Simulations of Relativistic Collisionless Shocks: Shock Structure and Particle Acceleration
Spitkovsky, Anatoly; /KIPAC, Menlo Park
2006-04-10
We discuss 3D simulations of relativistic collisionless shocks in electron-positron pair plasmas using the particle-in-cell (PIC) method. The shock structure is mainly controlled by the shock's magnetization (''sigma'' parameter). We demonstrate how the structure of the shock varies as a function of sigma for perpendicular shocks. At low magnetizations the shock is mediated mainly by the Weibel instability which generates transient magnetic fields that can exceed the initial field. At larger magnetizations the shock is dominated by magnetic reflections. We demonstrate where the transition occurs and argue that it is impossible to have very low magnetization collisionless shocks in nature (in more than one spatial dimension). We further discuss the acceleration properties of these shocks, and show that higher magnetization perpendicular shocks do not efficiently accelerate nonthermal particles in 3D. Among other astrophysical applications, this may pose a restriction on the structure and composition of gamma-ray bursts and pulsar wind outflows.
The Maximum Energy of Accelerated Particles in Relativistic Collisionless Shocks
Sironi, Lorenzo; Arons, Jonathan
2013-01-01
The afterglow emission from gamma-ray bursts (GRBs) is usually interpreted as synchrotron radiation from electrons accelerated at the GRB external shock, that propagates with relativistic velocities into the magnetized interstellar medium. By means of multi-dimensional particle-in-cell simulations, we investigate the acceleration performance of weakly magnetized relativistic shocks, in the magnetization range 0
Particle Acceleration in Relativistic Magnetized Collisionless Electron-Ion Shocks
Sironi, Lorenzo
2010-01-01
We investigate shock structure and particle acceleration in relativistic magnetized collisionless electron-ion shocks by means of 2.5D particle-in-cell simulations with ion-to-electron mass ratios (m_i/m_e) ranging from 16 to 1000. We explore a range of inclination angles between the pre-shock magnetic field and the shock normal. In "subluminal" shocks, where relativistic particles can escape ahead of the shock along the magnetic field lines, ions are efficiently accelerated via a Fermi-like mechanism. The downstream ion spectrum consists of a relativistic Maxwellian and a high-energy power-law tail, which contains ~5% of ions and ~30% of ion energy. Its slope is -2.1. Upstream electrons enter the shock with lower energy than ions, so they are more strongly tied to the field. As a result, only ~1% of the incoming electrons are Fermi-accelerated at the shock before being advected downstream, where they populate a steep power-law tail (with slope -3.5). For "superluminal" shocks, where relativistic particles ca...
Probing Acceleration and Turbulence at Relativistic Shocks in Blazar Jets
Baring, Matthew G; Summerlin, Errol J
2016-01-01
Diffusive shock acceleration (DSA) at relativistic shocks is widely thought to be an important acceleration mechanism in various astrophysical jet sources, including radio-loud active galactic nuclei such as blazars. Such acceleration can produce the non-thermal particles that emit the broadband continuum radiation that is detected from extragalactic jets. An important recent development for blazar science is the ability of Fermi-LAT spectroscopy to pin down the shape of the distribution of the underlying non-thermal particle population. This paper highlights how multi-wavelength spectra spanning optical to X-ray to gamma-ray bands can be used to probe diffusive acceleration in relativistic, oblique, magnetohydrodynamic (MHD) shocks in blazar jets. Diagnostics on the MHD turbulence near such shocks are obtained using thermal and non-thermal particle distributions resulting from detailed Monte Carlo simulations of DSA. These probes are afforded by the characteristic property that the synchrotron $\
Evolution of perturbed accelerating relativistic shock waves
Palma, G; Vietri, M; Del Zanna, L
2008-01-01
We study the evolution of an accelerating hyperrelativistic shock under the presence of upstream inhomogeneities wrinkling the discontinuity surface. The investigation is conducted by means of numerical simulations using the PLUTO code for astrophysical fluid dynamics. The reliability and robustness of the code are demonstrated against well known results coming from the linear perturbation theory. We then follow the nonlinear evolution of two classes of perturbing upstream atmospheres and conclude that no lasting wrinkle can be preserved indefinitely by the flow. Finally we derive analytically a description of the geometrical effects of a turbulent upstream ambient on the discontinuity surface.
Particle acceleration, magnetization and radiation in relativistic shocks
Derishev, Evgeny V.; Piran, Tsvi
2016-08-01
The mechanisms of particle acceleration and radiation, as well as magnetic field build-up and decay in relativistic collisionless shocks, are open questions with important implications to various phenomena in high-energy astrophysics. While the Weibel instability is possibly responsible for magnetic field build-up and diffusive shock acceleration is a model for acceleration, both have problems and current particle-in-cell simulations show that particles are accelerated only under special conditions and the magnetic field decays on a very short length-scale. We present here a novel model for the structure and the emission of highly relativistic collisionless shocks. The model takes into account (and is based on) non-local energy and momentum transport across the shock front via emission and absorption of high-energy photons. This leads to a pre-acceleration of the fluid and pre-amplification of the magnetic fields in the upstream region. Both have drastic implications on the shock structure. The model explains the persistence of the shock-generated magnetic field at large distances from the shock front. The dissipation of this magnetic field results in a continuous particle acceleration within the downstream region. A unique feature of the model is the existence of an `attractor', towards which any shock will evolve. The model is applicable to any relativistic shock, but its distinctive features show up only for sufficiently large compactness. We demonstrate that prompt and afterglow gamma-ray bursts' shocks satisfy the relevant conditions, and we compare their observations with the predictions of the model.
Relativistic Electron Shock Drift Acceleration in Low Mach Number Galaxy Cluster Shocks
Matsukiyo, Shuichi; Yamazaki, Ryo; Umeda, Takayuki
2011-01-01
An extreme case of electron shock drift acceleration in low Mach number collisionless shocks is investigated as a plausible mechanism of initial acceleration of relativistic electrons in large-scale shocks in galaxy clusters where upstream plasma temperature is of the order of 10 keV and a degree of magnetization is not too small. One-dimensional electromagnetic full particle simulations reveal that, even though a shock is rather moderate, a part of thermal incoming electrons are accelerated and reflected through relativistic shock drift acceleration and form a local nonthermal population just upstream of the shock. The accelerated electrons can self-generate local coherent waves and further be back-scattered toward the shock by those waves. This may be a scenario for the first stage of the electron shock acceleration occurring at the large-scale shocks in galaxy clusters such as CIZA J2242.8+5301 which has well defined radio relics.
Acceleration at Relativistic Shocks in Gamma-Ray Bursts
Baring, M G
1999-01-01
Most recent extragalactic models of gamma-ray bursts consider the expansion of a relativistic blast wave, emanating from a solar-mass type progenitor, into the surrounding interstellar medium as the site for their activity. The popular perception is that the optical afterglows result from the external shock interface, while the prompt transient gamma-ray signal arises from multiple shocks internal to the expansion. This paper illustrates a number of acceleration properties of relativistic and ultrarelativistic shocks that pertain to GRB models, by way of a standard Monte Carlo simulation. Computations of the spectral shape, the range of spectral indices, and the energy gain per shock crossing are presented, as functions of the shock speed and the type of particle scattering.
Particle transport in microturbulence and acceleration performances of relativistic shocks
Plotnikov, Illya; Lemoine, Martin
2012-01-01
Collisionless relativistic shocks have been the focus of intense theoretical and numerical investigations and these interesting physics have a direct impact on the generation of energetic particles and the interpretation of gamma ray spectra. The Fermi acceleration process that takes place in these shocks is intimately linked with the excitation of micro-turbulence responsible for the shock formation, electron heating and supra-thermal tail generation that in turn excites micro-turbulence, developing thus a self-sustaining phenomenon. In this paper we discuss the development of the micro-turbulence and we investigate two important issues: firstly the transport of supra-thermal particles in the excited microturbulence upstream of the shock and its consequences for the efficiency of the Fermi process; secondly, the preheating process of the incoming background electrons as they cross the shock precursor and experience relativistic oscillations in the electric field of the micro-turbulence.We emphasize the impor...
Particle Acceleration and Nonthermal Emission in Relativistic Astrophysical Shocks
Sironi, Lorenzo
The common observational feature of Pulsar Wind Nebulae (PWNe), gamma-ray bursts (GRBs), and AGN jets is a broad nonthermal spectrum of synchrotron and inverse Compton radiation. It is usually assumed that the emitting electrons are accelerated to a power-law distribution at relativistic shocks, via the so-called Fermi mechanism. Despite decades of research, the Fermi acceleration process is still not understood from first principles. An assessment of the micro-physics of particle acceleration in relativistic shocks is of paramount importance to unveil the properties of astrophysical nonthermal sources, and it is the subject of this dissertation. In the first part of this thesis, I explore by means of fully-kinetic first-principle particle-in-cell (PIC) simulations the properties of relativistic shocks that propagate in electron-positron and electron-proton plasmas carrying uniform magnetic fields. I find that nonthermal particle acceleration only occurs if the upstream magnetization is weak (sigma0.01) and quasi-perpendicular, yet they need to be efficient particle accelerators, in order to explain the prominent nonthermal signatures of these sources. Motivated by this discrepancy, I then relax the assumption of uniform pre-shock fields, and investigate the acceleration efficiency of perpendicular shocks that propagate in high-sigma flows with alternating magnetic fields. This is the geometry expected at the termination shock of pulsar winds, but it could also be relevant for Poynting-dominated jets in GRBs and AGNs. I show by means of PIC simulations that compression of the flow at the shock will force annihilation of nearby field lines, a process known as shock-driven reconnection. Magnetic reconnection can efficiently transfer the energy of alternating fields to the particles, generating flat power-law tails containing most of the particles. Finally, I directly relate the results of my PIC simulations to observations of nonthermal sources, by presenting a
Particle acceleration, magnetization and radiation in relativistic shocks
Derishev, Evgeny V
2015-01-01
What are the mechanisms of particle acceleration and radiation, as well as magnetic field build up and decay in relativistic shocks are open questions with important implications to various phenomena in high energy astrophysics. While the Weibel instability is possibly responsible for magnetic field build up and diffusive shock acceleration is a model for acceleration, both have problems and current PIC simulation show that particles are accelerated only under special conditions and the magnetic field decays on a short length scale. We present here a novel model for the structure and the emission of highly relativistic collisionless shocks. The model takes into account (and is based on) non-local energy and momentum transport across the shock front via emission and absorption of high-energy photons. This leads to a pre-acceleration of the fluid and pre-amplificaiton of the magnetic fields in the upstream region. Both have drastic implications on the shock structure. The model explains the persistence of the s...
Photon Acceleration at Shock Breakout of Trans-Relativistic Supernova
Li, Zhuo; Waxman, Eli; Meszaros, Peter
2007-01-01
The predicted thermal flash from SN shock breakout might have been detected for the first time by Swift in GRB 060218/SN 2006aj. The detected thermal X-ray emission in this event implies emergence of a trans-relativistic (TR) SN shock with kinetic energy of E_k>1E49 erg. During TRSN shock breakout, the thermal photons could be "accelerated" by the shock through repeated bulk Compton scattering, forming a nonthermal gamma/X-ray component with dominant energy over thermal one. This mechanism of "photon acceleration" at TRSN shock breakout might also account for gamma-rays in the other similar low-luminosity GRBs, implying that they are atypical GRBs with only TR outflows. TRSNe form a peculiar type of SNe with large kinetic energy, >1E49 erg, in TR ejecta, \\Gamma\\beta ~2.
THE MAXIMUM ENERGY OF ACCELERATED PARTICLES IN RELATIVISTIC COLLISIONLESS SHOCKS
Sironi, Lorenzo [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Spitkovsky, Anatoly [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544-1001 (United States); Arons, Jonathan, E-mail: lsironi@cfa.harvard.edu [Department of Astronomy, Department of Physics, and Theoretical Astrophysics Center, University of California, Berkeley, CA 94720 (United States)
2013-07-01
The afterglow emission from gamma-ray bursts (GRBs) is usually interpreted as synchrotron radiation from electrons accelerated at the GRB external shock that propagates with relativistic velocities into the magnetized interstellar medium. By means of multi-dimensional particle-in-cell simulations, we investigate the acceleration performance of weakly magnetized relativistic shocks, in the magnetization range 0 {approx}< {sigma} {approx}< 10{sup -1}. The pre-shock magnetic field is orthogonal to the flow, as generically expected for relativistic shocks. We find that relativistic perpendicular shocks propagating in electron-positron plasmas are efficient particle accelerators if the magnetization is {sigma} {approx}< 10{sup -3}. For electron-ion plasmas, the transition to efficient acceleration occurs for {sigma} {approx}< 3 Multiplication-Sign 10{sup -5}. Here, the acceleration process proceeds similarly for the two species, since the electrons enter the shock nearly in equipartition with the ions, as a result of strong pre-heating in the self-generated upstream turbulence. In both electron-positron and electron-ion shocks, we find that the maximum energy of the accelerated particles scales in time as {epsilon}{sub max}{proportional_to}t {sup 1/2}. This scaling is shallower than the so-called (and commonly assumed) Bohm limit {epsilon}{sub max}{proportional_to}t, and it naturally results from the small-scale nature of the Weibel turbulence generated in the shock layer. In magnetized plasmas, the energy of the accelerated particles increases until it reaches a saturation value {epsilon}{sub sat}/{gamma}{sub 0} m{sub i}c {sup 2} {approx} {sigma}{sup -1/4}, where {gamma}{sub 0} m{sub i}c {sup 2} is the mean energy per particle in the upstream bulk flow. Further energization is prevented by the fact that the self-generated turbulence is confined within a finite region of thickness {proportional_to}{sigma}{sup -1/2} around the shock. Our results can provide physically
Probing acceleration and turbulence at relativistic shocks in blazar jets
Baring, Matthew G.; Böttcher, Markus; Summerlin, Errol J.
2017-02-01
Diffusive shock acceleration (DSA) at relativistic shocks is widely thought to be an important acceleration mechanism in various astrophysical jet sources, including radio-loud active galactic nuclei such as blazars. Such acceleration can produce the non-thermal particles that emit the broad-band continuum radiation that is detected from extragalactic jets. An important recent development for blazar science is the ability of Fermi-Large Area Telescope spectroscopy to pin down the shape of the distribution of the underlying non-thermal particle population. This paper highlights how multiwavelength spectra spanning optical to X-ray to gamma-ray bands can be used to probe diffusive acceleration in relativistic, oblique, magnetohydrodynamic (MHD) shocks in blazar jets. Diagnostics on the MHD turbulence near such shocks are obtained using thermal and non-thermal particle distributions resulting from detailed Monte Carlo simulations of DSA. These probes are afforded by the characteristic property that the synchrotron νFν peak energy does not appear in the gamma-ray band above 100 MeV. We investigate self-consistently the radiative synchrotron and inverse Compton signatures of the simulated particle distributions. Important constraints on the diffusive mean free paths of electrons, and the level of electromagnetic field turbulence are identified for three different case study blazars, Mrk 501, BL Lacertae and AO 0235+164. The X-ray excess of AO 0235+164 in a flare state can be modelled as the signature of bulk Compton scattering of external radiation fields, thereby tightly constraining the energy-dependence of the diffusion coefficient for electrons. The concomitant interpretations that turbulence levels decline with remoteness from jet shocks, and the probable significant role for non-gyroresonant diffusion, are posited.
Particle acceleration in ultra-relativistic parallel shock waves
Meli, A
2003-01-01
Monte-Carlo computations for highly relativistic parallel shock particle acceleration are presented for upstream flow gamma factors, $\\Gamma=(1-V_{1}^{2}/c^{2})^{-0.5}$ with values between 5 and $10^{3}$. The results show that the spectral shape at the shock depends on whether or not the particle scattering is small angle with $\\delta \\theta 2r_{g} \\Gamma^{2}$ where $\\lambda$ is the scattering mean free path along the field line and $r_{g}$ the gyroradius, these quantities being measured in the plasma flow frame. The large angle scattering case exhibits distinctive structure superimposed on the basic power-law spectrum, largely absent in the pitch angle case. Also, both cases yield an acceleration rate faster than estimated by the conventional, non-relativistic expression, $t_{acc}=[c/(V_{1}-V_{2})] [\\lambda_{1}/V_{1}+\\lambda_{2}/V_{2}]$ where '1' and '2' refer to upstream and downstream and $\\lambda$ is the mean free path. A $\\Gamma^{2}$ energy enhancement factor in the first shock crossing cycle and a sign...
Nonthermal radiation from relativistic electrons accelerated at spherically expanding shocks
Kang, Hyesung
2014-01-01
We study the evolution of the energy spectrum of cosmic-ray electrons accelerated at spherically expanding shocks with low Mach numbers and the ensuing spectral signatures imprinted in radio synchrotron emission. Time-dependent simulations of diffusive shock acceleration (DSA) of electrons in the test-particle limit have been performed for spherical shocks with the parameters relevant for typical shocks in the intracluster medium. The electron and radiation spectra at the shock location can be described properly by the test-particle DSA predictions with the instantaneous shock parameters. However, the volume integrated spectra of both electrons and radiation deviate significantly from the test-particle power-laws, because the shock compression ratio and the flux of injected electrons at the shock gradually decrease as the shock slows down in time. So one needs to be cautious about interpreting observed radio spectra of evolving shocks by simple DSA models in the test-particle regime.
Simulations of ion acceleration at non-relativistic shocks: i) Acceleration efficiency
Caprioli, Damiano
2013-01-01
We use 2D and 3D hybrid (kinetic ions - fluid electrons) simulations to investigate particle acceleration and magnetic field amplification at non-relativistic astrophysical shocks. We show that diffusive shock acceleration operates for quasi-parallel configurations (i.e., when the background magnetic field is almost aligned with the shock normal) and, for large sonic and Alfv\\'enic Mach numbers, produces universal power-law spectra proportional to p^(-4), where p is the particle momentum. The maximum energy of accelerated ions increases with time, and it is only limited by finite box size and run time. Acceleration is mainly efficient for parallel and quasi-parallel strong shocks, where 10-20% of the bulk kinetic energy can be converted to energetic particles, and becomes ineffective for quasi-perpendicular shocks. Also, the generation of magnetic turbulence correlates with efficient ion acceleration, and vanishes for quasi-perpendicular configurations. At very oblique shocks, ions can be accelerated via shoc...
On the maximum energy of shock-accelerated cosmic rays at ultra-relativistic shocks
Reville, B
2014-01-01
The maximum energy to which cosmic rays can be accelerated at weakly-magnetised ultra-relativistic shocks is investigated. We demonstrate that for such shocks, in which the scattering of energetic particles is mediated exclusively by ion skin-depth scale structures, as might be expected for a Weibel-mediated shock, there is an intrinsic limit on the maximum energy to which particles can be accelerated. This maximum energy is determined from the requirement that particles must be isotropised in the downstream plasma frame before the mean field transports them far downstream, and falls considerably short of what is required to produce ultra-high energy cosmic rays. To circumvent this limit, a highly disorganised field is required on larger scales. The growth of cosmic-ray induced instabilities on wavelengths much longer than the ion-plasma skin depth, both upstream and downstream of the shock, is considered. While these instabilities may play an important role in magnetic field amplification at relativistic sho...
Caprioli, Damiano
2014-01-01
We use large hybrid (kinetic ions-fluid electrons) simulations to study ion acceleration and generation of magnetic turbulence due to the streaming of energetic particles that are self-consistently accelerated at non-relativistic shocks. When acceleration is efficient (at quasi-parallel shocks), we find that the magnetic field develops transverse components and is significantly amplified in the pre-shock medium. The total amplification factor is larger than 10 for shocks with Mach number $M=100$, and scales with the square root of $M$. We find that in the shock precursor the energy spectral density of excited magnetic turbulence is proportional to spectral energy distribution of accelerated particles at corresponding resonant momenta, in good agreement with the predictions of quasilinear theory of diffusive shock acceleration. We discuss the role of Bell's instability, which is predicted and found to grow faster than resonant instability in shocks with $M\\gtrsim 30$. Ahead of these strong shocks we distinguis...
Collisionless Relativistic Shocks:current driven turbulence and particle acceleration
Pelletier, Guy; Gremillet, Laurent; Plotnikov, Illya
2014-01-01
The physics of collisionless relativistic shocks with a moderate magnetization is presented. Micro-physics is relevant to explain the most energetic radiative phenomena of Nature, namely that of the termination shock of Gamma Ray Bursts. A transition towards Fermi process occurs for decreasing magnetization around a critical value which turns out to be the condition for the scattering to break the mean field inhibition. Scattering is produced by magnetic micro-turbulence driven by the current carried by returning particles, which had not been considered till now, but turns out to be more intense than Weibel's one around the transition. The current is also responsible for a buffer effect on the motion of the incoming flow, on which the threshold for the onset of turbulence depends.
Ellison, Donald C.; Warren, Donald C.; Bykov, Andrei M.
2016-03-01
We include a general form for the scattering mean free path, λmfp(p), in a nonlinear Monte Carlo model of relativistic shock formation and Fermi acceleration. Particle-in-cell simulations, as well as analytic work, suggest that relativistic shocks tend to produce short-scale, self-generated magnetic turbulence that leads to a scattering mean free path with a stronger momentum dependence than the λmfp ∝ p dependence for Bohm diffusion. In unmagnetized shocks, this turbulence is strong enough to dominate the background magnetic field so the shock can be treated as parallel regardless of the initial magnetic field orientation, making application to γ-ray bursts, pulsar winds, type Ibc supernovae, and extragalactic radio sources more straightforward and realistic. In addition to changing the scale of the shock precursor, we show that, when nonlinear effects from efficient Fermi acceleration are taken into account, the momentum dependence of λmfp(p) has an important influence on the efficiency of cosmic ray production as well as the accelerated particle spectral shape. These effects are absent in non-relativistic shocks and do not appear in relativistic shock models unless nonlinear effects are self-consistently described. We show, for limited examples, how the changes in Fermi acceleration translate to changes in the intensity and spectral shape of γ-ray emission from proton-proton interactions and pion-decay radiation.
Ellison, Donald C; Bykov, Andrei M
2015-01-01
We include a general form for the scattering mean free path in a nonlinear Monte Carlo model of relativistic shock formation and Fermi acceleration. Particle-in-cell (PIC) simulations, as well as analytic work, suggest that relativistic shocks tend to produce short-scale, self-generated magnetic turbulence that leads to a scattering mean free path (mfp) with a stronger momentum dependence than the mfp ~ p dependence for Bohm diffusion. In unmagnetized shocks, this turbulence is strong enough to dominate the background magnetic field so the shock can be treated as parallel regardless of the initial magnetic field orientation, making application to gamma-ray bursts (GRBs), pulsar winds, Type Ibc supernovae, and extra-galactic radio sources more straightforward and realistic. In addition to changing the scale of the shock precursor, we show that, when nonlinear effects from efficient Fermi acceleration are taken into account, the momentum dependence of the mfp has an important influence on the efficiency of cosm...
Radiation from Particles Accelerated in Relativistic Jet Shocks and Shear-flows
Nishikawa, K -I; Dutan, I; Zhang, B; Meli, A; Choi, E J; Min, K; Niemiec, J; Mizuno, Y; Medvedev, M; Nordlund, A; Frederiksen, J T; Sol, H; Pohl, M; Hartmann, D
2014-01-01
We have investigated particle acceleration and emission from shocks and shear flows associated with an unmagnetized relativistic jet plasma propagating into an unmagnetized ambient plasma. Strong electro-magnetic fields are generated in the jet shock via the filamentation (Weibel) instability. Shock field strength and structure depend on plasma composition (($e^{\\pm}$ or $e^-$- $p^+$ plasmas) and Lorentz factor. In the velocity shear between jet and ambient plasmas, strong AC ($e^{\\pm}$ plasmas) or DC ($e^-$- $p^+$ plasmas) magnetic fields are generated via the kinetic Kelvin-Helmholtz instability (kKHI), and the magnetic field structure also depends on the jet Lorentz factor. We have calculated, self-consistently, the radiation from electrons accelerated in shock generated magnetic fields. The spectra depend on the jet's initial Lorentz factor and temperature via the resulting particle acceleration and magnetic field generation. Our ongoing "Global" jet simulations containing shocks and velocity shears will ...
On Fermi acceleration and MHD-instabilities at ultra-relativistic magnetized shock waves
Pelletier, Guy; Marcowith, Alexandre
2008-01-01
Fermi acceleration can take place at ultra-relativistic shock waves if the upstream or downstream magnetic field has been remodeled so that most of the magnetic power lies on short spatial scales. The relevant conditions under which Fermi acceleration become efficient in the presence of both a coherent and a short scale turbulent magnetic field are addressed. Within the MHD approximation, this paper then studies the amplification of a pre-existing magnetic field through the streaming of cosmic rays upstream of a relativistic shock wave. The magnetic field is assumed to be perpendicular in the shock front frame, as generally expected in the limit of large shock Lorentz factor. In the MHD regime, compressive instabilities seeded by the net cosmic-ray charge in the shock precursor (as seen in the shock front frame) develop on the shortest spatial scales but saturate at a moderate level $\\delta B/B \\sim 1$, which is not sufficient for Fermi acceleration. As we argue, it is possible that other instabilities outsid...
Mizuno, Y.; Nishikawa, K.I.; Zhang, B.; Giacomazzo, B.; Hardee, P.E.; Nagataki, S.; Hartmann, D.H.
2008-01-01
We solve the Riemann problem for the deceleration of arbitrarily magnetized relativistic ejecta injected into a static unmagnetized medium. We find that for the same initial Lorentz factor, the reverse shock becomes progressively weaker with increasing magnetization s (the Poynting-to-kinetic energy flux ratio), and the shock becomes a rarefaction wave when s exceeds a critical value, sc, defined by the balance between the magnetic pressure in the ejecta and the thermal pressure in the forward shock. In the rarefaction wave regime, we find that the rarefied region is accelerated to a Lorentz factor that is significantly larger than the initial value. This acceleration mechanism is due to the strong magnetic pressure in the ejecta.
Electron and Ion Acceleration in Relativistic Shocks with Applications to GRB Afterglows
Warren, Donald C; Bykov, Andrei M; Lee, Shiu-Hang
2015-01-01
We have modeled the simultaneous first-order Fermi shock acceleration of protons, electrons, and helium nuclei by relativistic shocks. By parameterizing the particle diffusion, our steady-state Monte Carlo simulation allows us to follow particles from particle injection at nonthermal thermal energies to above PeV energies, including the nonlinear smoothing of the shock structure due to cosmic-ray (CR) backpressure. We observe the mass-to-charge (A/Z) enhancement effect believed to occur in efficient Fermi acceleration in non-relativistic shocks and we parameterize the transfer of ion energy to electrons seen in particle-in-cell (PIC) simulations. For a given set of environmental and model parameters, the Monte Carlo simulation determines the absolute normalization of the particle distributions and the resulting synchrotron, inverse-Compton, and pion-decay emission in a largely self-consistent manner. The simulation is flexible and can be readily used with a wide range of parameters typical of gamma-ray burst ...
Electron acceleration to relativistic energies at a strong quasi-parallel shock wave
Masters, A; Fujimoto, M; Schwartz, S J; Sergis, N; Thomsen, M F; Retinò, A; Hasegawa, H; Lewis, G R; Coates, A J; Canu, P; Dougherty, M K
2013-01-01
Electrons can be accelerated to ultrarelativistic energies at strong (high-Mach number) collisionless shock waves that form when stellar debris rapidly expands after a supernova. Collisionless shock waves also form in the flow of particles from the Sun (the solar wind), and extensive spacecraft observations have established that electron acceleration at these shocks is effectively absent whenever the upstream magnetic field is roughly parallel to the shock surface normal (quasi-parallel conditions). However, it is unclear whether this magnetic dependence of electron acceleration also applies to the far stronger shocks around young supernova remnants, where local magnetic conditions are poorly understood. Here we present Cassini spacecraft observations of an unusually strong solar system shock wave (Saturn's bow shock) where significant local electron acceleration has been confirmed under quasi-parallel magnetic conditions for the first time, contradicting the established magnetic dependence of electron accele...
Wieland, Volkmar; Niemiec, Jacek; Rafighi, Iman; Nishikawa, Ken-Ichi
2016-01-01
For parameters that are applicable to the conditions at young supernova remnants, we present results of 2D3V particle-in-cell simulations of a non-relativistic plasma shock with a large-scale perpendicular magnetic field inclined at 45-deg angle to the simulation plane to approximate 3D physics. We developed an improved clean setup that uses the collision of two plasma slabs with different density and velocity, leading to the development of two distinctive shocks and a contact discontinuity. The shock formation is mediated by Weibel-type filamentation instabilities that generate magnetic turbulence. Cyclic reformation is observed in both shocks with similar period, for which we note global variations on account of shock rippling and local variations arising from turbulent current filaments. The shock rippling occurs on spatial and temporal scales given by gyro-motions of shock-reflected ions. The drift motion of electrons and ions is not a gradient drift, but commensurates with E x B drift. We observe a stabl...
The special relativistic shock tube
Thompson, Kevin W.
1986-01-01
The shock-tube problem has served as a popular test for numerical hydrodynamics codes. The development of relativistic hydrodynamics codes has created a need for a similar test problem in relativistic hydrodynamics. The analytical solution to the special relativistic shock-tube problem is presented here. The relativistic shock-jump conditions and rarefaction solution which make up the shock tube are derived. The Newtonian limit of the calculations is given throughout.
Relativistic Radiation Mediated Shocks
Budnik, Ran; Sagiv, Amir; Waxman, Eli
2010-01-01
The structure of relativistic radiation mediated shocks (RRMS) propagating into a cold electron-proton plasma is calculated and analyzed. A qualitative discussion of the physics of relativistic and non relativistic shocks, including order of magnitude estimates for the relevant temperature and length scales, is presented. Detailed numerical solutions are derived for shock Lorentz factors $\\Gamma_u$ in the range $6\\le\\Gamma_u\\le30$, using a novel iteration technique solving the hydrodynamics and radiation transport equations (the protons, electrons and positrons are argued to be coupled by collective plasma processes and are treated as a fluid). The shock transition (deceleration) region, where the Lorentz factor $ \\Gamma $ drops from $ \\Gamma_u $ to $ \\sim 1 $, is characterized by high plasma temperatures $ T\\sim \\Gamma m_ec^2 $ and highly anisotropic radiation, with characteristic shock-frame energy of upstream and downstream going photons of a few~$\\times\\, m_ec^2$ and $\\sim \\Gamma^2 m_ec^2$, respectively.P...
Nakamura, Masanori
2014-01-01
We describe a new paradigm for understanding both relativistic motions and particle acceleration in the M87 jet: a magnetically dominated relativistic flow that naturally produces four relativistic magnetohydrodynamic (MHD) shocks (forward/reverse fast and slow modes). We apply this model to a set of optical super- and subluminal motions discovered by Biretta and coworkers with the {\\em Hubble Space Telescope} during 1994 -- 1998. The model concept consists of ejection of a {\\em single} relativistic Poynting jet, which possesses a coherent helical (poloidal + toroidal) magnetic component, at the remarkably flaring point HST-1. We are able to reproduce quantitatively proper motions of components seen in the {\\em optical} observations of HST-1 with the same model we used previously to describe similar features in radio VLBI observations in 2005 -- 2006. This indicates that the quad relativistic MHD shock model can be applied generally to recurring pairs of super/subluminal knots ejected from the upstream edge o...
Acceleration in Perpendicular Relativistic Shocks for Plasmas Consisting of Leptons and Hadrons
Stockem, A.; Fiúza, F.; Fonseca, R. A.; Silva, L. O.
2012-08-01
We investigate the acceleration of light particles in perpendicular shocks for plasmas consisting of a mixture of leptonic and hadronic particles. Starting from the full set of conservation equations for the mixed plasma constituents, we generalize the magnetohydrodynamical jump conditions for a multi-component plasma, including information about the specific adiabatic constants for the different species. The impact of deviations from the standard model of an ideal gas is compared in theory and particle-in-cell simulations, showing that the standard MHD model is a good approximation. The simulations of shocks in electron-positron-ion plasmas are for the first time multi-dimensional, transverse effects are small in this configuration, and one-dimensional (1D) simulations are a good representation if the initial magnetization is chosen high. 1D runs with a mass ratio of 1836 are performed, which identify the Larmor frequency ω ci as the dominant frequency that determines the shock physics in mixed component plasmas. The maximum energy in the non-thermal tail of the particle spectra evolves in time according to a power law vpropt α with α in the range 1/3 < α < 1, depending on the initial parameters. A connection is made with transport theoretical models by Drury and Gargaté & Spitkovsky, which predict an acceleration time vpropγ and the theory for small wavelength scattering by Kirk & Reville, which predicts a behavior rather as vpropγ2. Furthermore, we compare different magnetic field orientations with B 0 inside and out of the plane, observing qualitatively different particle spectra than in pure electron-ion shocks.
Acceleration in perpendicular relativistic shocks for plasmas consisting of leptons and hadrons
Stockem, A; Fonseca, R A; Silva, L O
2012-01-01
We investigate the acceleration of light particles in perpendicular shocks for plasmas consisting of a mixture of leptonic and hadronic particles. Starting from the full set of conservation equations for the mixed plasma constituents, we generalize the magneto-hydrodynamical jump conditions for a multi-component plasma, including information about the specific adiabatic constants for the different species. The impact of deviations from the standard model of an ideal gas is compared in theory and particle-in-cell simulations, showing that the standard-MHD model is a good approximation. The simulations of shocks in electron-positron-ion plasmas are for the first time multi-dimensional, transverse effects are small in this configuration and 1D simulations are a good representation if the initial magnetization is chosen high. 1D runs with a mass ratio of 1836 are performed, which identify the Larmor frequency \\omega_{ci} as the dominant frequency that determines the shock physics in mixed component plasmas. The m...
Fundamentals of collisionless shocks for astrophysical application, 2. Relativistic shocks
Bykov, A M
2011-01-01
We review recent progress on collisionless relativistic shocks. Kinetic instability theory is briefed including its predictions and limitations. The main focus is on numerical experiments in (i) pair and (ii) electron-nucleon plasmas. The main results are: (i) confirmation of shock evolution in non-magnetised relativistic plasma in 3D due to either the lepton-Weibel instability or the ion-Weibel instability; (ii) sensitive dependence on upstream magnetisation ; (iii) the sensitive dependence of particle dynamics on the upstream magnetic inclination angle $\\thetabn$, where particles of $\\thetabn>34^\\circ$ cannot escape upstream, leading to the distinction between `sub-luminal' and `super-luminal' shocks; (iv) particles in ultra-relativistic shocks can hardly overturn the shock and escape to upstream; they may oscillate around the shock ramp for a long time, so to speak `surfing it' and thereby becoming accelerated by a kind of SDA; (v) these particles form a power law tail on the downstream distribution; their...
Magnetic field evolution in relativistic unmagnetized collisionless shocks
Keshet, Uri; Spitkovsky, Anatoly; Waxman, Eli
2008-01-01
We study relativistic unmagnetized collisionless shocks using unprecedentedly large particle-in-cell simulations of two-dimensional pair plasma. High energy particles accelerated by the shock are found to drive magnetic field evolution on a time scale >10^4 plasma times. Progressively stronger magnetic fields are generated on larger scales in a growing region around the shock. Shock-generated magnetic fields and accelerated particles carry >1% and >10% of the downstream energy flux respectively. Our results suggest limits on the magnetization of relativistic astrophysical flows.
Hybrid Simulations of Particle Acceleration at Shocks
Caprioli, Damiano
2014-01-01
We present the results of large hybrid (kinetic ions - fluid electrons) simulations of particle acceleration at non-relativistic collisionless shocks. Ion acceleration efficiency and magnetic field amplification are investigated in detail as a function of shock inclination and strength, and compared with predictions of diffusive shock acceleration theory, for shocks with Mach number up to 100. Moreover, we discuss the relative importance of resonant and Bell's instability in the shock precursor, and show that diffusion in the self-generated turbulence can be effectively parametrized as Bohm diffusion in the amplified magnetic field.
Current-driven filamentation upstream of magnetized relativistic collisionless shocks
Lemoine, M; Gremillet, L; Plotnikov, I
2014-01-01
The physics of instabilities in the precursor of relativistic collisionless shocks is of broad importance in high energy astrophysics, because these instabilities build up the shock, control the particle acceleration process and generate the magnetic fields in which the accelerated particles radiate. Two crucial parameters control the micro-physics of these shocks: the magnetization of the ambient medium and the Lorentz factor of the shock front; as of today, much of this parameter space remains to be explored. In the present paper, we report on a new instability upstream of electron-positron relativistic shocks and we argue that this instability shapes the micro-physics at moderate magnetization levels and/or large Lorentz factors. This instability is seeded by the electric current carried by the accelerated particles in the shock precursor as they gyrate around the background magnetic field. The compensation current induced in the background plasma leads to an unstable configuration, with the appearance of ...
GRB060218: A Relativistic Supernova Shock Breakout
Waxman, E; Campana, S
2007-01-01
We show that the prompt and afterglow X-ray emission of GRB060218, as well as its early (t<=1 d) optical-UV emission, can be explained by a model in which a radiation- mediated shock propagates through a compact progenitor star into a dense wind. The prompt thermal X-ray emission is produced in this model as the mildly relativistic shock, v/c=0.85 carrying few x 10^49 erg, reaches the wind (Thomson) photosphere, where the post-shock thermal radiation is released and the shock becomes collisionless. Adopting this interpretation of the thermal X-ray emission, a subsequent X-ray afterglow is predicted, due to synchrotron emission and inverse-Compton scattering of SN UV photons by electrons accelerated in the collisionless shock. Early optical-UV emission is also predicted, due to the cooling of the outer \\delta M ~10^{-3} M_sun envelope of the star, which was heated to high temperature during shock passage. The observed X-ray afterglow and the early optical-UV emission are both consistent with those expected ...
Spectral and Polarization Signatures of Relativistic Shocks in Blazars
Boettcher, Markus
2016-01-01
Relativistic shocks are one of the most plausible sites of the emission of strongly variable, polarized multi-wavelength emission from relativistic jet sources such as blazars, via diffusive shock acceleration (DSA) of relativistic particles. This paper summarizes recent results on a self-consistent coupling of diffusive shock acceleration and radiation transfer in blazar jets. We demonstrate that the observed spectral energy distributions (SEDs) of blazars strongly constrain the nature of hydromagnetic turbulence responsible for pitch-angle scattering by requiring a strongly energy-dependent pitch-angle mean free path. The prominent soft X-ray excess ("Big Blue Bump") in the SED of the BL Lac object AO 0235+164 can be modelled as the signature of bulk Compton scattering of external radiation fields by the thermal electron population, which places additional constraints on the level of hydromagnetic turbulence. It has further been demonstrated that internal shocks propagating in a jet pervaded by a helical ma...
Ion Injection at Non-relativistic Collisionless Shocks
Caprioli, Damiano; Spitkovsky, Anatoly
2014-01-01
We use kinetic hybrid simulations (kinetic ions - fluid electrons) to characterize the fraction of ions that are accelerated to non-thermal energies at non-relativistic collisionless shocks. We investigate the properties of the shock discontinuity and show that shocks propagating almost along the background magnetic field (quasi-parallel shocks) reform quasi-periodically on ion cyclotron scales. Ions that impinge on the shock when the discontinuity is the steepest are specularly reflected. This is a necessary condition for being injected, but it is not sufficient. Also by following the trajectories of reflected ions, we calculate the minimum energy needed for injection into diffusive shock acceleration, as a function of the shock inclination. We construct a minimal model that accounts for the ion reflection from quasi-periodic shock barrier, for the fraction of injected ions, and for the ion spectrum throughout the transition from thermal to non-thermal energies. This model captures the physics relevant for i...
Ponderomotive Acceleration by Relativistic Waves
Lau, Calvin; Yeh, Po-Chun; Luk, Onnie; McClenaghan, Joseph; Ebisuzaki, Toshikazu; Tajima, Toshiki
2014-01-01
In the extreme high intensity regime of electromagnetic (EM) waves in plasma, the acceleration process is found to be dominated by the ponderomotive acceleration (PA). While the wakefields driven by the ponderomotive force of the relativistic intensity EM waves are important, they may be overtaken by the PA itself in the extreme high intensity regime when the dimensionless vector potential $a_0$ of the EM waves far exceeds unity. The energy gain by this regime (in 1D) is shown to be (approximately) proportional to $a_0^2$. Before reaching this extreme regime, the coexistence of the PA and the wakefield acceleration (WA) is observed where the wave structures driven by the wakefields show the phenomenon of multiple and folded wave-breakings. Investigated are various signatures of the acceleration processes such as the dependence on the mass ratio for the energy gain as well as the energy spectral features. The relevance to high energy cosmic ray acceleration and to the relativistic laser acceleration is conside...
Radiation from relativistic shocks with turbulent magnetic fields
Nishikawa, K -I; Medvedev, M; Zhang, B; Hardee, P; Nordlund, A; Frederiksen, J; Mizuno, Y; Sol, H; Pohl, M; Hartmann, D H; Oka, M; Fishman, G J
2009-01-01
Using our new 3-D relativistic electromagnetic particle (REMP) code parallelized with MPI, we investigated long-term particle acceleration associated with a relativistic electron-positron jet propagating in an unmagnetized ambient electron-positron plasma. The simulations were performed using a much longer simulation system than our previous simulations in order to investigate the full nonlinear stage of the Weibel instability and its particle acceleration mechanism. Cold jet electrons are thermalized and ambient electrons are accelerated in the resulting shocks. Acceleration of ambient electrons leads to a maximum ambient electron density three times larger than the original value. Behind the bow shock in the jet shock strong electromagnetic fields are generated. These fields may lead to time dependent afterglow emission. We calculated radiation from electrons propagating in a uniform parallel magnetic field to verify the technique. We also used the new technique to calculate emission from electrons based on...
Corrugation of relativistic magnetized shock waves
Lemoine, M; Gremillet, L
2016-01-01
As a shock front interacts with turbulence, it develops corrugation which induces outgoing wave modes in the downstream plasma. For a fast shock wave, the incoming wave modes can either be fast magnetosonic waves originating from downstream, outrunning the shock, or eigenmodes of the upstream plasma drifting through the shock. Using linear perturbation theory in relativistic MHD, this paper provides a general analysis of the corrugation of relativistic magnetized fast shock waves resulting from their interaction with small amplitude disturbances. Transfer functions characterizing the linear response for each of the outgoing modes are calculated as a function of the magnetization of the upstream medium and as a function of the nature of the incoming wave. Interestingly, if the latter is an eigenmode of the upstream plasma, we find that there exists a resonance at which the (linear) response of the shock becomes large or even diverges. This result may have profound consequences on the phenomenology of astrophys...
On electromagnetic instabilities at ultra-relativistic shock waves
Lemoine, Martin
2009-01-01
(Abridged) This paper addresses the issue of magnetic field generation in a relativistic shock precursor through micro-instabilities. The level of magnetization of the upstream plasma turns out to be a crucial parameter, notably because the length scale of the shock precursor is limited by the Larmor rotation of the accelerated particles in the background magnetic field and the speed of the shock wave. We discuss in detail and calculate the growth rates of the following beam plasma instabilities seeded by the accelerated and reflected particle populations: for an unmagnetized shock, the Weibel and filamentation instabilities, as well as the Cerenkov resonant longitudinal and oblique modes; for a magnetized shock, in a generic oblique configuration, the Weibel instability and the resonant Cerenkov instabilities with Alfven, Whisler and extraordinary modes. All these instabilities are generated upstream, then they are transmitted downstream. The modes excited by Cerenkov resonant instabilities take on particula...
SUPERDIFFUSIVE SHOCK ACCELERATION
Perri, S.; Zimbardo, G. [Dipartimento di Fisica, Universita della Calabria, Ponte P. Bucci Cubo 31C, I-87036 Rende (Italy)
2012-05-10
The theory of diffusive shock acceleration is extended to the case of superdiffusive transport, i.e., when the mean square deviation grows proportionally to t{sup {alpha}}, with {alpha} > 1. Superdiffusion can be described by a statistical process called Levy random walk, in which the propagator is not a Gaussian but it exhibits power-law tails. By using the propagator appropriate for Levy random walk, it is found that the indices of energy spectra of particles are harder than those obtained where a normal diffusion is envisaged, with the spectral index decreasing with the increase of {alpha}. A new scaling for the acceleration time is also found, allowing substantially shorter times than in the case of normal diffusion. Within this framework we can explain a number of observations of flat spectra in various astrophysical and heliospheric contexts, for instance, for the Crab Nebula and the termination shock of the solar wind.
Particle Acceleration in Relativistic Jets Due to Weibel Instability
Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.
2004-01-01
Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a three-dimensional relativistic electromagnetic particle code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. While some Fermi acceleration may occur at the jet front, the majority of electron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron s transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
Microscopic Processes On Radiation from Accelerated Particles in Relativistic Jets
Nishikawa, K.-I.; Hardee, P. E.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Sol, H.; Niemiec, J.; Pohl, M.; Nordlund, A.; Fredriksen, J.;
2009-01-01
Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The jitter'' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
DIFFUSIVE SHOCK ACCELERATION AT COSMOLOGICAL SHOCK WAVES
Kang, Hyesung [Department of Earth Sciences, Pusan National University, Pusan 609-735 (Korea, Republic of); Ryu, Dongsu, E-mail: kang@uju.es.pusan.ac.kr, E-mail: ryu@canopus.cnu.ac.kr [Department of Astronomy and Space Science, Chungnam National University, Daejeon 305-764 (Korea, Republic of)
2013-02-10
We reexamine nonlinear diffusive shock acceleration (DSA) at cosmological shocks in the large-scale structure of the universe, incorporating wave-particle interactions that are expected to operate in collisionless shocks. Adopting simple phenomenological models for magnetic field amplification (MFA) by cosmic-ray (CR) streaming instabilities and Alfvenic drift, we perform kinetic DSA simulations for a wide range of sonic and Alfvenic Mach numbers and evaluate the CR injection fraction and acceleration efficiency. In our DSA model, the CR acceleration efficiency is determined mainly by the sonic Mach number M{sub s} , while the MFA factor depends on the Alfvenic Mach number and the degree of shock modification by CRs. We show that at strong CR modified shocks, if scattering centers drift with an effective Alfven speed in the amplified magnetic field, the CR energy spectrum is steepened and the acceleration efficiency is reduced significantly, compared to the cases without such effects. As a result, the postshock CR pressure saturates roughly at {approx}20% of the shock ram pressure for strong shocks with M{sub s} {approx}> 10. In the test-particle regime (M{sub s} {approx}< 3), it is expected that the magnetic field is not amplified and the Alfvenic drift effects are insignificant, although relevant plasma physical processes at low Mach number shocks remain largely uncertain.
Particle acceleration at shocks - A Monte Carlo method
Kirk, J. G.; Schneider, P.
1987-01-01
A Monte Carlo method is presented for the problem of acceleration of test particles at relativistic shocks. The particles are assumed to diffuse in pitch angle as a result of scattering off magnetic irregularities frozen into the fluid. Several tests are performed using the analytic results available for both relativistic and nonrelativistic shock speeds. The acceleration at relativistic shocks under the influence of radiation losses is investigated, including the effects of a momentum dependence in the diffusion coefficient. The results demonstrate the usefulness of the technique in those situations in which the diffusion approximation cannot be employed, such as when relativistic bulk motion is considered, when particles are permitted to escape at the boundaries, and when the effects of the finite length of the particle mean free path are important.
The spectrum of Cosmic Rays escaping from relativistic shocks
Katz, Boaz; Waxman, Eli
2010-01-01
We derive expressions for the time integrated spectrum of Cosmic Rays (CRs) that are accelerated in a decelerating relativistic shock wave and escape ahead of the shock. It is assumed that at any given time the CRs have a power law form, carry a constant fraction of the energy E_tot of the shocked plasma, and escape continuously at the maximal energy attainable. The spectrum of escaping particles is highly sensitive to the instantaneous spectral index due to the fact that the minimal energy, E_min ~ \\Gamma^2 m_pc^2 where \\Gamma is the shock Lorentz factor, changes with time. In particular, the escaping spectrum may be considerably harder than the canonical N(E)\\propto E^-2 spectrum. For a shock expanding into a plasma of density n, a spectral break is expected at the maximal energy attainable at the transition to non relativistic velocities, E ~ 10^19 (\\epsilon_B/0.1)(n/1 cm^-3)^(1/6)(E_tot/10^51 erg)^(1/3) eV where \\epsilon_B is the fraction of the energy flux carried by the magnetic field. If ultra-high ene...
Diffusive Shock Acceleration at Cosmological Shock Waves
Kang, Hyesung
2012-01-01
We reexamine nonlinear diffusive shock acceleration (DSA) at cosmological shocks in the large scale structure of the Universe, incorporating wave-particle interactions that are expected to operate in collisionless shocks. Adopting simple phenomenological models for magnetic field amplification (MFA) by cosmic-ray (CR) streaming instabilities and Alfv'enic drift, we perform kinetic DSA simulations for a wide range of sonic and Alfv'enic Mach numbers and evaluate the CR injection fraction and acceleration efficiency. In our DSA model the CR acceleration efficiency is determined mainly by the sonic Mach number Ms, while the MFA factor depends on the Alfv'enic Mach number and the degree of shock modification by CRs. We show that at strong CR modified shocks, if scattering centers drift with an effective Alfv'en speed in the amplified magnetic field, the CR energy spectrum is steepened and the acceleration efficiency is reduced significantly, compared to the cases without such effects. As a result, the postshock C...
Investigation on shock waves stability in relativistic gas dynamics
Alexander Blokhin
1993-05-01
Full Text Available This paper is devoted to investigation of the linearized mixed problem of shock waves stability in relativistic gas dynamics. The problem of symmetrization of relativistic gas dynamics equations is also discussed.
Electron Acceleration at Pulsar Wind Termination Shocks
Giacchè, S.; Kirk, John G.
2017-02-01
We study the acceleration of electrons and positrons at an electromagnetically modified, ultrarelativistic shock in the context of pulsar wind nebulae. We simulate the outflow produced by an obliquely rotating pulsar in proximity of its termination shock with a two-fluid code that uses a magnetic shear wave to mimic the properties of the wind. We integrate electron trajectories in the test-particle limit in the resulting background electromagnetic fields to analyze the injection mechanism. We find that the shock-precursor structure energizes and reflects a sizable fraction of particles, which becomes available for further acceleration. We investigate the subsequent first-order Fermi process sustained by small-scale magnetic fluctuations with a Monte Carlo code. We find that the acceleration proceeds in two distinct regimes: when the gyroradius {r}{{g}} exceeds the wavelength of the shear λ, the process is remarkably similar to first-order Fermi acceleration at relativistic, parallel shocks. This regime corresponds to a low-density wind that allows the propagation of superluminal waves. When {r}{{g}}< λ , which corresponds to the scenario of driven reconnection, the spectrum is softer.
Double Relativistic Electron Accelerating Mirror
Saltanat Sadykova
2013-02-01
Full Text Available In the present paper, the possibility of generation of thin dense relativistic electron layers is shown using the analytical and numerical modeling of laser pulse interaction with ultra-thin layers. It was shown that the maximum electron energy can be gained by optimal tuning between the target width, intensity and laser pulse duration. The optimal parameters were obtained from a self-consistent system of Maxwell equations and the equation of motion of electron layer. For thin relativistic electron layers, the gaining of maximum electron energies requires a second additional overdense plasma layer, thus cutting the laser radiation off the plasma screen at the instant of gaining the maximum energy (DREAM-schema.
Particle acceleration around SNR shocks
Morlino, G., E-mail: morlino@arcetri.astro.it [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5, 50125 Firenze (Italy)
2013-08-21
We review the basic features of particle acceleration theory around collisionless shocks in supernova remnants (SNRs). We show how non-linear effects induced by the back reaction of accelerated particles onto the shock dynamics are of paramount importance to support the hipotesys that SNRs are the factories of Galactic cosmic rays. Recent developments in the modeling of the mechanism of diffusive shock acceleration are discussed, with emphasis on the role of magnetic field amplification and the presence of neutrals in the circumstellar environment. Special attention will be devoted to observational consequences of non-linear effects on the multi-wavelength spectrum of SNRs, with emphasis on X-ray and gamma-ray emission. Finally we also discuss how Balmer lines, detected from several young SNRs, can be used to estimate the shock dynamical properties and the efficiency of CR acceleration.
Particle acceleration around SNR shocks
Morlino, Giovanni
2012-01-01
We review the basic features of particle acceleration theory around collisionless shocks in supernova remnants (SNRs). We show how non linear effects induced by the back reaction of accelerated particles onto the shock dynamics are of paramount importance to support the hipotesys that SNRs are the factories of Galactic cosmic rays. Recent developments in the modeling of the mechanism of diffusive shock acceleration are discussed, with emphasis on the role of magnetic field amplification and the presence of neutrals in the circumstellar environment. Special attention will be devoted to observational consequences of non linear effects on the multi-wavelength spectrum of SNRs, with emphasis on X-ray and gamma-ray emission. Finally we also discuss how Balmer lines, detected from several young SNRs, can be used to estimate the shock dynamical properties and the efficiency of CR acceleration.
Relativistic Electrons Produced by Foreshock Disturbances Observed Upstream of Earth's Bow Shock
Wilson, L. B.; Sibeck, D. G.; Turner, D. L.; Osmane, A.; Caprioli, D.; Angelopoulos, V.
2016-11-01
Charged particles can be reflected and accelerated by strong (i.e., high Mach number) astrophysical collisionless shock waves, streaming away to form a foreshock region in communication with the shock. Foreshocks are primarily populated by suprathermal ions that can generate foreshock disturbances—large-scale (i.e., tens to thousands of thermal ion Larmor radii), transient (˜5 - 10 per day ) structures. They have recently been found to accelerate ions to energies of several keV. Although electrons in Saturn's high Mach number (M >40 ) bow shock can be accelerated to relativistic energies (nearly 1000 keV), it has hitherto been thought impossible to accelerate electrons beyond a few tens of keV at Earth's low Mach number (1 ≤M events. These relativistic electrons are not associated with any solar or magnetospheric activity. Further, due to their relatively small Larmor radii (compared to magnetic gradient scale lengths) and large thermal speeds (compared to shock speeds), no known shock acceleration mechanism can energize thermal electrons up to relativistic energies. The discovery of relativistic electrons associated with foreshock structures commonly generated in astrophysical shocks could provide a new paradigm for electron injections and acceleration in collisionless plasmas.
The relativistic geoid: redshift and acceleration potential
Philipp, Dennis; Lämmerzahl, Claus; Puetzfeld, Dirk; Hackmann, Eva; Perlick, Volker
2017-04-01
We construct a relativistic geoid based on a time-independent redshift potential, which foliates the spacetime into isochronometric surfaces. This relativistic potential coincides with the acceleration potential for isometric congruences. We show that the a- and u- geoid, defined in a post-Newtonian framework, coincide also in a more general setup. Known Newtonian and post-Newtonian results are recovered in the respective limits. Our approach offers a relativistic definition of the Earth's geoid as well as a description of the Earth itself (or observers on its surface) in terms of an isometric congruence. Being fully relativistic, this notion of a geoid can also be applied to other compact objects such as neutron stars. By definition, this relativistic geoid can be determined by a congruence of Killing observers equipped with standard clocks by comparing their frequencies as well as by measuring accelerations of objects that follow the congruence. The redshift potential gives the correct result also for frequency comparison through optical fiber links as long as the fiber is at rest w.r.t. the congruence. We give explicit expressions for the relativistic geoid in the Kerr spacetime and the Weyl class of spacetimes. To investigate the influence of higher order mass multipole moments we compare the results for the Schwarzschild case to those obtained for the Erez-Rosen and q-metric spacetimes.
Ultra-low frequency shock dynamics in degenerate relativistic plasmas
Islam, S.; Sultana, S.; Mamun, A. A.
2017-09-01
A degenerate relativistic three-component plasma model is proposed for ultra-low frequency shock dynamics. A reductive perturbation technique is adopted, leading to Burgers' nonlinear partial differential equation. The properties of the shock waves are analyzed via the stationary shock wave solution for different plasma configuration parameters. The role of different intrinsic plasma parameters, especially the relativistic effects on the linear wave properties and also on the shock dynamics, is briefly discussed.
Proton Acceleration at Oblique Shocks
Galinsky, V. L.; Shevchenko, V. I.
2011-06-01
Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.
Diffusive Shock Acceleration and Reconnection Acceleration Processes
Zank, G. P.; Hunana, P.; Mostafavi, P.; Le Roux, J. A.; Li, Gang; Webb, G. M.; Khabarova, O.; Cummings, A.; Stone, E.; Decker, R.
2015-12-01
Shock waves, as shown by simulations and observations, can generate high levels of downstream vortical turbulence, including magnetic islands. We consider a combination of diffusive shock acceleration (DSA) and downstream magnetic-island-reconnection-related processes as an energization mechanism for charged particles. Observations of electron and ion distributions downstream of interplanetary shocks and the heliospheric termination shock (HTS) are frequently inconsistent with the predictions of classical DSA. We utilize a recently developed transport theory for charged particles propagating diffusively in a turbulent region filled with contracting and reconnecting plasmoids and small-scale current sheets. Particle energization associated with the anti-reconnection electric field, a consequence of magnetic island merging, and magnetic island contraction, are considered. For the former only, we find that (i) the spectrum is a hard power law in particle speed, and (ii) the downstream solution is constant. For downstream plasmoid contraction only, (i) the accelerated spectrum is a hard power law in particle speed; (ii) the particle intensity for a given energy peaks downstream of the shock, and the distance to the peak location increases with increasing particle energy, and (iii) the particle intensity amplification for a particular particle energy, f(x,c/{c}0)/f(0,c/{c}0), is not 1, as predicted by DSA, but increases with increasing particle energy. The general solution combines both the reconnection-induced electric field and plasmoid contraction. The observed energetic particle intensity profile observed by Voyager 2 downstream of the HTS appears to support a particle acceleration mechanism that combines both DSA and magnetic-island-reconnection-related processes.
Interferometric Measurement of Acceleration at Relativistic Speeds
Christian, Pierre; Loeb, Abraham
2017-01-01
We show that an interferometer moving at a relativistic speed relative to a point source of light offers a sensitive probe of acceleration. Such an accelerometer contains no moving parts, and is thus more robust than conventional “mass-on-a-spring” accelerometers. In an interstellar mission to Alpha Centauri, such an accelerometer could be used to measure the masses of exoplanets and their host stars as well as test theories of modified gravity.
Interferometric Measurement of Acceleration at Relativistic Speeds
Christian, Pierre
2016-01-01
We show that an interferometer moving at a relativistic speed relative to a point source of light offers a sensitive probe of acceleration. Such an accelerometer contains no moving parts, and is thus more robust than conventional "mass-on-a-spring" accelerometers. In an interstellar mission to Alpha-Centauri, such an accelerometer could be used to measure the masses of planets around other stars as well as the mass distribution of the Milky Way Galaxy.
Particle Acceleration by a Solar Flare Termination Shock
Chen, Bin; Shen, Chengcai; Gary, Dale E; Krucker, Sam; Glesener, Lindsay
2015-01-01
Solar flares - the most powerful explosions in the solar system - are also efficient particle accelerators, capable of energizing a large number of charged particles to relativistic speeds. A termination shock is often invoked in the standard model of solar flares as a possible driver for particle acceleration, yet its existence and role have remained controversial. We present observations of a solar flare termination shock and trace its morphology and dynamics using high-cadence radio imaging spectroscopy. We show that a disruption of the shock coincides with an abrupt reduction of the energetic electron population. The observed properties of the shock are well-reproduced by simulations. These results strongly suggest that a termination shock is responsible, at least in part, for accelerating energetic electrons in solar flares.
Simulations and Theory of Ion Injection at Non-relativistic Collisionless Shocks
Caprioli, Damiano; Pop, Ana-Roxana; Spitkovsky, Anatoly
2015-01-01
We use kinetic hybrid simulations (kinetic ions-fluid electrons) to characterize the fraction of ions that are accelerated to non-thermal energies at non-relativistic collisionless shocks. We investigate the properties of the shock discontinuity and show that shocks propagating almost along the background magnetic field (quasi-parallel shocks) reform quasi-periodically on ion cyclotron scales. Ions that impinge on the shock when the discontinuity is the steepest are specularly reflected. This is a necessary condition for being injected, but it is not sufficient. Also, by following the trajectories of reflected ions, we calculate the minimum energy needed for injection into diffusive shock acceleration, as a function of the shock inclination. We construct a minimal model that accounts for the ion reflection from quasi-periodic shock barrier, for the fraction of injected ions, and for the ion spectrum throughout the transition from thermal to non-thermal energies. This model captures the physics relevant for ion injection at non-relativistic astrophysical shocks with arbitrary strengths and magnetic inclinations, and represents a crucial ingredient for understanding the diffusive shock acceleration of cosmic rays.
Kinetic Simulations of Particle Acceleration at Shocks
Caprioli, Damiano [Princeton University; Guo, Fan [Los Alamos National Laboratory
2015-07-16
Collisionless shocks are mediated by collective electromagnetic interactions and are sources of non-thermal particles and emission. The full particle-in-cell approach and a hybrid approach are sketched, simulations of collisionless shocks are shown using a multicolor presentation. Results for SN 1006, a case involving ion acceleration and B field amplification where the shock is parallel, are shown. Electron acceleration takes place in planetary bow shocks and galaxy clusters. It is concluded that acceleration at shocks can be efficient: >15%; CRs amplify B field via streaming instability; ion DSA is efficient at parallel, strong shocks; ions are injected via reflection and shock drift acceleration; and electron DSA is efficient at oblique shocks.
Efficient Acceleration of Relativistic Magnetohydrodynamic Jets
Toma, Kenji
2013-01-01
Relativistic jets in active galactic nuclei, galactic microquasars, and gamma-ray bursts are widely considered to be magnetohydrodynamically driven by black hole accretion systems, although conversion mechanism from Poynting into particle kinetic energy flux is still open. Recent detailed numerical and analytical studies of global structures of steady, axisymmetric magnetohydrodynamic (MHD) flows with specific boundary conditions have not reproduced as rapid an energy conversion as required by observations. In order to find more suitable boundary conditions, we focus on the flow along a poloidal magnetic field line just inside the external boundary, without treating transfield force balance in detail. We find some examples of the poloidal field structure and corresponding external pressure profile for an efficient and rapid energy conversion as required by observations, and that the rapid acceleration requires a rapid decrease of the external pressure above the accretion disk. We also clarify the differences ...
