suggested, using NLGC theory as a basis, that if gyro-scale slab turbulence is intermittent, large-scale perpendicular cosmic-ray transport in weak uniform 2D turbulence will be superdiffusive or subdiffusive depending on the statistical characteristics of the intermittent slab turbulence. In this paper we expand and refine our previous work further by investigating how both parallel and perpendicular transport are affected by intermittent slab turbulence for weak as well as strong uniform 2D turbulence. The main new finding is that both parallel and perpendicular transport are the net effect of an interplay between diffusive and nondiffusive (superdiffusive or subdiffusive) transport effects as a consequence of this intermittency.

  16. On the possibility of highest energy cosmic rays bursts and their correlation with gamma rays bursts e.g. March 5th, 1979 event

    International Nuclear Information System (INIS)

    Drukier, K.

    1982-01-01

    The avalanche production of magnetic monopoles is possible in neutron stars. Big part of the magnetic field energy can be used to accelerate a pulse of 10 30 monopoles to the energy E > approximately 10 17 eV. Thus the neutron stars may be ''point'' sources of bursts of highest energy Cosmic Rays. The emission of brehmsstrahlung photons by these highly relativistic monopoles would be seen as X and gamma bursts. This ''exotic'' model for March 5th, 1979 event, predicts that it has been followed by burst of highest energy Cosmic Rays coming from the direction of LMC supernovae remanent N49

  17. Low- and high-frequency spectral behavior of cosmic-ray intensity for the period 1953–1996

    Directory of Open Access Journals (Sweden)

    H. Mavromichalaki

    2003-08-01

    Full Text Available A study of the cosmic-ray intensity power spectrum using the Climax Neutron Monitor data in the frequency range from 10-9 Hz to 10-7 Hz (which corresponds to periodicities from 11 years to a few months during the period 1953–1996, was carried out by means of the successive approximations method of analysis and was compared against the power spectrum and the maximum entropy methods. The contributions of the time evolution of several peaks to the global one were obtained. Except for the well-known 11-year and the 1-year variations, peaks at 7.7, 5.5, 2 and 1.7 years are found. Several peaks with periods less than 10 months have appeared in our analysis, while the occurrence of 5.1 months is obtained in all the examined solar cycles with a strong signature in cycle 21. Transitions of these quasi-periodicities are seen in power spectra plots. Some of them can be attributed to the modulation of the cosmic ray intensity by solar activity. Others are sporadic and have been previously attributed to the interplanetary magnetic field. The results obtained support once again the argument regarding the difference in the solar activity between odd and even solar cycles.Key words. Interplanetary physics (Cosmic rays, Interplanetary magnetic fields

  18. Relativistic electron acceleration during HILDCAA events: are precursor CIR magnetic storms important?

    Czech Academy of Sciences Publication Activity Database

    Hajra, R.; Tsurutani, B. T.; Echer, E.; Gonzalez, W. D.; Brum, Ch. G. M.; Antunes Vieira, L. E.; Santolík, Ondřej

    2015-01-01

    Roč. 67, Article Number 109 (2015), 109/1-109/11 ISSN 1880-5981 R&D Projects: GA MŠk LH12231 Institutional support: RVO:68378289 Keywords : HILDCAAs * high-speed streams * CIRs * chorus plasma waves * radiation belt * magnetospheric relativistic electrons * solar wind * geomagnetic storms Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.871, year: 2015

  19. Discovery of cosmic fractals

    CERN Document Server

    Baryshev, Yuri

    2002-01-01

    This is the first book to present the fascinating new results on the largest fractal structures in the universe. It guides the reader, in a simple way, to the frontiers of astronomy, explaining how fractals appear in cosmic physics, from our solar system to the megafractals in deep space. It also offers a personal view of the history of the idea of self-similarity and of cosmological principles, from Plato's ideal architecture of the heavens to Mandelbrot's fractals in the modern physical cosmos. In addition, this invaluable book presents the great fractal debate in astronomy (after Luciano Pi

  20. R -process Element Cosmic Rays from Neutron Star Mergers

    Energy Technology Data Exchange (ETDEWEB)

    Komiya, Yutaka; Shigeyama, Toshikazu [Research Center for the Early Universe, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, 113-0033, Tokyo (Japan)

    2017-09-10

    Neutron star mergers (NSMs) are one of the most plausible sources of r -process elements in the universe. Therefore, NSMs can also be a major source of ultra-heavy elements in cosmic rays. In this paper, we first estimate the contribution of r -process elements synthesized in NSMs to the ultra-heavy element cosmic rays (UHCRs) by calculating transport equations that take into account energy loss processes and spallations. We show that the flux of UHCRs accelerated by the NSMs themselves fluctuates by many orders of magnitude on a timescale of several million years and can overwhelm UHCRs accelerated by supernova remnants (SNRs) after an NSM takes place within a few kiloparsec from the solar system. Experiments with very long exposure times using meteorites as UHCR detectors can detect this fluctuation. As a consequence, we show that if NSMs are the primary source of UHCRs, future experiments using meteorites may be able to reveal the event history of NSMs in the solar vicinity. We also describe a possible difference in the abundance pattern and energy spectrum of UHCRs between NSM and SNR accelerations.

  1. Relativistic quantum logic

    International Nuclear Information System (INIS)

    Mittelstaedt, P.

    1983-01-01

    on the basis of the well-known quantum logic and quantum probability a formal language of relativistic quantum physics is developed. This language incorporates quantum logical as well as relativistic restrictions. It is shown that relativity imposes serious restrictions on the validity regions of propositions in space-time. By an additional postulate this relativistic quantum logic can be made consistent. The results of this paper are derived exclusively within the formal quantum language; they are, however, in accordance with well-known facts of relativistic quantum physics in Hilbert space. (author)

  2. Relativistic quantum motion of spin-0 particles under the influence of noninertial effects in the cosmic string spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Santos, L.C.N.; Barros, C.C. [Universidade Federal de Santa Catarina, Dept. de Fisica - CFM, Florianopolis, SC (Brazil)

    2018-01-15

    We study solutions for the Klein-Gordon equation with vector and scalar potentials of the Coulomb types under the influence of noninertial effects in the cosmic string spacetime. We also investigate a quantum particle described by the Klein-Gordon oscillator in the background spacetime generated by a cosmic string. An important result obtained is that the noninertial effects restrict the physical region of the spacetime where the particle can be placed. In addition, we show that these potentials can form bound states for the Klein-Gordon equation in this kind of background. (orig.)

  3. Relativistic quantum mechanics; Mecanique quantique relativiste

    Energy Technology Data Exchange (ETDEWEB)

    Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.

  4. Dissipative relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Imshennik, V.S.; Morozov, Yu.I.

    1989-01-01

    Using the comoving reference frame in the general non-inertial case, the relativistic hydrodynamics equations are derived with an account for dissipative effects in the matter. From the entropy production equation, the exact from for the dissipative tensor components is obtained. As a result, the closed system of equations of dissipative relativistic hydrodynamics is obtained in the comoving reference frame as a relativistic generalization of the known Navier-Stokes equations for Lagrange coordinates. Equations of relativistic hydrodynamics with account for dissipative effects in the matter are derived using the assocoated reference system in general non-inertial case. True form of the dissipative tensor components is obtained from entropy production equation. Closed system of equations for dissipative relativistic hydrodynamics is obtained as a result in the assocoated reference system (ARS) - relativistic generalization of well-known Navier-Stokes equations for Lagrange coordinates. Equation system, obtained in this paper for ARS, may be effectively used in numerical models of explosive processes with 10 51 erg energy releases which are characteristic for flashes of supernovae, if white dwarf type compact target suggested as presupernova

  5. Selected Theoretical Studies Group contributions to the 14th International Cosmic Ray conference. [including studies on galactic molecular hydrogen, interstellar reddening, and on the origin of cosmic rays

    Science.gov (United States)

    1975-01-01

    The galactic distribution of H2 was studied through gamma radiation and through X-ray, optical, and infrared absorption measurements from SAS-2 and other sources. A comparison of the latitude distribution of gamma-ray intensity with reddening data shows reddening data to give the best estimate of interstellar gas in the solar vicinity. The distribution of galactic cosmic ray nucleons was determined and appears to be identical to the supernova remnant distribution. Interactions between ultrahigh energy cosmic-ray nuclei and intergalactic photon radiation fields were calculated, using the Monte Carlo method.

  6. Effects of cosmic ray decreases on cloud microphysics

    DEFF Research Database (Denmark)

    Svensmark, J.; Enghoff, M. B.; Svensmark, H.

    2012-01-01

    the minimum in atmospheric ionization and less significant responses for effective radius and cloud condensation nuclei (total significance...... of the signal of 3.1 sigma. We also see a correlation between total solar irradiance and strong Forbush decreases but a clear mechanism connecting this to cloud properties is lacking. There is no signal in the UV radiation. The responses of the parameters correlate linearly with the reduction in the cosmic ray......Using cloud data from MODIS we investigate the response of cloud microphysics to sudden decreases in galactic cosmic radiation – Forbush decreases – and find responses in effective emissivity, cloud fraction, liquid water content, and optical thickness above the 2–3 sigma level 6–9 days after...

  7. Cosmic radiation exposure in supersonic and subsonic flight

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The main body of this document consists of four major sections: (1) an introduction describing the scope of Committee operations and proving a brief exposition of the concepts of radiation protection; (2) a survey of experimental and theoretical data on cosmic radiations that have been obtained in individual research projects with emphasis on investigations that were performed under the sponsorship of the Committee. The studies evaluate galactic and solar radiation as a function of altitude and magnetic latitude; (3) best current estimates of cosmic radiation levels in the atmosphere; and (4) radiation protection recommendations dealing with maximum permissible doses and operational aspects covering satellite warning systems, on-board instrumentation, and forecasting. Nine annexes submitted by individual authors cover various of these subjects in greater detail

  8. Reconstruction of the solar modulation parameter during the Holocene

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, Klaudia; Heber, Bernd [Christian-Albrechts-Universitaet zu Kiel, D-24118 Kiel, Kiel (Germany); Beer, Juerg [Swiss Federal Institute of Aquatic Science and Technology, EAWAG, Duebendorf (Switzerland)

    2013-07-01

    On their way through the interplanetary space the intensity of galactic cosmic rays is modulated by the solar activity. In the Earth's atmosphere, however, the intensities of these primary cosmic rays but also of secondary particles produced in the atmosphere are anti-correlated to the solar activity. Cosmogenic radionuclides produced by spallation reactions of primary and secondary hadrons with atmospheric nuclei are mixed and transported into natural archives like ice sheets, tree rings or sediments. We compute the local and global production rates of {sup 10}Be, {sup 7}Be, {sup 3}H, {sup 36}Cl, {sup 26}Al and {sup 14}C on shorter time-scales, showing a clear anti-correlation to the solar activity. For {sup 14}C we present, moreover, production rates for the entire Holocene and investigate their correlation to the solar modulation parameter.

  9. Solar-Geophysical Data Number 536, April 1989. Part 1 (prompt reports). Data for March, February 1989 and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1989-04-01

    Contents include: detailed index for 1988-1989; data for March 1989--(IUWDS alert periods (advance and worldwide), solar activity indices, solar flares, solar radio emission, Stanford mean solar magnetic field); data for February 1989--(solar-active regions, sudden ionospheric disturbances, solar radio spectral observations, cosmic-ray measurements by neutron monitor, geomagnetic indices, radio-propagation indices); late data--(solar-active-regions - H-alpha synoptic charts 1809-1810 (November-December 1988), cosmic ray measurements by neutron monitor January 1989, geomagnetic indices - sudden commencements/solar flare effects January 1989, Pioneer XII interplanetary magnetic field magnitudes July 1989, Pioneer XII solar wind January-December 1988, march special event data)

  10. The cosmic ray and solar flare isotope experiments in the CRRES, NOAA-I and ''Ulysses'' satellites

    International Nuclear Information System (INIS)

    Garcia-Munoz, M.

    1990-01-01

    The ONR-604 instrument has been designed to measure the energy spectra and the isotopic composition at 1 AU of the elements Hydrogen to Nickel in the energy range 40--500 MeV/n and will be carried by the Combined Release and Radiation Effects Satellite (CRRES) to be launched July, 1990 in a highly eccentric orbit between a low perigee and a synchronous orbit point. It will measure galactic cosmic rays, solar energetic particles, and trapped and pseudo-trapped particles in the Earth magnetosphere. Also at 1 AU, the Energetic Heavy Ion Composition (EHIC) instrument, designed to study mainly the elemental and isotopic composition of solar energetic particles over the charge range H to Ni, in the energy range 0.5 to 200 MeV/n, will be placed in a Sun-synchronous circular polar orbit of 833 or 870 km altitude by a NOAA-I satellite scheduled to be launched late 1990 or early 1991. The University of Chicago High Energy Telescope (HET) experiment which is part of the COSPIN consortium on the ''Ulysses'' mission will measure the energy spectra and the isotopic composition of the elments Hydrogen to Nickel in the energy interval 20--450 MeV/n in the heliosphere, both the ecliptic plane and at high heliographic latitudes in an orbit around the Sun that will have an aphelion near a Jupiter orbit point and a perhelion of about 1.4 AU. It will be launched October 1990

  11. Prompt acceleration of ions by oblique turbulent shocks in solar flares

    Science.gov (United States)

    Decker, R. B.; Vlahos, L.

    1985-01-01

    Solar flares often accelerate ions and electrons to relativistic energies. The details of the acceleration process are not well understood, but until recently the main trend was to divide the acceleration process into two phases. During the first phase elctrons and ions are heated and accelerated up to several hundreds of keV simultaneously with the energy release. These mildly relativistic electrons interact with the ambient plasma and magnetic fields and generate hard X-ray and radio radiation. The second phase, usually delayed from the first by several minutes, is responsible for accelerating ions and electrons to relativistic energies. Relativistic electrons and ions interact with the solar atmosphere or escape from the Sun and generate gamma ray continuum, gamma ray line emission, neutron emission or are detected in space by spacecraft. In several flares the second phase is coincident with the start of a type 2 radio burst that is believed to be the signature of a shock wave. Observations from the Solar Maximum Mission spacecraft have shown, for the first time, that several flares accelerate particles to all energies nearly simultaneously. These results posed a new theoretical problem: How fast are shocks and magnetohydrodynamic turbulence formed and how quickly can they accelerate ions to 50 MeV in the lower corona? This problem is discussed.

  12. Prompt acceleration of ions by oblique turbulent shocks in solar flares

    International Nuclear Information System (INIS)

    Decker, R.B.; Vlahos, L.

    1985-01-01

    Solar flares often accelerate ions and electrons to relativistic energies. The details of the acceleration process are not well understood, but until recently the main trend was to divide the acceleration process into two phases. During the first phase elctrons and ions are heated and accelerated up to several hundreds of keV simultaneously with the energy release. These mildly relativistic electrons interact with the ambient plasma and magnetic fields and generate hard x-ray and radio radiation. The second phase, usually delayed from the first by several minutes, is responsible for accelerating ions and electrons to relativistic energies. Relativistic electrons and ions interact with the solar atmosphere or escape from the Sun and generate gamma ray continuum, gamma ray line emission, neutron emission or are detected in space by spacecraft. In several flares the second phase is coincident with the start of a type 2 radio burst that is believed to be the signature of a shock wave. Observations from the Solar Maximum Mission spacecraft have shown, for the first time, that several flares accelerate particles to all energies nearly simultaneously. These results posed a new theoretical problem: How fast are shocks and magnetohydrodynamic turbulence formed and how quickly can they accelerate ions to 50 MeV in the lower corona. This problem is discussed

  13. Impacts of Cosmic Dust on Planetary Atmospheres and Surfaces

    Science.gov (United States)

    Plane, John M. C.; Flynn, George J.; Määttänen, Anni; Moores, John E.; Poppe, Andrew R.; Carrillo-Sanchez, Juan Diego; Listowski, Constantino

    2018-02-01

    Recent advances in interplanetary dust modelling provide much improved estimates of the fluxes of cosmic dust particles into planetary (and lunar) atmospheres throughout the solar system. Combining the dust particle size and velocity distributions with new chemical ablation models enables the injection rates of individual elements to be predicted as a function of location and time. This information is essential for understanding a variety of atmospheric impacts, including: the formation of layers of metal atoms and ions; meteoric smoke particles and ice cloud nucleation; perturbations to atmospheric gas-phase chemistry; and the effects of the surface deposition of micrometeorites and cosmic spherules. There is discussion of impacts on all the planets, as well as on Pluto, Triton and Titan.

  14. Analysis of atmospheric pressure and temperature effects on cosmic ray measurements

    Science.gov (United States)

    de MendonçA, R. R. S.; Raulin, J.-P.; Echer, E.; Makhmutov, V. S.; Fernandez, G.

    2013-04-01

    In this paper, we analyze atmospheric pressure and temperature effects on the records of the cosmic ray detector CARPET. This detector has monitored secondary cosmic ray intensity since 2006 at Complejo Astronómico El Leoncito (San Juan, Argentina, 31°S, 69°W, 2550 m over sea level) where the geomagnetic rigidity cutoff, Rc, is ~9.8 GV. From the correlation between atmospheric pressure deviations and relative cosmic ray variations, we obtain a barometric coefficient of -0.44 ± 0.01 %/hPa. Once the data are corrected for atmospheric pressure, they are used to analyze temperature effects using four methods. Three methods are based on the surface temperature and the temperature at the altitude of maximum production of secondary cosmic rays. The fourth method, the integral method, takes into account the temperature height profile between 14 and 111 km above Complejo Astronómico El Leoncito. The results obtained from these four methods are compared on different time scales from seasonal time variations to scales related to the solar activity cycle. Our conclusion is that the integral method leads to better results to remove the temperature effect of the cosmic ray intensity observed at ground level.

  15. Cosmic Humanity: Utopia, Realities, Prospects

    Directory of Open Access Journals (Sweden)

    Sergey Krichevsky

    2017-07-01

    Full Text Available The philosophical foundations of the theory and practice of the creation of cosmic humanity as a process of the evolution of human civilization, the emergence into space, with the prospect of resettlement outside the Earth are considered. There is a connection between myths, fantasies, ideas, concepts and projects aimed at the exploration of outer space, the creation of cosmic humanity. A new and voluminous definition of cosmic humanity in the evolutionary paradigm is given. Cosmic humanity is (essence and 4 stages of evolution: 1. Humanity living on Earth, sensing, knowing, understanding its cosmic origin, relationship with the cosmos and cosmic destiny. 2. Humanity living on Earth, leading aerospace activity for the purposes of exploration and use of aerospace space (Heaven, Space for survival and development. 3. Humanity living on Earth and outside the Earth — in the solar system, preserving the Earth and mastering the Cosmos for survival and development. 4. Humanity, settled and living in the Cosmos. Now humanity is in the process of transition from the second to the third stage. In the process of this evolution, a complex transformation of man and society takes place. The problem-semantic field of cosmic humanity is described and its general model is presented. The meta-goal-setting is the justification of cosmic humanity with the application of the anthropic principle and its “active” super (post anthropic supplement: “Cosmic humanity has an evolutionary purpose to actively manage evolution: change man, humanity and the universe.” The evolution of the “cosmic dream”, goals and technologies of space activities is formalized in the form of a conceptual model. Challenges and negative trends are considered in connection with the crisis of space activity, criticism and attempts to limit the flights of people into space. The prototype of cosmic humanity, its basis and acting model is the cosmonauts’ community. The main

  16. Silicon charge detector for the CREAM experiment

    International Nuclear Information System (INIS)

    Park, I.H.; Park, N.H.; Nam, S.W.

    2007-01-01

    The Cosmic Ray Energetics And Mass (CREAM) payload had its first successful flight in December 2004 from McMurdo Station, Antarctica as a Long Duration Balloon mission. Its aim is to explore the supernova acceleration limit of cosmic rays, the relativistic gas of protons, electrons and heavy nuclei arriving at Earth from outside of the solar system. The instrument is equipped with several systems to measure charge and energy spectra for Z=1-26 nuclei over the energy range 10 11 -10 15 eV. The Silicon Charge Detector (SCD) is a precision device to measure the charge of incident cosmic rays. The design, construction, integration and preliminary performance of the SCD are detailed in this paper

  17. Relativistic Light Sails

    Energy Technology Data Exchange (ETDEWEB)

    Kipping, David, E-mail: dkipping@astro.columbia.edu [Department of Astronomy, Columbia University, 550 W. 120th St., New York, NY 10027 (United States)

    2017-06-01

    One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot , we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.