Shock acceleration in gamma-ray bursts; Acceleration de choc dans des sursauts gamma
Lemoine, M. [Institut d' astrophysique de Paris, CNRS, universite Pierre and Marie Curie, 98, bis boulevard Arago, 75014 Paris (France); Pelletier, G. [Laboratoire d' astrophysique de Grenoble, CNRS. universite Joseph-Fourier II, BP 53, 38041 Grenoble (France)
2011-04-15
Gamma-ray bursts offer a rather unique window on the fundamental astrophysics of particle acceleration. Sources of high-energy gamma rays, they are also likely sources of cosmic rays, possibly of the so-called ultra-high energy cosmic rays, and they may well turn out to be the strongest sources of high energy neutrinos. Through the interaction of their outflow with the circum-burst medium, these explosions generate ultra-relativistic shock waves that convert part of the bulk kinetic energy into particle energy, ultimately giving rise to the impressive photon power law spectra of the afterglow. The prompt emission may well occur through the interactions of disturbances moving with mildly relativistic relative velocity within the flow itself. However, the detailed acceleration mechanism is not yet understood. This chapter discusses the progress made in the past decade in our understanding of relativistic shock acceleration and its relation to gamma-ray burst phenomenology. It notably discusses the intimate relationship between the electromagnetic micro-instabilities upstream of the collisionless shock and the accelerated particles. It also briefly discusses the possibility of accelerating particles to ultra-high energies and the production of secondary neutrino signals. It concludes with a list of open questions and some perspectives. (authors)
The plasma physics of shock acceleration
Jones, Frank C.; Ellison, Donald C.
1991-01-01
The history and theory of shock acceleration is reviewed, paying particular attention to theories of parallel shocks which include the backreaction of accelerated particles on the shock structure. The work that computer simulations, both plasma and Monte Carlo, are playing in revealing how thermal ions interact with shocks and how particle acceleration appears to be an inevitable and necessary part of the basic plasma physics that governs collisionless shocks is discussed. Some of the outstanding problems that still confront theorists and observers in this field are described.
Relativistic particle acceleration in developing Alfv\\'{e}n turbulence
Matsukiyo, S; 10.1088/0004-637X/692/2/1004
2009-01-01
A new particle acceleration process in a developing Alfv\\'{e}n turbulence in the course of successive parametric instabilities of a relativistic pair plasma is investigated by utilyzing one-dimensional electromagnetic full particle code. Coherent wave-particle interactions result in efficient particle acceleration leading to a power-law like energy distribution function. In the simulation high energy particles having large relativistic masses are preferentially accelerated as the turbulence spectrum evolves in time. Main acceleration mechanism is simultaneous relativistic resonance between a particle and two different waves. An analytical expression of maximum attainable energy in such wave-particle interactions is derived.
Polko, Peter; Markoff, Sera
2012-01-01
We present a new, approximate method for modelling the acceleration and collimation of relativistic jets in the presence of gravity. This method is self-similar throughout the computational domain where gravitational effects are negligible and, where significant, self-similar within a flux tube. These solutions are applicable to jets launched from a small region (e.g., near the inner edge of an accretion disk). As implied by earlier work, the flow can converge onto the rotation axis, potentially creating a collimation shock. In this first version of the method, we derive the gravitational contribution to the relativistic equations by analogy with non-relativistic flow. This approach captures the relativistic kinetic gravitational mass of the flowing plasma, but not that due to internal thermal and magnetic energies. A more sophisticated treatment, derived from the basic general relativistic magnetohydrodynamical equations, is currently being developed. Here we present an initial exploration of parameter space...
Trans-Relativistic Particle Acceleration in Astrophysical Plasmas
Becker, Peter A.; Subramanian, P.
2014-01-01
Trans-relativistic particle acceleration due to Fermi interactions between charged particles and MHD waves helps to power the observed high-energy emission in AGN transients and solar flares. The trans-relativistic acceleration process is challenging to treat analytically due to the complicated momentum dependence of the momentum diffusion coefficient. For this reason, most existing analytical treatments of particle acceleration assume that the injected seed particles are already relativistic, and therefore they are not suited to study trans-relativistic acceleration. The lack of an analytical model has forced workers to rely on numerical simulations to obtain particle spectra describing the trans-relativistic case. In this work we present the first analytical solution to the global, trans-relativistic problem describing the acceleration of seed particles due to hard-sphere collisions with MHD waves. The new results include the exact solution for the steady-state Green's function resulting from the continual injection of monoenergetic seed particles with an arbitrary energy. We also introduce an approximate treatment of the trans-relativistic acceleration process based on a hybrid form for the momentum diffusion coefficient, given by the sum of the two asymptotic forms. We refer to this process as "quasi hard-sphere scattering." The main advantage of the hybrid approximation is that it allows the extension of the physical model to include (i) the effects of synchrotron and inverse-Compton losses and (ii) time dependence. The new analytical results can be used to model the trans-relativistic acceleration of particles in AGN and solar environments, and can also be used to compute the spectra of the associated synchrotron and inverse-Compton emission. Applications of both types are discussed. We highlight (i) relativistic ion acceleration in black hole accretion coronae, and (ii) the production of gyrosynchrotron microwave emission due to relativistic electron
Diffusive Acceleration of Ions at Interplanetary Shocks
Baring, M G; Baring, Matthew G.; Summerlin, Errol J.
2005-01-01
Heliospheric shocks are excellent systems for testing theories of particle acceleration in their environs. These generally fall into two classes: (1) interplanetary shocks that are linear in their ion acceleration characteristics, with the non-thermal ions serving as test particles, and (2) non-linear systems such as the Earth's bow shock and the solar wind termination shock, where the accelerated ions strongly influence the magnetohydrodynamic structure of the shock. This paper explores the modelling of diffusive acceleration at a particular interplanetary shock, with an emphasis on explaining in situ measurements of ion distribution functions. The observational data for this event was acquired on day 292 of 1991 by the Ulysses mission. The modeling is performed using a well-known kinetic Monte Carlo simulation, which has yielded good agreement with observations at several heliospheric shocks, as have other theoretical techniques, namely hybrid plasma simulations, and numerical solution of the diffusion-conv...
SHORT ACCELERATION TIMES FROM SUPERDIFFUSIVE SHOCK ACCELERATION IN THE HELIOSPHERE
Perri, S.; Zimbardo, G., E-mail: silvia.perri@fis.unical.it [Dipartimento di Fisica, Università della Calabria, Ponte P. Bucci, I-87036 Rende (Italy)
2015-12-10
The analysis of time profiles of particles accelerated at interplanetary shocks allows particle transport properties to be inferred. The frequently observed power-law decay upstream, indeed, implies a superdiffusive particle transport when the level of magnetic field variance does not change as the time interval from the shock front increases. In this context, a superdiffusive shock acceleration (SSA) theory has been developed, allowing us to make predictions of the acceleration times. In this work we estimate for a number of interplanetary shocks, including the solar wind termination shock, the acceleration times for energetic protons in the framework of SSA and we compare the results with the acceleration times predicted by standard diffusive shock acceleration. The acceleration times due to SSA are found to be much shorter than in the classical model, and also shorter than the interplanetary shock lifetimes. This decrease of the acceleration times is due to the scale-free nature of the particle displacements in the framework of superdiffusion. Indeed, very long displacements are possible, increasing the probability for particles far from the front of the shock to return, and short displacements have a high probability of occurrence, increasing the chances for particles close to the front to cross the shock many times.
Sub-photospheric shocks in relativistic explosions
Beloborodov, Andrei M
2016-01-01
This paper examines the mechanism of shocks in opaque outflows from astrophysical explosions, in particular in cosmological gamma-ray bursts. Sub-photospheric shocks can produce neutrino emission and affect the observed photospheric radiation from the explosion. Shocks develop from internal compressive waves and can be of different types depending on the composition of the flow: (1) Shocks in `photon gas' with small plasma inertial mass have a unique structure determined by the `force-free' condition -- zero radiation flux in the plasma rest frame. Radiation dominance over plasma inertia suppresses formation of collisionless shocks mediated by collective electromagnetic fields. (2) Strong collisionless subshocks develop in the opaque flow if it is sufficiently magnetized. We evaluate the critical magnetization for this to happen. The collisionless subshock is embedded in a thicker radiation-mediated shock structure. (3) Shocks in outflows carrying a free neutron component involve dissipation through nuclear c...
Shock Acceleration Model for the Toothbrush Radio Relic
Kang, Hyesung; Ryu, Dongsu; Jones, T. W.
2017-05-01
Although many of the observed properties of giant radio relics detected in the outskirts of galaxy clusters can be explained by relativistic electrons accelerated at merger-driven shocks, significant puzzles remain. In the case of the so-called Toothbrush relic, the shock Mach number estimated from X-ray observations ({M}{{X}}≈ 1.2{--}1.5) is substantially weaker than that inferred from the radio spectral index ({M}{rad}≈ 2.8). Toward understanding such a discrepancy, we here consider the following diffusive shock acceleration (DSA) models: (1) weak-shock models with {M}{{s}}≲ 2 and a preexisting population of cosmic-ray electrons (CRe) with a flat energy spectrum, and (2) strong-shock models with {M}{{s}}≈ 3 and either shock-generated suprathermal electrons or preexisting fossil CRe. We calculate the synchrotron emission from the accelerated CRe, following the time evolution of the electron DSA, and the subsequent radiative cooling and postshock turbulent acceleration (TA). We find that both models could reproduce reasonably well the observed integrated radio spectrum of the Toothbrush relic, but the observed broad transverse profile requires the stochastic acceleration by downstream turbulence, which we label “turbulent acceleration” or TA to distinguish it from DSA. Moreover, to account for the almost uniform radio spectral index profile along the length of the relic, the weak-shock models require a preshock region over 400 kpc with a uniform population of preexisting CRe with a high cutoff energy (≳ 40 {GeV}). Due to the short cooling time, it is challenging to explain the origin of such energetic electrons. Therefore, we suggest the strong-shock models with low-energy seed CRe (≲ 150 {MeV}) are preferred for the radio observations of this relic.
Nishikawa, K.-I.; Hartmann, D. H.; Hardee, P.; Hededal, C.; Mizunno, Y.; Fishman, G. J.
2006-01-01
We performed numerical simulations of particle acceleration, magnetic field generation, and emission from shocks in order to understand the observed emission from relativistic jets and supernova remnants. The investigation involves the study of collisionless shocks, where the Weibel instability is responsible for particle acceleration as well as magnetic field generation. A 3-D relativistic particle-in-cell (RPIC) code has been used to investigate the shock processes in electron-positron plasmas. The evolution of theWeibe1 instability and its associated magnetic field generation and particle acceleration are studied with two different jet velocities (0 = 2,5 - slow, fast) corresponding to either outflows in supernova remnants or relativistic jets, such as those found in AGNs and microquasars. Slow jets have intrinsically different structures in both the generated magnetic fields and the accelerated particle spectrum. In particular, the jet head has a very weak magnetic field and the ambient electrons are strongly accelerated and dragged by the jet particles. The simulation results exhibit jitter radiation from inhomogeneous magnetic fields, generated by the Weibel instability, which has different spectral properties than standard synchrotron emission in a homogeneous magnetic field.
Ultrafast ignition with relativistic shock waves induced by high power lasers
Shalom; Eliezer; Noaz; Nissim; Shirly; Vinikman; Pinhasi; Erez; Raicher; José; Maria; Martinez; Val
2014-01-01
In this paper we consider laser intensities greater than 1016 W cm-2where the ablation pressure is negligible in comparison with the radiation pressure.The radiation pressure is caused by the ponderomotive force acting mainly on the electrons that are separated from the ions to create a double layer(DL).This DL is accelerated into the target,like a piston that pushes the matter in such a way that a shock wave is created.Here we discuss two novel ideas.Firstly,the transition domain between the relativistic and non-relativistic laser-induced shock waves.Our solution is based on relativistic hydrodynamics also for the above transition domain.The relativistic shock wave parameters,such as compression,pressure,shock wave and particle flow velocities,sound velocity and rarefaction wave velocity in the compressed target,and temperature are calculated.Secondly,we would like to use this transition domain for shockwave-induced ultrafast ignition of a pre-compressed target.The laser parameters for these purposes are calculated and the main advantages of this scheme are described.If this scheme is successful a new source of energy in large quantities may become feasible.
The impact of kinetic effects on the properties of relativistic electron-positron shocks
Stockem, A; Fonseca, R A; Silva, L O
2012-01-01
We assess the impact of non-thermally shock-accelerated particles on the magnetohydrodynamic (MHD) jump conditions of relativistic shocks. The adiabatic constant is calculated directly from first principle particle-in-cell simulation data, enabling a semi-kinetic approach to improve the standard fluid model and allowing for an identification of the key parameters that define the shock structure. We find that the evolving upstream parameters have a stronger impact than the corrections due to non-thermal particles. We find that the decrease of the upstream bulk speed yields deviations from the standard MHD model up to 10%. Furthermore, we obtain a quantitative definition of the shock transition region from our analysis. For Weibel-mediated shocks the inclusion of a magnetic field in the MHD conservation equations is addressed for the first time.
Composite self-similar solutions for relativistic shocks: The transition to cold fluid temperatures
Pan, Margaret [School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540 (United States); Sari, Re' em [California Institute of Technology, MS 130-33, Pasadena, California 91125 (United States) and Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)
2009-11-15
The flow resulting from a strong ultrarelativistic shock moving through a stellar envelope with a polytropelike density profile has been studied analytically and numerically at early times while the fluid temperature is relativistic--that is, just before and after the shock breaks out of the star. Such a flow should expand and accelerate as its internal energy is converted to bulk kinetic energy; at late enough times, the assumption of relativistic temperatures becomes invalid. Here we present a new self-similar solution for the postbreakout flow when the accelerating fluid has bulk kinetic Lorentz factors much larger than unity but is cooling through p/n of order unity to subrelativistic temperatures. This solution gives a relation between a fluid element's terminal Lorentz factor and that element's Lorentz factor just after it is shocked. Our numerical integrations agree well with the solution. While our solution assumes a planar flow, we show that corrections due to spherical geometry are important only for extremely fast ejecta originating in a region very close to the stellar surface. This region grows if the shock becomes relativistic deeper in the star.
Cosmic ray acceleration at modified shocks
Meli, A; Dimitrakoudis, S
2007-01-01
The non-linear back reaction of accelerated cosmic rays at the shock fronts, leads to the formation of a smooth precursor with a length scale corresponding to the diffusive scale of the energetic particles. Past works claimed that shocklets could be created in the precursor region of a specific shock width, which might energize few thermal particles to sufficient acceleration and furthermore this precursor region may act as confining large angle scatterer for very high energy cosmic rays. On the other hand, it has been shown that the smoothing of the shock front could lower the acceleration efficiency. These controversies motivated us to investigate numerically by Monte Carlo simulations the particle acceleration efficiency in oblique modified shocks. The results show flatter spectra compared to the spectra of the pressumed sharp discontinuity shock fronts. The findings are in accordance with theoretical predictions, since the scattering inside the precursor confines high energy particles to further scatterin...
Matsumoto, Y; Amano, T; Kato, T N; Hoshino, M
2015-02-27
Explosive phenomena such as supernova remnant shocks and solar flares have demonstrated evidence for the production of relativistic particles. Interest has therefore been renewed in collisionless shock waves and magnetic reconnection as a means to achieve such energies. Although ions can be energized during such phenomena, the relativistic energy of the electrons remains a puzzle for theory. We present supercomputer simulations showing that efficient electron energization can occur during turbulent magnetic reconnection arising from a strong collisionless shock. Upstream electrons undergo first-order Fermi acceleration by colliding with reconnection jets and magnetic islands, giving rise to a nonthermal relativistic population downstream. These results shed new light on magnetic reconnection as an agent of energy dissipation and particle acceleration in strong shock waves.
Multiwavelength Probes of the Environs of Relativistic Shocks in Blazar Jets
Baring, Matthew G; Summerlin, Errol J
2013-01-01
Diffusive shock acceleration (DSA) at relativistic shocks is likely to be an important acceleration mechanism in various astrophysical jet sources, including radio-loud AGN. An important recent development for blazar science is the ability of Fermi-LAT data to pin down the power-law index of the high energy portion of emission in these sources, and therefore also the index of the underlying non-thermal particle population. This diagnostic potential was not possible prior to Fermi launch, when gamma-ray information was dominated by the highly-absorbed TeV band. This paper highlights how multiwavelength spectra including X-ray band and Fermi data can be used to probe diffusive acceleration in relativistic, oblique, MHD shocks in blazar jets. The spectral index of the non-thermal particle distributions resulting from Monte Carlo simulations of DSA, and the fraction of thermal particles accelerated to non-thermal energies, depend sensitively on the particles' mean free path scale, and also on the magnetic field o...
Diffusive Shock Acceleration the Fermi Mechanism
Baring, M G
1997-01-01
The mechanism of diffusive Fermi acceleration at collisionless plasma shock waves is widely invoked in astrophysics to explain the appearance of non-thermal particle populations in a variety of environments, including sites of cosmic ray production, and is observed to operate at several sites in the heliosphere. This review outlines the principal results from the theory of diffusive shock acceleration, focusing first on how it produces power-law distributions in test-particle regimes, where the shock dynamics are dominated by the thermal populations that provide the seed particles for the acceleration process. Then the importance of non-linear modifications to the shock hydrodynamics by the accelerated particles is addressed, emphasizing how these subsequently influence non-thermal spectral formation.
Particle Acceleration at Shocks: Insights from Supernova Remnant Shocks
T. W. Jones
2011-12-01
I review some basic properties of diffusive shock acceleration (DSA) in the context of young supernova remnants (SNRs). I also point out some key differences with cosmological, cluster-related shocks. DSA seems to be very efficient in strong, young SNR shocks. Provided the magnetic fields exceed some hundreds of Gauss (possibly amplified by CR related dynamics), these shocks can accelerate cosmic ray hadrons to PeV energies in the time available to them. Electron energies, limited by radiative losses, are likely limited to the TeV range. Injection of fresh particles at these shocks is poorly understood, but hadrons are much more easily injected than the more highly magnetized electrons. That seems supported by observational data, as well. So, while CR protons in young SNRs may play very major roles in the SNR evolution, the CR electron populations have minimal such impact, despite their observational importance.
Becker, Peter A.; Das, Santabrata; Le, Truong
2011-12-01
The acceleration of relativistic particles in a viscous accretion disk containing a standing shock is investigated as a possible explanation for the energetic outflows observed around radio-loud black holes. The energy/space distribution of the accelerated particles is computed by solving a transport equation that includes the effects of first-order Fermi acceleration, bulk advection, spatial diffusion, and particle escape. The velocity profile of the accreting gas is described using a model for shocked viscous disks recently developed by the authors, and the corresponding Green's function distribution for the accelerated particles in the disk and the outflow is obtained using a classical method based on eigenfunction analysis. The accretion-driven, diffusive shock acceleration scenario explored here is conceptually similar to the standard model for the acceleration of cosmic rays at supernova-driven shocks. However, in the disk application, the distribution of the accelerated particles is much harder than would be expected for a plane-parallel shock with the same compression ratio. Hence the disk environment plays a key role in enhancing the efficiency of the shock acceleration process. The presence of the shock helps to stabilize the disk by reducing the Bernoulli parameter, while channeling the excess binding energy into the escaping relativistic particles. In applications to M87 and Sgr A*, we find that the kinetic power in the jet is {\\sim}0.01\\,\\dot{M} c^2, and the outflowing relativistic particles have a mean energy ~300 times larger than that of the thermal gas in the disk at the shock radius. Our results suggest that a standing shock may be an essential ingredient in accretion onto underfed black holes, helping to resolve the long-standing problem of the stability of advection-dominated accretion disks.
The role of ionization in the shock acceleration theory
Morlino, Giovanni
2010-01-01
We study the acceleration of heavy nuclei at SNR shocks taking into account the process of ionization. In the interstellar medium atoms heavier then hydrogen which start the diffusive shock acceleration (DSA) are never fully ionized at the moment of injection. We will show that electrons in the atomic shells are stripped during the acceleration process, when the atoms already move relativistically. For typical environment around SNRs the dominant ionization process is the photo-ionization due to the background galactic radiation. The ionization has two interesting consequences. First, because the total photo-ionization time is comparable to the beginning of the Sedov-Taylor phase, the maximum energy which ions can achieve is smaller than the standard result of the DSA, which predict $E_{\\max}\\propto Z_N$. As a consequence the structure of the CR spectrum in the {\\it knee} region can be affected. The second consequence is that electrons are stripped from atoms when they already move relativistically hence they...
High-energy emission from non-relativistic radiative shocks: application to gamma-ray novae
Vurm, Indrek
2016-01-01
Multiwavelength radiation from relativistic particles accelerated at shocks in novae and other astrophysical sources carries a wealth of information about the outflow properties and the microphysical processes at work near the shocks. The observation of GeV gamma-rays from novae by Fermi/LAT demonstrates that the shocks in these systems can accelerate particles to energies of at least $\\sim 10$ GeV. The low-energy extension of the same non-thermal particle distribution inevitably gives rise to emission extending into the X-ray band. Above $\\gtrsim 10$ keV this radiation can escape the system without significant absorption/attenuation, and can potentially be detected by NuSTAR. We present theoretical models for hard X-ray and gamma-ray emission from radiative shocks in both leptonic and hadronic scenarios, accounting for the rapid evolution of the downstream properties due to the fast cooling of thermal plasma. Due to strong Coulomb cooling of the mildly relativistic electrons nominally responsible for produci...
Kuramitsu, Y; Nakanii, N; Kondo, K; Sakawa, Y; Mori, Y; Miura, E; Tsuji, K; Kimura, K; Fukumochi, S; Kashihara, M; Tanimoto, T; Nakamura, H; Ishikura, T; Takeda, K; Tampo, M; Kodama, R; Kitagawa, Y; Mima, K; Tanaka, K A; Hoshino, M; Takabe, H
2011-02-01
Nonthermal acceleration of relativistic electrons is investigated with an intensive laser pulse. An energy distribution function of energetic particles in the universe or cosmic rays is well represented by a power-law spectrum, therefore, nonthermal acceleration is essential to understand the origin of cosmic rays. A possible candidate for the origin of cosmic rays is wakefield acceleration at relativistic astrophysical perpendicular shocks. The wakefield is considered to be excited by large-amplitude precursor light waves in the upstream of the shocks. Substituting an intensive laser pulse for the large amplitude light waves, we performed a model experiment of the shock environments in a laboratory plasma. An intensive laser pulse was propagated in a plasma tube created by imploding a hollow polystyrene cylinder, as the large amplitude light waves propagated in the upstream plasma at an astrophysical shock. Nonthermal electrons were generated, and the energy distribution functions of the electrons have a power-law component with an index of ~2. We described the detailed procedures to obtain the nonthermal components from data obtained by an electron spectrometer.
Dark Energy Coupled with Relativistic Dark Matter in Accelerating Universe
张杨
2003-01-01
Recent observations favour an accelerating Universe dominated by the dark energy. We take the effective YangMills condensate as the dark energy and couple it to a relativistic matter which is created by the decaying condensate. The dynamic evolution has asymptotic behaviour with finite constant energy densities, and the fractional densities Ω∧～ 0.7 for dark energy and Ωm ～ 0.3 for relativistic matter are achieved at proper values of the decay rate. The resulting expansion of the Universe is in the de Sitter acceleration.
Reville, B; Gregori, G
2012-01-01
The non-thermal particle spectra responsible for the emission from many astrophysical systems are thought to originate from shocks via a first order Fermi process otherwise known as diffusive shock acceleration. The same mechanism is also widely believed to be responsible for the production of high energy cosmic rays. With the growing interest in collisionless shock physics in laser produced plasmas, the possibility of reproducing and detecting shock acceleration in controlled laboratory experiments should be considered. The various experimental constraints that must be satisfied are reviewed. It is demonstrated that several currently operating laser facilities may fulfil the necessary criteria to confirm the occurrence of diffusive shock acceleration of electrons at laser produced shocks. Successful reproduction of Fermi acceleration in the laboratory could open a range of possibilities, providing insight into the complex plasma processes that occur near astrophysical sources of cosmic rays.
Shock acceleration in partially neutral plasmas
Morlino, G; Blasi, P; Caprioli, D
2010-01-01
We present the non-linear theory of shock acceleration applied to SNRs expanding into partially neutral plasma. Using this theory we show how the Balmer lines detected from young SNRs can be used to test the efficiency of shocks in the production of cosmic rays. In particular we investigate the effect of charge-exchange between protons and neutral hydrogen occurring in the precursor formed ahead of the shock. In this precursor the CR pressure accelerate the ionized component of the plasma and a relative velocity between protons and neutral hydrogen is established. On the other hand the charge-exchange process tends to equilibrate ions and neutrals resulting in the heating of both components. We show that even when the shock converts only a few per cent of the total bulk kinetic energy into CRs, the heating is efficient enough to produce a detectable broadening of the narrow Balmer lines emitted by the neutral hydrogen.
The timing of relativistic proton acceleration in the 20 January 2005 flare
Simnett, G. M.
2006-01-01
Understanding the energy budget in large solar flares requires a good knowledge of how and where the energetic charged particles are accelerated. If they are mainly accelerated by a Coronal Mass Ejection (CME)-driven shock, then they do not have to derive their energy from the flare region. Conversely, if the CME does not accelerate the particles, then the energy must be provided from elsewhere. Resolution of this controversial issue may be aided if we can study events where the timing of the energetic charged particle acceleration may be tightly constrained by the data. We report here on high resolution observations of such an event. The intense ground level solar proton event of 20 January, 2005 had a rise to maximum at the South Pole of around 5 min, with a similar decay time to 1/3 maximum. This suggests that the magnetic connection from the Sun to the Earth was good and that the proton injection was impulsive on the timescale of a few minutes or less. Comparison of the proton onset time with the solar electromagnetic emissions which accompany large flares, together with observations of the coronal mass ejection seen around the injection time suggests that the CME was not responsible for the relativistic ion acceleration. The near-relativistic (~250 keV) electron intensity onset was some 8 min later than the proton onset. Implications of this on the relative injection time of the particles are discussed. It is concluded that while the relativistic protons were not accelerated by the CME-driven shock, the CME may have influenced the release of both flare-accelerated protons and electrons into the interplanetary medium.
Acceleration and loss of relativistic electrons during small geomagnetic storms.
Anderson, B R; Millan, R M; Reeves, G D; Friedel, R H W
2015-12-16
Past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms (Dst > -50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result in flux depletion than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. Small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.
Composite self-similar solutions for relativistic shocks: the transition to cold fluid temperatures
Pan, Margaret
2008-01-01
The flow resulting from a strong ultrarelativistic shock moving through a stellar envelope with a polytrope-like density profile has been studied analytically and numerically at early times while the fluid temperature is relativistic--that is, just before and just after the shock breaks out of the star. Such a flow should expand and accelerate as its internal energy is converted to bulk kinetic energy; at late enough times, the assumption of relativistic temperatures becomes invalid. Here we present a new self-similar solution for the post-breakout flow when the accelerating fluid has bulk kinetic Lorentz factors much larger than unity but is cooling through $p/n$ of order unity to subrelativistic temperatures. This solution gives a relation between a fluid element's terminal Lorentz factor and that element's Lorentz factor just after it is shocked. Our numerical integrations agree well with the solution. While our solution assumes a planar flow, we show that corrections due to spherical geometry are importan...
Intense laser driven collision-less shock and ion acceleration in magnetized plasmas
Mima, K.; Jia, Q.; Cai, H. B.; Taguchi, T.; Nagatomo, H.; Sanz, J. R.; Honrubia, J.
2016-05-01
The generation of strong magnetic field with a laser driven coil has been demonstrated by many experiments. It is applicable to the magnetized fast ignition (MFI), the collision-less shock in the astrophysics and the ion shock acceleration. In this paper, the longitudinal magnetic field effect on the shock wave driven by the radiation pressure of an intense short pulse laser is investigated by theory and simulations. The transition of a laminar shock (electro static shock) to the turbulent shock (electromagnetic shock) occurs, when the external magnetic field is applied in near relativistic cut-off density plasmas. This transition leads to the enhancement of conversion of the laser energy into high energy ions. The enhancement of the conversion efficiency is important for the ion driven fast ignition and the laser driven neutron source. It is found that the total number of ions reflected by the shock increases by six time when the magnetic field is applied.
Ionization and maximum energy of nuclei in shock acceleration theory
Morlino, Giovanni
2011-01-01
We study the acceleration of heavy nuclei at SNR shocks when the process of ionization is taken into account. Heavy atoms ($Z_N >$ few) in the interstellar medium which start the diffusive shock acceleration (DSA) are never fully ionized at the moment of injection. The ionization occurs during the acceleration process, when atoms already move relativistically. For typical environment around SNRs the photo-ionization due to the background galactic radiation dominates over Coulomb collisions. The main consequence of ionization is the reduction of the maximum energy which ions can achieve with respect to the standard result of the DSA. In fact the photo-ionization has a timescale comparable to the beginning of the Sedov-Taylor phase, hence the maximum energy is no more proportional to the nuclear charge, as predicted by standard DSA, but rather to the effective ions' charge during the acceleration process, which is smaller than the total nuclear charge $Z_N$. This result can have a direct consequence in the pred...
Dieckmann, M E; Meli, A; O'Connor-Drury, L
2009-01-01
Plasma processes close to SNR shocks result in the amplification of magnetic fields and in the acceleration of electrons, injecting them into the diffusive acceleration mechanism. The acceleration of electrons and the B field amplification by the collision of two plasma clouds, each consisting of electrons and ions, at a speed of 0.5c is investigated. A quasi-parallel guiding magnetic field, a cloud density ratio of 10 and a plasma temperature of 25 keV are considered. A quasi-planar shock forms at the front of the dense plasma cloud. It is mediated by a circularly left-hand polarized electromagnetic wave with an electric field component along the guiding magnetic field. Its propagation direction is close to that of the guiding field and orthogonal to the collision boundary. It has a low frequency and a wavelength that equals several times the ion inertial length, which would be indicative of a dispersive Alfven wave close to the ion cyclotron resonance frequency of the left-handed mode (ion whistler), provid...
Cosmic Rays Accelerated at Cosmological Shock Waves
Renyi Ma; Dongsu Ryu; Hyesung Kang
2011-03-01
Based on hydrodynamic numerical simulations and diffusive shock acceleration model, we calculated the ratio of cosmic ray (CR) to thermal energy. We found that the CR fraction can be less than ∼ 0.1 in the intracluster medium, while it would be of order unity in the warm-hot intergalactic medium.
Collisionless shocks and particle acceleration in laser-driven laboratory plasmas
Fiuza, Frederico
2012-10-01
Collisionless shocks are pervasive in space and astrophysical plasmas, from the Earth's bow shock to Gamma Ray Bursters; however, the microphysics underlying shock formation and particle acceleration in these distant sites is not yet fully understood. Mimicking these extreme conditions in laboratory is a grand challenge that would allow for a better understanding of the physical processes involved. Using ab initio multi-dimensional particle-in-cell simulations, shock formation and particle acceleration are investigated for realistic laboratory conditions associated with the interaction of intense lasers with high-energy-density plasmas. Weibel-instability-mediated shocks are shown to be driven by the interaction of an ultraintense laser with overcritical plasmas. In this piston regime, the laser generates a relativistic flow that is Weibel unstable. The strong Weibel magnetic fields deflect the incoming flow, compressing it, and forming a shock. The resulting shock structure is consistent with previous simulations of relativistic astrophysical shocks, demonstrating for the first time the possibility of recreating these structures in laboratory. As the laser intensity is decreased and near-critical density plasmas are used, electron heating dominates over radiation pressure and electrostatic shocks can be formed. The electric field associated with the shock front can reflect ions from the background accelerating them to high energies. It is shown that high quality 200 MeV proton beams, required for tumor therapy, can be generated by using an exponentially decaying plasma profile to control competing accelerating fields. These results pave the way for the experimental exploration of space and astrophysical relevant shocks and particle acceleration with current laser systems.
Morlino, G; Vietri, M
2007-01-01
We determine the spectrum of particles accelerated at shocks with arbitrary speed and arbitrary scattering properties for different choices of the equation of state of the downstream plasma. More specifically we consider the effect of energy exchange between the electron and proton thermal components downstream, and the effect of generation of a turbulent magnetic field in the downstream plasma. The slope of the spectrum turns out to be appreciably affected by all these phenomena, especially in the Newtonian and trans-relativistic regime, while in the ultra-relativistic limit the universal spectrum $s\\approx 4.3$ seems to be a very solid prediction.
Pacholczyk, A. G.; Stepinski, T. F.
1988-01-01
An accreting cluster of black holes in an active galactic nucleus is a natural site for a system of shock structures with a hierarchy of sizes, corresponding to the distribution of masses in the cluster. Accreted gas containing some magnetic fields and supersonically falling onto the core forms shocks on the outside of each hole and these shocks are capable of accelerating relativistic particles. The energies reached in a single shock are size rather than acceleration time limited and are proportional to the mass of the hole with a proportionality constant being a function of the position of the hole within a cluster and the model of the cluster and the shock formation. These energies are adequate to explain the observed properties of synchrotron and inverse-Compton radiation from these objects. The resulting energy spectrum of particles in the cluster in 'zeroth' approximation has the form of a doubly broken power law with indices of two and three on both extremes of the energy domain respectively, bridged by an index of about 2.5.
Pacholczyk, A.G.; Stepinski, T.F.
1988-01-01
An accreting cluster of black holes in an active galactic nucleus is a natural site for a system of shock structures with a hierarchy of sizes, corresponding to the distribution of masses in the cluster. Accreted gas containing some magnetic fields and supersonically falling onto the core forms shocks on the outside of each hole and these shocks are capable of accelerating relativistic particles. The energies reached in a single shock are size rather than acceleration time limited and are proportional to the mass of the hole with a proportionality constant being a function of the position of the hole within a cluster and the model of the cluster and the shock formation. These energies are adequate to explain the observed properties of synchrotron and inverse-Compton radiation from these objects. The resulting energy spectrum of particles in the cluster in zeroth approximation has the form of a doubly broken power law with indices of two and three on both extremes of the energy domain respectively, bridged by an index of about 2.5. 16 references.
Ardaneh, Kazem; Cai, Dongsheng; Nishikawa, Ken-Ichi
2016-08-01
The course of non-thermal electron ejection in relativistic unmagnetized electron-ion shocks is investigated by performing self-consistent particle-in-cell simulations. The shocks are excited through the injection of a relativistic jet into ambient plasma, leading to two distinct shocks (referred to as the trailing shock and leading shock) and a contact discontinuity. The Weibel-like instabilities heat the electrons up to approximately half of the ion kinetic energy. The double layers formed in the trailing and leading edges then accelerate the electrons up to the ion kinetic energy. The electron distribution function in the leading edge shows a clear, non-thermal power-law tail which contains ˜1% of electrons and ˜8% of the electron energy. Its power-law index is -2.6. The acceleration efficiency is ˜23% by number and ˜50% by energy, and the power-law index is -1.8 for the electron distribution function in the trailing edge. The effect of the dimensionality is examined by comparing the results of three-dimensional simulations with those of two-dimensional simulations. The comparison demonstrates that electron acceleration is more efficient in two dimensions.
Wieland, Volkmar; Pohl, Martin; Niemiec, Jacek; Rafighi, Iman; Nishikawa, Ken-Ichi
2016-03-01
For parameters that are applicable to the conditions at young supernova remnants, we present results of two-dimensional, three-vector (2D3V) particle-in-cell simulations of a non-relativistic plasma shock with a large-scale perpendicular magnetic field inclined at a 45^\\circ angle to the simulation plane to approximate three-dimensional (3D) physics. We developed an improved clean setup that uses the collision of two plasma slabs with different densities and velocities, leading to the development of two distinctive shocks and a contact discontinuity. The shock formation is mediated by Weibel-type filamentation instabilities that generate magnetic turbulence. Cyclic reformation is observed in both shocks with similar period, for which we note global variations due to shock rippling and local variations arising from turbulent current filaments. The shock rippling occurs on spatial and temporal scales produced by the gyro-motions of shock-reflected ions. The drift motion of electrons and ions is not a gradient drift, but is commensurate with {\\boldsymbol{E}}× {\\boldsymbol{B}} drift. We observe a stable supra-thermal tail in the ion spectra, but no electron acceleration because the amplitude of the Buneman modes in the shock foot is insufficient for trapping relativistic electrons. We see no evidence of turbulent reconnection. A comparison with other two-dimensional (2D) simulation results suggests that the plasma beta and the ion-to-electron mass ratio are not decisive for efficient electron acceleration, but the pre-acceleration efficacy might be reduced with respect to the 2D results once 3D effects are fully accounted for. Other microphysical factors may also play a part in limiting the amplitude of the Buneman waves or preventing the return of electrons to the foot region.
Vacuum laser acceleration of relativistic electrons using plasma mirror injectors
Thévenet, M; Kahaly, S; Vincenti, H; Vernier, A; Quéré, F; Faure, J
2015-01-01
Accelerating particles to relativistic energies over very short distances using lasers has been a long standing goal in physics. Among the various schemes proposed for electrons, vacuum laser acceleration has attracted considerable interest and has been extensively studied theoretically because of its appealing simplicity: electrons interact with an intense laser field in vacuum and can be continuously accelerated, provided they remain at a given phase of the field until they escape the laser beam. But demonstrating this effect experimentally has proved extremely challenging, as it imposes stringent requirements on the conditions of injection of electrons in the laser field. Here, we solve this long-standing experimental problem for the first time by using a plasma mirror to inject electrons in an ultraintense laser field, and obtain clear evidence of vacuum laser acceleration. With the advent of PetaWatt class lasers, this scheme could provide a competitive source of very high charge (nC) and ultrashort rela...
Estimate of the maximum induced magnetic field in relativistic shocks
Ghorbanalilu, M.; Sadegzadeh, S.
2017-01-01
The proton-driven Weibel instability is a crucial process for amplifying the generated magnetic fields in gamma-ray bursts. An expression for the saturation level of magnetic fields is estimated in a relativistic shock consisting of electron-proton plasmas. Within the shock transition layer, the plasma is modelled with the waterbag and Maxwell-Jüttner distribution functions for asymmetric counter-propagating proton beams and isotropic background electrons, respectively. The proton-driven Weibel-type instability in the linear phase is investigated thoroughly and then the instability conditions and the stabilization mechanisms are considered in details just after the shutdown of the electron Weibel instability. The growth rate of the instability and the saturated magnetic field strength are obtained in terms of the effective proton beam Mach number, asymmetry parameter, and the background electron temperature. In this paper, fully relativistic kinetic treatment is used to formulate the dispersion relation for the proton Weibel-type instability. Then, by using the magnetic trapping criteria, the saturated magnetic field strength is computed. In the present scenario, the instability includes two stages: in the first stage the electron Weibel instability evolves very rapidly, but in the second one because of the free energy stored in the slow counter-propagating proton beams, the instability is further amplified in the context of electrons with an isotropic distribution function. Increment of the growth rate and saturated magnetic field by increasing (decreasing) the effective proton beam Mach number (the asymmetry parameter) is deduced from the results. It is shown that at the temperatures around 108 K a maximum magnetic field up to around 56 G can be detected by this mechanism after the saturation time.
Constraints on particle acceleration sites in the Crab Nebula from relativistic MHD simulations
Olmi, Barbara; Amato, Elena; Bucciantini, Niccolò
2015-01-01
The Crab Nebula is one of the most efficient accelerators in the Galaxy and the only galactic source showing direct evidence of PeV particles. In spite of this, the physical process behind such effective acceleration is still a deep mystery. While particle acceleration, at least at the highest energies, is commonly thought to occur at the pulsar wind termination shock, the properties of the upstream flow are thought to be non-uniform along the shock surface, and important constraints on the mechanism at work come from exact knowledge of where along this surface particles are being accelerated. Here we use axisymmetric relativistic MHD simulations to obtain constraints on the acceleration site(s) of particles of different energies in the Crab Nebula. Various scenarios are considered for the injection of particles responsible for synchrotron radiation in the different frequency bands, radio, optical and X-rays. The resulting emission properties are compared with available data on the multi wavelength time varia...
High energy neutrino and gamma ray transients from relativistic supernova shock breakouts
Kashiyama, Kazumi; Horiuchi, Shunsaku; Gao, Shan; Mészáros, Peter
2013-01-01
Relativistic shocks that accompany supernovae (SNe) produce X-ray burst emissions as they break out in the dense circumstellar medium around the progenitors. This phenomenon is sometimes associated with peculiar low-luminosity gamma-ray bursts (LL GRBs). Here, we investigate the high energy neutrino and gamma-ray counterparts of such a class of SNe. Just beyond the shock breakout radius, particle acceleration in the collisionless shock starts to operate in the presence of breakout photons. We show that protons may be accelerated to sufficiently high energies and produce high energy neutrinos and gamma rays via the photomeson interaction. These neutrinos and gamma rays may be detectable from 10 Mpc away by IceCube/KM3Net as multi-TeV transients almost simultaneously with the X-ray burst emission, and even from 100 Mpc away with follow-up observations by CTA using a wide-field sky monitor like Swift as a trigger. A statistical technique using a stacking approach could also be possible for the detection, with th...
Ion Acceleration at the Quasi-Parallel Shock: Injection Unveiled
Sundberg, Torbjörn; Burgess, David; Mazelle, Christian X
2015-01-01
Collisionless shocks are efficient particle accelerators. At Earth, ions with energies exceeding 100 keV are seen upstream of the bow shock when the magnetic geometry is quasi-parallel, and large-scale supernova remnant shocks can accelerate ions into cosmic rays energies. This energization is attributed to diffusive shock acceleration, however, for this process to become active the ions must first be sufficiently energized. How and where this initial acceleration takes place has been one of the key unresolved issues in shock acceleration theory. Using Cluster spacecraft observations, we study the signatures of ion reflection events in the turbulent transition layer upstream of the shock, and with the support of a hybrid simulation of the shock, we show that these reflection signatures are characteristic of the first step in the ion injection process. These reflection events develop in particular in the region where the trailing edge of large-amplitude upstream waves intercept the local shock ramp and the ups...
Ardaneh, Kazem; Nishikawa, Ken-Ichi
2016-01-01
The course of non-thermal electron ejection in relativistic unmagnetized electron-ion shocks is investigated by performing self-consistent particle-in-cell simulations. The shocks are excited through the injection of relativistic jet into ambient plasma, leading to two distinct shocks (named as the trailing shock and leading shock) and a contact discontinuity. The Weibel-like instabilities heat the electrons up to approximately half of ion kinetic energy. The double layers formed in the trailing and leading edges then accelerated the electrons by the ion kinetic energy. The electron distribution function in the leading edge shows a clear non-thermal power-law tail which contains $\\sim1\\%$ of electrons and $\\sim8\\%$ of electron energy. Its power-law index is -2.6. The acceleration efficiency is $\\sim23\\%$ by number and $\\sim50\\%$ by energy and the power-law index is -1.8 for electron distribution function in the trailing edge. The effect of the dimensionality is examined by comparing results of 3D simulation w...
Shock Versus Solar Flare Production of Heliospheric Relativistic Electron Events
Kahler, S. W.; Cliver, E. W.
2006-12-01
Electrons with relativistic (E > 0.3 MeV) energies are often observed as discrete events in the inner heliosphere. Their sharp onsets and antisunward flows indicate that they are produced in solar transient events. In general their origins can be associated in time with both solar flares and coronal mass ejections (CMEs). Unlike the solar energetic proton (SEP) and ion events, we do not have the advantage of particle elemental abundances and charge states as source diagnostics. We review the characteristics of the electron events observed on the Helios, Venera, ISEE-3, Phobos, and other inner heliospheric spacecraft to determine whether they are more likely to be produced by broad coronal shocks driven by CMEs or by solar flare processes associated with magnetic reconnection. Electron intensity-time profiles and energy spectra are compared with properties of flares and CMEs for this determination. Recent comparisons of peak electron and SEP event intensities provide strong evidence for the shock interpretation, but definitive results require the observations provided by the Sentinels mission.
Electron acceleration and high harmonic generation by relativistic surface plasmons
Cantono, Giada; Luca Fedeli Team; Andrea Sgattoni Team; Andrea Macchi Team; Tiberio Ceccotti Team
2016-10-01
Intense, short laser pulses with ultra-high contrast allow resonant surface plasmons (SPs) excitation on solid wavelength-scale grating targets, opening the way to the extension of Plasmonics in the relativistic regime and the manipulation of intense electromagnetic fields to develop new short, energetic, laser-synchronized radiation sources. Recent theoretical and experimental studies have explored the role of SP excitation in increasing the laser-target coupling and enhancing ion acceleration, high-order harmonic generation and surface electron acceleration. Here we present our results on SP driven electron acceleration from grating targets at ultra-high laser intensities (I = 5 ×1019 W/cm2, τ = 25 fs). When the resonant condition for SP excitation is fulfilled, electrons are emitted in a narrow cone along the target surface, with a total charge of about 100 pC and energy spectra peaked around 5 MeV. Distinguishing features of the resonant process were investigated by varying the incidence angle, grating type and with the support of 3D PIC simulations, which closely reproduced the experimental data. Open challenges and further measurements on high-order harmonic generation in presence of a relativistic SP will also be discussed.
Diffusive Shock Acceleration of High Energy Cosmic Rays
Baring, M G
2004-01-01
The process of diffusive acceleration of charged particles in shocked plasmas is widely invoked in astrophysics to account for the ubiquitous presence of signatures of non-thermal relativistic electrons and ions in the universe. A key characteristic of this statistical energization mechanism is the absence of a momentum scale; astrophysical systems generally only impose scales at the injection (low energy) and loss (high energy) ends of the particle spectrum. The existence of structure in the cosmic ray spectrum (the "knee") at around 3000 TeV has promoted contentions that there are at least two origins for cosmic rays, a galactic one supplying those up to the knee, and even beyond, and perhaps an extragalactic one that can explain even the ultra-high energy cosmic rays (UHECRs) seen at 1-300 EeV. Accounting for the UHECRs with familiar astrophysical sites of acceleration has historically proven difficult due to the need to assume high magnetic fields in order to reduce the shortest diffusive acceleration tim...
A monolithic relativistic electron beam source based on a dielectric laser accelerator structure
McNeur, Josh; Carranza, Nestor; Travish, Gil; Yin Hairong; Yoder, Rodney [UCLA Dept. of Physics and Astronomy, Los Angeles, CA 90095 (United States); College of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054 (China); Manhattanville College, Physics Dept., 2900 Purchase St., Purchase, NY 10577 (United States)
2012-12-21
Work towards a monolithic device capable of producing relativistic particle beams within a cubic-centimeter is detailed. We will discuss the Micro-Accelerator Platform (MAP), an optical laser powered dielectric accelerator as the main building block of this chip-scale source along with a field enhanced emitter and a region for sub-relativistic acceleration.
Relativistic Klystron Two-Beam Accelerator Simulation Code Development
Lidia, Steven; Ryne, Robert
1997-05-01
We present recent work on the development and testing of a 3-D simu- lation code for relativistic klystron two-beam accelerators (RK-TBAs). This new code utilizes symplectic integration techniques to push macro- particles, coupled to a circuit equation framework that advances the fields in the cavities. Space charge effects are calculated using a Green's function approach, and pipe wall effects are included in the electrostatic approximation. We present simulations of the LBNL/LLNL RK-TBA device, emphasizing cavity power development and beam dynamics, including the high- and low-frequency beam break-up instabilities.
Acceleration and collimation of relativistic MHD disk winds
Porth, O
2009-01-01
We perform axisymmetric relativistic magnetohydrodynamic (MHD) simulations to investigate the acceleration and collimation of jets and outflows from disks around compact objects. The fiducial disk surface (respectively a slow disk wind) is prescribed as boundary condition for the outflow. We apply this technique for the first time in the context of relativistic jets. The strength of this approach is that it allows us to run a parameter study in order to investigate how the accretion disk conditions govern the outflow formation. Our simulations using the PLUTO code run for 500 inner disk rotations and on a physical grid size of 100x200 inner disk radii. In general, we obtain collimated beams of mildly relativistic speed and mass-weighted half-opening angles of 3-7 degrees. When we increase the outflow Poynting flux by injecting an additional disk toroidal field into the inlet, Lorentz factors up to 6 are reached. These flows gain super-magnetosonic speed and remain Poynting flux dominated. The light surface of...
Electron acceleration in a nonrelativistic shock with very high Alfv\\'en Mach number
Matsumoto, Y; Hoshino, M
2013-01-01
Electron acceleration associated with various plasma kinetic instabilities in a nonrelativistic, very-high-Alfv\\'en Mach-number ($M_A \\sim 45$) shock is revealed by means of a two-dimensional fully kinetic PIC simulation. Electromagnetic (ion Weibel) and electrostatic (ion-acoustic and Buneman) instabilities are strongly activated at the same time in different regions of the two-dimensional shock structure. Relativistic electrons are quickly produced predominantly by the shock surfing mechanism with the Buneman instability at the leading edge of the foot. The energy spectrum has a high-energy tail exceeding the upstream ion kinetic energy accompanying the main thermal population. This gives a favorable condition for the ion acoustic instability at the shock front, which in turn results in additional energization. The large-amplitude ion Weibel instability generates current sheets in the foot, implying another dissipation mechanism via magnetic reconnection in a three-dimensional shock structure in the very-hi...
Acceleration and Collimation of Relativistic Magnetohydrodynamic Disk Winds
Porth, Oliver; Fendt, Christian
2010-02-01
We perform axisymmetric relativistic magnetohydrodynamic simulations to investigate the acceleration and collimation of jets and outflows from disks around compact objects. Newtonian gravity is added to the relativistic treatment in order to establish the physical boundary condition of an underlying accretion disk in centrifugal and pressure equilibrium. The fiducial disk surface (respectively a slow disk wind) is prescribed as boundary condition for the outflow. We apply this technique for the first time in the context of relativistic jets. The strength of this approach is that it allows us to run a parameter study in order to investigate how the accretion disk conditions govern the outflow formation. Substantial effort has been made to implement a current-free, numerical outflow boundary condition in order to avoid artificial collimation present in the standard outflow conditions. Our simulations using the PLUTO code run for 500 inner disk rotations and on a physical grid size of 100 × 200 inner disk radii. The simulations evolve from an initial state in hydrostatic equilibrium and an initially force-free magnetic field configuration. Two options for the initial field geometries are applied—an hourglass-shaped potential magnetic field and a split monopole field. Most of our parameter runs evolve into a steady state solution which can be further analyzed concerning the physical mechanism at work. In general, we obtain collimated beams of mildly relativistic speed with Lorentz factors up to 6 and mass-weighted half-opening angles of 3-7 deg. The split-monopole initial setup usually results in less collimated outflows. The light surface of the outflow magnetosphere tends to align vertically—implying three relativistically distinct regimes in the flow—an inner subrelativistic domain close to the jet axis, a (rather narrow) relativistic jet and a surrounding subrelativistic outflow launched from the outer disk surface—similar to the spine-sheath structure
Magnetic acceleration of ultra-relativistic GRB and AGN jets
Maxim, Barkov
2008-01-01
We present numerical simulations of cold, axisymmetric, magnetically driven relativistic outflows. The outflows are initially sub-Alfv\\'enic and Poynting flux-dominated, with total--to--rest-mass energy flux ratio up to $\\mu \\sim 620$. To study the magnetic acceleration of jets we simulate flows confined within a funnel with rigid wall of prescribed shape, which we take to be $z\\propto r^a$ (in cylindrical coordinates, with $a$ ranging from 1 to 2). This allows us to eliminate the numerical dissipative effects induced by a free boundary with an ambient medium. We find that in all cases they converge to a steady state characterized by a spatially extended acceleration region. For the jet solutions the acceleration process is very efficient - on the outermost scale of the simulation more than half of the Poynting flux has been converted into kinetic energy flux, and the terminal Lorentz factor approached its maximum possible value ($\\Gamma_\\infty \\simeq \\mu$). The acceleration is accompanied by the collimation ...
Acceleration of Relativistic Protons during the 20 January 2005 Flare and CME
Masson, S; Buetikofer, R; Flueckiger, E; Kurt, V; Yushkov, B; Krucker, S
2009-01-01
The origin of relativistic solar protons during large flare/CME events has not been uniquely identified so far.We perform a detailed comparative analysis of the time profiles of relativistic protons detected by the worldwide network of neutron monitors at Earth with electromagnetic signatures of particle acceleration in the solar corona during the large particle event of 20 January 2005. The intensity-time profile of the relativistic protons derived from the neutron monitor data indicates two successive peaks. We show that microwave, hard X-ray and gamma-ray emissions display several episodes of particle acceleration within the impulsive flare phase. The first relativistic protons detected at Earth are accelerated together with relativistic electrons and with protons that produce pion decay gamma-rays during the second episode. The second peak in the relativistic proton profile at Earth is accompanied by new signatures of particle acceleration in the corona within approximatively 1 solar radius above the phot...
Liu, Y. L.; Kuramitsu, Y.; Moritaka, T.; Chen, S. H.
2017-03-01
Nonthermal acceleration of relativistic electrons due to the wakefield induced by an intense light pulse is investigated. The spectra of the cosmic rays are well represented by power-law. Wakefield acceleration has been considered as a candidate for the origins of cosmic rays. The wakefield can be excited by an intense laser pulse as large-amplitude precursor waves in collisionless shocks in the universe. National Central University (NCU) 100-TW laser facility in Taiwan is able to provide high-repetition rate and short intense laser. To experimentally study the wakefield acceleration for the spectrum of the cosmic rays, particle-in-cell simulations are performed to calculate the energy distribution functions of electrons in fixed laser conditions with various plasma densities. The transitions of wakefields from coherent to inherent are observed as the plasma density increases. The distribution functions indicate that the smooth nonthermal power-law spectra with an index of -2 appear when the incoherent wakefields are excited. In contrast, the mono-peak appear in the spectra when the coherent wakefields are excited. The incoherent wakefields yielding the power-law spectra imply the stochastic accelerating of electrons. To explain the universal nonthermal power-law spectra with an index of -2, we described and extended the stochastic acceleration model based on Fokker-Planck equation by assuming the transition rate as an exponential function.
Systematic Studies of Relativistic Jets and Shocks in AGN and GRBs
Nishikawa, Ken-Ichi
The proposed research is designed to provide a fundamental physical understanding of the role of magnetic fields in relativistic jets and shocks. Investigations will be conducted us- ing our relativistic MHD (RMHD) code. Results will be applied to the observed properties of AGN and GRB jets and via emission modeling. The research is motived by the long standing unresolved problems concerning multi-wavelength properties of AGN and GRB emission and aimed to gain true understanding of how jets are launched, evolve and develop. This research is designed to reach a fundamental understanding of the macroscopic dynamics leading to the observed emission. This research directly addresses both global jet dynamics and processes near black holes. In addition to studying the physics of jet acceleration and collimation, the proposed research will examine the differences arising from various magnetically dominated and kinetically dominated jet configurations indicated by jet acceleration and collimation process. The research includes: (1) Determination of the evolution of magnetic and kinetic struc- ture such as might arise from current driven (CD) and Kelvin-Helmholtz driven (KH) - instability via RMHD simulations. (2) Prediction of the observed motion, intensity and polar- ization of CD and KH instability structures on RMHD jets. (3) Coupling observed emission properties to the acceleration and collimation process. The content of this proposal conforms to the sub-goal 3D of NASA’s Strategic Plan, namely, “Discover the origin, structure, evolution, and destiny of the universe and the search for earth- like planets”. This research has broad impact via RMHD code development, ac- companying imaging and comparison with space-based spectral observations by current and future NASA missions, Chandra, RXTE, XMM, Integral, Suzaku, Fermi, JANUS, NuSTAR.
Ion acceleration from relativistic laser nano-target
Jung, Daniel
2012-01-06
Laser-ion acceleration has been of particular interest over the last decade for fundamental as well as applied sciences. Remarkable progress has been made in realizing laser-driven accelerators that are cheap and very compact compared with conventional rf-accelerators. Proton and ion beams have been produced with particle energies of up to 50 MeV and several MeV/u, respectively, with outstanding properties in terms of transverse emittance and current. These beams typically exhibit an exponentially decaying energy distribution, but almost all advanced applications, such as oncology, proton imaging or fast ignition, require quasimonoenergetic beams with a low energy spread. The majority of the experiments investigated ion acceleration in the target normal sheath acceleration (TNSA) regime with comparably thick targets in the {mu}m range. In this thesis ion acceleration is investigated from nm-scaled targets, which are partially produced at the University of Munich with thickness as low as 3 nm. Experiments have been carried out at LANL's Trident high-power and high-contrast laser (80 J, 500 fs, {lambda}=1054 nm), where ion acceleration with these nano-targets occurs during the relativistic transparency of the target, in the so-called Breakout afterburner (BOA) regime. With a novel high resolution and high dispersion Thomson parabola and ion wide angle spectrometer, thickness dependencies of the ions angular distribution, particle number, average and maximum energy have been measured. Carbon C{sup 6+} energies reached 650 MeV and 1 GeV for unheated and heated targets, respectively, and proton energies peaked at 75 MeV and 120 MeV for diamond and CH{sub 2} targets. Experimental data is presented, where the conversion efficiency into carbon C{sup 6+} (protons) is investigated and found to have an up to 10fold (5fold) increase over the TNSA regime. With circularly polarized laser light, quasi-monoenergetic carbon ions have been generated from the same nm-scaled foil
Particle Acceleration in Relativistic Electron-Ion Outlfows
Lloyd-Ronning, Nicole M
2016-01-01
We use the Los Alamos VPIC code to investigate particle acceleration in relativistic, unmagnetized, collisionless electron-ion plasmas. We run our simulations both with a realistic proton-to-electron mass ratio m_p/m_e = 1836, as well as commonly employed mass ratios of m_p/m_e =100 and 25, and show that results differ among the different cases. In particular, for the physically accurate mass ratio, electron acceleration occurs efficiently in a narrow region of a few hundred inertial lengths near the flow front, producing a power law dN/dgamma ~ gamma^(-p) with p ~ -2 developing over a few decades in energy, while acceleration is weak in the region far downstream. We find 20%, 10%, and 0.2% of the total energy given to the electrons for mass ratios of 25, 100, and 1836 respectively at a time of 2500 (w_p)^-1. Our simulations also show significant magnetic field generation just ahead of and behind the the flow front, with about 1% of the total energy going into the magnetic field for a mass ratio of 25 and 100...
Design of a relativistic klystron two-beam accelerator prototype
Westenskow, G.; Caporaso, G.; Chen, Y. [and others
1995-10-01
We are designing an experiment to study physics, engineering, and costing issues of an extended Relativistic Klystron Two-Beam Accelerator (RK-TBA). The experiment is a prototype for an RK-TBA based microwave power source suitable for driving a 1 TeV linear collider. Major components of the experiment include a 2.5-MV, 1.5-kA electron source, a 11.4-GHz modulator, a bunch compressor, and a 8-m extraction section. The extraction section will be comprised of 4 traveling-wave output structures, each generating about 360 MW of rf power. Induction cells will be used in the extraction section to maintain the average beam energy at 5 MeV. Status of the design is presented.
Heavy ion acceleration at parallel shocks
V. L. Galinsky
2010-11-01
Full Text Available A study of alpha particle acceleration at parallel shock due to an interaction with Alfvén waves self-consistently excited in both upstream and downstream regions was conducted using a scale-separation model (Galinsky and Shevchenko, 2000, 2007. The model uses conservation laws and resonance conditions to find where waves will be generated or damped and hence where particles will be pitch-angle scattered. It considers the total distribution function (for the bulk plasma and high energy tail, so no standard assumptions (e.g. seed populations, or some ad-hoc escape rate of accelerated particles are required. The heavy ion scattering on hydromagnetic turbulence generated by both protons and ions themselves is considered. The contribution of alpha particles to turbulence generation is important because of their relatively large mass-loading parameter P_{α}=n_{α}m_{α}/n_{p}m_{p} (m_{p}, n_{p} and m_{α}, n_{α} are proton and alpha particle mass and density that defines efficiency of wave excitation. The energy spectra of alpha particles are found and compared with those obtained in test particle approximation.
Injection to rapid diffusive shock acceleration at perpendicular shocks in partially ionized plasmas
Ohira, Yutaka
2016-01-01
We present a three-dimensional hybrid simulation of a collisionless perpendicular shock in a partially ionized plasma for the first time. In this simulation, the shock velocity and the upstream ionization fraction are Vsh ~ 1333 km/s and fi ~ 0.5, that are typical values for isolated young supernova remnants in the interstellar medium. We confirm previous two-dimensional simulation results that downstream hydrogen atoms leak into the upstream region, they are accelerated by the pickup process in the upstream region, and large magnetic field fluctuations are generated both in the upstream and downstream regions. In addition, we find that the magnetic field fluctuations have three-dimensional structures and the leaking hydrogen atoms are injected to the diffusive shock acceleration at the perpendicular shock after the pickup process. The observed diffusive shock acceleration can be interpreted as the shock drift acceleration with scattering. Particles are accelerated to v ~ 100 Vsh ~ 0.3c within ~ 100 gyroperio...
Inoue, Yoshiyuki; Tanaka, Yasuyuki T.
2016-09-01
Relativistic jets launched by supermassive black holes, so-called active galactic nuclei (AGNs), are known as the most energetic particle accelerators in the universe. However, the baryon loading efficiency onto the jets from the accretion flows and their particle acceleration efficiencies have been veiled in mystery. With the latest data sets, we perform multi-wavelength spectral analysis of quiescent spectra of 13 TeV gamma-ray detected high-frequency-peaked BL Lacs (HBLs) following one-zone static synchrotron self-Compton (SSC) model. We determine the minimum, cooling break, and maximum electron Lorentz factors following the diffusive shock acceleration (DSA) theory. We find that HBLs have {P}B/{P}e˜ 6.3× {10}-3 and the radiative efficiency {ɛ }{{rad,jet}}˜ 6.7× {10}-4, where P B and P e is the Poynting and electron power, respectively. By assuming 10 leptons per one proton, the jet power relates to the black hole mass as {P}{{jet}}/{L}{{Edd}}˜ 0.18, where {P}{{jet}} and {L}{{Edd}} is the jet power and the Eddington luminosity, respectively. Under our model assumptions, we further find that HBLs have a jet production efficiency of {η }{{jet}}˜ 1.5 and a mass loading efficiency of {ξ }{{jet}}≳ 5× {10}-2. We also investigate the particle acceleration efficiency in the blazar zone by including the most recent Swift/BAT data. Our samples ubiquitously have particle acceleration efficiencies of {η }g˜ {10}4.5, which is inefficient to accelerate particles up to the ultra-high-energy-cosmic-ray (UHECR) regime. This implies that the UHECR acceleration sites should not be the blazar zones of quiescent low power AGN jets, if one assumes the one-zone SSC model based on the DSA theory.
Cheung, C.C.Teddy; Stawarz, L.; Harris, D.E.; Ostrowski, M.
2007-10-15
We report new detections of the hotspots in Cygnus A at 4.5 and 8.0 microns with the Spitzer Space Telescope. Together with detailed published radio observations and synchrotron self-Compton modeling of previous X-ray detections, we reconstruct the underlying electron energy spectra of the two brightest hotspots (A and D). The low-energy portion of the electron distributions have flat power-law slopes (s {approx} 1.5) up to the break energy which corresponds almost exactly to the mass ratio between protons and electrons; we argue that these features are most likely intrinsic rather than due to absorption effects. Beyond the break, the electron spectra continue to higher energies with very steep slopes s>3. Thus, there is no evidence for the 'canonical' s=2 slope expected in 1st order Fermi-type shocks within the whole observable electron energy range. We discuss the significance of these observations and the insight offered into high-energy particle acceleration processes in mildly relativistic shocks.
Electromagnetic Structure and Electron Acceleration in Shock–Shock Interaction
Nakanotani, Masaru; Matsukiyo, Shuichi; Hada, Tohru; Mazelle, Christian X.
2017-09-01
A shock–shock interaction is investigated by using a one-dimensional full particle-in-cell simulation. The simulation reproduces the collision of two symmetrical high Mach number quasi-perpendicular shocks. The basic structure of the shocks and ion dynamics is similar to that obtained by previous hybrid simulations. The new aspects obtained here are as follows. Electrons are already strongly accelerated before the two shocks collide through multiple reflection. The reflected electrons self-generate waves upstream between the two shocks before they collide. The waves far upstream are generated through the right-hand resonant instability with the anomalous Doppler effect. The waves generated near the shock are due to firehose instability and have much larger amplitudes than those due to the resonant instability. The high-energy electrons are efficiently scattered by the waves so that some of them gain large pitch angles. Those electrons can be easily reflected at the shock of the other side. The accelerated electrons form a power-law energy spectrum. Due to the accelerated electrons, the pressure of upstream electrons increases with time. This appears to cause the deceleration of the approaching shock speed. The accelerated electrons having sufficiently large Larmor radii are further accelerated through the similar mechanism working for ions when the two shocks are colliding.
Understanding the Acceleration of Energetic Particles at the Termination Shock
Gloeckler, G.; Fisk, L. A.
2006-05-01
Voyager 1 observations of energetic particles during the crossing of the Termination Shock of the solar wind present a number of puzzles, and challenges to existing acceleration theories. For example, downstream from the shock the low-energy phase space density spectra are power laws exhibiting a remarkably constant spectral index, which is difficult to understand in terms of standard diffusive shock acceleration. Upstream from the shock there are beams of highly anisotropic energetic particles, with varying spectral shapes. Again, diffusive shock acceleration has difficultly in dealing with such large anisotropies. Here we show that the observed, constant spectral index of -5 can be accounted for by a simple theory in which the pressure in the accelerated particles behaves according to the Rankine-Hugoniot relationship of an ideal gas at the shock. We also demonstrate that the observed varying spectral shapes of the upstream beams result from velocity dispersion of a downstream spectrum with index of -5 propagating along magnetic flux tubes connecting the termination shock to Voyager 1. We show that even though the beams dominate the upstream foreshock region, they do not have an appreciable effect on the shock acceleration process. The implications of our theory for the acceleration of the Anomalous Cosmic Rays in the heliosheath are also discussed.
The case for electron re-acceleration at galaxy cluster shocks
van Weeren, Reinout J.; Andrade-Santos, Felipe; Dawson, William A.; Golovich, Nathan; Lal, Dharam V.; Kang, Hyesung; Ryu, Dongsu; Brìggen, Marcus; Ogrean, Georgiana A.; Forman, William R.; Jones, Christine; Placco, Vinicius M.; Santucci, Rafael M.; Wittman, David; Jee, M. James; Kraft, Ralph P.; Sobral, David; Stroe, Andra; Fogarty, Kevin
2017-01-01
On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-sized radio sources have been found1,2 . Also known as radio relics, these regions of diffuse radio emission are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach-number shocks generated by cluster-cluster merger events 3 . A long-standing problem is how low-Mach-number shocks can accelerate electrons so efficiently to explain the observed radio relics. Here, we report the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411-3412 by combining radio, X-ray and optical observations. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. It also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.
Non-relativistic radiation mediated shock breakouts: II. Bolometric properties of SN shock breakout
Katz, Boaz; Waxman, Eli
2011-01-01
Exact bolometric light curves of supernova shock breakouts are derived based on the universal, non relativistic, planar breakout solutions (Sapir et al. 2011), assuming spherical symmetry, constant Thomson scattering opacity, \\kappa, and angular intensity corresponding to the steady state planar limit. These approximations are accurate for progenitors with a scale height much smaller than the radius. The light curves are insensitive to the density profile and are determined by the progenitor radius R, and the breakout velocity and density, v_0 and \\rho_0 respectively, and \\kappa. The total breakout energy, E_BO, and the maximal ejecta velocity, v_max, are shown to be E_BO=8.0\\pi R^2\\kappa^-1cv_0 and v_max=2.0v_0 respectively, to an accuracy of about 10%. The calculated light curves are valid up to the time of transition to spherical expansion, t_sph\\approx R/4v_0. Approximate analytic expressions for the light curves are provided for breakouts in which the shock crossing time at breakout, t_0=c/\\kappa\\rho_0v_...
Spectral features of the diffusive shock acceleration of electrons at the termination shock
Prinsloo, Phillip; Toit Strauss, Du; Potgieter, Marius
2016-07-01
Following the revelation that the source of the anomalous cosmic rays was, contrary to expectation, not located at the termination shock, the diffusive shock acceleration mechanism came under increased criticism. With regards to galactic cosmic rays, however, its involvement in their re-acceleration is less disputed, but the extent of this involvement had to be reaffirmed given the new parameter constraints provided by the Voyager spacecraft. Hence, the features of diffusive shock acceleration, studied in the context of the transport of galactic electrons, are investigated using a numerical cosmic-ray modulation model that makes provision for the effects of this acceleration mechanism. The imprint of diffusive shock acceleration on the energy distributions of galactic electrons arriving at the termination shock is studied, along with the interplay between this acceleration mechanism and transport processes such as drift and diffusion. An important overarching set of results is that if the energy distribution of electrons incident at the termination shock is softer than the power law associated with the shock compression ratio, the latter is adopted by the accelerated particles, while if the converse is true, the incident distribution's intensity is raised uniformly. This intensity increase is in turn dependent on how similar the incident spectrum is to the power law associated with the compression ratio. The influence of other transport processes on cosmic-ray re-acceleration hence hinges on how they alter energy distributions incident at the termination shock.
Computer modeling of test particle acceleration at oblique shocks
Decker, Robert B.
1988-01-01
The present evaluation of the basic techniques and illustrative results of charged particle-modeling numerical codes suitable for particle acceleration at oblique, fast-mode collisionless shocks emphasizes the treatment of ions as test particles, calculating particle dynamics through numerical integration along exact phase-space orbits. Attention is given to the acceleration of particles at planar, infinitessimally thin shocks, as well as to plasma simulations in which low-energy ions are injected and accelerated at quasi-perpendicular shocks with internal structure.
Quantum mechanics in noninertial reference frames: Relativistic accelerations and fictitious forces
Klink, W.H., E-mail: william-klink@uiowa.edu [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Wickramasekara, S., E-mail: wickrama@grinnell.edu [Department of Physics, Grinnell College, Grinnell, IA 50112 (United States)
2016-06-15
One-particle systems in relativistically accelerating reference frames can be associated with a class of unitary representations of the group of arbitrary coordinate transformations, an extension of the Wigner–Bargmann definition of particles as the physical realization of unitary irreducible representations of the Poincaré group. Representations of the group of arbitrary coordinate transformations become necessary to define unitary operators implementing relativistic acceleration transformations in quantum theory because, unlike in the Galilean case, the relativistic acceleration transformations do not themselves form a group. The momentum operators that follow from these representations show how the fictitious forces in noninertial reference frames are generated in quantum theory.
Inoue, Yoshiyuki
2016-01-01
Relativistic jets launched by SMBHs are the most energetic particle accelerators in the universe. However, the baryon mass loading efficiency onto the jets from the accretion and the particle acceleration efficiency in the jets have been veiled in mystery. With the latest data sets, we perform multi-wavelength spectral analysis of quiescent spectra of 13 TeV gamma-ray detected HBLs following one-zone synchrotron-self-Compton (SSC) model. We determine the minimum, cooling break, and maximum electron Lorentz factors following the diffusive shock acceleration (DSA) theory. We find that HBLs have $P_B/P_e\\sim0.025$ where $P_B$ and $P_e$ is the Poynting and electron power, respectively. The radiative efficiency of the jets is found to be $P_{\\rm rad}/P_{\\rm jet}\\sim0.026$. $P_{\\rm rad}$ and $P_{\\rm jet}$ is the radiative and total jet power, respectively. We find that the jet power relates to the black hole mass as $P_{\\rm jet}/L_{\\rm Edd}\\sim0.036$. We further find that HBLs have the mass loading efficiency of $\\...
le Roux, J. A.; Zank, G. P.; Webb, G. M.; Khabarova, O. V.
2016-08-01
Computational and observational evidence is accruing that heliospheric shocks, as emitters of vorticity, can produce downstream magnetic flux ropes and filaments. This led Zank et al. to investigate a new paradigm whereby energetic particle acceleration near shocks is a combination of diffusive shock acceleration (DSA) with downstream acceleration by many small-scale contracting and reconnecting (merging) flux ropes. Using a model where flux-rope acceleration involves a first-order Fermi mechanism due to the mean compression of numerous contracting flux ropes, Zank et al. provide theoretical support for observations that power-law spectra of energetic particles downstream of heliospheric shocks can be harder than predicted by DSA theory and that energetic particle intensities should peak behind shocks instead of at shocks as predicted by DSA theory. In this paper, a more extended formalism of kinetic transport theory developed by le Roux et al. is used to further explore this paradigm. We describe how second-order Fermi acceleration, related to the variance in the electromagnetic fields produced by downstream small-scale flux-rope dynamics, modifies the standard DSA model. The results show that (i) this approach can qualitatively reproduce observations of particle intensities peaking behind the shock, thus providing further support for the new paradigm, and (ii) stochastic acceleration by compressible flux ropes tends to be more efficient than incompressible flux ropes behind shocks in modifying the DSA spectrum of energetic particles.
Collisionless shocks in space plasmas structure and accelerated particles
Burgess, David
2015-01-01
Shock waves are an important feature of solar system plasmas, from the solar corona out to the edge of the heliosphere. This engaging introduction to collisionless shocks in space plasmas presents a comprehensive review of the physics governing different types of shocks and processes of particle acceleration, from fundamental principles to current research. Motivated by observations of planetary bow shocks, interplanetary shocks and the solar wind termination shock, it emphasises the physical theory underlying these shock waves. Readers will develop an understanding of the complex interplay between particle dynamics and the electric and magnetic fields that explains the observations of in situ spacecraft. Written by renowned experts in the field, this up-to-date text is the ideal companion for both graduate students new to heliospheric physics and researchers in astrophysics who wish to apply the lessons of solar system shocks to different astrophysical environments.
Diffusive shock acceleration with magnetic field amplification and Alfvenic drift
Kang, Hyesung
2012-01-01
We explore how wave-particle interactions affect diffusive shock acceleration (DSA) at astrophysical shocks by performing time-dependent kinetic simulations, in which phenomenological models for magnetic field amplification (MFA), Alfvenic drift, thermal leakage injection, Bohm-like diffusion, and a free escape boundary are implemented. If the injection fraction of cosmic-ray (CR) particles is greater than 2x10^{-4}, for the shock parameters relevant for young supernova remnants, DSA is efficient enough to develop a significant shock precursor due to CR feedback, and magnetic field can be amplified up to a factor of 20 via CR streaming instability in the upstream region. If scattering centers drift with Alfven speed in the amplified magnetic field, the CR energy spectrum can be steepened significantly and the acceleration efficiency is reduced. Nonlinear DSA with self-consistent MFA and Alfvenic drift predicts that the postshock CR pressure saturates roughly at 10 % of the shock ram pressure for strong shocks...
Acceleration of positrons by a relativistic electron beam in the presence of quantum effects
Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of); Aki, H.; Khorashadizadeh, S. M. [Physics Department, Birjand University, Birjand (Iran, Islamic Republic of)
2013-09-15
Using the quantum magnetohydrodynamic model and obtaining the dispersion relation of the Cherenkov and cyclotron waves, the acceleration of positrons by a relativistic electron beam is investigated. The Cherenkov and cyclotron acceleration mechanisms of positrons are compared together. It is shown that growth rate and, therefore, the acceleration of positrons can be increased in the presence of quantum effects.
Acceleration of 3HE and heavy ions at interplanetary shocks
Desai, M. I.; Mason, G. M.; Dwyer, J. R.; Mazur, J. E.; Smith, C. W.; Koug, R. M.
2001-08-01
We have surveyed the 0.5-2.0 MeV nucleon-1 ion composition of 56 interplanetary shocks (IP) observed with the Ultra-Low-Energy Isotope Spectrometer (ULEIS) on board the Advanced Composition Explorer (ACE) from 1997 October 1 through 2000 November 30. Our results show the first ever measurement (25 cases) of 3 He ions being accelerated at IP shocks. The 3 He/4 He ratio at the 25 shocks exhibited a wide range of values between 0.00140.24; the ratios were enhanced between factors of ~3-600 over the solar wind value. During the survey period, the occurrence probability of 3 He-rich shocks increased with rising solar activity as measured in terms of the daily occurrence rates of sunspots and X-ray flares. The 3 He enhancements at IP shocks cannot be attributed to rigidity dependent acceleration of solar wind ions and are better explained if the shocks accelerate ions from multiple sources, one being remnant impulsive solar flare material enriched in 3 He ions. Our results also indicate that the contribution of impulsive flares to the seed population for IP shocks varies from event to event, and that the interplanetary medium is being replenished with impulsive material more frequently during periods of increased solar activity. 1. Introduction Enhancements in the intensities of energetic ions associated with transient interplanetary (IP) shocks have been observed routinely at 1 AU since the 1960's (e.g., Reames 1999). It is presently believed that the majority of such IP shocks are driven by fast coronal mass ejections or CMEs as they propagate through interplanetary space (e.g., Gosling 1993), and that the associated ion intensity enhancements are due to diffusive shock acceleration of solar wind ions (Lee 1983; Jones and Ellison 1991; Reames 1999). However, the putative solar wind origin of the IP-shock accelerated ions is based on composition measurements associated with a very limited number of individual IP shocks (Klecker et al. 1981; Hovestadt et al. 1982; Tan et
King, M.; Gray, R.J.; Powell, H.W.; MacLellan, D.A.; Gonzalez-Izquierdo, B. [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Stockhausen, L.C. [Centro de Laseres Pulsados (CLPU), Parque Cientifico, Calle del Adaja, s/n. 37185 Villamayor, Salamanca (Spain); Hicks, G.S.; Dover, N.P. [The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London SW7 2BZ (United Kingdom); Rusby, D.R. [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom); Carroll, D.C. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom); Padda, H. [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Torres, R. [Centro de Laseres Pulsados (CLPU), Parque Cientifico, Calle del Adaja, s/n. 37185 Villamayor, Salamanca (Spain); Kar, S. [Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Clarke, R.J.; Musgrave, I.O. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom); Najmudin, Z. [The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London SW7 2BZ (United Kingdom); Borghesi, M. [Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Neely, D. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom); McKenna, P., E-mail: paul.mckenna@strath.ac.uk [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)
2016-09-01
At sufficiently high laser intensities, the rapid heating to relativistic velocities and resulting decompression of plasma electrons in an ultra-thin target foil can result in the target becoming relativistically transparent to the laser light during the interaction. Ion acceleration in this regime is strongly affected by the transition from an opaque to a relativistically transparent plasma. By spatially resolving the laser-accelerated proton beam at near-normal laser incidence and at an incidence angle of 30°, we identify characteristic features both experimentally and in particle-in-cell simulations which are consistent with the onset of three distinct ion acceleration mechanisms: sheath acceleration; radiation pressure acceleration; and transparency-enhanced acceleration. The latter mechanism occurs late in the interaction and is mediated by the formation of a plasma jet extending into the expanding ion population. The effect of laser incident angle on the plasma jet is explored.
Inter-galactic Shock Acceleration and the Cosmic Gamma-ray Background
Miniati, F
2002-01-01
We investigate numerically the contribution to the cosmic gamma-ray background from cosmic-rays ions and electrons accelerated at inter-galactic (IG) shocks associated with cosmological structure formation. We show that the kinetic energy of accretion flows in the low-red-shift IG medium is thermalized primarily through moderately strong shocks, which allow for an efficient conversion of shock ram pressure into cosmic-ray pressure. Cosmic-rays accelerated at these shocks produce a diffuse gamma-ray flux which is dominated by inverse Compton emission from electrons scattering off cosmic microwave background photons. Decay of neutral pions generated in p-p inelastic collisions of the ionic cosmic-ray component with the thermal gas contribute about 30% of the computed emission. Based on experimental upper limits on the photon flux above 100 MeV from nearby clusters we constrain the efficiency of conversion of shock energy into relativistic CR electrons to less than 1%. Thus, we find that cosmic-rays of cosmologi...
Relativistic regimes for dispersive shock-waves in non-paraxial nonlinear optics
Gentilini, Silvia; Conti, Claudio
2014-01-01
We investigate the effect of non-paraxiality in the dynamics of dispersive shock waves in the defocusing nonlinear Schroedinger equation. We show that the problem can be described in terms of a relativistic particle moving in a potential. Lowest order corrections enhance the wave-breaking and impose a limit to the highest achievable spectrum in an amount experimentally testable.
Sapir, Nir; Waxman, Eli [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Katz, Boaz [Institute for Advanced Study, Princeton, NJ 08540 (United States)
2013-09-01
The spectrum of radiation emitted following shock breakout from a star's surface with a power-law density profile {rho}{proportional_to}x{sup n} is investigated. Assuming planar geometry, local Compton equilibrium, and bremsstrahlung emission as the dominant photon production mechanism, numerical solutions are obtained for the photon number density and temperature profiles as a function of time for hydrogen-helium envelopes. The temperature solutions are determined by the breakout shock velocity v{sub 0} and the pre-shock breakout density {rho}{sub 0} and depend weakly on the value of n. Fitting formulae for the peak surface temperature at breakout as a function of v{sub 0} and {rho}{sub 0} are provided, with T{sub peak} approx. 9.44 exp [12.63(v{sub 0}/c){sup 1/2}] eV, and the time dependence of the surface temperature is tabulated. The time integrated emitted spectrum is a robust prediction of the model, determined by T{sub peak} and v{sub 0} alone and insensitive to details of light travel time or slight deviations from spherical symmetry. Adopting commonly assumed progenitor parameters, breakout luminosities of Almost-Equal-To 10{sup 45} erg s{sup -1} and Almost-Equal-To 10{sup 44} erg s{sup -1} in the 0.3-10 keV band are expected for blue supergiant (BSG) and red supergiant (RSG)/He-WR progenitors, respectively (T{sub peak} is well below the band for RSGs, unless their radius is {approx}10{sup 13} cm). >30 detections of SN 1987A-like (BSG) breakouts are expected over the lifetime of ROSAT and XMM-Newton. An absence of such detections would imply either that the typical parameters assumed for BSG progenitors are grossly incorrect or that their envelopes are not hydrostatic. The observed spectrum and duration of XRF 080109/SN 2008D are in tension with a non-relativistic breakout from a stellar surface interpretation.
Studies of beam dynamics in relativistic klystron two- beam accelerators
Lidia, Steven Michael
Two-beam accelerators (TBAs) based upon free-electron lasers (FELs) or relativistic klystrons (RK-TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band (~8-12 GHz) through Ka-band (~30-35 GHz) frequency regions. A new method of simulating the beam dynamics in accelerators of this type has been developed in this dissertation. There are three main components to this simulation. The first is a tracking algorithm to generate nonlinear transfer maps for pushing noninteracting particles through the external fields. A mapping algorithm is used so that tens or hundreds of thousands of macroparticles can be pushed from the solution of a few hundreds of differential equations. This is a great cost-savings device from the standpoint of CPU cycles. It can increase by several orders of magnitude the number of macroparticles that take place in the simulation, enabling more accurate modeling of the evolution of the beam distribution and enhanced sensitivity to effects due to the beam's halo. The second component is a 3D Particle-In-Cell (PIC) algorithm that solves a set of Helmholtz equations for the self-fields, including the conducting boundary condition, and generates impulses that are interleaved with the nonlinear maps by means of a split- operator algorithm. The Helmholtz equations are solved by a multi-grid algorithm. The third component is an equivalent circuit equation solver that advances the modal rf cavity fields in time due to excitation by the modulated beam. The beam-cavity interaction is analyzed and divided naturally into two distinct times scales. The RTA project is described, and the simulation code is used to design the latter portions of the experiment. Detailed calculations of the beam dynamics and of the rf cavity output are presented and discussed. A beamline design is presented that will generate nearly 1.2 TW of power from 40 input, gain
Relativistic electrons produced by foreshock disturbances observed upstream of the Earth's bow shock
Wilson, Lynn Bruce, III; Sibeck, David G.; Turner, Drew L.; Osmane, Adnane; Caprioli, Damiano; Angelopoulos, Vassilis
2017-04-01
It has been known for years that charged particles can be accelerated by high Mach number collisionless shock waves. The accelerated particles can stream away upstream to form a foreshock region in communication with the shock. Due to differences in gyroradii, ions are more readily accelerated than electrons by collisionless shocks. These energetic, suprathermal ions stream against the incident flow providing free energy that can generate foreshock disturbances - large-scale (i.e., tens to thousands of thermal ion gyroradii), transient ( 5-10 per day) structures. They have recently been found to accelerate ions to energies of several keV [e.g., Wilson et al., 2013] and even produce their own mini foreshocks [e.g., Liu et al., 2016]. While the high Mach number (M > 40) Kronian bow shock can generate MeV electrons [e.g., Masters et al., 2013], the much weaker Earth's bow shock (1 ≤ M questions in heliospheric and astrophysical plasmas.
Zhang, Sun, E-mail: szhang@pmo.ac.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Key Laboratory of Dark Matter and Space Astronomy, Chinese Academy of Sciences, Nanjing 210008 (China); Joint Center for Particle, Nuclear Physics and Cosmology (J-CPNPC), PMO-NJU, Nanjing 210008 (China)
2014-02-05
In this Letter, we have studied the shock wave and discontinuity propagation for relativistic superfluid with spontaneous U(1) symmetry breaking in the framework of hydrodynamics. General features of shock waves are provided, the propagation of discontinuity and the sound modes of shock waves are also presented. The first sound and the second sound are identified as the propagation of discontinuity, and the results are in agreement with earlier theoretical studies. Moreover, a differential equation, called the growth equation, is obtained to describe the decay and growth of the discontinuity propagating along its normal trajectory. The solution is in an integral form and special cases of diverging waves are also discussed.
Murphy, Gareth C.; Dieckmann, Mark E.; BRET, ANTOINE; Drury, Luke O'C.
2010-01-01
The prompt emissions of gamma-ray bursts are seeded by radiating ultrarelativistic electrons. Internal shocks propagating through a jet launched by a stellar implosion, are expected to amplify the magnetic field & accelerate electrons. We explore the effects of density asymmetry & a quasi-parallel magnetic field on the collision of plasma clouds. A 2D relativistic PIC simulation models the collision of two plasma clouds, in the presence of a quasi-parallel magnetic field. The cloud density ra...
Arthur, Aaron D.; Le Roux, Jakobus A., E-mail: ada0005@uah.edu [Department of Physics, University of Alabama in Huntsville 301 Sparkman Drive, Huntsville, AL 35899 (United States)
2013-08-01
Observations by the plasma and magnetic field instruments on board the Voyager 2 spacecraft suggest that the termination shock is weak with a compression ratio of {approx}2. However, this is contrary to the observations of accelerated particle spectra at the termination shock, where standard diffusive shock acceleration theory predicts a compression ratio closer to {approx}2.9. Using our focused transport model, we investigate pickup proton acceleration at a stationary spherical termination shock with a moderately strong compression ratio of 2.8 to include both the subshock and precursor. We show that for the particle energies observed by the Voyager 2 Low Energy Charged Particle (LECP) instrument, pickup protons will have effective length scales of diffusion that are larger than the combined subshock and precursor termination shock structure observed. As a result, the particles will experience a total effective termination shock compression ratio that is larger than values inferred by the plasma and magnetic field instruments for the subshock and similar to the value predicted by diffusive shock acceleration theory. Furthermore, using a stochastically varying magnetic field angle, we are able to qualitatively reproduce the multiple power-law structure observed for the LECP spectra downstream of the termination shock.
Irfan, M.; Ali, S.; Mirza, Arshad M.
2016-02-01
Two-fluid quantum magnetohydrodynamic (QMHD) equations are employed to investigate linear and nonlinear properties of the magnetosonic waves in a semi-relativistic dense plasma accounting for degenerate relativistic electrons. In the linear analysis, a plane wave solution is used to derive the dispersion relation of magnetosonic waves, which is significantly modified due to relativistic degenerate electrons. However, for a nonlinear investigation of solitary and shock waves, we employ the reductive perturbation technique for the derivation of Korteweg-de Vries (KdV) and Korteweg-de Vries Burger (KdVB) equations, admitting nonlinear wave solutions. Numerically, it is shown that the wave frequency decreases to attain a lowest possible value at a certain critical number density Nc(0), and then increases beyond Nc(0) as the plasma number density increases. Moreover, the relativistic electrons and associated pressure degeneracy lead to a reduction in the spatial extents of the magnetosonic waves and a strengthening of the shock amplitude. The results might be important for understanding the linear and nonlinear magnetosonic excitations in dense astrophysical plasmas, such as in white dwarfs, magnetars and neutron stars, etc., where relativistic degenerate electrons are present.
Small Ground-Level Enhancement of 6 January 2014: Acceleration by CME-Driven Shock?
Li, C.; Miroshnichenko, L. I.; Sdobnov, V. E.
2016-03-01
Available spectral data for solar energetic particles (SEPs) measured near the Earth's orbit (GOES-13) and on the terrestrial surface (polar neutron monitors) on 6 January 2014 are analyzed. A feature of this solar proton event (SPE) and weak ground-level enhancement (GLE) is that the source was located behind the limb. For the purpose of comparison, we also use the Advanced Composition Explorer (ACE) data on sub-relativistic electrons and GOES-13 measurements of a strong and extended proton event on 8 - 9 January 2014. It was found that the surface observations at energies {>} 433 MeV and GOES-13 data at {>} 30 - {>} 700 MeV may be satisfactorily reconciled by a power-law time-of-maximum (TOM) spectrum with a characteristic exponential tail (cutoff). Some methodological difficulties of spectrum determination are discussed. Assuming that the TOM spectrum near the Earth is a proxy of the spectrum of accelerated particles in the source, we critically consider the possibility of shock acceleration to relativistic energies in the solar corona. Finally, it is suggested to interpret the observational features of this GLE under the assumption that small GLEs may be produced by shocks driven by coronal mass ejections. However, the serious limitations of such an approach to the problem of the SCR spectrum prevent drawing firm conclusions in this controversial field.
Doppler Boosted Diffusive Shock Acceleration as an Explanation for the Crab Nebula Gamma-Ray Flares
Becker, Peter A.; Dermer, C. D.
2013-01-01
The remarkable observations of intense flares of ~GeV gamma-rays from the Crab Nebula in 2009 and 2010 have raised many difficult questions for high-energy astrophysics. There is a consensus that the gamma rays probably represent synchrotron emission from highly relativistic electrons, but the implied energy budget raises severe constraints on the required acceleration mechanism, because at the electron energies implied by the gamma-ray observations, the synchrotron loss timescale is comparable to the gyration timescale in the magnetic field. We explore a hybrid scenario in which the electrons experience diffusive shock acceleration, which raises their energies to within about a factor of ten of the energy required to produce the observed synchrotron gamma-ray emission. The radiating electrons are envisioned to be entrained in a mildly relativistic flow downstream from the oblique shock, and the associated Doppler boost shifts the radiation into the observed range. Variability in the downstream flow causes the Doppler beamed radiation to point towards Earth during the observed flares. This mechanism may help to explain the energetics, spectrum and duration of the flares, as well as their rarity.
Shock acceleration and gamma radiation in the intracluster medium
Gabici, S
2004-01-01
Particle acceleration is expected to take place at shocks that form during the process of large scale structure formation. Electrons accelerated at such shocks can upscatter a small fraction of the photons in the cosmic microwave background up to the gamma ray band. Here we make predictions about the detectability of the $\\gamma$--ray emission from forming clusters of galaxies with future GeV and TeV gamma ray telescopes. We also estimate the contribution of these sources to the extragalactic diffuse gamma ray background.
Shock acceleration and gamma radiation in the intracluster medium
2004-01-01
Particle acceleration is expected to take place at shocks that form during the process of large scale structure formation. Electrons accelerated at such shocks can upscatter a small fraction of the photons in the cosmic microwave background up to the gamma ray band. Here we make predictions about the detectability of the $\\gamma$--ray emission from forming clusters of galaxies with future GeV and TeV gamma ray telescopes. We also estimate the contribution of these sources to the extragalactic...
Shock Acceleration and Gamma-Ray Emitting Supernova Remnants
Baring, M G; Reynolds, S P; Grenier, I A; Goret, P; Baring, Matthew G.; Ellison, Donald C.; Reynolds, Stephen P; Grenier, Isabelle A.; Goret, Philippe
1997-01-01
Diffusive shock acceleration in the environs of a remnant's expanding shell is a popular candidate for the origin of SNR gamma-rays. In this paper, results from our study of non-linear effects in shock acceleration theory and their impact on the gamma-ray spectra of SNRs are presented. These effects describe the dynamical influence of the accelerated cosmic rays on the shocked plasma at the same time as addressing how the non-uniformities in the fluid flow force the distribution of the cosmic rays to deviate from pure power-laws. Such deviations are crucial to gamma-ray spectral determination. Our self-consistent Monte Carlo approach to shock acceleration is used to predict ion and electron distributions that spawn neutral pion decay, bremsstrahlung and inverse Compton emission components for SNRs. We demonstrate how the spatial and temporal limitations imposed by the expanding SNR shell quench acceleration above critical energies in the 500 GeV - 10 TeV range, thereby spawning gamma-ray spectral cutoffs that...
From Lévy walks to superdiffusive shock acceleration
Zimbardo, Gaetano; Perri, Silvia, E-mail: gaetano.zimbardo@fis.unical.it, E-mail: silvia.perri@fis.unical.it [Dipartimento di Fisica, Università della Calabria, Ponte P. Bucci, Cubo 31C, I-87036 Arcavacata di Rende (Italy)
2013-11-20
In this paper, we present a general scenario for nondiffusive transport and we investigate the influence of anomalous, superdiffusive transport on Fermi acceleration processes at shocks. We explain why energetic particle superdiffusion can be described within the Lévy walk framework, which is based on a power-law distribution of free path lengths and on a coupling between free path length and free path duration. A self-contained derivation of the particle mean square displacement, which grows as (Δx {sup 2}) = 2D {sub α} t {sup α} with α > 1, and the particle propagator, is presented for Lévy walks, making use of a generalized version of the Montroll-Weiss equation. We also derive for the first time an explicit expression for the anomalous diffusion coefficient D {sub α} and we discuss how to obtain these quantities from energetic particle observations in space. The results are applied to the case of particle acceleration at an infinite planar shock front. Using the scaling properties of the Lévy walk propagator, the energy spectral indices are found to have values smaller than the ones predicted by the diffusive shock acceleration theory. Furthermore, when applying the results to ions with energies of a few MeV accelerated at the solar wind termination shock, the estimation of the anomalous diffusion coefficient associated with the superdiffusive motion gives acceleration times much smaller than the ones related to normal diffusion.
Hafez, M. G.; Talukder, M. R.; Hossain Ali, M.
2016-01-01
The Korteweg-de Vries Burgers (KdVB) -like equation is derived to study the characteristics of nonlinear propagation of ion acoustic solitions in a highly relativistic plasma containing relativistic ions and nonextensive distribution of electrons and positrons using the well known reductive perturbation technique. The KdVB-like equation is solved employing the Bernoulli's equation method taking unperturbed positron to electron concentration ratio, electron to positron temperature ratio, strength of nonextensivity, ion kinematic viscosity, and highly relativistic streaming factor. It is found that these parameters significantly modify the structures of the solitonic excitation. The ion acoustic shock profiles are observed due to the influence of ion kinematic viscosity. In the absence of dissipative term to the KdVB equation, compressive and rarefactive solitons are observed in case of superthermality, but only compressive solitons are found for the case of subthermality.
Long wavelength unstable modes in the far upstream of relativistic collisionless shocks
Rabinak, Itay; Waxman, Eli
2010-01-01
The growth rate of long wavelength kinetic instabilities arising due to the interaction of a collimated beam of relativistic particles and a cold unmagnetized plasma are calculated in the ultra relativistic limit. For sufficiently culminated beams, all long wave-length modes are shown to be Weibel-unstable, and a simple analytic expression for their growth rate is derived. For large transverse velocity spreads, these modes become stable. An analytic condition for stability is given. These analytic results, which generalize earlier ones given in the literature, are shown to be in agreement with numerical solutions of the dispersion equation and with the results of novel PIC simulations in which the electro-magnetic fields are restricted to a given k-mode. The results may describe the interaction of energetic cosmic rays, propagating into the far upstream of a relativistic collisionless shock, with a cold unmagnetized upstream. The long wavelength modes considered may be efficient in deflecting particles and co...
A Shock-Patching Code for Ultra-Relativistic Fluid Flows
Wen, L; Laguna, P
1996-01-01
We have developed a one-dimensional code to solve ultra-relativistic hydrodynamic problems, using the Glimm method for an accurate treatment of shocks and contact discontinuities. The implementation of the Glimm method is based on an exact Riemann solver and van der Corput sampling sequence. In order to improve computational efficiency, the Glimm method is replaced by a finite differencing scheme in those regions where the fluid flow is sufficiently smooth. The accuracy and convergence of this hybrid method is investigated in tests involving planar, cylindrically and spherically symmetric flows that exhibit strong shocks and Lorentz factors of up to $\\sim 2000$. This hybrid code has proven to be successful in simulating the interaction between a thin, ultra-relativistic, spherical shell and a low density stationary medium, a situation likely to appear in Gamma-Ray Bursts, supernovae explosions, pulsar winds and AGNs.
Rueda-Becerril, Jesus M; Aloy, Miguel A; Aloy, Carmen
2013-01-01
The internal-shocks scenario in relativistic jets has been used to explain the variability of blazars' outflow emission. Recent simulations have shown that the magnetic field alters the dynamics of these shocks producing a whole zoo of spectral energy density patterns. However, the role played by magnetization in such high-energy emission is still not entirely understood. With the aid of \\emph{Fermi}'s second LAT AGN catalog, a comparison with observations in the $\\gamma$-ray band was performed, in order to identify the effects of the magnetic field.
Rueda-Becerril Jesús M.
2013-12-01
Full Text Available The internal-shocks scenario in relativistic jets has been used to explain the variability of blazars’ outflow emission. Recent simulations have shown that the magnetic field alters the dynamics of these shocks producing a whole zoo of spectral energy density patterns. However, the role played by magnetization in such high-energy emission is still not entirely understood. With the aid of Fermi’s second LAT AGN catalog, a comparison with observations in the γ-ray band was performed, in order to identify the effects of the magnetic field.
Cosmic Ray Acceleration by Supernova Shocks
Berezhko, E G
2008-01-01
We analyse the results of recent measurements of nonthermal emission from individual supernova remnants (SNRs) and their correspondence to the nonlinear kinetic theory of cosmic ray (CR) acceleration in SNRs. It is shown that the theory fits these data in a satisfactory way and provides the strong evidences for the efficient CR production in SNRs accompanied by significant magnetic field amplification. Magnetic field amplification leads to considerable increase of CR maximum energy so that the spectrum of CRs accelerated in SNRs is consistent with the requirements for the formation of Galactic CR spectrum up to the energy ~10^17 eV.
Gan YIN; Wancheng SHENG
2008-01-01
The Riemann problems for the Euler system of conservation laws of energy and momentum in special relativity as pressure vanishes are considered. The Riemann solutions for the pressureless relativistic Euler equations are obtained constructively. There are two kinds of solutions, the one involves delta shock wave and the other involves vacuum. The authors prove that these two kinds of solutions are the limits of the solutions as pressure vanishes in the Euler system of conservation laws of energy and momentum in special relativity.
Simulation of the relativistic electron dynamics and acceleration in a linearly-chirped laser pulse
Jisrawi, Najeh M; Salamin, Yousef I
2014-01-01
Theoretical investigations are presented, and their results are discussed, of the laser acceleration of a single electron by a chirped pulse. Fields of the pulse are modeled by simple plane-wave oscillations and a $\\cos^2$ envelope. The dynamics emerge from analytic and numerical solutions to the relativistic Lorentz-Newton equations of motion of the electron in the fields of the pulse. All simulations have been carried out by independent Mathematica and Python codes, with identical results. Configurations of acceleration from a position of rest as well as from injection, axially and sideways, at initial relativistic speeds are studied.
Experimental and numerical investigation of reactive shock-accelerated flows
Bonazza, Riccardo [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics
2016-12-20
The main goal of this program was to establish a qualitative and quantitative connection, based on the appropriate dimensionless parameters and scaling laws, between shock-induced distortion of astrophysical plasma density clumps and their earthbound analog in a shock tube. These objectives were pursued by carrying out laboratory experiments and numerical simulations to study the evolution of two gas bubbles accelerated by planar shock waves and compare the results to available astrophysical observations. The experiments were carried out in an vertical, downward-firing shock tube, 9.2 m long, with square internal cross section (25×25 cm^{2}). Specific goals were to quantify the effect of the shock strength (Mach number, M) and the density contrast between the bubble gas and its surroundings (usually quantified by the Atwood number, i.e. the dimensionless density difference between the two gases) upon some of the most important flow features (e.g. macroscopic properties; turbulence and mixing rates). The computational component of the work performed through this program was aimed at (a) studying the physics of multi-phase compressible flows in the context of astrophysics plasmas and (b) providing a computational connection between laboratory experiments and the astrophysical application of shock-bubble interactions. Throughout the study, we used the FLASH4.2 code to run hydrodynamical and magnetohydrodynamical simulations of shock bubble interactions on an adaptive mesh.
Dielectric laser acceleration of non-relativistic electrons at a photonic structure
Breuer, John
2013-08-29
This thesis reports on the observation of dielectric laser acceleration of non-relativistic electrons via the inverse Smith-Purcell effect in the optical regime. Evanescent modes in the vicinity of a periodic grating structure can travel at the same velocity as the electrons along the grating surface. A longitudinal electric field component is used to continuously impart momentum onto the electrons. This is only possible in the near-field of a suitable photonic structure, which means that the electron beam has to pass the structure within about one wavelength. In our experiment we exploit the third spatial harmonic of a single fused silica grating excited by laser pulses derived from a Titanium:sapphire oscillator and accelerate non-relativistic 28 keV electrons. We measure a maximum energy gain of 280 eV, corresponding to an acceleration gradient of 25 MeV/m, already comparable with state-of-the-art radio-frequency linear accelerators. To experience this acceleration gradient the electrons approach the grating closer than 100 nm. We present the theory behind grating-based particle acceleration and discuss simulation results of dielectric laser acceleration in the near-field of photonic grating structures, which is excited by near-infrared laser light. Our measurements show excellent agreement with our simulation results and therefore confirm the direct acceleration with the light field. We further discuss the acceleration inside double grating structures, dephasing effects of non-relativistic electrons as well as the space charge effect, which can limit the attainable peak currents of these novel accelerator structures. The photonic structures described in this work can be readily concatenated and therefore represent a scalable realization of dielectric laser acceleration. Furthermore, our structures are directly compatible with the microstructures used for the acceleration of relativistic electrons demonstrated in parallel to this work by our collaborators in
Sahai, Aakash; Ettlinger, Oliver; Hicks, George; Ditter, Emma-Jane; Najmudin, Zulfikar
2016-10-01
We investigate proton and light-ion acceleration driven by the interaction of relativistic CO2 laser pulses with overdense Argon or other heavy-ion gas targets doped with lighter-ion species. Optically shaping the gas targets allows tuning of the pre-plasma scale-length from a few to several laser wavelengths, allowing the laser to efficiently drive a propagating snowplow through the bunching in the electron density. Preliminary PIC-based modeling shows that the lighter-ion species is accelerated even without any significant motion of the heavier ions which is a signature of the Relativistically Induced Transparency Acceleration mechanism. Some outlines of possible experiments at the TW CO2 laser at the Accelerator Test Facility at Brookhaven National Laboratory are presented.
Kilian, Patrick
2015-09-14
The magnetic field of the sun is not a simple static dipole field but comprises much more complicated structures. When magnetic reconnection changes the topology of a structure the large amount of energy that was stored in the magnetic field is released and can eject the remainder of the magnetic structure and the plasma that is frozen to the magnetic field lines from the solar corona at large velocities. This event is called a coronal mass ejection (CME). Given that the upward motion happens at velocities larger than the local Alfven speed, the critical speed in the solar wind, the CME will act as a piston that drives a shock front through the solar wind ahead of itself. Satellites that monitor solar wind conditions detect an enhanced flux of high energy particles associated with the shock front. Radio instruments typically pick up bursts of electromagnetic emission, termed radio bursts, that are also consistent with processes driven by energetic particles. Thus, and due to theoretical considerations, it is safe to assume that particles can be accelerated at the shock front. Particle acceleration at collisionless shock fronts is an interesting topic for another reason. Earth is constantly bombarded by very energetic particles called (due to historical reasons) cosmic rays. The leading theory for the production of at least the fraction of cosmic rays that originate in our galaxy is acceleration at shock fronts, e.g. in super nova remnants. The large distance and consequently limited observation of these shock fronts restrict more detailed investigations. It is therefore useful to study the process of shock acceleration at shocks in the solar system that are much closer and more approachable to develop and test models and simulation methods that can be applied in different regimes. This dissertation aims at simulations of shock fronts with parameters that are close to the ones occurring in CME driven shocks. Since the goal is the investigation of the changing
Effect of relativistic acceleration on continuous variable quantum teleportation and dense coding
Grochowski, Piotr T.; Rajchel, Grzegorz; Kiałka, Filip; Dragan, Andrzej
2017-01-01
We investigate how relativistic acceleration of the observers can affect the performance of the quantum teleportation and dense coding for continuous variable states of localized wavepackets. Such protocols are typically optimized for symmetric resources prepared in an inertial frame of reference. A mismatch of the sender and the receiver's accelerations can introduce asymmetry to the shared entanglement, which has an effect on the efficiency of the protocol that goes beyond entanglement degr...
Similarity for ultra-relativistic laser plasmas and the optimal acceleration regime
Pukhov, A
2005-01-01
A similarity theory is developed for ultra-relativistic laser-plasmas. It is shown that the most fundamental S-similarity is valid for both under- and overdense plasmas. Optimal scalings for laser wake field electron acceleration are obtained heuristically. The strong message of the present work is that the bubble acceleration regime [see Pukhov, Meyer-ter-Vehn, Appl. Phys. B, 74, 355 (2002)] satisfies these optimal scalings.
Montero, M
2011-01-01
We provide a simple argument showing that, in the limit of infinite acceleration, the entanglement in a fermionic field bipartite system must be independent of the choice of Unruh modes. This implies that most tensor product structures used previously to compute field entanglement in relativistic quantum information cannot give rise to physical results.
Polko, P.; Meier, D.L.; Markoff, S.
2013-01-01
We present a new, approximate method for modelling the acceleration and collimation of relativistic jets in the presence of gravity. This method is self-similar throughout the computational domain where gravitational effects are negligible and, where significant, self-similar within a flux tube.
Luttikhof, M.J.H.; Khachatryan, A.G.; Goor, van F.A.; Boller, K.-J.
2009-01-01
In recent experiments ultra-relativistic femtosecond electron bunches were generated by a Laser Wakefield Accelerator (LWFA) in different regimes. Here we predict that even attosecond bunches can be generated by an LWFA due to the fast betatron phase mixing within a femtosecond electron bunch. The a
Laser Accelerated Ions from a Shock Compressed Gas Foil
Helle, M H; Kaganovich, D; Chen, Y; Palastro, J P; Ting, A
2016-01-01
We present results of energetic laser-ion acceleration from a tailored, near solid density gas target. Colliding hydrodynamic shocks compress a pure hydrogen gas jet into a 70 {\\mu}m thick target prior to the arrival of the ultra-intense laser pulse. A density scan reveals the transition from a regime characterized by a wide angle, low energy beam to one of a more focused beam with a high energy halo. In the latter case, three dimensional simulations show the formation of a Z-pinch driven by the axial current resulting from laser wakefield accelerated electrons. Ions at the rear of the target are then accelerated by a combination of space charge fields from accelerated electrons and Coulombic repulsion as the pinch dissipates.
General Relativistic Radiant Shock Waves in the Post-Quasistatic Approximation
H, Jorge A Rueda [Centro de Fisica Fundamental, Universidad de Los Andes, Merida 5101, Venezuela Escuela de Fisica, Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia); Nunez, L A [Centro de Fisica Fundamental, Universidad de Los Andes, Merida 5101, Venezuela Centro Nacional de Calculo Cientifico, Universidad de Los Andes, CeCalCULA, Corporacion Parque Tecnologico de Merida, Merida 5101, Venezuela (Venezuela)
2007-05-15
An evolution of radiant shock wave front is considered in the framework of a recently presented method to study self-gravitating relativistic spheres, whose rationale becomes intelligible and finds full justification within the context of a suitable definition of the post-quasistatic approximation. The spherical matter configuration is divided into two regions by the shock and each side of the interface having a different equation of state and anisotropic phase. In order to simulate dissipation effects due to the transfer of photons and/or neutrinos within the matter configuration, we introduce the flux factor, the variable Eddington factor and a closure relation between them. As we expected the strong of the shock increases the speed of the fluid to relativistic ones and for some critical values is larger than light speed. In addition, we find that energy conditions are very sensible to the anisotropy, specially the strong energy condition. As a special feature of the model, we find that the contribution of the matter and radiation to the radial pressure are the same order of magnitude as in the mant as in the core, moreover, in the core radiation pressure is larger than matter pressure.
Spitkovsky, A; Spitkovsky, Anatoly; Arons, Jonathan
2004-01-01
We describe results from time-dependent numerical modeling of the collisionless reverse shock terminating the pulsar wind in the Crab Nebula. We treat the upstream relativistic wind as composed of ions and electron-positron plasma embedded in a toroidal magnetic field, flowing radially outward from the pulsar in a sector around the rotational equator. The relativistic cyclotron instability of the ion gyrational orbit downstream of the leading shock in the electron-positron pairs launches outward propagating magnetosonic waves. Because of the fresh supply of ions crossing the shock, this time-dependent process achieves a limit-cycle, in which the waves are launched with periodicity on the order of the ion Larmor time. Compressions in the magnetic field and pair density associated with these waves, as well as their propagation speed, semi-quantitatively reproduce the behavior of the wisp and ring features described in recent observations obtained using the Hubble Space Telescope and the Chandra X-Ray Observator...
Bipolar supernova remnants and the obliquity dependence of shock acceleration
Fulbright, Michael S.; Reynolds, Stephen P.
1990-01-01
The diffusive shock acceleration mechanism proposed to explain the bipolarity observed in the synchrotron radio emission of young adiabatically expanding shell SNRs is investigated by means of numerical simulations. The theoretical basis of the SNR models and the numerical computation methods are explained, and the results are presented in graphs and synthetic radio maps and discussed in detail. It is found that the efficiency of the acceleration process depends on the obliquity angle theta(Bn) between the shock normal and the uniform magnetic field: models with theta(Bn) of about 90 deg can reproduce the observed azimuthal intensity ratios in most cases, but models with theta(Bn) near 0 deg cannot.
Bipolar supernova remnants and the obliquity dependence of shock acceleration
Fulbright, M.S.; Reynolds, S.P. (North Carolina State Univ., Raleigh (USA))
1990-07-01
The diffusive shock acceleration mechanism proposed to explain the bipolarity observed in the synchrotron radio emission of young adiabatically expanding shell SNRs is investigated by means of numerical simulations. The theoretical basis of the SNR models and the numerical computation methods are explained, and the results are presented in graphs and synthetic radio maps and discussed in detail. It is found that the efficiency of the acceleration process depends on the obliquity angle theta(Bn) between the shock normal and the uniform magnetic field: models with theta(Bn) of about 90 deg can reproduce the observed azimuthal intensity ratios in most cases, but models with theta(Bn) near 0 deg cannot. 32 refs.
Laser-driven shock acceleration of monoenergetic ion beams
Fiuza, F; Boella, E; Fonseca, R A; Silva, L O; Haberberger, D; Tochitsky, S; Gong, C; Mori, W B; Joshi, C
2012-01-01
We show that monoenergetic ion beams can be accelerated by moderate Mach number collisionless, electrostatic shocks propagating in a long scale-length exponentially decaying plasma profile. Strong plasma heating and density steepening produced by an intense laser pulse near the critical density can launch such shocks that propagate in the extended plasma at high velocities. The generation of a monoenergetic ion beam is possible due to the small and constant sheath electric field associated with the slowly decreasing density profile. The conditions for the acceleration of high-quality, energetic ion beams are identified through theory and multidimensional particle-in-cell simulations. The scaling of the ion energy with laser intensity shows that it is possible to generate $\\sim 200$ MeV proton beams with state-of-the-art 100 TW class laser systems.
Shock-Wave Acceleration of Protons on OMEGA EP
Haberberger, D.; Froula, D. H.; Pak, A.; Link, A.; Patel, P.; Fiuza, F.; Tochitsky, S.; Joshi, C.
2016-10-01
The creation of an electrostatic shock wave and ensuing ion acceleration is studied on the OMEGA EP Laser System at the Laboratory for Laser Energetics. Previous work using a 10- μm CO2 laser in a H2 gas jet shows promising results for obtaining narrow spectral features in the accelerated proton spectra. Scaling the shock-wave acceleration mechanism to the 1- μm-wavelength drive laser makes it possible to use petawatt-scale laser systems such as OMEGA-EP, but involves tailoring of the plasma profile. To accomplish the necessitated sharp rise to near-critical plasma density and a long exponential fall, an 1- μm-thick CH foil is illuminated on the back side by thermal x rays produced from an irradiated gold foil. The plasma density is measured using the fourth-harmonic probe system, the accelerating fields are probed using an orthogonal proton source, and the accelerated protons and ions are detected with a Thomson parabola. These results will be presented and compared with particle-in-cell simulations. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and LLNL's Laboratory Directed Research and Development program under project 15-LW-095.
Particle acceleration in explosive relativistic reconnection events and Crab Nebula gamma-ray flares
Lyutikov, Maxim; Komissarov, Sergey; Porth, Oliver
2016-01-01
We develop a model of particle acceleration in explosive reconnection events in relativistic magnetically-dominated plasmas and apply it to explain gamma-ray flares from the Crab Nebula. The model relies on development of current-driven instabilities on macroscopic scales (not related to plasma skin depths). Using analytical and numerical methods (fluid and particle-in-cell simulations), we study a number of model problems in relativistic magnetically-dominated plasma: (i) we extend Syrovatsky's classical model of explosive X-point collapse to magnetically-dominated plasmas; (ii) we consider instability of two-dimensional force-free system of magnetic flux tubes; (iii) we consider merger of two zero total poloidal current magnetic flux tubes. In all cases regimes of spontaneous and driven evolution are investigated. We identify two stages of particle acceleration: (i) fast explosive prompt X-point collapse and (ii) ensuing island merger. The fastest acceleration occurs during the initial catastrophic X-point ...
Pondermotive acceleration of charged particles along the relativistic jets of an accreting blackhole
Ebisuzaki, T.; Tajima, T.
2014-05-01
Accreting blackholes such as miniquasars and active galactic nuclei can contribute to the highest energy components of intra- (˜1015 eV) galactic and extra-galactic components (˜1020 eV) of cosmic rays. Alfven wave pulses which are excited in the accretion disk around blackholes propagate in relativistic jets. Because of their highly non-linear nature of the waves, charged particles (protons, ions, and electrons) can be accelerated to high energies in relativistic jets in accreting blackhole systems, the central engine of miniquasars and active galactic nuclei.
Lee, Shiu-Hang; Nagataki, Shigehiro
2012-01-01
To better model the efficient production of cosmic rays (CRs) in supernova remnants (SNRs) with the associated coupling between CR production and SNR dynamics, we have generalized an existing cr-hydro-NEI code (i.e., Ellison et al. 2012) to include the following processes: (1) an explicit calculation of the upstream precursor structure including the position dependent flow speed, density, temperature, and magnetic field strength; (2) a momentum and space dependent CR diffusion coefficient; (3) an explicit calculation of magnetic field amplification (MFA); (4) calculation of the maximum CR momentum using the amplified magnetic field; (5) a finite Alfven speed for the particle scattering centers; and (6) the ability to accelerate a superthermal seed population of CRs as well as the ambient thermal plasma. While a great deal of work has been done modeling SNRs, most work has concentrated on either the continuum emission from relativistic electrons or ions, or the thermal emission from the shock heated plasma. Ou...
Hafez, M. G.; Roy, N. C.; Talukder, M. R.; Hossain Ali, M.
2016-09-01
This work investigates the oblique nonlinear propagation of ion acoustic (IA) shock waves for both weakly and highly relativistic plasmas composed of nonthermal electrons and positrons with relativistic thermal ions. The KdVB-like equation, involving dispersive, weakly transverse dispersive, nonlinearity and dissipative coefficients, is derived employing the well known reductive perturbation method. The integration of this equation is carried out by the {tanh} method taking the stable shock formation condition into account. The effects of nonthermal electrons and positrons, nonthermal electrons with isothermal positrons, isothermal electrons with nonthermal positrons, and isothermal electrons and positrons on oblique propagation of IA shock waves in weakly relativistic regime are described. Furthermore, the effects of plasma parameters on oblique propagation of IA shock waves in highly relativistic regime are discussed and compared with weakly relativistic case. It is seen that the plasma parameters within certain limits significantly modify the structures of the IA shock waves in both cases. The results may be useful for better understanding of the interactions of charged particles with extra-galactic jets as well as astrophysical compact objects.
Cosmic ray acceleration at perpendicular shocks in supernova remnants
Ferrand, Gilles; Danos, Rebecca J.; Shalchi, Andreas; Safi-Harb, Samar [Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2 (Canada); Edmon, Paul [Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States); Mendygral, Peter, E-mail: gferrand@physics.umanitoba.ca [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)
2014-09-10
Supernova remnants (SNRs) are believed to accelerate particles up to high energies through the mechanism of diffusive shock acceleration (DSA). Except for direct plasma simulations, all modeling efforts must rely on a given form of the diffusion coefficient, a key parameter that embodies the interactions of energetic charged particles with magnetic turbulence. The so-called Bohm limit is commonly employed. In this paper, we revisit the question of acceleration at perpendicular shocks, by employing a realistic model of perpendicular diffusion. Our coefficient reduces to a power law in momentum for low momenta (of index α), but becomes independent of the particle momentum at high momenta (reaching a constant value κ{sub ∞} above some characteristic momentum p {sub c}). We first provide simple analytical expressions of the maximum momentum that can be reached at a given time with this coefficient. Then we perform time-dependent numerical simulations to investigate the shape of the particle distribution that can be obtained when the particle pressure back-reacts on the flow. We observe that for a given index α and injection level, the shock modifications are similar for different possible values of p {sub c}, whereas the particle spectra differ markedly. Of particular interest, low values of p {sub c} tend to remove the concavity once thought to be typical of non-linear DSA, and result in steep spectra, as required by recent high-energy observations of Galactic SNRs.
Novel Aspects of Direct Laser Acceleration of Relativistic Electrons
Arefiev, A V; Khudik, V N
2015-01-01
We examine the impact of several factors on electron acceleration by a laser pulse and the resulting electron energy gain. Specifically, we consider the role played by: 1) static longitudinal electric field; 2) static transverse electric field; 3) electron injection into the laser pulse; and 4) static longitudinal magnetic field. It is shown that all of these factors lead, under certain conditions, to a considerable electron energy gain from the laser pulse. In contrast with other mechanisms such as wakefield acceleration, the static electric fields in this case do not directly transfer substantial energy to the electron. Instead, they reduce the longitudinal dephasing between the electron and the laser beam, which then allows the electron to gain extra energy from the beam. The mechanisms discussed here are relevant to experiments with under-dense gas jets, as well as to experiments with solid-density targets involving an extended pre-plasma.
Nalewajko, Krzysztof [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road M/S 29, Menlo Park, CA 94025 (United States); Uzdensky, Dmitri A.; Werner, Gregory R. [Center for Integrated Plasma Studies, Physics Department, University of Colorado, UCB 390, Boulder, CO 80309-0390 (United States); Cerutti, Benoit [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Begelman, Mitchell C., E-mail: knalew@stanford.edu [JILA, University of Colorado and National Institute of Standards and Technology, 440 UCB, Boulder, CO 80309 (United States)
2015-12-20
We investigate the distribution of particle acceleration sites, independently of the actual acceleration mechanism, during plasmoid-dominated, relativistic collisionless magnetic reconnection by analyzing the results of a particle-in-cell numerical simulation. The simulation is initiated with Harris-type current layers in pair plasma with no guide magnetic field, negligible radiative losses, no initial perturbation, and using periodic boundary conditions. We find that the plasmoids develop a robust internal structure, with colder dense cores and hotter outer shells, that is recovered after each plasmoid merger on a dynamical timescale. We use spacetime diagrams of the reconnection layers to probe the evolution of plasmoids, and in this context we investigate the individual particle histories for a representative sample of energetic electrons. We distinguish three classes of particle acceleration sites associated with (1) magnetic X-points, (2) regions between merging plasmoids, and (3) the trailing edges of accelerating plasmoids. We evaluate the contribution of each class of acceleration sites to the final energy distribution of energetic electrons: magnetic X-points dominate at moderate energies, and the regions between merging plasmoids dominate at higher energies. We also identify the dominant acceleration scenarios, in order of decreasing importance: (1) single acceleration between merging plasmoids, (2) single acceleration at a magnetic X-point, and (3) acceleration at a magnetic X-point followed by acceleration in a plasmoid. Particle acceleration is absent only in the vicinity of stationary plasmoids. The effect of magnetic mirrors due to plasmoid contraction does not appear to be significant in relativistic reconnection.
Guo, Xinyi; Sironi, Lorenzo; Narayan, Ramesh
2014-10-01
Electron acceleration to non-thermal energies in low Mach number (Ms Diffusive shock acceleration, also known as first-order Fermi acceleration, cannot be directly invoked to explain the acceleration of electrons. Rather, an additional mechanism is required to pre-accelerate the electrons from thermal to supra-thermal energies, so they can then participate in the Fermi process. In this work, we use two- and three-dimensional particle-in-cell plasma simulations to study electron acceleration in low Mach number shocks. We focus on the particle energy spectra and the acceleration mechanism in a reference run with Ms = 3 and a quasi-perpendicular pre-shock magnetic field. We find that about 15% of the electrons can be efficiently accelerated, forming a non-thermal power-law tail in the energy spectrum with a slope of p ~= 2.4. Initially, thermal electrons are energized at the shock front via shock drift acceleration (SDA). The accelerated electrons are then reflected back upstream where their interaction with the incoming flow generates magnetic waves. In turn, the waves scatter the electrons propagating upstream back toward the shock for further energization via SDA. In summary, the self-generated waves allow for repeated cycles of SDA, similarly to a sustained Fermi-like process. This mechanism offers a natural solution to the conflict between the bright radio synchrotron emission observed from the outskirts of galaxy clusters and the low electron acceleration efficiency usually expected in low Mach number shocks.
Radial equilibrium of relativistic particle bunches in plasma wakefield accelerators
Lotov, K V
2016-01-01
Drive particle beams in linear or weakly nonlinear regimes of the plasma wakefield accelerator quickly reach a radial equilibrium with the wakefield, which is described in detail for the first time. The equilibrium beam state and self-consistent wakefields are obtained by combining analytical relationships, numerical integration, and first-principle simulations. In the equilibrium state, the beam density is strongly peaked near the axis, the beam radius is constant along the beam, and longitudinal variation of the focusing strength is balanced by varying beam emittance. The transverse momentum distribution of beam particles depends on the observation radius and is neither separable, nor Gaussian.
Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Koga, J. K.; Pirozhkov, A. S.; Rosanov, N. N.; Zhidkov, A. G.