  18. Relativistic Light Sails

    International Nuclear Information System (INIS)

    Kipping, David

    2017-01-01

    One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot , we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.

  19. Pairing in the cosmic neutrino background

    International Nuclear Information System (INIS)

    Alonso, V.; Paredes, R.

    1981-07-01

    We extend the discussion of the possible superfluidity of the cosmic background of neutrinos beyond the arguments based on the gap equation, originally given by Ginzburg and Zharkov. We show how to develop a simple Ginzburg-Landau liquid model, in analogy with superconductivity. We use it to show how an analysis of the energy spectrum of the universe can be formulated to include general relativistic effects on the superfluid neutrinos. Finally, in view of the Hawking and Collins careful discussion on the rotation and distortion of a spatially homogeneous and isotropic universe, we discuss the vortex dynamics that might be generated on the superfluid by rotations (allowed by the almost isotropy of the microwave background of photons) of up to 2 x 10 -14 second of arc/century, but conclude that rotations of this order of magnitude would be sufficiently strong to deter the existence of the superfluid state. (author)

  20. Investigations of aircrews exposure to cosmic radiation - results, conclusions and suggestions

    CERN Document Server

    Bilski, P; Horwacik, T; Marczewska, B; Ochab, E; Olko, P

    2002-01-01

    In frame of a research project undertaken in collaboration with Polish airlines LOT, analysis of aircrews exposure to cosmic radiation has been performed. The applied methods included measurements of radiation doses with thermoluminescent detectors (MTS-N, MCP-N) and track detectors (CR-39) and also calculations of route doses with the CARI computer code. The obtained results indicate that aircrews of nearly all airplanes, with exception of these flying only on ATR aircraft, exceed regularly or may exceed in some conditions, effective doses of 1 mSv. In case of Boeing-767 aircrews such exceeding occurs always, independently of solar activity. Investigations revealed, that during these periods of the solar cycle, when intensity of cosmic radiation is high, exceeding of 6 mSv level is also possible. These results indicate, that according to Polish and European regulations it is necessary for airlines to provide regular estimations of radiation exposure of aircrews. Basing on the obtained results a system for pe...

  1. Properties of solar proton events at large heliocentric distances near ecliptic

    International Nuclear Information System (INIS)

    Khiber, B.; Struminskij, A.B.

    2005-01-01

    The absolute intensities, fluences and propagation times of the solar protons with the energy of 38-125 MeV, obtained on the basis of the observation data of the Kilskij electron telescope (KET ULYSSES) onboard the ULYSSES cosmic apparatus and GOES proton detector, are compared. The observation data on the solar cosmic rays at the heliocentric distances above 5 a.e. are analyzed for the first time. Certain characteristics of the proton events under consideration and their possible parent flares are presented [ru

  2. Update on the correlation between the cosmic radiation intensity and the geomagnetic AA index

    International Nuclear Information System (INIS)

    Shea, M.A.; Smart, D.F.

    1985-01-01

    A statistical study between the cosmic ray intensity, as observed by a neutron monitor, and of the geomagnetic aa index, as representative of perturbations in the plasma and interplanetary magnetic field in the heliosphere, has been updated to specifically exclude time periods around the reversal of the solar magnetic field. The results of this study show a strong negative correlation for the period 1960 through 1968 with a correlation coefficient of approximately -0.86. However, there is essentially no correlation between the cosmic ray intensity and the aa index for the period 1972-1979 (i.e. correlation coefficient less than 0.16). These results would appear to support the theory of preferential particle propagation into the heliosphere vis the ecliptic during the period 1960-1968 and via the solar polar regions during 1972-1979

  3. Balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen

    International Nuclear Information System (INIS)

    Zumberge, J.F.

    1981-01-01

    The isotopic compositions of galactic cosmic ray boron, carbon, and nitrogen have been measured at energies near 300 MeV amu -1 , using a balloon-borne instrument at an atmospheric depth of approx. 5 g cm -2 . The calibrations of the detectors comprising the instrument are described. The saturation properties of the cesium iodide scintillators used for measurement of particle energy are studied in the context of analyzing the data for mass. The achieved rms mass resolution varies from approx. 0.3 amu at boron to approx. 0.5 amu at nitrogen, consistent with a theoretical analysis of the contributing factors. A model of galactic propagation and solar modulation is described. Assuming a cosmic ray source composition of solar-like isotopic abundances, the model predicts abundances near earth consistent with the measurements

  4. Reconstructing the long-term cosmic ray intensity: linear relations do not work

    Directory of Open Access Journals (Sweden)

    K. Mursula

    2003-04-01

    Full Text Available It was recently suggested (Lockwood, 2001 that the cosmic ray intensity in the neutron monitor energy range is linearly related to the coronal source flux, and can be reconstructed for the last 130 years using the long-term coronal flux estimated earlier. Moreover, Lockwood (2001 reconstructed the coronal flux for the last 500 years using a similar linear relation between the flux and the concentration of cosmogenic 10 Be isotopes in polar ice. Here we show that the applied linear relations are oversimplified and lead to unphysical results on long time scales. In particular, the cosmic ray intensity reconstructed by Lockwood (2001 for the last 130 years has a steep trend which is considerably larger than the trend estimated from observations during the last 65 years. Accordingly, the reconstructed cosmic ray intensity reaches or even exceeds the local interstellar cosmic ray flux around 1900. We argue that these unphysical results obtained when using linear relations are due to the oversimplified approach which does not take into account the complex and essentially nonlinear nature of long-term cosmic ray modulation in the heliosphere. We also compare the long-term cosmic ray intensity based on a linear treatment with the reconstruction based on a recent physical model which predicts a considerably lower cosmic ray intensity around 1900.Key words. Interplanetary physics (cosmic rays; heliopause and solar wind termination – Geomagnetism and paleomagnetism (time variations, secular and long-term

  5. Radiatively driven relativistic spherical winds under relativistic radiative transfer

    Science.gov (United States)

    Fukue, J.

    2018-05-01

    We numerically investigate radiatively driven relativistic spherical winds from the central luminous object with mass M and luminosity L* under Newtonian gravity, special relativity, and relativistic radiative transfer. We solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double-iteration processes, to obtain the intensity and velocity fields simultaneously. We found that the momentum-driven winds with scattering are quickly accelerated near the central object to reach the terminal speed. The results of numerical solutions are roughly fitted by a relation of \\dot{m}=0.7(Γ _*-1)\\tau _* β _* β _out^{-2.6}, where \\dot{m} is the mass-loss rate normalized by the critical one, Γ* the central luminosity normalized by the critical one, τ* the typical optical depth, β* the initial flow speed at the central core of radius R*, and βout the terminal speed normalized by the speed of light. This relation is close to the non-relativistic analytical solution, \\dot{m} = 2(Γ _*-1)\\tau _* β _* β _out^{-2}, which can be re-expressed as β _out^2/2 = (Γ _*-1)GM/c^2 R_*. That is, the present solution with small optical depth is similar to that of the radiatively driven free outflow. Furthermore, we found that the normalized luminosity (Eddington parameter) must be larger than unity for the relativistic spherical wind to blow off with intermediate or small optical depth, i.e. Γ _* ≳ \\sqrt{(1+β _out)^3/(1-β _out)}. We briefly investigate and discuss an isothermal wind.

  6. Structure from the chaos: magnetic fields of cosmic objects

    Energy Technology Data Exchange (ETDEWEB)

    Krause, F

    1987-01-01

    The study deals with phenomenological and theoretical models in order to explain the existence of cosmic magnetic fields. Following aspects are considered: non-linear recursions, the theory of chaotic motions, turbulence, convection, the turbulent dynamo theory and magnetohydrodynamics. In the frame of these model assumptions it is tried to explain the causes of the solar activity cycle and the geomagnetic field.

  7. Receiver system for radio observation of high-energy cosmic ray air showers and its behaviour in self trigger mode

    International Nuclear Information System (INIS)

    Kroemer, Oliver

    2008-04-01

    The observation of high-energy cosmic rays is carried out by indirect measurements. Thereby the primary cosmic particle enters into the earth's atmosphere and generates a cosmic ray air shower by interactions with the air molecules. The secondary particles arriving at ground level are detected with particle detector arrays. The fluorescence light from the exited nitrogen molecules along the shower axis is observed with reflector telescopes in the near-ultraviolet range. In addition to these well-established detection methods, the radio observation of the geosynchrotron emission from cosmic ray air showers is investigated at present as a new observation method. Geosynchrotron emission is generated by the acceleration of the relativistic electron-positron-pairs contained in the air shower by Lorentz forces in the earth's magnetic field. At ground level this causes a single pulse of the electric field strength with a continuous frequency spectrum ranging from a few MHz to above 100 MHz. In this work, a suitable receiver concept is developed based on the signal properties of the geosynchrotron emission and the analysis of the superposed noise and radio frequency interferences. As the required receiver system was not commercially available, it was designed in the framework of this work and realised as system including the antenna, the receiver electronics and suitable data acquisition equipment. In this concept considerations for a large scale radio detector array have already been taken into account, like low power consumption to enable solar power supply and cost effectiveness. The result is a calibrated, multi-channel, digital wideband receiver for the complete range from 40 MHz to 80 MHz. Its inherent noise and RFI suppression essentially results from the antenna directional characteristic and frequency selectivity and allows effective radio observation of cosmic ray air showers also in populated environment. Several units of this receiver station have been deployed

  8. Sudden f/sub min/ enhancements and sudden cosmic noise absorptions associated with solar X-ray flares

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T [Hyogo Coll. of Medicine, Hyogo (Japan). Dept. of Physics

    1975-01-01

    Sudden fsub(min) enhancements (SFsub(m)E's) and sudden cosmic noise absorptions (SCNA's) associated with increments of X-ray fluxes during solar flares are studied on the basis of X-ray flux data measured by SOLRAD 9 and 10 satellites. Some statistical analyses on SFsub(m)E's observed at five observatories in Japan, corresponding to increased X-ray fluxes in the 1-8 A band are made for 50 solar flare events during the period January 1972 to December 1973, and value of fsub(min) is expressed as functions of cos x(x; solar zenith angle) and 1-8 A band X-ray flux. Similar study is also made for SCNA's observed by 30 MHz riometer at Hiraiso for 15 great solar flare events during the same period, together with 27.6 MHz riometer data reported by Schwentek (1973) and 18 MHz data published by Deshpande and Mitra (1972b). It is found that fsub(min) value (MHz) and SCNA value (L, dB) of a radio wave with frequency f(MHz) are related to X-ray flux (F/sub 0/, erg cm/sup -2/ sec/sup -1/) in the 1-8 A band and to cos x, by following approximate expressions, fsub(min)(MHz)=10F/sub 0/sup(1/4) cossup(1/2) x, and L(dB)=4.37x10/sup 3/f/sup -2/F/sub 0/sup(1/2) cos x, respectively. Blackout seems to occur for F/sub 0/ values causing fsub(min)'s greater than about 5 MHz. It is shown that these expressions can be derived from a brief theoretical calculation of radio wave absorption in the lower ionosphere. Also it is suggested that threshold X-ray fluxes in the 1-8 A band which may produce a minimum SFsub(m)E (2 MHz), blackout and minimum SCNA (0.27-0.36 dB for 30 MHz noise) are 1.6x10/sup -3/, 6.2x10/sup -2/ and (3-8) x 10/sup -3/ erg cm/sup -2/ sec/sup -1/, respectively, for cos x=1.

  9. Solar magnetohydrodynamics

    International Nuclear Information System (INIS)

    Priest, E.R.

    1982-01-01

    Solar MHD is an important tool for understanding many solar phenomena. It also plays a crucial role in explaining the behaviour of more general cosmical magnetic fields and plasmas, since the Sun provides a natural laboratory in which such behaviour may be studied. While terrestrial experiments are invaluable in demonstrating general plasma properties, conclusions from them cannot be applied uncritically to solar plasmas and have in the past given rise to misconceptions about solar magnetic field behaviour. Important differences between a laboratory plasma on Earth and the Sun include the nature of boundary conditions, the energy balance, the effect of gravity and the size of the magnetic Reynolds number (generally of order unity on the Earth and very much larger on the Sun). The overall structure of the book is as follows. It begins with two introductory chapters on solar observations and the MHD equations. Then the fundamentals of MHD are developed in chapters on magnetostatics, waves, shocks, and instabilities. Finally, the theory is applied to the solar phenomena of atmospheric heating, sunspots, dynamos, flares, prominences, and the solar wind. (Auth.)

  10. Impact of cosmic neutrinos on the gravitational-wave background

    CERN Document Server

    Mangilli, A; Matarrese, S; Riotto, Antonio

    2008-01-01

    We obtain the equation governing the evolution of the cosmological gravitational-wave background, accounting for the presence of cosmic neutrinos, up to second order in perturbation theory. In particular, we focus on the epoch during radiation dominance, after neutrino decoupling, when neutrinos yield a relevant contribution to the total energy density and behave as collisionless ultra-relativistic particles. Besides recovering the standard damping effect due to neutrinos, a new source term for gravitational waves is shown to arise from the neutrino anisotropic stress tensor. The importance of such a source term, so far completely disregarded in the literature, is related to the high velocity dispersion of neutrinos in the considered epoch; its computation requires solving the full second-order Boltzmann equation for collisionless neutrinos.

  11. Handbook of relativistic quantum chemistry

    International Nuclear Information System (INIS)

    Liu, Wenjian

    2017-01-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  12. Relativistic many-body theory of atomic transitions. The relativistic equation-of-motion approach

    International Nuclear Information System (INIS)

    Huang, K.

    1982-01-01

    An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated with the use of techniques of quantum-field theory. To reduce the equations of motion to a tractable form which is appropriate for numerical calculations, a graphical method to resolve the complication arising from the antisymmetrization and angular-momentum coupling is employed. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation

  13. Relativistic many-body theory of atomic transitions: the relativistic equation-of-motion approach

    International Nuclear Information System (INIS)

    Huang, K.N.

    1981-01-01

    An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated using techniques of quantum field theory. To reduce the equation of motion to a tractable form which is appropriate for numerical calculations, a graphical method is employed to resolve the complication arising from the antisymmetrization and angular momentum coupling. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation

  14. Astrophysical Sources of Cosmic Rays and Related Measurements with the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Correlation of the highest energy cosmic rays with nearby extragalactic objects in Pierre Auger Observatory data; (2) Discriminating potential astrophysical sources of the highest energy cosmic rays with the Pierre Auger Observatory; (3) Intrinsic anisotropy of the UHECR from the Pierre Auger Observatory; (4) Ultra-high energy photon studies with the Pierre Auger Observatory; (5) Limits on the flux of diffuse ultra high energy neutrinos set using the Pierre Auger Observatory; (6) Search for sidereal modulation of the arrival directions of events recorded at the Pierre Auger Observatory; (7) Cosmic Ray Solar Modulation Studies in the Pierre Auger Observatory; (8) Investigation of the Displacement Angle of the Highest Energy Cosmic Rays Caused by the Galactic Magnetic Field; (9) Search for coincidences with astrophysical transients in Pierre Auger Observatory data; and (10) An alternative method for determining the energy of hybrid events at the Pierre Auger Observatory.

  15. Cosmic evolution, life and man

    International Nuclear Information System (INIS)

    Oro, J.

    1995-01-01

    Among the most basic problems confronting science are those regarding the origin of the universe, the origin of life and the origin of man. This general overview starts (1) with a brief introduction addressed primarily to the Cyril Ponnamperuma Memorial. Then, the thesis is presented that the appearance of life and intelligence on our planet can be understood as the result of a number of cosmic and biological evolutionary processes, including (2) the stellar thermonuclear synthesis of the biogenic elements other than hydrogen (C, N, O, P and S), their dispersal into space, and their combination into circumstellar and interstellar molecules. (3) The formation of the Solar System and the Earth-Moon System. (4) The role of comets and carbonaceous chondrites in contributing organic matter to the primitive Earth. (5) The prebiotics synthesis of amino acids, purines, pyrimidines, fatty acids, and other biochemical monomers. (6) The prebiotic condensation reactions leading to the synthesis of oligomers such as oligonucleotides and oligopeptides, with replicative and catalytic activities. (7) The synthesis of amphiphilic lipids, and their self-assembly into liposomes with bi-layered membranes. (8) The formation of protocellular structures. (9) The activation of protocells into a functioning Darwin's ancestral cell. (10) Early evolution of life. (11) The K-T boundary event and the disappearance of dinosaurs. (12) Evolution of hominids leading to Homo sapiens. (13) The rapid development of civilization. (14) The exploration of the Solar System. (15) Life beyond our planetary system. (16) Epilogue. Peace from cosmic evolution? (Abstract only)

  16. Cosmic evolution, life and man

    Energy Technology Data Exchange (ETDEWEB)

    Oro, J [Houston Univ., Houston, TX (United States). Dept. of Biochemical and Biophysical Sciences

    1995-08-01

    Among the most basic problems confronting science are those regarding the origin of the universe, the origin of life and the origin of man. This general overview starts (1) with a brief introduction addressed primarily to the Cyril Ponnamperuma Memorial. Then, the thesis is presented that the appearance of life and intelligence on our planet can be understood as the result of a number of cosmic and biological evolutionary processes, including (2) the stellar thermonuclear synthesis of the biogenic elements other than hydrogen (C, N, O, P and S), their dispersal into space, and their combination into circumstellar and interstellar molecules. (3) The formation of the Solar System and the Earth-Moon System. (4) The role of comets and carbonaceous chondrites in contributing organic matter to the primitive Earth. (5) The prebiotics synthesis of amino acids, purines, pyrimidines, fatty acids, and other biochemical monomers. (6) The prebiotic condensation reactions leading to the synthesis of oligomers such as oligonucleotides and oligopeptides, with replicative and catalytic activities. (7) The synthesis of amphiphilic lipids, and their self-assembly into liposomes with bi-layered membranes. (8) The formation of protocellular structures. (9) The activation of protocells into a functioning Darwin`s ancestral cell. (10) Early evolution of life. (11) The K-T boundary event and the disappearance of dinosaurs. (12) Evolution of hominids leading to Homo sapiens. (13) The rapid development of civilization. (14) The exploration of the Solar System. (15) Life beyond our planetary system. (16) Epilogue. Peace from cosmic evolution? (Abstract only).

  17. The long-term variability of cosmic ray protons in the heliosphere: A modeling approach

    Directory of Open Access Journals (Sweden)

    M.S. Potgieter

    2013-05-01

    Full Text Available Galactic cosmic rays are charged particles created in our galaxy and beyond. They propagate through interstellar space to eventually reach the heliosphere and Earth. Their transport in the heliosphere is subjected to four modulation processes: diffusion, convection, adiabatic energy changes and particle drifts. Time-dependent changes, caused by solar activity which varies from minimum to maximum every ∼11 years, are reflected in cosmic ray observations at and near Earth and along spacecraft trajectories. Using a time-dependent compound numerical model, the time variation of cosmic ray protons in the heliosphere is studied. It is shown that the modeling approach is successful and can be used to study long-term modulation cycles.

  18. Relativistic duality, and relativistic and radiative corrections for heavy-quark systems

    International Nuclear Information System (INIS)

    Durand, B.; Durand, L.

    1982-01-01

    We give a JWKB proof of a relativistic duality relation which relates an appropriate energy average of the physical cross section for e + e - →qq-bar bound states→hadrons to the same energy average of the perturbative cross section for e + e - →qq-bar. We show that the duality relation can be used effectively to estimate relativistic and radiative corrections for bound-quark systems to order α/sub s//sup ts2/. We also present a formula which relates the square of the ''large'' 3 S 1 Salpeter-Bethe-Schwinger wave function for zero space-time separation of the quarks to the square of the nonrelativistic Schroedinger wave function at the origin for an effective potential which reproduces the relativistic spectrum. This formula allows one to use the nonrelativistic wave functions obtained in potential models fitted to the psi and UPSILON spectra to calculate relativistic leptonic widths for qq-bar states via a relativistic version of the van Royen--Weisskopf formula

  19. Handbook of relativistic quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering

    2017-03-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  20. Relativistic non-Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2010-01-01

    Relativistic particle subjected to a general four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u μ u μ + c 2 = 0, where c is the speed of light in vacuum. In the general case, four-forces are non-potential, and the relativistic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time. We consider non-Hamiltonian and dissipative systems in relativistic mechanics. Covariant forms of the principle of stationary action and the Hamilton's principle for relativistic mechanics of non-Hamiltonian systems are discussed. The equivalence of these principles is considered for relativistic particles subjected to potential and non-potential forces. We note that the equations of motion which follow from the Hamilton's principle are not equivalent to the equations which follow from the variational principle of stationary action. The Hamilton's principle and the principle of stationary action are not compatible in the case of systems with nonholonomic constraint and the potential forces. The principle of stationary action for relativistic particle subjected to non-potential forces can be used if the Helmholtz conditions are satisfied. The Hamilton's principle and the principle of stationary action are equivalent only for a special class of relativistic non-Hamiltonian systems.