2011-01-01
We formulate the Flying Mirror Concept for relativistic interaction of ultra-intense electromagnetic waves with plasmas, present its theoretical description and the results of computer simulations and laboratory experiments. In collisionless plasmas, the relativistic flying mirrors are thin and dense electron or electron-ion layers accelerated by the high intensity electromagnetic waves up to velocity close to the speed of light in vacuum; in nonlinear-media and in nonlinear vacuum they are the ionization fronts and the refraction index modulations induced by a strong electromagnetic wave. The reflection of the electromagnetic wave at the relativistic mirror results in its energy and frequency change due to the double Doppler effect. In the co-propagating configuration, in the radiation pressure dominant regime, the energy of the electromagnetic wave is transferred to the ion energy providing a highly efficient acceleration mechanism. In the counter-propagation configuration the frequency of the reflected wave is multiplied by the factor proportional to the gamma-factor squared. If the relativistic mirror performs an oscillatory motion as in the case of the electron motion at the plasma-vacuum interface, the reflected light spectrum is enriched with high order harmonics.
da Silva, G Rocha; Kowal, G; Pino, E M de Gouveia Dal
2014-01-01
Strong downstream magnetic fields of order of $\\sim 1$G, with large correlation lengths, are believed to cause the large synchrotron emission at the afterglow phase of gamma ray bursts (GRBs). Despite of the recent theoretical efforts, models have failed to fully explain the amplification of the magnetic field, particularly in a matter dominated scenario. We revisit the problem by considering the synchrotron emission to occur at the expanding shock front of a weakly magnetized relativistic jet over a magnetized surrounding medium. Analytical estimates and a number of high resolution 2D relativistic magneto-hydrodynamical (RMHD) simulations are provided. Jet opening angles of $\\theta = 0^{\\circ} - 20^{\\circ}$, and ambient to jet density ratios of $10^{-4} - 10^2$ were considered. We found that most of the amplification is due to compression of the ambient magnetic field at the contact discontinuity between the reverse and forward shocks at the jet head, with substantial pile-up of the magnetic field lines as t...
Beam dynamics studies for the relativistic klystron two-beam accelerator experiment
Lidia, Steven M.
2001-04-01
Two-beam accelerators (TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band \\(~8-12 GHz\\) through Ka-band \\(~30-35 GHz\\) frequency regions. The relativistic klystron two-beam accelerator project, whose aim is to study TBAs based upon extended relativistic klystrons, is described, and a new simulation code is used to design the latter portions of the experiment. Detailed, self-consistent calculations of the beam dynamics and of the rf cavity output are presented and discussed together with a beam line design that will generate nearly 1.2 GW of power from 40 rf cavities over a 10 m distance. The simulations show that beam current losses are acceptable and that longitudinal and transverse focusing techniques are sufficiently capable of maintaining a high degree of beam quality along the entire beam line.
Matsyuk, Roman
2015-01-01
A variational formulation for the geodesic circles in two-dimensional Riemannian manifold is discovered. Some relations with the uniform relativistic acceleration and the one-dimensional 'spin'-curvature interaction is investigated.
Non-relativistic radiation mediated shock breakouts: III. Spectral properties of SN shock breakout
Sapir, Nir; Waxman, Eli
2013-01-01
The spectrum of radiation emitted following shock breakout from a star's surface with a power-law density profile $\\rho \\propto x^n$ is investigated. Assuming planar geometry, local Compton equilibrium and bremsstrahlung emission as the dominant photon production mechanism, numerical solutions are obtained for the photon number density and temperature profiles as a function of time, for hydrogen-helium envelopes. The temperature solutions are determined by the breakout shock velocity $v_0$ and the pre-shock breakout density $\\rho_0$, and depend weakly on the value of n. Fitting formulas for the peak surface temperature at breakout as a function of $v_0$ and $\\rho_0$ are provided, with $T_{peak}\\approx 9.44\\exp{[12.63(v_0/c)^{1/2}]}$ eV, and the time dependence of the surface temperature is tabulated. The time integrated emitted spectrum is a robust prediction of the model, determined by $\\mathcal{T}_{\\rm peak}$ and $v_0$ alone and insensitive to details of light travel time or slight deviations from spherical...
The relativistic solar particle event of 2005 January 20: prompt and delayed particle acceleration
Klein, K -L; Bouratzis, C; Grechnev, V; Hillaris, A; Preka-Papadema, P
2014-01-01
The highest energies of solar energetic nucleons detected in space or through gamma-ray emission in the solar atmosphere are in the GeV range. Where and how the particles are accelerated is still controversial. We search for observational evidence on the acceleration region(s) by comparing the timing of relativistic protons detected at Earth and radiative signatures in the solar atmosphere. To this end a detailed comparison is undertaken of the double-peaked time profile of relativistic protons, derived from the worldwide network of neutron monitors during the large particle event of 2005 January 20, with UV imaging and radio petrography over a broad frequency band from the low corona to interplanetary space. We show that both relativistic proton releases to interplanetary space were accompanied by distinct episodes of energy release and electron acceleration in the corona traced by the radio emission and by brightenings of UV kernels in the low solar atmosphere. The timing of electromagnetic emissions and re...
Proton acceleration by a relativistic laser frequency-chirp driven plasma snowplow
Sahai, Aakash A; Bingham, R A; Tsung, F S; Tableman, A R; Tzoufras, M; Mori, W B
2014-01-01
We analyze the use of a relativistic laser pulse with a controlled frequency chirp incident on a rising plasma density gradient to drive an acceleration structure for proton and light-ion acceleration. The Chirp Induced Transparency Acceleration (ChITA) scheme is described with an analytical model of the velocity of the snowplow at critical density on a pre-formed rising plasma density gradient that is driven by a positive-chirp in the frequency of a relativistic laser pulse. The velocity of the ChITA-snowplow is shown to depend upon rate of rise of the frequency of the relativistic laser pulse represented by $\\frac{\\epsilon_0}{\\theta}$ where, $\\epsilon_0 = \\frac{\\Delta\\omega_0}{\\omega_0}$ and chirping spatial scale-length, $\\theta$, the normalized magnetic vector potential of the laser pulse $a_0$ and the plasma density gradient scale-length, $\\alpha$. We observe using 1-D OSIRIS simulations the formation and forward propagation of ChITA-snowplow, being continuously pushed by the chirping laser at a velocity...
H. Yoshitama; WEN Xian-Lun; WEN Tian-Shu; WU Yu-Chi; ZHANG Bao-San; ZHU Qi-Hua; HUANG Xiao-Jun; AN Wei-Min; HUNG Wen-Hui; TANG Chuan-Xiang; LIN Yu-Zheng; T. Kameshima; WANG Xiao-Dong; CHEN Li-Ming; H. Kotaki; M. Kando; K. Nakajima; GU Yu-Qiu; GUO Yi; JIAO Chun-Ye; LIU Hong-Jie; PENG Han-Sheng; TANG Chuan-Ming; WANG Xiao-Dong
2008-01-01
@@ Self-injection and acceleration of monoenergetic electron beams from laser wakefield accelerators are first in-vestigated in the highly relativistic regime, using 100 TW class, 27 fs laser pulses. Quasi-monoenergetic multi-bunched beams with energies as high as multi-hundredMeV are observed with simultaneous measurements of side-scattering emissions that indicate the formation of self-channelling and self-injection of electrons into a plasma wake, referred to as a 'bubble'. The three-dimensional particle-in-cell simulations confirmed multiple self-injection of electron bunches into the bubble and their beam acceleration with gradient of 1.5 GeV/cm.
Progress on the relativistic klystron two-beam accelerator prototype
Westenskow, G. A.; Anderson, D. E.; Eylon, S.; Henestroza, E.; Houck, T. L.; Lidia, S. M.; Vanecek, D. L.; Yu, S. S.
1999-07-01
The technical challenge for making two-beam accelerators into realizable power sources lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2-kA, 1-MeV, electron induction prototype injector as a collaborative effort between LBL and LLNL. The electron source will be a 3.5″-diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 120-ns flat top (1% energy variation), and a normalized edge emittance of less than 200 π-mm-mr. Planned diagnostics include an isolated cathode with resistive divider for direct measurement of current emission, resistive-wall and magnetic probe current monitors for measuring beam current and centroid position, capacitive probes for measuring A-K gap voltage, an energy spectrometer, and a pepper-pot emittance diagnostic. Details of the injector, beam line, and diagnostics are presented.
The Advanced Composition Explorer Shock Database and Application to Particle Acceleration Theory
Parker, L. Neergaard; Zank, G. P.
2015-01-01
The theory of particle acceleration via diffusive shock acceleration (DSA) has been studied in depth by Gosling et al. (1981), van Nes et al. (1984), Mason (2000), Desai et al. (2003), Zank et al. (2006), among many others. Recently, Parker and Zank (2012, 2014) and Parker et al. (2014) using the Advanced Composition Explorer (ACE) shock database at 1 AU explored two questions: does the upstream distribution alone have enough particles to account for the accelerated downstream distribution and can the slope of the downstream accelerated spectrum be explained using DSA? As was shown in this research, diffusive shock acceleration can account for a large population of the shocks. However, Parker and Zank (2012, 2014) and Parker et al. (2014) used a subset of the larger ACE database. Recently, work has successfully been completed that allows for the entire ACE database to be considered in a larger statistical analysis. We explain DSA as it applies to single and multiple shocks and the shock criteria used in this statistical analysis. We calculate the expected injection energy via diffusive shock acceleration given upstream parameters defined from the ACE Solar Wind Electron, Proton, and Alpha Monitor (SWEPAM) data to construct the theoretical upstream distribution. We show the comparison of shock strength derived from diffusive shock acceleration theory to observations in the 50 keV to 5 MeV range from an instrument on ACE. Parameters such as shock velocity, shock obliquity, particle number, and time between shocks are considered. This study is further divided into single and multiple shock categories, with an additional emphasis on forward-forward multiple shock pairs. Finally with regard to forward-forward shock pairs, results comparing injection energies of the first shock, second shock, and second shock with previous energetic population will be given.
Trapped electron acceleration by a laser-driven relativistic plasma wave
Everett, M.; Lal, A.; Gordon, D.; Clayton, C. E.; Marsh, K. A.; Joshi, C.
1994-04-01
THE aim of new approaches for high-energy particle acceleration1 is to push the acceleration rate beyond the limit (~100 MeV m-1) imposed by radio-frequency breakdown in conventional accelerators. Relativistic plasma waves, having phase velocities very close to the speed of light, have been proposed2-6 as a means of accelerating charged particles, and this has recently been demonstrated7,8. Here we show that the charged particles can be trapped by relativistic plasma waves-a necessary condition for obtaining the maximum amount of energy theoretically possible for such schemes. In our experiments, plasma waves are excited in a hydrogen plasma by beats induced by two collinear laser beams, the difference in whose frequencies matches the plasma frequency. Electrons with an energy of 2 MeV are injected into the excited plasma, and the energy spectrum of the exiting electrons is analysed. We detect electrons with velocities exceeding that of the plasma wave, demonstrating that some electrons are 'trapped' by the wave potential and therefore move synchronously with the plasma wave. We observe a maximum energy gain of 28 MeV, corresponding to an acceleration rate of about 2.8 GeV m-1.
Ion acceleration beyond 100MeV/amu from relativistic laser-matter interactions
Jung, Daniel; Gautier, Cort; Johnson, Randall; Letzring, Samuel; Shah, Rahul; Palaniyappan, Sasikumar; Shimada, Tsutomu; Fernandez, Juan; Hegelich, Manuel; Yin, Lin; Albright, Brian; Habs, Dieter
2012-10-01
In the past 10 years laser acceleration of protons and ions was mainly achieved by laser light interacting with micrometer scaled solid matter targets in the TNSA regime, favoring acceleration of protons. Ion acceleration based on this acceleration mechanism seems to have stagnated in terms of particle energy, remaining too low for most applications. The high contrast and relativistic intensities available at the Trident laser allow sub-micron solid matter laser interaction dominated by relativistic transparency of the target. This interaction efficiently couples laser momentum into all target ion species, making it a promising alternative to conventional accelerators. However, little experimental research has up to now studied conversion efficiency or beam distributions, which are essential for application, such as ion based fast ignition (IFI) or hadron cancer therapy. We here present experimental data addressing these aspects for C^6+ ions and protons in comparison with the TNSA regime. Unique measurements of angularly resolved ion energy spectra for targets ranging from 30 nm to 25 micron are presented. While the measured conversion efficiency for C^6+ reaches up to ˜7%, peak energies of 1 GeV and 120 MeV have been measured for C^6+ and protons, respectively.
Magnetic acceleration of ultra-relativistic jets in gamma-ray burst sources
Komissarov, Serguei; Konigl, Arieh; Barkov, Maxim
2008-01-01
We present a relativistic-MHD numerical study of axisymmetric, magnetically driven jets with parameters applicable to gamma-ray burst (GRB) flows. We also present analytic expressions for the asymptotic jet shape and other flow parameters that agree very well with the numerical results. All current-carrying outflows exhibit self-collimation and consequent acceleration near the rotation axis, but unconfined outflows lose causal connectivity across the jet and therefore do not collimate or accelerate efficiently in their outer regions. Magnetically accelerated jets confined by an external pressure that varies with distance with a power-law index 50%. They attain Lorentz factors > 30 on scales 10^9-3x10^10 cm, consistent with the possibility that short/hard GRB jets are accelerated on scales where they can be confined by moderately relativistic winds from accretion discs, and > 100 on scales 10^10-10^12 cm, consistent with the possibility that long/soft GRB jets are accelerated within the envelopes of collapsin...
Experimental particle acceleration by water evaporation induced by shock waves
Scolamacchia, T.; Alatorre Ibarguengoitia, M.; Scheu, B.; Dingwell, D. B.; Cimarelli, C.
2010-12-01
Shock waves are commonly generated during volcanic eruptions. They induce sudden changes in pressure and temperature causing phase changes. Nevertheless, their effects on flowfield properties are not well understood. Here we investigate the role of gas expansion generated by shock wave propagation in the acceleration of ash particles. We used a shock tube facility consisting of a high-pressure (HP) steel autoclave (450 mm long, 28 mm in internal diameter), pressurized with Ar gas, and a low-pressure tank at atmospheric conditions (LP). A copper diaphragm separated the HP autoclave from a 180 mm tube (PVC or acrylic glass) at ambient P, with the same internal diameter of the HP reservoir. Around the tube, a 30 cm-high acrylic glass cylinder, with the same section of the LP tank (40 cm), allowed the observation of the processes occurring downstream from the nozzle throat, and was large enough to act as an unconfined volume in which the initial diffracting shock and gas jet expand. All experiments were performed at Pres/Pamb ratios of 150:1. Two ambient conditions were used: dry air and air saturated with steam. Carbon fibers and glass spheres in a size range between 150 and 210 μm, were placed on a metal wire at the exit of the PVC tube. The sudden decompression of the Ar gas, due to the failure of the diaphragm, generated an initial air shock wave. A high-speed camera recorded the processes between the first 100 μsec and several ms after the diaphragm failure at frame rates ranging between 30,000 and 50,000 fps. In the experiments with ambient air saturated with steam, the high-speed camera allowed to visualize the condensation front associated with the initial air shock; a maximum velocity of 788 m/s was recorded, which decreases to 524 m/s at distance of 0.5 ±0.2 cm, 1.1 ms after the diaphragm rupture. The condensation front preceded the Ar jet front exhausting from the reservoir, by 0.2-0.5 ms. In all experiments particles velocities following the initial
Hajra, Rajkumar; Tsurutani, Bruce T.; Echer, Ezequiel; Gonzalez, Walter D.; Brum, Christiano Garnett Marques; Vieira, Luis Eduardo Antunes; Santolik, Ondrej
2015-07-01
We present a comparative study of high-intensity long-duration continuous AE activity (HILDCAA) events, both isolated and those occurring in the "recovery phase" of geomagnetic storms induced by corotating interaction regions (CIRs). The aim of this study is to determine the difference, if any, in relativistic electron acceleration and magnetospheric energy deposition. All HILDCAA events in solar cycle 23 (from 1995 through 2008) are used in this study. Isolated HILDCAA events are characterized by enhanced fluxes of relativistic electrons compared to the pre-event flux levels. CIR magnetic storms followed by HILDCAA events show almost the same relativistic electron signatures. Cluster 1 spacecraft showed the presence of intense whistler-mode chorus waves in the outer magnetosphere during all HILDCAA intervals (when Cluster data were available). The storm-related HILDCAA events are characterized by slightly lower solar wind input energy and larger magnetospheric/ionospheric dissipation energy compared with the isolated events. A quantitative assessment shows that the mean ring current dissipation is ~34 % higher for the storm-related events relative to the isolated events, whereas Joule heating and auroral precipitation display no (statistically) distinguishable differences. On the average, the isolated events are found to be comparatively weaker and shorter than the storm-related events, although the geomagnetic characteristics of both classes of events bear no statistically significant difference. It is concluded that the CIR storms preceding the HILDCAAs have little to do with the acceleration of relativistic electrons. Our hypothesis is that ~10-100-keV electrons are sporadically injected into the magnetosphere during HILDCAA events, the anisotropic electrons continuously generate electromagnetic chorus plasma waves, and the chorus then continuously accelerates the high-energy portion of this electron spectrum to MeV energies.
The afterglow of a relativistic shock breakout and low luminosity GRBs
Duran, Rodolfo Barniol; Piran, Tsvi; Sari, Re'em
2014-01-01
The prompt emission of low luminosity gamma-ray bursts ({\\it ll}GRBs) indicates that these events originate from a relativistic shock breakout. In this case we can estimate, based on the properties of the prompt emission, the energy distribution of the ejecta. We develop a general formalism to estimate the afterglow produced by synchrotron emission from the forward shock resulting from the interaction of this ejecta with the circum-burst matter. We assess whether this emission can produce the observed radio and X-ray afterglows of the available sample of 4 {\\it ll}GRBs. All 4 radio afterglows can be explained within this model, providing further support for shock breakouts being the origin of {\\it ll}GRBs. We find that in one of the {\\it ll}GRBs (GRB 031203) the predicted X-ray emission, using the same parameters that fit the radio, can explain the observed one. In another one (GRB 980425) the observed X-rays can be explained if we allow for a slight modification of the simplest model. For the last two cases ...
Pallocchia, G.; Laurenza, M.; Consolini, G.
2017-03-01
Some interplanetary shocks are associated with short-term and sharp particle flux enhancements near the shock front. Such intensity enhancements, known as shock-spike events (SSEs), represent a class of relatively energetic phenomena as they may extend to energies of some tens of MeV or even beyond. Here we present an SSE case study in order to shed light on the nature of the particle acceleration involved in this kind of event. Our observations refer to an SSE registered on 2011 October 3 at 22:23 UT, by STEREO B instrumentation when, at a heliocentric distance of 1.08 au, the spacecraft was swept by a perpendicular shock moving away from the Sun. The main finding from the data analysis is that a Weibull distribution represents a good fitting function to the measured particle spectrum over the energy range from 0.1 to 30 MeV. To interpret such an observational result, we provide a theoretical derivation of the Weibull spectrum in the framework of the acceleration by “killed” stochastic processes exhibiting power-law growth in time of the velocity expectation, such as the classical Fermi process. We find an overall coherence between the experimental values of the Weibull spectrum parameters and their physical meaning within the above scenario. Hence, our approach based on the Weibull distribution proves to be useful for understanding SSEs. With regard to the present event, we also provide an alternative explanation of the Weibull spectrum in terms of shock-surfing acceleration.
Acceleration toward polarization singularity inspired by relativistic E×B drift
Yu, Sunkyu; Piao, Xianji; Park, Namkyoo
2016-11-01
The relativistic trajectory of a charged particle driven by the Lorentz force is different from the classical one, by velocity-dependent relativistic acceleration term. Here we show that the evolution of optical polarization states near the polarization singularity can be described in analogy to the relativistic dynamics of charged particles. A phase transition in parity-time symmetric potentials is then interpreted in terms of the competition between electric and magnetic ‘pseudo’-fields applied to polarization states. Based on this Lorentz pseudo-force representation, we reveal that zero Lorentz pseudo-force is the origin of recently reported strong polarization convergence to the singular state at the exceptional point. We also demonstrate the deterministic design of achiral and directional eigenstates at the exceptional point, allowing an anomalous linear polarizer which operates orthogonal to forward and backward waves. Our results linking parity-time symmetry and relativistic electrodynamics show that previous PT-symmetric potentials for the polarization singularity with a chiral eigenstate are the subset of optical potentials for the E×B “polarization” drift.
M, G. Hafez; N, C. Roy; M, R. Talukder; M Hossain, Ali
2017-01-01
A comparative study is carried out for the nonlinear propagation of ion acoustic shock waves both for the weakly and highly relativistic plasmas consisting of relativistic ions and q-distributed electrons and positions. The Burgers equation is derived to reveal the physical phenomena using the well known reductive perturbation technique. The integration of the Burgers equation is performed by the (G\\prime /G)-expansion method. The effects of positron concentration, ion–electron temperature ratio, electron–positron temperature ratio, ion viscosity coefficient, relativistic streaming factor and the strength of the electron and positron nonextensivity on the nonlinear propagation of ion acoustic shock and periodic waves are presented graphically and the relevant physical explanations are provided.
S. W. H. Cowley
2006-03-01
Full Text Available Recent spectroscopic observations of Jupiter's "main oval" auroras indicate that the primary auroral electron beam is routinely accelerated to energies of ~100 keV, and sometimes to several hundred keV, thus approaching the relativistic regime. This suggests the need to re-examine the classic non-relativistic theory of auroral electron acceleration by field-aligned electric fields first derived by Knight (1973, and to extend it to cover relativistic situations. In this paper we examine this problem for the case in which the source population is an isotropic Maxwellian, as also assumed by Knight, and derive exact analytic expressions for the field-aligned current density (number flux and kinetic energy flux of the accelerated population, for arbitrary initial electron temperature, acceleration potential, and field strength beneath the acceleration region. We examine the limiting behaviours of these expressions, their regimes of validity, and their implications for auroral acceleration in planetary magnetospheres (and like astrophysical systems. In particular, we show that for relativistic accelerating potentials, the current density increases as the square of the minimum potential, rather than linearly as in the non-relativistic regime, while the kinetic energy flux then increases as the cube of the potential, rather than as the square.
Wang, X; Waxman, E; Wang, Xiaohu; Loeb, Abraham; Waxman, Eli
2002-01-01
We analyze the stability of a relativistic double (forward/reverse) shock system which forms when the fireball of a Gamma-Ray Burst (GRB) impacts on the surrounding medium. We find this shock system to be stable to linear global perturbations for either a uniform or a wind (r^{-2}) density profile of the ambient medium. For the wind case, we calculate analytically the frequencies of the normal modes which could modulate the early short-term variability of GRB afterglows. We find that perturbations in the double shock system could induce oscillatory fluctuations in the observed flux on short (down to seconds) time scales during the early phase of an afterglow.
Numerical simulations of the internal shock model in magnetized relativistic jets of blazars
Rueda-Becerril, Jesus M; Aloy, Miguel A
2015-01-01
The internal shocks scenario in relativistic jets is used to explain the variability of the blazar emission. Recent studies have shown that the magnetic field significantly alters the shell collision dynamics, producing a variety of spectral energy distributions and light-curves patterns. However, the role played by magnetization in such emission processes is still not entirely understood. In this work we numerically solve the magnetohydodynamic evolution of the magnetized shells collision, and determine the influence of the magnetization on the observed radiation. Our procedure consists in systematically varying the shell Lorentz factor, relative velocity, and viewing angle. The calculations needed to produce the whole broadband spectral energy distributions and light-curves are computationally expensive, and are achieved using a high-performance parallel code.
Liu, M; Li, Y T; Yuan, D W; Chen, M; Mulser, P; Sheng, Z M; Murakami, M; Yu, L L; Zheng, X L; Zhang, J
2016-01-01
Laser-driven collisonless electrostatic shock formation and the subsequent ion acceleration have been studied in near critical density plasmas. Particle-in-cell simulations show that both the speed of laser-driven collisionless electrostatic shock and the energies of shock-accelerated ions can be greatly enhanced due to fast laser propagation in near critical density plasmas. However, a response time longer than tens of laser wave cycles is required before the shock formation in a near critical density plasma, in contrast to the quick shock formation in a highly overdense target. More important, we find that some ions can be reflected by the collisionless shock even if the electrostatic potential jump across the shock is smaller than the ion kinetic energy in the shock frame, which seems against the conventional ion-reflection condition. These anomalous ion reflections are attributed to the strongly time-oscillating electric field accompanying laser-driven collisionless shock in a near critical density plasma...
Guo, Xinyi; Narayan, Ramesh
2014-01-01
Electron acceleration to non-thermal energies in low Mach number (M<5) shocks is revealed by radio and X-ray observations of galaxy clusters and solar flares, but the electron acceleration mechanism remains poorly understood. Diffusive shock acceleration, also known as first-order Fermi acceleration, cannot be directly invoked to explain the acceleration of electrons. Rather, an additional mechanism is required to pre-accelerate the electrons from thermal to supra-thermal energies, so they can then participate in the Fermi process. In this work, we use two- and three-dimensional particle-in-cell plasma simulations to study electron acceleration in low Mach number shocks. We focus on the particle energy spectra and the acceleration mechanism in a reference run with M=3. We find that about 15 percent of the electrons can be efficiently accelerated, forming a non-thermal power-law tail in the energy spectrum with a slope of p~2.4. Initially, thermal electrons are energized at the shock front via shock drift a...
Nonthermal Particle Acceleration in 3D Relativistic Magnetic Reconnection in Pair Plasma
Werner, Gregory R.; Uzdensky, Dmitri A.
2017-07-01
As a fundamental process converting magnetic to plasma energy in high-energy astrophysical plasmas, relativistic magnetic reconnection is a leading explanation for the acceleration of particles to the ultrarelativistic energies that are necessary to power nonthermal emission (especially X-rays and gamma-rays) in pulsar magnetospheres and pulsar wind nebulae, coronae and jets of accreting black holes, and gamma-ray bursts. An important objective of plasma astrophysics is therefore the characterization of nonthermal particle acceleration (NTPA) effected by reconnection. Reconnection-powered NTPA has been demonstrated over a wide range of physical conditions using large 2D kinetic simulations. However, its robustness in realistic 3D reconnection—in particular, whether the 3D relativistic drift-kink instability (RDKI) disrupts NTPA—has not been systematically investigated, although pioneering 3D simulations have observed NTPA in isolated cases. Here, we present the first comprehensive study of NTPA in 3D relativistic reconnection in collisionless electron-positron plasmas, characterizing NTPA as the strength of 3D effects is varied systematically via the length in the third dimension and the strength of the guide magnetic field. We find that, while the RDKI prominently perturbs 3D reconnecting current sheets, it does not suppress particle acceleration, even for zero guide field; fully 3D reconnection robustly and efficiently produces nonthermal power-law particle spectra closely resembling those obtained in 2D. This finding provides strong support for reconnection as the key mechanism powering high-energy flares in various astrophysical systems. We also show that strong guide fields significantly inhibit NTPA, slowing reconnection and limiting the energy available for plasma energization, yielding steeper and shorter power-law spectra.
Optics measurement and correction during beam acceleration in the Relativistic Heavy Ion Collider
Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.
2014-09-09
To minimize operational complexities, setup of collisions in high energy circular colliders typically involves acceleration with near constant β-functions followed by application of strong focusing quadrupoles at the interaction points (IPs) for the final beta-squeeze. At the Relativistic Heavy Ion Collider (RHIC) beam acceleration and optics squeeze are performed simultaneously. In the past, beam optics correction at RHIC has taken place at injection and at final energy with some interpolation of corrections into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats which if corrected could minimize undesirable emittance dilutions and maximize the spin polarization of polarized proton beams by avoidance of higher-order multipole fields sampled by particles within the bunch. In this report the methodology now operational at RHIC for beam optics corrections during acceleration with simultaneous beta-squeeze will be presented together with measurements which conclusively demonstrate the superior beam control. As a valuable by-product, the corrections have minimized the beta-beat at the profile monitors so reducing the dominant error in and providing more precise measurements of the evolution of the beam emittances during acceleration.
Clayton, C. E.; Marsh, K. A.; Dyson, A.; Everett, M.; Lal, A.; Leemans, W. P.; Williams, R.; Joshi, C.
1993-01-01
High-gradient acceleration of externally injected 2.1-MeV electrons by a laser beat wave driven relativistic plasma wave has been demonstrated for the first time. Electrons with energies up to the detection limit of 9.1 MeV were detected when such a plasma wave was resonantly excited using a two-frequency laser. This implies a gradient of 0.7 GeV/m, corresponding to a plasma-wave amplitude of more than 8%. The electron signal was below detection threshold without injection or when the laser was operated on a single frequency.
The acceleration of electrons at a spherical coronal shock in a streamer-like coronal field
Kong, Xiangliang; Chen, Yao; Guo, Fan
2016-03-01
We study the effect of large-scale coronal magnetic field on the electron acceleration at a spherical coronal shock using a test-particle method. The coronal field is approximated by an analytical solution with a streamer-like magnetic field featured by partially open magnetic field and a current sheet at the equator atop the closed region. It shows that the closed field plays the role of a trapping agency of shock-accelerated electrons, allowing for repetitive reflection and acceleration, therefore can greatly enhance the shock-electron acceleration efficiency. It is found that, with an ad hoc pitch-angle scattering, electron injected in the open field at the shock flank can be accelerated to high energies as well. In addition, if the shock is faster or stronger, a relatively harder electron energy spectrum and a larger maximum energy can be achieved.
Role of the Russell-McPherron Effect in the Acceleration of Relativistic Electrons
McPherron, R. L.; Baker, D. N.; Crooker, N. U.
2010-01-01
While it is well known that high fluxes of relativistic electrons in the Earth's radiation belts are associated with high-speed solar wind and its heightened geoeffectiveness,less known is the fact that the Russell McPherron(R M) effect strongly controls whether or not a given high-speed stream is geoffective. To test whether it then follows that the R M effect also strongly controls fluxes of relativistic electrons, we perform a superposed epoch analysis across corotating interaction regions (CIR) keyed on the interfaces between slow and fast wind. A total of 394 stream interfaces were identified in the years 1994-2006. Equinoctial interfaces were separated into four classes based on the R-M effect,that is, whether the solar wind on either side of the interface was either(geo)effective (E) or ineffective (I) depending on season and the polarity of the interplanetary magnetic field (IMF). Four classes of interface identified as II, IE, EI,and EE are possible. The classes IE and EI correspond to CIRs with polarity changes indicating passage through the heliospheric current sheet. To characterize the behavior of solar wind and magnetospheric variables, we produced maps of dynamic cumulative probability distribution functions (cdfs) as a function of time over 10-day intervals centered on the interfaces. These reveal that effective high-speed streams have geomagnetic activity nearly twice as strong as ineffective streams and electron fluxes a factor of 12 higher. In addition they show that an effective low-speed stream increases the flux of relativistic electrons before the interface so that an effective to ineffective transition results in lower fluxes after the interface.We conclude that the R-M effect plays a major role in organizing and sustaining a sequence of physical processes responsible for the acceleration of relativistic electrons.
Liu, Ruoyu
2015-06-10
Ultrahigh energy cosmic rays are extreme energetic particles from outer space. They have aroused great interest among scientists for more than fifty years. However, due to the rarity of the events and complexity of the process of their propagation to Earth, they are still one of the biggest puzzles in modern high energy astrophysics. This dissertation is dedicated to study the origin of ultrahigh energy cosmic rays from various aspects. Firstly, we discuss a possible link between recently discovered sub-PeV/PeV neutrinos and ultrahigh energy cosmic rays. If these two kinds of particles share the same origin, the observation of neutrinos may provide additional and non-trivial constraints on the sources of ultrahigh energy cosmic rays. Secondly, we jointly employ the chemical composition measurement and the arrival directions of ultrahigh energy cosmic rays, and find a robust upper limit for distances of sources of ultrahigh energy cosmic rays above ∝55 EeV, as well as a lower limit for their metallicities. Finally, we study the shear acceleration mechanism in relativistic jets, which is a more efficient mechanism for the acceleration of higher energy particle. We compute the acceleration efficiency and the time-dependent particle energy spectrum, and explore the feature of synchrotron radiation of the accelerated particles. The possible realizations of this mechanism for acceleration of ultrahigh energy cosmic rays in different astrophysical environments is also discussed.
Reforming perpendicular shocks in the presence of pickup protons: initial ion acceleration
R. E. Lee
2005-02-01
Full Text Available Acceleration processes associated with the heliospheric termination shock may provide a source of anomalous cosmic rays (ACRs. Recent kinetic simulations of supercritical, quasi-perpendicular shocks have yielded time varying shock solutions that cyclically reform on the spatio-temporal scales of the incoming protons. Whether a shock solution is stationary or reforming depends upon the plasma parameters which, for the termination shock, are ill defined but believed to be within the time-dependent regime. Here we present results from high phase space resolution particle-in-cell simulations for a three-component plasma (solar wind protons, electrons and pickup protons appropriate for the termination shock. We find reforming shock solutions which generate suprathermal populations for both proton components, with the pickup ions reaching energies of order twenty times the solar wind inflow energy. This suprathermal "injection" population is required as a seed population for subsequent acceleration at the shock which can in turn generate ACRs.
Evidence for acceleration of outer zone electrons to relativistic energies by whistler mode chorus
N. P. Meredith
Full Text Available We use plasma wave and electron data from the Combined Release and Radiation Effects Satellite (CRRES to investigate the viability of a local stochastic electron acceleration mechanism to relativistic energies driven by gyroresonant interactions with whistler mode chorus. In particular, we examine the temporal evolution of the spectral response of the electrons and the waves during the 9 October 1990 geomagnetic storm. The observed hardening of the electron energy spectra over about 3 days in the recovery phase is coincident with prolonged substorm activity, as monitored by the AE index and enhanced levels of whistler mode chorus waves. The observed spectral hardening is observed to take place over a range of energies appropriate to the resonant energies associated with Doppler-shifted cyclotron resonance, as supported by the construction of realistic resonance curves and resonant diffusion surfaces. Furthermore, we show that the observed spectral hardening is not consistent with energy-independent radial diffusion models. These results provide strong circumstantial evidence for a local stochastic acceleration mechanism, involving the energisation of a seed population of electrons with energies of the order of a few hundred keV to relativistic energies, driven by wave-particle interactions involving whistler mode chorus. The results suggest that this mechanism contributes to the reformation of the relativistic outer zone population during geomagnetic storms, and is most effective when the recovery phase is characterised by prolonged substorm activity. An additional significant result of this paper is that we demonstrate that the lower energy part of the storm-time electron distribution is in steady-state balance, in accordance with the Kennel and Petschek (1966 theory of limited stably-trapped particle fluxes.
Key words. Magnetospheric physics (storms and substorms, energetic particles, trapped – Space plasma physics (wave
Murphy, G. C.; Dieckmann, M. E.; Bret, A.; Drury, L. O'c.
2010-12-01
Context. The prompt emissions of gamma-ray bursts (GRBs) are seeded by radiating ultrarelativistic electrons. Kinetic energy dominated internal shocks propagating through a jet launched by a stellar implosion, are expected to dually amplify the magnetic field and accelerate electrons. Aims: We explore the effects of density asymmetry and of a quasi-parallel magnetic field on the collision of two plasma clouds. Methods: A two-dimensional relativistic particle-in-cell (PIC) simulation models the collision with 0.9c of two plasma clouds, in the presence of a quasi-parallel magnetic field. The cloud density ratio is 10. The densities of ions and electrons and the temperature of 131 keV are equal in each cloud, and the mass ratio is 250. The peak Lorentz factor of the electrons is determined, along with the orientation and the strength of the magnetic field at the cloud collision boundary. Results: The magnetic field component orthogonal to the initial plasma flow direction is amplified to values that exceed those expected from the shock compression by over an order of magnitude. The forming shock is quasi-perpendicular due to this amplification, caused by a current sheet which develops in response to the differing deflection of the upstream electrons and ions incident on the magnetised shock transition layer. The electron deflection implies a charge separation of the upstream electrons and ions; the resulting electric field drags the electrons through the magnetic field, whereupon they acquire a relativistic mass comparable to that of the ions. We demonstrate how a magnetic field structure resembling the cross section of a flux tube grows self-consistently in the current sheet of the shock transition layer. Plasma filamentation develops behind the shock front, as well as signatures of orthogonal magnetic field striping, indicative of the filamentation instability. These magnetic fields convect away from the shock boundary and their energy density exceeds by far the
Zhang, Haocheng; Li, Hui; Böttcher, Markus
2015-01-01
The optical radiation and polarization signatures in blazars are known to be highly variable during flaring activities. It is frequently argued that shocks are the main driver of the flaring events. However, the spectral variability modelings generally lack detailed considerations of the self-consistent magnetic field evolution modeling, thus so far the associated optical polarization signatures are poorly understood. We present the first simultaneous modeling of the optical radiation and polarization signatures based on 3D magnetohydrodynamic simulations of relativistic shocks in the blazar emission environment, with the simplest physical assumptions. By comparing the results with observations, we find that shocks in a weakly magnetized environment will largely lead to significant changes in the optical polarization signatures, which are seldom seen in observations. Hence an emission region with relatively strong magnetization is preferred. In such an environment, slow shocks may produce minor flares with ei...
Haider, Md. Masum
2016-12-01
An attempt has been taken to find a general equation for degenerate pressure of Chandrasekhar and constants, by using which one can study nonrelativistic as well as ultra-relativistic cases instead of two different equations and constants. Using the general equation, ion-acoustic solitary and shock waves have been studied and compared, numerically and graphically, the two cases in same situation of electron-positron-ion plasmas. Korteweg-de Vries (KdV) and KdV-Barger equations have been derived as well as their solution to study the soliton and shock profiles, respectively.
2015-05-05
AND SUBTITLE LASER-DRIVEN ULTRA-RELATIVISTIC PLASMAS - NUCLEAR FUSION IN COULOMB SHOCK WAVES, ROUGE WAVES, AND BACKGROUND MATTER. 5a. CONTRACT...blackbody radiation on free electrons .........................9 2.vi. Proposal of ultimate test of laser nuclear fusion efficiency in clusters...domain of energies and temperatures, with applications in particular to controlled nuclear fusion . 2. Final technical report on the grant #F49620-11-1
Guo, Fan
2010-01-01
We study the physics of electron acceleration at collisionless shocks that move through a plasma containing large-scale magnetic fluctuations. We numerically integrate the trajectories of a large number of electrons, which are treated as test particles moving in the time dependent electric and magnetic fields determined from 2-D hybrid simulations (kinetic ions, fluid electron). The large-scale magnetic fluctuations effect the electrons in a number of ways and lead to efficient and rapid energization at the shock front. Since the electrons mainly follow along magnetic lines of force, the large-scale braiding of field lines in space allows the fast-moving electrons to cross the shock front several times, leading to efficient acceleration. Ripples in the shock front occuring at various scales will also contribute to the acceleration by mirroring the electrons. Our calculation shows that this process favors electron acceleration at perpendicular shocks. The current study is also helpful in understanding the inje...
Collisionless Weibel Shocks and Electron Acceleration in Gamma-Ray Bursts
Ardaneh, Kazem; Cai, Dongsheng; Nishikawa, Ken-Ichi; Lembége, Bertrand
2015-09-01
A study of collisionless external shocks in gamma-ray bursts is presented. The shock structure, electromagnetic field, and process of electron acceleration are assessed by performing a self-consistent 3D particle-in-cell simulation. In accordance with hydrodynamic shock systems, the shock consists of a reverse shock (RS) and forward shock separated by a contact discontinuity. The development and structure are controlled by the ion Weibel instability. The ion filaments are sources of strong transverse electromagnetic fields at both sides of the double shock structure over a length of 30-100 ion skin depths. Electrons are heated up to a maximum energy {ɛ }{ele}≈ \\sqrt{{ɛ }{{b}}}, where ɛ is the energy normalized to the total incoming energy. Jet electrons are trapped in the RS transition region due to the presence of an ambipolar electric field and reflection by the strong transverse magnetic fields in the shocked region. In a process similar to shock surfing acceleration for ions, electrons experience drift motion and acceleration by ion filament transverse electric fields in the plane perpendicular to the shock propagation direction. Ultimately, accelerated jet electrons are convected back into the upstream.
The extent of non-thermal particle acceleration in relativistic, electron-positron reconnection
Werner, Greg [University of Colorado; Guo, Fan [Los Alamos National Laboratory
2015-07-21
Reconnection is studied as an explanation for high-energy flares from the Crab Nebula. The production of synchrotron emission >100 MeV challenges classical models of acceleration. 3D simulation shows that reconnection, converting magnetic energy to kinetic energy, can accelerate beyond γ_{rad}. The power-law index and high-energy cutoff are important for understanding the radiation spectrum dN/dγ = f(γ) ∝ γ^{-α}. α and cutoff were measured vs. L and σ, where L is system (simulation) size and σ is upstream magnetization (σ = B^{2}/4πnmc^{2}). α can affect the high-energy cutoff. In conclusion, for collisionless relativistic reconnection in electron-positron plasma, without guide field, n_{b}/n_{d}=0.1: (1) relativistic magnetic reconnection yields power-law particle spectra, (2) the power law index decreases as σ increases, approaching ≈1.2. (3) the power law is cut off at an energy related to acceleration within a single current layer, which is proportional to the current layer length (for small systems, that length is the system length, yielding γ_{c2} ≈ 0.1 L/ρ_{0}; for large systems, the layer length is limited by secondary tearing instability, yielding γ_{c1} ≈ 4σ; the transition from small to large is around L/ρ_{0} = 40σ.). (4) although the large-system energy cutoff is proportional to the average energy per particle, it is significantly higher than the average energy per particle.
Magnetic Dissipation in Relativistic Jets
Yosuke Mizuno
2016-10-01
Full Text Available The most promising mechanisms for producing and accelerating relativistic jets, and maintaining collimated structure of relativistic jets involve magnetohydrodynamical (MHD processes. We have investigated the magnetic dissipation mechanism in relativistic jets via relativistic MHD simulations. We found that the relativistic jets involving a helical magnetic field are unstable for the current-driven kink instability, which leads to helically distorted structure in relativistic jets. We identified the regions of high current density in filamentary current sheets, indicative of magnetic reconnection, which are associated to the kink unstable regions and correlated to the converted regions of magnetic to kinetic energies of the jets. We also found that an over-pressured relativistic jet leads to the generation of a series of stationary recollimation shocks and rarefaction structures by the nonlinear interaction of shocks and rarefaction waves. The differences in the recollimation shock structure due to the difference of the magnetic field topologies and strengths may be observable through mm-VLBI observations and space-VLBI mission.
Fung, Kenneth K. H.; Lewis, Geraint F.; Wu, Xiaofeng
2017-04-01
A vast wealth of literature exists on the topic of rocket trajectory optimisation, particularly in the area of interplanetary trajectories due to its relevance today. Studies on optimising interstellar and intergalactic trajectories are usually performed in flat spacetime using an analytical approach, with very little focus on optimising interstellar trajectories in a general relativistic framework. This paper examines the use of low-acceleration rockets to reach galactic destinations in the least possible time, with a genetic algorithm being employed for the optimisation process. The fuel required for each journey was calculated for various types of propulsion systems to determine the viability of low-acceleration rockets to colonise the Milky Way. The results showed that to limit the amount of fuel carried on board, an antimatter propulsion system would likely be the minimum technological requirement to reach star systems tens of thousands of light years away. However, using a low-acceleration rocket would require several hundreds of thousands of years to reach these star systems, with minimal time dilation effects since maximum velocities only reached about 0.2 c . Such transit times are clearly impractical, and thus, any kind of colonisation using low acceleration rockets would be difficult. High accelerations, on the order of 1 g, are likely required to complete interstellar journeys within a reasonable time frame, though they may require prohibitively large amounts of fuel. So for now, it appears that humanity's ultimate goal of a galactic empire may only be possible at significantly higher accelerations, though the propulsion technology requirement for a journey that uses realistic amounts of fuel remains to be determined.
Krauland, C. M.; Wei, M.; Zhang, S.; Santos, J.; Nicolai, P.; Theobald, W.; Kim, J.; Forestier-Colleoni, P.; Beg, F.
2016-10-01
Understanding the transport physics of a relativistic electron beam in various plasma regimes is crucial for many high-energy-density applications, such as fast heating for advanced ICF schemes and ion sources. Most short pulse laser-matter interaction experiments for transport studies have been performed with initially cold targets where the resistivity is far from that in warm dense plasmas. We present three experiments that have been performed on OMEGA EP in order to extend fast electron transport and energy coupling studies in pre-assembled plasmas from different carbon samples. Each experiment has used one 4 ns long pulse UV beam (1014 W/cm2) to drive a shockwave through the target and a 10 ps IR beam (1019 W/cm2) to create an electron beam moving opposite the shock propagation direction. These shots were compared with initially cold target shots without the UV beam. We fielded three different samples including 340 mg/cc CRF foam, vitreous carbon at 1.4 g/cc, and high density carbon at 3.4 g/cc. Electrons were diagnosed via x-ray fluorescence measurements from a buried Cu tracer in the target, as well as bremsstrahlung emission and escaped electrons reaching an electron spectrometer. Proton radiograph was also performed in the foam shots. Details of each experiment, available data and particle-in-cell simulations will be presented. This work is supported by US DOE NLUF Program, Grant Number DE-NA0002728.
Cosmic-ray acceleration at collisionless astrophysical shocks using Monte-Carlo simulations
Wolff, M
2015-01-01
Context. The diffusive shock acceleration mechanism has been widely accepted as the acceleration mechanism for galactic cosmic rays. While self-consistent hybrid simulations have shown how power-law spectra are produced, detailed information on the interplay of diffusive particle motion and the turbulent electromagnetic fields responsible for repeated shock crossings are still elusive. Aims. The framework of test-particle theory is applied to investigate the effect of diffusive shock acceleration by inspecting the obtained cosmic-ray energy spectra. The resulting energy spectra can be obtained this way from the particle motion and, depending on the prescribed turbulence model, the influence of stochastic acceleration through plasma waves can be studied. Methods. A numerical Monte-Carlo simulation code is extended to include collisionless shock waves. This allows one to trace the trajectories of test particle while they are being accelerated. In addition, the diffusion coefficients can be obtained directly fro...
Baker, D. N.; Blake, J. B.; Callis, L. B.; Cummings, J. R.; Hovestadt, D.; Kanekal, S.; Klecker, B.; Mewaldt, R. A.; Zwickl, R. D.
1994-01-01
High-energy electrons have been measured systematically in a low-altitude (520 x 675 km), nearly polar (inclination = 82 deg) orbit by sensitive instruments onboard the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX). Count rate channels with electron energy thresholds ranging from 0.4 MeV to 3.5 MeV in three different instruments have been used to examine relativistic electron variations as a function of L-shell parameter and time. A long run of essentially continuous data (July 1992 - July 1993) shows substantial acceleration of energetic electrons throughout much of the magnetosphere on rapid time scales. This acceleration appears to be due to solar wind velocity enhancements and is surprisingly large in that the radiation belt 'slot' region often is filled temporarily and electron fluxes are strongly enhanced even at very low L-values (L aprroximately 2). A superposed epoch analysis shows that electron fluxes rise rapidly for 2.5 is approximately less than L is approximately less than 5. These increases occur on a time scale of order 1-2 days and are most abrupt for L-values near 3. The temporal decay rate of the fluxes is dependent on energy and L-value and may be described by J = Ke-t/to with t(sub o) approximately equals 5-10 days. Thus, these results suggest that the Earth's magnetosphere is a cosmic electron accelerator of substantial strength and efficiency.
Relativistic-Klystron two-beam accelerator as a power source for future linear colliders
Lidia, S. M.; Anderson, D. E.; Eylon, S.; Henestroza, E.; Houck, T. L.; Westenskow, G. A.; Vanecek, D. L.; Yu, S. S.
1999-05-01
The technical challenge for making two-beam accelerators into realizable power sources for high-energy colliders lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2-kA, 1-MeV, induction gun for a prototype relativistic klystron two-beam accelerator (RK-TBA). The electron source will be a 8.9 cm diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150-ns flat top (1% energy variation), and a normalized edge emittance of less than 300 pi-mm-mr. The prototype accelerator will be used to study, physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. We have also been studying optimization parameters, such as frequency, for the application of the RK-TBA concept to multi-TeV linear colliders. As an rf power source the RK-TBA scales favorably up to frequencies around 35 GHz. An overview of this work with details of the design and performance of the prototype injector, beam line, and diagnostics will be presented.
Cosmic-ray acceleration at collisionless astrophysical shocks using Monte-Carlo simulations
Wolff, M.; Tautz, R. C.
2015-08-01
Context. The diffusive shock acceleration mechanism has been widely accepted as the acceleration mechanism for galactic cosmic rays. While self-consistent hybrid simulations have shown how power-law spectra are produced, detailed information on the interplay of diffusive particle motion and the turbulent electromagnetic fields responsible for repeated shock crossings are still elusive. Aims: The framework of test-particle theory is applied to investigate the effect of diffusive shock acceleration by inspecting the obtained cosmic-ray energy spectra. The resulting energy spectra can be obtained this way from the particle motion and, depending on the prescribed turbulence model, the influence of stochastic acceleration through plasma waves can be studied. Methods: A numerical Monte-Carlo simulation code is extended to include collisionless shock waves. This allows one to trace the trajectories of test particle while they are being accelerated. In addition, the diffusion coefficients can be obtained directly from the particle motion, which allows for a detailed understanding of the acceleration process. Results: The classic result of an energy spectrum with E-2 is only reproduced for parallel shocks, while, for all other cases, the energy spectral index is reduced depending on the shock obliqueness. Qualitatively, this can be explained in terms of the diffusion coefficients in the directions that are parallel and perpendicular to the shock front.
Transverse self-modulation of ultra-relativistic lepton beams in the plasma wakefield accelerator
Vieira, J; Mori, W B; Silva, L O; Muggli, P
2015-01-01
The transverse self-modulation of ultra-relativistic, long lepton bunches in high-density plasmas is explored through full-scale particle-in-cell simulations. We demonstrate that long SLAC-type electron and positron bunches can become strongly self-modulated over centimeter distances, leading to wake excitation in the blowout regime with accelerating fields in excess of 20 GV/m. We show that particles energy variations exceeding 10 GeV can occur in meter-long plasmas. We find that the self-modulation of positively and negatively charged bunches differ when the blowout is reached. Seeding the self-modulation instability suppresses the competing hosing instability. This work reveals that a proof-of-principle experiment to test the physics of bunch self-modulation can be performed with available lepton bunches and with existing experimental apparatus and diagnostics.
Bancelin, D; Thuillot, W
2016-01-01
The integration of the equations of motion in gravitational dynamical systems -- either in our Solar System or for extra-solar planetary system -- being non integrable in the global case, is usually performed by means of numerical integration. Among the different numerical techniques available for solving ordinary differential equations, the numerical integration using Lie series has shown some advantages. In its original form (Hanslmeier 1984), it was limited to the N-body problem where only gravitational interactions are taken into account. We present in this paper a generalisation of the method by deriving an expression of the Lie-terms when other major forces are considered. As a matter of fact, previous studies had been made but only for objects moving under gravitational attraction. If other perturbations are added, the Lie integrator has to be re-built. In the present work we consider two cases involving position and position-velocity dependent perturbations: relativistic acceleration in the framework ...
Rapid cosmic-ray acceleration at perpendicular shocks in supernova remnants
Takamoto, Makoto
2015-01-01
Perpendicular shocks are shown to be rapid particle accelerators that perform optimally when the ratio $u_{\\rm s}$ of the shock speed to the particle speed roughly equals the ratio $1/\\eta$ of the scattering rate to the gyro frequency. We use analytical methods and Monte-Carlo simulations to solve the kinetic equation that governs the anisotropy generated at these shocks, and find, for $\\eta u_{\\rm s}\\approx1$, that the spectral index softens by unity and the acceleration time increases by a factor of two compared to the standard result of diffusive shock acceleration theory. These results provide a theoretical basis for the thirty-year-old conjecture that a supernova exploding into the wind of a Wolf-Rayet star may accelerate protons to an energy exceeding $10^{15}\\,$eV.
The 'toothbrush-cluster': probing particle acceleration by merger induced shock waves
van Weeren, Reinout
2012-09-01
We have discovered a spectacular merging galaxy cluster hosting a 2-Mpc elongated radio source, suggesting particle acceleration at merger shocks. The large straight extent is however very difficult to explain with current merger scenarios and a very high Mach number of 4.5 is required to explain the radio spectral index. We therefore argue that this cluster is a key object to test current models of shock acceleration and cluster formation. The proposed Chandra+EVLA observations will address the following: (i) is there a compelling need for a more sophisticated particle acceleration mechanism than standard diffusive shock acceleration? And (ii) are we witnessing a very special configuration consisting of multiple merger events that collectively conspire to yield such a linear shock?
Effects of laser polarization on electrostatic shock ion acceleration in near-critical plasmas
Kim, Young-Kuk; Kang, Teyoun; Hur, Min Sup
2016-10-01
Collisionless electrostatic shock ion acceleration has become a major regime of laser-driven ion acceleration owing to generation of quasi-monoenergetic ion beams from moderate parametric conditions of lasers and plasmas in comparison with target-normal-sheath-acceleration or radiation pressure acceleration. In order to construct the shock, plasma heating is an essential condition for satisfying Mach number condition 1.5 Weibel instability. This work was supported by the Basic Science Research Program (NRF- 2013R1A1A2006353) and the Creative Allied Project (CAP-15-06-ETRI).
ION ACCELERATION AT THE QUASI-PARALLEL BOW SHOCK: DECODING THE SIGNATURE OF INJECTION
Sundberg, Torbjörn; Haynes, Christopher T.; Burgess, D. [School of Physics and Astronomy, Queen Mary University of London, London, E1 4NS (United Kingdom); Mazelle, Christian X. [IRAP, Université Paul Sabatier Toulouse III-CNRS, 31028 Toulouse Cedex 4 (France)
2016-03-20
Collisionless shocks are efficient particle accelerators. At Earth, ions with energies exceeding 100 keV are seen upstream of the bow shock when the magnetic geometry is quasi-parallel, and large-scale supernova remnant shocks can accelerate ions into cosmic-ray energies. This energization is attributed to diffusive shock acceleration; however, for this process to become active, the ions must first be sufficiently energized. How and where this initial acceleration takes place has been one of the key unresolved issues in shock acceleration theory. Using Cluster spacecraft observations, we study the signatures of ion reflection events in the turbulent transition layer upstream of the terrestrial bow shock, and with the support of a hybrid simulation of the shock, we show that these reflection signatures are characteristic of the first step in the ion injection process. These reflection events develop in particular in the region where the trailing edge of large-amplitude upstream waves intercept the local shock ramp and the upstream magnetic field changes from quasi-perpendicular to quasi-parallel. The dispersed ion velocity signature observed can be attributed to a rapid succession of ion reflections at this wave boundary. After the ions’ initial interaction with the shock, they flow upstream along the quasi-parallel magnetic field. Each subsequent wavefront in the upstream region will sweep the ions back toward the shock, where they gain energy with each transition between the upstream and the shock wave frames. Within three to five gyroperiods, some ions have gained enough parallel velocity to escape upstream, thus completing the injection process.
Murphy, Gareth C; Bret, Antoine; Drury, Luke O'C; 10.1051/0004-6361/201015294
2010-01-01
The prompt emissions of gamma-ray bursts are seeded by radiating ultrarelativistic electrons. Internal shocks propagating through a jet launched by a stellar implosion, are expected to amplify the magnetic field & accelerate electrons. We explore the effects of density asymmetry & a quasi-parallel magnetic field on the collision of plasma clouds. A 2D relativistic PIC simulation models the collision of two plasma clouds, in the presence of a quasi-parallel magnetic field. The cloud density ratio is 10. The densities of ions & electrons & the temperature of 131 keV are equal in each cloud. The mass ratio is 250. The peak Lorentz factor of the electrons is determined, along with the orientation & strength of the magnetic field at the cloud collision boundary. The magnetic field component orthogonal to the initial plasma flow direction is amplified to values that exceed those expected from shock compression by over an order of magnitude. The forming shock is quasi-perpendicular due to this am...
Blast-Induced Acceleration in a Shock Tube: Distinguishing Primary and Tertiary Blast Injury
2014-10-01
Annual, Year 2 3. DATES COVERED 4. TITLE AND SUBTITLE Blast-Induced Acceleration in a Shock Tube : Distinguishing Primary and Tertiary 5a...Using a highly characterized shock tube simulation of blast, rats will be exposed to BOP with varied peak amplitudes and impulse in association...understanding of the relation of the former to the latter. As the use of shock tubes has greatly expanded in recent years for biomedical research
Masters, A.; Sulaiman, A. H.; Stawarz, Ł.; Reville, B.; Sergis, N.; Fujimoto, M.; Burgess, D.; Coates, A. J.; Dougherty, M. K.
2017-07-01
A leading explanation for the origin of Galactic cosmic rays is acceleration at high-Mach number shock waves in the collisionless plasma surrounding young supernova remnants. Evidence for this is provided by multi-wavelength non-thermal emission thought to be associated with ultrarelativistic electrons at these shocks. However, the dependence of the electron acceleration process on the orientation of the upstream magnetic field with respect to the local normal to the shock front (quasi-parallel/quasi-perpendicular) is debated. Cassini spacecraft observations at Saturn’s bow shock have revealed examples of electron acceleration under quasi-perpendicular conditions, and the first in situ evidence of electron acceleration at a quasi-parallel shock. Here we use Cassini data to make the first comparison between energy spectra of locally accelerated electrons under these differing upstream magnetic field regimes. We present data taken during a quasi-perpendicular shock crossing on 2008 March 8 and during a quasi-parallel shock crossing on 2007 February 3, highlighting that both were associated with electron acceleration to at least MeV energies. The magnetic signature of the quasi-perpendicular crossing has a relatively sharp upstream-downstream transition, and energetic electrons were detected close to the transition and immediately downstream. The magnetic transition at the quasi-parallel crossing is less clear, energetic electrons were encountered upstream and downstream, and the electron energy spectrum is harder above ˜100 keV. We discuss whether the acceleration is consistent with diffusive shock acceleration theory in each case, and suggest that the quasi-parallel spectral break is due to an energy-dependent interaction between the electrons and short, large-amplitude magnetic structures.
Sahai, Aakash A
2014-01-01
We analyze the motion of the plasma critical layer by two different processes in the relativistic-electron laser-plasma interaction regime ($a_0>1$). The differences are highlighted when the critical layer ions are stationary in contrast to when they move with it. Controlling the speed of the plasma critical layer in this regime is essential for creating low-$\\beta$ traveling acceleration structures of sufficient laser-excited potential for laser ion accelerators (LIA). In Relativistically Induced Transparency Acceleration (RITA) scheme the heavy plasma-ions are fixed and only trace-density light-ions are accelerated. The relativistic critical layer and the acceleration structure move longitudinally forward by laser inducing transparency through apparent relativistic increase in electron mass. In the Radiation Pressure Acceleration (RPA) scheme the whole plasma is longitudinally pushed forward under the action of the laser radiation pressure, possible only when plasma ions co-propagate with the laser front. I...
Sahai, Aakash A; Tableman, A R; Mori, W B; Katsouleas, T C
2014-01-01
The relativistically induced transparency acceleration (RITA) scheme of proton and ion acceleration using laser-plasma interactions is introduced, modeled, and compared to the existing schemes. Protons are accelerated with femtosecond relativistic pulses to produce quasimonoenergetic bunches with controllable peak energy. The RITA scheme works by a relativistic laser inducing transparency to densities higher than the cold-electron critical density, while the background heavy ions are stationary. The rising laser pulse creates a traveling acceleration structure at the relativistic critical density by ponderomotively driving a local electron density inflation, creating an electron snowplow and a co-propagating electrostatic potential. The snowplow advances with a velocity determined by the rate of the rise of the laser's intensity envelope and the heavy-ion-plasma density gradient scale length. The rising laser is incrementally rendered transparent to higher densities such that the relativistic-electron plasma ...
Heavy-ion Acceleration and Self-generated Waves in Coronal Shocks
Battarbee, Markus; Vainio, Rami; 10.1051/0004-6361/201117507
2013-01-01
Context: Acceleration in coronal mass ejection driven shocks is currently considered the primary source of large solar energetic particle events. Aims: The solar wind, which feeds shock-accelerated particles, includes numerous ion populations, which offer much insight into acceleration processes. We present first simulations of shock-accelerated minor ions, in order to explore trapping dynamics and acceleration timescales in detail. Methods: We have simulated diffusive shock acceleration of minor ions (3He2+, 4He2+, 16O6+ and 56Fe14+) and protons using a Monte Carlo method, where self-generated Alfv\\'enic turbulence allows for repeated shock crossings and acceleration to high energies. Results: We present the effect of minor ions on wave generation, especially at low wavenumbers, and show that it is significant. We find that maximum ion energy is determined by the competing effects of particle escape due to focusing in an expanding flux tube and trapping due to the amplified turbulence. We show the dependence...
Shock-acceleration of a pair of gas inhomogeneities
Navarro Nunez, Jose Alonso; Reese, Daniel; Oakley, Jason; Rothamer, David; Bonazza, Riccardo
2014-11-01
A shock wave moving through the interstellar medium distorts density inhomogeneities through the deposition of baroclinic vorticity. This process is modeled experimentally in a shock tube for a two-bubble interaction. A planar shock wave in nitrogen traverses two soap-film bubbles filled with argon. The two bubbles share an axis that is orthogonal to the shock wave and are separated from one another by a distance of approximately one bubble diameter. Atomization of the soap-film by the shock wave results in dispersal of droplets that are imaged using Mie scattering with a laser sheet through the bubble axis. Initial condition images of the bubbles in free-fall (no holder) are taken using a high-speed camera and then two post-shock images are obtained with two laser pulses and two cameras. The first post-shock image is of the early time compression stage when the sphere has become ellipsoidal, and the second image shows the emergence of vortex rings which have evolved due to vorticity depostion by the shock wave. Bubble morphology is characterized with length scale measurements.
Frail, Dale A
2011-01-01
We review the class of galactic supernova remnants which show strong interactions with molecular clouds, revealed through shock-excited hydroxyl masers. These remnants are preferentially found among the known GeV and TeV detections of supernova remnants. It has been argued that the masers trace out the sites of hadronic particle acceleration. We discuss what is known about the physical conditions of these shocked regions and we introduce a potential new maser tracer for identifying the sites of cosmic ray acceleration. This review includes a reasonably complete bibliography for researchers new to the topic of shock-excited masers and supernova remnants.
Nishizuka, N
2013-01-01
We propose the particle acceleration model coupled with multiple plasmoid ejections in a solar flare. Unsteady reconnection produces plasmoids in a current sheet and ejects them out to the fast shocks, where particles in a plasmoid are reflected upstream the shock front by magnetic mirror effect. As the plasmoid passes through the shock front, the reflection distance becomes shorter and shorter driving Fermi acceleration, until it becomes proton Larmor radius. The fractal distribution of plasmoids may also have a role in naturally explaining the power-law spectrum in nonthermal emissions.
Quantification of initial-data uncertainty on a shock-accelerated gas cylinder
Tritschler, V. K., E-mail: volker.tritschler@aer.mw.tum.de; Avdonin, A.; Hickel, S.; Hu, X. Y.; Adams, N. A. [Institute of Aerodynamics and Fluid Mechanics, Technische Universität München, 85747 Garching (Germany)
2014-02-15
We quantify initial-data uncertainties on a shock accelerated heavy-gas cylinder by two-dimensional well-resolved direct numerical simulations. A high-resolution compressible multicomponent flow simulation model is coupled with a polynomial chaos expansion to propagate the initial-data uncertainties to the output quantities of interest. The initial flow configuration follows previous experimental and numerical works of the shock accelerated heavy-gas cylinder. We investigate three main initial-data uncertainties, (i) shock Mach number, (ii) contamination of SF{sub 6} with acetone, and (iii) initial deviations of the heavy-gas region from a perfect cylindrical shape. The impact of initial-data uncertainties on the mixing process is examined. The results suggest that the mixing process is highly sensitive to input variations of shock Mach number and acetone contamination. Additionally, our results indicate that the measured shock Mach number in the experiment of Tomkins et al. [“An experimental investigation of mixing mechanisms in shock-accelerated flow,” J. Fluid. Mech. 611, 131 (2008)] and the estimated contamination of the SF{sub 6} region with acetone [S. K. Shankar, S. Kawai, and S. K. Lele, “Two-dimensional viscous flow simulation of a shock accelerated heavy gas cylinder,” Phys. Fluids 23, 024102 (2011)] exhibit deviations from those that lead to best agreement between our simulations and the experiment in terms of overall flow evolution.
Microscopic Processes in Relativistic Jets
Nishikawa, K.-I.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Nordlund, A.; Fredricksen, J.; Sol, H.; Niemiec, J.; Lyubarsky, Y.;
2008-01-01
Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
Collisionless shocks in a partially ionized medium: III. Efficient cosmic ray acceleration
Morlino, G; Bandiera, R; Amato, E; Caprioli, D
2012-01-01
In this paper we present the first formulation of the theory of non-linear particle acceleration in collisionless shocks in the presence of neutral hydrogen in the acceleration region. The dynamical reaction of the accelerated particles, the magnetic field amplification and the magnetic dynamical effects on the shock are also included. The main new aspect consists however in accounting for charge exchange and ionization of neutral hydrogen, which profoundly change the structure of the shock, as discussed in our previous work. This important dynamical effect of neutrals is mainly associated to the so-called neutral return flux, namely the return of hot neutrals from the downstream region to the upstream, where they deposit energy and momentum through charge exchange and ionization. We also present the self-consistent calculation of Balmer line emission from the shock region and discuss how to use measurements of the anomalous width of the different components of the Balmer line to infer the cosmic ray accelera...
Particle Acceleration at a Flare Termination Shock: Effect of Large-scale Magnetic Turbulence
Guo, Fan
2012-01-01
We investigate the acceleration of charged particles (both electrons and protons) at collisionless shocks predicted to exist in the vicinity of solar flares. The existence of standing termination shocks has been examined by flare models and numerical simulations e.g., Shibata,Forbes. We study electron energization by numerically integrating the equations of motion of a large number of test-particle electrons in the time-dependent two-dimensional electric and magnetic fields generated from hybrid simulations (kinetic ions and fluid electron) using parameters typical of the solar flare plasma environment. The shock is produced by injecting plasma flow toward a rigid piston. Large-scale magnetic fluctuations -- known to exist in plasmas and known to have important effects on the nonthermal electron acceleration at shocks -- are also included in our simulations. For the parameters characteristic of the flaring region, our calculations suggest that the termination shock formed in the reconnection outflow region (a...
Hafez, M. G.; Talukder, M. R.; Hossain Ali, M.
2016-05-01
The aim of this comment is to show the solution of the KdVB equation used by Shah et al. (Astrophys. Space Sci. 335:529-537, 2011, doi: 10.1007/s10509-011-0766-y) is not correct. So, the numerical results that are predicted in this manuscript should not be helpful for further investigations in a plasma laboratory. For this reason, we have employed the Bernoulli's equation method to obtain the correct form of analytical solution to this equation, which is appropriate for the study of electrostatic compressive and rarefactive shocks and solitons in relativistic plasmas occurring in polar regions of pulsar.
Gary, Dale E.; Chen, Bin; Bastian, Timothy S.; Shen, Chengcai; Krucker, Sam
2015-04-01
Solar eruptions and their associated solar flares are the most energetic particle accelerators in our solar system. Yet the acceleration mechanism remains uncertain. A possible candidate often invoked in the standard picture of solar eruptions is a termination shock, produced by fast reconnection outflows impinging upon dense, closed loops in a helmet-type geometry. However, the importance of termination shocks in solar particle acceleration remains controversial, mainly because there has been no direct detection of such shocks. Here we report direct imaging of the location and evolution of a termination shock during the rise phase of a solar eruption. The shock appears at radio wavelengths as a narrow surface sandwiched between multitudes of downward-moving plasma blobs and the underlying, newly-reconnected flaring loops, and evolves coherently with a loop-top hard X-ray source in the shock downstream region. The shock produces many short-lived, point-like radio sources, each interpreted as emission from a turbulence cell interacting with fast (nonthermal) electrons. These point-like radio sources clearly outline the termination shock front and their positions change in reaction to the arrival of the fast plasma blobs, which are well-reproduced by our numerical simulations based on a resistive magnetohydrodynamics reconnection model in a standard two-ribbon flare geometry. We further show that a temporary disruption of the shock coincides with a reduction of radio and hard X-ray emission associated with the energetic electron population. Our observations strongly favor a scenario in which the termination shock is responsible for accelerating electrons to high energies.
Cosmic Ray Acceleration by a Versatile Family of Galactic Wind Termination Shocks
Bustard, Chad; Cotter, Cory
2016-01-01
There are two distinct breaks in the cosmic ray (CR) spectrum: the so-called "knee" around $3 \\times 10^{15}$ eV and the so-called "ankle" around $10^{18}$ eV. Diffusive shock acceleration (DSA) at supernova remnant (SNR) shock fronts is thought to accelerate galactic CRs to energies below the knee, while an extragalactic origin is presumed for CRs with energies beyond the ankle. CRs with energies between $3 \\times 10^{15}$ and $10^{18}$ eV, which we dub the "shin," have an unknown origin. It has been proposed that DSA at galactic wind termination shocks, rather than at SNR shocks, may accelerate CRs to these energies. This paper uses the galactic wind model of Bustard et al. (2016) to analyze whether galactic wind termination shocks may accelerate CRs to shin energies within a reasonable acceleration time and whether such CRs can subsequently diffuse back to the galaxy. We argue for acceleration times on the order of 100 Myrs rather than a few billion years, as assumed in some previous works, and we discuss ...
Liu, M.; Weng, S. M.; Li, Y. T.; Yuan, D. W.; Chen, M.; Mulser, P.; Sheng, Z. M.; Murakami, M.; Yu, L. L.; Zheng, X. L.; Zhang, J.
2016-11-01
Laser-driven collisionless electrostatic shock formation and the subsequent ion acceleration have been studied in near critical density plasmas. Particle-in-cell simulations show that both the speed of laser-driven collisionless electrostatic shock and the energies of shock-accelerated ions can be greatly enhanced due to fast laser propagation in near critical density plasmas. However, a response time longer than tens of laser wave cycles is required before the shock formation in a near critical density plasma, in contrast to the quick shock formation in a highly overdense target. More important, we find that some ions can be reflected by the collisionless shock even if the electrostatic potential jump across the shock is smaller than the ion kinetic energy in the shock frame, which seems against the conventional ion-reflection condition. These anomalous ion reflections are attributed to the strong time-oscillating electric field accompanying the laser-driven collisionless shock in a near critical density plasma.
Vladimirov, Andrey E; Ellison, Donald C
2009-01-01
We model strong forward shocks in young supernova remnants with efficient particle acceleration where a nonresonant instability driven by the cosmic ray current amplifies magnetic turbulence in the shock precursor. Particle injection, magnetic field amplification (MFA) and the nonlinear feedback of particles and fields on the bulk flow are derived consistently. The shock structure depends critically on the efficiency of turbulence cascading. If cascading is suppressed, MFA is strong, the shock precursor is stratified, and the turbulence spectrum contains several discrete peaks. These peaks, as well as the amount of MFA, should influence synchrotron X-rays, allowing observational tests of cascading and other assumptions intrinsic to the nonlinear model of nonresonant wave growth.
Oxygen foreshock of Mars and its implication on ion acceleration in the bow shock
Yamauchi, Masatoshi; Lundin, Rickard; Frahm, Rudy; Sauvaud, Jean-Andre; Holmstrom, Mats; Barabash, Stas
2016-04-01
Ion acceleration inside the bow shock is one of the poorly understood phenomena that has been observed for more than 30 years as the foreshock phenomena. While the Fermi-acceleration mechanism explains the diffuse component of foreshock ions, we still do not know the detailed mechanism that produces the discrete intense ions flowing along the local magnetic field direction (with and without gyration). One of the reasons for such difficulty is that majority of the bow shock study was performed for the Earth's case where Oxygen ions cannot be used to understand the acceleration mechanisms. The planetary oxygen ions that reach the Earth's bow shock have already been significantly accelerated, and are not adequate for such a study. In this sense the Martian bow shock is an ideal place to study the acceleration mechanisms leading to foreshock ions, although the nature of the bow shock is slightly different between the Earth and Mars (Yamauchi et al., 2011). On 21 September 2008, the Mars Express (MEX) Ion Mass Analyser (IMA) detected foreshock-like discrete distributions of oxygen ions at around 1 keV in the solar wind attached to the bow shock. This was the first time that a substantial amount of planetary oxygen was observed upstream of the bow shock. The oxygen energy increased from low energy (< 300 keV) inside the magnetosheath (or it should be called an extended bow shock) to nearly 2 keV at more than 2000 km from the bow shock. Foreshock-like protons are also observed but at a shifted location from the oxygen by about 1000 km, at a slightly higher energy, and flowing in a slightly different direction than the oxygen ions. Both protons and oxygen ions are flowing anti-sunward at different angles with respect to the solar wind direction. The observation is consistent with an electric potential barrier at the bow shock that simultaneously accelerates the planetary oxygen ions outward (to form the foreshock oxygen ions) and reflects a portion of the solar wind (to
Studies of beam dynamics in relativistic klystron two-beam accelerators
Lidia, Steven M.
1999-11-01
Two-beam accelerators (TBAs) based upon free-electron lasers (FELs) or relativistic klystrons (RK-TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band (~8-12 GHz) through Ka band (~ 30-35 GHz) frequency regions. Provided that further prototyping shows stable beam propagation with minimal current loss and production of good quality, high-power rf fields, this technology is compatible with current schemes for electron-positron colliders in the multi-TeV center-of-mass scale. A new method of simulating the beam dynamics in accelerators of this type has been developed in this dissertation. There are three main components to this simulation. The first is a tracking algorithm to generate nonlinear transfer maps for pushing noninteracting particles through the external fields. The second component is a 3D Particle-In-Cell (PIC) algorithm that solves a set of Helmholtz equations for the self-fields, including the conducting boundary condition, and generates impulses that are interleaved with the nonlinear maps by means of a split-operation algorithm. The Helmholtz equations are solved by a multi-grid algorithm. The third component is an equivalent circuit equation solver that advances the modal rf cavity fields in time due to excitation by the modulated beam. The RTA project is described, and the simulation code is used to design the latter portions of the experiment. Detailed calculations of the beam dynamics and of the rf cavity output are presented and discussed. A beamline design is presented that will generate nearly 1.2 GW of power from 40 input, gain, and output rv cavities over a 10 m distance. The simulations show that beam current losses are acceptable, and that longitudinal and transverse focusing techniques are sufficient capable of maintaining a high degree of beam quality along the entire beamline. Additional experimental efforts are also
Fernandez, Juan C.
2016-10-01
Laser-plasma interactions in the novel regime of relativistically-induced transparency have been harnessed to generate efficiently intense ion beams with average energies exceeding 10 MeV/nucleon (>100 MeV for protons) at ``table-top'' scales. We have discovered and utilized a self-organizing scheme that exploits persisting self-generated plasma electric ( 0.1 TV/m) and magnetic ( 104 Tesla) fields to reduce the ion-energy (Ei) spread after the laser exits the plasma, thus separating acceleration from spread reduction. In this way we routinely generate aluminum and carbon beams with narrow spectral peaks at Ei up to 310 MeV and 220 MeV, respectively, with high efficiency ( 5%). The experimental demonstration has been done at the LANL Trident laser with 0.12 PW, high-contrast, 0.65 ps Gaussian laser pulses irradiating planar foils up to 250 nm thick. In this regime, Ei scales empirically with laser intensity (I) as I 1 / 2. Our progress is enabled by high-fidelity, massive computer simulations of the experiments. This work advances next-generation compact accelerators suitable for new applications. E . g ., a carbon beam with Ei 400 MeV and 10% energy spread is suitable for fast ignition (FI) of compressed DT. The observed scaling suggests that is feasible with existing target fabrication and PW-laser technologies, using a sub-ps laser pulse with I 2.5 ×1021 W/cm2. These beams have been used on Trident to generate warm-dense matter at solid-densities, enabling us to investigate its equation of state and mixing of heterogeneous interfaces purely by plasma effects distinct from hydrodynamics. They also drive an intense neutron-beam source with great promise for important applications such as active interrogation of shielded nuclear materials. Considerations on controlling ion-beam divergence for their increased utility are discussed. Funded by the LANL LDRD program.
Siminos, E; Grech, M; Fülöp, T
2016-01-01
We study kinetic effects responsible for the transition to relativistic self-induced transparency in the interaction of a circularly-polarized laser-pulse with an overdense plasma and their relation to hole-boring and ion acceleration. It is shown, using particle-in-cell simulations and an analysis of separatrices in single-particle phase-space, that this transition is mediated by the complex interplay of fast electron dynamics and ion motion at the initial stage of the interaction. It thus depends on the ion charge-to-mass ratio and can be controlled by varying the laser temporal profile. Moreover, we find a new regime in which a transition from relativistic transparency to hole-boring occurs dynamically during the course of the interaction. It is shown that, for a fixed laser intensity, this dynamic transition regime allows optimal ion acceleration in terms of both energy and energy spread.
The acceleration of low energy protons by quasi-perpendicular interplanetary shocks
Erdos, G. (Hungarian Academy of Sciences, Budapest (Hungary). Central Research Inst. for Physics); Balogh, A. (Imperial Coll. of Science and Technology, London (UK). Blackett Lab.)
1990-03-01
New aspects of the acceleration of low energy (35-1000 keV) protons by quasi-perpendicular interplanetary shocks are presented, using observations and numerical simulations. Time reverse trajectory calculations of particles are used to derive the behaviour of the angular distribution and spectrum through the shock. These calculations show that for simple planar geometries of the magnetic field and for a power-law spectrum of pre-accelerated particles the expected omnidirectional enhancements are smaller than observed. Pitch angle distributions in the vicinity of six interplanetary shocks have been determined from the measurements carried out onboard the ISEE-3 spacecraft. Reflection of particles was clearly identifiable by the loss cone type angular distribution observed upstream of the shock. Downstream of the shock, the shape and the energy dependence of the pitch angle distributions provide support for the scatter-free model in some cases. However, the observed spikes at the shock passage and bidirectional upstream distributions measured at the nearest to perpendicular shocks, together with other features of particle spectra and angular distributions which cannot be readily explained by model calculations suggest that fluctuations in the magnetic field might also seriously affect the acceleration process. (author).
Cosmic-ray acceleration during the impact of shocks on dense clouds
Jones, T. W.; Kang, Hyesung
1993-01-01
In order to elucidate the properties of diffusive shock acceleration in nonuniform environments, an extensive set of simulations of the dynamical interactions between plane nonradiative shocks and dense gas clouds was carried out initially in static equilibrium with their environments. These time-dependent calculations are based on the two-fluid model for diffusive cosmic ray transport, and include the dynamically active energetic proton component of the cosmic rays as well as passive electron and magnetic field components. Except when the incident shock is itself already dominated by cosmic ray pressure, it is found that the presence of the cloud adds little to the net acceleration efficiency of the original shock and can, in fact, reduce slightly the net amount of energy transferred to cosmic rays after a given time. It is found that, in 2D cloud simulations, the always-weak bow shock and the shock inside the cloud are less important to acceleration during the interaction than the tail shock.
Channeling of relativistic laser pulses in underdense plasmas and subsequent electron acceleration
Naseri N.
2013-11-01
Full Text Available This contribution is concerned with the nonlinear behavior of a relativistic laser pulse focused in an underdense plasma and with the subsequent generation of fast electrons. Specifically, we study the interaction of laser pulses having their intensity Iλ2 in the range [1019, 1020] W/cm2 μm2, focused in a plasma of electron density n0 such that the ratio n0/nc lies in the interval [10−3, 2 × 10−2], nc denoting the critical density; the laser pulse power PL exceeds the critical power for laser channeling Pch. The laser-plasma interaction in such conditions is investigated by means of 3D Particle in Cell (PIC simulations. It is observed that the laser front gives rise to the excitation of a surface wave which propagates along the sharp boundaries of the electron free channel created by the laser pulse. The mechanism responsible for the generation of the fast electrons observed in the PIC simulations is then analyzed by means of a test particles code. It is thus found that the fast electrons are generated by the combination of the betatron process and of the acceleration by the surface wave. The maximum electron energy observed in the simulations with Iλ2 = 1020 W/cm2 μm2 and n0/nc = 2 × 10−2 is 350 MeV.
Kuzichev, Ilya; Shklyar, David
2016-04-01
One of the most challenging problems of the radiation belt studies is the problem of particles energization. Being related to the process of particle precipitation and posing a threat to scientific instruments on satellites, the problem of highly energetic particles in the radiation belts turns out to be very important. A lot of progress has been made in this field, but still some aspects of the energization process remain open. The main mechanism of particle energization in the radiation belts is the resonant interaction with different waves, mainly, in whistler frequency range. The problem of special interest is the resonant wave-particle interaction of the electrons of relativistic energies. Relativistic resonance condition provides some important features such as the so-called relativistic turning acceleration discovered by Omura et al. [1, 2]. This process appears to be a very efficient mechanism of acceleration in the case of interaction with the whistler-mode waves propagating along geomagnetic field lines. But some whistler-mode waves propagate obliquely to the magnetic field lines, and the efficiency of relativistic turning acceleration in this case is to be studied. In this report, we present the Hamiltonian theory of the resonant interaction of relativistic electrons with oblique monochromatic whistler-mode waves. We have shown that the presence of turning point requires a special treatment when one aims to derive the resonant Hamiltonian, and we have obtained two different resonant Hamiltonians: one to be applied far enough from the turning point, while another is valid in the vicinity of the turning point. We have performed numerical simulation of relativistic electron interaction with whistler-mode waves generated in the ionosphere by a monochromatic source. It could be, for example, a low-frequency transmitter. The wave-field distribution along unperturbed particle trajectory is calculated by means of geometrical optics. We show that the obliquity of
Collisionless Weibel shocks and electron acceleration in gamma-ray bursts
Ardaneh, Kazem; Nishikawa, Ken-Ichi; Lembége, Bertrand
2015-01-01
A study of collisionless external shocks in gamma-ray bursts is presented. The shock structure, electromagnetic fields, and process of electron acceleration are assessed by using a self-consistent 3D particle-in-cell simulation. In accordance with hydrodynamic shock systems, the formed shock is composed of a forward and reverse shock separated by a contact discontinuity. The establishment of the shock transitions is controlled by the ion Weibel instability. The ion filaments are sources the strong transversal electromagnetic fields at the two sides of the double shock structure with a length about 30-100 ion skin depths. In regard to the electrons, they are heated up to a maximum energy $\\epsilon_{ele}\\approx \\sqrt{\\epsilon_b}$ (normalized to the total incoming energy). Moreover, the jet electrons behind the reverse shock are trapped due to the presence of an ambipolar electric field accompanying with reflection by the strong transversal magnetic fields in the shocked region. In a similar process to the shock...
Alberdi, A.; Gomez, J.L.; Marcaide, J.M.
1993-01-01
The structure of the compact radio sources at milliarcsecond angular resolution can be explained in terms of shock waves propagating along bent jets. These jets consist of narrow-angle cones of plasma flowing at bulk relativistic velocities, within tangled magnetic fields, emitting synchrotron radiation. We have developed a numerical code which solves the synchrotron radiation transfer equations to compute the total and polarized emission of bent shocked relativistic jets, and we have applied it to reproduce the compact structure, kenimatic evolution and time flux density evolution of the superluminal radio source 4C 39.25 and to obtain its jet physical parameters. (Author) 23 ref.
Borovskiy, A. V. [Department of Computer Science and Cybernetics, Baikal State University of Economics and Law, 11 Lenin Street, Irkutsk 664003 (Russian Federation); Galkin, A. L. [Coherent and Nonlinear Optics Department, A.M. Prokhorov General Physics Institute of the RAS, 38 Vavilov Street, Moscow 119991 (Russian Federation); Department of Physics of MBF, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997 (Russian Federation); Kalashnikov, M. P., E-mail: galkin@kapella.gpi.ru [Max-Born-Institute for Nonlinear Optics and Short-Time Spectroscopy, 2a Max-Born-Strasse, Berlin 12489 (Germany)
2015-04-15
The new method of calculating energy spectra of accelerated electrons, based on the parameterization by their initial coordinates, is proposed. The energy spectra of electrons accelerated by Gaussian ultra-short relativistic laser pulse at a selected angle to the axis of the optical system focusing the laser pulse in a low density gas are theoretically calculated. The two-peak structure of the electron energy spectrum is obtained. Discussed are the reasons for its appearance as well as an applicability of other models of the laser field.
Plettner, Tomas; Colby, Eric R; Cowan, Benjamin; Sears, Chris M S; Siemann, Robert; Smith, Todd I; Spencer, James
2005-01-01
We have observed acceleration of relativistic electrons in vacuum driven by a linearly polarized laser beam incident on a thin gold-coated reflective boundary. The observed energy modulation effect follows all the characteristics expected for linear acceleration caused by a longitudinal electric field. As predicted by the Lawson-Woodward theorem the laser driven modulation only appears in the presence of the boundary. It shows a linear dependence with the strength of the electric field of the laser beam and also it is critically dependent on the laser polarization. Finally, it appears to follow the expected angular dependence of the inverse transition radiation process.
Plettner, T.; Byer, R.L.; /Stanford U., Phys. Dept.; Colby, E.; Cowan, B.; Sears, C.M.S.; Spencer, J.E.; Siemann, R.H.; /SLAC
2006-03-01
We recently achieved the first experimental observation of laser-driven particle acceleration of relativistic electrons from a single Gaussian near-infrared laser beam in a semi-infinite vacuum. This article presents an in-depth account of key aspects of the experiment. An analysis of the transverse and longitudinal forces acting on the electron beam is included. A comparison of the observed data to the acceleration viewed as an inverse transition radiation process is presented. This is followed by a detailed description of the components of the experiment and a discussion of future measurements.
John R. Fanchi
2017-07-01
Full Text Available Jüttner used the conventional theory of relativistic statistical mechanics to calculate the energy of a relativistic ideal gas in 1911. An alternative derivation of the energy of a relativistic ideal gas was published by Horwitz, Schieve and Piron in 1981 within the context of parametrized relativistic statistical mechanics. The resulting energy in the ultrarelativistic regime differs from Jüttner’s result. We review the derivations of energy and identify physical regimes for testing the validity of the two theories in accelerator physics and cosmology.
Lopez, Mike Rodriguez
2003-10-01
Relativistic magnetron experiments with a 6-vane, Titan tube have generated over 300 MW total microwave output power near 1 GHz. These experiments were driven by a long-pulse, e-beam accelerator. Parameters of the device were voltage = -0.3 to -0.4 MV, current = 1--10 kA, and pulselength = 0.5 microsecond. This body of work investigated pulse-shortening in the relativistic magnetron. Microwave generation with a conventional plastic insulator was compared to that with a new ceramic insulator. The ceramic insulator improved the vacuum by an order of magnitude (1 x 10-7 Torr) and increased voltage stability of the accelerator. The effect of RF breakdown in the waveguide on the intensity and duration of high power microwaves were also investigated. These experiments found that when SF6 gas was introduced into the waveguide, the measured efficiency, power, and pulselength of microwaves increased. Two different microwave extraction mechanisms were used. In the first system, two waveguides were connected to the magnetron pi-radians from each other. The second system used three waveguides to connect to the magnetron's extraction ports at 2pi/3 radians from each other. Microwaves were extracted into and measured from the waveguide. Pulselengths were found to be in the range of 10--200 ns. The theoretical investigation calculates the maximum injected current for a time-independent cycloidal flow in a relativistic, magnetically insulated diode. The analytical theory of Lovelace-Ott was extended by relaxing the space charge limited (SCL) assumption. This theory reduced to Christenson's results in the deeply non-relativistic regime, and to Lovelace-Ott under SCL. This theory has been successfully tested against relativistic PIC code simulations.
STEREO measurements of electron acceleration beyond fast Fermi at the bow shock
Pulupa, Marc; Opitz, Andrea; Fedorov, Andrei; Lin, Robert P; Sauvaud, Jean-Andre
2012-01-01
Solar wind electrons are accelerated and reflected upstream by the terrestrial bow shock into a region known as the electron foreshock. Previously observed electron spectra at low energies are consistent with a fast Fermi mechanism, based on the adiabatic conservation of the magnetic moment ({\\mu}) of the accelerated electrons. At higher energies, suprathermal power law tails are observed beyond the level predicted by fast Fermi. The SWEA and STE electron detectors on STEREO enable measurements of foreshock electrons with good energy resolution and sensitivity over the entire foreshock beam. We investigate the electron acceleration mechanism by comparing observed STEREO electron spectra with predictions based on a Liouville mapping of upstream electrons through a shock encounter. The foreshock electron beam extends up to several tens of keV, energies for which the Larmor radii of electrons is tens of km or greater. These radii are comparable to the scale sizes of the shock, and {\\mu} conservation no longer ap...
A Data-Driven Analytic Model for Proton Acceleration by Large-Scale Solar Coronal Shocks
Kozarev, Kamen A
2016-01-01
We have recently studied the development of an eruptive filament-driven, large-scale off-limb coronal bright front (OCBF) in the low solar corona (Kozarev et al. 2015), using remote observations from Solar Dynamics Observatory's Advanced Imaging Assembly EUV telescopes. In that study, we obtained high-temporal resolution estimates of the OCBF parameters regulating the efficiency of charged particle acceleration within the theoretical framework of diffusive shock acceleration (DSA). These parameters include the time-dependent front size, speed, and strength, as well as the upstream coronal magnetic field orientations with respect to the front's surface normal direction. Here we present an analytical particle acceleration model, specifically developed to incorporate the coronal shock/compressive front properties described above, derived from remote observations. We verify the model's performance through a grid of idealized case runs using input parameters typical for large-scale coronal shocks, and demonstrate ...
A Numerical and Experimental Study of a Shock-Accelerated Heavy Gas Cylinder
Zoldi, Cindy Anne [State Univ. of New York (SUNY), Stony Brook, NY (United States)
2002-01-01
In this thesis we study the evolution of an SF_{6} gas cylinder surrounded by air when accelerated by a planar Mach 1.2 shock wave. Vorticity generated by the interaction of the shock wave's pressure gradient with the density gradient at the air/SF_{6} interface drives the evolution of the cylinder into a vortex pair
Pakdaman, S. A.; Garcia, M.; Teh, E.; Lincoln, D.; Trivedi, M.; Alves, M.; Johansen, C.
2016-11-01
Shock wave formation and acceleration in a high-aspect ratio cross section shock tube were studied experimentally and numerically. The relative importance of geometric effects and diaphragm opening time on shock formation are assessed. The diaphragm opening time was controlled through the use of slit-type (fast opening time) and petal-type (slow opening time) diaphragms. A novel method of fabricating the petal-type diaphragms, which results in a consistent burst pressure and symmetric opening without fragmentation, is presented. High-speed schlieren photography was used to visualize the unsteady propagation of the lead shock wave and trailing gas dynamic structures. Surface-mounted pressure sensors were used to capture the spatial and temporal development of the pressure field. Unsteady Reynolds-Averaged Navier-Stokes simulation predictions using the shear-stress-transport turbulence model are compared to the experimental data. Simulation results are used to explain the presence of high-frequency pressure oscillations observed experimentally in the driver section as well as the cause of the initial acceleration and subsequent rapid decay of shock velocity measured along the top and bottom channel surfaces. A one-dimensional theoretical model predicting the effect of the finite opening time of the diaphragm on the rate of driver depressurization and shock acceleration is proposed. The model removes the large amount of empiricism that accompanies existing models published in the literature. Model accuracy is assessed through comparisons with experiments and simulations. Limitations of and potential improvements in the model are discussed.
Combined Particle Acceleration in Solar Flares and Associated CME Shocks
Petrosian, Vahe
2016-07-01
I will review some observations of the characteristics of accelerated electrons seen near Earth (as SEPs) and those producing flare radiation in the low corona and chromosphere. The similarities and differences between the numbers, spectral distribution, etc. of the two population can shed light on the mechanism and sites of the acceleration. I will show that in some events the origin of both population appears to be the flare site while in others, with harder SEP spectra, in addition to acceleration at the flare site, there appears to be a need for a second stage re-acceleration in the associated fast Coronal Mass Ejection (CME) environment. This scenario can also describe a similar dichotomy that exists between the so called impulsive, highly enriched (3He and heavy ions) and softer SEP ion events, and stronger more gradual SEP events with near normal ionic abundances and harder spectra. I will also describe under what conditions such hardening can be achieved.
Shock-Accelerated Flying Foil Diagnostic with a Chirped Pulse Spectral Interferometry
陈建平; 李儒新; 曾志男; 王兴涛; 程传福; 徐至展
2003-01-01
A shock-accelerated flying foil is diagnosed with a chirped pulse spectral interferometry. The shock is pumped by a 1.2ps chirped laser pulse with a power of～1014 W/cm2 at 785nm irradiating on a 500nm aluminium film and detected by a probe pulse split from the pump based on a Michelson spectral interferometry. A flying foil of～5.595×10-6 g in～400 μm diameter was accelerated to～165 nm away from the initial target rear surface at～1.83 km/s before ablation.
Park, Jaehong; Spitkovksy, Anatoly; Fox, Will; Bhattacharjee, Amitava
2016-10-01
We perform particle-in-cell simulations of collisionless shocks and magnetic reconnection generated by ablated plasma expanding into a magnetized background plasma. We find: (1) The simulated proton radiography produces different morphology of the shock structure depending on the orientation of the magnetic field and can be used to identify a shock in the experiment. Electrons are accelerated by the whistler waves generated at oblique sites of the shock. (2) Forced collisionless magnetic reconnection is induced when the expanding plumes carry opposite magnetic polarities and interact with a background plasma. Electrons are accelerated at the reconnection X line and reveal a power-law distribution as the plasma beta is lowered, β = 0.08 . As the plasma beta is increased, β = 0.32 , the 1st order Fermi mechanism against the two plasma plumes contributes to the electron acceleration as well as the X line acceleration. Using 3-D simulations, we also explore the effect of 3-D instabilities (Weibel instability or drift-kink) on particle acceleration and magnetic field annihilation between the colliding magnetized plumes
Effects of laser polarizations on shock generation and shock ion acceleration in overdense plasmas
Kim, Young-Kuk; Kang, Teyoun; Jung, Moon Youn; Hur, Min Sup
2016-09-01
The effects of laser-pulse polarization on the generation of an electrostatic shock in an overdense plasma were investigated using particle-in-cell simulations. We found, from one-dimensional simulations, that total and average energies of reflected ions from a circular polarization- (CP) driven shock front are a few times higher than those from a linear polarization- (LP) driven one for a given pulse energy. Moreover, it was discovered that the pulse transmittance is the single dominant factor for determining the CP-shock formation, while the LP shock is affected by the plasma scale length as well as the transmittance. In two-dimensional simulations, it is observed that the transverse instability, such as Weibel-like instability, can be suppressed more efficiently by CP pulses.
Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets
Higginson, Drew Pitney [Univ. of California, San Diego, CA (United States)
2013-01-01
The cone-guided fast ignition approach to Inertial Con nement Fusion requires laser-accelerated relativistic electrons to deposit kilojoules of energy within an imploded fuel core to initiate fusion burn. One obstacle to coupling electron energy into the core is the ablation of material, known as preplasma, by laser energy proceeding nanoseconds prior to the main pulse. This causes the laser-absorption surface to be pushed back hundreds of microns from the initial target surface; thus increasing the distance that electrons must travel to reach the imploded core. Previous experiments have shown an order of magnitude decrease in coupling into surrogate targets when intentionally increasing the amount of preplasma. Additionally, for electrons to deposit energy within the core, they should have kinetic energies on the order of a few MeV, as less energetic electrons will be stopped prior to the core and more energetic electrons will pass through the core without depositing much energy. Thus a quantitative understanding of the electron energy spectrum and how it responds to varied laser parameters is paramount for fast ignition. For the rst time, this dissertation quantitatively investigates the acceleration of electrons using an ultra-high-contrast laser. Ultra-high-contrast lasers reduce the laser energy that reaches the target prior to the main pulse; drastically reducing the amount of preplasma. Experiments were performed in a cone-wire geometry relevant to fast ignition. These experiments irradiated the inner-tip of a Au cone with the laser and observed electrons that passed through a Cu wire attached to the outer-tip of the cone. The total emission of K x-rays is used as a diagnostic to infer the electron energy coupled into the wire. Imaging the x-ray emission allowed an e ective path-length of electrons within the wire to be determined, which constrained the electron energy spectrum. Experiments were carried out on the ultra-high-contrast Trident laser at Los
Origin of Nonthermal Emission from the Fermi Bubbles and Mechanisms of Particle Acceleration There
Dogiel, V A; Chernyshov, D O; Ko, C -M
2013-01-01
We analyse processes of particle acceleration in the Fermi Bubbles. The goal of our investigations is to obtain restrictions for acceleration mechanisms. Our analysis of the three processes: acceleration from background plasma, re-acceleration of relativistic electrons emitted by supernova remnants, and acceleration by shocks generated by processes of star tidal disruption in the Galactic Center, showed that the model of multi-shock acceleration does not have serious objections at present and therefore seems us more attractive than others.
Ion-acoustic shocks with self-regulated ion reflection and acceleration
Malkov, M. A.; Sagdeev, R. Z.; Dudnikova, G. I.; Liseykina, T. V.; Diamond, P. H.; Papadopoulos, K.; Liu, C.-S.; Su, J. J.
2016-04-01
An analytic solution describing an ion-acoustic collisionless shock, self-consistently with the evolution of shock-reflected ions, is obtained. The solution extends the classic soliton solution beyond a critical Mach number, where the soliton ceases to exist because of the upstream ion reflection. The reflection transforms the soliton into a shock with a trailing wave and a foot populated by the reflected ions. The solution relates parameters of the entire shock structure, such as the maximum and minimum of the potential in the trailing wave, the height of the foot, as well as the shock Mach number, to the number of reflected ions. This relation is resolvable for any given distribution of the upstream ions. In this paper, we have resolved it for a simple "box" distribution. Two separate models of electron interaction with the shock are considered. The first model corresponds to the standard Boltzmannian electron distribution in which case the critical shock Mach number only insignificantly increases from M ≈1.6 (no ion reflection) to M ≈1.8 (substantial reflection). The second model corresponds to adiabatically trapped electrons. They produce a stronger increase, from M ≈3.1 to M ≈4.5 . The shock foot that is supported by the reflected ions also accelerates them somewhat further. A self-similar foot expansion into the upstream medium is described analytically.
Shock-wave proton acceleration from a hydrogen gas jet
Cook, Nathan; Pogorelsky, Igor; Polyanskiy, Mikhail; Babzien, Marcus; Tresca, Olivier; Maharjan, Chakra; Shkolnikov, Peter; Yakimenko, Vitaly
2013-04-01
Typical laser acceleration experiments probe the interaction of intense linearly-polarized solid state laser pulses with dense metal targets. This interaction generates strong electric fields via Transverse Normal Sheath Acceleration and can accelerate protons to high peak energies but with a large thermal spectrum. Recently, the advancement of high pressure amplified CO2 laser technology has allowed for the creation of intense (10^16 Wcm^2) pulses at λ˜10 μm. These pulses may interact with reproducible, high rep. rate gas jet targets and still produce plasmas of critical density (nc˜10^19 cm-3), leading to the transference of laser energy via radiation pressure. This acceleration mode has the advantage of producing narrow energy spectra while scaling well with pulse intensity. We observe the interaction of an intense CO2 laser pulse with an overdense hydrogen gas jet. Using two pulse optical probing in conjunction with interferometry, we are able to obtain density profiles of the plasma. Proton energy spectra are obtained using a magnetic spectrometer and scintillating screen.
Laser-Accelerated Ions from a Shock-Compressed Gas Foil
Helle, M. H.; Gordon, D. F.; Kaganovich, D.; Chen, Y.; Palastro, J. P.; Ting, A.
2016-10-01
We present results of energetic laser-ion acceleration from a tailored, near solid density gas target. Colliding hydrodynamic shocks compress a pure hydrogen gas jet into a 70 μ m thick target prior to the arrival of the ultraintense laser pulse. A density scan reveals the transition from a regime characterized by a wide angle, low-energy beam (target normal sheath acceleration) to one of a more focused beam with a high-energy halo (magnetic vortex acceleration). In the latter case, three-dimensional simulations show the formation of a Z pinch driven by the axial current resulting from laser wakefield accelerated electrons. Ions at the rear of the target are then accelerated by a combination of space charge fields from accelerated electrons and Coulombic repulsion as the pinch dissipates.
Magnetosheath Filamentary Structures Formed by Ion Acceleration at the Quasi-Parallel Bow Shock
Omidi, N.; Sibeck, D.; Gutynska, O.; Trattner, K. J.
2014-01-01
Results from 2.5-D electromagnetic hybrid simulations show the formation of field-aligned, filamentary plasma structures in the magnetosheath. They begin at the quasi-parallel bow shock and extend far into the magnetosheath. These structures exhibit anticorrelated, spatial oscillations in plasma density and ion temperature. Closer to the bow shock, magnetic field variations associated with density and temperature oscillations may also be present. Magnetosheath filamentary structures (MFS) form primarily in the quasi-parallel sheath; however, they may extend to the quasi-perpendicular magnetosheath. They occur over a wide range of solar wind Alfvénic Mach numbers and interplanetary magnetic field directions. At lower Mach numbers with lower levels of magnetosheath turbulence, MFS remain highly coherent over large distances. At higher Mach numbers, magnetosheath turbulence decreases the level of coherence. Magnetosheath filamentary structures result from localized ion acceleration at the quasi-parallel bow shock and the injection of energetic ions into the magnetosheath. The localized nature of ion acceleration is tied to the generation of fast magnetosonic waves at and upstream of the quasi-parallel shock. The increased pressure in flux tubes containing the shock accelerated ions results in the depletion of the thermal plasma in these flux tubes and the enhancement of density in flux tubes void of energetic ions. This results in the observed anticorrelation between ion temperature and plasma density.
Coronado, Y.; López-Corona, O.; Mendoza, S.
2016-10-01
Knots or blobs observed in astrophysical jets are commonly interpreted as shock waves moving along them. Long-time observations of the HST-1 knot inside the jet of the galaxy M87 have produced detailed multiwavelength light curves. In this paper, we model these light curves using the semi-analytical approach developed by Mendoza et al. This model was developed to account for the light curves produced by working surfaces (blobs) moving along relativistic jets. These working surfaces are generated by periodic oscillations of the injected flow velocity and mass ejection rates at the base of the jet. Using genetic algorithms to fit the parameters of the model, we are able to explain the outbursts observed in the light curves of the HST-1 knot with an accuracy greater than a 2σ statistical confidence level.
Effects of laser polarization on electrostatic shock ion acceleration in near-critical plasmas
Kim, Young-Kuk; Kang, Teyoun; Hur, Min Sup
2016-10-01
Ion acceleration from laser-driven collisionless electrostatic shock (CES) is attracting much attention, as quasi-monoenergetic, tens of MeV ion beams are expected to be available from relatively moderate laser power and near-critical density plasmas. For generation of a high-speed shock by a laser pulse, it is important to compress a high-contrast density layer by hole-boring process, and to heat the electrons in the upstream, where the hole-boring speed should match the Mach number condition 1.5 boring speed is higher in lower density plasmas, we observed consistently higher speed of the shock and accelerated ion energy when driven by CP pulses. Interesting point is that the CP-shock generation is determined predominantly by the transmittance only, while the LP-shock formation depends on other parameters such as plasma scale length. In 2D simulations, we found that Weibel instability is less effective in CP than LP, which enables more stable shock formation for given conditions of the laser and plasma. This work was supported by the Basic Science Research Program (NRF-2013R1A1A2006353) and the Creative Allied Project (CAP-15-06-ETRI).
Experimental measurement of unsteady drag on shock accelerated micro-particles
Bordoloi, Ankur; Martinez, Adam; Prestridge, Katherine
2016-11-01
The unsteady drag history of shock accelerated micro-particles in air is investigated in the Horizontal Shock Tube (HST) facility at Los Alamos National laboratory. Drag forces are estimated based on particle size, particle density, and instantaneous velocity and acceleration measured on hundreds of post-shock particle tracks. We use previously implemented 8-frame Particle Tracking Velocimetry/Anemometry (PTVA) diagnostics to analyze particles in high spatiotemporal resolution from individual particle trajectories. We use a simultaneous LED based shadowgraph to register shock location with respect to a moving particle in each frame. To measure particle size accurately, we implement a Phase Doppler Particle Analyzer (PDPA) in synchronization with the PTVA. In this presentation, we will corroborate with more accuracy our earlier observation that post-shock unsteady drag coefficients (CD(t)) are manifold times higher than those predicted by theoretical models. Our results will also show that all CD(t) measurements collapse on a master-curve for a range of particle size, density, Mach number and Reynolds number when time is normalized by a shear velocity based time scale, t* = d/(uf-up) , where d is particle diameter, and uf and up are post-shock fluid and particle velocities.
The Fock-Kemmer approach to precursor shock waves in relativistic field theory
Abdullah, Rawand H
2016-01-01
We use distribution theory (generalized functions) to extend and justify the Fock-Kemmer approach to the propagation of precursor shock wave discontinuities in classical and quantum field theory. We apply lightcone causality arguments to propose that shock wave singularities in non-linear classical field theories and in Maxwell's equations for responsive media require a form of classical renormalization analogous to Wilson operator product expansions in quantum field theories.
COLLISIONLESS SHOCKS IN A PARTIALLY IONIZED MEDIUM. III. EFFICIENT COSMIC RAY ACCELERATION
Morlino, G.; Blasi, P.; Bandiera, R.; Amato, E. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5, I-50125 Firenze (Italy); Caprioli, D. [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States)
2013-05-10
In this paper, we present the first formulation of the theory of nonlinear particle acceleration in collisionless shocks in the presence of neutral hydrogen in the acceleration region. The dynamical reaction of the accelerated particles, the magnetic field amplification, and the magnetic dynamical effects on the shock are also included. The main new aspect of this study, however, consists of accounting for charge exchange and the ionization of a neutral hydrogen, which profoundly change the structure of the shock, as discussed in our previous work. This important dynamical effect of neutrals is mainly associated with the so-called neutral return flux, namely the return of hot neutrals from the downstream region to upstream, where they deposit energy and momentum through charge exchange and ionization. We also present the self-consistent calculation of Balmer line emission from the shock region and discuss how to use measurements of the anomalous width of the different components of the Balmer line to infer cosmic ray acceleration efficiency in supernova remnants showing Balmer emission: the broad Balmer line, which is due to charge exchange of hydrogen atoms with hot ions downstream of the shock, is shown to become narrower as a result of the energy drainage into cosmic rays, while the narrow Balmer line, due to charge exchange in the cosmic-ray-induced precursor, is shown to become broader. In addition to these two well-known components, the neutral return flux leads to the formation of a third component with an intermediate width: this too contains information on ongoing processes at the shock.
Lee, Shiu-Hang; Ellison, Donald C; Nagataki, Shigehiro; Slane, Patrick O
2014-01-01
We present new models for the forward and reverse shock thermal X-ray emission from core-collapse and Type Ia supernova remnants (SNRs) which include the efficient production of cosmic rays via non-linear diffusive shock acceleration (DSA). Our CR-hydro-NEI code takes into account non-equilibrium ionization (NEI), hydrodynamic effects of efficient CR production on the SNR evolution, and collisional temperature equilibration among heavy ions and electrons in both the shocked supernova (SN) ejecta and the shocked circumstellar material. While X-ray emission is emphasized here, our code self-consistently determines both thermal and non-thermal broadband emission from radio to TeV energies. We include Doppler broadening of the spectral lines by thermal motions of the ions and by the remnant expansion. We study, in general terms, the roles which the ambient environment, progenitor models, temperature equilibration, and processes related to DSA have on the thermal and non-thermal spectra. The study of X-ray line em...
Kong, Xiangliang; Guo, Fan; Feng, Shiwei; Du, Guohui; Li, Gang
2016-01-01
With a test-particle simulation, we investigate the effect of large-scale coronal magnetic fields on electron acceleration at an outward-propagating coronal shock with a circular front. The coronal field is approximated by an analytical solution with a streamer-like magnetic field featured by partially open magnetic field and a current sheet at the equator atop the closed region. We show that the large-scale shock-field configuration, especially the relative curvature of the shock and the magnetic field line across which the shock is sweeping, plays an important role in the efficiency of electron acceleration. At low shock altitudes, when the shock curvature is larger than that of magnetic field lines, the electrons are mainly accelerated at the shock flanks; at higher altitudes, when the shock curvature is smaller, the electrons are mainly accelerated at the shock nose around the top of closed field lines. The above process reveals the shift of efficient electron acceleration region along the shock front dur...
Flare vs. Shock Acceleration of High-energy Protons in Solar Energetic Particle Events
Cliver, E. W.
2016-12-01
Recent studies have presented evidence for a significant to dominant role for a flare-resident acceleration process for high-energy protons in large (“gradual”) solar energetic particle (SEP) events, contrary to the more generally held view that such protons are primarily accelerated at shock waves driven by coronal mass ejections (CMEs). The new support for this flare-centric view is provided by correlations between the sizes of X-ray and/or microwave bursts and associated SEP events. For one such study that considered >100 MeV proton events, we present evidence based on CME speeds and widths, shock associations, and electron-to-proton ratios that indicates that events omitted from that investigation’s analysis should have been included. Inclusion of these outlying events reverses the study’s qualitative result and supports shock acceleration of >100 MeV protons. Examination of the ratios of 0.5 MeV electron intensities to >100 MeV proton intensities for the Grechnev et al. event sample provides additional support for shock acceleration of high-energy protons. Simply scaling up a classic “impulsive” SEP event to produce a large >100 MeV proton event implies the existence of prompt 0.5 MeV electron events that are approximately two orders of magnitude larger than are observed. While classic “impulsive” SEP events attributed to flares have high electron-to-proton ratios (≳5 × 105) due to a near absence of >100 MeV protons, large poorly connected (≥W120) gradual SEP events, attributed to widespread shock acceleration, have electron-to-proton ratios of ˜2 × 103, similar to those of comparably sized well-connected (W20-W90) SEP events.
Acceleration of low-energy protons and alpha particles at interplanetary shock waves
Scholer, M.; Hovestadt, D.; Ipavich, F. M.; Gloeckler, G.
1983-01-01
The low-energy protons and alpha particles in the energy range 30 keV/charge to 150 keV/charge associated with three different interplanetary shock waves in the immediate preshock and postshock region are studied using data obtained by the ISEE 3. The spatial distributions in the preshock and postshock medium are presented, and the dependence of the phase space density at different energies on the distance from the shock and on the form of the distribution function of both species immediately at the shock is examined. It is found that in the preshock region the particles are flowing in the solar wind frame of reference away from the shock and in the postshock medium the distribution is more or less isotropic in this frame of reference. The distribution function in the postshock region can be represented by a power law in energy which has the same spectral exponent for both protons and alpha particles. It is concluded that the first-order Fermi acceleration process can consistently explain the data, although the spectra of diffuse bow shock associated particles are different from the spectra of the interplanetary shock-associated particles in the immediate vicinity of the shock. In addition, the mean free path of the low energy ions in the preshock medium is found to be considerably smaller than the mean free path determined by the turbulence of the background interplanetary medium.
Vlasov modelling of laser-driven collisionless shock acceleration of protons
Svedung Wettervik, B.; DuBois, T. C.; Fülöp, T. [Department of Applied Physics, Chalmers University of Technology, Gothenburg (Sweden)
2016-05-15
Ion acceleration due to the interaction between a short high-intensity laser pulse and a moderately overdense plasma target is studied using Eulerian Vlasov–Maxwell simulations. The effects of variations in the plasma density profile and laser pulse parameters are investigated, and the interplay of collisionless shock and target normal sheath acceleration is analyzed. It is shown that the use of a layered-target with a combination of light and heavy ions, on the front and rear side, respectively, yields a strong quasi-static sheath-field on the rear side of the heavy-ion part of the target. This sheath-field increases the energy of the shock-accelerated ions while preserving their mono-energeticity.
Detecting shock waves in cosmological smoothed particle hydrodynamics simulations
Pfrommer, C; Ensslin, T A; Jubelgas, M; Pfrommer, Christoph; Springel, Volker; Ensslin, Torsten A.; Jubelgas, Martin
2006-01-01
We develop a formalism for the identification and accurate estimation of the strength of structure formation shocks during cosmological smoothed particle hydrodynamics simulations. Shocks not only play a decisive role for the thermalization of gas in virialising structures but also for the acceleration of relativistic cosmic rays (CRs) through diffusive shock acceleration. Our formalism is applicable both to ordinary non-relativistic thermal gas, and to plasmas composed of CRs and thermal gas. To this end, we derive an analytical solution to the one-dimensional Riemann shock tube problem for a composite plasma of CRs and thermal gas. We apply our methods to study the properties of structure formation shocks in high-resolution hydrodynamic simulations of the LCDM model. We find that most of the energy is dissipated in weak internal shocks with Mach numbers M~2 which are predominantly central flow shocks or merger shock waves traversing halo centres. Collapsed cosmological structures are surrounded by external ...
Simulation study of the formation of a non-relativistic pair shock
Dieckmann, M. E.; Bret, A.
2017-02-01
We examine with a particle-in-cell (PIC) simulation the collision of two equally dense clouds of cold pair plasma. The clouds interpenetrate until instabilities set in, which heat up the plasma and trigger the formation of a pair of shocks. The fastest-growing waves at the collision speed , where is the speed of light in vacuum, and low temperature are the electrostatic two-stream mode and the quasi-electrostatic oblique mode. Both waves grow and saturate via the formation of phase space vortices. The strong electric fields of these nonlinear plasma structures provide an efficient means of heating up and compressing the inflowing upstream leptons. The interaction of the hot leptons, which leak back into the upstream region, with the inflowing cool upstream leptons continuously drives electrostatic waves that mediate the shock. These waves heat up the inflowing upstream leptons primarily along the shock normal, which results in an anisotropic velocity distribution in the post-shock region. This distribution gives rise to the Weibel instability. Our simulation shows that even if the shock is mediated by quasi-electrostatic waves, strong magnetowaves will still develop in its downstream region.
The microphysics of collisionless shock waves
Marcowith, Alexandre; Bret, Antoine; Bykov, Andrei
2016-01-01
galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space...... the magnetization and its obliquity is the dominant one. The shock velocity that can reach relativistic speeds has also a strong impact over the development of the micro-instabilities and the fate of particle acceleration. Recent developments of laboratory shock experiments has started to bring some new insights...... in the physics of space plasma and astrophysical shock waves. A special section is dedicated to new laser plasma experiments probing shock physics....
Particle Acceleration in Solar Flares and Associated CME Shocks
Petrosian, Vahe'
2016-01-01
Observations relating the characteristics of electrons seen near Earth (SEPs) and those producing flare radiation show that in certain (prompt) events the origin of both population appears to be the flare site, which show strong correlation between the number and spectral index of SEP and hard X-ray radiating electrons, but in others(delayed), which are associated with fast CMEs, this relation is complex and SEPs tend to be harder. Prompt event spectral relation disagrees with that expected in thick or thin target models. We show that using a a more accurate treatment of the transport of the accelerated electrons to the footpoints and to the Earth can account for this discrepancy. Our results are consistent with those found by Chen and Petrosian (2013) for two flares using non-parametric inversion methods, according to which we have weak diffusion conditions, and trapping mediated by magnetic field convergence. The weaker correlations and harder spectra of delayed events can come about by re-acceleration of e...
Lee, Shiu-Hang; Patnaude, Daniel J.; Ellison, Donald C.; Nagataki, Shigehiro; Slane, Patrick O.
2014-08-01
We present new models for the forward and reverse shock thermal X-ray emission from core-collapse and Type Ia supernova remnants (SNRs) that include the efficient production of cosmic rays (CR) via nonlinear diffusive shock acceleration (DSA). Our CR-hydro-NEI code takes into account non-equilibrium ionization, hydrodynamic effects of efficient CR production on the SNR evolution, and collisional temperature equilibration among heavy ions and electrons in both the shocked supernova (SN) ejecta and the shocked circumstellar material. While X-ray emission is emphasized here, our code self-consistently determines both thermal and non-thermal broadband emission from radio to TeV energies. We include Doppler broadening of the spectral lines by thermal motions of the ions and by the remnant expansion. We study, in general terms, the roles that the ambient environment, progenitor models, temperature equilibration, and processes related to DSA have on the thermal and non-thermal spectra. The study of X-ray line emission from young SNRs is a powerful tool for determining specific SN elemental contributions and for providing critical information that helps to understand the type and energetics of the explosion, the composition of the ambient medium in which the SN exploded, and the ionization and dynamics of the hot plasma in the shocked SN ejecta and interstellar medium. With the approaching launch of the next-generation X-ray satellite Astro-H, observations of spectral lines with unprecedented high resolution will become a reality. Our self-consistent calculations of the X-ray spectra from various progenitors will help interpret future observations of SNRs.
Lee, Shiu-Hang [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Patnaude, Daniel J.; Slane, Patrick O. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ellison, Donald C. [Physics Department, North Carolina State University, Box 8202, Raleigh, NC 27695 (United States); Nagataki, Shigehiro, E-mail: slee@astro.isas.jaxa.jp, E-mail: shiu-hang.lee@riken.jp, E-mail: shigehiro.nagataki@riken.jp, E-mail: slane@cfa.harvard.edu, E-mail: dpatnaude@cfa.harvard.edu, E-mail: don_ellison@ncsu.edu [RIKEN, Astrophysical Big Bang Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)
2014-08-20
We present new models for the forward and reverse shock thermal X-ray emission from core-collapse and Type Ia supernova remnants (SNRs) that include the efficient production of cosmic rays (CR) via nonlinear diffusive shock acceleration (DSA). Our CR-hydro-NEI code takes into account non-equilibrium ionization, hydrodynamic effects of efficient CR production on the SNR evolution, and collisional temperature equilibration among heavy ions and electrons in both the shocked supernova (SN) ejecta and the shocked circumstellar material. While X-ray emission is emphasized here, our code self-consistently determines both thermal and non-thermal broadband emission from radio to TeV energies. We include Doppler broadening of the spectral lines by thermal motions of the ions and by the remnant expansion. We study, in general terms, the roles that the ambient environment, progenitor models, temperature equilibration, and processes related to DSA have on the thermal and non-thermal spectra. The study of X-ray line emission from young SNRs is a powerful tool for determining specific SN elemental contributions and for providing critical information that helps to understand the type and energetics of the explosion, the composition of the ambient medium in which the SN exploded, and the ionization and dynamics of the hot plasma in the shocked SN ejecta and interstellar medium. With the approaching launch of the next-generation X-ray satellite Astro-H, observations of spectral lines with unprecedented high resolution will become a reality. Our self-consistent calculations of the X-ray spectra from various progenitors will help interpret future observations of SNRs.
Shock-cloud interaction and particle acceleration in SN 1006
Miceli, M; Dubner, G; Decourchelle, A; Orlando, S; Bocchino, F
2014-01-01
The supernova remnant SN 1006 is a powerful source of high-energy particles and evolves in a relatively tenuous and uniform environment, though interacting with an atomic cloud in its northwestern limb. The X-ray image of SN 1006 reveals an indentation in the southwestern part of the shock front and the HI maps show an isolated cloud (southwestern cloud) having the same velocity as the northwestern cloud and whose morphology fits perfectly in the indentation. We performed spatially resolved spectral analysis of a set of small regions in the southwestern nonthermal limb and studied the deep X-ray spectra obtained within the XMM-Newton SN 1006 Large Program. We also analyzed archive HI data, obtained combining single dish and interferometric observations. We found that the best-fit value of the N_H derived from the X-ray spectra significantly increases in regions corresponding to the southwestern cloud, while the cutoff energy of the synchrotron emission decreases. The amount of the N_H variations corresponds p...
Laboratory studies of magnetized collisionless flows and shocks using accelerated plasmoids
Weber, T. E.; Smith, R. J.; Hsu, S. C.
2015-11-01
Magnetized collisionless shocks are thought to play a dominant role in the overall partition of energy throughout the universe, but have historically proven difficult to create in the laboratory. The Magnetized Shock Experiment (MSX) at LANL creates conditions similar to those found in both space and astrophysical shocks by accelerating hot (100s of eV during translation) dense (1022 - 1023 m-3) Field Reversed Configuration (FRC) plasmoids to high velocities (100s of km/s); resulting in β ~ 1, collisionless plasma flows with sonic and Alfvén Mach numbers of ~10. The FRC subsequently impacts a static target such as a strong parallel or anti-parallel (reconnection-wise) magnetic mirror, a solid obstacle, or neutral gas cloud to create shocks with characteristic length and time scales that are both large enough to observe yet small enough to fit within the experiment. This enables study of the complex interplay of kinetic and fluid processes that mediate cosmic shocks and can generate non-thermal distributions, produce density and magnetic field enhancements much greater than predicted by fluid theory, and accelerate particles. An overview of the experimental capabilities of MSX will be presented, including diagnostics, selected recent results, and future directions. Supported by the DOE Office of Fusion Energy Sciences under contract DE-AC52-06NA25369.
Properties of a Coronal Shock Wave as A Driver of Early SEP Acceleration
Kozarev, Kamen A; Lobzin, Vasili V; Hammer, Michael
2014-01-01
Coronal mass ejections (CMEs) are thought to drive collisionless shocks in the solar corona, which in turn have been shown capable of accelerating solar energetic particles (SEPs) in minutes. It has been notoriously difficult to extract information about energetic particle spectra in the corona, due to lack of in-situ measurements. It is possible, however, to combine remote observations with data-driven models in order to deduce coronal shock properties relevant to the local acceleration of SEPs and their heliospheric connectivity to near-Earth space. We present such novel analysis applied to the May 11, 2011 CME event on the western solar limb, focusing on the evolution of the eruption-driven, dome-like shock wave observed by the Atmospheric Imaging Assembly (AIA) EUV telescopes on board the Solar Dynamics Observatory spacecraft. We analyze the shock evolution and estimate its strength using emission measure modeling. We apply a new method combining a geometric model of the shock front with a potential field...
Sahai, Aakash A., E-mail: aakash.sahai@gmail.com [Department of Electrical Engineering, Duke University, Durham, North Carolina 27708 (United States)
2014-05-15
We analyze the motion of the plasma critical layer by two different processes in the relativistic-electron laser-plasma interaction regime (a{sub 0}>1). The differences are highlighted when the critical layer ions are stationary in contrast to when they move with it. Controlling the speed of the plasma critical layer in this regime is essential for creating low-β traveling acceleration structures of sufficient laser-excited potential for laser ion accelerators. In Relativistically Induced Transparency Acceleration (RITA) scheme, the heavy plasma-ions are fixed and only trace-density light-ions are accelerated. The relativistic critical layer and the acceleration structure move longitudinally forward by laser inducing transparency through apparent relativistic increase in electron mass. In the Radiation Pressure Acceleration (RPA) scheme, the whole plasma is longitudinally pushed forward under the action of the laser radiation pressure, possible only when plasma ions co-propagate with the laser front. In RPA, the acceleration structure velocity critically depends upon plasma-ion mass in addition to the laser intensity and plasma density. In RITA, mass of the heavy immobile plasma-ions does not affect the speed of the critical layer. Inertia of the bared immobile ions in RITA excites the charge separation potential, whereas RPA is not possible when ions are stationary.
Sahai, Aakash A.