  1. Elemental GCR Observations during the 2009-2010 Solar Minimum Period

    Science.gov (United States)

    Lave, K. A.; Israel, M. H.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; deNolfo, G. A.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; hide

    2013-01-01

    Using observations from the Cosmic Ray Isotope Spectrometer (CRIS) onboard the Advanced Composition Explorer (ACE), we present new measurements of the galactic cosmic ray (GCR) elemental composition and energy spectra for the species B through Ni in the energy range approx. 50-550 MeV/nucleon during the record setting 2009-2010 solar minimum period. These data are compared with our observations from the 1997-1998 solar minimum period, when solar modulation in the heliosphere was somewhat higher. For these species, we find that the intensities during the 2009-2010 solar minimum were approx. 20% higher than those in the previous solar minimum, and in fact were the highest GCR intensities recorded during the space age. Relative abundances for these species during the two solar minimum periods differed by small but statistically significant amounts, which are attributed to the combination of spectral shape differences between primary and secondary GCRs in the interstellar medium and differences between the levels of solar modulation in the two solar minima. We also present the secondary-to-primary ratios B/C and (Sc+Ti+V)/Fe for both solar minimum periods, and demonstrate that these ratios are reasonably well fit by a simple "leaky-box" galactic transport model that is combined with a spherically symmetric solar modulation model.

  2. Trek and ECCO: Abundance measurements of ultraheavy galactic cosmic rays

    International Nuclear Information System (INIS)

    Westphal, Andrew J.

    2000-01-01

    Using the Trek detector, we have measured the abundances of the heaviest elements (with Z>70) in the galactic cosmic rays with sufficient charge resolution to resolve the even-Z elements. We find that the abundance of Pb compared to Pt is ∼3 times lower than the value expected from the most widely-held class of models of the origin of galactic cosmic ray nuclei, that is, origination in a partially ionized medium with solar-like composition. The low abundance of Pb is, however, consistent with the interstellar gas and dust model of Meyer, Drury and Ellison, and with a source enriched in r-process material, proposed by Binns et al. A high-resolution, high-statistics measurement of the abundances of the individual actinides would distinguish between these models. This is the goal of ECCO, the Extremely Heavy Cosmic-ray Composition Observer, which we plan to deploy on the International Space Station

  3. Cosmic rays and terrestrial life: A brief review

    Science.gov (United States)

    Atri, Dimitra; Melott, Adrian L.

    2014-01-01

    “The investigation into the possible effects of cosmic rays on living organisms will also offer great interest.” - Victor F. Hess, Nobel Lecture, December 12, 1936 High-energy radiation bursts are commonplace in our Universe. From nearby solar flares to distant gamma ray bursts, a variety of physical processes accelerate charged particles to a wide range of energies, which subsequently reach the Earth. Such particles contribute to a number of physical processes occurring in the Earth system. A large fraction of the energy of charged particles gets deposited in the atmosphere, ionizing it, causing changes in its chemistry and affecting the global electric circuit. Remaining secondary particles contribute to the background dose of cosmic rays on the surface and parts of the subsurface region. Life has evolved over the past ∼3 billion years in presence of this background radiation, which itself has varied considerably during the period [1-3]. As demonstrated by the Miller-Urey experiment, lightning plays a very important role in the formation of complex organic molecules, which are the building blocks of more complex structures forming life. There is growing evidence of increase in the lightning rate with increasing flux of charged particles. Is there a connection between enhanced rate of cosmic rays and the origin of life? Cosmic ray secondaries are also known to damage DNA and cause mutations, leading to cancer and other diseases. It is now possible to compute radiation doses from secondary particles, in particular muons and neutrons. Have the variations in cosmic ray flux affected the evolution of life on earth? We describe the mechanisms of cosmic rays affecting terrestrial life and review the potential implications of the variation of high-energy astrophysical radiation on the history of life on earth.

  4. To the exposure of air crew members to cosmic radiation

    International Nuclear Information System (INIS)

    Spurny, F.; Kovar, I.; Bottollier-Depois, J.F.; Plawinski, L.

    1998-01-01

    According to an ICRP recommendation, the exposure of jet aircraft crew to radiation should be considered as occupational exposure when the annual equivalent doses are liable to exceed 1 mSv. Many new data on this type of exposure collected since 1991 are presented and analyzed. The dose equivalent rates established are fitted as a function of flight altitude. An analysis of data from cosmic ray monitors has shown that the presence of cosmic rays in the Earth's atmosphere is rather stable since early 1992. An estimation was therefore made of the possible influence of the solar cycle phase by means of a transport code. The results obtained are compared with experimental data

  5. Cosmic ray anisotropies at high energies

    Science.gov (United States)

    Martinic, N. J.; Alarcon, A.; Teran, F.

    1986-01-01

    The directional anisotropies of the energetic cosmic ray gas due to the relative motion between the observers frame and the one where the relativistic gas can be assumed isotropic is analyzed. The radiation fluxes formula in the former frame must follow as the Lorentz invariance of dp/E, where p, E are the 4-vector momentum-energy components; dp is the 3-volume element in the momentum space. The anisotropic flux shows in such a case an amplitude, in a rotating earth, smaller than the experimental measurements from say, EAS-arrays for primary particle energies larger than 1.E(14) eV. Further, it is shown that two consecutive Lorentz transformations among three inertial frames exhibit the violation of dp/E invariance between the first and the third systems of reference, due to the Wigner rotation. A discussion of this result in the context of the experimental anisotropic fluxes and its current interpretation is given.

  6. Insights into the Galactic Cosmic-ray Source from the TIGER Experiment

    Science.gov (United States)

    Link, Jason T.; Barbier, L. M.; Binns, W. R.; Christian, E. R.; Cummings, J. R.; Geier, S.; Israel, M. H.; Lodders, K.; Mewaldt,R. A.; Mitchell, J. W.; hide

    2009-01-01

    We report results from 50 days of data accumulated in two Antarctic flights of the Trans-Iron Galactic Element Recorder (TIGER). With a detector system composed of scintillators, Cherenkov detectors, and scintillating optical fibers, TIGER has a geometrical acceptance of 1.7 sq m sr and a charge resolution of 0.23 cu at Iron. TIGER has obtained abundance measurements of some of the rare galactic cosmic rays heavier than iron, including Zn, Ga, Ge, Se, and Sr, as well as the more abundant lighter elements (down to Si). The heavy elements have long been recognized as important probes of the nature of the galactic cosmic-ray source and accelerator. After accounting for fragmentation of cosmic-ray nuclei as they propagate through the Galaxy and the atmosphere above the detector system, the TIGER source abundances are consistent with a source that is a mixture of about 20% ejecta from massive stars and 80% interstellar medium with solar system composition. This result supports a model of cosmic-ray origin in OB associations previously inferred from ACE-CRIS data of more abundant lighter elements. These TIGER data also support a cosmic-ray acceleration model in which elements present in interstellar grains are accelerated preferentially compared with those found in interstellar gas.

  7. Constraining neutrino physics with big bang nucleosynthesis and cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Hansen, S.H.; Melchiorri, A.; Mangano, G.; Miele, G.; Pisanti, O.

    2002-01-01

    We perform a likelihood analysis of the recent results on the anisotropy of cosmic microwave background radiation from the BOOMERanG and DASI experiments to show that they single out an effective number of neutrinos in good agreement with standard big bang nucleosynthesis. We also consider degenerate big bang nucleosynthesis to provide new bounds on effective relativistic degrees of freedom N ν and, in particular, on the neutrino chemical potential ξ α . When including supernova type Ia data we find, at 2σ, N ν ≤7 and -0.01≤ξ e ≤0.22, vertical bar ξ μ,τ vertical bar ≤2.6

  8. An update on the correlation between the cosmic radiation intensity and the geomagnetic AA index

    Science.gov (United States)

    Shea, M. A.; Smart, D. F.

    1985-01-01

    A statistical study between the cosmic ray intensity, as observed by a neutron monitor, and of the geomagnetic aa index, as representative of perturbations in the plasma and interplanetary magnetic field in the heliosphere, has been updated to specifically exclude time periods around the reversal of the solar magnetic field. The results of this study show a strong negative correlation for the period 1960 through 1968 with a correlation coefficient of approximately -0.86. However, there is essentially no correlation between the cosmic ray intensity and the aa index for the period 1972-1979 (i.e. correlation coefficient less than 0.16). These results would appear to support the theory of preferential particle propagation into the heliosphere vis the ecliptic during the period 1960-1968 and via the solar polar regions during 1972-1979.

  9. Recent development of relativistic molecular theory

    International Nuclear Information System (INIS)

    Takahito, Nakajima; Kimihiko, Hirao

    2005-01-01

    Today it is common knowledge that relativistic effects are important in the heavy-element chemistry. The continuing development of the relativistic molecular theory is opening up rows of the periodic table that are impossible to treat with the non-relativistic approach. The most straightforward way to treat relativistic effects on heavy-element systems is to use the four-component Dirac-Hartree-Fock approach and its electron-correlation methods based on the Dirac-Coulomb(-Breit) Hamiltonian. The Dirac-Hartree-Fock (DHF) or Dirac-Kohn-Sham (DKS) equation with the four-component spinors composed of the large- and small-components demands severe computational efforts to solve, and its applications to molecules including heavy elements have been limited to small- to medium-size systems. Recently, we have developed a very efficient algorithm for the four-component DHF and DKS approaches. As an alternative approach, several quasi-relativistic approximations have also been proposed instead of explicitly solving the four-component relativistic equation. We have developed the relativistic elimination of small components (RESC) and higher-order Douglas-Kroll (DK) Hamiltonians within the framework of the two-component quasi-relativistic approach. The developing four-component relativistic and approximate quasi-relativistic methods have been implemented into a program suite named REL4D. In this article, we will introduce the efficient relativistic molecular theories to treat heavy-atomic molecular systems accurately via the four-component relativistic and the two-component quasi-relativistic approaches. We will also show several chemical applications including heavy-element systems with our relativistic molecular approaches. (author)

  10. Solar Cycle in the Heliosphere and Cosmic Rays

    Science.gov (United States)

    2014-10-23

    at the source surface at 2.5 solar radii around the Sun. OMF shows a great variability both in solar cycle and on the centennial scale (see Fig. 3...It is important to note that the centennial variability is great (Lockwood et al. 1999; Solanki et al. 2000) comparable with or even greater than the...be identified as spikes in production of cosmogenic isotope (10Be and 14C) records on the centennial -millennial time scale (e.g., Usoskin and

  11. Fe/O ratio behavior as an indicator of solar plasma state at different solar activity manifestations and in periods of their absence

    Science.gov (United States)

    Minasyants, Gennady; Minasyants, Tamara; Tomozov, Vladimir

    2018-03-01

    We report the results of the investigation into plasma physical characteristics at various solar activity manifestations and in periods of their absence. These results have been obtained from quantitative estimates of the relative abundance of Fe/O ions in different energy ranges. Maximum values of the Fe/O ratio is shown to correspond to particle fluxes from impulsive flares for ions with energies decreases smoothly with ion energy and is noticeably inferior to values of fluxes in impulsive events. We have established that the properties of flares of solar cosmic rays indicate their belonging to a separate subclass in the total population of gradual events. Relying on variations in the abundance of Fe/O ions, we propose an explanation of the solar plasma behavior during the development of flares of both classes. Magnetic clouds (a separate type of coronal mass ejections (CME)), which have regions of turbulent compression and are sources of strong geomagnetic storms, exhibit a relative composition of Fe ions comparable to the abundance of Fe in ion fluxes from gradual flares. We have found out that the Fe/O value can be used to detect penetration of energetic flare plasma into the CME body at the initial phase of their joint development and to estimate its relative contribution. During solar minimum with the complete absence of sunspots, the Fe/O ratio during periods of "quiet" solar wind show absolutely low values of Fe/O=0.004-0.010 in the energy range from 2-5 to 30 MeV/n. This is associated with the manifestation of the cosmic ray anomalous component, which causes an increase in the intensity of ion fluxes with a high first ionization potential, including oxygen (O), and elements with a low first ionization potential (Fe) demonstrate the weakening of the fluxes. As for particles with higher energies (Ek>30 MeV/n), the Fe/O increase is due to the decisive influence of galactic cosmic rays on the composition of impurity elements in the solar wind under solar

  12. On the anomalous acceleration in the solar system

    International Nuclear Information System (INIS)

    Palle, D.

    2005-01-01

    We study an impact of the cosmological environment on the cosmological environment on the solar gravitational system by the imbedding formalism of Gautreau. It turns out that the cosmic mean-mass density and the cosmological constant give negligible small contribution to the gravity potentials. On the other hand, the cosmic acceleration beyond the Robertson-Walker geometry can considerably influence the curvature of spacetime in the solar system. The resulting anomalous constant acceleration towards the Sun is order of magnitude smaller than that measured by Pioneer 10 and 11. However, it is larger than the second order terms of potentials, thus well within the sensitivity of new gravity probes such as the LATOR mission (Author)

  13. Cosmic Education: Formation of a Planetary and Cosmic Personality

    Directory of Open Access Journals (Sweden)

    Bazaluk Oleg

    2012-04-01

    Full Text Available The major stages of development of cosmic pedagogy have been researched. Based on the achievements of the modern neurosciences as well as of psychology, cosmology, and philosophy, the authors provide their reasoning for the cosmic education and its outlooks for the educational systems of the world. Through the studies of how important human mind is for the Earth and the cosmos and by researching the evolution of human mind within the structure of the Universe, the authors create a more advanced scientific and philosophic basis for the cosmic education where the subject is a comprehensive process of formation and directed progress of both an individual mind and a conglomerate of minds called the "psychospace". The cosmic education researches the permanent progress of the intelligent matter of the Earth. The purpose of the cosmic education has been determined as formation of a planetary and cosmic personality. According to the authors, a planetary and cosmic personality is a harmony of mind, soul, and body, and such harmony is directed to use the internal creative potential of mind to the benefit of the intelligent matter of the entire Earth and the cosmos. The properties of such a planetary and cosmic personality are being improved continuously; they are a sample (the ideal of the cosmic pedagogy and the image of a human being of the future. Through the usage of the entire potential and art of upbringing and educating, the cosmic pedagogy is called to embody the major properties of the image of a human being of the future in the new generations of minds and to form a planetary and cosmic personality capable of self-actualization to the benefit of the permanent progress of the intelligent matter.

  14. Solar atmospheric neutrinos and the sensitivity floor for solar dark matter annihilation searches

    Energy Technology Data Exchange (ETDEWEB)

    Argüelles, C.A. [Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge MA (United States); De Wasseige, G. [Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Brussels (Belgium); Fedynitch, A. [Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); Jones, B.J.P., E-mail: caad@mit.edu, E-mail: gdewasse@vub.ac.be, E-mail: anatoli.fedynitch@desy.de, E-mail: ben.jones@uta.edu [University of Texas at Arlington, 108 Science Hall, 502 Yates St, Arlington TX (United States)

    2017-07-01

    Cosmic rays interacting in the solar atmosphere produce showers that result in a flux of high-energy neutrinos from the Sun. These form an irreducible background to indirect solar WIMP self-annihilation searches, which look for heavy dark matter particles annihilating into final states containing neutrinos in the Solar core. This background will eventually create a sensitivity floor for indirect WIMP self-annihilation searches analogous to that imposed by low-energy solar neutrino interactions for direct dark matter detection experiments. We present a new calculation of the flux of solar atmospheric neutrinos with a detailed treatment of systematic uncertainties inherent in solar atmospheric shower evolution, and we use this to derive the sensitivity floor for indirect solar WIMP annihilation analyses. We find that the floor lies less than one order of magnitude beyond the present experimental limits on spin-dependent WIMP-proton cross sections for some mass points, and that the high-energy solar atmospheric neutrino flux may be observable with running and future neutrino telescopes.

  15. Alternative explanations of the cosmic microwave background: A historical and an epistemological perspective

    Science.gov (United States)

    Ćirković, Milan M.; Perović, Slobodan

    2018-05-01

    We historically trace various non-conventional explanations for the origin of the cosmic microwave background and discuss their merit, while analyzing the dynamics of their rejection, as well as the relevant physical and methodological reasons for it. It turns out that there have been many such unorthodox interpretations; not only those developed in the context of theories rejecting the relativistic ("Big Bang") paradigm entirely (e.g., by Alfvén, Hoyle and Narlikar) but also those coming from the camp of original thinkers firmly entrenched in the relativistic milieu (e.g., by Rees, Ellis, Rowan-Robinson, Layzer and Hively). In fact, the orthodox interpretation has only incrementally won out against the alternatives over the course of the three decades of its multi-stage development. While on the whole, none of the alternatives to the hot Big Bang scenario is persuasive today, we discuss the epistemic ramifications of establishing orthodoxy and eliminating alternatives in science, an issue recently discussed by philosophers and historians of science for other areas of physics. Finally, we single out some plausible and possibly fruitful ideas offered by the alternatives.

  16. COMPARISON OF COSMIC-RAY ENVIRONMENTS ON EARTH, MOON, MARS AND IN SPACECARFT USING PHITS.

    Science.gov (United States)

    Sato, Tatsuhiko; Nagamatsu, Aiko; Ueno, Haruka; Kataoka, Ryuho; Miyake, Shoko; Takeda, Kazuo; Niita, Koji

    2017-09-29

    Estimation of cosmic-ray doses is of great importance not only in aircrew and astronaut dosimetry but also in evaluation of background radiation exposure to public. We therefore calculated the cosmic-ray doses on Earth, Moon and Mars as well as inside spacecraft, using Particle and Heavy Ion Transport code System PHITS. The same cosmic-ray models and dose conversion coefficients were employed in the calculation to properly compare between the simulation results for different environments. It is quantitatively confirmed that the thickness of physical shielding including the atmosphere and soil of the planets is the most important parameter to determine the cosmic-ray doses and their dominant contributors. The comparison also suggests that higher solar activity significantly reduces the astronaut doses particularly for the interplanetary missions. The information obtained from this study is useful in the designs of the future space missions as well as accelerator-based experiments dedicated to cosmic-ray research. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Search for Cosmic-Ray Antiproton Origins and for Cosmological Antimatter with BESS

    Science.gov (United States)

    Yamamoto, A.; Mitchell, J. W.; Yoshimura, K.; Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Itazaki, A.; hide

    2011-01-01

    The balloon-borne experiment with a superconducting spectrometer (BESS) has performed cosmic-ray observations as a US-Japan cooperative space science program, and has provided fundamental data on cosmic rays to study elementary particle phenomena in the early Universe. The BESS experiment has measured the energy spectra of cosmic-ray antiprotons to investigate signatures of possible exotic origins such as dark matter candidates or primordial black holes. and searched for heavier antinuclei that might reach Earth from antimatter domains formed in the early Universe. The apex of the BESS program was reached with the Antarctic flight of BESS-Polar II, during the 2007- 2008 Austral Summer, that obtained over 4.7 billion cosmic-ray events from 24.5 days of observation. The flight took place at the expected solar minimum, when the sensitivity of the low-energy antiproton measurements to a primary source is greatest. Here, we report the scientific restults, focusing on the long-duration flights of BESS-Polar I (2004) and BESS-Polar II (2007-2008).

  18. A phenomenological study of the long-term cosmic ray modulation, 850-1958 AD

    Science.gov (United States)

    McCracken, K. G.; McDonald, F. B.; Beer, J.; Raisbeck, G.; Yiou, F.