2013-10-01
Laser-plasma ion accelerators have the potential to produce beams with unprecedented characteristics of ultra-short bunch lengths (100s of fs) and high bunch-charge (1010 particles) over acceleration length of about 100 microns. However, creating and controlling mono-energetic bunches while accelerating to high-energies has been a challenge. If high-energy mono-energetic beams can be demonstrated with minimal post-processing, laser (ω0)-plasma (ωpe) ion accelerators may be used in a wide-range of applications such as cancer hadron-therapy, medical isotope production, neutron generation, radiography and high-energy density science. Here we demonstrate using analysis and simulations that using relativistic intensity laser-pulses and heavy-ion (Mi ×me) targets doped with a proton (or light-ion) species (mp ×me) of trace density (at least an order of magnitude below the cold critical density) we can scale up the energy of quasi-mono-energetically accelerated proton (or light-ion) beams while controlling their energy, charge and energy spectrum. This is achieved by controlling the laser propagation into an overdense (ω0 <ωpeγ = 1) increasing plasma density gradient by incrementally inducing relativistic electron quiver and thereby rendering them transparent to the laser while the heavy-ions are immobile. Ions do not directly interact with ultra-short laser that is much shorter in duration than their characteristic time-scale (τp <<√{mp} /ω0 <<√{Mi} /ω0). For a rising laser intensity envelope, increasing relativistic quiver controls laser propagation beyond the cold critical density. For increasing plasma density (ωpe2 (x)), laser penetrates into higher density and is shielded, stopped and reflected where ωpe2 (x) / γ (x , t) =ω02 . In addition to the laser quivering the electrons, it also ponderomotively drives (Fp 1/γ∇za2) them forward longitudinally, creating a constriction of snowplowed e-s. The resulting longitudinal e--displacement from laser
Cosmological Shocks in Eulerian Simulations: Main Properties and Cosmic Rays Acceleration
Vazza, F; Gheller, C
2008-01-01
Aims: morpholgies, number and energy distributions of Cosmological Shock Waves from a set of ENZO cosmological simulations are produced, along with a study of the connection with Cosmic Rays processes in different environments. Method: we perform cosmological simulations with the public release of the PPM code ENZO, adopt a simple and physically motivated numerical setup to follow the evolution of cosmic structures at the resolution of 125kpc per cell, and characterise shocks with a new post processing scheme. Results: we estimate the efficency of the acceleration of Cosmic Ray particles and present the first comparison of our results with existing limits from observations of galaxy clusters.
W.P.Wang; X.M.Zhang; X.F.Wang; X.Y.Zhao; J.C.Xu; Y.H.Yu; L.Q.Yi; Y.Shi; L.G.Zhang; T.J.Xu; C.Liu; Z.K.Pei; B.F.Shen
2014-01-01
The effects of ion motion on the generation of short-cycle relativistic laser pulses during radiation pressure acceleration are investigated by analytical modeling and particle-in-cell simulations. Studies show that the rear part of the transmitted pulse modulated by ion motion is sharper compared with the case of the electron shutter only. In this study, the ions further modulate the short-cycle pulses transmitted. A 3.9 fs laser pulse with an intensity of 1.33×1021W cm-2is generated by properly controlling the motions of the electron and ion in the simulations. The short-cycle laser pulse source proposed can be applied in the generation of single attosecond pulses and electron acceleration in a small bubble regime.
Dudnikova, Galina; Malkov, Mikhail; Sagdeev, Roald; Liseykina, Tatjana; Hanusch, Adrian
2016-10-01
Elemental composition of galactic cosmic rays (CR) probably holds the key to their origin. Most likely, they are accelerated at collisionless shocks in supernova remnants, but the acceleration mechanism is not entirely understood. One complicated problem is ``injection'', a process whereby the shock selects a tiny fraction of particles to keep on crossing its front and gain more energy. Comparing the injection rates of particles with different mass to charge ratio is a powerful tool for studying this process. Recent advances in measurements of CR He/p ratio have provided particularly important new clues. We performed a series of hybrid simulations and analyzed a joint injection of protons and Helium, in conjunction with upstream waves they generate. The emphasis of this work is on the bootstrap aspects of injection manifested in particle confinement to the shock and, therefore, their continuing acceleration by the self-driven waves. The waves are initially generated by He and protons in separate spectral regions, and their interaction plays a crucial role in particle acceleration. The work is ongoing and new results will be reported along with their analysis and comparison with the latest data from the AMS-02 space-based spectrometer. Work supported Grant RFBR 16-01-00209, NASA ATP-program under Award NNX14AH36G, and by the US Department of Energy under Award No. DE-FG02-04ER54738.
Siminos, Evangelos; Svedung Wettervik, Benjamin; Grech, Mickael; Fülöp, Tünde
2016-10-01
We study kinetic effects responsible for the transition to relativistic self-induced transparency in the interaction of a circularly-polarized laser-pulse with an overdense plasma and their relation to hole-boring and ion acceleration. It is shown, using particle-in-cell simulations and an analysis of separatrices in single-particle phase-space, that this transition is mediated by the complex interplay of fast electron dynamics and ion motion at the initial stage of the interaction. It thus depends on the ion charge-to-mass ratio and can be controlled by varying the laser temporal profile. Moreover, we find a new regime in which a transition from relativistic transparency to hole-boring occurs dynamically during the course of the interaction. It is shown that, for a fixed laser intensity, this dynamic transition regime allows optimal ion acceleration in terms of both energy and energy spread. This work was supported by the Knut and Alice Wallenberg Foundation (pliona project) and the European Research Council (ERC-2014-CoG Grant 647121).
Acceleration at the Earth's Bow Shock: Spatial Depencence of Acceleration Efficiency
Terasawa, Toshio; Saito, Y.; Mukai, T.
2003-07-01
the predawn upstream region (Xgse ˜-70 Re). Our results give conclusive evidence for the earlier suggestion on the acceleration/transport process in the predawn region, which was based on the ISEE-3 observations in 1983.
HUANG; Yong-sheng; WANG; Nai-yan; TANG; Xiu-zhang; SHI; Yi-jin
2012-01-01
<正>Laser-ion acceleration has been the focus of international research for many years. However, obtaining mono-energetic proton beams larger than 100 MeV is still a challenge. Although the field strength in laser-plasma acceleration is 3-4 orders higher than that in classic accelerators, it quickly decreases to zero in 1-2 pulse durations for target normal sheath acceleration (TNSA), which is dominated
Kong, Xiangliang; Chen, Yao; Feng, Shiwei; Du, Guohui [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Guo, Fan [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Li, Gang, E-mail: yaochen@sdu.edu.cn [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)
2016-04-10
Using a test-particle simulation, we investigate the effect of large-scale coronal magnetic fields on electron acceleration at an outward-propagating coronal shock with a circular front. The coronal field is approximated by an analytical solution with a streamer-like magnetic field featuring a partially open magnetic field and a current sheet at the equator atop the closed region. We show that the large-scale shock-field configuration, especially the relative curvature of the shock and the magnetic field line across which the shock is sweeping, plays an important role in the efficiency of electron acceleration. At low shock altitudes, when the shock curvature is larger than that of the magnetic field lines, the electrons are mainly accelerated at the shock flanks; at higher altitudes, when the shock curvature is smaller, the electrons are mainly accelerated at the shock nose around the top of closed field lines. The above process reveals the shift of the efficient electron acceleration region along the shock front during its propagation. We also find that, in general, the electron acceleration at the shock flank is not as efficient as that at the top of the closed field because a collapsing magnetic trap can be formed at the top. In addition, we find that the energy spectra of electrons are power-law-like, first hardening then softening with the spectral index varying in a range of −3 to −6. Physical interpretations of the results and implications for the study of solar radio bursts are discussed.
Fermi acceleration at fast shock in a solar flare and impulsive loop-top hard X-ray source
Tsuneta, S; Tsuneta, Saku; Naito, Tsuguya
1998-01-01
We propose that non-thermal electrons are efficiently accelerated by first-order Fermi process at the fast shock, as a natural consequence of the new magnetohydrodynamic picture of the flaring region revealed with Yohkoh. An oblique fast shock is naturally formed below the reconnection site, and boosts the acceleration to significantly decrease the injection energy. The slow shocks attached to the reconnection X-point heat the plasma up to 10--20 MK, exceeding the injection energy. The combination of the oblique shock configuration and the pre-heating by the slow shock allows bulk electron acceleration from the thermal pool. The accelerated electrons are trapped between the two slow shocks due to the magnetic mirror downstream of the fast shock, thus explaining the impulsive loop-top hard X-ray source discovered with Yohkoh. Acceleration time scale is ~ 0.3--0.6 s, which is consistent with the time scale of impulsive bursts. When these electrons stream away from the region enclosed by the fast shock and the s...
Non-relativistic radiation mediated shock breakouts: I. Exact bolometric planar breakout solutions
Sapir, Nir; Waxman, Eli
2011-01-01
The problem of a non-steady planar radiation mediated shock (RMS) breaking out from a surface with a power-law density profile, \\rho\\propto x^n, is numerically solved in the approximation of diffusion with constant opacity. For an appropriate choice of time, length and energy scales, determined by the breakout opacity, velocity and density, the solution is universal, i.e. depends only on the density power law index n. The resulting luminosity depends weakly on the value of n. An approximate analytic solution, based on the self-similar hydrodynamic solutions and on the steady RMS solutions, is constructed and shown to agree with the numerical solutions as long as the shock is far from the surface, \\tau>> c/v_{sh}. Approximate analytic expressions, calibrated based on the exact solutions, are provided, that describe the escaping luminosity as a function of time. These results can be used to calculate the bolometric properties of the bursts of radiation produced during supernova (SN) shock breakouts. For complet...
Direct Simulations of Particle Acceleration in Fluctuating Electromagnetic Field across a Shock
Muranushi, Takayuki
2008-01-01
We simulate the acceleration processes of collisionless particles in a shock structure with magnetohydrodynamical (MHD) fluctuations. The electromagnetic field is represented as a sum of MHD shock solution ($\\Mag_0, \\Ele_0$) and torsional Alfven modes spectra ($\\delta \\Mag, \\delta \\Ele $). We represent fluctuation modes in logarithmic wavenumber space. Since the electromagnetic fields are represented analytically, our simulations can easily cover as large as eight orders of magnitude in resonant frequency, and do not suffer from spatial limitations of box size or grid spacing. We deterministically calculate the particle trajectories under the Lorenz force for time interval of up to ten years, with a time step of $\\sim 0.5 \\sec$. This is sufficient to resolve Larmor frequencies without a stochastic treatment. Simulations show that the efficiency of the first order Fermi acceleration can be parametrized by the fluctuation amplitude $\\eta \\equiv ^{\\frac 1 2} {B_0}^{-1}$ . Convergence of the numerical results is...
A Data-driven Analytic Model for Proton Acceleration by Large-scale Solar Coronal Shocks
Kozarev, Kamen A.; Schwadron, Nathan A.
2016-11-01
We have recently studied the development of an eruptive filament-driven, large-scale off-limb coronal bright front (OCBF) in the low solar corona, using remote observations from the Solar Dynamics Observatory’s Advanced Imaging Assembly EUV telescopes. In that study, we obtained high-temporal resolution estimates of the OCBF parameters regulating the efficiency of charged particle acceleration within the theoretical framework of diffusive shock acceleration (DSA). These parameters include the time-dependent front size, speed, and strength, as well as the upstream coronal magnetic field orientations with respect to the front’s surface normal direction. Here we present an analytical particle acceleration model, specifically developed to incorporate the coronal shock/compressive front properties described above, derived from remote observations. We verify the model’s performance through a grid of idealized case runs using input parameters typical for large-scale coronal shocks, and demonstrate that the results approach the expected DSA steady-state behavior. We then apply the model to the event of 2011 May 11 using the OCBF time-dependent parameters derived by Kozarev et al. We find that the compressive front likely produced energetic particles as low as 1.3 solar radii in the corona. Comparing the modeled and observed fluences near Earth, we also find that the bulk of the acceleration during this event must have occurred above 1.5 solar radii. With this study we have taken a first step in using direct observations of shocks and compressions in the innermost corona to predict the onsets and intensities of solar energetic particle events.
MMS Observation of Inverse Energy Dispersion in Shock Drift Acceleration Ions
Lee, S. H.; Sibeck, D. G.; Hwang, K. J.; Wang, Y.; Silveira, M. D.; Mauk, B.; Cohen, I. J.; Chu, C. S.; Mason, G. M.; Gold, R. E.; Burch, J. L.; Giles, B. L.; Torbert, R. B.; Russell, C. T.; Wei, H.
2016-12-01
The Energetic Particle Detector (EPD) on the Magnetospheric Multiscale (MMS) spacecraft observed bursts of energetic ions (50 keV-1000 keV) both in the foreshock and in the magnetosheath near the bow shock on December 6, 2015. Three species (protons, helium, and oxygen) exhibit inverse energy dispersions. Angular distributions for all three species indicate acceleration at the perpendicular bow shock. Acceleration that energizes the seed solar population by a factor of 2 and 4 is required for the protons and helium ions, respectively. The energy of the ions increases with θBn (the angle between the IMF and the local shock normal) since the induced electric field that energizes the charged particles increases as θBn increases towards 90°. We compare events upstream and downstream from the bow shock. We compare the MMS observations with those of the solar wind seed populations by the Ultra Low Energy Isotope Spectrometer (ULEIS) instrument on the Advanced Composition Explorer (ACE) mission and by the WIND 3-D Plamsa and Energetic Particle Experiment.
Ion acceleration at CME-driven shocks near the Earth and the Sun
Desai, Mihir; Dayeh, Maher; Ebert, Robert; Smith, Charles; Mason, Glenn; Li, G. [Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas, 78238 (United States); University of New Hampshire, Durham, New Hampshire, 03824 (United States); Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland, 20724 (United States); Center for Space Plasma and Aeronomic Research, University of Alabama, Huntsville, Al 35899 (United States)
2012-11-20
We compare the behavior of heavy ion spectra during an Energetic Storm Particle (ESP) event that exhibited clear evidence of wave excitation with that observed during an intense, large gradual Solar Energetic Particle (SEP) event in which the associated <0.2 MeV/nucleon ions are delayed >12 hr. We interpret that the ESP event is an example of the first-order Fermi acceleration process where enhancements in the magnetic field power spectral densities around local ion cyclotron frequency {nu}{sub pc} indicate the presence of Alfven waves excited by accelerated protons streaming away from the in-situ interplanetary shock. The softening or unfolding of the CNO energy spectrum below {approx}200 keV/nucleon and the systematic organization of the Fe and O spectral roll-overs with the E/q ratio during the ESP event are likely due to M/Q-dependent trapping and scattering of the heavy ions by the proton-excited waves. Based on striking similarities in the spectral behavior observed upstream of both, the ESP and the SEP event, we suggest that coupling between proton-generated Alfven waves and energetic ions is also operating at the distant CME shock during the large, gradual SEP event, thereby providing us with a new, powerful tool to remotely probe the roles of shock geometries and wave-particle interactions at near-Sun CME-driven shocks.
Time-dependent Diffusive Shock Acceleration in Slow Supernova Remnant Shocks
Tang, Xiaping
2014-01-01
Recent gamma ray observations show that middle aged supernova remnants interacting with molecular clouds can be sources of both GeV and TeV emission. Models involving re-acceleration of pre-existing cosmic rays in the ambient medium and direct interaction between supernova remnant and molecular clouds have been proposed to explain the observed gamma ray emission. For the re-acceleration process, standard DSA theory in the test particle limit produces a steady state particle spectrum that is too flat compared to observations, which suggests that the high energy part of the observed spectrum has not yet reached a steady state. We derive a time dependent DSA solution in the test particle limit for situations involving re-acceleration of pre-existing cosmic rays in the preshock medium. Simple estimates with our time dependent DSA solution plus a molecular cloud interaction model can reproduce the overall shape of the spectra of IC 443 and W44 from GeV to TeV energies through pure $\\pi^0$-decay emission. We allow ...
Electron Acceleration in Supernovae and Millimeter Perspectives
Keiichi Maeda
2014-12-01
Full Text Available Supernovae launch a strong shock wave by the interaction of the expanding ejecta and surrounding circumstellar matter (CSM. At the shock, electrons are accelerated to relativistic speed, creating observed synchrotron emissions in radio wavelengths. In this paper, I suggest that SNe (i.e., < 1 year since the explosion provide a unique site to study the electron acceleration mechanism. I argue that the eciency of the acceleration at the young SN shock is much lower than conventionally assumed, and that the electrons emitting in the cm wavelengths are not fully in the Diffusive Shock Acceleration (DSA regime. Thus radio emissions from young SNe record information on the yet-unresolved 'injection' mechanism. I also present perspectives of millimeter (mm observations of SNe - this will provide opportunities to uniquely determine the shock physics and the acceleration efficiency, to test the non-linear DSA mechanism and provide a characteristic electron energy scale with which the DSA start dominating the electron acceleration.
$\\gamma$-Rays from Supernova Remnants and the Signatures of Diffusive Shock Acceleration
Baring, M G; Grenier, I; Baring, Matthew G.; Ellison, Donald C.; Grenier, Isabelle
1997-01-01
While the definitive detection of gamma-rays from known supernova remnants (SNRs) remains elusive, the collection of unidentified EGRET sources that may be associated with SNRs has motivated recent modelling of TeV emission from these sources. Current theoretical models use power-law shock-accelerated protons and electrons in their predictions of expected gamma-ray TeV fluxes from those unidentified EGRET sources with remnant associations. In this paper, we explore a more detailed non-linear shock acceleration model, which generates non-thermal proton distributions and includes a self-consistent determination of shock hydrodynamics. We obtain gamma-ray spectra for SNRs allowing for the cessation of acceleration to high energies that is due to the finite ages and sizes of remnants. Gamma-ray spectral cutoffs can be observed in the TeV range for reasonable remnant parameters, and deviations from power-law behaviour are found at all energies ranging from 1 MeV up to the cutoff. Correlated observations by INTEGRA...
Morlino, G
2015-01-01
The presence of neutral hydrogen in the shock proximity changes the structure of the shock and affects the spectra of particles accelerated through the first order Fermi mechanism. This phenomenon has profound implications for the interpretation of the multifrequency spectra of radiation from supernova remnants. Neutrals that undergo charge exchange with hot ions downstream of the shock may result in fast neutrals moving towards the upstream gas, where they can suffer additional charge exchange or ionisation reactions, thereby depositing energy and momentum upstream. Here we discuss the implications of this neutral return flux, already predicted in our previous work on neutral mediated supernova shocks and show how the spectra of accelerated particles turn out to be appreciably steeper than $p^{-4}$, thereby affecting the gamma ray spectra from supernova remnants in general and from Tycho specifically. The theory that describes non-linear diffusive shock acceleration in the presence of neutral hydrogen has be...
Is the acceleration of anomalous cosmic rays affected by the geometry of the termination shock?
Senanayake, U. K.; Florinski, V., E-mail: uks0001@uah.edu, E-mail: vaf0001@uah.edu [Department of Space Sciences and Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)
2013-12-01
Historically, anomalous cosmic rays (ACRs) were thought to be accelerated at the solar-wind termination shock (TS) by the diffusive shock acceleration process. When Voyager 1 crossed the TS in 2004, the measured ACR spectra did not match the theoretical prediction of a continuous power law, and the source of the high-energy ACRs was not observed. When the Voyager 2 crossed the TS in 2007, it produced similar results. Several possible explanations have since appeared in the literature, but we follow the suggestion that ACRs are still accelerated at the shock, only away from the Voyager crossing points. To investigate this hypothesis closer, we study ACR acceleration using a three-dimensional, non-spherical model of the heliosphere that is axisymmetric with respect to the interstellar flow direction. We then compare the results with those obtained for a spherical TS. A semi-analytic model of the plasma and magnetic field backgrounds is developed to permit an investigation over a wide range of parameters under controlled conditions. The model is applied to helium ACRs, whose phase-space trajectories are stochastically integrated backward in time until a pre-specified, low-energy boundary, taken to be 0.5 MeV n{sup –1} (the so-called injection energy), is reached. Our results show that ACR acceleration is quite efficient on the heliotail-facing part of the TS. For small values of the perpendicular diffusion coefficient, our model yields a positive intensity gradient between the TS and about midway through the heliosheath, in agreement with the Voyager observations.
Comparison of accelerated ion populations observed upstream of the bow shocks at Venus and Mars
M. Yamauchi
2011-03-01
Full Text Available Foreshock ions are compared between Venus and Mars at energies of 0.6~20 keV using the same ion instrument, the Ion Mass Analyser, on board both Venus Express and Mars Express. Venus Express often observes accelerated protons (2~6 times the solar wind energy that travel away from the Venus bow shock when the spacecraft location is magnetically connected to the bow shock. The observed ions have a large field-aligned velocity compared to the perpendicular velocity in the solar wind frame, and are similar to the field-aligned beams and intermediate gyrating component of the foreshock ions in the terrestrial upstream region. Mars Express does not observe similar foreshock ions as does Venus Express, indicating that the Martian foreshock does not possess the intermediate gyrating component in the upstream region on the dayside of the planet. Instead, two types of gyrating protons in the solar wind frame are observed very close to the Martian quasi-perpendicular bow shock within a proton gyroradius distance. The first type is observed only within the region which is about 400 km from the bow shock and flows tailward nearly along the bow shock with a similar velocity as the solar wind. The second type is observed up to about 700 km from the bow shock and has a bundled structure in the energy domain. A traversal on 12 July 2005, in which the energy-bunching came from bundling in the magnetic field direction, is further examined. The observed velocities of the latter population are consistent with multiple specular reflections of the solar wind at the bow shock, and the ions after the second reflection have a field-aligned velocity larger than that of the de Hoffman-Teller velocity frame, i.e., their guiding center has moved toward interplanetary space out from the bow shock. To account for the observed peculiarity of the Martian upstream region, finite gyroradius effects of the solar wind protons compared to the radius of the bow shock curvature and
A Magnetohydrodynamic Boost for Relativistic Jets
Mizuno, Yosuke; Hardee, Philip; Hartmann, Dieter H.; Nishikawa, Ken-Ichi; Zhang, Bing
2007-01-01
We performed relativistic magnetohydrodynamic simulations of the hydrodynamic boosting mechanism for relativistic jets explored by Aloy & Rezzolla (2006) using the RAISHIN code. Simulation results show that the presence of a magnetic field changes the properties of the shock interface between the tenuous, overpressured jet (V^z j) flowing tangentially to a dense external medium. We find that magnetic fields can lead to more efficient acceleration of the jet, in comparison to the pure-hydrodynamic case. A "poloidal" magnetic field (B^z), tangent to the interface and parallel to the jet flow, produces both a stronger outward moving shock and a stronger inward moving rarefaction wave. This leads to a large velocity component normal to the interface in addition to acceleration tangent to the interface, and the jet is thus accelerated to larger Lorentz factors than those obtained in the pure-hydrodynamic case. Likewise, a strong "toroidal" magnetic field (B^y), tangent to the interface but perpendicular to the jet flow, also leads to stronger acceleration tangent to the shock interface relative to the pure-hydrodynamic case. Thus. the presence and relative orientation of a magnetic field in relativistic jets can significant modify the hydrodynamic boost mechanism studied by Aloy & Rezzolla (2006).
Energy deposition of quasi-two temperature relativistic electrons in fast-shock ignition scenario
Ghasemi, Seyed Abolfazl; Farahbod, Amir Hossein
2016-10-01
Previous calculations from Solodov et al. (2008) indicate that classical stopping and scattering dominate electrons energy deposition and transport when the electrons reach the dense plasma in FSI inertial confinement fusion concept [1]. Our calculations show that, by using quasi- two temperature electrons energy distribution function [2] in comparison with exponential [3] or monoenergetic distribution function and also increasing fast electrons energy to about 7 MeV, the ratio of beam blooming to straggling definitely decreases. Our analytical analysis shows that for fuel mass more than 1 mg and for fast ignitor wavelength λif > 0.53 μ m, straggling and beam blooming increases. Meanwhile, by reducing fast ignitor wavelength from 0.53 to 0.35 micron, and for fuel mass about 2 mg, electron penetration into the dense fuel slightly increases. Therefore, reduction of scattering (blooming and straggling) of electrons and enhancement of electron penetration into the dense fuel, can be obtained in relativistic regime with high energy fast electrons of the order of 5 Mev and more. Such derivations can be used in theoretical studies of the ignition conditions and PIC simulations of the electron transport in fast ignition scenario.
Wakefield-acceleration of relativistic electrons with few-cycle laser pulses at kHz-repetition-rate
Guenot, Diego; Gustas, Dominykas; Vernier, Aline; Boehle, Frederik; Beaurepaire, Benoit; Lopez-Martens, Rodrigo; Faure, Jerome; Appli Team
2016-10-01
The generation of relativistic electron beams using laser wakefield acceleration has become a standard technique, providing low emittance electron bunches with femtosecond durations. However, this technique usually requires multi-ten-terawatt lasers and is thus limited to low repetition-rate (typically 10 Hz or less). We have recently demonstrated the generation of few MeV electrons using 2.5-mJ, 4-fs, 1-kHz repetition-rate laser pulses, focused to relativistic intensity onto a gas jet with electron density 1020 cm-3. We have investigated the influence of the pulse duration, the gas density. We demonstrated that an electron beam with a charge in the range of 10-fC/shot, with a divergence of 20-mrad and a peaked spectrum with energies between 2 and 4 MeV can be generated at kHz repetition-rate. These results confirm the possibility of using few-cycle laser pulses with very low energy for exciting wakefields in the bubble regime and for trapping electrons, as predicted by PIC simulations. This kHz electron source is ideally suited for performing electron diffraction experiments with very high temporal resolution. Our results also open the way to other applications, such as the generation of a kHz ultrafast X-ray source. ERC femtoelec.
Kagan, Daniel; Piran, Tsvi
2016-01-01
The maximum synchrotron burnoff limit of 160 MeV represents a fundamental limit to radiation resulting from electromagnetic particle acceleration in one-zone ideal plasmas. In magnetic reconnection, however, particle acceleration and radiation are decoupled because the electric field is larger than the magnetic field in the diffusion region. We carry out two-dimensional particle-in-cell simulations to determine the extent to which magnetic reconnection can produce synchrotron radiation above the burnoff limit. We use the test particle comparison (TPC) method to isolate the effects of cooling by comparing the trajectories and acceleration efficiencies of test particles incident on such a reconnection region with and without cooling them. We find that the cooled and uncooled particle trajectories are typically similar during acceleration in the reconnection region, and derive an effective limit on particle acceleration that is inversely proportional to the average magnetic field experienced by the particle duri...
Schnell, Michael; Uschmann, Ingo; Jansen, Oliver; Kaluza, Malte Christoph; Spielmann, Christian
2015-01-01
The necessity for compact table-top x-ray sources with higher brightness, shorter wavelength and shorter pulse duration has led to the development of complementary sources based on laser-plasma accelerators, in contrast to conventional accelerators. Relativistic interaction of short-pulse lasers with underdense plasmas results in acceleration of electrons and in consequence in the emission of spatially coherent radiation, which is known in the literature as betatron radiation. In this article we report on our recent results in the rapidly developing field of secondary x-ray radiation generated by high-energy electron pulses. The betatron radiation is characterized with a novel setup allowing to measure the energy, the spatial energy distribution in the far-field of the beam and the source size in a single laser shot. Furthermore, the polarization state is measured for each laser shot. In this way the emitted betatron x-rays can be used as a non-invasive diagnostic tool to retrieve very subtle information of t...
Kakuwa, Jun; Asano, Katsuaki; Kusunose, Masaaki; Takahara, Fumio
2015-01-01
We examine the applicability of the stochastic electron acceleration to two high synchrotron peaked blazars, Mrk 421 and Mrk 501, assuming synchrotron self-Compton emission of gamma-rays. Our model considers an emitting region moving at relativistic speed, where non-thermal electrons are accelerated and attain a steady-state energy spectrum together with the photons they emit. The kinetic equations of the electrons and photons are solved numerically, given a stationary wave number spectrum of the magnetohydrodynamic (MHD) disturbances, which are responsible for the electron acceleration and escape. Our simple formulation appears to reproduce the two well-sampled, long-term averaged photon spectra. In order to fit the model to the emission component from the radio to the X-ray bands, we need both a steeper wave spectral index than the Kolmogorov spectrum and efficient particle escape. Although the model provides a natural explanation for the high-energy cutoff of the electron energy distribution, the derived p...
Ceccotti, T; Sgattoni, A; Bigongiari, A; Raynaud, M; Riconda, C; Heron, A; Baffigi, F; Labate, L; Gizzi, L A; Vassura, L; Fuchs, J; Passoni, M; Kveton, M; Novotny, F; Possolt, M; Prokupek, J; Proska, J; Psikal, J; Stolcova, L; Velyhan, A; Bougeard, M; D'Oliveira, P; Tcherbakoff, O; Reau, F; Martin, P; Macchi, A
2013-01-01
The interaction of laser pulses with thin grating targets, having a periodic groove at the irradiated surface, has been experimentally investigated. Ultrahigh contrast ($\\sim 10^{12}$) pulses allowed to demonstrate an enhanced laser-target coupling for the first time in the relativistic regime of ultra-high intensity $>10^{19} \\mbox{W/cm}^{2}$. A maximum increase by a factor of 2.5 of the cut-off energy of protons produced by Target Normal Sheath Acceleration has been observed with respect to plane targets, around the incidence angle expected for resonant excitation of surface waves. A significant enhancement is also observed for small angles of incidence, out of resonance.
Low-field permanent magnet quadrupoles in a new relativistic-klystron two-beam accelerator design
Yu, S.; Sessler, A. [Lawrence Berkeley Lab., CA (United States)
1995-02-01
Permanent magnets play a central role in the new relativistic klystron two-beam-accelerator design. The two key goals of this new design, low cost and the suppression of beam break-up instability are both intimately tied to the permanent magnet quadrupole focusing system. A recently completed systems study by a joint LBL-LLNL team concludes that a power source for a 1 TeV center-of-mass Next Linear Collider based on the new TBA design can be as low as $1 billion, and the efficiency (wall plug to rf) is estimated to be 36%. End-to-end simulations of longitudinal and transverse beam dynamics show that the drive beam is stable over the entire TBA unit.
Electron acceleration at slow-mode shocks in the magnetic reconnection region in solar flares
Mann, Gottfried; Aurass, Henry; Önel, Hakan; Warmuth, Alexander
2016-04-01
A solar flare appears as an sudden enhancement of the emission of electromagnetic radiation of the Sun covering a broad range of the spectrum from the radio up to the gamma-ray range. That indicates the generation of energetic electrons during flares, which are considered as the manifestation of magnetic reconnection in the solar corona. Spacecraft observations in the Earth's magnetosphere, as for instance by NASA's MMS mission, have shown that electrons can efficiently accelerated at the slow-mode shocks occuring in the magnetic reconnection region. This mechanism is applied to solar flares. The electrons are accelerated by the cross-shock potential at slow-mode shocks resulting in magnetic field aligned beams of energetic electrons in the downstream region. The interaction of this electron beam with the plasma leads to the excitation of whistler waves and, subsequently, to a strong heating of the electrons in the downstream region. Considering this process under coronal circumstances, enough electrons with energies >30keV are generated in the magnetic reconnection region as required for the hard X-ray radiation during solar flares as observed by NASA's RHESSI mission.
Ellison, D C; Baring, M G; Grenier, I A; Lagage, P O; Ellison, Donald C.; Goret, Philippe; Baring, Matthew G.; Grenier, Isabelle A.; Lagage, Pierre-Olivier
1999-01-01
We calculate particle spectra and continuum photon emission from the Cassiopeia A supernova remnant (SNR). The particle spectra, ion and electron, result from diffusive shock acceleration at the forward SNR shock and are determined with a nonlinear Monte Carlo calculation. The calculation self-consistently determines the shock structure under the influence of ion pressure, and includes a simple parameterized treatment of electron injection and acceleration. Our results are compared to photon observations, concentrating on the connection between the Radio and GeV-TeV gamma-ray range, and to cosmic ray ion observations. We include new upper limits from the Cherenkov Array at Themis (CAT) imaging Cherenkov telescope and the Whipple 10m gamma-ray telescope at > 400 GeV. These new limits support the suggestion (e.g. Cowsik & Sarkar 1980; Allen et. al. 1997) that energetic electrons are emitting synchrotron radiation in an extremely high magnetic field (~ 1000 microGauss), far greater than values routinely assi...
Accelerated electronic structure-based molecular dynamics simulations of shock-induced chemistry
Cawkwell, Marc
2015-06-01
The initiation and progression of shock-induced chemistry in organic materials at moderate temperatures and pressures are slow on the time scales available to regular molecular dynamics simulations. Accessing the requisite time scales is particularly challenging if the interatomic bonding is modeled using accurate yet expensive methods based explicitly on electronic structure. We have combined fast, energy conserving extended Lagrangian Born-Oppenheimer molecular dynamics with the parallel replica accelerated molecular dynamics formalism to study the relatively sluggish shock-induced chemistry of benzene around 13-20 GPa. We model interatomic bonding in hydrocarbons using self-consistent tight binding theory with an accurate and transferable parameterization. Shock compression and its associated transient, non-equilibrium effects are captured explicitly by combining the universal liquid Hugoniot with a simple shrinking-cell boundary condition. A number of novel methods for improving the performance of reactive electronic structure-based molecular dynamics by adapting the self-consistent field procedure on-the-fly will also be discussed. The use of accelerated molecular dynamics has enabled us to follow the initial stages of the nucleation and growth of carbon clusters in benzene under thermodynamic conditions pertinent to experiments.
Broad Balmer line emission and cosmic ray acceleration efficiency in supernova remnant shocks
Morlino, G; Bandiera, R; Amato, E
2013-01-01
Balmer emission may be a powerful diagnostic tool to test the paradigm of cosmic ray (CR) acceleration in young supernova remnant (SNR) shocks. The width of the broad Balmer line is a direct indicator of the downstream plasma temperature. In case of efficient particle acceleration an appreciable fraction of the total kinetic energy of the plasma is channeled into CRs, therefore the downstream temperature decreases and so does the broad Balmer line width. This width also depends on the level of thermal equilibration between ions and neutral hydrogen atoms in the downstream. Since in general in young SNR shocks only a few charge exchange (CE) reactions occur before ionization, equilibration between ions and neutrals is not reached, and a kinetic description of the neutrals is required in order to properly compute Balmer emission. We provide a method for the calculation of Balmer emission using a self-consistent description of the shock structure in the presence of neutrals and CRs. We use a recently developed s...
The challenge of turbulent acceleration of relativistic particles in the intra-cluster medium
Brunetti, G
2015-01-01
Acceleration of cosmic-ray electrons (CRe) in the intra-cluster-medium (ICM) is probed by radio observations that detect diffuse, Mpc-scale, synchrotron sources in a fraction of galaxy clusters. Giant radio halos are the most spectacular manifestations of non-thermal activity in the ICM and are currently explained assuming that turbulence driven during massive cluster-cluster mergers reaccelerates CRe at several GeV. This scenario implies a hierarchy of complex mechanisms in the ICM that drain energy from large-scales into electromagnetic fluctuations in the plasma and collisionless mechanisms of particle acceleration at much smaller scales. In this paper we focus on the physics of acceleration by compressible turbulence. The spectrum and damping mechanisms of the electromagnetic fluctuations, and the mean-free-path (mfp) of CRe are the most relevant ingredients that determine the efficiency of acceleration. These ingredients in the ICM are however poorly known and we show that calculations of turbulent accel...
Jing Chen
Full Text Available Osteoarthritis (OA is one of diseases that seriously affect elderly people's quality of life. Human mesenchymal stem cells (hMSCs offer a potential promise for the joint repair in OA patients. However, chondrogenic differentiation from hMSCs in vitro takes a long time (∼ 6 weeks and differentiated cells are still not as functionally mature as primary isolated chondrocytes, though chemical stimulations and mechanical loading have been intensively studied to enhance the hMSC differentiation. On the other hand, thermal stimulations of hMSC chondrogenesis have not been well explored. In this study, the direct effects of mild heat shock (HS on the differentiation of hMSCs into chondrocytes in 3D pellet culture were investigated. Periodic HS at 41 °C for 1 hr significantly increased sulfated glycosaminoglycan in 3D pellet culture at Day 10 of chondrogenesis. Immunohistochemical and Western Blot analyses revealed an increased expression of collagen type II and aggrecan in heat-shocked pellets than non heat-shocked pellets on Day 17 of chondrogenesis. In addition, HS also upregulated the expression of collagen type I and X as well as heat shock protein 70 on Day 17 and 24 of differentiation. These results demonstrate that HS accelerated the chondrogenic differentiation of hMSCs and induced an early maturation of chondrocytes differentiated from hMSCs. The results of this study will guide the design of future protocols using thermal treatments to facilitate cartilage regeneration with human mesenchymal stem cells.
Park, Jaehong; Workman, Jared C; Blackman, Eric G
2012-01-01
Low Mach number, high beta fast mode shocks can occur in the magnetic reconnection outflows of solar flares. These shocks, which occur above flare loop tops, may provide the electron energization responsible for some of the observed hard X-rays and contemporaneous radio emission. Here we present new 2D particle-in-cell simulations of low Mach number/high beta quasi-perpendicular shocks. The simulations show that electrons above a certain energy threshold experience shock-drift-acceleration. The transition energy between the thermal and non-thermal spectrum and the spectral index from the simulations are consistent with some of the X-ray spectra from RHESSI in the energy regime, $E\\lesssim 40\\sim 100$ keV. Plasma instabilities associated with the shock structure such as the modified-two-stream and the electron whistler/mirror instabilities are examined and compared with the numerical solutions of the kinetic dispersion relations.
Time dependent diffusive shock acceleration and its application to middle aged supernova remnants
Tang, Xiaping
2016-01-01
Recent gamma-ray observations show that middle aged supernova remnants (SNRs) interacting with molecular clouds (MCs) can be sources of both GeV and TeV emission. Based on the MC association, two scenarios have been proposed to explain the observed gamma-ray emission. In one, energetic cosmic ray (CR) particles escape from the SNR and then illuminate nearby MCs, producing gamma-ray emission, while the other involves direct interaction between the SNR and MC. In the direct interaction scenario, re-acceleration of pre-existing CRs in the ambient medium is investigated while particles injected from the thermal pool are neglected in view of the slow shock speeds in middle aged SNRs. However, standard diffusive shock acceleration (DSA) theory produces a steady state particle spectrum that is too flat compared to observations, which suggests that the high energy part of the observed spectrum has not yet reached a steady state. We derive a time dependent DSA solution in the test particle limit for re-acceleration of...
Nonlinear shock acceleration and gamma-ray emission from Tycho and Kepler
Morlino, G
2012-01-01
We apply the non-linear diffusive shock acceleration theory in order to describe the properties of two supernova remnants, SN 1572 (Tycho) and SN 1604 (Kepler). By analyzing the multi-wavelength spectra, we infer that both Tycho's and Kepler's forward shocks are accelerating protons up to ~500 TeV, channeling into cosmic rays more than 10 per cent of their kinetic energy. We find that the streaming instability induced by cosmic rays is consistent with the X-ray morphology of the remnants, indicating a very efficient magnetic field amplification (up to ~300 microG). In the case of Tycho we explain the gamma-ray spectrum from the GeV up to the TeV band as due to pion decay produced in nuclear collisions by accelerated nuclei scattering against the background gas. On the other hand, due to the larger distance, the gamma-ray emission from Kepler is not detected, being below the sensitivity of the present detectors, but it should be detectable by the Cerenkov Telescope Array.
Lee, Shiu-Hang; Ellison, Donald C
2008-01-01
We present a 3-dimensional model of supernova remnants (SNRs) where the hydrodynamical evolution of the remnant is modeled consistently with nonlinear diffusive shock acceleration occuring at the outer blast wave. The model includes particle escape and diffusion outside of the forward shock, and particle interactions with arbitrary distributions of external ambient material, such as molecular clouds. We include synchrotron emission and cooling, bremsstrahlung radiation, neutral pion production, inverse-Compton (IC), and Coulomb energy-loss. Boardband spectra have been calculated for typical parameters including dense regions of gas external to a 1000 year old SNR. In this paper, we describe the details of our model but do not attempt a detailed fit to any specific remnant. We also do not include magnetic field amplification (MFA), even though this effect may be important in some young remnants. In this first presentation of the model we don't attempt a detailed fit to any specific remnant. Our aim is to devel...
Lecz, Zs. [ELI-ALPS, ELI-HU Nkft., Szeged (Hungary); Andreev, A. [ELI-ALPS, ELI-HU Nkft., Szeged (Hungary); Max-Born Institute, Berlin (Germany)
2015-04-15
The acceleration of protons, triggered by solitary waves in expanded solid targets is investigated using particle-in-cell simulations. The near-critical density plasma is irradiated by ultrashort high power laser pulses, which generate the solitary wave. The transformation of this soliton into a shock wave during propagation in plasma with exponentially decreasing density profile is described analytically, which allows to obtain a scaling law for the proton energy. The high quality proton bunch with small energy spread is produced by reflection from the shock-front. According to the 2D simulations, the mechanism is stable only if the laser pulse duration is shorter than the characteristic development time of the parasitic Weibel instability.
Arefiev, A V; Robinson, A P L; Shvets, G; Willingale, L; Schollmeier, M
2016-01-01
We examine a regime in which a linearly-polarized laser pulse with relativistic intensity irradiates a sub-critical plasma for much longer than the characteristic electron response time. A steady-state channel is formed in the plasma in this case with quasi-static transverse and longitudinal electric fields. These relatively weak fields significantly alter the electron dynamics. The longitudinal electric field reduces the longitudinal dephasing between the electron and the wave, leading to an enhancement of the electron energy gain from the pulse. The energy gain in this regime is ultimately limited by the superluminosity of the wave fronts induced by the plasma in the channel. The transverse electric field alters the oscillations of the transverse electron velocity, allowing it to remain anti-parallel to laser electric field and leading to a significant energy gain. The energy enhancement is accompanied by development of significant oscillations perpendicular to the plane of the driven motion, making traject...
Development of a relativistic Particle In Cell code PARTDYN for linear accelerator beam transport
Phadte, D.; Patidar, C. B.; Pal, M. K.
2017-04-01
A relativistic Particle In Cell (PIC) code PARTDYN is developed for the beam dynamics simulation of z-continuous and bunched beams. The code is implemented in MATLAB using its MEX functionality which allows both ease of development as well higher performance similar to a compiled language like C. The beam dynamics calculations carried out by the code are compared with analytical results and with other well developed codes like PARMELA and BEAMPATH. The effect of finite number of simulation particles on the emittance growth of intense beams has been studied. Corrections to the RF cavity field expressions were incorporated in the code so that the fields could be calculated correctly. The deviations of the beam dynamics results between PARTDYN and BEAMPATH for a cavity driven in zero-mode have been discussed. The beam dynamics studies of the Low Energy Beam Transport (LEBT) using PARTDYN have been presented.
Astrophysical ZeV acceleration in the relativistic jet from an accreting supermassive blackhole
Ebisuzaki, Toshikazu; Tajima, Toshiki
2014-04-01
An accreting supermassive blackhole, the central engine of active galactic nucleus (AGN), is capable of exciting extreme amplitude Alfven waves whose wavelength (wave packet) size is characterized by its clumpiness. The pondermotive force and wakefield are driven by these Alfven waves propagating in the AGN (blazar) jet, and accelerate protons/nuclei to extreme energies beyond Zetta-electron volt (ZeV=1021 eV). Such acceleration is prompt, localized, and does not suffer from the multiple scattering/bending enveloped in the Fermi acceleration that causes excessive synchrotron radiation loss beyond 1019 eV. The production rate of ZeV cosmic rays is found to be consistent with the observed gamma-ray luminosity function of blazars and their time variabilities.
Astrophysical ZeV acceleration in the relativistic jet from an accreting supermassive blackhole
Ebisuzaki, Toshikazu
2013-01-01
An accreting supermassive blackhole, the central engine of active galactic nucleus (AGN), is capable of exciting extreme amplitude Alfven waves whose wavelength (wave packet) size is characterized by its clumpiness. Alfvenic wakefelds excited in the AGN (blazar) jet can accelerate protons/nuclei to extreme energies beyond Zettaelectron volt (ZeV= 10^21 eV). Such acceleration is prompt, localized, and does not suffer from the multiple scattering/bending enveloped in the Fermi acceleration that causes excessive synchrotron radiation loss beyond 10^19 eV. The production rate of ZeV cosmic rays is found to be consistent with the observed gamma-ray luminosity function of blazars and their time variability.
,
2016-01-01
With Einstein's inertial motion (free-falling and non-rotating relative to gyroscopes), geodesics for non-relativistic particles can intersect repeatedly, allowing one to compute the space-time curvature $R^{\\hat{0} \\hat{0}}$ exactly. Einstein's $R^{\\hat{0} \\hat{0}}$ for strong gravitational fields and for relativistic source-matter is identical with the Newtonian expression for the relative radial acceleration of neighboring free-falling test-particles, spherically averaged.--- Einstein's field equations follow from Newtonian experiments, local Lorentz-covariance, and energy-momentum conservation combined with the Bianchi identity.
Vasilev, S. E.; Vishnevskiy, A. V.; Kadykov, M. G.; Makankin, A. M.; Tyutyunnikov, S. I.; Shurygin, A. A.
2014-11-01
Test samples of detectors and electronics for them constructed for the purpose of monitoring the "intense" relativistic ion beams extracted from the accelerator of the Nuclotron-M accelerator complex in real time are described. The system was tested in a series of acceleration runs with deuteron beams with an intensity of up to 1010 1/s and beams of carbon nuclei. The system allows one to perform multiple measurements of the two-dimensional distribution of the beam intensity in the plane perpendicular to it and the beam position in this plane during the beam dump and measure the two-dimensional distribution of the target irradiation dose after each beam dump.
Forot, M
2006-12-15
The context of this thesis is to gain new constraints on the different particle accelerators that occur in the complex environment of neutron stars: in the pulsar magnetosphere, in the striped wind or wave outside the light cylinder, in the jets and equatorial wind, and at the wind terminal shock. An important tool to constrain both the magnetic field and primary particle energies is to image the synchrotron ageing of the population, but it requires a careful modelling of the magnetic field evolution in the wind flow. The current models and understanding of these different accelerators, the acceleration processes and open questions have been reviewed in the first part of the thesis. The instrumental part of this work involves the IBIS imager, on board the INTEGRAL satellite, that provides images with 12' resolution from 17 keV to MeV where the SPI spectrometer takes over up, to 10 MeV, but with a reduced 2 degrees resolution. A new method for using the double-layer IBIS imager as a Compton telescope with coded mask aperture. Its performance has been measured. The Compton scattering information and the achieved sensitivity also open a new window for polarimetry in gamma rays. A method has been developed to extract the linear polarization properties and to check the instrument response for fake polarimetric signals in the various backgrounds and projection effects.
Giandolini, Marlene; Horvais, Nicolas; Rossi, Jérémy; Millet, Guillaume Y; Samozino, Pierre; Morin, Jean-Benoît
2016-06-14
Trail runners are exposed to a high number of shocks, including high-intensity shocks on downhill sections leading to greater risk of osseous overuse injury. The type of foot strike pattern (FSP) is known to influence impact severity and lower-limb kinematics. Our purpose was to investigate the influence of FSP on axial and transverse components of shock acceleration and attenuation during an intense downhill trail run (DTR). Twenty-three trail runners performed a 6.5-km DTR (1264m of negative elevation change) as fast as possible. Four tri-axial accelerometers were attached to the heel, metatarsals, tibia and sacrum. Accelerations were continuously recorded at 1344Hz and analyzed over six sections (~400 steps per subject). Heel and metatarsal accelerations were used to identify the FSP. Axial, transverse and resultant peak accelerations, median frequencies and shock attenuation within the impact-related frequency range (12-20Hz) were assessed between tibia and sacrum. Multiple linear regressions showed that anterior (i.e. forefoot) FSPs were associated with higher peak axial acceleration and median frequency at the tibia, lower transverse median frequencies at the tibia and sacrum, and lower transverse peak acceleration at the sacrum. For resultant acceleration, higher tibial median frequency but lower sacral peak acceleration were reported with forefoot striking. FSP therefore differently affects the components of impact shock acceleration. Although a forefoot strike reduces impact severity and impact frequency content along the transverse axis, a rearfoot strike decreases them in the axial direction. Globally, the attenuation of axial and resultant impact-related vibrations was improved using anterior FSPs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Arefiev, A. V.; Khudik, V. N.; Robinson, A. P. L.; Shvets, G.; Willingale, L.; Schollmeier, M.
2016-05-01
We examine a regime in which a linearly polarized laser pulse with relativistic intensity irradiates a sub-critical plasma for much longer than the characteristic electron response time. A steady-state channel is formed in the plasma in this case with quasi-static transverse and longitudinal electric fields. These relatively weak fields significantly alter the electron dynamics. The longitudinal electric field reduces the longitudinal dephasing between the electron and the wave, leading to an enhancement of the electron energy gain from the pulse. The energy gain in this regime is ultimately limited by the superluminosity of the wave fronts induced by the plasma in the channel. The transverse electric field alters the oscillations of the transverse electron velocity, allowing it to remain anti-parallel to laser electric field and leading to a significant energy gain. The energy enhancement is accompanied by the development of significant oscillations perpendicular to the plane of the driven motion, making trajectories of energetic electrons three-dimensional. Proper electron injection into the laser beam can further boost the electron energy gain.
Enhanced laser-driven ion acceleration in the relativistic transparency regime
Henig, Andreas; Kiefer, Daniel; Jung, Daniel; Habs, Dietrich [Max-Planck Institut fuer Quantenoptik, Garching (Germany); LMU Muenchen, Department fuer Physik, Garching (Germany); Flippo, Kirk; Gautier, Cord; Letzring, Sam; Johnson, Randy; Shimada, Tom; Yin, Lin; Albright, Brian; Fernandez, Juan [Los Alamos National Laboratory, Los Alamos, New Mexico (United States); Rykovanov, Sergey [Max-Planck Institut fuer Quantenoptik, Garching (Germany); Moscow Physics Engineering Institute, Moscow (Russian Federation); Wu, Hui-Chun [Max-Planck Institut fuer Quantenoptik, Garching (Germany); Markey, Keith; Zepf, Matt [Department of Physics and Astronomy, Queen' s University, Belfast (United Kingdom); Liechtenstein, Vitaly [LMU Muenchen, Department fuer Physik, Garching (Germany); RRC, Kurchatov Institute, Moscow (Russian Federation); Schreiber, Joerg [Max-Planck Institut fuer Quantenoptik, Garching (Germany); LMU Muenchen, Department fuer Physik, Garching (Germany); Plasma Physics Group, Blackett Laboratory, Imperial College, London (United Kingdom); Hegelich, Manuel [LMU Muenchen, Department fuer Physik, Garching (Germany); Los Alamos National Laboratory, Los Alamos, New Mexico (United States)
2009-07-01
We report on the acceleration of ion beams from ultra-thin diamond-like carbon (DLC) foils of thickness 50, 30 and 10 nm irradiated by ultra-high contrast laser pulses at intensities of {proportional_to}7 x 10{sup 19} W/cm{sup 2}. An unprecedented maximum energy of 185 MeV (>15 MeV/u) for fully ionized carbon atoms is observed at the optimum thickness of 30 nm. The enhanced acceleration is attributed to self-induced transparency, leading to strong volumetric heating of the classically over-dense electron population in the bulk of the target. Our experimental results are supported by one- and two-dimensional particle-in-cell (PIC) simulations.
Blasi, P.; Morlino, G.; Bandiera, R.; Amato, E. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5, I-50125 Firenze (Italy); Caprioli, D. [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08540 (United States)
2012-08-20
A collisionless shock may be strongly modified by the presence of neutral atoms through the processes of charge exchange between ions and neutrals and ionization of the latter. These two processes lead to exchange of energy and momentum between charged and neutral particles both upstream and downstream of the shock. In particular, neutrals that suffer a charge exchange downstream with shock-heated ions generate high-velocity neutrals that have a finite probability of returning upstream. These neutrals might then deposit heat in the upstream plasma through ionization and charge exchange, thereby reducing the fluid Mach number. A consequence of this phenomenon, which we refer to as the neutral return flux, is a reduction of the shock compression factor and the formation of a shock precursor upstream. The scale length of the precursor is determined by the ionization and charge-exchange interaction lengths of fast neutrals moving toward upstream infinity. In the case of a shock propagating in the interstellar medium, the effects of ion-neutral interactions are especially important for shock velocities <3000 km s{sup -1}. Such propagation velocities are common among shocks associated with supernova remnants, the primary candidate sources for the acceleration of Galactic cosmic rays. We then investigate the effects of the return flux of neutrals on the spectrum of test particles accelerated at the shock. We find that, for shocks slower than {approx}3000 km s{sup -1}, the particle energy spectrum steepens appreciably with respect to the naive expectation for a strong shock, namely, {proportional_to}E{sup -2}.
BRIGGS,S.L.K.; MUSOLINO,S.V.
2001-06-01
In early 1997 Brookhaven National Laboratory (BNL) discovered that the spent fuel pool of their High Flux Beam Reactor was leaking tritium into the groundwater. Community members, activist groups, politicians and regulators were outraged with the poor environmental management practices at BNL. The reactor was shut down and the Department of Energy (DOE) terminated the contract with the existing Management Company. At this same time, a major new scientific facility, the Relativistic Heavy Ion Collider (RHIC), was nearing the end of construction and readying for commissioning. Although environmental considerations had been incorporated into the design of the facility; some interested parties were skeptical that this new facility would not cause significant environmental impacts. RHIC management recognized that the future of its operation was dependent on preventing pollution and allaying concerns of its stakeholders. Although never done at a DOE National Laboratory before Brookhaven Science Associates, the new management firm, committed to implementing an Environmental Management System (EMS) and RHIC managers volunteered to deploy it within their facility on an extremely aggressive schedule. Several of these IS0 requirements contribute directly to preventing pollution, an area where particular emphasis was placed. This paper describes how Brookhaven used the following key IS0 14001 elements to institutionalize Pollution Prevention concepts: Environmental Policy, Aspects, Objectives and Targets, Environmental Management Program, Structure and Responsibility, Operational Controls, Training, and Management Review. In addition, examples of implementation at the RHIC Project illustrate how BNL's premiere facility was able to demonstrate to interested parties that care had been taken to implement technological and administrative controls to minimize environmental impacts, while at the same time reduce the applicability of regulatory requirements to their operations.
Baring, M G; Reynolds, S P; Grenier, I; Goret, P; Baring, Matthew G.; Ellison, Donald C.; Reynolds, Stephen P; Grenier, Isabelle; Goret, Philippe
1999-01-01
Supernova remnants (SNRs) are widely believed to be the principal source of galactic cosmic rays. Such energetic particles can produce gamma-rays and lower energy photons via interactions with the ambient plasma. In this paper, we present results from a Monte Carlo simulation of non-linear shock structure and acceleration coupled with photon emission in shell-like SNRs. These non-linearities are a by-product of the dynamical influence of the accelerated cosmic rays on the shocked plasma and result in distributions of cosmic rays which deviate from pure power-laws. Such deviations are crucial to acceleration efficiency and spectral considerations, producing GeV/TeV intensity ratios that are quite different from test particle predictions. The Sedov scaling solution for SNR expansions is used to estimate important shock parameters for input into the Monte Carlo simulation. We calculate ion and electron distributions that spawn neutral pion decay, bremsstrahlung, inverse Compton, and synchrotron emission, yieldin...
Cosmic-ray acceleration in young protostars
Padovani, Marco; Marcowith, Alexandre; Ferrière, Katia
2015-01-01
The main signature of the interaction between cosmic rays and molecular clouds is the high ionisation degree. This decreases towards the densest parts of a cloud, where star formation is expected, because of energy losses and magnetic effects. However recent observations hint to high levels of ionisation in protostellar systems, therefore leading to an apparent contradiction that could be explained by the presence of energetic particles accelerated within young protostars. Our modelling consists of a set of conditions that has to be satisfied in order to have an efficient particle acceleration through the diffusive shock acceleration mechanism. We find that jet shocks can be strong accelerators of protons which can be boosted up to relativistic energies. Another possibly efficient acceleration site is located at protostellar surfaces, where shocks caused by impacting material during the collapse phase are strong enough to accelerate protons. Our results demonstrate the possibility of accelerating particles du...
Bykov, Andrei M; Osipov, Sergei M; Vladimirov, Andrey E
2014-01-01
We present a nonlinear Monte Carlo model of efficient diffusive shock acceleration (DSA) where the magnetic turbulence responsible for particle diffusion is calculated self-consistently from the resonant cosmic-ray (CR) streaming instability, together with non-resonant short- and long-wavelength CR-current-driven instabilities. We include the backpressure from CRs interacting with the strongly amplified magnetic turbulence which decelerates and heats the super-alfvenic flow in the extended shock precursor. Uniquely, in our plane-parallel, steady-state, multi-scale model, the full range of particles, from thermal (~eV) injected at the viscous subshock, to the escape of the highest energy CRs (~PeV) from the shock precursor, are calculated consistently with the shock structure, precursor heating, magnetic field amplification (MFA), and scattering center drift relative to the background plasma. In addition, we show how the cascade of turbulence to shorter wavelengths influences the total shock compression, the d...
A two-fluid model for black-hole accretion flows: particle acceleration and disc structure
Lee, Jason P.; Becker, Peter A.
2017-02-01
Hot, tenuous advection-dominated accretion flows around black holes are ideal sites for the Fermi acceleration of relativistic particles at standing shock waves in the accretion disc. Previous work has demonstrated that the shock-acceleration process can be efficient enough to power the observed, strong outflows in radio-loud active galaxies such as M87. However, the dynamical effect (back-reaction) on the flow, exerted by the pressure of the relativistic particles, has not been previously considered, and this effect can have a significant influence on the disc structure. We reexamine the problem by developing a new, two-fluid model for the structure of the accretion disc that includes the dynamical effect of the relativistic particle pressure, combined with the pressure of the background (thermal) gas. The new model is analogous to the two-fluid model of cosmic ray acceleration in supernova-driven shock waves. As part of the model, we also develop a new set of shock jump conditions, which are solved along with the hydrodynamic conservation equations to determine the structure of the accretion disc. The solutions include the formation of a mildly relativistic outflow (jet) at the shock radius, driven by the relativistic particles accelerated in the disc. One of our main conclusions is that in the context of the new two-fluid accretion model, global smooth (shock-free) solutions do not exist, and the disc must always contain a standing shock wave, at least in the inviscid case considered here.
Konecny, Lukas; Kadek, Marius; Komorovsky, Stanislav; Malkina, Olga L; Ruud, Kenneth; Repisky, Michal
2016-12-13
The Liouville-von Neumann equation based on the four-component matrix Dirac-Kohn-Sham Hamiltonian is transformed to a quasirelativistic exact two-component (X2C) form and then used to solve the time evolution of the electronic states only. By this means, a significant acceleration by a factor of 7 or more has been achieved. The transformation of the original four-component equation of motion is formulated entirely in matrix algebra, following closely the X2C decoupling procedure of Ilias and Saue [ J. Chem. Phys. 2007 , 126 , 064102 ] proposed earlier for a static (time-independent) case. In a dynamic (time-dependent) regime, however, an adiabatic approximation must in addition be introduced in order to preserve the block-diagonal form of the time-dependent Dirac-Fock operator during the time evolution. The resulting X2C Liouville-von Neumann electron dynamics (X2C-LvNED) is easy to implement as it does not require an explicit form of the picture-change transformed operators responsible for the (higher-order) relativistic corrections and/or interactions with external fields. To illustrate the accuracy and performance of the method, numerical results and computational timings for nonlinear optical properties are presented. All of the time domain X2C-LvNED results show excellent agreement with the reference four-component calculations as well as with the results obtained from frequency domain response theory.
Morlino, G; Vietri, M
2007-01-01
A mathematical approach to investigate particle acceleration at shock waves moving at arbitrary speed in a medium with arbitrary scattering properties was first discussed in (Vietri 2003) and (Blasi & Vietri 2005}. We use this method and somewhat extend it in order to include the effect of a large scale magnetic field in the upstream plasma, with arbitrary orientation with respect to the direction of motion of the shock. We also use this approach to investigate the effects of anisotropic scattering on spectra and anisotropies of the distribution function of the accelerated particles.
Araudo, Anabella T; Blundell, Katherine M
2016-01-01
It has been suggested that relativistic shocks in extragalactic sources may accelerate the most energetic cosmic rays. However, recent theoretical advances indicating that relativistic shocks are probably unable to accelerate particles to energies much larger than a PeV cast doubt on this. In the present contribution we model the radio to X-ray emission in the southern hotspot of the quasar 4C74.26. The synchrotron radio emission is resolved near the shock with the MERLIN radio-interferometer, and the rapid decay of this emission behind the shock is interpreted as the decay of the downstream magnetic field as expected for small scale turbulence. If our result is confirmed by analyses of other radiogalaxies, it provides firm observational evidence that relativistic shocks at the termination region of powerful jets in FR II radiogalaxies do not accelerate ultra high energy cosmic rays.
Stasiewicz, K; Eliasson, B; Strumik, M; Yamauchi, M
2013-01-01
We present measurements from the ESA/NASA Cluster mission that show in situ acceleration of ions to energies of 1 MeV outside the bow shock. The observed heating can be associated with the presence of electromagnetic structures with strong spatial gradients of the electric field that lead to ion gyro-phase breaking and to the onset of chaos in ion trajectories. It results in rapid, stochastic acceleration of ions in the direction perpendicular to the ambient magnetic field. The electric potential of the structures can be compared to a field of moguls on a ski slope, capable of accelerating and ejecting the fast running skiers out of piste. This mechanism may represent the universal mechanism for perpendicular acceleration and heating of ions in the magnetosphere, the solar corona and in astrophysical plasmas. This is also a basic mechanism that can limit steepening of nonlinear electromagnetic structures at shocks and foreshocks in collisionless plasmas.
Synchrotron signature of a relativistic blast wave with decaying microturbulence
Lemoine, M
2012-01-01
Microphysics of weakly magnetized relativistic collisionless shock waves, corroborated by recent high performance numerical simulations, indicate the presence of a microturbulent layer of large magnetic field strength behind the shock front, which must decay beyond some hundreds of skin depths. The present paper discusses the dynamics of such microturbulence, borrowing from these same numerical simulations, and calculates the synchrotron signature of a powerlaw of shock accelerated particles. The decaying microturbulent layer is found to leave distinct signatures in the spectro-temporal evolution of the spectrum $F_\
On origin and destruction of relativistic dust and its implication for ultrahigh energy cosmic rays
Hoang, Thiem; Schlickeiser, R
2014-01-01
Dust grains may be accelerated to relativistic speeds by radiation pressure of luminous sources, diffusive shocks, and other acceleration mechanisms. Such relativistic grains have been suggested as potential primary particles of ultrahigh energy cosmic rays (UHECRs). In this paper, we reexamine this idea by studying in detail different destruction mechanisms for relativistic grains moving with Lorentz factor $\\gamma$ through a variety of environment conditions. For the solar radiation field, we find that sublimation/melting is a dominant destruction mechanism for silicate grains and large graphite grains. Using an improved treatment of photoelectric emission, we calculate the closest distance that relativistic grains can approach the Sun before destroyed by Coulomb explosions. A range of survival parameters for relativistic grains (size $a$ and $\\gamma$) against both sublimation and Coulomb explosions by the solar radiation field is identified. We also study collisional destruction mechanisms, consisting of e...