    2004-12-01

    The modulation of the galactic cosmic radiation over the past 1150 years is investigated using 10Be data from Greenland and the South Pole. For this purpose, we introduce the use of 22-year averages to study the long-term modulation. After allowance for secular changes in the geomagnetic dipole, it is shown that the 22-year mean intensity of the galactic cosmic radiation (GCR) in the vicinity of 1-2 GeV/nucleon returned to approximately the same high level at the widely separated times of the Oort (1050 AD), Spoerer (1420-1540), and the latter portion of the Maunder (1645-1715) periods of low solar activity. In terms of the modulation potential, ϕ, this asymptotic intensity corresponds to a mean residual modulation of ˜84 MV. The GCR intensity was significantly less during the Wolf (˜1320) and Dalton (1810) minima, and ϕ ˜ 200 MV. The higher temporal resolution data from Greenland shows that there were large 11-year and other fluctuations superimposed upon these high intensities during the Spoerer and Maunder minima (Δϕ ≈ 200-300 MV), indicating the continued presence of a substantial and time-dependent heliomagnetic field. Throughout the Spoerer minimum, the GCR intensity repeatedly returned to a condition of very low modulation, indicating that the cosmic ray spectrum incident on the Earth approached the level of the local interstellar spectrum. These results imply the continued presence of either (or both) (1) the normal cyclic variation of the heliospheric current sheet and/or (2) a cyclic variation of the diffusion coefficients throughout these periods of low solar activity. The data indicate that the modulation (i.e., depression) of the cosmic ray intensity during the instrumental era (1933-present) has been one of the greatest in the past 1150 years. Further, approximately the same low value has been attained on five previous widely separated occasions since 850 AD, and we speculate that the heliospheric magnetic field has reached an asymptotic

  19. Second-order contributions to relativistic time delay in the parametrized post-Newtonian formalism

    International Nuclear Information System (INIS)

    Richter, G.W.; Matzner, R.A.

    1983-01-01

    Using a parametrized expansion of the solar metric to second order in the Newtonian potential, we calculate the relativistic delay in the round-trip travel time of a radar signal reflected from a nearby planet. We find that one second-order contribution to the delay is on the order of ten nanoseconds, which is comparable to the uncertainties in present-day experiments involving the Viking spacecraft

  20. Relativistic Kinetic Theory

    Science.gov (United States)

    Vereshchagin, Gregory V.; Aksenov, Alexey G.

    2017-02-01

    Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.

  1. Astronomical relativistic reference systems with multipolar expansion: the global one

    International Nuclear Information System (INIS)

    Xie Yi

    2014-01-01

    With the rapid development of techniques for astronomical observations, the precision of measurements has been significantly increasing. Theories describing astronomical relativistic reference systems, which are the foundation for processing and interpreting these data now and in the future, may require extensions to satisfy the needs of these trends. Besides building a framework compatible with alternative theories of gravity and the pursuit of higher order post-Newtonian approximation, it will also be necessary to make the first order post-Newtonian multipole moments of celestial bodies be explicitly expressed in the astronomical relativistic reference systems. This will bring some convenience into modeling the observations and experiments and make it easier to distinguish different contributions in measurements. As a first step, the global solar system reference system is expressed as a multipolar expansion and the post-Newtonian mass and spin moments are shown explicitly in the metric which describes the coordinates of the system. The full expression of the global metric is given. (research papers)

  2. Relativistic Linear Restoring Force

    Science.gov (United States)

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  3. Relativistic decay widths of autoionization processes: The relativistic FanoADC-Stieltjes method

    Energy Technology Data Exchange (ETDEWEB)

    Fasshauer, Elke, E-mail: Elke.Fasshauer@uit.no [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø–The Arctic University of Norway, N-9037 Tromsø (Norway); Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany); Kolorenč, Přemysl [Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 180 00 Prague (Czech Republic); Pernpointner, Markus [Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)

    2015-04-14

    Electronic decay processes of ionized systems are, for example, the Auger decay or the Interatomic/ Intermolecular Coulombic Decay. In both processes, an energetically low lying vacancy is filled by an electron of an energetically higher lying orbital and a secondary electron is instantaneously emitted to the continuum. Whether or not such a process occurs depends both on the energetic accessibility and the corresponding lifetime compared to the lifetime of competing decay mechanisms. We present a realization of the non-relativistically established FanoADC-Stieltjes method for the description of autoionization decay widths including relativistic effects. This procedure, being based on the Algebraic Diagrammatic Construction (ADC), was adapted to the relativistic framework and implemented into the relativistic quantum chemistry program package Dirac. It is, in contrast to other existing relativistic atomic codes, not limited to the description of autoionization lifetimes in spherically symmetric systems, but is instead also applicable to molecules and clusters. We employ this method to the Auger processes following the Kr3d{sup −1}, Xe4d{sup −1}, and Rn5d{sup −1} ionization. Based on the results, we show a pronounced influence of mainly scalar-relativistic effects on the decay widths of autoionization processes.

  4. General Relativistic Theory of the VLBI Time Delay in the Gravitational Field of Moving Bodies

    Science.gov (United States)

    Kopeikin, Sergei

    2003-01-01

    The general relativistic theory of the gravitational VLBI experiment conducted on September 8, 2002 by Fomalont and Kopeikin is explained. Equations of radio waves (light) propagating from the quasar to the observer are integrated in the time-dependent gravitational field of the solar system by making use of either retarded or advanced solutions of the Einstein field equations. This mathematical technique separates explicitly the effects associated with the propagation of gravity from those associated with light in the integral expression for the relativistic VLBI time delay of light. We prove that the relativistic correction to the Shapiro time delay, discovered by Kopeikin (ApJ, 556, L1, 2001), changes sign if one retains direction of the light propagation but replaces the retarded for the advanced solution of the Einstein equations. Hence, this correction is associated with the propagation of gravity. The VLBI observation measured its speed, and that the retarded solution is the correct one.

  5. Galactic cosmic rays and tropical ozone asymmetries

    International Nuclear Information System (INIS)

    Kilifarska, Natalya; Bakhmutov, Volodymyr; Melnyk, Galyna

    2017-01-01

    Lower stratospheric ozone O_3 is of special interest to climatic studies due to its direct influence on the tropopause temperature, and correspondingly on Earth’s radiation balance. By reason of the suppressed dissociation of molecular oxygen by solar UV radiation and the long life span of the lower stratospheric O_3 , its temporal variability is usually attributed to atmospheric circulation. Here we report about latitudinal-longitudinal differences in a centennial evolution of the tropical O_3 at 70 hPa. These asymmetries are hardly explicable within the concept of the ozone’s dynamical control alone. Analysis of ozone, energetic particles and the geomagnetic records from the last 111 years has revealed that they all evolve synchronously with time. This coherence motivates us to propose a mechanism explaining the geomagnetic and galactic cosmic ray influence on the near tropopause O_3 , allowing for an understanding of its spatial-temporal variability during the past century. Key words: galactic cosmic rays, asymmetries of tropical ozone distribution, geomagnetic filed

  6. Solar-geophysical data number 389. Part I. Prompt reports. Data for December 1976--November 1976

    International Nuclear Information System (INIS)

    Leighton, H.

    1977-01-01

    This prompt report provides December 1976 and November 1976 data on alert periods, daily solar indices, solar flares, solar radio waves, solar wind measurements, solar x-ray radiation, coronal holes, and inferred IP magnetic field polarities for December. It also provides data on daily solar activity center, sudden ionospheric disturbances, solar radio waves, cosmic rays, geomagnetic indices and radio propagation indices for November

  7. Electronic structure of FeTiSb using relativistic and scalar-relativistic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Sahariya, Jagrati [Department of Physics, Manipal University Jaipur, Jaipur-303007, Rajasthan (India); Mund, H. S., E-mail: hmoond@gmail.com [Department of Physics, M. L. Sukhadia University, Udaipur-313001, Rajasthan (India)

    2016-05-06

    Electronic and magnetic properties of FeTiSb have been reported. The calculations are performed using spin polarized relativistic Korringa-Kohn-Rostoker scheme based on Green’s function method. Within SPR-KKR a fully relativistic and scalar-relativistic approaches have been used to investigate electronic structure of FeTiSb. Energy bands, total and partial density of states, atom specific magnetic moment along with total moment of FeTiSb alloys are presented.

  8. Solar-geophysical data number 391. Part I. Prompt reports. Data for February 1977--January 1977

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1977-03-01

    This prompt report provides data for February 1977 on alert periods, daily solar indices, solar flares, solar radio waves, solar X-ray radiation, coronal holes, solar wind measurements, spacecraft observations, inferred IP magnetic field polarities and mean solar magnetic field. It also provides data for January 1977 on daily solar activity center, sudden ionospheric disturbances, solar radio waves, cosmic rays, geomagnetic indices and radio propagation indices

  9. Ancient stardust in meteorites - A new source of cosmic material

    International Nuclear Information System (INIS)

    Walker, Robert M.

    2000-01-01

    Micron sized, presolar grains of SiC and graphite (as well as other phases not discussed here) found in mineral separates of primitive meteorites constitute a new source of cosmic material. The grains are identified by anomalous isotopic ratios in both major and minor elements. In some cases, these differ from average solar system values by a factor >10 3 . The SiC grains can be separated into distinct isotopic families representing different stellar sources. Only two types are discussed here - 'mainstream' SiC grains, constituting ∼98% of the total and less abundant X-grains that constitute <1% of the total. The former have isotopic ratios characteristic of S-process nucleosynthesis and are believed to be condensates formed in the atmospheres of AGB stars. In contrast, X grains have isotopic patterns characteristic of R-process nucleosynthesis and are believed to be supernovae condensates. In addition to giving a wealth of new detail on the nuclear processes in different stars, the grains open up entirely new avenues of research. For example, electron microscope mineralogical/petrographic studies of microtomed grains give insight on the processes of grain growth. Molecules of polycyclic aromatic hydrocarbons (PAHs) are common in the graphite grains. Isotopic measurements demonstrate that some of the PAHs formed from the same suite of atoms as the parent grains and are thus indigenous. The relationship of presolar grains to cosmic ray physics is briefly considered. Overall, the grain work serves to deepen the mystery of the similarity of isotopic ratios measured in cosmic rays to those of Solar System materials

  10. Recent results from L3+COSMICS at CERN L3 collaboration

    CERN Document Server

    Bertaina, M

    2002-01-01

    11x10 sup 9 cosmic ray muon events above 20 GeV have been collected with the L3+C detector at LEP, CERN, in 1999 and 2000. During the last year the energy, core position and direction of the air showers causing the observed muons could be derived for part of the data. Preliminary results for the vertical muon flux and charge ratio depending on the muon momentum are shown. The influence of the air shower energy on the muon properties is studied. A search for muon rate increase during the solar flare of the 14 sup t sup h July 2000 is performed. Meteorological effects on cosmic ray intensity measurements are discussed.

  11. Electric currents in cosmic plasmas

    International Nuclear Information System (INIS)

    Alfven, H.

    1977-05-01

    Since the beginning of the century physics has been dualistic in the sense that some phenomena are described by a field concept, others by a particle concept. This dualism is essential also in the physics of cosmical plasmas: some phenomena should be described by a magnetic field formalism, others by an electric current formalism. During the first period of evolution of cosmic plasma physics the magnetic field aspect has dominated, and a fairly exhaustive description has been given of those phenomena--like the propagation of waves--which can be described in this way. We have now entered a second period which is dominated by a systematic exploration of the particle (or current) aspect. A survey is given of a number of phenomena which can be understood only from the particle aspect. These include the formation of electric double layers, the origin of explosive events like magnetic substorms and solar flares, and further, the transfer of energy from one region to another. A useful method of exploring many of these phenomena is to draw the electric circuit in which the current flows and study its properties. A number of simple circuits are analyzed in this way. (author)

  12. Cosmogenic nuclides in recently fallen meteorites: Evidence for galactic cosmic ray variations during the period 1967--1978

    International Nuclear Information System (INIS)

    Evans, J.C.; Reeves, J.H.; Rancitelli, L.A.; Bogard, D.D.

    1982-01-01

    Cosmogenic radionuclides were measured on 48 fragments of 24 meteorites which fell between 1967 and 1978. Nondestructive gamma counting techniques were used to obtain data on 7 Be, 46 Sc, 48 V, 51 Cr, 54 Mn, 56 Co, 57 Co, 58 Co, and 60 Co on at least some of the samples. Sodium 22 and 26 Al measurements are reported on all 48 samples. In addition, new rare gas data and exposure ages are reported for the meteorites Guibga, Gorlovka, Dhajala, Louisville, Acapulco, Jilin, Kabo, Alta-Ameen, and Canon City. The cosmogenic radioisotope and rare gas data are interpreted in terms of a time dependent modulation of galactic cosmic rays spanning one full 11 year sun spot cycle. Special attention is given to the data on 22 Na, 46 Sc, 54 Mn, and 48 V with either 26 Al or 22 Ne/ 21 Ne used to provide a shielding correction. The shielding normalized data using the 26 Al method appear to correlate well with calculated production rates scaled against the Deep River neutron monitor. The data for the four isotopes are consistent with a production rate variation of a factor of 2.5--3 between solar maximum and solar minimum for sun spot cycle 20. These data demonstrate that the production rates of cosmic ray-produced nuclides in meteorites vary considerably according to modulation by the 11-year solar cycle and support the concept that variations of solar-modulated, cosmic ray flux of similar magnitude have occurred over much longer time periods

  13. Relativistic entanglement from relativistic quantum mechanics in the rest-frame instant form of dynamics

    International Nuclear Information System (INIS)

    Lusanna, Luca

    2011-01-01

    After a review of the problems induced by the Lorentz signature of Minkowski space-time, like the need of a clock synchronization convention for the definition of 3-space and the complexity of the notion of relativistic center of mass, there is the introduction of a new formulation of relativistic quantum mechanics compatible with the theory of relativistic bound states. In it the zeroth postulate of non-relativistic quantum mechanics is not valid and the physics is described in the rest frame by a Hilbert space containing only relative variables. The non-locality of the Poincare' generators imply a kinematical non-locality and non-separability influencing the theory of relativistic entanglement and not connected with the standard quantum non-locality.

  14. Cosmic rays and stochastic magnetic reconnection in the heliotail

    Directory of Open Access Journals (Sweden)

    P. Desiati

    2012-06-01

    Full Text Available Galactic cosmic rays are believed to be generated by diffusive shock acceleration processes in Supernova Remnants, and the arrival direction is likely determined by the distribution of their sources throughout the Galaxy, in particular by the nearest and youngest ones. Transport to Earth through the interstellar medium is expected to affect the cosmic ray properties as well. However, the observed anisotropy of TeV cosmic rays and its energy dependence cannot be explained with diffusion models of particle propagation in the Galaxy. Within a distance of a few parsec, diffusion regime is not valid and particles with energy below about 100 TeV must be influenced by the heliosphere and its elongated tail. The observation of a highly significant localized excess region of cosmic rays from the apparent direction of the downstream interstellar flow at 1–10 TeV energies might provide the first experimental evidence that the heliotail can affect the transport of energetic particles. In particular, TeV cosmic rays propagating through the heliotail interact with the 100–300 AU wide magnetic field polarity domains generated by the 11 yr cycles. Since the strength of non-linear convective processes is expected to be larger than viscous damping, the plasma in the heliotail is turbulent. Where magnetic field domains converge on each other due to solar wind gradient, stochastic magnetic reconnection likely occurs. Such processes may be efficient enough to re-accelerate a fraction of TeV particles as long as scattering processes are not strong. Therefore, the fractional excess of TeV cosmic rays from the narrow region toward the heliotail direction traces sightlines with the lowest smearing scattering effects, that can also explain the observation of a harder than average energy spectrum.

  15. The solar modulation of galactic comic rays as described by a time-dependent drift model

    International Nuclear Information System (INIS)

    Le Roux, J.A.

    1990-09-01

    The modulation process is understood to be an interaction between cosmic rays and the solar wind. The heliosphere and the observed modulation of cosmic rays in the heliosphere was reviewed and the time-dependence nature of the long-term modulation of cosmic rays highligted. A two-dimensional time-dependent drift model that describes the long-term modulation of cosmic-rays is presented. Application of the time-dependent drift model during times of increased solar activity showed that drift should be reduced during such periods. Isolated Forbush decreases were also studied in an effort to explain some observed trends in the properties of the Forbush decrease as a function of radial distance. The magnitude of the Forbush decrease and its recovery time were therefore studied as a function of radial distance in the equatorial plane. 154 refs., 95 figs., 1 tab

  16. New approach to the interaction of cosmic rays with nuclei in spacecraft shielding and the human body

    International Nuclear Information System (INIS)

    Bush, B.W.; Nix, J.R.

    1993-01-01

    The interaction of high-energy cosmic rays with nuclei in spacecraft shielding and the human body is important for manned interplanetary missions and is not well understood either experimentally or theoretically. We present a new theoretical approach to this problem based on classical hadrodynamics for extended nucleons, which treats nucleons of finite size interacting with massive meson fields. This theory represents the classical analogue of the quantum hadrodynamics of Serot and Walecka without the assumptions of the mean-field approximation and point nucleons. It provides a natural covariant microscopic approach to collisions between cosmic rays and nuclei that automatically includes space-time non-locality and retardation, nonequilibrium phenomena, interactions among all nucleons, and particle production. Unlike previous models, this approach is manifestly Lorentz covariant and satisfies a priori the basic conditions that are present when cosmic rays collide with nuclei, namely an interaction time that is extremely short and a nucleon mean-free path, force range, and internucleon separation that are all comparable in size. We review the history of classical meson-field theory and derive the classical relativistic equations of motion for nucleons of finite size interacting with massive scalar and vector meson fields

  17. The solar forcing on the ground 7 Be concentration variability

    International Nuclear Information System (INIS)

    Talpos, S.; Borsan, D.H.

    2002-01-01

    7 Be, natural radionuclide, is produced by the interaction of cosmic radiation with oxygen and nitrogen molecules. 7 Be production in atmosphere depends on the intensity of cosmic radiation which is influenced by the Earth's magnetosphere. The magnetosphere shape depends on solar activity. This paper presents the influence of sunspots number (11 years period) on the ground 7 Be concentration variability. (authors)

  18. Cosmic ray transport in heliospheric magnetic structures. I. Modeling background solar wind using the CRONOS magnetohydrodynamic code

    Energy Technology Data Exchange (ETDEWEB)

    Wiengarten, T.; Kleimann, J.; Fichtner, H. [Institut für Theoretische Physik IV, Ruhr-Universität Bochum (Germany); Kühl, P.; Kopp, A.; Heber, B. [Institut für Experimentelle und Angewandte Physik, Christian-Albrecht-Universität zu Kiel (Germany); Kissmann, R. [Institut für Astro- und Teilchenphysik, Universität Innsbruck (Austria)

    2014-06-10

    The transport of energetic particles such as cosmic rays is governed by the properties of the plasma being traversed. While these properties are rather poorly known for galactic and interstellar plasmas due to the lack of in situ measurements, the heliospheric plasma environment has been probed by spacecraft for decades and provides a unique opportunity for testing transport theories. Of particular interest for the three-dimensional (3D) heliospheric transport of energetic particles are structures such as corotating interaction regions, which, due to strongly enhanced magnetic field strengths, turbulence, and associated shocks, can act as diffusion barriers on the one hand, but also as accelerators of low energy CRs on the other hand as well. In a two-fold series of papers, we investigate these effects by modeling inner-heliospheric solar wind conditions with a numerical magnetohydrodynamic (MHD) setup (this paper), which will serve as an input to a transport code employing a stochastic differential equation approach (second paper). In this first paper, we present results from 3D MHD simulations with our code CRONOS: for validation purposes we use analytic boundary conditions and compare with similar work by Pizzo. For a more realistic modeling of solar wind conditions, boundary conditions derived from synoptic magnetograms via the Wang-Sheeley-Arge (WSA) model are utilized, where the potential field modeling is performed with a finite-difference approach in contrast to the traditional spherical harmonics expansion often utilized in the WSA model. Our results are validated by comparing with multi-spacecraft data for ecliptical (STEREO-A/B) and out-of-ecliptic (Ulysses) regions.

  19. Numerical modeling of the 22-year variation of the cosmic ray intensity and anisotropy

    International Nuclear Information System (INIS)

    Kadokura, A.; Nishida, A.

    1986-01-01

    We have solved the two-dimensional time-dependent diffusion-convection equation numerically to obtain the distribution and anisotropy of cosmic rays in the heliosphere. We have assumed that the parallel and perpendicular mean free paths are proportional to the particle Larmor radius, and we have treated each proportionality constant (a,b) as a parameter. We have found that the set (a,b) = (4,2) gives the steady state solution compatible with observations on the intensity and the solar diurnal anisotropy of cosmic rays in 0.5- to 10-GeV range as obtained at the earth. This set of (a,b) corresponds to the ratio of the diffusion coefficients D/sub parallel//D/sub perpendicular/ = 10. In our solution the intensity for the (pre-1980) interplanetary magnetic field (IMF) state where the solar magnetic dipole and the angular velocity vector are parallel is higher than for the (post-1980) state where they are antiparallel, while the phase of the diurnal anisotropy is about 15 hours for the parallel state and about 18 hours for the antiparallel state. We have also reproduced the observed small radial gradient for each IMF state. We discuss the nature of the solution in order to understand the effect of the density gradient drift motion on the cosmic ray distribution

  20. Imprints to the terrestrial environment at galactic arm crossings of the solar system

    Science.gov (United States)

    Fahr, H. J.; Fichtner, H.; Scherer, K.; Stawicki, O.