The detuning of relativistic Langmuir waves in the beat-wave accelerator
McKinstrie, C. J.; Forslund, D. W.
1987-03-01
In the beat-wave accelerator, a large-amplitude Langmuir wave is produced by the beating of two laser beams whose frequencies differ by approximately the plasma frequency. The growth of this Langmuir wave saturates because of a nonlinear shift in its natural frequency. At present, there are three different formulas for the nonlinear frequency shift in the literature. By taking all relevant nonlinearities into account, the original result of Akhiezer and Polovin [Dokl. Akad. Nauk SSSR 102, 919 (1955)] is shown to be correct. The maximum amplitude of the Langmuir wave depends on the incident laser intensity and the frequency mismatch, which is the difference between the beat frequency of the incident waves and the plasma frequency. Two different studies have produced contradictory conclusions on the ``optimum'' frequency mismatch. The reasons for this contradiction are discussed and the result of Tang, Sprangle, and Sudan [Phys. Fluids 28, 1974 (1985)] is shown to be essentially correct. However, the requirements for effective beam loading make practical use of the optimum configuration impossible.
Ivanov, K. A.; Tsymbalov, I. N.; Shulyapov, S. A.; Krestovskikh, D. A.; Brantov, A. V.; Bychenkov, V. Yu.; Volkov, R. V.; Savel'ev, A. B.
2017-06-01
We present results from the experimental and numerical study of electron heating and acceleration under the action of a 50 fs high contrast laser pulse [intensities ˜(1-4) × 1018 W/cm2] with a controlled preplasma that was created by a 6 ns laser "prepulse" with intensity ˜1012 W/cm2. A substantial increase both in the gamma yield and "temperature" was obtained by the proper adjustment of the time delay between the two pulses (0-5 ns), while the gamma yield dropped to almost zero values if the nanosecond pulse came 10-20 ns in advance of the femtosecond one. Comprehensive optical diagnostics (shadowgraphy, interferometry, and angular resolved self-emission measurements) data allowed us to estimate the electron density profile. The latter profile was used for making numerical Particle-in-cell simulations which describe the gamma yield enhancement well. We also illustrate how the observed drop in the gamma yield within a certain range of delays was due to ionization defocusing of the femtosecond beam in an expanding long-scale (L/λ > 1) preplasma.
Particle Diffusion and Acceleration by Shock Wave in Magnetized Filamentary Turbulence
Honda, M; Honda, Mitsuru; Honda, Yasuko S.
2005-01-01
We expand the off-resonant scattering theory for particle diffusion in magnetized current filaments that can be typically compared to astrophysical jets, including active galactic nucleus jets. In a high plasma beta region where the directional bulk flow is a free-energy source for establishing turbulent magnetic fields via current filamentation instabilities, a novel version of quasi-linear theory to describe the diffusion of test particles is proposed. The theory relies on the proviso that the injected energetic particles are not trapped in the small-scale structure of magnetic fields wrapping around and permeating a filament but deflected by the filaments, to open a new regime of the energy hierarchy mediated by a transition compared to the particle injection. The diffusion coefficient derived from a quasi-linear type equation is applied to estimating the timescale for the stochastic acceleration of particles by the shock wave propagating through the jet. The generic scalings of the achievable highest ener...
Formation of GEMS from shock-accelerated crystalline dust in superbubbles
Westphal, A J
2004-01-01
Interplanetary dust particles (IDPs) contain enigmatic sub-micron components called GEMS (Glass with Embedded Metal and Sulfides). The compositions and structures of GEMS indicate that they have been processed by exposure to ion- izing radiation but details of the actual irradiation environment(s) have remained elusive. Here we propose a mechanism and astrophysical site for GEMS formation that explains for the first time the following key properties of GEMS; they are stoichiometrically enriched in oxygen and systematically deple- ted in S, Mg, Ca and Fe (relative to solar abundances), most have normal (solar) oxygen isotopic compositions, they exhibit a strikingly narrow size distribution (0.1-0.5 $\\mu$m diameter), and some of them contain ``relict'' crystals within their glass matrices. We show that these properties are incon- sistent with amorphization by particles accelerated by diffusive shock accel- eration. Instead, we propose that GEMS are formed from crystalline grains that condense in outflows from m...
Christina Avanti
Full Text Available The purpose of this study was to investigate the stability of lysozyme in aqueous solutions in the presence of various extremolytes (betaine, hydroxyectoine, trehalose, ectoine, and firoin under different stress conditions. The stability of lysozyme was determined by Nile red Fluorescence Spectroscopy and a bioactivity assay. During heat shock (10 min at 70°C, betaine, trehalose, ectoin and firoin protected lysozyme against inactivation while hydroxyectoine, did not have a significant effect. During accelerated thermal conditions (4 weeks at 55°C, firoin also acted as a stabilizer. In contrast, betaine, hydroxyectoine, trehalose and ectoine destabilized lysozyme under this condition. These findings surprisingly indicate that some extremolytes can stabilize a protein under certain stress conditions but destabilize the same protein under other stress conditions. Therefore it is suggested that for the screening extremolytes to be used for protein stabilization, an appropriate storage conditions should also be taken into account.
Shimada, Nobue; Amano, Takanobu; 10.1063/1.3322828
2010-01-01
A new rapid energization process within a supernova shock transition region (STR) is reported by utilizing numerical simulation. Although the scale of a STR as a main dissipation region is only several hundreds of thousands km, several interesting structures are found relating to generation of a root of the energetic particles. The nonlinear evolution of plasma instabilities lead to a dynamical change in the ion phase space distribution which associates with change of the field properties. As a result, different types of large-amplitude field structures appear. One is the leading wave packet and another is a series of magnetic solitary humps. Each field structure has a microscopic scale (~ the ion inertia length). Through the multiple nonlinear scattering between these large-amplitude field structures, electrons are accelerated directly. Within a STR, quick thermalization realizes energy equipartition between the ion and electron, hot electrons play an important role in keeping these large-amplitude field str...
Lee, Shiu-Hang; Kamae, Tuneyoshi; Ellison, Donald C.
2008-07-02
We present a 3-dimensional model of supernova remnants (SNRs) where the hydrodynamical evolution of the remnant is modeled consistently with nonlinear diffusive shock acceleration occurring at the outer blast wave. The model includes particle escape and diffusion outside of the forward shock, and particle interactions with arbitrary distributions of external ambient material, such as molecular clouds. We include synchrotron emission and cooling, bremsstrahlung radiation, neutral pion production, inverse-Compton (IC), and Coulomb energy-loss. Boardband spectra have been calculated for typical parameters including dense regions of gas external to a 1000 year old SNR. In this paper, we describe the details of our model but do not attempt a detailed fit to any specific remnant. We also do not include magnetic field amplification (MFA), even though this effect may be important in some young remnants. In this first presentation of the model we don't attempt a detailed fit to any specific remnant. Our aim is to develop a flexible platform, which can be generalized to include effects such as MFA, and which can be easily adapted to various SNR environments, including Type Ia SNRs, which explode in a constant density medium, and Type II SNRs, which explode in a pre-supernova wind. When applied to a specific SNR, our model will predict cosmic-ray spectra and multi-wavelength morphology in projected images for instruments with varying spatial and spectral resolutions. We show examples of these spectra and images and emphasize the importance of measurements in the hard X-ray, GeV, and TeV gamma-ray bands for investigating key ingredients in the acceleration mechanism, and for deducing whether or not TeV emission is produced by IC from electrons or pion-decay from protons.
Simultaneous Concentration and Velocity Field Measurements in a Shock-accelerated Mixing Layer
Reese, Daniel; Oakley, Jason; Weber, Chris; Rothamer, David; Navarro, Jose; Bonazza, Riccardo
2013-11-01
The Richtmyer-Meshkov instability (RMI) is experimentally investigated at the Wisconsin Shock Tube Laboratory. Simultaneous concentration and velocity field measurements from the mixing layer of experimental RMI images are obtained through the application of the Advection-Corrected Correlation Image Velocimetry (ACCIV) technique. A statistically repeatable broadband initial condition is created by first setting up a gravitationally stable stagnation plane of helium +acetone over argon and then injecting the gases horizontally at the interface to create a shear layer. The shear layer is then accelerated by a Mach 2.2 planar shock wave that causes the growth of any perturbations present at the interface, and time-separated image pair data of the mixing layer are obtained using planar laser induced fluorescence (PLIF). The image pair is corrected to show relative acetone concentration, and is then used as input to the ACCIV algorithm to obtain velocity field results. These velocity field measurements are compared with those obtained from numerical simulations. Turbulent kinetic energy spectra are compared with particle imaging velocimetry (PIV) and simulation results to validate regions of applicability. We wish to thank the Department of Energy National Nuclear Security Administration for supporting this work.
An Experimental and Computational Study of a Shock-Accelerated Heavy Gas Cylinder
Zoldi, Cindy; Prestridge, Katherine; Tomkins, Christopher; Marr-Lyon, Mark; Rightley, Paul; Benjamin, Robert; Vorobieff, Peter
2002-11-01
We present updated results of an experimental and computational study that examines the evolution of a heavy gas (SF_6) cylinder surrounded by air when accelerated by a planar Mach 1.2 shock wave. From each shock tube experiment, we obtain one image of the experimental initial conditions and six images of the time evolution of the cylinder. Moreover, the implementation of Particle Image Velocimetry (PIV) also allows us to determine the velocity field at the last experimental time. Simulations incorporating the two-dimensional image of the experimental initial conditions are performed using the adaptive-mesh Eulerian code, RAGE. A computational study shows that agreement between the measured and computed velocities is achieved by decreasing the peak SF6 concentration to 60%, which was measured in the previous "gas curtain" experiments, and diffusing the air/SF6 interface in the experimental initial conditions. These modifications are consistent with the observation that the SF6 gas diffuses faster than the fog particles used to track the gas. Images of the experimental initial conditions, obtained using planar laser Rayleigh scattering, quantifies the diffusion lag between the SF6 gas and the fog particles.
Saxena, A K; Kaushik, T C; Gupta, Satish C
2010-03-01
Two low energy (1.6 and 8 kJ) portable electrically exploding foil accelerators are developed for moderately high pressure shock studies at small laboratory scale. Projectile velocities up to 4.0 km/s have been measured on Kapton flyers of thickness 125 microm and diameter 8 mm, using an in-house developed Fabry-Perot velocimeter. An asymmetric tilt of typically few milliradians has been measured in flyers using fiber optic technique. High pressure impact experiments have been carried out on tantalum, and aluminum targets up to pressures of 27 and 18 GPa, respectively. Peak particle velocities at the target-glass interface as measured by Fabry-Perot velocimeter have been found in good agreement with the reported equation of state data. A one-dimensional hydrodynamic code based on realistic models of equation of state and electrical resistivity has been developed to numerically simulate the flyer velocity profiles. The developed numerical scheme is validated against experimental and simulation data reported in literature on such systems. Numerically computed flyer velocity profiles and final flyer velocities have been found in close agreement with the previously reported experimental results with a significant improvement over reported magnetohydrodynamic simulations. Numerical modeling of low energy systems reported here predicts flyer velocity profiles higher than experimental values, indicating possibility of further improvement to achieve higher shock pressures.
Kroon, John J; Finke, Justin; Dermer, Charles
2016-01-01
The {\\gamma}-ray flares from the Crab nebula observed by AGILE and Fermi-LAT reaching GeV energies and lasting several days challenge the standard models for particle acceleration in pulsar wind nebulae, because the radiating electrons have energies exceeding the classical radiation-reaction limit for synchrotron. Previous modeling has suggested that the synchrotron limit can be exceeded if the electrons experience electrostatic acceleration, but the resulting spectra do not agree very well with the data. As a result, there are still some important unanswered questions about the detailed particle acceleration and emission processes occurring during the flares. We revisit the problem using a new analytical approach based on an electron transport equation that includes terms describing electrostatic acceleration, stochastic wave-particle acceleration, shock acceleration, synchrotron losses, and particle escape. An exact solution is obtained for the electron distribution, which is used to compute the associated ...
Protheroe, R J
2004-01-01
I discuss the shape of the high energy end of the spectrum of particles arising from diffusive shock acceleration in the presence of (i) additional diffusive escape from the accelerator, (ii) continuous energy losses, (iii) energy changes arising from interactions. The form of the spectrum near cut-off is sensitive to these processes as well as to the momentum-dependence of the diffusion coefficients and the compression ratio, and so the spectrum of any radiation emitted by the accelerated particles may reflect the physical conditions of the acceleration region. Results presented in this paper have applications in interpreting the spectral energy distributions of many types of astrophysical object including supernova remnants (SNR), active galactic nuclei (AGN) and acceleration sources of ultra high energy cosmic rays (UHE CR). Except for extremely nearby sources, spectral features imprinted on the spectrum of UHE CR during the acceleration process will be largely eroded during propagation, but the spectrum o...
Sahai, Aakash A.; Tsung, Frank S.; Tableman, Adam R.; Mori, Warren B.; Katsouleas, Thomas C.
2013-10-01
The relativistically induced transparency acceleration (RITA) scheme of proton and ion acceleration using laser-plasma interactions is introduced, modeled, and compared to the existing schemes. Protons are accelerated with femtosecond relativistic pulses to produce quasimonoenergetic bunches with controllable peak energy. The RITA scheme works by a relativistic laser inducing transparency [Akhiezer and Polovin, Zh. Eksp. Teor. Fiz 30, 915 (1956); Kaw and Dawson, Phys. FluidsPFLDAS0031-917110.1063/1.1692942 13, 472 (1970); Max and Perkins, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.27.1342 27, 1342 (1971)] to densities higher than the cold-electron critical density, while the background heavy ions are stationary. The rising laser pulse creates a traveling acceleration structure at the relativistic critical density by ponderomotively [Lindl and Kaw, Phys. FluidsPFLDAS0031-917110.1063/1.1693437 14, 371 (1971); Silva , Phys. Rev. E1063-651X10.1103/PhysRevE.59.2273 59, 2273 (1999)] driving a local electron density inflation, creating an electron snowplow and a co-propagating electrostatic potential. The snowplow advances with a velocity determined by the rate of the rise of the laser's intensity envelope and the heavy-ion-plasma density gradient scale length. The rising laser is incrementally rendered transparent to higher densities such that the relativistic-electron plasma frequency is resonant with the laser frequency. In the snowplow frame, trace density protons reflect off the electrostatic potential and get snowplowed, while the heavier background ions are relatively unperturbed. Quasimonoenergetic bunches of velocity equal to twice the snowplow velocity can be obtained and tuned by controlling the snowplow velocity using laser-plasma parameters. An analytical model for the proton energy as a function of laser intensity, rise time, and plasma density gradient is developed and compared to 1D and 2D PIC OSIRIS [Fonseca , Lect. Note Comput. Sci.9783
Kroon, John J.; Becker, Peter A.; Finke, Justin D.; Dermer, Charles D.
2016-12-01
The γ-ray flares from the Crab Nebula observed by AGILE and Fermi-LAT reaching GeV energies and lasting several days challenge the standard models for particle acceleration in pulsar-wind nebulae because the radiating electrons have energies exceeding the classical radiation-reaction limit for synchrotron. Previous modeling has suggested that the synchrotron limit can be exceeded if the electrons experience electrostatic acceleration, but the resulting spectra do not agree very well with the data. As a result, there are still some important unanswered questions about the detailed particle acceleration and emission processes occurring during the flares. We revisit the problem using a new analytical approach based on an electron transport equation that includes terms describing electrostatic acceleration, stochastic wave-particle acceleration, shock acceleration, synchrotron losses, and particle escape. An exact solution is obtained for the electron distribution, which is used to compute the associated γ-ray synchrotron spectrum. We find that in our model the γ-ray flares are mainly powered by electrostatic acceleration, but the contributions from stochastic and shock acceleration play an important role in producing the observed spectral shapes. Our model can reproduce the spectra of all the Fermi-LAT and AGILE flares from the Crab Nebula, using magnetic field strengths in agreement with the multi-wavelength observational constraints. We also compute the spectrum and duration of the synchrotron afterglow created by the accelerated electrons, after they escape into the region on the downstream side of the pulsar-wind termination shock. The afterglow is expected to fade over a maximum period of about three weeks after the γ-ray flare.
Warren, Jessica S.; Hughes, John P.; Badenes, Carles; Ghavamian, Parviz; McKee, Christopher F.; Moffett, David; Plucinsky, Paul P.; Rakowski, Cara; Reynoso, Estela; Slane, Patrick
2005-11-01
We present evidence for cosmic-ray acceleration at the forward shock in Tycho's supernova remnant (SNR) from three X-ray observables: (1) the proximity of the contact discontinuity to the forward shock, or blast wave, (2) the morphology of the emission from the rim of Tycho, and (3) the spectral nature of the rim emission. We determine the locations of the blast wave (BW), contact discontinuity (CD), and reverse shock (RS) around the rim of Tycho's supernova remnant using a principal component analysis and other methods applied to new Chandra data. The azimuthal-angle-averaged radius of the BW is 251". For the CD and RS we find average radii of 241" and 183", respectively. Taking account of projection effects, we find ratios of 1:0.93:0.70 (BW:CD:RS). We show these values to be inconsistent with adiabatic hydrodynamic models of SNR evolution. The CD:BW ratio can be explained if cosmic-ray acceleration of ions is occurring at the forward shock. The RS:BW ratio, as well as the strong Fe Kα emission from the Tycho ejecta, imply that the RS is not accelerating cosmic rays. We also extract radial profiles from ~34% of the rim of Tycho and compare them to models of surface brightness profiles behind the BW for a purely thermal plasma with an adiabatic shock. The observed morphology of the rim is much more strongly peaked than predicted by the model, indicating that such thermal emission is implausible here. Spectral analysis also implies that the rim emission is nonthermal in nature, lending further support to the idea that Tycho's forward shock is accelerating cosmic rays.
Ion-acoustic shocks with reflected ions: modeling and PIC simulations
Liseykina, T; Vshivkov, V; Malkov, M
2015-01-01
Non-relativistic collisionless shock waves are widespread in space and astrophysical plasmas and are known as efficient particle accelerators. However, our understanding of collisionless shocks, including their structure and the mechanisms whereby they accelerate particles remains incomplete. We present here the results of numerical modeling of an ion-acoustic collisionless shock based on one-dimensional (1D) kinetic approximation both for electrons and ions with a real mass ratio. Special emphasis is made on the shock-reflected ions as the main driver of shock dissipation. The reflection efficiency, velocity distribution of reflected particles and the shock electrostatic structure are studied in terms of the shock parameters. Applications to particle acceleration in geophysical and astrophysical shocks are discussed.
The microphysics of collisionless shock waves
Marcowith, A.; Bret, A.; Bykov, A.; Dieckman, M. E.; O'C Drury, L.; Lembège, B.; Lemoine, M.; Morlino, G.; Murphy, G.; Pelletier, G.; Plotnikov, I.; Reville, B.; Riquelme, M.; Sironi, L.; Stockem Novo, A.
2016-04-01
Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebulæ, active galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space. It is complexified by the impact due to high-energy cosmic rays in astrophysical environments. This review adresses the physics of shock formation, shock dynamics and particle acceleration based on a close examination of available multi-wavelength or in situ observations, analytical and numerical developments. A particular emphasis is made on the different instabilities triggered during the shock formation and in association with particle acceleration processes with regards to the properties of the background upstream medium. It appears that among the most important parameters the background magnetic field through the magnetization and its obliquity is the dominant one. The shock velocity that can reach relativistic speeds has also a strong impact over the development of the micro-instabilities and the fate of particle acceleration. Recent developments of laboratory shock experiments has started to bring some new insights in the physics of space plasma and astrophysical shock waves. A special section is dedicated to new laser plasma experiments probing shock physics.
The microphysics of collisionless shock waves.
Marcowith, A; Bret, A; Bykov, A; Dieckman, M E; Drury, L O'C; Lembège, B; Lemoine, M; Morlino, G; Murphy, G; Pelletier, G; Plotnikov, I; Reville, B; Riquelme, M; Sironi, L; Novo, A Stockem
2016-04-01
Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebulæ, active galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space. It is complexified by the impact due to high-energy cosmic rays in astrophysical environments. This review adresses the physics of shock formation, shock dynamics and particle acceleration based on a close examination of available multi-wavelength or in situ observations, analytical and numerical developments. A particular emphasis is made on the different instabilities triggered during the shock formation and in association with particle acceleration processes with regards to the properties of the background upstream medium. It appears that among the most important parameters the background magnetic field through the magnetization and its obliquity is the dominant one. The shock velocity that can reach relativistic speeds has also a strong impact over the development of the micro-instabilities and the fate of particle acceleration. Recent developments of laboratory shock experiments has started to bring some new insights in the physics of space plasma and astrophysical shock waves. A special section is dedicated to new laser plasma experiments probing shock physics.
Recent progresses in relativistic beam-plasma instability theory
A. Bret
2010-11-01
Full Text Available Beam-plasma instabilities are a key physical process in many astrophysical phenomena. Within the fireball model of Gamma ray bursts, they first mediate a relativistic collisionless shock before they produce upstream the turbulence needed for the Fermi acceleration process. While non-relativistic systems are usually governed by flow-aligned unstable modes, relativistic ones are likely to be dominated by normally or even obliquely propagating waves. After reviewing the basis of the theory, results related to the relativistic kinetic regime of the poorly-known oblique unstable modes will be presented. Relevant systems besides the well-known electron beam-plasma interaction are presented, and it is shown how the concept of modes hierarchy yields a criterion to assess the proton to electron mass ratio in Particle in cell simulations.
Relativistic electrons produced by foreshock disturbances
Wilson, L B; Turner, D L; Osmane, A; Caprioli, D; Angelopoulos, V
2016-01-01
Foreshock disturbances -- large-scale (~1000 km to >30,000 km), transient (~5-10 per day - lasting ~10s of seconds to several minutes) structures [1,2] - generated by suprathermal (>100 eV to 100s of keV) ions [3,4] arise upstream of Earth's bow shock formed by the solar wind colliding with the Earth's magnetosphere. They have recently been found to accelerate ions to energies of several keV [5,6]. Although electrons in Saturn's high Mach number (M > 40) bow shock can be accelerated to relativistic energies (nearly 1000 keV) [7], it has hitherto been thought impossible to accelerate electrons at the much weaker (M < 20) Earth's bow shock beyond a few 10s of keV [8]. Here we report observations of electrons energized by foreshock disturbances to energies up to at least ~300 keV. Although such energetic electrons have been previously reported, their presence has been attributed to escaping magnetospheric particles [9,10] or solar events [11]. These relativistic electrons are not associated with any solar act...
A shock front at the radio relic of Abell 2744
Eckert, D.; Jauzac, M.; Vazza, F.; Owers, M. S.; Kneib, J.-P.; Tchernin, C.; Intema, H.; Knowles, K.
2016-09-01
Radio relics are Mpc-scale diffuse radio sources at the peripheries of galaxy clusters which are thought to trace outgoing merger shocks. We present XMM-Newton and Suzaku observations of the galaxy cluster Abell 2744 (z = 0.306), which reveal the presence of a shock front 1.5 Mpc east of the cluster core. The surface-brightness jump coincides with the position of a known radio relic. Although the surface-brightness jump indicates a weak shock with a Mach number M=1.7_{-0.3}^{+0.5}, the plasma in the post-shock region has been heated to a very high temperature (˜13 keV) by the passage of the shock wave. The low-acceleration efficiency expected from such a weak shock suggests that mildly relativistic electrons have been re-accelerated by the passage of the shock front.
Curved Radio Spectra of Weak Cluster Shocks
Kang, Hyesung
2015-01-01
We explore a diffusive shock acceleration (DSA) model for radio relics in which a spherical shock impinges on a magnetized cloud of fossil relativistic electrons in the cluster periphery. Such a scenario could explain uniformity of the surface brightness and spectral curvature in the integrated spectra of thin arc-like radio relics. Toward this end, we perform DSA simulations of spherical shocks with the parameters relevant for the Sausage radio relic in cluster CIZA J2242.8+5301, and calculate the ensuing radio synchrotron emission from re-accelerated electrons. The surface brightness profile of radio-emitting postshock region and the volume-integrated radio spectrum are calculated as well. We find that the observed width of the Sausage relic can be explained reasonably well by shocks with speed $u_s \\sim 3,000 \\kms$ and sonic Mach number $M_s \\sim 3$. These shocks produce curved radio spectra that steepen gradually over $(0.1-10) \
Ellison, D C; Baring, M G; Ellison, Donald C.; Jones, Frank C.; Baring, Matthew G.
1999-01-01
We have modeled the injection and acceleration of pickup ions at the solar wind termination shock and investigated the parameters needed to produce the observed Anomalous Cosmic Ray (ACR) fluxes. A non-linear Monte Carlo technique was employed, which in effect solves the Boltzmann equation and is not restricted to near-isotropic particle distribution functions. This technique models the injection of thermal and pickup ions, the acceleration of these ions, and the determination of the shock structure under the influence of the accelerated ions. The essential effects of injection are treated in a mostly self-consistent manner, including effects from shock obliquity, cross-field diffusion, and pitch-angle scattering. Using recent determinations of pickup ion densities, we are able to match the absolute flux of hydrogen in the ACRs by assuming that pickup ion scattering mean free paths, at the termination shock, are much less than an AU and that modestly strong cross-field diffusion occurs. Simultaneously, we mat...
Wu, Hui-Chun [Los Alamos National Laboratory; Hegelich, B.M. [Los Alamos National Laboratory; Fernandez, J.C. [Los Alamos National Laboratory; Shah, R.C. [Los Alamos National Laboratory; Palaniyappan, S. [Los Alamos National Laboratory; Jung, D. [Los Alamos National Laboratory; Yin, L [Los Alamos National Laboratory; Albright, B.J. [Los Alamos National Laboratory; Bowers, K. [Guest Scientist of XCP-6; Huang, C. [Los Alamos National Laboratory; Kwan, T.J. [Los Alamos National Laboratory
2012-06-19
Two new experimental technologies enabled realization of Break-out afterburner (BOA) - High quality Trident laser and free-standing C nm-targets. VPIC is an powerful tool for fundamental research of relativistic laser-matter interaction. Predictions from VPIC are validated - Novel BOA and Solitary ion acceleration mechanisms. VPIC is a fully explicit Particle In Cell (PIC) code: models plasma as billions of macro-particles moving on a computational mesh. VPIC particle advance (which typically dominates computation) has been optimized extensively for many different supercomputers. Laser-driven ions lead to realization promising applications - Ion-based fast ignition; active interrogation, hadron therapy.
Yu, S.; Goffeney, N.; Henestroza, E. [Lawrence Berkeley Lab., CA (United States)] [and others
1995-02-22
A preliminary point design for an 11.4 GHz power source for a 1 TeV center-of-mass Next Linear Collider (NLC) based on the Relativistic-Klystron Two-Beam-Accelerator (RK-TBA) concept is presented. The present report is the result of a joint LBL-LLNL systems study. consisting of three major thrust areas: physics, engineering, and costing. The new RK-TBA point design, together with our findings in each of these areas, are reported.
Kartavykh, Y. Y.; Dröge, W. [Institut für Theoretische Physik und Astrophysik, Universität Würzburg, D-97074 Würzburg (Germany); Gedalin, M. [Department of Physics, Ben-Gurion Unversity of the Negev, Beer-Sheva (Israel)
2016-03-20
We use numerical solutions of the focused transport equation obtained by an implicit stochastic differential equation scheme to study the evolution of the pitch-angle dependent distribution function of protons in the vicinity of shock waves. For a planar stationary parallel shock, the effects of anisotropic distribution functions, pitch-angle dependent spatial diffusion, and first-order Fermi acceleration at the shock are examined, including the timescales on which the energy spectrum approaches the predictions of diffusive shock acceleration theory. We then consider the case that a flare-accelerated population of ions is released close to the Sun simultaneously with a traveling interplanetary shock for which we assume a simplified geometry. We investigate the consequences of adiabatic focusing in the diverging magnetic field on the particle transport at the shock, and of the competing effects of acceleration at the shock and adiabatic energy losses in the expanding solar wind. We analyze the resulting intensities, anisotropies, and energy spectra as a function of time and find that our simulations can naturally reproduce the morphologies of so-called mixed particle events in which sometimes the prompt and sometimes the shock component is more prominent, by assuming parameter values which are typically observed for scattering mean free paths of ions in the inner heliosphere and energy spectra of the flare particles which are injected simultaneously with the release of the shock.
Ye, Junye; le Roux, Jakobus A.; Arthur, Aaron D.
2016-08-01
We study the physics of locally born interstellar pickup proton acceleration at the nearly perpendicular solar wind termination shock (SWTS) in the presence of a random magnetic field spiral angle using a focused transport model. Guided by Voyager 2 observations, the spiral angle is modeled with a q-Gaussian distribution. The spiral angle fluctuations, which are used to generate the perpendicular diffusion of pickup protons across the SWTS, play a key role in enabling efficient injection and rapid diffusive shock acceleration (DSA) when these particles follow field lines. Our simulations suggest that variation of both the shape (q-value) and the standard deviation (σ-value) of the q-Gaussian distribution significantly affect the injection speed, pitch-angle anisotropy, radial distribution, and the efficiency of the DSA of pickup protons at the SWTS. For example, increasing q and especially reducing σ enhances the DSA rate.
Yamazaki, R; Terasawa, T; Bamba, A; Koyama, K; Yamazaki, Ryo; Yoshida, Tatsuo; Terasawa, Toshio; Bamba, Aya; Koyama, Katsuji
2003-01-01
Characteristic scale lengths of nonthermal X-rays from the SN1006 NE rim, which are observed by Chandra, are interpreted in the context of the diffusive shock acceleration on the assumption that the observed spatial profile of nonthermal X-rays corresponds to that of accelerated electrons with energies of a few tens of TeV. To explain the observed scale lengths, we construct two simple models with a test particle approximation, where the maximum energy of accelerated electrons is determined by the age of SN1006 (age-limited model) or the energy loss (energy loss-limited model), and constrain the magnetic field configuration and the diffusion coefficients of accelerated electrons. When the magnetic field is nearly parallel to the shock normal, the magnetic field should be in the range of 20-85 micro Gauss and highly turbulent both in upstream and downstream, which means that the mean free path of accelerated electrons is on the order of their gyro-radius (Bohm limit). This situation can be realized both in the...
Vink, J.; Yamazaki, R.; Helder, E.A.; Schure, K.M.
2010-01-01
Supernova remnants (SNRs) are thought to be the dominant source of Galactic cosmic rays. This requires that at least 5% of the available energy is transferred to cosmic rays, implying a high cosmic-ray pressure downstream of SNR shocks. Recently, it has been shown that the downstream temperature in
Shock can be caused by any condition that reduces blood flow, including: Heart problems (such as heart attack or heart failure ) Low blood volume (as with heavy bleeding or dehydration ) Changes in blood vessels (as with infection ...
Warren, J S; Badenes, C; Ghavamian, P; McKee, C F; Moffett, D; Plucinsky, P P; Rakowski, C; Reynoso, E; Slane, P O
2005-01-01
We present evidence for cosmic ray acceleration at the forward shock in Tycho's supernova remnant (SNR) from three X-ray observables: (1) the proximity of the contact discontinuity to the forward shock, or blast wave, (2) the morphology of the emission from the rim of Tycho, and (3) the spectral nature of the rim emission. We determine the locations of the blast wave (BW), contact discontinuity (CD), and reverse shock (RS) around the rim of Tycho's supernova remnant using a principal component analysis and other methods applied to new Chandra data. The azimuthal-angle-averaged radius of the BW is 251". For the CD and RS we find average radii of 241" and 183", respectively. Taking account of projection effects, we find ratios of 1:0.93:0.70 (BW:CD:RS). We show these values to be inconsistent with adiabatic hydrodynamical models of SNR evolution. The CD:BW ratio can be explained if cosmic ray acceleration of ions is occurring at the forward shock. The RS:BW ratio, as well as the strong Fe Ka emission from the T...
Coronal Heating and Acceleration of the High/Low-Speed Solar Wind by Fast/Slow MHD Shock Trains
Suzuki, T K
2004-01-01
We investigate coronal heating and acceleration of the high- and low-speed solar wind in the open field region by dissipation of fast and slow magnetohydrodynamical (MHD) waves through MHD shocks. Linearly polarized \\Alfven (fast MHD) waves and acoustic (slow MHD) waves travelling upwardly along with a magnetic field line eventually form fast switch-on shock trains and hydrodynamical shock trains (N-waves) respectively to heat and accelerate the plasma. We determine one dimensional structure of the corona from the bottom of the transition region (TR) to 1AU under the steady-state condition by solving evolutionary equations for the shock amplitudes simultaneously with the momentum and proton/electron energy equations. Our model reproduces the overall trend of the high-speed wind from the polar holes and the low-speed wind from the mid- to low-latitude streamer except the observed hot corona in the streamer. The heating from the slow waves is effective in the low corona to increase the density there, and plays ...
Murphy, Ronald J.; Ko, Yuan-Kuen
2017-09-01
The protons in large solar energetic particle events are accelerated in the inner heliosphere by fast shocks produced by coronal mass ejections. Unless there are other sources, the protons these shocks act upon would be those of the solar wind (SW). The efficiency of the acceleration depends on the kinetic energy of the protons. For a 2000 km s‑1 shock, the most effective proton energies would be 30–100 keV; i.e., within the suprathermal tail component of the SW. We investigate one possible additional source of such protons: those resulting from the decay of solar-flare-produced neutrons that escape from the Sun into the low corona. The neutrons are produced by interactions of flare-accelerated ions with the solar atmosphere. We discuss the production of low-energy neutrons in flares and their decay on a interplanetary magnetic field line near the Sun. We find that even when the flaring conditions are optimal, the 30–100 keV neutron-decay proton density produced by even a very large solar flare would be only about 10% of that of the 30–100 keV SW suprathermal tail. We discuss the implication of a seed-particle source of more frequent, small flares.
Turner, Drew; Gkioulidou, Matina; Ukhorskiy, Aleksandr; Gabrielse, Christine; Runov, Andrei; Angelopoulos, Vassilis
2014-05-01
Earth's radiation belts provide a natural laboratory to study a variety of physical mechanisms important for understanding the nature of energetic particles throughout the Universe. The outer electron belt is a particularly variable population, with drastic changes in relativistic electron intensities occurring on a variety of timescales ranging from seconds to decades. Outer belt variability ultimately results from the complex interplay between different source, loss, and transport processes, and all of these processes are related to the dynamics of the inner magnetosphere. Currently, an unprecedented number of spacecraft are providing in situ observations of the inner magnetospheric environment, including missions such as NASA's THEMIS and Van Allen Probes and ESA's Cluster and operational monitors such as NOAA's GOES and POES constellations. From a sampling of case studies using multi-point observations, we present examples showcasing the significant importance of two processes to outer belt dynamics: energetic particle injections and wave-particle interactions. Energetic particle injections are transient events that tie the inner magnetosphere to the near-Earth magnetotail; they involve the rapid inward transport of plasmasheet particles into the trapping zone in the inner magnetosphere. We briefly review key concepts and present new evidence from Van Allen Probes, GOES, and THEMIS of how these injections provide: 1. the seed population of electrons that are subsequently accelerated locally to relativistic energies in the outer belt and 2. the source populations of ions and electrons that produce a variety of ULF and VLF waves, which are also important for driving outer belt dynamics via wave-particle interactions. Cases of electron acceleration by chorus waves, losses by plasmaspheric hiss and EMIC waves, and radial transport driven by ULF waves will also be presented. Finally, we discuss the implications of this developing picture of the system, namely how
SHOCK-CLOUD INTERACTION AND PARTICLE ACCELERATION IN THE SOUTHWESTERN LIMB OF SN 1006
Miceli, M.; Orlando, S.; Bocchino, F. [INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Acero, F. [ORAU/NASA Goddard Space Flight Center, Astrophysics Science Division, Code 661, Greenbelt, MD 20771 (United States); Dubner, G. [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); Decourchelle, A., E-mail: miceli@astropa.unipa.it [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Université Paris Diderot, CE-Saclay, F-91191 Gif-sur-Yvette (France)
2014-02-20
The supernova remnant SN 1006 is a powerful source of high-energy particles and evolves in a relatively tenuous and uniform environment despite interacting with an atomic cloud in its northwestern limb. The X-ray image of SN 1006 reveals an indentation in the southwestern part of the shock front and the H I maps show an isolated (southwestern) cloud, having the same velocity as the northwestern cloud, whose morphology fits perfectly in the indentation. We performed spatially resolved spectral analysis of a set of small regions in the southwestern nonthermal limb and studied the deep X-ray spectra obtained within the XMM-Newton SN 1006 Large Program. We also analyzed archive H I data, obtained by combining single-dish and interferometric observations. We found that the best-fit value of N {sub H} derived from the X-ray spectra significantly increases in regions corresponding to the southwestern cloud, while the cutoff energy of the synchrotron emission decreases. The N {sub H} variation corresponds perfectly with the H I column density of the southwestern cloud, as measured from the radio data. The decrease in the cutoff energy at the indentation clearly reveals that the back side of the cloud is actually interacting with the remnant. The southwestern limb therefore presents a unique combination of efficient particle acceleration and high ambient density, thus being the most promising region for γ-ray hadronic emission in SN 1006. We estimate that such emission will be detectable with the Fermi telescope within a few years.
Cosmic-ray Acceleration and Propagation
Caprioli, Damiano
2015-01-01
The origin of cosmic rays (CRs) has puzzled scientists since the pioneering discovery by Victor Hess in 1912. In the last decade, however, modern supercomputers have opened a new window on the processes regulating astrophysical collisionless plasmas, allowing the study of CR acceleration via first-principles kinetic simulations. At the same time, a new-generation of X-ray and $\\gamma$-ray telescopes has been collecting evidence that Galactic CRs are accelerated in the blast waves of supernova remnants (SNRs). I present state-of-the-art particle-in-cells simulations of non-relativistic shocks, in which ion and electron acceleration efficiency and magnetic field amplification are studied in detail as a function of the shock parameters. I then discuss the theoretical and observational counterparts of these findings, comparing them with predictions of diffusive shock acceleration theory and with multi-wavelength observations of young SNRs. I especially outline some major open questions, such as the possible cause...
Kroon, John J.; Becker, Peter A.; Justin, Finke; Dermer, Charles D.
2017-01-01
The Crab nebula is a persistent source of gamma-rays up to about 100 MeV due to synchrotron radiation from electrons/positrons emitting in an ambient magnetic field thought to be of magnitude B~200 μG. The radiating electrons are limited by radiation-reaction forces which place an upper limit of about 100 MeV on the gamma-ray photons it can produce. This normally quiescent nebula has been observed by AGILE and Fermi to undergo bright transients lasting about a week and characterized by a significant increase in gamma-ray flux far above the classical radiation-reaction limit, with energies often reaching 3 GeV. The flares imply a population of PeV electrons accelerated on sub-day timescales. The very short acceleration timescales and the observed emission above the radiation-reaction limit place severe constraints on contemporary shock acceleration models such as diffusive shock acceleration which cannot account for the temporal and energetic properties of the gamma-ray flares. In this component of my dissertation research, I revisit the problem and find an analytic solution to the Fokker-Planck equation which incorporates a variety of acceleration and loss terms. I find that the model can reproduce the various Fermi-LAT flare spectra well and that electrostatic acceleration is the most significant contributor to the underlying mechanisms responsible for the most energetic astrophysical particle population ever observed. I find that the spectra of all the Fermi-LAT flares from the Crab nebula can be reproduced with this model using magnetic fields that are in agreement with multi-wavelength observations.
Suprathermal Electrons at Saturn's Bow Shock
Masters, A.; Sulaiman, A. H.; Sergis, N.; Stawarz, L.; Fujimoto, M.; Coates, A. J.; Dougherty, M. K.
2016-07-01
The leading explanation for the origin of galactic cosmic rays is particle acceleration at the shocks surrounding young supernova remnants (SNRs), although crucial aspects of the acceleration process are unclear. The similar collisionless plasma shocks frequently encountered by spacecraft in the solar wind are generally far weaker (lower Mach number) than these SNR shocks. However, the Cassini spacecraft has shown that the shock standing in the solar wind sunward of Saturn (Saturn's bow shock) can occasionally reach this high-Mach number astrophysical regime. In this regime Cassini has provided the first in situ evidence for electron acceleration under quasi-parallel upstream magnetic conditions. Here we present the full picture of suprathermal electrons at Saturn's bow shock revealed by Cassini. The downstream thermal electron distribution is resolved in all data taken by the low-energy electron detector (CAPS-ELS, 18 keV) measured a suprathermal electron signature at 31 of 508 crossings, where typically only the lowest energy channels (process involves interaction with whistler waves at the shock front, and becomes possible for all upstream magnetic field orientations at high Mach numbers like those of the strong shocks around young SNRs. A future dedicated study will analyze the rare crossings with evidence for relativistic electrons (up to ˜1 MeV).
Yue-Jin Zhu; Gang Dong; Yi-Xin Liu; Bao-Chun Fan; Hua Jiang
2013-01-01
The interactions of a spherical flame with an incident shock wave and its reflected shock wave in a confined space were investigated using the three-dimensional reactive Navier-Stokes equations,with emphasis placed on the effect of chemical reactivity of mixture on the flame distortion and detonation initiation after the passage of the reflected shock wave.It is shown that the spatio-temporal characteristics of detonation initiation depend highly on the chemical reactivity of the mixture.When the chemical reactivity enhances,the flame can be severely distorted to form a reactive shock bifurcation structure with detonations initiating at different three-dimensional spatial locations.Moreover,the detonation initiation would occur earlier in a mixture of more enhanced reactivity.The results reveal that the detonations arise from hot spots in the unburned region which are initiated by the shock-detonation-transition mechanism.
Energetics of nearby stellar bow shocks
Benaglia, Paula
2012-01-01
The latest survey of stellar bow shocks (Peri et al. 2012) lists 28 candidates detected at IR wavelengths, associated with massive, early-type stars up to 3 kpc, along with the geometrical parameters of the structures found. I present here some considerations on the energetics involved, after the estimation of stellar wind power, infrared flux, stellar bolometric luminosity and radio flux limits for each source. The best candidates for relativistic particle acceleration are highlighted.
Zhang, W. L.; Qiao, B.; Shen, X. F.; You, W. Y.; Huang, T. W.; Yan, X. Q.; Wu, S. Z.; Zhou, C. T.; He, X. T.
2016-09-01
Laser-driven ion acceleration potentially offers a compact, cost-effective alternative to conventional accelerators for scientific, technological, and health-care applications. A novel scheme for heavy ion acceleration in near-critical plasmas via staged shock waves driven by intense laser pulses is proposed, where, in front of the heavy ion target, a light ion layer is used for launching a high-speed electrostatic shock wave. This shock is enhanced at the interface before it is transmitted into the heavy ion plasmas. Monoenergetic heavy ion beam with much higher energy can be generated by the transmitted shock, comparing to the shock wave acceleration in pure heavy ion target. Two-dimensional particle-in-cell simulations show that quasi-monoenergetic {{{C}}}6+ ion beams with peak energy 168 MeV and considerable particle number 2.1 × {10}11 are obtained by laser pulses at intensity of 1.66 × {10}20 {{W}} {{cm}}-2 in such staged shock wave acceleration scheme. Similarly a high-quality {{Al}}10+ ion beam with a well-defined peak with energy 250 MeV and spread δ E/{E}0=30 % can also be obtained in this scheme.
Ion-acoustic Shocks with Self-Regulated Ion Reflection and Acceleration
Malkov, M A; Dudnikova, G I; Liseykina, T V; Diamond, P H; Papadopoulos, K; Liu, C-S; Su, J-J
2015-01-01
An analytic solution describing an ion-acoustic collisionless shock, self-consistently with the evolution of shock-reflected ions, is obtained. The solution extends the classic soliton solution beyond a critical Mach number, where the soliton ceases to exist because of the upstream ion reflection. The reflection transforms the soliton into a shock with a trailing wave and a foot populated by the reflected ions. The solution relates parameters of the entire shock structure, such as the maximum and minimum of the potential in the trailing wave, the height of the foot, as well as the shock Mach number, to the number of reflected ions. This relation is resolvable for any given distribution of the upstream ions. In this paper, we have resolved it for a simple "box" distribution. Two separate models of electron interaction with the shock are considered. The first model corresponds to the standard Boltzmannian electron distribution in which case the critical shock Mach number only insignificantly increases from M=1....
Zhou, Z. Q.; Nie, J. X.; Ou, Z. C.; Qin, J. F.; Jiao, Q. J.
2014-10-01
To better understand the influence of the aluminum content on the performance of aluminized explosives, experiments in concrete and cylinder tests were performed. Three types of RDX-based aluminized explosives, in which the mass ratio of aluminum content was 0%, 15%, and 30% were considered in this paper. The shock wave pressures of the aluminized explosives in the affected concrete bodies were measured using manganin pressure sensors. The acceleration ability was obtained using a high-speed camera and a rotating mirror streak camera. The peak pressure attenuation characteristics of the explosives with various aluminum contents indicated that a higher aluminum content is associated with a slower peak pressure attenuation of the shock wave. In addition, the results of the cylinder tests and the metal-rod acceleration tests revealed the influence of the aluminum content on the acceleration ability of explosives in three different time periods. The test data presented in this paper verified the relationship between the aluminum content and explosive performance, which is of great significance for optimizing the properties of aluminized explosives.
A corrugated termination shock in pulsar wind nebulae?
Lemoine, M
2016-01-01
Successful phenomenological models of pulsar wind nebulae assume efficient dissipation of the Poynting flux of the magnetized electron-positron wind as well as efficient acceleration of the pairs in the vicinity of the termination shock, but how this is realized is not yet well understood. The present paper suggests that the corrugation of the termination shock, at the onset of non-linearity, may lead towards the desired phenomenology. Non-linear corrugation of the termination shock would convert a fraction of order unity of the incoming ordered magnetic field into downstream turbulence, slowing down the flow to sub-relativistic velocities. The dissipation of turbulence would further preheat the pair population on short length scales, close to equipartition with the magnetic field, thereby reducing the initial high magnetization to values of order unity. Furthermore, it is speculated that the turbulence generated by the corrugation pattern may sustain a relativistic Fermi process, accelerating particles close...
Bai, Xue-Ning; Sironi, Lorenzo; Spitkovsky, Anatoly
2014-01-01
We formulate a magnetohydrodynamic-particle-in-cell (MHD-PIC) method for describing the interaction between collisionless cosmic ray (CR) particles and a thermal plasma. The thermal plasma is treated as a fluid, obeying equations of ideal MHD, while CRs are treated as relativistic Lagrangian particles subject to the Lorentz force. Backreaction from CRs to the gas is included in the form of momentum and energy feedback. In addition, we include the electromagnetic feedback due to CR-induced Hall effect that becomes important when the electron-ion drift velocity of the background plasma induced by CRs approaches the Alfv\\'en velocity. Our method is applicable on scales much larger than the ion inertial length, bypassing the microscopic scales that must be resolved in conventional PIC methods, while retaining the full kinetic nature of the CRs. We have implemented and tested this method in the Athena MHD code, where the overall scheme is second-order accurate and fully conservative. As a first application, we des...
Prospects for a soft x-ray FEL powered by a relativistic-klystron high-gradient accelerator (RK-HGA)
Shay, H.D.; Barletta, W.A.; Yu, S.S.; Schlueter, R.; Deis, G.A.
1989-09-28
We present here the concept of x-ray FELs using high gain, single-pass amplifiers with electron beams accelerated in high gradient structures powered by relativistic klystrons. Other authors have also considered x-ray FELs; the unique aspect of this paper is the use of high gradient acceleration. One of the authors has previously presented preliminary studies on this concept. The intent in this paper is to display the results of a top level design study on a high gain FEL, to present its sensitivity to a variety of fabrication and tuning errors, to discuss several mechanisms for increasing gain yet more, and to present explicitly the output characteristics of such an FEL. The philosophy of the design study is to find a plausible operating point which employs existing or nearly existing state-of-the-art technologies while minimizing the accelerator and wiggler lengths. The notion is to distribute the technical risk as evenly as possible over the several technologies so that each must advance only slightly in order to make this design feasible. This study entailed no systematic investigation of possible costs so that, for example, the sole criterion for balancing the trade-off between beam energy and wiggler length is that the two components have comparable lengths. 20 refs., 10 figs., 1 tab.
Nonrelativistic parallel shocks in unmagnetized and weakly magnetized plasmas
Niemiec, Jacek; Bret, Antoine; Wieland, Volkmar
2012-01-01
We present results of 2D3V particle-in-cell simulations of non-relativistic plasma collisions with absent or parallel large-scale magnetic field for parameters applicable to the conditions at young supernova remnants. We study the collision of plasma slabs of different density, leading to two different shocks and a contact discontinuity. Electron dynamics play an important role in the development of the system. While non-relativistic shocks in both unmagnetized and magnetized plasmas can be mediated by Weibel-type instabilities, the efficiency of shock-formation processes is higher when a large-scale magnetic field is present. The electron distributions downstream of the forward and reverse shocks are generally isotropic, whereas that is not always the case for the ions. We do not see any significant evidence of pre-acceleration, neither in the electron population nor in the ion distribution.
Radio emission from weak spherical shocks in the outskirts of galaxy clusters
Kang, Hyesung
2015-01-01
In Kang (2015) we calculated the acceleration of cosmic-ray electrons and the ensuing radio synchrotron emission at weak spherical shocks that are expected to form in the outskirts of galaxy clusters.There we demonstrated that, at decelerating spherical shocks, the volume integrated spectra of both electrons and radiation deviate significantly from the test-particle power-laws predicted for constant planar shocks, because the shock compression ratio and the flux of injected electrons decrease in time. In this study, we consider spherical blast waves propagating into a constant density core surrounded by an isothermal halo with a decreasing density profile in order to explore how the deceleration rate of the shock speed affects the radio emission from accelerated electrons. The surface brightness profile and the volume-integrated radio spectrum of the model shocks are calculated by assuming a ribbon-like shock surface on a spherical shell and the associated downstream region of relativistic electrons. If the p...
Senanayake, Udara K.
Interstellar neutral atoms entering the heliosphere could become ionized by photo-ionization or charge exchange with solar-wind ions. These newly created ions are picked up by the solar wind and carried to the termination shock (TS) where they are believed to be accelerated by the diffusive shock acceleration process to high energies (˜1-100 MeV n-1). The accelerated ions are known as anomalous cosmic rays (ACRs). When NASA's space probe, Voyager 1 crossed the TS in 2004, the measured ACR spectra did not match the theoretical prediction of a continuous power law, and the source of the high-energy ACRs was not observed. However, over the next few years, in the declining phase of the solar cycle, the spectra began to evolve into the expected power-law profile. The model developed here is based on the suggestion that ACRs are still accelerated at the shock, but away from the Voyager crossing points. First, we study ACR acceleration using a three-dimensional, non-spherical model of the heliosphere that is axisymmetric with respect to the interstellar flow direction. A semi-analytic model of the plasma and magnetic field backgrounds is developed to permit an investigation over a wide range of parameters under controlled conditions. The model is applied to helium ACRs, whose phase-space trajectories are stochastically integrated backward in time until a pre-specified, low-energy boundary of 0.5 MeV n-1, is reached. Next, we propose that the solar cycle had an important effect on the evolving of the spectra in the heliosheath. To investigate this, a magnetohydrodynamic background model with stationary solar-wind inner boundary conditions was used to model the transport of helium and oxygen ions. In addition, we developed a charge consistent stochastic model to simulate multiply charged oxygen ACRs. It is shown that the spectral evolution of ACRs in the heliosheath at Voyager 1 could be explained by combining intermediate-energy particles arriving from the heliotail
CUI Tengfei; LIU Daoxin; ZHANG Xiaohua; YU Shouming
2016-01-01
The effect of thermal shock, in an accelerated-corrosion environment spectrum, on the fatigue and corrosion behavior of 7B04-T6 aluminum alloy, was determined. The environment spectrum consists of two modules, namely: salt-spray corrosion and thermal shock. The effect of thermal shock on the mechanical properties was determined via tensile tests; SEM, DCS, and XRD were used to determine the effect of thermal shock on the corrosion products. In addition, the corrosion resistance of the products was ascertained through electrochemical testing. The results show that the mechanical properties and fatigue life of the aluminum alloy will decline with prolonged thermal shock time. The thermal shock process may result in denser surface corrosion products than those formed on the no thermal shock specimens, and transformation of some Al (OH)3 into AlOOH. AlOOH may have resulted in improved corrosion resistance and hence a lower decrease in the fatigue life after corrosion, compared with that of the no thermal shock specimen. Repeated corrosion/thermal shock may have delayed further decease in the fatigue life. Therefore, selection of an appropriate equivalent thermal shock temperature and time was essential for designing the environmental spectrum.
Cosmic Plasma Wakefield Acceleration
Chen, P
2004-04-26
Recently we proposed a new cosmic acceleration mechanism which was based on the wakefields excited by the Alfven shocks in a relativistically owing plasma. In this paper we include some omitted details, and show that there exists a threshold condition for transparency below which the accelerating particle is collision-free and suffers little energy loss in the plasma medium. The stochastic encounters of the random accelerating-decelerating phases results in a power-law energy spectrum: f({epsilon}) {proportional_to} 1/{epsilon}{sup 2}. As an example, we discuss the possible production of super-GZK ultra high energy cosmic rays (UHECR) in the atmosphere of gamma ray bursts. The estimated event rate in our model agrees with that from UHECR observations.
Kanekal, S. G.; Baker, D. N.; Fennell, J. F.; Jones, A.; Schiller, Q.; Richardson, I. G.; Li, X.; Turner, D. L.; Califf, S.; Claudepierre, S. G.; Wilson, L. B., III; Jaynes, A.; Blake, J. B.; Reeves, G. D.; Spence, H. E.; Kletzing, C. A.; Wygant, J. R.
2016-08-01
Trapped electrons in Earth's outer Van Allen radiation belt are influenced profoundly by solar phenomena such as high-speed solar wind streams, coronal mass ejections (CME), and interplanetary (IP) shocks. In particular, strong IP shocks compress the magnetosphere suddenly and result in rapid energization of electrons within minutes. It is believed that the electric fields induced by the rapid change in the geomagnetic field are responsible for the energization. During the latter part of March 2015, a CME impact led to the most powerful geomagnetic storm (minimum Dst = -223 nT at 17 March, 23 UT) observed not only during the Van Allen Probe era but also the entire preceding decade. Magnetospheric response in the outer radiation belt eventually resulted in elevated levels of energized electrons. The CME itself was preceded by a strong IP shock whose immediate effects vis-a-vis electron energization were observed by sensors on board the Van Allen Probes. The comprehensive and high-quality data from the Van Allen Probes enable the determination of the location of the electron injection, timescales, and spectral aspects of the energized electrons. The observations clearly show that ultrarelativistic electrons with energies E > 6 MeV were injected deep into the magnetosphere at L ≈ 3 within about 2 min of the shock impact. However, electrons in the energy range of ≈250 keV to ≈900 keV showed no immediate response to the IP shock. Electric and magnetic fields resulting from the shock-driven compression complete the comprehensive set of observations that provide a full description of the near-instantaneous electron energization.
Bashinov, Aleksei V.; Gonoskov, Arkady A.; Kim, A. V.; Marklund, Mattias; Mourou, G.; Sergeev, Aleksandr M.
2013-04-01
A comparative analysis is performed of the electron emission characteristics as the electrons move in laser fields with ultra-relativistic intensity and different configurations corresponding to a plane or tightly focused wave. For a plane travelling wave, analytical expressions are derived for the emission characteristics, and it is shown that the angular distribution of the radiation intensity changes qualitatively even when the wave intensity is much less than that in the case of the radiation-dominated regime. An important conclusion is drawn that the electrons in a travelling wave tend to synchronised motion under the radiation reaction force. The characteristic features of the motion of electrons are found in a converging dipole wave, associated with the curvature of the phase front and nonuniformity of the field distribution. The values of the maximum achievable longitudinal momenta of electrons accelerated to the centre, as well as their distribution function are determined. The existence of quasi-periodic trajectories near the focal region of the dipole wave is shown, and the characteristics of the emission of both accelerated and oscillating electrons are analysed.
Xu, Qiu; Yang, Zhuoqing; Sun, Yunna; Lai, Liyan; Jin, Zhiyu; Ding, Guifu; Zhao, Xiaolin; Yao, Jinyuan; Wang, Jing
2017-03-01
This paper presents a novel MEMS-based inertial microswitch design with multi-directional compact constraint structures for improving the shock-resistibility. Its shock-resistibility in the reverse-sensitive direction to ultra-high g acceleration (~hunderds of thousands) is simulated and analyzed. The dynamic response process indicates that in the designed inertial microswitch the proof mass weight G, the whole system’s stiffness k and the gap x2 between the proof mass and reverse constraint blocks have significant effect on the shock-resistibility. The MEMS inertial microswitch micro-fabricated by surface micromachining has been evaluated using the drop hammer test. The maximum allowable reverse acceleration, which does not cause the spurious trigger, is defined as the reverse acceleration threshold (athr). Test results show that athr increases with the decrease of the gap x2, and the proposed microswitch tends to have a better shock-resistibility under smaller gap. The measured responses of the microswitches with and without constraint structure indicates that the device without constraint structure is prone to spurious trigger, while the designed constraint structures can effectively improve the shock-resistibility. In this paper, the method for improving the shock-resistibility and reducing the spurious trigger has been discussed.
Xu, Qiu; Yang, Zhuoqing; Sun, Yunna; Lai, Liyan; Jin, Zhiyu; Ding, Guifu; Zhao, Xiaolin; Yao, Jinyuan; Wang, Jing
2017-01-01
This paper presents a novel MEMS-based inertial microswitch design with multi-directional compact constraint structures for improving the shock-resistibility. Its shock-resistibility in the reverse-sensitive direction to ultra-high g acceleration (~hunderds of thousands) is simulated and analyzed. The dynamic response process indicates that in the designed inertial microswitch the proof mass weight G, the whole system’s stiffness k and the gap x2 between the proof mass and reverse constraint blocks have significant effect on the shock-resistibility. The MEMS inertial microswitch micro-fabricated by surface micromachining has been evaluated using the drop hammer test. The maximum allowable reverse acceleration, which does not cause the spurious trigger, is defined as the reverse acceleration threshold (athr). Test results show that athr increases with the decrease of the gap x2, and the proposed microswitch tends to have a better shock-resistibility under smaller gap. The measured responses of the microswitches with and without constraint structure indicates that the device without constraint structure is prone to spurious trigger, while the designed constraint structures can effectively improve the shock-resistibility. In this paper, the method for improving the shock-resistibility and reducing the spurious trigger has been discussed. PMID:28361893
Thoudam, Satyendra
2013-01-01
Recent cosmic-ray measurements by the ATIC, CREAM and PAMELA experiments have found an apparent hardening of the energy spectrum at TeV energies. Although the origin of the hardening is not clearly understood, possible explanations include hardening in the cosmic-ray source spectrum, changes in the cosmic-ray propagation properties in the Galaxy and the effect of nearby sources. In this contribution, we propose that the spectral anomaly might be an effect of re-acceleration of cosmic rays by weak shocks in the Galaxy. After acceleration by strong supernova remnant shock waves, cosmic rays undergo diffusive propagation through the Galaxy. During the propagation, cosmic rays may again encounter expanding supernova remnant shock waves, and get re-accelerated. As the probability of encountering old supernova remnants is expected to be larger than the young ones due to their bigger size, re-acceleration is expected to be produced mainly by weaker shocks. Since weaker shocks generate a softer particle spectrum, the...
Gamma-ray flares in the Crab Nebula: A case of relativistic reconnection?
Cerutti, B., E-mail: bcerutti@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States); Werner, G. R., E-mail: greg.werner@colorado.edu; Uzdensky, D. A., E-mail: uzdensky@colorado.edu [Center for Integrated Plasma Studies, Physics Department, University of Colorado, UCB 390, Boulder, Colorado 80309-0390 (United States); Begelman, M. C., E-mail: mitch@jila.colorado.edu [JILA, University of Colorado and National Institute of Standards and Technology, UCB 440, Boulder, Colorado 80309-0440 (United States)
2014-05-15
The Crab Nebula was formed after the collapse of a massive star about a thousand years ago, leaving behind a pulsar that inflates a bubble of ultra-relativistic electron-positron pairs permeated with magnetic field. The observation of brief but bright flares of energetic gamma rays suggests that pairs are accelerated to PeV energies within a few days; such rapid acceleration cannot be driven by shocks. Here, it is argued that the flares may be the smoking gun of magnetic dissipation in the Nebula. Using 2D and 3D particle-in-cell simulations, it is shown that the observations are consistent with relativistic magnetic reconnection, where pairs are subject to strong radiative cooling. The Crab flares may highlight the importance of relativistic magnetic reconnection in astrophysical sources.
Gamma-ray flares in the Crab Nebula: A case of relativistic reconnection?
Cerutti, Benoit; Uzdensky, Dmitri A; Begelman, Mitchell C
2014-01-01
The Crab Nebula was formed after the collapse of a massive star about a thousand years ago, leaving behind a pulsar that inflates a bubble of ultra-relativistic electron-positron pairs permeated with magnetic field. The observation of brief but bright flares of energetic gamma rays suggests that pairs are accelerated to PeV energies within a few days; such rapid acceleration cannot be driven by shocks. Here, it is argued that the flares may be the smoking gun of magnetic dissipation in the Nebula. Using 2D and 3D particle-in-cell simulations, it is shown that the observations are consistent with relativistic magnetic reconnection, where pairs are subject to strong radiative cooling. The Crab flares may highlight the importance of relativistic magnetic reconnection in astrophysical sources.
Non-linear collisionless damping of Weibel turbulence in relativistic blast waves
Lemoine, Martin
2014-01-01
The Weibel/filamentation instability is known to play a key role in the physics of weakly magnetized collisionless shock waves. From the point of view of high energy astrophysics, this instability also plays a crucial role because its development in the shock precursor populates the downstream with a small-scale magneto-static turbulence which shapes the acceleration and radiative processes of suprathermal particles. The present work discusses the physics of the dissipation of this Weibel-generated turbulence downstream of relativistic collisionless shock waves. It calculates explicitly the first-order non-linear terms associated to the diffusive nature of the particle trajectories. These corrections are found to systematically increase the damping rate, assuming that the scattering length remains larger than the coherence length of the magnetic fluctuations. The relevance of such corrections is discussed in a broader astrophysical perspective, in particular regarding the physics of the external relativistic ...
Malihe AKBARPOUR BAHREH
2014-06-01
Full Text Available The present study was carried out to examine the possibilities of obtaining primed seeds that maintain high germination quality and the same longevity as the untreated seeds. For Tall wheatgrass tested, we found that the desired longevity could be obtained by keeping the seeds under heat shock for a period of several hours, after a priming treatment. Decreasing germination and seedling vigour in BAP 25 and 50 ppm, for 24 priming, did not happen again due to such a treatment. In addition, following priming, heat shock affects the initial quality of primed seeds in some treatments. Optimal temperature was strongly duration dependent. The method was applied to obtain primed seeds without the loss of storability, which is similar to those procedures used to induce desiccation tolerance in germinated seeds and acquire thermo tolerance in plant vegetative tissues.
Molecular dynamics study of accelerated ion-induced shock waves in biological media
de Vera, Pablo; Currell, Fred J; Solov'yov, Andrey V
2016-01-01
We present a molecular dynamics study of the effects of carbon- and iron-ion induced shock waves in DNA duplexes in liquid water. We use the CHARMM force field implemented within the MBN Explorer simulation package to optimize and equilibrate DNA duplexes in liquid water boxes of different sizes and shapes. The translational and vibrational degrees of freedom of water molecules are excited according to the energy deposited by the ions and the subsequent shock waves in liquid water are simulated. The pressure waves generated are studied and compared with an analytical hydrodynamics model which serves as a benchmark for evaluating the suitability of the simulation boxes. The energy deposition in the DNA backbone bonds is also monitored as an estimation of biological damage, something which lies beyond the possibilities of the analytical model.
2007-11-02
part of the upstream boundary layer and the shock foot motion. Furthermore, their measurements confirmed the observation that there is no correlation...The “dot card” target is composed of equally spaced dots and a single cross in the lower part of the image (an example image is shown in Fig. 9...University of Tokyo, Hongo Bunkyo-ku, Tokyo 113, Japan, Oct. 25-29, 1987. 12 Figure 1. Schematic diagram of the test section with compression
Collisionless shock waves mediated by Weibel Instability
Naseri, Neda; Ruan, Panpan; Zhang, Xi; Khudik, Vladimir; Shvets, Gennady
2015-11-01
Relativistic collisionless shocks are common events in astrophysical environments. They are thought to be responsible for generating ultra-high energy particles via the Fermi acceleration mechanism. It has been conjectured that the formation of collisionless shocks is mediated by the Weibel instability that takes place when two initially cold, unmagnetized plasma shells counter-propagate into each other with relativistic drift velocities. Using a PIC code, VLPL, which is modified to suppress numerical Cherenkov instabilities, we study the shock formation and evolution for asymmetric colliding shells with different densities in their own proper reference frame. Plasma instabilities in the region between the shock and the precursor are also investigated using a moving-window simulation that advances the computational domain at the shock's speed. This method helps both to save computation time and avoid severe numerical Cherenkov instabilities, and it allows us to study the shock evolution in a longer time period. Project is supported by US DOE grants DE-FG02-04ER41321 and DE-FG02-07ER54945.
Fang, F; Clayton, C E; Marsh, K A; Pak, A E; Ralph, J E; Joshi, C [Department of Electrical Engineering, University of California, Los Angeles, CA 90095 (United States); Lopes, N C [Grupo de Lasers e Plasmas, Instituto Superior Tecnico, Lisbon (Portugal)], E-mail: cclayton@ucla.edu
2009-02-15
In a forced laser-wakefield accelerator experiment (Malka et al 2002 Science 298 1596) where the length of the pump laser pulse is a few plasma periods long, the leading edge of the laser pulse undergoes frequency downshifting and head erosion as the laser energy is transferred to the wake. Therefore, after some propagation distance, the group velocity of the leading edge of the pump pulse-and thus of the driven electron plasma wave-will slow down. This can have implications for the dephasing length of the accelerated electrons and therefore needs to be understood experimentally. We have carried out an experimental investigation where we have measured the velocity v{sub f} of the 'wave-front' of the plasma wave driven by a nominally 50 fs (full width half maximum), intense (a{sub 0} {approx_equal} 1), 0.815 {mu}m laser pulse. To determine the speed of the wave front, time- and space-resolved refractometry, interferometry and Thomson scattering were used. Although a laser pulse propagating through a relatively low-density plasma (n{sub e} = 1.3 x 10{sup 19} cm{sup -3}) showed no measurable changes in v{sub f} over 1.3 mm (and no accelerated electrons), a high-density plasma (n{sub e} = 5 x 10{sup 19} cm{sup -3}) generated accelerated electrons and showed a continuous change in v{sub f} as the laser pulse propagated through the plasma. Possible causes and consequences of the observed v{sub f} evolution are discussed.
Irradiated shocks in the W28 A2 massive star-forming region: a site for cosmic rays acceleration?
Gusdorf, A; Gerin, M; Guesten, R
2015-01-01
The formation of massive stars play a crucial role in galaxies from numerous points of view. The protostar generates a strong ultraviolet radiation field that ionizes its surroundings, and it drives powerful shock waves in the neighbouring medium in the form of jets and bipolar outflows, whose structure can be partially organized by local, strong magnetic field. Such an ejection activity locally modifies the interstellar chemistry, contributing to the cycle of matter. It also significantly participates to the energetic balance of galaxies. In the latter stages of massive star formation, the protostar is surrounded by an ultra-compact HII region, and irradiates its bipolar outflows, where an intrinsically strong magnetic field structure is associated to the generally high densities. In the HII region, or in the bipolar outflows, the question of in situ cosmic rays acceleration can then be raised by the simultaneous presence of strong magnetic fields, significant ionization of the matter, and mechanical energy ...
Hong Huang
2016-01-01
Full Text Available Objective. To evaluate the therapeutic effects of G-CSF administration after intraosseous (IO resuscitation in hemorrhagic shock (HS combined with cutaneous injury rats. Methods. The rats were randomly divided into four groups: (1 HS with resuscitation (blank, (2 HS with resuscitation + G-CSF (G-CSF, 200 μg/kg body weight, subcutaneous injection, (3 HS with resuscitation + normal saline solution injection (normal saline, and (4 HS + G-CSF injection without resuscitation (Unres/G-CSF. To estimate the treatment effects, the vital signs of alteration were first evaluated, and then wound closure rates and homing of MSCs and EPCs to the wound skins and vasculogenesis were measured. Besides, inflammation and vasculogenesis related mRNA expressions were also examined. Results. IO infusion hypertonic hydroxyethyl starch (HHES exhibited beneficial volume expansion roles and G-CSF administration accelerated wound healing 3 days ahead of other groups under hemorrhagic shock. Circulating and the homing of MSCs and EPCs at wound skins were significantly elevated at 6 h after G-CSF treatment. Inflammation was declined since 3 d while angiogenesis was more obvious in G-CSF treated group on day 9. Conclusions. These results suggested that the synergistical application of HHES and G-CSF has life-saving effects and is beneficial for improving wound healing in HS combined with cutaneous injury rats.
Cosmological structure formation shocks and cosmic rays in hydrodynamical simulations
Pfrommer, C; Ensslin, T A; Jubelgas, M; Pfrommer, Christoph; Springel, Volker; Ensslin, Torsten A.; Jubelgas, Martin
2006-01-01
Cosmological shock waves during structure formation not only play a decisive role for the thermalization of gas in virializing structures but also for the acceleration of relativistic cosmic rays (CRs) through diffusive shock acceleration. We discuss a novel numerical treatment of the physics of cosmic rays in combination with a formalism for identifying and measuring the shock strength on-the-fly during a smoothed particle hydrodynamics simulation. In our methodology, the non-thermal CR population is treated self-consistently in order to assess its dynamical impact on the thermal gas as well as other implications on cosmological observables. Using this formalism, we study the history of the thermalization process in high-resolution hydrodynamic simulations of the Lambda cold dark matter model. Collapsed cosmological structures are surrounded by shocks with high Mach numbers up to 1000, but they play only a minor role in the energy balance of thermalization. However, this finding has important consequences fo...
Afanasiev, Alexandr; Vainio, Rami
2016-01-01
Context. Solar energetic particles observed in association with coronal mass ejections (CMEs) are produced by the CME-driven shock waves. The acceleration of particles is considered to be due to diffusive shock acceleration (DSA). Aims. We aim at a better understanding of DSA in the case of quasi-parallel shocks, in which self-generated turbulence in the shock vicinity plays a key role. Methods. We have developed and applied a new Monte Carlo simulation code for acceleration of protons in parallel coronal shocks. The code performs a self-consistent calculation of resonant interactions of particles with Alfv\\'en waves based on the quasi-linear theory. In contrast to the existing Monte Carlo codes of DSA, the new code features the full quasi-linear resonance condition of particle pitch-angle scattering. This allows us to take anisotropy of particle pitch-angle scattering into account, while the older codes implement an approximate resonance condition leading to isotropic scattering.We performed simulations with...
Jones, T W
2005-01-01
We have developed a new, very efficient numerical scheme to solve the CR diffusion convection equation that can be applied to the study of the nonlinear time evolution of CR modified shocks for arbitrary spatial diffusion properties. The efficiency of the scheme derives from its use of coarse-grained finite momentum volumes. This approach has enabled us, using $\\sim 10 - 20$ momentum bins spanning nine orders of magnitude in momentum, to carry out simulations that agree well with results from simulations of modified shocks carried out with our conventional finite difference scheme requiring more than an order of magnitude more momentum points. The coarse-grained, CGMV scheme reduces execution times by a factor approximately half the ratio of momentum bins used in the two methods. Depending on the momentum dependence of the diffusion, additional economies in required spatial and time resolution can be utilized in the CGMV scheme, as well. These allow a computational speed-up of at least an order of magnitude i...
Re-acceleration model for the "Toothbrush" Radio Relic
Kang, Hyesung
2016-01-01
The Toothbrush radio relic associated the merging cluster 1RXS J060303.3 is presumed to be produced by relativistic electrons accelerated at merger-driven shocks. Since the shock Mach number inferred from the observed radio spectral index, $M_{radio}\\approx 2.8$, is larger than that estimated from X-ray observations, $M_{X-ray}\\lesssim 1.5$, we consider the re-acceleration model in which a weak shock of $M_s\\approx 1.2-1.5$ sweeps through the intracluster plasma with a preshock population of relativistic electrons. We find the models with a power-law momentum spectrum with the slope, $s\\approx 4.6$, and the cutoff Lorentz factor, $\\gamma_{e,c}\\approx 7-8\\times 10^4$ can reproduce reasonably well the observed profiles of radio fluxes and integrated radio spectrum of the head portion of the Toothbrush relic. This study confirms the strong connection between the ubiquitous presence of fossil relativistic plasma originated from AGNs and the shock-acceleration model of radio relics in the intracluster medium.
Re-Acceleration Model for the "Toothbrush" Radio Relic
Kang, Hyesung
2016-06-01
The Toothbrush radio relic associated with the merging cluster 1RXS J060303.3 is presumed to be produced by relativistic electrons accelerated at merger-driven shocks. Since the shock Mach number inferred from the observed radio spectral index, M_{radio}≈ 2.8, is larger than that estimated from X-ray observations, M_{X}≲ 1.5, we consider the re-acceleration model in which a weak shock of M_s≈ 1.2-1.5 sweeps through the intracluster plasma with a preshock population of relativistic electrons. We find the models with a power-law momentum spectrum with the slope, s≈ 4.6, and the cutoff Lorentz factor, γ_{e,c}≈ 7-8× 10^4 can reproduce reasonably well the observed profiles of radio fluxes and integrated radio spectrum of the head portion of the Toothbrush relic.This study confirms the strong connection between the ubiquitous presence of fossil relativistic plasma originated from AGNs and the shock-acceleration model of radio relics in the intracluster medium.
Smoller, Joel
2012-01-01
We prove that the Einstein equations in Standard Schwarzschild Coordinates close to form a system of three ordinary differential equations for a family of spherically symmetric, self-similar expansion waves, and the critical ($k=0$) Friedmann universe associated with the pure radiation phase of the Standard Model of Cosmology (FRW), is embedded as a single point in this family. Removing a scaling law and imposing regularity at the center, we prove that the family reduces to an implicitly defined one parameter family of distinct spacetimes determined by the value of a new {\\it acceleration parameter} $a$, such that $a=1$ corresponds to FRW. We prove that all self-similar spacetimes in the family are distinct from the non-critical $k\
Fast lattice Boltzmann solver for relativistic hydrodynamics.
Mendoza, M; Boghosian, B M; Herrmann, H J; Succi, S
2010-07-01
A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.
Numerical Investigation and Experimental Reproduction of Fermi Acceleration in Laboratory Scale
Zhou, M.; Zhai, C.
2015-12-01
Fermi acceleration is widely accepted as the mechanism to explain power law of cosmic ray spectrum. Now this mechanism has been developed to first order Fermi acceleration and second order Fermi acceleration. In first order Fermi acceleration, also known as diffusive shock acceleration, particles are confined around the shock through scattering and accelerated by repeatedly crossing shock front. In second order Fermi acceleration, particles gain energy through statistical collisions with interstellar clouds. In this proposed work, we plan to carefully study these two kinds of acceleration numerically and experimentally. We first consider a single relativistic particle and investigate how it gains energy in Fermi-Ulam model and shock wave acceleration model respectively. We investigate collective behavior of particles with different kinds of wall-oscillation functions and try to find an optimal one in terms of efficiency of acceleration. Then, we plan to go further and consider a group of particles statistically, during which we borrow the correct generalization of Maxwell's velocity distribution in special relativity and compare the results with those in cases where we simply use Maxwell-Boltzmann distribution. To this end, we try to provide a scheme to build an accelerator applying both laser technology and mirror effect in Laboratory to reproduce Fermi acceleration, which might be a promising source to obtain high energy particles and further study the mechanism of cosmic rays acceleration.
Shocks in nova outflows. II. Synchrotron radio emission
Vlasov, Andrey Dmitrievich; Metzger, Brian David
2016-01-01
The discovery of GeV gamma-rays from classical novae indicates that shocks and relativistic particle acceleration are energetically key in these events. Further evidence for shocks comes from thermal keV X-ray emission and an early peak in the radio light curve on a timescale of months with a brightness temperature which is too high to result from freely expanding photo-ionized gas. Paper I developed a one dimensional model for the thermal emission from nova shocks. This work concluded that the shock-powered radio peak cannot be thermal if line cooling operates in the post-shock gas at the rate determined by collisional ionization equilibrium. Here we extend this calculation to include non-thermal synchrotron emission. Applying our model to three classical novae, we constrain the amplification of the magnetic field $\\epsilon_B$ and the efficiency $\\epsilon_e$ of accelerating relativistic electrons of characteristic Lorentz factor $\\gamma \\sim 100$. If the shocks are radiative (low velocity $v_{\\rm sh} \\lesssi...
Baker, D N; Jaynes, A N; Kanekal, S G; Foster, J C; Erickson, P J; Fennell, J F; Blake, J B; Zhao, H; Li, X; Elkington, S R; Henderson, M G; Reeves, G D; Spence, H E; Kletzing, C A; Wygant, J R
2016-07-01
Two of the largest geomagnetic storms of the last decade were witnessed in 2015. On 17 March 2015, a coronal mass ejection-driven event occurred with a Dst (storm time ring current index) value reaching -223 nT. On 22 June 2015 another strong storm (Dst reaching -204 nT) was recorded. These two storms each produced almost total loss of radiation belt high-energy (E ≳ 1 MeV) electron fluxes. Following the dropouts of radiation belt fluxes there were complex and rather remarkable recoveries of the electrons extending up to nearly 10 MeV in kinetic energy. The energized outer zone electrons showed a rich variety of pitch angle features including strong "butterfly" distributions with deep minima in flux at α = 90°. However, despite strong driving of outer zone earthward radial diffusion in these storms, the previously reported "impenetrable barrier" at L ≈ 2.8 was pushed inward, but not significantly breached, and no E ≳ 2.0 MeV electrons were seen to pass through the radiation belt slot region to reach the inner Van Allen zone. Overall, these intense storms show a wealth of novel features of acceleration, transport, and loss that are demonstrated in the present detailed analysis.
Gamma-ray bursts and collisionless shocks
Waxman, E
2006-01-01
Particle acceleration in collisionless shocks is believed to be responsible for the production of cosmic-rays over a wide range of energies, from few GeV to >10^{20} eV, as well as for the non-thermal emission of radiation from a wide variety of high energy astrophysical sources. A theory of collisionless shocks based on first principles does not, however, exist. Observations of gamma-ray burst (GRB) "afterglows" provide a unique opportunity for diagnosing the physics of relativistic collisionless shocks. Most GRBs are believed to be associated with explosions of massive stars, and their "afterglows," delayed low energy emission following the prompt burst of gamma-rays, are produced by relativistic collisionless shock waves driven by the explosion into the surrounding plasma. Some of the striking characteristics of these shocks include the generation of downstream magnetic fields with energy density exceeding that of the upstream field by ~8 orders of magnitude, the survival of this strong field at distances ...
Shock acceleration as origin of the radio relic in A521?
Giacintucci, S; Macario, G; Dallacasa, D; Brunetti, G; Markevitch, M; Cassano, R; Bardelli, S; Athreya, R
2008-01-01
We present new high sensitivity observations of the radio relic in A521 carried out with the Giant Metrewave Radio Telescope at 327 MHz and with the Very Large Array at 4.9 and 8.5 GHz. We imaged the relic at these frequencies and carried out a detailed spectral analysis, based on the integrated radio spectrum between 235 MHz and 4.9 GHz, and on the spectral index image in the frequency range 327-610 MHz. To this aim we used the new GMRT observations and other proprietary as well as archival data. We also searched for a possible shock front co-located with the relic on a short archival Chandra X-ray observation of the cluster. The integrated spectrum of the relic is consistent with a single power law; the spectral index image shows a clear trend of steepening going from the outer portion of the relic toward the cluster centre. We discuss the origin of the source in the light of the theoretical models for the formation of cluster radio relics. Our results on the spectral properties of the relic are consistent ...
Onset of streptococcal toxic shock syndrome is accelerated by bruising in a mouse model.
Seki, Masanori; Saito, Mitsumasa; Iida, Ken-Ichiro; Taniai, Hiroaki; Soejima, Takashi; Nakayama, Hiroaki; Yoshida, Shin-Ichi
2008-04-01
Streptococcal toxic shock syndrome (STSS) is the severest form of human infections caused by Streptococcus pyogenes. In our animal model of STSS [Saito M, Kajiwara H, Ishikawa T, et al. Delayed onset of systemic bacterial dissemination and subsequent death in mice injected intramuscularly with Streptococcus pyogenes. Microbiol Immunol 2001;45:777-86], mice inoculated intramuscularly with S. pyogenes strains initially suffer from a short illness, then recover and remain healthy for about 20 days, and finally become sick and incur a sudden death. Here we report that the death during the convalescent period was facilitated by artificially bruising an extremity remote from the site of the initial inoculation. Bacterial burden was found to be higher in the bruised site than in a non-bruised control extremity of each mouse examined. Bacteremia started to occur approximately 20 days after infection. These findings imply that a fresh bruise serves as a focus for bacterial multiplication in the presence of bacteremia, thereby facilitating the development of STSS.
Flow Topology of Three-Dimensional Spherical Flame in Shock Accelerated Flows
Yuejin Zhu
2016-01-01
Full Text Available The flow topologies of compressible large-scale distorted flames are studied by means of the analysis of the invariants of the velocity gradient tensor (VGT. The results indicate that compressibility plays a minor role in the distorted flame zone. And the joint probability density function (p.d.f. of the Q-R diagram appears as a teardrop shape, which is a universal feature of turbulence. Therefore, the distorted flame exhibits the characteristic of large-scale turbulence combustion, especially behind the reflected shock wave, while the p.d.f. of the QS⁎-QW diagram implies that the dissipation is enhanced in the compression and expansion regions, where it is higher than that when P=0. Furthermore, we identify that the flame evolution is dominated by rotation by means of a quantitative statistical study, and the SFS topology is the predominant flow pattern. Not surprisingly, negative dilatation could suppress the unstable topologies, whereas positive dilatation could suppress the stable topologies.
Relativistic jet feedback in high-redshift galaxies I: Dynamics
Mukherjee, Dipanjan; Sutherland, Ralph S; Wagner, A Y
2016-01-01
We present the results of three dimensional relativistic hydrodynamic simulations of interaction of AGN jets with a dense turbulent two-phase interstellar medium, which would be typical of high redshift galaxies. We describe the effect of the jet on the evolution of the density of the turbulent ISM. The jet driven energy bubble affects the gas to distances up to several kiloparsecs from the injection region. The shocks resulting from such interactions create a multi-phase ISM and radial outflows. One of the striking result of this work is that low power jets (P_jet < 10^{43} erg/s) although less efficient in accelerating clouds, are trapped in the ISM for a longer time and hence affect the ISM over a larger volume. Jets of higher power drill through with relative ease. Although the relativistic jets launch strong outflows, there is little net mass ejection to very large distances, supporting a galactic fountain scenario for local feedback.
RADIO AND X-RAY SHOCKS IN CLUSTERS OF GALAXIES
Hong, Sungwook E. [School of Physics, Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of); Kang, Hyesung [Department of Earth Sciences, Pusan National University, Busan 609-735 (Korea, Republic of); Ryu, Dongsu, E-mail: swhong@kias.re.kr, E-mail: hskang@pusan.ac.kr, E-mail: ryu@sirius.unist.ac.kr [Department of Physics, UNIST, Ulsan 689-798 (Korea, Republic of)
2015-10-10
Radio relics detected in the outskirts of galaxy clusters are thought to trace radio-emitting relativistic electrons accelerated at cosmological shocks. In this study, using the cosmological hydrodynamic simulation data for the large-scale structure formation and adopting a diffusive shock acceleration (DSA) model for the production of cosmic-ray (CR) electrons, we construct mock radio and X-ray maps of simulated galaxy clusters that are projected in the sky plane. Various properties of shocks and radio relics, including the shock Mach number, radio spectral index, and luminosity, are extracted from the synthetic maps and compared with observations. A substantial fraction of radio and X-ray shocks identified in these maps involve multiple shock surfaces along lines of sight (LOSs), and the morphology of shock distributions in the maps depends on the projection direction. Among multiple shocks in a given LOS, radio observations tend to pick up stronger shocks with flatter radio spectra, while X-ray observations preferentially select weaker shocks with larger kinetic energy flux. As a result, in some cases the shock Mach numbers and locations derived from radio and X-ray observations could differ from each other. We also find that the distributions of the spectral index and radio power of the synthetic radio relics are somewhat inconsistent with those of observed real relics; a bit more radio relics have been observed closer to the cluster core and with steeper spectral indices. We suggest that the inconsistency could be explained if very weak shocks with M{sub s} ≲ 2 accelerate CR electrons more efficiently, compared with the DSA model adopted here.
Gamma-Rays from Intergalactic Shocks
Keshet, U; Loeb, A; Springel, V; Hernquist, L E; Keshet, Uri; Waxman, Eli; Loeb, Abraham; Springel, Volker; Hernquist, Lars
2003-01-01
Structure formation in the intergalactic medium (IGM) produces large-scale, collisionless shock waves, where electrons can be accelerated to highly relativistic energies. Such electrons can Compton scatter cosmic microwave background photons up to gamma-ray energies. We study the radiation emitted in this process using a hydrodynamic cosmological simulation of a LCDM universe. The resulting radiation, extending beyond TeV energies, has roughly constant energy flux per decade in photon energy, in agreement with the predictions of Loeb & Waxman (2000). Assuming that a fraction \\xi_e=0.05 of the shock energy is transferred to the relativistic electrons, as inferred from collisionless non-relativistic shocks in the interstellar medium, we find that the radiation energy flux, e^2 (dJ/de) ~ 50-160 eV cm^{-2} s^{-1} sr^{-1}, constitutes ~10% of the extragalactic gamma-ray background flux. The associated gamma-ray point-sources are too faint to account for the ~60 unidentified EGRET gamma-ray sources, but GLAST s...
Demianski, Marek
2013-01-01
Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity
Synchrotron radiation and diffusive shock acceleration - A short review and GRB perspective
Karlica, Mile, E-mail: mile.karlica@icranet.org [La Sapienza University of Rome - ICRANet, Piazzale Aldo Moro 5, 00189 Rome (Italy)
2015-12-17
In this talk we present the sponge” model and its possible implications on the GRB afterglow light curves. “Sponge” model describes source of GRB afterglow radiation as fragmented GRB ejecta where bubbles move through the rarefied medium. In the first part of the talk a short introduction to synchrotron radiation and Fermi acceleration was presented. In the assumption that X-ray luminosity of GRB afterglow phase comes from the kinetic energy losses of clouds in ejecta medium radiated as synchrotron radiation we solved currently very simple equation of motion to find which combination of cloud and medium regime describes the afterglow light curve the best. We proposed for the first step to watch simple combinations of expansion regimes for both bubbles and surrounding medium. The closest case to the numerical fit of GRB 150403A with time power law index k = 1.38 is the combination of constant bubbles and Sedov like expanding medium with time power law index k = 1.25. Of course the question of possible mixture of variuos regime combinations is still open within this model.
Multiwavelength Spectral Models for SNR G347.3-0.5 from Non-Linear Shock Acceleration
Baring, M G; Slane, P O; Baring, Matthew G.; Ellison, Donald C.; Slane, Patrick O.
2005-01-01
The remnant G347.3-0.5 exhibits strong shell emission in the radio and X-ray bands, and has a purported detection in the TeV gamma-ray band by the CANGAROO-II telescope. The CANGAROO results were touted as evidence for the production of cosmic ray ions, a claim that has proven controversial due to constraining fluxes associated with a proximate unidentified EGRET source 3EG J1714-3857. HESS has now seen this source in the TeV band. The complex environment of the remnant renders modeling of its broadband spectrum sensitive to assumptions concerning the nature and parameters of the circumremnant medium. This paper explores a sampling of reasonable possibilities for multiwavelength spectral predictions from this source, using a non-linear model of diffusive particle acceleration at the shocked shell. The magnetic field strength, shell size and degree of particle cross-field diffusion act as variables to which the radio to X-ray to gamma-ray signal is sensitive. The modeling of the extant data constrains these va...
Re-Acceleration Model for the "Sausage" Radio Relic
Kang, Hyesung
2016-08-01
The Sausage radio relic is the arc-like radio structure in the cluster CIZA J2242.8+5301, whose observed properties can be best understood by synchrotron emission from relativistic electrons accelerated at a merger-driven shock.However, there remain a few puzzles that cannot be explained by the shock acceleration model with only in-situ injection. In particular, the Mach number inferred from the observed radio spectral index, M_{radio}≈ 4.6, while the Mach number estimated from X-ray observations, M_{X-ray}≈ 2.7. In an attempt to resolve such a discrepancy, here we consider the re-acceleration model in which a shock of M_s≈ 3 sweeps through the intracluster gas with a pre-existing population of relativistic electrons. We find that observed brightness profiles at multi frequencies provide strong constraints on the spectral shape of pre-existing electrons. The models with a power-law momentum spectrum with the slope, s≈ 4.1, and the cutoff Lorentz factor, γ_{e,c}≈ 3-5× 10^4, can reproduce reasonably well the observed spatial profiles of radio fluxes and integrated radio spectrum of the Sausage relic.The possible origins of such relativistic electrons in the intracluster medium remain to be investigated further.
Time and Space Dependent Stochastic Acceleration Model for the Fermi Bubbles
Sasaki, K; Terasawa, T
2015-01-01
Fermi-LAT reveals two huge gamma-ray bubbles existing in the Galactic Center, called 'Fermi Bubbles'. The existence of two microwave bubbles at the same region are also reported by the observation by WMAP, dubbed 'WMAP haze'. In order to explain these components, It has been argued that the gamma-rays arise from Inverse-Compton scattering of relativistic electrons accelerated by plasma turbulence, and the microwaves are radiated by synchrotron radiation. But no previous research reproduces both the Fermi Bubbles and WMAP haze under typical magnetic fields in the galaxy. We assume that shocks present in the bubbles and the efficiency of the acceleration by plasma turbulence, 'stochastic acceleration', changes with the distance from the shock front. The distance from the shock front increases with time, accordingly the efficiency of the acceleration changes with time. We also consider the time development of the electrons escape from the turbulence by diffusive loss. Our model succeed to reproduce both the obse...
Orders of Fermi- and Plasma-Accelerations of Cosmic Rays
Tawfik, A
2010-01-01
The generic acceleration model for ultra high energy cosmic rays, which has been introduced in {\\tt 1006.5708 [astro-ph.HE]}, suggests various types of electromagnetic interactions between cosmic charged particles and the different types of the plasma fields, which are assumed to have general configurations, spatially and temporally. The well-known Fermi acceleration mechanisms are also included in the model. Meanwhile Fermi mechanisms in non-relativistic limit adhere first- and second-order of $\\beta$, the ratio of particle's velocity relative to the velocity of the stellar magnetic cloud, in the plasma field sector, $\\beta$ does not play any role, i.e. zero-order. In the relativistic limit, the orders of Fermi acceleration are only possible, when applying the corresponding conditions, either elastic scatterings or shock waves. Furthermore, it is found that the coefficients of $\\beta$ are functions of the initial and final velocities and the characteristic Larmor radius.
Radiation from the Relativistic Jet a Role of the Shear Boundary Layer
Stawarz, L
2002-01-01
Recent radio and optical large scale jets' observations suggest a two-component jet morphology, consisting of a fast central spine surrounded with a boundary layer with a velocity shear. We study radiation of electrons accelerated at such boundary layers as an option for standard approaches involving internal shocks in jets. The acceleration process in the boundary layer yields in a natural way a two component electron distribution: a power-law continuum with a bump at the energy, where energy gains equal radiation losses, followed by a cut-off. For such distributions we derive the observed spectra of synchrotron and inverse-Compton radiation, including comptonization of synchrotron and CMB photons. Under simple assumptions of energy equipartition between the relativistic particles and the magnetic field, the relativistic jet velocity at large scales and a turbulent character of the shear layer, the considered radiation can substantially contribute to the jet radiative output. In the considered conditions the...
Ye, J.; le Roux, J. A.; Arthur, A. D.
2015-12-01
Voyager spacecraft observations indicate that interstellar pickup ions are accelerated to ~1 MeV locally at the solar wind termination shock. We present modeling results of the diffusive shock acceleration (DSA) of locally born interstellar pickup ions at the solar wind termination shock by solving the standard focused transport equation numerically. Local time variations in the Parker spiral magnetic field angle are modeled using a q-Gaussian statistical description. The main results are: (1) The injection and DSA of pickup ions depends on the shape and width of the q-Gaussian distribution of the Parker spiral magnetic field angle. (2) Likewise, the accelerated pickup ion pitch-angle distribution also depends on the q-Gaussian distribution of the magnetic field angle. (3) The simulated accelerated pickup ion spectrum is much quieter far downstream than just behind the termination shock as observations show. (4) Magnetic reflection of accelerated pickup ions by the cross-shock magnetic field gradient results in the sporadic formation of highly anisotropic, energy-dependent intensity spikes in the accelerated pickup proton distribution at the termination shock.
Medina-Tanco, G. A.; Opher, R.
1990-11-01
RESUMEN. Se presentan resultados numericos para un modelo hidrodinamico de cuatro componentes (plasma de fondo, particulas energeticas, ondas de Alfven autogeneradas y campo magnetico) para choques oblicuos. ABSTRACT. Numerical results of a four component hydrodynamic model (background plasma, energetic particles, self-generated Alfven waves and magnetic field) for oblique shocks are presented. Keq wo't : COSMIC RAY-GENERAL - PLASMAS - SHOCK WAVES
Prompt high-energy emission from gamma-ray bursts in the internal shock model
Bosnjak, Z; Dubus, G
2008-01-01
The prompt GRB emission is thought to arise from electrons accelerated in internal shocks propagating within a highly relativistic outflow. The launch of Fermi offers the prospect of observations with unprecedented sensitivity in high-energy (>100 MeV) gamma-rays. The aim is to explore the predictions for HE emission from internal shocks, taking into account both dynamical and radiative aspects, and to deduce how HE observations constrain the properties of the relativistic outflow. The emission is modeled by combining a time-dependent radiative code with a dynamical code giving the evolution of the physical conditions in the shocked regions.Synthetic lightcurves and spectra are compared to observations. The HE emission deviates significantly from analytical estimates, which tend to overpredict the IC component, when the time dependence and full cross-sections are included. The exploration of the parameter space favors the case where the dominant process in the BATSE range is synchrotron emission. The HE compo...
Mueller, Bernhard; Marek, Andreas
2012-01-01
We present a detailed theoretical analysis of the gravitational-wave (GW) signal of the post-bounce evolution of core-collapse supernovae (SNe), employing for the first time relativistic, two-dimensional (2D) explosion models with multi-group, three-flavor neutrino transport based on the ray-by-ray-plus approximation. The waveforms reflect the accelerated mass motions associated with the characteristic evolutionary stages that were also identified in previous works: A quasi-periodic modulation by prompt postshock convection is followed by a phase of relative quiescence before growing amplitudes signal violent hydrodynamical activity due to convection and the standing accretion shock instability during the accretion period of the stalled shock. Finally, a high-frequency, low-amplitude variation from proto-neutron star (PNS) convection below the neutrinosphere appears superimposed on the low-frequency trend associated with the aspherical expansion of the SN shock after the onset of the explosion. Relativistic e...
Physics of collisionless shocks - theory and simulation
Novo, A Stockem; Fonseca, R A; Silva, L O
2015-01-01
Collisionless shocks occur in various fields of physics. In the context of space and astrophysics they have been investigated for many decades. However, a thorough understanding of shock formation and particle acceleration is still missing. Collisionless shocks can be distinguished into electromagnetic and electrostatic shocks. Electromagnetic shocks are of importance mainly in astrophysical environments and they are mediated by the Weibel or filamentation instability. In such shocks, charged particles gain energy by diffusive shock acceleration. Electrostatic shocks are characterized by a strong electrostatic field, which leads to electron trapping. Ions are accelerated by reflection from the electrostatic potential. Shock formation and particle acceleration will be discussed in theory and simulations.
A corrugated termination shock in pulsar wind nebulae?
Lemoine, Martin
2016-08-01
Successful phenomenological models of pulsar wind nebulae assume efficient dissipation of the Poynting flux of the magnetized electron-positron wind as well as efficient acceleration of the pairs in the vicinity of the termination shock, but how this is realized is not yet well understood. This paper suggests that the corrugation of the termination shock, at the onset of nonlinearity, may lead towards the desired phenomenology. Nonlinear corrugation of the termination shock would convert a fraction of order unity of the incoming ordered magnetic field into downstream turbulence, slowing down the flow to sub-relativistic velocities. The dissipation of turbulence would further preheat the pair population on short length scales, close to equipartition with the magnetic field, thereby reducing the initial high magnetization to values of order unity. Furthermore, it is speculated that the turbulence generated by the corrugation pattern may sustain a relativistic Fermi process, accelerating particles close to the radiation reaction limit, as observed in the Crab nebula. The required corrugation could be induced by the fast magnetosonic modes of downstream nebular turbulence; but it could also be produced by upstream turbulence, either carried by the wind or seeded in the precursor by the accelerated particles themselves.
Curved Radio Spectra of Weak Cluster Shocks
Kang, Hyesung; Ryu, Dongsu
2015-08-01
In order to understand certain observed features of arc-like giant radio relics such as the rareness, uniform surface brightness, and curved integrated spectra, we explore a diffusive shock acceleration (DSA) model for radio relics in which a spherical shock impinges on a magnetized cloud containing fossil relativistic electrons. Toward this end, we perform DSA simulations of spherical shocks with the parameters relevant for the Sausage radio relic in cluster CIZA J2242.8+5301, and calculate the ensuing radio synchrotron emission from re-accelerated electrons. Three types of fossil electron populations are considered: a delta-function like population with the shock injection momentum, a power-law distribution, and a power law with an exponential cutoff. The surface brightness profile of the radio-emitting postshock region and the volume-integrated radio spectrum are calculated and compared with observations. We find that the observed width of the Sausage relic can be explained reasonably well by shocks with speed {u}{{s}}˜ 3× {10}3 {km} {{{s}}}-1 and sonic Mach number {M}{{s}}˜ 3. These shocks produce curved radio spectra that steepen gradually over (0.1-10){ν }{br} with a break frequency {ν }{br}˜ 1 GHz if the duration of electron acceleration is ˜60-80 Myr. However, the abrupt increase in the spectral index above ˜1.5 GHz observed in the Sausage relic seems to indicate that additional physical processes, other than radiative losses, operate for electrons with {γ }{{e}}≳ {10}4.
Relativistic effects in atom gravimeters
Tan, Yu-Jie; Shao, Cheng-Gang; Hu, Zhong-Kun
2017-01-01
Atom interferometry is currently developing rapidly, which is now reaching sufficient precision to motivate laboratory tests of general relativity. Thus, it is extremely significant to develop a general relativistic model for atom interferometers. In this paper, we mainly present an analytical derivation process and first give a complete vectorial expression for the relativistic interferometric phase shift in an atom interferometer. The dynamics of the interferometer are studied, where both the atoms and the light are treated relativistically. Then, an appropriate coordinate transformation for the light is performed crucially to simplify the calculation. In addition, the Bordé A B C D matrix combined with quantum mechanics and the "perturbation" approach are applied to make a methodical calculation for the total phase shift. Finally, we derive the relativistic phase shift kept up to a sensitivity of the acceleration ˜1 0-14 m/s 2 for a 10 -m -long atom interferometer.
Light scattering test regarding the relativistic nature of heat
Sandoval-Villalbazo, A
2006-01-01
The dynamic structure factor of a simple relativistic fluid is calculated. The coupling of acceleration with the heat flux present in Eckart's version of irreversible relativistic thermodynamics is examined using the Rayleigh-Brillouin spectrum of the fluid. A modification of the width of the Rayleigh peak associated to Eckart's picture of the relativistic nature of heat is predicted and estimated.
Light scattering test regarding the relativistic nature of heat
2005-01-01
The dynamic structure factor of a simple relativistic fluid is calculated. The coupling of acceleration with the heat flux present in Eckart's version of irreversible relativistic thermodynamics is examined using the Rayleigh-Brillouin spectrum of the fluid. A modification of the width of the Rayleigh peak associated to Eckart's picture of the relativistic nature of heat is predicted and estimated.
Luciano, Rezzolla
2013-01-01
Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...
Shock structure in massless gases
Armando Majorana
1991-05-01
Full Text Available The shock structure problem is investigated in the framework of the Eckart theory of irreversible thermodynamics in the ultra relativistic limit. It is considered a neutrino gas and a gas in the approximation of hard sphere model.
Hajra, Rajkumar; Echer, Ezequiel; Gonzalez, Walter D. [Instituto Nacional de Pesquisas Espaciais (INPE), Av. dos Astronautas, 1758, São José dos Campos, São Paulo 12227-010 (Brazil); Tsurutani, Bruce T. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive Pasadena, Pasadena, CA 91109 (United States); Santolik, Ondrej, E-mail: rajkumarhajra@yahoo.co.in [Institute of Atmospheric Physics AS CR, Prague (Czech Republic)
2015-01-20
Radiation-belt relativistic (E > 0.6, > 2.0, and > 4.0 MeV) electron acceleration is studied for solar cycle 23 (1995-2008). High-intensity, long-duration, continuous AE activity (HILDCAA) events are considered as the basis of the analyses. All of the 35 HILDCAA events under study were found to be characterized by flux enhancements of magnetospheric relativistic electrons of all three energies compared to the pre-event flux levels. For the E > 2.0 MeV electron fluxes, enhancement of >50% occurred during 100% of HILDCAAs. Cluster-4 passes were examined for electromagnetic chorus waves in the 5 < L < 10 and 0 < MLT < 12 region when wave data were available. Fully 100% of these HILDCAA cases were associated with enhanced whistler-mode chorus waves. The enhancements of E > 0.6, > 2.0, and > 4.0 MeV electrons occurred ∼1.0 day, ∼1.5 days, and ∼2.5 days after the statistical HILDCAA onset, respectively. The statistical acceleration rates for the three energy ranges were ∼1.8 × 10{sup 5}, 2.2 × 10{sup 3}, and 1.0 × 10{sup 1} cm{sup –2} s{sup –1} sr{sup –1} d{sup –1}, respectively. The relativistic electron-decay timescales were determined to be ∼7.7, 5.5, and 4.0 days for the three energy ranges, respectively. The HILDCAAs were divided into short-duration (D ≤ 3 days) and long-duration (D > 3 days) events to study the dependence of relativistic electron variation on HILDCAA duration. For long-duration events, the flux enhancements during HILDCAAs with respect to pre-event fluxes were ∼290%, 520%, and 82% for E > 0.6, > 2.0, and > 4.0 MeV electrons, respectively. The enhancements were ∼250%, 400%, and 27% respectively, for short-duration events. The results are discussed with respect to the current understanding of radiation-belt dynamics.
Matsumoto, Jin; Masada, Youhei; Asano, Eiji; Shibata, Kazunari
2011-06-01
The nonlinear dynamics of the outflow driven by magnetic explosion on the surface of compact object is investigated through special relativistic magnetohydrodynamic simulations. We adopt, as an initial equilibrium state, a spherical stellar object embedded in the hydrostatic plasma which has a density ρ(r) ~ r-α and is threaded by a dipole magnetic field. The injection of magnetic energy at the surface of compact star breaks the dynamical equilibrium and triggers two-component outflow. At the early evolutionary stage, the magnetic pressure increases rapidly in time around the stellar surface, initiating a magnetically driven outflow. Then it excites a strong forward shock, shock driven outflow. The expansion velocity of the magnetically driven outflow is characterized by the Alfvén velocity on the stellar surface, and follows a simple scaling relation υmag ~ υA1/2. When the initial density profile declines steeply with radius, the strong shock is accelerated self-similarly to relativistic velocity ahead of the magnetically driven component. We find that the evolution of the strong forward shock can be described by a self-similar relation Γsh ~ rsh, where Γsh is the Lorentz factor of the plasma measured at the shock surface rsh. It should be stressed that the pure hydrodynamic process is responsible for the acceleration of the shock driven outflow. Our two-component outflow model, which is the natural outcome of the magnetic explosion, would deepen the understanding of the magnetic active phenomena on various magnetized stellar objects.
Particle acceleration in cosmic plasmas – paradigm change?
Lytikov, Maxim [Purdue University; Guo, Fan [Los Alamos National Laboratory
2015-07-21
The presentation begins by considering the requirements on the acceleration mechanism. It is found that at least some particles in high-energy sources are accelerated by magnetic reconnection (and not by shocks). The two paradigms can be distinguished by the hardness of the spectra. Shocks typically produce spectra with p > 2 (relativistic shocks have p ~ 2.2); non-linear shocks & drift acceleration may give p < 2, e.g. p=1.5; B-field dissipation can give p = 1. Then collapse of stressed magnetic X-point in force-free plasma and collapse of a system of magnetic islands are taken up, including Island merger: forced reconnection. Spectra as functions of sigma are shown, and gamma ~ 10^{9} is addressed. It is concluded that reconnection in magnetically-dominated plasma can proceed explosively, is an efficient means of particle acceleration, and is an important (perhaps dominant for some phenomena) mechanism of particle acceleration in high energy sources.
A microscopic analysis of shear acceleration
Rieger, F M; Rieger, Frank M.; Duffy, Peter
2006-01-01
A microscopic analysis of the viscous energy gain of energetic particles in (gradual) non-relativistic shear flows is presented. We extend previous work and derive the Fokker-Planck coefficients for the average rate of momentum change and dispersion in the general case of a momentum-dependent scattering time $\\tau(p) \\propto p^{\\alpha}$ with $\\alpha \\geq 0$. We show that in contrast to diffusive shock acceleration the characteristic shear acceleration timescale depends inversely on the particle mean free path which makes the mechanism particularly attractive for high energy seed particles. Based on an analysis of the associated Fokker-Planck equation we show that above the injection momentum $p_0$ power-law differential particle number density spectra $n(p) \\propto p^{-(1+ \\alpha)}$ are generated for $\\alpha >0$ if radiative energy losses are negligible. We discuss the modifications introduced by synchrotron losses and determine the contribution of the accelerated particles to the viscosity of the background ...
Meyer, Eileen T.; Georganopoulos, Markos; Sparks, William B.; Perlman, Eric S.; Van Der Marel, Roeland P.; Anderson, Jay; Sohn, S. Tony; Biretta, John A.; Norman, Colin Arthur; Chiaberge, Marco
2016-04-01
Some of the most energetic phenomena in the Universe involve highly relativistic flows, in which particles are accelerated up to TeV energies. In the case of relativistic jets from Active Galactic Nuclei (AGN), these flows can carry enough energy to significantly influence both galactic and cluster evolution. While the exact physical mechanism that accelerates the radiating particles within the jet is not known, a widely adopted framework is the internal shock model, invoked to explain high-energy, non-thermal radiation from objects as diverse as microquasars, gamma-ray bursts, and relativistic jets in AGN. This model posits an unsteady relativistic flow that gives rise to components in the jet with different speeds. Faster components catch up to and collide with slower ones, leading to internal shocks. Despite its wide popularity as a theoretical framework, however, no occurance of this mechanism has ever been directly observed. We will present evidence of such a collision in a relativistic jet observed with the Hubble Space Telescope (HST) in the nearby radio galaxy 3C 264 (Meyer et al., 2015, Nature). Using images taken over 20 years, we show that a bright ‘knot’ in the jet is moving at an apparent speed of 7.0 +/- 0.8c and is in the incipient stages of a collision with a slow-moving knot (1.8 +/- 0.5c) just downstream. In the most recent epoch of imaging, we see evidence of brightening of the two knots as they commence their kiloparsec-scale collision. This is the behaviour expected in the internal shock scenario and the first direct evidence that internal shocks are a valid description of particle acceleration in relativistic jets.
Nishikawa, Ken-ichi; Hardee, Phil; Hartmann, Dieter; Niemiec, Jacek; Pohl, Martin; Nordlund, Aake; Sol, Helene; Gomez, Jose L.; Dutan, Ioana; Mizuno, Yosuke; Meli, Athina; Peer, Asaf; Frederiksen, Jacob
2016-07-01
In the study of relativistic jets one of the key open questions is their interaction with the environment. Here, we study the initial evolution of both electron-proton (e ^{-}- p ^{+}) and electron-positron (e±) relativistic jets, focusing on their lateral interaction with ambient plasma. We follow the evolution of toroidal magnetic fields generated by both the kinetic Kelvin-Helmholtz (kKH) and Mushroom instabilities (MI). For an e ^{-}- p ^{+} jet, the induced magnetic field collimates the jet and electrons are perpendicularly accelerated. As the instabilities saturate and subsequently weaken, the magnetic polarity switches from clockwise to counter-clockwise in the middle of jet. For an e± jet, we find strong mixing of electrons and positrons with the ambient plasma, resulting in the creation of a bow shock. The merging of current filaments generates density inhomogeneities which initiate a forward shock. Strong jet ambient plasma mixing prevents a full development of the jet (on the scale studied), revealing evidence for both jet collimation and particle acceleration in the forming bow shock. Differences in the magnetic field structure generated by e ^{-}- p ^{+} and e± jets may contribute to the polarization properties of the observed emission in AGN jets and gamma ray bursts.
Haba, Z
2009-02-01
We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.
Sahoo, Raghunath
2016-01-01
This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.
Relativistic gas in a Schwarzschild metric
Kremer, Gilberto M
2013-01-01
A relativistic gas in a Schwarzschild metric is studied within the framework of a relativistic Boltzmann equation in the presence of gravitational fields, where Marle's model for the collision operator of the Boltzmann equation is employed. The transport coefficients of bulk and shear viscosities and thermal conductivity are determined from the Chapman-Enskog method. It is shown that the transport coefficients depend on the gravitational potential. Expressions for the transport coefficients in the presence of weak gravitational fields in the non-relativistic (low temperatures) and ultra-relativistic (high temperatures) limiting cases are given. Apart from the temperature gradient the heat flux has two relativistic terms. The first one, proposed by Eckart, is due to the inertia of energy and represents an isothermal heat flux when matter is accelerated. The other, suggested by Tolman, is proportional to the gravitational potential gradient and indicates that -- in the absence of an acceleration field -- a stat...
Nonthermal Radiation and Acceleration of Electrons in Clusters of Galaxies
Petrosyan, V
2002-01-01
Recent observations of excess radiation at extreme ultraviolet and hard X-ray energies straddling the well known thermal soft X-ray emission have provided new tools and puzzles for investigation of the acceleration of nonthermal particles in the intercluster medium of clusters of galaxies. It is shown that these radiations can be produced by the inverse Compton upscattering of the cosmic microwave background photons by the same population of relativistic electrons that produce the well known diffuse radio radiation via the synchrotron mechanism. It is shown that the commonly discussed discrepancy between the value of the magnetic field required for the production of these radiation with that obtained from Faraday rotation measures could be resolved by more realistic models and by considerations of observational selection effects. In a brief discussion of the acceleration process it is argued that the most likely scenario is reacceleration of injected relativistic electrons involving shocks and turbulence. The...
Sen, Srimoyee
2016-01-01
We study shock waves in relativistic chiral matter. We argue that the conventional Rankine- Hugoinot relations are modified due to the presence of chiral transport phenomena. We show that the entropy discontinuity in a weak shock wave is linearly proportional to the pressure discontinuity when the effect of chiral transport becomes sufficiently large. We also show that rarefaction shock waves, which do not exist in usual nonchiral fluids, can appear in chiral matter. These features are exemplified by shock propagation in dense neutrino matter in the hydrodynamic regime.
Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection
Zenitani, Seiji; Hesse, Michael; Klimas, Alex
2010-01-01
Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfv enic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond-chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.
Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection
Zenitani, Seiji; Klimas, Alex
2010-01-01
Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten--Lan--van Leer (HLL) method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfv\\'{e}nic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond--chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet--Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.
Matsumoto, Jin; Masada, Youhei; Asano, Eiji; Shibata, Kazunari
2011-05-01
The nonlinear dynamics of outflows driven by magnetic explosion on the surface of a compact star is investigated through special relativistic magnetohydrodynamic simulations. We adopt, as the initial equilibrium state, a spherical stellar object embedded in hydrostatic plasma which has a density ρ(r) vprop r -α and is threaded by a dipole magnetic field. The injection of magnetic energy at the surface of a compact star breaks the equilibrium and triggers a two-component outflow. At the early evolutionary stage, the magnetic pressure increases rapidly around the stellar surface, initiating a magnetically driven outflow. A strong forward shock driven outflow is then excited. The expansion velocity of the magnetically driven outflow is characterized by the Alfvén velocity on the stellar surface and follows a simple scaling relation v mag vprop v A 1/2. When the initial density profile declines steeply with radius, the strong shock is accelerated self-similarly to relativistic velocity ahead of the magnetically driven component. We find that it evolves according to a self-similar relation Γsh vprop r sh, where Γsh is the Lorentz factor of the plasma measured at the shock surface r sh. A purely hydrodynamic process would be responsible for the acceleration mechanism of the shock driven outflow. Our two-component outflow model, which is the natural outcome of the magnetic explosion, can provide a better understanding of the magnetic active phenomena on various magnetized compact stars.
Re-acceleration Model for Radio Relics with Spectral Curvature
Kang, Hyesung
2016-01-01
Most of the observed features of radio gischt relics such as spectral steepening across the relic width and power-law-like integrated spectrum can be adequately explained by diffusive shock acceleration (DSA) model, in which relativistic electrons are (re-)accelerated at shock waves induced in the intracluster medium. However, Kang & Ryu (2015) showed that the steep spectral curvature in the integrated spectrum above $\\sim 2$ GHz detected in the Sausage relic in cluster CIZA J2242.8+5301 may not be interpreted by simple radiative cooling of postshock electrons. In order to understand such steepening, we here consider a model in which a spherical shock sweeps through and then exits out of a finite-size cloud with fossil relativistic electrons. The ensuing integrated radio spectrum is expected to steepen much more than predicted for aging postshock electrons, since the re-acceleration stops after the cloud-crossing time. Using DSA simulations that are intended to reproduce radio observations of the Sausage ...
Re-acceleration model for the `Sausage' Radio Relic
Kang, Hyesung
2016-01-01
The Sausage radio relic is the arc-like radio structure in the cluster CIZA J2242.8+5301, whose observed properties can be best understood by synchrotron emission from relativistic electrons accelerated at a merger-driven shock. However, there remain a few puzzles that cannot be explained by the shock acceleration model with only in-situ injection. In particular, the Mach number inferred from the observed radio spectral index, $M_{\\rm radio}\\approx 4.6$, while the Mach number estimated from X-ray observations, $M_{\\rm X-ray}\\approx 2.7$. In an attempt to resolve such a discrepancy, here we consider the re-acceleration model in which a shock of $M_s\\approx 3$ sweeps through the intracluster gas with a pre-existing population of relativistic electrons. We find that observed brightness profiles at multi frequencies provide strong constraints on the spectral shape of pre-existing electrons. The models with a power-law momentum spectrum with the slope, $s\\approx 4.1$, and the cutoff Lorentz factor, $\\gamma_{e,c}\\a...
Relativistic twins or sextuplets?
Sheldon, E S
2003-01-01
A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back.
Relativistic Particles in Clusters of Galaxies
Ensslin, T A
2002-01-01
A brief overview on the theory and observations of relativistic particle populations in clusters of galaxies is given. The following topics are addressed: (i) the diffuse relativistic electron population within the intra-cluster medium (ICM) as seen in the cluster wide radio halos and possibly also seen in the high energy X-ray and extreme ultraviolet excess emissions of some clusters, (ii) the observed confined relativistic electrons within fresh and old radio plasma and their connection to cluster radio relics at cluster merger shock waves, (iii) the relativistic proton population within the ICM, and its observable consequences (if it exists), and (iv) the confined relativistic proton population (if it exists) within radio plasma. The importance of upcoming, sensitive gamma-ray telescopes for this research area is highlighted.
B. T. Tsurutani
2005-01-01
Full Text Available Alfvén waves, discontinuities, proton perpendicular acceleration and magnetic decreases (MDs in interplanetary space are shown to be interrelated. Discontinuities are the phase-steepened edges of Alfvén waves. Magnetic decreases are caused by a diamagnetic effect from perpendicularly accelerated (to the magnetic field protons. The ion acceleration is associated with the dissipation of phase-steepened Alfvén waves, presumably through the Ponderomotive Force. Proton perpendicular heating, through instabilities, lead to the generation of both proton cyclotron waves and mirror mode structures. Electromagnetic and electrostatic electron waves are detected as well. The Alfvén waves are thus found to be both dispersive and dissipative, conditions indicting that they may be intermediate shocks. The resultant 'turbulence' created by the Alfvén wave dissipation is quite complex. There are both propagating (waves and nonpropagating (mirror mode structures and MDs byproducts. Arguments are presented to indicate that similar processes associated with Alfvén waves are occurring in the magnetosphere. In the magnetosphere, the 'turbulence' is even further complicated by the damping of obliquely propagating proton cyclotron waves and the formation of electron holes, a form of solitary waves. Interplanetary Alfvén waves are shown to rapidly phase-steepen at a distance of 1AU from the Sun. A steepening rate of ~35 times per wavelength is indicated by Cluster-ACE measurements. Interplanetary (reverse shock compression of Alfvén waves is noted to cause the rapid formation of MDs on the sunward side of corotating interaction regions (CIRs. Although much has been learned about the Alfvén wave phase-steepening processfrom space plasma observations, many facets are still not understood. Several of these topics are discussed for the interested researcher. Computer simulations and theoretical developments will be particularly useful in making further progress in
Non-thermal emission from relativistic MHD simulations of PWNe: from synchrotron to inverse Compton
Volpi, D; Amato, E; Bucciantini, N
2008-01-01
In this paper we complete the set of diagnostic tools for synchrotron emitting sources presented by Del Zanna et al. (Astron. Astrophys. 453, 621, 2006) with the computation of inverse Compton radiation from the same relativistic particles. Moreover we investigate, for the first time, the gamma-ray emission properties of Pulsar Wind Nebulae in the light of the axisymmetric jet-torus scenario. The method consists in evolving the relativistic MHD equations and the maximum energy of the emitting particles. The particle energy distribution function is split in two components: the radio one connected to a relic population born at the outburst of the supernova and the other associated to the wind population continuously accelerated at the termination shock and emitting up to the gamma-ray band. We consider the general Klein-Nishina cross section and three different photon targets: the nebular synchrotron photons, far-infrared thermal ones and the cosmic microwave background. The overall synchrotron spectrum is fitt...
Hakim, Rémi
1994-01-01
Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.
Relativistic Hydrodynamics on Graphic Cards
Gerhard, Jochen; Bleicher, Marcus
2012-01-01
We show how to accelerate relativistic hydrodynamics simulations using graphic cards (graphic processing units, GPUs). These improvements are of highest relevance e.g. to the field of high-energetic nucleus-nucleus collisions at RHIC and LHC where (ideal and dissipative) relativistic hydrodynamics is used to calculate the evolution of hot and dense QCD matter. The results reported here are based on the Sharp And Smooth Transport Algorithm (SHASTA), which is employed in many hydrodynamical models and hybrid simulation packages, e.g. the Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). We have redesigned the SHASTA using the OpenCL computing framework to work on accelerators like graphic processing units (GPUs) as well as on multi-core processors. With the redesign of the algorithm the hydrodynamic calculations have been accelerated by a factor 160 allowing for event-by-event calculations and better statistics in hybrid calculations.
Jones, Bernard J. T.; Markovic, Dragoljub
1997-06-01
Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.
Strong evidence for hadron acceleration in Tycho's supernova remnant
Morlino, G.; Caprioli, D.
2012-02-01
Context. Very recent gamma-ray observations of G120.1+1.4 (Tycho's) supernova remnant (SNR) by Fermi-LAT and VERITAS have provided new fundamental pieces of information for understanding particle acceleration and nonthermal emission in SNRs. Aims: We want to outline a coherent description of Tycho's properties in terms of SNR evolution, shock hydrodynamics, and multiwavelength emission by accounting for particle acceleration at the forward shock via first-order Fermi mechanism. Methods: We adopt here a quick and reliable semi-analytical approach to nonlinear diffusive shock acceleration. It includes magnetic field amplification due to resonant streaming instability and the dynamical backreaction on the shock of both cosmic rays (CRs) and self-generated magnetic turbulence. Results: We find that Tycho's forward shock accelerates protons up to at least 500 TeV, channelling into CRs about 10% of its kinetic energy. Moreover, the CR-induced streaming instability is consistent with all the observational evidence of very efficient magnetic field amplification (up to ~300 μG). In such a strong magnetic field, the velocity of the Alfvén waves scattering CRs in the upstream is expected to be enhanced and to make accelerated particles feel an effective compression factor lower than 4, in turn leading to an energy spectrum steeper than the standard prediction ∝ E-2. This effect is crucial for explaining GeV-to-TeV gamma-ray spectrum as the result of neutral pions decay produced in nuclear collisions between accelerated nuclei and the background gas. Conclusions: The self-consistency of such hadronic scenario, along with the inability of the concurrent leptonic mechanism (inverse Compton scattering of relativistic electrons on several photon backgrounds) to reproduce both the shape and the normalization of the detected gamma-ray emission, represents the first clear and direct radiative evidence that hadron acceleration occurs efficiently in young Galactic SNRs.
Vaisseau, X.; Morace, A.; Touati, M.; Nakatsutsumi, M.; Baton, S. D.; Hulin, S.; Nicolaï, Ph.; Nuter, R.; Batani, D.; Beg, F. N.; Breil, J.; Fedosejevs, R.; Feugeas, J.-L.; Forestier-Colleoni, P.; Fourment, C.; Fujioka, S.; Giuffrida, L.; Kerr, S.; McLean, H. S.; Sawada, H.; Tikhonchuk, V. T.; Santos, J. J.
2017-05-01
Collimated transport of ultrahigh intensity electron current was observed in cold and in laser-shocked vitreous carbon, in agreement with simulation predictions. The fast electron beams were created by coupling high-intensity and high-contrast laser pulses onto copper-coated cones drilled into the carbon samples. The guiding mechanism—observed only for times before the shock breakout at the inner cone tip—is due to self-generated resistive magnetic fields of ˜0.5 - 1 kT arising from the intense currents of fast electrons in vitreous carbon, by virtue of its specific high resistivity over the range of explored background temperatures. The spatial distribution of the electron beams, injected through the samples at different stages of compression, was characterized by side-on imaging of hard x-ray fluorescence.
Probing Efficient Cosmic-Ray Acceleration in Young Supernovae
Dwarkadas, Vikram V; Marcowith, A; Tatischeff, V
2015-01-01
The formation of a core collapse supernovae (SNe) results in a fast (but non- or mildly-relativistic) shock wave expanding outwards into the surrounding medium. The medium itself is likely modified due to the stellar mass-loss from the massive star progenitor, which may be Wolf-Rayet stars (for Type Ib/c SNe), red supergiant stars (for type IIP and perhaps IIb and IIL SNe), or some other stellar type. The wind mass-loss parameters determine the density structure of the surrounding medium. Combined with the velocity of the SN shock wave, this regulates the shock acceleration process. In this article we discuss the essential parameters that control the particle acceleration and gamma-ray emission in SNe, with particular reference to the Type IIb SN 1993J. The shock wave expanding into the high density medium leads to fast particle acceleration, giving rise to rapidly-growing plasma instabilities driven by the acceleration process itself. The instabilities grow over intraday timescales. This growth, combined wit...