    At its itinerary through our milky way galaxy the solar system moves through highly variable interstellar environments. Due to its orbital revolution around the galactic center, the solar system also crosses periodically the spiral arms of our galactic plane and thereby expe riences pronounced enviromental changes. Gas densities, magnetic fields and galactic cosmic ray intensities are substantially higher there compared to interarm conditions. Here we present theoretical calculations describing the SN-averaged galactic cosmic ray spectrum for regions inside and outside of galactic arms which then allow to predict how periodic passages of the solar system through galactic arms should be reflected by enhanced particle irradiations of the earth`s atmosphere and by correlated terrestrial Be-10 production rates.

  1. Transport coefficients of low-energy cosmic rays in interplanetary space

    International Nuclear Information System (INIS)

    Palmer, I.

    1982-01-01

    The propagation of energetic particles along and across the interplantary magnetic field is governed by the large-scale field geometry and by scattering in small-scale turbulent fields. Values of the scattering mean free path parallel to the field, γ/sub parallel/ (R), are reviewed in prompt solar bursts and nonimpulsive (corotating) events. Analysis of intensity and anisotropy profiles in combination is a powerful tool for elucidating γ/sub parallel/ (R). A consensus is found: at 1 AU, γ/sub parallel/ = 0.08--0.3 AU over a wide range of rigidity, R = 5 x 10 -4 to 5 GV. Efforts to explain the discrepancy between empirical values of γ/sub parallel/ and scattering theory are discussed. Quantitative measures of γ/sub parallel/ in rare scatter-free events, where magnetic power spectra. Cross-field diffusion due to random walk of field lines is revisited. Recent values deduced from magnetic power spectra in interplanetary space, magnetic diffusion at the sun, Jovian electron propagation, and cosmic ray events are evaluated. Again, a consensus is sought, and a reasonable mean is K/sub perpendicular//sup r//β = 10 21 cm 2 s -1 . Previous arguments against a significant K/sub perpendicular//sup r/ are reassessed, including the problem of the persistance of intensity fluctuations in cosmic ray events. Combining the consensus for K/sub perpendicular//sup r//β with that for γ/sub parallel/<0.1 at 1 AU, and thus neglect of K/sub perpendicular//sup r/ in the modeling of solar cosmic ray events appears justified (although account needs to be taken of coronal propagation). The outlook for the future includes better empirical values of γ/sub parallel/ down to E/sub p/approx.10 keV and E/sub e/approx. 1 keV, comparison with scattering theories at these energies, and comparison between empirical and theoretical γ/sub parallel/ in other regions such as the magnetosheath and upstream solar wind

  2. CREME96: A revision of the Cosmic Ray Effects on Micro-Electronics code

    International Nuclear Information System (INIS)

    Tylka, A.J.; Adams, J.H. Jr.; Boberg, P.R.

    1997-01-01

    CREME96 is an update of the Cosmic Ray Effects on Micro-Electronics code, a widely-used suite of programs for creating numerical models of the ionizing-radiation environment in near-Earth orbits and for evaluating radiation effects in spacecraft. CREME96, which is now available over the World-Wide Web (WWW) at http://crsp3.nrl.navy.mil/creme96/, has many significant features, including (1) improved models of the galactic cosmic ray, anomalous cosmic ray, and solar energetic particle (flare) components of the near-Earth environment; (2) improved geomagnetic transmission calculations; (3) improved nuclear transport routines; (4) improved single-event upset (SEU) calculation techniques, for both proton-induced and direct-ionization-induced SEUs; and (5) an easy-to-use graphical interface, with extensive on-line tutorial information. In this paper the authors document some of these improvements

  3. Relativistic Descriptions of Few-Body Systems

    International Nuclear Information System (INIS)

    Karmanov, V. A.

    2011-01-01

    A brief review of relativistic effects in few-body systems, of theoretical approaches, recent developments and applications is given. Manifestations of relativistic effects in the binding energies, in the electromagnetic form factors and in three-body observables are demonstrated. The three-body forces of relativistic origin are also discussed. We conclude that relativistic effects in nuclei can be important in spite of small binding energy. At high momenta they clearly manifest themselves and are necessary to describe the deuteron e.m. form factors. At the same time, there is still a discrepancy in three-body observables which might be a result of less clarity in understanding the corresponding relativistic effects, the relativistic NN kernel and the three-body forces. Relativistic few-body physics remains to be a field of very intensive and fruitful researches. (author)

  4. Cosmic-Ray Propagation in Turbulent Spiral Magnetic Fields Associated with Young Stellar Objects

    Science.gov (United States)

    Fatuzzo, Marco; Adams, Fred C.

    2018-04-01

    External cosmic rays impinging upon circumstellar disks associated with young stellar objects provide an important source of ionization, and, as such, play an important role in disk evolution and planet formation. However, these incoming cosmic rays are affected by a variety of physical processes internal to stellar/disk systems, including modulation by turbulent magnetic fields. Globally, these fields naturally provide both a funneling effect, where cosmic rays from larger volumes are focused into the disk region, and a magnetic mirroring effect, where cosmic rays are repelled due to the increasing field strength. This paper considers cosmic-ray propagation in the presence of a turbulent spiral magnetic field, analogous to that produced by the solar wind. The interaction of this wind with the interstellar medium defines a transition radius, analogous to the heliopause, which provides the outer boundary to this problem. We construct a new coordinate system where one coordinate follows the spiral magnetic field lines and consider magnetic perturbations to the field in the perpendicular directions. The presence of magnetic turbulence replaces the mirroring points with a distribution of values and moves the mean location outward. Our results thus help quantify the degree to which cosmic-ray fluxes are reduced in circumstellar disks by the presence of magnetic field structures that are shaped by stellar winds. The new coordinate system constructed herein should also be useful in other astronomical applications.

  5. The collective acceleration mechanism of solar cosmic rays

    International Nuclear Information System (INIS)

    Gershtein, S.S.

    1978-01-01

    The collective acceleration mechanism of protons and nuclei in solar flares, which lies in the fact that nuclei are trapped by electron bunches moving along the opened lines of force of the decreasing magnetic field of solar sports, is discussed. The proposed mechanism explains in a natural way the electron and nucleus energy ratio observed during flares. Electron acceleration in the current layers up to energies of the order of a MeV is discussed as a mechanism of electron pulsed injection. The collective acceleration mechanism can be realized at a comparatively small density of accelerated electrons nsub(e) approximately equal to 10 2 10 4 cm -3

  6. Sensitivity of relativistic impulse approximation proton-nucleus elastic scattering calculations on relativistic mean-field parameterizations

    International Nuclear Information System (INIS)

    Hojsik, M.; Gmuca, S.

    1998-01-01

    Relativistic microscopic calculations are presented for proton elastic scattering from 40 Ca at 500 MeV. The underlying target densities are calculated within the framework of the relativistic mean-field theory with several parameter sets commonly in use. The self consistency of the scalar and vector densities (and thus to relativistic mean-field parameters) is investigated. Recently, the relativistic impulse approximation (RIA) has been widely and repeatedly used for the calculations of proton-nucleus scattering at intermediate energies. These calculations have exhibited significant improvements over the nonrelativistic approaches. The relativistic impulse approximation calculations. in particular, provide a dramatically better description of the spin observables, namely the analyzing power, A y , and the spin-rotation function, Q, at least for energies higher than 400 MeV. In the relativistic impulse approximation, the Dirac optical potential is obtained by folding of the local Lorentz-invariant amplitudes with the corresponding nuclear densities. For the spin zero targets the scalar and vector terms give the dominant contributions. Thus the scalar and vector nuclear densities (both, proton and neutron ones) play the dominant role in the relativistic impulse approximation. While the proton vector densities can be obtained by unfolding from the empirically known charge densities, all other densities used rely to a great extent on theoretical models. The various recipes are used to construct the neutron vector densities and the scalar densities for both, neutrons and protons. In this paper we will study the sensitivity of the relativistic impulse approximation results on the various sets of relativistic mean-field parameters currently in use

  7. Taking the Universe's Temperature with Spectral Distortions of the Cosmic Microwave Background.

    Science.gov (United States)

    Hill, J Colin; Battaglia, Nick; Chluba, Jens; Ferraro, Simone; Schaan, Emmanuel; Spergel, David N

    2015-12-31

    The cosmic microwave background (CMB) energy spectrum is a near-perfect blackbody. The standard model of cosmology predicts small spectral distortions to this form, but no such distortion of the sky-averaged CMB spectrum has yet been measured. We calculate the largest expected distortion, which arises from the inverse Compton scattering of CMB photons off hot, free electrons, known as the thermal Sunyaev-Zel'dovich (TSZ) effect. We show that the predicted signal is roughly one order of magnitude below the current bound from the COBE-FIRAS experiment, but it can be detected at enormous significance (≳1000σ) by the proposed Primordial Inflation Explorer (PIXIE). Although cosmic variance reduces the effective signal-to-noise ratio to 230σ, this measurement will still yield a subpercent constraint on the total thermal energy of electrons in the observable Universe. Furthermore, we show that PIXIE can detect subtle relativistic effects in the sky-averaged TSZ signal at 30σ, which directly probe moments of the optical depth-weighted intracluster medium electron temperature distribution. These effects break the degeneracy between the electron density and the temperature in the mean TSZ signal, allowing a direct inference of the mean baryon density at low redshift. Future spectral distortion probes will thus determine the global thermodynamic properties of ionized gas in the Universe with unprecedented precision. These measurements will impose a fundamental "integral constraint" on models of galaxy formation and the injection of feedback energy over cosmic time.

  8. Three dimensional analysis of cosmic ray intensity variation

    International Nuclear Information System (INIS)

    Yasue, Shin-ichi; Mori, Satoru; Nagashima, Kazuo.

    1974-01-01

    Three dimensional analysis of cosmic ray anisotropy and its time variation was performed. This paper describes the analysis of the Forbush decrease in Jan. 1968 to investigate by comparing the direction of the magnetic field in interplanetary space and the direction of the reference axis for cosmic ray anisotropy. New anisotropy becomes dominant at the time of Forbush decrease because the anisotropy of cosmic ray in calm state is wiped out. Such anisotropy produces intensity variation in neutron monitors on the ground. The characteristic parameters of three dimensional anisotropy can be determined from theoretical value and observed intensity. Analyzed data were taken for 6 days from Jan. 25 to Jan. 30, 1968, at Deep River. The decrease of intensity at Deep River was seen for several hours from 11 o'clock (UT), Jan. 26, just before The Forbush decrease. This may be due to the loss cone. The Forbush decrease began at 19 o'clock, Jan. 26, and the main phase continued to 5 o'clock in the next morning. The spectrum of variation was Psup(-0.5). The time variations of the magnetic field in interplanetary space and the reference axis of cosmic ray anisotropy are shown for 15 hours. The average directions of both are almost in coincidence. The spatial distribution of cosmic ray near the earth may be expressed by the superposition of axial symmetrical distribution along a reference axis and its push-out to the direction of 12 o'clock. It is considered that the direction of magnetic force line and the velocity of solar wind correspond to the direction of the reference axis and the magnitude of anisotropy in the direction of 12 o'clock, respectively. (Kato, T.)

  9. On the equation of transport for cosmic-ray particles in the interplanetary region

    International Nuclear Information System (INIS)

    Webb, G.M.; Gleeson, L.J.

    1979-01-01

    Two new alternative derivations of the equation of transport for cosmic-ray particles in the interplanetary region are provided. Both derivations are carried out by using particle position r and time t in a frame of reference fixed in the solar system, and the particle momentum p' is specified relative to a local frame of reference moving with the solar wind. The first derivation is carried out by writing down a continuity equation for the cosmic rays, taking into account particle streaming and energy changes, and subsequently deriving the streaming and energy change terms in this equation. The momentum change term in the continuity equation, previously considered to be due to the adiabatic deceleration of particles in the expanding magnetic fields carried by the solar wing, appears in the present analysis as a dynamic effect in which the Lorentz force on the particle does not appear explicitly. An alternative derivation based on the ensemble averaged Liouville equation for charged particles in the stochastic interplanetary magnetic field using (r,p',t) as independent coordinates is also given. The latter derivation confirms the momentum change interpretation of the first derivation. A new derivation of the adiabatic rate as a combination of inverse-Fermi and betatron deceleration processes is also provided. (Auth.)

  10. The relativistic virial theorem

    International Nuclear Information System (INIS)

    Lucha, W.; Schoeberl, F.F.

    1989-11-01

    The relativistic generalization of the quantum-mechanical virial theorem is derived and used to clarify the connection between the nonrelativistic and (semi-)relativistic treatment of bound states. 12 refs. (Authors)

  11. Investigating a solar influence on cloud cover using the North American Regional Reanalysis data

    Directory of Open Access Journals (Sweden)

    Krahenbuhl Daniel Scott

    2015-01-01

    Full Text Available The controversial connection between cosmic rays, solar activity, and cloud cover is investigated using a climatological reconstructed reanalysis product: the North American Regional Reanalysis which provides high-resolution, low, mid-level, high, and total cloud cover data over a Lambert conformal conic projection permitting land/ocean discrimination. Pearson’s product-moment regional correlations were obtained between monthly cloud cover data and solar variability indicators, cosmic ray neutron monitors, several climatological indices, including the Atlantic Multidecadal Oscillation (AMO, and between cloud layers. Regions of the mid-latitude oceans exhibited a positive correlation with cosmic ray flux. Additionally, this maritime low cloud cover exhibits the only failed correlation significance with other altitudes. The cross correlation reveals that cloud cover is positively correlated everywhere but for ocean low cloud cover, supporting the unique response of the marine layer. The results of this investigation suggest that with the assumption that solar forcing does impact cloud cover, measurements of solar activity exhibits a slightly higher correlation than GCRs. The only instance where GCRs exhibit a positive regional correlation with cloud cover is for maritime low clouds. The AMO exerts the greatest control of cloud cover in the NARR domain.

  12. Sifting Through SDO's AIA Cosmic Ray Hits to Find Treasure

    Science.gov (United States)

    Kirk, M. S.; Thompson, B. J.; Viall, N. M.; Young, P. R.

    2017-12-01

    The Solar Dynamics Observatory's Atmospheric Imaging Assembly (SDO AIA) has revolutionized solar imaging with its high temporal and spatial resolution, unprecedented spatial and temporal coverage, and seven EUV channels. Automated algorithms routinely clean these images to remove cosmic ray intensity spikes as a part of its preprocessing algorithm. We take a novel approach to survey the entire set of AIA "spike" data to identify and group compact brightenings across the entire SDO mission. The AIA team applies a de-spiking algorithm to remove magnetospheric particle impacts on the CCD cameras, but it has been found that compact, intense solar brightenings are often removed as well. We use the spike database to mine the data and form statistics on compact solar brightenings without having to process large volumes of full-disk AIA data. There are approximately 3 trillion "spiked pixels" removed from images over the mission to date. We estimate that 0.001% of those are of solar origin and removed by mistake, giving us a pre-segmented dataset of 30 million events. We explore the implications of these statistics and the physical qualities of the "spikes" of solar origin.

  13. Solar journey: The significance of our galactic environment for the heliosphere and earth

    CERN Document Server

    Frisch, Priscilla C

    2006-01-01

    Humans evolved when the Sun was in the great void of the Local Bubble. The Sun entered the present environment of interstellar clouds only during the late Quaternary. Astronomical data reveal these long and short term changes in our galactic environment. Theoretical models then tell us how these changes affect interplanetary particles, planetary magnetospheres, and the Earth itself. Cosmic rays leave an isotopic signature in the paleoclimate record that helps trace the solar journey through space. "Solar Journey: The Significance of Our Galactic Environment for the Heliosphere and Earth" lays the foundation for an interdisciplinary study of the influence of interstellar material on the solar system and Earth as we travel through the Milky Way Galaxy. The solar wind bubble responds dynamically to interstellar material flowing past the Sun, regulating interstellar gas, dust, and cosmic particle fluxes in the interplanetary medium and the Earth. Cones of interstellar gas and dust focused by solar gravity, the ma...

  14. Hazards of cosmic radiation; Radiation cosmique: danger dans l'espace

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet-Bidaud, J M; Dzitko, H

    2000-06-01

    The main limitations on long-distance space transport is neither the energy source nor the propulsion system but appears to be the protection of cosmonauts from radiation. Cosmic radiation is made up of protons (87%), alpha particles (12%) and heavy nuclei (1%), all these particles travel through interstellar space and come from the explosion of stars at the end of their life. The earth is protected from cosmic radiation by 3 natural shields: (i) the magnetic field generated by the solar wind, (ii) the earth magnetic field (magnetosphere), and (iii) the earth atmosphere, this elusive layer of air is equivalent to a 10 meter-high volume of water. Magnetosphere and atmosphere reduce the radiation dose by a factor 4000. According to a European directive (1996) air crews must be considered as radiation workers. (A.C.)

  15. Search for cosmic-ray-induced gamma-ray emission in galaxy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; Buehler, R. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Albert, A. [Department of Physics, Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210 (United States); Allafort, A.; Bechtol, K.; Bloom, E. D.; Bottacini, E. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Baldini, L. [Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D.; Buson, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Brigida, M. [Dipartimento di Fisica " M. Merlin" dell' Università e del Politecnico di Bari, I-70126 Bari (Italy); Bruel, P., E-mail: olr@slac.stanford.edu, E-mail: zimmer@fysik.su.se, E-mail: conrad@fysik.su.se, E-mail: apinzke@fysik.su.se, E-mail: christoph.pfrommer@h-its.org [Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, F-91128 Palaiseau (France); Collaboration: Fermi-LAT Collaboration; and others

    2014-05-20

    Current theories predict relativistic hadronic particle populations in clusters of galaxies in addition to the already observed relativistic leptons. In these scenarios hadronic interactions give rise to neutral pions which decay into γ rays that are potentially observable with the Large Area Telescope (LAT) on board the Fermi space telescope. We present a joint likelihood analysis searching for spatially extended γ-ray emission at the locations of 50 galaxy clusters in four years of Fermi-LAT data under the assumption of the universal cosmic-ray (CR) model proposed by Pinzke and Pfrommer. We find an excess at a significance of 2.7σ, which upon closer inspection, however, is correlated to individual excess emission toward three galaxy clusters: A400, A1367, and A3112. We discuss these cases in detail and conservatively attribute the emission to unmodeled background systems (for example, radio galaxies within the clusters).Through the combined analysis of 50 clusters, we exclude hadronic injection efficiencies in simple hadronic models above 21% and establish limits on the CR to thermal pressure ratio within the virial radius, R {sub 200}, to be below 1.25%-1.4% depending on the morphological classification. In addition, we derive new limits on the γ-ray flux from individual clusters in our sample.

  16. MEASUREMENTS OF COSMIC-RAY HYDROGEN AND HELIUM ISOTOPES WITH THE PAMELA EXPERIMENT

    International Nuclear Information System (INIS)

    Adriani, O.; Bongi, M.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Bruno, A.; Boezio, M.; Bonvicini, V.; Formato, V.; Bogomolov, E. A.; Bottai, S.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; Santis, C. De; Castellini, G.; Donato, C. De; Simone, N. De; Felice, V. Di

    2016-01-01

    The cosmic-ray hydrogen and helium ( 1 H, 2 H, 3 He, 4 He) isotopic composition has been measured with the satellite-borne experiment PAMELA, which was launched into low-Earth orbit on board the Resurs-DK1 satellite on 2006 June 15. The rare isotopes 2 H and 3 He in cosmic rays are believed to originate mainly from the interaction of high-energy protons and helium with the galactic interstellar medium. The isotopic composition was measured between 100 and 1100 MeV/n for hydrogen and between 100 and 1400 MeV/n for helium isotopes using two different detector systems over the 23rd solar minimum from 2006 July to 2007 December

  17. Contraint's theory and relativistic dynamics

    International Nuclear Information System (INIS)

    Longhi, G.; Lusanna, L.

    1987-01-01

    The purpose of this Workshop was to examine the current situation of relativistic dynamics. In particular, Dirac-Bergmann's theory of constraints, which lies at the heart of gauge theories, general relativity, relativistic mechanics and string theories, was chosen as the unifying theoretical framework best suited to investigate such a field. The papers discussed were on general relativity; relativistic mechanics; particle physics and mathematical physics. Also discussed were the problems of classical and quantum level, namely the identification of the classical observables of constrained systems, the equivalence of the nonequivalence of the various ways to quantize such systems; the problem of the anomalies; the best geometrical approach to the theory of constraints; the possibility of unifying all the treatments of relativistic mechanics. This book compiles the papers presented at proceedings of relativistic dynamics and constraints theory

  18. Multiwavelength Observations of Relativistic Jets from General Relativistic Magnetohydrodynamic Simulations

    Directory of Open Access Journals (Sweden)

    Richard Anantua

    2018-03-01

    Full Text Available This work summarizes a program intended to unify three burgeoning branches of the high-energy astrophysics of relativistic jets: general relativistic magnetohydrodynamic (GRMHD simulations of ever-increasing dynamical range, the microphysical theory of particle acceleration under relativistic conditions, and multiwavelength observations resolving ever-decreasing spatiotemporal scales. The process, which involves converting simulation output into time series of images and polarization maps that can be directly compared to observations, is performed by (1 self-consistently prescribing models for emission, absorption, and particle acceleration and (2 performing time-dependent polarized radiative transfer. M87 serves as an exemplary prototype for this investigation due to its prominent and well-studied jet and the imminent prospect of learning much more from Event Horizon Telescope (EHT observations this year. Synthetic observations can be directly compared with real observations for observational signatures such as jet instabilities, collimation, relativistic beaming, and polarization. The simplest models described adopt the standard equipartition hypothesis; other models calculate emission by relating it to current density or shear. These models are intended for application to the radio jet instead of the higher frequency emission, the disk and the wind, which will be subjects of future investigations.

  19. Constraints on particle dark matter from cosmic-ray antiprotons

    International Nuclear Information System (INIS)

    Fornengo, N.; Vittino, A.; Maccione, L.

    2014-01-01

    Cosmic-ray antiprotons represent an important channel for dark matter indirect-detection studies. Current measurements of the antiproton flux at the top of the atmosphere and theoretical determinations of the secondary antiproton production in the Galaxy are in good agreement, with no manifest deviation which could point to an exotic contribution in this channel. Therefore, antiprotons can be used as a powerful tool for constraining particle dark matter properties. By using the spectrum of PAMELA data from 50 MV to 180 GV in rigidity, we derive bounds on the dark matter annihilation cross section (or decay rate, for decaying dark matter) for the whole spectrum of dark matter annihilation (decay) channels and under different hypotheses of cosmic-rays transport in the Galaxy and in the heliosphere. For typical models of galactic propagation, the constraints are strong, setting a lower bound on the dark matter mass of a ''thermal'' relic at about 40–80 GeV for hadronic annihilation channels. These bounds are enhanced to about 150 GeV on the dark matter mass, when large cosmic-rays confinement volumes in the Galaxy are considered, and are reduced to 3–4 GeV for annihilation to light quarks (no bound for heavy-quark production) when the confinement volume is small. Bounds for dark matter lighter than few tens of GeV are due to the low energy part of the PAMELA spectrum, an energy region where solar modulation is relevant: to this aim, we have implemented a detailed solution of the transport equation in the heliosphere, which allowed us not only to extend bounds to light dark matter, but also to determine the uncertainty on the constraints arising from solar modulation modelling. Finally, we estimate the impact of soon-to-come AMS-02 data on the antiproton constraints

  20. Galactic cosmic-ray intensity to a heliocentric distance of 18 AU

    International Nuclear Information System (INIS)

    Van Allen, J.A.

    1980-01-01

    An updated report is given of observations of galactic cosmic-ray intensity to heliocentric radial distance of 8.6 and 18.4 AU with Pioneer 11 and Pioneer 10, respectively. Solar activity via the magnetic structure of the interplanetary medium continues to modulate the intensity out to the greatest distance reached thus far. During the 7 year period 1972 March to 1979 March, the galactic cosmic-ray intensity E/sub p/>80 MeV as measured by detectors on Pioneers 10 and 11 exhibited aperiodic temporal variations by about a factor of 2 and on a time scale of the order of a year and quasi-persistent cyclic variations of 26 day period and amplitude a few percent. The former are attributed to overall changes in the magnetic field structure of the heliosphere, the latter to fast-slow solar wind streams in and near the ecliptic plane and not to toward-away magnetic field sectors. The apparent heliographic latitude dependence of intensity is 0( +- 1.5)% per 10 0 in the latitude range +7 0 .7 to +15. 0 8, though it is possible that radially dependent temporal variations over the large difference in the heliocentric radial distances of the two spacecraft may make this result of limited significance. For protons of energy E/sub p/>80 MeV, there is a fairly consistent heliocentric radial gradient of +2.1( +- 0.3)% per AU integral intensity until 1978 April--May, at which time a substantial disruption of the distribution of cosmic rays in the heliosphere occurred

  1. CRaTER: The Cosmic Ray Telescope for the Effects of Radiation Experiment on the Lunar Reconnaissance Orbiter Mission

    OpenAIRE

    Spence, H. E.; Case, A. W.; Golightly, M. J.; Heine, T.; Larsen, B. A.; Blake, J. B.; Caranza, P.; Crain, W. R.; George, J.; Lalic, M.; Lin, A.; Looper, M. D.; Mazur, J. E.; Salvaggio, D.; Kasper, J. C.

    2009-01-01

    The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO) characterizes the radiation environment to be experienced by humans during future lunar missions. CRaTER measures the effects of ionizing energy loss in matter due to penetrating solar energetic protons (SEP) and galactic cosmic rays (GCR), specifically in silicon solid-state detectors and after interactions with tissue-equivalent plastic (TEP), a synthetic analog of human tissue. The CRaT...

  2. Testing the Relation between the Local and Cosmic Star Formation Histories

    International Nuclear Information System (INIS)

    Fields, B.D.

    1999-01-01

    Recently, there has been great progress toward observationally determining the mean star formation history of the universe. When accurately known, the cosmic star formation rate could provide much information about Galactic evolution, if the Milky Way close-quote s star formation rate is representative of the average cosmic star formation history. A simple hypothesis is that our local star formation rate is proportional to the cosmic mean. In addition, to specify a star formation history, one must also adopt an initial mass function (IMF); typically it is assumed that the IMF is a smooth function, which is constant in time. We show how to test directly the compatibility of all these assumptions by making use of the local (solar neighborhood) star formation record encoded in the present-day stellar mass function. Present data suggest that at least one of the following is false: (1) the local IMF is constant in time; (2) the local IMF is a smooth (unimodal) function; and/or (3) star formation in the Galactic disk was representative of the cosmic mean. We briefly discuss how to determine which of these assumptions fail and also improvements in observations, which will sharpen this test. copyright copyright 1999. The American Astronomical Society

  3. LOCALIZED STARBURSTS IN DWARF GALAXIES PRODUCED BY THE IMPACT OF LOW-METALLICITY COSMIC GAS CLOUDS

    International Nuclear Information System (INIS)

    Sánchez Almeida, J.; Muñoz-Tuñón, C.; Filho, M. E.; Elmegreen, B. G.; Elmegreen, D. M.; Pérez-Montero, E.; Vílchez, J. M.; Amorín, R.; Ascasibar, Y.; Papaderos, P.

    2015-01-01

    Models of galaxy formation predict that gas accretion from the cosmic web is a primary driver of star formation over cosmic history. Except in very dense environments where galaxy mergers are also important, model galaxies feed from cold streams of gas from the web that penetrate their dark matter halos. Although these predictions are unambiguous, the observational support has been indirect so far. Here, we report spectroscopic evidence for this process in extremely metal-poor galaxies (XMPs) of the local universe, taking the form of localized starbursts associated with gas having low metallicity. Detailed abundance analyses based on Gran Telescopio Canarias optical spectra of 10 XMPs show that the galaxy hosts have metallicities around 60% solar, on average, while the large star-forming regions that dominate their integrated light have low metallicities of some 6% solar. Because gas mixes azimuthally in a rotation timescale (a few hundred Myr), the observed metallicity inhomogeneities are only possible if the metal-poor gas fell onto the disk recently. We analyze several possibilities for the origin of the metal-poor gas, favoring the metal-poor gas infall predicted by numerical models. If this interpretation is correct, XMPs trace the cosmic web gas in their surroundings, making them probes to examine its properties

  4. LOCALIZED STARBURSTS IN DWARF GALAXIES PRODUCED BY THE IMPACT OF LOW-METALLICITY COSMIC GAS CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez Almeida, J.; Muñoz-Tuñón, C.; Filho, M. E. [Instituto Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Elmegreen, B. G. [IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598 (United States); Elmegreen, D. M. [Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY 12604 (United States); Pérez-Montero, E.; Vílchez, J. M. [Instituto de Astrofísica de Andalucía, CSIC, Granada (Spain); Amorín, R. [INAF-Osservatorio Astronomico di Roma, Monte Porzio Catone (Italy); Ascasibar, Y. [Universidad Autonoma de Madrid, Madrid (Spain); Papaderos, P., E-mail: jos@iac.es [Centro de Astrofísica da Universidade do Porto, Porto (Portugal)

    2015-09-10

    Models of galaxy formation predict that gas accretion from the cosmic web is a primary driver of star formation over cosmic history. Except in very dense environments where galaxy mergers are also important, model galaxies feed from cold streams of gas from the web that penetrate their dark matter halos. Although these predictions are unambiguous, the observational support has been indirect so far. Here, we report spectroscopic evidence for this process in extremely metal-poor galaxies (XMPs) of the local universe, taking the form of localized starbursts associated with gas having low metallicity. Detailed abundance analyses based on Gran Telescopio Canarias optical spectra of 10 XMPs show that the galaxy hosts have metallicities around 60% solar, on average, while the large star-forming regions that dominate their integrated light have low metallicities of some 6% solar. Because gas mixes azimuthally in a rotation timescale (a few hundred Myr), the observed metallicity inhomogeneities are only possible if the metal-poor gas fell onto the disk recently. We analyze several possibilities for the origin of the metal-poor gas, favoring the metal-poor gas infall predicted by numerical models. If this interpretation is correct, XMPs trace the cosmic web gas in their surroundings, making them probes to examine its properties.

  5. An introduction to relativistic hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Font, Jose A [Departamento de AstronomIa y AstrofIsica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot (Valencia) (Spain)

    2007-11-15

    We review formulations of the equations of (inviscid) general relativistic hydrodynamics and (ideal) magnetohydrodynamics, along with methods for their numerical solution. Both systems can be cast as first-order, hyperbolic systems of conservation laws, following the explicit choice of an Eulerian observer and suitable fluid and magnetic field variables. During the last fifteen years, the so-called (upwind) high-resolution shock-capturing schemes based on Riemann solvers have been successfully extended from classical to relativistic fluid dynamics, both special and general. Nowadays, general relativistic hydrodynamical simulations in relativistic astrophysics are routinely performed, particularly within the test-fluid approximation but also for dynamical spacetimes. While such advances also hold true in the case of the MHD equations, the astrophysical applications investigated so far are still limited, yet the field is bound to witness major developments in the near future. The article also presents a brief overview of numerical techniques, providing state-of-the-art examples of their applicability to general relativistic fluids and magneto-fluids in characteristic scenarios of relativistic astrophysics.

  6. A satellite born charged particles telescope for the study of cosmic ray nuclei

    Energy Technology Data Exchange (ETDEWEB)

    De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy)]|[INFN, Rome (Italy); Bocciolini, M. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Barbiellini, G.; Boezio, M. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy); Bellotti, R.; Cafagna, F. [Bari Univ. (Italy)]|[INFN, Bari (Italy)

    1995-09-01

    The description of the high energy particle telescope NINA for the study of cosmic ray nuclei is presented. The instrument will be installed on board of the Resource 01 satellite and will fly on a polar orbit at 690 Km. The telescope consists on a pile of 16 detecting planes each of them is composed by two silicon strip detectors with perpendicular strips and has a total area of 60x60mm{sup 2}. The experiment goals are the study of cosmic ray protons and nuclei in the energy range 12-100 MeV/amu. It will be sensitive to the anomalous component and will also make the observation of the large solar flare events and geophysical phenomena as well. This experiment is the first step of the program RIM whose goal is the satellite study of anti particles in primary cosmic rays.

  7. Solar--geophysical data number 402, February 1978. Part I. Prompt reports. Data for January 1978--December 1977

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1978-02-01

    This prompt report provides data for January 1978 on alert period, daily solar indices, solar flares, solar radio waves, solar x-ray radiation, coronal holes, spacecraft observations, inferred IP magnetic field polarities, mean solar magnetic field and solar wind measurements. It also provides data for December 1977 on daily solar activity center, sudden ionospheric disturbances, solar radio waves, cosmic rays, geomagnetic indices, and radio propagation indices

  8. Plasma relativistic microwave electronics

    International Nuclear Information System (INIS)

    Kuzelev, M.V.; Loza, O.T.; Rukhadze, A.A.; Strelkov, P.S.; Shkvarunets, A.G.

    2001-01-01

    One formulated the principles of plasma relativistic microwave electronics based on the induced Cherenkov radiation of electromagnetic waves at interaction of a relativistic electron beam with plasma. One developed the theory of plasma relativistic generators and accelerators of microwave radiation, designed and studied the prototypes of such devices. One studied theoretically the mechanisms of radiation, calculated the efficiencies and the frequency spectra of plasma relativistic microwave generators and accelerators. The theory findings are proved by the experiment: intensity of the designed sources of microwave radiation is equal to 500 μW, the frequency of microwave radiation is increased by 7 times (from 4 up to 28 GHz), the width of radiation frequency band may vary from several up to 100%. The designed sources of microwave radiation are no else compared in the electronics [ru

  9. Relativistic Quantum Mechanics

    International Nuclear Information System (INIS)

    Antoine, J-P

    2004-01-01

    The aim of relativistic quantum mechanics is to describe the finer details of the structure of atoms and molecules, where relativistic effects become nonnegligible. It is a sort of intermediate realm, between the familiar nonrelativistic quantum mechanics and fully relativistic quantum field theory, and thus it lacks the simplicity and elegance of both. Yet it is a necessary tool, mostly for quantum chemists. Pilkuhn's book offers to this audience an up-to-date survey of these methods, which is quite welcome since most previous textbooks are at least ten years old. The point of view of the author is to start immediately in the relativistic domain, following the lead of Maxwell's equations rather than classical mechanics, and thus to treat the nonrelativistic version as an approximation. Thus Chapter 1 takes off from Maxwell's equations (in the noncovariant Coulomb gauge) and gradually derives the basic aspects of Quantum Mechanics in a rather pedestrian way (states and observables, Hilbert space, operators, quantum measurement, scattering,. Chapter 2 starts with the Lorentz transformations, then continues with the Pauli spin equation and the Dirac equation and some of their applications (notably the hydrogen atom). Chapter 3 is entitled 'Quantum fields and particles', but falls short of treating quantum field theory properly: only creation/annihilation operators are considered, for a particle in a box. The emphasis is on two-electron states (the Pauli principle, the Foldy--Wouthuysen elimination of small components of Dirac spinors, Breit projection operators. Chapter 4 is devoted to scattering theory and the description of relativistic bound states. Chapter 5, finally, covers hyperfine interactions and radiative corrections. As we said above, relativistic quantum mechanics is by nature limited in scope and rather inelegant and Pilkuhn's book is no exception. The notation is often heavy (mostly noncovariant) and the mathematical level rather low. The central topic

  10. Relativistic particle in a box

    OpenAIRE

    Alberto, P.; Fiolhais, Carlos; Gil, Victor

    1996-01-01

    The problem of a relativistic spin 1/2 particle confined to a one-dimensional box is solved in a way that resembles closely the solution of the well known quantum-mechanical textbook problem of a non-relativistic particle in a box. The energy levels and probability density are computed and compared with the non-relativistic case

  11. Cosmic web and environmental dependence of screening: Vainshtein vs. chameleon

    Energy Technology Data Exchange (ETDEWEB)

    Falck, Bridget; Koyama, Kazuya; Zhao, Gong-Bo, E-mail: bridget.falck@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: gong-bo.zhao@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Burnaby Road, Portsmouth (United Kingdom)

    2015-07-01

    Theories which modify general relativity to explain the accelerated expansion of the Universe often use screening mechanisms to satisfy constraints on Solar System scales. We investigate the effects of the cosmic web and the local environmental density of dark matter halos on the screening properties of the Vainshtein and chameleon screening mechanisms. We compare the cosmic web morphology of dark matter particles, mass functions of dark matter halos, mass and radial dependence of screening, velocity dispersions and peculiar velocities, and environmental dependence of screening mechanisms in f(R) and nDGP models. Using the ORIGAMI cosmic web identification routine we find that the Vainshtein mechanism depends on the cosmic web morphology of dark matter particles, since these are defined according to the dimensionality of their collapse, while the chameleon mechanism shows no morphology dependence. The chameleon screening of halos and their velocity dispersions depend on halo mass, and small halos and subhalos can be environmentally screened in the chameleon mechanism. On the other hand, the screening of halos in the Vainshtein mechanism does not depend on mass nor environment, and their velocity dispersions are suppressed. The peculiar velocities of halos in the Vainshtein mechanism are enhanced because screened objects can still feel the fifth force generated by external fields, while peculiar velocities of chameleon halos are suppressed when the halo centers are screened.

  12. Cosmic web and environmental dependence of screening: Vainshtein vs. chameleon

    International Nuclear Information System (INIS)

    Falck, Bridget; Koyama, Kazuya; Zhao, Gong-Bo

    2015-01-01

    Theories which modify general relativity to explain the accelerated expansion of the Universe often use screening mechanisms to satisfy constraints on Solar System scales. We investigate the effects of the cosmic web and the local environmental density of dark matter halos on the screening properties of the Vainshtein and chameleon screening mechanisms. We compare the cosmic web morphology of dark matter particles, mass functions of dark matter halos, mass and radial dependence of screening, velocity dispersions and peculiar velocities, and environmental dependence of screening mechanisms in f(R) and nDGP models. Using the ORIGAMI cosmic web identification routine we find that the Vainshtein mechanism depends on the cosmic web morphology of dark matter particles, since these are defined according to the dimensionality of their collapse, while the chameleon mechanism shows no morphology dependence. The chameleon screening of halos and their velocity dispersions depend on halo mass, and small halos and subhalos can be environmentally screened in the chameleon mechanism. On the other hand, the screening of halos in the Vainshtein mechanism does not depend on mass nor environment, and their velocity dispersions are suppressed. The peculiar velocities of halos in the Vainshtein mechanism are enhanced because screened objects can still feel the fifth force generated by external fields, while peculiar velocities of chameleon halos are suppressed when the halo centers are screened

  13. Cosmic rays: an in-flight hazard?

    International Nuclear Information System (INIS)

    O'Sullivan, Denis

    2000-01-01

    International airlines are collaborating with physicists to assess whether aircrew are at risk from cosmic radiation as routine monitoring will soon become mandatory. Recently, an international team of physicists has joined forces with NASA and several European airlines to study in detail how the radiation field varies inside the atmosphere depending on the altitude, latitude and solar activity. Astronauts are subjected to the full intensity of high-energy cosmic rays and solar particles (together with the secondary particles produced in the spacecraft walls), and the biological risks in space are the subject of ongoing investigations. A typical return mission to Mars, for example, could result in a total ''dose equivalent'' of up to 0.5 sievert. The dose equivalent takes into account the harm caused by a particular type of radiation. Current estimates suggest that a person who receives a 1 sievert dose of ionizing radiation incurs a few per cent increase in the risk of contracting fatal cancer in his or her lifetime, although the risk level depends on sex and age. The radiation we observe at aircraft altitudes of typically 10-12 km is due to very high-energy particles mainly protons and helium nuclei, together with a small amount of heavy nuclei penetrating the atmosphere and colliding with air atoms. These collisions give rise to the production of more particles, such as protons, neutrons and various mesons. A cascade of particles is then produced by successive interactions as they penetrate deeper into the atmosphere. As a result, the flux of particles increases in the upper atmosphere and reaches a maximum at about 20 km above sea level. Below this point, the number of particles decreases due to energy losses and various particle interactions. Happily, at the Earth's surface we are protected by the air above us, which provides the same degree of shielding as a layer of water 10 m thick. The small amount of radiation that eventually reaches us in the form of

  14. Sky-distribution of intensity of synchrotron radio emission of relativistic electrons trapped in Earth’s magnetic field

    Directory of Open Access Journals (Sweden)

    Klimenko V.V.

    2017-12-01

    Full Text Available This paper presents the calculations of synchrotron radio emission intensity from Van Allen belts with Gaussian space distribution of electron density across L-shells of a dipole magnetic field, and with Maxwell’s relativistic electron energy distribution. The results of these calculations come to a good agreement with measurements of the synchrotron emission intensity of the artificial radiation belt’s electrons during the Starfish nuclear test. We have obtained two-dimensional distributions of radio brightness in azimuth — zenith angle coordinates for an observer on Earth’s surface. The westside and eastside intensity maxima exceed several times the maximum level of emission in the meridian plane. We have also constructed two-dimensional distributions of the radio emission intensity in decibels related to the background galactic radio noise level. Isotropic fluxes of relativistic electrons (Е~1 MeV should be more than 107 cm–2s–1 for the synchrotron emission intensity in the meridian plane to exceed the cosmic noise level by 0.1 dB (riometer sensitivity threshold.

  15. Escape trajectories of solar sails and general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Kezerashvili, Roman Ya. [Physics Department, New York City College of Technology, City University of New York, 300 Jay Street, Brooklyn, NY 11201 (United States); Graduate School and University Center, City University of New York, 365 Fifth Avenue, New York, NY 10016 (United States); Vazquez-Poritz, Justin F., E-mail: jvazquez-poritz@citytech.cuny.ed [Physics Department, New York City College of Technology, City University of New York, 300 Jay Street, Brooklyn, NY 11201 (United States); Graduate School and University Center, City University of New York, 365 Fifth Avenue, New York, NY 10016 (United States)

    2009-11-16

    General relativity can have a significant impact on the long-range escape trajectories of solar sails deployed near the sun. For example, spacetime curvature in the vicinity of the sun can cause a solar sail traveling from about 4 solar radii to 2550 AU to be deflected by on the order of a million kilometers, and should therefore be taken into account at the beginning of the mission. There are a number of smaller general relativistic effects, such as frame dragging due to the slow rotation of the sun which can cause a deflection of more than one thousand kilometers.

  16. Escape trajectories of solar sails and general relativity

    International Nuclear Information System (INIS)

    Kezerashvili, Roman Ya.; Vazquez-Poritz, Justin F.

    2009-01-01

    General relativity can have a significant impact on the long-range escape trajectories of solar sails deployed near the sun. For example, spacetime curvature in the vicinity of the sun can cause a solar sail traveling from about 4 solar radii to 2550 AU to be deflected by on the order of a million kilometers, and should therefore be taken into account at the beginning of the mission. There are a number of smaller general relativistic effects, such as frame dragging due to the slow rotation of the sun which can cause a deflection of more than one thousand kilometers.

  17. Relativistic hydrodynamics

    CERN Document Server

    Luciano, Rezzolla

    2013-01-01

    Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...

  18. Solar--geophysical data number 398, October 1977. Part I. (Prompt reports). Data for September 1977--August 1977

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1977-10-01

    This prompt report provides data for September 1977 on alert period, daily solar indices, solar flares, solar radio waves, coronal holes, solar x-ray radiation, solar wind measurements, inferred IP magnetic field polarities, mean solar magnetic field, and solar proton event (Provisional). It also provides data for August 1977 on daily solar activity centers, sudden ionospheric disturbances, solar radio waves, cosmic rays, geomagnetic indices and radio propagation indices

  19. Intensity variation of cosmic rays near the heliospheric current sheet

    International Nuclear Information System (INIS)

    Badruddin, K.S.; Yadav, R.S.; Yadav, N.R.

    1985-01-01

    Cosmic ray intensity variations near the heliospheric current sheet-both above and below it-have been studied during 1964-76. Superposed epoch analysis of the cosmic ray neutron monitor data with respect to sector boundaries (i.e., heliospheric current sheet crossings) has been performed. In this analysis data from neutron monitors well distributed in latitude over the Earth's surface is used. First, this study has been made during the two solar activity minimum periods 1964-65 and 1975-76, using the data from Thule (cut-off rigidity O GV), Deep River (cut-off rigidity 1.02 GV), Rome (cut-off rigidity 6.32 GV) and Huancayo (cut-off rigidity 13.45 GV) neutron monitors. The data is analyzed from Deep River, Rome and Huancayo neutron monitors, for which data is available for the full period (1964-76), by dividing the periods according to the changes in solar activity, interplanetary magnetic field polarity and coronal holes. All these studies have shown a negative gradient with respect to heliomagnetic latitude (current sheet). These results have been discussed in the light of theoretical and observational evidences. Suggestions have been given to overcome the discrepancy between the observational and theoretical results. Further, possible explanations for these observational results have been suggested. (author)

  20. Study of quantum spin correlations of relativistic electron pairs - Testing nonlocality of relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Bodek, K.; Rozpędzik, D.; Zejma, J.; Caban, P.; Rembieliński, J.; Włodarczyk, M.; Ciborowski, J.; Enders, J.; Köhler, A.; Kozela, A.

    2013-01-01

    The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass

  1. Recurrent modulation of galactic cosmic ray electrons and protons: Ulysses COSPIN/KET observations

    International Nuclear Information System (INIS)

    Heber, B.; Blake, J.B.; Paizis, C.; Bothmer, V.; Kunow, H.; Wibberenz, G.; Burger, R.A.; Potgieter, M.S.

    2000-01-01

    Since measurements of space probes in the interplanetary space became available it has been known that associated with the occurrence of recurrent fast and slow solar wind streams, forming Corotating Interaction Regions, recurrent variations in the cosmic ray nuclei flux are observed. As pointed out recently by Jokipii and Kota (2) recurrent modulation for positively and negatively charged particles may be different. In the time interval extending from July 1992 to July 1994, Ulysses on its journey to high heliographic latitudes registered ∼20 stable and long-lasting Corotating Interaction Regions (CIRs). In this work we use data from the Cosmic Ray and Solar Particle Investigation Kiel Electron Telescope (COSPIN/KET) instrument on board Ulysses to study the recurrent variation of 2.5 GV electrons and protons. We find that 1) electrons are indeed periodically modulated, but that 2) the periodicity of ∼29 days is longer than the period of ∼26 days for protons, and that 3) the amplitude is larger than the one observed for protons

  2. Solar-geophysical data number 420, August 1979. Part II (Comprehensive reports). Data for February 1979, January 1979

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1979-08-01

    This comprehensive report provides data for February 1979 on active regions, synoptic solar maps, solar radio emission, energetic solar particles and plasma, and solar x-ray radiation. It also provides synoptic charts and abbreviated calendar record for January 1979. The miscellaneous data include solar radio emission, cosmic rays-April and May 1979, Solar flares-January 1979, and regional flare index - December 1978

  3. Solar-geophysical data number 417, May 1979. Part II. Data for November 1978--October 1978 and miscellanea

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1979-05-01

    This comprehensive report provides data for November 1978 on active regions, synoptic solar maps, solar flares, solar radio emission, energetic solar particles and plasma, and solar x-ray radiation. It also provides synoptic charts, abbreviated calendar record and regional flare index for October 1978. The miscellaneous data includes solar radio emission for January and February 1979 and cosmic rays for February 1979

  4. Relativistic viscoelastic fluid mechanics

    International Nuclear Information System (INIS)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-01-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  5. Relativistic viscoelastic fluid mechanics.

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  6. Solar--geophysical data number 410, October 1978. Part II. (Comprehensive reports). Data for April 1978--March 1978 and miscellanea

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1978-10-01

    This comprehensive report for April 1978, March 1978 and Miscellaneous data provides data on active regions, synoptic solar maps, solar flares, solar radio waves, energetic solar particles and plasma, synoptic chart, abbreviated calendar record, regional flare index, solar x-ray radiation, cosmic rays, energetic solar particles and plasma for March 1978 and solar flares for February 1978

  7. Relativistic Coulomb Fission

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.

  8. Relativistic Shock Acceleration

    International Nuclear Information System (INIS)

    Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.

    1999-01-01

    In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)

  9. Measurement of hydrogen and helium isotopes flux in galactic cosmic rays with the PAMELA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Formato, V., E-mail: valerio.formato@ts.infn.it [INFN, Sezione di Trieste, I-34149 Trieste (Italy); University of Trieste, Department of Physics, I-34147 Trieste (Italy); Adriani, O. [University of Florence, Department of Physics, I-50019 Sesto Fiorentino, Florence (Italy); INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Barbarino, G.C. [University of Naples “Federico II”, Department of Physics, I-80126 Naples (Italy); INFN, Sezione di Naples, I-80126 Naples (Italy); Bazilevskaya, G.A. [Lebedev Physical Institute, RU-119991, Moscow (Russian Federation); Bellotti, R. [University of Bari, Department of Physics, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Boezio, M. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Bogomolov, E.A. [Ioffe Physical Technical Institute, RU-194021 St. Petersburg (Russian Federation); Bongi, M. [University of Florence, Department of Physics, I-50019 Sesto Fiorentino, Florence (Italy); INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Bonvicini, V. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Bottai, S. [INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Bruno, A.; Cafagna, F. [INFN, Sezione di Bari, I-70126 Bari (Italy); Campana, D. [INFN, Sezione di Naples, I-80126 Naples (Italy); Carbone, R. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Carlson, P. [KTH, Department of Physics, AlbaNova University Centre, SE-10691 Stockholm (Sweden); Oskar Klein Centre for Cosmoparticle Physics (Sweden); Casolino, M. [INFN, Sezione di Rome “Tor Vergata”, I-00133 Rome (Italy); RIKEN, Advanced Science Institute, Wako-shi, Saitama (Japan); Castellini, G. [IFAC, I-50019 Sesto Fiorentino, Florence (Italy); and others

    2014-04-01

    PAMELA is a satellite borne experiment designed to study with great accuracy cosmic rays of galactic, solar, and trapped nature, with particular focus on the antimatter component. The detector consists of a permanent magnet spectrometer core to provide rigidity and charge sign information, a Time-of-Flight system for velocity and charge information, a Silicon–Tungsten calorimeter and a Neutron detector for lepton/hadron identification. The velocity and rigidity information allow the identification of different isotopes for Z=1 and Z=2 particles in the energy range 100 MeV/n to 1 GeV/n. In this work we will present the PAMELA results on the H and He isotope fluxes based on the data collected during the 23rd solar minimum from 2006 to 2007. Such fluxes carry relevant information helpful in constraining parameters in galactic cosmic rays propagation models complementary to those obtained from other secondary to primary measurements such as the boron-to-carbon ratio.

  10. Clouds blown by the solar wind

    International Nuclear Information System (INIS)

    Voiculescu, M; Condurache-Bota, S; Usoskin, I

    2013-01-01

    In this letter we investigate possible relationships between the cloud cover (CC) and the interplanetary electric field (IEF), which is modulated by the solar wind speed and the interplanetary magnetic field. We show that CC at mid–high latitudes systematically correlates with positive IEF, which has a clear energetic input into the atmosphere, but not with negative IEF, in general agreement with predictions of the global electric circuit (GEC)-related mechanism. Thus, our results suggest that mid–high latitude clouds might be affected by the solar wind via the GEC. Since IEF responds differently to solar activity than, for instance, cosmic ray flux or solar irradiance, we also show that such a study allows distinguishing one solar-driven mechanism of cloud evolution, via the GEC, from others. (letter)

  11. Solar-geophysical data number 584, April 1993. Part 1 (prompt reports). Data for March, February 1993, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1993-04-01

    Contents: data for march 1993: solar-terrestrial environment; iuwds alert periods (advance and worldwide); solar activity indices; solar flares; solar radio emission; stanford mean solar magnetic field; data for february 1993: solar active regions; sudden ionospheric disturbances; solar radio spectral observations; cosmic ray measurements by neutron monitor; geomagnetic indices. This research is applicable to studies in communications, environmental science,and solar energy

  12. Secondary components, integral multiplicity factor and coupling coefficients of cosmic rays in the Earth atmosphere and other planets

    International Nuclear Information System (INIS)

    Dorman, L.I.; Yanke, V.G.

    1979-01-01

    Integral multiples of cosmic rays in Earth and other planets atmospheres have been determined. Kinetic equations describing the evolution of hadronic cascade in atmosphere using modern accelerating data have been solved with that end in view. Bond coefficients for nucleonic, muonic and electronic components of secondary cosmic radiation have been built using integral multiples. Normalized bond coefficients for three components obtained for maximum solar activity are presented. Integral muon and nucleon generation and bond coefficients have also been given for Mars

  13. Relativistic impulse dynamics.

    Science.gov (United States)

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.

  14. Solar-geophysical data number 410, October 1978, Part I (Prompt reports). Data for September 1978, August 1978

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1978-10-01

    This prompt report provides data for September 1978 on alert period, daily solar indices, solar flares, solar radio waves, solar x-ray radiation, coronal holes, solar wind measurements, inferred IP magnetic field polarities, mean solar magnetic field and Boulder geomagnetic substorm log. It also provides data for August 1978 on daily solar activity center, sudden ionospheric disturbances, solar x-ray radiation, solar radio waves, cosmic rays, geomagnetic indices and radio propagation indices

  15. SOME CONSIDERATIONS CONCERNING THE ROLE OF COSMIC ENVIRONMENT IN SOIL GENESIS AND EVOLUTION

    Directory of Open Access Journals (Sweden)

    I. Munteanu

    2011-12-01

    Full Text Available The present day concept of soil is strongly connected to the terrestrial environment. Among the cosmic factors of soil genesis the energy (as light and heat provided by the Sun is by far the most important. The other outer space possible agents e.g. meteorites, comets, cosmic radiation and cosmic dust, are usually neglected or scarcely mentioned. The advancing of cosmic exploration spurred soil scientists to extend their interest upon the extraterrestrial regoliths of Earth-like planets (Mars, Venus and Moon. The concept of “Universal soil” in whose genesis the biotic factor and water are not mandatory, has been recently advanced. The first papers about “lunar soils” are already quoted in soil science literature; some also speak about “Martian soil” or “Venusian soil”. Although these seem to be mere regoliths quite different from the “terrestrial soil” (by absence of life and water one believes that they may give information about impact upon lithological material of severe environment of these planets. This paper tries to outline the cosmic destiny of the soil, to enlarge its meaning and to reveal the hidden connections that the soil has with some planetary and cosmic parameters. In cosmic vision the “soil” – either “lunar”, “martian”, or “terrestrial” – can be viewed as the interface of energy and matter exchange between the land masses of these celestial body and their cosmic environment. The role of the solar activity, extragalactic events, distance from the Sun, obliquity (tilt of Earth’s rotation axis and Earth’s orbit circularity are analyzed in connection with Quaternary glaciations and their influences upon the development of terrestrial soils. The influence of Moon is emphasized as being very important in shaping the zonal geography of the terrestrial soils.

  16. Simulation of the charging process of the LISA test masses due to solar flares

    International Nuclear Information System (INIS)

    Vocca, H; Grimani, C; Amico, P; Bosi, L; Marchesoni, F; Punturo, M; Travasso, F; Barone, M; Stanga, R; Vetrano, F; Vicere, A

    2004-01-01

    Cosmic-ray and solar high energy particles penetrate the LISA experiment test masses. Consequently, an electric charge accumulates in the bodies of the masses, generating spurious Coulomb forces between the masses and the surrounding electrodes. This process increases the noise level of the experiment. We have estimated the amount of charge deposited per second on the LISA test masses by solar flares and primary cosmic-ray protons at solar minimum. The simulation has been carried out with the Fluka Monte Carlo program. A simplified geometry for the experiment has been considered. We have found a net charging rate of 37 ± 1 e + /s for primary protons at solar minimum between 0.1 and 1000 GeV/n. The amount of charge released by a medium-strong solar flare, like that of 16 February 1984, is 10 732 ± 30 e + /s in the energy range 0.1-10 GeV/n. This value increases or decreases by approximately one order of magnitude for strong (weak) solar flares

  17. Cosmic void clumps

    Science.gov (United States)

    Lares, M.; Luparello, H. E.; Garcia Lambas, D.; Ruiz, A. N.; Ceccarelli, L.; Paz, D.

    2017-10-01

    Cosmic voids are of great interest given their relation to the large scale distribution of mass and the way they trace cosmic flows shaping the cosmic web. Here we show that the distribution of voids has, in consonance with the distribution of mass, a characteristic scale at which void pairs are preferentially located. We identify clumps of voids with similar environments and use them to define second order underdensities. Also, we characterize its properties and analyze its impact on the cosmic microwave background.

  18. Self-Similar Symmetry Model and Cosmic Microwave Background

    Directory of Open Access Journals (Sweden)

    Tomohide eSonoda

    2016-05-01

    Full Text Available In this paper, we present the self-similar symmetry (SSS model that describes the hierarchical structure of the universe. The model is based on the concept of self-similarity, which explains the symmetry of the cosmic microwave background (CMB. The approximate length and time scales of the six hierarchies of the universe---grand unification, electroweak unification, the atom, the pulsar, the solar system, and the galactic system---are derived from the SSS model. In addition, the model implies that the electron mass and gravitational constant could vary with the CMB radiation temperature.

  19. Solar-geophysical data number 586, June 1993. Part 1 (prompt reports). Data for May, April 1993, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1993-06-01

    Contents: data for may 1993; solar-terrestrial environment; iuwds alert periods (advance and worldwide); solar activity indices; solar flares; solar radio emission; stanford mean solar magnetic field; data for april 1993; solar active regions; sudden ionospheric disturbances; solar radio spectral observations; solar radioheliograph; cosmic ray measurements by neutron monitor; geomagnetic indices. This research is relevant to studies in atmospheric/environmental science, solar energy, plasma physics, and communications

  20. Flight attendant radiation dose from solar particle events.

    Science.gov (United States)

    Anderson, Jeri L; Mertens, Christopher J; Grajewski, Barbara; Luo, Lian; Tseng, Chih-Yu; Cassinelli, Rick T

    2014-08-01

    Research has suggested that work as a flight attendant may be related to increased risk for reproductive health effects. Air cabin exposures that may influence reproductive health include radiation dose from galactic cosmic radiation and solar particle events. This paper describes the assessment of radiation dose accrued during solar particle events as part of a reproductive health study of flight attendants. Solar storm data were obtained from the National Oceanic and Atmospheric Administration Space Weather Prediction Center list of solar proton events affecting the Earth environment to ascertain storms relevant to the two study periods (1992-1996 and 1999-2001). Radiation dose from exposure to solar energetic particles was estimated using the NAIRAS model in conjunction with galactic cosmic radiation dose calculated using the CARI-6P computer program. Seven solar particle events were determined to have potential for significant radiation exposure, two in the first study period and five in the second study period, and over-lapped with 24,807 flight segments. Absorbed (and effective) flight segment doses averaged 6.5 μGy (18 μSv) and 3.1 μGy (8.3 μSv) for the first and second study periods, respectively. Maximum doses were as high as 440 μGy (1.2 mSv) and 20 flight segments had doses greater than 190 μGy (0.5 mSv). During solar particle events, a pregnant flight attendant could potentially exceed the equivalent dose limit to the conceptus of 0.5 mSv in a month recommended by the National Council on Radiation Protection and Measurements.

  1. Exploring Ultra-Heavy Cosmic Rays with the Trans-Iron Galactic Element Recorder (TIGER)

    Science.gov (United States)

    Link, Jason; Supertiger Collaboration

    2017-01-01

    Elements heavier than iron are primarily synthesized by neutron capture. These elements can be accelerated as cosmic-rays and measuring their abundances at Earth can yield information about galactic cosmic-rays' sources, the acceleration processes and the composition of the universe beyond the boundaries of our solar system. The Trans-Iron Galactic Element Recorder (TIGER) and its larger successor SuperTIGER was designed to measure the abundance of these ultra-heavy cosmic rays between Z=10 and Z=60. These detectors utilize scintillators with a wavelength shifter bar and PMT readout system as well as aerogel and acrylic Cherenkov detectors to identify the charge and energy of a particle and utilize a scintillating fiber hodoscope to provide trajectory information. In this talk I will review the results from this highly successful program, give the status for the next SuperTIGER flight planned for a December 2017 launch from Antarctica, and discuss the future direction of the program.

  2. Galaxy growth in a massive halo in the first billion years of cosmic history

    Science.gov (United States)

    Marrone, D. P.; Spilker, J. S.; Hayward, C. C.; Vieira, J. D.; Aravena, M.; Ashby, M. L. N.; Bayliss, M. B.; Béthermin, M.; Brodwin, M.; Bothwell, M. S.; Carlstrom, J. E.; Chapman, S. C.; Chen, Chian-Chou; Crawford, T. M.; Cunningham, D. J. M.; De Breuck, C.; Fassnacht, C. D.; Gonzalez, A. H.; Greve, T. R.; Hezaveh, Y. D.; Lacaille, K.; Litke, K. C.; Lower, S.; Ma, J.; Malkan, M.; Miller, T. B.; Morningstar, W. R.; Murphy, E. J.; Narayanan, D.; Phadke, K. A.; Rotermund, K. M.; Sreevani, J.; Stalder, B.; Stark, A. A.; Strandet, M. L.; Tang, M.; Weiß, A.

    2018-01-01

    According to the current understanding of cosmic structure formation, the precursors of the most massive structures in the Universe began to form shortly after the Big Bang, in regions corresponding to the largest fluctuations in the cosmic density field. Observing these structures during their period of active growth and assembly—the first few hundred million years of the Universe—is challenging because it requires surveys that are sensitive enough to detect the distant galaxies that act as signposts for these structures and wide enough to capture the rarest objects. As a result, very few such objects have been detected so far. Here we report observations of a far-infrared-luminous object at redshift 6.900 (less than 800 million years after the Big Bang) that was discovered in a wide-field survey. High-resolution imaging shows it to be a pair of extremely massive star-forming galaxies. The larger is forming stars at a rate of 2,900 solar masses per year, contains 270 billion solar masses of gas and 2.5 billion solar masses of dust, and is more massive than any other known object at a redshift of more than 6. Its rapid star formation is probably triggered by its companion galaxy at a projected separation of 8 kiloparsecs. This merging companion hosts 35 billion solar masses of stars and has a star-formation rate of 540 solar masses per year, but has an order of magnitude less gas and dust than its neighbour and physical conditions akin to those observed in lower-metallicity galaxies in the nearby Universe. These objects suggest the presence of a dark-matter halo with a mass of more than 100 billion solar masses, making it among the rarest dark-matter haloes that should exist in the Universe at this epoch.

  3. Hazards of cosmic radiation; Radiation cosmique: danger dans l'espace

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet-Bidaud, J.M.; Dzitko, H

    2000-06-01

    The main limitations on long-distance space transport is neither the energy source nor the propulsion system but appears to be the protection of cosmonauts from radiation. Cosmic radiation is made up of protons (87%), alpha particles (12%) and heavy nuclei (1%), all these particles travel through interstellar space and come from the explosion of stars at the end of their life. The earth is protected from cosmic radiation by 3 natural shields: (i) the magnetic field generated by the solar wind, (ii) the earth magnetic field (magnetosphere), and (iii) the earth atmosphere, this elusive layer of air is equivalent to a 10 meter-high volume of water. Magnetosphere and atmosphere reduce the radiation dose by a factor 4000. According to a European directive (1996) air crews must be considered as radiation workers. (A.C.)

  4. Cosmic history and a candidate parent asteroid for the quasicrystal-bearing meteorite Khatyrka

    Science.gov (United States)

    Meier, Matthias M. M.; Bindi, Luca; Heck, Philipp R.; Neander, April I.; Spring, Nicole H.; Riebe, My E. I.; Maden, Colin; Baur, Heinrich; Steinhardt, Paul J.; Wieler, Rainer; Busemann, Henner

    2018-05-01

    The unique CV-type meteorite Khatyrka is the only natural sample in which "quasicrystals" and associated crystalline Cu, Al-alloys, including khatyrkite and cupalite, have been found. They are suspected to have formed in the early Solar System. To better understand the origin of these exotic phases, and the relationship of Khatyrka to other CV chondrites, we have measured He and Ne in six individual, ∼40-μm-sized olivine grains from Khatyrka. We find a cosmic-ray exposure age of about 2-4 Ma (if the meteoroid was family), and its location close to strong orbital resonances, so that the Khatyrka meteoroid could plausibly have reached Earth within its rather short cosmic-ray exposure age.

  5. Relativistic MHD modeling of magnetized neutron stars, pulsar winds, and their nebulae

    Science.gov (United States)

    Del Zanna, L.; Pili, A. G.; Olmi, B.; Bucciantini, N.; Amato, E.

    2018-01-01

    Neutron stars are among the most fascinating astrophysical sources, being characterized by strong gravity, densities about the nuclear one or even above, and huge magnetic fields. Their observational signatures can be extremely diverse across the electromagnetic spectrum, ranging from the periodic and low-frequency signals of radio pulsars, up to the abrupt high-energy gamma-ray flares of magnetars, where energies of ∼ {10}46 {erg} are released in a few seconds. Fast-rotating and highly magnetized neutron stars are expected to launch powerful relativistic winds, whose interaction with the supernova remnants gives rise to the non-thermal emission of pulsar wind nebulae, which are known cosmic accelerators of electrons and positrons up to PeV energies. In the extreme cases of proto-magnetars (magnetic fields of ∼ {10}15 G and millisecond periods), a similar mechanism is likely to provide a viable engine for the still mysterious gamma-ray bursts. The key ingredient in all these spectacular manifestations of neutron stars is the presence of strong magnetic fields in their constituent plasma. Here we will present recent updates of a couple of state-of-the-art numerical investigations by the high-energy astrophysics group in Arcetri: a comprehensive modeling of the steady-state axisymmetric structure of rotating magnetized neutron stars in general relativity, and dynamical 3D MHD simulations of relativistic pulsar winds and their associated nebulae.

  6. Scattering in relativistic particle mechanics

    International Nuclear Information System (INIS)

    De Bievre, S.

    1986-01-01

    The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis the authors studied scattering in the relativistic two-body problem. He uses the results to analyze gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. A general geometric framework that underlies approaches to relativistic particle mechanics is presented and the kinematic properties of the scattering transformation, i.e., those properties that arise solely from the invariance of the theory under the Poincare group are studied. The second part of the analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Using general geometric arguments, gauge invariance of the scattering transformation in the Todorov-Komar Hamiltonian constraint model is proved. Finally, quantization of the models is discussed

  7. MEASUREMENTS OF COSMIC-RAY HYDROGEN AND HELIUM ISOTOPES WITH THE PAMELA EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, O.; Bongi, M. [University of Florence, Department of Physics, I-50019 Sesto Fiorentino, Florence (Italy); Barbarino, G. C. [University of Naples “Federico II,” Department of Physics, I-80126 Naples (Italy); Bazilevskaya, G. A. [Lebedev Physical Institute, RU-119991, Moscow (Russian Federation); Bellotti, R.; Bruno, A. [University of Bari, Department of Physics, I-70126 Bari (Italy); Boezio, M.; Bonvicini, V.; Formato, V. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Bogomolov, E. A. [Ioffe Physical Technical Institute, RU-194021 St. Petersburg (Russian Federation); Bottai, S. [INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Cafagna, F. [INFN, Sezione di Bari, I-70126 Bari (Italy); Campana, D. [INFN, Sezione di Naples, I-80126 Naples (Italy); Carlson, P. [KTH, Department of Physics, and the Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, SE-10691 Stockholm (Sweden); Casolino, M.; Santis, C. De [University of Rome “Tor Vergata,” Department of Physics, I-00133 Rome (Italy); Castellini, G. [IFAC, I-50019 Sesto Fiorentino, Florence (Italy); Donato, C. De; Simone, N. De; Felice, V. Di [INFN, Sezione di Rome “Tor Vergata,” I-00133 Rome (Italy); and others

    2016-02-10

    The cosmic-ray hydrogen and helium ({sup 1}H, {sup 2}H, {sup 3}He, {sup 4}He) isotopic composition has been measured with the satellite-borne experiment PAMELA, which was launched into low-Earth orbit on board the Resurs-DK1 satellite on 2006 June 15. The rare isotopes {sup 2}H and {sup 3}He in cosmic rays are believed to originate mainly from the interaction of high-energy protons and helium with the galactic interstellar medium. The isotopic composition was measured between 100 and 1100 MeV/n for hydrogen and between 100 and 1400 MeV/n for helium isotopes using two different detector systems over the 23rd solar minimum from 2006 July to 2007 December.

  8. Solar-geophysical data number 408, August 1978, Part I. (Prompt reports). Data for July 1978, June 1978

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1978-08-01

    This prompt report provides data for July 1978 on: alert period, daily solar indices, solar flares, solar radio waves, solar x-ray radiation, coronal holes, solar wind measurements, inferred IP magnetic field polarities, mean solar magnetic field, spacecraft observations, Boulder geomagnetic substorm log, and energetic solar particles. It also provides data for June 1978 on: daily solar activity center, sudden ionospheric disturbances, solar x-ray radiation, solar radio waves, cosmic rays, geomagnetic indices, and radio propagation indices

  9. Peculiarities of the Moon variations of the neutron and meson components of cosmic rays

    International Nuclear Information System (INIS)

    Naskidashvili, B.D.; Shatashvili, L.Kh.

    1979-01-01

    Lunar variations of the neutron component of cosmic rays have been investigated individually for groups of stations of the northern hemisphere of the Earth and for groups of stations of the southern hemisphere. A dependence has been found of the amplitude and phase of the first harmonic of lunar variations in the intensity of neutron and meson components of cosmic rays on the geocentric distance of the Moon and on the epoch of solar activity. The amplitudes and phases of lunar variations were determined by the Chapman-Miller method. According to the data on the meson component of cosmic rays obtained by the Nagoya station (Japan), the amplitudes of the first harmonic of lunar daily variations point to the fact that as the Moon approaches the Earth the tidal effects do not exceed the effects of lunar gravitational forces when the Moon is at apogee

  10. In vitro and in vivo assessment of direct effects of simulated solar and galactic cosmic radiation on human hematopoietic stem/progenitor cells.

    Science.gov (United States)

    Rodman, C; Almeida-Porada, G; George, S K; Moon, J; Soker, S; Pardee, T; Beaty, M; Guida, P; Sajuthi, S P; Langefeld, C D; Walker, S J; Wilson, P F; Porada, C D

    2017-06-01

    Future deep space missions to Mars and near-Earth asteroids will expose astronauts to chronic solar energetic particles (SEP) and galactic cosmic ray (GCR) radiation, and likely one or more solar particle events (SPEs). Given the inherent radiosensitivity of hematopoietic cells and short latency period of leukemias, space radiation-induced hematopoietic damage poses a particular threat to astronauts on extended missions. We show that exposing human hematopoietic stem/progenitor cells (HSC) to extended mission-relevant doses of accelerated high-energy protons and iron ions leads to the following: (1) introduces mutations that are frequently located within genes involved in hematopoiesis and are distinct from those induced by γ-radiation; (2) markedly reduces in vitro colony formation; (3) markedly alters engraftment and lineage commitment in vivo; and (4) leads to the development, in vivo, of what appears to be T-ALL. Sequential exposure to protons and iron ions (as typically occurs in deep space) proved far more deleterious to HSC genome integrity and function than either particle species alone. Our results represent a critical step for more accurately estimating risks to the human hematopoietic system from space radiation, identifying and better defining molecular mechanisms by which space radiation impairs hematopoiesis and induces leukemogenesis, as well as for developing appropriately targeted countermeasures.

  11. Feasibility studies of the geochemical Ti-205 solar neutrino experiment

    CERN Document Server

    Neumaier, S; Nolte, E; Morinaga, H

    1991-01-01

    New investigations on the signal to background ratio of the geochemical 205Tl( v., e-)205Pb solar neutrino experiment are presented. The neutrino capture rate of 205Tl and a possible reduction of the neutrino signal due to neutrino oscillations in matter are discussed. The contributions of natural radioactivity, stopped negative muons and fast muons to the background of 205Pb are estimated. The production of radioisotopes in the lead region induced by cosmic ray muons was studied at the high energy muon beam (M2) of CERN with 120, 200 and 280 GeV muons. The background contribution of cosmic ray muons is found to be significantly higher than expected by former estimations and restricts the feasibility of the 205Tl solar neutrino experiment.

  12. Relativistic finite-temperature Thomas-Fermi model

    Science.gov (United States)

    Faussurier, Gérald

    2017-11-01

    We investigate the relativistic finite-temperature Thomas-Fermi model, which has been proposed recently in an astrophysical context. Assuming a constant distribution of protons inside the nucleus of finite size avoids severe divergence of the electron density with respect to a point-like nucleus. A formula for the nuclear radius is chosen to treat any element. The relativistic finite-temperature Thomas-Fermi model matches the two asymptotic regimes, i.e., the non-relativistic and the ultra-relativistic finite-temperature Thomas-Fermi models. The equation of state is considered in detail. For each version of the finite-temperature Thomas-Fermi model, the pressure, the kinetic energy, and the entropy are calculated. The internal energy and free energy are also considered. The thermodynamic consistency of the three models is considered by working from the free energy. The virial question is also studied in the three cases as well as the relationship with the density functional theory. The relativistic finite-temperature Thomas-Fermi model is far more involved than the non-relativistic and ultra-relativistic finite-temperature Thomas-Fermi models that are very close to each other from a mathematical point of view.

  13. Cosmic rays

    International Nuclear Information System (INIS)

    Tkachev, I.I.

    2014-01-01

    In this talk I will review results of cosmic ray observations at the highest energies. This year the new results on energy spectra, composition and the study of arrival directions of cosmic ray primaries came from the Telescope Array collaboration. I present these results in comparison with measurements done by other recent experiments and discuss their implications for the search of cosmic ray sources. Some related results in gamma-ray astronomy and selected recent advances in theory are also covered. (author)

  14. The BESS Search for Cosmic-Ray Antiproton Origins and for Cosmological Antimatter

    Science.gov (United States)

    Mitchell, John; Yamamoto, Akira

    2009-01-01

    The apex of the Balloon-borne Experiment with a Superconducting Spectrometer (BESS) program was reached with the Antarctic flight of BESS-Polar II, during the 2007-2008 Austral Summer, that obtained 24.5 days of data on over 4.7 billion cosmic-ray events. The US-Japan BESS Collaboration uses elementary particle measurements to study the early Universe and provides fundamental data on the spectra of light cosmic-ray elements and isotopes. BESS measures the energy spectra of cosmic-ray antiprotons to investigate signatures of possible exotic sources, such as dark-matter candidates, and searches for heavier antinuclei that might reach Earth from antimatter domains formed during symmetry breaking processes in the early Universe. Since 1993, BESS has carried out eleven high-latitude balloon flights, two of long duration, that together have defined the study of antiprotons below about 4 GeV, provided standard references for light element and isotope spectra, and set the most sensitive limits on the existence of antideuterons and antihelium. The BESS-Polar II flight took place at Solar Minimum, when the sensitivity of the low-energy antiproton measurements to a primary source is greatest. The rich BESS-Polar II dataset more than doubles the combined data from all earlier BESS flights and has 10-20 times the statistics of BESS data from the previous Solar Minimum. Here, we summarize the scientific results of BESS program, focusing on the results obtained using data from the long-duration flights of BESS-Polar I (2004) and BESS-Polar II.

  15. Relativistic description of atomic nuclei

    International Nuclear Information System (INIS)

    Krutov, V.A.

    1985-01-01

    Papers on the relativistic description of nuclei are reviewed. The Brown and Rho ''small'' bag'' model is accepted for hardrons. Meson exchange potentials of the nucleon-nucleon interaction have been considered. Then the transition from a system of two interacting nucleons has been performed to the relativistic nucleus description as a multinucleon system on the basis of OBEP (one-boson exchange potential). The proboem of OPEP (one-pion-exchange potential) inclusion to a relativistic scheme is discussed. Simplicity of calculations and attractiveness of the Walecka model for specific computations and calculations was noted. The relativistic model of nucleons interacting through ''effective'' scalar and vector boson fields was used in the Walacka model for describing neutronaand nuclear mater matters

  16. MEASUREMENT OF THE ISOTOPIC COMPOSITION OF HYDROGEN AND HELIUM NUCLEI IN COSMIC RAYS WITH THE PAMELA EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, O.; Bongi, M. [Department of Physics, University of Florence, I-50019 Sesto Fiorentino, Florence (Italy); Barbarino, G. C. [Department of Physics, University of Naples ' ' Federico II' ' , I-80126 Naples (Italy); Bazilevskaya, G. A. [Lebedev Physical Institute, RU-119991, Moscow (Russian Federation); Bellotti, R.; Bruno, A. [Department of Physics, University of Bari, I-70126 Bari (Italy); Boezio, M.; Bonvicini, V.; Carbone, R. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Bogomolov, E. A. [Ioffe Physical Technical Institute, RU-194021 St. Petersburg (Russian Federation); Borisov, S.; Casolino, M.; De Pascale, M. P. [INFN, Sezione di Rome ' ' Tor Vergata' ' , I-00133 Rome (Italy); Bottai, S. [INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Cafagna, F. [INFN, Sezione di Bari, I-70126 Bari (Italy); Campana, D. [INFN, Sezione di Naples, I-80126 Naples (Italy); Carlson, P. [KTH, Department of Physics, and the Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, SE-10691 Stockholm (Sweden); Castellini, G. [IFAC, I-50019 Sesto Fiorentino, Florence (Italy); Danilchenko, I. A. [National Research Nuclear University MEPhI, RU-115409 Moscow (Russian Federation); De Santis, C. [Department of Physics, University of Rome ' ' Tor Vergata' ' , I-00133 Rome (Italy); and others

    2013-06-10

    The satellite-borne experiment PAMELA has been used to make new measurements of cosmic ray H and He isotopes. The isotopic composition was measured between 100 and 600 MeV/n for hydrogen and between 100 and 900 MeV/n for helium isotopes over the 23rd solar minimum from 2006 July to 2007 December. The energy spectrum of these components carries fundamental information regarding the propagation of cosmic rays in the galaxy which are competitive with those obtained from other secondary to primary measurements such as B/C.

  17. Cosmic ray exposure in aircraft and space flight

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Sugiura, Nobuyuki; Iimoto, Takeshi

    2000-01-01

    The exposure from cosmic ray radiation to the workers and public is a new aspect of exposure that was cased by the development of science and technology. ICRP Publication 60 says: 'to provide some practical guidance, the Commission recommends that there should be a requirement to include exposure to natural sources as part of occupational exposure only in the following cases: radon..., some natural radionuclides..., operation of jet air craft, space flight'. For this situation what kind of radiation protection concept is applicable? And what kind of radiation guideline and procedure are possible to propose? Here, we would like to review the past activities on this issue and to summarize the concepts in ICRP concerning to these exposure. Then the recommended radiation protection system will be proposed as one trial to this solution. In the paper the characters of cosmic ray were firstly reviewed. Cosmic rays are consisted by solar one and galactic one. Both of them have high energy and this will cause the difficulty of dosimetry because of lacking of physical and biological data. Next discussion point is a classification of exposure. For this, several classifications were done: jet airplane flight, supersonic airplane flight and space flight. Other classification is aircrew (occupational exposure), passengers (public exposure), frequent flyers (gray zone), space astronauts (special mission), and pregnant women. Considering the real level of radiation the practical radiation control is proposed including the cosmic radiation exposure prediction method by computer codes. The discussion of space astronauts is a little different for the highness of radiation doses. The dose levels will be obtained through the discussion of lifetime risk balancing their mission importance. (author)

  18. Solar-Geophysical Data Number 539, July 1989. Part 1 (prompt reports). Data for June, May 1989, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1989-07-01

    Contents include: detailed index for 1988-1989; data for June 1989 -- IUWDS alert periods (advance and worldwide), solar-activity indices, solar flares, solar radio emission, Stanford mean solar magnetic field; data for May 1989 -- solar active regions, sudden ionospheric disturbances, solar radio spectral observations, cosmic-ray measurements by neutron monitor, geomagnetic indices; late data -- solar radio emission (Nancay 169-MHz solar interferometric chart, May 1989)

  19. Solar-Geophysical Data Number 551, July 1990. Part 1 (prompt reports). Data for June, May 1990 and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1990-07-01

    ;Contents: Detailed index for 1989-1990; Data for June 1990--Solar-terrestrial environment, IUWDS alert periods (Advance and worldwide), Solar activity indices, Solar flares, Solar radio emission, Stanford mean solar magnetic field; Data for May 1990--Solar active regions, Sudden ionospheric disturbances, Solar radio spectral observations, Cosmic ray measurements by neutron monitor, Geomagnetic indices; Late data--Geomagnetic indices February-April 1990--sudden commencements/solar flare effects

  20. Testing relativity with solar system dynamics

    Science.gov (United States)

    Hellings, R. W.

    1984-01-01

    A major breakthrough is described in the accuracy of Solar System dynamical tests of relativistic gravity. The breakthrough was achieved by factoring in ranging data from Viking Landers 1 and 2 from the surface of Mars. Other key data sources included optical transit circle observations, lunar laser ranging, planetary radar, and spacecraft (Mariner 9 to Mars and Mariner 10 to Mercury). The Solar System model which is used to fit the data and the process by which such fits are performed are explained and results are discussed. The results are fully consistent with the predictions of General Relativity.